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Abstract. The introduction of economic principles allows Resource
Management Systems (RMS) to better deal with conflicting user re-
quirements by incorporating user valuations and externalities such as
the usage cost of resources into the planning and scheduling logic. This
allows economic RMSs to create more value for the participants than
traditional system centric RMSs. It is important for an RMS to take the
data requirements of an application into account during the planning
phase. Traditional RMSs have been presented supporting co-allocation
and advance reservation of both network and computational resources.
However, to the best of our knowledge no economic RMSs proposed
in the literature possesses these capabilities. In this paper we present
ENARA, an economic RMS with advance reservation and co-allocation
support for both network and computational resources. We will demon-
strate that ENARA can significantly increase the user value compared
to an online approach.

Keywords: Resource Management, Co-allocation, Advance Reservation,
Grids, Grid Economics, Network Aware, Futures Markets.

1 Introduction

In shared computing environments such as grid systems, Resource Manage-
ment Systems (RMSs) have to deal with conflicting requirements due to the
fact that users of such infrastructures only care about their own self-interest
when formulating their requests. We believe that, contrary to traditional RMSs
and scheduling approaches in grid systems, the use of economic principles en-
ables the creation of more open and sustainable grid markets oriented towards
value maximization. These grid markets charge the users of the system accord-
ing to their requirements and resulting allocations while taking into account
those of other users as well. In this article, we propose and evaluate ENARA,
an economic network and resource aware RMS that employs a futures market to
trade usage rights on co-allocated and reserved computational resources and net-
work paths. It is important to take data transfers into account when planning
applications on a grid system because these transfers can take a considerable
amount of time, especially when the data set required by an application is large.
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We use the GESNET network model to simulate the delays associated with net-
work communication and the transfer of data over the network. We evaluate our
RMS in the context of bag-of-task applications with CPU bound jobs and input
requirements. A good example is the analysis of data coming from one of the
experiments at CERN. All the experiments at CERN produce roughly 15PiB
of data per year. It is clear that the processing even a small part of that data
still involves massive input files. We extend our original system model presented
by Vanmechelen et al. [1] with data dependencies and network resources.

The system model we use and the broker we developed do not require users
to specify a fixed parallelization degree for their applications in contrast to sev-
eral other existing approaches [2,3,4]. Instead, the ENARA RMS is given the
freedom to schedule data transfers and computational workload, as long as it
can guarantee that the input files are transferred from storage to the execution
site before the computation starts and that the application finishes by a given
deadline. In our simulations we explicitly take into account the atomicity of jobs
and the limited parallelization degree of an application. We do not require job
preemption and migration in the construction of job schedules.

This article is organized as follows. First we take a look at related work in the
next section. In section 3 we give an overview of the ENARA system model. We
discuss the network (pre)pricing of individual links in section 4. We conclude with
an evaluation of our approach. We compare our approach in terms of generated
user value to an online network aware scheduling policy.

2 Related Work

There is to the best of our knowledge no other work that combines both economic
aware network and cpu resource co-allocation and advance reservation. A recur-
ring technique for advance reservation and co-allocation of network resources
is the discretization of time to make the scheduling problem more tractable.
Depending on the level of granularity, this discretization can induce sizeable in-
ternal fragmentation on resources as computational jobs and network transfers
typically cannot occupy discretized time slots fully.

Takefusa et al. have proposed an advance reservation-based co-allocation algo-
rithm for distributed computing and network bandwidth [5]. Their online plan-
ning approach incorporates both co-allocation and advance reservation, but does
not integrate economic principles. The co-allocation problem is solved by dis-
cretizing time in laddered time frames and modelling it as a simplified Integer
Programming (IP) problem. The MC-T scheme proposed by Stevens et al. also
discretizes the time [6] but is less suited for systems to large planning windows
due to a limited look-ahead. Work by Dramitinos also proposes a discretized
economic advance reservation system [7] for network resources only.

The first two approaches are not economic while the last does not incorporate
compute resources. In contrast with our work, all of them make use of discretized
time slots.
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3 System Model

In this section we give an overview of the elements of our ENARA system. First
we introduce the GESNET network layer which is modeled after Lambda Grids.
It is this component that provides the necessary features for transferring data
and reserving the network paths needed for transporting the input files from
their storage locations to the location in the network where the application will
be executed. Then we describe how we use Planning Windows, how we model
Jobs, Workflows, Data and Requests, Consumers and Providers. We conclude
this section with a description of the most important entity in our system model,
the ENARA broker.

