

A. Håkansson & R. Hartung (Eds.): Agent & Multi-Agent Syst. in Distrib. Syst., SCI 462 pp. 95–103.
DOI: 10.1007/978-3-642-35208-9_5 © Springer-Verlag Berlin Heidelberg 2013

Security of E-Commerce Software Systems

Esmiralda Moradian

Department of Software and Computer Systems,
KTH Royal Institute of Technology,
Forum 120, 164 40 Kista, Sweden

moradian@kth.se

Abstract. Cybercrime is costly both for businesses and consumers. Criminals
can have different purposes, such as financial winnings, defacement and disrup-
tion, which not only cause financial loss but also damage organization’s reputa-
tion and image. To prevent a number of cybercrimes and simple mistakes, such
as not insuring that all traffic into and out of a network pass through firewall,
security of e-commerce systems should be considered from the very beginning,
i.e. early stage of the e-commerce software development. This is due to soft-
ware vulnerabilities are a huge security problem. Therefore, to enhance security
of e-commerce software, we propose the use of multi-agent system. The re-
search in this paper is focused mainly on the design of agents that provide
support to engineers during development process. Moreover, the multi-agent
system, presented in this research, supports implementation of patterns and
extraction of security information, and provides traceability of security
requirements in the engineering process.

Keywords: E-commerce, software system, security, multi-agent system,
decision support.

1 Introduction

Software systems do not exist in a vacuum and must, during their lifetime, interact
with the users, other systems (both software and hardware), and the environment.
Regardless, a huge number of software systems that are used in e-commerce are de-
veloped without security consideration. E-commerce software systems can induce
security weaknesses and defects, if security is not considered during the software
development process.

Ignoring security, commonly, result in vulnerabilities that can be exploited by
criminal and malicious users. Malicious users, which often belong to criminal organi-
zations’, exercise attacks that target specific selected software of which most provide
access to sensitive information. Weaknesses in software may be exploited to gain
access to and control of the system, steal sensitive information via the system, and use
the system against the owners and users [14]. It is possible due to vulnerabilities that
software possesses. Hence, it is essential to reduce vulnerabilities, which are usually
the result of defective requirements and design specifications, but also implementa-
tion and testing. Software bugs are unknowingly or consciously injected into software

96 E. Moradian

by developers [7]. Security issues in software systems, nowadays, have been given
attention due to the severe impacts software systems have on the human society, in-
cluding e-commerce, governmental, military, financial, health, telecom, and transport
sectors. Since security is not considered during development process, a large number
of these systems, unfortunately, contain vulnerabilities, and are not resistant to
attacks.

Nowadays, agent technologies are used in information and communication systems
in order to provide management, search, monitoring, etc. Multi-agent systems have,
also, been used for monitoring and logging purposes as well as for network security.
To consider security during development and to be able to build secure software sys-
tems, engineers need support provided not only by security specialists but also by
automated tools. However, to our best knowledge, such support does not exist. In this
paper, we propose multi-agent system that can support engineers during the develop-
ment process. Presence of semi-automated multi-agent system is necessary due to
several reasons, such as: monitor decisions and activities; search for security meas-
ures and mechanisms; perform checks; and provide advices and feedbacks.

In this research, we focused mainly on the design of agents that provide support to
engineers during development process. Moreover, the multi-agent system provides
monitoring of the software development process, traceability of security requirements,
and gives security advices in a form of checklists. Further, the proposed multi-agent
system supports implementation of ontology-based patterns by extracting security
information.

2 Related Work

Jennings et al. [5] in the paper entitled "Autonomous Agents for Business process
management” suggest using intelligent agents to manage business processes. The
authors describe in their paper the motivation, conceptualization, design and imple-
mentation of an agent-based business process management system. In the proposed
system, responsibility for enacting various components of the business process is
delegated to a number of autonomous problem-solving agents. To enact their role,
these agents typically interact and negotiate with other agents to coordinate their ac-
tions and to buy in the services they require.

Fasli [3] discusses the use of intelligent agents in e-commerce and highlights risks
that emanate from stealing information.

Mařík and McFarlane [6] discuss the need of agent-based solutions for enterprise
system to provide intelligent decision-making, manufacturing control, monitoring,
and transportation purposes. The authors state that intelligent agent-based technology
has been applied to solve different problems like distributed order pre-processing,
production planning processes and financial management and billing [6].

