
Improving Multi-actor Production, Inventory and
Transportation Planning through Agent-Based

Optimization

Johan Holmgren1, Jan A. Persson1, and Paul Davidsson1,2

1 School of Computing, Blekinge Institute of Technology, SE-374 24 Karlshamn, Sweden
2 School of Technology, Malmö University, SE-205 06 Malmö, Sweden
{johan.holmgren,jan.persson,paul.davidsson}@bth.se

Abstract. We present an agent-based optimization approach that is built upon
the principles of Dantzig-Wolfe column generation, which is a classic reformula-
tion technique. We show how the approach can be used to optimize production,
inventory, and transportation, which may result in improved planning for the in-
volved supply chain actors. An important advantage is the possibility to keep
information locally when possible, while still enabling global optimization of
supply chain activities. In particular, the approach can be used as strategic deci-
sion support to show how the involved actors may benefit from applying Vendor
Managed Inventory (VMI). In a case study, the approach has been applied to a
real-world integrated production, inventory and routing problem, and the results
from our experiments indicate that an increased number of VMI customers may
give a significant reduction of the total cost in the system. Moreover, we analyze
the communication overhead that is caused by using an agent-based, rather than
a traditional (non agent-based) approach to decomposition, and some advantages
and disadvantages are discussed.

1 Introduction

Supply chain management is an area in which actors may experience great potentials
by the use of efficient e-business solutions [1]. The introduction of powerful computers
and efficient methods for formulating and solving complex optimization problems has
made it possible to improve the operations in supply chains. In traditional central ap-
proaches for solving optimization problems, all information that need to be used when
formulating and solving a problem has to be shared with a central node of computation.
However, if multiple organizations are involved there is often a wish to keep sensi-
tive information local. We propose an agent-based approach for integrated optimization
of production, inventory and transportation, which has the potential to offer increased
confidentiality for the involved organizations.

In this paper we describe how Dantzig-Wolfe (DW) decomposition [2], which is
a classic reformulation technique, can be incorporated in a multi-agent system. The
main purpose is to give a detailed account to how a classic optimization approach can
be “agentified”. Another purpose is to validate that some positive characteristics can be
achieved by using this type of approach. The main characteristic is confidentiality of in-
formation, which is of particular importance in applications where different, potentially
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competing, organizations are represented. Moreover, we investigate the possibility to
achieve performance improvements by distribution and parallelization of the approach.

In a case study we apply our approach to a real-world integrated production, inven-
tory and routing problem. The problem includes production planning, vehicle routing
and inventory planning, and the objective is to minimize the total cost for production,
transportation and inventory holding, while meeting the customers’ demands for prod-
ucts. In particular, we show how the approach can be used for strategic decision making
by quantifying the economic benefits that can be achieved by introducing Vendor Man-
aged Inventory (VMI) for one or more supplier-customer relations. In VMI [3], the sup-
plier is responsible for replenishing the customers’ inventories, while given continuous
access to information about forecasted customer demand and storage levels. Typically,
the supplier owns the products until the customer removes them from inventory. The
supplier benefits from being able to get updated information about forecasted customer
demand and storage levels in contrast to being forced to deal with often late arriving,
and changing customer orders. This provides flexibility in production and transportation
planning. The customer potentially benefits from being able to pay later (and typically
less) for products. Also, since it is the responsibility of the supplier to decide about de-
liveries, the customer does not have to bother about ordering products. For the studied
problem we have performed simulation experiments, which indicate that an increased
number of VMI customers may give a significant reduction of the total cost in the sys-
tem. Moreover, we discuss how the approach can be used for operational planning,
e.g., by providing decision support for real-world planners concerning how to perform
supply chain activities.

In summary, we focus on the supply chain cooperation dimension of e-business by:
(1) exploring an approach for integrated planning (involving multiple actors), which
supports the keeping of planning related information confidential, and (2) from a strate-
gic perspective, analyzing and quantifying the benefit of increased cooperation by VMI.

In next section we introduce the reader to the fields of agent-based optimization and
decomposition, and in Section 3 we given an account to integrated planning of pro-
duction, inventory and transportation, including some related work. In Section 4, we
present a real-world case problem, and for the case problem, in Section 5 we describe
an agent-based decomposition approach. Finally, in Section 6 we present some compu-
tational experiments before concluding the paper with a discussion on confidentiality in
Section 7 and some conclusions and directions for future work Section 8.

2 Agent-Based Optimization and Decomposition

Agent-based approaches to optimization can be built in many ways, e.g., by using clas-
sical agent concepts, such as auctions and negotiation, as in the examples provided by
Karageorgos et al. [4] and by Dorer and Calisti [5]. However, the focus here is on agent-
based approaches that make use of techniques and concepts from classical optimization,
e.g., methods for formulating and solving complex optimization problems.

It has been argued that the strengths and weaknesses of agent-based approaches and
classical optimization techniques complement each other well for dynamic resource al-
location problems [6]. The strengths and weaknesses of agent-based approaches and
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mathematical optimization techniques were compared for resource allocation in the
domain of production and transportation. The comparison indicated that agent-based
approaches tend to be preferable when: the size of the problem is large, communication
and computational stability is low, the time scale of the domain is short, the domain is
modular in nature, the structure of the domain changes frequently and there is sensitive
information that should be kept locally, and classical optimization techniques when: the
cost of communication is high, the domain is monolithic in nature, the quality of the
solution is important, and it is desired that the quality of the solution can be guaran-
teed. Moreover, the comparison indicated that the properties of the two approaches are
complementary and that it can be advantageous to combine them. In a case study, two
hybrid approaches were tested:

1. Optimization was embedded in the agents to improve their abilities to take good
decisions.

2. Optimization was used for creating long-term coarse plans, which were refined
dynamically by the agents.

Another hybrid approach is referred to as distributed constraint optimization. Accord-
ing to Petcu [7], a Constraint Optimization Problem (COP) is defined as a set of
variables with corresponding discrete and finite variable domains and a set of utility
functions. Each utility function assigns a utility to each possible assignment of the vari-
ables, and the purpose is to find the variable instantiation that maximizes the sum of
utilities of the utility functions. An interesting property is that variable domains are not
restricted to numerical values, e.g., a variable domain may refer to colors or whatever
is relevant for a particular problem. A Distributed Constraint Optimization Problem
(DCOP) is defined as a set of agents, where each agent owns a centralized COP (i.e., a
local subproblem), and a set of inter-agent utility functions, which are defined over vari-
ables from the local subproblems. An inter-agent utility function represents the award
that is assigned to the involved agents when they take a joint decision.

Decomposition approaches, such as Dantzig-Wolfe column generation [2] has been
developed for solving linear problems, and Lagrangean relaxation [8] and Benders’
decomposition [9] have been developed for solving Mixed Integer Linear optimization
Problems (MILPs). Moreover, decomposition approaches for linear problems have been
used together with branch-and-price [10] to solve MILPs.

Combining agents with decomposition approaches is another, relatively new ap-
proach, which we find particularly interesting to investigate. An example is provided by
Hirayama [11], who proposed an agent-based approach for solving the Generalized Mu-
tual Assignment Problem. In the approach, which was built using a distributed solution
protocol based on Lagrangean decomposition and distributed constraint satisfaction;
agents were used to solve individual optimization problems, which were coordinated in
order to improve a global solution.

In this paper the focus is on another decomposition approach, and we describe how
Dantzig-Wolfe decomposition can be agentified into a multi agent system. In Dantzig-
Wolfe decomposition, a linear Master Problem (MP) is reformulated into a Restricted
Master Problem (RMP) containing only a subset of the variables in MP, and a set of
subproblems which produce new solutions (columns) that are coordinated by RMP. In
an iterative process, subproblem solutions based on so-called dual variables (which is a
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control mechanism) are added as improving variables to RMP. A dual variable is often
interpreted as a value or price, e.g., for obtaining an additional unit of a scarce resource,
or for producing one more unit of a particular product type.

In contrast to approaches to agent-based optimization, in which agents are able to
communicate directly with each other in a peer-to-peer fashion, agent-based decompo-
sition requires a coordinator agent who is responsible for managing the problem solv-
ing process. In DW decomposition, the coordinator agent corresponds to the RMP, and
planner agents are responsible for providing plans (solutions) to the coordinator by
solving subproblems. A conceptual illustration of agent-based DW decomposition is
provided in Fig. 1, in which it can be seen that the coordinator sends dual variables to
the planner agents, who return plans to the coordinator.

Fig. 1. A conceptual model of agent-based Dantzig-Wolfe decomposition. In an iterative process,
the coordinator sends dual variables to the planner agents, who return improving plans to the
coordinator.

For a case problem, in Section 5 we provide a detailed example of an agent-based
decomposition approach for an integrated production, inventory, and routing problem.
We have chosen a decomposition formulation that we find attractive, in particular since
it allows for a natural interpretation of dual prices and subproblems. The studied prob-
lem class captures the difficulties with distributed decision-making since information
and resources typically are distributed and the exact conditions, e.g., the demand and
the availability of resources, are unknown in advance.

