
Let the Clouds Compute: Cost-Efficient

Workload Distribution in Infrastructure Clouds

Ulrich Lampe, Melanie Siebenhaar, Ronny Hans,
Dieter Schuller, and Ralf Steinmetz

Multimedia Communications Lab (KOM), TU Darmstadt, Germany
Ulrich.Lampe@kom.tu-darmstadt.de

http://www.kom.tu-darmstadt.de

Abstract. With cloud computing, a virtually inexhaustible pool of com-
puting capacity has become available to IT users. However, given the
large number of Infrastructure as a Service offers with differing pricing
options, the cost-efficient distribution of workloads poses a complex chal-
lenge. In this work-in-progress paper, we formally describe the Cloud-
oriented Workload Distribution Problem and propose an exact as well as
a heuristic optimization approach. Through an evaluation that is based
on realistic data from the cloud market, we examine the performance
and practical applicability of these approaches.

Keywords: Cloud Computing, Infrastructure, Workload, Distribution,
Deployment, Offline, Optimization, Exact, Heuristic.

1 Introduction

With the advent of cloud computing, Information Technology (IT) services have
increasingly become commodities over the last few years, resulting in the vision
of “IT as the fifth utility” [1]. Combined with aspects such as the elimination of
upfront investments and high scalability, the idea to lease computing capacity –
rather than provide it in-house – increasingly gains in appeal.

In this work, we assume that a user aims to deploy a workload onto leased
cloud infrastructure at minimal cost. We define a workload as a set of multiple
computational jobs, which are executed on Infrastructure as a Service (IaaS)
capacities in the form of Virtual Machines (VMs). The decision where to place
these jobs is complicated by two main factors: First, VMs are discrete compute
units that only provide a limited supply of certain resources, such as processor
power or local storage space. Second, billing schemes commonly differ between
the various cloud providers and involve different price components, such as peri-
odical VM leasing fees and usage-based network traffic fees.

In the work at hand, we refer to this challenge as Cloud-oriented Workload
Distribution Problem (CWDP). In the following Section 2, the problem is defined
in detail. In Section 3, we present exact and heuristic optimization approaches
to solve the CWDP. A quantitative evaluation of both approaches is described
in Section 4. Section 5 provides an overview of related work. Lastly, Section 6
concludes the paper with a summary and an outlook on future work.

K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2012, LNCS 7714, pp. 91–101, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.kom.tu-darmstadt.de


92 U. Lampe et al.

2 Problem Statement

As mentioned before, we address the so-called CWDP in the work at hand.
We assume that a user has specified a workload, which he/she aims to deploy
onto leased cloud infrastructure in the form of VMs. The workload consists
of individual computational jobs with given durations, i. e., the initiation and
termination times of all jobs are known in advance. Computational jobs may, e. g.,
represent distributed application components or tasks in a scientific algorithm.

Each job exhibits certain resource demands throughout its execution, e. g., in
terms of processor power or network bandwidth. Jobs cannot be split among
different VM instances; however, multiple jobs may be combined on one VM
instance. In addition, all jobs are non-preemptable, i. e., they have to be contin-
uously executed.

Within the cloud market, different VM types are available to the user from
multiple IaaS providers, such as Amazon1 or Microsoft2. Each instance of a VM
type supplies a different quantity of resources, e. g., processor power, and imposes
a certain usage fee per fixed-length leasing period. In addition, surcharges for each
unit of resource consumption, e. g., network traffic, may apply.

The objective of the user consists in minimizing his/her total leasing cost. As
a constraint, the resource demands of all jobs within the workload have to be
satisfied by corresponding resource supplies.

3 Optimization Approaches

In this section, we first introduce formal notations, which subsequently permit to
define the CWDP as mathematical optimization model and infer an exact opti-
mization approach. Due to the computational complexity of such exact approach,
we additionally present a heuristic optimization approach.