In our research, we propose the use of agents in multi-agent system to support en-
gineers during software development process in order to facilitate development of
more secure software for e-commerce use.

 Security of E-Commerce Software Systems 97

3 Essence of Software Security Engineering

Systems are often built, operated, and maintained by different groups or organiza-
tions. "Software flaws and defects can cause software to behave incorrectly and un-
predictably, even when it is used purely as its designers intended" [4]. Vulnerabilities
in software that are introduced by mistake or poor practices are a serious problem
today. Since software controls the organizations systems, the loss of information, as
well as financial loss, depends to a large extent, on how insecure software is [4, 7,
16]. Software development process offers opportunities to insert malicious code and
to unintentionally design and build software with exploitable weaknesses.

By using firewalls and/or Intrusion Detection Systems (IDS), e-commerce organi-
zations are often trying to protect themselves from attackers but are unaware that their
assets are exposed even through firewalls and IDS's. E-commerce software can be
exposed in many ways; therefore, developers of e-commerce systems need to decide
how the software should react in different situations in a defined environment. How-
ever, it is difficult to perceive progress and traceability in software development [17].
Therefore, security-enhanced processes and practices—and the skilled people to per-
form them—are required to build software that can be trusted not to increase risk
exposure [4].

“Software security has as its primary goals three aspects, the preservation of the
confidentiality, integrity, and availability of the information assets and resources that
the software creates, stores, processes, or transmits including the executing programs
themselves” [2]. Security criteria should be included in each SDLC phase's input and
output checkpoints [4].

Unfortunately, security solutions are often isolated from the system functionality,
and can be inadequate to the stakeholders' requirements. Hence, multi-agent system
that is able to provide support for developers and enhance traceability of security
requirements throughout the development lifecycle is highly needed.

Requirements traceability is necessary in order to ensure that requirements are not
lost in the design or implementation phases [4]. Pfleeger [15] states that capturing
requirements is one of the critical parts of development process, which affects system
development during all other phases. We argue that threats, attacks, and vulnerabili-
ties are imperative factors from which security requirements are derived. Therefore,
traceability between these factors in relationship with stakeholders' requirements,
laws and regulations should result in definition of the security requirements.

We propose the multi-agent system that supports stakeholders, developers and
managers during the engineering lifecycle. The purpose of the multi-agent system is
to provide monitoring over the development lifecycle, verify and validate security
requirements, and provide advices regarding security activities and security controls
in a form of checklists.

98 E. Moradian

4 Multi-Agent System

The proposed multi-agent system is a web-based system that can operate both inter-
nally, e.g. within the organization’s network, and externally, in distributed networks,
since data and information can reside in distributed environment.

The environment that agents can work within is cooperative, accessible, episodic,
deterministic, dynamic and discrete. In the cooperative environment, communication
between the agents takes place. Accessible environment implies that agents have
access to the information and knowledge needed to perform a task. The environment
is divided into atomic episodes, where each episode has an agent that performs a sin-
gle task. Deterministic means that next state of the environment is determined by the
current state and the action that is being executed by an agent. Dynamic environment
refers to the environment that can change. Discrete environment can have a finite
number of states; it also can have a discrete set of perceptions and actions. Dynamic
environment refers to the environment that can change. [9,10]

The agents are communicative, mobile, cooperative, goal-oriented, autonomous,
adaptive, and reactive. The agents are mobile, and can move between different loca-
tions over the networks while searching for components and services [11].

The system concerns with how agents cooperate to achieve goals, i.e., requests
from users, and what is required of each individual agent in order to accomplish the
goals.

Multi-agent system consists of different modules, such as, interface and authentica-
tion module, search module, and match and check module. Two types of agents are
used: meta-agents and software agents. The agents in multi-agent system are orga-
nized in hierarchy, which consists of meta-agents and ground level software agents.
Meta-agents operate at macro-level, while software agents operate at micro-level. The
meta-agents are autonomous. It means that the meta-agents are able to take decision
to satisfy their objectives [19]. Meta-agent makes a choice of best alternative regard-
ing request from the user [8]. Implemented alternative leads to outputs and results that
should satisfy the predefined goals [18]. Before the choice can be made, each alterna-
tive must be evaluated in terms of the extent to which they satisfy the objectives, i.e.
defined goals.