Planning tasks in supply chains are often performed by different organizations, which
is why confidentiality is an important concept. Traditionally, a decomposition algorithm
runs in a single process (on a single computer), which needs access to all information
that is required for formulating and solving the optimization problem. In such an ap-
proach it is typically not possible to achieve confidentiality due to the fact that informa-
tion, which might be considered sensitive for the planners may have to be shared. With
an agent-based approach, where different problems are represented by different agents,
it is often possible to run the optimization with less need for sharing sensitive informa-
tion. In our case problem there is an agent who coordinates production, transportation
and inventory. The coordinator agent needs access to customer demand forecasts, but
it does not need to know any underlying details about how transportation plans and
production plans are created. Hence, the agents responsible for solving subproblem do
not need to share all information to the coordinator. Obviously, the use of agents may
have a negative impact on the performance, i.e., concerning the execution time due to
an increased need for communication. However, a possible advantage over classic de-
composition approaches is that it is straightforward to distribute an agent system over
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several computers. In a distributed solution approach, there is a potential for reduced
computation time and in some cases improved solution quality since more computing
power allows for solving more complex subproblems. The reason is that the subprob-
lems can be solved in parallel, which is impossible when the approach runs on a single
processor. Further, a decentralized approach makes the system less vulnerable to sin-
gle point failures. In the agent-based approach, where the coordinator agent typically
retains control of all decisions, a failure of the coordinator agent is fatal. However, in
case of a planner agent failure, the rest of the planners will still be able to produce new
(improving) plans, which can be considered by the coordinator.

3 Integrated Planning of Production, Inventory and
Transportation

Raw material supply, production and transportation have often been separated by large
inventory buffers allowing different supply chain activities, such as production and
transportation, to be planned separately. Various planning problems for different parts
of the supply chain have been studied; a survey of lot sizing and scheduling problems
is provided by Drexl and Kimms [12], and an overview of the vehicle routing problem
and variations is given by Toth and Vigo [13]. The importance of inventory reduction
has led to an increased interest in integrated planning of different logistical activities
[14], and a review covering efforts in the area of integrated supply chain planning is
provided by Sarmiento and Nagi [15].

Our focus is on optimization approaches that consider planning of production, inven-
tory, as well as transportation. There is research focusing on only two of these aspects
(e.g., [16,17,18]). According to our knowledge, the earliest contribution that combines
all three problem aspects, i.e., planning of production, inventory and transportation, was
presented by Chandra and Fisher [19]. For a multi-period planning horizon, the authors
solved a combination of the production scheduling problem and the vehicle routing
problem where multiple products were distributed from a single production facility to a
number of customers.

A more recent approach was presented by Lei et al. [20], who considered an inte-
grated production, inventory, and routing problem with a single product, multiple het-
erogeneous production plants, multiple customer demand centers and heterogeneous
vehicles. Inventory management was considered both at the production plants and at the
customer demand centers. The model was approached by formulating a large mixed-
integer linear problem, which was solved using a 2-phase solution method. In phase
one, the problem was reformulated to only include direct transportation between the
producers and the customer demand centers. This restricted problem gives a feasible
but non-optimal solution to the original problem. In phase two, a heuristic approach
was used to improve the solution from phase one by also considering transport routes
involving multiple customer demand centers. The main differences compared to their
approach are that we model transportation in more detail, and that we use a different
solution approach.

Another recent contribution is provided by Persson and Göete-Lundgren [21], who
formulated and solved an optimization model for planning the production at a set of
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oil refineries and shipments of finished products while considering inventories both at
producer and customer depots. Their problem is similar to the one we are considering.
However, they used a longer planning horizon, but with longer individual time periods,
there was no separation of the production planning into subproblems, and they used
ships for transportation whereas we use trucks including explicit modeling of driving
time restrictions. They proposed a solution approach based on column generation and
valid inequalities, and integer solutions were obtained by using a fixing strategy in
which vehicles were fixed to visit certain depots at specific times. To determine how
much of each product should be delivered to each depot, an integer model was formu-
lated and solved.

Bilgen and Ozkarahan [22] considered a problem for optimization of blending and
shipment of grain (bulk) products from a set of producers to a set of customers. Whereas
our approach is built on decomposition, Bilgen and Ozkarahan formulated a single
MILP model with the objective to minimize the costs for blending, loading, transporta-
tion and inventory. The optimization problem was solved with the ILOG CPLEX solver
for a rather short planning horizon.

4 Real World Case Problem Description

We consider a real-world case problem with a producer of vegetable oils and a single
hauler that manages a fleet of bulk trucks that take care of deliveries of finished products
to a set of customers. Production, and hence the planning of production and transporta-
tion is driven by the arrival of customer orders. Production is performed on multiple
production lines, which are scheduled (individually) to match the shipping times that
are chosen to match the delivery time windows of the customer orders. A typical hori-
zon for production and transportation planning is usually less than a week.

Before loaded onto vehicles, finished products are stored in short-term inventory
at the producer depot. The capacity of this short-term inventory is rather limited, and
shipping is typically initiated the same day as the last production step is finished. At
delivery, products are stored in customer inventories. Starting with a full (or close to
full) truck load at the producer, sometimes a truck visits only one customer before
returning but sometimes deliveries are grouped together and the truck visits multiple
customers in a trip. Occasionally, a vehicle can be scheduled for a non-empty transport
on the return trip from a customer to the producer. When the transportation demand
exceeds the available transportation capacity, it is possible to call in extra capacity to a
higher cost. Furthermore, time and costs for loading and unloading are considered, and
the drivers have to follow the European Economic Community (EEC) regulations (EEC
3820/1985) for working and resting hours.

Raw material arrive to the production plant by boat or truck in quantities based on
long term forecasts since the order-to-delivery lead time of raw material considerably
exceeds the production planning horizon. Therefore, an unlimited supply of raw mate-
rial can be assumed, and the considered operational production planning can be sepa-
rated from ordering of raw material.

Currently, the considered real-world producer is considering an introduction of VMI
for some of its customers. An introduction of VMI requires that accurate forecasts of
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consumption can be made available, which is also assumed to be possible. VMI might
lead to a higher flexibility in the production and transportation planning, and the ex-
pectation is that a higher utilization of (often limited) production and transportation
resources can be achieved.

In Fig. 2 we provide a conceptual illustration of the case problem with a small exam-
ple of a transportation network containing a factory, inventories, customer depots and
trucks, and planners who are responsible for taking decisions about physical resources.

Fig. 2. An illustration of the case problem, with physical resources, planners and a supply chain
coordinator. The dashed arrows represent connections that are present only for VMI customers.

5 Decomposition Formulation

The identified real world problem is modeled as a MILP, which is built using the prin-
ciples of Dantzig-Wolfe decomposition. The decomposition formulation includes a lin-
ear DW master problem, a set of transportation subproblems and a set of production
scheduling subproblems for construction of transportation plans and production plans.
Even though MP is a linear problem, there are no restrictions regarding which types of
variables the subproblems are allowed to model. It should be mentioned that DW de-
composition is a technique for reformulating optimization problems, and in many cases
it is necessary to apply a branch and bound method, i.e., branch-and-price [10], to be
able to use it for solving problems with integer variables.

In addition to the practical issues, like for example confidentiality, reasons for not
formulating the problem as a large MILP include: 1) a large MILP would most probably
be difficult, or impossible, to solve to optimality due to its size and high complexity,
and 2) a decomposition approach allows the subproblems to be reformulated without
modifying the master problem.

It is possible to use alternative decomposition approaches for modeling the studied
problem, e.g., Lagrangean relaxation [8] and Benders’ decomposition [9]. In our opin-
ion, the choice of which decomposition technique to use can often be seen as a matter
of preference. Important reasons for using DW decomposition for modeling the studied
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problem is that it allows us to benefit from the special block structure that character-
ize the problem. According to Fumero and Vercellis [23], problems in the studied area
tend to use an underlying network structure that may be exploited by decomposition
approaches. The objective is to minimize the costs for production, distribution, and in-
ventory holding, while satisfying the customers’ product demand throughout a given
planning horizon. The problem formulation includes production planning at producer
depots, transportation planning including route choice, quantities to ship and times for
deliveries to customers and pickups from the producers, and inventory planning of fin-
ished products. The presented approach focuses on the VMI situation due to its potential
for improved resource utilization. However, it is not limited to VMI since a tight speci-
fication of customer inventory constraints mimics a non-VMI situation.

We have built the agent-based decomposition approach using a hierarchical agent
model for decision making in a multi-agent-based supply chain simulation model called
TAPAS, which was presented by Davidsson et al. [24]. The model contains a supply
chain coordinator, a transport buyer, a product buyer, production planners, transport
planners, and customers. However, in the suggested decomposition approach we have
chosen not to model the product and transport buyer agents. The downscaled version
of the hierarchical agent model in TAPAS corresponds to the agent model in Fig. 2. In
the agent system, the supply chain coordinator agent represents MP, each production
planner agent handles a set of production scheduling subproblems (one subproblem for
each production line in one producer depot), and each transport planner agent handles a
set of transportation subproblems (one subproblem for each vehicle in its vehicle fleet).

