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Preface

This book contains refereed papers presented at the 9th Workshop on Self-Organizing
Maps (WSOM 2012) held at the Universidad de Chile, Santiago, Chile, on December
12–14, 2012. The workshop brought together researchers and practitioners in the field
of self-organizing systems. Among the book chapters there are excellent examples of
the use of SOMs in agriculture, computer science, data visualization, health systems,
economics, engineering, social sciences, text and image analysis, and time series anal-
ysis. Other chapters present the latest theoretical work on SOMs as well as Learning
Vector Quantization (LVQ) methods.

Our deep appreciation is extended to Teuvo Kohonen, for serving as Honorary Gen-
eral Chair and for enthusiastically supporting the idea of holding the workshop for the
first time in Latin-America.

We warmly thank the members of the Steering Committee and the Executive Com-
mittee. In particular we thank to Guilherme Barreto, Publicity Chair, and Timo Honkela,
for handling the papers with conflict of interest.

Our sincere thanks go to Barbara Hammer and José Prı́ncipe for their plenary talks.
We are grateful to the members of the Program Committee and other reviewers for their
excellent and timely work, and above all to the authors whose contributions made this
book possible.

October 2012 Pablo A. Estévez
José C. Prı́ncipe

Pablo Zegers
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How to Visualize Large Data Sets?

Barbara Hammer, Andrej Gisbrecht, and Alexander Schulz

University of Bielefeld - CITEC Centre of Excellence, Germany
bhammer@techfak.uni-bielefeld.de

Abstract. We address novel developments in the context of dimensional-
ity reduction for data visualization. We consider nonlinear non-parametric
techniques such as t-distributed stochastic neighbor embedding and dis-
cuss the difficulties which are encountered if large data sets are dealt with,
in contrast to parametric approaches such as the self-organizing map. We
focus on the following topics, which arise in this context: (i) how can di-
mensionality reduction be realized efficiently in at most linear time, (ii)
how can nonparametric approaches be extended to provide an explicit
mapping, (iii) how can techniques be extended to incorporate auxiliary
information as provided by class labeling?

1 Introduction

Due to an increasing size and complexity of modern data sets, visualization plays
a crucial role in many applications: it offers an intuitive interface based on the
human vision system as one of our most powerful senses, displaying astonishing
cognitive capabilities as regards e.g. instantaneous grouping of visual objects,
structure or outlier detection. Visualization-based approaches are regarded as a
major technology to put the human into the loop in complex data analysis tasks,
as specified e.g. in the emerging research area of scalable visual analytics [20].

Within machine learning, visualization of data sets by means of dimension-
ality reduction techniques has encountered a recent boom, resulting in numer-
ous popular nonlinear dimensionality reduction techniques such as t-distributed
stochastic neighbor embedding (t-SNE), locally linear embedding (LLE), maxi-
mum variance unfolding (MVU), neighborhood retrieval visualizer (NeRV), Iso-
map, Isotop, Laplacian eigenmaps (LE), maximum entropy unfolding (MEU),
and many others [13,18,17,20,19]. These techniques carry the promise to arrive
at a very flexible visualization of data such that also subtle nonlinear structures
can be spotted. Nevertheless, in large scale practical applications or software sys-
tems for data analysis, the visualization techniques which are almost exclusively
used are classical linear principal component analysis (PCA) or variations such
as multi-dimensional scaling (MDS) [2], and the self-organizing map (SOM) [12].

What are the reasons that these classical techniques are often preferred in
practical applications, albeit recent nonlinear dimensionality reduction could of-
fer more flexibility? There are a couple of reasons: Both, PCA and SOM rely on
very intuitive principles as regards both, learning algorithms and their final re-
sult: they capture directions in the data of maximum variance, globally for PCA

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 1–12.
DOI: 10.1007/978-3-642-35230-0 1 c© Springer-Verlag Berlin Heidelberg 2013



2 B. Hammer, A. Gisbrecht, and A. Schulz

and locally for SOM; online learning algorithms such as online SOM training or
the Oja learning rule mimic fundamental principles as found in the human brain,
being based on the Hebbian principle accompanied by topology preservation in
case of SOM [12]. In addition to this intuitive training procedure and outcome,
both techniques have severe practical benefits: training can be done efficiently
in linear time only, which is a crucial prerequisite if large data sets are dealt
with. In addition, both techniques do not only project the given data set, but
they offer an explicit mapping of the full data space to two dimensions by means
of an explicit linear mapping in case of PCA and a winner takes all mapping
based on prototypes in case of SOM. In contrast, many recent dimensionality
reduction techniques belong to the class of non-parametric techniques which do
not provide direct out-of-sample extensions. Moreover, they are often based on
pairwise distances and, thus, scale at least quadratically with the size of the
input set, making them infeasible for large scale applications.

In this contribution, we discuss recent developments connected to the ques-
tion of how to make non-parametic dimensionality reduction techniques feasible
for large data sets, endowing the techniques with linear complexity. A standard
approach is based on subsampling of the data only. Two crucial questions arise:
while sampling, only a part of the data is mapped directly, and out-of-sample
extensions for the rest are required. How can non-parametric techniques be ex-
tended to provide explicit dimensionality reduction mappings which are flexible
enough to capture local nonlinearities in the data? In addition, only part of the
information available in the data is used if dimensionality reduction relies on a
subsample only. Thus, possibly, not enough information is yet available to ex-
tract the relevant structures from the data. How can dimensionality reduction
be enriched to incorporate additional information about the data structure such
that valid inference can be done based on few data points only?

Now, we will first shortly review popular dimensionality reduction techniques.
Afterwards, we address the question how to enhance non-parametric techniques
towards an explicit mapping prescription, emphasizing kernel t-SNE as one par-
ticularly flexible approach in this context. Finally, we consider discriminative
dimensionality reduction based on the Fisher information, testing this principle
in the context of kernel t-SNE and emphasizing a particularly efficient realization
in the context of parametric approaches.

2 Dimensionality Reduction

Assume a high dimensional input space X is given, e.g. X ⊂ R
N . Data xi, i =

1, . . . ,m in X should be projected to points yi, i = 1, . . . ,m in the projection
space Y = R2 such that as much structure as possible is preserved. The notion of
‘structure preservation’ is ill-posed and many different mathematical specifica-
tions of this term have been used in the literature. One of the most classical algo-
rithms is PCA which maps data linearly to the directions with largest variance,
corresponding to the eigenvectors with largest eigenvalues of the data covariance
matrix. PCA constitutes one of the most fundamental approaches and one exam-
ple of two different underlying fundamental principles [16]: (i) PCA maximizes
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the data likelihood assumed data are generated linearly from a two-dimensional
latent space. (ii) PCA constitutes the linear transformation which minimizes the
deviation of original data and its projection in a least squares sense. The first
motivation treats PCA as a generative model, the latter as a cost minimizer.
Due to the simplicity of the underlying mapping, the results coincide.

This is, however, not the case for general non-linear approaches. Roughly
speaking, there exist two opposite ways to introduce dimensionality reduction:
the generative, often parametric approach, which takes the point of view that
high dimensional data points are generated by a low dimensional structure which
can be visualized directly, and the cost-function based, often non-parametric
approach, which, on the opposite, tries to find low-dimensional projection points
such that the characteristics of the original high-dimensional data are preserved
as much as possible. A third principled approach, which we will not address here,
is based on an encoding framework such as auto-encoder networks [18].

Parametric Approaches

Parametric approaches include the classical SOM and its probabilistic counter-
part generative topographic mapping (GTM) [3]. Both approaches are based on
a low dimensional latent space, the regular SOM grid or the real plane with a
probability distribution peaked at regular grid positions for GTM. These points
are associated to high dimensional coordinates in the data space, the parame-
ters of the mapping, called prototypes wj , which are directly assigned to grid
positions by means of the index in case of SOM, or which are images of a parame-
terized generalized linear function Φ : Y → X in case of GTM. These prototypes
are determined such that they generate the data as accurately as possible: for
SOM, the mean reconstruction error is minimized, for GTM, the data likelihood
is maximized, centering Gaussians at the prototypes. Thereby, a visualization by
means of back-projection of the prototypes to the low-dimensional latent space
is possible by ensuring topology preservation of the mapping: neighbored proto-
types are similar because of a direct integration of neighborhood information in
SOM training, while GTM achieves this fact by relying on a smooth mapping Φ.

We do not discuss training or an exact mathematical derivative in more de-
tail, referring to the excellent literature [12,3]. We just would like to stress the
following points, which make these techniques particularly suitable if large data
sets are dealt with: both techniques provide an explicit mapping prescription
of data points X to the low-dimensional visualization space. For SOM, a data
point x is mapped to the grid position of the closest prototype wi. For GTM, the
image can be determined based on the responsibilities of prototypes for the data
points and the explicit generalized linear mapping Φ. This explicit out-of-sample
extension of both, SOM and GTM makes them suitable if a mapping based on
a small subset of points is considered only.

In addition to this benefit, SOM and GTM can be trained in linear time in
the size of the training set only, whereby quantization in terms of the prototypes
takes place. Hence the prototypes which determine the number of parameters
of the mapping allow a problem dependent adaptation of the computational
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costs of the models. This is another crucial aspect which makes the techniques
particular well suited if large data sets are dealt with.

Parametric Approaches for Dissimilarity Data

We would like to stress one recent line of research for such parametric models:
often, data are not given as explicit vectors, rather pairwise similarities or dis-
similarities dij characterize the relation between data point xi and xj . For these
settings, SOM and GTM have been extended based on kernelization or relational
approaches, respectively, see e.g. [21,9]. Basically, prototypes are represented im-
plicitly in terms of linear combinations

∑
k αjkxj of data with coefficients αjk

which sum up to 1, and distances of data points and prototypes are computed
by the formula ‖xi −wj‖2 = 〈xi,xi〉 − 2

∑
αjk〈xi,xk〉+

∑
kk′ αjkαjk′ 〈xk,xk′〉

if data are characterized by similarities and ‖xi −wj‖2 =
∑

k αjk‖xi − xk‖2 −
0.5 ·

∑
kk′ αjkαjk′‖xk − xk′‖2 if data are characterized by dissimilarities. These

formulas can directly be plugged into the winner takes all computation of the
mapping, only referring to the coefficients αj and the known similarities or dis-
similarities. Similarly, training is possible optimizing the coefficients αjk. A solid
mathematical treatment of these approaches is possible based on an embedding
of data into pseudo-Euclidean space, as discussed e.g. in [10].

Thus, both, GTM and SOM can also be used in settings where complex data
with dedicated similarity measures are dealt with, such as biological sequence
data and alignment distances, biological networks and graph comparisons, scien-
tific texts or textual experiment descriptions compared based on the normalized
compression distance, functional data such as mass spectra and functional met-
rics, data incorporating temporal dependencies such as EEG and dynamic time
warping, or other abstract data types such as strings, trees, graphs which are
compared using corresponding structure kernels.

However, at this point, a problem occurs: while the approaches yield explicit
out-of-sample extensions, their training complexity is quadratic in the number
of samples since training depends on a quadratic similarity or dissimilarity ma-
trix rather than vectorial descriptions. This makes parametric models for (dis-
)similarities infeasible if large data sets are dealt with. A couple of different
approximation schemes have been proposed at this point, which make use of the
specific form of the involved mapping:

1. Training on a subsample only, and subsequent mapping of all data points;
2. training using the Nyström approximation;
3. patch processing of the data.

(1) is based on out-of-sample extensions by means of an explicit mapping. It relies
on the assumption that training data are representative; a reliable mapping of
data points which follow a different distribution than the training set cannot be
guaranteed. This restriction is partially overcome by the other approaches.

In (2) the Nyström approximation of a similarity or dissimilarity matrix D is
used, which samples D based on a subset of M landmarks using the approxima-
tion D ≈ Dt

M,mD−1
M,MDM,m where the subscripts refer to the rows/columns of
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D corresponding to the set of landmarks by M and the full data set by m. The
superscript −1 refers to the Moore-Penrose pseudoinverse. For GTM or SOM,
this approximation can be integrated into the algorithms such that the result is
linear in the size of the training set, but cubic in the number of landmarks [6,9].
What is the benefit of this approximation as compared to a direct sampling as
proposed in (1)? Unlike the latter, the Nyström approximation yields reasonable
results if the dissimilarity matrix is sampled sufficiently, a sufficient condition
for an exact realization being connected to the rank, for example. Thus this ap-
proximation requires only that the intrinsic vector space is spanned sufficiently.

Method (3) relies on an even weaker assumption, taking all information im-
plicitly into account while training. Here, data are processed in patches of fixed
size, training a model on a fixed patch one after the other [9,10]. Assuming fixed
patch size, this step is constant time. It is necessary to transfer the information
obtained in one patch to the next one, such that information already extracted
from the data is kept. This can be done relying on the specific nature of the
model: SOM and GTM are based on prototypes which represent all already seen
data. Thus, every patch is enriched by the already trained prototypes as addi-
tional data points, counted according to the multiplicity of their receptive field.
Since prototypes are given only implicitly in case of (dis-)similarity data, they
are here approximated by their k nearest exemplars. Iterating this processing, a
model which can also deal with data with a severe trend results [10,9].

Nonparametric Approaches

Nonparametric methods often take a dual approach: the data points xi contained
in a high dimensional vector space constitute the starting point; for every point
coefficients yi are determined in Y such that the characteristics of these points
mimics the characteristics of their high-dimensional counterpart.

We consider t-SNE in more detail, since it demonstrates the strengths and
weaknesses of this principle in an exemplary way. Probabilities in the origi-
nal space are defined as pij = (p(i|j) + p(j|i))/(2m) where pj|i = (exp(−‖xi −
xj‖2/2σ2

i ))/(
∑

k �=i exp(−‖xi − xk‖2/2σ2
i )) depends on the pairwise distances

of points; σi is automatically determined by the method such that the effective
number of neighbors coincides with a priorly specified parameter, the perplexity.
In the projection space, probabilities are induced by the student-t distribution
qij = (1+ ‖yi−yj‖2)−1)/(

∑
k �=l(1+ ‖yk−yl‖2)−1) to avoid the crowding prob-

lem by using a long tail distribution. The goal is to find projections yi such that
the difference between pij and qij becomes small as measured by the Kullback-
Leibler divergence. t-SNE relies on a gradient based technique.

Many alternative non-parametric techniques proposed in the literature have
a very similar structure, as pointed out in [4]: They extract a characteristic of
the data points xi and try to find projections yi such that the corresponding
characteristics is as close as possible as measured by some cost function. [4]
summarizes some of today’s most popular dimensionality reduction methods this
way. These techniques do not rely on a parametric form such that they display
a rich flexibility to emphasize local nonlinear structures. This makes them much
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more flexible as compared to linear approaches such as PCA, and it can also
give fundamentally different results as compared to GTM or SOM, which are
constrained to inherently smooth mappings. This flexibility is payed for by two
drawbacks, which make the techniques unsuited for large data sets:

1. The techniques do not provide direct out-of-sample extensions,
2. the techniques display at least quadratic complexity.

Thus, these techniques are not suited for large data sets in its direct form.
Which of the above mentioned approximation techniques can be transferred

to non-parametric approaches? Patch processing requires a compression of al-
ready seen information in terms of few representatives such as prototypes.
Non-parametric approaches do not provide such information. The Nyström
approximation relies on the fact that (dis-)similarities are used in terms of ma-
trix operations only, but not referred to individually by means of non-linear
operations. This is not the case for nonlinear non-parametric techniques. Hence,
approximation possibilities (2) and (3) are ruled out for non-parametric methods.

Method (1), direct subsampling, relies on out-of-sample extensions which is
also not directly available for most non-parametric approaches. However, there
has been some work in this respect for current non-parametric dimensionality
reduction techniques such as e.g. specific methods for spectral methods [1], or a
principled approach how to transfer non-parametric approaches into parametric
ones [4]. Here, we consider one particularly flexible technique.

Kernel t-SNE

How to extend a non-parametric dimensionality reduction technique such as t-
SNE to an explicit mapping? We fix a parametric form x → fw(x) = y and
optimize the parameters of fw instead of the projection coordinates. Thereby,
it is critical to choose a mapping with sufficient local flexibility to capture local
nonlinear structures. In kernel t-SNE, the following form is used [8]:

x �→ y(x) =
∑
j

αj ·
k(x,xj)∑
l k(x,xl)

where αj ∈ Y are parameters corresponding to points in the projection space and
the data xj are taken as a fixed sample. k is the Gaussian kernel parameterized
by the bandwidth, as usual. In the limit of small bandwidth, original t-SNE is
resembled for the points xi, αj corresponding to their projections yj .

There exist different possibilities to train the parameters αj of this mapping,
several different ones having been compared in [8]. Due to its form as a general-
ized linear mapping, one very simple and particularly efficient training procedure
is possible, which we will use in the following: first a set of example points xi and
its projections yi are determined using standard t-SNE, forming a training set T .
The set of support vectors xj for the kernel mapping is taken as a subset. Then
the parameters αj are analytically determined as the least squares solution of this
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Fig. 1. Kernel t-SNE (left) for 10 % of the USPS data set and out of sample extension
for the full data set (right)

Fig. 2. GTM (left) for 10 % of the USPS data set and out of sample extension for the
full data set (right)

training set T . The matrix A of parameters αj is explicitly given as A = Y ·K−1

where K is the normalized Gram matrix with entries k(xi,xj)/
∑

j k(xi,xj). Y

denotes the matrix of projections yi, and K−1 refers to the pseudo-inverse. The
bandwidth can be optimized based on cross-validation.

Assuming a fixed size training set and set of support vectors is used, this
method displays linear complexity to map large data sets. Note that it is not
restricted to vectors only, rather, any distance measure can be included in the
Gaussian kernels. One example of this procedure is shown in Fig.1. In contract,
GTM and its out-of-sample extension are displayed in Fig. 2. In both cases, the
USPS data set with 1.000 points for the training set and out-of-sample extension
to 11.000 points is displayed. Coloring corresponds to the underlying ten classes
which represent different handwritten digits. Obviously, both, GTM and t-SNE
capture parts of the nonlinear structure underlying the data, but neither method
is capable of displaying clear class structures.
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3 Discriminative Dimensionality Reduction

Kernel t-SNE enables to map large data sets in linear time by training a mapping
on a small subsample only, yielding acceptable results. However, it is often the
case that the underlying data structure such as cluster formation is not yet as
pronounced based on a small subset only as it would be for the full data set.
How can this information gap be closed?

It has been proposed in [11,14,19] to enrich nonlinear dimensionality reduction
techniques such as the self-organizing map by auxiliary information in order to
enforce the method to display the information which is believed as relevant by
an applicant. A particularly intuitive situation is present if data are enriched
by accompanying class labels, and the information most relevant for the given
classification at hand should be displayed.

Formally, we assume that every data point xi is equipped with a class label
ci. Projection points yi should be found such that the aspects of xi which are
relevant for ci are displayed.

Fisher Kernel t-SNE

Formally, this auxiliary information can be easily integrated into a projection
technique by referring to the Fisher information, as recently introduced e.g. in [7]
in the context of t-SNE. We consider the Riemannian manifold spanned by the
data points xi and corresponding tangent spaces equipped with the quadratic
form d1(xi,xi+dx) = (dx)TJ(xi)(dx) where J(x) denotes the Fisher information

matrix J(x) = Ep(c|x)
{(

∂
∂x log p(c|x)

) (
∂
∂x log p(c|x)

)T}
. A Riemannian metric

is induced by minimum path integrals using this quadratic form locally. We re-
fer to this metric as the Fisher metric in the following. This metric measures
distances between data points xi and xj along the manifold, thereby locally
transforming the space according to its relevance for the given label informa-
tion. This auxiliary information can easily be integrated into t-SNE or any other
dimensionality reduction technique which relies on distances by simply substi-
tuting the Euclidean metric by the Fisher metric.

In practice, the Fisher metric has to be estimated based on the given data
only. The conditional probabilities p(c|x) can be estimated from the data using
a Parzen nonparametric estimator, for example. The exact formulas for the re-
sulting Fisher matrix estimation as well as different ways to approximate and
optimize the resulting path integrals have been discussed in [14], for example.

In [7], it has been proposed to integrate this Fisher information into kernel
t-SNE by means of a corresponding kernel. Here, we take an even simpler per-
spective: we consider a set of data points xi which are equipped with the pairwise
Fisher metric which is estimated based on their class labels taking simple linear
approximations for the path integrals. Using this set, a training set T is obtained
with t-SNE which takes the auxiliary label information into account. For this
set, we infer a kernel t-SNE mapping as before, which is adapted to the label
information due to the information inherent in the training set. Fig. 3 shows one
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Fig. 3. Fisher kernel t-SNE (left) for 10 % of the USPS data set and out of sample
extension for the full data set (right)

example of this procedure for the USPS data set where 1.000 random points are
used for training. Obviously, a much clearer class structure as compared to ker-
nel t-SNE is obtained. Note that the estimation of the Fisher metric is necessary
for the training set only, such that, again, a linear time technique results.

Supervised GTM

For parameterized approaches such as GTM, there exists the possibility of an
even more efficient integration of label information based on the explicit pro-
totypes. Every prototype wj can be equipped with a label based on the data
contained in its receptive field. Then, the metric tensor can be changed locally at
the prototype by integrating an adaptive matrix Mj = ΩjΩ

t
j at the point, which

is forced as positive semi-definite via its representation. Note that, for GTM, only
the distances of points to the prototypes are computed during training, such that
this information is sufficient. This matrix is adapted in order to emphasize the
directions which are particularly relevant for the classification induced by the
prototypes. Thereby, training the metric parameters can be interleaved with a
standard GTM training.

It has been investigated in [5], that a cost function as borrowed from learn-
ing vector quantization schemes is particularly suited for the adaptation of the
metric. More specifically, the cost function from generalized matrix LVQ is used,
which is given by

∑
xi
(d+(xi) − d−(xi))/(d

+(xi) + d−(xi)) where d+(xi) =
(xi−wj)

tMj(xi−wj) denotes the squared distance to the closest prototype wj

with the same label as xi and d−(xi) refers to the corresponding distance to a
prototype with different label. A gradient technique allows to adapt the metric
parameters this way.

This procedure does not rely on the Fisher metric, rather, a locally discrimi-
native metric tensor is adapted around every prototype to arrive at a maximum
margin in its receptive field [15]. Note that the metric adaptation can be done at
different levels of granularity, taking full local matrices, global matrices, or even
matrices restricted to a diagonal form only, depending on the required flexibility.
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Fig. 4. GTM with local metric adaptation (left) for 10 % of the USPS data set and
out of sample extension for the full data set (right)

Fig. 4 displays the result of a GTM trained with locally adapted matrices for
a subset of 1.000 points of the USPS data set and its extension to all points.
Obviously, a clearer separation of clusters can be achieved this way, albeit class
boundaries are less pronounced as compared to Fisher kernel t-SNE.

Visualization of Classifiers

One very interesting application of supervised dimensionality reduction for large
data sets is the subject of ongoing work: visualization of classifiers. While visual-
ization of decision boundaries of classifiers is frequently used for low dimensional
settings, there does not yet exist an accepted strategy if high dimensional data
are dealt with. Discriminative dimensionality reduction as well as a technique
similar to kernel t-SNE can offer such a framework.

Assume a classifier such as SVM is given, which maps data xi to class labels.
In addition, we assume that a real value r(xi) is available indicating the dis-
tance from the decision boundary or a nonlinear transformation thereof. Now
the principled idea is as follows:

1. project the points xi to low dimensions yi using discriminative Fisher t-SNE
based on the class labels ci,

2. train an inverse mapping p : Y → X which maps projections yi back to the
data xi similar to kernel t-SNE, thereby taking the label information into
account,

3. sample the projection space in the span of these projections yi leading to
points zi and determine its inverse points ai = p(zi),

4. visualize the projections of training points yi together with the contours in-
duced by zi with real value r(ai) which approximate the decision boundaries.

In this procedure, relying on discriminative visualization, several problems are
avoided: the projection focusses on the directions relevant for the class labeling,
hence relevant for the classifier. Further, sampling of the class boundary takes



How to Visualize Large Data Sets? 11

Fig. 5. Visualization of SVM decision boundaries trained for the USPS data set

place in the projection space, avoiding the curse of dimensionality and again,
focussing on the directions relevant for the classification. An example of this
procedure for an SVM trained for the USPS data set is shown in Fig. 5. This
way, it is possible to directly spot relevant characteristics of the classifier such
as regions of errors, complex decision boundaries, or the modality of the classes.

4 Discussion

We have discussed recent developments in dimensionality reduction techniques
which make the techniques suitable for large data sets. For parametric methods
such as SOM or GTM, the inherent availability of out-of-sample extensions and
linear complexity allow a direct application also for large size data, making addi-
tional approximations necessary only if non-vectorial data are dealt with. In con-
trast, non-parametric techniques usually scale at least quadratically with the size
of the training set such that already a few thousand points put these techniques
at the limits of current desk computers. We have discussed linear time approxi-
mations based on subsampling only, which require out-of-sample extensions such
as as provided by kernel t-SNE, for example. Another focus lies on possibilities to
account for the information loss in such cases due to the limited data size, which
can be matched by integrating auxiliary information. This way, very promising
methods which can be used also for large data sets result.

Acknowledgement. This work has been supported by the DFG under the
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Abstract. In some applications and in order to address real world sit-
uations better, data may be more complex than simple vectors. In some
examples, they can be known through their pairwise dissimilarities only.
Several variants of the Self Organizing Map algorithm were introduced
to generalize the original algorithm to this framework. Whereas median
SOM is based on a rough representation of the prototypes, relational
SOM allows representing these prototypes by a virtual combination of
all elements in the data set. However, this latter approach suffers from
two main drawbacks. First, its complexity can be large. Second, only
a batch version of this algorithm has been studied so far and it often
provides results having a bad topographic organization. In this article,
an on-line version of relational SOM is described and justified. The algo-
rithm is tested on several datasets, including categorical data and graphs,
and compared with the batch version and with other SOM algorithms
for non vector data.

1 Introduction

In many real-world applications, data cannot be described by a fixed set of
numerical attributes. This is the case, for instance, when data are described by
categorical variables or by relations between objects (i.e., persons involved in
a social network). A common solution to address this kind of issue is to use
a measure of resemblance (i.e., a similarity or a dissimilarity) that can handle
categorical variables, graphs or focus on specific aspects of the data, designed
by expertise knowledge. Many standard methods for data mining have been
generalized to non vectorial data, recently including prototype-based clustering.
The recent paper [6] provides an overview of several methods that have been
proposed to tackle complex data with neural networks.

In particular, several extensions of the Self-Organizing Maps (SOM) algorithm
have been proposed. One approach consists in extending SOM to categorical data
by using a method similar to Multiple Correspondence Analysis, [5]. Another
approach uses the median principle which consists in replacing the standard
computation of the prototypes by an approximation in the original dataset.
This principle was used to extend SOM to dissimilarity data in [16]. One of the
main drawbacks of this approach is that forcing the prototypes to be chosen
among the dataset is very restrictive; in order to increase the flexibility of the
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representation, [3] propose to represent a class by several prototypes, all chosen
among the original dataset. However this method increases the computational
time and prototypes still stay restricted to the original dataset, hence reflecting
possible sampling or sparsity issues.

An alternative to median-based algorithms relies on a method that is close
to the classical algorithm used in the Euclidean case and is based on the idea
that prototypes may be expressed as linear combinations of the original dataset.
In the kernel SOM framework, this setting is made natural by the use of the
kernel that maps the original data into a (large dimensional) Euclidean space
(see [17,1] for on-line versions and [2] for the batch version). Many kernels have
been designed to handle complex data such as strings, nodes in a graphs or
graphs themselves [10].

More generally, when the data are already described by a dissimilarity that
is not associated to a kernel, [12,19,11] use a similar idea. They introduce an
implicit “convex combination” of the original data to extend the classical batch
versions of SOM to dissimilarity data. This approach is known under the name
“relational SOM”. The purpose of the present paper is to show that the same
idea can be used to define on-line relational SOM. Such an approach reduces the
computational cost of the algorithm and leads to a better organization of the
map. In the remaining of this article, Section 2 describes the methodology and
Section 3 illustrates its use on simulated and real-world data.

2 Methodology

In the following, let us suppose that n input data, x1, . . . , xn, from an arbitrary
input space G are given. These data are described by a dissimilarity matrix
D = (δij)i,j=1,...,n such that D is non negative (δij ≥ 0), symmetric (δij = δji)
and null on the diagonal (δii = 0). The purpose of the algorithm is to map these
data into a low dimensional grid composed of U units which are linked together
by a neighborhood relationship K(u, u′). A prototype pu is associated with each
unit u ∈ {1, . . . , U} in the grid. The U prototypes (p1, p2, . . . , pU ) are initialized
either randomly among the input data or as random convex combinations of the
input data.

In the Euclidean framework, where the input space is equipped with a
distance, the matrix D is the distance matrix with entries δij = ‖xi − xj‖2. In
this case, the on-line SOM algorithm iterates

– an assignment step: a randomly chosen input xi is assigned to the closest
prototype denoted by pf(xi) according to shortest distance rule

f(xi) = arg min
u=1,...,U

‖xi − pu‖,

– a representation step: all prototypes are updated

pnewu = poldu + αK(f(xi), u) (xi − pu) ,

where α is the training parameter.
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In the more general framework, where the data are known through pair-
wise distances only, the assignment step cannot be carried out straightforwardly
since the distances between the input data and the prototypes may not be di-
rectly computable. The solution introduced in [19] consists in supposing that
prototypes are convex combinations of the original data, pu =

∑
i βuixi with

βui > 0 and
∑

i βui = 1. If βu denotes the vector (βu1, βu2, . . . , βun), the dis-
tances in the assignment step can be written in terms of D and βu only:

‖xi − pu‖2 = (Dβu)i −
1

2
βT
u Dβu.

According to [19], the equation above still holds if the matrix D is no longer a
distance matrix, but a general dissimilarity matrix, as long as it is symmetric
and null on the diagonal. A generalization of the batch SOM algorithm, called
batch relational SOM, which holds for dissimilarity matrices is introduced in
[19].

The representation step may also be carried out in this general framework
as long as the prototypes are supposed to be convex combinations of the input
data. Hence, using the same ideas as [19], we introduce the on-line relational
SOM, which generalizes the on-line SOM to dissimilarity data. The proposed
algorithm is the following:

Algorithm 1. On-line relational SOM

1: For all u = 1, . . . , U and i = 1, . . . , n, initialize β0
ui randomly in R, such that β0

ui ≥ 0
and

∑n
i β0

ui = 1.
2: for t=1,. . . ,T do
3: Randomly chose an input xi

4: Assignment : find the unit of the closest prototype

f t(xi)← arg min
u=1,...,U

(
βt−1
u D

)
i
− 1

2
βt−1
u D(βt−1

u )T

5: Update of the prototypes: ∀ u = 1, . . . , U ,

βt
u ← βt−1

u + αtKt(f t(xi), u)
(
1i − βt−1

u

)
where 1i is a vector with a single non null coefficient at the ith position, equal to
one.

6: end for

In the applications of Section 3, the parameters of the algorithm are chosen ac-
cording to [4]: the neighborhood Kt decreases in a piecewise linear way, starting
from a neighborhood which corresponds to the whole grid up to a neighborhood
restricted to the neuron itself; αt vanishes at the rate of 1/t. Let us remark that
if the dissimilarity matrix is a Euclidean distance matrix, relational on-line SOM
is equivalent to the classical on-line SOM algorithm, as long as the n input data
contain a basis of the input space G.
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As explained in [8], although batch SOM possesses the nice properties of
being deterministic and of usually converging in a few iterations, it has several
drawbacks such as bad organization, bad visualization, unbalanced classes and
strong dependence on the initialization. Moreover, the computational complexity
of the online algorithm may be significantly reduced with respect to the batch
algorithm. With a naive implementation and for one iteration, the complexity
of the batch algorithm is O(Un3 + Un2), while for the online algorithm it is
O(Un2 + Un). However, since the online algorithm has to scan all input data,
the number of iterations has to be significantly larger than in the batch case. To
summarize, if T1 is the number of iterations for batch relational SOM and T2 is
the number of iterations for online relational SOM, the ratio between the two
computation times will be T1n/T2. For a more efficient implementation of the
batch algorithm, the reader may refer to [13].

For illustration, let us consider 500 points sampled randomly from the uni-
form distribution in [0, 1]2. The batch version of relational SOM and the on-line
version of relational SOM were performed with identical 10x10 grid structures
and identical initializations. Results are available in Figure 1. Batch relational
SOM converged quickly, in 20 iterations (the grid organization is represented at
iterations 0 (random initialization), 5, 9, 13, 17 and 20), but the map is not well
organized. On-line relational SOM converged in less than 2500 iterations (the
grid organization is represented at iterations 0 (initialization), 500, 1000, 1500,
2000 and 2500), but the map is now almost perfectly organized. This results was
achieved in 40 minutes for the batch version and in 10 minutes for the on-line
version on a netpc (with 2× 1GHz AMD processors and 4Go RAM).

3 Applications

This section presents several applications of the on-line relational SOM on vari-
ous datasets. Section 3.1 deals with simulated data described by numerical vari-
ables, but organized on a non linear surface. Section 3.2 is an application on a
real dataset where the individuals are described by categorical variables. Finally,
Section 3.3 is an application to the clustering of nodes of a graph.

3.1 Swiss Roll

Let us first use a toy example to illustrate the stochastic version of relational
SOM. The simulated data is the popular Swiss roll, a two-dimensional manifold
embedded in a three-dimensional space. This example has already been used for
illustrating the performances of Isomap [21]. The data has the shape illustrated
by Figure 2. 5 000 points were simulated. However, since all methods presented
here work with matrices of pairwise distances, the computation times would have
been rather heavy for 5 000 points. Hence, we run the different algorithms on
1 000 points uniformly distributed on the manifold. First, the distance matrix
was computed using the geodesic distance based on the K-rule with K = 10.
Then, two types of algorithms were performed: multidimensional scaling and
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Batch relational SOM (20 iterations)

On-line relational SOM (2500 iterations)

Fig. 1. Batch and on-line SOM organization for 500 samples from the uniform distri-
bution in [0, 1]2. The same initialization was used for both algorithms.

self-organizing maps. The results obtained with Isomap [21] are available in
Figure 2. As expected, both methods succeed in unfolding the Swiss roll and the
results are very similar. Next, batch median SOM and on-line relational SOM
were applied to the dissimilarity matrix computed with the geodesic distance.
As shown in Figure 3, the size of the map plays an important role in unfolding
the data. For squared grids, the problem is not completely solved by either
of the two algorithms. Nevertheless, on-line relational SOM manages to project
the different scrolls of the roll into separate regions on the map. Moreover, some
empty cells highlight the roll structure, which is not completely unfolded but
rather projected without overlapping. Since squared grids appeared too heavily
constrained, we also tested rectangular grids. The results are better for both
algorithms which both manage to unfold the data. However, the on-line version
clearly outperforms the batch version.
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Fig. 2. Unfolding the Swiss roll using Isomap

a) 15x15-grid batch median SOM b) 15x15-grid on-line relational SOM

c) 30x10-grid batch median SOM b) 30x10-grid on-line relational SOM

Fig. 3. Unfolding the Swiss roll using self-organizing maps

3.2 Amazonian Butterflies

This data set contains 465 input data and was previously used by [14] to demon-
strate the synergy between DNA barcoding and morphological-diversity studies.
The notion of DNA barcoding comprises a wide family of molecular and bioin-
formatics methods aimed at identifying biological specimens and assigning them
to a species. According to the vast literature published during the past years
on the topic, two separate tasks emerge for DNA barcoding: on the one hand,
assign unknown samples to known species and, on the other hand, discover un-
described species, [7]. The second task is usually approached with the Neighbor
Joining algorithm [20] which constructs a tree similar to a dendrogram. When
the sample size is large, the trees become rapidly unreadable. Moreover, they
are quite sensitive to the order in which the input data are presented. Let us
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a) Species diversity (radius proportional to
the size of the cluster)

b) Distances between prototypes

Fig. 4. On-line relational SOM for Amazonian butterflies

also mention that unsupervised learning and visualization methods are used to a
very limited extent by the DNA barcoding community, although the information
they bring may be quite useful. The use of self-organizing maps may be quite
helpful in visualizing the data and bringing out clusters or groups of clusters
that may correspond to undescribed species.

DNA barcoding data are composed of sequences of nucleotides, i.e. sequences
of “a”, “c”, “g”, “t” letters in high dimension (hundreds or thousands of sites).
Specific distances and dissimilarities such as the Kimura-2P ([15]) are usually
computed. Hence, since the data is not Euclidean, dissimilarity-based methods
appear to be more appropriate. Recently, batch median SOM was tested in [18]
on several data sets, amongst which the Amazonian butterflies. Although me-
dian SOM provided encouraging results, two main drawbacks emerged. First,
since the algorithm was run in batch, the organization of the map was gener-
ally poor and highly depending on the initialization. Second, since the algorithm
calculates a prototype for each cluster among the dataset, it does not allow
for empty clusters. Thus, the existence of species or groups of species was dif-
ficult to acknowledge. The use of on-line relational SOM overcomes these two
issues. As shown in Figure 4, clusters are generally not mixing species, while
the empty cells allow detecting the main groups of species. The only mixing
class corresponds to a labeling error. Unsupervised clustering may thus be use-
ful in addressing misidentification issues. In Figure 4b, distances with respect
to the nearest neighbors were computed for each node. The distance between
two nodes/cells is computed as the mean dissimilarity between the observations
within each class. A polygon is drawn within each cell with vertices proportional
to the distances to its neighbors. If two neighbor prototypes are very close, then
the corresponding vertices are very close to the edges of the two cells. If the dis-
tance between neighbor prototypes is very large, then the corresponding vertices
are far apart, close to the center of the cells.
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3.3 Political Books

This application uses a dataset modeled by a graph having 105 nodes. The nodes
are books about US politics published around the time of the 2004 presidential
election and sold by the on-line bookseller Amazon.com. Edges between two
nodes represent frequent co-purchasing of the two books by the same buyers. The
graph contains 441 edges and all nodes are labeled according to their political
orientation (conservative, liberal or neutral). The graph has been extracted by
Valdis Krebs and can be downloaded at http://www-personal.umich.edu/∼
mejn/netdata/polbooks.zip.

On-line relational SOM was used to cluster the nodes of the graph, according
to the length of the shortest path between two nodes, which is a standard dis-
similarity measure between nodes in a graph. Figures 5 and 6 (left) provide two
representations of the “political books” network: the first one is the original graph
displayed with a force directed placement algorithm, which is the one described
in [9] and colored according to the clusters in which the nodes are classified. The
second one is a simplified representation of the graph on the grid, where each node
represents a cluster. The colors in the first figure and the density of edges in the sec-
ond one shows that the clustering has a good organization on the grid, according
to the graph structure: groups of nodes that are densely connected are classified
in the same or in close clusters whereas groups of nodes that are not connected
are classified apart.

Additionally, Figure 6 provides the distribution of the node labels inside each
cluster for the obtained clustering (on the right hand part of the figure). Almost
all clusters contain books having the same political orientation. Clusters that
contain books with multiple political orientations are in the middle of the grid
and include neutral books. Hence, this clustering can give a clue on a more subtle

Fig. 5. “Political books” network displayed with a force directed placement algorithm.
The nodes are labeled according to their political orientation and are colored according
to a gradient that aims at emphasizing the distance between clusters on the grid, as
represented at the top the figure.

http://www-personal.umich.edu/~mejn/netdata/polbooks.zip
http://www-personal.umich.edu/~mejn/netdata/polbooks.zip
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Fig. 6. Left: Simplified representation of the graph on the grid: each node represents a
cluster whose area is proportional to the number of nodes included in it and the edges
width represents the number of edges between the nodes of the corresponding cluster.
Right: Distribution of the node labels for each neuron of the grid for the clustering
obtained with the dissimilarity based on the length of the shortest paths. Red is for
liberal books, blue for conservative books and green for neutral books.

political orientation than the original labeling: for instance, liberal books from
cluster 12 probably have a weaker commitment that those from clusters 1 or 2.

4 Conclusion

An on-line version of relational SOM is introduced in this paper. It combines the
standard advantages of the stochastic version of the SOM (better organization
and faster computation) with the relational SOM that is able to handle data de-
scribed by a dissimilarity. The algorithm shows good performances in projecting
data described either by numerical variables or by categorical variable, as well
as in clustering the nodes of a graph.
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Abstract. Principal component analysis based on Hebbian learning is
originally designed for data processing in Euclidean spaces. We present
in this contribution an extension of Oja’s online learning approach for
non-Euclidean spaces. First we review the kernel principal component
approach. We show that for differentiable kernel this approach can be
formulated as an online learning scheme. Hence, PCA can be explicitly
carried out in the data space but now equipped with a non-Euclidean
metric. Moreover, the theoretical framework can be extended to principal
component learning in Banach spaces based on semi-inner products. This
becomes particularly important when learning in lp-norm spaces with
p �=2 is considered. In this contribution we focus on the mathematics
and theoretical justification of the approach.

1 Introduction

Principal component analysis (PCA) constructs a basis of a multi-dimensional
feature space, reflecting the variability observed in a given data set. It determines
the linear projection of largest variance as well as orthogonal directions which
are ranked according to decreasing variance [9]. Algebraic approaches to PCA,
which determine directly the eigenvectors of the empirical covariance matrix,
are sensitive to outliers, frequently. Iterative PCA based on Hebbian learning
offers a more robust alternative as established in the pioneering work of E. Oja
[15,16]. Several modifications and improvements of the basic idea have been
proposed: while, for instance, Oja’s subspace algorithm determines an arbitrary
basis for the span of the leading eigenvectors [15,16], Sanger presented an
extension which yields the eigenvectors ordered according to their eigenvalue,
i.e. the observed empirical variance of projections [17].

A number of nonlinear extensions to the concept of PCA have been proposed
in the literature. Kernel Hebbian learning was established by Kim et al. [11,12]
based on the general concept of kernel PCA (KPCA) and reproducing kernel
Hilbert spaces (RKHS) [8,20], which offer the possibility to capture non-linear
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data structures while applying PCA. This approach was further improved by S.
Günther et al. who introduced an accelerating gain parameter [4]. Hebbian
PCA for functional data using Sobolev metrics was proposed in [23]. Other
approaches for iterative PCA can be found in, for instance, [6].

The aim of this paper is to unify and generalize these approaches. In particu-
lar, we will revisit KPCA under the specific aspect of differentiable kernels. This
approach delivers new aspects relating to the topological structure of the corre-
sponding RKHS and offers new interpretations of Hebbian KPCA. Moreover, we
extend this concept to so-called reproducing kernel Banach spaces (RKBS,[25]),
which assume a kernel defining a semi-inner product (SIP,[13,3]) in a reflexive
Banach space. As a result, PCA can be explicitly carried out in the data space
but now equipped with a non-Euclidean metric. This allows visualization of
data in these space. This problem becomes important, when data classification
is processed in non-Euclidean spaces, as it is of great interest for better classifica-
tion accuracy [10,5,19]. In particular, prototype based learning in kernel metric
spaces using differentiable kernel is of great interest, because the prototypes are
adjusted in the data space, here equipped with a differentiable kernel metric
[22]. Thus, PCA projections are needed in just this kernel metric data space for
visualization.

2 Hebbian Learning of Principal Components in
Finite-Dimensional Vector Spaces

In this section we discuss Hebbian learning for PCA in finite-dimensional Eu-
clidean, Hilbert and Banach spaces, subsequently.

2.1 Hebbian Learning in the Euclidean Space - Oja’s
and Sanger’s Rule

We consider n-dimensional data vectors v ∈ V ⊆ Rn. Hebbian principal compo-
nent learning is carried out by a stochastic iteration according to

w = ε · O · (v −O ·w) (1)

where
O = 〈v,w〉 (2)

is the Euclidean inner product of the current vector w and a randomly selected
data vector v. The inner product (2) is frequently referred to as Hebb-output or
Hebb-response in this context. The parameter 0 < ε � 1 is the so-called learning
rate. The update scheme (1) is known as Oja’s rule in the literature [15,16].
Under the assumption of a slowly changing weight vector w, the stationary
state w = 0 of Oja’s rule corresponds to the eigenvalue equation

Cw = 〈w,Cw〉w. (3)
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The stability analysis by E. Oja shows that the adaptation process (1) converges
to the eigenvector corresponding to the maximum eigenvalue of the covariance
matrix C = E

[
vv�] defined by the expectation operator E [·] [15,16]. Moreover,

this learning scheme can be seen as a stochastic gradient descent on the cost
function J (w) = w�Cw.

The basic scheme can be extended to learn all principal components. To this
end, Sanger considered n weight vectors wi with Hebbian responses Oi =
〈v,wi〉 and introduced the modified adaptation rule (1)

wi = ε · Oi ·

⎛
⎝v −

i∑
j=1

Oj ·wj

⎞
⎠ . (4)

Note that for i = 1 the update is equivalent to (1), Sanger’s algorithm yields
the eigenvectors of C in decreasing order with respect to the corresponding
eigenvalues [17].

2.2 Hebbian Learning in Finite-Dimensional Hilbert Spaces

Obviously, the Euclidean space Rn is a Hilbert space. We consider data v =
(v1, . . . , vn)

� in an n-dimensional Hilbert space Hn with the inner product 〈·, ·〉
Hn

defining the norm ‖·‖
Hn . Because each n-dimensional Hilbert space Hn is iso-

morph to the Euclidean space R
n there exist an isomorphism Θ : Rn → H

n, and
linear operators are matrices A. Application of the operator to a vector then is
defined by

A [v] = (〈a1,v〉Hn , . . . , 〈an,v〉Hn)
� (5)

where ai are the row vectors of A. Hence, we can replace in the Hebb-output (2)
the Euclidean inner product by the inner product 〈·, ·〉

Hn of the Hilbert space.
For the resulting update rule we obtain immediately the stationary condition

CΘ [w] = 〈w,CΘ [w]〉
Hn w (6)

where CΘ = E
[
vv�] is the covariance matrix in the Hilbert space Hn. The

stability analysis follows immediately from the isomorphism. The extension to
the Sanger-algorithm is obvious.

2.3 Hebbian Learning in Finite-Dimensional Banach Spaces

Here we consider n-dimensional Banch spaces Bn with the norm ‖·‖
Bn . Banach

spaces have gained popularity in machine learning, recently [2,7,24,25]. Promi-
nent n-dimensional examples are the lp-spaces with the Minkowski-norm

‖v‖p = p

√√√√ n∑
i=1

|vi|p (7)
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for 1 < p ≤ ∞. Generally, for a norm ‖·‖
Bn of a Banach space, a semi-inner

product (SIP) [·, ·]
Bn exists such that ‖v‖

Bn . =
√
[v,v]

Bn is valid [13,3]. Thereby,
a SIP fulfills the properties of a usual inner product except the sesqui-linearity.
The SIP is unique if it is Gâteaux-differentiable [25]. For the lp-space the (unique)
SIP is

[v,w]p =
1

‖w‖p−2
p

n∑
i=1

vi |wi|p−1
sgn (wi) (8)

where sgn (x) is the sign function. The application of a linear operator A is now
defined via the SIP as

A [v] = ([a1,v]Bn , . . . , [an,v]Bn)
� . (9)

Remark 1. Consider two vectors v and w in a Banach space B. The vector v
is normal to the vector w and the vector w is transversal to the vector v iff
[v,w]B = 0, i.e. the orthogonality relation is not symmetric.

Obviously, the SIP can be plugged into the Hebb-output (2), which leads to the
corresponding stationary state equation

C [w] = [w,C [w]]
Bn w (10)

with the covariance matrix C = E
[
vv�]. The stability analysis of conventional

Oja-learning does not rely on the sesqui-linearity of the inner product [15,16].
Hence, it is applicable also for semi-inner products and, therefore, the update
yields the eigenvector corresponding to the largest eigenvalue also in the case of
a Banach-space. Again, the extension to the Sanger-approach is straightforward.

Remark 2. It is well-known that lp-spaces are closely related to the function
Banach spaces Lp. The respective SIP

[f, g]p =
1(

‖g‖p
)p−2

ˆ
f · |g|p−1 sgn (g)dt (11)

is uniformly continuous and, hence, unique [3]. Let Dα = ∂|α|
∂α1...∂α|α|

be the
differential operator. Then the Banach space WK

p = {f |Dαf ∈ Lp, |α| ≤ K} is
the Sobolev-space with the norm

‖f‖K,p =

⎡
⎣ ∑
|α|≤K

(
‖Dαf‖p

)p⎤⎦
1
p

=

⎡
⎣ ∑
|α|≤K

ˆ
|Dαf |p dx

⎤
⎦

1
p

(12)

and the SIP

[f, g]K,p =
1

‖g‖p−2
K,p

∑
|α|≤K

ˆ
f (α) ·

∣∣∣g(α)∣∣∣p−1

sgn
(
g(α)
)
dt (13)

with f (α) = Dαf . Because of lack of space we omit the proof of the latter
statement. For p = 2, WK

p and Lp are obviously Hilbert spaces.
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3 Hebbian Learning for PCA in Reproducing Kernel
Spaces

After revisiting properties of kernel spaces including both Hilbert and Banach
spaces for reproducing kernel spaces, we explain how the idea of iterative Hebbian
learning can be transferred to kernelized problems.

3.1 Kernel Spaces

In the following we assume a compact metric space (V, dV ) with the vector space
V equipped with a metric dV . A function κ on V is a kernel κΦ : V × V → C if
there exists a Hilbert space H and a map

Φ : V � v �−→ Φ(v) ∈ H (14)

with
κΦ(v,w) = 〈Φ(v), Φ(w)〉H (15)

for all v,w ∈ V and 〈·, ·〉H is the inner product of the Hilbert space H. The
mapping Φ is called feature map and H the feature space of V . Without further
restrictions on the kernel κΦ, both, H and Φ are not unique. Positive kernels
are of special interest because they uniquely correspond to a reproducing kernel
Hilbert spaces (RKHS) H in a canonical manner [1,14]. The kernel κΦ is said to
be positive definite if for all finite subsets Vm ⊆ V with cardinality #Vm = m,
the Gram-Matrix

Gm = [κ (vi,vj) : i, j = 1 . . .m] (16)

is positive semi-definite [1]. The norm ‖Φ(v)‖H =
√
κΦ(Φ(v),Φ(v)) of this

RKHS induces a metric

dH (Φ(v), Φ(w)) =
√
κΦ(v,v)− 2κΦ(v,w) + κΦ(w,w) (17)

based on the kernel κΦ [18]. Steinwart has shown that continuous, universal
kernels induce the continuity and separability of the corresponding feature map
Φ and the image IκΦ = Φ (V ) is a subspace of H [21]. It was further shown
in this paper that continuous, universal kernels also imply the continuity and
injectivity of the map

Ψ : (V, dV ) −→ (V, dκΦ) (18)

with dκΦ(v,w) = dH (Φ(v), Φ(w)) and (V, dκΦ) is the compact vector space V
with the kernel induced metric dκΦ . It was shown in [22] that (V, dκΦ) is isometric
and isomorph to IκΦ .

An analogous theory can be obtained if the mapping space has weaker as-
sumptions: Zhang et al. consider reflexive Banach spaces as mapping spaces
[25]. As above for the Hilbert space H, the Banach space is also assumed to be
a function space, here. Consider such a reflexive function Banach space B over
the compact metric space (V, dV ) with the SIP [h, g]B, which additionally has
a reproducing property for Banach spaces (Reproducing Kernel Banach space,
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RKBS). If the RKBS is Fréchet-differentiable, it is called a SIP-RKBS. Again,
we consider the feature map Φ : V −→ B. For a SIP-RKBS B an unique corre-
spondence exists between a so-called SIP-kernel γΦ and the map Φ with

γΦ (v,w) = [Φ (v) , Φ (w)]B (19)

based on a Banach space representation theorem [25]. If the the map Φ is contin-
uous then also γΦ is. Moreover, one can show that (weakly) universal SIP-kernels
correspond to bijective mappings Φ [22]. Further, it turns out that the map

Ψ : (V, dV ) −→ (V, dB) (20)

is also continuous and, therefore, bijective iff the SIP-kernel is (weakly) universal
and continuous. In consequence, the subspace IγΦ = Φ (V ) ⊆ B is isomorphic to
(V, dB). These results are proofed in [22].

3.2 Kernel Principal Component Analysis

We start this subsection considering a RKHS H as a mapping space by a map
Φ from a data vector space V and the corresponding kernel κΦ. We assume cen-
tralized kernels, i.e. E [Φ (v)] = 0, which can be always be achieved for arbitrary
positive kernels and finite data sets [18]. We define CΦ = E

[
Φ (v) · (Φ (v))�

]
.

In case of infinite-dimensional H, we have to interpret Φ (v) · (Φ (v))
� as a linear

operator ΩH on H
ΩH [h] = Φ (v) · 〈Φ(v),h〉H. (21)

Following Schölkopf et al. in [20] the respective eigen-problem CΦg = λg can
be solved using the observation that for all v ∈ V the equation λ〈Φ(v),g〉H =
〈Φ(v),CΦg〉H has to be fulfilled. For a data set D ⊂ V with m data vectors vk

there exists a dual representation of the eigenvectors g =
∑m

j=1 αjΦ(vj) such
that in this case CΦ becomes the Gram-matrix Gm from (16). Then the original
eigen-problem can be replaced by the dual problem

mλα = Gmα (22)

where α is the column vector of the values αi. According to Zhang et al., this
eigen-decomposition can also be seen as an eigen-problem for a linear operator
determined by

〈Tc,h〉H =
1

m

m∑
j=1

〈Φ(vj), c〉H〈Φ(vj),h〉H (23)

using the kernel properties [25].
It is possible to extend the RKHS approach to RKBS [25]: Consider an RKBS

B as a mapping space by a map Φ from a data vector space V and the correspond-
ing (centralized) SIP-kernel γΦ. We consider again a data set D ⊂ V with m
data vectors vk. Let us define for an arbitrary v ∈ B the complex m-dimensional
vector
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Φ̃B (v) = ([Φ (v) , Φ (v1)]B , . . . , [Φ (v) , Φ (vm)]B) (24)

such that a linear operator T on Cm can be defined by

Tc =
1

m

m∑
j=1

(
Φ̃∗
B (vj) c

)
Φ̃B (vj) (25)

where Φ̃∗
B (vj) is the conjugate transpose of Φ̃B (vj), which corrresponds to Tc =

Mmc with

Mm =
1

m
(K∗

m ·Km)
� (26)

and
Km = [γΦ (vi,vj) : i, j = 1 . . .m] (27)

is the Gram-matrix of the SIP-kernel γΦ. Hence, here the dual problem is

Mmα = λα (28)

with the basis representation according to

〈
Φ̃B (v) , α

〉
Cm

=

m∑
j=1

αjγΦ (v,vj) . (29)

3.3 Kernel PCA and Hebbian Learning

Kernel Hebbian learning based on the Oja-lerning rule (1) was proposed in [12].
It is carried out implicitly in the Hilbert space H such that the coefficient vector
α in (22) is iteratively determined using the Gram-matrix Gm from (16). This
approach can be transferred to the kernel Banach space problem in a straight-
forwad manner by replacing, in the terms containing Gm, the respective parts
by Mm from (26). Due to the lack of space we drop the explicit formulation and
follow a different route: We consider the mapping Ψ for RKHS and RKBS in the
following.

3.3.1 Hebbian PCA Learning in (V, dH)
Now, we process PCA in the space (V, dH) from (18) using its ismorphy to the
image space IκΦ ⊆ H of the kernel mapping Φ such that the data remain the
original ones but are equipped with the kernel metric. Furthermore, we assume
centralized kernels such that E [Ψ (v)] = 0. Now Oja’s learning rule (1) in (V, dH)
for given v ∈ (V, dV ) is given as

w = O · (Ψ (vk)−O ·w) (30)

where
O = κΦ (Ψ (vk) ,w) (31)
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is the new non-Euclidean Hebbian response instead of the Euclidean inner prod-
uct used in the original Oja’s learning rule [15]. Substituting this in (30) we get

w = κΦ (Ψ (vk) ,w) · Ψ (vk)− κΦ (Ψ (vk) ,w)κΦ (Ψ (vk) ,w) ·w, (32)

which can be rewritten to

w = Ω [w]− κΦ (Ψ (vk) ,w)κΦ (Ψ (vk) ,w) ·w (33)

using the linear operator Ω = Ψ (vk) · (Ψ (vk))
� with

Ω [w] = Ψ (vk) · κΦ (Ψ (vk) ,w) , (34)

which is comparable to in (21). Under the usual assumption that the prototype
w changes slowly compared to the number of presented inputs we get

w = CΨ [w]− λw (35)

with
CΨ = E [Ω] (36)

defining the covariance in (V, dH), which reduces to

CΨ =
1

n

n∑
j=1

Ψ (vj) · (Ψ (vj))
� (37)

for a finite number of samples V = {vk|k = 1 . . . n} .
The value λ in eq. (35) is the expectation

λ = E [κΦ (Ψ (vk) ,w) · κΦ (Ψ (vk) ,w)] (38)

of the squared non-Euclidean Hebbian response O from (31). Thus, we obtain
in the stationary state w = 0 an eigenvalue equation CΨ [w] = λw for the
operator CΨ for an eigenvector w �= 0 and eigenvalues λ > 0. The last inequality
stems from the positive definiteness of the kernel.

Because w ∈ (V, dH), we may conclude that w ∈ span {Ψ (vj) |j = 1 . . . n}
holds. Hence, the relation

λκΦ (Ψ (vk) ,w) = κΦ (Ψ (vk) ,CΨ [w]) (39)

must be valid for all k = 1 . . . n. Moreover, w can be expressed as a linear
combination

w =

n∑
j=1

αjΨ (vj)

of the images Ψ (vk) of the original data vectors. Putting together the last state-
ment with (39) we get

λ

n∑
j=1

αjκΦ (Ψ (vk) , Ψ (vj)) =
1

n

n∑
j=1

αjκΦ

(
Ψ (vk) ,

n∑
i=1

Ψ (vi) · κΦ (Ψ (vi) , Ψ (vj))

)
.

(40)
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Here we have used the linearity of the kernel, interpreted as a real inner product,
and the definition of CΨ in (36). If we now take into account the definition of
the Gram-matrix Gn in (16), we immediately obtain

nλGnα = G2
nα (41)

where α = (α1, . . . , αn)
�, which corresponds to the solution of the so-called

dual eigen-problem (22) in [18], and, hence, the stability analysis can be taken
from [12], which also delivers the extension to the full eigen-problem and the
respective Sanger-algorithm.

3.3.2 Hebbian PCA Learning in (V, dB)
Here we consider the space (V, dB) from (20) and exploit its isomorphism to the
image space IγΦ ⊆ B of the kernel mapping Φ for a SIP-RKBS B. Again, we
assume centralized kernels satisfying E [Ψ (v)] = 0. Further, we assume that the
kernel γΦ takes only real values. Hence, K∗

m = K�
m is valid in (26) which results in

Mm = 1
m

(
K�

m ·Km

)
being symmetric and positive definite. The non-Euclidean

Hebb-response becomes
O = γΦ (Ψ (vk) ,w) (42)

Substituting this in (30) we get in complete analogy

w = γΦ (Ψ (vk) ,w) · Ψ (vk)− γΦ (Ψ (vk) ,w) γΦ (Ψ (vk) ,w) ·w, (43)

which reads as
w = CB

Ψ [w]− λw (44)

but here with ΩB [w] = Ψ (vk) · γΦ (Ψ (vk) ,w) and CB
Ψ = E [ΩB]. However,

because Ψ (vk) = vk despite the changing metric we have CB
Ψ = C and C being

the covariance of the data in D.1 The value λ in eq. (44) is the expectation

λ = E [γΦ (Ψ (vk) ,w) · γΦ (Ψ (vk) ,w)] (45)

of the squared non-Euclidean Hebbian response O from Eq. (42). The stationary
state w = 0 corresponds to the eigen equation CB

Ψ [w] = Cw = λw for the
operator CB

Ψ [w] with eigenvector w �= 0 and eigenvalue λ �= 0.
Because w ∈ (V, dH), we may conclude that w ∈ span {Ψ (vj) |j = 1 . . . n}

holds, because B is a SIP-RKBS. Hence, the relation

λγΦ (Ψ (vk) ,w) = γΦ
(
Ψ (vk) ,C

B
Ψ [w]

)
(46)

must be valid for all k = 1 . . . n. Moreover, w can be expressed again as a
linear combination w =

∑n
j=1 βjΨ (vj) of the images Ψ (vk) of the original data

vectors. Putting together the last statement together with (46) we get

λ
n∑

j=1

βjγΦ (Ψ (vk) , Ψ (vj)) =
1

n

n∑
j=1

βjγΦ

(
Ψ (vk) ,

n∑
i=1

Ψ (vi) · γΦ (Ψ (vi) , Ψ (vj))

)

(47)
1 We emphasize at this point that, Ψ (vk) = vk is valid only numerically. Yet, vk and

its image Ψ (vk) are objects in different metric spaces. Therefore, we will still use
the notation Ψ (vk) for the image to indicate this difference.
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using the linearity of the SIP-kernel in its first argument, interpreted as a real
semi-inner product, and the definition of CB

Ψ as expectation. If we now take into
account the definition of the Gram-matrix Kn in (27), we immediately conclude

nλKnβ = K2
nβ (48)

where β = (β1, . . . , βn)
� plays the same role as β in (41). Moreover, it relates via

the operator eigen-problems for RKHS (23) and RKBS (25) to the dual problem
in case of RKBS (28).

As it was shown for the RKHS in [12], the stability analysis for RKBS follows
analogously keeping also in mind that the original stability analysis in [15] does
not require the sesqui-linearity of the inner product. Again, the extension to full
PCA according to Sanger [17] is obvious.

4 Conclusion

In this paper we tackle the problem of PCA in non-Euclidean spaces. This is
an important task if data have to be visualized and the dissimilarity measure is
non-Euclidean, as it is the case in classification problems with metric adaptation,
for example. We provide the theoretical framework for non-Euclidean PCA for
Hebbian learning by Oja’s learning rule. We mathematically proof that adaptive
PCA by Hebbian learning can be done for general finite-dimensional Banach
and Hilbert spaces and also in the context of kernel metrics with underlying
RKHS and RKBS. Thus, we close the gap between kernel based learning and
adequate data visualization if kernel learning is done using differentiable kernels,
which allow prototype based learning in the data space but equipped with a
differentiable kernel metric.
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Abstract. A new classification method is proposed based on the spherical SOM 
that has been developed earlier for visualizing multidimensional data sets.  
Phase distances between labeled data on the spherical surface are computed. 
With these distances, a dendrogram can be constructed. Then, using the 
constructed dendrogram, a classification of each cluster group on the spherical 
surface, based on the label data was carried out. This method can be applied to 
various data sets. Here, the method was applied to the chain-link problem which 
can be considered as a particularly difficult one from a representational 
standpoint, and to the problem of separating parallel random number planes. 

Keywords: Spherical SOM, colored classification, chain-link problem, the 
separation of the random number planes. 

1 Introduction 

A clustering method based on the visualization of a multidimensional data set on a 
sphere was recently proposed [1]. The phase distance between labeled data represented 
on the spherical surface was computed and a dendrogram constructed from the phase 
distance calculation. In the current paper, we perform the classification of the found 
clusters by applying labeled data to the dendrogram.  

This new classification method can be applied to various data sets. Here, we apply 
it to the chain-link problem [2] considered to be notoriously difficult, and to the 
problem of the separation of stacked random number planes [3]. 

2 Application to the Chain-Link Problem 

2.1 The Comparison of the Results Obtained with the XOM Method and the 
Spherical SOM for a Benchmark Problem  

The benchmark problem consists of two rings (links) (Fig. 1(a)) with a distance d 
from each other and intersecting vertically in the three-dimensional space. With the 
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XOM method, the rings become projected into a two dimensional space [2], hiding 
the three-dimensional structure (Fig. 1(b)). In Fig. 1(c), the U-matrix can be seen as 
gray shades by the spherical SOM. The form resembles very well the seam of a 
regular baseball. The rings don’t intersect. An expression at Glyph value 0.5 and a 
figure of the corresponding color boundary are shown in Fig. 2 (b) and (c), 
respectively. As a result, it is possible to clearly identify, without intersection, the 
boundary between rings 1 and 2 of Fig. 1(a) and Fig. 2 (a). Characteristic positions in 
the chain-link are shown in Figs. 2-3. 

 

Fig. 1. (a) the input 3-dimensional data (b) the 2 dimensional result obtained with the XOM 
method [2] (c) The representation obtained with spherical SOM (blossom) [1, 4, 5] 

2.2 Representation Using the Spherical SOM of Positional Information in the 
Chain-Link 

The typical positions of chain-link of Figs. 1 and 2 are shown in the following Fig. 2-
3. Then, a representation is developed using a spherical SOM. 

The representations in terms of coordinates on the ring A and B are shown in Fig. 
3(a) and (b), respectively. 

In Fig. 5(a), the first ring starts in A(-0,1,-z) and ends in A(+0,1,+z). In Fig. 5(b), 
the second ring ends in B(+x,0,+0) and starts in B(-x,0,-0) . In Fig. 5, A(-0,1,-z) 
corresponds to B(-x,0,-0) (blue circled) and A(+0,1,+z) corresponds to B(+x,0,+0) 
(black circled), since their distances are nearer compared to any other combination. 
Here, -0 signifies a negative value that is near 0, and +0 a positive value that is near to 
0. -z signifies a negative z value, -x a negative x value, + z, and + x, are defined in the 
same way. 
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Fig. 2. (a) the coordinates inside ring A and B. (b) the figure with the Gryph value 0.5 of Fig. 
1(c). (c) The corresponding boundary is shown by coloring. 

 

Fig. 3. (a) Each of the coordinates (Fig. 2) of the A ring are on the spherical surface, and the 
arrow starts and ends in A(0,1,z). (b) each of the coordinates (Fig. 2) on the B ring are on the 
spherical surface, and the arrow starts and ends in B(x,0,0). 
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Fig. 4. (a) the starting (blue) and (b) the end (black) position in Fig. 3 

 
(a) 

 
(b) 

Fig. 5. Representation obtained when Fig. 4 is stretched to one dimension. In panels (a) and (b), 
the labels A and B, are the corresponding positions of start (left blue circled) and end (right 
black circled). 

2.3 The Results Obtained with Other SOMs (Torus-SOM and SOM_PAK) 

Other SOM methods were also tried, namely, Torus-SOM [5] and SOM_PAK [5, 6]. 
Torus-SOM is a kind of SOM for which either side of the map, including the top and 
bottom sides are designed to be continuous (i.e., to form a torus). SOM_PAK is free 
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software of the regular SOM, developed at the Helsinki institute of technology in 
Finland [6].  

The result of the Torus-SOM is shown in Fig. 6. Let's pay attention to the Cyan mark 
(red circled) on the U-matrix in the central left of the figure. The mark in Fig. 6(a) was 
moved about 10 steps to the right in Fig. 6(b), as the map is continuous in either side. 
Similarly, in Fig. 6(c), it is moved up by about 5 steps compared with Fig. 6(b).  

 
Fig. 6. (a) After Torus-SOM learning, (b) the map (a) is slightly moved to the right, and (c) 
moved upwards. (d) The result obtained with SOM_PAK learning. 

Finally, the result obtained after learning, using the SOM_PAK is shown in Fig. 
6(d). In the case of the Torus-SOM of Figs. 6, the map is continuous on all sides. The 
SOM_PAK is a usual SOM. However, this SOM does not continue at all sides. As a 
result, after learning with SOM_PAK, the continuity of the representation provided by 
the spherical SOM (blossom) and Torus-SOM cannot be observed. As shown in Fig. 
6(d), the map is divided only into two areas. 

3 Application to the Case of Layered Random Number Planes  

3.1 Preparation of the Layered Random Number Planes 

A set of parallel random number planes [3] as shown in Fig. 7 are prepared. The layers 
are separated by the distance d, for which we explore the values 0.1, 1, 5, and 10.  
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Fig. 7. (a) A stack of 4 random number layers is constructed sized 10×10 with every layer 
containing 500 random points. The layers are separated by a distance d. (b) Typical case of 4 
corners and 1 center position in each layer; the spacing d is 10. 

3.2 Analysis with Spherical SOM  

The cases of 2 layers, 3 layers and 4 layers were analyzed by a spherical SOM.  One 
example of the obtained results is shown in Fig. 8. The distance d is mentioned in the 

 

 

Fig. 8. The spherical SOM results for the case of (a) 2 layers, d=10, (b) 3 layers, d=10, (c) 4 
layers, d=10, (d) 2 layers, d=0.1, (e) 3 layers, d=5, and (f) 4 layers, d=5 
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caption of Fig. 8. In the case of 2 layers, Fig. 8(d) shows that the boundary is mixed 
and not smoothed when d is taken as 0.1. However, in the case of 3 layers and 4 
layers, the boundaries could not be separated with a d equal to 1. Therefore, the cases 
of d=5, and 10 where the boundaries could be separated are shown respectively in (b), 
(e), and (c), (f). 

As shown in Fig. 8, in the case of 2 layers, the resolution is good with d=0.1. The 
resolution fails for 3 layers, and 4 layers. There, the layers are fully mixed for d=1 the 
layers could not be separated. Next, d was set to 10 in all cases. The resolution results 
for 2 layers, 3 layers, and 4 layers were good as shown in Fig. 8 (a), (b), and (c). 

In the case of 3 layers, let us consider the representation of the central coordinates 
(5, 5) (Fig. 7(b)). As shown in Fig. 9(a) and (b), the coordinates are represented in the 
center of layers 1 and 3. However, for the 2nd layer, when the y coordinate is smaller 
than 5, it is represented as shown in Fig. 9(c) on the right-hand side, seen from the 1st 
layer. When y is larger than 5, it is represented as shown in Fig. 9(d) on the left-hand 
 

 

Fig. 9. The 3 layer structure is learned by the spherical SOM. 4 corners and 1 center in the 1st 
and the 3rd layers are learned as shown in panels (a) and (b). However, the  center of the 2nd 
layer is at the right hand side of the 1st layer as shown in panel (c) and at the left hand side of 
the 1st layer as shown in panel (d) where the position in (c) is (5.47, 4.00, 9.97) and in (d) is 
(5.27, 6.23, 9.97). 
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Fig. 10. The result obtained when the map of Fig. 9 is stretched into the one dimension. The 
result is shown starting from the top panel for the 1st layer, then the 2nd layer and 3rd layer, 
respectively. In the top and bottom panels, the 4 corners are represented. The center position 
can’t be shown in one dimension. However, the center position of the 2nd layer can be shown in 
one dimension (middle panel, white circled). 

 
side. Considering the 2 center positions (5.47, 4.00, 9.97) and (5.27, 6.23, 9.97) in the 
2nd layer, the difference between the x coordinates 5.47 and 5.27 is only 0.20. 
However, the difference between the y coordinates 4.00 and 6.23 is 2.23. Due to the 
larger difference between the y coordinates than the x coordinates, the projected 
positions of the centers in Figs 9(c) and (d) can be understood. 

3.3 Analysis by Torus-SOM and Ordinary SOM  

Next, the result obtained with an ordinary SOM is shown in Fig. 11. SOM_PAK is 
used for the analysis. The cases of 2 layers and 3 layers are shown in Fig. 11. Here, 
the interval d equals 10.  

As evidenced by Fig. 11, the boundaries between the layers are clearly shown by 
the U-matrix. Next, the learning is repeated for the cases of 2 layers and 3 layers with 
the Torus-SOM. When the 2 layers case is analyzed with the Torus-SOM, a boundary 
is expressed by the U matrix as in Fig.11. Moreover, when the case of 3 layers is 
analyzed, the result is divided into 3 layers. The boundaries among the layers are not 
distinguishable when they are observed by the U-matrix. 
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Fig. 11. The analysis with SOM_PAK for (a) the case of 2 layers and (b) 3 layers, where the 
distance d among the layers is 10 

4 Conclusion  

The chain-link benchmark consisting of two interlocked rings without crossing, and 
perpendicular in three dimensions was examined with different SOM methods. The 
chain-link becomes problematic to represent when projecting on a planar surface. The 
conventional result shows that the two rings are separated but the crossing is not 
learned. The results are summarized as follows: methods.  

1. Two areas are distinguished by SOM_PAK. However, the two rings and their 
crossing are not shown. 

2. As for the Torus-SOM, the result approaches a ring by virtue of the continuity of 
the map (i.e., a torus).  

3. When a cluster spherical SOM (blossom) is used, a boundary could be observed 
after coloring the clusters. When the boundary of rings 1(A) and 2(B) is traced on 
the map, they don't cross, from which we conclude that the configuration of Fig. 1 
(a) is properly learnt. 

4. When Ring_1 (A) and Ring_2 (B) are represented on the spherical surface, the 
boundary that is expressed from the U-matrix appears on the spherical surface. The 
form is a shaped like the seam of a baseball. When the Glyph value is changed to 
0.5, the boundary is clearly expressed in the form of an edge. 
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5. When 8 points in total are represented on the spherical surface, each 4 connected 
points can be represented in one dimension. The starting point and the end point in 
one dimension are the points (0,1,z) on the A ring and (x,0,0) on the B ring where 
the A and B rings most closely separated. When the boundaries are stretched into 
one dimension, positive values in the z, x directions, and negative ones correspond 
to the points (0,1,z) on the A ring and (x,0,0) on the B ring, respectively (refer to 
Figs. 4 and 5).  
 

In addition to the chain-link benchmark, layered random number planes case was also 
analyzed. For a spherical SOM, the arrangement of the layered structure is well 
shown and is superior to that of the Torus-SOM and the planar SOM.  

Finally, the one more important result will be added. As shown in Fig. 3(b) by  
E-SOM [2], the iris data [2,7,8] of the benchmark problem where three kinds of each 
50 stocks were classified. As the result, setosa are fully separated. Three virginicas in 
the virgicolor group and 3 virgicolors in the virginica group are falsely classified 
respectively. In our present proposal method, three kinds of setosa, virgicolor, and 
virginica groups are fully classified with color [1].  

Thus, it can be understood that a cluster spherical SOM (blossom) can solve high 
degree advanced benchmark problems like the separation of the two ring configuration 
(chain-link problem), the random number plane layers and additionally iris data [2,7,8]. 
Finally, the authors are very obliged to Prof. M. V. Hulle of K.U.Leuven Belgium, for 
his kind reading and correcting our manuscript. 
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Abstract. Self-organizing maps (SOMs) have been applied for practi-
cal data analysis, in the contexts of exploratory data analysis (EDA)
and data mining (DM). Many SOM-based EDA and DM techniques re-
quire that descriptive labels be applied to a SOM’s neurons. Several
techniques exist for labeling SOM neurons in a supervised fashion, using
classification information associated with a set of labeling data examples.
However, classification information is often unavailable, necessitating the
use of unsupervised labeling approaches that do not require pre-classified
labeling data. This paper surveys existing unsupervised neuron labeling
techniques. A novel unsupervised labeling algorithm, namely unsuper-
vised weight-based cluster labeling, is described and critically discussed.
The proposed method labels emergent neuron clusters using sub-labels
built from statistically significant weights. Visualizations of the labelings
produced by a prototype of the proposed approach are presented.

Keywords: Artificial neural networks, self-organizing maps, exploratory
data analysis, data mining, neuron labeling, visualization.

1 Introduction

A self-organizing map (SOM) is an unsupervised neural network [14]. Much
research exists on SOMs [10,17,18], and the approach has been applied to many
practical problems, ranging from industrial [1] to financial [7] applications.

This paper views exploratory data analysis (EDA) and data mining (DM) as
distinct concepts, both of which extract knowledge from sets of data [24]:

– EDA is a human-centered approach to extracting knowledge from data. Ar-
tificial intelligence algorithms often act in a role that supports expert human
analysts. Data visualization techniques [5] are often a key part of EDA.

– Data mining (DM) [9] uses one or more artificial intelligence techniques as
the primary analyzing mechanism. These algorithms are used as “black-box”
extractors of knowledge from data sets, and usually produce rule sets.

Several approaches have been proposed for attaching descriptive (usually tex-
tual) labels to the neurons making up a SOM. Neuron labels are an important

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 45–54.
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part of many SOM-based EDA methods and all DM algorithms [24]. The most
common labeling methods are supervised [13,20], relying on classification infor-
mation in a labeling data set. However, since classification information is often
unavailable, or may bias the labeling if it is available, unsupervised labeling
(which requires no data classifications) has been investigated [4,6,19,21].

This paper presents a novel unsupervised labeling method, called unsuper-
vised weight-based cluster labeling. The algorithm selects statistically significant
weights for emergent neuron clusters, constructs sub-labels by linking values with
these weights, and labels each cluster’s neurons using the sub-labels.

The remainder of this paper is organized as follows: Section 2 gives a brief
overview of SOMs. Section 3 overviews neuron labeling methods for SOMs. Sec-
tion 4 describes the novel unsupervised weight-based cluster labeling algorithm,
and critically discusses the method. Section 5 presents a prototype of the algo-
rithm, as well as some visualizations of sample results. Finally, Sect. 6 presents
this paper’s conclusions, and outlines possible related work for the future.

2 Self-Organizing Maps

The SOM is an unsupervised neural network, developed by Teuvo Kohonen
in 1982 [12]. The approach’s inspiration was the self-organizing nature of the
human cerebral cortex and associative memory. SOMs are unsupervised because
no training data classification information is explicitly used during training.

Fig. 1 (a) illustrates the basic architecture of a SOM. The map’s training
data set, denoted as DT = {z1, z2, . . . , zPT }, holds PT training examples. Each
training vector, zp = (zp1, zp2, . . . , zpI), consists of I attribute values, such that
each zpi ∈ R. The SOM has a K × J neuron grid, where each neuron at row k
and column j has an I-dimensional weight vector, wkj = (wkj1 , wkj2, . . . , wkjI ).
Each weight wkji ∈ R, and correlates to attribute i in DT . Each weight vector
acts as a model representation of a subset of the training vectors in DT .

After defining a SOM’s initial structure, the weight vector values must be
adjusted, by means of a training algorithm. The objective of any SOM training
algorithm is to update the position of each neuron’s weight vector, so that:

– Weight vectors “drift” towards denser groupings of data examples, causing
the SOM to model the probability density function of the input space.

– The map is topologically structured, since input examples that are close to
one another in the input space are also close to each other on the map.

Several algorithms exist to optimize the weights of a SOM’s map structure,
including the original stochastic training algorithm [12], and a batch training
variant [14]. Since unsupervised weight-based cluster labeling is applicable to
any SOM that has the aforementioned architecture and mapping characteristics,
the exact nature of the training algorithm is unimportant to this discussion.