3.1 Formal Notations

In order to map the CWDP into a formal optimization model, we introduce a few
formal notations. To begin with, let J ⊂ N denote the set of jobs that comprise
the workload. For each job j ∈ J , its initiation time TIj ∈ N, termination time
TTj ∈ N, and corresponding duration Dj ∈ N are given. The jobs exhibit com-
putational demands, which refer to the set of resource types R ⊂ N. Specifically,
RDj,r denotes the resource demand that job j imposes on a VM instance with
respect to the resource type r ∈ R.

The available VM types are given by the set V ⊂ N. The maximum number of
concurrently available instances of VM type v ∈ V , as specified by the respective
IaaS provider, correspond to mv ∈ N. We further define RSv,r as the supply of
resource type r per individual instance of VM type v. Pv ∈ N denotes the fixed
length of a single leasing period for each VM type v, for which a fixed usage

1 http://aws.amazon.com/ec2/
2 http://www.windowsazure.com/

http://aws.amazon.com/ec2/
http://www.windowsazure.com/


Let the Clouds Compute 93

Time [min]

Job 1
A1 = {1}, S1 = {1, 2}

Job 2
A2 = {1, 2}, S2 = {1, 2}

3015 45 7560 90

Job 3
A3 = {1, 2, 3}, S3 = {3}

D1

0

TI1

TT1

TT3 
= 

Fig. 1. Example workload with selected formal notations

fee of CFv ∈ R
+ will be charged. In addition, CVv,r ∈ R

+ denotes the cost of
resource type r per used resource and time unit.

Based on the above notations, we further define Ω = maxj∈J (TTj) as the
maximum termination time among all jobs in the workload. In addition, Aj =
{j′ ∈ J | TIj′ ≤ TIj} denotes the jobs that are initiated prior to a given job j.
Likewise, Sj = J \ {j′ ∈ J | TTj′ < TIj ∨ TIj′ > TTj} specifies jobs that are
executed simultaneously with j. Please note that both Aj and Sj include j itself
(an example is provided in Figure 1).

3.2 Exact Optimization Approach

In order to compute an exact, i. e., cost-minimal, solution to the CWDP, we
map the problem statement from Section 2 into its mathematical equivalent.
The result is provided in Model 1. Prior to a detailed explanation, we introduce
two concepts that are relevant to the understanding of the model.

First, we observe that the lease of a VM instance will always start with the
initiation of a job. For a specific VM type v, the lease may consecutively be
renewed after one leasing period of the fixed length Pv. The lease will, at the
latest, terminate once the final computational job has finished. Thus, based on a
given job j, we define a set of (potential) leasing instants Lv,j = {TIj, . . . , T Ij +
k × Pv}, where k = �(Ω − TIj)/Pv�. For all jobs in the workload, the set of
leasing instants is given by Lv =

⋃
j∈J Lv,j accordingly.

For reasons of convenience, we additionally define the set of neighboring leas-
ing instants Nv(t) = {l ∈ Lv | l > t− Pv ∧ l ≤ t}, which lie within the length of
one leasing period Pv before a specified time instant t ∈ N.

Second, a VM instance must be leased throughout the complete duration of
the jobs that have been assigned to it. The existence of such active lease can
be verified at certain checkpoints, which temporally coincide with the potential
leasing instants that may be relevant to a job. Based on a given job j and the
previously defined leasing instants, we define the set of checkpoints as Cv,j =
{TIj, TTj} ∪

⋃
j′∈Aj

{l ∈ Lv,j′ | l > T Ij ∧ l < TTj}.
Based on these concepts, the optimization model can be explained in fur-

ther detail: To begin with, Equation 1 defines the objective, which consists in



94 U. Lampe et al.

Model 1. Exact Approach for Cloud-oriented Workload Distribution

Min. TC(x, y) =
∑

v∈V,i∈Iv ,l∈Lv

yv,i,l × CFv (1)

+
∑

j∈J,v∈V,i∈Iv

xj,v,i ×Dj ×RDj,r × CVv,r

subject to

∑

l∈Nv(c)

yv,i,l ≥ xj,v,i ∀j ∈ J, v ∈ V, i ∈ Iv, c ∈ Cv,j (2)