In the problem formulation, we let DP denote the set of producer depots,DC the set
of customer depots,D = DP ∪DC the set of all depots, V the set of (inhomogeneous)
vehicles, P the set of product types, and L the set of production lines. The planning
horizon is represented by an ordered set T = {1, 2, . . . , t̄} of discrete time periods with
uniform length τ . A transportation plan for a vehicle is defined as the amount of each
product delivered to each customer depot and picked-up from each producer depot in
each time period throughout the planning horizon. The set of all feasible transportation
plans for a vehicle v ∈ V is denoted Rv , and the cost for using plan r ∈ Rv is denoted
ψr. If d is a producer depot (i.e., d ∈ Dp) we let variable xdptr denote the amount of
product p that is picked-up from depot d for plan r by vehicle v in period t, otherwise
(d ∈ DC ) xdptr represents a delivery to depot d. Similarly, we define a production plan
for a production line as the amount of each product that is produced in each time period
throughout the planning horizon. We let Sl denote the set of all valid production plans
for production line l ∈ L, and ωs denotes the cost for using plan s ∈ Sl. For production
plan s ∈ Sl, which represents a production line located at some depot d = d(s), we let
ydpts represent the amount of product p produced in period t. Furthermore, parameter
�dpt denotes the demand for product p ∈ P at customer depot d ∈ DC in time period
t ∈ T . Hence, the parameter �dpt specifies the amount of product p removed from
the customer inventory in time period t. It should be noted that, in our methodological
approach, only a subset of all the plans for the available resources will be generated and
represented in the model.

Each depot d ∈ D has an inventory level modeled by variable zdpt. An inventory
cost φdp is considered for each unit of product p ∈ P in inventory at depot d ∈ D
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between two subsequent periods. For a depot d, the inventory level of product p in time
period tmust not fall below a lower bound zdpt (which typically corresponds to a safety
inventory level) and must not exceed an upper bound (typically a maximum capacity)
of zdpt units. To allow violating the safety inventory and maximum allowed inventory
levels, we let variable udpt represent how much the inventory level of product p falls
below the safety inventory level at depot d in period t, qdpt how much it exceeds the
maximum allowed inventory level, andMu

dpt and M q
dpt corresponding penalty costs for

violating the inventory constraints. It is assumed that, if any of the u:s or q:s are greater
than zero in a period (i.e., an inventory constraint has been violated), a penalty is applied
for resolving the inventory level infeasibility. There are other ways to model violation
of inventory constraints, e.g., to include the u:s and q:s in constraint set (4) instead of
in constraint sets (2) and (3). However, it is not obvious if one of these approaches is
better than the other.

Binary decision variables are used to determine which transportation plans and pro-
duction plans to use, and for obvious reasons exactly one transportation plan for each
vehicle and exactly one production plan for each production line are allowed. Decision
variable vr determines if transportation plan r ∈ Rv is used (vr = 1) or not (vr = 0),
and ws if production plan s ∈ Sl is used (ws = 1) or not (ws = 0). We formulate our
main problem (IMP) as the following MILP (MP is the LP-relaxation of IMP):

min
∑

p∈P

∑

d∈D

∑

t∈T

(
φdpzdpt +M q

dptqdpt +Mu
dptudpt

)
+

∑

v∈V

∑

r∈Rv

ψrvr +
∑

l∈L

∑

s∈Sl

ωsws, (1)

s.t. zdpt−1 +
∑

v∈V

∑

r∈Rv

vrxdptr + udpt − qdpt − �dpt = zdpt,

t ∈ T, d ∈ DC , p ∈ P, (2)

zdpt−1 −
∑

v∈V

∑

r∈Rv

vrxdptr +
∑

l∈L

∑

s∈Sl

wsydpts + udpt − qdpt = zdpt,

t ∈ T, d ∈ DP , p ∈ P, (3)

zdpt ≤ zdpt ≤ zdpt, d ∈ D, p ∈ P, t ∈ T, (4)
∑

r∈Rv

vr = 1, v ∈ V, (5)

∑

s∈Sl

ws = 1, l ∈ L, (6)

vr ∈ {0, 1}, v ∈ V, r ∈ Rv, (7)

ws ∈ {0, 1}, l ∈ L, s ∈ Sl, (8)

zdpt, udpt, qdpt ∈ R
+, d ∈ D, p ∈ P, t ∈ T. (9)

In IMP, the first component (i.e., the triple sum) of the objective function (1) models
the inventory costs with penalties for violating the inventory constraints. The second
component of (1) represents the cost for the transportation plans, and the third compo-
nent the cost for production plans. Constraint sets (2) and (3) express the customer and
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producer depot inventory balances. For a customer depot, an inventory level at the end
of a period equals the inventory level at the end of the previous period, plus the deliv-
eries minus the consumption in the current period. For a producer depot, an inventory
level at the end of a period equals the inventory level in the previous period, minus the
pickups plus the produced amount in the current period. Constraints (4) assure that the
inventory levels are kept between the minimum and maximum allowed levels, and (5)
and (6) that exactly one plan is used for each resource (vehicle or production line).

For MP (as well as for RMP, which will be introduced below), we let λ denote the
dual variables for constraints (2), μ the dual variables for constraints (3), δ the dual
variables for constraints (5), and θ the dual variables for constraints (6). A dual variable
expresses the change of the optimal objective function value per unit increase of the
right hand side of the corresponding constraint. For example, λ̄dpt > 0 represents the
value of having one extra unit of product p in depot d in period t, and a positive dual
variable μ̄dpt > 0 the value of having one extra unit of product p at depot d in period t.
A value μ̄dpt < 0 on the other hand, means that we want to decrease the production or
reduce the inventory by transporting products away from depot d.

As mentioned above, to solve the IMP we relax the integer constraints and get an MP,
i.e., a master problem. Furthermore, we only consider a subset of the potentially huge
number of production and transportation plans, which gives an RMP, i.e., a restricted
master problem. At initiation, RMP contains only a small number of plans for each
resource (vehicle or production line), typically the procedure starts with an empty plan
for each resource. For instance, for a vehicle an empty plan is one that has no deliveries
and pickups. It should be emphasized that, to be able to satisfy constraints (5) and (6),
RMP needs to contain at least one plan for each resource. We let R′

v ⊆ Rv denote a
set of all currently known transportation plans for vehicle v ∈ V , and S′

l ⊆ Sl a set of
currently known production plans for production line l ∈ L. That is, RMP is identical
to MP, except for that we replace all occurrences of Rv with R′

v , all occurrences of Sl

with S′
l .

In the solution approach, RMP is iteratively updated with new improving production
and transportation plans that are generated by the planner agents based on the current
optimal values of the λ, μ, δ, and θ dual variables. Dual variables are obtained from
the current optimal solution (to RMP) when using a standard solver, which is typically
based on the simplex method. A flow chart describing the main algorithm used by the
coordinator agent is presented in Fig. 3, and a diagram showing how the coordinator
agent communicates with the planners is provided in Fig. 4. In a distributed approach it
is possible, and in many cases preferable, to send the transportation and production re-
quests in parallel to allow the planners to solve subproblems simultaneously. Plans with
negative reduced cost are added as improving columns/variables to RMP, and when no
improving plan can be generated, the optimal solution to MP is obtained. Since the op-
timal solution to MP typically contains fractional combinations of plans, it is typically
infeasible (due to the integer properties) in the original problem IMP. One approach for
finding an optimal, or at least a heuristically “good” integer solution to IMP, some de-
livery/pickup (depot, period, product, and vehicle) or production (period, product and
production line) must be restricted (fixed) to some integer quantity whenever a frac-
tional optimal solution to RMP is obtained. To handle the integer characteristics of the
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studied problem, we apply branch-and-price [10], however in a limited form. To guar-
antee that the optimal solution to IMP will be generated, it is necessary to use a search
tree, in which each node represents a restricted version of the original MP due to ad-
ditional restrictions. In the branching approach, all possible combinations of fixings
are represented somewhere in the search tree, and in theory the optimal solution of the
original problem is guaranteed. However, since time and memory are limited, this is not
possible for the studied problem. Due to its characteristics of being NP-hard and the size
of real-world scenarios, we choose to explore only one branch in the search tree. Vari-
able restrictions are determined by the coordinator and communicated to the planners
to prevent them from generating future plans that violate variable fixings. Throughout
the procedure of the algorithm, more and more variables are fixed, and eventually the
algorithm terminates with an integer solution to IMP. In Section 5.1 we give a more
detailed account to our strategy for variable fixings and termination.