3.1 Network

To accurately take into account the transfer times of data and the cost of these
transfers on the network in an advance reservation setting, we have developed
the GESNET network model with support for advance reservations and net-
work pricing [8]. GESNET is modeled after Lambda Grids [9] and is built on
the Jung2 library which provides a number of standard graph algorithms [10].
Lambda Grids are fiber optic networks that allow the creation of light paths for
setting up dynamically allocated point to point links between two sites in the
network. There are multiple wavelengths used in each fiber optic link, dividing it
in multiple logical channels. A light path is a path reserved on a set of subsequent
links in the network and bound to a specific wavelength. In fact, it is a list of
subsequent channels. A channel cannot be allocated to more than one light path
at a time which contrasts with traditional packet switched networks. As such,
Lambda Grids can be seen as frequency divided networks with non-intersecting
network planes.

Entities participating in the simulation are placed at specific locations in the
network. As such, the communication delay between them will be modelled and
incorporated in the simulation. Multiple sites may be located on a single location.
We denote the set of storage sites in our simulation with S = {s1, . . . , sm}
and the set of compute sites with C = {c1, . . . , cn}. The communication delay
between two entities is calculated based on the speed of light in a fiber optic
cable over the physical link-distances between the two communicating sites.

GESNET also enables the creation of network paths for file transfer, both ad
hoc and as reservations for future use. Future network transfers will be planned
either as soon or as late as possible, depending on the properties of the reser-
vation request. In order to do this, GESNET will look through all the network
planes for the earliest or latest possible reservation for a transfer of a specific
data set from node s to c [8].

3.2 Planning Windows

ENARA uses periodic planning phases with a sliding Planning window PW .
When the size of PW is 24 hours for example, the broker can plan one day in



Economic Co-allocation and Advance Reservation of Network 49

the future. The Planning Period PP is defined as the time delta between two
consecutive planning phases. Each planning phase, the PW will shift forward by
the same amount as the PP . The planning phase itself starts before the beginning
of the PW . The specific lead time LT to the planning phase is chosen to be big
enough to ensure that the planning phase will have ended before PW starts.
During the lead time, we explicitly model both communication delay as provided
by our network model as well as the algorithmic overhead induced by our own
resource management system and given by the wall clock time difference between
the beginning and the end of the planning phase. As such, we can guarantee
that ENARA not only establishes appropriate allocations, but also that it does
so within a realistic time frame as set by LT . We believe that this is a necessary
validation of the practicality and feasibility of scheduling algorithms that is often
not incorporated in the simulation model directly but evaluated separately. The
Hot Window HW is defined as the time interval that will become unavailable
for planning after the current planning phase. As such, when nothing is planned
in or can be moved to the HW after the planning phase, the capacity in this
HW is effectively lost.

Since PW ’s can be big in comparison to the time delta between two consecu-
tive planning phases, it is not straightforward to determine whether the system
is congested. To assess whether the system is in a state of congestion, we define a
Congestion Window CW . A Congestion window can be seen as a kind of “leaky
bucket” for planning and as such allows the system to accommodate occasional
bursts of high activity.

PW

PWCW

Phase n

Phase n+1
PP

HW

LT

Fig. 1. Planning Windows

All these concepts are illustrated in Figure 1. As can be seen from this figure,
the lead time is very small in comparison to the planning window. If we take
the scale on the time axis to be 1 hour, PW is 24 h and LT is 30min. We have
marked the 1 h long hot window in dark grey. This is the window that the broker
should absolutely try to fill as this capacity cannot be sold anymore in a next
planning phase. The congestion window is indicated with light grey and also
includes the hot window. It is 3 h long. As can be seen, the planning window is
shifted forward when starting the next planning phase. The size of this shift is
equal to the planning period.
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3.3 Jobs, Workflows, Data and Requests

Jobs are modelled as having a certain processing requirement expressed as a
normalized processing time npt (in hours) when executed on a reference archi-
tecture. Applications can be modelled as workflows with a number of individual
jobs and precedence relations between them. In this work we model bag-of-task
applications and we focus on the effects and benefits of network and CPU re-
source co-allocation and reservation. Typical examples of such applications are
parameter sweeps where individual jobs all process the same input data with
different parameter values. Applications may potentially require (parts of) big
datasets to process. These are modelled by data dependencies in the applica-
tion model. When an application has a data dependency, the system needs to
make sure that the data is transferred to the location of execution before the
computational workflow starts.