∑

v∈V,i∈Iv

xj,v,i = 1 ∀j ∈ J (3)

∑

j′∈Sj

xj′,v,i ×RDj′,r ≤ RSv,r ∀v ∈ V, i ∈ Iv, j ∈ J, r ∈ R (4)

∑

l′∈Nv(l)

yv,i,l′ ≤ 1 ∀v ∈ V, i ∈ Iv, l ∈ Lv (5)

Iv = {1, . . . ,min(max
j∈J

(|Sj |),mv)} (6)

Iv ⊂ N

xj,v,i ∈ {0, 1} ∀j ∈ J, v ∈ V, i ∈ Iv (7)

yv,i,l ∈ {0, 1} ∀v ∈ V, i ∈ Iv, l ∈ Lv (8)

minimizing the total leasing cost of the cloud infrastructure. The total cost com-
prises two components, namely the periodical leasing fees for the VM instances
and the additional charges for resource consumption.

For that matter, the decision variable xj,v,i indicates whether a job j ∈ J
has been assigned to a VM instance of type v ∈ V with the running index
i ∈ Iv or not. In a similar manner, the decision variable yv,i,l indicates whether
the VM instance of type v with the running index i ∈ Iv has been leased at
the time instant l ∈ Lv or not. Both x and y are defined as binary variables in
Equations 7 and 8. Whereas x is the main decision variable, y can be interpreted
as an auxiliary decision variable.

Equation 2 links the two decision variables. More precisely, it defines that if
an assignment of a task to a certain VM instance has been made, as indicated
by variable x, each checkpoint needs to be matched by a corresponding active
lease, as represented by variable y.

Equation 3 ensures that each task is assigned to precisely one VM instance.
Equation 4 guarantees that the resource demands of all tasks that are executed
simultaneously are met by corresponding resource supplies. Equation 5 ensures



Let the Clouds Compute 95

that the lease of a VM instance cannot be renewed until the previous lease has
expired. Equation 6 defines a set of valid instance indices for each VM type.
The definition is based on the notion that, in the worst case, the largest set of
simultaneous jobs within the workload, i. e., maxj∈J (|Sj |), may be deployed on
individual VM instances of the same type; yet, in any case, no more than the
maximum number of VM instances, i. e., mv, can be used.

As can be seen, Model 1 constitutes a special case of a linear program, namely
a Binary Integer Program (BIP). Such BIP can be solved using well-known
methodologies from the field of operations research, such as branch and bound [2].
Unfortunately, the computational complexity of such exact methods can be very
high. In the worst case, the complexity grows exponentially with the number of
decision variables. In the specific case of the CWDP, the worst case complexity

corresponds to O(2
|J|2×|V |+|J|×

∑
v∈V

Lv ). Accordingly, an exact solution to the
CWDP can most likely not be computed within reasonable time if a workload
features multiple jobs, or long job durations that result in a large number of
potential leasing instants.

3.3 Heuristic Optimization Approach

In the previous Section 3.2, we have explained that the complexity of computing
an exact solution to the CWDP rapidly increases with the number of jobs in the
workload. This indicates the need for a heuristic optimization approach, which
potentially trades reductions in computation time against possibly sub-optimal
solutions.

The heuristic presented in this work is based on an approach that we have
previously proposed for the cost-efficient distribution of software services [3].
Because this previous work assumed an online (i. e., at run time), rather than
an offline distribution (i. e., at design time), a number of adaptations had to be
made. In both cases, however, the principal mechanism is inspired by heuristic
solutions to the well-known knapsack problem [4].

Our heuristic approach encompasses two phases, VM packing and VM se-
lection, which are iteratively repeated until a valid solution to the CWDP has
been computed. The principle idea is to select a subset of jobs in each iteration
and assign it to a new instance of the most cost-efficient VM type. A schematic
overview of the complete heuristic in the form of pseudo code is provided in
Algorithm 1 and will be explained in the following.