Fig. 1 (b) illustrates the result of training on a small part of a hypothetical
SOM trained on two-dimensional data. Gray circles paired with dashed lines, and
black circles paired with solid lines, show the weight vector positions and neigh-
boring neuron connections upon initialization and after training, respectively.
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Fig. 1. The basic structure and operation of a SOM: (a) shows the SOM’s architecture;
(b) shows the local effect of map training in a hypothetical two-dimensional case

Crosses denote the input space positions of training data vectors. The weight
vectors of the neurons tend to cluster around dense areas within the input data,
while similar training vectors are represented by neighboring neurons.

3 Neuron Labeling for Self-Organizing Maps

The process of neuron labeling entails the association of descriptive labels, which
are typically textual in nature, with map neurons. Neuron labeling is important,
since such labels are required by many EDA methods, and most DM algorithms
(such as the SIG* algorithm [23] and the HybridSOM framework [25]).

Two general categories of neuron labeling approaches [24] can be identified,
both of which are also illustrated in terms of broad overviews within Fig. 2:

– Supervised labeling refers to a family of techniques that derive labels for
neurons from classification information that is associated with each example
in a labeling data set. These methods either map labeling examples to the
SOM structure [13,20], or map neurons to labeling examples [13].

– Unsupervised labeling uses no data classification information to build labels.
These techniques either guide a human analyst [6] in manually assigning la-
bels, derive labels directly from the map structure [21], or use an unclassified
data set and the map structure to build labels [4,19].

The proposed algorithm falls into the latter category, and supervised labeling is
thus disregarded. The proposed method, and the other unsupervised techniques
this section discusses, apply sub-labels to neurons using no human assistance.
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Fig. 2. Supervised and unsupervised neuron labeling methods: (a) shows supervised
labeling; (b) shows exploratory labeling; (c) shows unsupervised labeling using map
weights; (d) shows unsupervised labeling using map weights and unclassified data

Serrano-Cinca [21] proposes forming each neuron’s sub-labels from attribute-
weight pairs, which are chosen based on the neuron’s weights. Labels are guaran-
teed for all neurons, but are unlikely to be exactly the same for similar neurons.
This non-uniform labeling may be difficult for human analysts to interpret.

LabelSOM [19] maps each example in a labeling set to the example’s closest
matching neuron. Based on each neuron’s mapped examples, attributes are cho-
sen and combined with the attribute’s mean value over the mapped examples,
to form sub-labels. Neurons with no mapped examples are not labeled, which
becomes problematic when labeling sets are sparse and maps are large.

Azcarraga et al. [4] propose a method similar to LabelSOM, but label clusters
of neurons uniformly using attribute-value pairs selected from labeling examples
that map to these clusters. The technique largely overcomes LabelSOM’s unla-
beled neuron problem. The method’s uniformly defined neuron groups are often
well-suited to EDA, and are required by many SOM-based DM algorithms.

If a very small labeling data set is used, both LabelSOM and the approach
of Azcarraga et al. are also likely to produce inaccurate labels. In such a case,
attributes will be selected from very small sets of mapped data examples, which
are less likely to be statistically representative of data subset characteristics.

4 Unsupervised Weight-Based Cluster Labeling

This section describes the novel unsupervised weight-based cluster labeling algo-
rithm, which falls into the category depicted in Fig. 2 (c), and critically discusses
the feasibility of the approach within the context of practical EDA or DM.
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4.1 The Labeling Algorithm

This section describes the steps performed by weight-based cluster labeling.
Fig. 3 presents the algorithm’s pseudocode, which is inspired by aspects of the
unsupervised labeling methods of Azcarraga et al. [4] and Serrano-Cinca [21].

Step 1: Discover Emergent Clusters: Unsupervised weight-based cluster
labeling requires the discovery of a set, C = {S1, S2, . . . , Sm}, of m meta-level
clusters of weight vectors, called emergent clusters. A cluster contains weight
vectors with similar characteristics, which represent similar data examples.

Many emergent weight vector discovery methods are available, including ex-
ploratory methods [26] and algorithms such as SOM-Ward [16] and k-means [15]
clustering. The specifics of these techniques are not this paper’s focus.

Step 2: Compute Significance Measures: Significance values are computed
for each cluster’s attributes. The significance value, sig(Al, Si), is the significance
of attribute Al in cluster Si, calculated using the weight vectors in Si.

A variety of sensible sig(Al, Si) measures are possible. This work identifies
only three possible measures. All of the measures require attributes that are
normalized to the same range (either training set attributes are normalized prior
to training, or weights are normalized after training), and categorical attributes
that are binary encoded into several separate continuous attributes:

– Absolute weight value significance is similar to a statistic used by Serrano-
Cinca’s method [21], and assumes that very large and very small weight
values denote important attributes. The measure requires that all the map’s
weight values share a range centered on zero, and is computed as follows:

sig(Al, Si) = |mean(wkjl , Si)| , (1)

wheremean(wkjl , Si) denotes the mean of weight l over Si. A high sig(Al, Si)
value indicates that attribute Al is considered to be more significant.

– Variance-based significance gives higher value to low variance weights, since
these values are very characteristic within a cluster, and is defined as:

sig(Al, Si) = −
(

1

oi − 1
·
∑

wkj∈Si

(
wkjl −mean(wkjl , Si)

)2)
, (2)

where oi is the number of constituent weight vectors that make up Si. A
higher sig(Al, Si) value indicates an attribute with higher significance.

– A measure based on the Kolmogorov-Smirnov (K-S) statistic is possible. The
set, out(Si), is the union of all emergent clusters on the map, excluding clus-
ter Si. The K-S statistic [11] computes to what degree the cumulative distri-
butions of wkjl over Si and out(Si) differ. Higher values denote distributions
that differ more, which indicate attributes in Si that are significant [2].

These types of significance measures have previously been applied outside the
broader domain of neuron labeling that is discussed in this paper, for applications
such as the construction of rules to describe emergent neuron clusters [22,23].
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Create and initialize a SOM, denoted map, consisting of K × J neurons
Train map on an I-attribute training set, denoted DT , until convergence
Derive a discrete set of clusters, C = {S1, S2, . . . , Sm}, of all wkj ∈ map

for all clusters Si ∈ C do
for all attributes Al represented by a weight in wkj do

Use weight wkjl for all wkj ∈ Si, to compute a significance value
Associate the computed significance value with Al in Si

end for
end for

for all clusters Si ∈ C do
for all sufficiently significant attributes Al with corresponding wkjl do

Build a sub-label using the name of Al and value of wkjl over Si

Add the new sub-label to the label of each nkj ∈ Si

end for

end for

Fig. 3. Pseudocode of the unsupervised weight-based cluster labeling algorithm

Step 3: Select Descriptive Attributes: Using sig(Al, Si), a subset of at-
tribute names are chosen as cluster sub-labels. Too many sub-labels are complex
and unreadable, while too few reduce label accuracy (a problem common to all
unsupervised labeling algorithms). Four selection methods are possible:

– Selecting only the n most significant attributes for each cluster. This tech-
nique is simple, but likely to produce rough and inaccurate labels.

– Choosing attributes with a pre-defined minimum significance. To label all
neurons, selection of the most significant attribute can be enforced.

– Choosing attributes that are significant relative to other attributes in the
same cluster by, for example, selecting attributes with sig(Al, Si) values of
more than a standard deviation from the mean of all sig(Al, Si) in Si.

– Selecting attributes with significances that are distinctive over the whole
map, for instance, choosing attributes with sig(Al, Si) values of more than
a standard deviation from the mean significance of Al over all clusters.

Step 4: Associating Values with Weights: Attribute names alone are
usually insufficiently descriptive sub-labels. Values representative of chosen at-
tributes in each cluster are thus usually added to sub-labels. Simple value choices
for Al in Si are the mean or median of all wkjl ∈ Si. If label values are normal-
ized, these values should be de-normalized to the original data’s ranges.

To facilitate easy analysis, it may be desirable to replace raw attribute values
with wider ranges, such as “high” or “low” [21]. The selection of good thresholds
for such ranges is important, and can make use of data binning techniques [8].

Step 5: Label Neurons: Finally, the algorithm applies labels to neurons. For
each emergent cluster, the labels built in step 4 are used to label every neuron
within the cluster. Labels are typically listed in decreasing order of significance.
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4.2 A Critical Discussion

The proposed algorithm has important advantages in the following situations:

– Since clusters are labeled uniformly, the proposed algorithm is preferred to
Serrano-Cinca’s [21] method when characterizing broad data classes. This is
often useful for EDA, and required by many SOM-based DM algorithms.

– The proposed method is useful when labeling data is scarce, since only the
map’s weight vectors are used. Lack of data adversely affects the accuracy of
labels produced by either the method of Azcarraga et al. [4] or LabelSOM.

However, certain factors may have a negative impact on performance:

– Label quality depends on map quality, and a map’s quality can be difficult to
assess. The clustering method, significance measure, and attribute selection
method must also be well chosen. This decision is often not obvious.

– The algorithm is more time complex than both Serrano-Cinca’s method and
LabelSOM, because an initial cluster discovery step is required. This effect
is especially detrimental to performance when labeling very large maps.

– Inseparable clusters represent two or more classes [24]. All the neurons in an
inseparable cluster will be labeled uniformly, while Serrano-Cinca’s method
and LabelSOM might be able to distinguish between inseparable classes.

5 Algorithm Prototype and Results

Since unsupervised label quality is subjective, empirical analysis is difficult.
Rather than use performance measures, labelings are usually qualitatively ana-
lyzed [19,21], or behavior similar to other statistical or rule extraction methods is
assumed to show good performance [4]. This section thus focuses on comparative
examples of results, but defers a detailed cross-analysis to future work.

The examples use the Iris data set from the UCI Machine Learning Repos-
itory [3]. The data set contains 150 examples, divided equally between three
classes (Iris setosa, Iris versicolor, and Iris virginica). Each example is described
by four continuous attribute values (sepal length, sepal width, petal length, and
petal width), which were all scaled to the same range before SOM training.

One SOM, trained using the original stochastic algorithm [12], was used for
all examples. The cluster-based methods used SOM-Ward clustering [16], which
found two clusters. A cluster in the map’s upper right represents the Iris setosa
class, while the rest of the map is an inseparable cluster for Iris versicolor and
virginica. The latter cluster illustrates several technique characteristics that are
this section’s focus, and justifies the data set’s use. Future work will analyze
other real-world data sets. Fig. 4 visualizes the labelings, where sl, sw, pl, and
pw respectively represent the attributes sepal length, sepal width, petal length,
and petal width. Sub-label values were re-scaled to the training set’s ranges.

Fig. 4 (a) shows the outcome of Serrano-Cinca’s method on the example SOM.
Selected attributes all have a significance value of more than 50%. Each neuron
is uniquely labeled, which may confuse a data analyst and is useless for DM
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Fig. 4. Neuron labeling of a SOM trained on the Iris data set: (a) uses Serrano-Cinca’s
method, where values are neuron weights; (b) uses LabelSOM, where values are at-
tribute means for mapped examples; (c) uses Azcarraga’s method, where values are
attribute means for mapped examples; (d) shows weight-based cluster labeling statis-
tics; (e) uses weight-based cluster labeling, with variance-based significance and mean
weight values over clusters; (f) uses weight-based cluster labeling with threshold values.
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algorithms that require broad classes. The neurons constituting the inseparable
cluster are, however, somewhat differentiated from one another.

Fig. 4 (b) shows LabelSOM’s results, where the entire training set was used for
labeling. Sub-labels are the three most significant attributes per neuron. Of the
map’s neurons, 25% are unlabeled, 18.75% have only one mapped example, and
an average of only 3.125 examples map to each neuron. The statistical soundness
of the sub-labels is thus clearly questionable. Neurons have unique labels, with
similar advantages and drawbacks to Serrano-Cinca’s method.

Fig. 4 (c) shows results for Azcarraga’s method, using all training data. At-
tributes with significances more than a standard deviation from a cluster’s mean
significance are ordered by decreasing absolute significance. LabelSOM’s sparse
example mapping problem is overcome (small clusters will cause the same issue),
but the inseparable cluster is undifferentiated. Larger areas of uniform labels of-
ten ease human interpretation and are suitable for many DM methods.

Fig. 4 (d) shows statistics used for weight-based cluster labeling. Equation (2)
was used for sig(Al, Si). Attributes with a minimum sig(Al, Si) of −0.00095 are
marked as sub-labels, using asterisks. Sub-label values are attribute means.

Fig. 4 (e) shows weight-based cluster labeling, using the computed statistics.
Like Azcarraga’s method, large areas are labeled uniformly, while inseparable
clusters are undifferentiated. However, no labeling data is relied upon.

Fig. 4 (f) shows the same labeling as Fig. 4 (e) does, but uses thresholds
instead of raw attribute values. The values low, med and high respectively de-
note mean values in the lower, middle and upper third of each attribute range.
Threshold values are easier to interpret than raw values, at the expense of detail.

6 Conclusions and Future Work

This paper presented an overview of SOM neuron labeling. A novel unsupervised
weight-based cluster labeling algorithm, which labels neuron clusters using sig-
nificant attributes and values (thus labeling all map neurons), was proposed and
critiqued. A prototype was presented, with visualizations of some results.

Future work will comparatively analyze the proposed method on several more
complex, higher-dimensional data sets. An analysis of the method’s time com-
plexity and scalability is also planned. The authors hope to develop a method
to empirically evaluate the algorithm’s label quality, allowing analyses of the
performances of different significance measures and attribute selection schemes.
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Abstract. In this paper, we study fundamental properties of the Self-
Organizing Map (SOM) and the Generative Topographic Mapping
(GTM), ramifications of the initialization of the algorithms and properties
of the algorithms in presence of missing data. We show that the commonly
used principal component analysis (PCA) initialization of the GTM does
not guarantee good learning results with complex, high-dimensional data.
We propose initializing theGTMwith SOMand demonstrate usefulness of
this improvement using the ISOLET data set. We also propose a revision
to the batch SOM algorithm called the Imputation SOM and show that
the new algorithm is more robust in presence of missing data. We compare
the performance of the algorithms in the missing value imputation task.
We also announce a revised version of the SOM Toolbox for Matlab with
added GTM functionality.

1 Introduction

Topographic mappings, such as the Self-Organizing Map (SOM) [15,16] and the
Generative Topographic Mapping (GTM) [2], are useful tools in inspecting and
visualizing high-dimensional data. The SOM was originally inspired by neuro-
scientific research on cortical organization and the algorithm models the basic
principles of the organization process at a general level. In practice, SOM has
proved to be a robust approach tested in thousands of different applications. The
GTM was inspired by the SOM algorithm, while operating in the probabilistic
framework which provides well-founded regularization and model comparison.
In this paper, we show that the both methods have their own strengths over the
other and the methods may even benefit each other.

This paper is organized as follows. Sections 2 and 3 introduce the SOM and the
GTM models, respectively. In Section 4, self-organization and convergence of the
algorithms are discussed and using the SOM for initializing the GTM is shown to
improve the learning results. Section 5 explains the treatment of missing values
in the GTM and adapts the same principled way into SOM. Performance of the
algorithms is compared in a missing value imputation task. Finally, the results
and prossible future work are discussed in Section 6.
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In all experiments, SOM Toolbox [23] and Netlab [1] software packages are
used. The GTM scripts in Netlab are revised to handle data with missing values
and sequential training algorithm is contributed. Finally, we announce a revised
version of the SOM Toolbox which incorporates GTM functionality. An up-to-
date version of the SOM Toolbox is available at

http://research.ics.aalto.fi/software/somtoolbox

2 Self-Organizing Map

The Self-Organizing Map (SOM) [16] discovers some underlying structure in data
using K map units, prototypes or reference vectors {mi}. For the prototypes,
explicit neighborhood relations have been defined. The classical sequential SOM
algorithm proceeds by processing one data point x(t) at a time. Euclidean, or any
other suitable distance measure is used to find the best-matching unit given by
mc(x(t)) = argmini‖x(t) −mi‖. The reference vectors are then updated using
the update rule mi(t + 1) = mi(t) + hci(t) (x(t)−mi(t)) , where an explicit
neighborhood function hci = α(t) · exp

{
−‖rc − ri‖2/2σ2(t)

}
is used in order

to obtain topological mapping. In the neighborhood function, ‖rc − ri‖ is the
distance between the best-matching unit rc and unit i in the array, 0 < α(t) < 1
is scalar-valued learning-rate factor and σ(t) is the width of the neighborhood
kernel.

2.1 Batch SOM

In the Batch SOM, the reference vectors are updated using all data (or a mini-
batch, a part of the data) at once and weighted accordingly. The batch update
rule is

mi =

∑
n hnixn∑
j hni

, (1)

where the index n runs over the data vectors whose best-matching units satisfy
hni > 0, that is, all data points up to the range of the neighborhood function
are taken into account.

2.2 Quality and Size of SOM

Selecting the size of the array of map units in the SOM is a subtle task. Pre-
viously many solutions, such as hierarchical [17] and growing maps [10,5], have
been proposed to tackle this issue. The question of the size can be approached
from the point of view of different quality measures. Two most commonly used
error measures are the quantization error and the topological error [16]. The for-
mer measures the mean of the reconstruction errors ‖x−mc‖ when each data
point used in learning is replaced by its best-matching unit. The latter mea-
sures the proportion of data points for which the two nearest map units are not

http://research.ics.aalto.fi/software/somtoolbox
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neighbors in the array topology. As the number of map units increases, quanti-
zation error decreases and topological error tends to increase. Hence, there is no
straightforward way of choosing the number of map units based on the measures
above. Topographic preservation has been studied in detail, e.g., in [24,22,26].
In this work, we use an error measure proposed in [13]. This combined error is
a sum of the quantization error and the distance from the best-matching unit
to the second-best-matching unit of each data vector along the shortest path
following the neighborhood relations. We have added this feature in the SOM
Toolbox som_quality function and demonstrate its use in the experiments.

3 Generative Topographic Mapping

The Generative Topographic Mapping (GTM) [2,3] is a nonlinear latent variable
model which was proposed as a probabilistic alternative to the SOM. Loosely
speaking, it extends the SOM in a similar manner as Gaussian mixture model
extends k-means clustering. This is achieved by working in a probabilistic frame-
work where data vectors have posterior probabilities given a map unit. Hence,
instead of possessing only one best-matching unit, each data vector contributes
to many reference vectors directly.

The GTM can be seen consisting of three parts: 1) discrete set of points in
usually one or two-dimensional latent space, 2) nonlinear mapping, usually radial
basis function (RBF) network, between the latent space and the data space, and
3) a Gaussian noise model in the data space such that the resulting model is a
constrained mixture of Gaussians. In this paper, latent points {ui}, which are
arranged in a regular grid, are mapped to the data space using M fixed radial
basis functions φ(ui) = {φj(ui)}, where φj(ui) = exp

{
−‖cj − ui‖/σ2

}
, σ is

the width parameter of the RBFs, {cj} are the RBF centers and j = 1, . . . ,M .
The number of RBFs, M , is a free parameter which has to be chosen by the
experimenter. The radius of the RBFs is chosen according to σ = dmax/

√
M ,

where dmax is the maximum distance between two RBF centers (see, e.g. [11]).
The node locations in latent space, ui, define a corresponding set of reference
vectors mi = Wφ(ui) in the data space, where W is a weight matrix defining
the mapping from the latent space to the data space. In this work, each reference
vector mi serves as a center of an isotropic Gaussian distribution in the data
space

p(x|mi) =

(
β

2π

)D/2

exp

{
−β

2
‖mi − x‖2

}
, (2)

where β is the precision or inverse variance. The Gaussian distribution above
also represents a noise model accounting for the fact that the data will not be
confined precisely to the lower-dimensional manifold in the data space. More
general noise models have been proposed [3].

The probability density function of the GTM is obtained by summing over
the Gaussian components yielding



58 T. Vatanen et al.

p(x|W , β) =

K∑
i=1

P (mi)p(x|mi) =

K∑
i=1

1

K

(
β

2π

)D/2

exp

{
−β

2
‖mi − x‖2

}
, (3)

where K is the total number grid points in the latent space, or map units in the
SOM terminology, and the prior probabilities P (mi) are given equal probabilities
1/K.

The GTM represents a parametric probability density model, with parameters
W and β, and it can be fitted to a data set {xn} by maximum likelihood. The
log-likelihood function of the GTM is given by

log(L(W , β)) =

N∑
n=1

ln p(xn|W , β), (4)

where p(xn|W , β) is given by (3) and independent, identically distributed (iid)
data is assumed. The log-likelihood can be maximized using the EM algorithm
or alternatively any standard non-linear optimization techniques.

4 Self-Organization and Convergence

Both the GTM and the batch SOM require careful initialization in order to self-
organize [14,8]. For both algorithms, the common choice is to initialize according
to the plane spanned by the two main principal components of the data. In the
batch SOM, the neighborhood is annealed during the learning which decreases
the rigidness of the map. The most important advantages of the batch SOM when
compared to classical sequential SOM are quick convergence and computational
simplicity [8].

As we will show, initializing the GTM using PCA does not always lead to
appropriate results. Instead, we propose using the batch SOM for initializing
the GTM. In the SOM initialization, using few epochs of ’rough training’ with
wide neighborhood will suffice. Next, W can be determined by minimizing the
error function,

E =
1

2

∑
i

‖Wφ(ui)−mSOM
i ‖, (5)

where mSOM
i are the reference vectors of the initializing SOM.

Efficacy of the SOM initialization is demonstrated using the ISOLET data set
from the UCI machine learning repository [9]. The data contains 7797 spoken
samples of the letters of the alphabet. The 617 features are described in [6] and
include, e.g., spectral coefficients, contour features and sonorant features. The
class labels, i.e., the letter identifiers, were not used in training of the maps.

The appropriate model complexity for the GTM, i.e, the number of RBFs and
latent points, can be chosen, e.g., by cross-validating the negative log-likelihood.
Using cross-validation for the ISOLET data, a suitable number of RBFs was
found to be 400 (20× 20) and a suitable number of map units 4004 (77×52).
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Fig. 1. SOM initialization: A GTM with 4004 (77×52) map units and 400 (20×20)
RBFs trained using the ISOLET data. The GTM was initialized using SOM. Most of
the letters of the alphabet are clustered as is shown with the manually added bold-face
characters.

Fig. 2. PCA initialization: A GTM of the ISOLET data with 4004 map units and 400
RBFs. The map was initialized using PCA. The GTM fails finding reasonable structure
in the data, that is, to self-organize.
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Figures 1 and 2 show two GTM visualization of the ISOLET data. In Figure 1,
the batch SOM initialization was used, whereas in Figure 2 the GTM was ini-
tialized using PCA. The map initialized using SOM has a clear cluster structure
where most of the letters form distinct clusters. Furthermore, similar sounding
letters are mapped close to each other. In the top center area and top left corner
of the map, the data is more ambiguous and different letters, such as B, D, E,
P, and V, are mixed together. Obviously, the GTM in Figure 2 does not provide
useful representation of the ISOLET data. We did not manage to obtain learn-
ing results comparable to Figure 1 using the PCA initialization. The GTM with
SOM initialization converges to higher log-likelihood-per-sample value (−573.2
vs. −675.1). Thus, the GTM seems to benefit from the SOM initialization when
complex, high-dimensional data is used. The fact that relatively complex model
with 400 RBFs and 4004 map units was required in order to obtain the mapping
in Figure 1 suggests that the linear PCA initialization is too simple to allow the
GTM to learn any interesting structure in the data.

5 Missing Values

In this section, we discuss the behavior of topographic mappings in presence
of missing values. We start by showing how missing values are treated in the
GTM and develop the same idea for the SOM. The section is concluded by an
experimental study.

In all what follows, missing-at-random (MAR) data is assumed. This means
that the probability of missingness is independent of missing values given the
observed data. Even though this assumption can be questioned in many real-
life scenarios, this is usually a reasonable assumption given that only a small
proportion of the data is missing.

5.1 GTM and Missing Values

The GTM offers a robust framework for dealing with missing values, noted
already in [2]. As with any method operating in the probabilistic framework,
missing values can be handled by integrating them out. If the missing values are
MAR, this does not introduce any bias. Hence, the maximum-likelihood estima-
tion of the model parameters θ reduces to maximizing L(θ|Xobs) = p(Xobs|θ),
where Xobs denotes the observed data. For the GTM, the likelihood function is
given by

L(W , β|Xobs) = p(Xobs|W , β) =

∫
p(Xobs|Xmis,W , β)dXmis, (6)

where Xmis denotes the missing or unobserved data. This integration can be
performed analytically for the standard GTM with an isotropic noise model.

The handling of missing data can be incorporated in the EM algorithm in
a straightforward manner. In the E-step, where posterior probabilities of data
vectors given the map units are calculated, missing values are simply omitted.
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That is, the distance between the map units and a data vector with missing
value(s) is evaluated only in the dimensions observed for the corresponding data
vector. In the M-step, the expected values of the missing data and other sufficient
statistics are used. The details of learning the GTM with missing values using
the EM algorithm can be found in [21].

After the training, there are at least two possibilities to perform imputa-
tion in the GTM. One may use the expected values E(Xmis|Xobs,W , β) or im-
pute using the maximum-a-posteriori (MAP) estimates pMAP(Xmis|Xobs,W , β)
which takes the missing values from the most similar map unit. Additionally,
multiple imputations can be conducted by sampling the posterior distribution
p(Xmis|Xobs,W , β).

5.2 SOM and Missing Values

The SOM has been used for missing value imputation with many kinds of data,
such as survey data [7,25], socio-economic data [4], industrial data [19,18] and
climate data [20]. In most of the SOM literature, the missing values are treated
as was proposed in [4]. The best-matching units for the data vectors with missing
values are computed by omitting the missing values. This is consistent with the
procedure in the probabilistic setting. The missing values are ignored also while
updating the reference vectors. This approach is implemented in the widely used
SOM Toolbox [23]. After the training, missing values can be filled according to
the best-matching units of the corresponding data vectors.

Imputation SOM. A novel approach, named the Imputation SOM (impSOM),
stems from the way missing values are treated while using the GTM with an
isotropic noise model (see above). The distances between data points and refer-
ence vectors are evaluated as described above, since this already corresponds to
the statistical approach. While updating the reference vectors, instead of ignor-
ing the missing data their expected values

x̂ni,mis = E [xn,mis|mi] = mi (7)

are used. Above, expectation is used in an informal sense, since the SOM is not
a statistical model. This results in an update rule, where the reference vectors
are updated according to (1) such that for each unobserved component of xn

the current value mi is used. Thus, the data with missing values contribute by
restraining the reference vectors in the dimensions corresponding to the missing
values.

Figure 3 illustrates the difference between the Imputation SOM and the tra-
ditional way of treating missing values in SOM. The three subfigures plot the
combined error (explained in Section 2.2) with respect to the number of map
units with 30, 50 and 70 % of missing data. Clearly, the higher the proportion
of missing data the larger the improvement of the Imputation SOM algorithm.
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Fig. 3. A comparison between the traditional SOM and Imputation SOM algorithms
with 30, 50 and 70 % of MAR missing data in ISOLET data. The larger the missingness
ratio the larger the difference between the algorithms.
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Fig. 4. Box plots of RMS imputation errors of wine and ISOLET data sets using SOM,
the Imputation SOM (impSOM), the GTM with PCA and SOM initialization and the
Variational Bayesian PCA (VBPCA). Randomly generated data sets with 20 % missing
data are used and the imputation is repeated 100 times for the wine data and 10 times
for the ISOLET data.

5.3 Imputation Experiments

We compare the methods in the presence of missing data using two data sets:
the wine and ISOLET data sets from the UCI machine learning repository [9].
Variational Bayesian PCA (VBPCA) [12]1 is used as a comparison method to
evaluate the general usability of topographic mappings in missing value impu-
tation tasks.

Figure 4 shows box plots of the imputations results. Randomly generated
data sets with 20 % missing data were used and the imputation was repeated
100 times for the wine data and 10 times for the ISOLET data. The results
are reported on normalized data. With 13-dimensional wine data, there are no
significant differences in the RMS imputation errors between the topographic
methods. The variance of the results is high due to only 150 samples which

1 http://users.ics.tkk.fi/alexilin/software/

http://users.ics.tkk.fi/alexilin/software/ 
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do not provide enough information for efficient imputation. The best results
among the SOM and GTM based methods are obtained using the Imputation
SOM. Better results may be obtained using VBPCA without a need of model
selection. The results obtained using the GTM are slightly worse compared to
the SOM and the initialization of the GTM does not effect the results.

The results for the more complex ISOLET data reveal more substantial dif-
ferences between the methods. The results obtained using SOM are better com-
pared to the GTM and it is obvious that the learning results of the GTM are
poor if PCA initialization is used. When SOM initialization was used, the results
were closer to SOM. However, comparison with VBPCA shows that topographic
mappings are not particularly suitable for missing value imputation since us-
ing VBPCA provides significantly better results. This suggests that it might be
beneficial to impute the data with any robust imputation method before the
SOM or GTM visualization. In VBPCA, number of components is determined
by automatic relevance determination and more than two components (latent
dimensions) are used. Hence, the prediction of missing values becomes more ac-
curate. A more comprehensive comparison of the imputation capabilities of SOM
and GTM was conducted in [21].

6 Conclusions and Discussion

In this paper, we have studied topographic properties of the SOM and GTM and
proposed initializing the GTM with SOM. We showed that SOM initialization
enables learning complex and high-dimensional data with the GTM—a task that
may fail using the conventional PCA initialization. We have also proposed a novel
way of treating missing values in SOM training called the Imputation SOM and
showed that this revision makes SOM more robust in terms of combined error
when missing values are present.

In the future, it might be interesting to study whether the self-organization of
the GTM benefits from sequential training. In our initial experiments, we have
found that mini-batch training speeds up the convergence, as proposed by [3].
Additionally, the improvements developed to enhance the self-organization of
the batch SOM may be applied for the GTM, as well. The number of RBFs,
M , roughly corresponds to the width of the neighborhood function in the SOM.
The smaller M , i.e. less RBFs, the more rigid the mapping. Thus, the effect
of annealed neighborhood may be achieved by increasing the number of RBFs
during the learning. It is also possible to use regularization, as was shown in [21],
in order to control the rigidness of the GTM.
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8. Fort, J.C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the Batch

Kohonen algorithm. In: ESANN, pp. 223–230 (2002)
9. Frank, A., Asuncion, A.: UCI machine learning repository (2010),

http://archive.ics.uci.edu/ml
10. Fritzke, B.: Grorwing cell structures–a self-organizing network for unsupervised

and supervised learning. Neural Networks 7(9), 1441–1460 (1994)
11. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall (2008)
12. Ilin, A., Raiko, T.: Practical approaches to principal component analysis in the

presence of missing values. Journal of Machine Learning Research 99, 1957–2000
(2010)

13. Kaski, S., Lagus, K.: Comparing Self-organizing Maps. In: Vorbrüggen, J.C., von
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2 Federal University of Ceará, Department of Teleinformatics Engineering

Center of Technology, Campus of Pici, Fortaleza, Ceará, Brazil
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Abstract. This paper introduces a new approach to building hard mar-
gin classifiers based on Opposite Maps (OM). OM is a Self-Organizing
Map-based method used for obtaining reduced-set classifiers in the sense
of soft margin. As originally proposed, Opposite Maps was used for re-
ducing the training data set and obtaining soft margin reduced-set SVM
and LSSVM classifiers. In our new proposal we use Opposite Maps in
order to obtain a set of patterns in the overlapping area between positive
and negative classes and, a posteriori, to remove them from the default
training data set. This process can transform a non-linear problem into
a linear one in which a hard-margin classifier like Huller SVM can be
applied. This approach assure to get resulting classifiers from a training
process without needing to set up the cost parameter C that controls
the trade off between allowing training errors and margin maximization.
Besides that, but differently from soft-margin classifiers, these obtained
classifiers leave the patterns at wrong side of the hyperplane out of the
set of support vectors and, therefore, reduced-set hard-margin classifiers
come out with few support vectors.

Keywords: Opposite Maps, Hard-Margin Support Vector Machines,
Reduced-Set Classifiers, Huller SVM, Self-Organizing Map.

1 Introduction

Pattern classification algorithms aims at providing functions that defines the
relation between input vectors and their class labels. Differently from Artifi-
cial Neural Networks and Decision Trees training process, the training process
of Large Margin Classifiers like Support Vector Machines (SVM) is based on
minimizing the empirical and structural risk [18]. Minimizing the empirical risk
means to reducing the classification error on training data set and minimizing the
structural risk is related to reducing the classification error on unseen patterns.
This is an advantage of SVM over other classifiers, however, the SVM classifier
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has an important drawback: the run time complexity can be considerably higher
because of the large number of support vectors [3,12].

To handle this issue, several Reduced Set (RS) methods have been proposed
to alleviate this problem, either by eliminating less important SVs or by con-
structing a new (smaller) set of training examples, often with minimal impact
on performance [4,6,8,10,17]. An alternative to standard SVM formulation is
the Least Squares Support Vector Machine (LS-SVM) [16], which leads to solv-
ing linear KKT systems1 in a least square sense. The solution follows directly
from solving a linear equation system, instead of a quadratic programming op-
timization problem. As we know, it is in general easier and less computationally
intensive to solve a linear system than a QP problem. On the other hand, the
introduced modifications also result in loss of sparseness of the induced SVM.
It is common to have all examples of the training data set belonging to the
set of the SVs. To mitigate this drawback, several pruning methods have been
proposed in order to improve the sparseness of the LS-SVM solution [7,11,15].

The flexibility added to SVM classifiers with the aim of allowing some training
errors by making the margin soft causes the increase in the quantity of support
vectors due to Lagrange multipliers related to the patterns placed at wrong side
of the hyperplane have non-zero value. As we know, this flexibility of soft margin
SVM classifiers has been succeeding in non-linear problems. Nevertheless, a hard
margin SVM classifier differently considers only the patterns on the margin as
support vectors and, therefore, this kind of classifier has less support vectors
than soft margin classifiers. In this point of view, an interesting strategy for
reducing the number of support vectors is to apply some existing algorithm in
order to transform a non linear problem into a linear one in which a hard margin
classifier can be applied.

In this paper, we introduce a new proposal called Opposite Maps Hard Sup-
port Vector Machines (OM-HSVM) that comes from applying the Opposite Maps
in order to detect the overlapping area between positive and negative classes
and, a posteriori, to remove them from the default training data set and then
from using a hard margin support vector machine as Huller SVM to classifying
unseen patterns. This new approach assures to get resulting classifiers from a
training process without needing to set up the cost parameter C that controls
the trade off between allowing training errors and margin maximization. Besides
that, but differently from soft-margin classifiers, these obtained classifiers leave
the patterns at wrong side of the hyperplane out of the set of support vectors
and, therefore, reduced-set hard-margin classifiers come out with few support
vectors.

This paper is organized as follows. In Section 2 we review the fundamentals of
the soft margin SVM classifiers and SMO algorithm. In Section 3 we describe the
theory of hard margin and Huller SVM classifiers. In Section 4 we present the Op-
positeMaps algorithmand then in Section 5 we describe our proposal. Simulations
and results are shown in Section 6. The paper is concluded in Section 7.

1 Karush-Kuhn-Tucker systems.
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2 Soft Margin Support Vector Machines

Consider a training data set {(xi, yi)}Li=1, so that xi ∈ Rp is an input vector and
yi ∈ {−1,+1} are the corresponding class labels. For soft margin classification,
the SVM primal problem is defined as

minw,ξ

{
1
2w

Tw+ C
∑L

i=1 ξi

}
(1)

subject to yi[(w
Txi) + b] ≥ 1− ξi, ξi ≥ 0

where {ξi}Li=1 are slack variables and C ∈ R is a cost parameter that controls
the trade-off between allowing training errors and forcing rigid margins.

The solution of the problem in Eq. (1) is the saddle point of the following
Lagrangian function:

L(w, b, ξ,α,β) =
1

2
wTw + C

L∑
i=1

ξi −
L∑

i=1

[αi(yi(x
T
i w + b)− 1 + ξi) + βiξi], (2)

where α = {αi}Li=1 and β = {βi}Li=1 are Lagrange multipliers. This Language
must be minimized with respect tow, b and ξi, as well as maximized with respect
to αi and βi . For this purpose, we need to compute the following differentiations:

∂L(w,b,ξ,α,βi)
∂w = 0, ∂L(w,b,ξ,α,βi)

∂b = 0 and
∂L(w,b,ξ,α,βi)

∂ξi
= 0,

resulting on w =
∑L

i=1 αiyixi,
∑L

i=1 αiyi = 0 and C = αi + βi, respectively.
Introducing these expressions into Eq.(2), we present the SVM dual problem as

max J(α) =

L∑
i=1

αi −
1

2

L∑
i=1

L∑
j=1

αiαjyidjx
T
i xj , (3)

subject to

N∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C.

Once we have the values of the Lagrangemultipliers, the output can be calculated
based on the classification function described as

f(x) = sign

(
L∑

i=1

αiyix
Txi + b

)
. (4)

It is straightforward to use the kernel trick to generate non-linear versions of
the standard linear SVM classifier. This procedure works by replacing the dot
product xTxi with the kernel function k(x,xi). A symmetric function k(x,xi) is
a kernel if it fulfills Mercer’s condition, i.e. the function K(·, ·) is (semi) positive
definite. In this case, there is a mapping φ(·) such that it is possible to write
K(x,xi) = φ(x) · φ(xi). The kernel represents a dot product on feature space
into which the original vectors are mapped.
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2.1 Sequential Minimal Optimization

Sequential Minimal Optimization (SMO) is an iterative algorithm for solving the
dual Soft Margin SVM optimization problem presented in Eq. (3) . The algorithm
selects two parameters, αp and αq, from the set of the Lagrange multipliers,
{αi}li=1, and optimizes the objective value jointly for both these α values. At
the end of the algorithm it adjusts the bias (b parameter) based on the new
parameter set. This process as described bellow is repeated until the set of the
Lagrange multipliers convergence.

1. Initialize αi ← 0 and b ← 0;
2. Let f

′
(x) =

∑l
i=1 yiαik(x,xi) + b;

3. Let Ei = f
′
(xi)− yi;

4. Let λ be the tolerance;
5. Principal loop

(a) Use heuristics to choose two Lagrange multipliers, αp and αq, from
{αi}li=1 to jointly optimize;

(b) if can not be found such examples then exit principal loop;

(c) Compute μ, such that μ ← Eq−Ep

k(xp,xp)−2k(xp,xq)+k(xq,xq)
;

(d) Update αnew
q ← αq + yqμ;

(e) Verify the bounds applied to αq;
(f) Update αnew

p ← αp − ypμ;
6. Update b such that

(a) bp ← Ep + yp(α
new
p − αp)k(xp,xp) + yq(α

new
q − αq)k(xq,xq) + b;

(b) bq ← Eq + yp(α
new
p − αp)k(xp,xp) + yq(α

new
q − αq)k(xq ,xq) + b;

(c) b = (bp + bq)/2;

The algorithm described above owns some simplifications. In this work, we have
implemented the algorithm as presented in Platt’s work [13].

3 Hard Margin Support Vector Machines

The geometrical formulation of Hard Margin Support Vector Machines is pre-
sented in [1,5]. For a separable training data, the convex hulls formed by the
positive and negative examples are disjoint. In this context, consider two points
Xp and Xn belonging to each convex hull and then make them as close as pos-
sible without allowing them to leave their respective convex hulls. The median
hyperplane of these two points is the maximum margin separating hyperplane
and it can be obtained by solving

min
α

||Xp −Xn||2 (5)

subject to
Xp =

∑
i∈P αixi

∑
i∈P αi = 1 αi ≥ 0

and
Xn =

∑
j∈N αjxj

∑
j∈N αj = 1 αj ≥ 0 ,
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where the sets P = {i|(xi, yi)∧yi = +1} and N = {j|(xj , yj)∧yj = −1} respec-
tively contain the indexes of the positive and negative patterns. The optimal
hyperplane is then represented by the following linear discriminant function

f(x) = sign ((Xp −Xn)x+ (XnXn −XpXp)/2) . (6)

Note that Xp and Xn are described as linear combination of the training pat-
terns, so both the discriminant function and the optimization criterion can be
expressed using dot products between patterns in order to use kernel functions
and obtaining non-linear classifiers.

3.1 Huller SVM

We now describe the algorithm Huller that can be viewed as a simplification of
the nearest point algorithms discussed in [1,5] and improved by the additions
presented in [2]. The algorithm uses the parametrization Xp =

∑
i∈P αixi and

Xn =
∑

j∈N αjxj to store these points.

The new position of the point X(t+1)
p at iteration t + 1 is obtained by the

follow expression:

X(t+1)
p = (1− λ)X(t)

p + λxk, (7)

where the value λ is between αk/(1−αk) and 1. As presented in [2], the optimal
value λ is computed analytically by the following expression:

λ = min

(
1,max

(
−αk

1− αk
, λu

))
(8)

where

λu =

⎧⎪⎨
⎪⎩

(X(t)

p −X(t)

n )(X(t)

p −xk)

(X(t)

p −xk)2
if yk = +1

(X(t)

n −X(t)

p )(X(t)

n −xk)

(X(t)

n −xk)2
if yk = −1

The new position of the point X(t+1)
n is computed similarly by X(t+1)

p . The
Huller algorithm is resumed as follows.

STEP 1 - Initialize X(0)
p and X(0)

n by averaging a few points;
STEP 2 - Iterate N times in this principal loop;

Step 2.1 - Pick a random pattern with index k such that αk = 0;
Step 2.2 - If xk has a positive label (i.e., yk = +1) then compute X(t+1)

p ;

Step 2.3 - Otherwise; compute X(t+1)
n ;

Step 2.4 - Pick a random pattern with index z such that αz �= 0;
Step 2.5 - If xk has a positive label (i.e., yz = +1) then compute X(t+1)

p ;

Step 2.6 - Otherwise; compute X(t+1)
n ;

STEP 3 - Obtain the Lagrange multipliers from X(N)
p and X(N)

n .
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4 Opposite Maps SVM

The Opposite Maps (OM) method [14] was proposed in order to find a reduced
set of training vectors to induce SVM and LS-SVM classifiers. For a classifica-
tion problem with K classes, the original OM requires K self-organizing maps
(SOM) [9] to be trained, one for each available class. It is worth pointing out,
however, that any vector quantization algorithm other than the SOM can be
used by the OM method.

STEP 1 - Split the available data set D = {(xi, yi)}li=1 into two subsets:

D(1) = {(xi, yi)|yi = +1}, i = 1, . . . , l1 (for class 1) (9)

D(2) = {(xi, yi)|yi = −1}, i = 1, . . . , l2 (for class 2) (10)

where l1 and l2 are the cardinalities of the subsets D(1) andD(2), respectively.
STEP 2 - Train a SOM network using the subset D(1) and another SOM using

the subset D(2). Refer to the trained networks as SOM-1 and SOM-2.
STEP 3 - For each vector xi ∈ D(1) find its corresponding BMU in SOM-1.

Then, prune all dead neurons2 in SOM-1. Repeat the same procedure for
each vector xi ∈ D(2): find the corresponding BMUs in SOM-2 and prune all
the dead neurons. Refer to the pruned networks as PSOM-1 and PSOM-2.

STEP 4 - At this step the BMUs for the data subsets are searched within the
set of prototypes of the opposite map.

Step 4.1 - For each xi ∈ D(1) find its corresponding BMU in PSOM-2:

c
(2)
i = argmin

∀j
‖xi −w

(2)
j ‖, i = 1, . . . , l1, (11)

where w
(2)
j is the j-th prototype vector in PSOM-2. Thus, c

(2)
i denotes

the index of the BMU in PSOM-2 for the i-th example in D(1).
Step 4.2 - For each xi ∈ D(2) find its corresponding BMU in PSOM-1:

c
(1)
i = argmin

∀j
‖xi −w

(1)
j ‖, , i = 1, . . . , l2, (12)

where w
(1)
j is the j-th prototype vector in PSOM-1. Thus, c

(1)
i denotes

the index of the BMU in PSOM-1 for the i-th example in D(2).

STEP 5 - Let C(2) = {c(2)1 , c
(2)
2 , . . . , c

(2)
l2

} be the index set of all BMUs found in

Step 4.1, and C(1) = {c(1)1 , c
(1)
2 , . . . , c

(1)
l1

} be the index set of all BMUs found
in Step 4.2.

STEP 6 - At this step the reduced set of data vectors is formed.

Step 6.1 - For each PSOM-1 unit in C(1) find its nearest neighbor among
the data vectors xi ∈ D(1). Let X (1) be the subset of nearest neighbors
for the PSOM-1 units in C(1).

2 Neurons which have never been selected as the BMU for any vector xi ∈ D(1).
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Step 6.2 - For each PSOM-2 unit in C(2) find its nearest vector xi ∈ D(2).
Let X (2) be the subset of nearest neighbors for the PSOM-2 units in C(2).
Then, the reduced set of data examples is given by Xrs = X (1) ∪ X (2).

The main idea behind the Opposite Maps is to deliver to the SMO algorithm
an “almost solved problem”, since for all data examples out of the reduced set
(i.e. xi /∈ Xrs) their Lagrange multipliers are set to zero, the SMO algorithm is
run only over the data examples belonging to the reduced set. This approach is
henceforth called OM-SVM.

5 Proposal: Opposite Maps Huller SVM

As stated before, Opposite Maps was proposed to find the overlapping area
between the positive and the negative classes when the problem is non-linear. In
our new proposal the OM method is used as a step to detect the intersection area.
After that, we remove the patterns that belong to this area in order to transform
the non-linear problem into a linear one. With respect to this approach, it is
worth emphasizing that the training process is carried out without setting up the
cost parameter C and the resulting hard margin SVM classifiers come out with
few support vectors. It is also important to point out that our proposal avoids
solving the problem twice (with two training processes) as required by other
proposals [3,4,6,8]. In these approaches a first solution is achieved to construct
the decision surface. A second solution is carried out aiming at removing the
patterns located at the wrong side of the initial surface and thus re-training the
classifier with the remaining patterns. Instead, an alternative is to construct a
reduced-set classifier based on an approximation to the decision surface with
fewer support vectors.

The training of this classifier, hereinafter called Opposite Maps Huller SVM
(OM-HSVM), is resumed as follows.

STEP 1 - Apply Opposite Maps to a non-linear problem with a data set D and
obtain the overlapping area Xrs.

STEP 2 - Remove the patterns from D that are not in Xrs, i.e., compute D∗ =
D −Xrs;

STEP 3 - Train a hard margin SVM classifier as Huller SVM over the resulting
data set D∗.

6 Simulations and Discussion

For all experiments to be described, 80% of the data examples were randomly
selected for training purposes. The remaining 20% of the examples were used
for testing the classifiers’ generalization performances. All simulations were con-
ducted using a standard 2-D SOM, hexagonal neighborhood, Gaussian neigh-
borhood function, with random weight initialization.
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For tests with the original OM method, we trained two SOMs with fixed S×S
map grid, for 80 epochs with initial and final neighborhood radius (learning
rate) of 5 (0.5) and 0.1 (0.01), respectively. For SVM-like classifiers we used
linear kernels. The map grid size for each OM-SVM and OM-HSVM classifiers
is presented in the result tables.

Initially, as a proof of concept, we have applied the OM-HSVM classifier to
an artificial problem (called Two Squares), consisting of a non-linearly separable
two-dimensional data set. Data instances within each class are independent and
uniformly distributed with the same within- and between-class variances. The
OM-HSVM classifier working is presented in Figure 1 and the results below
indicate that the OM-HSVM produced a hard margin reduced-set SVM classifier
using fewer SVs.
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Fig. 1. OM-HSVM classifier applied to Two Squares problem
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Table 1. Results for the SVM, OM-SVM and OM-HSVM classifiers

Data Set Model C Tol. Grid Size Accuracy Train. Size SVs # SV Red.

TWO SQUARES SVM 1.0 0.01 − 93.9 ± 1.4 640 104.5 −
TWO SQUARES OM-SVM 1.0 0.01 10 × 10 93.6 ± 2.0 640 96.6 7.6%
TWO SQUARES OM-HSVM − − 10 × 10 93.7 ± 2.0 640 7.3 93.0%

BANANA SVM 1.5 0.01 − 97.1 ± 1.0 1000 65.4 −
BANANA OM-SVM 1.5 0.01 10 × 10 95.2 ± 1.6 1000 38.8 40.7%
BANANA OM-HSVM − − 10 × 10 97.1 ± 0.8 1000 7.8 88.1%

RIPLEY SVM 2.5 0.01 − 87.9 ± 1.6 1250 289.2 −
RIPLEY OM-SVM 2.5 0.01 5 × 5 86.9 ± 2.0 1250 248.4 45.7%
RIPLEY OM-HSVM − − 5 × 5 86.2 ± 2.1 1250 6.9 97.6%

BREST CANCER SVM 0.04 0.001 − 97.2 ± 1.0 546 61.7 −
BREST CANCER OM-SVM 0.04 0.001 10 × 10 95.9 ± 1.4 546 46.2 25.1%
BREST CANCER OM-HSVM − − 10 × 10 97.0 ± 1.4 546 14.6 76.3%

In order to compare our proposal (OM-HSVM) to Opposite Maps SVM classi-
fier (OM-SVM) and the default SVM classifier (SVM) tests with artificial (Two
Squares, Banana and Ripley) and real-world benchmarking (Breast Cancer) data
sets were also carried out and the obtained results are shown in Table 1. We re-
port performance metrics (mean value and standard deviation of the recognition
rate) on the testing set averaged over 20 independent runs. We also show the
map grid size, the average number of SVs (SVs #), the reduction of the number
of support vectors (SV Red.), as well as the values of the parameter C and the
tolerance for SVM based on SMO algorithm.

By analyzing these tables, one can easily conclude that, as expected, the
accuracies of all the reduced-set classifiers were equivalent to those achieved by
the full-set classifiers. Moreover, one can also conclude that the accuracies of
OM-HSVM classifier was similar to those achieved by the OM-SVM classifiers,
with the advantage of significantly reducing the number of SVs at least 76.3%
and up to 97.6%.

7 Conclusion

In this paper, we have proposed a novel approach to apply hard margin classifiers
to non linear problems. The proposed approach, called Opposite Maps Huller
SVM (OM-HSVM), consists in application of the OM algorithm to the original
data set in order to detect the overlapping area between positive and negative
classes and then remove it to transform the non linear problem into a linear one.
The obtained results indicated that the OM-HSVM classifiers performs as well
as the other SVM-like approaches providing a significant decrease in the number
of SVs while maintaining equivalent accuracy. Currently, we are evaluation this
proposal on multiclass problems.
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Abstract. Direct Volume Rendering is one of the most popular volume explo-
ration methods, where the data values are mapped to optical properties through a
Transfer Function (TF). However, designing an appropriate TF is a complex task
for the end user, who may not be an expert in visualization techniques. The Self-
Organizing Map (SOM) is a perfect tool to hide irrelevant TF parameters and,
through unsupervised clustering, present a visual form of the topological rela-
tions among the clusters. This paper introduces a novel volume exploration tech-
nique which utilizes the cluster visualization ability of SOM to present a simple
intuitive interface to the user for generating suitable TFs. Rather than manipulat-
ing TF or cluster parameters, the user interacts with the spherical lattice of the
SOM to discover interesting regions in the volume quickly and intuitively. The
GPU implementation provides real-time volume rendering and fast interaction.
Experimental results on several datasets show the effectiveness of our proposed
method.

1 Introduction

Volume exploration is an important technique to reveal inner structures and interesting
regions in a volumetric dataset. However, exploring the volume is a difficult and non-
intuitive task since there is no prior information available regarding the data distribution.
3D representation of a volume adds complexity to the whole process. To ease this pro-
cess, Direct Volume Rendering (DVR) makes use of a Transfer Function (TF), which
maps one or more features extracted from the data (the feature space) to different op-
tical properties such as color and opacity. The TF design is typically a user-controlled
process, where the user interacts with different widgets (usually representing feature
clusters or 1D/2D histograms) to set color and opacity properties to the feature space.
The user can also control some low-level properties like number of clusters, cluster
variance etc. Most of the recently proposed DVR methodologies [1,6,16,13] are based
on this philosophy.

However, interacting with the feature space is difficult for the end-user, who may
not have any knowledge about feature extraction and clustering. Also, these kind of
widgets try to represent the feature space directly, putting a restriction on the dimension-
ality of the feature space. Some methods use alternative ways to represent the higher-
dimensional feature space through manageable widgets. For instance, in [10], spatial
information is encoded in the color values while opacity is derived through intensity
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and gradient. But these kind of alternatives are restrictive in the sense that the cluster-
ing or histogram generation is not directly derived from the full feature set. Also, only
the specific features used in the proposed methods can be used for all datasets. Volume
rendering has wide range of applications in different fields, and one set of features use-
ful for a specific application might be completely irrelevant in another. Hence, there is a
need to make the method independent so that any feature irrespective of its dimension-
ality can be represented to the user in a visual form while maintaining the topological
relationship between various data distributions. This is exactly what a Self-Organizing
Map (SOM) [8] can do. SOM preserves the input data topology and helps to generate
a lower dimensional visualization of the clusters. The SOM structure is particularly of
interest for DVR because of it’s visualization capability.

This paper proposes such a DVR system where the feature space is represented to
the user with the help of SOM. Our proposed system has the following advantages over
existing DVR techniques:

– Rather than manipulating cluster parameters or optical properties, the user simply
interacts with a color-coded SOM lattice representing cluster densities. Due to this
visual nature of SOM, there is no need to tweak the cluster parameters and perform
operations like split and merge to precisely determine the number of clusters or
cluster spread. The user only has to intuitively select or de-select the SOM regions
to reveal corresponding structures in a volume.

– The proposed model is independent of the dimensionality of the feature space. Any
feature irrespective of its dimension or complexity can be used with the model,
which makes it very robust.

We use the Spherical SOM structure (SSOM) [11,14] because of it’s relatively less
restrictive structure (explained later) . The GPU implementation of our method provides
fast interaction with the SOM and real-time volume rendering.

The rest of the paper is organized as follows: Section 2 discusses the related works
in TF and SOM. Section 3 details our proposed method. Section 4 provides results on
some well-known datasets. Finally, Section 5 provides the conclusion.

2 Related Work

The relevant works fall into two categories: 1) Transfer Function Specification and 2)
Spherical Self-Organizing Maps.

2.1 Transfer Function Specification

As TF specification is a huge research area itself, only recent and relevant works will
be briefly discussed here. Traditionally, TF were only one-dimensional, where the color
and opacity is derived from intensity value only. The work of Kindlmann and Durkin
first popularized multi-dimensional TF, where intensity and gradient magnitude value
were used to generate a 2D histogram to emphasize boundaries between different mate-
rials in a volume. Since then, many methods have been proposed to simplify the inter-
action with a multi-dimensional TF. A semi-automatic TF generation based on Radial
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Basis Function (RBF) networks is presented in [13]. A nonparametric density estima-
tion technique is introduced in [5]. A Gaussian Mixture Model-based clustering tech-
nique is presented in [16], where the Gaussians can be mapped to a set of elliptical
transfer functions. A mixed model based on mean-shift and hierarchical clustering on
the Low-High (LH) values of a volume is described in [1]. Since including only the in-
tensity and gradient value results in local features, Roettger et al. [10] propose transfer
functions that consider spatial information for clustering on 2D histograms. An intel-
ligent user interface has been introduced in [15], where the user can paint on different
slices to mark areas of interests. Neural network based techniques are then used to gen-
erate the TF. A spreadsheet-like interface based on Douglas-Peucker algorithm is pre-
sented in [4], where the user can combine simpler pre-defined TFs to generate complex
ones.

Despite all these efforts to make TF specification a simple and intuitive task, most of
these methods still rely on some form of user control (e.g. number of clusters, variance
of clusters, merging and splitting of clusters) in the feature space. An expert from med-
ical or architectural background might not be familiar with these specifications. More-
over, most of these methods present visualization of the feature space itself. Hence, it
is not possible to incorporate new features. As volume data can be complex, noisy and
highly domain dependent, a straight-forward way to incorporate new features into the
system is necessary. Our proposed model eliminates these limitations by using Self-
Organizing Maps (SOM).

Our method draws some inspiration from the method proposed in [7]. However, the
SOM visualization and volume exploration in our proposed method is completely dif-
ferent. Our method presents the visual representation of the cluster densities and allows
the user to find the correspondence between SOM nodes and voxels interactively. On the
other hand, the SOM is used in [7] mainly for dimensionality reduction. The Gaussian
TF generation in [7] can also be difficult to control, as the direct correspondence be-
tween voxels and SOM nodes are not fully exploited. We also retain spatial information
in our feature set (Section 2.1), which can produce better separation of voxel clusters.
Lastly, in [7], a two-pass SOM training is used to better represent the boundary vox-
els, which can slow down the training process. Instead, we use the count-dependent
parameter from [11] (details in Section 3), which can result in faster training times. We
also use the Spherical Self-Organizing Map for it’s advantages as described in the next
section.

2.2 Spherical Self-Organizing Maps

The Self-Organizing Map (SOM) is an unsupervised clustering method proposed by
Kohonen [8] that clusters the data and projects data points onto a lower-dimensional
space while preserving the input topology. The data points are projected onto a regular
lattice during training, when the weights of the nodes in the lattice are updated. In
this way, after training the initial lattice “self-organizes” itself to represent the data
distribution. Different coloring methods are then applied on the lattice to color code it so
that the cluster regions can be visualized. As stated before, due to the easy visualization
property of SOM, it is suitable for presenting volumetric data to the user for TF design.



78 N.M. Khan, M. Kyan, and L. Guan

The traditional SOM however has a rectangular 2D grid structure, which has a re-
stricted boundary. This is because the boundaries are open (Figure 1), and the nodes
on the boundary do not have the same number of neighbors as the inner nodes. Nodes
on the opposite sides of the boundary are not topologically close in the SOM space.
The same is true for even a 3D cubic structure [11]. In some cases, a wrap-around is
introduced on the 2D structure to eliminate this boundary condition. However, this in-
troduces other problems such as folding and twisting [11]. The ideal structure for SOM
will be a lattice that minimizes topological discontinuity. Hence, we use the Spheri-
cal SOM (SSOM) [11] for our method. The SSOM structure is created by repeatedly
subdividing an Icosahedron. This provides a spherical structure with symmetric node
distribution.

Open
Boundaries

(a) Open boundaries of 2D SOM (b) Closed structure of Spherical SOM

Fig. 1. Depiction of closed structure of spherical SOM compared to the traditional 2D SOM

As seen in Figure 1, the SSOM does not have the restricted boundary problem. The
SSOM is also of particular interest because of it’s 3D structure, which can be easier to
navigate.

3 Proposed Method

In this section, we describe the details of our proposed system based on the SSOM
structure. This section is divided into three subsections where we discuss different as-
pects of the proposed system: 1) Feature extraction, where we discuss about the features
used in this paper to model a volume for TF generation; 2) SSOM training, where the
detailed steps of the Spherical SOM training is described and 3) TF representation and
exploration, where the simple and efficient manner in which a user can explore different
Transfer Functions through the visual representation of an SSOM is explained.

3.1 Feature Extraction

As described in Section 2.1, multi-dimensional TFs mostly use some form of histogram
based on intensity and gradient magnitude. However, one problem with histogram is
that it cannot retain the spatial information present in a volume [10]. As present day
scanning systems for volume data (CT, MRI etc.) have some inherent noise associated
with them, losing spatial information might prove to be costly and may not cluster the
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volume data in a suitable way for volume rendering. On the other hand, incorporating
the spatial information directly is difficult for any histogram-based approach, as the
histogram will be even higher-dimensional and there is no easy way to represent it vi-
sually. As a result, in histogram-based approaches, the spatial information is used for
color generation only [10]. However, as described before, our proposed model is inde-
pendent of feature dimensionality due to the use of SSOM lattice. No matter how high
the dimension of our feature set is, we can map it to a Spherical SOM and represent the
clustering visually. As a result, in our proposed model, the spatial information is directly
embedded into the feature definition. To emphasize the boundaries between materials
[1], we also use the intensity value of each voxel and it’s 3D gradient magnitude. Our
5D feature set consist of the following features:

• The X ,Y and Z coordinates,
• the intensity value and
• the 3D gradient magnitude. The 3D gradient magnitude is defined by

G =
√

G2
x +G2

y +G2
z , where Gx,Gy and Gz are the gradient values along X , Y and

Z direction, respectively.

All the features are scaled to fall between the value of {0,1}. Ideally, we would still
like to emphasize the boundaries of materials over spatial similarity. Hence, the used
features are weighted. For our experiments, we use a weight set of {0.5,0.5,0.5,1,2}
for the aforementioned features.

3.2 SSOM Training

The training phase of the SSOM is similar to the classical SOM [8]. Let, the input space
of N voxels be represented by X = {xi}N

i=1. Let, the SSOM be represented by M nodes
(M << N). Each node in the SSOM lattice has a corresponding weight vector w. All
these weight vectors together represent our SSOM space W = {wi}M

i=1. Each node also
has a neighborhood associated with it. A neighborhood is a set of nodes consisted of
the node itself and its neighbors. Let, the neighborhood set for node i be represented
by Θ r

i . Here, r represents the neighborhood spread, r = 1, . . . ,R. R is the maximum
neighborhood radius, which is set to a value such that it covers half of the spherical
space [11].

The input voxels are randomly introduced to the SSOM during training. For each
voxel, a Best Matching Unit (BMU) among all the nodes is selected. BMU is the node
which is closest to the input voxel according to some similarity measure. Euclidean
distance is usually used as distance measure. The update step then takes place, where
the weight vector of the BMU and it’s neighboring nodes (Θ r

BMU ) are updated in a way
so that they are pulled closer to the weight of the input voxel. After training, the SSOM
weight vectors are arranged in such a way that represents the underlying distribution
of the input data (the voxel features in this case). The training algorithm is described
below:

• Initialization: The weight vectors of the SSOM nodes are initialized first. Random
values can be used for initialization, but as pointed out by Kohonen et al. in [8],
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random initialization will take more time to converge. We have followed the initial-
ization method stated in [8] i.e. initialize the weight vectors with values that lie on
the subspace spanned by the eigenvectors corresponding to the two largest principal
components of the input data distribution. A count vector C = {ci}M

i=1 [11] is used
to keep track of the hits to each node. This vector is initialized to zero. This is used
in the BMU selection step (explained below) to prevent cluster under-utilization.
This is especially necessary in our case because in a volume, typically there is
almost 70%− 80% homogeneous regions. Without a count-dependent control, ho-
mogenous regions will take over the whole map and important regions (boundaries)
will not get enough map space to be noticed.

• Training: For each input voxel x, do the following:
– BMU Selection: Calculate the Euclidean distance of the voxel feature vector x

with all the nodes as follows:

ei = (ci + 1)‖x−wi‖, i = 1, . . . ,M. (1)

BMU is the node for which this distance is the smallest.
– Weight Update: Update the weights for the BMU and it’s neighboring nodes

(defined by Θ r
BMU ) as follows:

w = w+ b(t)∗ h(s,r)∗ ‖x−w‖, (2)

cw = cw + h(s,r), (3)

where w ∈Θ r
BMU , b(t) = αe−

t
T and h(s,r) = e−

r2
s∗R .

The functions b(t) and h(s,r) control the rate of learning and the neigh-
borhood effect, respectively. b(t) decreases in value as the epoch number t =
1,2, . . . ,T increases. It also depends on the learning rate α . h(s,r) depends on
the neighborhood size parameter s, which is user controlled. h(s,r) is a Gaus-
sian function. The further a neighboring node is from a BMU, the less it’s
weight will be affected.

As discussed before, the count-dependent parameter cw is increased here to
prevent cluster under-utilization. Observing Equation (3) and Equation (1), we
see that the BMU and its neighbors are “penalized” for winning by increasing
the count. In the next update step, the distance measure with these nodes will be
higher due to the increase of count. This ensures that one node (or its neighbors)
does not win too many times, and the entire map is utilized [3].

• Repeat the training steps for a pre-defined number of epochs (T ).

The main control parameters in SSOM training are the learning rate α , the number of
epochs T and the neighborhood size parameter s. In case of volume rendering, we are
dealing with a huge number of voxels (e.g. for a volume of dimension 256X256X256,
there are over 16 million voxels). As we have found experimentally, for such high num-
ber of voxels, the SOM typically converges within 2− 3 epochs. The α is set to 0.1 in
our experiments. The neighborhood size parameter is set to s = 2, which is determined
through trial and error.
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3.3 TF Representation and Exploration

After training of the SSOM is completed, the weight vectors associated with the nodes
of the SSOM represent the underlying clustering of the voxels. We map this SSOM
to a suitable TF in three steps: 1) present a color coded graphical representation of the
SSOM, 2) provide the user interaction options to select interesting regions in the SSOM,
and 3) map selected regions of the SSOM to a suitable TF and show the rendering of
the volume with the generated TF. Due to our GPU implementation, the user can see
the rendering of the volume in real-time while interacting with the SSOM.

To color code the spherical lattice, the U-Matrix approach is used [11], which
visualizes the distance between the weight vectors of the nodes. For each node, the
average Euclidean distance of its weight vector with the weight vectors of all the im-
mediate neighboring nodes is calculated. These distance measures are then mapped to
a color-map for visualization purposes. In this way, a homogeneously colored region
will represent a cluster, while the cluster boundaries will incur a change in coloring.
An important point to note here is that since volume rendering is an entirely perceptual
process, it is not important to strictly define how many clusters we have or whether
the cluster boundaries are very well defined or not. The important point is to color the
SSOM lattice in such a way that intuitively interacting (explained below) with it will
directly result in meaningful rendering. Representation of cluster densities in the form
of color-map through U-matrix serves this purpose.

Our target is to keep the user interaction as minimum and efficient as possible. In the
proposed system, the user can select or de-select any region of the spherical lattice. The
selection is provided in the form of a rubber-band tool, where the user can drag across
the surface of the sphere to select one or multiple nodes. The de-selection is performed
in a similar way.

The last step of our system is to map the SSOM to a TF. The TF is essentially
an RGBA texture with corresponding entry for each voxel. The RGB corresponds to
the voxel color, while the alpha component defines the voxel opacity. To speed up the
rendering process, we keep the RGB channels fixed throughout a session. The alpha
value is the most crucial component, since the opacity determines the visibility of a
voxel. In our proposed model, we map the color channels to different features. One
channel is mapped to intensity, while the other two channels are mapped to the 3D
gradient magnitude. In this way, the boundaries between the materials will be colored
differently.

The opacity of a voxel depends on the user selection. For voxels corresponding to
the selected region S of the map, the opacity is calculated through following equation:

I(x) = 1− ‖wBMUx − x‖
maxy∈S (‖wBMUy − y‖) , (4)

where x represents the voxel for which the opacity is being calculated, and y represents
all other voxels under the selected region S . This essentially means that the closer the
voxel will be to the weight vector of its winning node, the more opaque (less trans-
parent) it will be. This assigns intuitive opacity values to the voxels corresponding to
the selected SSOM nodes. This value is then scaled to be in a higher opaque region
(0.6− 1.0 in our experiments). The voxels corresponding to the unselected regions are
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assigned a very low but nonzero opacity value ( 0.01) so that the user still has some
context while viewing the rendering of the selected region.

4 Experimental Results

To show the effectiveness of our system, we present some volume rendering results on
popular datasets. We used three volume datasets [9], CT scans of a Foot, an Engine and
a Piggy Bank. The size of the datasets are listed in Table 1. Generally, CT scan datasets
have a lot of vacant regions (air around the object). If we build the SSOM directly on the
dataset, these regions will generate a misleading clustering. A simple region growing
algorithm [2] was used to separate the object from these regions first. These separated
voxels were then fed to the SSOM training algorithm.

As stated before, due to the high number of voxels (in the range of millions), 2− 3
epochs of training is good enough for a visualization of the cluster. Such low number
of epochs is reasonable here, since the convergence of map is not very critical, as long
as we can have a color-coded SSOM where different cluster regions and the borders
between them are visually distinguishable. The training times required for the datasets
are listed in Table 1. Please note that the training of a SSOM has to be done only once
for each dataset and does not effect the rendering process of our proposed method,
which is required to be real-time.

Table 1. The size of the volume datasets and the required SSOM training times (in seconds)

Dataset Name Size Training Time
Foot 256X256X256 342.3
Engine 256X256X256 308.3
Piggy Bank 512X512X134 1341.4

After the training, we present a visual form of the spherical lattice to the user (details
in Section 3.3). The user can then select or de-select regions of interest. The voxels
of the selected regions were assigned opacity values using Equation (4). The RGBA
texture according to the generated TF is then rendered on the GPU in real time. We
have used the Visualization Toolkit [12] for our GPU rendering purposes.

Figure 2 shows some results obtained from our experiments. The top row (Figure
2.(a), (d), (g)) shows the rendering results when the full SSOM is selected. As we can
see, although the surfaces of the volumes are visualized clearly, not much useful struc-
tural information can be gathered from these renderings. Figure 2.(b), (e), (h) shows
the SSOMs corresponding to the three datasets with some parts of the maps selected
by the user (the selected nodes are highlighted by white spots). Figure 2.(c), (f), (i)
shows the corresponding renderings from the selected nodes. As we can see, for all
three volumes, the important structures can be highlighted easily. The inner bones are
visible in the Foot dataset (Figure 2.(c)). Similarly, the tubes of the Engine are visible
and the coins inside the Piggy Bank are visible (Figure 2.(f), (i)). This clearly shows the
effectiveness and efficiency of our method. Another interesting observation here is the
nature of the selected regions on the map. As we can see, the selected regions contain
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(a) (d) (g)

(b) (e) (h)(c) (f) (i)

Fig. 2. Rendering results and corresponding SSOMs for the three datasets, (a)-(c): Foot; (d)-(f):
Engine and (g)-(i): Piggy Bank

overlapping cluster regions in some cases. This is where the power of SSOM cluster-
ing is apparent. Since the clustering is not strict and the user has the freedom to select
whatever region he or she wants, the whole process is very flexible. Also, due to the
spherical structure of the map, it is easy to generate customized rendering depending
on the users’ need very easily. All the user has to do is select the appropriate regions on
the map.

Fig. 3. Additional renderings corresponding to selected regions on the SSOM for the Engine

Figure 3 shows additional renderings corresponding to different selected regions on
the SSOM. As we can see, the first region corresponds to a silhoutte-like rendering,
while the second rendering focuses on the rear part of the engine. Since the selected
region can be as small as only a single node, the system is very robust and adaptable.

5 Conclusion

In this paper, we have proposed a new intuitive way of direct volume rendering with the
help of Spherical Self-Organizing Maps. The user interacts with the SSOM lattice to
find interesting regions and generate suitable TF. Real-time rendering of the generated
TF on the volume dataset provides instant feedback to the user. The proposed system
is intuitive to interact with and robust in nature, since any feature can be used with
the SSOM lattice irrespective of its complexity. Experimental results on some popu-
lar volume datasets verify the feasibility of our proposed approach. In future, we plan
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to extend this system to learn from user interaction and generate knowledge-assisted
volume rendering accordingly.
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Abstract. Clustering task is a never-ending research topic. New methods are 
permanently proposed. In particular, Fuzzy Logic and Self-organizing Maps 
and their mutual cooperation have demonstrated to be interesting paradigms. 
We propose a general approach to obtain membership functions for a ranked 
clustering system based on fuzzy predicates logical operations, considering 
Gaussian-shaped curves. We find membership functions parameters from 
trained Self-organizing Maps, which generalize the statistical characteristics of 
data. The system is self-configured and it has the advantages of other fuzzy ap-
proaches. Clustering quality is assessed by labeled data, which allow computing 
accuracy. The proposal must be tested with more real datasets, though the pre-
liminary results obtained in well-known datasets suggest that it is a promising 
clustering scheme. 

Keywords: fuzzy predicates, degree of truth, clustering, Self-organizing Maps. 

1 Introduction 

Clustering task is a never-ending research topic. New methods are permanently  
proposed [1]. In particular, Fuzzy Logic and Self-organizing Maps (SOM) and their 
mutual cooperation are demonstrated to be an interesting approach. 

The theory of Fuzzy Logic based on fuzzy sets was proposed by Zadeh [2], who 
stated that a complex system will be better represented by descriptive variable of lin-
guistic types [3]. The fuzzy rule-based approaches have been used in a wide range of 
classification and clustering problems [4, 5]. 

SOMs have been widely used to extract knowledge from data and to design clus-
tering and classifying systems [6-8], many of them based on fuzzy rules as cited  
before [9-11], to define fuzzy inference systems (FIS).  

Using simple rules is one of the main advantages of FIS. However, aggregation 
and defuzzification operations must be defined, which makes these models to be a 
little far from Boolean logic generalization. Defuzzification operation acts as a degree 
of freedom in a model based in the pragmatic combination of operators, but without 
an axiomatic link that justifies “logic” denomination [12]. 
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Alternatively, in this work we propose the use of the Predicate Fuzzy Logic, which 
is a natural extension of Predicate Boolean Logic [13], to design a clustering system. 
We obtained a ranked clustering criteria represented as Fuzzy Predicates who con-
sider the behaviour of the variables into the different clusters. These predicates can be 
evaluated using membership functions defined over input features. Hereby, we obtain 
a ranking for each datum, showing the degree of truth of “Datum d belongs to cluster 
k”, being k=1,2… K, and K the amount of clusters. This ranking can be used for de-
termining the group that new input data belongs to, adopting some criteria, but it also 
allows comparing the degree of membership to the clusters and assessing the contri-
bution of individual features. 

This approach adds value to previous knowledge-based guidance fuzzy clustering 
methods [14], but in this case the knowledge is data-driven obtained using the SOM 
generalization aptitude and taking advantage of the well-known SOM abilities to dis-
cover natural data grouping when compared with direct clustering [15, 16]. 

2 Materials and Methods 

2.1 Fuzzy Predicates 

In this subsection, some basic definitions regarding fuzzy predicates logic are given, 
in order to unify the notation. 

Definition #1. A fuzzy predicate p  is a linguistic expression (a proposition) with 

degree of truth pμ  into [0, 1] interval. It applies the “principle of gradualism” which 

states that a proposition may be both true and false, having some degree of truth (or 
falsehood) assigned. 

Definition #2. A simple fuzzy predicate sp is a fuzzy predicate whose degree of truth 

spμ can be obtained by some of the next alternatives: 

• The application of a membership function associated with a fuzzy term, to a quan-
titative variable.  

• The association of discrete values into the interval [0, 1] to language labels (gener-
ally adjectives) of a variable.  

• Determination of real value into the [0, 1] interval by an expert.  

Definition #3. A compound predicate cp is a fuzzy predicate obtained by combination 
of simple fuzzy predicates or other compound fuzzy predicates, joined by logical 
connectives and operators (and, or, not, implication, double-implication).  

Definition #4. Compound predicates can be represented as a tree structure, having its 
nodes associated by logical connectives and the successive branches related to lower 
hierarchical level predicates (simple or compound).  
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It is needed defining logics where the operations of conjunction, disjunction, order 
and negation are functions defined over a set of truth values for predicates, into the 
real interval [0, 1], such that when the truth values are restricted to {0, 1}, these oper-
ations become classic Boolean predicates [17]. 

In the present work, based on previous successful results, we choose some com-
pensatory logic operations: Geometric Mean Based Compensatory Logic (GMCL) 
and Arithmetic Mean Based Compensatory Logic (AMCL) [17]. We also compare the 
results with the standard triangular norms (Max-Min). Operations involved in these 
logics are shown in Tables 1, 2 and 3. In these logics, negation (complement) opera-
tion is computed as ( ) 1i iN μ μ= − . 

Table 1. Operations for Max-Min logic 

Logical Operator Operation 

Conjunction ( ) ( )1 2 1 2, ,..., min , ,...,N NC μ μ μ μ μ μ=  

Disjunction ( ) ( )1 2 1 2, ,..., max , ,...,N NC μ μ μ μ μ μ=  

Table 2. Operations for Geometric Mean Based Compensatory Logic (GMCL) 

Logical Operator Operation 

Conjunction ( ) ( )
1

1 2 1 2, ,..., , ,..., N
N NC μ μ μ μ μ μ=  

Disjunction ( ) ( ) ( ) ( )
1

1 2 1 2, ,..., 1 1 1 ... 1 N
N ND μ μ μ μ μ μ= − − − −    

Table 3. Operations for Arithmetic Mean Based Compensatory Logic (AMCL) 

Logical Operator Operation 

Conjunction ( ) ( )
1

2

1 2 1 2
1

1
, ,..., min , ,..., .

N

N N i
i

C
N

μ μ μ μ μ μ μ
=

 =  
 

  

Disjunction ( ) ( ) ( )
1

2

1 2 1 2
1

1
, ,..., 1 min 1 ,1 ,...,1 . 1

N

N N i
i

D
N

μ μ μ μ μ μ μ
=

 = − − − − − 
 

  

Compensatory operators are sensitive to the whole set of operands in opposite to 
the widely used operations Max-Min. In that way, the value of the conjunction and 
disjunction can be influenced by, and therefore “compensated” for, the value of any of 
the degrees of truth considered in the operation. 

2.2 Self-Organizing Maps 

Self-organizing Maps are a very known type of non-supervised and competitive neur-
al network. Inputs have the same data dimension and they are “connected” to each 
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neuron (also called cells), arranged generally in a 2-dimension array [18]. The amount 
of cells is a design-parameter and it is smaller than the number of training data. Alter-
natively to the input synaptic weights approach, we can think each cell containing an 
input-dimension vector. These are known as prototype vectors and they define the 
SOM codebook [19]. The codebook is initialized using random values or other me-
thods such as linear-initialization. 

A cell whose prototype vector is nearer to an input datum, according to a distance 
criterion, is called Best Matching Unit (BMU). 

SOM training is an iterative process. For each input, BMU prototype vector is 
adapted to be more similar to input, driven by a learning rate. Not only BMU is 
adapted, but its neighbors are modified too, according a neighborhood function. Both 
learning rate and neighborhood size are decreased as iterations progress. This is as 
beginning with a rough training phase that is finer in each training step [18, 20]. 

In order to evaluate the quality of the trained map, two kinds of errors are consi-
dered: the quantization error and the topographic error. They tend to minimize when 
the map vectors perform an organized projection of the training pattern according to a 
similarity criterion [21]. 