To execute an application, a consumer submits an Application Processing

Request (APR) to the RMS. This APR contains the processing workflow, pos-
sible input data requirements and the maximum budget budget(j) the consumer
is willing to spend for the execution of its application. A workflow consists
of n jobs that have to be executed for the application to finish successfully.
The normalized processing requirements of the entire workflow of request j is
npt(j) =

∑n
i=1 npt(i) with npt(i) defined as the processing requirements of job

i. When a request requires input data, this will be indicated by the presence of
a data dependency in the APR. The location and size of this specific file can
be found by querying the File Catalog. We will denote the size of the input
file of request j with f(j), its size with ds(j) = ds(f(j))GiB and the storage
location(s) of the data as S(j) = {s : f(j) ∈ s}. Requests that require input data
will be called Data Dependent APRs (DDAPR) from here on. When a request
does not require any input data it is called a Data Free APR (DFAPR). In our
experiments we assume that data is not cached at the compute locations after an
APR is finished due to insufficient storage capacity at the computational resource
providers. This means that data needs to be transferred for every DDAPR.

3.4 Consumers

Consumers are modeled as entities that will submit their requests to the broker
for planning. For each request, n jobs of randomized length are generated. If
the request is a DDAPR, the file f(j) used will be the same for all subsequent
requests of a specific consumer. The budget is calculated based on npt(j), ds(j)
and the valuations nvcpu(j) for computational resources and nvnet(j) for network
transfers of the specific consumer. In addition we randomize the budgets with a
variance factor varbudget. For each subsequent request of a consumer we multiply
the base budget with the random factorRF = (1+rand(−varbudget,+varbudget))
with rand(x, y) a uniform random generated value between x and y. The exact
formula for the calculation of the request budget is given in Equation 1. We note
that nvcpu(j) and nvnet(j) are a priori normalized valuations for the application
execution and network transfer. These two valuations make it easier to select
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budget levels for consumers in our experiments and are exclusively used for
determining the total request budget and then forgotten. We assume that a real
user of the system would only provide an aggregate budget for the execution of
its application.

budget(j) = (nvcpu(j) ∗ npt(j) + nvnet(j) ∗ ds(j)) ∗RF (1)

Before each planning phase starts, all consumers submit their request to the
broker. When a request is successfully planned by the broker, the consumer has
to pay both network link and compute resource providers for the usage of their
resources. When a request of consumer x is successfully finished, it is added to
the set of finished APRs Fx. Consumers will have an implicit value V (j) attached
to the execution of their application. The total value planned for a consumer is
then defined as V (x) =

∑
r∈Fx

V (r).

3.5 Providers

Each compute provider manages a number of CPUs. We consider CPUs to be
uniform parallel machines. This means that all computational jobs can be exe-
cuted on all CPUs and that their execution time depends linearly on the relative
power of the specific CPU compared with a standard CPU.

When the broker wants to schedule the jobs of the workflow of an APR, it
will contact a provider, and ask it to schedule either all jobs or as many jobs as
possible by means of a Request Bid. The provider will search for free periods
in the PW of all its CPUs and select the best one for each job by means of a
selection policy. In this article, the provider uses a closest to the deadline policy.
This ensures that the provider keeps as much free capacity as possible in the
beginning of the PW , allowing it to schedule in subsequent applications with
shorter deadlines. Since the provider will schedule in jobs as close to deadline as
possible, it is very likely that after the planning phase no jobs are planned in
the Hot Window (HW ) which is defined as the time interval that will become
unavailable for planning after the end of the planning phase. As such the provider
will defragment all its CPU schedules and attempt to move or shift reservations
forward to fill all compute capacity still available in the HW at each specific
CPU resource.