In accordance with Section 3.2, x denotes the main decision variable. Again,
xj,v,i indicates whether a job j has been assigned to a VM instance of type v
with the running index i or not.

As a preparatory step for the main algorithm, we initialize the current instance
index iv for each VM type v (lines 1–3).

In the first phase, VM packing, we create a so-called packing list for each VM
type. A packing list PLv ⊆ J represents a subset of jobs that have not been
assigned yet and would fit onto a new instance of type v. Initially, we assume
an empty packing list. Subsequently, we scan the set of jobs, J , in the order
of initiation times. If the current job j would additionally fit onto a new VM



96 U. Lampe et al.

Algorithm 1. Heuristic Approach for Cloud-oriented Workload Distribution

1: for all v ∈ V do
2: iv ← 1
3: end for
4: repeat
5: for all v ∈ V do
6: if iv ≤ mv then
7: PLv ← ∅
8: repeat
9: δ ← false

10: for all j ∈ J \ PLv do
11: if checkFit(v, PLv ∪ {j}) then
12: u← compUtil(v, PLv)
13: u′ ← compUtil(v, PLv ∪ {j})
14: if u′ > u then
15: PLv ← PLv ∪ {j}
16: δ ← true

17: end if
18: end if
19: end for
20: until δ = false

21: end if
22: end for

23: û← 0
24: v̂ ← null

25: for all v ∈ V do
26: if iv ≤ mv then
27: uv ← compUtil(v, PLv)
28: if uv > û then
29: û← uv

30: v̂ ← v
31: end if
32: end if
33: end for
34: if v̂ 
= null then
35: for all j ∈ PLv̂ do
36: xj,v,iv̂ ← 1
37: end for
38: J ← J \ PLv̂

39: iv̂ ← iv̂ + 1
40: end if
41: until J = ∅ ∨ v̂ = ∅

instance of type v and increase the utility of the packing list, it is added to the
packing list. Utility, in this respect, is defined as the ratio between the aggregated
durations of all jobs and the corresponding leasing cost. It is computed using the
function compUtil. The process of scanning the set of jobs is repeated until no
more changes to any packing list could be made, as indicated by the variable δ.
This repetition is necessary because a certain job may only increase the utility
after a subsequent job has already been added to the packing list (lines 5–22).

In the second phase, VM selection, we determine the favorite, i. e., most cost-
efficient, VM type, based on the previously created packing lists. In accordance
with the previous phase, cost-efficiency is represented by a utility value. The
favorite VM type is denoted by v̂, with a utility of û. For each VM type v, we
initially assume a utility of zero; VM types for which the maximum number
of instances has been reached are excluded from the process. We compute the
overall utility value uv, based on the previously compiled packing list PLv. If the
utility value uv exceeds the maximal value û, v is assumed as the new favorite
VM type v̂ (lines 23–33).

In the following, we check whether a favorite VM type v̂ could be identified.
This may not be the case if the maximum number of instances of each VM type
has been reached, or none of the available VM types is suitable to execute one of
the remaining jobs. If a favorite VM type v̂ exists, however, we assign all jobs in
the packing list PLv̂ to a new instance with the index iv̂. Finally, we remove the
assigned jobs from the set J and increment the instance count iv̂ (lines 34–40).



Let the Clouds Compute 97

Both phases are iteratively repeated until all jobs have been assigned or no
favorite VM type can be identified. In the latter case, a portion of the jobs could
not be successfully assigned, thus yielding an invalid solution.

From an analytical point of view, the heuristic has substantial advantages
over the exact solution in terms of computational complexity. Specifically, the
creation of the packing list is the most complex part; given that the number of
resource types is constant and thus negligible, the worst-case complexity of the
complete algorithm is polynomial and corresponds to O(|J |4 × |V |).

4 Evaluation

Both previously presented optimization approaches have been prototypically im-
plemented as a Java program, which serves as the basis of our evaluation. For
solving the BIP in the exact optimization approach, we apply the IBM ILOG
CPLEX Optimizer3.