Quantization error QE  is computed as: 

 
1

1 N

Q i i
i

E x m
N =

= − , 

where , 1,2...,ix i N=  are the training data, im  is the BMU corresponding to datum 

ix , and N is the number of data. This error allows assessing whether codebook 

represents training data properly. 
Topographic error TE  is helpful to assess whether the data topology was pre-

served after training, and it is computed as: 

 ( )
1

1 N

T i
i

E u x
N =

=  , 

where ( ) 1iu x =  if the BMU for datum ix  is not adjacent to the second BMU and 

( ) 0iu x =  if it is adjacent. The second BMU is defined as the cell having its proto-

type vector closest to the datum ix after the BMU. 

In a well-trained SOM, the codebook is a reduced dataset which is representative 
of training dataset, with a similar probabilistic density function [18, 22]. 

There are several approaches for visualizing and analyzing the codebook informa-
tion [20, 23]. For example, component maps [22] allow a detailed analysis of the pro-
totypes vectors, considering the topographic relationship between them. 

By running a clustering algorithm on the SOM codebook [24], we can get groups 
of prototype vectors (and hence, cells), expecting that cells from the same cluster are 
topographically near [19]. 
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Combining codebook clustering and component maps analysis is useful to  
“explain” the obtained groups in term of input components. This approach will be 
detailed in next section. 

2.3 Proposed Method 

We propose a general approach to obtain membership functions for a clustering sys-
tem based on fuzzy predicates logical operations: we consider Gaussian functions 
having their parameters (center and standard deviation) computed from a trained 
SOM. 

General Method: One SOM, K Predicates. The first general method stages are: 

• Train a SOM using a training dataset taken from the available data till quan-
tization and topographic errors are below tolerance values (training parame-
ters).  

• Find K cluster center { } 1,2, ,i i K
C

=  considering the SOM codebook by some 

classical clustering algorithm. In this work we applied Fuzzy C-Means 
(FCM) clustering [25], operating with Euclidian distances, but other algo-
rithms and distances could be used. 

• Take centers of Gaussian functions { } 1,2, ,
1,2, ,

i Dik
k K

c =
=




 for each feature, using the 

cluster centers computed in the previous step. Compute standard deviations 
of the Gaussian functions { } 1,2, ,

1,2, ,
i Dik
k K

σ =
=




 considering prototype vectors cor-

responding to each cluster (feature by feature). 

Given a dataset where each datum is a feature vector [ ]1 2, , , Df f f , we will have K

Gaussian membership functions for each feature , 1,2, ,if i D=  . Let’s call them

{ } 1,2, ,
1,2, ,

i Dik
k K

mf =
=




. 

Now we can create one fuzzy predicate for each class ( K compound predicates) by 
logically operating with the degrees of truth: 

 1 2( ) ( ) ( ) , ( ); 1,2, ,k k k Dkp d mf d mf d mf d k K≡ ∧ ∧ ∧ =   

where ( )kp d can be linguistically read as “Datum d belongs to cluster k” and 

( )ikmf d can be linguistically interpreted as “Feature i of datum d is near the proto-

types belonging to cluster k.” The nearer the value of feature i of datum d to the center 
of the Gaussian function ikc , the higher the degree of truth of ( )ikmf d . As ( )ikmf d are 

higher, ( )kp d should be higher too, reflecting the fact that if datum d is near the clus-

ter center k, then datum d belongs to cluster k. 
A datum d will be assigned to the class whose predicate has the bigger degree of 

truth. In addition, if no predicates have degree of truth higher than a determined thre-
shold, d could be labeled as “outlier.” 
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Dataset Partitioning: M SOMs. In order to capture more accurately the statistical 
characteristics of the data, we propose a random dataset partition into M disjoint sub-
sets, in order to train M different SOMs. Despite this partition is random, it would be 
desirable that each partition is balanced; i.e. there is approximately the same number 
of data for each class. 

Given the fact that data are unlabeled and therefore M codebook partitions are non-
deterministically generated, we need to identify the M clusters that would correspond 
to the same data class according to their cluster center similarity (by considering Euc-
lidian distances among cluster centers). As a result, M data clusters belonging to the 
same class will have the same cluster index { } 1,2...,

1,2...,
i Mij
j K

C =
=

. 

We propose three different options to create fuzzy predicates to represent the 
classes, described as follows. 

Option 1: Classifier ensemble (K predicates for each SOM, one decision by SOM). In 
this option, we consider each SOM and its predicate set as an independent clustering 
system. We obtain K predicates for each SOM (labeled { } 1,2...,

1,2...,
i Mij
j K

C =
=

). Given a datum, 

degree of truth of the K predicates for each SOM is obtained, and if required, a crisp 
cluster assignment is done. The final assigned cluster will be chosen by voting. 

Option 2: M independent fuzzy predicates for each class. In this option, we take all 
predicates generated in the same way as the previous option. We obtain M predicates 
for each class. Given a datum, degrees of truth of the KxM predicates are obtained. If 
a crisp clustering is wanted, cluster assignment is done by taking the one represented 
for the predicate whose degree of truth is the maximum. 

Option 3: A unique fuzzy predicate for each class. In this option, we explore the ad-
vantages of using predicate logic. We define a unique predicate for each class using 
the “or” connective to consider simple predicates for each feature. 

 

[ ]
[ ]
[ ]

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ; 1,2, ,

k k k kM

k k kM

Dk Dk DkM

p d mf d mf d mf d

mf d mf d mf d

mf d mf d mf d k K

≡ ∨ ∨ ∨

∧ ∨ ∨ ∨ ∧

∧ ∨ ∨ ∨ =



 

 

 

Given a datum, degrees of truth of the K compound predicates are obtained. Like 
previous cases, cluster assignment is done by taking the cluster represented for the 
predicate whose degree of truth is the maximum. 

Results would be different depending on the way the predicates are defined. In  
addition, there are some other parameters that should be chosen for each particular 
problem: 

• SOM dimension: the number of SOM cells should be indicated, though it can be 
automatically determined based on the number of data N or applying some growing 
algorithm [26]. 
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• Number of data partitions M: this should be chosen according to the number of 
data, taking into account that each SOM should be able to capture the characteris-
tics of data, so it shouldn’t deal with only a few training data. 

• Type of logic chosen to compute the logical operations: compensatory fuzzy logics 
(GMCL or AMCL) or Max-Min logic. 

• Number of classes K: defined by the problem to solve. 
• Cluster algorithm used to partition the SOM codebooks. 
• Type of distances used in the cluster algorithm. 

Method Validation: Assessing the Generalization Abilities. In order to assess the 
generalization abilities of the different approaches, we applied k-fold cross-validation. 
In this method, the original dataset is randomly partitioned into k data-subsets (folds). 
Alternatively, one fold is taken as test data and the remaining k-1 folds are taken as 
training data. Classification error is computed on each iteration using the test data. 
The final classification error is estimated by computing the average of the k folds 
errors. 

In this validation method, all elements of the dataset are used for validation exactly 
once. The number of folds k is heuristically chosen taking into account the number of 
data available. Typically k=10 is a good first choice, but in dataset with a few data it 
could generate folds with too few elements. 

3 Results 

To compare the different approaches given for the proposed paradigm, a lot of expe-
riments were run. We focused in assessing confusion matrices and clustering accuracy 
for each test, defined as the ratio between number of data assigned correctly to differ-
ent clusters to the number of test data (the ratio between the sum of the main diagonal 
of the confusion matrix to the sum of its elements). Accuracy is given after averaging 
10 runs of a k-fold validation scheme, with k=10. This averaging allows getting rid of 
any randomness. 

We tested the method for this preliminary work using three well-known datasets: 
Iris data (3 classes, 4 features, 150 data) [27], Wine data (3 classes, 12 features, 4898 
data) [28], and 12000 pixels randomly selected from simulated magnetic resonance 
images (MRI) (4 classes, 3 features) [29]. We compare values obtained using differ-
ent SOM sizes, SOM number (M), and logical operations. Clustering accuracies ob-
tained are shown in Table 4. 

Table 4. Best clustering accuracies (k-fold, k=10) obtained in test datasets: 
Iris (4 features, 3 classes), Wine (12 features, 3 classes) and MRI (3 features, 4 classes). 

Dataset 
SOM number 

(M) 
SOM size 

SOM 
Clustering 

Option 1 Option 2 Option 3 

Iris 1 Auto 0.919 0.941 0.941 0.941 
Wine 2 10 x 10 0.927 0.966 0.977 0.961 
MRI 20 20 x 20 0.865 0.884 0.871 0.884 
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Keeping SOM sizes fixed and M=10 (or M=5 for iris data) we can conclude that 
GMLC and AMLC give similar results in these datasets, and they give very much 
better results than Max-Min logic operations (results were at least 20 % worse using 
this logic). That is why these experiments results are not shown in detail in Table 4. 

To help comparing the obtained accuracies, we show graphs in Fig. 1, 2 and 3. Expe-
riments show that increasing SOM size is better when there are a big dataset (Fig. 3). 
However, keeping suggested automated SOM size (having different sizes in different 
data partitions) seems to be a valid conservative option. Horizontal lines mark the accu-
racy obtained using only SOM clustering without any predicates analysis. 

 

Fig. 1. Accuracy for Iris dataset Iris (4 features, 3 classes). Bars indicate the different ways  
to make predicates (black, option 1; gray, option 2; white, option 3). SOM sizes (or automatic 
size) and number of data partitions (M) are indicated for each bar group. Horizontal line marks 
the accuracy obtained using only SOM clustering. 

 

Fig. 2. Accuracy for Wine dataset (12 features, 3 classes). Bars indicate the different ways  
to make predicates (black, option 1; gray, option 2; white, option 3). SOM sizes (or automatic 
size) and number of data partitions (M) are indicated for each bar group. Horizontal line marks 
the accuracy obtained using only SOM clustering. 

 

Fig. 3. Accuracy for MRI dataset (3 features, 4 classes). Bars indicate the different ways to 
make predicates (black, option 1; gray, option 2; white, option 3). SOM sizes (or automatic 
size) and number of data partitions (M) are indicated for each bar group. Horizontal line marks 
the accuracy obtained using only SOM clustering. 
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Partitioning datasets into more groups (M parameter) improves the clustering quality, 
but we must keep in mind that bigger partitions will lead to less data in each SOM. 

Choosing option 3 gives best results in several cases, in particular the MRI dataset 
(the bigger one) compared with option 2. This suggests that the approach using only 
one composed predicate explaining each class is a good choice. That is why we are 
advancing in this way, searching other integration schemes. Instead the use of OR 
operation to aggregate the “opinion” of different SOMs, we are about to apply some 
Type-2 Fuzzy Logic basics. Assessing the algorithm performance with a broader 
range of datasets, including more complex datasets is also pending. 

4 Conclusions 

We proposed the use of the fuzzy predicates logic created by means of Self-
organizing Maps to tackle ranked clustering problems. We gave several alternatives to 
configure the interpretation of the memberships for the clustering process. The pro-
posed system is self-designed and it has the advantages of other fuzzy systems. 

Results are interesting because the clustering accuracy is high when crisp clusters 
are required. The proposal must be tested with more real datasets, though the prelimi-
nary results obtained in known datasets suggest that it is a promising clustering para-
digm. If further analysis is made, it is possible giving some linguistic interpretation to 
the predicates obtained by interpretation of membership functions.  

This is a preliminary approach to be extended to be used with Type-2 Fuzzy Logic 
paradigm, which is proposed as immediate future work. Some steps in this way are 
already successfully developed. 
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Abstract. In this paper we propose a new unsupervised neural network whose 
units exhibit intrinsic plasticity and metaplasticity. We describe three versions 
of the network: The first version is a two-layered neural network with intrinsic 
plasticity governing the shifting of the activation function, and the pre-synaptic 
rule altering synaptic weights. In this first version, competition is forced, so that 
the most activated neuron is set to one and the others to zero. In the second ver-
sion, competition is not forced and occurs naturally due to inhibition between 
second layer's neurons. Competition also occurs naturally in the third version 
whose architecture resembles the one of the internal granular layer of the koni-
ocortex. All versions of our network categorize input patterns similarly to a 
conventional competitive neural network. 

Keywords: learning, competition, intrinsic plasticity, pre-synaptic rule. 

1 Introduction 

Competition between neurons is used in unsupervised neural networks for classifica-
tion purposes. Competition means that, inside a neuron’s pool, the most activated 
neuron is the only one that remains active after comparing all  neurons’ activations.  

Competition is a frequently mentioned strategy for explaining auto-organization 
and information mapping in biological organisms [8]. However, the way competition 
is accomplished, by calculating the maximum output value among the neurons in the 
pool, is far from being biological.  This algorithmic solution is not present in biology 
where competition emerges from the dynamic interaction between neurons. Competi-
tion in biological systems seems to be correlated to lateral inhibition. However, al-
though lateral inhibition is mentioned regarding competition even in seminal neural 
network treatises [9,10 p. 190], it seems that, besides lateral inhibition, other corre-
lated biological factors should also be considered for producing competition and  
pattern classification. In this sense, we consider biological factors like metaplasticity 
[1, 2] and intrinsic plasticity [4] that are able to make competition possible.  

These biological mechanisms are gradually introduced along the different versions 
of the neural network proposed in this article. Initially we introduce a completely non-
biological framework, the “Bayesian Decision Network” (see Fig.1.a) that was used 
for introducing some algebraic concepts used in the following versions of the  
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Fig. 1. The Bayes Decision network (a) and the three versions of the network (b,c,d) using 
probabilistic weights and intrinsic plasticity. In b) there is still forced competition in which the 
maximally stimulated output-neuron is set to 1 and the remaining neurons to zero. In c) compe-
tition takes place through lateral inhibition with non-modifiable connections. In d) the network 
architecture resembles internal granular layer of the koniocortex. In the koniocortex granular 
layer oi neurons correspond to spiny stellate neurons, ii neurons to thalamo-cortical neurons and 
bi neurons to inhibitory interneurons. 

network. A truly competitive version of the network is depicted in Fig. 1.b.where com-
petition is not yet biological, but externally driven (by calculating which neurons is the 
most active). Its neurons posses the biological property called intrinsic plasticity (see 
section 2). This network performs classification tasks as any competitive network.  The 
network in Fig. 1.c, called the “lateral inhibition network”, also performs classification 
tasks. In this case, intrinsic plasticity, metaplasticity and lateral inhibition are orches-
trated to allow competition in a biologically plausible way. Finally the network 
represented in Fig.1.d performs competition and pattern classification similarly to the 
previous “lateral inhibition network”. Here, inhibitory interneurons substitute inhibito-
ry lateral connections. Because of the similarity of this network to the first cortical 
layer receiving sensory inputs, it was called the Koniocortex-like network. 

2 Methodology 

In all versions of the network, we used a rate-code neuron model whose bounded  
output (between 0 and 1) represents the probability of occurrence of an action poten-
tial. The net-input of neuron j is calculated by the inner product of neuron’s j weights 

and the normalized input pattern IIi


/=  (lower case notation meaning vector nor-

malization). The type of normalization used here is the l1-norm in which: 
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The weights to a certain neuron can be considered the components of a vector proto-
type jT
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of the input pattern I


over prototype jT


.  

For altering synaptic weights, the incremental version of the presynaptic rule, was 
used: 

)( wOIw −=Δ ξ                                                        (2) 

where I and O are the presynaptic and postsynaptic action potential probabilities, 
respectively,  and ξ  a small positive constant. 

As explained elsewhere [12], the presynaptic rule is not only able to reproduce the 
empirical plasticity curve obtained by Artola et al. [3] relating postsynaptic voltage to 
the increment of synaptic weight (Fig.2.a). The presynaptic rule is also able to repro-
duce metaplasticity [1, 2] which elongates the plasticity curves rightwards for higher 
initial synaptic weights as depicted in Fig. 2.a. Fig.2.b shows the computer simulation 
[12] of the presynaptic rule, yielding a family of curves which are similar to biologi-
cal plasticity and metaplasticity curves. Regarding the activation function, a conven-
tional sigmoid was used for relating the net-input of neuron Oj to its output value Oj: 

)25.0(1

1
j

j snetkj
e

O
−+−+

=
                   

(3)
 

were sj is the shift of the activation function and k is a curve-compressing  factor that 
was set to 25.  The range of  sj is 0<sj<1. For sj=0 the sigmoid is completely shifted 
leftwards so that for netj=0, Oj=1. In the case sj=1 the sigmoid is completely shifted 
rightwards so that for netj=1 the output value of the sigmoid is Oj=0.  
 

0.5
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LTP threshold

Net input

1

Post-synaptic voltage

w1
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w2
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Δw Δw
a b
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Fig. 2. Experimental synaptic plasticity, and its modeling through pre-synaptic rule. a) Metap-
lasticity [1, 2]: For higher values of the weight, the plasticity curve is more elongated to the 
right b) The probabilistic version of the presynaptic rule was computationally simulated [12]. It 
not only exhibits the same shape of biological obtained curves, but also exhibits metaplasticity 
that shifts the Long Term Potentiation Threshold (LTP threshold). 
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Fig. 3. Intrinsic plasticity of real neurons allows the neuron activation function to be shifted 
leftwards or rightwards so that this activation function is placed over intervals corresponding to 
the average activation of the neuron. a) Original position of the activation function (sigmoid). 
b) If the average net-input of the neuron is low (as in case of inputs A, B and C) intrinsic plas-
ticity gradually drives the  activation function to the left, allowing post-synaptic variations be 
translated into variations of firing probability. c) If the average net-input is high (as in D, E and 
F) the activation function is gradually shifted to the right and the neuron, instead of being satu-
rated all the time, has a variable firing probability that follows the variations of net-input. 

Real neurons also exhibits a property that levels the firing probability of neurons 
engaged in competition (see Fig. 3), making very active neurons moderate their ac-
tivity and inactive neurons become more active. According to this property called 
intrinsic plasticity, the activation function gradually shifts rightwards or leftwards 
thus leveling the activation of highly or scarcely activated neurons, respectively. An 
important parameter of the activation function of neuron Oj is the value of its 
rightward shift, sj, so that the activation function is better expressed as:  

( )j

T

j sIfO j ,


=
.                              (4) 

The following equation calculates the shift of the activation function, s at time t in 
terms of the shift and output probability of the neuron at time t-1. 

1
11

+
+⋅

= −−

υ
υ j

ttj
t

sO
s

,             
(5)

 

where υ , is a small arbitrary factor that adjusts the shifting rate of the activation 
function. In the case of highly activated neurons, sj increases, making the activation 
function shifts rightwards so that the output of the neuron will be down-regulated in 
the future. In the case of less active neurons, the activation function shifts leftwards, 
and the neuron increases its firing.   

3 Results 

In this section we will show the evolution of the network from a Bayesian network in 
which intrinsic plasticity is not necessary to a koniocortex-like network in which  
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pattern categorization is obtained without any kind of supervision. In this latter, com-
petition and categorization emerges as the result of the dynamics of the individual 
neurons of the network without the need of any kind of operation involving more than 
one neuron. 

3.1 “Bayes Decision Rule” Network 

The purpose of presenting this case is to establish some mathematical foundations for 
dealing with the different versions of the network.  Here, as in the following network 
versions, input patterns are normalized by dividing each of the inputs by the l1 norm 
(the sum of the input). When an input pattern belongs to a certain category, let’s call it 
Tj, neuron Oj is forced to fire and the remaining neurons keep silent.  Along the pres-
entation of patterns of a certain category, the weights are modified so that they con-
verge to the prototype jT


of that specific category. Afterwards, when a testing input 

pattern, testI


,  is projected over the different prototypes (performing the inner product 

of the normalized input vector by the prototype’s weights), the neuron with highest 

output, *O , fires, indicating to which class testI


belongs to.  

kj T
test

T
test

j IIjkOO 


>≠∀= /*

     
(6)

 

Previous expression is similar to the Bayes decision rule, a classical rule used in pat-
tern recognition for deciding the class, Tj, to which a certain pattern belongs to [5]. 

( ) ( )test
k

test
jj ITPITPjkOO


///* >≠∀=         

(7)
 

3.2 Forced Competition Network 

In this case the process of neuron´s activation is unsupervised, differently from pre-
vious case in which categories were imposed through the activation of certain output 
neurons. Here, a “winner takes all” operation compares the outputs of the different 
neurons, setting the winning neuron to one, and the remaining neurons to zero. Diffe-
rently from the following cases, this result is algorithmic and does not emerge as the 
result of the dynamic interaction among neurons. 

The Forced Competition Network is illustrated in Fig. 4.a in which input patterns 
are normalized through the l1-norm (lower-case letters representing normalized in-
puts) and weights to each neuron are represented either as prototype vectors iT


or 

weight vectors iW


. Above each neuron, the activation curves represent the prelimi-

nary output Oj of neuron Oj, in terms of its net-input ( jT
I 


, according to section 2).  

Here, competition takes place through an altered version of the previously explained 
Bayes algorithm in which comparison is performed between the outputs of activation 
functions. 
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Notice that in this equation, activation functions are shifted according to parameter s 

(recall section 2). When a pattern 
1I


 is input to the network (Fig.4.b.1), its projec-

tions over prototypes 1T


, 2T


 and 3T


 (Fig.4.b.2) are calculated. According to equation 
8, applying the activation function to these projections and calculating the greatest 
output we obtain the neuron that wins the competition. In this example, the winning 
neuron O* is O1, and its output is set to one, while the other neurons’ outputs are set 
to zero. This kind of competition is driven by an external algorithm which evaluates 
which is the higher output neuron.  

Before projecting pattern 2I


 over prototypes jT


(Fig.4.c.2), notice that proto-

types jT


have changed. This is because, according to the pre-synaptic rule, weights 
w1j from active inputs ij to O1 (the winning neuron) increases, while weights from 
active inputs to non-active neurons, O2 and O3, are reduced. Weights from null inputs 
to non-active neurons remain the same. The result of this weight changing process is 

that vector 1T


evolves towards 1I


and vector 2T


and 3T


evolves towards a plane (in 

gray) orthogonal to 1T


.  In a case with more neurons in the second layer, all non-

winning jT


move towards a plane that is orthogonal to the winning prototype. 

Fig.4.c.1 represents the situation of the weights just before a second input-pattern 2I


 
is presented to the network. Previously reinforced connections are thicker and, due to 
intrinsic plasticity, O1 activation curve is shifted rightwards, while O2 and O3 curves 
are shifted leftwards.  

When applying a second pattern 2I


to the network, and due to the previous rein-

forcement of O1 neuron’s weights, the projection of 2I


 over 1T


 is again greater than 

the projection over 2T


(see Fig. 4.c.2), so that O1 (in gray) wins the competition once 
more. Figure 4.d.1 and 4.d.2 show that the weights of neuron O1 increased significant-

ly after several presentations of 1I


and 2I


. Conversely, O2 weights decrease along 
time. With higher weights, neuron O1 always wins the competition unless something 
else takes place. Intrinsic plasticity, by shifting the activation function, helps other 
neurons to win, making neuron O1 less active and neurons O2 and O3 more active. 

This allows that ( )22
2 ,2 sIfO

T



= , becomes greater than any other 

( )j

Tj sIfO j ,2


=  so that O1 eventually fails to win the competition that is won, in 

this in this case, by neuron O2, as depicted in Figure 4.e.1 
Figures 4.f.1 and 4.f.2 exhibit the value of the weights of the network after many 

presentations of patterns 1I


 and 2I


. When pattern 2I


 causes O2 winning the com-
petition, weights from non-zero inputs to neuron O2 increment their value so that 

2T


becomes greater and 1T


and 3T


progressively tend to be orthogonal to 2T


. 
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Fig. 4. Example of a forced competitive process in a biologically realistic neural network.: (a) 
The network is initialized with random weights. The shifts of the activation functions of neu-

rons T1 and T2 are also initialized. (b) For calculating the projection 
1

jT
I 


of an input pattern 
1I


over the different prototypes, the inner product of its normalized version 1i
  and the different 

weight vectors is calculated. The result of applying the activation functions over projections 
1

1T
I 


and 1
2T

I 


yields the highest activated neuron which is, in this case, O1. (c) Weights are 

slightly altered through the pre-synaptic rule and a new pattern 2I


 is presented to the network. 
Due to its previously reinforced weights, O1 wins the competition again. (d) Situation of the 
weights after presenting 1I


 and 2I


several times. (e) Intrinsic plasticity allows an adjustment of 

the shift of the activation function of both neurons so that the activation of the less active neu-
rons increases and vice-versa, allowing neuron O2 win the competition when pattern 2I


 is pre-

sented again. (f) Situation of the weights and activation functions after many presentations of 
1I


 and 2I


.  

Along this process, each prototype is selected to represent each category of the input 
data.  This neural network was used for different purposes like identifying the direc-
tion of moving objects [7], analyzing the illusion of movement in static images [11] or 
controlling a self-learning robot [13].  

3.3 Lateral Inhibition Network 

This case was represented in Fig.5. In this and in the koniocortex-like network there is 
not “forced competition” in the sense that there is not an explicit calculation of the 
most activated neuron in order to perform a winner-takes-all operation.  Here the most 



102 F.J. Ropero Peláez and A.C. Godoi 

 

activated neuron emerges from the internal dynamic of the network in which each 
neuron acts without any kind of external supervision. The process is as follows: In-
itially (Fig.5.a) weights are random and small. An activation function yields a prelim-
inary output value that will be effective if it is higher than a “hard limit” threshold 
(HL, see horizontal line). Due to the small initial weights, no output reaches the HL 
so that all outputs are zero. A null output in all neurons makes all sigmoids shift left-
wards ( ( )11 += − υj

t
j

t SS  ) so that the most active neuron eventually fires (O1 in the  
example Fig. 5.b) precluding remaining neurons to fire due to lateral inhibition. How-
ever, the winning neuron will not be permanently the winner because, once a certain 
neuron wins its sigmoid tends to shift rightwards according to intrinsic plasticity. All 
considerations regarding synaptic weights that were explained in the “Forced Compe-
tition” case serve also for this case. Note that inhibitory connections do not undergo 
weight variation (in this case inhibitory connections’ weights were set to 1).  

Regarding other parameters υ (see Eq.5) was fixed to a lower value than ξ in Eq.2     

( 01.0=υ , 1.0=ξ ). This network performs the same pattern classification tasks 

performed by the “Forced Competition” version previously explained. 
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Fig. 5. Competition in a network with intrinsic plasticity, lateral inhibition and a hard limit 
(HL) threshold: a) Even when no neuron has yet reached the firing threshold they experiment 
intrinsic plasticity so that b) sigmoids shift leftwards until one of the neurons fires.  

3.4 Koniocortex-Like Network 

Active neurons in previous network are inhibitory. However, biological relay neurons 
linking brain layers or brain areas are usually excitatory, being inhibition usually  
locally restricted inside layers or areas. For understanding how lateral inhibition is 
performed, not directly, but through inhibitory intermediate neurons, we developed a 
model that resembles the architecture of the granular layer of the so-called koniocor-
tex (Fig. 6) which is the first cortical layer that receives thalamic inputs. This model 
performs categorization tasks without any “external” algorithm for determining which 
neuron wins the competition. Fig. 6.a shows the architecture of this network, and 
Fig.6.b the result of a simulation in which three types of patterns are input to the net-
work: type A (TA), type B (TB) and type C (TC). Each epoch in the example consists 
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in nine patterns organized according to types as follows TA-TB-TC-TA-TB-TC-TA-
TB-TC. As can be seen in Fig.6.b, the network is capable of identifying these three 
categories of patterns. Neurons 4, 5 and 6, that are similar to koniocortex spiny stel-
late cells, activate in different moments, as if a conventional winner-takes-all process 
was taking place. Each one of these neurons is active for one specific category of 
input patterns. This network is not very different from the Lateral Inhibition Network. 
The only difference is that direct inhibition is substituted by a neuron mediated inhibi-
tion. In this case, inhibitory neurons also have intrinsic plasticity for shifting their 
sigmoidal activation functions.  Since each time a “spiny stellate cell” is active, it 
activates one corresponding inhibitory neuron, the sigmoids of these two connected 
neurons (spiny stellate and inhibitory)  have a similar shift. In this way, although in-
hibitory connections are not modifiable, inhibition is modulated by intrinsic plasticity. 
Although the detailed explanation of the similarities between this network and the 
granular layer of the koniocortex [6] is out of the scope of this preliminary work, we 
can anticipate that both networks are formed by a layer of excitatory neurons with 
modifiable synapses and surrounded by inhibitory cells. In both networks excitatory 
neurons have recurrent connections [6]. Firing adaptation (intrinsic plasticity) is 
another characteristic that are present in the biological and artificial networks. As 
mentioned in the introduction, this type of network reveals that competition for pat-
tern classification emerges from the inner dynamic of a network without the necessity 
of algorithmically determining which is the most activated neuron.  

 

Fig. 6. Neural network model of koniocortex granular layer: a) 1, 2 and 3 represent thalamic 
input patterns.  4, 5 and 6 represent spiny stellate cells with recurrent connections. 7, 8 and 9 
represent smooth basket cells. b) Matlab simulation of the network: Two epochs of nine input 
patterns are presented to the network. Each numbered ribbon represents the activity of each of 
the corresponding neuron with the same number at the left.  

4 Conclusions 

In this work we showed that biological properties (like metaplasticity, intrinsic plas-
ticity and lateral inhibition), when properly orchestrated in an appropriate neural  
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architecture, are able to give rise to complex emerging behaviors like a winner-takes-
all  computation leading to pattern classification. For a step by step explanation, this 
network was developed across several stages: from a very simple Bayes Decision 
model for establishing basic algebraic principles, through a “Forced Competition 
Network” and a “Lateral Inhibition Network” to a more complex koniocortex-like 
network. Competition and pattern classification naturally emerge from the internal 
dynamics of  both the lateral-inhibition and konio-cortex network, without the neces-
sity of executing any externally driven algorithm. 
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Abstract. A generalization of the Sparse Coding Neural Gas (SCNG)
algorithm for feature learning is proposed and is then discussed in the
context of modern classifier techniques for images. Two versions are pre-
sented. The latter obtains faster convergence by exploiting the nature of
particular feature coding methods. The algorithm is then used as part
of a larger image classification system, which is tested on the MNIST
handwritten digit dataset and the NORB object dataset, obtaining re-
sults close to state-of-the-art methods.

Keywords: Neural Gas, Sparse Coding, Sparse Coding Neural Gas,
Image Recognition, Matching Pursuit.

1 Introduction

The task of image recognition is a complex one. Simply training a classifier
on raw image data will yield poor performance. A common strategy is to look
at important properties of an image, called features. Then, given an image I,
these features are used to compute a feature descriptor F. This contains, for
each feature, a measure of the inclusion of that feature into the image. Then,
in order to obtain an estimated class, only F is considered. The construction of
features is thus a big part of most machine learning applications. However, for
best performance, specific domain knowledge must be used. This makes both
the design and comparison of learning systems harder.

In the last decade, automatic feature construction, also known as unsupervised
feature learning [1–4], has become mainstream, surpassing hand-crafted methods
on diverse problems [1, 5–10]. These techniques aim to build features by looking
at the statistical properties of a dataset. In addition to this, a full framework
for classification has been refined, based on the model of Convolutional Neural
Networks (CNNs) [6], which has parallels with the structure of the V1 area of
the mammalian brain.
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This paper studies a particular type of feature learning method, called Sparse
Coding Neural Gas [11–14], on two tasks of image classification. The algorithm
itself is an adaptation of the Neural Gas algorithm [15, 16].

2 Overview of Feature Extraction

Given an image I ∈ Rm×n, the conceptual recognition pipeline can be summa-
rized as:

I ⇒ F → ω (1)

The → corresponds to actual classification. A simple classifier, usually a Logis-
tic/SoftMax Regression or a Linear SVM is used. The burden falls on the feature
extraction phase, denoted by ⇒, to produce descriptors of such a nature that
the simple classifiers can properly discriminate the classes.

For our purposes, a feature is a small filter of some sort. More precisely, the
full feature set consists of w normalized square images of size d = p×p with
p < min(m, n). This set is denoted by C =

[
C1 | C2 | . . . | Cw

] ∈ Rd×w. Normal-
ization is usually imposed by the feature learning method, but is, in general, a
nice property to have, because it makes coding methods more “interpretable” and
less susceptible to favoring one feature over another because of scale differences.
A feature set can be obtained from several sources. Firstly, it can be generated
randomly [17]. Secondly, a well-known set can be employed, such as DCT bases
or Gabor Wavelet bases [9]. Thirdly, the set can be learned from a sample of
patches extracted from the training set of the classification system [2–4]. SCNG
is an example of an algorithm used for this kind of learning.

Actual extraction consists of three steps, called coding, nonlinear, and reduce.
The coding step accepts as input the original image I and produces a set of w
images of the same size as I. In order to obtain the (i, j)th pixel of the lth image,
the patch of size p×p from I, centered at position (i, j), is “coded”, with regards
to filter Cl. The simplest form of coding is an inner product between the two
images. Considering the whole image, this corresponds to doing a convolution
with the filter Cl. In fact, this is the strategy employed by CNNs. In general,
the response for the (i, j)th pixel need not depend just on Cl, but on the whole
C. Therefore, in the next section, which is dedicated to coding methods, we will
consider the problem of finding the values of the pixels at position (i, j) in all w
images at once.

The nonlinear step accepts as input the set of w images produced by the coding
step and produces another set of w images, again of the same size as I, but with
elements mapped to a restricted interval, such as [−1, +1]. Each pixel in each
image is transformed independently by passing its value through a sigmoid-like
nonlinearity, such as the logistic function. The first and second steps, together,
can be viewed as a feed-forward neural network, with mn input units and wmn
output units, a very specific weight setup and a complex feed-forward rule.

Lastly, the reduce step accepts as input the previous set of w images and
produces a final set of w images, but this time of smaller sizes than the original.
More precisely, each image is divided into non-overlapping blocks of size q×q and
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all the values from each block are combined to form one value, according to some
function. Common choices are the max(|�| , . . . , |�|) and

∑
i,j (�)2 functions. The

output of this stage is a set of w images of size (m/q)×(n/q). In general, CNNs
can have a more flexible reduce step, but we’ve found this limited form, which
considers each image individually, to be useful as well. The reasons given for the
reduce step are that it introduces a certain kind of resistance to small transla-
tions. Basically, anywhere in a q×q block a feature is detected, the corresponding
output of the reduce step should be large. Invariance to larger translations, scal-
ing, rotation etc. is something that has to be captured by the features or by
the classifier. Otherwise, enough data which cover these translations must be
provided for learning.

The final feature vector F is a linearized version of these images, that is,
a
[
(mnw)/q2

]
-dimensional vector. Also notice that the whole system can be

viewed as one heterogeneous neural network consisting of two different stages.
In general, several of these modules can be linked, each with its own set of
features, tailored to the type of images it receives from the previous layer. In
principle, very deep feature extraction networks can thus be built, depending on
the complexity of the dataset being studied. In our experiments, only feature
extractors with one layer were used. Again, if a perceptron or a two layer MLP
are used as the classifier and the inner product is used as the coding method, the
whole system becomes a single large neural network. Classical back-propagation
can then be used at the end to fine-tune the weights, starting from initial values
assigned according to C. In our experiments, this procedure was not used, but
situations such as transfer-learning or self-taught learning [18] can make use of
this property.

3 Coding

This section describes in more detail how to do the coding. For simplicity, we will
assume we work with d-dimensional signals. Thus, the p×p patches previously
discussed must be linearized such that d = p2. Assume also that we are given a set
of features C, like in the previous section. Most of the times we will have w > d,
that is, the set of features is overcomplete. Our goal is to approximate a signal
x ∈ Rd in terms of C. The most common approach is to use a linear combination
of the features. The code is then the signal a ∈ R

w and the approximation is

x̂ =
w∑

i=1

aiCi = Ca . (2)

The quality of the code is determined by how well the reconstruction x̂ matches
the original signal. For audio and image processing, it has been shown that a
sparse code for x, that is, one with numerous zero or close to zero components,
has many desirable properties [2, 3]. Many methods for sparse coding have been
proposed [19, 3]. We will focus on a group of iterative methods for computing
a, known as pursuits, which originate in the signal processing community. All
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assume C and x are given and run for a number of k ≤ d iterations. The general
problem they try to solve is arg mina ‖x − Ca‖2

2 subject to ‖a‖0 ≤ k. This an
NP-complete problem. The pursuits are greedy approximations to it. Let the
initial residual R0x = x. At iteration t, let Cω be the most similar feature in
C, relative to Rtx. The updated code and residual, at+1 and Rt+1x, are pro-
duced by decomposing Rtx in terms of Cω. After k iterations, ak is returned
as the code associated to x, and Rkx is returned as a measure of
the ability of the algorithm to reconstruct the signal in terms of C. The dif-
ference between the several methods consists in how they find Cω and how they
update at+1. The general procedure is illustrated in Algorithm 1. At the end
of this algorithm we obtain x = Cak +Rkx. Also, the norm of the final residual
Rkx tends to 0 as k → +∞ for sensible choices of sim and next functions. In
the limit, the equality becomes x = Ca+∞.

Algorithm 1. The General Pursuit Method
input C,x, k
output ak,Rkx

Λ0 ← φ
a0 ← 0
R0x← x
t← 0
while t < k or ‖Rtx‖2 ≥ δ do

ω ← arg maxi∈dom sim(Rtx,C, Λt, i)
Λt+1 ← Λt ∪ ω
at+1 ← next(at,Rtx,C, Λt+1, ω)
Rt+1x←Rtx− at+1

ω Cω

t← t + 1
end while

The simplest pursuit method, introduced in [20], is Matching Pursuit (MP).
Table 1 shows what form the sim and next functions take in this case. An
important property of this algorithm is that for every t, ‖Rtx‖2

2 ≥ ‖Rt+1x‖2
2 and,

furthermore, with a decay that is exponential. The two major drawbacks of this
method are that the approximation at time t, Cat, is not optimal with respect
to the selection of features Λt; and that for the residual norm to actually reach
small enough values, a k > w could be necessary. However, these drawbacks are
not critical for classification purposes, and, because of its simplicity and speed,
we use it in our experiments.

An improvement to MP is Orthogonal Matching Pursuit (OMP) [21–23],
which addresses the two issues discussed above. Again, Table 1 shows the forms
the sim and next functions take. Also, notice that at each iteration, only the
features not considered before are processed. All the properties of MP hold
here as well. At iteration t, the approximation computed is the closest point in
span(CΛt

) to x, according to the Euclidean norm. The version presented here
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Table 1. The different parametrization for pursuit methods

Method sim function next function dom domain

MP
∣∣〈Rtx, Ci〉∣∣ at + 〈Rtx,Cω〉δω 1:w

OMP
∣∣〈Rtx, Ci〉∣∣ arg mina ‖x−CΛt+1

a‖22 1:w \ Λt

is suboptimal from an algorithmic point of view. More sophisticated methods
based on QR decomposition have been developed [21, 23].

4 Learning a Feature Set

We now turn to the problem of learning the feature set C, given a coding method
ĈC and a sample X =

[
X1 | X2 | . . . | XN

]
∈ Rd×N of linearized image patches

of size p× p, usually extracted from either the whole training set or from a
larger “natural scenes” dataset [18]. As we previously mentioned, the method we
employed here is the Sparse Coding Neural Gas approach, which is an adaptation
of the Neural Gas algorithm introduced in the context of vector quantization.
Vector quantization can be considered as a stricter version of feature learning,
where the codes are 1-sparse and only a boolean “indicator” of the feature most
similar to the input x, as measured by the Euclidean distance, is stored.

The Neural Gas algorithm is an iterative one. It begins by initializing C to
w random observations from the training sample X. Then, for a number of
Tmax iterations, an adaptation process takes place, which slowly changes C in
order to best represent the distribution over the input space. More precisely, at
each iteration t an observation is randomly selected from X and distances to
each element of C are computed. Each feature is then modified in a manner
proportional to the distortions between it and the signal x, on the one hand,
and the ranking of this distortion in the list of all distortions, on the other
hand. Therefore, the update process includes a local and a global component.

Algorithm 2. Neural Gas
input X, w, Tmax, μ0, μTmax , λ0, λTmax

output C
C← randomly select w observations from X
for t = 1:Tmax do

μt ← μ0(μTmax/μ0)t/Tmax � Current learning rate
λt ← λ0(λTmax/λ0)t/Tmax � Current neighborhood control
x← an observation from X
a← [ ‖x−Ci‖22 for i ∈ 1:w ]

C← C + [ μte−ranka(ai)/λt

(x−Ci) for i ∈ 1:w ]
end for
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Algorithm 3. Sparse Coding Neural Gas V1
input X, w, C, Tmax, λ0, λTmax , μ0, μTmax

output C
C← randomly initialize w normalized features
for t = 1:Tmax do

μt ← μ0(μTmax/μ0)t/Tmax � Current learning rate
λt ← λ0(λTmax/λ0)t/Tmax � Current neighborhood control
x← an observation from X
a← CC{x}
C← C + [ μte−ranka(ai)/λt

ai(x− aiCi) for i ∈ 1:w ]
C← normalize each feature in C

end for

Algorithm 4. Sparse Coding Neural Gas V2
input X, w, C, Tmax, λ0, λTmax , μ0, μTmax

output C
C ← randomly initialize w normalized features
for t = 1:Tmax do

μt ← μ0(μTmax/μ0)t/Tmax � Current learning rate
λt ← λ0(λTmax/λ0)t/Tmax � Current neighborhood control
x← an observation from X
S0 ← initialize coding method specific state
for i = 0:k do

[αi Λi Si+1]← CC{Si,x} � αi stores similarities for features in 1:w \ Λi

C← C + [ μte−rank
αi(α

i
j )/λt

αi
j(x− αi

jCj) for j ∈ 1:w \ Λi ]
C← normalize each feature in C

end for
end for

Algorithm 2 gives the whole picture. Note that both a time decreasing learning
factor is used as well as a time decreasing neighborhood control. The algorithm
is similar to the well-known Self-Organizing Map. The difference lies in changing
the weight update from one which considers a pre-defined topology, to one which
looks at the neighborhood withing the input space. More complete versions of
this algorithm [15] can actually build a topological description of the input space
which is useful for exploratory data analysis.

The Neural Gas algorithm works in the input space rather than feature set
space. Adapting the algorithm to work with features and accept any coding
method gives rise to a first version of the Sparse Coding Neural Gas. The major
modification is the fact that each update is done according to Oja’s Rule [24]
instead of the simple error term of the Neural Gas. The full algorithm is de-
scribed in Algorithm 3. Notice that the ranka function considers absolute val-
ues, so that features are updated proportional to the magnitude of the associated
response.
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A further improvement is possible considering the fact that many coding meth-
ods are iterative and produce orderings of a subset 1:w \ Λt of the feature ele-
ments at each iteration. MP and OMP are such methods. A second version of
the Sparse Coding Neural Gas is presented as Algorithm 4. Notice that at each
iteration only the subset of previously unselected features is updated, instead of
the whole set. Also, the variable Si, which is a substitute for all the abstracted
coding method specific information, must contain a copy of the original feature
set C at iteration t, before the inner-loop coding procedure. The reason for this
is that C is updated in the inner-loop and it can cause problems for the coder
to change the features as time progresses.

5 Experiments

In order to test the classifier system, two datasets were employed: the well known
MNIST handwritten digit dataset [6] and the NORB object dataset [25]. Both
of these are widely used for benchmarking classifiers. MNIST has 10 classes
corresponding to the 10 Arabic numerals. It consists of 60000 training images
and 10000 test images. NORB has 5 classes, corresponding to different categories
of objects (animal, human, plane, truck, car). It consists of 24300 training images
and 24300 test images. An example of the kind of features learned from these
sets can be seen in Figure 1. For the NORB dataset, a pre-processing step of
“whitening” is applied. This speeds up convergence and is achieved through the
ZCA transform as described in [4].

Fig. 1. SCNG learned features for the MNIST (left) and NORB (right) datasets. For
NORB, the ZCA pre-processing step was applied.

Classification scores for the methods we used as well as other details are
presented in Table 2 and Table 3. Using random patches as features and using
features learned by gradient descent [3] in the feature set space are also presented.
The best result in the literature is also included. For both datasets, only methods
which dealt with the unmodified dataset are considered. Extending the dataset
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through elastic distortions [8] has been shown to improve performance. However,
such methods are not always applicable. Notice that both SCNG and Gradient
Descent in feature set space produce better results than simply using random
features, but are otherwise close in performance.

Table 2. Classification results for MNIST

Method Error Notes

Baseline 5.34 Linear SVM on raw pixel data
CNN (unsupervised pretraining) 0.53 Best without dataset extension. See [1].
Our Method (SCNG) 0.71 MP-11 with p = 11 and q = 4 and w = 1024

Our Method (Gradient) 0.77 MP-11 with p = 11 and q = 4 and w = 1024

Our Method (Random) 0.87 MP-11 with p = 11 and q = 4 and w = 1024

Our Method (SCNG) 0.69 MP-25 with p = 11 and q = 4 and w = 1024

Our Method (Gradient) 0.67 MP-25 with p = 11 and q = 4 and w = 1024

Our Method (Random) 0.77 MP-25 with p = 11 and q = 4 and w = 1024

Table 3. Classification results for NORB

Method Score Notes

Baseline 25.13 Linear SVM with standardization
CNN (back-propagation) 7.86 Best without dataset extension. See [27].
Our Method (SCNG) 11.59 MP-11 with p = 17 and q = 3 and w = 1024

Our Method (Gradient) 11.51 MP-11 with p = 17 and q = 3 and w = 1024

Our Method (Random) 12.46 MP-11 with p = 17 and q = 3 and w = 1024

Our Method (SCNG) 10.87 MP-25 with p = 17 and q = 3 and w = 1024

Our Method (Gradient) 11.01 MP-25 with p = 17 and q = 3 and w = 1024

Our Method (Random) 11.81 MP-25 with p = 17 and q = 3 and w = 1024

After features were extracted from a dataset, a classifier was trained on the
features training dataset. We employed a simple Linear SVM, as implemented
by LIBLINEAR [26]. The regularization parameter C was fine-tuned through
cross-validation. A subset of 20% of the training set instances was put aside for
this purpose. We tested C with 20 possible values, logarithmically distributed
between 10−3 and 10−1. For each value, 5 random 50/50 splits of the dataset were
performed. The classifier was trained on one half of the data and was tested on
the other half. Average scores were then computed for model selection purposes.
After a good C was found, a classifier was built on the whole training dataset
and evaluated on the provided testing dataset. We also tried Logistic Regression
and Gaussian Kernel SVMs. For the former, the scores were slightly lower, while
for the latter, the scores were similar. We thus preferred the Linear SVM for
performance and computational reasons.
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6 Conclusion

In this paper we have shown a way to build a complex image classifier with the
Sparse Coding Neural Gas. The classifier consists of several components (fea-
ture learning, coding system, proper classifier), and we investigated whether the
Sparse Coding Neural Gas algorithm is applicable as a feature learning method.
The resulting classifier was tested on the MNIST and NORB datasets and found
to perform close to state-of-the-art. Better methods usually employ two or more
feature extraction layers, more sophisticated classifiers, or groups of classifiers
which vote on the final class. Our simple setup is promising to reach or perhaps
even surpass state-of-the-art results with some further extensions along these
lines.
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Abstract. We introduce an extension of the self-organizing map for
performing 3D hand skeleton tracking. We use a range camera for data
acquisition and apply a SOM-like learning process within each frame in
order to capture the hand pose. Our method uses a topology consisting
of 1D and 2D segments for an improved representation of the hand. The
proposed algorithm is very efficient and produces good tracking results.

Keywords: hand skeleton tracking, self-organizing maps, kinect.

1 Introduction

The problem of object tracking and pose estimation has gained much attention
during the last years, due to the variety of new technologies and devices designed
for 3D image acquisition. While standard 2D cameras necessitate more complex
image processing techniques, 3D cameras provide a more favorable framework
for tracking algorithms, as depth information enables the reconstruction of 3D
objects. In particular, hand tracking can be used in a wide variety of appli-
cations, e.g. gesture recognition, and represents a milestone in human-machine
interaction. The difficulty lies in the fact that the state space is extremely large,
due to the 27 degrees of freedom of the human hand [1].

Our work focuses on developing a hand tracking algorithm for 3D cameras.
Having acquired 3D image information, we aim at building a tracking algorithm
that is both accurate and of low computational cost. This is achieved with an
extension of the approach introduced in [10]. After a simple preprocessing step
which assumes that the hand is the closest object to the camera, we obtain a
point cloud in 3D of the hand which we then represent with Kohonen’s self-
organizing map [3]. For this purpose the topology of the Kohonen network is
crafted according to the skeleton of a hand, as illustrated in Fig. 1. However, to
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be able to obtain good tracking results, we have to extend the SOM algorithm
such that the point cloud of the hand is represented not only by the nodes of
the network, but also by the line and plane segments between the nodes.

Compared to our approach based on a SOM, the authors of [4] use kinematic
models and build a hand state model which consists in a set of lines and points
generated by the projection of the hand model into the image plane. Hand pose
estimation based on features derived from projections of the hand and its shadow
is presented in [5]. Nevertheless, the method requires controlled background and
lighting, and is susceptible to occlusion. The authors of [6] introduce a machine
learning architecture for matching image features to 3D hand example poses,
through solving an optimization problem based on Bayes’ rule. Another approach
is to estimate hand pose with a database of synthetic hand images. For instance,
in [7] an indexed image database is used to retrieve the closest hand match, with
an adapted chamfer distance and line matching algorithm. In [8], the authors
implement a cascade of increasingly complex classifiers to determine hand pose
from synthetic training data. In order to handle occlusion, particle filters can be
used. In [9], the authors apply a meta-descent algorithm to minimize the distance
between a predicted position and the observed position, while particle filters
predict new sample positions and help the optimization algorithm to recover
from local minima. As shown in [2], the combined usage of intensity images and
range information provides a good framework for body tracking.

Section 2 will consist in a detailed explanation of our method, followed by
evaluation and results in Section 3. Finally, we present a few conclusions in
Section 4.

2 The Extended SOM

We use a network topology that can suitably describe a human hand. Our net-
work is made up of sixteen nodes, and the defined connections are illustrated in
Fig. 1.

The standard SOM algorithm starts with the initialization of the network
weights, followed by the iteration of two procedures, the competition and the
update of the weights. At each iteration, a sample point from the dataset is

Fig. 1. The extended SOM left-hand topology
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randomly chosen. During the competition phase, the algorithm determines a
winner node, that is, the node characterized by the weight with the minimum
Euclidean distance from the sample point.

Given a network with n neurons and a sample point x, we determine the
winner node î as follows:

î = arg{min
i

||x−wi||2}, i = 1, . . . , n (1)

with wi being the weight of node i. Next, the update phase aims at decreasing the
distance between the winner-node weight and the sample point, by an amount
given by the learning rate ε(t). First, let us define the learning rate function as

ε(t) = εi

(
εf
εi

) t
tmax

, (2)

where εi is the initial learning rate, εf is the final learning rate, t is the cur-
rent iteration and tmax is the maximum number of iterations performed on the
network. Then, the weight wî is updated at step t according to:

wî(t+ 1) = wî(t) + ε(t)(x−wî(t)) . (3)

The standard SOM algorithm also uses a neighbourhood update, in the sense
that not only the winner-node weight is updated, but also the weights of the
neighbour-nodes.

Our proposed algorithm extends the competition and the update step to 1D
and 2D network segments. The 1D-segments are the lines between pairs of con-
nected nodes, and the 2D-segments are the triangles determined by triples of
connected nodes. 1D-segments allow to represent the fingers more accurately,
and the 2D-segments form the palm of the hand. By segment updates we aim
at minimizing the average distance between network segments and points from
the dataset (point cloud of the hand provided by the 3D-camera). Now we not
only have elements of dimension zero (nodes) like in the classical case, but also
elements of dimension one and two for representing the data distribution. This
approach is motivated by the fact that a hand-like topology involves a difficult
separation between the nodes corresponding to fingers. A node that belongs
to one finger can easily be attracted by another finger, given the topological
closeness. This may lead to an erroneous tracking of the hand and destroy the
topological relations. With these 1D and 2D segments we can represent fingers
and parts of the palm more accurately and expect the self-organizing maps to
be less prone to this type of errors.

The competition phase in our extended SOM algorithm determines whether a
single node or a 1D-segment or a 2D-segment is closest to the randomly chosen
sample point x. Depending on this result, the update phase will either perform
a classical node update as shown in Equation 3 or a segment update.

The distance to a 1D-segment [wi;wj ] (see Fig. 2a) is determined via the
projection point p of x onto the given segment. Let us define dji = wj −wi and
dij = wi −wj . Then, we may write p as

p = wi + ηjidji, 0 ≤ ηji ≤ 1 . (4)
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Fig. 2. a) The projection p of sample point x onto 1D-segment [wi;wj ]. b) The pro-
jection p of sample point x onto 2D-segment [wi;wj ;wk].

Similarly,
p = wj + ηijdij , 0 ≤ ηij ≤ 1 (5)

and ηji+ ηij = 1 . Given the unit vectors d̂ji and d̂ij , the coefficients ηji and ηij
are

ηji =
(x −wi)d̂ji

||dji||
(6)

ηij =
(x −wj)d̂ij

||dij ||
. (7)

Then the squared distance ||D||2 of x to the 1D-segment [wi;wj] is

||D||2 = ||x− p||2

= ||x−wi||2 − ||p−wi||2

= ||x−wi||2 − η2ji||wj −wi||2 . (8)

The 1D-segment that is closest to x is determined by

(̂i, ĵ) = arg{min
ij

||Dij ||}, i, j = 1, . . . , n . (9)

Evidently, the above equation applies only to pairs of connected nodes (i, j).
Similarly, the distance to a 2D-segment (see Fig. 2b) can be determined. Let

us define dji = wj −wi, dki = wk −wi. Then, we may write p as

p = wi + ηjidji + ηkidki, 0 ≤ ηji, ηki ≤ 1, ηji + ηki ≤ 1 . (10)

Analogously,

p = wj + ηijdij + ηkjdkj , 0 ≤ ηij , ηkj ≤ 1, ηij + ηkj ≤ 1 (11)

and
p = wk + ηikdik + ηjkdjk, 0 ≤ ηik, ηjk ≤ 1, ηik + ηjk ≤ 1 . (12)

We then compute the squared distance ||D||2 of x to the 2D-segment (triangle)
determined by [wi;wj ;wk] according to

||D||2 = ||x− p||2

= ||x−wi − ηjidji − ηkidki||2 (13)
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where

ηji =
(x−wi)d̂ji −

(
(x−wi)d̂ki

)
(d̂kid̂ji)

||dji||
(
1− (d̂kid̂ji)2

) (14)

ηki =
(x−wi)d̂ki −

(
(x −wi)d̂ji

)
(d̂kid̂ji)

||dki||
(
1− (d̂kid̂ji)2

) . (15)

The 2D-segment that is closest to x is determined by

(̂i, ĵ, k̂) = arg{min
ijk

||Dijk ||}, i, j, k = 1, . . . , n (16)

with (i, j, k) three connected nodes.
After having determined whether one of the nodes, a 1D-segment or a 2D-

segment is closest to the randomly chosen sample point, the update procedure
takes place. The simplest situation is illustrated in Fig. 3a, when a single node
is closest and has to be updated. This is done according to the standard SOM
algorithm. In case a segment has to be updated, the nodes which determine the
segment have to be moved such that the distance ||D|| is reduced. We derive the
respective movement by gradient descent minimization on the squared segment
distance. For node j we obtain

− 1

2

∂D2

∂wj
= −1

2

∂

∂wj

(
(x−wi)

2 − η2ji(wj −wi)
2
)

=
1

2

∂

∂wj

(
η2ji(wj −wi)

2
)

=
1

2

(
∂

∂wj
η2ji

)
(wj −wi)

2 +
1

2
η2ji

(
∂

∂wj
(wj −wi)

2

)

= ηji

(
∂

∂wj
ηji

)
(wj −wi)

2 + η2ji(wj −wi)

= ηji

[
(x−wi)− 2

(x−wi)(wj −wi)

(wj −wi)2
(wj −wi)

]
+ η2ji(wj −wi)

= ηji(x−wi)− 2η2ji(wj −wi) + η2ji(wj −wi)

= ηji(x−wi)− η2ji(wj −wi) . (17)

Given the above result and with the symmetry in i and j, the two displacements
applied to the winner 1D-segment nodes are

Δwĵ = ε(t)ηĵî

(
x−wî − ηĵî(wĵ −wî)

)
(18)

Δwî = ε(t)ηîĵ

(
x−wĵ − ηîĵ(wî −wĵ)

)
. (19)

The movement of the two nodes is orthogonal to the line segment and illustrated
in Fig. 3b.
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Fig. 3. a) Weight wj is displaced towards the data point x, on the direction given
by vector x − wj . b) Weights wi and wj are displaced towards the data point x on
directions parallel with the vector formed by x and its projection p. c) Weights wi, wj

and wk are displaced towards the data point x on directions parallel with the vector
formed by x and its projection p. The closer p is to a node, the larger its update.

In case a 2D-segment is closest, like in Fig. 3c, three nodes have to be updated.
With gradient descent similar to above we obtain the three displacements

Δwî = (1 − ηĵî − ηk̂î)(x −wî − ηĵîdĵî − ηk̂îdk̂î) (20)
Δwĵ = (1 − ηîĵ − ηk̂ĵ)(x−wî − ηĵîdĵî − ηk̂îdk̂î) (21)

Δwk̂ = (1 − ηîk̂ − ηĵk̂)(x −wî − ηĵîdĵî − ηk̂îdk̂î) , (22)

this time orthogonal to the triangle.
At this point, a short discussion is required concerning the segment updates.

Given that the displacements orthogonal to the line or triangle are of finite size,
with each update the respective line or triangle will be slightly enlarged. With
many update steps the network might increase over the borders of the data
space. Several solutions to this problem are possible. The most canonical one is
to add a "spring-like" forgetting term, which has to be weighted such that an
appropriate shortening of the distances of the updated nodes takes place with
each update step. Details are explained in [11].

3 Results and Evaluation

Our tracking algorithm uses a Kinect [12] device for data acquisition. The Kinect
has an infrared depth sensor and a special microchip that allow obtaining depth
information from the scene. The Kinect functions properly for distances in the
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interval 1.2−3.5 meters. The image stream is characterized by a 640×480 pixels
resolution.

The points corresponding to the hand are extracted with a threshold segmen-
tation performed on the given depth frame, based on the assumption that the
hand is the closest object to the camera. This yields the point cloud our algorithm
works on (see Fig. 4). Note that our extended SOM algorithm is applied to each
individual frame, each time with 5000 training steps (a training step consists of
a random choice of a data point, followed by a competition and update step).
The following frame always uses as starting position for the network the result
of the previous frame. Only in the very beginning of the tracking procedure we
need to initialize the network such that we start with an open hand and the
network is aligned to the fingers and the thumb. A random initialization might
have problems to converge correctly since the network topology is asymmetrical.

Fig. 4. Starting from a frame captured with the Kinect, we extract the hand based on
the closest object assumption. We remove the points corresponding to the forearm and
we obtain the 3D point cloud used for the tracker’s learning stage.

Fig. 5. The extended SOM tracker converges to the open palm topology, for both left
and right hand
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Fig. 6. A standard SOM tracker does not converge to a given hand topology

Fig. 7. Different hand postures and bent fingers. The extended SOM converges to the
correct topology.

In each new frame, we perform a training during which the network receives
as input the data points from the given hand point cloud. Fig. 5 shows how the
hand network has converged into the point cloud of a given frame, for the left
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and right hand. As desired, the network represents the given hand topology by
minimizing the mean squared distance between the data points and the network
with its 1D and 2D segments.

On the contrary, as illustrated in Fig. 6, by performing a standard SOM
learning without using the 1D and 2D segments of the network, the tracker does
not manage to represent the given hand topology and converges to an entangled
form of the network.

Fig. 7 shows results for different hand postures and bent fingers. In all these
cases our extended SOM converged correctly and can now be used for represent-
ing corresponding gestures.

4 Conclusion

We presented an extension of the SOM which can successfully be applied to the
problem of hand skeleton tracking with 3D cameras. The algorithm is efficient
enough to be applied to each individual frame of a kinect camera. The extended
SOM algorithm is able to produce a rough, but accurate estimate of the hand
pose, at comparatively low computational cost.

Our extension by which we represent the data cloud not only by the nodes
of the network, but also by the line and plane segments between the nodes, is
necessary for the network to converge correctly to the complicated hand topology.
The tracker can be further improved by adding constraints to the hand model,
in accordance with the anatomy of the hand.

Our method can easily be applied not only to hand tracking, but also to other
types of objects, e.g., the human body or animals, by simply varying the SOM
network topology. In further developments we will use the network topology to
infer useful features for gesture recognition.
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Abstract. We propose a new approach to gesture recognition using the proper-
ties of Spherical Self-Organizing Map (SSOM). Unbounded mapping of data 
onto a SSOM creates not only a powerful tool for visualization but also for 
modeling spatiotemporal information of gesture data. Once mapped onto a 
SSOM the gesture data is treated as a series of postures. A set of postures  
describing a specific path on the SSOM for a gesture is used as a trajectory. Al-
though some trajectories may share the same postures, the path consisting of 
posture transitions will always be unique. Different variations of posture transi-
tions occurring within a gesture trajectory are used to classify new unknown 
gestures. Experimental results on datasets involving full body and hand gestures 
show the effectiveness of our proposed method.  

Keywords: spherical SOM, gesture recognition, trajectories. 

1 Introduction 

Nowadays, many applications require the use of powerful visualization tools that can 
assist data analysts in evaluating their data. This allows deriving meaningful infe-
rences, therefore gaining deeper understanding about the physical phenomenon cha-
racterizing their data. One example of such visualization tool is immersive virtual 
reality which was created due to recent advances in research and can provide a rich 
visualization and interactive modeling and analysis tool [1]. Such advanced, interac-
tive, and task-driven display and analysis tools utilize a full range of human sensori-
motor capabilities and provide an insight on large volumes of experimentally acquired 
data. The data modeling approach discussed in this paper based on trajectory analysis 
presents a different view into the use of Self-Organizing Maps, which gives a viable 
mechanism to generate a spatio-temporal representation of data from multi-
dimensional data. Several gesture data sets are used to demonstrate the effectiveness 
of the proposed methodology in building spatio-temporal trajectories. 

In this paper, we create gesture trajectories with the help of Self-Organizing Maps 
(SOM) [2]. In particular, we use the Spherical SOM structure (SSOM) [3], because of 
its ability to map multi-dimensional data without boundaries. SOM is an unsupervised 
clustering approach proposed by Kohonen [2] that clusters data from high-dimensional 
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space into low-dimensional space, while still preserving its topology. For sequences of 
input data whose features are expected to temporarily change in a smooth way, it is 
anticipated that a topology preserved mapping can allow for the formation of a smooth 
trajectory on the map. Regular SOMs map the data points onto a flat 2D lattice during 
training by updating the weights of the nodes in the lattice. However, this setup has a 
restricted boundary, normally pushing the data to be mapped along its boundaries. 
Also, it can be argued that the opposite sides of the boundary are not topologically 
close in the SOM space. A more optimal choice for SOM structure consists of sphere 
[3], which minimizes topological discontinuity. This SOM structure is created by sub-
dividing an Icosahedron, providing the SOM structure with a symmetric node distribu-
tion depicted in Fig. 1. One of the advantages of the SSOM is that regions of density 
found in the feature space will map equally spaced and well separated locations on  
the sphere due to the wrap-around effect of the lattice. In this work, we leverage this 
property to build trajectory based features to distinguish between human full body 
motion gestures. 

 

Fig. 1. Open vs. Closed structure of 2D- and Spherical SOM 

The rest of the paper is organized as follows: Section 2 discusses the related works 
in gesture recognition using SOMs. Section 3 gives details about the experimental 
setup and the datasets. Section 4 provides experimental results. Finally, in Section 5 
we conclude the paper with a conclusion. 

2 Related Work 

The use of SOFM in the area of gesture recognition has been relatively recent. Some 
methods which will be discussed shortly in this section have used SOFM in various 
ways to divide the sample data into clusters of phases and are further processed with 
the help of other tools and techniques. In [4], Oshit and Matsunaga use a SOM to  
first process the gesture data and then apply a Support Vector Machine (SVM) to 
partition the feature space into regions belonging to separate classes. Their approach 
is interesting because they divide each gesture into short phases and then apply a pat-
tern recognition technique for multi-dimensional data to recognize each phase.  
By using Dynamic Programming (DP), authors match the trajectory from the input 
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signals and the sample trajectory from a gesture. By trajectory we refer to the tempo-
ral path that the data maps into on the SOM lattice based on a set of consecutive Best 
Matching Units (BMUs). The disadvantage of this approach is that the trajectories 
must be projected onto low-dimensional feature space. Furthermore, a valid threshold 
must be specified to measure the similarity of two trajectories. One of the limitations 
of standard SOM that is tried to be overcome in this work is to eliminate the restricted 
boundary of a 2D lattice. This is due to the boundaries being open and nodes on the 
boundaries not having the same number of neighbors as the inner nodes.  

A. Shimada and R. Taniguchi in [5] use a Sparse Code of Hierarchical SOM 
(HSOM). A Hierarchical SOM [6] is a two layer SOM network, where the lower layer 
has a connection with an input layer. In this case, the second layer receives an input 
vector from the first layer directly. The method proposed by Shimada uses the proper-
ty of HSOM to first learn postures (minimum unit of a gesture) in the first layer, and 
the learn short gestures consisting of some time-series postures in the second layer. 
Authors argue that the time length of a human gesture is not always the same even if 
same gestures are compared. They highlight that the key issue in their method is to 
absorb the time variant appropriately in order to make clusters which include the same 
gesture class. 

The interesting part of the approach by Shimada and Taniguchi for gesture recogni-
tion is how they tackle the problem of time invariance or length invariance, speaking 
in terms of trajectories. The use of multi-layer SOM allows them to obtain a more 
general gesture path on the SOM lattice without worrying about its length. 

Another method to gesture recognition is suggested in Video-Based Gesture  
Recognition Using Self-Organizing Feature Maps [7], [8]. This work introduces a 
probabilistic recognition scheme for hand gestures, where SOFMs are used to model 
spatiotemporal information extracted from images. It uses a combination of SOFM 
and Markov models for gesture classification. The classification scheme consists of 
tracking the transformation of gesture representations from a series of coordinate 
movements. 

3 Experimental Setup and Datasets 

All of the methods discussed previously and most seen in literature involve the use of 
two-dimensional SOFMs. The attempt in this paper is to show how the properties of a 
SOFM can be used for smoothly varying data such as body or hand gestures to create 
a good recognition system by implementing a 3D version of the SOFM. Following 
this section is an overview of the experimental set up and the datasets used. 

3.1 Dataset 

A dataset involving full body gestures was used in this work. This dataset was col-
lected using sensor equipment in the Microsoft Kinect camera. A virtual version  
of the game Charades was used to collect full body gesture data. Nineteen gestures 
were selected randomly out of a classic commercial version of Charades. Figure 2 
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alphabetically lists the 19 different gestures that were used in the database. It is easy 
to see how these gestures are very open to interpretation. Of the 19 gestures (classes), 
50 full samples of each gesture were sampled. The Kinect primarily samples user 
'gesture' information from the IR depth camera. The data coming from the camera is 
oriented relative to its distance from the Kinect. This becomes problematic when 
searching for the solution to universal truths in gestures. Normalization was used to 
that convert all depth and position data into vectors relative to a single joint presumed 
most neutral. In this case the torso was considered as the neutral position of the body. 
Figure 2 shows the skeleton model with the points (body parts) used in the dataset. 
The result includes positive and negative x, y, and z-axis values. The feature vector 
consists of 60 features (three displacement vectors -x,y,z multiplied by 20 body 
points). The average temporal length of each gesture in the database is 200-300 
frames. 

 

Fig. 2. Microsoft Kinect Full body gesture data and skeleton showing the gestures (left), body 
parts (right) being tracked 

3.2 Experimental Setup 

In all the experiments performed in this work the setup was identical. A Spherical 
SOFM was used with specific settings and size which will be discussed shortly.  
All the experiments were performed on standalone PC with Windows 7, 4GB of 
RAM and Intel Core i7 CPU (2.67GHz). MATLAB R2011b environment was used 
for all the experiments and the visualization part. On average it took several minutes 
to train the network with one gesture depending on the feature vector size of a specific 
gesture. 

3.3 SSOM Training 

The training phase of the SSOM is identical to the conventional 2D SOM [2]. Let, the 
input space of N nodes be represented by . Let the SSOM be represented 
by M nodes (M << N). Each node in the SSOM lattice has a corresponding weight 
vector w. All these weight vectors together represent the SSOM space Ψ . 
Each node also has a neighborhood associated with it. A neighborhood is a set of 
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nodes consisted of the node itself and its neighbors. Let, the neighbourhood set for 
node i be represented by Θ . Here, r represents the neighborhood spread, r = 1,…,R. R 
is the maximum neighborhood radius, which is set to a value such that it covers half 
of the spherical space [3]. 

The input nodes are randomly introduced to the SSOM during training. For each 
voxel, a Best Matching Unit (BMU) among all the nodes is selected. BMU is the node 
which is closest to the input voxel according to some similarity measure. Euclidean 
distance is usually used as distance measure. The update step then takes place, where 
the weight vector of the BMU and its neighboring nodes  Θ ) are updated in a 
way so that they are pulled closer to the weight of the input voxel. After training, the 
SSOM weight vectors are arranged in such a way that represents the underlying dis-
tribution of the input data (the node features in this case). The training algorithm is 
described below: 

• Initialization: The weight vectors of the SSOM nodes are initialized first. Random 
values can be used for initialization, but as pointed out by Kohonen et al. in [2], 
random initialization will take more time to converge. A count vector Ο   
[3] is used to keep track of the hits to each node. This vector is initialized to zero. 
This is used in the BMU selection step (explained below) to prevent cluster under-
utilization.  

Training: For each input x (a feature vector containing the coordinates of the 20 
body points), do the following: 

─ BMU Selection: Calculate the Euclidean distance of the node feature vector x with 
all the nodes as follows: 1 | | , 1, …           (1) 
 

BMU is the node for which this distance is the smallest. 

─ Weight Update: Update the weights for the BMU and its neighboring nodes (de-
fined by  Θ ) as follows: 
 , | | ,                      (2) 

  , ,                                        (3) 
 

Where  ∈   Θ  ,    , . 
The functions b(t)  and h(s,r)  control the rate of learning and neighborhood ef-

fect, respectively. b(t) decreases in value as the epoch number t= 1,2,…T  increas-
es. It also depend on the learning rate . h(s,r) depends on the neighborhood size 
parameter s, which is user controlled. h(s,r)  is a Gaussian function. The further a 
neighboring node is from a BMU, the less its weight will be affected. 

• Repeat the training steps for a pre-defined number of epochs (20) 
 

The main control parameters in SSOM training are the learning rate , the number of 
epochs T and the neighborhood size parameter s. In the following experiments, the 
setting used were T=20, and s=4. 



130 A.O. Gonsales and M. Kyan 

 

4 Experimental Results 

Figure 3 shows some sample trajectories that were obtained during the mapping proc-
ess. These gesture trajectories are a representation of the BMUs hit sequence that 
gesture mapped onto the SSOM. The data that is being used in the trajectory mapping 
comes from the training portion of the datasets. All the BMUs are in 3D space al-
though they appear as 2D images. The lattice of the Spherical SOFM was removed on 
purpose so that the trajectories could be seen more clearly.  

Each gesture class was displayed at a different angle from the rest in order to show 
the data path more clearly. From Figure 3 it is evident that the trajectories for each 
gesture class trace a similar if not identical path on the spherical lattice of the SOFM. 
It is also clear that each gesture leaves a path which is unique if comparing to other 
gestures. It is important to note that many gestures may share common BMUs since 
they may contain similar postures that trace a specific c gesture. We count every 
BMU hit of a gesture as a posture belonging to a given gesture class. A collection of 
these postures form a gesture. In the next sections the methods for gesture recognition 
will be described. 

4.1 Gesture Recognition: Using All Postures (Method 1) 

The gesture recognition and classification initially starts with a simple approach. As 
mentioned earlier, all the BMUs that trace a trajectory for a specific gesture are con-
sidered as postures. All the BMUs from each gesture class are used as a collection of 
points or postures for the purpose of classification of new unknown data. This is done 
in the following manner: 

1. All the BMUs falling into trajectories belonging to a specific gesture are recorded 
into a set  as follow: 

 
                 , , … , , , , ,                       (4) 

 
Where ,   1,2, …  is a trajectory forming a gesture  and i is the 
gesture index which represents a gesture class, also 

 
            , , … , , ,                            (5) 

 
Where  is the node in the SSOM lattice (i.e. posture) and n is the number of 
nodes or postures in the trajectory , . 

2. Feature vectors (consisting of the coordinates of the body parts) of an unknown 
gesture coming from the testing portion of the dataset are then compared against 
the weights of the SOFM and the BMUs from the new trajectory of an unknown 
gesture are collected into a new set Tp. 

3. A frequency posture counter  assists in determining the class of the unknown 
gesture, where i represents the index of a known gesture. The counter  for a  
gesture i is incremented if a posture from an unknown gesture belongs to a gesture 
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being compared against. This way, Tp is compared against all the  in the data-
base. So, if   , , … , , where  is a counter belonging to a gesture with 
index n, then  is chosen as the winning counter the unknown gesture is classi-
fied as gesture . 

4.2 Gesture Recognition: Weighted Aggregation of All Postures (Method 2) 

The approach taken for gesture recognition in the last section only takes into consid-
eration a set of postures as a primary data to classify an unknown gesture. This set 
does not take into account the frequency with which a specific posture is encountered 
in a gesture's trajectories. For this reason a frequency factor is introduced in this ap-
proach. All postures are aggregated into a set, but at the same time each posture is 
associated with a weight. The more a posture appears in a gesture path while training 
the network, the more weight it has towards that gesture. The reason behind the 
weight factor is that the path that a trajectory representing a specific gesture maps on 
the lattice of the SOFM tends to activate the same neurons (postures), giving it a 
higher probability to appear again if the same gesture is traced. 

4.3 Gesture Recognition: Using Posture Transitions (Method 3) 

Previous methods tested, treated each BMU as a posture and no dynamic information 
was used. Dynamic information in this case refers to the posture transitions that occur 
during the tracing of a gesture onto the SOFM. The main argument here is that trajec-
tories belonging to the same gesture should follow not only the same path on the 
Spherical lattice but also have similar transitions in terms of postures. For example, 
when a person performs a "Driving" gesture, he or she will follow the same posture 
transition as he or she moves the hands in a 3D space. A similar posture transition is 
defined as having two identical consecutive BMU hits from node A to node B, in two 
different trajectories. For this specific reason the classification of an unknown gesture 
is evaluated based on similar posture transitions during the formation of its trajectory. 

4.4 Gesture Recognition: Weighted Aggregation of All Posture Transitions 
(Method 4) 

The last approach in this paper uses a weighted aggregation of all posture transitions. 
Similarly as in the method with weighted aggregation of all postures a weight is  
introduced. This approach not only takes in consideration the posture transitions  
happening in a gesture trajectory but also the frequency with which these transitions 
occur. 

4.5 Discussion 

Tables 2-5 show the gesture recognition rate for all the approaches implemented in 
this work. From Fig. 3 it is evident that a good data separation is obtained, which can  
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Fig. 3. Sample Microsoft Kinect Gesture trajectories. (Three samples for four gestures). From 
first to last row: Air Guitar, Archery, Baseball, Boxing. 

Table 1. Recognition rate: using all postures (Method 1). 

 

Table 2. Recognition rate. Weighted aggregation of all postures (Method 2). 
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Table 3. Recognition rate. Using posture transitions (Method 3). 

 

Table 4. Recognition rate. Weighted aggregation of all posture transitions (Method 4). 

 

 

Fig. 4. Gesture recognition comparison chart 

be seen from the trajectories: different gestures have different trajectories. As dis-
cussed earlier, such separation is reached because of the wrap-around effect of the 
SSOM lattice. It is also clear that a higher classification rate is obtained when using 
the dynamic structure of the trajectories such posture transitions. The reason why, for 
instance, Method 4 works better than others is because it uses dynamic information 
(posture transitions) that other methods do not. By introducing a weight factor, we 
increase the chances of classifying unknown gesture correctly, because gestures tra-
jectories tend to have the same transitions from one posture to the next. Fig. 4 depicts 
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all the results in a chart, clearly showing the advantages of using posture transitions 
with implementation of frequency weights.  

5 Conclusions 

In this paper, we have proposed the use of SSOM for trajectory analysis with applica-
tion to gesture recognition. We implemented four different approaches to classify new 
gesture data, clearly showing the advantages of using the dynamic structure of the 
gesture data. An overall result of 97.9% of correct classification was obtained by using 
the weighted aggregation of all posture transition method. As a future work, we would 
like to seek methods for describing full trajectories with a descriptor. The challenge 
that lies in creating such a descriptor is the length of the sample, which is always vari-
able. Creating trajectories from samples of variable length (i.e. gesture data) also 
makes the trajectories to be different in its lengths. A low frequency descriptor such as 
Fourier Descriptor may be used to describe a trajectory, but first the length factor has 
to be addressed. The advantage of using a spherical SOM is that it offers a constrained 
spherical coordinate system on which such a descriptor can be based. 
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Abstract. This paper introduces a new approach to image representation for 
multimedia databases based on the Self-Organizing Map (SOM) neural net-
work. The distance between each image from a database and the SOM weight 
vectors trained on the same database is used as a representation for the image. 
In order to assess the performance of this proposal we compare it with a refer-
ence technique in image representation: the Thumbnails method. The results  
are satisfactory for an initial experiment since it was possible to identify the  
effectiveness of the SOM-based proposed representation. In order to verify the 
efficiency of the representations, a classification experiment is performed using 
the k-NN algorithm. For all image representation experiments, the SOM ap-
proach outperforms the Thumbnails reference technique. For example, in one 
experiment the representation results in a reduction of image size to 2% of its 
original size and the correct classification rates achieved are 83.33% and 
35.42% for SOM and Thumbnails respectively. 

Keywords: multimedia database, image representation, self-organizing map, 
thumbnails. 

1  Introduction 

The use of multimedia information, such as image, video or audio, is widespread for 
computer users either in a home setting, like looking at photos in a cell phone, or in a 
professional one, as applies to a doctor examining a computerized tomography. 

For an efficient access to multimedia information is common that the data is stored 
in specific databases, the so-called Multimedia Databases. Lew et. al. [1] defines a 
Multimedia Database as a system that can store and retrieve multimedia objects, such 
as two-dimensional color images, medical images in 2-D or 3-D grayscale, voice or 
music, video clips and even transactional data. For Rakow, Neuhold and Löhr the 
large amount of data and the high cost of transmitting Multimedia data are the main 
reasons for not using conventional databases [2]. 