In the proposed system some of the concepts, such as hierarchy, roles, responsibili-
ties, and permissions are adopted from Gaia methodology [1].

Each role, that the agent possesses, is associated with a service (function). Each
service has an input, an output, pre-condition, and post-condition [14]. For example,
as input 'GetDocument' function can take keywords (for example, asset pattern, threat
pattern) and a security level value and compare input tags to document tags. For
instance, pre-condition and post-condition for 'GetDocument' function is that the
knowledge base must not be empty (knowledge base empty=false) [14].

 Security of E-Commerce Software Systems 99

A role is defined by following attributes: responsibilities, permissions, and activi-
ties. A role also has the ability to generate information, to monitor and log events.
Responsibilities are divided into two properties, such as satisfaction and security.
Satisfaction defines states where an agent fulfills the goal. Satisfaction expression are
activities that define an action the agent can perform, for example, SearchAgent =
search [14]. The agents work with one task at time. To increase efficiency and shorten
search time, software agents, in our work, execute in parallel, i.e., the group of soft-
ware agents can perform one or more tasks to one or more destinations [9].

Every activity corresponds to a security property. Security property states that the
system is monitored and security properties of the multi-agent system, such as confi-
dentiality, integrity, availability, accountability, and non-repudiation, are satisfied.

Agents are assigned permissions due to responsibilities. The principle of least pri-
vilege is applied [9, 11], which implies that an agent must be able to access, i.e., read,
write, execute, and/or generate only the resources (information resources or know-
ledge the agent possess) that are necessary for its legitimate purpose, i.e., execution
and fulfillment of the assigned task (goal). Communication pathways define commu-
nication between agents, which can be unidirectional (a→b) or bidirectional (c ↔ d).
The process is initiated by user request.

Each agent has allocated specific roles, which for meta-agents can be any of fol-
lowing: InterfaceAgent, AuthenticatorAgent, Management and Coordination Agent,
ControlAgent, and MatchAgent. Ground level software agent is assigned a SearchA-
gent role. The IntefaceAgent processes requests from developers where a search
request can contain terminology, as well as classes and/or properties. The Authentica-
torAgent authenticates the user and checks access rights. The ManagementAgent
assigns tasks, coordinates the search, and manages software agents. Software agents
can retrieve ontology-based patterns from local knowledge repository, as well as data
from databases and repositories, for example, vulnerability databases and control
catalogues. The ManagementAgent merges the results from the SoftwareAgents,
which means that a meta-agent can compare and map different ontologies [13]. The
process is as follows: InterfaceAgent receives a request from the user. The request
(message) is validated if all constraints satisfied and passed to the ManagementA-
gent. ManagementAgent manages and coordinates the activities of SoftwareAgents.
ManagementAgent also assigns the task to the Software Agents, to search and retrieve
ontology patterns from the repository. The user in MAS is defined as a human agent
(HA). Human agent roll can be assigned to stakeholders, managers, and engineers,
i.e., security specialists, requirements engineers, architects, designers, programmers,
and testers.

To the human agent, Interface agent is acting as an interface. A Role Schema of the
InterfaceAgent is presented in Table 1:

100 E. Moradian

Table 1. Role Schema Interface Agent. Source [14]

Role Schema: InterfaceAgent

Description
 Receives request from the user (HA), passes request to ManagementCoordina-

tionAgent, and returns response.
Function and Activities:
 CheckForRequest, AuthenticateUser, CheckAccessRights, PassRequest,
 InformUser.