4.1 Design and Setup

With the evaluation, we aimed to quantitatively assess the performance of the
two optimization approaches. Performance, in this respect, is represented by two
dependent variables: First, computation time represents the scalability of the
two approaches and indicates their practical applicability to large-scale CWDPs.
Second, total cost indicates the solution quality with respect to the objective of
cost-efficient workload distribution.

For the evaluation, we created ten classes of CWDPs, each containing 100
individual problems. In classes A1 to A5, we treated the number of jobs as
independent variable, i. e., |J | ∈ {4, 8, 12, 16, 20}, assuming a fixed number of
VM types, i. e., |V | = 6. In classes B1 to B5, we assumed the number of VM
types as independent variable, i. e., |V | ∈ {2, 4, 6, 8, 10}, treating the number of
jobs as fixed, i. e., |J | = 12. Thus, we vary those two variables that have been
analytically identified as influential to the computational complexity of both
optimization approaches.

For the definition of the VM types, we used the specifications provided by
Amazon for its Elastic Compute Cloud (EC2). Each type exhibits specific re-
source supplies with respect to three resource types (namely processor, memory,
and storage), where the consumption is covered by differing hourly leasing fees.
In addition, we regarded network traffic – which imposes additional usage-based
fees – as fourth resource type, i. e., |R| = 4.

The workloads were randomly generated by drawing the initiation times and
durations of the jobs from the uniform distributions U(1, 120) and U(1, 60) re-
spectively, assuming minutes as time unit. The resource demands of the individ-
ual jobs were also randomly drawn, assuming the resource supplies of an Amazon
EC2 Standard Medium VM as upper limit.

3 http://www.ibm.com/software/integration/optimization/cplex-optimizer/

http://www.ibm.com/software/integration/optimization/cplex-optimizer/


98 U. Lampe et al.

0.1

1

10

100

1000

10000

100000

A
1:

4;
6

(1
00

)

A
2:

8;
6

(1
00

)

A
3:

12
;6

(1
00

)

A
4:

16
;6

(9
9)

A
5:

20
;6

(6
9)

B
1:

12
;2

(9
7)

B
2:

12
;4

(1
00

)

B
3:

12
;6

(1
00

)

B
4:

12
;8

(1
00

)

B
5:

12
;1

0
(1

00
)

C
om

pu
ta

tio
n

Ti
m

e
[m

s]

Problem Class ID:|J |;|V | (Solved Problems)

Exact Approach
Heuristic Approach

(a) Absolute computation times (note the logarithmic scale)

0

0.5

1

1.5

2

2.5

A
1:

4;
6

(1
00

)

A
2:

8;
6

(1
00

)

A
3:

12
;6

(1
00

)

A
4:

16
;6

(9
9)

A
5:

20
;6

(6
9)

B
1:

12
;2

(9
7)

B
2:

12
;4

(1
00

)

B
3:

12
;6

(1
00

)

B
4:

12
;8

(1
00

)

B
5:

12
;1

0
(1

00
)

100

102

104

106

108

110

112

114

R
at

io
of

C
om

pu
ta

tio
n

Ti
m

e
[%

]

R
at

io
of

To
ta

lC
os

t[
%

]

Problem Class ID:|J |;|V | (Solved Problems)

Heuristic / Exact Approach (Comp. Time)
Heuristic / Exact Approach (Total Cost)

(b) Ratios of computation times (left ordinate) and total costs
(right ordinate)

Fig. 2. Evaluation results for both optimization approaches

Each CWDP was solved using both optimization approaches, using a desktop
computer with an Intel Core 2 Quad Q9450 processor and 8 GB of memory,
operating under Microsoft Windows 7. In the process, we imposed a timeout
of 300 seconds (i. e., 5 minutes) per problem and optimization approach. Only
such problems that could be successfully solved by both approaches within this
timeout period were considered in the following analysis.