In addition to the storage problem associated to using multimedia data in a conven-
tional database, the standard query system supported by conventional databases is 
also a major problem. For example, in case a user needs to find an image, the use of 
SQL language (Structured Query Language)-based queries, which were developed  
to be used for structured data, is only possible if based on metadata. However, the 
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content-based image retrieval (CBIR), which the query is based on the image charac-
teristics like, for example, color and shapes,  is an approach much more appropriate 
for a multimedia database, is still a challenging problem. The main reason for this is 
the difficulty in finding a representation technique for characterizes images which 
ensure a good compromise between representation and dimensionality [1]. 

In problems using medical images, where the data dimension is huge, a method 
that has proven effective if compared to many others is the so called Thumbnails [3]. 
This method is based on a simple algorithm that eliminates rows or columns from the 
original image in order to reduce its dimensionality [3], [4], [5]. 

Motived by the difficulty in finding an efficient representation technique for im-
ages and by the need to improve the results accomplished by the Thumbnails tech-
nique, this work proposes a novel method, based on the Self-Organized Map (SOM) 
Neural Network [6]. The method has the advantage of performing well for different 
ratios of image reduction and for colour images.   

The remainder of the paper is organized as follows: the image representation prob-
lem is discussed in Section 2. The proposed approach to image representation based 
on the SOM is presented in Section 3. Experimental results are presented and dis-
cussed in Section 4.  

2 The Image Representation Problem 

Image representation could be defined as the process of extracting characteristics that 
describe the content of an image, such as color, texture or shape. Thus, each image in 
an image database is represented by low-dimensional vectors using methods of fea-
ture extraction. Fig. 1 shows a schematic illustration of feature extraction. In the fig-
ure, hand and foot images are represented by features combined in a vector which is 
called a feature (or content or signature) vector (v ∈ ℜd). The feature vector has to 
maintain the main characteristics of an image in low-dimension, at the same time also  
 

 

Fig. 1. Illustration of a feature extractor to generate an image representation [5] 
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maintaining the discrimination of the class, in this example, foot and hand. The fea-
ture extraction is an essential part of a multimedia database [1], [2], [3], [4], [5]. 

There are many feature extraction techniques in the literature such Discrete Wave-
let Transform Tamura texture, Castelli texture, Discrete Cosine Transform, edge cha-
racteristics of the Canny detector and Thumbnails [6]. In experiments with medial 
images, the Thumbnails technique has shown good results for representation image 
[3], [4], [5]. After this, in the medical image context, this technique is considered as a 
baseline method, which is easily implemented and with satisfactory results in the 
literature. In the next subsection the Thumbnail process is quick introduced. 

2.1 Image Representation with Thumbnails 

The Thumbnail technique algorithm is a way of reducing the dimensionality of the 
data. In applications that do not require high quality (as it is not the case of medical 
applications, for example), the Thumbnails method does not deliver the best result, 
but allow for fast processing, when compared to more traditional methods for dimen-
sionality reduction, like Principal Component Analysis [8]. This higher speed to  
generate the feature vector is due to the simplicity of the method. The idea of the al-
gorithm is to remove rows and columns of the original image, depending on the de-
sired dimension reduction. In a simple example, with a grayscale image represented 
as a matrix where each element is the pixel value of the image (with 0 representing 
black and 255 representing white), one can decrease the size of an image to a quarter 
of its original size by removing one row and one column every two rows or columns.  

In general, an original image with width W and height H, when rescaled by N us-
ing Thumbnails, will generate a reduced image with width W/N and height H/N, as 
depicted in Fig. 2, for N = 2. In this example, if the image is transformed into a vec-
tor, the number of elements of the feature vector is reduced from 100 positions to only 
25 positions. Note that the rows and columns can be reduced either by removing 
every other row or column or by replacing each adjacent pair of rows or columns by 
its average value.  

 

 

Fig. 2. An example using Thumbnails to reduce by 4 the foot image 
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3 The Proposed Solution: SOM-Based Image Representation 

3.1 The Self-Organizing Map 

A Self-Organizing Map (SOM) consists of neurons located on a regular low-
dimensional grid, usually two-dimensional (2-D). The lattice of the 2-D grid is either 
hexagonal or rectangular. Assume that each input pattern from the set of patterns (X) 
xµ is defined as a real vector xµ

 = [x1, x2,…, xd]
T ∈ ℜd. Each neuron has a  

d-dimensional weight vector w = [w1,w2, …,wd]
T ∈ ℜd called a prototype [6].  

The SOM training algorithm is iterative. Initially, in t = 0, the weight vectors are 
randomly initialized, preferably from the input vectors domain [6]. At each training 
step, an input pattern xµ is randomly chosen from a training set (X). General distances 
between xµ (t) and all weight vectors wij, are computed, where i and j are the grid 
indices of the SOM Map. The winning neuron is the prototype closer to xµ (t) or the 
Best Match Unit (BMU). The BMU weight vector is updated, as well as the vector of 
weights of neighboring neurons, although with minor intensity (see [6] for the com-
plete SOM training algorithm). 

SOM is especially suitable for data survey because it has prominent visualization 
properties. It creates a set of prototype vectors representing the set of input patterns 
and carries out a topology-preserving projection of the prototypes from the n-
dimensional input space onto a low-dimensional grid. This ordered grid can be used 
as a convenient visualization surface for showing different features of the SOM (and 
thus of the input patterns); for example, its underlying cluster structure [5]. In this 
work, this topology-preservation property is explored to verify the distance relation-
ship between specific maps regions, which can be an interesting approach for image 
representation. This approach is developed in the next subsection.   

3.2 Image Representation Using SOM  

The image representation with the Thumbnails technique is performed with the pixel 
values of the reduced images. On the other hand, the image representation process 
using SOM is conducted by comparing the image converted into vector form to the 
weight vectors of the neurons of the map. 

In order to use the SOM, the map must be trained as follows: 
 

1. Each image in the database is converted to a vector xµ, which will form a matrix X 
of image vectors, called the training matrix. 

2. The training matrix is always shuffled so that the vector reading order does not 
influence the SOM training. 

3. The number of neurons in the SOM grid, i and j, is defined. This defines the  
reduction dimension for the image representation.  

4. The SOM map, finally, is trained  
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After training, each image vector xµ from the matrix X is again showed to the SOM. 
The Euclidean distance (or any alternative metric used by the SOM algorithm)  
between xµ and all weight vectors wij is measured. The matrix composed by the dis-
tances so calculated can then be used as an image representation, whose dimension is 
much smaller than the original image. In Fig. 3 there is a schematic example of this 
representation for a single image. 

 

 

Fig. 3. Schematic example of SOM image representation 

In summary, these are the steps to represent an image with SOM:  

1. A vector image is picked from the training matrix. 
2. The distance between this vector and the weight vectors is calculated. 
3. The distances so measured produce a series of values which is then taken as the 

image representation.  

The SOM–based approach for image representation, which is proposed herein, has  
the advantage of reducing the original image dimension in any desired scale, since the 
reduction is defined by the number of neurons in the SOM Map. In comparison, the 
Thumbnail technique is limited to work with dimensions that are multiple of two.  

For colour images, thare is further advantage in using the SOM-based representa-
tion, since all RGB bands are represented in a single step. On the other hand, for the 
Thumbnails-based representation, it is necessary to perform a reduction for each RGB 
band. 

4 Experimental Results 

The system was implemented in MATLAB, using the SOM Toolbox [8]. 
For the experiments two different databases were used. The first is a public data-

base available in Image Processing Place (http://www.imageprocessingplace.com/). 
This database is formed by monochromatic images of different objects with forms and 
their geometric transformations such as rotation, scale and translation. A sample of 3 
classes (apple, bone and mug) chosen from the 60 images is show in Fig. 4.  
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classification task by the k-Nearest Neighbor (k-NN) algorithm. The integer value k is 
taken to be 1 for all experiments. The correct classification results are used as a com-
parison metric. They are summarized in Table 1 and Table 2.  

Table 1. Classification results for Database 1 

Database 1 10×10 25×25 

 
Thumbnails 35.42% 35.42% 

SOM 81.25% 83.33% 

 
Note that the original image dimension for images in Database 1 is 64 x 64. For the 

10 x 10 representation, the image is resized to 2% of its original size and, for the 25 x 
25 representation, the original image is resized to 15%. of its original sizes. In both 
cases SOM-based technique outperforms Thumbnails. 

Table 2. Classification results for Database 2 

Database 2 10×10 25×25 

 
Thumbnails 31.25% 33.33% 

SOM 35.42% 41.27% 

 
In the case of Database 2, as shown in Table 2, the SOM representation again out-

performs the Thumbnails technique in both dimensions, 10 x 10 and 25 x 25. Note 
however that, the low classification performance for both techniques can be the result 
of the high index of image deformation when applying rotation, translation and noise. 
In this process, a range between 20 and 50 was considered in each deformation, where 
using an index of 30 for a square object means that the square can be translated 30 
points (in north, south, east or west), rotated in 30 degree (positive or negative), 
scaled in 30 points (in width or height) and noised in such a way that the value of 30 
pixels can be changed.  

5 Conclusions 

This work shows a new approach to image representation based on the SOM neural 
network. It is shown that  this is a real alternative to Thumbnails, which is considered 
as a reference method when used in medical images. The two drawbacks of this refer-
ence method are its difficulty in working with images in different relations of width 
and height and when these dimensions are not a multiple of 2. Moreover, for using it 
in colour images, a representation for each RGB channel has to be developed.  
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On the other hand, the SOM-based representation works with images that display 
any relation between width and height sizes and does not need any additional 
processing when working on colour images. In addition, this approach positively  
explores one of the most discussed issues about the SOM: the map size. This value is 
used here as a parameter that defines the image representation size. 

Furthermore the experimental results using two databases show that the SOM-
based representation achieves the best results. In order to compare the results, the  
k-NN classifier was used, with k=1, and the correct classification was used as a  
comparative index. 

For a real database (Database 1), with 3 images classes, the SOM and Thumbnails 
image representations were experimented in two versions: 10 x 10 and 25 x 25. 
These representations amount to a reduction to 2% and 15% of the original image, 
respectively. In both cases the difference between classification results from Table 1 
showed that the SOM-based performed 45.83% and 47.91% respectively better than 
Thumbnails. 

Another database (Database 2) was generated for this study with different shapes 
and geometric transformation. As previously discussed, the database generation was 
designed to represent a hard problem of image representation. In this case, the differ-
ences between classification results for SOM-based representation were slightly better 
than for Thumbnails (4.27% and 7.94%), for the case of original images of dimension 
10 x 10 and 25 x 25, respectively.  

As future work, we intend to experiment with a new database, where the geometric 
transformation steps are performed over a smoother range of values, not only over a 
constant value, as in Database 2. Thus we will get a better idea of the amount of de-
formation that each representation technique can stand. Moreover, other databases 
with more classes and examples as well as colour images could be considered. 

Furthermore, we intend to explore other dimension sizes for the SOM map, run-
ning several experiments exploring new dimensions, varying the dimension values 
smoothly from lower than 10 to more than 25 (the values used in the current work).  
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Abstract. Halftoning is the process used to convert a grayscale image into 
another binary image such that the binary image appears to be similar to grays-
cale when observed from a certain distance. This process is useful for many 
printers which are binary in nature, once it allows the printer to deposit the ink 
as series of dots of constant darkness to print grayscale images. Inverse Halfton-
ing is the reconstruction of grayscale image from its halftoned version. This 
process can be used in several applications when some image processing  
operation requires the original grayscale image and only its binary version is 
available. In this paper we present a method for inverse halftoning using Self-
Organizing Maps that is able to reconstruct grayscale images from their half-
toned versions generated by dispersed-dot ordered dithering and error diffusion 
algorithms. Obtained results demonstrate that the proposed method is a good al-
ternative for the investigated purpose. 

Keywords: Image processing, Self-organizing maps, Inverse halftoning,  
Ordered dithering, Error diffusion. 

1 Introduction 

Halftoning is the process that converts a grayscale image G in a corresponding binary 
image B such that B resembles G when viewed from a certain distance. Inverse Half-
toning is the reverse process, that is, reconstruction of grayscale image from its half-
toned version [1,2]. 

Halftoning algorithms are widely used for bilevel output devices, such as a mo-
nochrome display or a laser printer. For example, in most laser printers currently 
used, for reproducing grayscale images, it is necessary to generate a pattern of tiny 
dots, distributed according to the used halftoning method, to give the impression of an 
image with different gray levels [1,3].  

Furthermore, some operations such as enlargement, reduction, rotation, adjusting 
of brightness and contrast, edge enhancement, noise suppression, texture detection 
and segmentation, among others, are made easier with grayscale images [3]. Thus, for 
various situations, it is necessary converting halftone images to grayscale images 
prior to any further processing.  

A very simple inverse halftoning method is a low-pass filter such as Gaussian con-
volution. However, this process has the disadvantage of blurring edges in the image. 
Thus, a good halftoning process should be better than Gaussian filter. 
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In the last two decades several authors have proposed different halftoning methods 
in the literature using techniques such as look-up-table (LUT) [4,5], decision trees [6], 
supervised artificial neural networks [7], statistics [3], combination of linear filters 
with stochastic models [8], sparse representation [9], among others. 

In this paper we have proposed a method for inverse halftoning using Self-
Organizing Maps (SOM) that is able to reconstruct grayscale images from their  
halftoned versions generated by dispersed-dot ordered dithering and error diffusion 
algorithms. Obtained results indicate that the proposed method is a good alternative 
for the investigated purpose. 

2 Materials and Methods 

2.1 Halftoning and Inverse Halftoning Processes Definitions 

There are several methods used for generating halftone images including error diffu-
sion (Fig. 1b) and ordered dithering (Fig. 1c and Fig. 1d). The latter can generate 
halftone images with dispersed or clustered dots [8]. 

Given a grayscale image G , with real values between 0 and 1, halftoning can be 

mathematically formalized as a process that builds a halftoned binary image B from 
G , such that:  

),(),( jiGjiB ≈  (1) 

where ),( jiB  is the average of values around the pixel ),( ji , considering a  

window W. 
 

  

a. Original grayscale 
image 

b. error diffusion 
c. dispersed-dot or-

dered dithering 
c. clustered-dot or-

dered dithering 

Fig. 1. Examples of halftoned versions of a grayscale image 

Inverse halftoning consists in reconstructing an estimated grayscale image Ĝ from 

B , such that: 

),(),(ˆ jiGjiG ≈   (2) 

In halftoning process, regardless of used method, some information of original grays-
cale image is lost. Thus, by making the inverse halftoning, the resulting image is an 
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approximation of original image. The problem is that not always the original image is 
known. 

For this reason, given a halftone image B , we cannot recover the grayscale image 

Ĝ  exactly the same as G . To express the degree of proximity between Ĝ and G , a 
similarity measure such as mean squared error (MSE), peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM) have been widely used. PSNR and MSE are 
metrics that simply estimates error differences between original and reconstructed 
images, not being able to identify if calculated differences cause improvement or 
degradation in terms of quality, while SSIM is based on the quality perceived by hu-
man viewers [10]. 

2.2 Self-Organizing Maps 

Self-Organizing Maps or Kohonen Neural Network is composed of two layers (input 
and output) and employs an algorithm for unsupervised learning to translate the simi-
larities of the patterns presented in the input layer in relations of distance between the 
neurons that compose its output layer [11,12]. 

The Self-Organizing Maps works basically as follows: when a pattern is presented 
to the network input layer, a neuron of the output layer is chosen to represent this 
pattern by means of a competitive process. 

During the training phase, the network increases the similarity of chosen neuron 
and their neighbors to the pattern presented in the input layer. Thus, it is constructed a 
topological map in which the output layer neurons that are topologically close re-
spond similarly to input patterns with similar characteristics. 

2.3 Experimental Setup 

In the experiments described in this paper we test the proposed method, called SOM-
IH, with halftone images generated by error diffusion and dispersed-dot ordered  
dithering methods. In both cases, we used small windows (3×3 and 5×5) and three 
sample images (Fig. 2) for training SOM. We glued the three sample images to com-
pose a unique training image with size 2912×1296, containing different textures, 
brightness and contrast.  

In the sequence, we generated from training image, two halftoned versions by ap-
plying error diffusion and dispersed-dot ordered dithering methods. From these two 
halftone images we extracted instances to compose the two training sets, for each 
halftoning method, taking into account windows of 3×3, 4×4 and 5×5. Each training 
set was composed by 9,000 instances that are randomly chosen. The input layers of 
build networks were composed by 9 ,16 and 25 neurons.  

In the experiments we also evaluated the efficiency of SOM with respect to the 
number of neurons in the output layer. Thus, we set output layers with sizes 16×16 
20×20 and 24×24. 
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Fig. 2. Image used for training SOM 

 
The algorithms employed in the experiments were implemented in C/C++ language 

using Proeikon library [13]. 

3 Inverse Halftoning Using Self-Organizing Maps  

We refer to the method of inverse halftoning using SOM as SOM-IH. The proposed 
method consists of an operator ψ  (from binary image to grayscale image) restricted 

to a window (W-operator) which is a function that maps B to Ĝ . Thus, the SOM 
algorithm should play the role of the operator ψ  where: 

]1,0[}1,0{:ψ →   (3) 

Figure 3 illustrates the idea of reconstruction estimated grayscale image from a half-
tone binary image. 

Halftone image

Input layer

output layer

Reconstructed
grayscale image

 

Fig. 3. Schematic diagram of SOM -IH 

The reconstruction process of Ĝ from halftone image B can be described as fol-
lows: for each pixel of B , besides the pixel itself, it is also considered their neighbors 
within a window W as an input vector of  SOM. Thus, by means of SOM algorithm, 
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the pattern presented in the input layer (a binary vector) is mapped into a gray level 
according to activated neuron in the output layer. 

4 Experimental Results 

The results of tests with SOM-IH, considering windows (W) of size 3×3, 4×4 and 
5×5, are summarized in Tables 1, 2 and 3, respectively.  The quality of reconstructed 
grayscale images by SOM-IH were measured in terms of PSNR and SSIM.  

Table 1. Obtained results with SOM-IH considering window of size 3×3, varying the number 
of neurons in the output layer 

 Image 

Output layer with 
16×16 neurons 

Output layer with 
20×20 neurons 

Output layer with 
24×24 neurons 

PSNR SSIM PSNR SSIM PSNR SSIM 

Error diffusion 
 

Airplane 23.268 0.236 23.851 0.252 23.896 0.254 

Goldhill 23.240 0.301 23.809 0.324 23.892 0.329 

Lenna 23.387 0.243 24.101 0.263 24.051 0.263 

Mandrill 20.042 0.382 20.656 0.428 20.425 0.413 
Peppers 22.809 0.209 23.326 0.227 23.360 0.228 

Average 22.549 0.274 23.149 0.299 23.125 0.297 

Dispersed-dot 
ordered dithering

Airplane 21.718 0.204 21.800 0.204 21.650 0.203 

Goldhill 21.645 0.234 21.692 0.230 21.726 0.230 

Lenna 22.413 0.196 22.449 0.195 22.430 0.194 

Mandrill 19.049 0.311 19.316 0.319 19.175 0.309 

Peppers 21.734 0.165 21.765 0.165 21.838 0.165 

Average 21.312 0.222 21.405 0.223 21.364 0.220 

General average 21.931 0.248 22.277 0.261 22.244 0.259 
 
 
Using a microcomputer core 3, 2.13 GHz, with 4GB of RAM, the processing time 

spent by SOM-IH for reconstruction each grayscale image with size 512×512 varies 
from 2.5 to 7.0 seconds, depending on the architecture of SOM. 

According to Tables 1 to 3, the best results of SOM-IH were obtained for haftone 
images generated with error diffusion method, W of size 3×3 and network with output 
layer of size 20×20 neurons. Considering W with size 3×3, the results of SOM-IH 
were lower for ordered dithering haftoning method, in most cases. However, consi-
dering W of size 4×4 and 5×5 the results for ordered dithering method was increased. 

 We also conducted experiments with larger W, for example 7×7, but it was evi-
dent that SOM-IH showed no improvement in the quality of reconstructed images. 
The same observation could be made in cases of networks with output layers less than 
16×16 and greater than 24×24 neurons. 
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Table 2. Obtained results with SOM-IH considering window of size 4×4, varying the number 
of neurons in the output layer 

 Image 

Output layer with 
16×16 neurons 

Output layer with 
20×20 neurons 

Output layer with 
24×24 neurons 

PSNR SSIM PSNR SSIM PSNR SSIM 

Error diffusion
 

Airplane 19.909 0.148 21.060 0.163 21.007 0.165 

Goldhill 20.937 0.171 21.523 0.182 21.605 0.190 

Lenna 20.816 0.151 21.443 0.161 21.423 0.168 

Mandrill 18.006 0.193 18.334 0.208 18.363 0.213 
Peppers 20.408 0.133 20.966 0.141 21.096 0.150 

Average 20.015 0.159 20.665 0.171 20.699 0.177 

Dispersed-
dot ordered 
dithering 

Airplane 22.642 0.196 22.495 0.203 22.331 0.197 

Goldhill 22.876 0.245 23.380 0.248 23.206 0.242 

Lenna 23.131 0.209 23.754 0.216 23.137 0.207 

Mandrill 19.254 0.271 19.573 0.277 19.364 0.275 

Peppers 22.410 0.182 22.949 0.191 22.661 0.184 

Average 22.063 0.220 22.430 0.227 22.140 0.221 

General average 21.039 0.190 21.548 0.199 21.419 0.199 

Table 3. Obtained results with SOM-IH considering window of size 5×5, varying the number 
of neurons in the output layer 

 Image 

Output layer with 
16×16 neurons 

Output layer with 
20×20 neurons 

Output layer with 
24×24 neurons 

PSNR SSIM PSNR SSIM PSNR SSIM 

Error diffusion
 

Airplane 20.547 0.136 20.337 0.139 20.806 0.149 

Goldhill 20.353 0.132 20.290 0.135 20.828 0.150 

Lenna 20.140 0.127 20.291 0.129 20.709 0.145 

Mandrill 17.591 0.130 17.579 0.134 17.802 0.144 
Peppers 19.802 0.118 19.748 0.117 20.188 0.131 

Average 19.687 0.129 19.649 0.131 20.067 0.144 

Dispersed-
dot ordered 
dithering 

Airplane 23.047 0.201 23.246 0.206 24.046 0.233 

Goldhill 23.525 0.245 23.596 0.243 23.703 0.251 

Lenna 24.068 0.216 24.285 0.221 24.404 0.234 

Mandrill 19.508 0.228 19.538 0.246 19.527 0.256 

Peppers 23.247 0.195 23.708 0.201 23.727 0.213 

Average 22.679 0.217 22.875 0.223 23.081 0.237 

General average 21.183 0.173 21.262 0.177 21.574 0.191 

 
Figure 4 shows examples of results of SOM-IH considering the best parameters.   
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Original images 

  
Reconstructed images

Fig. 4. Examples of SOM-IH results 

5 Conclusions 

In this paper we presented a method based on Self-Organizing Maps to reconstruct 
grayscale images from their halftoned versions generated by ordered dithering and 
error diffusion algorithms. In order to evaluate the proposed method we conduct a set 
of experiments and used PSNR and SSIM to measure the quality of reconstructed 
grayscale images.  

From the obtained results we can conclude that SOM with 9 neurons in the input 
layer and 400 neurons in the output layer, disposed in a matrix of size 20×20, 
represents a good alternative for the investigated purpose. However, the SSIM index-
es presented in Tables 1 to 3 shows that the qualities of reconstructed images need to 
be increased.   

We believe that the results of the SOM-IH can be improved by making a refine-
ment in the training, for example, using Learning Vector Quantization algorithm. 
Another alternative is to select only the most important attributes for composing the 
training sets. This could be done by means of Genetic Algorithms or Rough Sets 
Theory. Currently we are investigating both ideas. 
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Abstract. This paper presents a restoration model with inference ca-
pability of self-organizing maps. Self-organizing maps have been studied
principally for the ordering process and the convergence phase of weight
vectors. As a novel approach of self-organizing maps, a restoration model
for a defective image is proposed. The model creates a map containing
one unit for each pixel. Utilizing pixel values as input, the inference
for lost pixels is conducted by self-organizing maps. The inference of an
original image proceeds appropriately since any pixel is influenced by
neighboring pixels corresponding to the neighboring setting. Consequen-
tially, images with high quality are constituted by restoring lost pixels.
Experimental results are presented in order to show that our approach
is effective in quality for restoration of lost pixels.

Keywords: self-organizing maps, inference, restoration, lost pixel.

1 Introduction

Self-organizing maps realize the network with the local and topological ordering
by utilizing the mechanism of the lateral inhibition among neurons. Neighbor-
ing neurons usually respond to neighboring inputs [1, 2]. For the localized inputs
obviously, the outputs react locally. Huge amounts of information are locally rep-
resented and their expressions form a configuration with topological ordering. As
an application of self-organizing maps, for example, there are the combinatorial
optimization problem, pattern recognition, vector quantization, and clustering
[3]. These are useful when there exists redundancy among input data. If there
is no redundancy, it is difficult to find specific patterns or features in the data.
Although a number of self-organizing maps exist, they differ with respect to the
field of application. For self-organizing maps, the ordering and the convergence
of weight vectors have been mainly argued [4]. The former is a topic on the for-
mation of topology preserving map, and outputs are constructed in proportion
to input characteristics [5, 6]. For instance, there is the traveling salesman prob-
lem as an application of feature maps, which is possible to obtain fine results by
adopting the elastic-ring method with many weights compared to inputs [7, 8].
The latter is an issue on the approximation of pattern vectors, and the model

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 153–162.
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expresses enormous information of inputs to a few weights. It is especially an im-
portant problem for the convergence of weight vectors, and asymptotic distribu-
tions and quantitative properties for weight vectors have been mainly discussed
when self-organizing maps are applied to vector quantization [9–12]. In the mean-
time, the proposed model is inspired by image restoration using self-organizing
maps [13, 14] which infers an original image from a degraded image including
random-valued impulse noise. For image restoration, the smoothing methods,
such as the moving average filter and the median filter, have been well known
as a plain and useful approach [15]. From the standpoint of distinct ground, the
inference of original image has been conducted by the model of Markov random
field formulated statistically, based on the concept that any pixel is affected by
neighboring pixels [16, 17].

In this study, a restoration model with inference capability of self-organizing
maps is described. Our model forms a map in which one element corresponds
to each pixel. The inference for lost pixels is conducted by self-organizing maps
using pixel values as input. As any pixel is influenced by neighboring pixels
corresponding to neighboring setting, the inference of an original image is ap-
propriately promoted. Consequentially, images with high quality are constituted
by restoring lost pixels. Experimental results are presented in order to show that
our approach is effective in quality for restoration of lost pixels.

2 Self-Organizing Maps

For self-organizing maps, Kohonen’s algorithm exists and is known as a popular
and utility learning. In this algorithm, the updating of weights is modified to
involve neighboring relations in the output array. The algorithm is applied to the
structure as shown in Fig. 1. In vector space Rn, input x which is generated on
probability density function p(x) is defined. Input x has the components x1 to
xn. Output unit yi is generally arranged in an array of one- or two-dimensional
maps and is completely connected to inputs via wij .

Let x(t) be an input vector at step t and let wi(0) be weight vectors at
initial values in Rn space. For given input vector x(t), we calculate the distance
between x(t) and wi(t), and select the weight vector as winner c minimizing the
distance. The process is written as follows:

c = argmin
i
{‖x−wi‖}, (1)

where arg(·) gives the index c of the winner.
With the use of winner c, weight vector wi(t) is updated as follows:

Δwi =

{
α(t) (x−wi) (i ∈ Nc(t)),
0 (otherwise),

(2)

where α(t) is the learning rate and is a decreasing function of time (0 < α(t) < 1).
Nc(t) has a set of indexes of topological neighborhoods for winner c at step t.

The adaptive learning algorithm evaluates unknown probability density func-
tion p(x). Then weight vectors represent centroids of each clustering set.
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Fig. 1. Structure for self-organizing maps

Generally, with respect to the above learning for evaluating results, cost function
H exists as follows:

H =
k∑

i=1

∫
Si

d(x,wi)p(x)dx, (3)

where k is the number of clustering set represented by partition space Si and
d(x, wi) is the square error of the Euclidean distance between input vector x
= (x1, x2, · · · , xn) and weight vector wi = (w1i, w2i, · · ·, wni), i.e., d(x, wi)
= ‖x−wi‖2.

For discrete data, for weight vectors which result from learning, a distortion
error is calculated. Let Di be the i-th partition error as the following equation.

Di =
∑
x∈Si

d(x,wi). (4)

Mean square error E is given continuously as follows:

E =

k∑
i=1

Di. (5)

Eq. (3) corresponds to Eq. (5) [18], as the sequence of input vectors x(t) becomes
stationary and ergodic [19]. Here the dimension of input vector and the total
number of input vectors are omitted in this study.

As described above, weights are adapted by self-organizing maps while they
are affected with neighboring relations. Thus it is possible to form topology
preserving map and to approximate pattern vectors. Furthermore cost function
exists and is able to evaluate the accuracy for weights after learning.
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Input Image Inferred Image

χ r
c

Fig. 2. Correspondence between input image and inferred image

3 Restoration of Lost Pixels

When self-organizing maps are adapted to the traveling salesman problem, many
weights compared to inputs are used. By disposing an array of one-dimensional
map for output units, fine solutions based on the position of weights after learning
have been obtained approximately. In the meantime, when self-organizing maps
apply to vector quantization, a few weights compared to inputs are utilized for
the purpose of representing huge amounts of information, and a number of dis-
cussions have been made on asymptotic distributions and quantitative properties
for weight vectors.

In this section, a learning algorithm of self-organizing maps for restoration
of lost pixels is presented with the same number both of inputs and weights
for inferring an original image from a yielded image. In order to restore a de-
fective image, the proposed algorithm is inspired by image restoration using
self-organizing maps [13, 14] which infers an original image from a degraded
image including random-valued impulse noise. The purpose of this study is to
infer the original image by restoring lost pixels. Here, input χ as the yielded
image and weight ri as the inferred image are defined. A map forms that one
element reacts for each pixel, and image inference is executed by self-organizing
maps using pixel values as input. We assume that the positions of lost pixels are
already known.

To begin with, the value of ri is randomly distributed near the central value
of gray scale as initial value. Next, input image with l×m size is given with the
positions of lost pixels. Input χ as the scalar value of gray scale is arbitrarily
selected, except for lost pixels, and let rc be a winner of the inferred image
corresponding to χ. As shown in Fig. 2, both positions χ and rc agree under
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Fig. 3. Distribution of topological neighborhoods

the input image and the inferred image. Therefore, inferred image ri is updated
as follows:

Δri =

{
α(t)(χ − ri) (i ∈ Nc(t)),
0 (otherwise).

(6)

where the notations are changed from Eq. 2, because we treat the scalar values
of gray scale.

Figure 3 shows an example of the arrangement of topological neighborhoods.
The circle signifies the weight and the line which connects the circles denotes the
topological neighborhood. In this figure, the black circle expresses the weight of
winner c. As the set of topological neighborhoods changes Nc(t1), Nc(t2), and
Nc(t3) when the time varies t1, t2, and t3, respectively, it is shown that the num-
ber of topological neighborhoods decreases with time. By obtaining information
of the neighboring pixels, it is possible to complement lost information about
pixels.

Pixel restoration by self-organizing maps (PRSOM) algorithm is presented as
follows.

[PRSOM algorithm]

Step 1 Initialization:
Give initial weights {r1(0), r2(0), · · ·, rlm(0)}, input image {χ1, χ2, · · ·,
χlm} including lost pixels, and maximum iteration Tmax. Set t ← 0.

Step 2 Learning:
(2.1) Choose input χ as gray scale at random, except for lost pixels
(2.2) Select rc corresponding to input χ.
(2.3) Update rc and its neighborhoods according to Eq. (6).
(2.4) Set t ← t+ 1.
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Step 3 Construction of restored image:
If the lost pixel is χi, the restored pixel is ri, otherwise it is χi

Step 4 Condition:
If t = Tmax, then terminate, otherwise go to Step 2.

In this study, a peak signal to noise ratio (PSNR) P is used as the quality
measure after learning for restoration of lost pixels. PSNR P is presented as
follows [20]:

P = 10 log10(σ/E) [dB] (7)

(a) Degraded image i (b) MF

(c) MA (d) PRSOM

Fig. 4. Degraded image i with 512×512 size and 256 gray-scale, and examples of results
for the median filter (MF), the moving average (MA), and the proposed approach
(PRSOM)
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where σ and E are the square of gray-scale length, i.e., σ = (Q − 1)2 as a gray
scale Q, and mean square error between the original image and the inferred
image, respectively.

4 Numerical Experiments

In the numerical experiments, image restoration is performed to infer the original
image with the size 512× 512 and gray scale 256. The defective image contains
40% lost in comparison with the original image as shown in Fig. 4 (a). We
assume that the positions of lost pixels are already known. Initial weights are
randomly distributed near the central value of gray scale Q. Parameters are
chosen as follows: l = 512, m = 512, Q = 256, M = 100, Tmax = Mlm, and
N(t) = N0 − �N0t/Tmax�.

For image restoration, Fig. 4 (b), (c), and (d) show examples of results for
the median filter (MF), the moving average (MA), and the proposed approach
(PRSOM), respectively. Here the smoothing methods of MF and MA have 3× 3
mask. The smoothing methods restore using remained pixels and values resulted
by these insert only in the lost pixels. As a result, MF, MA, and PRSOM are
almost same in appearance as shown in the figures. According to the technique
given in this study, the defective image is restorable for PRSOM.

As an example of another image, Fig. 5 (a) shows the defective image. As well
as the above-mentioned image, the defective image contains 40% lost compared
to the original image. The condition of the computation is equal to that of the
earlier description. According to the present algorithm, a result of PRSOM is
shown in Fig. 5 (b). The initial neighborhood is N0 = 2. It is proven that the
defective image can be also restored in this case.

(a) Degraded image ii (b) PRSOM

Fig. 5. Degraded image ii with 512×512 size and 256 gray-scale and example of result
for the proposed approach (PRSOM)
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Fig. 6. PSNR and loss rate for each initial neighborhood
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Figure 6 shows the effect of loss rate on accuracy in PSNR P for each of
initial neighborhood N0 = 1, 2, 3, 4, 5 for images i and ii. In this case, P yields
the maximum when N0 = 2 for both images i and ii. Figure 4 (d) was restored
by this value.

Table 1 summarizes PSNR for results of the proposed approach (PRSOM)
compared to the median filter (MF) and the moving average filter (MA). It is
proven that PRSOM excel MF and MA for both images i and ii.

Table 1. PSNR for results of MF, MA and PRSOM. (Unit: dB)

Image i ii

Loss rate 30% 35% 40% 45% 50% 30% 35% 40% 45% 50%

MF 35.7 34.7 33.7 32.7 31.8 26.5 25.6 24.9 24.1 23.5
MA 36.7 35.8 35.0 34.0 33.1 27.2 26.5 25.8 25.1 24.5

PRSOM 37.1 36.2 35.4 34.6 33.8 27.7 26.9 26.3 25.6 25.0

5 Conclusions

In this study, a restoration model with inference capability of self-organizing
maps has been described and its validity has been shown through numerical
experiments. Our model formed a map in which one element corresponds to
each pixel. The inference of lost pixels was conducted by self-organizing maps
using pixel values as input. As any pixel was influenced by neighboring pixels
corresponding to neighboring setting, the inference of an original image was
appropriately promoted. As a result, images with high quality were constituted
by restoring lost pixels. Finally, for the future works, we will study more effective
techniques of our algorithms.
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Abstract. This paper proposes a method to visualize different regions into im-
age of biospeckle patterns using Self-Organizing Maps. Images are obtained 
from sequences of laser speckle images of biological specimens. The dynamic 
speckle is a phenomenon that occurs when a beam of coherent light illuminates 
a sample in which there is some type of activity, not visible, which results in a 
variable pattern over time. Self-Organizing Maps have shown an efficient  
behavior for the identification of regions according to the activity of the phe-
nomenon involved. In this paper we show results obtained in the segmentation 
of regions in corn seeds, particularly the detection of the floury zone. 

Keywords: Dynamic Laser Speckle, Biospeckle, Self-Organizing Maps, Corn 
seed. 

1 Introduction 

The laser dynamic speckle is an optical phenomenon produced when a laser light is 
reflected from an illuminated surface undergoing some kind of activity. The activity is 
evident when the sample changes its properties due to diverse physical reasons. This 
behavior can be observed in biological process such as seeds viability [1], bacteria 
activity [2], fruits bruising [3], and non-biological processes such as drying of paints 
[4], and corrosion [5].  

Dynamic laser speckle patterns have been used to assess issues of interest in differ-
ent fields, like biology (seed analysis, animal sperm motility), medicine (capillary 
blood flow), industry (discovering bruising in fruits, painting drying, monitoring of 
ice cream melting, yeast bread, gels), etc. Different descriptors have been proposed to 
evaluate the activity; they are characterized by their computational cost and aptitude 
to detect activity in particular cases [6]. A novel Descriptor based in Fuzzy Granulari-
ty (FGD) has been proposed by Dai Pra et al. [7]. It exhibits low computational cost 
and good performance when applied to discover different dynamic phenomena [4]. 
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Over the years, corn was finding different uses depending on the physico-chemical 
composition that defines the type of grain. The quality of maize grain is associated 
with both physical composition, which determines the texture and hardness, as to their 
chemical composition, which defines the nutritional and technological properties. The 
kernel of corn consists of four main parts, where the endosperm is 80-85%, 10-12% 
embryo, the pericarp 5-6% and 2-3 percent aleurone. The chemical composition of the 
endosperm is what sets different grain shapes and physical characteristics, which 
enable the commercial rates [8, 9]. 

There has been an explosion of interest among seed corn buyers about the differ-
ences in the type of starch found in hybrids. What these discussions are referring to is 
the amount of floury (also called soft or dent) endosperm versus vitreous (also called 
hard or flinty) endosperm [10]. 

The method commonly used to assess the proportion of hard endosperm is the flo-
tation test [11]. An aqueous solution of sodium nitrate is used, achieving a specific 
gravity of 1.25 to water kept at a temperature of 35 °C. This method allows compar-
ing the density of various batches of corn kernels; it is based on the principle that the 
hard grains are of greater density and therefore such grains float in lower proportion 
than the grains of lower density in the solution of sodium nitrate. 

Quantifying the floating grains does not allow determine the amount of endosperm 
starchy endosperm and vitreous grains presenting a given sample. That is why this 
paper entered the optical field to determine the possibility of using the method of 
speckle in such a disquisition.  

Computational Intelligence methodologies have been previously used for 
processing speckle image sequences. The design of decision models with Artificial 
Neural Networks, Fuzzy Granular Computation and Genetic Algorithms is addressed 
in [12]. Self-Organizing Maps (SOM) were used to characterize a chemotaxis assay  
in [13]; where regions were neatly differentiated according to the bacterial motility 
within the sample. In [14] SOMs were proposed as clustering methods, when the sen-
sitivity of the activity measurement of dynamic speckle images needs to be improved, 
by using the mean energy of the wavelet coefficients of the intensity series  as a set 
of descriptors .  

In this work we propose the use of time domain descriptors together with SOMs to 
discriminate the speckle dynamic activity of the endosperm embryo. The aim is to 
provide a tool to be used jointly with digital image processing methodologies to de-
termine areas of the corresponding endosperm fractions. The activity of the endos-
perm is focused on its two majority parties (floury and vitreous endosperm), and the 
issue of successfully automating the identification of these areas would be of potential 
importance for trade and industrialization. 

2 Methodology 

In this section we propose a SOM-based model that uses several descriptors (features) 
of laser speckle patterns to identify areas of corn seeds images. 
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2.1 Equipment Setup, Signal Acquirement, and Feature Extraction 

Assays were performed in the laboratory belonging to the Center of Optical Research 
(CONICET-CIC CIOp). They were performed on maize grains known at industry as 
flint, on 10 specimens from the same sample. To carry out the measures, every grain 
of corn was wet for 12 hours, then cut them lengthwise and cut surface. They were 
illuminated with an expanded laser attenuated He-Ne (10 mW) at room temperature 
(approx. 20 °C). Using a CCD camera and a computer with digital image processor, a 
sequence of 300 images for each sample tested was recorded and filmed at 8 bits reso-
lution and 400 x 400 pixels size, with sampling frequency of approximately 1 Hz. Fig. 
1 shows a schematic of the experimental unit used. 

Intensity from each image pixel of the image stack was converted into a time series 
(Time History Speckle Patterns, THSP) to be processed by computing different de-
scriptors, as shown in Fig. 2. So, the feature extraction was performed over the time 
series of intensity level in a pixel wise basis, computing numerical descriptors for 
every pixel location. As stated by Trivi [16] the speckle is a stochastic effect and time 
series of laser speckle patterns are the measurable evidence of this stochastic process.  

 

Fig. 1. Optical setup 

 

Fig. 2. Left: Image stack, where a time series of laser speckle pattern of the (x,y) pixel in N 
images is pointed. Right: Time series of the intensity variation as the dynamic speckle pattern 
of a (x,y) pixel. 
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There are many descriptors that have been developed to characterize biospeckle 
[1]. We propose the use of three descriptors that deal with the time domain, in order 
to reduce computational cost, compared with those processed signals in the frequency 
or time-frequency domains. They are the Average of Subtraction of Consecutive Im-
ages, the Dynamic Range Descriptor and the Fuzzy Granular Descriptor.  

Subtraction Average of consecutive pixel intensities 
One of the simplest descriptor is the Subtraction Average (SA) of two consecutive 
elements of the time speckle pattern [6].  

 
1

1
1

( , ) ( , ) 1
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k k
k

SA I x y I x y N
−

+
=

= − − , (1) 

where ( , )x y  is the image pixel location and N is the amount of images stacked. 

Dynamic Range Descriptor 
Dynamic Range descriptor was computed as the difference between the maximum 
and the minimum value of the intensity in each evaluated time series. The potential of 
this feature lies in its speed and ability to discriminate regions of coarse different 
activity [8]. 

 { } { }
1,1,

max ( , ) min ( , )k kk Nk N
DR I x y I x y

==
= −  (2) 

Fuzzy Granular Descriptor  
The Fuzzy Granular algorithm is based on granular computing. It can be applied to 
both stationary and non-stationary cases, allowing monitoring the phenomenon in 
almost real time. According to the histogram of the image stack, different types of 
granules are identified; they are detected and counted, giving a descriptor that weights 
the series changes through the number of granules in a fixed time lapse [7]. 

The fuzzy sets theory, making reference to vague and overlapped concepts, allows 
defining granules with this property. To generate information granules several fuzzy 
sets are defined into the intensity values domain of the THSP. For intensity values

( , )I x y , a fuzzy set is defined by a membership function ( ( , ))I x yμ  that takes gra-

dual values in the real interval [0,1] (Eq. 3). 
Trapezoidal functions darkμ , mediumμ  and lightμ with media overlapping are 

adopted, where: 

 { }( ( , )) [0,1], with , ,c I x y c dark medium lightμ ∈ ∈ . (3) 

Each granule of ( , )I x y  signal is defined as a continuous sequence of elements be-

longing to the same intensity concept. The Fuzzy Granular Descriptor is the result of 
applying Eq. 4 to each ( , )I x y  signal. 
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2.2 Pseudo-coloring by Self-Organizing Maps 

The Self-Organizing Map proposed by Kohonen [17] is a popular non supervised 
neural network model. A SOM quantizes the data space of training data and simulta-
neously it performs a topology-preserving projection of the data space onto a regular 
neuron (or cell) grid. 

SOM structure is usually a regular 2-dimensional grid of neurons, though they can 
be arranged in 1-dimensional (line) or 3-dimensional (space). Considering D-
dimensional input data, each neuron i, is connected to the inputs by D weights. From 
another point of view, these weights can be seen as D-dimensional reference vectors 
contained into the cells. The set of reference vectors is called the SOM codebook. 
Neurons of the map are related to adjacent neurons only by a neighborhood functional 
definition. There are no weights connecting neurons each other. 

During each training step, one sample vector from the input data set is taken ran-
domly and a similarity measure is computed between the input vector and all the co-
debook vectors. The cell whose weight vector has the greatest similarity with the 
input sample is selected as the Best-Matching Unit (BMU). The similarity is usually 
defined by means of a distance measure, typically Euclidean distance.  

After finding the BMU, the codebook is updated. The reference vectors of the 
BMU and its topological neighbors (according to the neighborhood function) are 
changed in order to be “closer” to the input vector in the input space. This adaptation 
procedure stretches the BMU and its topological neighbors towards the sample vector. 
The adaptation is given by: 

 ( 1) ( ) ( ) ( ) ( ) ( )j j ji jW n W n n h n X n W nη  + ← + −  , (5) 

where n is the iteration number, j is the neuron index that is considered in the current 
iteration, jW  is the prototype vector of cell j, ( )nη  is a learning rate, ( )jih n   is the 

neighborhood function defined centered on BMU, and ( )X n  is the vector of the  

speckle patterns presented . Usually, both learning rate and the neighborhood function 
radius are decreasing as iterations progress. 

Once trained, a SOM offers different ways to be visualized and analyzed. A matrix 
of distances between the codebook vectors of the cells and their neighbors is widely 
used [18]. Data samples can be projected onto the SOM by their BMU. Similar data 
will be projected in near cells. 

In order to evaluate the quality of the map, two kinds of errors are considered: the 
quantization error and topographic error [19]. They tend to minimize when the map 
vectors perform an organized projection of the training pattern according to a similari-
ty criterion.  
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Abstract. A new approach is proposed to visualize online the training of learn-
ing vector quantization algorithms. The prototypes and data samples associated
to each receptive field are projected onto a two-dimensional map by using a non-
linear transformation of the input space. The mapping finds a set of projection
vectors by minimizing a cost function, which preserves the local topology of the
input space. The proposed visualization is tested on two datasets: image segmen-
tation and pipeline. The usefulness of the method is demonstrated by studying the
behavior of Generalized LVQ, Supervised Neural Gas and Harmonic to Minimum
LVQ algorithms on high-dimensional datasets.

Keywords: Learning Vector Quantization, Supervised Neural Gas, Harmonic to
Minimum, Data visualization, Data Projection, Topology preservation.

1 Introduction

Many methods have been proposed in pattern recognition such as self-organizing maps
(SOM) and learning vector quantization (LVQ) methods [1]. These methods are prototy-
pe-based, being the former unsupervised and the latter supervised. An advantage of
prototype based methods is the intuitive understanding of the clusterization or classifi-
cation obtained. Another advantage, widely exploited by SOMs is the use of visualiza-
tion schemes. However, there is a lack of visualization schemes for LVQ algorithms.
The original LVQ is based on heuristic learning or a priori domain knowledge to min-
imize the classification error. In the last years, several algorithms have been proposed
to enhance the original LVQ obtaining faster convergence, better approximation to the
Bayesian decision border, and robustness to different initializations. A breakthrough
model is the generalization of LVQ, the so-called generalized learning vector quanti-
zation (GLVQ) proposed in [2]. It provides a robust and efficient approximation of the
Bayesian decision border, through a continuous and differentiable cost function, usually
outperforming the original LVQ algorithm.

For high dimensional datasets, the adaptation of LVQ algorithms during training
is usually monitored by using the misclassification rate as an indicator. In this paper,
we propose an online visualization scheme appropriate for LVQ algorithms, in order
to visualize the prototypes and their respective receptive fields. An online visualization
scheme is useful for studying the behavior of the LVQ algorithms during training, either

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 173–182.
DOI: 10.1007/978-3-642-35230-0 18 c© Springer-Verlag Berlin Heidelberg 2013
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for didactic purposes or for research. In addition, we can get a fine-tuned map of the
final classification.

The remainder of this paper is organized as follows: In section 2, three modern LVQ
algorithms are briefly introduced. In section 3, the proposed method is presented, and
in section 4 the results are shown. Finally, in section 5 the conclusions are drawn.

2 Learning Vector Quantization Algorithms

A training dataset X = {(xi, li) ⊂ RD ×{1, ..., C}|i = 1, ..., N}; x = (x1, ..., xD) ∈
R

D is assumed, where D is the data dimensionality and C the number of different
classes. The network consists of a number of prototypes, which are characterized by
their vectors in a feature space wi ∈ RD and their class labels c(wi) ∈ {1, ..., C}. The
classification scheme is based on the best matching unit (BMU) (winner-takes-all). The
receptive field of each prototype wi can be described as follows:

Ri = {x ∈ X |∀wj(j �= i → d(wi,x) < d(wj,x))}, (1)

where d(w,x) is a distance measure. Learning aims at determining the weight vectors
of prototypes, such that the given training dataset is mapped to their corresponding class
labels. In what follows, we briefly describe three different modern LVQ methods.

2.1 Generalized Learning Vector Quantization

GLVQ [2] has an underlying cost function related to a maximization of the hypothesis
margin of the classifier, as shown below

EGLVQ =

l∑
i=1

φ (μ(xi)) , (2)

where φ(·) is the logistic sigmoid function, μ(xi)=
dJ (xi)−dK(xi)
dJ (xi)+dK(xi)

, dJ(xi)=d(wJ ,xi)

is the distance of data point xi from its closest prototype wJ having the same class
label y, and dK(xi) = d(wK ,xi) is the distance from the closest prototype wK having
a class label different from y. Using stochastic gradient descent method, the following
learning rules are obtained:

ΔwJ = +2 · ε · φ′(μ(xi)) · μ+ · (xi −wJ )
ΔwK = −2 · ε · φ′(μ(xi)) · μ− · (xi −wK)

, (3)

where μ+ = 2·dK

(dK+dJ )2
, μ− = 2·dJ

(dK+dJ)2
and ε ∈]0, 1[ is the learning rate.

2.2 Supervised Neural Gas

Supervised Neural Gas (SNG) [4] adds the idea of neighborhood cooperativity into
GLVQ to avoid the dependency on the initialization. All prototypes of the respective
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class are adapted towards the data point according to their ranking. The SNG cost func-
tion is as follows:

ESNG =
∑
x∈X

∑
wr∈Wcxi

hγ(r,x,Wcx) · φ(μ(x))
C(γ,Kcx)

(4)

where

hγ(r,xi,W) = exp

(
−kr(xi,Wcx)

γ

)
, (5)

denotes the degree of neighborhood cooperativity, kr(x,W) is the ranking of prototype
wr given input xi, and C(γ,K) is a normalization depending on the neighborhood size
γ, K is the cardinality of Wcx , Wcx = {∀wj ∈ RD|c(wi) = c(xi)} and φ is a
sigmoid function. For each x, all prototypes wJ ∈ Wcxi

are updated as follows:

ΔwJ = +2 · ε ·
φ′(μ(xi)) · μ+ · hγ(r,x,Wcxi

)

C(γ,Kcx)
· (x−wJ ) (6)

and the closest prototype of a different class is adapted as follows:

ΔwK = −2 · ε ·
∑

wJ∈Wcx

φ′(μ(xi)) · μ− · hγ(r,xi,Wcx)

C(γ,Kcxi
)

· (xi −wK), (7)

where μ+ = 2·dK

(dK+dJ )2
, μ− = 2·dJ

(dK+dJ)2
and ε ∈]0, 1[ is the learning rate.

2.3 Harmonic to Minimum Learning Vector Quantization

In order to repair the sensitiveness to different initializations, the Harmonic to Min-
imum Learning Vector Quantization (H2MLVQ) was introduced in [5], based on the
K-harmonic means algorithm [6]. Here all prototypes having the same class label than
the current sample are updated. Likewise, all prototypes with a different label than the
sample are adjusted. The objective function for H2MLVQ is:

EH2M−LV Q =

l∑
i=1

φ (μ(xi)) , (8)

where μ(xi) =
dH
j −dH

k

dH
j +dH

k

and dHJ , dHK are the harmonic average distances [6]. Using the

gradient descent method the following update rules are obtained:

ΔwJ = −2 · ε · φ′(μ(xi)) · μ+ · αJ · (xi −wJ), (9)

ΔwK = +2 · ε · φ′(μ(xi)) · μ− · αK · (xi −wK), (10)

where μ+ =
2·dH

K

(dH
K+dH

J )2
, μ− =

2·dH
J

(dH
K+dH

J )2
, ε ∈]0, 1[ is the learning rate, αK and αJ are

adaptive coefficients, for details see [5].
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3 Online Visualization Method for LVQ Algorithms (OVI-LVQ)

The basic idea is to easily visualize the prototypes and samples during the training of
LVQ algorithms on high-dimensional datasets. First, a visualization of the prototypes
and samples in the 2D output space projections is performed online during the LVQ
training. At the end of training, a recalling procedure is used to fine-tune the resulting
map.

Let {xi : 1 ≤ i ≤ N} and {wj : 1 ≤ j ≤ M} be D-dimensional input samples
and prototypes (codebook vectors), respectively. In addition, {yi : 1 ≤ i ≤ N} and
{zj : 1 ≤ j ≤ M} are the corresponding A-dimensional output samples and code-
book positions (prototype projections) in the output space, respectively, with A � D.
Let dj,k and Dj,k be the pairwise Euclidean distances in the input and output spaces,
respectively. These distances are defined as follows:

dj,k = ||wj −wk||, Dj,k = ||zj − zk||. (11)

3.1 Online Visualization of Prototypes

In the online visualization phase, the OVI-NG algorithm proposed in [3] is used to
project the prototypes. In the next subsection we will explain our proposed method to
project samples using the prototypes as references. A global cost function is defined as
follows:

E =
1

2

N∑
j=1

∑
k �=j

(Dj,k − dj,k)
2 =

1

2

N∑
j=1

∑
k �=j

Ej,k, (12)

where the function F is defined as:

F (f) = e−(
f

σ(t) ), where σ(t) = σ0

(
σf

σ0

)( t
Tmax

)
, (13)

and σ(t) is the width of the neighborhood which decreases with the number of iterations
as shown in eq. (13).

A simplified version of gradient descent is used, where the codebook position as-
sociated with the winner unit, zj∗ , is fixed, and the N − 1 remaining positions are
moved towards the winner’s position. Therefore, the ranking in the output space sj,j∗

takes values in the range {1, ..., N − 1}, where s = 1 corresponds to the nearest code-
book position with respect to the winner’s position. In order to minimize eq. (12). The
following update rule for the codebook positions is used:

zj(t+ 1) = zj + αF (sj,j∗)
(Dj,j∗ − dj,j∗)

Dj,j∗
× (zj∗ − zj), (14)

where α is the learning rate.
This online visualization method for projecting prototypes can be added to most LVQ

algorithms. We can imagine that a virtual link exists between prototypes (codebook vec-
tors) in the input space and their respective codebook positions in the output space. The
initial topology of the network is a set of M prototypes. Each prototype j has associ-
ated a D-dimensional codebook vector, wj in the input space, and a two-dimensional
codebook position, zj in the output space. The algorithm is as follows:
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1. Initialize the codebook vectors associated to the prototypes, wj , and the codebook
positions, zj , randomly.

2. Present an input vector, xi(t), to the LVQ network (i = 1, ..., N) at iteration t.
3. Find the winner prototype j∗ which belongs to the same class than xi(t), by using:

j∗ = argmin
∀j|c(wj)=c(xi(t))

‖xi(t)−wj(t)‖ (15)

4. Update the prototype (codebook) vectors according to the update rules of the cor-
responding LVQ algorithm version.

5. Generate the ranking in output space sj,j∗ = s(zj∗(t), zj(t)) ∈ {1, ....,M − 1}
for each codebook position zj(t) with respect to the codebook position associated
with the winner unit zj∗(t), j �= j∗.

6. Update the codebook positions using eq. (14).
7. If t < tmax, go back to step 2.

3.2 Sample Recalling Procedure

In order to project samples a recalling procedure is proposed. We assume that the code-
book position vectors have already been adjusted using the procedure described in sec-
tion 3.1. These codebook positions are used as references for the projection of samples
in the output space. The sample recalling can also be done online, although for the sake
of computational time only a subset of samples may be projected during training. At the
end of training, after convergence a fine-tuned projection is obtained using all training
samples.

The receptive field Ri associated with i-th each codebook vector obtained by LVQ
training is considered. Because virtual links exist between the input space and output
space, there would be also a receptive field associated with each codebook position in
the output space. The proposed cost function is as follows:

Ê =

M∑
i

((1− λ)Elocal + λEglobal) , (16)

where:
Elocal ≡

∑
j∈Ri

∑
k �=j

Ej,k =
∑
j∈Ri

∑
k �=j

(Dj,k − dj,k)
2 · F (sj,k), (17)

Eglobal ≡
∑
j∈Ri

M∑
m=1

Ej,m =
∑
j∈Ri

M∑
m=1

(Dj,m − dj,m)2 · F (sj,m). (18)

The parameter λ in eq. (16) is used to control the trade-off between the local and global
topology preservation. Eq. (17) deals with pairwise distances of elements belonging
to the same receptive field both in input and output spaces. This term contributes to
preserving the inner local topology. On the other hand, eq. (18) deals with the pairwise
distances between samples associated with a given receptive field and all the prototypes.
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Fig. 1. Scheme representing a two-dimensional output space. The nearest codebook position z
(solid red dot) is used as a reference to initialize the output sample y (solid black dot), where r
and θ represent the distance and the angle of orientation, respectively.

This term contributes to preserving the global topology of the data. By using stochastic
gradient descent, we get:

∂Elocal

∂yj
=
∑
k �=j

F (sj,k) ·
(Dj,k − dj,k)

Dj,k
× (yk(t)− yj(t)), (19)

∂Eglobal

∂yj
=

M∑
m=1

F (sj,m) · (Dj,m − dj,m)

Dj,m
× (zm(t)− yj(t)), (20)

where F is defined in eq. (13). The update rule for sample projection is the following:

yj(t+ 1) = yj(t) + α ·
[
(1 − λ)

∂Elocal

∂yj
+ λ

∂Eglobal

∂yj

]
, (21)

where α is the learning rate.
Using a priori knowledge that each sample belongs to a receptive field, an initializa-

tion strategy is proposed. The distance and orientation of a sample with respect to its
nearest prototype is considered, as shown in fig. 1. The initial position of the sample
projections in the output space is set as follows:

yj(t = 0) =

[
zi,1 + rj · cos(θj)
zi,2 + rj · sin(θj)

]
, θj = min

θ∈[0,2π]

(
M∑
i=1

‖Di,j − di,j‖
)
, (22)

where zi,1 and zi,2 are the components of the codebook position vector in the output
space (assumed fixed in the previous prototype projection phase), which is associated
with the i-th receptive field, r is the a priori known distance in the input space between
the i-th codebook vector and j-th input sample. In this initialization procedure, we
assume that the absolute value of pairwise distances are the same in the input and output
spaces, therefore only the angle is unknown. The angle θj is determined by minimizing
the pairwise distance between the input sample and all prototype vectors such as in
eq. (22), both in the input and output spaces.
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The sample recalling procedure is as follows:

1. Initialize all the output samples yj using eq. (22).
2. Select the receptive field associated to the i-th prototype.
3. Present all the output samples yj which belong to the i-th prototype, and update

their positions using the update rule defined in eq. (21).
4. If t < tmax, go back to step 2.

The topology preservation measure qm defined in [7] is used as a quality performance
measure of the mapping. The range of the qm measure is between 0 and 1, where
qm = 0 indicates poor neighborhood preservation between the input and output spaces,
and qm = 1 indicates a perfect neighborhood preservation. We use as a reference the
projections obtained with classical unsupervised projection methods such as CCA [8]
and Sammon [9]. Another quality measurement is the classification rate obtained using
the 2D map and the receptive fields obtained.

(a) (b)

(c) (d)

Fig. 2. 2-D visualizations of the pipeline dataset obtained using OVI-LVQ projection (a)-(c) and
CCA projection (d). The plots correspond to different LVQ algorithms: (a) GLVQ, (b) SNG, (c)
and (d) H2MLVQ. Bolds marks denote the position of the prototype projections for the different
classes.
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4 Experiments

The OVI-LVQ method was used with GLVQ, SNG and H2MLVQ algorithms to vi-
sualize the prototypes and receptive fields obtained with high-dimensional datasets. In
all experiments the parameters of the OVI-LVQ were set to: ε = 0.05, α = 0.05,
Tmax = 100 and λ = 0.5.

Two datasets were used: Image Segmentation [10] and Pipeline1. Image segmentation
dataset consists of 19 dimensional feature vectors and seven classes. The parameters for
this dataset were set as follow: 5 prototypes per class, σ0 = 3500, σf = 700. The re-
calling parameters were set as follows: σ0 = 20 and σ0 = 2 . The training and test set
consist of 210 and 2100 samples, respectively. Pipeline dataset consists of 13 atributes
and three classes. For pipeline dataset, the following parameters were used: 10 prototypes
per class, σ0 = 4000, σf = 800. The recalling parameters were set as follows: σ0 = 30
and σ0 = 3. The training and test set consist of 300 and 700 samples, respectively.

(a) (b)

(c) (d)

Fig. 3. 2D visualizations of the image segmentation dataset training evolution for H2MLVQ. (a)
Initialization, (b) after 50 epochs, (c) after 200 epochs and (d) final sample recalling visualization.
Bold marks denote prototype projections for the different classes.

Fig. 2 (a)-(c) shows 2D visualizations obtained with OVI-LVQ for the pipeline
dataset. Fig. 2 (d) shows a projection using CCA, for comparison purposes. The dif-
ferent classification rates obtained for each LVQ methods (see Table 1) are reflected in
the distribution of prototypes for each map. GLVQ and SNG get trapped in local minima

1 Non-linearity and Complexity Research Group, www1.aston.ac.uk/ncrg/.

www1.aston.ac.uk/ncrg/
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Table 1. Percentage of correct classifications on the test set for pipeline and image segmentation
datasets. Results shown on columns OVI-LVQ, Sammon and CCA correspond to classification
rates on the output space.

Pipeline Dataset Image Segmentation Dataset
Input Space OVI-LVQ Sammon CCA Input Space OVI-LVQ Sammon CCA

GLVQ 94.32 86.33 82.33 84.67 70.28 68.57 37.14 50.48
SNG 98.14 89.50 72.00 87.33 80.80 70.00 63.81 68.33

H2MLVQ 98.94 94.67 81.67 86.67 86.61 73.81 70.00 72.38
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Fig. 4. Classification rate as a function of λ in the output space using H2MLVQ algorithm on: (a)
Image segmentation dataset, (b) Pipeline dataset.

due to the initialization sensitiveness problem associated with the original GLVQ. It can
be seen in the final maps in fig. 2 that there are prototypes with empty receptive fields.
On the contrary, H2MLVQ gets rid of the initialization problem, and all its prototypes
are active and well located. From the topology preserving point of view, the qm values
are within ±3.5% in average of those obtained using Sammon and CCA projections.

Fig. 3 shows the 2D visualizations obtained using OVI-LVQ method for the H2M
LVQ algorithm trained on the image segmentation dataset. Figs. 3(a)-(c) show online
projections after 0, 50 and 200 training epochs. Fig. 3(d) depicts the final map after
fine-tuning by using all samples. Table 1 shows the classification rates obtained with the
three LVQ methods for the pipeline and image segmentation datasets on the test set. For
the latter dataset GLVQ gets stuck in a local minima and can not achieve a good quan-
tization. A correct quantization is achieved with H2MLVQ and SNG. The sensitive-
ness initialization problem associated to GLVQ is reflected in that this method achieved
in general a lower classification performance in comparison with the H2MLVQ and
SNG algorithms. Furthermore, as shown in Table 1, the proposed OVI-LVQ projection
method outperformed both Sammon and CCA projections. The topology preservation
measurement qm for the OVI-LVQ projection of the image segmentation dataset was
computed. For all neighborhood sizes, the qm value was within ±2.6% in average of
the values obtained with Sammon and CCA projections. This result indicates that OVI-
LVQ preserves well the local topology. Fig. 4 shows how the classification rate in the
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output space varies with the parameter λ. The maximum classification rate is obtained
for λ = 0.8 (77.14%) for the image segmentation dataset and for λ = 0.6 − 0.8
(95.33%) for the pipeline dataset. This means that for classification purposes we have
to weight more the global error versus the local error.

5 Conclusions

A new visualization method ad-hoc for LVQ algorithms has been proposed. The OVI-
LVQ method allows us to visualize online the evolution of prototypes and receptive
fields during training of LVQ algorithms. This could be useful for didactic purposes,
but also for visualizing the results of LVQ methods including their errors. Another pos-
sible aplication is the visualization of trajectories of sequential data. The receptive field
concept used in our method allows obtaining a good quality mapping and at the same
time reduce the computational cost due to less distance calculations. The proposed ini-
tialization method enables a good starting position for the output samples which can
be further refined by the recalling of samples procedure. The parameter λ associated
to the trade-off between global and local topology preservation helps to increase the
classification rate based on the 2D map, which indicates that the receptive fields of the
prototypes are preserved in the projection.

Acknowledgements. This research was supported by Conicyt-Chile under grant
Fondecyt 1110701.
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Abstract. Robust soft learning vector quantization (RSLVQ) consti-
tutes a probabilistic extension of learning vector quantization (LVQ)
based on a labeled Gaussian mixture model of the data. Training op-
timizes the likelihood ratio of the model and recovers a variant similar
to LVQ2.1 in the limit of small bandwidth. Recently, RSLVQ has been
extended to a kernel version, thus opening the way towards more general
data structures characterized in terms of a Gram matrix only. While lead-
ing to state of the art results, this extension has the drawback that models
are no longer sparse, and quadratic training complexity is encountered.
In this contribution, we investigate two approximation schemes which
lead to sparse models: k-approximations of the prototypes and the Nys-
tröm approximation of the Gram matrix. We investigate the behavior of
these approximations in a couple of benchmarks.

1 Introduction

Due to its very intuitive training and classification behavior which is often
matched by excellent classification accuracy, learning vector quantization (LVQ)
as proposed by Kohonen [9] more than 20 years ago still constitutes a very pop-
ular and widely used classification scheme. In the last years, quite a few variants
have been proposed which accompany the original scheme by formal cost func-
tions based on which powerful extensions towards metric learning, for example,
can be derived [14,16]. In this contribution, we will focus on the approach robust
soft LVQ (RSLVQ) as proposed in [16] since it offers a very intuitive represen-
tation of data in terms of a mixture of labeled Gaussians. Training takes place
by means of an optimization of the likelihood ratio, leading to updates similar
to LVQ2.1 in the limit of small bandwidth. Being a prototype-based approach,
LVQ offers a very intuitive interface for the applicant: she can directly inspect
the prototypes in the same way as data. Regarding the crucial impact of inter-
pretability of the given models in many fields, this fact constitutes an important
benefit of LVQ classifiers [17].

In many application areas, data sets are becoming more and more complex
and additional structural information is often available. Examples include chem-
ical structures, biological networks, social network data, graph structures, ded-
icated images, etc. Often, dedicated similarity measures have been developed
to compare such data. This holds for bioinformatics sequences, graphs, or tree
structures as they occur in linguistics, time series data, functional data arising
in mass spectrometry, relational data stored in relational databases, etc. These

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 183–192.
DOI: 10.1007/978-3-642-35230-0_19 c© Springer-Verlag Berlin Heidelberg 2013
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data are no longer explicitly represented as Euclidean vectors, rather, pairwise
similarities are available. Hence LVQ classifiers cannot be used directly.

There exists a couple of techniques which can deal with more general data
structures of similarity measures, see e.g. the approaches [4,5]. In particular,
several popular prototype-based algorithms have been extended to deal with
more general data: Exemplar based variants, for example, restrict the location
of prototypes to exemplars, where dissimilarities are well defined, see e.g. the
approaches [10,3]. These techniques, however, have the drawback that a smooth
adaptation of prototypes is no longer possible and problems can occur espe-
cially if the given data are spare. More general smooth adaptation is offered by
relational extensions such as relational neural gas or relational learning vector
quantization [6]. Kernelization constitutes another possibility such as proposed
for neural gas, self-organizing maps, or different variants of learning vector quan-
tization [1,12]. Recently, a kernel variant of RSLVQ has been proposed which
matches the classification performance of support vector machines (SVM) in a
variety of benchmarks [7]. By formalizing the interface to the data as a general
similarity or dissimilarity matrix, complex structures can be dealt with, relying
on dedicated structure kernels or an explicit Gram matrix, for example [11,5].

Kernel RSLVQ, unlike RSLVQ, represents prototypes implicitly by means of
a linear combination of data in kernel space. This has two drawbacks: on the
one hand, prototypes are no longer directly interpretable, since the vector of
linear coefficients is usually not sparse. Hence, in theory, all data points can con-
tribute to the prototype. On the other hand, an adaptation step does no longer
scale linearly with the number of data points, rather, quadratic complexity is
required. This makes the technique infeasible if large data sets are considered.
In this contribution, we propose two different approximation schemes and we
investigate the effect of these techniques in a variety of benchmarks. First, we
consider the Nyström approximation of Gram matrices which has been proposed
in the context of SVMs in [18]. It constitutes a low rank approximation of the
matrix based on a small subsample of the data. Assuming a fixed size of the
subsample, a linear adaptation technique results. This approximation technique
accounts for an efficient update, but prototypes are still distributed. As an alter-
native, we investigate an approximation of prototypes in terms of their k closest
exemplars after training. This way, sparse models are obtained, albeit the tech-
nique still displays quadratic complexity. The effects of these approximations on
the accuracy are tested in a couple of benchmarks.

Now we first review RSLVQ and its kernel variant. We explain the Nyström
approximation and its incorporation into kernel RSLVQ. Afterwards, we explain
the k-approximation. We test the performance using benchmarks similar to [2].

2 Kernel Robust Soft Learning Vector Quantization

Learning vector quantization (LVQ) constitutes a prototype based classification
algorithm proposed by Kohonen [9]. Its model complexity is controlled by the
number of prototypes which act as a compressed representation of the given data.
This feature has been used e.g. in the context of life-long learning models, see e.g.
[8]. Basic LVQ learning is directly based on Hebbian learning. One of the first
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proposals of a cost function of LVQ can be found in [13]. An alternative which
is based on a probabilistic model of the data has been proposed in [16]: RSLVQ.
This method models data by a mixture of Gaussians and derives learning thereof
by means of a maximization of the log likelihood ratio of the given data. In the
limit of small bandwidth, a learning rule which is similar to LVQ2.1 is obtained.

Assume data ξk ∈ Rn are labeled with labels yk. A RSLVQ network represents
a mixture distribution characterized by m prototypes wj ∈ Rn. The labels of
prototypes c(wj) are fixed. σj denote the bandwidths. Mixture component j
induces the probability

p(ξ|j) = constj · exp(f(ξ, wj , σ
2
j ))

with normalization constant constj and function f

f(ξ, wj , σ
2
j ) = −‖ξ − wj‖2/σ2

j .

The probability of data point ξ is defined as mixture

p(ξ|W ) =
∑

j

P (j) · p(ξ|j)

with prior P (j) and parameters W of the model. The probability of a data point
ξ and a given label y is

p(ξ, y|W ) =
∑

c(wj)=y

P (j) · p(ξ|j) .

Learning aims at an optimization of the log likelihood ratio

L =
∑

k

log
p(ξk, yk|W )

p(ξk|W )
.

A stochastic gradient ascent yields the following update rules, given a data point
(ξk, yk)

Δwj = α ·
{

(Py(j|ξk) − P (j|ξk)) · constj · ∂f(ξk, wj , σ
2
j )/∂wj if c(wj) = yk

−P (j|ξk) · constj · ∂f(ξk, wj , σ
2
j )/∂wj if c(wj) 	= yk

α > 0 is the learning rate. The probabilities are defined as

Py(j|ξk) =
P (j) exp(f(ξk, wj , σ

2
j ))∑

c(wj)=yj
P (j) exp(f(ξk, wj , σ2

j ))

and

P (j|ξk) =
P (j) exp(f(ξk, wj , σ

2
j ))∑

j P (j) exp(f(ξk, wj , σ2
j ))

.

If the standard Euclidean distance is used, class priors are equal, and small
bandwidth is present, a learning rule similar to LVQ2.1 results.
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Given a novel data point ξ, its class label is the most likely label y corre-
sponding to a maximum value p(y|ξ, W ) ∼ p(ξ, y|W ). For typical settings, this
rule can be approximated by a simple winner takes all rule, i.e. ξ is mapped to
the label c(wj) of the closest prototype wj .

RSLVQ is restricted to Euclidean vectors. A kernelization of the method makes
the technique applicable for more general data sets which are characterized in
terms of a Gram matrix only. We assume that a kernel k is fixed corresponding
to a feature map Φ. Then, the equation

kkl := k(ξk, ξl) = Φ(ξk)tΦ(ξl)

holds for all data points ξk, ξl. We assume that prototypes are represented by
linear combinations of data

wj =
∑
m

γjmΦ(ξm)

where the coefficients γjm are non-negative and sum up to 1. The cost function
of RSLVQ becomes

L =
∑

k

log

∑
c(wj)=yk

P (j)p(Φ(ξk)|j)∑
j P (j)p(Φ(ξk)|j) .

We assume equal bandwidth σ2 = σ2
j , for simplicity; more complex adjustment

schemes based on the data have been investigated in [15], for example, usually
leading to only a minor increase of accuracy. Note that the position of prototypes
is not clear a priori, such that a prior adaptation of the bandwidth according
to the data density is not possible. Further, we assume constant prior P (j) and
mixture components induced by normalized Gaussians. These can be computed
in the data space based on the Gram matrix because of the identity

‖Φ(ξi) − wj‖2 = ‖Φ(ξi) −
∑
m

γjmΦ(ξm)‖2 = kii − 2 ·
∑
m

γjmkim +
∑
s,t

γjsγjtkst

where the distance in the feature space is referred to by ‖ · ‖2. Thus the update
rules become Δwj =

∑
m ΔγjmΦ(ξm) =

α · constj ·
{

(Py(j|Φ(ξk)) − P (j|Φ(ξk))) (Φ(ξk) − ∑
m γjmΦ(ξm)) if c(wj) = yk

−P (j|Φ(ξk)) (Φ(ξk) − ∑
m γjmΦ(ξm)) if c(wj) 	= yk

A stochastic gradient ascent yields the following adaptation rules for γjm:

Δγjm =α·constj ·

⎧⎪⎨
⎪⎩

−(Py(j|Φ(ξk)) − P (j|Φ(ξk)))γjm if ξm 	= ξk, c(wj) = yk

(Py(j|Φ(ξk)) − P (j|Φ(ξk)))(1 − γjm) if ξm = ξk, c(wj) = yk

P (j|Φ(ξk))γjm if ξm 	= ξk, c(wj) 	= yk

−P (j|Φ(ξk))(1 − γjm) if ξm = ξk, c(wj) 	= yk

This adaptation performs exactly the same updates as RSLVQ in the feature
space if prototypes are in the convex hull of the data. To guarantee non-negativity
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and normalization, a correction takes place after every adaptation step. As an
alternative, barrier techniques could be used, or the restrictions could be dropped
entirely allowing more general linear combinations as solutions.

Note that, unlike RSLVQ, prototypes are represented implicitly in terms of
linear combinations. The inspection of a prototype thus requires to inspect the
coefficients representing the prototype γj and all data, the latter usually being
characterized in terms of pairwise similarities only. Further, an adaptation step
has squared complexity caused by the distributed representation of prototypes.
Thus, the method does no longer directly give interpretable results, and it is no
longer applicable for large data sets.

3 Nyström Approximation of the Gram Matrix

The Nyström technique has been presented in [18] in the context of SVMs. It
allows to approximate a Gram matrix by a low rank approximation. For many
kernel-based approaches, this approximation can be integrated into the learning
rules in such a way that updates with linear complexity result. We shortly review
the main idea behind this approach in the following.

By the Mercer theorem kernels k(ξj , ξl) can be expanded by orthonormal
eigenfunctions φi and non negative eigenvalues λi in the form k(ξj , ξl) =∑∞

i=1 λiφi(ξj)φi(ξl) . The eigenfunctions and eigenvalues of a kernel are the so-
lution of an integral equation

∫
k(ξj , ξ)φi(ξ)p(ξ)dξ = λiφi(ξj) which can be

approximated based on the Nyström technique by sampling ξ i.i.d. according
to p, denoting the sampled values as ξ1, . . . , ξm after possible reenumeration:
1
m

∑m
l=1 k(ξj , ξl)φi(ξl) ≈ λiφi(ξj) . We denote the submatrix corresponding to

the m sampled points of the Gram matrix by Km,m. We denote eigenvalues and
eigenvectors of this matrix by U(m) and Λ(m), respectively, characterized by the
eigenvalue equation Km,mU(m) = U(m)Λ(m) . These solutions allow us to ap-

proximate the eigenfunctions and eigenvalues λi ≈ λ
(m)
i

m , φi(ξl) ≈
√

m

λ
(m)
i

kξl
u(m)

i

where u(m)
i is the ith column of U(m) and we use the vector of kernel values

kξl
= (k(ξ1, ξl), ..., k(ξm, ξl))T .

This allows us to approximate a given full Gram matrix K by a low-rank
counterpart, since we can use these approximations in the kernel expansion. Sub-
sampling corresponds to a choice of m rows and columns of the matrix, the cor-
responding submatrix is denoted by Km,m as before. The corresponding m rows
and columns, respectively, are denoted by Km,n and Kn,m, respectively. These
are transposes of each other, since the matrix is symmetric. The approximation
as introduced above leads to the following approximation of the kernel expansion
by orthonormal eigenfunctions K̃ =

∑m
i=1 1/λ

(m)
i ·Kn,mu(m)

i (u(m)
i )T Km,n where

λ
(m)
i and u(m)

i correspond to the m×m eigenproblem as above. In the case that
some λ

(m)
i are zero, we replace the corresponding fractions with zero. Thus we

get, K−1
m,m denoting the Moore-Penrose Pseudoinverse,

K̃ = Kn,mK−1
m,mKm,n .
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For a given matrix K with rank m, this approximation is exact, if the m chosen
m-dimensional points are linearly independent.

This observation allows us to approximate the full Gram matrix as used in
kernel RSLVQ by a low rank approximation: this equation for K̃ can directly be
integrated into the computation of the Gaussians using the identity

‖Φ(ξi) − wj‖2 = et
iKei − 2 · et

iKγj + γt
jKγj

where ei denotes the i th unit vector. Using K̃ instead, linear complexity results
if the matrix vector multiplications are computed first.

4 k-Approximation of the Prototypes

Kernel RSLVQ yields prototypes which are implicitly represented as linear com-
binations of data points

wj =
∑
m

γjmΦ(ξm) .