Permissions:
 read, execute supplied userInformation //login information
 generates checklist
Responsibilities:
 Satisfaction InterfaceAgent = (IdentifyUser. PassRequest. GenerateCheck-

list)
 IdentifyUser = (AuthenticateUser. CheckAccessRights)
 GenerateChecklist = (ProduceChecklist. InformUser)
Security:

• UserInformation = bad ⇒ login =nil
• LoginAttempt (monitorEvent, logEvent)

In table 1, role, functions and activities of the InterfaceAgent are illustrated. The

activities are as follows: AuthenticateUser, CheckAccessRights, PassRequest, and
InformUser. The agent possesses following permissions: read and execute the login
information, provided by the user, and generate a checklists. Satisfaction expressions
are activities that define actions the InterfaceAgent can perform. The activities
involve:

- IdentifyUser, which include AuthenticateUser and CheckAccessRights.
- PassRequest.
- GenerateChecklist, which involve ProduceChecklist. InformUser

Security constraints defined are as follows:

- IF input, i.e., the user login information is incorrect THEN access shall be denied
- Login attempts shall be monitored and logged

To demonstrate message exchange between the agents in the multi-agent system,
Unified Modeling Language (UML) is utilized. An example of message exchange
between the agents is depicted in Figure 1.

 Security of E-Commerce Software Systems 101

Fig. 1. Message exchange protocol

When AuthenticatorAgent receives a request from HA, the request is validated and

if all constraints are satisfied, then request is passed to CoordinationAndManagemen-
tAgent. Coordination/Management agent creates control and match agents by cloning
itself. Software agents verify links between documents and retrieve documents to
map.

Control agent is responsible for analyzing goals and verification of requirements.
Security requirements are derived from stakeholders' requirements, threats, and vulne-
rabilities. Meta agents analyze requirements to identify errors. In response to errors a
problem report is generated and the process is halted until new request or task is re-
ceived. If no errors are found the analyses result is send to match agent that provides
mapping. The meta-agents provide mapping between security requirements and
threats, as well as threats and countermeasures. Mapping to relevant expert knowledge
stored in knowledge base performed in order to retrieve success/failure scenarios.

Meta-agents perform content analysis and mapping in order to create more com-
plete solutions, while SoftwareAgents perform searching for documents and security
ontologies.

The ontologies, for example ´Threat´ ontology and ´SecurityControl´ ontology, are
retrieved from a local knowledge base [13]. The meta-agent uses a knowledge base,

102 E. Moradian

which contains facts and rules, to compare the ontologies, and an interpreter to match
and execute rules. Rules can be constructed by terms or rules with several different
alternatives, such as synonyms. The interpreter browses through the ontology with
knowledge from the knowledge base. The ontologies are checked against the know-
ledge base with tags like owl:Ontology, owl:Class, rdfs:subClassOf, and
owl:onProperty. Ontologies must contain related parts in order to make the mapping
possible [13].

The search request can contain terminology, as well as classes and/or properties.
The search and filtering the right documents are performed according to some criteria.
The ManagementAgent merges the search result from the SoftwareAgents and passes
it to the InterfaceAgent. Thus, the meta-agent perform mapping by comparing differ-
ent ontologies. If there is a direct match the meta-agent can continue to work with the
next part of the ontologies. Meta-agent is, also, able to combine ontologies in order to
produce more complete result.

Security patterns contain documented knowledge of security professionals where a
specific problem is addressed and solution described. Hence, security patterns can
provide developers with the important information. Therefore, security patterns are
included in the security ontology and are designed by using the ontology-based tech-
niques. The ontology-based technique provides reusable and structured security in-
formation. Due to the OWL representation, the security patterns are available in a
machine readable format and can be utilized in the multi-agent system [12].

Conclusively, multi-agent system can enable retrieval of knowledge from security
ontologies and patterns and, hence, provide developers with the information about a
specific threat or vulnerability, the impact of the threat on the particular security
property, as well as information about possible solutions in order to minimize or
prevent a particular security issue.

5 Conclusion and Further Work

In this paper, we have emphasized some crucial problems in development process in
order to elucidate the essence of security issues. Security impacts core business
processes in every organization. To prevent a number of cybercrimes and simple mis-
takes, security of e-commerce systems should be considered from the very beginning,
i.e. early stage of the e-commerce software development. We have discussed the signi-
ficance of the software security and necessity of traceability of security requirements.

To enable implementation of automated controls, support developers during soft-
ware development and to provide visibility over the development process, multi-agent
system that can fulfil these tasks, have been presented.

To search for patterns, to analyze the content and combine the ontologies in order
to create more complete solutions according to the user request, agents in multi-agent
system are applied. Moreover, ontology mapping performed by agents can save time
and reduce human errors, which may help to increase security of the intended system.
The multi-agent system, presented in this research, enables traceability of security
requirements. The design of multi-agent system concerns with how agents cooperate
to achieve goals, and what is required of each individual agent in order to accomplish
the goals.