4.2 Results and Discussion

As can be observed in Figure 2a, the exact optimization approach quickly reaches
absolute computation times in the magnitude order of seconds (classes A3 and
B2 to B5, which involve 12 jobs) or even ten seconds (classes A4 and A5, which
involve 16 and 20 jobs), and also results in various timeouts (specifically for class



Let the Clouds Compute 99

A5). In accordance with our qualitative analysis in Section 3.2, the absolute
computation times exhibit an exponential growth with an increasing number of
jobs (classes A1 to A5). The same applies for a growing number of VM types,
even though the effect is less pronounced (classes B1 to B5).

In contrast, for the heuristic approach, the absolute computation times are
in the order of milliseconds or below across all evaluated classes. In relative
terms, the heuristic achieves reductions in computation time of more than 97.5%
compared to the exact approach (cf. Figure 2b). This gap further increases with a
growing number of jobs (classesA1 to A5), which, in accordance with our analysis
from Section 3.3, indicates a superior scalability of the heuristic approach. With
an increasing number of VM types (classesB1 toB5), the benefits of the heuristic
approach are less accentuated. However, this is also of limited practical relevance,
because the number of available VM types will usually be restricted.

Lastly, as it can be seen in Figure 2b, the reduction in computation time is
traded against reductions in solution quality. Depending on the problem size,
the increase in total cost for the distribution of the workload ranges between
approximately 5% and 13%. The gap between both optimization approaches
appears to grow with an increasing number of jobs (classes A1 to A5), but
not with a growing number of VM types (classes B1 to B5). Accordingly, the
proposed heuristic should be seen as a first step toward efficiently solving large-
scale CWDPs. That is, it primarily provides a valid baseline solution, which
should subsequently be refined by a specific improvement procedure.

In summary, our evaluation indicates that the exact optimization approach
is solely applicable to small CWDPs involving around 20 jobs in practice. In
comparison, the heuristic approach exhibits a more favorable runtime behavior,
which renders it potentially suitable for larger CWDPs involving hundreds or
thousands of jobs. However, the heuristic also results in notable increases in the
total cost of workload distribution. Thus, a future direction of our research will
consist in the development of improvement procedures, which permit enhance-
ments in solution quality while sustaining the low computational complexity of
a heuristic solution approach.

5 Related Work

In recent years, the distribution of workloads in cloud and grid environments
has been a vivid field of research. Substantial efforts have also been undertaken
in the related field of workflow distribution. Given space limitations, we only
present a brief overview of the most similar works.

To start with, in our own previous work, e. g., [3], we have examined the
Software Service Distribution Problem (SSDP). This challenge concerns the dis-
tribution of software services within IaaS clouds. Specifically, we have proposed
both an exact and a heuristic online approach that permits to cost-efficiently
allocate software service requests to different VM types at run time. When inter-
preting software services as computational jobs within a workload, the approach
proposed in this work can be seen as a benchmark, which permits to compute a
theoretically optimal ex-post, offline solution to the SSDP.



100 U. Lampe et al.

Li et al. [5] have studied the distribution of VMs among PMs in order to
serve predictable peak loads. Their objective consists in load balancing among
the PMs; for that purpose, the authors propose four different algorithms, which
are extensively evaluated. While there is a number of similarities between the
work by Li et al. and our research, a major difference lies in the objective of cost-
efficiency. In addition, we consider fixed-length VM leasing periods, different
price components, and multiple resource types in the distribution process.

Genez et al. [6] have examined the problem of cost-efficient workflow deploy-
ment in hybrid clouds under consideration of service level agreements. They
propose an exact optimization approach based on Integer Linear Programming
(ILP), as well as different heuristic approaches that are based on the principle
of ILP relaxation. In contrast to our work, Genez et al. take into account tem-
porally movable and inter-dependent jobs. However, the authors only consider a
restricted set of resource types and do not regard fixed-length leasing periods of
VMs.

Byun et al. [7] have presented a system for the deployment of workflows
within grids and clouds. The authors introduce a heuristic approach for the
minimization of leasing costs; they do not provide an exact approach though.
Byun et al. consider job dependencies and flexible start times, which are not
regarded in our work. However, while they consider fixed-length leasing periods,
the authors assume identical leasing instants for all compute hosts, whereas our
work permits independent leasing instants for the individual VMs.