Fig. 3. A flow chart of the main algorithm used by the supply chain coordinator agent



12 J. Holmgren, J.A. Persson, and P. Davidsson

Fig. 4. Diagram describing the communication between the coordinator and planner agents

5.1 Heuristic Strategy for Variable Fixing and Termination

In our variable fixing strategy, which is inspired by the approach by Persson and Göete-
Lundgren [21], we let fP

ptl ∈ Z
+, p ∈ P, t ∈ T, l ∈ L represent production fixings (i.e.,

minimum quantities to produce), and fT
dptv ∈ Z

+, d ∈ D, p ∈ P, t ∈ T, v ∈ V trans-
portation fixings (i.e., minimum quantities to deliver and pickup). That is, there is one
(production) fixing parameter for each combination of product, period and production
line, and one (transportation) fixing parameter for each combination of depot, product,
period and vehicle. All fP :s and fT :s are initialized to 0, meaning that no quantities
are fixed when the algorithm starts. A fixing of a quantity fP

ptl means that all subsequent
production plans that are generated for production line l must contain a production of
at least fP

ptl units of product p in period t. Similarly, a transportation fixing fT
dptv for

vehicle v means that all subsequent plans for v must contain a pickup (if d ∈ DP ) or
delivery (if d ∈ DC) of at least fT

dptv units of product p for depot d in period t. Hence, it
follows that already fixed productions, pickups and deliveries may be re-fixed to higher
values later in the process, as long as the capacities of vehicles and production lines
are met when new plans are created. After a fixing has been determined, all columns
(plans) violating the fixing (i.e., infeasible columns) are removed from RMP.

The main idea in the variable fixing strategy is that the production, pickup or delivery
with the highest representation in the optimal solution to RMP should be chosen for
fixing. For instance, to calculate how much a production is represented in RMP, the
values representing how much the plans are used in the solution are added together for
those plans (for the particular production line) that have a production strictly greater
than zero units for the particular product and period. The calculation of how much a
pickup or delivery is represented in RMP is made in the same way. Hence, a number
between 0 and 1 is obtained for each production, pickup and delivery, and a higher
number means a higher representation in RMP.

For transportation, we find out which pickup or delivery (depot, product, period and
vehicle) that is most represented in RMP by calculating

(d′, p′, t′, v′) = argmax
d∈D,p∈P,t∈T,v∈V

∑

r∈R′
v

vrΛ
T
dptr, (10)
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where

ΛT
dptr =

{
0 if xdptr = 0

1 if xdptr �= 0.
(11)

To avoid fixing pickups and deliveries that are represented in all columns in RMP, and
to disregard those pickups and deliveries that are not represented at all, in equation (10)
we require that

0 <
∑

r∈R′
v′

vrΛ
T
d′p′t′r < 1. (12)

Since it is only relevant to consider pickups and deliveries that are represented by a
strictly higher quantity than previously fixed, we also require that

∣∣∣∣∣∣

∑

r∈R′
v′

vrxd′p′t′r

∣∣∣∣∣∣
> fT

d′p′t′v′ . (13)

In the same way as for transportation, we find out which production (production line,
product and period) is most represented in RMP by calculating

(l′, p′, t′) = argmax
l∈L,p∈P,t∈T

∑

s∈S′
l

wsΛ
P
d(s)pts (14)

where

ΛP
dpts =

{
0 if ydpts = 0

1 if ydpts �= 0,
(15)

and where it is required in equation (14) that

0 <
∑

s∈S′
l

wsΛ
P
d(s)p′t′s < 1, (16)

and ∑

s∈S′
l′

wsyd(s)p′t′s > fP
l′p′t′ , (17)

If only (d′, p′, t′, v′) exists (i.e., no candidate for production fixing exists), or if
∑

r∈R′
v′

vrΛ
T
d′p′t′r ≥

∑

s∈S′
l′

wsΛ
P
d(s)p′t′s, (18)

then fT
d′p′t′v′ (i.e., a transportation fixing) is fixed (or re-fixed) for vehicle v′ according

to

fT
d′p′t′v′ =

⎡

⎢⎢⎢

∣∣∣∣∣∣

∑

r∈R′
v′

vrxd′p′t′r

∣∣∣∣∣∣

⎤

⎥⎥⎥
. (19)

Otherwise, if only (l′, p′, t′) exists, or if
∑

r∈R′
v′

vrΛ
T
d′p′t′r <

∑

s∈S′
l′

wsΛ
P
d(s)p′t′s, (20)
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then fP
l′p′t′ (i.e., a production fixing) will be fixed (or re-fixed) for production line l′

according to

fP
l′p′t′ =

⎡

⎢⎢⎢

∑

s∈S′
l′

wsyd(s)p′t′s

⎤

⎥⎥⎥
. (21)

If neither a pickup or delivery pickup fixing candidate (d′, p′, t′, v′), or a production fix-
ing candidate (l′, p′, t′) can be found, there might still exist any two columns r′′, r′′′ ∈
R′

v′ or s′′, s′′′ ∈ S′
l′ (for a vehicle v′ ∈ V or a production line l′ ∈ L) with different

coefficients in the optimal solution to RMP. This scenario can occur if equation (12) or
(16) equals one for some delivery, pickup or production while xd′p′t′r′′ �= xd′p′t′r′′′ or
yd′p′t′s′′ �= yd′p′t′s′′′ for any d′ ∈ D, p′ ∈ P and t′ ∈ T . Then we either set

fT
d′p′t′v′ =

⎡

⎢⎢⎢

∣∣∣∣∣∣

∑

r∈R′
v′

vrxd′p′t′r

∣∣∣∣∣∣

⎤

⎥⎥⎥
(22)

or

fP
l′p′t′ =

⎡

⎢⎢⎢

∑

s∈S′
l′

wsyd(s)p′t′s

⎤

⎥⎥⎥
, (23)

to be able to converge towards an integer solution to IMP. Moreover, we remove from
RMP all columns r ∈ R′

v′ with parameter

|xd′p′t′r| �= fT
d′p′t′v′ (24)

if a delivery or a pickup was fixed, or all columns s ∈ S′
l′ with parameter

yd(s)p′t′s �= fP
l′p′t′ (25)

if a production was fixed.
From a few small-scale experiments, we realized that the convergence rate of the

column generation approach was too slow to allow the RMPs to be solved to optimality
before considering termination or variable fixing. Instead we use a heuristic termina-
tion strategy that is based on the relative improvement of generated plans, resulting in
heuristic solutions to the RMPs (and hence MPs). The idea is that it still will be possible
to find heuristically good integer solutions to IMP at termination of the algorithm.

A solution to RMP is considered to be good enough when: for each resource, the
average reduced cost of the e (actually eV for a vehicle or eP for a production line) most
recently added plans (for the particular resource) is less than g (gV or gP ) percent better
than the average reduced cost of the e (eV or eP ) plans that were added immediately
before that. That is, plans are added until the improvement rate has decreased to a
certain level. At this point the algorithm either determines a variable to fix if the current
solution of RMP is fractional, or terminates if the solution is integer. The choice of eV ,
eP , gV , and gP is typically a trade-off between solution time and quality.
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5.2 Transportation Subproblems

We formulate a transportation subproblem for a vehicle v ∈ V using a hierarchical
approach with two separated subproblems; one routing problem and one product as-
signment problem. The routing problem is formulated as a shortest path problem with
additional constraints for representing pickup and delivery fixings. The output is a se-
quence of depots with corresponding time-periods, which will be visited by the vehicle
throughout the planning horizon. In other words, the output is a route serving as input
to the product assignment problem. Then the product assignment problem decides how
much of each product should be delivered for each customer depot visit in the route.

For the studied problem it was found reasonable to allow a maximum of two cus-
tomer depot visits before visiting a producer. Formally this assumption can be described
by introducing a set of network layers, denotedH = {0, . . . , h̄}, as a means to prevent
vehicles from visiting more than h̄ customers before visiting some producer. In our
problem formulation h̄ = 2, and this is the largest number that makes it possible to
calculate analytically correct dual variables for the routing subproblems.

The idea is that layer 0 belongs to the producer depots and layer 1 through h̄ to the
customer depots (each customer is represented in all layers from 1 to h̄). A transport
to a customer arrives in one layer higher than the departure layer, and a transport to a
producer always arrives in layer 0 regardless of which is the departure layer. As an ex-
ample, a transport from a producer depot to a customer depot starts in layer 0 and ends
in layer 1. Accordingly, after h̄ customer depot visits it is only possible to travel to a
producer depot. However, it is possible to return to a producer before h̄ customer depots
have been visited. An outbound trip for a vehicle v is defined as a trip that starts at a
producer depot, visits a number of customer depots, and ends when v returns to some
producer. We require that an outbound trip must contain at least one customer, which
is why a transport between two producers is not considered as an actual outbound trip
even though it typically is allowed to travel directly between producers. The optimal
route from the routing subproblem is defined as a set of outbound trips, which we de-
note Ov . A small example, including only a few transport options, of a time expanded
transportation network is shown in Fig. 5. In the example, 3 network layers are used to
allow a maximum of 2 customer depot visits before visiting a producer.

A time expanded transportation network for vehicle v is defined as a directed graph
(Nv ∪ {a},Av) with a set of nodes Nv ∪ {a} and a set of arcs Av . The set Nv =
{ndht : d ∈ D,h ∈ H, t ∈ T } is a set of network nodes corresponding to actual

Fig. 5. An example of a time expanded transportation network, in which a maximum of two
customer depot visits are allowed before returning to the producer depot
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depots, and a is an artificial node that allows v to end its route anywhere in the network.
An arc (ni, nj) ∈ Av , with travel cost cRPv

(ni,nj)
, is a connection between a starting node

ni ∈ Nv and an ending node nj ∈ Nv ∪ {a}. We introduce parameter η(ni,nj) as a
function of the actual dual variables μ and λ to describe an extra cost or discount that is
added to the cost of arc (ni, nj). The calculation of the η(ni,nj) parameters is made in a
way that the structure of the transportation network is being utilized, as will be detailed
below. We introduce decision variable xRPv

(ni,nj)
∈ {0, 1} to determine the usage of arc

(ni, nj) ∈ Av so that xRPv

(ni,nj)
= 1 if arc (ni, nj) is used in the solution, otherwise

xRPv

(ni,nj)
= 0.