 Security of E-Commerce Software Systems 103

References

1. Cernuzzi, L., Juan, T., Sterling, L., Zambonelli, F.: The Gaia Methodology: Basic Con-
cepts and Extensions 11, Part II, 69–88 (2004), doi:10.1007/1-4020-8058-1_6

2. Davis, N., Howard, M., Humphrey, W., McGraw, G., Redwine, S., Zibulski, G., Graettin-
ger, C.: Processes to Produce Secure Software. In: Redwine Jr., S.T., Davis, N. (eds.)
Software Process Subgroup of the Task Force on Security across the Software Develop-
ment Lifecycle, vol. 1 (March 2004)

3. Fasli, M.: On agent technology for e-commerce: trust, security and legal issues. The
Knowledge Engineering Review 22(1), 3–35 (2007)

4. Goertzel, M.K., Winograd, T.: Enhancing the Development Lifecycle to Produce Secure
Software. A Reference Guidebook on Software Assurance, Technical Report, DACS (Oc-
tober 2008)

5. Jennings, N.R., Norman, T.J., Faratin, P., O’Brian, P., Odgers, B.: Autonomous Agents for
Business Process Management, pp. 145–189. Taylor & Francis (2000) 0883-9514/00

6. Marik, V., McFarlane, D.: Industrial adoption of agent-based technologies. IEEE Intelli-
gent Systems 20(1), 27–35 (2005),
doi: http://dx.doi.org/10.1109/MIS.2005.11

7. McGraw, G.: Software Security Building Security. Addison-Wesley Pearson Ed. (2006)
ISBN 0-321-35670-5

8. Moradian, E.: Secure transmission and processing of information in organisations systems.
International Journal of Intelligent Defence Support Systems 2(1), 58–71 (2009)

9. Moradian, E., Håkansson, A., Andersson, J.-O.: Multi-Agent System Supporting Security
Requirements Engineering. In: SERP 2010 - The 2010 International Conference on Soft-
ware Engineering Research and Practice (WorldComp 2010), vol. 2, pp. 459–465. CSREA
Press, USA (2010)

10. Moradian, E., Håkansson, A.: Controlling Security of Software Development with Multi-
agent System. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part
IV. LNCS, vol. 6279, pp. 98–107. Springer, Heidelberg (2010)

11. Moradian, E., Håkansson, A.: Software Security Engineering Monitoring and Control. In:
SAM 2011 The 2011 International Conference on Security and Management (WorldComp
2011). CSREA Press, USA (2011)

12. Moradian, E., Håkansson, A., Andersson, J.-O.: Security Patterns for Software Security
Engineering. Accepted at the 16th International Conference, KES, San-Sebastian, Spain,
September 10-12 (2012)

13. Moradian, E., Håkansson, A.: Ontology Design and Mapping for Building Secure E-
Commerce Software. Accepted at the 8th International Conference on Web Information
Systems and Technologies, Porto, Portugal, April 18-21 (2012)

14. Moradian, E.: Integrating Security in Software Engineering Process: The CSEP Methodol-
ogy, KTH Royal Institute of Technology (2012)

15. Pfleeger, S.L.: Software Engineering Theory an Practice, 2nd edn. Prentice-Hall, Inc.
(2001) ISBN 0-13-029049-1

16. Rice, D.: Geekonomics The Real Cost of Insecure Software. Pearson Ed. Inc. (2008) ISBN
0-321-47789-8

17. Van Vliet, H.: Software Engineering Principles and Practice, 2nd edn. John Wiley and
Sons (2004) ISBN 0-471-97508-7

18. Van Gigch, J.P.: Applied General Systems Theory, 2nd edn. Harper & Row Publishers,
New York (1978) ISBN 0-06-046776-2; Copyright 1978 by Van Gigch, J.P.

19. Wooldridge, M.J.: Introduction To Multi-Agent Systems. John Wiley and Sons Ltd. (2002)
ISBN 9780471496915

	Security of E-Commerce Software Systems
	Introduction
	Related Work
	Essence of Software Security Engineering
	Multi-Agent System
	Conclusion and Further Work
	References