In summary, to the best of our knowledge, this work is the first to address
the distribution of workloads, i. e., set of jobs, onto VMs under the conjoint
consideration of fixed-length leasing periods, as well as fixed and variable price
components. Due to the prevalence of these characteristics in actual IaaS cloud
offers, our approach permits to compute accurate, i. e., truly cost-optimal, distri-
bution schemes. However, in contrast to the large body of research on workflow
deployment, our work does neither explicitly regard dependencies between jobs
nor the potential to temporally shift jobs. The consideration of these aspects
will be part of our future work.

6 Summary and Outlook

Cloud computing has made a large pool of computing capacity available at com-
paratively low prices. This permits end users to execute workloads using leased
infrastructure rather than costly dedicated hardware. However, given the differ-
ing pricing schemes for IaaS offers, which commonly also feature fixed-length
leasing periods, the cost-efficient distribution of such workloads among VMs is
a challenging task.

In the work at hand, we have addressed this Cloud-oriented Workload Dis-
tribution Problem (CWDP). As a first major contribution, we have formally de-
scribed the problem in the form of an mathematical optimization model, which
can serve for the computation of exact solutions to the CWDP. As a second
major contribution, we have introduced a heuristic optimization approach.



Let the Clouds Compute 101

We have quantitatively evaluated both optimization approaches with respect
to computation time and solution quality, i. e., resulting total leasing cost. We
found that the exact solution approach is hardly applicable to workloads involv-
ing more than 20 jobs due to its computational complexity. In comparison, the
proposed heuristic allows reductions in computation time of more than 97.5%,
which renders it potentially suitable for solving large-scale CWDPs. However, the
heuristic solutions also lead to substantial increases in total leasing costs of up
to 13% in our experimental evaluation, as compared to an optimal distribution
scheme.

Thus, the primary goal of our future work consists in the development of
heuristic improvement procedures that are specifically tailored to the CWDP.
In addition, we aim to substantially extend the evaluation of the proposed ap-
proaches through the consideration of additional variables. Lastly, as it has been
outlined in Section 5, we plan to consider characteristics that are common in the
area of workflow deployment, such as flexible job initiation times.

Acknowledgments. This work has partly been sponsored by E-Finance Lab
e.V., Frankfurt am Main, Germany (http://www.efinancelab.de).

References

1. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Hillier, F., Lieberman, G.: Introduction to Operations Research, 8th edn. McGraw-
Hill (2005)

3. Lampe, U., Mayer, T., Hiemer, J., Schuller, D., Steinmetz, R.: Enabling Cost-
Efficient Software Service Distribution in Infrastructure Clouds at Run Time. In:
2011 IEEE Int. Conf. on Service Oriented Computing & Applications, pp. 82–89
(2011)

4. Domschke, W., Drexl, A.: Einführung in Operations Research, 6th edn. Springer
(2004) (in German)

5. Li, W., Tordsson, J., Elmroth, E.: Virtual Machine Placement for Predictable and
Time-Constrained Peak Loads. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.)
GECON 2011. LNCS, vol. 7150, pp. 120–134. Springer, Heidelberg (2012)

6. Genez, T., Bittencourt, L., Madeira, E.: Workflow Scheduling for SaaS/PaaS Cloud
Providers Considering two SLA Levels. In: 2012 IEEE Network Operations and
Management Symposium, pp. 906–912 (2012)

7. Byun, E., Kee, Y., Kim, J., Maeng, S.: Cost Optimized Povisioning of Elastic
Resources for Application Workflows. Future Generation Computer Systemss 27,
1011–1026 (2011)

http://www.efinancelab.de

	Let the Clouds Compute: Cost-Efficient Workload Distribution in Infrastructure Clouds
	Introduction
	Problem Statement
	Optimization Approaches
	Formal Notations
	Exact Optimization Approach
	Heuristic Optimization Approach

	Evaluation
	Design and Setup
	Results and Discussion

	Related Work
	Summary and Outlook
	References