Since the training algorithm and classification depends on pairwise distances
only, simple linear algebra allows us to compute the distance of a data point
and a prototype based on the pairwise similarity of the data point and all train-
ing data only, i.e. the given Gram matrix, as specified above. However, direct
interpretability and sparseness of the prototype is lost this way.

Here we propose to use a simple approximation of the prototypes to maintain
interpretability and flexibility of the clustering. As already proposed in the con-
text of relational approaches for streaming data, a prototype is approximated
by the k nearest exemplars in the given training set [6]. These exemplars can
easily be computing as follows: we determine the distance of the prototype and
the data points and choose the respective k nearest exemplars based on these
values. This way, a small number of exemplars represent the classifier by means
of a nearest neighbor classification rule. Since the exemplars can be inspected
in the same way as data points, this allows insights into the model by experts
in the field. Note that it would be reasonable to choose an adaptive number of
exemplars to represent a prototype instead of a fixed number k depending on
the resulting classification results; this will be the subject of future research.

5 Experiments

We compare RSLVQ and its Nyström and k-approximation, respectively, with
different values of k on a variety of benchmarks as introduced in [2]. For the Nys-
tröm approximation, we use a subsample of 10% in all cases. The data sets consist
of similarity matrices which are, in general, non-Euclidean. Non-Euclideanity can
be quantified by the signature of the data set, i.e. the number of positive, nega-
tive, and zero eigenvalues of the similarity matrix. The matrices are symmetrized
and normalized before processing. In general, the given similarity matrices do
not constitute a valid kernel such that a probabilistic representation using the
above formulas is no longer well-defined due to potentially negative distances.
There exist standard preprocessing tools which transfer a given similarity matrix
into a valid kernel, as presented e.g. in [2,11]. Typical corrections are:
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– Spectrum clip: set negative eigenvalues of the matrix to 0. This can be real-
ized as a linear projection and directly transfers to out-of-sample extensions.

– Spectrum flip: negative eigenvalues are substituted by their positive values.
Again, this can be realized by means of a linear transformation.

These transforms which turn a given similarity matrix into a valid Gram matrix
are tested for kernel RSLVQ with according preprocessing. We use training data
in analogy to [2].

– Amazon47 : This data set consists of 204 books written by 47 different au-
thors. The similarity is determined as the percentage of customers who pur-
chase book j after looking at book i. The signature is (192, 12, 0). The class
label of a book is given by the author.

– Aural Sonar : This data set consists of 100 wide band solar signals corre-
sponding to two classes, observations of interest versus clutter. Similari-
ties are determined based on human perception, averaging over 2 random
probands for each signal pair. The signature is (62, 38, 0). Class labeling is
given by the two classes: target of interest versus clutter.

– Face Rec: 945 images of faces of 139 different persons are recorded. Images
are compared using the cosine-distance of integral invariant signatures based
on surface curves of the 3D faces. The signature is (794, 151, 0). The labeling
corresponds to the 139 different persons.

– Patrol : 241 samples representing persons in seven different patrol units are
contained in this data set. Similarities are based on responses of persons in
the units about other members of their groups. The signature is (117, 124, 0).
Class labeling corresponds to the seven patrol units.

– Protein: 213 proteins are compared based on evolutionary distances compris-
ing four different classes according to different globin families. The signature
is (171, 42, 0). Labeling is given by four classes corresponding to different
globin families.

– Voting: Voting contains 435 samples with categorical data compared by
means of the value difference metric. Class labeling into two classes is present.
The signature is (226, 209, 0).

Note that the rank of the Gram matrix is given by the number of positive eigen-
values if clip is used as preprocessing, and the sum of non-negative eigenvalues
if the original data or flip are used.

Prototypes are initialized by means of normalized random coefficients γjm.
Coefficient m is set to zero if the label of point ξm does not coincide with the
prototype label c(wj). The number of prototypes is taken as a small multiple
of the number of classes. Other meta-parameters are optimized on the data sets
using cross-validation. The results for RSLVQ and its Nyström approximation
are reported in Tab. 1. Classification accuracy is thereby evaluated in a 20-fold
cross-validation. Note that a decomposition of a data set characterized by a
similarity matrix into training and test set corresponds to a selection of a set
of indices I. The submatrix formed by (kij)i,j∈I characterizes the training set,
distances of prototypes to test points for a classification of the test set can be
computed based on (kij)i∈I,j �∈I . Similar experiments show the performance of
a sparse approximation of the result using different numbers k to represent a
prototype by k exemplars in Tab. 2.
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Table 1. Results of kernel RSLVQ and a Nyström approximation of the Gram matrix
using 10% of the data. The mean classification error and standard deviation obtained
in a 20-fold cross-validation are reported. Results for k-NN and SVM are taken from [2].

k-NN SVM kernel RSLVQ Nyström prototypes
Amazon47 16.95 (4.85) 75.98 (7.33) 15.37 (0.36) 64.15 (0.81) 94
clip 17.68 (4.75) 81.34 (4.77) 15.37 (0.41) 64.15 (0.33)
flip 17.56 (4.91) 84.27 (4.33) 16.34 (0.42) 65.73 (0.30)
Aural Sonar 17.00 (7.65) 14.25 (7.46) 11.50 (0.37) 21.25 (2.05) 10
clip 14.00 (6.82) 13.00 (5.34) 11.25 (0.39) 15.00 (0.63)
flip 12.75 (6.42) 13.25 (5.31) 11.75 (0.35) 16.25 (0.84)
Face Rec 4.23 (1.43) 3.92 (1.29) 3.78 (0.02) 3.52 (0.02) 139
clip 4.15 (1.32) 4.18 (1.25) 3.84 (0.02) 3.47 (0.02)
flip 4.15 (1.32) 4.18 (1.32) 3.60 (0.02) 3.52 (0.02)
Patrol 11.88 (4.42) 40.73 (5.95) 17.50 (0.25) 61.77 (0.63) 24
clip 11.56 (4.54) 38.75 (4.81) 17.40 (0.29) 47.50 (0.78)
flip 11.67 (4.24) 47.29 (5.90) 19.48 (0.34) 45.94 (0.66)
Protein 29.88 (9.96) 2.67 (2.97) 26.98 (0.37) 28.60 (1.63) 20
clip 30.35 (9.71) 5.35 (4.60) 4.88 (0.17) 12.21 (0.36)
flip 31.28 (9.63) 1.51 (2.36) 1.40 (0.05) 8.02 (0.38)
Voting 5.80 (1.83) 5.52 (1.77) 5.46 (0.04) 5.23 (0.04) 20
clip 5.29 (1.80) 4.89 (2.05) 5.34 (0.04) 5.17 (0.03)
flip 5.23 (1.80) 4.94 (2.03) 5.34 (0.03) 5.34 (0.04)

Table 2. Results of kernel RSLVQ and its k-approximation for k ∈ {1, . . . , 4}. The
classification error in % and standard deviation in parenthesis are given.

kernel RSLVQ 1-approx 2-approx 3-approx 4-approx
Amazon47 15.37 (0.36) 36.83 (0.35) 29.27 (0.42) 29.65 (0.53) 30.97 (0.44)
clip 15.37 (0.41) 31.65 (0.26) 26.29 (0.48) 28.06 (0.43) 29.96 (0.42)
flip 16.34 (0.42) 31.28 (0.25) 28.91 (0.35) 29.85 (0.39) 30.95 (0.40)
Aural Sonar 11.50 (0.37) 25.13 (1.15) 20.62 (1.56) 21.62 (0.96) 21.62 (0.79)
clip 11.25 (0.39) 24.75 (0.78) 21.75 (1.06) 18.50 (0.66) 17.00 (0.83)
flip 11.75 (0.35) 24.75 (0.99) 21.50 (0.48) 21.00 (0.57) 21.62 (0.53)
Face Rec 3.78 (0.02) 3.70 (0.02) 5.92 (0.02) 8.99 (0.03) 11.70 (0.04)
clip 3.84 (0.02) 3.76 (0.02) 6.00 (0.02) 8.95 (0.03) 11.90 (0.04)
flip 3.60 (0.02) 3.33 (0.02) 5.64 (0.03) 8.58 (0.04) 11.57 (0.03)
Patrol 17.50 (0.25) 54.94 (0.96) 46.69 (1.02) 39.33 (0.77) 35.46 (0.49)
clip 17.40 (0.29) 32.46 (0.90) 21.89 (0.34) 22.36 (0.43) 20.28 (0.31)
flip 19.48 (0.34) 37.42 (0.85) 26.36 (0.45) 22.27 (0.25) 21.96 (0.27)
Protein 26.98 (0.37) 55.12 (0.67) 49.97 (0.77) 49.57 (0.75) 47.38 (0.92)
clip 4.88 (0.17) 22.44 (0.51) 25.81 (0.98) 28.20 (0.92) 29.42 (0.89)
flip 1.40 (0.05) 23.26 (0.26) 22.77 (0.34) 22.56 (0.47) 23.37 (0.52)
Voting 5.46 (0.04) 8.56 (0.06) 8.71 (0.07) 8.59 (0.07) 8.56 (0.05)
clip 5.34 (0.04) 8.65 (0.07) 9.22 (0.09) 9.08 (0.09) 8.82 (0.09)
flip 5.34 (0.03) 7.84 (0.04) 7.82 (0.03) 8.13 (0.03) 8.56 (0.04)

The results obtained with kernel RSLVQ are generally good and reach state-
of-the art accuracy as reported in [2]. In general, preprocessing using spectrum
clip or flip can be beneficial. Surprisingly, a naive application of kernel RSLVQ
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for the (non-euclidean) similarity matrix already yields surprisingly good results.
The results of a linear time Nyström approximation as well as a k-approximation
are heterogeneous.

While the classification accuracy obtained for the data sets Aural Sonar, Face
Rec, Protein, and Voting using a Nyström approximation are still acceptable,
they are considerably worse for Amazon47 and Patrol. Similarly, for some of the
data sets, the k-approximation is generally acceptable and yields results com-
parable to kernel RSLVQ itself (Voting). For others, the 1-approximation yields
worse results with a decrease of the accuracy by more than 10%, but a sufficient
number k yields acceptable results (Aural Sonar, Patrol). Interestingly, there is
also the opposite case, a 1-approximation yielding acceptable results, but larger
values k leading to more than 10% loss of accuracy (FaceRec). For Amazon47 and
Protein, the classification results of all approximations are significantly worse as
compared to direct kernel RSLVQ.

In consequence, it is worthwhile to consider these approximations for some
data sets, leading to greatly enhanced sparsity and computational performance,
respectively, but it is not clear a priori whether the good classification accuracy of
kernel RSLVQ can be preserved. Reasons for this behavior can be manifold, such
as the intrinsic rank of the Gram matrix, the number of classes, etc. Note that
the Nyström approximation acts in two ways, which makes a prior prediction of
the result complicated:

– The Nyström approximation substitutes the original Gram matrix by a low
rank approximation. If the rank is kept (because the original one has small
rank or many small eigenvalues), Nyström does not lead to loss of information
and it is guaranteed that the approximation is exact.

– On the other hand, the Nyström approximation can help to suppress noise
which is not relevant for the classification task in a similar way as clip can
have a beneficial effect.

6 Discussion

We have investigated kernel robust soft LVQ and the possibility to obtain efficient
approximations by means of a Nyström approximation and k-approximation,
respectively. These approximations aim at an improved computational perfor-
mance of the technique or an improved sparsity of the classifier, respectively.
While kernel RSLVQ generally yields very good results comparable to SVM, the
situation is less clear for the approximations. In some cases, a high classification
accuracy is maintained, while the classification accuracy is decreased by more
than 15% for others. It is the subject of ongoing work to investigate formal
properties of the Gram matrix such as its rank or geometric properties which
allow to judge the suitability of the approximations in advance. In [19], it is pro-
posed to evaluate the approximation quality based on the Pearson correlation,
and the evaluation result is used to predict the performance of the Nyström ap-
proximation for unsupervised classification tasks. Currently, we are investigating
this possibility in the context of classification.Archive Further, it is subject of
ongoing work to test the combined effect of these approximations.
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Abstract. Supervised and unsupervised prototype based vector quanti-
zation frequently are proceeded in the Euclidean space. In the last years,
also non-standard metrics became popular. For classification by support
vector machines, Hilbert space representations are very successful based
on so-called kernel metrics. In this paper we give the mathematical jus-
tification that gradient based learning in prototype-based vector quan-
tization is possible by means of kernel metrics instead of the standard
Euclidean distance. We will show that an appropriate handling requires
differentiable universal kernels defining the kernel metric. This allows
a prototype adaptation in the original data space but equipped with a
metric determined by the kernel. This approach avoids the Hilbert space
representation as known for support vector machines. Moreover, we give
prominent examples for differentiable universal kernels based on infor-
mation theoretic concepts and show exemplary applications.

1 Introduction

Prototype based vector quantization is an ongoing topic of research with ap-
plications in unsupervised and supervised data modeling. Famous unsupervised
models applied in data clustering or visualization are the self-organizing map
(SOM,[21]), neural gas (NG, [26]) or respective fuzzy variants like fuzzy-c-means
(FCM, [3,4] ). Supervised approaches comprise the family of learning vector
quantizers (LVQ, [21]) as well as support vector machines (SVM,[41]). LVQ mod-
els generate class typical prototypes whereas SVMs determine prototypes (sup-
port vectors) defining the class borders. Both paradigms are margin classifiers
[11]. Recent developments in the field address the utilization of non-standard
metrics to improve the model performance for domain specific problems like
processing of functional data, e.g. spectra, time series, etc. [20,29,47], or better
interpretability of the adapted models (relevance/matrix learning, [16,42]).

One of the most challenging ideas in classification learning is the kernel trick
realized in SVMs. According to this idea, the data as well as the prototypes are
implicitly mapped into a high-dimensional (infinite) feature mapping Hilbert
space (FMHS) uniquely determined by the kernel, but the dissimilarities still
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P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 193–204.
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are calculated using the original data whereas model adaptation is processed in
the dual space of the FMHS. This implicit mapping frequently offers a great
flexibility and good separation possibility. This advantage, however, makes it
more difficult to interpret the model because the prototypes in these models are
given as infinite-dimensional representations in the FMHS. Moreover, the sup-
port vectors are not typical representatives of the classes, as mentioned before.
Several variants of LVQ were established also integrating the kernel mapping con-
cept in those models to keep the idea of class-typical prototypes (Kernel GLVQ,
KGLVQ) [35,34]. Yet, these models also have to the infinity of the mapping space.
Usually, it is approximated by a finite one using the Nystrøm-approximation
technique [40], which obviously leads to an information loss in general.

In this paper we offer an alternative for the integration of kernels in prototype
based vector quantization. For this purpose, we consider differentiable universal
kernels determining a new differentiable metric in the data space to be used in
the vector quantization model. Thus gradient based learning becomes available
whereby the topological structure of the new metric space is isomorphic to the
FMHS.

The paper is structured as follows: First we briefly review the idea and jus-
tification of kernel mapping into FHMS. Thereafter, we present the theoreti-
cal justification of the differentiable kernel online vector quantization approach.
Subsequently, we present information theoretic kernels. Sample applications and
concluding remarks complete the contribution.

2 Reproducing Kernels for Hilbert Spaces and Kernel
Mapping

We start with a brief review of the kernel theory. For that we assume the data
space as a compact metric space (V, dV ), i.e. a vector space V equipped with a
metric dV . A function

κΦ : V × V → C (1)

is a kernel, if there exists a Hilbert space H and a map

Φ : V � v −→ Φ(v) ∈ H (2)

with
κΦ(v,w) = 〈Φ(v), Φ(w)〉H (3)

for all v,w ∈ V and 〈·, ·〉H is the inner product of this Hilbert space. As a
consequence the kernel is Hermitian, i.e. κΦ (v,w) = κΦ (w,v) and, therefore,
sesquilinear. The mapping Φ is called feature map and H the feature space of
V . Without further restrictions on the kernel κΦ both H and Φ are not unique.
A function f : V −→ C is induced by κΦ if there exists an element g ∈ H with
f (w) = 〈g, Φ(w)〉H. The following important Lemma is shown in [46]:
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Lemma 1. Let κΦ be a kernel of a metric space (V, dV ) and Φ a corresponding
feature map into a Hilbert space H. Then κΦ is continuous iff Φ does. In this
case

dκΦ(v,w) = ‖Φ(v) − Φ(w)‖H (4)

defines a semi-metric1 on V and the identity map Ψ between the different metric
spaces over the vector space V

Ψ : (V, dV ) −→ (V, dκΦ) (5)

is continuous. If the feature map Φ is injective dκΦ is even a metric.

We have to to state the following important remark:

Remark 1. In the proof of this lemma the inner product property (3) of the kernel
is never used. Only the norm properties of Hilbert spaces and their completeness
are required. Hence, the lemma is also valid if Φ would map into a Banach space
B with metric dκΦ .

To ensure the separability of the feature map Φ the kernel has to be universal [46].
Further, Steinwart has also proofed that continuous universal kernel imply the
injectivity of the corresponding feature map Φ. Again, we have to emphasize that
the proof of this theorem does not utilize the inner product property (3) of the
kernel. Only, the semi-metric properties of the corresponding metric are needed,
which would remain valid also regarding Banach spaces instead of Hilbert spaces.

An important role in feature mapping play positive definite kernels, which
uniquely correspond to Hilbert spaces H in a canonical manner according to the
Mercer-theorem [1,27]. The kernel κΦ is said to be (strictly) positive definite if
for all finite subsets Vn ⊆ V with cardinality #Vn = n, the Gram-Matrix

Gn = [κ (vi,vj) : i, j = 1 . . . n] (6)

is (strictly) positive semi-definite [1]. In that case, the Hilbert space H is
a so-called reproducing kernel Hilbert space (RKHS), i.e. the kernel function
κΦ(v, ·) ∈ H and for each v ∈ V and all f ∈ H and w ∈ V the relation
f (w) = 〈f, κΦ(w, ·)〉H is valid according to the Riesz representation theorem
[1,22]. Here, κΦ is denoted as a reproducing kernel obviously being symmetric,
real and, hence, bi-linear. The space IκΦ of kernel induced functions is given as
the set

IκΦ = {κΦ(w, ·)|w ∈ V } (7)

with IκΦ ⊆ H. For positive kernels the associated inner product implies a
norm ‖Φ(v)‖H =

√〈Φ(v), Φ(v)〉H and, hence, also a metric dH (Φ(v), Φ(w)) =
‖Φ(v) − Φ(w)‖H . Hence, the positive semi-definiteness of the kernel ensures
the metric properties in comparison to the semi-metric (4) obtained for general
kernels. Because κΦ is a kernel, the metric dH (Φ(v), Φ(w)) can be rewritten as

dH (Φ(v), Φ(w)) =
√

κΦ(v,v) − 2κΦ(v,w) + κΦ(w,w) (8)

using the bi-linearity and the symmetry of the positive kernel.
1 Note, for a semi-metric the triangle inequality does not hold [32].
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Remark 2. Obviously, the semi-metric dκΦ from (4) coincides with dH on IκΦ

for positive kernels.
This last remark allows an important conclusion regarding the mapping Ψ from
(5) in relation to a given positive continuous kernel κΦ:
Lemma 2. Let (V, dV ) be a compact metric space, κΦ : V ×V → R a continuous
positive kernel with the feature map Φ : V −→ H, and the kernel determining a
metric dH in H by (8). If the space of the induced functions IκΦ is dense in the
space of continuous functions C (V ), then the metric space (V, dH) is topologically
equivalent to induced space IκΦ ⊆ H with the metric dH. Moreover, both spaces
are isometric, and, hence, (V, dH) is a Hilbert space, too. In consequence, the
generally non-linear mapping Ψ from (5) is an bijective, separable and continuous
mapping. The result of the Lemma 2 is visualized in Fig.1.

Fig. 1. Visualization of Lemma 2: For universal kernels κΦ the metric spaces (V, dH)
and

(Iκ⊕ , dH
)

are topologically equivalent and isometric by means of the continuous
bijective mapping Φ ◦ Ψ−1

Proof. The kernel κΦ is assumed to be positive, continuous and generating a space
of induced functions IκΦ , which is dense in the space of continuous functions
C (V ). Hence, κΦ is universal and, therefore, the uniquely corresponding feature
map Φ : V −→ H is injective according to [46]. Hence, it is bijective for Φ :
V −→ IκΦ ⊆ H, whereby H is equipped with the Hilbert space metric dH.
Because (V, dV ) is compact and the bijective mapping Φ is continuous, it follows
immediately that IκΦ is a subspace of H and, therefore, a Hilbert space itself.
Moreover, it follows from Lemma 1 that Φ is also continuous as well as the
obviously bijective identity map Ψ : (V, dV ) −→ (V, dH) from (5). Hence, the
map Φ

(
Ψ−1 (v)

)
= Φ ◦ Ψ−1 (v) with v ∈ (V, dH) is bijective and continuous.

Therefore, (V, dH) and IκΦ are isomorphic and, according to the Remark 2,
also isometric. The separability of Ψ follows immediately from the separability
property of Φ.

It is well known that the Gaussian kernel κΦ (u,v) = exp
(−||u−v||2E

2σ2

)
, the

Student-type Gaussian kernel κΦ (u,v) =
(
β + ||u−v||2E

σ2

)−α

with α, β > 0 and
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the exponential kernel κΦ (u,v) = exp (〈u,v〉E) are universal on every compact
subset of Rn. Other universal kernel can be found in [28,43,46]. At this point
we remark that these kernels are also differentiable, which becomes important
in Sect. 4.

Another class of kernels are information theoretic kernels based on divergences
[25,33]. This class is investigated in the light of universality in the next subsec-
tion. The relation of universal kernels to characteristic kernels is addressed in
[45].

3 Universal Kernels Based on Divergences

Information theoretic kernels based on divergences are considered in many ap-
plications [8,23,25,33]. Here we relate them to universal differentiable kernels,
such that the diagram in Fig.1 holds also for those kernels. For this purpose,
we introduce the class of radial kernels κr : Rm × Rm −→ R [19,41,43]. These
kernels are defined as

κr (u,v) = g (d (u,v)) (9)

where d (u,v) is a metric and g is a function on R
+
0 = {x ∈ R|x ≥ 0}. Equiva-

lently, d (u,v) could be a norm of the difference (u− v). One important point
to be emphasized here is that the argument of a radial kernel is required to be a
metric or, equivalently, a norm. Radial kernels stand out due to its close relation
to universal kernels. The following lemma holds for radial kernels [45]:

Lemma 3. If the radial kernel is strictly positive definite then it is also
universal.

If we want to obtain a differentiable universal kernel based on divergences, we
have, hence, to ensure that the divergence is differentiable, metric, and that the
corresponding radial kernel is positive definite. Generally, divergences are not
symmetric and, therefore, cannot serve as a metric [9,10,14]. Yet, there exist
some special divergences for vectorized data, which are metrics at the same time
under the assumption that the data vectors represent probability densities or at
least positive functions [47]. For example, the Euclidean distance is a so-called η-
divergence belonging to the class of Bregman-divergences with parameter η = 2
[30]. Österreicher and Vajda considered a subset of Csiszár’s f -divergences
to be metric [31,47]. To this class belongs the subclass of fβ-divergences, a promi-
nent member of which is the squared Hellinger distance

DH (u‖v) =
m∑

i=1

(
√

ui −√
vi)

2 (10)

obtained for the value β = 1
2 . Another example is the Jensen-Shannon-divergence

DJS (u‖v) =
DKL (u‖w) + DKL (v‖w)

2
(11)
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obtained for β = 1 with w = u+v
2 and

DKL (u‖w) =
m∑

i=1

ui log
ui

vi
(12)

being the Kullback-Leibler-divergence [24]. It can be calculated based on the
Shannon-entropy

H (v) = −
m∑

i=1

vi log vi (13)

as
DJS (u‖v) = H

(
u + v

2

)
−
(

H (u) + H (v)
2

)
(14)

as shown in [25,44].
An analog divergence can be installed using the Rényis α-entropy

Hα (v) =
1

1 − α
log

(
m∑

i=1

(vi)
α

)
(15)

defined for α > 0 [36,37]. In the limit α → 1 Hα (v) converges to the Shannon-
entropy H (v) from (13). Based on the Rényi-entropy (15) the Jensen-Rényi-α-
divergence is defined as

Dα
JR (u‖v) = Hα

(
u + v

2

)
−
(

Hα (u) + Hα (v)
2

)
(16)

in complete analogy to (14) [2]. It turns out that both,
√

DJS (u‖v) and√
Dα

JR (u‖v), are metrics [25] or, more precisely, they are Hilbertian metrics
[17]. Moreover it is shown in the paper [25] by Martin et al. that the follow-
ing lemma holds:

Lemma 4. The kernels

1. κ1
JS (u,v) = exp (−t · DJS (u‖v)), t > 0,

2. κ1
JR (u,v, α) = exp (−t · Dα

JR (u‖v)), t > 0,
3. κ2

JS (u,v) = (t + DJS (u‖v))−1, t > 0 and
4. κ2

JR (u,v, α) = (t + Dα
JR (u‖v))−1, t > 0

are strictly positive definite. For the kernels κ1
JR and κ2

JR the additional condition
of α ∈ [0, 1] has to be fulfilled for positive definiteness.

Therefore, we can finally state the following corollary for divergence based ker-
nels:

Corollary 1. The kernels given in Lemma 4 based on the Jensen-Shannon-
divergence (14) and the Jensen-Rényi-α-divergence (16) are universal.

Proof. This property follows immediately from Lemma 4 together with the
Lemma 3.

Last but not least we remark again that the kernels defined in Lemma 4 are
differentiable [47], which relates them to the considerations in Sect. 4.
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4 Differentiable Kernel and Gradient Based Vector
Quantization

Vector quantization can be distinguished into unsupervised and supervised ap-
proaches. The main task for unsupervised models is to minimize some recon-
struction error E for a given data set V ⊆ R

n of vectors v with respect to set
of prototypes W = {wk}k∈A, where A is a finite index set. Prominent examples
are the self-organizing map (SOM,[21]), neural gas (NG, [26]), whereby for the
SOM the variant of Heskes is taken [18]. For those models, the reconstruction
error is given in terms of the dissimilarity measure d (v,wk) between data and
prototypes, which is assumed to be differentiable. Adaptation for these models
is frequently realized as a stochastic gradient descent. In that case, the gradient
∂E/∂wk contains the derivative ∂d (v,wk) /∂wk originating from the chain rule
of differentiation. For example, the cost function of the Heskes variant of SOM is

ESOM =
ˆ

P (v)
∑
r∈A

δs(v)
r

∑
r′∈A

hSOM
σ (r, r′)
2K(σ)

d(v,wr′)dv (17)

with the so-called neighborhood function hSOM
σ (r, r′) = exp

(
−‖r−r′‖

A

2σ2

)
and

‖r − r′‖A is the distance in the SOM-lattice A according to its topological struc-
ture [18]. Further, P (v is the data density and the Kronegger symbol δs(v)

r assigns
a data vector v to the winning unit s(v). K(σ) is a normalization constant de-
pending on the neighborhood range σ. Then the stochastic gradient prototype
update for all prototypes is given as [18]:

�wr = −εhSOM
σ (r, s(v))

∂d (v,wr)
∂wr

. (18)

depending on the derivatives of the used dissimilarity measure d, which allows
the application of differentiable kernel metrics.

Prototype based classification in the context of learning vector quantization
models (LVQ, [21]) was renewed by the idea of Sato&Yamada to approximate
the non-differentiable classification error C by a differentiable function EC re-
ferred as Generalized LVQ (GLVQ,[39,38]). As in unsupervised vector quantiza-
tion, EC depends on the underlying dissimilarity measure d (v,wk) according to

EC(W ) =
1
2

∑
v∈V

f(μ(v)) with μ(v) =
d+(v) − d−(v)
d+(v) + d−(v)

. (19)

with d+(v) = d(v,w+) denoting the distance between the data point v and the
nearest prototype w+, belonging to the same class as the presented data point
v. Analogously, d−(v) is defined as the distance to the best matching prototype
of all other classes. The function μ(v) is the classifier function. Like in SOMs,
d(v,w) in (19) is required to be some differentiable dissimilarity measure with
respect to w. Then the cost function can be minimized by gradient descent
learning based on the (stochastic) derivatives
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∂sE

∂w+
=

2d− · f ′(μ(v))
(d+ + d−)2

∂d+

∂w+
,

∂sE

∂w− = −2d+ · f ′(μ(v))
(d+ + d−)2

∂d−

∂w− , (20)

where we used the abbreviations d+ for d+(v) for simplicity and d+, analogously.
Thus, stochastic gradient learning in supervised and unsupervised vector

quantization can be seen as a gradient descent learning of an error function
in the metric space (V, d (v,wk)). Obviously, under gentle conditions on V (con-
tinuous, local convex, ...) it can be assumed that ∂d (v,wk) /∂wk ∈ V is valid.
Yet, the choice of the metric is free except the necessary differentiability. Hence,
metrics determined by differentiable kernel are applicable [15]. Obviously, the
kernels presented in Sec.2 and 3 are differentiable (for the latter kernels, see [47]
for differentiability of the respective divergences). If such a metric is obtained
from an universal kernel κΦ for RKHS, respectively, the Lemma 2 ensures the
topological and isometric equivalence to the respective FMHS. Hence, the al-
gorithm operates in the same structural space as SVMs do and, therefore, can
profit from its richness in shape, which frequently delivers excellent performance.
At this point we empasize the following essential drawn from the Lemma 2:

Remark 3. The take home message of the Lemma 2 in context of gradient based
online learning is: Assume a set of prototypes W ′, which has to be learned in
the induced image space IκΦ ⊆ H. Because IκΦ is a subspace of H any linear
combinations of prototypes belongs to H. Further, if the corresponding universal
kernel κΦ is continuous and differentiable, it is sufficient to train prototypes W by
gradient descent learning in the isomorph-isometric space (V, dH) induced by the
mapping Ψ . Lemma 2 ensures the unique equivalence. An analogous statement
obviously holds also for the Banach space problem.

More properties of differentiable Mercer-like kernels and their reproducing
properties can be found in [12,48].

5 Exemplary Applications

In this section we briefly give results from exemplary applications for classifica-
tion problems. We compare the GLVQ with differentiable kernels (DK-GLVQ)
with several state-of-the-art prototype based classification algorithms including
SVMs using Gaussian kernels based on an Extreme Learning Kernel (ELM,[13])
and improved GLVQ variants. For the latter we consider standard GLVQ with
Euclidean metric, and the powerful variant based on matrix learning (GMLVQ,
[42]) as a generalization of the relevance learning approach [16]. The GMLVQ
uses the distance d (v,w) = (Ω (v − w))2 with a here squared matrix Ω, which
is automatically adapted during learning for optimal classification performance.
Moreover, we include the recently proposed kernel GLVQ (KGLVQ) based on a
Nystrøm-approximation [40]. For the DK-GLVQ we applied two variants: The
first one used a Gaussian kernel with self-adapting kernel-with σ. The second
one uses the kernel κΦ (v,w) = exp

(
− (Ω (v − w))2

)
with a self-adapting non-

degenerating (squared) matrix for comparison with GMLVQ. We refer to this
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variant as DK-GMLVQ. This variant is much more stable than the σ-adjusting
variant which may be addressed to the regularizing properties of matrix learning
known from GMLVQ [5,6].

We applied these algorithms to two standard benchmark data sets taken from
UCI repository [7]. Both data sets are two-class problems to to establish com-
patibility with SVMs. The first one is breast cancer data set (WDBC) consisting
of 569 samples with 32 dimensions. The second data set is a diabetes study
(PIMA) with 768 eight-dimensional samples. All experiments were performed
by three-fold cross-validation. For the GLVQ variants we used one prototype for
each class. The SVM resulted in 512 and 691 support vectors for both problems,
respectively. The results are depicted in Tab. 1

Table 1. Classification accuracies in % together with their variances for the several
algorithms and datasets (PIMA and WDBC). Results are obtained by three-fold cross-
validation.

Dataset GLVQ KGLVQ DK-GLVQ GMLVQ DK-GMLVQ SVM-ELM
PIMA 75.1(±0.062) 71.1 (±0.031) 76.2 (±0.031) 77.7 (±0.016) 78.3 (±0.025) 76.4 (±0.042)
WDBC 93.49(±0.016) 92.3(±0.034) 92.2(±0.009) 94.7 (±0.020) 95.4 (±0.025) 97.7 (±0.014)

We observe a good performance of both kernel GLVQ variants using differen-
tiable kernels. These are significantly improved compared to KGLVQ, which
uses approximation techniques. Hence, we can conclude that the Nystrøm-
approximation leads to a significant loss in accuracy. Further, comparison to
GLVQ and GMLVQ also shows clear improvements, although standard GM-
LVQ achieved high performance. Last but not least, comparison to the SVM
demonstrates that differentiable kernel are an excellent alternative to SVM. In
particular we emphasize the drastically reduced model complexity taking only
two prototypes compared to hundreds of support vectors while achieving similar
accuracies.

6 Conclusion

In this paper we considered the theoretical framework of differentiable kernels for
application in gradient based learning in supervised and unsupervised prototype
based vector quantization. We show that utilization of a data metric determined
by universal kernels as known from support vector machines leads to an opti-
mization space equivalent and isometric to a reproducing kernel Hilbert space.
Hence, gradient based vector quantization schemes with differentiable universal
kernels can benefit from this property. The main results of topological and iso-
metric equivalence is the Lemma 2. An extension of this theory for reproducing
kernel Banach spaces can be found in [48], which assume weaker restrictions
and, therefore, offer greater flexibility [49]. Last but not least we provide some
examples of differentiable universal kernels based on divergences as fundamen-
tal information theoretic concepts. Further, we demonstrated abilities of GLVQ
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using differentiable kernel for exemplary datasets, which show high performance
also compared to SVMs but with lower model complexity.

Otherwise, the presented approach cannot deal with arbitrary kernels such as
structure kernels. So the method trades increased efficiency by reduced flexibility
in kernel choice.
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Abstract. In this paper, we investigate the properties of the Gamma Growing
Neural Gas (γ-GNG) model for the analysis of nonlinear time series. This model
includes a temporal context descriptor based on a short term memory structure
called Gamma memory. It is shown that γ-GNG can approximately reconstruct
the space-state, and filter out additive noise. Simulation results on two data sets
are presented: Lorenz system and NH3-FIR Laser time series.

1 Introduction

Several variants of self-organizing feature maps (SOMs) [1] can deal with processing
data sequences that are temporally or spatially connected, such as words, DNA se-
quences, time series, etc. [2], [3]. As fully recursive models are rather expensive, other
models simply add context vectors to the conventional weight vectors (prototypes). A
context vector represents the temporal context in the previous time steps. In Merge
SOM (MSOM) [4], the context is described by a linear combination of the weight and
the context of the last winner neuron. As this type of context does not depend on the
lattice architecture, it can be combined with other self-organizing neural networks such
as Neural Gas (NG) [5] and Growing Neural Gas (GNG) [6], to produce the Merge
Neural Gas (MNG) [7] and the Merge Growing Neural Gas (MGNG) [8], respectively.

In our previous work we have added Gamma filters [9] to SOM, NG and GNG,
yielding the γ-SOM [10], γ-NG [11], and γ-GNG models [12], respectively. It has
been shown that the gamma filter variants of SOM, NG and GNG are generalizations
that include as particular examples the MSOM, MNG and MGNG models, when the
filter order is set to one. In general, performance of the gamma models are better than
those of merge models under the temporal quantization error metric.

In this paper, we investigate the properties of γ-GNG for analysis of nonlinear time
series. We show that γ-GNG can reconstruct the state-space approximately, as well as
filter out noise. Results are shown on two data sets: the Lorenz system and the NH3-FIR
Laser time series.

2 Delay Coordinate Embedding

The state space is the set of all possible states of a deterministic dynamical system.
Embedding theorems, e.g. Takens [13], Sauer [14], allow us to reconstruct the internal
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DOI: 10.1007/978-3-642-35230-0 21 c© Springer-Verlag Berlin Heidelberg 2013



206 P.A. Estévez and J.R. Vergara

dynamics of an n-dimensional state space starting from a one-dimensional time series,
xi(t), which corresponds to a sequence of scalar measurements of the state space or
a single state variable. To embed a time series, the following delay coordinate vector,
whose components consists of time-delayed versions of the samples, is constructed:

s(t) = [xi(t), xi(t− τ), · · · , xi(t− (m− 1)× τ)] (1)

where τ and m are the embedding parameters. Takens theorem guarantees, under cer-
tain conditions, a one-to-one correspondence between the reconstructed dynamics and
the true dynamics of the system. A correct embedding requires m ≥ 2 × D, where
D is the dimension of the internal dynamics, e.g. an attractor. Takens theorem does
not provide a way to estimate the embedding dimension m and the delay τ , but many
heuristics methods have been proposed in the literature. The parameter τ is usually es-
timated by seeking for the delay that provides the first minimum of the average mutual
information [15]. The false nearest neighbor algorithm [16] computes an upper bound
on the parameter m. Estimating τ and m is computationally complex and numerically
sensitive [17], reason why nonlinear time series analysis techniques that do not require
these parameters are extremely attractive.

3 Gamma Context Model

In the 90’s gamma filters were studied in the context of focused multilayer perceptron
neural networks by Principe et al. [9,19]. The gamma filter is defined in the time domain
as follows:

y(n) =

K∑
k=0

wkck(n)

ck(n) = βck(n− 1) + (1− β)ck−1(n− 1) (2)

where c0(n) ≡ x(n) is the input signal and y(n) is the filter output, and w0, · · · , wK are
the weight parameters of the filter. The parameter β ∈ (0, 1) allow us to decouple depth
(D) and resolution (R) from the filter order,K . Depth measures how far into the past the
memory stores information, and resolution indicates the degree to which information
about each individual element of the input sequence is preserved. The average memory
depth for a Gamma memory of order-K becomes [19],

D =
K

(1− β)
(3)

and its resolution is
R = 1− β.

By increasing the filter order, K , the Gamma filter can achieve an increasing memory
depth without compromising resolution.

Let N = {1, . . . ,M} be a set of neurons. Each neuron has associated a weight vector
wi ∈ �d, for i = 1, . . . ,M , and also a set of context vectors C =

{
ci1, c

i
2, . . . , c

i
K

}
,
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cik ∈ �d, k = 1, . . . ,K , where K is the Gamma filter order. Given a sequence s, the
context set C is initialized at zero values.

Given an input, x(n), the best matching unit, In, is the neuron that minimizes the
following distance criterion,

di(n) = αw

∥∥x(n)− wi
∥∥2 + K∑

k=1

αk

∥∥ck(n)− cik
∥∥2 (4)

where the parameters αw and αk, k ∈ {1, 2, . . . ,K} control the relevance of the dif-
ferent elements. To compute the recursive distance (4) every context descriptor in the
different filtering stages is required. Formally, the K context descriptors of the current
unit are defined as gamma memories:

ck(n) = βc
In−1

k + (1− β) c
In−1

k−1 ∀k = 1, . . . ,K (5)

where c
In−1

0 ≡ wIn−1 and at n = 0 the initial conditions cI0k , ∀k = 1, . . . ,K are set
randomly. When K = 1, the context used in the merge family of models is recovered.

Because the context of order k is constructed recursively, depending on the context
of order k − 1, it is recommended that αw > α1 > α2 > · · · > αK > 0, otherwise
errors in the early filter stages would propagate through higher-order contexts.

3.1 γ-GNG Algorithm

Assuming a univariate time series, a Gamma filtered embedding of the time series is
constructed as follows:

u(t) = [wi(t), ci1(t), · · · , ciK(t)] (6)

where wi is the weight scalar, and cik, for k = 1, · · · ,K , are K temporal contexts asso-
ciated to the i−th neuron, for i = 1, · · · ,M . In other words each neuron is represented
by a (K+1)-dimensional vector composed of the weight scalar and K temporal contexts.
In the following the gamma-GNG algorithm is described.

1. Initialize randomly two weights wi, and set to zero their respective contexts, cik,
for k = 1, · · · ,K , i = 1, 2. Connect them with a zero age edge and set to 0 their
respective winner counters, wcounti.

2. Present input vector, x(n), to the network
3. Calculate context descriptors ck(n) using eq. (5)
4. Find best matching unit (BMU), In, and the second closest neuron,Jn, using eq. (4)
5. Update the BMUs local winner count variable: wcountIn = wcountIn + 1
6. Update the BMU’s weight and contexts using the following rule

wi = εw(n) ·
(
x(n)−wi

)
(7)

ck
i = εw(n) ·

(
ck(n)− ck

i
)

Update neighboring units (i.e. all nodes connected to the BMU by an edge) using
step-size εc(n) instead of εw(n) in eq. (7).
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7. Increment the age of all edges connecting the BMU and their topological neighbors,
aj = aj + 1.

8. If the BMU and the second closest neuron are connected by an edge, then set the
age of that edge to 0. Otherwise create an edge between them.

9. If there are any edges with an edge larger than amax then remove them. If after this
operation, there are nodes with no edges remove them.

10. If the current iteration n is an integer multiple of λ, and the maximum node count
has not been reached, then insert a new node. The parameter λ controls the number
of iterations required before inserting a new node. Insertion of a new node, r, is
done as follows:
(a) Find node u with the largest winner count.
(b) Among the neighbors of u, find the node v with the largest winner count
(c) Insert the new node r between u and v as follows,

wr = 0.75wu + 0.25wv (8)

ck
r = 0.75ck

u + 0.25ck
v

(d) Create edges between u and r, and v and r, and remove the edge between u
and v

(e) Decrease the winner count variables of nodes u and v by a factor 1 − α̃, and
set the winner count of node r as follows,

wcountu = (1 − α̃)× wcountu (9)

wcountv = (1 − α̃)× wcountv (10)

wcountr = wcountu

11. Decrease winner count variables of all nodes, j = 1, · · · , J by a factor 1− β̃,

wcountj = (1− β̃)× wcountj

Typically, α̃ = 0.5 and β̃ = 0.0005.
12. Set n → n+ 1
13. If n < L go back to step 2, where L is the cardinality of the data set.

3.2 Selecting the Best Model

The performance of the γ-GNG algorithm depends on the Gamma filter parameters β
and K . The parameter β was varied from 0 to 1 with 0.1 steps, and the number of fil-
ter stages K was varied from 1 to 15, giving a total of 165 different models for each
dataset. The temporal quantization error (TQE) [2] is used as a performance criterion to
select the best models. TQE measures the average standard deviation of signals within
the receptive field of each neuron in the grid for a certain past input. This generates
a curve of quantization error versus the index of past inputs. This curve can be aver-
aged to yield the TQE of the whole map, which we use as an indicator of quality of the
spatio-temporal quantization. With the aim of measuring the TQE performance, a time
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window of 30 past events was used. This number is related to the average depth, D, of
the Gamma memory as defined in eq. (3), e.g. if K = 10 and β = 0.7 then D = 33.
The size of this window does not affect the function of the models, and it is used only
for computing the TQE metric.

In practice, we noticed that several maps obtained by using γ-GNG can have very
similar TQE values, although their dynamics look quite different. For this reason the
top 10 TQE values were selected for further analysis, and an additional criterion was
used to discriminate among these peaks. Remember that our goal is to reconstruct the
original state-space. Notice from eq. (6) that γ-GNG renders a (K+1)-dimensional rep-
resentation of the time series when using K contexts. As a result of this spatio-temporal
quantization, the original univariate time series is transformed to a (K+1)-dimensional
time series, by simply assigning to each point of the time series a neuron represented by
a (K+1)-dimensional vector. This (K +1)-dimensional representation can be projected
onto a one-dimensional or a two-dimensional space by using principal component anal-
ysis (PCA), giving 1D-PCA or 2D-PCA projections, respectively. We searched for the
1D-PCA projection that has maximal mutual information with the original time series.
Mutual information has the property of being invariant to scale, which is an advantage
in this case because the dynamics of nonlinear time series, e.g. an attractor or fixed
point, is also invariant to scale. However, 1D-PCA projections may be out of phase
with the original time series, because the contexts contain information of the past in-
puts. Notice that the dynamics of a nonlinear time series is also invariant to a shift of
the whole time series. Therefore, to select the best model among the top 10 peaks of
the TQE measurement, we searched for the maximal mutual information between the
original time series and delayed 1D-PCA projections. For obtaining the right delay, we
started with the 1D-PCA time series without delay, and then increased the delay in unit
steps until getting the maximum mutual information with the original time series (i.e.,
we looked for the first maximum of the mutual information as a function of the number
of delays). The mutual information was computed using Fraser’s algorithm [15].

4 Experiments

Experiments were carried out with two data sets: Lorenz system and NH3-FIR laser
time series. The Lorenz system corresponds to a set of 3 differential equations for mod-
eling convective fluid dynamics [20]. For certain parameters the Lorenz system dy-
namics contains a strange attractor. We used 4000 samples with a sampling interval of
0.005[s] of the state variable x(t), in order to reconstruct the state-space, see Fig. 1a).
The Far-Infrared (FIR) laser time series corresponds to data set A1 in the Santa Fe time
series competition. This is a univariate time series, containing 1000 measurements from
a FIR-Laser in a chaotic state. Fig. 1b) plots the laser time series. The laser NH3 time
series is a sequence of 8-bit integer numbers, and the measurement error is at least the
digitalization error [18]. It has been shown that the laser chaotic pulsations follow ap-
proximately the theoretical Lorenz model [21]. Both datasets have been widely used in
the literature to reconstruct the state-space by using delay coordinate embedding [18].

1 Available at http://www-psych.stanford.edu/˜andreas/
Time-Series/SantaFe.html

http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
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(a) (b)

Fig. 1. a) Lorenz x(t) time series, and b) NH3-FIR laser time series

Training in γ-GNG is done in a single stage, during 200 epochs for each dataset
using 100 neurons. Parameters αi are fixed, and decayed linearly with the context order
as follows:

αi =
K + 1− i∑K
k=0(k + 1)

, i = 0 . . .K (11)

with αw ≡ α0. The parameters used in (7) were set as εw = 0.05, εc = 0.0006.

4.1 Lorenz System

The Lorenz time series x(t) was contaminated with additive Gaussian white noise with
standard deviations σ = 0, 0.5, 1.0, 2.0, 2.5, 3.0. Table 1 shows the Gamma filter pa-
rameters (β, K) corresponding to the best models found for different levels of noise.
Remember that we do first a grid search of (β, K) values as described in Section 3.2, in
order to find the top ten TQE values. Next, for these ten cases, we compute the mutual
information (MI) between the original time series and the 1D-PCA projection using dif-
ferent delays, in order to align the time series. Table 1 shows the maximum MI values
and the delays obtained. As expected the TQE values increase with the level of noise,
while the MI values diminish.

Fig. 2a) shows the phase portrait of the original Lorenz time series x(t) versus
x(t−τ), where τ = 17 delays (corresponding to 0.09[s]). This value of τ was computed
by using the traditional method of seeking the first minimum of the mutual information
described in section 2. Fig. 2b) shows the phase portrait of the original Lorenz time

Table 1. Best γ-GNG models (β,K) obtained for the Lorenz x(t) time series with different stan-
dard deviations (σ) of additive Gaussian white noise. The table shows the temporal quantization
error (TQE), maximal mutual information value (MI) and delay obtained.

σ Noise β K TQE MI Delay

0.0 0.4 4 0.7099 5.0550 3
0.5 0.5 6 0.9837 4.0384 6
1.0 0.2 12 1.2809 3.4469 7
1.5 0.4 11 1.6389 3.0123 8
2.0 0.5 9 1.9250 2.8712 8
2.5 0.4 12 2.2117 2.5837 9
3.0 0.3 13 2.3864 2.5708 9
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(a) Original Phase Portrait (b) Original+Noise Phase Portrait

(c) γ-GNG 1D-PCA Phase Portrait (d) γ-GNG 2D-PCA projection

Fig. 2. Results for Lorenz x(t) time series: a) Phase portrait of original time series b) Phase por-
trait of original time series plus additive white noise of σ = 3.0, c) Phase portrait of 1D-PCA
projection obtained with γ-GNG using the noisy time series as input, and d) 2D-PCA projection
obtained with γ-GNG using the noisy time series as input

Table 2. Best γ-GNG model (β,K) obtained for the NH3-FIR laser time series. The table shows
the temporal quantization error (TQE), maximal mutual information value (MI) and delay ob-
tained.

β K TQE MI Delay

0.6 8 16.8211 3.2046 0

series x(t) with additive white noise of standard deviation σ = 3.0, using τ = 17
delays. Fig. 2c) shows the phase portrait of the 1D-PCA projection of the best model
obtained with γ-GNG applied on the Lorenz x(t) time series with additive white noise
of standard deviation σ = 3.0, using τ = 17 delays. Fig. 2d) shows directly a 2D-PCA
projection corresponding to the best model obtained with γ-GNG for the noise level of
σ = 3.0. In this 2D-PCA projection the dots correspond to neurons, and the links are
created by connecting the closest neurons. It can be clearly observed by comparing figs.
2b) and 2c) with fig. 2a), that the phase portrait using the 1D-PCA projection obtained
with γ-GNG is able to capture the dynamics of the strange attractor, filtering out most of
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the white noise. Fig. 2d) shows an alternative way of visualizing the strange attractor
dynamics without using coordinate delay embedding. This plot is different than the
phase portraits of figs. 2a-c), because the latter depend on the embedding parameter τ .

4.2 NH3-FIR Laser Time Series

Table 2 shows the Gamma filter parameters (β, K) corresponding to the best model
found for the NH3-FIR laser time series. In this case the maximal mutual information
between the original time series and the 1D-PCA projection of the model obtained with
γ-GNG was found without any delay. Fig. 3a) shows the phase portrait of the original
Lorenz time series x(t) versus x(t − τ), where τ = 2 was computed by seeking for
the first minimum of the mutual information. Fig. 3b) shows the phase portrait of the
1D-PCA projection of the model obtained with γ-GNG applied on the laser time series,
using τ = 2. Fig. 3c) shows a 2D-PCA projection corresponding to the best model
obtained with γ-GNG. In this projection the dots correspond to neurons, and the links
are created by connecting the closest neurons. It can be observed by comparing fig. 3a)
with fig. 3b), that the phase portrait using the 1D-PCA projection obtained with γ-GNG

(a) Original Phase Portrait (b) γ-GNG 1D-PCA Phase Portrait

(c) γ-GNG 2D-PCA projection

Fig. 3. Results for Laser time series: a) Phase portrait of original time series b) Phase portrait
of 1D-PCA projection obtained with γ-GNG , and c) 2D-PCA projection obtained with γ-GNG
(direct state space reconstruction)
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Fig. 4. Recurrent plots for Laser time series: a) Original time series, and b) 1D-PCA projection
obtained with γ-GNG

is able to capture correctly the dynamics of the strange attractor. Fig. 3c) shows an al-
ternative way of visualizing the strange attractor by using Gamma filtered embedding
instead of delay coordinate embedding. Recurrence plots (RPs) is a method for visual-
izing the recurrences in dynamical systems [22]. Fig. 4a) shows the RP obtained with
the original laser time series (1000 points), where the error distance has been setup to
show only 2.5% of the points. Fig. 4b) shows the RP obtained with the 1D-PCA time
series obtained with the γ-GNG model. By comparing Figs. 4a) and b) it can be seen
that plot b) has less noisy isolated points (more white areas) than plot a), and it also
shows more structure around transition points 200 and 600.

5 Conclusion

We have investigated the properties of the γ-GNG model for nonlinear time series
analysis. We have shown that γ-GNG can capture the invariant properties of nonlin-
ear dynamics, such as strange attractors. Another important property of the γ-GNG is
its capacity to filter out noise as shown in the two time series analyzed. The proposed
model built a kind of embedding by using Gamma filters instead of delay coordinates.
The (β,K) parameters of the γ-GNG model may be related somehow to the (τ , m)
embedding parameters. We have proposed a method to determine the (β,K) parameters
based on the TQE minimization and mutual information. The method proposed here
can easily be extended to the γ-SOM and γ-NG variants. In the near future, we plan to
do research on time series prediction by using γ self-organizing neural networks.

Acknowledgement. This research was supported by Conicyt-Chile under grant Fonde-
cyt 1110701.
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Abstract. Global modeling is a common approach to the problem of
learning dynamical input-output mappings. It consists in fitting a sin-
gle regression model, starting from the whole set of input and output
measurements. On the other side of the spectrum, the local modeling
approach segments the input space into several localized partitions (usu-
ally, Voronoi cells) and a number of specialized regression models are fit
over each partition. Regional modeling stands in between the global and
local approach. Firstly, the input space is indeed divided into partitions
(as in local modeling), then partitions are merged into larger regions
over which the regression models are built. In this paper, we extend
the regional modeling approach through the use of robust regression, a
statistical framework that better handles outliers and deviation of resid-
uals from gaussianity. The approach is validated using two benchmark
problems in system identification and its performance compared to those
achieved by standard global and local models.

1 Introduction

Modern industrial plants have been the source of challenging tasks in dynamical
system identification and control [13]. Designing control systems to achieve the
level of quality demanded by current industry standards requires building ac-
curate models of the plant being controlled. Building accurate models requires
reliable data, usually in the form of input and output time series. Once such
data are available, they can be used for obtaining direct or inverse models of
nonlinear systems (e.g., using neural network architectures [11,3]).

Although several techniques have been proposed and applied to the model-
ing and control of dynamical systems [5,14], they can be roughly categorized
in two main approaches: global and local modeling. Global models implement
a single structure, such as a linear regression or a neural network model, that
approximates the whole input-output mapping of the system being identified.
Global models constitute the mainstream approach in system identification and
control [12]. Local models have been a source of much interest because they have
the ability to fit to the local shape of an arbitrary surface, which is particularly
difficult when the dynamical system characteristics vary considerably through-
out the state space. The input space is divided into partitions, each one being
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associated with a specialized model. To estimate the system output at a given
time, a single model is chosen from the pool of available local models according
to some criteria defined on the current input data. Within the neural network
literature, local modeling techniques have been implemented mostly through the
use of the Self-Organizing Map (SOM) [6,4,14] as valuable alternatives to global
models based on supervised neural network architectures.

One of the main problems with local models is the description of the off-
equilibrium dynamics. This is due to the possible lack of measured data in the
partitions away from equilibrium, which may render the local regression problem
ill-posed [2]. Moreover, it is not straightforward how to select the appropriate
number of local models beforehand, without any a priori information; an in-
appropriate selection may cause the over- or under-identification of the original
system dynamics [18]. Stemming from the clustering of the SOM [16], the re-
cently proposed Regional modeling approach (RM)[15] is a SOM-based effort
to overcome such a shortcoming. The definition of more populated partitions,
hereafter called regions, is obtained from the clustering of the SOM prototypes.
In that sense, the RM approach stands in between global and local modeling.

As with conventional local modeling, in the regional modeling approach any
regression model can be built over such regions to estimate the system’s dynam-
ics. In a previous study [15], we have investigated the performance of RM using
Ordinary Least Squares (OLS) regression and the Extreme Learning Machine,
ELM [8]. This work extends the regional modeling approach using such regres-
sion techniques through the application of the M-estimates proposed by Huber
[9]. Based on our experimental results, we argue that we can develop models able
to offer protection against outliers in each operating regime without any loss of
accuracy when compared to standard regional models.

The remainder of the paper is organized as follows. In Section 2, the inverse
modeling problem is introduced and the fundamentals of regional modeling are
then presented. In Section 3, we describe the application of M-Estimates into
Regional Modeling approach. Computer simulations and performance analysis of
the proposed approach on two benchmarking problems are presented in Section 4.
The main conclusions and futher works are presented in Section 5.

2 Regional Modeling

Let us assume that the dynamical system under investigation is approximated
by a nonlinear autoregressive model with exogenous inputs, NARX [12]:

y(t) = f [y(t− 1), . . . , y(t− p);u(t), u(t− 1), . . . , u(t− q + 1)] + ε(t), (1)

where f(·) is the unknown single-input single-output mapping between the sys-
tem’s input u(t) ∈ R and the system’s output y(t) ∈ R at time t. The noise term
ε(t) (or error) denotes an unobserved scalar random variable. The input- and
output-memory orders are denoted by q ≥ 1 and p ≥ 1, with q ≤ p, respectively.
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In this paper, we are interested in the inverse system identificationproblem; that
is, the estimation of the input u(t) from previous input and output observations:

u(t) = f−1 [u(t− 1), . . . , u(t− q); y(t− 1), . . . , y(t− p)] + ε(t), (2)

= f−1 [x(t)] + ε(t),

where ε(t) denotes an unobserved scalar random variable. Thus, for this task, the
estimation problem is conventionally approached through the design of a regres-
sion model where the system’s input is the target u(t) ∈ R and the explanatory
variables are defined from the regression vector x(t) ∈ Rp+q.

As mentioned in the introduction, a global regression model may not be able
to capture the dynamics of regions with high curvatures, thus smoothing out
some of the details. Local models, on the other hand, may be too good at cap-
turing such details but they may suffer from under-utilization, because some of
them may be associated to unimportant regions of the system dynamics. Re-
gional modeling [15] comes out as an alternative modeling approach specifically
designed to find a reliable trade-off between global and local techniques.

The basic idea behind regional models consists in dividing the space of the
explanatory variables, the input space hereafter, into a number of partitions
and merging them into larger ones, called regions, where the system dynamics
are modelled. In its basic formulation, the partitioning of the input space is
achieved using the SOM, and the K-means algorithm applied to SOM’s weight-
vectors is used to merge them. The system dynamics in each region are then
reconstructed using independent regression models. In our experiments, we used
OLS regression and the Extreme Learning Machine.

The first step for building a regional model consists in learning a SOM on a set
of input data X = {xl}Nl=1, xl ∈ Rp+q that maps them onto a low-dimensional
lattice of M neurons which are usually arranged as a rectangular 2-dimensional
array. The set of weight vectors W = {wm}Mm=1, with wm ∈ Rp+q, and their
corresponding coordinates rm ∈ R

2 in the lattice characterize the trained SOM.
Once the SOM is trained, the second step consists in finding L partitions

X1,X2, ...,XL (with L ≤ M) of the input data by assigning a region l to each
neuron of the SOM. This is carried out using the K-means algorithm over the
SOM weight vectors W and the optimal number L of clusters, and thus also
regions, is selected by minimizing the Davies-Bouldin index1, (DB) [10]:

L = argmin
K=1,...,M

DB(W,PK), (3)

where PK = {pk}Kk=1 with pk ∈ Rp+q denotes the set of K-means prototypes.
Once the optimal L is determined, the l-th region is comprised of all weight
vectors wm that are associated with the prototype pl, that is

Wl = {wm | ‖wm − pl‖ < ‖wm − pj‖, ∀j �= l, j = 1, . . . , L}, (4)

and the set Xl of input vectors whose closest SOM weight vector belongs to Wl.

1 The smallest DB index value is considered the best choice based on the criterion of
constructing clusters with low intra-cluster distances and high inter-cluster distances.
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The third and last step consists in training the L regional regression models
using the inputs Xl and their corresponding target tl. This step is general and
any type of regression technique can be considered for the task. The estimate
û(t) for a previously unseen input signal x(t) is simply obtained from the model
associated to the so called winning region, l∗(t), that is the region such that

l∗(t) = argmin
l=1,...,L

‖x(t)− pl‖. (5)

For regional linear models, one can simply consider OLS regression and estimate
the coefficient vector β̂l = (XT

l Xl)
−1Xltl, for each l = 1, . . . , L region. The

target of a new input x(t) is estimated as û(t) = β̂T
l∗x(t), with β̂∗

l the coefficient
vector of the winning region.

In this paper, we denote by Regional Linear Model (RLM) a regional model
built using linear models. By the same token, we will use the term Regional
Extreme Learning Machine Models (RELM) to denote regional models comprised
of ELM networks.

The ELM is a single-hidden layer feedforward network (SLFN), proposed by
[8], in which the weights from the inputs to the hidden neurons are randomly
chosen, while the weights from the hidden neurons to the output are analytically
determined. Hidden layer needs not to be tuned, and its parameters are indepen-
dent from training data. Consequently, ELM offers significant advantages such
as fast learning speed, ease of implementation, and least human intervene when
compared to more traditional SLFNs, such as the MLP and RBF networks. The
use of ELM networks here is due to its fast learning training and capacity of fit
more complex datafold than linear models. It is feasible because some clusters
in RM can be made more complex than when we use purely local modeling.

3 Robust Regression and Regional Modeling

A common feature of the aforementioned RM models is that they usually use the
OLS technique for parameter estimation. In spite of the importance and wide
application of the OLS method, a notable drawback is the assumption that errors
follow a normal distribution. Unfortunately, in many real-world situations this
assumption does not hold, thus affecting the reliability of the results. According
to [1], the LSE method is very far from optimal in many non-Gaussian situations
with heavy tails caused by outlying measurements, for example.

OLS computes the square sum of residuals between desired solution and so-
lution computed by the system and, all points have the same importance in
this computation. This type of computation, however, is not appropriate in the
presence of outliers. Therefore, it is important to have a solution that is offers
protection against such observations, like robust fitting methods. Huber [9] intro-
duced the concept of M -estimation, where M stands for “maximum likelihood
type”. He suggests to obtain a more robust regression method by minimizing
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another function of the errors than the sum of their squares. Based on Huber
theory, a general M -estimator minimizes the following objective function:

n∑
i=1

ρ(ei) =

n∑
i=1

ρ(ti − xT
i β̂) (6)

where the function ρ gives the contribution of each residual to the objective
function, ti is the desired value, xi is the input, and β̂ is the parameter to
be found by regression. The OLS method is a particular M -estimator, where
ρ(ei) = e2i . However, M -estimators can replace the squared sum of residual
by another function. According to [7], ρ should have the following properties:
i) ρ(ei) ≥ 0, ii) ρ(0) = 0, iii) ρ(ei) = ρ(−ei) and iv) ρ(ei) ≥ ρ(ei′) for all
|ei| > |ei′ |.

Parameter estimation is defined by the estimating equation which is a weighted
function of the objective function derivative. Let ψ = ρ′ to be the derivative of
ρ. Differentiating ρ with respect to coefficients β̂, we have

n∑
i=1

ψ(ti − xT
i β̂)x

T
i = 0. (7)

Then, defining the weight function g(e) = ψ(e)/e, and let gi = g(ei), the esti-
mating equations are given by

n∑
i=1

gi(ti − xT
i β̂)x

T
i = 0. (8)

Solving the estimating equations is a weighted least-squares problem, minimiz-
ing
∑n

i=1 g
2
i e

2
i . The weights, however, depend upon the residuals, the residuals

depend upon the estimated coefficients, and the estimated coefficients depend
upon the weights. In this case, an iterative solution like the iteratively reweighted
least-squares, IRLS [7], is therefore required.

In this paper, we use the Huber estimator as learning method of the regional
models, where the weight function is given by:

g(ei) =

{
k/|ei|, if |ei| > k

1, otherwise.

with tuning constant k = 1.345σ, where σ corresponds to the standard deviation
of the residuals. It produces around 95-percent efficiency when the errors are
normal, and still offers protection against outliers.

Henceforth, the resulting models will be generically referred to as Robust
Regional Models (RRM). The performances of the proposed RRM methods will
be evaluated on two benchmarking real-world datasets.

4 Computer Simulations

In this section, we present the results of computer simulations carried out with
two input-output datasets commonly used for benchmarking purposes in system
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identification. The performances of the proposed Robust RLM (or R2LM) and
Robust RELM (or R2ELM) models are compared to those achieved by six other
models: the regular RLM and RELM models, an ELM-based global model, the
KSOM model [4], the LLM model [17] and a global linear model adapted by
OLS regression.

All the models are evaluated via the statistics of the resulting normalized

mean-squared estimation error NMSE =
∑N

t=1 e2(t)

N ·σ̂2
u

, where σ̂2
u is the variance of

the original time series {u(t)}Nt=1 andN is the length of the sequence of residuals.
Two benchmarking datasets2 were used to evaluate all the models, namely: (i)
the hydraulic actuator dataset (input u: valve position, output y: oil pressure),
and (ii) the flexible robot arm dataset (input u: reaction torque of the structure,
output y: acceleration of the flexible arm).

4.1 Results on the Hydraulic Actuator Dataset

The models were trained using the first 384 samples (training set) of the in-
put/output time series, while the following 112 samples (validation set) were
used for validation purposes. The models were evaluated with the remaining
512 samples (testing set). Input/output time series are rescaled to the [−1,+1]
range. Memory orders were set to p = 5 and q = 4, respectively. For each SOM-
based model, the number of neurons was set to M = 20. The initial and final
learning rates are set to α0 = 0.5 and αT = 0.01. The initial and final values of
the gaussian neighborhood function radius were σ0 = M/2 and σT = 0.001. The
learning rate α′ (LLM model) was set to 0.01. The optimal number of hidden
neurons of the ELM-based global model was found by searching from 2 to 30
for the value that achieved the smallest NMSE on the validation set. The best
result was found for 20 hidden neurons. The number of hidden neurons of the
ELM-based regional models (RELM and R2ELM) was set to 10, i.e. half the
number of hidden neurons used by the ELM-based global model.

Table 1. Performance results for the hydraulic actuator data

NMSE
Models mean min max variance

RLM 1.14e-004 1.13e-004 1.38e-004 2.09e-011

RELM 1.14e-004 1.13e-004 1.27e-004 9.25e-010

R2ELM 1.18e-004 1.17e-004 1.29e-004 4.32e-012

R2LM 1.22e-004 1.17e-004 2.78e-004 5.25e-010

ELM 0.0012 0.0001 0.0026 1.04e-007

KSOM 0.0019 0.0002 0.0247 1.15e-005

LLM 0.0347 0.0181 0.0651 1.58e-004

Linear 0.0380 — — —

2 Download from http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.
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The regional models were comprised of SOM grids with 10×10 neurons, using
the aforementioned parameters. The number of clusters found by the K-means
algorithm in combination with the minimum DB index was L = 3. The obtained
results are shown in Table 1, where are displayed the mean, minimum, maximum
and variance of the NMSE values, collected over 50 training/testing runs, with
the weights randomly initialized at each run. In this table, the models are sorted
according to the mean NMSE values.

One can easily note that the performances of the regional approaches on
this real-world dataset are better than those of all other models. The ELM and
KSOM model also had acceptable performances on this dataset. We can see that
without an appropriate selection of the number of models, the LLM presents an
accuracy simliar to that of the global linear method.
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Fig. 1. (a) Typical estimated sequences of the valve position provided by the R2ELM
model. Solid line indicates the estimated sequence. (b) Histogram of residuals. (c)
Associated U-Matrix. (d) Clusters of SOM prototypes for L = 3.

The proposed models (R2LM and R2ELM) achieved performances which are
comparable to those of regular regional models (RLM and RELM), but still
far better than the remaining models. In this regard, since the performances of
the four regional models (R2LM, RLM, R2ELM and RELM) are statistically
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equivalent, we highly recommended the use of the proposed robust variants in
real-world applications since they potentially handle better datasets with outliers
and nongaussian noise.

Figure 1 shows typical results provided by the R2ELM model. Figure 1 (a)
shows the sequence generated by the R2ELM model, where the actual and es-
timated sequences are almost indistinguishable because of the small estimation
error. Figures 1 (c) and (d) show, respectively, the U-matrix associated with
the trained SOM and the clusters of SOM prototypes found by the K-means
algorithm using K = L = 3 as indicated by the DB index.

4.2 Results on the Robot Arm Dataset

In the following experiments, the number of neurons for the KSOM and LLM
models was set to N = 30. For each SOM-based model, the initial and final
learning rates were set to α0 = 0.5 and αT = 0.01. The initial and final values
of radius of the neighborhood function are σ0 = N/2 and σT = 0.001, and the
learning rate α′ (LLM model) was set to 0.1. The regional models were composed
of SOM grids with 10× 10 neurons, using the aforementioned parameters. The
optimal number of clusters found was L = 9. Finally, the optimal number of
hidden neurons found for the ELM global model on the validation set was 30,
after a systematic search within the range from 2 to 50. The ELM-based regional
models used then 15 hidden neurons.

The obtained results are shown in Table 2, where are displayed the mean,
minimum, maximum and variance of the NMSE values, collected over 50 train-
ing/testing runs, with the weights randomly initialized at each run. In the table,
the models are sorted according to the mean NMSE values.

Table 2. Performance results for the robotic arm data

NMSE
Models mean min max variance

RELM 0.0053 0.0051 0.0055 1.03e-008

R2ELM 0.0054 0.0052 0.0056 1.61e-008

RLM 0.0057 0.0053 0.0062 4.08e-008

R2LM 0.0060 0.0056 0.0066 5.66e-008

KSOM 0.0064 0.0045 0.0117 1.83e-006

ELM 0.0285 0.0171 0.0457 2.73e-005

LLM 0.3176 0.2685 0.3558 2.23e-004

Linear 0.3848 0.3848 0.3848 -

For this dataset, the best performances were achieved by the R2ELM and
RELM approaches. The KSOM (a local linear model) and the two regional linear
models (i.e. RLM and R2LM) models also achieved good accuracies, but the
nonlinear regional models (i.e. RELM and R2ELM) acieved smaller variances
than all the other models. This represents a case study where regional nonlinear
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models achieved better results than regional or local linear models. The LLM
and global-linear models presented the worst overall performances.

5 Conclusions

We have introduced an extension to the recently proposed regional models [15],
named robust regional models, for dynamical system identification. An evalu-
ation of the proposed approach was carried out for the task of inverse system
identification of two benchmarking dynamical systems. Their performances were
compared to those achieved by regular regional models, by standard local linear
models, and by linear/nonlinear global models.

The main general conclusion of the presented experiments is that robust re-
gional models can be considered a promising approach for nonlinear dynamical
system identification, especially in presence of outliers and nongaussian noise.
They presented good performance results when compared to other traditional
modeling methods.

Currently, we are working on a real application for the identification of the
wastewater treatment plant of Helsinki (Finland). Variants of regional models
including those with heterogeneous models and different metrics of evaluation
have been developed.
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Abstract. Self-Organizing Map (SOM) is undoubtedly one of the most famous 
and successful artificial neural network approaches. Since the SOM is related 
with the Vector Quantization learning process, minimizing error quantization 
and maximizing topology preservation can be concurrent tasks. Besides, even 
with some metrics, sometimes the analysis of the map results depends on the 
user and poses an additional difficulty when the user deals with high dimen-
sional data. This work discusses a proposal of relocating the voted map units af-
ter the training phase in order to minimize the quantization error and evaluate 
the impact in the topology preservation. The idea is to enhance the visualization 
of embedded data structure from input samples using the SOM. 

Keywords: Self-Organizing Map, Manifold Learning, Dimensionality Reduc-
tion, Quantization Error, Topology Preservation. 

1 Introduction 

Self-Organizing Maps (SOM) developed by Kohonen have been studied and applied 
in different areas, from Robotics to Linguistics applications [1]. Each area creates a 
specific theory of application, interpretation of results and limitations of the SOM 
map. In the area named Manifold Learning, SOM is known as a method of predefined 
lattice and intuitively works as a nonlinear discrete PCA [20]. It is noteworthy explain 
that predefined lattice are methods that impose in advance a regular structure such as 
rectangular or hexagonal grid made of regularly or not spaced point [2]. The main 
interest in Manifold Learning area is to discover intrinsic dimensionality unfolding 
the data structure in order to represent it in a lower dimension than the original, how-
ever, not necessary SOM can accomplish it. PCA is the oldest method applied to un-
cover intrinsic low embedded dimension structure in high dimensional data. Despite 
the fact that PCA is a linear approach, it has been used for a long time as preprocess-
ing to dimensionality reduction as a full spectral technique based on eigenvector  
decomposition of sample covariance matrix of the input data x [3]. Techniques such 
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as Sammon’s NonLinear Mapping [4], ISOMAP [5], Locally Linear Embedding 
(LLE), [6] as well as the Self-Organized Manifold Mapping (SOMM), the latter  
proposed in [7], [8], and [9], belong to this category of nonlinear dimensionality  
reduction methods. 

All the approaches above, except SOMM, work projecting the high dimensional 
input data to low dimensional space creating a representation that can be understood 
by humans. In essence, the techniques aim to assist humans to visualize multidimen-
sional structures projecting or mapping them into low dimensional space and when 
possible, to uncover low dimensional structures embedded into input data. An inter-
esting question arises: how to evaluate the quality of the projection and how to be sure 
that it provides correct results, if we are not able to visualize the original structure and 
compare the results?  

For SOM maps, several metrics and methodologies were proposed, such as Quanti-
zation Error [1], Topographic Error [10], Topographic Product [11], Topographic 
Function [12], Trustworthiness and Neighborhood Preservation [13] and Distortion 
Measure [1], [14], and the last one is used in this work. Even with such an amount of 
metrics to measure or evaluate the quality of SOM mapping, there are some situations 
in which results do not match with real situation. An experiment with a classical toy 
example will be discussed herein highlighting the tradeoff between how to reduce 
quantization error while preserving the topology of the map. In order to understand the 
results calculated from these metrics, this work used a Swiss Roll toy example to train 
the SOM maps. The visual and numerical results were analyzed in order to create in-
sight, to understand and to improve the quality of the SOM map after training. 

This paper is organized as follows: in Section 2, a brief review of the Distortion 
Measure method is presented. In Section 3, computational experiments with the new 
proposal on how to relocate the neurons are discussed. Finally, Section 4 discusses the 
results and concludes the paper. 

2 Distortion Measure and Neuron Relocation 

As mentioned before, the SOM maps tries to discover the structure where the input 
data lies. It works contracting or stretching the grid over the input manifold to the end 
of the training phase to have a copy of the input structure. The predefined lattice of 
SOM has advantages and drawbacks. The predefine lattice creates a neighborhood 
relationship between each neuron and this connection is the key for topology main-
tenance. In order to keep this link, the map can fold over itself or create connection in 
space where data are not defined.  

A famous example of this situation explored extensively in the literature is the 
Swiss Roll data structure. Despite the simplicity of its visualization, the Swiss Roll 
has some challenges to be dealt with the SOM algorithm. First, in the Swiss Roll the 
data are scattered in a tight structure and second, it is a non-convex structure. As 
SOM preserves the neighborhood relation between neurons on the grid, it creates 
shortcuts inside the represented structure. 
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Figure1 1 illustrates the situation described above, in which a square 20×20 SOM 
map with hexagonal neighborhood was trained using the SOMToolbox released by 
[15]. In (a) a Swiss Roll distribution format with 900 points with zero mean and unita-
ry variance randomly distributed along the structure was used to train the SOM  
map. In (b), the structure learned by the SOM after the training phase. The green  
dots represent neurons that became a BMU (Best Matching Unit) during training 
phase and red circles are neurons without votes. The lines in black represent the grid 
connections. 

 
 
 
 
 
 
 
 

Fig. 1. Swiss Roll distribution structure with 900 random points in (a). In (b) the neurons of the 
SOM map after the training phase with Swiss Roll data distribution. The neurons that became 
BMU are marked in green1 and the neurons in red1 did not win the competition during the 
training phase. 

Two basic quality metrics well known by the SOM community and implemented in 
the SOMToolbox [15] are Quantization Error [1] and Topographic Error [10]. After 
training a SOM with the Swiss Roll distribution, the outcomes were the SOM map 
illustrated in Figure 1 (b) and numeric results for QE = 0.2275 and TE = 0.0289. Only 
the numbers do not provide a reasonable interpretation of the maps result. However, a 
visual inspection of the map does not provide a correct idea of the structure that SOM 
is trying to represent. The final map is a consequence of the training rule defined by 
Kohonen as 1  and the predefined lattice. 
It means that, every time (t+1), neuron j is updated based on  weighted 
by a learning factor α and a neighborhood function  between neuron j and the best 
matching unit  for the input sample  given by .  

The map with hexagonal topological neighborhood, in this example a 20×20 square 
format, and the neighborhood function hci controls the “movement” of the neurons 
along the training phase. In other words, while the input sample  is pulling the 
winner neuron , the neighborhood function is influencing the rest of neurons j ac-
cording to the Kohonen’s training rule. Considering the format of map and learning 
rule, it is reasonable to have neurons allocated in the middle of the Swiss Roll struc-
ture, even in an empty space. However, what happens when a high dimensional data 
set is trained without any previous knowledge of its real structure?  

We here address an alternative way to deal with this problem. The proposal is to 
run the traditional SOM algorithm and, at the end of training, to relocate the neurons j 
with individual quantization error qej greater than global quantization error QE. The 
                                                           
1  Please, access the digital version of this paper to visualize all colored images.  

 
(a)                              (b) 
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new weight vector mj will assume the mean value of the xi inputs allocated to neuron 
j. Then, a new global QE is calculated and another evaluation regarding local quanti-
zation error is made. The process stops when the difference between the new QE and 
the previous QE is lower than a threshold qeth. The algorithm of this process pre-
sented in Table 1 can clarify the proposal. The motivation for this neuron relocating 
strategy is based on Kohonen’s books [1] “… the best map is expected to yield the 
smallest average quantization error…”. However, the relocating is conducted without 
losing the neighborhood concept. 

The discussion here is how to have a tradeoff of good representation based on mi-
nimizing quantization error and preserving the topology. As the SOM works based on 
vector quantization, the learning rule needs to deal with two concurrent forces. One of 
the parameters that control those opposite forces is the neighborhood kernel hci. This 
is one of the reasons why all final maps usually have a contracted form as compared 
to the original structure. Additionally, the final map has a border effect in which each 
neuron represents more samples than the neurons in regions with dense input data [1].  

Taking all effects discussed above, we understand that relocating some neurons 
based on the strategy presented here it will improve the quality of the representation of 
the SOM map. Besides, the relocation could avoid the representation of empty spaces 
as illustrated in the Swiss Roll example and reduce misleading interpretation of the 
map’s result. If this effect happens in low dimension, it will naturally happen in high 
dimensional space and with additional difficulty, one cannot visualize these effects. 

Table 1. Algorithm to relocate winner neurons 

a)Calculate the SOM map composed of k neurons using Kohonen´s algorithm. 

b)Calculate the global  ∑ ∑ ;  samples xi assigned to 

each winner neuron j during training phase; 
c)Calculate the threshold 1%   ; 
d)While   

  d.1) Calculate for each winner neuron  | 2 , ∑  ∈ ,   

where c=  ; 

  d.2) Calculate ∑ ∈ ; 

  d.3) If  then ; 

  d.4) Calculate a new global ; 
  e)end 
 

The algorithm presented in Table 1 relocates only neurons j with local quantization 
qej error higher than global error QE and only for those neurons that represent more 
than one input sample. Our proposal will privilege neurons at the border of the map 
and reduce the distortion of the map. The step (d) is similar to the “Batch Map Algo-
rithm” proposed by Kohonen [1]. However, instead of updating all neurons our  
approach only relocates some neurons to the centroid of respective input samples, in 
order to preserve as much as possible the final ordered map defined by the SOM train-
ing process. Figure 2 presents the results of the algorithm applied over the SOM map 
after training it with the Swiss Roll data set. Figures 2 (a) and (b) represent a 3D view 
of the final structure learned, original and relocated position, respectively. In figures  
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Fig. 2. In figure (a) 3D view and in (c) top view of the structure represented by a 20×20 SOM 
map. In (b) a 3D view and in (d) top view of the structure represented by a relocated SOM map. 