3.6 Broker

The ENARA-broker we have developed is capable of scheduling both DDAPRs
and DFAPRs. It operates using sliding Planning Windows described in subsec-
tion 3.2. In every planning phase, the ENARA-broker will try to plan as many
APRs as possible by going through its list of submitted APRs, or SAPRL. This
list is sorted according to the normalized budget nb available to each request.
The normalized budget nb is a measure for the budget normalized over the ex-
pected costs to execute the request’s workload and transfer its data. As such it
can be used to prioritize APRs from the most to the least valuable. The broker
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uses a greedy heuristic to try and plan in as much APRs as possible. We use this
heuristic approach because our problem domain is NP complete. As such it is
not possible to find the optimal allocations in a reasonable time span. Note that
in our evaluation, we take both communication delays and overhead of our calcu-
lations into account when planning. Therefore, we cannot implement a strategy
that may be theoretically correct but not tractable to compute.

Additionally, the ENARA-broker has approximate information of the free ca-
pacity of both the network and the compute resources. This allows it to quickly
check whether the selected provider and/or the network have enough capacity
available just before the planning of an individual APR. As such we have incor-
porated a fast-fail mechanism in the broker that can reduce both network traffic
and computational overhead caused by planning attempts that are bound to fail.
We have demonstrated a similar mechanism for APRs without input data [11].

Budget Normalization. In order to normalize APR budgets, the broker uses a
Pre Pricing Algorithm. For DFAPRs, we can easily calculate their normalized
budget as given by Equation 2.

nb(j) = budget(j)/npt(j) (2)

For DDAPRs however, this is not so straightforward. Their normalized budget
depends on the normalized prices that need to be payed for both compute and
network resources and on the relative value of these normalized prices. The actual
prices are the result of the demand for both network and computational resources
and the budgets of individual consumers. However, the actual prices of both com-
putational and network resources are not known until after the planning phase
has ended. This means that we have to estimate the expected prices of both com-
putational (npEcpu) and network resources (npEnet) before planning the requests.

This is in fact a catch-22 situation since the expected prices in turn will
influence the ordering of the APRs, the actual allocations and ultimately the
actual prices themselves, which is exactly what we are trying to estimate in the
first place. It is therefore important that, when calculating expected prices, we do
not create discriminatory prices for individual network paths and computational
resources as this would ultimately lead to unbalanced allocations. Note that in
each planning phase, we only use the subset of storage sites S that store data
requested by the DDAPRs in the SAPRL. We do take all compute locations C
into account as they have new capacity available in each planning round.

The method of calculating the expected normalized network price npEnet and
the expected normalized cpu price npEcpu is based on the anticipated congestion of
the system for both computational and network resources [8]. It is not discussed
here due to space considerations. The distribution of npEcpu over individual links
is discussed in section 4. The Gigabyte-to-Workload factor G2W is defined as
npEnet/np

E
cpu and is a normalization factor that is used to split the budget of

DDAPRs in a separate compute and network budget. The normalized DDAPR
budget of request j is defined in Equation 3.
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nb(j) =
budget(j)

npt(j) +G2W ∗ ds(j) (3)

The compute budget of a DDAPR is then given by bc(j) = nb(j) ∗ npt(j) and
its data budget by bd(j) = nb(j) ∗ G2W ∗ ds(j). This enables the broker to
order both DDAPRs and DFAPRs in the submitted APR list (SAPRL). The
ordering is based on normalized compute budget nb(j) of each request. Since
both DDAPRs and DFAPRs are sorted in a single list, we can use a greedy
approach for planning.

Planning. The ENARA-broker will iterate over the sorted list of submitted
APRs and attempt to schedule in each individual request. For all APRs we define
a preferred compute providers list (PPL) which is a sorted list of the providers
based on the cost of executing the entire application, including necessary data
transfers. All DFAPRs share the same PPL since the location of a compute
provider is irrelevant when an application has no input data requirements. For
each request we try to plan the individual jobs at the first provider p in the
PPL. If p cannot plan all jobs and the request is a DFAPR, the broker tries to
plan the remaining jobs with the next provider in the PPL and so on (untill we
can plan all jobs). If not all jobs could be planned, we cancel the reservations
and remove the DFAPR from the SAPRL. If p can plan all jobs of a DDAPR,
the broker will attempt to make the necessary network reservations. If it is not
successful, all reservations are cancelled and the DDAPR is re-inserted in the
SAPRL with an adjusted nb(j). This adjustment is due to the fact that the path
price to different network locations may be different when the reserve price of a
link is higher than the expected price. After planning is finished, the broker will
have 2 lists of APRs, the list with planned APRs, PAPRL, and the list with
unplanned APRs, UPAPRL. These may be used in the final pricing phase of
the planning process as described in the next subsection.