The routing subproblem RPv for vehicle v is formulated as a standard minimum cost
flow problem as:

min
∑

(ni,nj)∈Av

(cRPv

(ni,nj)
− η(ninj))x

RPv

(ni,nj)
(26)

s.t.
∑

xRPv

(nk,ni)

nk:(nk,ni)∈Av

−
∑

xRPv

(ni,nj)

nj :(ni,nj)∈Av

= bni , ni ∈ Nv ∪ {a}, (27)

xRPv

(ni,nj)
∈ {0, 1}, (ni, nj) ∈ Av.

Constraint set (27) specifies the node balance constraints where bni follows the rules in
equation (28). Node ns ∈ Nv denotes the node where v is situated at the beginning of
the planning period, and a allows v to be at any node at the end of the planning period.
The node balance parameter bni for node ni is defined as

bni =

⎧
⎪⎨

⎪⎩

−1 if ni = ns

1 if ni = a

0 otherwise.

(28)

The arc set Av can be described as a subset of the union

AWP
v

⋃
APP

v

⋃
APC

v

⋃
ACC

v

⋃
ACP

v

⋃
AA

v ,

where the content of each of these sets will be detailed below. The estimated time
tlink
d′d′′hv , that vehicle v needs for traveling the direct link from depot d′ to depot d′′, start-

ing in layer h, includes actual driving time, estimated times for loading and unloading,
and estimated resting time. How to calculate link-traveling times will be detailed below.
We here represent a network node using three indices; depot, layer and time period.

AWP
v = {(nd0t, nd0,t+1) : d ∈ DP , t ∈ T \ {t̄}} contains arcs going from a pro-

ducer to the same producer. This allows v to wait at a producer depot between to
subsequent time periods.

APP
v = {(nd′0t, nd′′0,t+�tlink

d′d′′0v�) : d′, d′′ ∈ DP , d′ �= d′′, t ∈ {0, . . . , t̄ − tlink
d′d′′0v}}

contains arcs going from one producer to a different producer to allow v to travel
between producer depots.

APC
v = {(nd′0t, nd′′1,t+�tlink

d′d′′0v�) : d
′ ∈ DP , d′′ ∈ DC , t ∈ {0, . . . , t̄− tlink

d′d′′0v}} con-
tains arcs going from a producer to a customer, allowing v to travel from producer
depots to customer depots.
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ACC
v = {(nd′ht, nd′′,h+1,t+�tlink

d′d′′hv
�) : d′, d′′ ∈ DC , d′ �= d′′, h ∈ {1, . . . , h̄− 1}, t ∈

{0, . . . , t̄− tlink
d′d′′hv}} contains arcs going from a customer to a different customer

allowing v to travel between customer depots.
ACP

v = {(nd′ht, nd′′0,t+�tlink
d′d′′hv

�) : d′ ∈ DC , d′′ ∈ DP , h ∈ H \ {0}, t ∈ {0, . . . , t̄−
tlink
d′d′′hv}} contains arcs going from a customer to a producer to allow v to travel

from customer depots to producer depots.
AA

v = {(n, a) : n ∈ Nv} contains one arc from each network node to the artificial
node a to allow v to stop its route at any location, in any layer, and in any time
period. The transportation cost for an “artificial arc”, starting in node n, corre-
sponds to the cost for traveling from n to the “home base” of v. The reason for
adding costs to the artificial arcs, even though they do not correspond to actual
transports, is that we do not want any particular location to be favored at the end
of the planning period.

If there is no direct connection between two depots, Av will not contain any arcs be-
tween the corresponding network nodes. Moreover, the time expanded transportation
networks contain no arcs allowing vehicles to wait at customer depots. We consider this
modeling assumption reasonable, because in the considered problem there is no need
for waiting at customers.

Transportation costs for arcs in the routing subproblems are composed of three types
of costs, which in the model are represented by link-based costs:

1. Time-based costs (e.g., driver salary, capital cost, and administration) are assumed
for the time the vehicle spends away from a producer depot. The driver is assumed
to receive salary when the vehicle is on the road and during unloading of prod-
ucts. Loading of products is performed by ground staff, who has the same salary
as the drivers. Unloading, on the other hand, is assumed to be performed by the
drivers. Therefore, the driving time, as well as the time for unloading need to be
compensated for by resting time, and salary is not considered during resting.

2. Distance-based costs (e.g., fuel, vehicle wear, and kilometer taxes) are based on the
distance the vehicles travel.

3. Link-based costs (e.g., road tolls) are fixed costs that are charged when vehicles
travel on certain links.

When a routing subproblem is formulated there exists no information about loadings
and unloadings (e.g., concerning quantities). Therefore, loading and unloading times
have to be estimated, and we have chosen to base these estimations on average loading
and unloading times taken over all available product types. We assume loading times for
a full vehicle at producer nodes, and unloading times for a 50% load at customer depots,
i.e., loading time is added to arcs leaving producers and unloading time to arcs arriv-
ing to customer depots. Accordingly, we model fixed times for loading and unloading,
which are independent on actual transportation volumes.

The working and resting hour regulation used in the routing subproblem allows for a
maximum of tmax working hours of working (driving) before there must be a minimum of
tmin resting hours of resting. However, we assume that two outbound trips that in sequence
violate the working hour regulation are performed by different drivers. Hence, working
hour restrictions are only considered within a single outbound trip.
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To be able to estimate the time that the driver needs to rest when traveling on a link
from depot d′ to depot d′′, starting in layer h, we introduce a working hour estimation
test working
d′hv . This is a lower bound estimation of the time it takes for v to drive from any

producer depot to the starting depot d′, with the requirement that it must pass exactly
h different customer depots. The estimation is actually the shortest path from any pro-
ducer to d′ with the additional requirement of exactly h customer depot visits. For small
networks, and small numbers of h̄, these lower bound estimations can be found rather
easily.

The estimated time tlink
d′d′′hv that vehicle v needs to travel a link from depot d′ to depot

d′′, when starting in layer h, is calculated according to equation

tlink
d′d′′hv = tworking

d′d′′hv + tresting
d′d′′hv, (29)

where the link traveling time is decomposed into working time tworking
d′d′′hv (i.e., time for

driving and unloading) and resting time tresting
d′d′′hv . The resting time tresting

d′d′′hv is estimated
according to equation

tresting
d′d′′hv = kd · tmin resting, (30)

as the number of resting periods kd times the minimum resting time tmin resting of each
such resting period. The number of resting periods depends on the link working time
t

working
d′d′′hv and on the working time estimation test working

d′hv for traveling to depot d′, and it is
calculated as

kd = max

⎧
⎨

⎩

⎢⎢⎢⎣

(
test working
d′hv − test load

)
mod tmax working + tworking

d′d′′v − ε

tmax working

⎥⎥⎥⎦ , 0

⎫
⎬

⎭ , (31)

where the expression
(
test working
d′hv − test load

)
mod tmax working (32)

denotes the remaining portion of the estimated working time test working
d′hv that has not been

accounted for by resting time when traveling to d′. The loading time is subtracted from
the estimated working time test working

d′hv because loading is assumed to be performed by
ground staff. The parameter 0 < ε < 1/tmax working is introduced in order to avoid a
special case that occurs in equation (31) whenever the denominator is a devisor of the
nominator, causing kd to take on a value that is 1 unit too large. It is worth noting that
all times are expressed in minutes represented by integer numbers. It should also be
noted that the estimation of resting times assumes that vehicles never wait at customer
depots, which is also prohibited in the routing problem.

As mentioned above, the η cost parameters that are used in the routing subprob-
lems are calculated from the μ and λ dual variables in a way that the structure of the
transportation network is utilized. For each arrival customer depot, network layer and
time period, the calculation of an analytically correct value of the η parameter requires
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knowledge about when and from which producer depot the vehicle has departed. To
enable correct costs and strong estimates on time, we make the following assumptions:

1. An outbound trip is allowed to contain at most two customer depot visits.
2. Each customer receives products from exactly one producer depot.
3. Waiting at customer depots is not allowed.

With these assumptions, the estimated resting times will also be analytically correct, i.e.,
not estimated. Otherwise it is impossible to know how vehicles travel in the network.
The assumptions listed above are essential because driving time, which has not been
“rested for” accumulates over traveled links. A small example of a driving and resting
time approximation is given in Fig. 6.

Fig. 6. An example of a working and resting time approximation with tmax working = 10 and
tmin resting = 9

From the maximum capacity of vehicle v (weight capacity ϕweight
v and volume ca-

pacity ϕvolume
v ), for each p ∈ P we estimate the maximum number

Φvp =

⌊
min

{
ϕweight
v

weight(p)
,
ϕvolume
v

volume(p)

}⌋
(33)

of items of product p that can be loaded on v. The Φvp :s are restricted either by the
volume capacity or by the weight capacity of v, and they will be used when calculating
the η parameters, as well as in the product assignment problem presented below.