(c) and (d) a top view is shown and the distributions of the winner neurons are visibly 
more reasonable in figure (d). 

In order to avoid only visual inspection and not restricted to the simple QE metrics, 
this work conducted a set of experiment varying the size and format of the map for 
the same input sample structure. We used a metric named Distortion Measure in order 
to evaluate the impact of our relocating process for SOM using more accurate mea-
surement quality [17]. The idea of using SOM Distortion Measure error (DM in short) 
is to decompose the error into three factors and evaluate which one has more impact 
on the final result. The DM error can be defined as: 

where ,  is the value of the neighborhood function between unit map j and BMU 

. If neighborhood ,   = 1, Ed became the sum of all 

quantization errors between all input samples and neurons. The equation (1) can be 
expressed as a summation of three main components as was proposed in (14) and 
reproduced in equation (2)  

The first term Eqx represents the quantization error based on the Euclidean distance 
from a set of input sample and the Voronoi centroid 1 ∑ ∈  defined by 

neuron j and  | . In other words, each winner 
neuron j defines approximately the Voronoi tessellation of the input space and Eqx 
calculates the distance from each input sample to the Voronoi centroid nj and not to 
neuron mj. The idea is to measure the average of local variance of the input samples 
that belongs to Voronoi set Vj defined by each neuron j. Then, Eqx can be expressed 
as: 

 ∑ ∑ , . (1) 

  . (2) 
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where Hj = Σk
i=1(hci,j) is the accumulated neighborhood factor of each neuron i to 

neuron j and Hj is considered the weighting factor to compensate the border effect. 
Another advantage here is the possibility to evaluate the influence of each unit j and 
its Hj to the amount of the final distortion error. The second term Env calculates the 
variance between each neuron j and measure how close it is to each other. 

The low value is obtained when the neurons are close to each other, so that the num-
ber of neurons and format of the grid have an influence on it. Finally, the third term 
Enb measures a combination of quantization and projection quality. As pointed out by 
Kohonen [1], there are two main forces acting on SOM’s neurons. First, the neuron 
tends to represent the density function of the input space and second, the neighbor-
hood relation tends to preserve the continuity of the grid. Both forces are concurrent 
and this results in a smooth surface that tries to imitate the original space. Based on 
the assumption that each neuron tessellates the input space, the position of each Vo-
ronoi centroid nj of this mosaic will depend on how spread the neurons are along the 
input space. If nj = mj we have a regular lattice form. Then, the term Enb combines 
the effect of the number of neurons and their concentration along the input space. It 
can be observed that each factor is the sum of error measured per neuron. Thus, it is 
possible to identify which neuron or group of neurons has an influence on the total 
distortion value [14]. 

3 Experiments and Results 

The proportional amount of each error factor described above is measured here as a 
percentage of its contribution to the total Ed. The parameters of the SOM training was 
chosen according to the following: Numbers of neurons vary from 64 to 900 and sev-
eral map combination and lateral dimensions to reach that number, hexagonal neigh-
borhood, training length rough = 1000 and fine = 10000, linear initialization, one and 
two dimensional formats and all the rest of parameters were keep default as defined in 
SOMToolbox package. One additional map format was trained with 100×30 neurons. 
After the training phase of each map, neurons were relocated using the algorithm 
described in Table 1.  

Figure 3 presents the result of 34 maps trained with the Swiss Roll data and the rate 
of each distortion error was plotted in the graphic (a) for original SOM map and in (b) 

 ∑ 1 xvj|| – ||2/ . (3) 

 ∑ 1 | , (4) 

|  , (5) 

∑    g=1,2,3,…,k. (6) 

 ∑ 21 . (7) 
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the relocated SOM map. The total Ed Distortion Measure value was not presented in 
absolute numbers, since it varies with the size of the map and it is not useful to com-
pare different maps [16]. Thus, the percentage of distortion contribution per factor 
was compared. Considering that the number of neurons of each group of maps does 
not change, but only the format (length and width), the error Eqx should keep con-
stant. However, depending on the format of the map, error grows. 

According to these results, tinny maps, linear or close to linear, increase the quan-
tization error because the initial map does not cover all input space and during the 
training process the strip of neurons try to move along the space but is limited by two 
neighborhood relationship (ahead and back). On the other hand, even with tinny 
maps, after relocating some neurons it is possible to reach low and constant values 
along several maps configuration. 

 

 

Fig. 3. Curves of the distortion components (Eqx, Enb and Env). In (a) curves related with the 
original SOM maps and in (b) for relocated SOM maps. 

The curve of the Env factor shows that the format of the map (rectangle or square) 
has a direct impact on results. As Env measures the trustworthiness of the map, consi-
dering the topology of the neurons and how smooth they are, square maps will fold a 
lot in the Swiss Roll structure. Then, the final result is not a smooth map and the fac-
tor will capture this impact. Thus, in order to have low impact of Env error, the grid 
must have a regular and compact format. However, in relocated maps the variance |  will be higher than in the original map, affected by the relocation of the 
neurons. The Enb factor shows the combination of the previous two factors, quantiza-
tion and smoothness of map surface. Observe in Figure 3 that the number of neurons 
has a direct impact on all the factors, but in all of these tests the number of neurons 
was kept constant. Then, the results indicate that the map format has a contribution to 
the quality results. In this case, large maps allow a good tessellation of the input space 
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and adequately smooth the surface of the map. A reasonable interpretation of the Enb 
factor is considering it as a stress between the quantization error and topology preser-
vation [17]. 

The results of the experiments with Swiss Roll indicate that the low contribution of 
Eqx and Enb create better representation of the input structure. Inevitably, as the sum 
of the three factors must be one, the factor Env will naturally rise. Additional experi-
ments were conducted with 12 squared maps (from 8×8 to 30×30) and the each DM 
factor per map was plotted. The error contributions by each factor for square maps 
and the map with the size 100×30 are illustrated in Figure 4.  

 

 

Fig. 4. The curves (a) – original SOM Map – and (b) – relocated SOM Map – illustrate the 
contribution of the error factor along 12 different square SOM maps and the last one for a map 
of 100×30 in size.  

Figures 4 at (a) and (b) illustrate the error contribution by each factor for square 
maps, except the last with size 100×30. The map with 3000 neurons can reach a good 
representation with minimal distortion. In spite of the minimal distortion in quantiza-
tion and topology, in the final training phase it 2187 neurons were left without repre-
sentation (circles in red) occupying space in memory and computation time during  
the training phase. The curves at Figure (4) (b) shows that Enb factor has low contri-
bution and low variance along each group of maps, indicating that the relocated maps 
have a good balance between quantization error and topology preservation.  

The question that arises is how to reach similar results on low error without spend-
ing so much time and memory? One way is to reduce the number of neurons and just 
relocate the neurons, as proposed in this work. Figure 5 shows the visual results of 3 
selected size maps, (a) 8×8, (b) 3×100 and (c) 30×30. Original SOM maps and Swiss 
Roll data distribution superimposed on it are shown at the top and relocated SOM 
maps at bottom. The visual quality of the representation is higher at relocated maps 
than in original ones and it coincides with the Eqx and Enb as the quality measures 
indicate a good representation of input data structure, even in maps with low number 
of neurons. As the relocating processes are performed only for those neurons with 
absolute quantization error (QE) higher than a threshold, this strategy relocates the 
neuron j to the Voronoi centroid 1 ∑ ∈  defined during the learning 

process. Then, this process maximizes the probability density at the Voronoi region 
defined by the neurons [18]. Improving the trustworthiness of the SOM map, it is 
possible to understand the neurons of the SOM map as the “the backbone” of the data  
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structure and using them as reference support to “walk over the data manifold”. The 
methodology SOMM [9] uses this strategy and cuts the manifold and creates a low 
dimensional representation of how possibly the data lied on it. When the user works 
with high dimensional data, such as images, the SOM map alone will not give a good 
visualization of the input structure. Additional techniques will be necessary, such as 
U-Matrix [19] or Sammon Projections [4].  

 

 

Fig. 5. Top view of the structure learned by 3 SOM maps with different size and format, (a) 
8×8, (b) 3×100 and (c) 30×30, respectively. The images at top are related with original SOM 
maps and at bottom, the relocated SOM maps. The curves in black are the original data set 
overlapped on final SOM map. The green circles indicate the winner units. The red circles are 
units without voting. 

4 Conclusion and Discussion 

As presented in this work, sometimes the results of the SOM map can be misleading 
concerning of the original data structure. As SOM works with predefined lattice and 
several free parameters, the training process can be conducted in different ways until 
reaching the final result. SOM surely learns the input structure, but if a post-process 
analysis depends on the quality of the map’s result to extract information, the ap-
proach presented herein can provide an improvement in the final map without losing 
the main principle regarding SOM, topology preservation. The aim of this proposal is 
to use the SOM to reduce the dimensionality of the data and after relocate the neurons 
in order to approximate the SOM map to the original data structure. Then, any post-
process technique can work with reduced amount of data but with high quality of map 
regarding to minimum error quantization and topology preservation. Comparison of 
different size and format maps using the relative values of Eqx, Enb and Env factor, 
instead of absolute value of Ed Distortion Measure, was presented herein and can be 
considered as a new way to compare different size and format of SOM maps. 
 
Acknowledgments. The authors are very grateful to the reviewers for their valuable 
comments, suggestions and corrections. 

 



234 E.C. Kitani, E. Del-Moral-Hernandez, and L.A. Silva 

 

References 

1. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001) 
2. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction. Springer (2010) 
3. Maaten, L., Postma, E., Herik, J.: Dimensionality reduction: A comparative review. Til-

burg Centre for Creative Computing, pp. 1–33. Tilburg University, Tilburg (2009) 
4. Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transaction on 

Computer, 401–409 (1969) 
5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonli-

near dimensionality reduction. Science Magazine 290, 2319–2323 (2000) 
6. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by local linear embedding. 

Science 290, 2323–2326 (2000) 
7. Kitani, E.C., Del-Moral-Hernandez, E., Giraldi, A.G., Thomaz, C.E.: Exploring and under-

standing the high dimensional and sparse image face space: A self organized manifold 
mapping. New approaches to characterization and recognition of faces. Intech Open 
Access Publisher (2011) 

8. Kitani, E.C., Del-Moral-Hernandez, E., Thomaz, C.E., Silva, L.A.: Visual Interpretation  
of Self Organizing Maps. In: Proceedings of the XI Brazilian Symposium on Neural  
Networks SBRN 2010, pp. 37–42. IEEE CS Press (2010) 

9. Kitani, E.C., Del-Moral-Hernandez, E., Silva, L.A.: SOMM – Self-Organized Manifold 
Mapping. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, 
Part II. LNCS, vol. 7553, pp. 355–362. Springer, Heidelberg (2012) 

10. Kiviluoto, K.: Topology preservation in Self Organizing Maps, pp. 294–299 (1996) 
11. Bauer, H.U., Pawelzik, K.R.: Quantifying the neighborhood preservation of Self-

Organizing Feature Maps. IEEE Transactions on Neural Networks 3, 570–579 (1992) 
12. Villmann, T., Der, R., Martinetz, T.: A new quantitative measure of topology preservation 

in Kohonen´s feature maps. In: IEEE World Congress on Computational Intelligence,  
pp. 645–648 (1994) 

13. Venna, J., Kaski, S.: Neighborhood Preservation in Nonlinear Projection Methods: An Ex-
perimental Study. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, 
vol. 2130, pp. 485–491. Springer, Heidelberg (2001) 

14. Vesanto, J., Sulkawa, M., Hollmén, J.: On the decomposition of the Self-Organizing Map 
distortion measure. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM 
2003), pp. 11–16 (2003) 

15. Vesanto, J., et al.: SOM Toolbox for Matlab 5, Helsinki University of Technology, Helsin-
ki, pp. 1–60. Report A57 (2000) 

16. Pölzbauer, G.: Survey and comparison of quality measures for self organizing maps. In: 
Paralic, J., Pölzbauer, G., Rauber, A., (ed.), pp. 67–82 (2004) 

17. Vesanto, J.: Data exploration process based on the self-organizing map, Computer Science 
and Engineering, Helsink University. Espoo Finland, Finnish Academies of Technology, 
Thesis (2002) ISBN - 951-666-596-9 

18. Lampinen, J., Oja, E.: Clustering properties of hierarchical Self-Organizing Maps. Journal 
of Mathematical Imaging and Vision 3, 261–272 (1992) 

19. Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for exploratory data 
analysis. In: Proceedings of International Neural Network Conference, pp. 305–308 (1990) 

20. Haykin, S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall (1999) 



Enhancing NLP Tasks by the Use of a Recent Neural
Incremental Clustering Approach Based on Cluster

Data Feature Maximization

Jean-Charles Lamirel, Ingrid Falk, and Claire Gardent

LORIA, Campus Scientifique,
BP 239, Vandœuvre-lès-Nancy, France

{lamirel,falk,gardent}@loria.fr

Abstract. The IGNGF (Incremental Growing Neural Gas with Feature maximi-
sation) method is a recent neural clustering method in which the use of a standard
distance measure for determining a winner is replaced in IGNGF by cluster fea-
ture maximization. One main advantage of this method as compared to concurrent
methods is that the maximized features used during learning can also be exploited
in a final step for accurately labeling the resulting clusters. In this paper, we apply
this method to the unsupervised classification of French verbs. We evaluate the
obtained clusters (i.e., verb classes) in three different ways. The first one relies on
an usual gold standard, the second one on unsupervised cluster quality indexes
and the last one on a qualitative analysis. Our experiment illustrates that, con-
versely to former approaches for automatically acquiring verb classes, IGNGF
method permits to produce relevant verb classes and to accurately associate the
said classes with an explicit characterisation of the syntactic and semantic prop-
erties shared by the classes elements.

Keywords: clustering, NLP, verb classification, feature maximization, incremen-
tal learning.

1 Introduction

The IGNGF (Incremental Growing Neural Gas with Feature maximisation) method is a
recent neural clustering method in which the use of a standard distance measure for de-
termining a winner is replaced in IGNGF by cluster feature maximization. The method
has been shown to outperform other clustering methods for the task of clustering highly
multidimensional textual data including multiple topics[1]. Interestingly, another main
advantage of this clustering method is that the features used for producing the clusters
are also used for labeling those latter. That is, each cluster in the output clustering is
labelled with a ranked list of features that best characterises that cluster. An accurate
exploitation of such advantage, as compared to other clustering methods, can be found
in the domain of automatic classification of verbs. Hence, classifications which group
together verbs and a set of shared syntactic and semantic feature have proved useful
both in linguistics and in Natural Language Processing tasks. In NLP, the predictive
power and the syntax/semantic interface provided by these classifications have been
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shown to benefit such tasks as computational lexicography [2], machine translation [3],
word sense disambiguation [4] and subcategorisation acquisition [5].

Several methods have thus been proposed to automatically acquire verb classifica-
tions, like recently [6, 7]. However, these approaches mostly concentrate on acquiring
verb classes that is, sets of verbs which are semantically and/or syntactically coherent.
The specific syntactic and semantic features characterising each verb class are usually
left implicit: they determine the clustering of similar verbs into verb classes but they do
not explicitly label these classes.

In this paper, we present a novel approach to the automatic acquisition of French verb
classes based on the IGNGF method which addresses this shortcoming and produces
classifications which not only group together verbs that share a number of features but
also explicitly associate each verb class with a set of subcategorisation frames and the-
matic grids characteristic of that class. To acquire a verb classification, we extract the
syntactic and semantic features required for learning verb classes from existing lexi-
cal resources for French verbs. These include in particular, subcategorisation frames,
thematic grids and (English) VerbNet classification [8] class names.

We evaluate the acquired classification both on the clusters (verb sets) it produces and
on its cluster labeling i.e., the syntactic and semantic features associated by the IGNGF
clustering with the clusters. We perform an evaluation of the verb clusters both by a
comparison against an established test set [6] and by the use of our own unsupervised
cluster quality indexes. We then carry out a manual analysis of the clusters examining
both the semantic coherence of each cluster regarding to its associated features.

The paper is structured as follows. Section 2 introduces the IGNGF clustering al-
gorithm. Section 3 describes the evaluation metrics, the features used for clustering
and reports on the results of the clustering focusing on the associations between verbs,
subcategorisation frames and thematic grids it provides. Finally, conclusion is drawn.

2 Clustering Algorithm

The IGNGF clustering method is an incremental neural clustering method belonging to
the family of the free topology neural clustering methods. The algorithm underlying this
clustering method is described in details in [1]. We here briefly summarise the features
of that method which are relevant to the present work.

Like other neural free topology methods such as Neural Gas (NG) [9], Growing
Neural Gas (GNG) [10], or Incremental Growing Neural Gas (IGNG) [11], the IGNGF
method makes use of Hebbian learning for dynamically structuring the learning space.
Hebbian learning is inspired by a theory from neurosciences which explains how neu-
rons connect to build neural networks. Whereas for NG the number of output clusters
is fixed, GNG adapts the number of clusters during the learning phase, guided by the
characteristics of the data to be classified. Clusters and connections between them can
be created or removed depending on evolving characteristics of learning (as for exam-
ple the “age” or “maturity” of connections and the cumulated error rate of each cluster
prototype). A drawback of this approach is that clusters are created or removed after
a fixed number of iterations yielding clusters which might not appropriately represent
complex or sparse multidimensional data. With the IGNG clustering method this issue
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is addressed by allowing more flexibility when creating new clusters: a cluster is added
whenever the distance of a new data point to an existing cluster is above a predefined
global threshold, the average distance of all the data points to the centre of the data set.
The clustering process thus becomes incremental: each incoming data point (verb in our
setting) is considered as a potential cluster. At each iteration over all the data points, a
data point is connected with the “closest” clusters and at the same time interacts with
the existing clustering by strengthening the connections between these “closest” clus-
ters and weakening those to other, less related clusters. Because of these dynamically
changing interactions between clusters, these methods are “winner take most” methods
in contrast to K-means (for example), which represents a “winner-take-all” method.
The notion of “closeness” is based on a distance function computed from the features
associated to the data points.

IGNGF uses the Hebbian learning process as IGNG, but the use of a standard dis-
tance measure as adopted in IGNG for determining the “closest” cluster is replaced
in IGNGF by feature maximisation. Feature maximisation is a cluster quality metric
which favours clusters with maximum feature F-measure. Feature F-measure (FF) is
the harmonic mean of feature recall (FR) and feature precision (FP) which in turn are
defined as:

FRc(f) =

∑
v∈c

W f
v∑

c′∈C

∑
v∈c′

W f
v

, FPc(f) =

∑
v∈c

W f
v∑

f ′∈Fc,v∈c

W f ′
v

where W f
x represents the weight of the feature f for element x (1 or 0 in the case of our

application) and Fc designates the set of features associated with the verbs occuring in
cluster c. A feature is then said to be maximal for a given cluster iff its feature F-measure
is higher for that cluster than for any other cluster. Finally the Feature F-measure FFc

of a cluster c ∈ C is the average of the Feature F-measures of the maximal features
for c:

FFc =

∑
f∈Fc

FFc(f)

|Fc|
(1)

With feature maximisation, the clustering process is roughly the following. During
learning, an incoming data point v is temporary added to every existing cluster, its fea-
ture profile is updated (i.e. each cluster is associated with its maximal features) and its
average Feature F-measure is computed. Then the winning cluster is the cluster which
maximises the distance κ given in Equation (2).

κ(c) = Δ(FFc) ∗ |Fc ∩ Fv| −
EucDist(c, v)

weight
(2)

where Δ(FFc) represents the gain in Feature F-measure for the new cluster and Fc ∩
Fv are the features shared by cluster c and the data point v. This way, those clusters
are preferred which share more features with the new data point and clusters which
don’t have any common feature with the data point are ignored. The gain in Feature
F-measure multiplied by the number of shared features is adjusted by the euclidean
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distance of the new data point v to the cluster centroid vector c. Thus, the smaller
the euclidean distance to the cluster, less the κ value decreases. The influence of the
euclidean distance can be parametrised with a weight factor (

√
2 for this application).

Clusters with negative κ score are ignored. The data point is then added to the cluster c
with maximal κ(c) and the connections to the winner and its neighbours are updated.

Cluster Labeling. Cluster labeling, i.e., the process of associating the clusters with fea-
tures considered relevant with respect to the application, has proven promising both for
visualising clustering results and for validating or optimising a clustering method [12].
As mentioned above, IGNGF clustering associates each cluster with the set of features
representative of that cluster, which are the features with highest Feature F-measure on
that cluster. We make use of this cluster labeling method in all our experiments and sys-
tematically compute cluster labeling on the output clusterings. This has two advantages
for verb clustering. On the one hand, it facilitates clustering interpretation in that clus-
ter labeling clearly indicates the association between clusters (verbs) and their prevalent
features. On the other hand, it supports the creation of a Verbnet style classification in
that cluster labeling directly provides classes grouping together verbs, thematic grids
and subcategorisation frames.

3 Data and Evaluation Results

3.1 Gold Standard

To evaluate the association between verbs, frames and grids provided by the IGNGF
clustering method, we used a reference corpus called V-gold proposed in [6]. V-gold
consists of 16 fine grained Levin classes with 12 verbs each (translated to French)
whose predominant sense in English belong to that class. Because we aim to use the
classification for semantic role labelling and therefore wish to associate each verb with
a thematic grid, we use a slightly modified version of this gold standard which asso-
ciates each Levin class with the corresponding Verbnet class name and thematic grid;
merges some of the thematic roles; and groups together classes sharing the same the-
matic grids. The resulting gold standard groups 116 verbs into 12 Verbnet classes each
associated with a unique thematic grid.

3.2 Evaluation Metrics

For evaluating the association between verbs, frames and grids provided by the IGNGF
clustering, we use several evaluation metrics which bear on different properties of the
clustering. The first group of metrics are supervised metrics based relying the V-gold
corpus and the second group are unsupervised metrics relying solely on the clustering
results.

Modified Purity and Accuracy. Following [6], we use modified purity (mPUR);
weighted class accuracy (ACC) and F-measure to evaluate the clusterings produced.
These are computed as follows. Each induced cluster is assigned the gold class (its
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prevalent class, prev(C)) to which most of its member verbs belong. A verb is then
said to be correct if the gold associates it with the prevalent class of the cluster it is in.
Given this, purity is the ratio between the number of correct gold verbs in the clustering
and the total number of gold verbs in the clustering1:

mPUR =

∑
C∈Clustering,|prev(C)|>1 |prev(C) ∩ C|

Verbsgold∩Clustering

where Verbsgold∩Clustering is the total number of gold verbs in the clustering.
Accuracy represents the proportion of gold verbs in those clusters which are associ-

ated with a gold class, compared to all the gold verbs in the clustering. To compute accu-
racy we associate to each gold class Cgold a dominant cluster, ie. the cluster dom(Cgold)
which has most verbs in common with the gold class. Then accuracy is given by the
following formula:

ACC =

∑
C∈gold |dom(C) ∩C|
Verbsgold∩Clustering

Finally, F-measure is the harmonic mean of mPUR and ACC.

Coverage. To assess the extent to which a clustering matches the gold classification,
we additionally compute the coverage of each clustering that is, the proportion of gold
classes that are prevalent classes in the clustering.

Cumulative Micro Precision (CMP). As pointed out in [12], unsupervised evaluation
metrics based on cluster labelling and feature maximisation can prove very useful for
identifying the best clustering strategy. Following [1], we use CMP to identify the best
clustering. Computed on the clustering results, this metrics evaluates the quality of a
clustering with respect to the cluster features rather than with respect to a gold standard.
It was shown in [13] to be effective both in detecting degenerated clustering results
including a small number of large heterogeneous, “garbage” clusters, and a big number
of small size “chunk” clusters and in figuring out the coherency of obtained clusters,
whatever their size.

First, the local Recall (Rf
c ) and the local Precision (P f

c ) of a feature f in a cluster c
are defined as follows:

Rf
c =

|vfc |
|V f | P f

c =
|vfc |
|Vc|

where vfc is the set of verbs having feature f in c, Vc the set of verbs in c and V f , the
set of verbs with feature f .

Cumulative Micro-Precision (CMP) is then defined as follows:

CMP =

∑
i=|Cinf |,|Csup|

1
|Ci+|2

∑
c∈Ci+,f∈Fc

P f
c∑

i=|Cinf |,|Csup|
1

Ci+

where Ci+ represents the subset of clusters of C for which the number of associated
verbs is greater than i, and: Cinf = argminci∈C |ci|, Csup = argmaxci∈C |ci|

1 Clusters for which the prevalent class has only one element are ignored.
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3.3 Experimental Setup

For our clustering experiments we use the 2183 French verbs occurring in the transla-
tions of the 12 classes in the V-gold standard (cf. Section 3.1). Since we ignore verbs
with only one feature, the number of verbs and 〈verb, feature〉 pairs considered may
vary slightly across experiments. Since our aim is to acquire a classification which cov-
ers the core verbs of French, we choose to extract the verb features used for clustering,
not from a large corpus parsed automatically, but from manually validated resources.

The lexical resources used for feature extraction are (i) a syntactic lexicon for French
verbs and (ii) the English Verbnet. The syntactic lexicon merges three manually vali-
dated lexicons namely, Dicovalence [14], TreeLex [15] and the LADL tables [16]. It
contains 5918 verbs, 20433 lexical entries (i.e., verb/frame pairs) and 345 subcategori-
sation frames. More details on the exploited ressources are given in [17].

From the syntactic lexicon, we extract for each verb its subcategorisation frames
(scf) together with syntactic features (syn). These additional features indicate for ex.
whether a verb accepts symmetric arguments; has four or more arguments; combines
with a predicative phrase; takes a sentential complement or an optional object. These
features are meant to help identify specific Verbnet classes and thematic roles. We also
extract four semantic features (sem) from the lexicon which indicate whether a verb
takes a locative or an asset argument and whether it requires a concrete object (non
human role) or a plural role. From Verbnet, we extract thematic grid information (grid)
as follows. We first translate the verbs in the English Verbnet classes to French using
English-French dictionaries. We then associate each French verb with a Verbnet class
whenever it is a translation of an English verb in that class. Finally, we train a SVM
classifier for determining a probability estimate for each 〈French verb, English Verbnet
class〉 association.

We apply an IDF-Norm weighting scheme on the obtained features to decrease the
influence of the most frequent features (IDF component) and to compensate for dis-
crepancies in feature number (normalisation).

We use K-means as a baseline. For each clustering method (K-means and IGNGF),
we let the number of clusters vary between 1 and 30 to obtain a partition that reaches
an optimum F-measure and a number of clusters that is in the same order of magnitude
as the initial number of V-gold classes (i.e. 12 classes). K-means method is initialized
with data samples. For IGNGF method parameters, we use the standard learning ratios
proposed by [10] (εa = 0.05: winner, εb = 0.006: neighborhood); the maximun age of
connexion (ageconn) and maximum age of embryo neurons (ageconn) are set to usual
values exploited by [11] (ageconn = 5, ageembr = 15); distance influence parameter
related to equation(2) is experimentally set to

√
2.

3.4 Quantitative Results Analysis

Table 1 includes the evaluation results summary for all feature sets. In terms of F-
measure, the results range from 0.61 to 0.70. These results outperform [6] whose best
F-measures vary between 0.55 for verbs occurring at least 150 times in the training
data and 0.65 for verbs occurring at least 4000 times in this training data. The results
are not directly comparable however for two reasons. First, the gold data is slightly
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different due to the grouping of Verbnet classes through their thematic grids. Second,
[6] use syntactic and semantic features for training that are automatically acquired from
a large corpus of automatically parsed sentence. In contrast, we extract our features
from existing lexical resources.

In terms of features, the best results are obtained using the grid-scf-sem feature set
shown in Table 1 with an F-measure of 0.70. However, as soon as the gold reference
verbs represent only 5% of the whole dataset (i.e. 116 reference verbs among approx.
2183 exploited verbs), this measure can be considered as not sufficiently statistically
reliable. Indeed, for this data set, the unsupervised evaluation metrics (cf. Section 3.2)
highlight strong cluster cohesion with a number of clusters close to the number of gold
classes (13 clusters for 12 gold classes) and a high Cumulative Micro-Precision (CMP
= 0.3) indicating homogeneous clusters in terms of maximising features. The coverage
of 0.75 indicates that approximately 9 out of the 12 gold classes could be matched to a
prevalent label. That is, 9 clusters were labelled with a prevalent label corresponding to
9 distinct gold classes.

Table 1. Results. Cumulative micro precision (CMP) is given for the clustering at the mPUR
optimum and in parantheses for 13 clusters clustering.

Features set Nb fea Nb vrb mPUR ACC F Nb cla Cov CMP at opt
(gold) (at 13 cla.)

scf 220 2085 0.93 0.48 0.64 17 0.58 0.28 (0.27)
grid, scf 231 2085 0.94 0.54 0.68 14 0.67 0.12 (0.12)
grid, scf, sem 237 2183 0.86 0.59 0.70 13 0.75 0.30 (0.30)
grid, scf, synt 236 2150 0.87 0.50 0.63 14 0.75 0.13 (0.14)
grid, scf, synt, sem 242 2201 0.99 0.52 0.69 16 0.83 0.50 (0.22)
scf, sem 226 2183 0.83 0.55 0.66 23 0.67 0.40 (0.26)
scf, synt 225 2150 0.91 0.45 0.61 15 0.50 0.17 (0.22)
scf, synt, sem 231 2101 0.89 0.47 0.61 16 0.67 0.57 (0.11)

In contrast, the classification obtained using the scf-synt-sem feature set has a higher
CMP for the clustering with higher mPUR (0.57); but a lower F-measure (0.61), a larger
number of clusters (16). That is, this clustering has many clusters with strong feature
cohesion but a class structure that markedly differs from the gold. Since there might be
differences in structure between the English Verbnet and the thematic classification for
French we are building, this is not necessarily incorrect however. Further investigation
on a larger data set would be required to assess which clustering is in fact better given
the data used and the classification searched for.

In general, data sets whose description includes semantic features (sem or grid) tend
to produce better results than those that do not (scf or synt). This is in line with results
from [6] which shows that semantic features help verb classification. It differs from it
however in that the semantic features used by [6] are selectional preferences while ours
are thematic grids and a restricted set of manually encoded selectional preferences.

The best results are obtained with the IGNGF method on most of the data sets. Hence,
IGNGF method systematically produce models with much higher CMP values than
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Table 2. Sample output for a cluster produced with the grid-scf-sem feature set and the IGNGF
clustering method

C1- 7(7) [315(315)]
----------
Prevalent Label --- = Cause-Experiencer

0.273245 G-Cause-Experiencer
0.173498 C-SUJ:Ssub,OBJ:NP
0.138411 C-SUJ:NP,DEOBJ:PP
0.091732 C-SUJ:NP,DEOBJ:PP,DUMMY:REFL
. . .
**********
**********
0.013839 T-Asset
0.013200 C-SUJ:NP,DEOBJ:Ssub,POBJ:PP
0.009319 C-SUJ:Ssub,OBJ:NP,POBJ:PP
. . .
[flatter 0.907200 3(1)] [charmer 0.889490 3(0)] [ex-
ulter 0.889490 3(0)] [**frissonner 0.889490 3(0)]
[mortifier 0.889490 3(0)] [poustoufler 0.889490 3(0)]
[ptir 0.889490 3(0)] [ravir 0.889490 3(0)] [**trem-
bler 0.889490 3(0)] [**trembloter 0.889490 3(0)]
[dcourager 0.872350 2(2)]. . .

K-means (3x higher for grid-scf-sem feature set) figuring out the much higher cohesion
of its resulting clusters.

3.5 Qualitative Analysis

We carried out a manual analysis of the clusters examining both the semantic coher-
ence of each cluster (do the verbs in that cluster share a semantic component?) and the
association between the thematic grids, the verbs and the syntactic frames provided by
clustering.

Table 2 shows an illustrating cluster and its features as derived by the IGNGF algo-
rithm on our experimental dataset. Features are displayed in decreasing order of Feature
F-measure given by Equation (1) and features whose Feature F-measure is under the av-
erage Feature F-measure of the overall clustering are clearly separated from others. In
the sample cluster shown in Table 2 these are listed above the two star lines. In addition,
for each verb in a cluster, a confidence score is computed as follows. Let the main fea-
tures of a class be the features whose Feature F-measure is above the average Feature
F-measure of the features labelling that cluster. Then the confidence score of a verb v
in a cluster c is the ratio between the sum of the Feature F-measures of v’s features over
the sum of the Feature F-measures of c’s features. Verbs of a cluster whose confidence
score is 0 are considered as orphans2.

2 The overall number of orphans can be considered as an additional clustering quality index.
The higher that number is, the worse is the result.
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To assess semantic homogeneity, we examined each cluster seeking to identify one
or more Verbnet labels characterising the verbs contained in that cluster. From the 13
clusters produced by clustering, 11 clusters could be labelled. As it can be observed,
some clusters group together several subclasses and conversely, some Verbnet classes
are spread over several clusters. This is not necessarily incorrect though.

To start with, recall that we are aiming for a classification which groups together
verbs with the same thematic grid on the basis of English Verbnet grids. Given this, in
all cases of subclass grouping, it can be observed that semantic features necessary to
provide a finer grained analysis of their differences are lacking. Conversely, in all cases
of class spreading, clustering interestingly highlights classes which are semantically
homogeneous but syntactically distinct. In these last cases, it figures out a syntactic
distinction which is present in French but not in English.

Conclusion

We firstly achieve in this paper a short presentation of the IGNGF (Incremental Growing
Neural Gas with Feature maximisation) method : a recent neural clustering method in
which the use of a standard distance measure for determining a winner is replaced
in IGNGF by cluster feature maximization. One main advantage of this method, as
compared to concurrent methods, is that the maximized features used during learning
can also be exploited in a final step for accurately labeling the resulting clusters with a
“cluster profile” i.e., a set of features representative of those clusters.

We then present a novel approach to verb classification which makes use of the spe-
cific clustering and labeling capabilities of the IGNGF method. Our experiment con-
ducted on French verbs showed that this method outperforms alternative approaches on
a (slightly modified) existing benchmark. In this context, it also illustrates that the use
of obtained labels and associated unsupervised measures based on cluster maximized
features signficantly helps to confirm the coherency of the results.

A complementary task would be to more deeply estimate the quality of the syntactic
frames and thematic grids associated by IGNGF with the verb clusters. For that purpose,
we plan to compare the acquired classification with a reference corpus in which the
syntactic arguments have been manually annotated with semantic roles. In the case of
successfull results, our final goal would be to exploit the IGNF method to bootstrap a
Verbnet style classification for French.
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Abstract. To cope with the current defects of existing incremental clustering 
methods, an alternative approach for accurately analyzing textual information 
evolving over time consists in performing diachronic analysis. This type of 
analysis is based on the application of a clustering method on data associated 
with two, or more, successive periods of time, and on the study of the evolution 
of the clusters contents and of their mappings between the different periods. 
This paper propose a new unsupervised approach for dealing with time evolving 
information with is based on the combination of neural clustering and unsuper-
vised Bayesian reasoning. The experimental context is related to the study of 
the evolution of research fields in scientific literature. 

Keywords: diachronic analysis, clustering, neural gas, bayesian reasoning. 

1 Introduction 

The literature taking into account the chronological aspect in information flows is 
mainly focused on "DataStream" whose main idea is the "on the fly" management of 
incoming (i.e. not stored) data. In this context, the data that have been considered up 
to now are primarily physical measurements or Web usage data. Applications on tex-
tual data (bibliographical databases, online news, …) are still stammering. Research 
on "DataStream" has been initiated, amongst other things, in 1996 by the DARPA 
through the TDT project [1]. But the algorithms resulting from this work are intended 
to treat very large volumes of data (i.e. DataStream) and are thus not optimal for  
accurately detecting topics changes in specialized domains, as for example precisely 
following-up the evolution of' research fields in scientific literature. 

To cope with the current defects of existing incremental clustering methods, an  
alternative approach for sharply analyzing textual information evolving over time 
consists in performing diachronic analysis. This type of analysis is based on the appli-
cation of a clustering method on data associated with two, or more, successive periods 
of time, and on the study of the evolution of the clusters contents and of their map-
pings between the different periods. For analyzing the evolution of the vocabulary 
describing the clusters of different periods, Schiebel and al. [15] propose to construct 
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a matrix of keywords comparison which is based on the percentage of keywords of 
one period which pre-exist in the clusters of another period. Thanks to this matrix, it 
is then possible for a domain expert to highlight different cluster behaviors: stability, 
but also merging or splitting. Even if it avoids the use of incremental clustering  
methods, an important limitation of this approach is that the process of comparison 
between clustering models must be achieved in a supervised way. 

An alternative unsupervised solution has been proposed by [16]. It makes use of 
core documents to bridge clustering results issued from different time periods. The 
core documents are defined as the documents that combine high bibliographic coupl-
ing and high index terms similarities with other documents. In such a way, clusters  
of two time periods are considered as similar if they share a sufficient amount of ref-
erences to the same core documents. Clusters are themselves built up using a co-
clustering methodology mixing reference and contents information. This approach 
presents the advantage to be relatively independent of vocabulary changes between 
periods, but it necessitates exploiting referencing data. 

Lamirel and al. [6] firstly introduced the dynamic and unsupervised cooperation be-
tween clustering models in the context of information retrieval. This new approach 
represents a major improvement of the basic clustering approach. From a practical 
point of view, the MultiView Data Analysis paradigm (MVDA), introduces the use of 
viewpoints associated with unsupervised Bayesian reasoning in the clustering process 
(fig. 1). Its main advantage is to be a generic paradigm that can be applied to any 
clustering method and that allows to enhance the quality and the granularity of data 
analysis while limiting the noise that is inherent to a global approach. 

 

 

Fig. 1. The MVDA inter-models communication principle 

The MVDA paradigm represents a challenging paradigm in the context of the anal-
ysis of time varying information. Hence, it allows defining efficient and precise  
strategies for unsupervised diachronic analyses based on the mapping into separate 
viewpoints of the clustering models related to the different time periods. In section 2, 
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we highlight how to exploit the principles of MVDA to automatically perform such 
analyses. Section 3 describes our first experiment and its results. Section 4 draws our 
conclusion and perspectives. 

2 A New Approach for Analyzing Time-Varying Information 

Analyzing the difference between time periods concerns different kinds of topics 
changes or similarities that could occur between the periods (appearing topics,  
disappearing topics, splitting topics, merging topics, stable topics). For achieving 
comparison between two time periods, a label-based diachronic approach relying 
both on data properties (i.e. features) and on the MVDA paradigm can be thus de-
fined. Thanks to this approach, a further step of cluster labeling is achieved after the 
construction of the clustering model for each time period. The purpose of the  
labeling step is to figure out which peculiar properties or endogenous labels can be 
associated to each cluster of a given time period. The identification of the topics 
relationships between two time periods is then achieved through the use of  
Bayesian reasoning relying on the extracted labels that are shared by the compared 
periods (fig. 2).  

The use of reliable cluster evaluation and labeling strategies becomes thus a central 
point in this methodology. The labeling strategy we propose hereafter is a gener-
al-purpose strategy that has been already experienced for visualizing or synthesizing 
clustering results [8], for optimizing the learning process of a clustering method [3] 
and for highlighting the content of the individual clusters. It is based on a probabilistic 
approach relying on unsupervised recall and precision measures performed on cluster 
associated data.  

For a feature f of a cluster c, Feature Recall (FRc) and Feature Precision (FPc) are 
expressed as:  

 FR f ∑ W∈∑ ∑ W∈∈C  , FP f ∑ W∈∑ W∈ , ∈  (1)  

where  represents the weight of the feature f  for element x (Feature Recall is 
equivalent to the conditional probability P(c|f) and Feature Precision is equivalent to 
the conditional probability P(f|c)). 

Consequently, the set of labeling features, or labels, Lc that can be considered as 
prevalent for a cluster c can be expressed as the set of endogenous cluster data fea-
tures (i.e. unsupervised labels), or even exogenous cluster data features (i.e. external 
labels or supervised validation labels), which verifies: 

 L  f ∈ d, d ∈ c | FF Max FF  (2) 

where the Feature F-measure (FFc) of a feature f of a cluster c can be defined as the 
harmonic means between Feature Recall (FRc) and Feature Precision (FPc).  
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Fig. 2. The label-based approach 

3 Experimentation and Results 

In the context of the PROMTECH IST project, Schiebel et al. [15] have chosen to rely 
on the INIST PASCAL database. For their diachronic experiments, they selected the 
set of themes of the optoelectronic devices because this field is one of the most prom-
ising of the last decade. 3890 records related to these topics were thus extracted from 
the PASCAL database. Similarly to the former authors, our approach consisted in 
cutting out the resulting PROMTECH corpus in two periods, (1996-1999: period 1) 
and (2000-2003: period 2), to carry out for each one an automatic classification by 
using the content provided by the bibliographic records. For each year period, a spe-
cific dataset is generated. For that purpose, a set of pre-processing steps is applied to 
the keywords field of the corresponding records in order to obtain a weighted vector 
representation of the information it contains. Keywords of overall frequency less than 
3 are firstly removed from the record descriptions. 1797 records indexed by 1256 
keywords are consequently kept in period 1, and 2074 records indexed by 1352 key-
words in period 2.  In a further step, the resulting vectors associated to each record 
are weighted using an IDF weighting scheme [14] in both periods in order to decrease 
the effect of more frequent indexes. 

The clustering of the datasets associated to the two periods is achieved by the use 
of different clustering methods. For our experiment, we select K-means as the  
reference method in the category of non-neural methods, as well as various neural 
methods, ranging from static ones, like SOM [5], NG [11] or GNG [4], to incremental 
ones, like IGNG [12] or IGNG-F [9]. For each method, we do many different experi-
ments letting varying the number of clusters in the case of static methods and  
the vigilance parameters in the case the incremental ones. The best (i.e. optimal) clus-
tering model of each period regarding the optimal compromise between F-average 
values of unsupervised Macro-Recall and Macro-Precision indexes, F-average values 
of unsupervised Micro-Recall and Micro-Precision indexes and F-average values of 
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unsupervised Cumulated Micro- indexes is finally kept. Details on this specific cluster 
quality evaluation metrics, which has been proven the most efficient for textual data, 
are presented in [7]. The obtained values highlight that GNG neural method provides 
the best results on our experimental dataset for both periods. Table 1 specifically 
presents the quality results obtained in the first period with all the methods. It high-
lights that GNG reaches high quality values with the lowest difference between the 
Macro- and Micro- values (most homogeneous results) and the highest Cumulated 
Micro-Precision (CMP) value, indicating the best big-sized clusters. Table I also 
highlights the inadequacy of MSE for evaluating quality in our context. 

Table 1. Summary of clustering results (time period 1) CLUSTERING METHOD  NBR CLUSTERS MACRO-F MICRO-F CMP MSE 
SOM 38 0,37 0,35 0,30 0,80 

K-means 39 0,41 0,37 0,36 0,47 
NG 40 0,43 0,39 0,38 0,70 

GNG 40 0,44 0,41 0,48 0,62 
IGNG 42 0,47 0,41 0,24 0,93 

IGNG-F 39 0,49 0,42 0,32 0,98 

 
In the end, the labels of the clusters of the best models are identified in an unsuper-

vised way by the method of cluster feature maximization described by (Eq. 2). 
To compute the probability of matching between clusters belonging to two time  

periods, we slightly modify the standard computation of the Bayesian inference pro-
vided by the original MVDA model [2]. The new computation is expressed as: 

 P t|s ∑ FF∈L L∑ FF∈L  (3) 

where s represents a cluster of the source period, t a cluster of the target period,  Lx is 
the set of labels associated to the cluster x, using the cluster feature maximization 
approach defined by (Eq. 2), and  represents the common labels, which can be 
called the label matching kernel between the cluster x and the cluster y. 

The average matching probability PA(S) of a source period cluster can be defined as 
the average probability of activity generated on all the clusters of the target period 
clusters by its associated labels: 

 PA S |E | ∑ P t|s∈E  (4) 

where Env(s) represents the set of target period clusters activated by the labels of the 
source period cluster s. 

The global average activity As generated by a source period model S on a target  
period model T can be defined as: 

 | | ∑ ∈  (5) 

Its standard deviation can be defined as . 
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The similarity between a cluster s of the source period and a cluster t of the target 
period is established if the 2 following similarity rules are verified: 

 |   and  |  (6) 

 |   and  |  (7) 

Cluster splitting is verified if there is more than one cluster of the target period 
which verifies the similarity rules (6) and (7) with a cluster of the source period. Con-
versely, cluster merging is verified if there is more than one cluster of the source 
period which verifies the similarity rules (6) and (7) with a cluster of the target period. 

Clusters of the source period that do not have similar cluster on the target period 
are considered as vanishing clusters. Conversely, clusters of the target period that do 
not have similar cluster on the source period are considered as appearing clusters. 

Table 2. Summary of the time comparison results TIME PERIOD NBR GROUPS NBR MATCH NBR DISAPPEAR NBR APPEAR NBR SPLIT NBR MERGE 
1996- 
1999 

43 33 10 - 7 - 

2000- 
2003 

50 38 - 12 - 3 

 
Table 2 summarizes the results of our experiment of time periods comparison, in 

terms of identification of correspondences and differences. For a given period, the 
number of clusters implied in the comparison corresponds to its optimal number of 
clusters. It should be noted that the number of cluster splitting of the first period into 
the second period is more important than the converse number of merging into this 
latter period, which indicates a diversification of the research in the field of optoelec-
tronics during the second period. 

Finally, clusters similarity and divergence reports are automatically build up for 
presentation to the analysts. Each report includes one cluster of each period, whenever 
it is a similarity report, or one cluster of a single period, whenever it is a divergence 
report (i.e. an appearing or disappearing topic). In the case of a similarity report, the 
similarities between the clusters of the compared periods are identified by shared 
groups of labels (i.e. matching kernels), extracted from the clusters maximized fea-
tures (Eq. 2), which we have also named core-labels. These core-labels illustrate in a 
specific way the nature of the temporal correspondences. The labels of the clusters of 
each period which does not belong to the matching kernel of a similarity report are 
also considered separately. They are used to figure out small temporal changes occur-
ring in the context of an overall topic similarity between two periods. Said labels  
are displayed in decreasing order of their Feature F-measure difference with the al-
ternative periods. If a specific label of a given period does not exist in the alternative 
period, or if its Feature F-measure is under the Average Feature F-measure  of 
the overall clustering, it is marked as absent of the latter period.  
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In a final step, reports are slightly adapted using an automatic process in order to 
highlight the most important information that they provide. For similarity reports, an 
automatic core label migration process is used to better figure out to which period 
each core label is mostly related. The migration of one core label to a given period is 
applied if the Feature F-measure of this label is twice more important in this period 
than in the other one. Moreover, the important differences of Feature F-measure be-
tween periods are highlighted by color gradation in the reports (see fig. 3). 

For the sake of validation, all the adapted similarity and divergence reports have 
been made available to a pool of French INIST librarians specialized in the optoelec-
tronics domain. Looking to these reports, the librarians clearly point out that the  
latter, whilst maintaining both a sufficiently general description level and an accurate 
contextual background, make it possible to very precisely reveal the tremendously 
rich developments of the research topics in the optoelectronic domain during the 
1996-2003 period, altogether, from the theoretical studies to the practical applications 
(from optical polymers to polymer films (fig. 3), from surface emitting lasers or semi-
conductor lasers to vertical cavity lasers or VCSEL, …), from the exploitation of new 
chemical components to the production of new devices (from gallium arsenide to 
quantum well devices, …), or new semi-conductors types (from silicon compounds 
to amorphous semi-conductors, from gallium compound to wide band gap semi-
conductors, raise of exploitation of germanium, …), or the slight emerging of new 
semiconductors structures or organization which might become autonomous or 
self-assembling structures . 

Another interesting point concerning the behavior of the proposed method is that 
the vocabulary changes which are related to slight or contextual thematic evolutions 
might well be merged in the same similarity report, without thus associating those 
changes to different contexts, or even missing to detect them. As an example, one of 
the resulting report helps to confirm the progressive evolution of the optoelectronics 
domain from punctual developments to high scale industrial processes (evolution of 
the concept of optical fabrication to the one of optical design).  

Thanks to the experts, automatic reports of divergence between periods, materializ-
ing disappearances or emergences of subjects (topics), play the role of highlighting 
more important changes in the domain than the ones that could be highlighted by the 
similarity reports. The complete disappearance of research on optical fibers during 
the second period is thus clearly highlighted. Conversely, the full appearance of new 
research works on phosphorescence, jointly with the very significant development of 
those on fluorescence, is also correctly highlighted in such a way. Last but not least, 
the emergence of research works on high-resolution optical sensors and on their 
integration on chips, directly related to the important development of digital camera 
market in the second period (fig. 4), as well as the emergence of promising research 
on new generation of high efficiency optical nano-transistors (quantum dots) are also 
accurately figured out by the divergence reports. 

An objective validation of the results of the proposed approach can also be 
achieved by looking up to the evolution of the count of the papers related to the main 
emerging or disappearing topics highlighted by the approach between the two periods. 
For that purpose we use the top-ranked keywords (i.e. the maximized ranked features 
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or labels) associated with said topics and search for the related papers in the exploited 
dataset. Table 3 synthesizes the resulting count of such papers in each period. Both 
techniques clearly demonstrate the efficiency of the method to detect main changes. 
They also highlight the efficiency of the related Feature F-measure to quantify the 
amount of change between the periods.   

 

 

Fig. 3. Similarity report related to the strong development of polymer blends and films 

 

Fig. 4. Divergence report related to the strong emergence of the development and integration of 
high sensitivity image sensors 

The complete results provided by the method cannot be presented here. They have 
thus been made available at a specific address [13]; the results are also presented with 
more details in [10]. However, one might already remark that such a topic change 
mining process using single keywords information was until now impossible to reach 
with the existing methods, which, in addition, remained at most semi-supervised. It 
thus makes this new approach particularly promising. 

The results produced by our automated approach of comparison of time periods 
were finally compared with those of the analysis carried out by experts of the domain 
on the partitions produced over separated periods of time in the former experiment of 
Schiebel et al. [15]. Said analysis has mainly highlighted the following facts: 

1. General set of topics of the studied corpus corresponded to the optoelectronic 
devices containing mineral or organic semi-conductors,  

2. The research and applications of optoelectronics evolved from the field of the 
“photo-detectors” (probes, measuring instruments, …), in period 1, to the field of 
the “electroluminescent diodes”, in period 2. 
 

source cluster: 23 [19/10] target cluster: 2 [12/7]

- Stable labels - similarity kernel
f1: 0.259231[23]    f2: 0.313356[ 8] Optical polymers (***)
f1: 0.086864[23]    f2: 0.129486[ 2] Conducting polymers (***)

- Highly dominant (or peculiar) labels in source period
f1: 0.034510[23]    f2: 0.000000[-1] Experimental study

- Highly dominant (or peculiar) labels in target period
f1: 0.072006[23]    f2: 0.206426[ 2] Polymer fi lms (***)
f1: 0.054435[23]    f2: 0.114637[ 2] Polymer blends (***)
f1: 0.000000[-1]    f2: 0.039558[ 2] Spin-on coating
f1: 0.000000[-1]    f2: 0.028204[ 2] Polymerization

target cluster 39 is appearing

f1: 0.000000[-1]    f2: 0.144184[39] Pixel
f1: 0.000000[-1]    f2: 0.110076[39] CMOS image sensors
f1: 0.000000[-1]    f2: 0.077578[39] Chip
f1: 0.000000[-1]    f2: 0.060044[39] High sensitivity
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The above-mentioned conclusions present the disadvantage to provide only surface 
information on the potential topics evolutions. As it is formerly shown, the examina-
tion of the reports of similarities as well as those of divergences provided by our new 
diachronic method of analysis shows that it is possible to obtain both synthetic and 
precise conclusions, together with clear indications of tendencies (growth or decrease) 
in a unsupervised way, while preserving the possibility of observing general orienta-
tions, such as those expressed by the PROMTECH project experts. 

Table 3. Evolution of the paper count related to the emerging and disappearing topics between 
the two time periods 

CLUSTER 
REF. 

TOPIC MAIN KEYWORDS 

FEATURE 
F-MEASURE 
DIFF.. BTW 
PERIODS 

PAPER COUNT IN 
PERIOD 1  

(1996-1999) 

PAPER COUNT IN 
PERIOD 2  

(2000-2003) 

16 Optical fiber 0.14 28 13 
9 Fluorescence 0.12 18 36 

39 CMOS image sensors 0.11 0 18 
39 Pixel 0.14 0 26 
48 Semicon. quantum dots 0.23 16 74 

4 Conclusion 

We illustrate in this paper the feasibility of an unsupervised incremental approach 
based on a time-step analysis of bibliographical data. This analysis has been carried 
out thanks to the exploitation of a specific model of data analysis managing multiple 
views on the data, namely the MVDA model. It was also based on the exploitation of 
a neural clustering method in combination with original and stable measures for eva-
luating the quality and the coherence of the clustering results, and even for precisely 
and automatically synthesizing (i.e. labeling) clusters content. To our knowledge, our 
approach represents the first approach that has being proposed for fully automatizing 
the process of analysis of time evolving textual information using solely the textual 
content. Our experimentation proved that this approach is reliable and that it can pro-
duce precise and significant results on a complex dataset constituted of bibliographic 
records, like a European reference dataset related to the research domain of optoelec-
tronic devices.  

To help to figure out the robustness of our method to high vocabulary change, we 
finally plan to precisely compare it with the recent diachronic approaches based on 
co-clustering of lexical and bibliographical information [16].  
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Abstract. In this paper we present a combination of factorial projec-
tions and of SOM algorithm applied to a text mining problem. The cor-
pus consists of 8 medieval texts which were used to teach arithmetic
techniques to merchants. Classical Factorial Component Analysis (FCA)
gives nice representations of the selected words in association with the
texts, but the quality of the representation is poor in the center of the
graphs and it is not easy to look for the successive projections to con-
clude. So using the nice properties of Kohonen maps, we can highlight
the words which seems to play a special role in the vocabulary since their
are associated with very different words from a map to another. Finally
we show that combination of both representations is a powerful help to
text analysis.

Keywords: Text Analysis, Factorial Component Analysis, Kohonen
Map.

1 Introduction

1.1 Context

One approach to the understanding of the evolution of science is the study of
the evolution of the language used in a given field. That is why we would like
to pay attention to the vernacular texts dealing with practical arithmetic and
written for the instruction of merchants: such texts are known since the XIIIth
century, and from that century onwards and especially after the diffusion of the
Latin Leonard of Pisa’s Liber Abaci, the vernacular language appears more and
more as the medium of practical mathematics.

P.A. Estévez et al. (Eds.): Advances in Self-Organizing Maps, AISC 198, pp. 255–264.
DOI: 10.1007/978-3-642-35230-0_26 c© Springer-Verlag Berlin Heidelberg 2013
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Treaties on arithmetical education were therefore mostly thought and written
in local languages. In this process, the XVth century appears as a time of excep-
tional importance because we can see then how the inheritance of two hundred
years of practice transfers into words1. For the authors of these texts, the purpose
was not only to teach merchants but also to develop knowledge in vernacular
language, and their books were circulated far beyond the shopkeepers’ world, as
far as the humanists’ circles for example.

1.2 An Objective of Historical Research: The Study of Specialized
Languages

The work previously done (Lamassé [2012]) consisted in the elaboration of a
dictionary of the lexical forms found in all the treaties in order to identify the
different features of the mathematical vernacular language of the time. This done,
we have worked on the contexts of some especially important words in order to
understand the lexicon in all its complexity, and on the specificities of each
text to study the proximities and the differences between them. In other words,
we should like to determine the common language that forms the specialized
language beyond the specificities of each text.

2 The Data, the Objectives, the Protocol

In order to delimit a coherent corpus among the whole European production of
practical calculation education books, we have chosen to pay attention to those
treaties which are sometime qualified as commercial (marchand in French) which
have been written in French between 1415 and 1520. This last date is the date of
the publication of L’arismetique novellement compose of Estienne de La Roche
which is closely related to the works of Nicolas Chuquet and which provides in
the same time an opening towards the Italian authors, such as Fra Luca Pacioli.
In this way, our corpus is in conformity with the rules of the discourse analysis:
homogeneity, contrastiveness and diachronism2. It contains eight treaties on the
same topic, written in the same language and by different XVth century authors.
The following table 1 describes some elements of the lexicometric characteristics
of the corpus and shows its main quantitative imbalance.

2.1 Humanities and Social Sciences Traditional Protocol

Traditionally on this kind of textual data, HSS researchers use to work on the
statistical specificities and on the contextual concordances, since they allow an
easy discovery of the major lexical splits within the texts of the corpus while
remaining close to the meanings of the different forms. Then, the factorial and
1 These treaties were written not only in French but also in Italian, Spanish, English

and in German.
2 For further explanations about texts, methodology and purpose of the analysis

see Lamassé [2012].
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Table 1. Corpus of texts and main lexicometric features (Hapax are words appearing
once in a text)

Manuscripts and Title Date Author Number of

occurrences

Words Hapax

Bibl. nat. Fr. 1339 ca. 1460 anonyme 32077 2335 1229
Bibl. nat. Fr. 2050 ca. 1460 anonyme 39204 1391 544
Cesena Bibl. Malest. S - XXVI - 6,
Traicté de la praticque

1471? Mathieu
Préhoude?

70023 1540 635

Bibl. nat. Fr. 1346, Commercial
appendix of Triparty en la science
des nombres

1484 Nicolas
Chuquet

60814 2256 948

Méd. Nantes 456 ca. 1480-90 anonyme 50649 2252 998
Bibl. nat. Arsenal 2904,Kadran aux
marchans

1485 Jean Certain 33238 1680 714

Bib. St. Genv. 3143 1471 Jean Adam 16986 1686 895
Bibl. nat. Fr . Nv. Acq. 10259 ca. 1500 anonyme 25407 1597 730

clustering methods, combined with co-occurrences analysis - see Martinez and
Salem [2003] help us to cluster the texts without breaking the links with semantic
analysis. However, such a method of data processing requires a preliminary
treatment of the corpus, the lemmatization. It consists in gathering the different
inflected forms of a given word as a single item. It offers the possibility to work
at many different levels of meaning, depending upon the granularity adopted:
forms, lemma, syntax. We can justify this methodological choice here by its effect
on the dispersion of the various forms which can be linked to the same lemma,
a high degree of dispersion making the comparison between texts more difficult.
It must also be remembered that in the case of medieval texts, this dispersion
is increased by the lack of orthographic norms. In our case, this process has an
important quantitative consequence on the number of forms in the corpus, which
declines from 13516 forms to 9463, a reduction of some 30%.

The factorial analysis allowed us to establish a typology of the complete parts
of the corpus, based upon all the forms. However, it can be useful to improve
this global analysis with a probabilistic calculation for each component of the
corpus, by using the table of the under-frequencies (Lebart and Salem [1994]).
It makes it possible to compare the parts of the corpus with each other, taking
into account the occurrences of the words and their statistical specificities.

This process has been made with a particular attention to meaning of the
word in order to suppress ambiguities : a good example is the French word
pouvoir which can be a verb translated by "can" or "may", and which is also a
substantive meaning "power".

Finally, to realize a clustering of the manuscripts, we have only kept the
219 words with the highest frequencies. The set of words thus selected for text
classification relate both to mathematical aspects, such as operations, numbers
and theirs manipulations, as well as to didactic aspects. Their higher frequencies
reflect the fact that they are the language of the mathematics as they appear
to be practiced in these particular texts. Thus, in what follows the data are
displayed in a contingency table T with N = 219 rows (the words) and p = 8
columns (the texts) and the entry ti,j is the number of occurrences of word i in
text j.
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2.2 Factorial Correspondence Analysis (FCA)

Factorial Correspondence Analysis is a factorial method which provides the
simultaneous representation of both the individuals and their characteristics,
that is to say the columns and the rows of a table, in our case the texts (columns)
and the words (rows). Figure 1 and 2 show the projection of the data on the
first two factorial axes.
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Fig. 1. Projection on first two factors of the FCA. The eight texts appear in frames,
the slanted words stand for fickle words (this notion will be defined in section 4).

The first two factors (43.94% of the total variance) show the diversity of the
cultural heritages which have informed the language of these treaties. The first
factor (25.03%) discriminates between the vocabulary according to its relation to
the university legacy on the left, and to the tradition of mathematical problems
on the right.

On the left, we can observe a group whose strong homogeneity comes from
its orientation towards mathematical problems (trouver that is to say "to find",
demander which we can translate as "to ask") and their iteration (item, idem).
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Fig. 2. Projection on first two factors of the FCA (zoom on the central part). Only
the fickle words are represented.

That vocabulary can be found most often in both the appendix of Triparty en la
science des nombres and Le Traicte de la praticque. Furthermore, there are more
verbal forms on this side of the axis than on the other. And we can find verbs like
requerir which means "to require", convenir "to agree", faire "to do", vouloir
"to want". Some of them are prescriptive, as devoir "to have to" or vouloir "to
want" for example, while others introduce examples, as montrer "to show". All
these texts contain a lot of mathematical problems and in a way that texts are
more practical.

On the right, the texts of BnF. fr. 1339 and Med. Nantes 456 are clearly
more representative of the university culture, containing latin words sequences.
They describe basic operations and numbers through words developed around
the XIIth and the XIIth century in the universities, such as digit, article and
nombre composé3.

The second axis (17.91% of the variance) is mostly characterized by the
text of BNF. fr. 2050 and also by Kadran aux marchans. It displays words of
3 Digit is used for 0 to 9, article for every multiple of ten, and nombre composé is a

mixed between article and digit.
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Italo-Provencal origin, like nombrateur which refers to the division’s numerator.
Designation of the fraction and operation of division take a significant part of the
information while the most contributory words (for ex. figurer "to draw") allow
us to examine another dimension of these works: the graphical representation as
a continuation of writing.

Correspondence Analysis displays the particularities of each text, but leaves
untouched some more complex elements of the data. For instance, we cannot
conclude from this opposition that the authors of the appendix of Triparty en la
science des nombres and the Traicte de la praticque are ignorant of the university
texts that inspire the other books. Correspondence analysis does not make fully
possible the analysis of the attractions. Moreover, we cannot assert that the
words which appear in the center of the graph represent a "common vocabulary":
as a matter of fact, we ought to analyze all the successive factors in order to
build the list of the words constituting the "normal" vocabulary.

3 SOM Algorithm for Contingency Table

One way to overcome the limitations of the Factorial Correspondence Analysis
(FCA) consists of using a variant of the SOM algorithm which deals with the
same kind of data, that is a contingency table (see Oja and Kaski [1999] for other
applications of SOM to text mining). See Cottrell et al. [1998] for a definition of
this variant of SOM, we called KORRESP.

The KORRESP algorithm consists in a normalization of the rows and of
the columns in order to sum to 1, the definition of an extended data table by
associating to each row the most probable column and to each column the most
probable row, a simultaneous classification of the rows and of the columns onto
a Kohonen map, by using the rows of the extended data table as input for the
SOM algorithm.

After convergence of the training step, the modalities of the rows and of the
columns are simultaneously classified. In our example, one can see proximities
between words, between texts, between words and texts. It is the same goal as
in Factorial Correspondence Analysis. The advantage is that it is not necessary
to examine several projection planes : the whole information can be read on the
Kohonen Map. The drawback is that the algorithm is a stochastic one, and that
apparent contradictions between several runs can be troublesome.

In fact, we can use this drawback to improve the interpretation and the
analysis of relations between the studied words. Our hypothesis is that the
repetitive use of this method can help us to identify words that are strongly
attracted/repulsed and fickle pairs.

In its classical presentation Kohonen [1995], Cottrell et al. [1998], the SOM
algorithm is an iterative algorithm, which takes as input a dataset xi, i ∈
{1, . . . , N} and computes prototypes mu, u ∈ {1, . . . , U} which define the map.
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We know that self-organization is reached at the end of the algorithm, which
implies that close data in the input space have to belong to the same class or to
neighboring classes, that is to say that they are projected on the same prototypes
or on neighboring prototypes on the map. In what follows we call neighbors data
that belong either to the same unit or to two adjacent units. But the reciprocal
is not exact : for a given run of the algorithm, two given data can be neighbor
on the map, while they are not in the input space. That drawback comes from
the fact that there is no perfect fit between a two-dimensional map and the data
space (except when the intrinsic dimension is exactly 2). Moreover, since the
SOM algorithm is a stochastic algorithm, the resulting maps can be different
from one run to another.

We address the issue of computing a reliability level for the neighboring (or no-
neighboring) relations in a SOM map. More precisely, if we consider several runs of
the SOM algorithm, for a given size of the map and for a given data set, we observe
that most of pairs are almost always neighbor or always not neighbor. But there
are also pairs whose associations look random. These pairs are called fickle pairs.
This question was addressed by Bodt et al. [2002] in a bootstrap frame.

According to their paper, we can define: NEIGH l
i,j = 0 if xi and xj are not

neighbor in the l-th run of the algorithm, and NEIGH l
i,j = 1 if xi and xj are

neighbor in the l-th run of the algorithm, where (xi, xj) is a given pair of data,
l is the number of the observed run of the SOM algorithm.

Then they define the stability index Mi,j as the average of NEIGHi,j over
all the runs (l = 1, . . . , L), i. e. Mi,j = (1/L)

∑L
l=1 NEIGH l

i,j . The next step is
to compare it to the value it would have if the data xi and xj were neighbor by
chance in a completely random way.

So we can use a classical statistical test to check the significance of the stability
index Mi,j . Let U be the number of units on the map. If edge effects are not
taken into account, the number of units involved in a neighborhood region (as
defined here) is 9 in a two-dimensional map. So for a fixed pair of data xi and
xj , the probability of being neighbor in a random way is equal to 9/U (it is the
probability for xj to be a neighbor of xi by chance once the class xi belongs to
is determined).

Let Yi,j =
∑L

l=1 NEIGH l
i,j be the number of times when the data xi and

xj are neighbor for L different, independent runs. It is easy to see that Yi,j is
approximately distributed as a Binomial distribution with parameters L and
9/U . Using the classical approximation of Binomial Distribution by a Gaussian
one (L is large and 9/U not too small), we can build the critical region of the
test of null hypothesis H0 "xi and xj are neighbor by chance" against hypothesis
H1 : " the fact that xi and xj are neighbor or not is significant".

We conclude that the critical region for a test level of 5% based on Yi,j , is
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Practically, in this study, for each pair of words, we can compute (over 40
experiments) the index Mi,j = Yi,j/L, and conclude. Henceforth:

– if their index is greater than A + B, they are almost always together in a
significant way, the words attract each other.

– if their index is comprised between A−B and A+B, their proximity depends
on the text they belong, they are a fickle pair.

– if their index is less than A−B, they are almost never neighbor, the words
repulse each other.

4 Analysis of Fickle Pairs and Nodes

4.1 Identification of Fickle Pairs

We run KORRESP L times and store the result in a matrix M of size (N +p)×
(N + p). The value stored in a given cell i, j is the proportion of maps where i
and j are neighbors.

Fig. 3. Excerpt from matrix M with L = 40 and r = 1

Figure 3 displays an example of the nine first rows and columns of such a
matrix. We have highlighted with colors three different situations. According to
the theoretical study mentioned above:

– Black cells stand for pairs that are neighbors with high probability (proximity
happens with frequency greater than A+B).

– White cells stand for pairs that are not neighbors with high probability
(proximity happens with frequency less than A−B).

– Grey cells are not conclusive.

4.2 From Fickle Pairs to Fickle Words

We call fickle a word which belongs to a huge number of fickle pairs:

|{i, |Mi,j −A| ≤ B}| ≥ T
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Unfortunately, it is not quite an easy task to find an appropriate threshold T .
Here we have decided to fix it according to data interpretation. The 30 ficklest
words, whose number of safe neighbors/non-neighbors is between 89 and 119,
are displayed in table 2.

Table 2. 30 ficklest words among 219 studied

contraire "opposite" (89) regle de trois "rule of three" (104) depenser "to expend" (112)
doubler "to double" (89) savoir "to know" (105) racine "root" (113)
falloir "to need" (93) partie "to divide" (105) chose "thing" (113)
meme "same, identical" (93) position "position" (107) compter "to count" (113)
pratique "practical" (94) exemple "for example" (107) dire "to say" (113)
seulement "only" (94) demi "half" (108) nombrer "count" (115)
double "double" (97) garder "to keep"(109) raison "calculation, problem" (116)
multiplication (99) science "science" (109) donner "to give" (117)
reduire "to reduce" (103) pouvoir "can" (111) ensemble "together" (117)
regle "rule" (103) se "if" (111) valoir "to be worth" (119)

FCA with Fickle Pairs. The combination of both techniques FCA and SOM
whose result is displayed in figure 1 is interesting because it preserves proper-
ties from the FCA while giving additional information about the center of the
projection - which is usually difficult to interpret. Indeed, the identification on
the FCA of the fickle forms allows us to control the general interpretation of the
factorial graph, where some words find their place because of the algorithm and
not because of their attraction with other forms and with the texts.

Remember that, on the first two factorial axes (see section 2.2), we have
observed an opposition between the university legacy, on the right, and a more
practical pole with rule, problems and fractions, on the left. It was tempting to
support this observation with words such as "practical" or "rule of three". On
the other hand, the fickle forms enhancement shows that these words are shared
between a lot of different texts and not only linked to the treaty of Nicolas
Chuquet and the Traicté en la praticque. As a matter of fact, they do belong
to all the texts. And we can observe that the first factor opposes two technical
languages that are on either side of a set of common words – and these words
are obviously not to say necessarily in the center of the FCA (see for instance
racine "root").

To conclude, we can see that two levels of interpretation are superimposed:
the fickle pairs which reveal the shared lexicon and the factorial map which
inserts it in a local interaction system. And because the list is not sensitive to
the FCA, we can play on this combination for each successive factorial axis.
It is the articulation between these two levels which makes this representation
interesting. In the end, the meaning of this new kind of factorial map is quite
intuitive and offers easy tools to the argumentation.

5 Perspectives and Conclusion

First, we intend to use the proposed method for other corpus to confirm its
capacity to extract specialized vocabulary. In particular we want to make a new
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experimentation on a corpus of medieval and renaissance prologues of epics.
This corpus has been constituted in order to discern the political and ideological
appropriations of the chivalric culture in the context of the XVth and XVIth
centuries Renaissance. Secondly, the method has to be appropriated by linguists
in order to improve it according to their own paradigms.

Another challenge will be to work on a statistical characterization of a thresh-
old for the definition of fickle pairs. Indeed, while we managed to define (through
confidence intervals) a theoretical frame for reliability of a pair, we still need to
infer a similar method for each data.

Finally, we think that we have open a new perspective for clustering through
Kohonen maps. Indeed, the study of robust attraction/repulsion between data
as well as fickle pairs can be translated into a graph. Then, we can apply meth-
ods from graph representation and graph mining in order to get visualization
containing more information than a single SOM.
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2 Institute for Molecular Medicine, Finland
neme@nolineal.org.mx

3 Postgraduation Program in Complex Systems,
Universidad Autónoma de la Ciudad de México
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Abstract. The style authors follow to express their ideas has been a
subject of great debate. Several perspectives have been followed to try
to analyze the style. In this contribution we present a computational
methodology to study the writing style in a collection of hundreds of
texts. For each text several attributes, which include different time series,
are extracted and a battery of tools from the signal processing and the
machine learning communities are applied to identify a set of features
that may define a candidate style space. We applied self-organizing maps
to visualize how several authors are distributed in the high-dimensional
space associated to the style, and to visually prospect the similarities
between styles from different authors.

Keywords: computational stylistics, authorship attribution, visualiza-
tion, self-organizing maps, mutual information.

1 Introduction

The automatic identification of the style authors follow in their texts has proven
to be elusive. The study of stylistics has attracted the attention of different
practitioners from diverse areas. An experimented reader may be able to easily
recognize the general style of his/her favorite author, but declaring the procedure
they followed to recognize the style is a much harder task [1]. The style authors
follow, namely the use of certain words, the avoidance of certain others, the
preferential use of some grammatical structures, or any other measurable pattern
is what defines the stylistics [2].

A closely related concept is that of authorship attribution (AA), which refers
to the task of identifying the author of a text from a group of possible candidate
authors [1]. This task is strongly based on the cited concept of stylistics. Stylistics
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may be seen as the identification of attributes that define a high-dimensional
space in which authors can be distinguished from each other.

The relevance of computational stylistics pervades several areas. The first one
is that of literature theory, in which experts struggle to dig into the patterns that
the analyzed writers tend to follow in their texts. Also, the evolution of that style
is of academic interest. A second impacted field is on forensic linguistics in which
it has to be determined the authorship of a text either for historical reasons or
criminal charges [1,3]. Also, as a consequence of web dissemination, with several
hundreds of thousands of public documents, there are several situations in which
it is relevant to identify the author of particular texts or situations in which it
is necessary to confirm the existence of apocrypha documents.

The impact of stylistics also reaches psychiatry. It has been stated that some of
the early symptoms in certain mental disorders can already be detected in writing
[4]. For example, a detailed analysis over the novels of Iris Murdoch shows that
there are qualitative and quantitative differences in her novels prior to the disease
and in the early stages of it. Being aware of the general patterns of evolution in
stylistics may help psychiatrists and other mental health professionals to early
detect symptoms of mental disorders.

Different algorithms have been proposed to identify the author of a given
text [1]. However, most of those algorithms lack of explanatory properties. For
example, some kernel methods present good performance, but those models are
unable to show what attributes are really relevant as it is only focused in finding a
high-dimensional space in which points representing texts are linearly separable.

In this contribution, we present some results associated to a project focused
on the study of computational stylistics. In this project, machine learning and
data mining tools are applied to a corpus of hundreds of texts covering dozens
of authors. The first objective of the project is to identify those attributes that
can summarize the stylistics of authors at the time that are relevant to the au-
thorship attribution task. Also, we are interested in the analysis of the evolution
of stylistics for individual authors. As the stylistics space is high-dimensional,
a visualization tool is of the greatest relevance. We have applied self-organizing
maps in the data exploration phase and we have been able to identify some
attributes that are relevant in the definition of the minimum list of attributes.

Several attributes have been proposed as relevant in order to discern the
stylistics of an author. Also, many features have been proposed to be relevant
for the AA task. In this contribution, we focus our attention on attributes about
the way authors make use of words. Here, we refer to words as the vocabulary
but also to punctuation signs. One of the open questions is the identification
of the minimum set of attributes that can lead to the identification of authors.
Several attributes have been proposed, for example, the use of certain words and
the lack of use of other [1]. In general, the concept of bag of words is frequently
mentioned and, although relevant results have emerged, there are even more
questions to be answered [2,5]. Writers use language following different ways to
express their ideas. This variation in language allows authorship attribution to
be possible [6].
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The rest of this contribution is presented as follows. In section 2 we describe
the attributes that define stylistics as well as the relevant aspects of SOM. In
section 3 some results are described and we present a proposal to select subspaces
from the stylistics space able to distinguish between texts from different authors.
Finally, in section 4 some conclusions are discussed and we pinpoint to ongoing
and future work.

2 Attributes, Stylistics and Data Analysis Tools

The style authors follow in their texts is described by several attributes. In this
contribution we aim to identify a high-dimensional space of attributes, also called
the stylistics space, in which authors can be distinguished from each other. Each
text is transformed into a set of time series and from them, several tools from the
signal processing and data mining fields are applied. Each text is then mapped
to a point in that high-dimensional space of attributes.

The most common approach in the field of computational linguistics and
natural language processing is to deal with texts under the perspective of bag of
words. There, the relevant quantities are the relative frequencies of each word,
sentence, or any other relevant structure [7]. There are several works in which
texts are analyzed and classified with self-organizing maps based on very high-
dimensional vectors containing the relative frequency of appearance of words [8].

In this contribution we are not only interested in the relative frequency of
words, but also in the cadence authors follow when using certain words or sym-
bols (we will refer to words also as symbols). That is, we are interested in the time
series defined as the distance between consecutive instances of several relevant
symbols. By that distance, we refer to the number of words that separates con-
secutive appearances of a given word or symbol. We are interested in obtaining
those time series for the following symbols:

– the comma
– sentence length (number of words in each sentence)
– number of sentences per paragraph
– the most common word excluding the comma and the word the/el
– the most common word excluding articles and prepositions
– the word the/el

Besides the time series for certain symbols, we defined another time series, that
we call simply T . It is defined as follows. Each text is transformed into a sequence
of integers: each word or symbol is associated to an integer in order of appearance.
The first word to appear in the text will be assigned a 0, the second non-repeated
word will be associated to a 1, and so on. For example, the sentence S1 = My
baptismal name is Egaeus; that of my family I will not mention. is transformed to
the sequence T = {0, 1, 2, 3, 4, 5, 6, 7, 0, 8, 9...}. The word My is assigned to code
0 as it is the first word. The second appearance of my is also assigned code 0. In
this contribution, there is no difference between upper and lower cases. This time
series is positive definite, and presents some properties that prevent the use of
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time series analysis tools over it, for example it is not stationary. However, from
time series T a new time series B can be constructed: It is a sequence of 0 and 1,
where 1 indicates the appearance of a previously unseen word and a 0 reflects the
appearance of a repeated word within the analyzed text.

Other attributes are also considered, for example, the entropy of the text, the
ratio between vocabulary and text length, maximum sentence length, probability
distribution of the most common words, among others. The complete list of the
attributes is shown in table 1. From this list a high-dimensional stylistics space
S is constructed, and each text is then mapped to that space.