Pricing. After the broker has planned in all necessary requests, it still needs
to price them. For the ENARA broker, we price both compute and network
resources with a Next Highest Losing Bid strategy (NHLB) as follows. First,
we iterate over all requests in the sorted SAPRL and, as long as the current
request was planned, we add it to the current set cS. When a request has not been
planned, we price all APRs in cS with the normalized budget of the unplanned
request and empty cS. We continue iterating over the SAPRL until there are no
APRs left. Then we price the remaining request in cS with the reserve price of the
providers. The resulting compute price is distributed uniformly over all compute
providers that participate in the APR. The distribution for network providers
is based on the Extended Minimal Cut List as explained in section 4.2. In this
way we become uniform path prices while taking the relative importance of the
individual links into account. Note that currently both network and compute
resource providers are able to set minimum prices. While it would be possible
to dynamically change these during the simulation, we have not experimented
with this option.
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We use the NHLB pricing strategy because the pricing rule used is closely re-
lated to Vickrey auctions. This kind of auction is incentive compatible and the best
strategy for a participant is to reveal its true value for the item. For complex sys-
tems such as ours, the winner determination is often NP hard. As such it becomes
impossible to design a system that on the one hand is incentive compatible, and
on the other hand tractable to compute [12]. As such, no hard proof can be given
that we have in fact created a system that is incentive compatible. Indeed, there
may be situations where participants of the system can in fact gain an advantage
by strategic bidding. This should not stop us from applying the most important
principles of incentive compatibility to our pricing strategy, namely second price
like systems are generally a good choice for participants to reveal their true valu-
ations and are less susceptible to strategic bidding than other pricing systems.

4 Network Pricing

In this section we describe the general approach to pricing individual network
links based on their importance. The first subsection deals with the search for
links that are responsible for the limitations in transfer capacity between a set of
sources S and a set of sinks C in a network. We then explain how the estimated
prices translate to the pre-prices of individual resources. More details about the
actual algorithms can be found in [8].

4.1 Limiting Links

In this subsection we define the limiting links LL(S,C) {l1, . . . , ln} from a set of
sources S to a set of sinks C with S ∩ C = ∅ as the set of all links where the
network capacity capnet(S,C) from S to C decreases when any of the links in
LL(S,C) is removed. We define LL(S,C) more formally in Equation 4 where
the extra parameter g denotes the graph representation of the network.

LL(S,C, g) = {l1, . . . , ln}with ∀li ∈ LL(S,C, g) :
capnet(S,C, g) > capnet(S,C, g \ li) (4)

Clearly, the links in LL(S,C, g) are important and should be (pre)priced accord-
ingly. We have designed an algorithm that calculates the Extended Minimal Cut
List EMCL(S,C, g) between a set of sources S and a set of sinks C on network
graph g [8]. The algorithm first calculates the list of minimal cuts between S
and C and then extends the individual minimal cuts with the additional trailing
limiting links. The links in the EMCL(S,C, g) are equal to the limiting links
defined in Equation 4 and its ordering and composition helps in pricing the links
between S and C uniformly.

To further clarify these concepts, we provide an example of an extended min-
imal cut list based on the network depicted in Figure 2. We take S = {1, 2, 3}
and C = {7, 13, 16}. All limiting links are marked with a diamond. Links marked
with open diamonds are extending links of a minimal cut. The resulting extended
minimal cut list is given in (5).
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Fig. 2. Extended Minimal Cut List
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Extended minimal cut lists are encapsulated in square brackets while extended
minimal cuts use curly braces. Extended links are not marked but visible by the
fact that the links in an extended link are horizontally separated by commas,
for example (2, 5), (5, 8). As can be seen, the second main extended minimal cut
contains an extended minimal cut list all by itself. We can also check that when
we remove any link in EMCL from the network, its capacity will decrease. The
non-limiting links from {(4, 8), (9, 10), (12, 14), (12, 15), (14, 16), (15, 16)} are not
included in the extended minimal cut list.