In order to compute the parameter η we first consider transports from producer depots
to customer depots. A transport is assumed to start in a network node ns representing
producer depot d(ns) ∈ DP and period t(ns), and it is assumed to end in a network
node ne representing customer depot d(ne) ∈ DC and period t(ne). This case is rather
straightforward and the η(ns,ne) value is calculated according to

η(ns,ne) = max

{
0,max

p∈P ′

((
λd(ne)pt(ne) − μd(ns)pt(ns)

) · Φvp

)}
, (34)

where P ′ ⊆ P describes the set of products that can be produced in d(ns) and con-
sumed in d(ne). Next we consider transports between two different customer depots.
Here a transport is assumed to start in a network node ne representing customer depot
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d(ne) ∈ DC and period t(ne), and it is assumed to end in a network node nc repre-
senting customer depot d(nc) ∈ DC and period t(nc). Knowledge about the network
node ns representing the producer depot d(ns) ∈ DP and the period t(ns) from where
the transport was assumed to start is required for a correct calculation of η(ne,nc). As
mentioned above, such information is accessible since: at most two customer visits is
allowed in an outbound trip, each customer can be reached from at most one producer
and waiting at customer depots is forbidden. The value of η(ne,nc) can be calculated as

η(ne,nc) = max
{
0, η(ns,nc) − η(ns,ne)

}
, (35)

where η(ns,ne) and η(ns,nc) is calculated according to equation (34). Hence the value
for going from ne to a customer depot nc is equivalent to the potential extra value that
can be obtained at nc compared to the value at ne.

In a routing subproblem, quantities can be fixed either at producer depots or at cus-
tomer depots and the two cases are handled differently. In routing problem RPv, a con-
straint ∑

ni:d(ni)=d′,t(ni)=t′

∑

nk:(ni,nk)∈Av′

x
RPv′
(ni,nk)

= 1 (36)

is added for each producer depot fixing fT
d′p′t′v′ > 0, and for each customer depot fixing

fT
d′p′t′v′ > 0 we add a constraint

∑

nk:(nk,nj)∈Av′

∑

nj :d(nj)=d′,t(nj)=t′
x

RPv′
(nk,nj)

= 1. (37)

Constraint (36) means that v′ must depart from producer depot d′ in period t′, and
constraint (37) forces vehicle v′ to arrive at customer depot d′ in period t′. It should
be emphasized that these constraints remove the integrality property of the routing
problems.

Implicitly the product assignment subproblem is solved already in the routing sub-
problem. However, we explicitly formulate an optimization problem in order to handle
fixings, i.e., minimum quantities for pickups and deliveries. From the optimal routeOv

determined by RPv , defined as a set of outbound trips, a product assignment problem
is formulated. The purpose of a product assignment problem is to decide how much of
each product will be picked-up from each producer depot and delivered to each cus-
tomer depot in the route. The problem separates into one subproblem (ASPo) for each
outbound trip o ∈ Ov .

We introduce an ordered index set Jo = {1, . . . , jo} over the depot visits in outbound
trip o ∈ Ov , starting with index 1 for the producer depot, index 2 for the first customer
depot, etc. For simplified representation we let d(j) and t(j) refer to the depot and time
period represented by visit j in the outbound trip. Moreover, we let decision variable
xASPo

d(j)p ∈ Z
+, p ∈ P, j ∈ Jo \ {1} represent the amount of product type p that is

delivered to the j :th customer in outbound trip o.
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We formulate the product assignment problem ASPo for outbound trip o ∈ Ov as:

max
∑

p∈P

∑(
λd(j)pt(j) − μd(1)pt(1)

)
xASPo

d(j)p

j∈Jo\{1}
, (38)

s.t.
∑

p∈P

∑
weight(p) · xASPo

d(j)p ≤ ϕweight
v

j∈Jo\{1}
, (39)

∑

p∈P

∑
volume(p) · xASPo

d(j)p ≤ ϕvolume
v

j∈Jo\{1}
, (40)

xASPo

d(j)p ∈ Z
+, p ∈ P, j ∈ Jo \ {1}.

The objective function (38) maximizes the utility of pickup and deliveries for the given
route, and constraint sets (39) and (40) express the weight and volume restrictions on
vehicle v.

In a product assignment problem, a quantity can be fixed either for a producer depot
or for a customer depot. For each producer depot fixing fT

d′p′t′v′ > 0, a constraint

∑

j∈Jo′\{1}
x

ASPo′
d(j)p′ ≥ fT

d′p′t′v′ (41)

is added to the assignment problem ASPo′ that represents fT
d′p′t′v′ . This forces v′ to

pickup at least fT
d′p′t′v′ units of product p′ from producer depot d′ in period t′. More-

over, for each customer fixing fT
d′p′t′v′ > 0, we add a constraint

x
ASPo′
d′p′ ≥ fT

d′p′t′v′ , (42)

to the assignment problem ASPo′ that represents fT
d′p′t′v′ . This guarantees that at least

fT
d′p′t′v′ units of product p′ will be delivered to customer depot d′ in period t′.

The ASPo subproblems assign products to the optimal route Ov, and together they
form a transportation plan. After solving the routing subproblem and the product as-
signment subproblems, the optimal objective function value (i.e., the reduced cost in
RMP) of the transportation subproblem for vehicle v can be calculated as

∑

(ni,nj)∈Av

cRPv

(ni,nj)
x∗RPv

(ni,nj)
+

∑

o∈Ov

ASP∗
o − δv, (43)

where x∗RPv

(ni,nj)
denotes the optimal value of variable xRPv

(ni,nj)
, ASP∗

o denotes the optimal
objective value of ASPo, and δv is the convexity constraint dual variable for vehicle v.

5.3 Production Scheduling Subproblems

The purpose of a production scheduling subproblem for a production line l ∈ L is to
find improving production plans for l guided by the values of the μ dual variables. We
let cprod

lp denote the cost for production line l to produce one unit of product p ∈ P , and

csetup
lp denote a fixed setup cost for each period product p is produced. The modeled real-

world problem contains costs for startup and changeover, but we consider the problem
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formulation here to be detailed enough. A more advanced model for the studied real-
world production problem is provided by Sohier [25]. The model by Sohier includes
product sequencing on a set of production lines, but it is restricted to short planning
horizons, which makes it difficult for us to use.

We let decision variable xPSPl
pt ∈ Z

+ determine the amount of product p to be pro-
duced in period t. The products that are produced in a period are assumed to be available
for pickup in the same period. Binary variable yPSPl

pt ∈ {0, 1} is used to indicate whether

there will be a production of product p in period t (yPSPl
pt = 1) or not (yPSPl

pt = 0), and
we let U denote the maximum number of different product types that can be produced
in one period. The production scheduling subproblem PSPl can be formulated as:

min
∑

p∈P

∑

t∈T

(
cprod
lp − μpt

)
xPSPl
pt +

∑

p∈P

∑

t∈T

cprod
lp yPSPl

pt − θl (44)

s.t.
∑

tprod
lp xPSPl

pt

p∈P

≤ τ, t ∈ T, (45)

tprod
lp xPSPl

pt ≤ τyPSPl
pt , p ∈ P, t ∈ T, (46)

∑

p∈P

yPSPl
pt ≤ U, t ∈ T, (47)

xPSPl
pt ∈ Z

+, p ∈ P, t ∈ T,

yPSPl
pt ∈ {0, 1}, p ∈ P, t ∈ T.

Constraints (45) models the capacity constraints, where tprod
lp denotes the time needed

for production line l to produce one unit of product p, and τ denotes the length of a time
period. To be able to model setup costs, constraint set (46) forces each yPSPl

pt variable

to value one whenever the corresponding xPSPl
pt is greater than 0. Constraint set (47)

restricts the number of different product types can be produced in any period to U .
Note that we subtract the convexity constraint dual variable θl in the objective function,
and that the inventory balance constraints normally included in production scheduling
problems here belong to the master problem, which is controlled by the supply chain
coordinator. Therefore, the production scheduling problems separate over time. The
objective function value of the optimal solution gives the reduced cost of the generated
production plan.

To represent production fixings in the production scheduling subproblems, for each
production fixing fP

p′t′l′ > 0 we add a constraint

x
PSPl′
p′t′ ≥ fp′t′l′ (48)

to subproblem PSPl′ . This forces production line l′ to include a production of at least
fp′t′l′ units of product p′ in period t′ in all subsequently generated plans.

6 Computational Experiments

Our DW column generation algorithm has been implemented inside a multi-agent-based
simulation tool called TAPAS [24]. TAPAS is implemented in the Java programming
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language using the Java Agent DEvelopment Framework (JADE) platform [26] and
the MILP solver ILOG CPLEX1 10.0 is used for solving optimization problems. In
the experiments TAPAS runs on a single computer, but a distributed implementation
where agents run on different computers, is straightforward. This would increase the
communication overhead while potentially reducing the overall solution time due to the
availability of more processors and the potential for parallel processing. In our imple-
mentation, overhead is caused by JADE, e.g., by spending effort on coding and decoding
messages. Our implementation approach simulates a situation with a coordinator agent
and planning agents located at different locations, and it allows for investigation of the
potential usage of the approach.