Table 1. Attributes definining the stylistics space S

Attribute Description No. var
V Vocabulary size 1
T Text length in words 1
V/T Ratio V/T 1
H Entropy 1
MPL Maximum paragraph length (sentences per paragraph) 1
APL Average paragraph length 1
mPL Minimum paragraph length 1
PDPL Probability distribution of paragraph length (up to 30 sent. per paragr.) 30
MSL Maximum sentence length (words per sentence) 1
ASL Average sentence length 1
mSL Minimum sentence length 1
PDSL Probability distribution of sentences length (up t 200 words per sentence) 200
pMFSL Probability of the most frequent sentence length 1
PkMCW Probability distribution of the 30 most common words 30
pMCW Probability of the Most Common Word (except , and the) 1
adMCW Avg distance between consecutive appearances of MCW 1
mdMCW Minimum distance between consecutive appearances of MCW 1
MdMCW Maximum distance between consecutive appearances of MCW 1
pThe Probability of the word the/el 1
adThe Avg distance between consecutive appearances of the/el 1
mdThe Minimum distance between consecutive appearances of the/el 1
MdThe Maximum distance between consecutive appearances of the/el 1
pMCWx Probability of the MCW (except articles, prepositions and ,) 1
adMCWx Avg. dist between appearances of MCW (except articles, prepositions and ”,”) 1
mdMCWx Min. dist. between appearances of MCW (except articles, prepositions and ”,”) 1
MdMCWx Max. dist. between appearances of MCW (except articles, prepositions and ”,”) 1
PkMCWx Probability distribution of the 30 MCWs (except articles, prepositions and ”,”) 30
pComma Probability of the comma 1
adComma Average distance between consecutive appearances of the comma 1
mdComma Minimum distance between consecutive appearances of the comma 1
MdComma Maximum distance between consecutive appearances of the comma 1
MIFS MIF for time series S (40 displacements) 40
MIFPL MIF for time series paragraph length (40 displacements) 40
MIFSL MIF for time series sentence length(40 displacements) 40
MIFMCW MIF for time series distance between MCW(40 displacements) 40
MIFMCWx MIF for time series distance between MCWx(40 displacements) 40
MIFComma MIF for time series distance between comma(40 displacements) 40
MIFThe MIF for time series distance between the/el(40 displacements) 40
MIFBin MIF for time series B (40 displacements)(40 displacements) 40
PWSS Power spectrum of time series S (5 highest frequencies) 40
PWSPL Power spectrum of time series paragraph length (5 highest frequencies) 5
PWSSL Power spectrum of time series sentence length (5 highest frequencies) 5
PWSMCW Power spectrum of time series distance between MCW (5 highest frequencies) 5
PWSMCWx Power spectrum of time series distance between MCWx (5 highest frequencies) 5
PWSCWy Power spectrum of time series distance between comma (5 highest frequencies) 5
PWSThe Power spectrum of time series distance between the (5 highest frequencies) 5
PWSB Power spectrum of time series B (5 highest frequencies) 5

Time series extracted from texts are the basis of the concept of stylistics we
follow. However, time series per se only give limited details, and more process-
ing on them is necessary. Texts may present different lengths so a normalizing
methodology is needed to compare time series that may come from texts of
different size. Time series are not analyzed directly. Several tools from the time
series and signal processing communities can be applied in order to extract subtle
and relevant patterns [9]. Among the attributes that can be extracted from time
series the most common ones are the power spectrum, the Lyapunov, and the
mutual information function [10]. In this contribution, we extracted the mutual
information function (MIF) and power spectrum (PWS) from the time series
coming from texts.
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MIF is a measure of non-linear correlation between random variables or sys-
tems [11]. It gives an answer to the following question: Once we know the state
a system is in, how much information does knowledge give about the state a
second system is in? MIF is based in Shannon’s information theory [12]. When
MIF is applied to a time series, the second system (or random variable) is con-
structed by shifting the time series up t k positions. The length of that shift is
represented the x axis when plotted.

In summary, the high-dimensional stylistics space S is a high-dimensional
space formed by several MIF (40 displacements each), several power spectrum
(the five highest frequencies), and several statistics. All these attributes are de-
scribed in table 1. As the length of texts is distributed along one range of mag-
nitude, finite size correction was applied for normalizing data. Once the S space
is defined, we can visualize the distribution texts follow in that space by apply-
ing a non-linear mapping to a low-dimensional space. The self-organizing map
(SOM) is an accurate and powerful tool to accomplish that mapping. Also, we
are interested in identifying a small subset of attributes in S able to distinguish
between texts from different authors and thus propose that subset as a very
small candidate stylistics space.

SOM is frequently applied as a visualization tool. SOM is able to preserve in
a low-dimensional space the approximate distribution shown by vectors in the
high-dimensional input space [13]. It outperforms common visualization tools
such as principal component analysis as SOM takes into account high-order
statistics, instead of at most second-order statistics[14].

We are interested in studying stylistics from a pure statistical and signal
processing perspective. That is, we think of texts as signals and we systematically
study how far we can reach by leading aside grammatical and lexical issues. We
are not interested in the already well established concepts of bag of words and
other related aspects. In the next section, we present some maps for several texts
from a dozen of writers.

3 Results

Each text is transformed to a point in the high-dimensional stylistics S space.
The coordinates of each text are given by the attributes described in the previous
section. We now want to know what attributes of this space are relevant to
identify the author of a text.

The analyzed authors and their texts are shown in fig. 1. Texts were analyzed
in accordance to the stylistics attributes described in the previous section. Only
these authors are show in this contribution in order to simplify the visualization
and the analysis (the full list of texts and analysis is available from authors).

In order to discover the distribution texts present in the stylistics space S,
a visualization tool is needed. As there are ∼ 1500 dimensions in that space
(see table 1), a projection over all possible two-dimensional spaces is out of
the question. Also, not all of the variables are necessarily relevant to define
the stylistics. We have then two issues to solve: the visualization task and the
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Fig. 1. Authors and their works studied in this contribution

identification of a subset of variables (dimensions) that indeed are enough as to
identify the stylistics.

In fig. 2-a it is shown the SOM formed for all variables in space S. It is
observed that, although some texts from the same author tend to be mapped in
clusters, this is not a general fact for all authors. In fig. 2-b, it is shown a SOM
for the analyzed texts, but now embedded in the attribute space defined only by
the eight MIF shown in table 1.

The stylistics space S includes several features, including relative frequencies,
MIF and power spectrum. We are interested now in the following question: Is
there a subset of A ∈ S such that authors may be recognized based on their texts
position on that space A? In order to give an answer to that question, we applied
a recently introduced method for variables selection [18] based in information
theory. We are interested in finding at most K variables (K < dim(S)) from S
such that such that the mutual information (MI) from A to the class Z (author’s
name) is maximal. Let Φ(A,Z) be the mutual information between systems A
and Z. We seek to find A such that Φ(A,Z) is maximum.

This task differs from what information-based algorithms as C4.5 follows.
We are not interested in classifying objects based on MI. We are trying to find
a subspace such that the coordinates in that space give as much information
about the label or class as possible. Then, a machine learning algorithm can be
fed with vectors in that space A, instead of being fed with vectors from space S
whose dimension is higher. The task we have declared is somehow similar to that
followed in algorithms such as testors [16], in which a matrix of differences is
systematically explored to identify those features that correctly classify patterns.

We intend to find an attribute space such that the MI between points, rep-
resenting texts in that space and authors, is as maximum as possible. To do
this, the MI of a compound system is needed. That is, if there is only one
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Fig. 2. a) SOM formed on a 30x30 lattice for all texts from stylistics space S. When
texts of different authors are mapped to the same unit, the square is divided in equal
slices for each text and colored accordingly to the author code. b) Map formed for the
input space of all MIF (see table 1). The number in the cell indicates the text index
shown in fig. 1.

attribute then the MI is calculated straightforward. In the case of two continu-
ous attributes X

′
and Y

′
and ns is the number of states in which each attribute

is to be discretized (X and Y ), a compound system Z is constructed as follows.
Z ′

i = Xi × ns + Yi and Z = discretize(Z
′
, ns). For more than two attributes,

the procedure is applied recursively.
The náive scheme to construct the space A from S will be to select the K most

informative variables. Such strategy is followed, for example, by C4.5 [15] but
that greedy strategy leads to local optima. The space generated by K attributes
from space S is called A. The number of possible spaces A is the number of
combinations of K positions available to D different attributes C(D,K). The
exhaustive search for the case here presented is prohibitively time- consuming for
K > 3. Thus, a search scheme is needed in order to select the relevant features
[17]. We applied an heuristic search method, a genetic algorithm, in order to
find at most K attributes from T that generate a space such that Φ(A;Class)
is maximum.

A genetic algorithm was implemented in Python with an elitist scheme and
probabilities of mutation of 0.05 and crossover of 0.9. Population size was settled
to 200 and the algorithm was allowed to run for 1000 epochs. Note that the
algorithm identifies a space A of dimension D ≤ K. That space is not easily
observed once D > 3. In order to visualize the distribution of the analyzed texts
in that space, we decanted our options towards the SOM.

Fig. 3 shows the SOM achieved by different K values. The image on the left
corresponds to a SOM for a space A of 27 dimensions, which include MIFThe,
MIFMCWy, among others. The image on the right is a SOM for a space A of
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5 dimensions that corresponds to MIFSL and MIFMCWy It can be observed
that, indeed, there are detectable general distribution patterns that may allow
to discriminate the author. Texts do not necessarily form clusters: once again,
we are interested in an attribute space such that mutual information between
the distribution and the author of a text is maximized. Clusters are only one
way in which that mutual information can be maximized, but there are many
others. Our methodology finds a family of those distributions.

Fig. 3. SOM formed on a 30x30 lattice for all texts from stylistics space A ∈ S. a)
A of dimension 27 b) A of dimension 5. Both spaces A were obtained by the genetic
algorithm mentioned in the text.

The B time series mentioned in the previous section is interesting because
it summarizes the rate at which writers include new words in the text. If now
we define space A as specifically the MIF for B, the distribution of that space
is approximated in the SOM in fig. 4-a. In general, texts from the same author
are similar in that space, that is, they are located in similar areas (see 4-b), but
there are some exceptions: Iris Murdoch presents a clear evolution in the style
if defined as MIF of B (fig. 4-c). This is consistently with the fact that her last
novel (Jacksons Dilemma) was written at the time she was suffering from a brain
disorder, so a change in her style was expected.

In a different experiment, the label associated to each text was not the author
but the language in which it was written. We applied the described genetic
algorithm to find the attributes that maximize the MI about the language (class)
and we show two SOM for two different conditions in fig. 5. In both cases there are
variables that once again include attributes related to MIF, but now, regarding
the use of the most common word which is not an article/preposition. Also, a
variable selected by the algorithm was the maximum distance between the most
common word (including article/preposition).
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Fig. 4. SOM for input space A defined as MIF for B (a). In b) it is show the MIF for
one of the authors (MCS). c) Shows MIF for three texts of author IM.

Fig. 5. SOM for two input spaces A ∈ S. MI between A and the language of the text
was maximized. Red: English, blue: Spanish. Left: dim(A) = 8, Right: dim(A) = 11.

4 Conclusions

In the tasks of authorship attribution and computational stylistics, it is of major
interest to identify a set of attributes that can offer as much information as
possible about the author of the text. Here, we have applied a self-organizing
map to visualize the distribution followed by several texts from different authors.
A genetic algorithm that constructs a space of at most K attributes such that it
maximized the information about the class or author of the text was implemented
and the distribution of texts in that space was visualized with the SOM

The analysis of texts as time series is also powerful to distinguish between
authors. The stylistics is at least partially, well described by the particular pat-
tern authors follows when using certain words. From those patterns it is possible
also to analyze the evolution of the style. The methodology here described can
be applied to any kinds of texts and it consistently shows that the properties of
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the extracted time series are relevant to distinguish the stylistics and thus are
valuable in the authorship attribution task.
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Abstract. Minor cases of the metabolic syndrome (MS) for which the lipid, 
blood pressure, and blood glucose levels are at the border between “normal” and 
“abnormal” require careful monitoring. We devised a method that addresses this 
issue by first introducing a “non-ill” condition between the former two. Based on 
observations of the MS indicator distribution of all examinees, the checkup data 
was then labeled as "normal", "non-ill" and "abnormal" and applied to a 
Self-Organizing Map (SOM) whose aim was to visualize the MS indicator 
distribution in relation to the 3 patient conditions mentioned. Our method was 
then validated by comparing the MS judgment results with those obtained using 
the conventional method. The ability to visualize with our method the positional 
relations between the MS indicators and the 3 conditions further adds to its 
usability as a health guidance tool. 

Keywords: Metabolic Syndrome, Health Evaluation, Self-Organizing Map 
(SOM), Medical Checkup Data. 

1 Introduction 

In Japan, an evaluation method for the Metabolic Syndrome (MS) was created that is 
part of the early lifestyle-related disease prevention program [1]. The diagnostic criteria 
of MS were developed by the Japanese Society of Internal Medicine and 7 other related 
societies, and are now widely enforced in Japan. At present, according to the diagnostic 
criteria, the "extraordinary" condition refers only to the case of slightly exceeded 
reference values for cholesterol levels, as well as blood pressure and blood sugar levels. 
The condition “abnormal” depends on the number of exceeded reference values. 
However, when observing medical checkup data in practice, as time series, there are 
many cases for which the values sometimes come close to the border of the reference 
values making it difficult to judge them. Therefore, the MS indicators should be 
carefully monitored for slight deviations. As a way to address this problem, we 
introduced the concept of "non-ill area" [2], which are defined as the gray zone between 
the upper limit of the normal values and the high abnormal ones (i.e., the critical 
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region). The distribution of each MS indicator, recorded during the patient’s general 
medical checkup, was observed and the data categorized into three areas: "normal", 
"non-ill" and "abnormal". Then, the check up data categorized in this way (thus, 
according to our method) was applied to a Self-Organizing Map (SOM) [3, 4, 5, 6, 7] 
for calculating the MS score and for observing trends in the MS condition of the 
examinee.   

The abdominal circumference must first exceed its reference value in the MS 
method that is at present recommended in Japan. Then, the case is judged as “MS” or 
“between” (MS and non-MS) if more than 2 or 1, respectively, out of the following 5 
items exceed their reference values: blood sugar level (GLU), systolic blood pressure, 
the diastolic blood pressure, acylglycerol (TG), and HDL cholesterol. However, with 
this method, every item is added to the list of MS indicators that is required for 
classifying the case as abnormal even when their reference values are only slightly 
exceeded. Also, for the non-obesity type, the MS condition of the patient can not be 
evaluated from the mentioned items, except for abdominal circumference, even when 
the reference values for the indicators are exceeded. We established a “non-ill area” 
outside the range of the reference values. A SOM method was developed to display the 
MS indicators (MS map) and the similarity with the conventional method was verified.  

With our method [2], the difference between a slight deviation from the reference 
value and a large one could be evaluated by linear interpolation. Also, from the MS 
maps, one can assess the effect of taking medication and the effect of a change in one’s 
habits, e.g., by first having a meal and then to do some exercise, and so on, which we 
expect will further encourage the examinee. In the current paper, the MS judgment 
based on the proposed method is compared with the conventional one. Given our 
method’s distinctive features we believe it can be a useful health guidance tool for the 
Ministry of Health, Labor and Welfare.  

2 Data Preparation    

2.1 Reference Values for MS Analysis 

The details of the reference values for the Metabolic Syndrome (MS) used in the 
current study are detailed in Section 4.  

2.2 Data Pre-processing  

When creating the SOM map, the following normalization procedure [2] was applied. 
Define the minimum reference value as L, the maximum reference value as H, the data 
value as X, and the normalized value as Y: 

When (X < L);        Y=L/X                            (1) 

(L <= X <= H);         Y=1                            (2)  

When (X > H)         Y=X/H                           (3)  
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With this procedure, all normalized values exceed 1. Also, some parameters exceed 
high values. Since it is our purpose to evaluate a general lifestyle disease, then, we have 
to decide on a ceiling-value. For example, a high ceiling value is defined as HCV. 
Then, the normalized values of (1), (2), and (3) are subtracted by 1. Also for (1) and (3), 
the calculation proceeds as (Y-1)/(HCV-1). Then, all the normalized values belong to 
the [0, 1] interval. 

2.3 Proposed Method 

To evaluate the stage of MS, we proceed as follows: -1) - the degree of obesity is 
averaged by BMI and the abdominal circumference after normalization. -2) - the degree 
of carbohydrate metabolism is averaged by FBS and HbA1c. -3) - the degree of High 
blood pressure is averaged by H-BP and L-BP, and -4) - the degree of lipid metabolism 
abnormality is averaged by TG and HDL. All 4 components are equally considered in 
our method.  

2.4 Calculation of MS (score) 

The MS score from which we can obtain the MS degree is calculated using the 
following procedure [2]. First, the health mark point is determined by  
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Where WVn is the worst value of the respective parameter, NV the normal value, xni

the data of the i-th examinee and ‘N’ the number of parameters (here 4) in the pertinent 

MS case. When the examinee’s data is in the normal range, xni
becomes NV. Then, 

the Health mark point (HMP) becomes 100 points from eq. (4). However, the MS score 
can be calculated by MS(score)=100-(HMP). Therefore, the healthy  examinee’s MS 
(score) is 0 and the worst examinee’s 100. 

3 Objective and Method    

Our research started with Metabolic Syndrome (MS) medical checkup data of 19,151 
men and 10,483 women from April 2007 to March 2009 in Shizuoka, Japan. In order to 
balance the data set, the female data were used twice in the analysis. Informed consents 
stating the purpose of the study and the protection of the patient’s privacy were 
obtained.  
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There were 8 MS indicators, classified into four categories: carbohydrate metabolism, 
degree of obesity, extraordinary fat symptom, and high blood pressure. First, the data was 
pre-processed by grouping them into the categories mentioned. Next, for training the 
SOM, the tool [2] was used. We choose a Torus type of SOM [7].  

The details of the tool to judge the MS components of criteria 1-4 are listed in 
Section 3 and the MS scores displayed in Fig. 1 (mapping) using the SOM developed 
earlier [2]. There, the medical checkup data and the diagnosis of 8458 men and 4497 
women from April 2009 to March 2010 were first analyzed by the existing method and 
then by the proposed SOM-based method. We continue with our method and evaluate it 
here by comparing its performance to the existing method. First, the obtained results for 
both cases were compared visually using the planar SOM map [2, 7]. The cases for 
which the 2 methods disagreed were selected. The validity of the judgment reached by 
the 2 methods was re-evaluated. First, the correctness of each test was confirmed. Then, 
the elapsed change in the values for the examinee was investigated using SOM maps.  

 

Fig. 1. The difference of the metabo definition between (a) the existing and (b) the proposed 
method. In (a), the BMI and HbA1c data are removed. 

As shown in Fig. 1(a)-, when the examinee’s data exceeds the reference value- , 
he/she is immediately classified as MS stage by the existing method. However, by the 
proposed method, when his/her data exceeds the reference value, he/she is first 
classified as non-ill stage using eqs. (1-4).   

4 Characteristics of the Proposed Method 

The MS diagnostic criteria used in the proposed method are as follows: 
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1. A Body Mass Index (BMI) of more than 25; an abdominal circumference above 85 
cm for men and above 90 cm for women; 

2. A fasting blood sugar level (FBS) above 110mg/dl; a HbA1c above 5.5%; 
3. A systolic blood pressure (H-BP) above 130 mmHg; a diastolic blood pressure 

(L-BP) above 85mm Hg 
4. A acylglycerol (TG) of more than 150mg/dl; a HDL cholesterol (HDL-C) below 
40mg/dl.   

The above 8 criteria were considered as pairs and their means were calculated pairwise 
as well. The pairs are regarded as the 4 components of: 1) the degree of obesity, 2) the 
carbohydrate metabolism, 3) high blood pressure, and 4) fat abnormality. The method 
for determining and normalizing the metabolic label (MS score) were calculated using 
eqs. (1-4) [2]. In the proposed method, when all items fall within their reference value 
ranges, the MS score becomes 0 and the position on the map is marked in blue. Apart 
from that, we consider the following 4 regions depending on the MS score. 

Region I: The non-MS region (0 < score < 20) , "DM-normal", 
Region II : The MS boundary region ( 20 <= score < 40 ), "between" in Table 1,  
Region III: The region as MS corresponding (40 <= score < 60), "DM-MS",  
Region IV: The MS region (60 <= score <= 100), "DM-MS",  
Levels I – IV are displayed by 4 consecutive shades of gray in the MS score maps.  
The descriptions "DM-normal", "between", and "MS" are used in Table 1, where DM is 
the abbreviation for Doctor Metabo which refers to our tool. "DM-normal" refers to the 
non-MS zone in our proposed method and similarly for "DM-MS". 

In the existing method a stage is labeled metabolic if an item exceeds its reference 
value; else it is judged to be normal. In the proposed method, we have the normal range 
and a boundary region above it. When the data takes a value in this region, then it will 
be considered as a level II case. We label this region as non-ill. Even if an item exceeds 
its reference value by a small amount, the examinee’s condition is not judged as 
abnormal immediately, but his/her data is further evaluated step-by-step. 

5 Results and Discussion 

Using data from 8458 men and 4497 women, the existing method was compared with 
the proposed one as shown in Table 1: In total, 1141 men and 115 women were labeled 
as MS abnormal according to the existing method. Also, 187 men (16%) and 11 women 
(10%) were labeled as normal according to the proposed SOM method and the 
inconsistencies occur at a high rate. The possibility of having an overestimate with the 
existing method was also considered as it can not be ignored. On the other hand, 6252 
men and 4289 women in Table 1 were judged to belong to the non-MS condition 
according to the existing method. Also there, according to the proposed method, 499 
men (8%) and 128 women (3%) were judged to belong to the MS group. These were 
further examined as they could be false negatives, overlooking cases of "hidden 
obesity". The result is shown in Table 1. Such a result could be due to the difference 
between the existing and the proposed methods, as shown previously in Fig. 1. In other 
words, the MS cases that were overlooked by the existing method, and that were 
wrongly considered as MS cases, were clarified by the proposed method. Moreover, as 
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to the non-MS patients, the group in the region between non-MS and MS, and the MS 
group, as shown in Table 1, were judged by the proposed method. The results for the 
male and female patients are shown in Fig. 2, for all MS groups, and in Fig. 3 for an 
example male and female patient of the DM-normal group, all by using the existing 
method. 

The 1141 men and 115 women of Table 1(a) and (b), respectively, which became 
labeled by the existing method, are shown in Fig. 2 together with the metabolic degree 
score map and the component map of the proposed method. Also, the 2 overestimated 
cases, among 187 men and 11 women in Table 1(a) and (b), are shown and explained by 
using the metabolic degree judgment bar graph, the component map, and the metabolic 
degree score map of the proposed SOM method (Fig. 3). By using historical data of the 
corresponding patients, an overestimate by the existing method was revealed (Fig.3). 

Next, let us consider the case where the need for changing the standard normal value 
range into a more convenient one becomes apparent. By using the tool that comes with 
the proposed method, it is possible to implement the change easily only by changing in 
the configuration file setting.csv the value that prescribes the normal range. An 
example is shown in Fig. 4. 

Table 1. Comparison between the results of the existing (government recommended)  method 
and the proposed one for (a) men and (b) women 

 

All panels in Fig. 3 show men and women that are in the “MS normal area". The 
arrow in the female case indicates that the abdominal circumference, the H-BP (the 
systolic blood pressure), and the L-BP (diastolic blood pressure) exceed their standard 
values only by a small amount. For the male case, the values of the waist, H-BP, and 
TG, are slightly not normal. However, according to the existing MS judgment method, 
their cases are labeled according to the "MS criteria".  
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Finally, another advantage of the proposed method is that in the configuration file 
one can specify the reference value used for the evaluation. In Fig. 4, the changes in the 
SOM maps following the change in the reference values stored in the csv file are 
shown. When the data of the patient is examined according to the reference values as in 
(a), GLU:100 and HbA1c:5.2, the carbohydrate metabolism and the blood pressure are 
in the range requiring further observation. When the reference values are loosely 
defined  as in (b) GLU:110 and HbA1c:5.5 then, for this patient, the carbohydrate 
metabolism is in the first 2 years in "the observation required" condition. Then, only for 
the high blood pressure, the reference value is left as it is. Therefore, the examinee’s 
condition remains "observation required" because of the high blood pressure. The 
component maps are shown in (c) GLU:100, HbA1c:5.2 and (d) GLU:110, HbA1c:5.5. 
In  (d), the carbohydrate metabolism becomes small in 2008 and in 2009. And in 2010, 
only due to the high blood pressure the case is labeled as "observation required".  

 

Fig. 2. The score map (a) and the component map (b) for 1141 men, the score map (c) and the 
component map (d) for 115 women comprising the MS cases labeled by the existing method 
(Table 1). The 187 male cases (Table 1(a)) and the 11 female cases (Table 1(b)) that were 
overestimated, i.e., that in fact had to be in the DM-normal area, are marked by red circles. The 
numbers in the small yellow circles refer to the frequencies of occurrence for such cases. 

6 Summary 

By using the health checkup database, the existing method and the proposed one were 
compared. As shown on the left side of Fig. 1, the existing method decides that a case is 
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MS abnormal, irrespective of the fact that the data point is in the reference region or 
not. To address this issue, the proposed method considers a marginal region (non-ill) as 
shown in Fig. 1(b). When the data is taking values in the critical region, it was assigned 
to this marginal region. This was done to ensure that an accidental large value would 
not affect the other patient’s data values when a head-cut (bound) value for each item 
was introduced. Thus, when the data slightly went out of the reference range, the data 
was incorporated into the non-ill area and it was evaluated by linearly interpolating it 
with the value that largely exceeded the non-ill range. In this way, one avoids an 
overestimation of the existing method when the patient’s MS condition only once and 
only to a small degree exceeds the reference range. 

Hence, we believe that in order to improve the reliability of the MS labeling by the 
existing method, a close inspection of the overestimated cases (where the possibility of 
a false positive is high) and of the overlooked ones (where the possibility of a false 
negative is high) is necessary and should be done by using another method such as the 
proposed SOM-based method. The above results are summarized as follows: 

 

Fig. 3. Example of a man (Left panels) and a woman (Right panels) whose MS criteria abdominal 
circumference (waist) and 2 other criteria exceed a reference value, as shown by the man’s (a) 
and woman’s (d) MS score bars plotted per year. The panels (b) and (e) are the component maps, 
for the man and the woman, and panels (c) and (f) are the respective score maps, all obtained with 
the proposed SOM method. The yellow trajectories in (b), (c) and (d), (f) connect the data points 
that correspond to the years listed along the horizontal axis of panels (a) and (d), respectively.   
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1. The existing method which starts from a high abdominal circumference has a risk 
of overlooking MS cases where the remaining 5 items in Section 1 are ignored 
whether they pose a high risk or not.  

2. The existing method can overestimate certain cases because it only decides based 
on whether or not a reference value is exceeded. 

3. For the existing method to judge a case as a metabolic one, the abdominal 
circumference must exceed a reference value. However, in the proposed method, 
criteria 1-4 in section 4 are evaluated in addition to the abdominal circumference. 
Since the proposed method has a less chance to overlook cases, extra medical 
expenses can be avoided. 

4. By changing the boundary values in the csv-file of the tool, the metabolic degrees 
and component maps can be freely explored. 

 

 

Fig. 4. Changes in the score bars (a,b) and the component maps (c,d) incurred when changing the 
reference values in the csv file of the tool from GLU:100, HbA1c:5.2 (a,c) to GLU:110, 
HbA1c:5.5 (b,d). Same convention for the yellow trajectories is as in Fig. 3. The figure was 
compiled using all available data in order to show the robustness of the tool.  
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Abstract. Profitability and other economic aspects of farming in Fin-
land are analyzed using the self-organizing map. The analysis of prof-
itability bookkeeping data reveals several interesting relationships
between the monitored financial variables. A weight optimization system
is presented for upscaling financial figures of the sample of profitability
bookkeeping farms to the whole country level. The self-organizing map
is also used to assess the performance of the weighting system. It is con-
firmed that the most important large and medium-sized enterprises are
represented well by the sample. Furthermore, it seems that the utilized
arable area is the key factor in guiding the weight optimization process.
These findings may turn out to be useful in developing the sampling of
bookkeeping farms in the future.

Keywords: farm, profitability, bookkeeping, self-organizing map, up-
scaling, weight, sample, optimization, constraint, agriculture.

1 Introduction

Profitability of farm enterprises is very important as it makes it possible for the
farms to stay in business in the long run and, thus, be a part of a stable food
supply chain. Farm profitability has been fluctuating strongly in Finland during
the recent years [1]. This may complicate the farmers’ planning for the future.

In this paper, the self-organizing map (SOM) is used to analyze financial
data of agricultural and horticultural enterprises. The data are collected from a
sample of bookkeeping farms, and they are the source of many figures charac-
terizing Finnish agriculture in the EconomyDoctor service of Agrifood Research
Finland [2]. In addition, a weighted upscaling system for obtaining country-level
results based on the sample is presented and analyzed using the SOM. The goal
is to discover interrelations between financial variables and find out how different
kinds of farms are represented by the sample based on the weighting, cf. [3].

The SOM has been successfully used in financial analysis, e.g., benchmarking
of industrial companies [4]. A simple SOM analysis of the relationships within the
bookkeeping farm data will be published in 2012 [5]. The data have also been
analyzed with the aim of understanding input substitution and technological
development of farms [6] and finding changes in productivity [7,8]. In addition,
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neural networks have been used in predicting the sufficiency of internal financing
of farms [9].

The organization of the rest of the paper is as follows: in the next section we
present the data, in Section 3 the structure of the weighting system is introduced,
in Section 4 the SOM and related parameters are explained, the results are shown
in Section 5, and conclusions drawn in Section 6.

2 Profitability Bookkeeping Data

Annual profitability figures for Finnish agricultural and horticultural enterprises
showing the average results of over 60 000 enterprises are calculated from the
profitability bookkeeping organized by MTT Agrifood Research Finland. Prof-
itability of Finnish farms is monitored using a sample of approximately 1 000
farms yearly. Data from the year 2010 are used in this study. In 2010 there were
940 bookkeeping farms. The original aim has been to represent the 40 000 largest
enterprises of Finland, which is why the sample contains only a few small farms.

The form of bookkeeping data is similar to the data in the Farm Accountancy
Data Network (FADN) [10]. There are thousands of variables in the bookkeeping
data bank. The variables used in this study were selected by an expert. The
aim was to select variables that have potential of providing a diverse picture
of the economic performance – especially solvency and profitability – of farm
enterprises. The following variables are used to characterize each bookkeeping
farm i: economic size ei, utilized arable area ai, support payments, total gross
return, entrepreneur’s profit, livestock units, interest claim, equity ratio, return
on assets, entrepreneurial income, profitability ratio, return on equity, hourly
earnings, total assets, equity, interest rate, wage and interest claim, liability
pay-back period1, debt-%, working hours, rented arable area, type of farming,
and support area.

The wage cost of own labor in 2010 is calculated using an hourly wage claim
of 14 e. The interest cost of equity is calculated on the basis of a farm-specific
interest rate, which is the sum of the risk-free interest rate and a farm-specific
risk premium. When the compensations for labor input and own capital are de-
ducted from entrepreneurial income, we obtain the entrepreneur’s profit. The
profitability ratio is defined as E/(W+I), where E is the entrepreneurial income
and W and I are the wage and interest claims, respectively [11]. When the prof-
itability ratio is 1, all production costs have been covered and the entrepreneur’s
profit is zero [2].

In addition, structural data of agriculture containing the total number of farms
and total utilized areas in the support areas, size classes, and types of farming
have been calculated based on farm register data obtained from Information
Centre of the Ministry of Agriculture and Forestry Tike.

According to a Regulation of the European Commission, there are 14 economic
size classes of farms. In the EU farm production is divided into about 60 types.

1 Liability pay-back periods above 50 years were considered uninformative and were,
therefore, truncated.



Analysis of Farm Profitability and Weighted Upscaling System Using SOM 287

Ten types of farming are present in Finland, some of which are combinations
of more specific EU farm types. In addition, there are seven support areas in
Finland. Table 1 shows the economic size classes, types of farming, and support
areas from south (A) to north (C4).

Areas are reported in ha in the data and the currency unit is e. Livestock
units are defined as grazing equivalents of dairy cows, i.e., small animals count for
less than one livestock unit. See [12,2,9] for more information on the calculation
of financial variables, and [13,12] on the determination of types of farming.

3 Weighting System

MTT Economic Research calculates annually the result and profitability de-
velopment of Finnish agriculture and horticulture. In this total calculation the
results for the whole country are obtained by summing up the weighted results
of the bookkeeping farms [14]. A weighting system is presented in this section for
obtaining reliable upscaling results based on the bookkeeping farms. The total
results for the country’s over 60 000 farms are, thus, calculated by summing up
the weighted figures of the bookkeeping farms.

Weighting coefficients are calculated annually for each bookkeeping farm by
numeric optimization so that when multiplied by the weighting coefficients and
summed up the number of farms and cultivation areas correspond to the total
number of farms and cultivation areas both in the whole country and in each
support area. Within the support areas the weighting based on the number
of farms is done according to farm size classes. By weighting according to the
farm size classes the results can be made to correspond to the real farm size
distribution in Finland.

The weighting is only based on the number of farms and total cultivation
areas, on which there is aggregate information available for the whole country.

Table 1. Numbering of economic size classes, types of farming, and support areas

Economic size (e) Type of farming support area

1 ei < 2 000 Cereal farms A
2 2 000 ≤ ei < 4 000 Other crop farms B
3 4 000 ≤ ei < 8 000 Horticulture, indoor C1
4 8 000 ≤ ei < 15 000 Horticulture, outdoor C2
5 15 000 ≤ ei < 25 000 Dairy farms C2p
6 25 000 ≤ ei < 50 000 Cattle farms C3
7 50 000 ≤ ei < 100 000 Sheep, goats and other grazing livestock C4
8 100 000 ≤ ei < 250 000 Pig farms
9 250 000 ≤ ei < 500 000 Poultry farms

10 500 000 ≤ ei < 750 000 Non-classified
11 750 000 ≤ ei < 1 000 000
12 1 000 000 ≤ ei < 1 500 000
13 1 500 000 ≤ ei < 3 000 000
14 ei ≥ 3 000 000
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These statistics are available in the Structural Development service of the MTT
EconomyDoctor [2]. No financial variables are used in calculating the weight-
ing coefficients, because no sufficiently reliable region or country-level aggregate
figures are available. The weights are optimized separately for each year.

The weighting system consists of two phases. First, initial weights di are as-
signed to the bookkeeping farms i in the sample B. The initial weights are cal-
culated for each farm using the weighting system of the FADN of the EU [10]. In
this system the weighting coefficient of a farm in a specific year depends on how
large a number of farms it represents in its own type of farming and economic
size in its support area. The types of farming and economic sizes are determined
for the whole period covered on the basis of the standard outputs introduced in
the EU in 2010 [11].

Second, the weights wi of the bookkeeping farms i = 1, . . . , N are adjusted
with sequential quadratic programming to fulfil a set of constraints. The aim is
to produce correct total values for certain variables which are known from other
sources. The updating phase is a constrained optimization problem:

min
wi

∑
i∈B

(wi − di)
2 (1)

subject to ∑
i∈Sj

wiai ≥ (1− t)Aj , ∀j ∈ {1, . . . , s} (2)

∑
i∈Sj

wiai ≤ (1 + t)Aj , ∀j ∈ {1, . . . , s} (3)

∑
i∈Ek

wi ≥ (1− t)NE,k, ∀k ∈ {1, . . . , g} (4)

∑
i∈Ek

wi ≤ (1 + t)NE,k, ∀k ∈ {1, . . . , g} (5)

∑
i∈Tm

wi ≥ (1− t)NT,m, ∀m ∈ {1, . . . , f} (6)

∑
i∈Tm

wi ≤ (1 + t)NT,m, ∀m ∈ {1, . . . , f} (7)

wi ≥ 1, ∀i, (8)

where Sj is the set of bookkeeping farms in support area j, t is the tolerance
between the true and upscaled values, Aj is the total cultivated area in support
area j, s is the number of support areas, Ek is the set of bookkeeping farms
belonging to economic size group k, NE,k is the total number of farms in eco-
nomic size group k, g is the number of economic size groups, Tm is the set of
bookkeeping farms belonging to type of farming m, NT,m is the total number of
farms of farming type m, f is the number of types of farming.

In other words, the weights are calibrated to match the cultivated area in each
of the s = 7 support areas (Eqs. 2 and 3) and the numbers of farms in economic
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size groups (Eqs. 4 and 5) and all f = 10 types of farming (Eqs. 6 and 7). In
Finland, the number of farms in the smallest and largest size classes is rather
low. Therefore, and in order to reduce the number of constraints, only g = 4
size groups are used in the weighting system. This is achieved by combining size
classes 1–4, 5–6, 7–8, and 9–14. The tolerance was set to t = 0.01 since with this
value all constraints could still be fulfilled.

4 Self-Organizing Map

The self-organizing map (SOM) [15] is a useful tool in exploratory data analysis.
It projects multidimensional data into a low-dimensional grid which is easy to
visualize. In addition to nonlinear projection, the SOM also performs vector
quantization. This representation can be used for visualization, clustering, and
exploration of data. Conceptually, the SOM and its map units form a flexible
net in the data space. This makes visualization of the grid useful in exploring
the relationships of variables and the possible cluster structure of the data.

In this study training and analyzing the SOM was performed using the SOM
Toolbox for Matlab [16]. Before training, the number of map units and the
structure of the grid in the SOM are defined. The number of map units was

chosen based on the default setting of SOM Toolbox, i.e.,
⌈
5
√
N
⌉
. We used

hexagonal grid sheet structure and the default ratio of the side lengths:
√

λ1/λ2 ,
where λ1 and λ2 are the two largest eigenvalues of the autocorrelation matrix.

The observations were normalized linearly before training, e.g., so that the
mean of each variable is 0 and the variance is 1. The method used to normalize
the data defines the distance between multidimensional vectors. For example,
how should a change in return on asset percentage be related to a change in
utilized area measured in hectares? Normalizing all the variances to unity solves
this problem by defining that changes in different variables are equal if they are
in equal proportion to their standard deviations. As a result, all variables have
equal weights in this sense.

The map units are connected to neighboring units on the grid by the neighbor-
hood function. Gaussian neighborhood function was used and σ(t) corresponds
to the width of the Gaussian function. The training is divided into a rough
training phase and a fine-tuning phase. σ(t) decreases during the rough training
phase. The batch algorithm was used to train the SOM.

The map can be visualized using component planes, each of which shows the
values of one of the original variables as colors on the grid. In addition, the map
can be visualized with the unified distance matrix (U-matrix) [17], which shows
the within-unit distances and distances between neighboring units on the grid.

The quality of the map can be measured with the quantization error, which
is the average distance between each observation and its best-matching unit.
In addition to quantization, the topology preservation of the projection can be
measured with the topographic error [18]. It is defined as the percentage of
observations for which the best-matching unit and the second-best-matching
unit are not neighboring units on the grid.



290 M. Sulkava, M. Yli-Heikkilä, and A. Latukka

5 Results

5.1 Farm Profitability

An economic map of the bookkeeping farms was produced using the SOM. Sup-
port area, type of farming, and the weight variables were not used to adapt the
map in the training. These classification and weight variables were masked from
the training because they do not characterize the economic status of the farms.
Some types of farming are not visible on the corresponding component plane
at all. This is partly due to the fact that there are fewer farms of those types
present in the bookkeeping data as well as in Finnish agriculture in total. The
quantization error of the map was 2.16 and the topographic error 0.06. The map
is thus well organized. The U-matrix and component planes of the SOM are
show in Figure 1

The U-matrix suggests that there may be some cluster structure in the data,
but the possible cluster boundaries are not very sharp. However, farms charac-
terized by extreme conditions can be found separated from other farms in both
top corners and the bottom left corner of the map.

Different economic types of farms can easily be spotted using the map. The top
left corner corresponds to large, mainly dairy farms with the highest total assets
and equity, the highest utilized and rented arable areas, and the most livestock.
Also cereal, cattle, and pig farms are common in that part of the map, and the
farms are often located in southern parts of the country. These farms receive
the highest support payments and have the highest wage and interest claims.
The entrepreneur’s profit, however, is the most negative in this area. The hourly
earnings are also negative despite the large number of working hours. Thus, the
profitability of these farms is usually not very good, in fact it is even below 0.2.
The high interest rates indicate that these enterprises are rather risky.

The top right corner of the SOM represents the largest farms with the highest
incomes, returns, and profitability. On the other hand, the equity ratio of those
farms is rather low and the liability pay-back period is very long. These farms
are typically horticulture or dairy farms. Clearly smaller farms but similar in
terms of solvency and profitability are in the middle of the right border of the
map. These smaller farms are mostly classified as other crop farms.

In the mid-left part of the map medium-sized, medium-profitability farms can
be spotted with above average debt-% and very low equity, equity ratios, and
interest claims. The amount of labor is high on some of these farms but the uti-
lized areas are low. These typically horticulture and dairy farms are concentrated
more to the northern part of Finland.

Low-risk farms with low interest rates, debts, high equity ratios, and short
liability pay-back periods are distributed in the middle of the map and the bot-
tom right part. The main differences between these two are in economic size and
types of farming. The former are mainly dairy farms and the latter – mainly
cereal farms – are the smallest with the least working hours and smallest wage
and interest claims. The small farms are also more commonly located in the
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Fig. 1. U-matrix and component planes of the SOM of farm bookkeeping data and
weights. The values in type of farming refer to the most common type of farming in
the corresponding map unit. The values and colors in support area refer to the median
value of the map unit. Type of farming and the variables in bottom row were not used
to adapt the map in the training.
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southern support areas. Both farm groups have average profitability ratios and
are rather homogeneous based on the U-matrix.

The bottom left corner of the SOM has the least profitable farms. They are
small low-equity farms with negative entrepreneurial income, hourly earnings,
and return on equity. They have the highest debt percentages and longest liability
pay-back periods. As regards types of farming most of these are cereal and dairy
farms.

5.2 Upscaling Weights

The largest weights are located in the bottom of the map. Those map units
represent two kinds of small farms, mostly in southern Finland. The first group
has high equity ratios, short liability pay-back periods, and low interest rates
indicating low business risk. The second group is characterized by the lowest
returns, hourly earnings, and profitability ratios. Mostly these are cereal farms,
but also other crop farms, dairy and cattle farms are represented.

The component plane of d is not shown because it looks essentially the same
as the component plane of w. In its stead, the difference between w and d is
presented. The differences between weights before and after optimization are
relatively small, as can be expected due to the form of the optimized function.
Interestingly, the largest increases during weight optimization occur in map units
that also had the largest initial weights. So, the smallest bookkeeping farms need
to represent an even higher number of farms than in the FADN weighting in order
to fulfill the constraints (Eqs. 2–7).

The largest decreases in weights, on the other hand, can be found in four
locations on the map: 1. top left corner, 2. slightly above and left from the center,
3. mid-part of right border, and 4. above and left from the bottom-right corner
of the map. The two first locations correspond to mainly cereal and dairy farms
that have large utilized arable area and a lot of rented lands. The main difference
between these two is in economic size. The third and fourth locations correspond
to small cereal and other crop farms. In the third location profitability is high
but the pay-back periods of liabilities are long, whereas in the fourth location
equity ratios are high. All of the four locations have higher utilized and rented
arable areas than the surrounding map units.

The component plane of the sum of weights shows howmany of the total 60 000
farms are represented by each map unit when the weighting system is used. The
scale is logarithmic due to skewed distribution of the parameter. The highest
number of farms represented by a single map unit is over 6 700. The distribution
of
∑

w is rather uneven on the map. There is, however, a tendency that the sum
of weights gets smaller towards the top of the map. When considering the whole
population, the different types of larger farms on the top part of the map are
rather well represented by the SOM. In contrast, a very high number of small
farms is represented by a few map units at the bottom part of the map. This
part of the SOM mostly contains rather similar prototype vectors based on the
U-matrix and also the component planes. That is, these smallest farms do not
seem to be very different from each other with respect to financial variables.
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6 Conclusions

Using the SOM allowed us to analyze effectively interconnections between fi-
nancial variables characterizing the performance of agricultural enterprises in
Finland. Different kinds of farming could be easily distinguished on the map.

We studied five groups of farms with different profiles of profitability and sol-
vency. Consequently, we came up with the following hypotheses concerning the fi-
nancial status of Finnish farm enterprises. 1. Enterprises with the most livestock,
arable area, highest assets, and equity are risky and have low profitability. 2. The
largest horticulture and dairy farms and smaller other crop farms with low equity
ratios have the highest profitability. 3. Farms with very low equity-ratios have av-
erage profitability. 4. The least risky enterprises are small dairy farms and very
small cereal farms with high equity ratios. 5. Small cereal and dairy farms with
high debts and long pay-back periods of liabilities are the least profitable.

The analysis of upscaling weights using SOM attests that the large farms in
Finland are well represented by the sample of bookkeeping farms. The results
obtained by weighting of course involve a degree of uncertainty, because the set
of bookkeeping farms cannot fully reflect the highly varied population of Finnish
farms and horticultural enterprises. Nevertheless, the distribution of weights is
so uneven that not using the weighting would bias the total results.

Farms with above-average utilized arable areas within all size classes experi-
ence the largest decrease in weights during the weight optimization. It is likely
that the area-related constraints have guided the optimization process. There-
fore, it may turn out to be beneficial to increase the number of bookkeeping
farms with smaller utilized arable area in the future.

The small farms with low or negative profitability have the largest weights
and, thus, also the largest uncertainty in upscaling. The SOM analysis suggests,
however, that these small farms are similar to each other, which would have a
positive effect on uncertainty. More importantly, the contribution of the smallest
farms to the total figures of agriculture is very limited. Therefore, the total
calculation gives a comprehensive and coherent picture of the sector as whole.
The weighting also enables the use of regularly updated forecasts, representative
regional results and results according to production sectors as well as other
calculations based on simulations. Analysis of the hypotheses above – as, e.g.,
in [19], cluster structure in the data, and temporal behavior of farm profitability
are left as subjects for future research.
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7. Myyrä, S., Pihamaa, P., Sipiläinen, T.: Productivity growth on Finnish grain farms
from 1976–2006: a parametric approach. Agricultural and Food Science 18(3-4),
283–301 (2009)

8. Kuosmanen, T., Sipiläinen, T.: Exact decomposition of the Fisher ideal total factor
productivity index. Journal of Productivity Analysis 31(3), 137–150 (2009)

9. Latukka, A.: Predicting Financial Distress of Farms using Neural Network Appli-
cation. Lic.Sc. thesis, University of Helsinki, Department of Economics and Man-
agement No. 22, Production Economics and Farm Management, Helsinki, Finland.
(December 1998) (in finnish)

10. Farm accounting data network (June 2012),
http://ec.europa.eu/agriculture/rica/index.cfm

11. Rantala, O., Tauriainen, J.: Development of results and profitability of agricul-
ture and horticulture. In: Niemi, J., Ahlstedt, J. (eds.) Finnish Agriculture and
Rural Industries 2012. Publications, MTT Economic Research, Agrifood Research
Finland, ch. 4.1, vol. 112a, pp. 56–61 (2012)

12. Community Committee for the Farm Accountancy Data Network. Typology hand-
book. Technical Report RI/CC 1500 rev. 3, European Commission – Directorate-
General for Agriculture and Rural Development, Brussels, Belgium (October 2009)

13. Committee for Corporate Analysis. The Guide to the Analysis of Financial State-
ments of Finnish Companies, Gaudeamus, Helsinki, Finland (2006)

14. Latukka, A., Sulkava, M.: Economic development of finnish agriculture and horti-
culture. In: Niemi, J., Ahlstedt, J. (eds.) Finnish Agriculture and Rural Industries
2012. Publications, ch. 4. 2, vol. 112a, pp. 62–65. MTT Economic Research, Agri-
food Research Finland (2012)

15. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sci-
ences, vol. 30. Springer, Berlin (2001)

16. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Mat-
lab 5. Report A57, Helsinki University of Technology, Laboratory of Computer and
Information Science, Espoo, Finland (2000)

17. Ultsch, A., Siemon, H.P.: Kohonen’s self organizing feature maps for exploratory
data analysis. In: Proceedings of International Neural Network Conference (INNC
1990), pp. 305–308. Kluwer, Dordrecht (1990)

18. Kiviluoto, K.: Topology preservation in self-organizing maps. In: Proceedings of the
International Conference on Neural Networks (ICNN 1996), vol. 1, pp. 294–299.
IEEE Neural Networks Council, Piscataway (1996)

19. Sulkava, M., Tikka, J., Hollmén, J.: Sparse regression for analyzing the development
of foliar nutrient concentrations in coniferous trees. Ecological Modelling 191(1),
118–130 (2006)

http://ec.europa.eu/agriculture/rica/index.cfm


Professional Trajectories of Workers Using
Disconnected Self-Organizing Maps

Etienne Côme1, Marie Cottrell2, and Patrice Gaubert3

1 IFSTTAR - Bâtiment Descartes 2,
2, Rue de la Butte verte, 93166 Noisy le Grand Cedex, France

etienne.come@ifsttar.fr
2 SAMM - Université Paris 1 Panthéon-Sorbonne

90, rue de Tolbiac, 75013 Paris, France
marie.cottrell@univ-paris1.fr
3 ERUDITE, Université Paris 12,

61, avenue du Géneral De Gaulle, 94010 Créteil, France
patrice.gaubert@u-pec.fr

Abstract. Using the Panel Study of Income Dynamics (PSID) collected
on the period 1984-2003, we study the situations of American workers
with respect to employment. The data include all heads of household
(men or women) as well as the partners who are on the labor market,
working or not. They are extracted from the complete survey by com-
puting a few relevant features which characterize the worker’s situations.

To perform this analysis, we suggest to use a Self-Organizing Map
(Kohonen algorithm) with specific topology. In this paper we present
a new topology for SOM based on a planar graph with disconnected
components (called D-SOM) which is especially interesting for cluster-
ing. Each component takes the form of a string and corresponds to an
organized cluster.

From this clustering, we study the dynamics at the individual level,
that is the trajectories of the individuals among the classes during the
observed period. Then we estimate the transition probability matrices
for each studied year and the corresponding stationary distributions.

Finally, we try to give an answer to the question: is there a significant
change in 1992 (new economic policies after the Reaganomics).

Keywords: Kohonen algorithm, planar graphs, labor market, Markov
chains.

1 Introduction

The aim of this study is to identify and to analyze the succession of situations
occupied by workers on a modern labor market (1984-2001). The mainstream
theory presents mechanisms to explain the level of labor furnished for a specified
compensation, the stability of the relation between a firm and a worker and its
evolution over time (a career). These mechanisms are not observed in the most
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real situations. To identify the diversity of situations in terms of activity is the
first step of the study.

A situation is defined by quantitative variables:

– global quality of a job, full time job for the whole year, wages, seniority in
the same job versus

– positions with more or less precarious conditions: wages lower than the av-
erage, part time jobs, jobs for short periods, on-call jobs, current practice of
a second job

Working on individual data we construct a classification of situations observed
every 2 years on a specific labor market during two consecutive periods of nine
years. With the characteristics of a small set of major situations, it is possible
to define the successive localizations of each individual for each studied year of
the two periods. That is what we called trajectories between situations.

We need to study the temporal changes, during both sub-periods: 1984-1992
and 1993-2001. It must be possible to answer some important questions linked to
the evolution of the macroeconomic environment: in 1992 the end of Reaganomics
and the beginning of Clinton period which leads to a global reduction of unem-
ployment. What is the impact of this reduction of unemployment and is there a
significant change at the individual level?

This article follows another paper [2] but contains necessary material (and
possibly redundant) to be self-contained. It is organized as follows : first, in
Section 2, the data and the notations used throughout the paper are presented.
The methodology and the global architecture of the proposed procedure are
described in Section 3. Each step is defined and results on real data are given in
Sections 4 to 7.

2 The Data: First Period (1984, 86, 88, 90, 92) and
Second Period (93, 95, 97, 99, 2001)

We use the PSID (Panel Study of Income Dynamics), dividing the observations
in two sub-periods in order to solve the trade-off we meet: observe a number of
workers large enough to obtain statistical indicators representative of the whole
population, from one hand, and from the other hand, to keep only individuals
present along the period to identify trajectories.

We create a sample for each period (1984-1992, 1993-2001) but, with the hy-
pothesis that the main situations have the same characteristics in these periods,
with differences in levels only, we make the classification with all the observations
together.

In the PSID data, we select households for which the head (man or woman)
is present every studied year of the period but separately for each sub-period.
The administrative rule is that if there is a male in the household he is the head,
if not the head is a woman. Fortunately quite the same variables concerning the
activity on the labor market are available for the wife of the head, if there is one.
Retrieving this information we constitute set of individuals (around 4 500 per
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year) observed every two years in each sub-periods, with a proportion of women
close to the one observed in the whole population.

An observation consists of a couple (year, individual). It is described by 8
quantitative variables and 4 qualitative variables. See Table 1 for the list of
variables and their meaning. j

Table 1. Variable name, description and type

Name Description Type
nbbhtrav Number of worked hours per week Quant
nbstrav Number of worked weeks Quant
nbschom Number of unemployed weeks Quant
nbsret Number of weeks out of labor market Quant
salhor Wages per hour Quant
nbex Number of extra jobs Quant
hortex Number of hours worked in extra jobs Quant
anctrav Seniority in present work in monthes Quant
sex Sex Qual
naiss Year of birth Qual
pro Professional occupation Qual
bri Branch of industry Qual

3 Disconnected Self-Organizing Maps, D-SOM

Following Come et al. (2010) [2], we use a light variant of the classical SOM ([3],
in order to get a map which is composed of several disconnected one-dimensional
strings. Each string will contains data which are similar at a rough level and that
are displayed in ordered disposition.

To get this topology, it is necessary to define a neighborhood structure which is
different from the classical one. Graph theory allows us to define such structures
as noted by several authors like [1,4]. If the used graph can be represented
in dimension 2, we will still have the advantages of Self-Organizing Maps for
visualization and data mining.

See figure 1 an example of disconnected neighborhood structure that we define
here.

This topology has a special interest: when the map consists of not connected
parts, the "cooperation" step of the algorithm only concerns the units which
belongs to the same component as the winning unit. The competition step is not
modified, so that the algorithm complies a double goal :

1. to group the observations into macro-classes corresponding to the different
connected components of the graph ;

2. to organize the units inside the macro-classes.

The code-vectors are denoted by mij , i ∈ {1, . . . ,K}, j ∈ {1, . . . , ni}, where K
is the number of disconnected components and ni is the size of component i.
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

Fig. 1. Bi-dimensional representation of a disconnected map with 5 strings of 8 units

Then the distance d ((i, j), (i′, j′)) between classes (i, j) and (i′, j′) is define as
the shortest path distance in the graph. It is equal to +∞ if i �= i′. The code-
vectors which do not belong to the same macro-class as the winning unit are not
updated by the cooperation step.

The algorithm can be written as below:

1. The code-vectors are randomly initialized in the data space ;
2. at each step t, the code-vectors are updated mij(t) in the following way :

– one observation xt+1 is randomly drawn and we achieve two steps;
– Competition, the winning unit is computed for the l’observation xt+1 by:

[i∗(t+ 1), j∗(t+ 1)) = arg min
i∈{1,...,K},j∈{1,...,ni}

||xt+1 −mij(t)||; (1)

– Cooperation, the code-vectors of the winning unit and of its neighbors
(which necessarily belong to the same macro-class (i∗, j∗)) are updated
by:

mi∗j(t+ 1) = mi∗j(t) + α(t)h(t, (i∗, j∗), (i∗, j)) [xt+1 −mi∗j(t)] , (2)

where t is the number of iteration, α(t) is the learning rate and
h(t, (i∗, j∗), (i∗, j)) is the neighborhood function at step t between classes
(i∗, j∗) and (i∗, j).

In conclusion, by imposing a limitation of the cooperation which only acts inside
the macro-classes and by keeping a competition between all units, this algorithm
allows us to get a classification into a given number of macro-classes which are
themselves self-organized.

There exists other methods to get well-separated classes, see [5] for example.
But our approach is different since we do not look for building an adjacency
matrix between the code-vectors by repeating many runs of the SOM algorithm.
Contrarily, we impose an a priori adjacency matrix which defines non-connected
classes.

This kind of topology is well adapted in the frame of the labor market segmen-
tation, since one looks for a segmentation into macro-classes well discriminated,
easy to describe, split into organized classes. In a general case, the question of
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the choice of the number of macro-classes is guided by a priori argument if there
exists theoretical reasons. In our case we chose 5 macro-classes which is the best
choice to get contrasting and well identified situations.

Let us now describe the results that we get using this topology for our data.

4 The Map, Description of the Clusters

Figure 2 shows the about 45000 couples (year, individual) represented by a 8-
vector, classified into 5 disconnected macro-classes, themselves composed of 8
units.

Fig. 2. D-SOM map with 5 macro-classes of 8 units

By computing the arithmetic means (see Table 2 and Table 3) of the eight
variables used to make the classification, it is easy to emphasize the contrasts
between the macro-classes, (the five strings):

– macro-class 1: precarious, part-time employment and unemployment
– macro-class 2: people having extra jobs (one or more) to obtain a sufficient

standard of living
– macro-class 3: people most of the time out of the labor market (discouraged,

ill, or for family reasons, and retired people in period 2)
– macro-class 4: full employment with very short seniority in the present place
– macro-class 5: full employment with the highest compensation and seniority

(about 18 years)

These findings are obtained for the two sub-periods.
Figure 3 contains five subplots which present the evolution of the code-vectors

along a macro-class from unit one to unit eight. All the variables are centered and
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Table 2. Mean values for each variables by macro-class, period 1; the figures in bold
are the maximum values for each variable, the figures between brackets are the class
sizes

C1 (1493) C2 (2736) C3 (3756) C4 (7443) C5 (6686)

nbhtrav 36.99 40.69 8.28 42.03 41.63
nbstrav 27.71 47.15 5.68 48.50 47.29
salhor 8.25 11.87 2.62 12.80 14.28
nbschom 22.13 0.54 0.29 0.14 0.11
nbsret 0.96 0.19 9.48 0.10 0.01
anctrav 28.95 82.43 5.58 30.20 168.14
nbex 0.05 1.13 0.01 0.00 0.00
hortex 8.58 384.83 1.35 0.77 0.12

Table 3. Mean values for each variables by macro-class, period 2; the figures in bold
are the maximum values for each variable, the figures between brackets are the class
sizes

C1 (531) C2 (2171) C3 (6108) C4 (7099) C5 (7081)

nbhtrav 35.76 41.07 4.36 42.25 41.59
nbstrav 31.11 47.32 3.49 48.13 47.31
salhor 14.61 19.70 1.74 19.44 20.25
nbschom 21.16 0.34 0.06 0.10 0.06
nbsret 2.21 0.60 3.27 0.26 0.25
anctrav 29.94 108.62 3.50 29.36 214.26
nbex 0.04 1.11 0.00 0.00 0.00
hortex 7.99 397.37 0.31 0.61 0.00

reduced and are drawn on the same scale [−5, 10]. This representation confirms
our description.

Figure 4 presents the 8 variables on the whole D-SOM map, with 5 macro-
classes of 8 units each one.

5 Transitions

The study of trajectories followed by individuals observed over a period of nine
years is obtained computing the transition matrix: it shows the probability to
be in one class at year t + 2, starting from another class at year t. See Table 5
for the first period and Table 4 for the second one.

The most evident result is that the major part of a class has not moved
between year t and year t + 2: the important exception to this rule is class
one, in each sub-period. A large part of the precarious, unemployed, part-time
workers have changed to good jobs two years later, and this phenomenon is even
more important in second period.
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Fig. 3. Multivariate profiles of the different macro-classes
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Fig. 4. 8 variables on the whole D-SOM map, with 5 macro-classes of 8 units each one

Of course, the most stable class over both sub-periods is class 5, the one with
very stable jobs. The great proportion observed in period 2 of people staying
in class 3 is probably due to the effect of people aging while they are observed
and definitely leaving the labor market. It is interesting to notice that in the
second period a proportion significantly smaller of the class 1 is staying in this
class, that is the worst situation. It must be the effect the growing flexibility
introduced in the US economy.
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Table 4. Transition matrix, period 2, values in bold are maxima

C1 C2 C3 C4 C5

C1 0.26 0.10 0.14 0.40 0.10
C2 0.03 0.52 0.03 0.26 0.17
C3 0.06 0.03 0.66 0.22 0.02
C4 0.06 0.08 0.07 0.63 0.16
C5 0.03 0.06 0.02 0.09 0.79

Table 5. Transition matrix, period 1, values in bold are maxima

C1 C2 C3 C4 C5

C1 0.09 0.09 0.16 0.59 0.08
C2 0.02 0.45 0.04 0.31 0.19
C3 0.01 0.01 0.85 0.11 0.01
C4 0.02 0.08 0.08 0.66 0.16
C5 0.02 0.05 0.03 0.15 0.75

6 Limit and Empirical Distributions

For each period, we can compare the observed distributions of individuals across
the five macro-classes to the theoretical limit distributions, computed under
the hypothesis that everything in the environment stays unchanged. The limit
distribution is estimated by iterating the transition matrix, which converges, as
shown by Markov Chain Theory, to a matrix whose all rows are the same. So that
the transition probabilities do not depend anymore on the starting value. We
see Table 6 that there is a change between period 1 and 2. The theoretical and
observed distributions are closer, one to the other, in period 2 than in period
1. This indicates that the system has become more stable, i.e. the successive
distributions are approximately the same during period 2.

Table 6. Empirical and limit distributions, period 1 and 2

C1 C2 C3 C4 C5
Empirical distribution for the first period 0.07 0.12 0.17 0.34 0.30
Limit distribution for the first period 0.06 0.12 0.13 0.31 0.38
Empirical distribution for the second period 0.02 0.09 0.27 0.31 0.31
Limit distribution for the second period 0.02 0.08 0.29 0.33 0.28
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7 Some Results by Gender

Here is the distribution of men and women on the map. See Figure 5

Fig. 5. Men in light grey (green) and women in dark grey (red), explanations are in
the text

Knowing that men and women are in close proportions in the two samples
(like they are in the whole population), it is easy to observe that men are more
numerous than the average in the five last units of macro-class 4 and in the most
part of macro-class 5 (macro-classes 4 and 5 correspond to the best situations).

They are also the main part of macro-class 2, the one where workers have one
extra job or more.

At the same time women are a great proportion, from 2/3 to 4/5, of those
who, for a while or definitely, are out of the market (macro-class 3).

If we look at the transitions matrix for the 2 periods and the genders, one can
see that (we do not display them for lack of space):
- the major fact for both genders is the withdrawal from the market in the second
period (people discouraged and/or not registered as present on the labor market
or retired)
- men are leaving part-time jobs or true unemployment (macro-class 1) to obtain
full-time unstable jobs (macro-class 4) in a greater proportion in second period,
women move in a greater proportion towards the class 3, as in period 1
- from macro-class 4 of full-time jobs without seniority, women are more leaving
towards the withdrawal (macro-class 3), while this move is very weak for men.

8 Conclusion

From this real-world example, we showed that using a Disconnected Self-Organized
Map algorithm facilitates the clustering of numerous data, by providing a segmen-
tation into easy-to-interpret clusters, themselves being divided into well-organized
classes. Then the classification can be interpreted at two levels that are of interest.
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The number of macro-classes is a priori defined, equal to the number of clusters
that the experts have identified. This is the "supervised" part of the algorithm.
The interest of SOM which is a non-supervised method is that each cluster can be
described by the population it contains, and that we can retrieve its main charac-
teristics.

At the second level, each cluster is, in turn, split into micro-classes, which
are mainly organized according to the value of one of the input variables. This
fact provides a refined description of each cluster’s population. In the future,
we want to study an automatic method to select the topology, the number of
macro-classes, the size of the strings, in the framework of model selection.
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Abstract. We discuss the use of Self Organizing Maps (SOMs) to ad-
dress an issue the recently gained increasing relevance among economics
scholars, i.e. how to measure firms level of international growth. We will
demonstrate that SOMs can be a very powerful technique with superior
features with respect to more traditional techniques (namely: K–means
clustering). Our arguments will be supported by the empirical evidence,
as we investigated the United Nations Conference on Trade and Devel-
opment (UNCTAD) database.

Keywords: International growth, Self Organizing Maps, K–means
clustering.

1 Introduction

Measures of corporate internationalization have recently gained crucial impor-
tance, as it is agreed that globalization is strongly related to firms international
activities [4].

As reported in [7], measuring firms’ internationalization may first have a phe-
nomenalistic justification of its own; in other words, a measure is needed to get
an operational definition of Multinational Corporations (MNCs), thus distin-
guishing them from domestic ones. Moreover, these indicators may be applied to
extract more subtle distinctions of international involvement, such as the local,
regional and global corporate orientation [8].

In this spirit, a growing number of studies focused on the proposal of ad hoc
indexes, to establish the relation between firms’ degree of internationalization
and other corporate features such as financial performance, diversification, and
managerial practices [13], [15], [16]. The rationale is to use either such measures
or a combination of them as explanatory variable to model MNCs behavior [14].

With respect to the existing literature, in this paper, we suggest an innovative
use of internationalization indexes, as we treat them as proxies of companies’
structural features. Our aim is to classify MNCs via Self Organizing Maps (SOM)
[9], in accordance to the extent and shape of their international projection, thus
extracting homogeneous groups of firms which share a similar approach to foreign
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markets. This true, in fact, our results could have a great impact in strategic
terms, aiding managers to give better address to firms operative policy.

As far as we know, despite the variety of both economic and financial applica-
tions of SOMs (see for instance: [17], [18], [19], and [20] just to cite some), they
have not yet been employed to study such an issue, even if SOMs could give a
significant contribution and improve the quality of the results: our experience
(that we are going to detail in next sections) shows that SOMs are superior in
comparison with traditional clustering techniques like those employed in [6].

Holding this, the structure of the paper is as follows. In Section 2 we in-
troduce the theoretical background underlying the measurement of corporate
internationalization; in Section 3 we describe the set of data we examined and
a brief insight on the methodologies we compared is given. Section 4 provides
results and discussion issues. Section 5 concludes.

2 A Review on Corporate Internationalization Measures

The issue of corporate internationalization measurement is so relevant that a
number of methodologies have been proposed to face it. Basically they can be
distinguished with respect to three elements:

– the aspect of internationalization they aim to analyze;
– the variables they consider;
– their nature of individual or composite indicators.

The first issue points on the fact that there are several ways of assessing companies
degree of internationalization, which depend on what patterns and aspects of we
choose to emphasize. Within this strand, major aspects that are usually measured
are the internationalization intensity (i.e. the share of foreign activities in total ac-
tivities) and the internationalization breadth (i.e. the geographical dispersion of
corporate foreign activities). This latter is sometimes coupled to a cultural disper-
sion analysis [21], [5]. Moreover, whereas some authors investigated intensity and
breadth separately ([6]), others jointly examined them ([7], [1]).

The choice of the aspect to investigate, in turn, deeply conditions the selection
of the variables to consider. To such purpose, it aids to remember that there is a
large number of variables that can be considered when building the index, related
to very different features of corporate activity: financial and economic indicators,
management characteristics, geographical variables, etc. The basic issue, in this
case, stands in whether or not composite indicators (i.e. made up by more than
a single explicative variable) may be suitable to measure corporate internation-
alization. As argued in [4], they could be preferable for several reasons: firstly,
internationalization is a multidimensional phenomenon so that limiting the mea-
surement to one single item inevitably would lead to represent only a part of the
whole phenomenon. As second remark, depending on what indicator is used, one
could be lead to contradictory results. Moreover, individual indicators are much
more subjected to measurement errors and contingent influences. Finally, individ-
ual measures are not so interchangeable, making it very difficult to draw compar-
isons between results derived from empirical studies using different proxies for the
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degree of internationalization. Composite indicators try to overcome these prob-
lems, since they condensed in a single index several variables.

With this in mind, we turned our attention to the Transnationality Index
(TNI) and its components, firstly introduced by the United Nations Conference
on Trade and Development (UNCTAD) in 1995. The TNI is an average among
three variables: the foreign share in sales (FSTS), employment (FETE) and as-
sets (FATA). It is calculated for the 100 biggest MNCs world-wide, and published
annually in UNCTAD’s World Investment Report.

The conceptual framework underlying this index is based on the dichotomy
between foreign versus home country activities [11], and helps to assess the degree
to which activities and interests of MNCs are embedded either in their home
economy or in economies abroad. Obviously, TNI has a number of drawbacks: [10]
argued that a high TNI value could be biased by a small home–country, which
tends to overestimate the international projection; this is particularly evident for
those TNCs coming from small industrial countries such as Switzerland or the
Netherlands. Finally, the index is able to measure only the internationalization
intensity without any distinction between companies whose foreign activities are
concentrated in one or few countries and those whose activities are spread in
many foreign countries [11].

Despite all its limitations, however, TNI is widely considered a good index
for measuring firms’ internationalization; even its detractors recognize that the
individual variables it incorporates can sufficiently describe some aspects of the
firms’ degree of internationalization [10] (p. 706). We agree with this position,
and in such a mood we are going to use the three TNI components instead than
TNI as a whole.

3 Data and Methodology

3.1 Dataset

We used data provided by United Nations Conference on Trade and Development
(UNCTAD) in the Annex to the World Investment Report 2011; the data refer
to world’s top 100 non–financial TNCs, ranked by foreign assets, in 2010. For
each company the home economy is provided, together with the firm’s reference
industry and the values of foreign and total sales, employment and assets. Finally,
TNI is given as the average of the following three ratios:

– foreign sales on total sales (FSTS);
– foreign employment on total employment (FETE);
– foreign assets on total assets (FATA).

In our analysis we employed FSTS, FETE and FATA as clustering variables, in or-
der to identify groups of companies which share a common projection towards for-
eignmarkets: the value of every single indicator, in our opinion, could provideuseful
information to better understand the features of the international development of
the considered companies. The rationale is that the value of such indicators can be



308 M. Resta and R. Spinelli

assumed as a proxy of the degree of the firm’s international projection. Consider,
for instance, a company whose FSTS, FETE and FATA values are all around 0.75:
we could conclude that this company concentrates three quarters of its activities
outside its home economy, and, as a consequence, it is very intensively internation-
alized. Moreover, if we consider also the firm’s country of origin, we could acquire
even more information, thus deducting whether we are facing to a true multina-
tional giant, or to a company which is by force multinational, provided its home
economy small size. On the contrary, a company whose values are all around 0.25,
is able to develop abroad only a quarter of its total activities, and considerations
we have discussed in the above rows hold now specularly. Even more interesting,
however, are those situations where the three indicators present values which are
significantly different one from each other. Among the various possible combina-
tions, consider, for instance, the case of similar FETE and FATA values, which, in
turn, aremuch less than FSTS: in this case we would probably be observing a com-
pany which has its production capacity and infrastructure still based in the home
economy, while its projection to foreign markets is mostly export-based. The sym-
metrical situation (high FETE and FATA and low FSTS), conversely, would lead
us towards a company which has strongly delocalized its production abroad, but
still keeps its domestic market as the most important one. Finally, different values
of FETE andFATA could indicate dissimilar labor intensity per capital unit, being
a consequence of different industry structure.

3.2 Methodology

Our analysis was performed by comparing of the results obtained running both
K–Means clustering (KM) and Self-Organizing Maps (SOMs). Provided the prac-
tical focus of our paper, we will only provide a short insight on both methods;
interested reader will be provided with proper references. As widely known, K-
means [12] is one of the most commonly-used clustering algorithm. Its major pros
rely on its simplicity, as one could easily see by observing the following pseudo–
code that describes how it works. Let us assume to denote by {xi}, (i = 1, . . . , N)
the set of N input patterns to be partitioned into K clusters C1, . . . , CK in order
to minimize the sum of within cluster dispersion (i.e. the Squared Error –SSE)

1. Initialize K center locations (C1, . . . , CK).
2. Assign each xi to its nearest cluster center Ci.
3. Update each cluster center Ci as the mean of all xi that have been assigned

as closest to it.
4. Calculate:

SSE =
K∑
i=1

∑
x∈C

[d(mi, x)]
2 ,

where d is a proper distance metric (usually the Euclidean norm), and
mi, (i = 1, . . . ,K) is the i–th cluster mean.

5. If the value of SSE has converged, then return (C1, . . . , Ck), else go to Step
2.
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Over the time major improvements like parallel versions [3] or stochastic un-
derlying framework [22] have been introduced to assure a better tuning of the
KM procedure. Unfortunately, KM is so sensitive to the choice of initial start-
ing points –centroids– that if the initial partitions are not chosen carefully, the
computation will run the chance of converging to a local minimum rather than
the global minimum solution.

This odd is superseded by Self Organizing Map (SOM) due to they way they
work. In its simplest form SOM is a single layer neural network, where neurons
are set along an n-dimensional grid: typical applications assume a 2-dimensions
rectangular grid, but hexagonal as well as toroidal grids are also possible. Each
neuron has as many components as the input patterns: mathematically this
implies that both neuron and inputs are vectors embedded in the same space.
Training a SOM requires a number of steps to be performed in a sequential way.
For a generic input pattern x we will have:

1. to evaluate the distance between x and each neuron of the SOM;
2. to select the neuron (node) with the smallest distance from x. We will call

it winner neuron or Best Matching Unit (BMU);
3. to correct the position of each node according to the results of Step 2., in

order to preserve the network topology.

Steps 1.–3. can be repeated either once or more than once for each input pattern:
a good stopping criterion generally consists in taking a view to the Quantization
Error (QE), i.e. a weighted average over the Euclidean norms of the difference
between the input vector and the corresponding BMU. When QE goes below a
proper threshold level, say for instance 10−2 or lower, it might be suitable to
stop the procedure. In this way, once the learning procedure is concluded, we
get an organization of SOM which takes into account how the input space is
structured, and projects it into a lower dimensional space where closer nodes
represent neighboring input patterns.

4 Results Discussion

The application of the KM method to our dataset required the choice of the
number of clusters to identify. This choice represents one of the main limits of
the technique and it can bias the significance of the results. Two to six–cluster
k–means solutions all showed significant F–tests for the three variables. To infer
the correct cluster number, we run a pseudo–F test [2]. Pseudo-F increases up
to the two-cluster solution, suggesting the latter as optimal. The two-cluster
solution yielded F-values larger than 77.954 (all p-values .0000), as reported in
Table 1.

Table 2 shows final centroids and proportions for the two clusters.
The cluster solution obtained with the KM technique shows evident limita-

tions in its explicative capability. The two clusters, indeed, are almost equally
populated and seem to gather, respectively, companies exhibiting medium or
higher levels of internationalization; companies in both clusters belong to several
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Table 1. For each variable we reported basic clusters statistics (Mean Square and
degrees of freedom –df–). Similar records were provided for clusters error. Finally,
latest two columns report the values of F–test and of Significance –Sig.–, respectively.

Cluster Error F Sig.

Mean Square df Mean Square Df

Assets (FATA) 26892.192 1 147.056 98 182.871 ,000
Sales (FSTS) 16435.282 1 210.832 98 77.954 ,000

Employment (FETE) 17205.919 1 189.950 98 90.581 ,000

Table 2. Final Cluster Centers

CL01 CL02
% proportion 56% 44%

Assets (FATA) 51.11% 84.15%
Sales (FSTS) 57.49% 83.31%
Employment (FETE) 47.99% 74.42%

different industries and come from various home country. Limited information
can be consequently inferred by the proposed solution.

The solutions with three and more clusters – discarded due to the minor
value of the pseudo-F test – seem to show the presence of further latent groups
of companies, which could be more interesting because of the more articulated
values of the three indicators. Nevertheless, these groups have disappeared in
the accepted solution, as they merged into the only two significant clusters.

We then moved to apply SOMs to the same dataset, to assess whether or not
this method is able to provide more information about the companies in our
sample, and about the way in which their international projection is shaped.
In particular, we examined both raw data and a sigmoid transformation of the
dataset; we refer to those experiments by the labels EXP1 and EXP2, respec-
tively. The rationale under this choice may be easily motivated. Looking at the
frequency distribution of the three variables under examination one could ob-
serve that the values are too much concentrated either on the right or the left
hand side of the histogram. By applying a sigmoid transformation we avoid this
problem, thus obtaining a values distribution close to a uniform distribution.

Moving to the discussion of the results, in the case of raw data (EXP1) three
clusters emerged, whose main statistics are reported in Table 3. SOM overall
appearance is provided in Figure 1.

One can note that clusters C1 and C2 are practical equally representative,
since they contain approximately 40% of the whole dataset. The third cluster
C3 appears to be somewhat residual, and it accounts for the remaining 15% firms
in the data sample. Additionally, it is noteworthy to observe that C1 shows both
FASA and FESE closer to 54% value, whereas FSTS is nearer to 65%. This
can be interpreted as the signal that firms in the cluster exhibit an average
internationalization level; on the other hand, FSTS value indicates that those
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Table 3. Clusters main statistics in the case of EXP1

Segment Frequency Assets Sales Employment
(FATA) (FSTS) (FETE)

C1 43.00% 0.545 0.6549 0.5324
C2 42.00% 0.850 0.8316 0.7543
C3 15.00% 0.433 0.3844 0.3364

Fig. 1. Clusters in SOM working with raw data

firms have propensity to export higher than their attitude to delocalize capital–
intensive activities such as production.

For what is concerning cluster C2, it seems to gather strongly internationalized
firms, since all clusters members are firms with variables values definitely greater
than 0.75. Besides, since the FETE value is lower than both FASA and FESE
scores, this suggests that the cluster contains firms whose internationalization
model is characterized by lower labour intensity per unit of foreign assets or sales.
To conclude, C3 gathers together firms with relatively low internationalization
intensity. In this case, values of the three variables are substantially aligned.
However, one could not forget that we analyzed data referring to top 100 firms,
as per foreign assets; this adds new light on cluster scores: the values mirror
the evidence that cluster C3 hosts larger firms that although projected on the
international scene have still maintained a prior role into the domestic reference
market.

With respect to the results obtained by running K-means algorithm, SOM
seems to provide a better solution, since it evidenced a more articulated and
complex data structure. We then run EXP2, whose rationale has been explained
in previous rows. We detailed basic simulation statistics in Table 4, while the
final SOM is provided in Figure 2.