4.2 Network Resource Pre-pricing

We estimate both the normalized network (npEnet) and computational resource
npEcpu prices based on the expected congestion on network links and compu-
tational resources respectively. All compute resources are uniformly pre-priced
based on npEcpu. For network resources this is slightly more complicated as we
have estimated the uniform path price. However, we have to distribute this esti-
mation over the individual links. The distribution of the estimated price is based
on the Extended Minimal Cut list.

Due to space considerations, we provide the resulting network link price
estimations based on Figure 2 and an estimated network price of npEnet =
0.8EUR/GiB. We represent the resulting link pre-prices on the graph in
Figure 3. It is readily verifiable that any path from a source node to a sink
node will be pre-priced at the desired 0.8EUR/GiB. The price distribution
matches the importance of the individual links which becomes clear when they
are matched with the EMCL in (6). We re-use the relative importance of links
when distributing the actual path price over the individual links. Note that we
have not taken into account the reserve price for the non-limiting links in order
to present the distribution of path prices over the limiting links in the extended
minimal cut list more clearly.
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Fig. 3. Extended Minimal Cut List Pricing

5 Results

We now demonstrate with some specific experiments that the different elements
of our global approach deliver correct and expected results. We note that variance
var of a value v in our experiments is always given as a number in [0, 1[ and that
for each member of a group, a uniformly random value is chosen in the interval
[v ∗ (1− var), v ∗ (1 + var)[ by means of the java Random nextDouble method.

For all our experiments we have used a network based on the EGEE topol-
ogy. We have depicted this network in Figure 4. This figure also contains an
example of network prices as calculated by our algorithms. The locations of
storage providers are indicated in light grey and the locations of computational
resource providers in dark grey. It is readily verifiable that the resulting network
path prices are around 0.684EUR/GiB. Note that we have omitted the reserve
prices in order to avoid clutter.
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Fig. 4. Simulated Network

5.1 Online vs Offline Network Aware Scheduling

The ENARA broker is an offline scheduling system that periodically plans in
all submitted requests in order to generate as much user value and utility as
possible. There are however settings where the extra delay caused by this periodic
planning is undesirable. As such we have imitated the behaviour of an online
FIFO based scheduler that is network aware by randomizing the order in which
requests are processed in the planning phase for the ENARA broker. We have
named this broker FIFOna. One notable difference with a traditional online
system is the fact that applications that cannot be planned immediately will
(have to) be resubmitted to the broker. This means that when there is a sudden
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spike in high-value applications, these applications actually have a higher chance
of being scheduled than in a true online FIFO based system.

While FIFOna is quite capable of planning in applications with their data de-
pendencies, it significantly changes the assumptions on which the pricing strategy
is based. Since we are not selecting applications based on their normalized bud-
get but rather on their arrival time, we are not assigning the allocations to the
highest bidders and as such we cannot use a second pricing approach. Another
aspect is that it is much more difficult to estimate the gigabyte to workload fac-
tor in an online system, especially when load peaks occur. Because of these two
reasons, FIFOna uses a reserve pricing strategy. Therefore we focus in the tests
that follow on the value that the system has realized for its users, not on the
utility because of the unresolved issues surrounding pricing in an online setting.

The network we use is based on EGEE and is depicted in Figure 4. We have
distributed compute and storage sites randomly. The random distribution of
compute sites S and storage sites C creates situations with potentially differ-
ent sizes for the minimal cut between S and C and thus with different network
capacities. That is why we have grouped the scenarios with identical network
capacities. For these tests, we have chosen 25 scenarios where the minimal cut is
3 links. We set LT to 5min, PP to 15min, PW to 24 hour and CW to 30min
and use NHLB pricing for both computational and network resources. We use
6 providers with 100 cpu nodes each and a reserve price of 0.1EUR/hour for
computational resources and 0.1EUR/GiB for network link capacity. The num-
ber of storage nodes in the network is 2. The simulation bound is 24 h. The
parameters for the 4 different consumer groups can be found in Table 1. The
first group, GroupN are users for which the applications do not have any data
dependencies. GroupD are users with applications with data dependencies. The
last two groups are groups of a limited number of short deadline consumers that
will enter the system in 3 hour intervals as indicated by the reload time rt. They
also have a tighter deadline as indicated by the deadline factor df . The number
of consumers |Cons| of the short deadline consumer groups is limited to 15. The
standard job length is 10 or 20min. We have chosen an input data size ds =
100GiB as the time it takes to transfer this amount of data is approximately
equal to 15min, which simplifies the parameter choice for our experiments.