6.1 Scenario Description

The proposed solution approach has been used for solving 5 scenarios with a transporta-
tion network containing 2 producer depots d1 and d7 (with one production line each),
6 customer depots d2, . . . , d6 and d8, and a planning horizon of 72 time periods with
uniform length 2 hours (i.e., 6 days). The scenarios were generated randomly, and they
differ in customer demand, as well as minimum, maximum and initial storage levels. In
each scenario, three different settings regarding VMI were tested, giving a total of 15
simulation runs. Producer depot d1 provides customer depots d2, . . . , d6 with products
and the purpose of d7 and d8 is to model possibly non-empty return transports for a
small portion of the vehicles returning to d1. The routes between depots are represented
by direct links, with distances given in Table 1. From depot d1 it is possible to travel to
depots d2, . . . , d7, from d2, . . . , d6 to all depots except d8, from d7 to d1 and d8, and
from d8 to d1. The average speed is 70 km/hour on all links and the time-based trans-
portation cost is estimated to 250 SEK/hour. Furthermore, the EEC regulations (EEC
3820/1985) for working and resting hours are approximated by allowing a maximum of
10 hours of working before a minimum of 9 hours of resting has to take place. More-
over, the distance-based cost during transportation is 7.69 SEK/km.

Table 1. Distance (in km) between the depots in the scenario

d1
355 d2
353 216 d3
450 407 167 d4
531 487 248 141 d5
615 455 333 226 93 d6
209 130 232 362 442 522 d7
95 - - - - - 119 d8

The scenarios use a fleet of 9 vehicles v1, . . . , v9 with identical weight capacities of
35 tons. The volume restriction for the vehicles are dominated by the weight restrictions,

1 http://www.ilog.com/

http://www.ilog.com/
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and there are no limitations concerning which types of products can be transported on
the different vehicles. For each vehicle, we specify a depot and an earliest time period
from which it is available for further planning. Vehicles v8 and v9 represent third party
transport capacity, which can be called in to a cost approximately 10% higher than the
cost for using v1, . . . , v7.

The scenarios use 4 different product types p1, . . . , p4, each with a mass of 5 tons per
unit (or batch). Product type p4 is used to model return transports and it is assumed that
p4 is produced only in d7 and consumed only in d8. Therefore, the production and setup
costs for p4 are assumed to be 0. Products p1, . . . , p3 can be produced in production line
l1 with production costs of 1500 SEK/unit and setup costs of 1000 SEK. The production
capacity of product types p1, . . . , p3 is 2.5 batches/hour and the capacity for producing
p4 is 4 batches/hour. The cost for storing one unit of p1, . . . , p3 between two subsequent
periods is 300 SEK in d1 and 350 SEK in d2, . . . , d6. For p4, the storage cost equals
150 SEK in d7 and 175 SEK in d8.

For each producer depot, an initial inventory level was chosen randomly between 0
and a maximum inventory level, which is 10 for products p1, . . . , p3 in d1, and 7 for
product p4 in d7. The penalty cost for violating the allowed minimum and maximum
inventory levels is 8200SEK/unit for d1 and 4120 SEK/unit for d7. For customer depots,
the penalty cost for exceeding the maximum allowed inventory level is 8200 SEK/unit
for depots d2, . . . , d6 and 4120 SEK/unit for d8. For inventory shortages, the penalty is
9020 SEK/unit for depots d2, . . . , d6 and 4520 SEK/unit for depot d8.

In depots d2, . . . , d6, the forecasted average consumptions (in units per 2 hour time
period) of products p1, . . . , p3 is 0.15, and in d8, the average forecasted consumption
of p4 is 0.35. A demand-forecast used in a scenario is chosen randomly in steps of 0.05
units with equal probability between 0 and 2 times the averaged forecasted demand. For
example, for an expected forecast of 0.2, values between 0 and 0.4 can be generated.
Consumption is aggregated to integer values, which means, for instance, that an average
consumption of 0.2 units per period gives a demand for 1 unit every 5:th period. The
main reason for aggregating consumptions is that transportation is performed in integer
quantities, and it simplifies our comparisons between scenarios with and without VMI.

In a customer depot, the safety inventory level for a product is chosen as the quantity
that, according to the consumption forecast, is consumed during any period of random
length between 1 and 2 days. In the same way, for a VMI customer, the maximum
inventory level is chosen as the quantity that is expected to be consumed during a period
of random length between 5 and 7 days. An initial inventory level is chosen randomly as
an integer number between the safety and the maximum inventory levels. For non-VMI
customers, we randomly generated delivery quantities (one for each customer and each
product type) in steps of 5 between 5 and 35 tons (i.e., 1 to 7 units). This is justified by
a historical, for the studied producer, average delivery size of approximately 20 tons.
Hence, for a non-VMI customer the maximum inventory level for a product is assumed
to be equal to the safety inventory level plus the delivery size, minus one (deliveries are
made so that the inventory level never falls below the minimum level). To be able to
compare the results for VMI and non-VMI settings, a maximum inventory level for a
VMI customer is not allowed to be less than the maximum level for the same customer
and product in the corresponding non-VMI setting. For VMI customers, the inventory
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levels always have to be kept between the safety and maximum allowed inventory levels,
and for a non-VMI customer the inventory level of a product in a particular period
equals (i.e., with equality in equation (4)) a certain level that depends on the initial
inventory level, delivery size, order point, and forecasted consumption rate.

The time it takes to load a truck is estimated to 1 hour and the time it takes to unload
a truck is estimated to 2 hours, with costs 250 SEK and 500 SEK respectively. Before
loading takes place at a producer depot, the truck has to be cleaned, and cleaning takes
1 hour and costs 1300 SEK. Loading and unloading times are assumed for full trucks,
which we consider to be reasonable since the studied transport operator indicates that it
is common that vehicles are fully loaded (or close to being fully loaded).

6.2 VMI Analysis

For the set of 5 randomly generated scenarios, simulation experiments with 3 different
VMI settings have been performed. We let full refer to a setting where all customers
except d8 use VMI, none to a setting with only non-VMI customers, and one to a setting
where only customer d3 use VMI. In the experiments we used a termination criteria with
parameters eV = eP = 3 and gV = gP = 10.

The results from the experiments, with respect to different types of costs, are pre-
sented in Table 2. In Table 3 we present the reduction of each type of cost when taking
the step from setting none to setting one, i.e., when going from zero to one VMI cus-
tomer. The additional cost reductions when letting all customers except d8 use VMI
are presented in Table 4. The economic advantage for full compared to one is rather

Table 2. The costs for production, transportation, storage, and penalty, as well as the total cost
in the system, for each scenario (Sc) and VMI setting. In the penalty cost column, the total
penalty cost for violating safety stock levels is written first, followed by the total penalty cost for
exceeding maximum inventory levels.

Sc Setting Production Transportation Storage Penalty (short / exc) Total

1 full 119000 220741 135738 0 / 0 475479
1 one 119500 283987 139617 0 / 28720 571824
1 none 140000 261653 139838 0 / 114800 656291
2 full 212500 300789 172210 27080 / 0 712579
2 one 233000 354719 174083 99280 / 65600 926682
2 none 234500 398659 170829 72220 / 98400 974608
3 full 166000 262935 174190 0 / 0 603125
3 one 173500 385060 176325 63140 / 114800 912825
3 none 145000 366564 163920 198880 / 271480 1145844
4 full 194500 264527 156875 0 / 0 615902
4 one 213500 304449 162915 54120 / 4120 739104
4 none 222500 342993 157340 81180 / 172200 976213
5 full 134500 252012 160033 0 / 0 546545
5 one 241000 295026 186117 36080 / 164000 922223
5 none 221000 305386 178754 63140 / 176320 944600
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Table 3. The reduction of the production cost, transportation cost, storage cost, total penalty cost,
total system cost, and total cost when the penalty cost is disregarded, when going from setting
none to setting one. It should be noted that cost reductions are represented by positive numbers.

Sc Production Transportation Storage Penalty Total Total (no penalty)

1 20500 -22334 221 86080 84467 -1613
2 1500 43940 -3254 5740 47926 42186
3 -28500 -18496 -12405 292420 233019 -59401
4 9000 38544 -5575 195140 237107 41969
5 -20000 10360 -7363 39380 22377 -17003

Avg -3500 10403 -5675 123752 124980 1228
Std Dev 20338 30917 4711 118332 102897 42877

Table 4. The reduction of the production cost, transportation cost, storage cost, total penalty cost,
total system cost, and total cost when the penalty cost is disregarded, when going from setting
one to setting full. Again cost reductions are presented with positive numbers.