In this case the solution provided by SOM is, if possible, more explicative than
that obtained in EXP1. We have now five different clusters. The first cluster in-
cludes 30 firms with higher values for all examined variables. Moreover, values of
different variables are very similar one to each other. This means that we are in
presence of strongly internationalized firms, a kind of world champion firms for
which the original market weights lower than 20% of the whole activity. Some
of these firms (for instance: Vodafone, Hutchison Whampoa, Perno-Ricard) are
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Table 4. Clusters main statistics in the case of EXP2

Segment Frequency Assets Sales Employment

C1 30.00% 0.861 0.8490 0.8130
C2 19.00% 0.489 0.7523 0.4418
C3 15.00% 0.787 0.7764 0.6019
C4 22.00% 0.579 0.5496 0.6040
C5 14.00% 0.428 0.3821 0.3229

Fig. 2. Clusters obtained in a SOM working with a sigmoidal transformation on data

global champions from large economies, while others (in detail: Nestlè, Nokia,
Philips) come from home countries which are far smaller than the optimal scale
for their activities and, as previously stated, this boosts their international pro-
jection. Cluster C3 is spatially neighbor of C1 (Figure 3), and it seems reasonable,
provided that variables values mirror C1 features at lower scale. However, look-
ing at Table 4, it sticks immediately out that FETE scores are definitely lower
than those of both FATA and FSTS (as already seen in C2 from EXP1). Like
in that case we already discussed for EXP1, also here we assume it as a signal
of firms whose internationalization strategy concerns activities with lower labor
intensity. Indeed, many of the firms in this cluster belong to capital intensive in-
dustries such as oil and gas (Exxon Mobil, Total, to cite some), pharmaceuticals
(GlaxoSmithKline, Roche), and aircraft. FETE values are practically aligned in
both C3 and C4, but in this latter case, FETE is similar to both FATA and
FSTS, on a leverage level; this suggests we are dealing with firms whose interna-
tionalization strategy is well balanced across the three strategic aspects. Many of
them are utilities companies, such as EON, Iberdrola and GDF Suez. C5, on the
other hand, is quite similar to C3 of EXP1: it has residual features and includes
firms with the lowest internationalization profile. Remarkable is the presence of
two major players (Wal–Mart and Tesco) in the retail sector, whose industri-
alization is not yet so intense as in other major industries, due to structural
and normative issues. Finally, C2 joins together firms with high export inten-
sity, like in the case of C2 in EXP1. In this latter case, however, the sample has
been more refined, thus assuming a more sharp profile with respect to export
propensity. Emblematic is the presence in this cluster of many car manufactur-
ers (Renault, FIAT, Toyota, Nissan, BMW, Daimler), which share an approach
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where a truly world market is addressed with a very strong production-base in
the home economy.

5 Conclusion

In this paper we applied Self Organizing Maps (SOMs) to study main struc-
tural features of the internationalization projection of the largest Multinational
Corporations (MNCs) worldwide. By comparison with the results of K-Means
clustering, SOM methodology has resulted to be much more performing, open-
ing the way to further refinements of this approach to international business
studies. An interesting research strand would include the extension of the anal-
ysis to a larger sample of firms; in particular, it would be of major significance
to compare the structure of the United Nations Conference on Trade and De-
velopment (UNCTAD) top-100 firms with the corresponding sample of MNCs
from developing economies, to assess whether or not emerging multinationals
follow the same paths of international development than their correspondents
from developed economies. A second research vein could concern the width of
the datasets to be analyzed, since additional financial, structural, cultural and
managerial indicators could be inserted in order to characterize the international
activities of the firms; indeed, the use of a wider set of clustering variables could
lead to a more refined and explicative definition of groups of firms sharing a
similar approach to foreign markets.
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Abstract. An offline two-dimensional SOM neural based algorithm is used in 
order to supervise a three-phase squirrel-cage induction motor and detect short-
circuit incipient fault condition. A sinusoidal PWM inverter is used to feed the 
motor and some components of the current motor frequency spectrum are used 
as input variables. A special electrical structure was built to emulate incipient 
short-circuit at the stator windings of the induction motor. The data were ac-
quired with the motor operating under different frequencies, load level and fault 
extent. Through the generated data base, the algorithm was tested and a high 
mean success rate combined with a good visualization of the problem was 
achieved. In near future, this algorithm can be used as base for an online super-
visory system for this kind of motor failure. 

Keywords: Three-Phase Induction Motor, Fault Detection, Self-Organizing 
Map (SOM), Short-Circuit. 

1 Introduction 

Three-phase induction motors are widely used in industry due to their robustness, 
efficiency and simplicity [1]. Fans, blowers, conveyors, crushers, compressors, cranes 
and pumps are some examples of these machines applications [2]. 

In order to match all the applications of three-phase induction motors, many stu-
dies in speed and torque control have been made [3], [4]. Among these, inverter 
drives are widely used because they reduce maintenance and improve reliability [3]. 

However, due to machine aging and environment conditions, the induction motor 
is subject to various faults [1]. Most of these failures are caused by combination of 
various stresses acting upon the winding, rotor, bearings and shaft [5]. Among these 
faults, the insulation breakdown in the stator winding corresponds to nearly 40% of 
the total motor failures [6] and, in general, initiates as a high impedance fault [7]. 
Then, the fault current can cause a local heating, making the failure spread quickly in 
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the winding [8]. If this fault is detected at the beginning of its occurrence, mainten-
ance team can actuate and save production costs or the induction machine can be 
reused after the motor rewinding [9]. 

A lot of studies in fault detection have been made. As examples one can mention ap-
plications using supervised [1] [10] and unsupervised [6] [11] artificial neural networks 
(ANN). An important characteristic of fault detectors using ANNs is that they do not 
suppose the existence of any motor mathematical model [6], but it is necessary a consis-
tent and significant amount of data that can represents properly the problem in hands.   

Another important characteristic of ANNs is the ability to treat nonlinearity and 
ambiguity in the input space. Particularly, in inter-turn short-circuit detection, it is 
common to use some components of the current frequency spectrum to compose the 
input vectors. But these frequency components can exist previously in the electric 
system or be affected by more than one kind of fault. These conditions can create 
severe difficulties for fault detection. Furthermore, the current signals may be embed-
ded in strong background noise [1]. 

In this research the authors use a Self-Organizing Map (SOM) [12] for its ability to 
perform clustering and preserve the topology [11]. The purpose is not only classify an 
inter-turn short-circuit fault but also to show the failure evolution in the output space. 

2 Test Bench and Data Acquisition 

To emulate inter-turn short-circuit faults, a three phase induction motor was rewound, 
and a mechanical and an electrical structure were built. Each part of this system is 
described as follows.  

2.1 Rewound Motor and Emulation System 

A standard three-phase delta connected squirrel-cage induction motor has been used 
as base. Its main characteristics are 0.75 kW, 220/380 V, 3.02/1.75 A, 79.5% efficien-
cy, 1720 rpm, Ip/In = 7.2, and 0.82 power factor. There are 348 turns per phase distri-
buted in two groups of three concentric bobbins with fifty-eight turns each one.  
Originally, only two terminals are available per phase. 

The motor has been rewound and, after that, eight extra terminals per phase are 
available, exposing derivations of the first concentric bobbin in the first group. So, it 
is possible emulate many inter-turn short-circuit levels. For this research, three differ-
ent levels of short-circuit were used. In the lowest level, 5 turns were short-circuited, 
totaling 1.41% of the turns of one phase. In the medium level, 17 turns (4.8%) were 
short-circuited. Finally, in the highest level, 32 turns (9.26%) were short-circuited. 

Besides this, an auxiliary command system was built to execute two kinds of short-
circuits schemes. The first one, which imitates the initial condition of the short-circuit 
process, is achieved connecting a great parallel resistor to specific derivation terminals. 
So, a little part of the phase current flows through the resistor, which characterize a high 
impedance short-circuit scheme. The other one, called low impedance short- circuit 
scheme, is illustrated in Figure 1. At this picture, it can be seen an extra bobbin formed 
due the short-circuit effect. It is important to note that there is a resistor limiting the fault 
current in order to preserve the motor integrity.  
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Fig. 1. Emulation of seven inter-turn short-circuit 

2.2 Mechanical Structure 

The mechanical load applied to the motor is based on Eddy current brakes [13]. So, two 
coils, performing eighteen thousand turns, and an iron magnetic circuit are used to produce 
a magnetic flux through an aluminum disc coupled to the motor’s shaft. A controlled sin-
gle-phase rectifier is used to vary the load level to the motor under operational conditions.  

Several sort of mechanical load profiles can be emulated by this system, but only 
constant load related to the rotation speed is used to generate the data base.  

Special attention was given to the structure alignment, since excessive vibration 
can introduce undesirable frequency components in the acquired signals.  

In figure 2 the mechanical structure built for this research is shown. 

 

Fig. 2. Mechanical Structure for applying load to the motor 
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2.3 Hall Effect Sensor 

As the frequency-domain analysis appears to be the most popular computational ap-
proach for fault detection [9], this feature extraction methodology is adopted. 

One Hall’s effect sensor is connected to each line cable between frequency inverter 
and delta connected motor. The sensor input range is -50 A to +50 A, and its respec-
tive output varies between 0 V and 5 V. As the motor rate current is 3.05 A, it is ne-
cessary to utilize a conditioning electronic circuit. The sensor output signal is initially 
amplified and passes through a second order low-pass Butterworth filter before to be 
applied to data acquisition module. The filter cutoff frequency is 1 kHz. 

Three channels of Agilent’s “U2352A” data acquisition module are used to acquire 
the line current signals. The 16-bit resolution analog input channels are configured to 
differential mode acquisition in a -5 V to +5 V range. The frequency sample rate is 10 
kHz. 

2.4 Data Base 

The data acquired consists of 441 time domain vectors: 63 represent normal condi-
tions, 189 represent high impedance faults and 189 represent low impedance faults. 
Each vector is the result of 10 seconds of acquisition. So, 100000 samples are availa-
ble. After applying fast Fourier transformation (FFT) to these vectors, only seven 
components of each resultant frequency spectrum are used to compose 441 characte-
ristics vectors. 

As can be seen in Table 1, four status information are added to each vector: load 
level, phase identification, frequency of the voltage applied to the motor, and the 
“fault extent”. Letters “H” and “L” represent, respectively, high impedance and low 
impedance short-circuits. The number next to them represents the level of the fault: 1 
for 5 turns short-circuited, 2 for 17 turns short-circuited, and 3 for 32 turns short-
circuited. These additional information are relevant to evaluate the final fault detector 
in two aspects: classification rate and ability to show the evolution of the failure. It is 
important to remember that the failure starts from a high impedance condition, and 
goes to a low impedance condition. 

Table 1. Vector´s Characteristics 

 

3 Methodology 

Firstly, the FFT is used to transform the time-domain vectors into frequency-domain 
vectors. As the sampling rate is 10 kHz, the range of the frequency spectrum is from 0 
to 5 kHz. In order to reduce the amount of characteristics in the input vectors, the 
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authors have investigated for salient multiple components of the fundamental fre-
quency (f) of the inverter output voltage. Considering all frequency spectrums ob-
tained as a result of the application of specific fundamental frequency of the inverter 
output voltage, independently of the load level and fault extent, the authors have  
calculated the variances for all frequency components. Then, these variances were 
evaluated and it was verified that the most significant frequencies, by the power clas-
sification point of view, are the following components: 0.5f, f, 1.5f, 2f, 3f, 5f and 7f. 
So, the feature vectors are composed of 7 features and 4 status information: load lev-
el, inverter phase, frequency of the output inverter voltage, and fault extent.  

In Figure 3 two bi-dimensional projections of the input vectors are shown. For 
both, the horizontal axis represents the 3f feature and vertical axis represents the 5f 
feature, and “triangles” represent projections related to no fault conditions. In Figure 
3(a) the black dots represents high-impedance short-circuit fault conditions. It can be 
seen that these two classes seems to be difficult to distinguish. On the other hand, in 
Figure 3(b) black dots represents low-impedance short-circuit fault conditions and it 
can be seen that the data distribution of these two classes suggest that the classifica-
tion problem is not complex. 

These projections suggest what one can imagine: data representing high-impedance 
faults (incipient faults) are closer to the faultless data than data from representing low-
impedance faults. 

 

Fig. 3. 2D data projections (a) faultless and high-impedance fault; (b) faultless and low-
impedance fault 

The data base is normalized twice. Primarily, the frequency components are nor-
malized by the magnitude of their fundamental frequency. This is necessary to avoid 
the influence of the load level. Finally, each feature is normalized by its global mean 
and standard deviation. 

Thereafter, it is necessary to set the dimensions of the neuron matrix. In order to 
make this choice, the data base was separated into three basic sets: data re- 
presenting normal operational conditions, data representing high impedance inter-turn  
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short-circuit fault conditions and data representing low impedance inter-turn short-
circuit fault conditions.  

For each one of these sets, the authors have trained an unsupervised neural network 
using “Winner Takes-all” algorithm. The number of neurons was varied from 1 to 12, 
and the quantization error was evaluated. The best quantization error was obtained 
with 10 neurons for each previous set, performing 30 neurons, and so, a two-
dimensional 6x5 SOM neural network topology was chosen. 

Finally, with the normalized data base and with the chosen topology, the algorithm 
was defined. The general equation utilized to update the neurons is as follows [14]: 

 w t 1 w t η t h i , i, t x t w t , (1) 

in which 1  is the new neuron weight,  is the learning rate and , ,  is 
the neighborhood function. The learning rate varies according to 

  η t n 1 , (2) 

in which 0 < < 1, t is the current iteration and t  is the total number of iterations. 
Primarily, the neighborhood function varied according to: 

  h i , i, t exp , (3) 

In which i  is the current winner neuron,  r t r t  is the squared Euclidian 
distance between the current neuron and the current winner neuron, and  deter-
mines the influence of the winner neuron over the others.  The results obtained by the 
application of this methodology were not considered satisfactory. So, two other kinds 
of neighborhood functions are used during the training. The first one is utilized in the 
first eight epochs. In these epochs a decreasing rectangular neighborhood is used. The 
initial number of neighbors is 4, and after every 2 epochs, the number of neighbors is 
reduced by one. At these first epochs,  h i , i, t  is “1” if the current neuron is a neigh-
bor of the winner neuron and  h i , i, t  is “0” if the current neuron is not a neighbor of 
the winner neuron. Then, from the ninth epoch until the last, the number of neighbors 
is 1 and the Gaussian Function, represented in equation 3, is utilized. 

In addition, the function used to decide which neuron is the winner, is the Eucli-
dian Function: 

 x t w t x t w t T x t w t ∑ x t w t  (4) 

In equations 1 and 4, it is shown the two processes of SOM ANN [17]: adaptation of 
neurons at equation 1 and competition at equation 4. 

Beyond that, initially, the number of epochs used was 100 (chosen randomly). But, 
it was noticed that the mean quantization error converges in less than 20 epochs. So, 
this number of epochs is utilized at this work.  
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Moreover, after each training process, the SOM ANN is tested with the data that 
are not utilized for training. The percentage of data utilized for training process and 
test is, respectively, 75% and 25%. 

Considering the training process finished, the follow procedure is used to label the 
neurons:  

• A 3D matrix (6x5x3) is created only with “zeros”. The first two dimensions 
represent the position of each neuron, and the third dimension represents the votes 
for each class. 

• The training feature vectors are presented, once more, to the trained neural net-
work, and each time that a neuron is considered “the winner” for an individual 
feature vector from a specific class, a vote is “added” for the position of the matrix 
that represented this class and this neuron. 

• After all input vectors have been presented, each neuron is labeled as a representa-
tive for the class that it has more votes for. 

• If there is a draw between the votes for two classes, the Euclidian distance between 
this neuron and the feature vectors of each class is calculated. The neuron is labeled as 
a representative of the class which has the lowest Euclidian distance. 

This technique is used to avoid neutral neurons, that is, neurons that have the same 
number of votes for more than one class and could not be labeled. 

4 Results 

To evaluate SOM’s ability to perform clustering and, simultaneously, classify the 
problem properly, 10 trainings and tests were performed. Numerical results are shown 
in Table 2, in which Nn is the number of neurons which compose the neural architec-
ture used, Nc is the number of classes related to the problem, CRtrain (average) and 
CRtest (average) stand for the average classification rate for the training and testing 
data, respectively, CRtrain (Max) and CRtest (Max) stand for the maximum classifi-
cation rate for training and testing data respectively. Only data from two phases of the 
motor were used to these trainings and tests totalizing 42 data from normal condition 
motor, 126 data from high impedance short circuit fault and 126 data from low im-
pedance short circuit fault. 

So as to compare SOM’s ability to classify the problem, trainings and tests are 
made up with a 7-9-1MLP, that is, it contains nine neurons in the single hidden layer 
and one neuron in the output layer. 

Table 2. Classification results 

 

Algorithm Nn Nc CRtrain 
(average) 

CRtest 
(average) 

CRtrain 
(Max) 

CRtest 
(Max) 

MLP 9 2 70.74 70.58 79.10 85.29 
SOM 30 2 87.86 86.79 88.63 90.54 
SOM 30 3 65.25 56.18 65.4 66.2 
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Two experiments are performed. In the first one 3 classes are used: normal condi-
tion, high impedance short-circuit incipient fault and low impedance short-circuit 
incipient fault. There is a good result in clustering, but the average classification rate 
of 65.25% in training data set is not considered satisfactory. Just 30.37% of normal 
condition data are recognized.  Moreover, 81.31% of high impedance fault data are 
recognized and just 55.18% of low impedance fault data are recognized. That happens 
mainly due to the existing ambiguity between normal condition data and high imped-
ance data. In the second experiment, when just the classes from normal condition and 
fault condition (embodying high and low impedance fault) are used, the average clas-
sification rate rises to 87.86% in the training and presents an average classification 
rate of 86.79% in the test. The recognition rate of normal condition data remains low 
(30.37%). So, one can notice that an ambiguity between low and high impedance fault 
data also exists seeing that there is a classification rate increase. A 90.54% maximum 
classification rate in testing data is the best result achieved. 

To compare the results of the proposed methodology, a Multi-Layer Perceptron 
(MLP) with one hidden layer containing 9 neurons is used. The average classification 
rate in test is 70.58% and the maximum classification rate in test is 85.29%. The re-
sults with the MLP are not considered satisfactory, confirming that this problem is not 
easy to solve. 

Figure 4 shows a 6x5 two dimensional SOM Neural Network that achieved 
90.54% classification rate. The full symbols are neurons and the empty symbols are 
the input data. The squares represent high impedance fault data, the triangles 
represent low impedance fault data, and the circles represent normal condition data. It 
can be seen that the SOM can cluster each class in different regions of the map. The 
mapping also reflects the percentage of the used data, for it attributes the lower num-
ber of neurons to the lower data set. 

 

Fig. 4. SOM Neural Network 
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5 Conclusion 

This paper shows that a two-dimensional SOM-Based algorithm is capable of achieving 
a classification rate of 88.63% and 90.94% in the training data set and test data set re-
spectively in classification between normal condition and short-circuit faults. The prelim-
inary results, when one distinguishes incipient faults (high impedance) from severe faults 
(low impedance), are not considered satisfactory yet. Also, with the visual analysis of 
SOM, it can be noticed that this ANN can cluster the input data into regions of the map. 
In near future, with the improvement of this initial offline ANN, an online supervisory of 
short-circuit faults can be built and the classification rate can be improved. 
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Abstract. In this paper a new SOM visualization tool is introduced. It is shown 
how Collaborative Filtering can be used as preprocessing before the SOM train-
ing. Our goal was to provide for the user a possibility to analyze car differences 
by component planes which is not possible by original published tables. In ad-
dition it is possible to explore how different flaws are related in time or with 
other variables. The effects of the driver dependent components, such as tires, 
can be filtered out from rejection probability using the component plane code-
books. The interactive SOM visualization is very useful when a large number of 
labels is present. We developed a function to generate the needed files for a 
Processing language based tool. Our tool can be used simultaneously with the 
SOM Toolbox. 

Keywords: SOM Visualization Tool, Collaborative Filtering, Car Inspection 
Data, SOM Toolbox. 

1 Introduction 

In this paper multidimensional data is used to draw conclusions on the structure of car 
inspection data. The Self-Organizing Map (SOM) preserves the data topology of mul-
tidimensional data and the given data can be explored visually in a lower dimension. 
Collaborative filtering (CF) was initially proposed to find preferences for users [1].  
In this paper, we show that combining CF and SOM provided us new valuable infor-
mation.  Data which contain missing entries can be explored more efficiently. 

Our goal is to visualize filtered data on a low dimension to preserve as much in-
formation as needed. During our experiments, we couldn’t find a proper tool for our 
visualization problem, although there are several SOM software packages [2]. We 
developed a simple add-in for the SOM Toolbox [3], which is flexible, general-
purpose software library created by the SOM Programming Team of Helsinki Univer-
sity of Technology [4]. Exploring large maps (200<map size<10 000) with many 
labels is made efficient with the interactive SOM component visualization tool. Atten-
tion is paid to interactive label selection where a user can define by several ways 
which labels are shown. 
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2 Data 

A-Katsastus is the largest private provider of vehicle inspections in northern Europe. 
In 2011 this company published Finnish rejection statistics in the same format for the 
third time [5]. The statistics are published in dozens of tables on the basis of the year 
of introduction into use, make and model. In this paper the word “car” means this 
combination, e.g. MAZDA-6 (2007). Last year they inspected almost one million 
passenger cars in Finland [1]. As even the size of the raw data set is very large, only 
the aggregated data were published.  

The average rejection rate r [percentage] and thousand kilometers driven [10³km] 
were published, if a certain car is inspected more than 100 times. If some car is in-
spected somewhat more than the limit, it can cause missing values in another year. In 
addition, the rejection reasons (RR) were listed, when the same RR was listed more 
than 10 times. Only a maximum of three of the most common reasons per a car was 
listed. In theory probability for certain RR is p ϵ ]0,1]. 

In Finland, new cars are inspected on third and fifth year and older cars yearly. 
This causes missing values to our data set. Newer cars have fewer rejections causing 
zero values to our data set. Therefore there is less information about new cars than old 
ones.  

In the original publication, data rejections are divided into 13 different classes, 
such as chassis, brakes, steering and control devices. RR data is quantified for the 
analysis using the rejection reasons. We define a car matrix as 
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where the size of matrix C is the number of RR times the number of different cars 
inspected in the years 2009-2011. A cell value in matrix C is one if certain RR is 
listed and zero otherwise. A similar matrix M is defined to represent missing values. 
m(i,j)=0 when car information is missing, otherwise 1. Average kilometers driven d, 
rejection rate r and car age a are scraped to data vectors from the published A-
Katsastus documents. More about the input matrix setup is discussed in Section 5. 

3 Methods 

In this Section it is shown how to use Collaborative Filtering (CF) as a preprocessing 
method before training a SOM. We got intuition for this from the concept of a re-
commender system, which is an important application of machine learning. There are 
many websites or systems that try to recommend new products for user. Examples 
include Amazon (recommends new books), Netflix (try to recommend new movies to 
user) and eBay (shopping website). [1] 
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In our research, the recommender system is used for missing value imputation and 
filtering the given data. With a suitable regularization parameter selection, we were 
able to filter both zero and one values more reliably by “collaborating” with the RR 
information of other cars. This method is explained carefully by using our car inspec-
tion data to ensure that it is understood correctly. 

3.1 Collaborative Filtering 

Our task is to predict the probability of rejection reason (RR) i for each car j. In this 
section, a content based recommendation system is introduced. First, let us define 
matrix Y and R as 
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where the size of Y and R matrices is ((#RR * #years published) x #cars) and μ is the 
mean vector of Y* excluding missing values. Each RR in this new matrix Y has an 
average value of 0.  

In practice each car “rates” only some set of the RRs whenever r(i, j) = 1. If RR(i) 
was mentioned for car j in the published data table, y(i, j) = 1, otherwise 0. The task 
of the recommender system is to fill in the missing values of the RR data, denoted by 
"?" in Table 1.  

Table 1. Data is published in dozens of tables. However, car inspection data can be shown in 
one large table where rejection reasons and year published are shown as rows and all cars, with 
more than 100 inspections in at least one year as columns.  

Rejection 
Reason (RR) 

car 1 car i ... car N 

2011: Chassis 1 1  ? 
2010: Chassis 1 0  ? 
...     
2009: 
Identification 
number 

0 ?  0 

 
So, both Y and R matrices contain only zero and one values. Before the SOM vi-

sualization, missing and zero values are filtered to ensure that RR dependencies are 
visualized effectively. Without filtering, a large number of car labels are situated in 
the same nodes in the SOM. 

A set of features x is defined for each RR and a parameter vector θ for each car. 
This is basically a linear regression problem, so the predicted values here are as close 
as possible to the values that we observed in our data set. Our optimization objective 
for learning the parameters of car j is 
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where n is the number of features. This is used to make predictions for all of the cars. 
So J in Eq. (3) is an optimization objective which is minimized by a gradient descent 
update equation as 
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The algorithm has a very interesting property – feature learning. It can start to learn 
by itself what features to use. Similarly to Eq. (3), we can learn the features of RR i 
with objective 
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In initialization, we randomly set some values for the car parameters. Now based on 
the initial random guess for the θ, we learn features for the different RRs. We can 
keep iterating by going back and forth and optimizing both parameter sets. This will 
actually produce reasonable set of features for RRs for each car. This is a basic colla-
borative filtering algorithm. The term collaborative filtering refers to the observation 
that when the algorithm is performed with a large set of data, all these cars are effec-
tive by some sort of collaboration to get better RR estimates.   

It is more efficient to find the optimal solution for θ and x simultaneously. The new 
optimization objective  J is defined as 
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where the first term is a sum over every pair of car and RR with the condition that the 
data are published, i.e. r(i,j) = 1. The second and the third terms are regularization 
terms, see Eqs. (3, 5).   

The first step in CF is the initialization of x and θ to small random values like 
usually done in neural network training. The optimization objective J in Eq. (6) is 
minimized by using the partial derivatives of the cost function defined as 
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J is minimized by gradient descent. Finally, given a car, if a car has parameters θ, and 
if there is a RR with learned features x, we would then predict that RR would be given 

a probability of xTθ . The CF algorithm learns simultaneously features for all the 
RRs as well as parameters for all the cars. The predictions for those reasons how dif-
ferent cars would fail in any car inspection year are achieved. 

The predicted ratings, the optimized values of CF, are used as a part of input ma-
trix P as 
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where we have estimated probabilities for each car and RR pair. For example, RR 
probabilities for a new car based on our recommender system is p(new car) = μ, be-
cause the first term plays no role at all in Eq. (6). Besides the matrix P, additional 
features are derived in Section 5. 

3.2 Self-Organizing Map 

High dimensional data can be visualized in low dimensional views by using the Self-
Organizing Maps (SOM). The method has two main phases, training and mapping, 
like in most artificial neural networks. The SOM consists of neurons which are usual-
ly initialized with small random values. In the iterative training phase, one sample 
vector x from the input data set is chosen randomly. The distance measurement be-
tween it and all the weight vectors of the SOM is derived. The weight vectors are 
updated so that the closest neuron c weight vector with input x (BMU) is moved clos-
er to the input vector in the input space. The topological neighbors of the BMU are 
moved in a similar way weighted by the neighborhood function. This update process 
is smoothing the codebook values where the new model values are derived as 

 [ ],)()()()()()1( , tmtxthttmtm iicii −+=+ α  (9) 

where α(t) is a scalar factor defining the size of model i correction. The smoothing 
kernel h(t) takes care of neighbor updating. It decreases when the distance between 
the models increases, with the maximum value of 1 when c = i. [4, 6] 
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4 Visualization Tool 

A lot of SOM visualization tools are available, e.g. Viscovery SOMine, proSOM, 
SomVis [2, 7]. During our experiments an add-in for an existing tool was designed. 
We developed a function which is used with Matlab SOM Toolbox [3]. Our tool was 
implemented using the Processing language version 1.5.1. For recent developing, we 
had used version 2.06a to enable the use of our program on the Android platform. 
Therefore, some of the functionalities such as zooming and component plane selec-
tion are based on the mouse/touch positions. The Processing visualization tool is 
shown in Fig. 1. This tool is mainly useful in cases where the data consist of a large 
amount of label information or dozens of component planes. 

 

Fig. 1. Navigation on the component planes are made possible by the areas at the top left cor-
ner. Long top area is used for the feature selection. Labels can be selected manually from the 
map or with the find command. Also some additional features are programmed to the tool. [8] 

The tool can be easily taken into use. There is no need to install software, and only 
with two lines of Matlab code (bolded) the interactive visualization tool can be used:  

sM = som_make(sD,'munits', 1060,'mask',[ones(1,42) 0]'); 
sM = som_autolabel(sM,sD,'add1'); % all labels are stored 
som_createprocessingdata(sM); % I: (som_make - output) 
!WSOMprocessing; % opens an interactive tool 

The first bolded line calls function and generates txt-data files. Information of code-
books, labels and component planes are stored into these files. Data can be modified  
 



 The Finnish Car Rejection Reasons Shown in an Interactive SOM Visualization Tool 331 

 

with any text editor. The last line opens our tool [8]. Visualizations can be explored 
even Matlab or Octave is not installed. Car inspection data are included in the tool, 
but data can be overwritten and other data sets can be explored. A hexagonal grid of 
nodes is preferable for visual inspection, so the rectangle shape is left out from our 
tool [4].  

5 Experiments and Results 

All available data tables were combined to one data matrix Y. This procedure caused 
missing values, so we defined matrix R, see Eq. (2). The sizes of both matrices are 39 
x 1060. 

In the Collaborative Filtering method some parameters were selected based on our 
experiments. Parameter selection was based mainly on intuition and on the quality of 
SOM visualizations. For example, with two features n SOM visualization was very 
simplified. In practice, RR i either correlated with a car j or not. Finally, we decided 
to have 39 features n, so the final feature vector dimension θ in our experiments was 
the same as the number of RRs (13) times years of published data (3). Optimized RR 
feature matrix size is then of size 39x39, which was used to derive matrix P, see Eq. 
(8).  

A regularization term λ helps to prevent overfitting, see Eq. (6). If λ is large, then 
predicted values have high bias and matrix P underfits this data set. If we have a very 
small value of λ, say λ = 0, it is usually an overfitting setting. With some intermediate 
value of λ, a reasonable fit to this data is achieved. In our experiments, we wanted to 
avoid overfitting by selecting λ=50. With a rather large λ, more reliable estimates for 
4th to 13th rejection reason for each car j were reached. With small λ or without it, 
filtered p(i,j) values were close to zero for r(i,j) = 1.  

The output of CF matrix P was then visualized using SOM, see Eq. (8). Without 
additional features many cars (1060) had approximately same properties (39) and no 
differences were detected between those cars.  

In this paper, the SOM input matrix is a combination of CF estimates and the orig-
inal and derived numerical data. It was ensured that matrix P has positive values and 
then P was transposed and scaled into percentages by setting the sum of the RRs of 
each year (2009, 2010, 2011) to 100. Matrix S is defined as estimated probabilities of 
each RR i and car j pair. For example, the 10th most common RR in 2010 for each car 
is estimated. The SOM input matrix is defined and input matrix units are shown in 
square brackets as 

 [ ] [ ] [ ] [ ] [ ]
[ ] ,
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where matrix S is the RR probability matrix, d is an average vector of ten thousands 
kilometers driven, r is the rejection rate, a is the car age (2011 – “introduced to use”) 
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and in the last column of matrix F is a derived mask variable, which is not used for 
training.  

The scaling of the vector components was based on Kohonen’s instructions [4]. As 
it is discovered there does not exist any simple rule to determine what kind of scaling 
is the best. Our selection for vector component units is shown in Eq. (10). There is no 
need for additional scaling, because the feature vector units are selected to be approx-
imately in the same scale. Cars are mainly classified based on their RRs, because 
matrix S has the most weight and columns in the matrix F. The vector component 
“age” has the lowest weight in the training. These additional variables are not set in 
our final experiments as mask variables to ensure cars with rejection reasons (RR) to 
be settled in the adjacent cells in SOM output.  

Besides the heuristic map size selection built in the SOM Toolbox, the map size is 
based on intuition that each car should have one cell in the map, so the selected map 
size was 1060. The actual size was somewhat smaller, because the function is based 
on the side lengths so that their product is as close to the desired number of map units. 

The top left part of “2011 tires” -component plane is shown in Fig. 2. An average 
rejection rate per average kilometers driven is used as an estimate to find out which 
cars perform bad or well in all car inspections, see Fig. 3. 

 

Fig. 2. A part of component plane of tires (2011) which contain Toyota Corolla labels shown 
by “find” -command. The sum of all 39 codebook values for each cell is approximately # years 
data published*100%. In practice it means that probabilities for driver dependent RRs are then 
smaller. By the feature vector selection, the user can easily explore dependencies in time and 
between the flaws. 
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Fig. 3. The car labels which had either small or large mask variable value are shown in this 
derived component plane. It is the proportion of RRs and average kilometers using codebook 
values. The best cars based on this feature are situated near to the center and on the top left 
parts of the map. Vector components d, r and a have some influence in the mapping. Grey hex 
borders allocate label(s) in a cell. 

In addition to the component plane visualizations, we used the SOM codebook in-
formation to filter out the effect of tires. In practice this fault is completely driver 
dependent. Of course, some drivers can break other parts too, steering etc. New esti-
mation for filtered rejection reason r* is derived by reducing three codebook values 
(tires) from the rest and multiplying it by the rejection rate codebook values. After 
this procedure, these values are sorted. A list from the best to the worst car was 
achieved. For example, Toyotas shown in Fig. 2 got a better ranking after this proce-
dure than without it. For example, from the complete listing it is seen that Honda HR-
Vs (1999-2001) got better ranking points than many cars which were introduced into 
use in 2008. 
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6 Conclusions 

In our research, we show that SOM is an effective and very informative method for 
exploring this type of problem. Data exploration experience can be improved by se-
lecting a suitable interactive visualization tool; therefore we developed it during our 
research. Even though the provided data was not complete, by the suitable preprocess-
ing procedure, the problem of missing values and discrete data input was filtered by 
Collaborative Filtering. The main results are reported in this paper. In addition, com-
plete car inspection data exploration is made possible for the reader, who may down-
load our visualization tool with this data set [8].  

Our work is still in progress and in future work, we will apply K-Means clustering 
to classify cars to “good”, “average” and “bad” cars related to the car inspection data. 
More reliable results can be achieved by adding car inspection data provided by other 
companies. We will also develop our tool, to ensure efficient SOM exploration expe-
rience for other researchers. 
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Abstract. In this paper we introduce a general model framework based
on Self Organizing Maps (SOMs) to explore the behavior of populations
mortality rates and life expectancy. In particular, we show how to em-
ploy SOM clustering capabilities to construct coherent mortality rates,
i.e. mortality rates that can be applied unchanged to a wide range of
countries. To such purpose, we will employ various countries mortality
data downloaded from the Human Mortality Database. Our aim is two–
fold. On the one hand, we are going to prove that a data mining approach
can be meaningful to build mortality forecasts in a way which is less pre-
tending (in terms of both computing time and parameters to estimate)
than traditional techniques. This issue is very important, provided that
mortality forecasts are widely employed to develop insurance products.
On the other hand, we will show that SOM clustering can be very effec-
tive to extract similar mortality patterns from apparently very different
countries, thus highlighting non–linear hidden features that are missing
for more standard techniques.

Keywords: Longevity risk, Self Organizing Maps, Clustering, Mortality
forecasting.

1 Background

Mortality forecasting is an important topic, as it may considered the basis of
social and economic planning, and fundamental to many other forecasting exer-
cises as well. In particular, in this paper we are concerned with the link existing
between mortality trends and insurance contracts, namely those contracts pro-
viding individuals with annuities, pensions and other benefits paid during their
lifetime (the so–called living benefits).

The main issue is of financial (and balancing) nature: on the one hand, paying
benefits implies that insurance companies must have a proper reserve, i.e. a fund
from which money can be retrieved; on the other hand, pensions and annuities are
usually paid depending on proper amounts of money (premium) the individuals
have conveyed throughout their active (i.e.: at work) life. The balance between
such different amounts of money is guaranteed if and only if the behavior of
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mortality rates is correctly estimated. However, since mortality rates in many
countries are persistently decreasing, the systematic misunderstanding of such
behavior could lead to serious financial consequences in the longer term, as far
as their premiums and reserves are concerned. This focus has led to identify
longevity risk [9] as a new type of risk affecting the management of annuity and
pensions portfolios.

Provided the importance of the issue, a number of methodologies have been
proposed to model (and forecast) the dynamics of mortality rates, although it
aids to remember that choosing of methodology is not without controversy, since
it can lead to very marked difference in forecasts [7], [8]. Actually more popular
models are trend–based, and they can be viewed as belonging to the research
vein pionereed by the Lee–Carter model –LCM–[4], we will explain in detail in
Section 2. In a nutshell, LCM assumes to represent mortality rates as functions
of age x and time t, identifying a single time index which summarises past trends,
which affects mortality at time t at all ages simultaneously, and which can be
modelled with a view to extrapolation. Over the past decades several weaknesses
of LCM have been highlighted, and various modification of the original model
have been suggested (see among others: [3], [1], [6]).

Despite of the wide literary corpus, however, the techniques actually in use are
of heavily statistical type, and soft computing approaches are rather unexplored.
With this is mind, we are going to introduce a general model framework based
on Self Organizing Maps (SOMs) [2], to explore the behavior of populations
mortality rates. In particular, we will focus on so–called coherent models, and
we will explore mortality data of various countries (downloaded from the Human
Mortality Database–HMD) in search of similar mortality experiences. In this way
we will be able to show how to employ SOM clustering capabilities to construct
coherent mortality rates, i.e. mortality rates that can be applied unchanged to
a wide range of countries. Our aim is two–fold. On the one hand, we are going
to prove that a data mining approach can be meaningful to build mortality
forecasts in a way which is less pretending (in terms of both computing time
and parameters to estimate) than traditional techniques. On the other hand, we
will show that SOM clustering can be very effective to extract similar mortality
patterns from apparently very different countries, thus highlighting non–linear
hidden features that are missing for more standard techniques.

The structure of the paper is therefore as follows. In Section 2 we will introduce
definitions and notational conventions related to the notion of mortality trend, to
move then to the description of the Lee-Carter model. Section 3 will be devoted
to the presentation of our simulations and to the discussion of related results.
Section 4 will conclude.

2 Mortality Trends and Related Issues

2.1 Understanding Actuarial Notations

Modelling the dynamics of mortality rates over time implies to understand the
data we are dealing with. Assume the random variableDx,t to denote the number
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of deaths in a population at age x and time t. Corresponding realizations are
generally denoted by dx,t, and represent the observed number of deaths, while
ex,t generally refers to the matching exposure (in person-years) to the risk of
death. The probability of death at age x for a given time t is then given by:
qx,t =

dx,t

dx−1,t
. Finally, empirical mortality rates are given by: mx,t =

dx,t

ex,t
whose

stochastic counterpart is the hazard rate (or force of mortality) for age x and
time t: μx,t. In order to provide a cross classification, one can fix a calendar year
t in the range [t1, tn], and an age x in the interval [x1, xk], either grouped into k
ordered categories, or by individual year (range k). The main issue an actuary
must face is how to model μx,t for every t ∈ [t1, tn] and x ∈ [x1, xk].

2.2 The Lee–Carter Model

As said in Section 1, Lee and Carter [4] suggested a framework to model the
force of mortality μx,t for age x and time t:

lnμx,t = αx + βx κt + εx,t, (1)

subject to the constraints:

tn∑
t=t1

κt = 0, and:

xk∑
x=x1

βx = 1 (2)

Here αx is a fixed parameter exploiting the age profile; by Eqs.(1)–(2) it is
possible to prove [4] that the least squares estimator of αx is given by:

α̂x = ln

tn∏
t=t1

μ
1/h
x,t , h = tn − t1 + 1. (3)

In this way αx expresses the fixed general shape of the logarithmic transforma-
tion of the age–specific mortality rates. For what it concerns remaining parame-
ters, κt describes the underlying time trend, while (constant) βx is the sensitivity
of lnμx,t at age x to the time trend represented by κt. Finally, εx,t renders age
and time specific effects not captured by the model, and it is assumed to be an
independent, identically distributed random variable.

In order to fit the model, [4] proposed a three–steps procedure detailed on
following.

Step 1. Estimate αx as from Eq.(3) above.
Step 2. Compute the matrix of statistics [Zx,t] = [lnmx,t − α̂x,t] and then

estimate κt and βx as, respectively, first right and first left singular vectors in
the Singular Value Decomposition (SVD) [10] of the matrix [Zx,t] subject to the
above constraints.

Step 3. Adjust the estimated κt such that, for each t:

xk∑
x=x1

dx,t =

xk∑
x=x1

ex,texp
(
α̂x + β̂xκ̂t

)
, for all t (4)
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By running the procedure one can get proper estimates for μx,t, and hence it
will be able to derive any other related actuarial variable.

3 Simulation and Results

3.1 Experimental Settings

We build a framework aimed to develop coherent mortality forecasts. This choice
may be easily justified: over the past two decades the populations of the world
have become more closely linked by communication, transportation, trade, tech-
nology, and disease [5]. It is then reasonable and perfectly straightforward to
forecast mortality for a pool of countries (and hence populations), taking advan-
tage of commonalities in their historical experience and age patterns. Obviously
populations that are sufficiently similar to be grouped together might have some-
what different mortality histories; however, such past differences should not lead
to continuing long-run divergence in the future.

With this in mind we employed data extracted from the Human Mortality
Database (HMD)1, that contains original calculations of death rates and life
tables for national populations (countries or areas), as well as the input data
(death counts from vital statistics, census counts, birth counts, and population
estimates from various sources) used in constructing those tables. Six data types
are available from the HMD: births, deaths, population size (annual estimates),
exposure to risk of death, death rates, and life tables. At present the database
contains detailed data for 37 countries: Table 1 lists the countries as well as the
acronym we employed to refer to them in our simulations.

Table 1. Countries included in theHumanMortalityDatabase and related abbreviations

Country & ID Country & ID Country & ID

Australia (AUS) Germany (GER) Norway (NOR)
Austria (AUT) Hungary (HUN) Poland (POL)
Belarus (BIE) Iceland (ICE) Portugal (POR)
Belgium (BEL) Ireland (EIRE) Russia (RUS)
Bulgaria (BUL) Israel (ISR) Slovakia (SLK)
Canada (CAN) Italy (ITA) Slovenia (SLO)
Chile (CHI) Japan (JAP) Spain (SP)
Czech Rep. (CR) Latvia (LAT) Sweden (SWE)
Denmark (DEN) Lithuania (LIT) Switzerland (SWI)
Estonia (EST) Luxembourg (LUX) Taiwan (TW)
Finland (FIN) Netherlands (NL) United Kingdom (UK)
France (FRA) New Zealand (NZ) U.S.A. (USA)

Ukraine (UKR)

1 http:\www.mortality.org

http:\www.mortality.org
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In our simulations we employed life tables: we can think to them as matrices
whose components are time (t), age (x), observed number of deaths (dx,t), expo-
sure to risk of death (ex,t), probability of death (qx,t), and empirical mortality
rates (mx,t): while generally it is x ∈ [0, 110], since all ages from birth (x = 0)
to extremal age (i.e. the highest age at which someone in the population is still
living, e.g.: x = 110) are represented, t depends on the year from which the
country’s demographic bureau began to collect data. In the case of Sweden, for
instance, data began to be collected since 1751, so that the available life table
has more than 28, 000 entries (obtained as 111 × 258, i.e. 111 years for each
collection time t = 1751, . . . , 2009). Moving to Russia and Ukraine, on the other
hand, the dataset is sensitively smaller (approximately 6, 000 rows), because data
began to be collected after 1953. In order to make meaningful comparisons, we
use as starting time t = 1960, thus having for each country an input matrix of
5439 rows. Moreover, although it is possibile to access and examine separated
life tables for both male and female populations, we considered global life tables,
giving statistics for the population as whole.

We then implemented a three steps procedure running as follows.

Step 1. For each country’s lifetable we run a separate SOM, with rectangular
topology, initialization at random, and logarithmic transformation of all input
variables (with the exception of time and age that have been used to label the
data and hence have not been processed).

Step 2. We then examined the similarity among maps obtained in the previ-
ous step, thus getting a 37× 37 symmetric scores table SCT , whose generic i, j
entry represents the degree of similarity between the i–th and j–th map. Using
SCT values we were then able to group countries hence defining the number of
populations sharing common mortality features.

Step 3. For each group defined in Step 2. we have then built mortality fore-
casts, according to formulas already provided in Eqs. (1)–(4).

3.2 Discussion

As said in previous rows, SOMs operate in two stages over three of the im-
plemented procedure. For what is concerning Step 1., Figure 1, representing
Australian life tables, offers some insights about the kind of information SOMs
can provide.

From left to right, the first picture in Figure 1 represents age–time clusters
for the Australian population in the period: 1960–2009. Note that five cluster
emerged: data were at least equally distributed among them. Independently from
the reference time t, Cluster 1 (CL01) collects data for population aged in the
interval [75−97], Cluster 2 (CL02) gathers individuals whose age is in the range
[98, 111], Cluster 3 (CL03) refers to ages x ∈ [31, 60], Cluster 4 (CL04) to ages
x ∈ [0, 30], and Cluster 5 (CL05) considers x ∈ [61, 74]. Moving to the sec-
ond picture, it offers a view into the map organization by time, that is how life
tables data referring to different years are spread on the SOM: various gray tones
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(a) (b)

Fig. 1. From left to right: age–time clusters, and map organization by time in a sample
country (AUS). Various gray tones represent different years.

(from white to black) represent different years (in the interval 1960–2009), so
that one can easily view that latest years statistics are mainly concentrated on
the left hand side of the map, years around later 20th century and earlier 21th
century are essentially represented in the internal part of the SOM, while in the
center of the map we find data referring to initial years of the sample.

In the second step, we turn to evaluate the similarity among the various maps.
This was done by looking at the following factors: (i) number of clusters; (ii)
representativeness of each cluster; (iii) ages collected in each cluster. In this way
we were able to find out six homogeneous groups (given in Table 2), for which it
is then possible to move to Step 3, and hence to coherent mortality forecastings.

Table 2. Groups identified by SOM for coherent mortality forecasts. The underlined
country is the group central country.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

AUS DEN BIE AUT CHI CR
CAN FIN BUL BEL ICE HUN
EIRE NOR EST FRA ISR POL
NZ SWE LAT GER POR RUS
UK LIT ITA TW SLO
USA UKR JAP SLK

LUX
NL
SP
SWI

The groups evidence strong coherence among anglo–saxon countries (Group
1), Northern Europe countries (Group 2), Baltic countries (Group 3), (mainly)
Western Europe countries (Group 4) and Eastern Europe countries (Group 6).
Group 5 appears of residual nature. In order to stress the difference among
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(a) (b) (c)

(d) (e) (f)

Fig. 2. From top to bottom and from left to right: SOM organization corresponding
to Groups 1 to 6 central countries identified by our procedure. In the top row, moving
in clockwise sense, the picture labelled by (a) is associated to Group 1 central country
SOM, the picture labelled by (b) corresponds to Group 2 central country SOM, and
so on. In the second row, once again in clockwise sense, the picture labelled by (d) is
associated to Group 4 central country SOM, and son on up to the picture labelled by
(f) which represents Group 6 central country SOM.

countries in the groups, Figure 2 shows the SOM appearance for the central
country of each group.

Using data from central countries, we then performed the final stage of our
procedure, i.e. mortality forecasting. The main gain deriving from our technique
is primarily in the fact that instead of needing to provide different estimations
for 37 countries, we are now asked to give six estimations, at each age x, and
for every time t in a proper time range. This means obviously a gain in terms of
both time and computational efforts.

Figure 3 shows thirty-year life expectancy forecasts (ex,t) obtained in the final
stage of our procedure for each group central country.

4 Final Remarks

In this paper we introduced a SOM–based framework to model and forecast
mortality rates dynamics.

The importance of the topic is related to the emergence of longevity risk, as
a new type of risk affecting the management of annuity and pensions portfolios,
due to misundertandings in the behaviour of mortality.
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Fig. 3. Coherent life expectancy forecasts for each group central country

The main issue faced by existing methods relies in the fact that in order
to provide forecasts at a given time t in future and every age x ∈ [0, 110],
they need a very big amount of information going back in time as much as
possible. Moreover, according to the traditional approach, each country must be
considered as a unique experience, so that generally forecasts for a population
cannot be tout–court applied to people in a different geographical area.

Our contribution moves in the research vein of coherent mortality forecasts,
assuming that if countries share proper common features (e.g. geographic, politic
or economic ones) then they are coherent and hence they can also share mortal-
ity statistics and forecasts. We then introduced a three–stages procedure which
offers a way to create coherent groups. SOM operate in two of three steps, since
in the first phase they are employed to get a representation of countries lifeta-
bles, while in the second step the clusters originated by SOMs (in particular:
their number, as well as their stastistical representativeness) are used to build
coherent groups. Data of central country groups are then employed to provide
mortality forecasts.

We tested our approach on 37 countries dataset, as resulting from the Human
Mortality Database (HMD). The procedure lets us to identify six meaningful
groups, whose composition seems to mirror mainly geopolitic differences: we
have groups gathering Anglo–Saxon countries (Group 1), Northern and Eastern
Europe countries respectively (Groups 2 and 6), Baltic countries (Group 3),
and Western Europe lands (Group 4). Group 5, on the other hand, appears of
residual nature, collecting areas with apparently no immediate connections.

The results we have obtained prove the effectiveness of a data mining approach
to build mortality forecasts. Besides in this way the estimation procedure is less
pretending (in terms of both computing time and parameters to estimate) than
traditional techniques. This issue is very important, provided that mortality
forecasts are widely employed to develop insurance products. Finally we have
shown that SOM clustering can be effective to extract similar mortality patterns
from apparently very different countries, thus highlighting non–linear hidden
features that are missing for more standard techniques.
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Abstract. In this article, we introduce the concept of pathways of well-
being and examine how such paths can be discovered from large data
sets using the self-organizing map. Data sets used in the illustrative ex-
periments include measurements of physical fitness and subjective as-
sessments related to diagnosing work stress.

1 Introduction

Research on human health is becoming an increasingly multidisciplinary and
interdisciplinary endeavor. In addition to the traditional view on health as a bi-
ological and medical phenomenon, its cognitive, psychological, social and societal
dimensions have been acknowledged as well. A sign of this kind of broadening of
research focus is the use of the term “wellbeing” instead of the term “health”.
Human health and wellbeing is a dynamic phenomenon that is influenced by
a number of variables. In this paper, we present a framework for wellbeing in-
formatics using the self-organizing map (SOM) [10]. We illustrate our approach
through an analysis of the development of fitness and its relationship with other
wellbeing variables. The SOM has been widely used in the analysis of health-
related data (e.g. diseases [6], gene data [17], mental health [14], public health
and health care policy [1,2,15,19], nutrition and health [16], and social factors of
health [8]).

In a recent study, it was found that being involved in an aerobic training
regime in the elderly increased the size of certain parts of hippocampus by
about 2%, and also resulted in clear improvements in spatial memory [5]. It
has also been shown that long-term stress or single-time very strong stress de-
creases the size of the hippocampus, eventually leading to work exhaustion or
depression [25]. Controlled studies like these strengthen the view that examining
the dependencies between work condition, stress, and different types of physical
exercise is a relevant research topic.

In this paper, we study wellbeing as a process that develops over time through
some states. With this respect, our approach closely resembles methodologi-
cally the work that has been conducted in the SOM-based analysis of economic
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[3,4,9,13] and industrial [22] processes. In addition to the aspect of modeling
process-like data, our focus is in the analysis of individuals and networks of
individuals using the self-organizing map (for our earlier related research, see
[11,18,24]). In general, our objective is not to present any specific methodologi-
cal technical improvements. Rather, we present an overall framework for using
the SOM in the analysis of wellbeing data, and provide an illustrative experiment
of a data analysis in the area of fitness. Moreover, we discuss interdisciplinary
connections between computational modeling, physiology, psychology, sociology
and information systems design in the domain of wellbeing informatics.

2 Wellbeing as Paths

A multitude of data are nowadays being collected regarding our activities related
to individual wellbeing in one way or another. Such data sources include objec-
tive measurements such as testing of physical fitness, or subjective questionnaires
for assessing, e.g., levels of work stress or depth of potential depression. Current
mobile devices related to wellbeing or our daily activities add a further dimen-
sion regarding wellbeing over time. In general, everyday practices have become
an increasingly popular object of research, and sophisticated qualitative and
quantitative methods have been developed to increase understanding of them
[20].

Traditionally, results of assessments are only given to the individual at hand,
for instance, used for diagnostic purposes, as in the case of depression, or for
coaching purposes, as in the case of physical fitness examination. The feedback
may entail a report or diagnostic scale on the levels of fitness, stress or depression
that the individual is experiencing, but typically no more information regarding
the distribution of data or of dependencies between different variables.

However, by looking at the collective data from such tests from a large number
of individuals, it becomes possible to obtain a richer view of the situation and to
provide a richer feedback to the individual. Data from others, when used anony-
mously, can also serve as a point of additional learning or coaching. Identifying
wellbeing paths from various collected data sets can therefore be considered a
relevant enterprise.

Wellbeing informatics can be described as the activity where observations re-
garding individual wellbeing are collected and analyzed using methods suitable
for finding value in large data sets. We define final purpose of wellbeing infor-
matics as to identify, and share socially this information to the relevant other
individuals whom it concerns.

Instead of a singular wellbeing path we speak of a multitude of paths of well-
being. This reflects the viewpoint that there are many quite different ways to
lead a wellbeing life, a multitude of approaches and a multitude of states in
the state space which can mean wellbeing for different individuals. However, the
paths also coincide, they are not totally separate. Bases of coincidence may be,



Paths of Wellbeing on Self-Organizing Maps 347

for example, similar life circumstances, similar personality, or similar physical or
emotional makeup.

We consider wellbeing as an ability or set of skills to live a happy, fulfilling,
good life. Looking at wellbeing from this point of view entails viewing life as
a continuous process of learning and development. We learn based on our own
experiences and based on the experiences of others. Social sharing is such of
great importance as part of learning the skills required for a wellbeing life.

Viewing oneself in the context of other individuals, and their paths, can be
a life-changing experience. It can provide a point of reflection on one’s own life,
a place of facing a painful observation regarding own situation, or a source of
hope. It can also serve as a learning experience, lead by the motivating question:
what happens to me if I continue on this path where I am now?

3 Maps of Fitness and Stress

Previously, we have studied the relationships between different aspects of phys-
ical fitness using fitness test measurements conducted at the Sports Institute of
Finland in Vierumäki, Finland [23]. Over the past decades, the Sports Institute
of Finland has measured the fitness of approximately one hundred thousand peo-
ple. In our study, we included about 37,000 subjects who have taken the tests
during 2006–2009. The fitness test consists of various measurements aiming to
assess aerobic fitness, muscular strength and elasticity. Aerobic fitness was tested
using a standard cycle ergometer test which results in age-corrected seven-step
test score according to [21]. Muscular strength was assessed using three separate
tests measuring leg, arm and abdominal muscle strength. Elasticity measure-
ments are most ambiguous of the three and aim to assess flexibility of sides, hips
and shoulders. Additionally, age, gender, body mass index (BMI) and percentage
of fat were used in the analysis.

In this paper, we shift our focus from analyzing the relationships between fit-
ness variables in a population to a longitudinal study of individual development.
To illustrate our point, we use a data collection that contains a subset of the
people included in the previous study. For these 371 people (230 women, 141
men), additional information over fitness variables has been collected. The data
collection is based on an intervention lead by one of the authors (O.K.) as a
part of her ongoing PhD research, where the subjects took part in five consec-
utive fitness measurements together with three standardized surveys assessing
their stress level, ability to work and somatic symptoms. These measurements
and surveys took place over a period of two years during which the participants
were also given personalized health and wellbeing advice. In this paper, we do
not report the results of the intervention study itself, but use a portion of the
data in order to illustrate the use of the self-organizing map in analyzing and
visualizing wellbeing data that has been collected as a time series. More specific
results of the intervention study will be published separately.
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Fig. 1.Distribution of fitness variables on a self-organizing map among female subjects.
The variables included in this figure are body fat, body-mass index (BMI) and stomach
(upper row, from the left), arms, legs and fitness class (lower row). Green color is used
to indicate preferred values of each variable.

Fig. 2. Distribution of stress variables on a self-organizing map among female sub-
jects: stress symptoms, somatic symptoms and mental resources. Green color is used
to indicate low stress and symptom levels and high level of mental resources.

In order to analyze and visualize the data using the SOM, 11 variables were
used. The test subjects are anonymous and therefore we cannot show a map of
people as such, e.g. relating the position of the people on the map with their
background variables. However, the relationships between the variables used
in the analysis become visible by showing the distributions of these variables
on the map (see Fig. 1 for variables related to the fitness and Fig. 2 for the
variables related to the stress). Each measurement was used as a separate data
point allowing us to examine movement of the subjects on the map during the
intervention.

The structure of the map was analyzed using K-means clustering algorithm.
Nine clusters were extracted, shown in Fig. 3. The clusters have been labeled to
indicate most important distinctive characteristics of each cluster.
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Fig. 3. Clustering structure of the wellbeing map

4 Paths of Wellbeing as Trajectories

Looking at the wellbeing map, where each point describes one state in the well-
being state space, an individual’s wellbeing path then can be viewed as that
individual’s trajectory over time on the map. The trajectories can be useful in
answering questions such as:

– If my fitness is now here, what directions are realistically available for me
when data concerning other similar cases is taken into consideration?

– If there are typical trajectories out of my current place, where do they lead?

When different map areas have been identified, based of large number of samples,
as clear “crisis zones”, the map can also be utilized for identifying worrisome
situations and paths. The map can quite concretely and visually be utilized for
showing what are the common outcomes from the current situation. In Fig. 4,
some real-world examples of paths or trajectories on the wellbeing map are
shown.

It is often challenging to motivate oneself to conduct a life change that is
required to elicit a clear improvement in wellbeing. Motivation cannot be given
from the outside, it cannot be required nor coaxed. It requires reflecting on
the current situation, realistically looking into the mirror and understanding
what the consequences of current state and current life are. And how would
those outcomes feel. For this reason, providing visualizations that accurately
and clearly show one’s life in the context of other lives, including projected
outcomes, can potentially be a powerful tool in creating increased wellbeing.

By looking at the maps and paths of the developments, it is also possible to
become conscious of the large variety between different individuals. Every life
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Fig. 4. Examples of trajectories on the wellbeing map. The clustering structure has
been shown in Fig. 3.

story is unique, although there may be shared parts of the paths. The paths
selected for the visualization, see Fig. 4, were ones that had a change for the
better. However, in many paths there were no change for the better, and some-
times changes were for the worse. What we may conclude from this is that a) it
is quite difficult to change one’s life, as many paths just stayed in the same spot
throughout the intervention, b) changes for the better may occur, but back-steps
are quite normal as well, and c) also changes for worse do occur.

The map display and viewing one’s own progress on it also helps raise new
questions: When I moved from the “red state” to the “green state”, what was
happening in my life then? Becoming conscious of what really happens, and
asking questions about why it happens, is what can lead to deep change in
behavior. In this way, the SOM of wellbeing regions and pathways can be viewed
as a tool for reflecting and becoming conscious of oneself, in order to make better
decisions that lead one to one’s own goals in life.

5 Conclusions and Discussion

In this paper, we have described a methodological and conceptual framework for
supporting wellbeing, based on peer information. The basic idea is to analyze
large number of trajectories of the development of wellbeing among individuals
to indicate potential paths. These kinds of paths can facilitate well motivated
and realistic examples of development. Moreover, if information on interventions
is available, personalized data-driven advice can be provided.

The self-organizing map has been used in this work to analyze and visualize
the data. It is well suited to the visualization of the wellbeing paths. Also other
related methods such as Generative Topographic Mapping (GTM) or Latent
Direchlet Allocation (LDA) could be used but the choice of the method does
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not affect the basic framework. From the point of view of providing specific
personalized advice, using probabilistic modeling may be considered useful. One
interesting possibility is to conduct analysis of different scenarios, testing the
effect of different interventions in an individual case. The number of potentially
relevant variables in this domain is potentially huge including biomedical and
psychological data as well as data on everyday practices.

The focus of this paper is in the analysis of numerical data. It was shown how
the analysis can help as a reflection tool and to provide information on the paths
of wellbeing. Additional peer support can be obtained from qualitative sources.
The SOM has been used to analyze the contents of document collections (see
e.g. [12] as an example of an early work). Recently, we have used independent
component analysis and sentiment analysis in text mining of wellbeing-related
discussions [7]. An information system designed on the basis of these two areas,
quantitative and qualitative, would integrate the facts based on one’s own and
others’ measurements and contextual information with reflections and qualita-
tive comments and peer advice available in textual form. We foresee that this
kind of system could promote wellbeing in a substantial manner.
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Abstract. We use variants of Self Organizing Maps (SOMs) to simulate
how agents interact in social systems. Our efforts were mainly concen-
trated to model agents learning and psychological relationships, as well
as the way those latter can affect the system general behavior. As main
result, we developed a suitable environment to simulate economic sys-
tems and to simulate its dynamics.
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1 Introduction

Over the past decade economic dynamics has been intensively simulated by way
of soft computing tools. The current interest on such topic may find explanations
under different points of view; however, here we agree with [6], who emphasized
the importance of viewing to the economy as an evolving network. In such a
context, interaction emerges as the leading aspect of modern economic systems,
where the individual behavior is perceived like the synthesis of both previous
personal experience and partnership effects: our actions affect those of other
people; those, in turn, can affect our welfare. This true, reasonable simulations
of interaction should take into account at least three interrelated levels of is-
sue: (i) the individual level, driven by personal interests; (ii) the aggregate level,
where global behavior not necessarily emerges as simply cumulation of individual
activities; (iii) the level of the bi–directional flow, linking individual to aggregate
behavior, and vice-versa, so that the macro and micro levels may influence them-
selves reciprocally. Apart from considerations about its efficacy, an exhaustive
dynamical description would hence require the assumption of a system of Partial
Differential Equations (PDEs), as wide as the number N of individuals in the
model. This obviously makes the problem not easy to handle, especially for larger
values of N . In order to overcome this issue, heavy computational methods have
been introduced to model phase transition in economic systems: shell models [2],
coupled map lattices [5] and cellular automata have been suggested as suitable
methods helping to understand social systems basic mechanisms, thus building a
bridge between traditional statistical descriptions, and dynamical representation
in phase space. The aforementioned methods, in fact, share the common feature
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to reproduce economic dynamics by means of some kind of discretization (varying
depending on the methodology in use), where the PDEs governing the process
are transformed into a set of Ordinary Differential Equations (ODEs). Obvi-
ously different capabilities of representation and generalization can be combined
in order to get more or less simplified models of the observable world. Starting
from the pioneering work of [4], the contemporary literature mainly focused on
the use of cellular automata to simulate economic systems and interplays among
individuals within them, although there is a serious danger to confuse sponta-
neous switches, inherited in the algorithm, with endogenous ones [12]. On the
other hand, the extensive use of Artificial Intelligence paradigms such as Genetic
Algorithms [1], or their ibridisations [9], [10] was criticized already in [3], who
proved that sometimes results are due mostly to randomization issues of the
Genetic Algorithm, rather than to mating or crossover features inherited into
the model itself.

Holding this, our paper analyzes a different approach to economic systems
modeling, and addresses the specific field of simulation of interactions by means
of spatial connections. This is possible thanks to the particular algorithm in use,
which is merely inspired by the idea underlying Self Organizing Maps (SOMs)
[7] to retrieve neighborhood interaction through traditional spatial relationships
(in our case induced by either Moore, or von Neumann neighborhoods), as well
as by means of a Voronoi tessellation of system variables space. In such sense,
connections have been assumed relevant both to condition the level of human
capital (and hence production), and also propensities to save and to study. The
structure of the paper is therefore as follows. Section 2 briefly introduces some
technical details concerning the variants of SOMs we employed; Section 3 focuses
both on the description of the economic assumptions we made to develope our
model and on its algorithmic implementation. Section 4 discusses simulation
results, while Section 5 contains some conclusive remarks and outlooks for future
works.

2 SOM Variants and Their Significance for Economics
Simulations

As widely known, Self Organizing Maps (SOMs, Kohonen maps), are unsuper-
vised neural models, which consist of a number of neurons generally arranged
into a two-dimensional grid, driven to preserve topological relationships over the
input space, while performing at the same time a dimensionality reduction of
the above representation space. The Kohonen algorithm assumes to iteratively
modify the map nodes by way of a set of rules; we focused on a slight modi-
fication of the original algorithm as suggested in [8]. Consider first a finite set
X = {u(t)}t=1,...,T of d−dimensions input data items: X ⊂ Ω ⊂ Rd. Besides,
let us assume that M is the m× k bi–dimensional projection grid defined into a
discrete bi-dimensional output space Z2, and wi ∈ Ω to be the pointer associated
to neuron (unit, node) i in the map (i = 1 . . . ,m × k). The initial stage starts
in the topological map M whose neurons are arranged in a disordered manner,
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i.e. at random. At each step t, the input u(t) from a continuous space Rd is
presented to the net, and the algorithm describes a mapping Φ from Rd to Z2,
according to which a winner or leader neuron is selected in the map when it is:
argmin

k∈M
||wk − u||.

This makes possible to order neurons according to their similarity with the
input, as well as to similarity criteria among themselves:

p(i) > p(j) ⇔ (||u− wi|| > ||u − wj |) ∨ (||u− wi|| = ||u − wj ||) ∧ (i > j) (1)

where p(i) is the position in M of the winner neuron at time t+ 1. Hence, both
the pointer wi associated to leader neuron, and all the pointers wj belonging to
a convenient (according to Eq. (1)) neighborhood in the map are modified with
the following rule:

Δwi = hij{α, dmap[p(i), j, i]}(u− wi) (2)

with α being a fixed constant, dmap[p(i), j, i] a distance function, and (u − wi)
is the error between the input and each pointer. Finally, hij(·) is the neuron
interaction function between the nodes: it depends on the distance in the map
dmap between each node, as well as by the constant α. Throughout our simulation
we will assume:

hij [α, dmap(p(i), j, i)] = exp (−α , dmap(p(i), j, i)) (3)

The learning phase is completed after the whole dataset (if the number of input
patterns is finite) has been presented to the map.

It is noteworthy to observe that the variant of SOM algorithm we have therein
discussed takes into account spatial relationships at least twice and in quite
different ways. At each step, in fact, neurons are ordered both according to
Eq. (1), and to Eq. (2). While, in the former case, the Voronoi tessellation of
input space (or better its evolution over time) is captured, in the latter the
proper learning phase takes place, with information retrieval and exchange both
between neurons and the input pattern, and among nodes themselves. To make
the concept clearer, consider Figure 1.

The neighborhood structure deriving from Voronoi tessellation of neural space
is generally quite different from the one which comes from ordinary proximity

Fig. 1. A sketch proof of the organization as resulting both from the Voronoi tessella-
tion of neural space (left), and by applying a von Neumann (cross-shaped) neighbor-
hood, when edges of the neural lattice are pasted together (right)
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relationships. To make an example, consider the cross-shaped neighbor with
radius one centered on the cell labeled by number 3: the map edges have been
pasted together, to avoid border effects. As one can see, the neighborhood of cell
3 includes neurons: 2, 4, 7, and 15. On the other hand, the Voronoi tessellation
of neural space assigns to cell 3 different neighbors from the ones previously
indicated. A second remark is then noteworthy: if one looks at Eqs. (2)–(3), he
might note that keeping α closer to 0 (e.g. α < 0.01), the impact of additional
information which comes from input tends to be widely spread from the leader
nodes to nearest neurons. On the contrary, if α is maintained nearer to 1 (e.g.
α > 0.7), then neurons within a ϑ−wide (ϑ ∈ N) neighborhood amplitude from
the leader will be less sensitive to new information than in previous case. Figure
2 shows this idea in a more intuitive fashion.

(a) (b)

(c) (d)

Fig. 2. From top to bottom in clockwise sense, a 10 × 10 SOM map at initial step
(a) and after 1000 iterations (b). Neurons are colored according to their similarity
(Euclidean distance) to neighbors. Neighborhood effects on the 10 × 10 SOM when ϑ
is maintained closer to 1 (c), or to 0 (d).

The aforementioned features make SOM a quite promising instrument to
model human behaviour and interactions into an economic system. The extreme
flexibility which is possible to gain by operating over α and dmap, in fact, offers
the opportunity to reproduce swarm effects, as well as its antonym i.e. the in-
dividual specification as sole identity. This in practice means that by properly
varying either the value of α, or the shape of the function dmap, it is possible to
control the learning phase, so that either neighborhoods with same shapes (e.g.
cross) have different sensitivity to information spread over them (α is varied) or
equal information intensity (α unchanged) may be spread over different shaped
areas, thus enforcing (or penalizing, depending of the constant value of α) the
effect of original input over the map.
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3 The Computational Model

3.1 Preliminar Economic Statements

We consider a two sector growth model, embedded into an overlapping generation
system. This means that in our model each individual lives for two periods; at
each step he/she chooses how to allocate potential labor between work and
study, and hence how to divide wages between consumption and savings. Those,
in turn, will be invested in physical capital, to be used in the second part of
individuals life. New generations acquire from elders previous situation, and
change it through learning and neighborhood effects. The efforts of this study
have been primarily focused to model such effects, as well as the impact over
decision variables deriving from the existence of notable spatial connections.
We have examined different neighborhood topologies, in order to represent both
neighborhood effects in strictly geographical sense, and also collective behaviors,
induced by affinity and by other psychological motivations. Giving a deeper look
to the model, the function ruling the production of tangible good at time t is a
Cobb-Douglas function of the type:

Q
(i)
t =

[
L
(i)
t ·K(i)

t ·H(i)
t

]
(4)

Where Q
(i)
t , L

(i)
t , and H

(i)
t are, respectively, production, labor services, tangible

and human capital for the i–th agent. We assumed that young individuals begin
their life with an equal amount of potential labor σ, which has to be divided be-

tween work and study. Labor services L
(i)
t , depends then on initial potential labor

disposal, as well as on individual propensity to study v
(i)
t : L

(i)
t = σ

[
1− v

(i)
t

]
.

Analogously, physical capital K
(i)
t is a function of propension to invest into phys-

ical capital z
(i)
t , and of residual propensity to study bring out from previous step:

K
(i)
t = σ2 z

(i)
t

[
1− v

(i)
t

]
. Finally, for what is concerning the human capital made

available to each agent, it is given by: H
(i)
t = (1−τ)H

(i)
t−1+g|v(i)t |H∗(i)

t . Here τ is

a constant value in the interval [0, 1), H
∗(i)
t allows for positive labor externalities

into the model, being the average human capital into the spatial neighborhood of

each agent, and g|v(i)t | is a conditional (non increasing and continuous) function
which associates diminishing returns to in incremental efforts in human capital
formation. Finally individual’s utility function is given by:

U
(i)
t =

[
σ v

(i)
t

]2/3
Q

(i)
t

{
z
(i)
t

[
1− z

(i)
t

]}1/2

.

3.2 The SOM–Based Model

Starting from the assumptions discussed in previous paragraphs, a computa-
tional model involving SOMs has been developed. We build a rectangular grid
of agents, with border joined together, to form a torus with agents lying over a
continuous surface. Each individual is associated to a reference vector:
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x
(i)
t =

{
v
(i)
t , z

(i)
t , Q

(i)
t , H

∗(i)
t , H

(i)
t , U

(i)
t

}
(5)

representing agent’s condition. Here v
(i)
t , z

(i)
t , Q

(i)
t , H

∗(i)
t , H

(i)
t and U

(i)
t have

the meaning discussed in previous rows. Both v and z have been assumed as
control variables, i.e. those parameters whose evolution can decisively influence
the behavior of production, work, and hence the formation of individuals utility
profile. At a generic step t the procedure works as follows:

STEP 1. Selection of the best performing unit according to the definition
given below.

Definition 1. (Best performer). The best performer (BPF) unit at time t is the
agent whose utility has resulted at highest level at step t− 1:

BPFt = argmaxi∈MU
(i)
t−1.

STEP 2. A Voronoi tessellation of neural space is performed, by ordering
neurons according to their distance from the couple vBPF , zBPF , of control pa-
rameters associated to the Best Performer. This order is then retrieved in the
learning procedure through Eq. (3). In this way each agent will acquire new
propensities to study and to save, which in turn are used to calculate step values
for production Q, utility U , and labor H .

With respect to the SOM variant that we have described in Section 2, we
included an additional random perturbation ξ, in order to avoid that tuning
nodes position to that of the BPF might lead to super-positions among nodes;
in the observable world, in fact, mimicking the behavior of other agents rarely
lead to reach the goal exactly, but rather it is a task severely affected by noise.
Hence once the shape of dmap is properly chosen, it will be possible to force the
net to give more or less emphasis to the proximity of neurons.

4 Results Discussion

Our simulation relied on Self Organizing Maps made by 400 neurons arranged
into a rectangular 20x20 lattice, with edges pasted together to avoid border
effects. Each neuron was structured as explained in Sec.3, i.e. it was associated to
a 6th-uple like that of Eq. (5), originally set at random. In order to model nodes
(agents) proximity we considered three different types of neighborhood : (a) von
Neumann or cross shaped, (b) Moore, and (c) elastic neighborhood: Figure 3
shows some examples of different kinds of neighborhood. From now we will refer
to those types of proximities by means of the labels: V N(r), MN(r), and EN(r)
to indicate von Neumann, Moore, and elastic neighborhood respectively, with
radius amplitude r. Note that the expression elastic means that we introduced a
system of clique typologies, hence giving each neuron the chance to mutate the
shape (and the amplitude) of its neighborhood, according to its fitness respect on
the whole system. Within this context the meaning of fitness must be intended
in the sense of welfare level.
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Fig. 3. A snapshot on neighborhood used throughout the simulation

Table 1. Parameters set

σ τ α ξ

Value 10 0.02 0.6 0.01

System parameters have been maintained constant as shown in Table 1.
Simulating economic system dynamics offers a huge number of challenging

issues. Being this work a first time application, here we are mainly interested
to show the potential inside this approach. For this reason (and because there
is not enough room to go into deepest detail), we are going to discuss only
a snapshot of the results we have obtained. Starting from the dynamics of the
average distribution of propensities to study v, and to invest into physical capital
z, Figure 4 shows their behavior, when the initial values are fixed as (a) extracted
from random variables uniformly varying in the range (0, 1), (b) closer to one,
or (c) closer to zero.

(a) (b) (c)

Fig. 4. Paths towards 1000 runs for the couple (v, z), when both v and z are initialized
at random (a) uniformly in the range (0, 1), (b) closer to 1, (c) closer to 0

One can note that when (v, z) are set as uniformly distributed random vari-
ables in the range (0, 1) their values tend to maintain closer to average values
(i.e. 0.5) over the whole procedure (Figure 4 (a)). Indeed, whereas the couple
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(v, z) is forced to maintain closer either to one or to zero (Figure 4 (b) and (c)
respectively), the couple (v, z) spans a path which drives them to reach values
around 0.5 – 0.52. These results appear stable, in the sense that those appear to
be limit values to which simulations converge, independently either by the kind
of neighborhood adopted, or by the particular initial conditions. Additional sim-
ulation results are then summarized in Figure 5, where the first row refers to
the SOM behavior when the Von Neumann neighborhood (V N(1)) with radius
amplitude 1 is applied; in the second row we find results for Moore neighbor-
hood with radius one (MN(1)); finally the third row shows the results for the
elastic neighborhood. In this latter case, simulations were driven assigning to
proximities with radius 0 and 1 much more probability to be chosen by agents,
i.e. more attention has been focused on the simulation of egoistic politics. In
this way, although in a still schematic fashion, it has been attempted to capture
the capability of the model to emulate different human behaviour, when less or
more structured crowd effects are present (like in the case of VN(r) and MN(r)),
or when the sole identity dominates over all possible behaviours (EN(r)). Be-
sides, each row addresses two different issues. The first one concerns the position
in the map of agents with higher-low fitness in terms of production. Different
tones of gray indicate different levels of production, black and white represent-
ing opposite situations, that is the highest and the lowest values of production
reached by single cells; A second discussion issue (see in Figure 5, pictures la-
belled by (b), (d) and (e), depending on the neighborhood in use) concerns the
distribution (in percentage terms) of agents with high-low welfare levels. Agents
are grouped according to their welfare: black stand for the poorest, white for
the richest, gray levels for intermediate conditions. By way of the Voronoi tes-
sellation of input space we induced affinity relations rather than proximity ones.
This is in agreement with the existence of agents sharing equal levels for propen-
sities to study as well as to save although they are spatially placed on different
regions. However, while (v, z) are driven over a path which bring them to con-
verge on similar steady values, independently from initial conditions, this, on
the other side, does not always holds for welfare. In almost 90% of monitored
cases, in fact, the original distribution of welfare still maintains unchanged over
the whole simulation: i.e. despite from changes in propensity to both study and
work rich people remains rich and the same holds for poorer. We can then con-
clude that if the affinity is not accompanied by proper spacial conditions, the
affinity by itself is not able to modify existing situations. This brings to conclude
that equally trained agents tend to show different productivity, according to the
particular spatial context they are placed in. At the same time, the distribution
of wealth appears variously structured, in accordance to the neighborhood shape
which prevails in the simulation. In other words, the adoption of egoistic rules
should produce limited imitation effects and dichotomization; since the regional
dimension has been inflated in the model through the conditioning of labor ex-
ternalities (namely through H*), it should be reasonable to deduce that , when
the shape of neighborhood is wider enough, those play a major impact on the
welfare level.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. From top to bottom in clockwise sense, each row shows two pictures. The first
one in each row always represents the final organization (after 1000 iterations) of the
20 × 20 SOM map in the V N(1) (a), MN(1) (c), and EN(1) (e) case respectively.
Neurons are colored according to their similarity (Euclidean distance) to neighbors.

5 Conclusion

This work has focused on the plausibility of computer simulation to reproduce
the dynamic of economic systems. In particular, Self Organizing Maps (SOMs)
were not considered relevant as an analysis tool of social or economic data, as,
for example, in [11], but they have been introduced as operative tool: thanks to
their extreme flexibility, by properly varying control parameters, it is possible
to drive them to reproduce a wide variety of situations, useful to emulate (ob-
viously in a simplified way) real world dynamics. To this purpose, it has been
pointed on how SOMs inherited features could be use to represent both affinity
among individuals (and hence their psychology), and regional proximity. Start-
ing from this point, various simulations were implemented, using a variety of
possible neighborhood, in order to test the emergence of dichotomous growth,
and some possible explications of such phenomenon. From the simulations, it has
emerged, that, although psychologically similar, agents may be strongly influ-
enced by regional factors. Spatial connections, in turn, are not always significant
at the same level, and either systems dominated by strongly community rela-
tionships, or systems where individual politics prevail may show dichotomiza-
tion in growth and development. This makes possible to think to the existence
of an ”optimal threshold” for radius neighborhood amplitude, beneath which
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proximity effects tend to be soften. This conclusion has been supported by look-
ing at the dynamics of the simulated artificial world with proximity affinities
induced through propensities to study v and to invest into physical capital z,
and regional neighborhood structure inflated through the presence of labor ex-
ternalities.
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