Table 1. Experiment Parameters

Param GroupN GroupD GroupHN GroupHD

|Cons| 120 120 15 15
rt 0 0 3 hour 3hour
|jobs| 25 10 25 10
jl 20 10 20 10
df 25 12 3 3
npEcpu 0.2EUR/hour 0.3EUR/hour 0.2EUR/hour ∗ {1, 10} 0.3EUR/hour ∗ {1, 10}
npEnet n.a. 0.3EUR/GiB n.a. 0.3EUR/GiB ∗ {1, 10}
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The variation in data size is 5% for these tests. However, we have also per-
formed tests with vards = 50% without any negative impact on the resulting
allocations. Note that we have chosen varjl, vards, varbudget to be 5% and that
we have varied the budget of the short deadline consumers by multiplying the
budgets of the normal value consumers with {1, 10}. This results in two experi-
ments; one where the short deadline consumers have similar valuations than the
normal consumers, and one where their valuations are 10 times as high. Con-
sumers keep generating new APRs as long as the simulation runs. For all the
experiments executed the ENARA broker could achieve a utilization on both
network and computational resources over 97.5%.
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Fig. 5. Value Planned ENARA vs FIFOna

The relative increase in total value planned for the experiment with high value
low deadline groups, is plotted in Figure 5a, together with the deviation. We can
observe that offline planning is able to plan just over 17.5% of additional value
compared with an online planning approach. In absolute values, the average final
consumer value planned for the ENARA system is 118 172 with a deviation of
376 over 25 runs. For the FIFOna system, we obtain an average of 100 477 with
a deviation of 1 704 over 25 runs. Note that it would be possible to increase this
difference significantly by increasing the number of consumers in groups N and
D. Such an enlarged user population would decrease the chances of high-value
consumers being planned for the FIFOna broker.

When the low deadline groups have similar valuations than the normal groups,
we are in fact testing whether the ENARA system by itself can plan in more
value than an online approach. In that case, the difference can only be made
by selecting the highest value requests. The results can be seen in Figure 5b.
Towards the end of the 24 hour period, the increase in value planned by the
ENARA system compared to the online FIFOna planner is approximately 4.7%.
This value is very close to the budget variance of 5% and as such a validation
of the capacities of the ENARA broker. The average of the final value planned
for the ENARA system is 83 800 with a deviation of 455 over 25 runs. For the
FIFOna system, we reach an average of 80 012 with a deviation of 233 over 25
runs.
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Fig. 6. Value planned

In Figure 6 we have plotted the value planned in each planning phase and the
deviation over 25 runs of both the offline ENARA system and online FIFOna
system. Part (a) and (b) show the results of the experiment with high value
low deadline consumer groups. We can make the observation that the ENARA
broker plans in all high-value applications immediately as shown by the high
peaks every 3 hours while for FIFOna the peaks are much less pronounced. Note
that the peaks in the FIFOna system are also wider, which means that it can
catch up somewhat with the ENARA broker while the deadlines of the remaining
high-value requests have not expired.

We can deduce from the previous graphs that ENARA actively selects the
highest value applications when scheduling. This is confirmed in our experiments
by the sharp decline in the number of requests planned for the normal value
consumers every 3 hours and the simultaneous peak in numbers for the high-
value consumers. Since the online FIFOna system cannot perform this active
selection, it is not capable of extracting all the additional value from the high-
value consumers.

6 Conclusion

In this article we have tackled the advance reservation and co-allocation problem
of computational and network resources. By estimating npEcpu and npEnet and
defining the G2W factor we are able to flatten an inherently two-dimensional
problem and use a greedy heuristic for planning both data dependent and data
free APRs. We have clearly demonstrated that the ENARA broker is capable
of generating higher value for the users of the system compared to an online
approach. This is achieved by actively selecting and planning the highest value
requests. We have mentioned that the ENARA broker is capable of planning in
both network and computational resources at close to 100% utilization, which is
a clear indication of the efficiency of the allocation mechanism.
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