Sc Production Transportation Storage Penalty Total Total (no penalty)

1 500 63246 3879 28720 96345 67625
2 20500 53930 1873 137800 214103 76303
3 7500 122125 2135 177940 309700 131760
4 19000 39922 6040 58240 123202 64962
5 106500 43014 26084 200080 375678 175598

Avg 30800 64447 8002 120556 223806 103250
Std Dev 43118 33540 10244 74551 119273 48755

obvious since it is observed that all costs in each scenario is lower in full. However, the
economic advantage for one compared to none is less obvious. Penalty costs represent
real costs for obtaining products too early or too late, e.g., by approximating costs for
additional storage, wastage, and missed sales. Sometimes, slightly penalized (but cost
efficient) plans might be accepted due to the flexibility of the customers. Therefore, it is
relevant here to also compare the costs when penalties are disregarded. If penalty costs
are included in the comparison of the total costs, one always performs better than none.
However, if the penalty costs are disregarded, none sometimes performs better than one
and sometimes the opposite holds. The average improvement of 1228 SEK does how-
ever indicate that one works better. In summary, the results indicate that the algorithm
manages to find better solutions for the full setting than for the one and none settings.

6.3 Time Performance Analysis

In each iteration, the coordinator agent sends one plan request message to each planner
agent (in our scenarios: one transport planner and two production planners), and each
planner returns a response message to the coordinator. A response message can either
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contain a generated plan or a failure notification indicating that no plan could be gen-
erated at the time of the request. For our 15 simulation runs, which used an average of
2171 master problem iterations to reach the final solution, in average 13023 messages
was be sent. The number of messages can be used as a measure of the overhead in the
system in comparison to a non-agent-based implementation approach. The size of each
message depends on the actual application and the problem size, since a bigger problem
requires that more information (e.g., dual variables) need to be communicated.

For each of the 15 simulation runs, we estimated an upper bound of the overhead
imposed by the agentification our decomposition algorithm. This upper bound was cal-
culated as the total running time minus the estimated time for performing decomposi-
tion related tasks. We measured an average total running time of 9509 seconds and an
average lower bound estimation of 6583 seconds for the time spent in the actual decom-
position algorithm. This gives an average estimated overhead of approximately 35.7%
of the total running time, which is taken as the average over the estimated overhead of
all simulation runs.

Moreover, we estimated the expected performance improvement that can be achieved
when all subproblems are distributed and solved in parallel on different computers. For
the 15 simulation runs, we measured average estimated total solution times of 3856 sec-
onds for the transportation subproblems and 17.1 seconds for the production schedul-
ing subproblems. Assuming all problems of the same type need the same solution time,
we get average times of 0.20 and 0.0039 seconds for solving one transportation and
one production scheduling subproblem. The average transportation subproblem solu-
tion time is calculated as the average of the average transportation subproblem solution
times taken over the 15 simulation runs, and the average production subproblem solu-
tion time is calculated in the same way.

If the communication overhead that is caused by a parallelization is disregarded, a
theoretical average potential time reduction from (3856+17.1) ≈ 3873 seconds to 429
seconds is estimated for our scenarios. The theoretical time reduction for a scenario
is calculated as the number of master problem iterations times the maximum of the
average solution time of one transportation subproblem and the average solution time of
one production subproblem. In our scenarios, this would give an average time reduction
of 3873− 429 = 3444 seconds of the total running time. Here, we assume a use of 12
computers; 9 for transportation subproblems, 2 for production scheduling subproblems
and 1 for the master problem. Solving the production scheduling subproblems and the
master problem on the same computer would give the same improved running time, but
confidentiality of information would be weakened. Note that it is impossible to use the
main algorithm as it is displayed in Fig. 3 to utilize a complete parallelization. Instead
dual variables have to be sent to the transport planners and the production planners in
parallel without resolving RMP in between.

7 Confidentiality of Information

An important advantage of the proposed agent-based approach to DW decomposition,
compared to a centralized approach, is the possibility to achieve increased confiden-
tiality of information. From the perspective of what type of information need to be
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communicated, we here provide a comparison between a centralized and an agent-based
approach to DW decomposition.

In a centralized approach, a central node of computation needs to be given access to
all information that will be used when formulating the problem. From a confidentiality
perspective it is not important whether the problem is formulated using decomposition
or using a different approach; basically the same information need to be shared. In an
agent-based approach, the coordinator needs to obtain all information that need to be
used when formulating the master problem, but subproblem specific information can
be kept local. The exact information that needs to be shared is case specific, depending
on how the problem is formulated with respect to what aspects are modeled in the
master problem and what aspects are modeled in the subproblems. Moreover, in each
iteration, dual variables need to be sent to the planner agents, who return plans to the
coordinator. It follows that complete confidentiality is practically impossible to achieve.
For instance, since dual variables and plans are iteratively communicated between the
coordinator and the planners, it is often possible for the coordinator to create a model of
how planner agents generate plans. However, this has to be done without using explicit
information about the planner agents.

In addition to knowing about which depots, production lines and vehicles should be
modeled, in our case specific solution approach, the coordinator needs the following
information to be able to construct MP (or actually IMP): (1) demand forecast for VMI
customers and orders for non-VMI customers, (2) inventory constraints for all depots,
and (3) penalty costs (for each depot) for violating inventory constraints. In each iter-
ation, dual variables are sent to the planner agents, who return improving production
plans and transportation plans. A production plan (for a particular production line) con-
sists of a price and the amount of each product type that is produced in each period
throughout the planning horizon. A transportation plan (for a vehicle) defines a price
and the amount of each product type that is delivered to, or picked-up from, each depot
in each period during the planning period.

8 Concluding Remarks and Future Work

We have shown that it is possible to create an agent-based approach to optimization
based on the principles of Dantzig-Wolfe decomposition. Some rather obvious positive
effects of the agent-based approach are increased confidentiality, robustness and possi-
bility of distributed computing. Negative effects are increased processing and commu-
nication. However, a parallelization of the approach will typically have a positive effect
on solution time and quality. One advantage is the ability to locally specify and modify
the subproblems, and another is that a local agent always is able to provide the most
recent subproblem solution to the local planners even though it may be based on old
dual variables.

In order to capitalize on the use of our multi-agent-based approach for achieving
performance improvements, we find it interesting to experiment with a distributed sys-
tem where agents run on different computers. This is a natural representation of the
real world, where actors (agents) are geographically separated and an agent typically
only has access to its own data and its own computer. The estimations presented in
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Section 6.3 indicate that a parallelization may give a significant improvement on the
time performance. Also, a parallelization would allow for solving more complex sub-
problems, which would make it possible to capture more details of the actual problem,
as well as obtaining solutions with higher quality. Note that our time performance im-
provement estimation assumes perfect parallelization with no communication overhead,
and further investigation needs to be done regarding communication overhead. Regard-
ing the robustness of the approach, planner agents may fail (go down) temporarily, while
the coordinator never is allowed to fail. Future work includes refining the algorithmic
approach to enable permanent failures of all agent types to be dealt with. For instance,
a possible solution to a coordinator failure is to let a planner agent take on the role as
coordinator.

In a case study, we have applied the agent-based decomposition approach to a real-
world integrated production, inventory and routing problem. The studied problem is
rather general and it is independent of the choice of production and transportation sub-
problems. However, the planners (subproblems) must be able to take dual variables as
input and be able to produce new production or transportation plans that can be com-
municated to the coordinator (master problem). By choosing customized production
and transportation subproblems, our solution approach can be used to solve integrated
production, inventory, and routing problems where:

1. Decisions about inventories are taken centrally and detailed decisions about trans-
portation and production are taken locally.

2. The master problem can produce dual variables and receive production and trans-
portation plans.

Hence, we conclude that our approach has the potential to work as a framework for this
type of problem. Moreover, the ideas behind our decomposition approach are rather
general, and we argue that it can be used to develop solution approaches for other types
of problems than our case problem. However, it should be emphasized that a decompo-
sition scheme including master/subproblem formulations, variable restriction strategy,
and termination criteria needs to be designed in such a way that the special characteris-
tics of the studied problem is utilized.

For a set of scenarios in the studied case, the presented decomposition approach
has been used to conduct a quantitative comparison of different degrees of VMI uti-
lization. The main purpose of the VMI comparison was to illustrate the use of our
approach. To obtain results that are statistically significant, more experiments need to
be conducted and the approach need to be further validated. The results indicate that the
algorithm produces solutions with lower costs for scenarios with more VMI customers.
Most likely, the reason is that a higher number of VMI customers increases the solution
space of the problem. For instance, we have experienced solutions with high penalty
costs for scenarios without VMI customers, which has not been the case for scenarios
with VMI customers. A possible explanation is that the algorithm performs better for
cases with VMI customers. One reason for this might be that the full setting in general
uses more iterations than the other settings. Therefore it would be interesting to exper-
iment with termination criteria that allow the different settings to use approximately
the same number of iterations before termination. Another possible explanation is the
restriction that allows vehicles to wait only in producer depots. This makes it more
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difficult to obtain transport solutions in which more than one customer is visited in the
same outbound trip.

By enabling the economic effects of the introduction of VMI to be studied, we be-
lieve that the proposed problem specific solution approach has the potential to provide
strategic decision support (concerning VMI) for the involved actors. Moreover, since
the approach can be used for suggesting candidate plans for the modeled resources
we further believe it has potential to be used as an operational decision support sys-
tem. For instance, it can suggest plans to human planners in real time to facilitate their
decision-making.
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