
An Economic Agent Maximizing Cloud Provider

Revenues under a Pay-as-you-Book
Pricing Model

Felipe Dı́az Sánchez, Elias A. Doumith, Sawsan Al Zahr, and Maurice Gagnaire

Institut Mines-Telecom - Telecom ParisTech - LTCI CNRS
Networks and Computer Sciences Department

46, rue Barrault F 75634 Paris Cedex 13 - France
{felipe.diaz,elias.doumith,sawsan.alzahr,
maurice.gagnaire}@telecom-paristech.fr

Abstract. The Cloud computing paradigm offers the illusion of infinite
resources accessible to end-users anywhere at anytime. In such dynamic
environment, managing distributed heterogeneous resources is challeng-
ing. A Cloud workload is typically decomposed into advance reservation
and on-demand requests. Under advance reservation, end-users have the
opportunity to reserve in advance the estimated required resources for the
completion of their jobs without any further commitment. Thus, Cloud
service providers can make a better use of their infrastructure while provi-
sioning the proposed services under determined policies and/or time con-
straints. However, estimating end-users resource requirements is often
error prone. Such uncertainties associated with job execution time and/or
SLA satisfaction significantly increase the complexity of the resource man-
agement. Therefore, an appropriate resource management by Cloud ser-
vice providers is crucial for harnessing the power of the underlying
distributed infrastructure and achieving high system performance. In this
paper, we investigate the resource provisioning problem for advance reser-
vation under a Pay-as-you-Book pricing model. Our model offers to han-
dle the extra-time required by some jobs at a higher price on a best-effort
basis. However, satisfying these extra-times may lead to several advance
reservations competing for the same resources. We propose a novel eco-
nomic agent responsible for managing such conflicts. This agent aims at
maximizing Cloud service provider revenues while complying with SLA
terms. We show that our agent achieves higher return on investment com-
pared to intuitive approaches that systematically prioritize reserved jobs
or currently running jobs.

Keywords: Cloud computing, Resource provisioning, Advance reserva-
tion, Pricing models, Pay-as-you-Book, Economic agents, SLA.

1 Introduction

Cloud computing is a large-scale distributed computing paradigm wherein IT
(Information Technology) resources are delivered to end-users as a service. Us-
ing virtualization technologies, physical IT resources (e.g., processing power,

K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2012, LNCS 7714, pp. 29–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

30 F. Dı́az Sánchez et al.

data storage, network bandwidth, etc.) can be packaged along with an operating
system and a set of software into a flexible and scalable virtual machine (VM).
End-users can dynamically customize, lease, and release VMs through the Inter-
net according to their needs. Moreover, Cloud computing promises to provide
IT resources to end-users as metered services. In analogy to traditional utilities
such as water, gas, electricity, etc., Cloud service providers (CSPs) seek to meet
fluctuating end-users needs and charge them for resources based on usage rather
than on a flat-rate basis.

In Cloud computing, resource provisioning can be performed under on-demand
or/and advance reservation plans (e.g., Amazon EC2 and GoGrid). Under on-
demand plan, CSPs charge end-users proportional to their resource consumption
on a Pay-as-you-Go basis (e.g., Amazon EC2 On-Demand Instances). In such a
pricing model, resource consumption is measured in fine-grained measurement
unit, e.g., data storage consumption is typically measured in gigabytes. Fur-
thermore, Cloud resource provisioning must be elastic, allowing end-users to
dynamically lease/release resources to cope with their fluctuating and unpre-
dictable needs. Large scale providers with virtually unlimited resources (e.g.,
Amazon EC2) can guarantee such elasticity. However, small- and medium-sized
providers with relatively limited resources may not be able to instantaneously
satisfy all requests.

Another classical resource management strategy is to employ an advance reser-
vation (AR) mechanism. Under AR plan, end-users submit their requests to the
CSP beforehand and commit to use the requested service during a given time pe-
riod by paying a reservation fee. In return, the CSP offers its services at a lower
price compared to the on-demand plan. In doing so, the CSP is able to lock re-
sources and thus guarantee that end-users can access the required resources dur-
ing the reserved time period [1]. Moreover, AR allows the CSP to maximize its
resource utilization and yield optimal profits. However, end-users requests are of-
ten subject to uncertainties (e.g., job execution time) which may result in under-
/over-provisioning problems. In such cases, the CSP has to decide whether or not
to satisfy additional requests taking into account available resources and SLAs
(Service Level Agreement) agreed with its end-users. To this end, an appropri-
ate resource management by the CSP is crucial for harnessing the power of the
underlying distributed infrastructure and achieving high system performance.

In our previous work [2], we studied the problem of Cloud resource provisioning
in an on-demand fashion. Indeed, we considered job requests with time-variable
capacity requirements whereas the CSP only relies on the capacity requirement
upon the request arrival. We investigated different algorithms to solve this re-
source provisioning problem and compared them in terms of resource utilization
as well as VMs dropping and rejection ratios. In this paper, we investigate the
problem of Cloud resource provisioning for AR under a Pay-as-you-Book pric-
ing model. Our model offers to handle the extra-time required by some jobs at
a higher price, on a best-effort basis. Indeed, ARs running for a longer period
than expected may lead to resource conflicts with other ARs. In order to resolve
such resource conflicts, we propose in this work an economic agent responsible for

An Economic Agent Maximizing Cloud Provider Revenues 31

managing the under-provisioning problem. Our economic agent aims at maximiz-
ing the CSP revenues while complying with the SLA terms. Through numerical
simulation, we show that our agent achieves higher revenues compared to intuitive
approaches that systematically prioritize reserved jobs or currently running jobs.

The remainder of this paper is organized as follows. In Section 2, we provide a
detailed state-of-the-art focusing on AR-based resource provisioning approaches.
In Section 3, we present our formulation of the resource provisioning problem
under a Pay-as-you-Book pricing model and emphasize our contribution with
regard to related works. We also introduce the economic agent responsible for
managing resource conflicts caused by under-estimated jobs. Numerical results
and performance evaluation are given in Section 4. We then conclude our paper
in Section 5 with some directions for future work.

2 Related Work

Advance reservation has been introduced in Grid and Cloud environments as an
efficient way to guarantee the availability of IT resources for use at a specific time
in the future. In order to handle AR, the CSP needs some information specifying
the quantity of resources required by the job, the ready-time when this job can
start its execution, the expected job execution time, and its deadline. Based on
the capacity and time requirements of the jobs, we can classify existing studies
on AR into:

2.1 Advance Reservation Specified by Cloud Service Providers

This type of AR is tightly related to the subscription-based pricing model, widely
proposed by CSPs. Under this pricing model, end-users must commit to use the
service for a given time period by paying a one-time fee; in exchange, the CSP
guarantees the availability of the required resources at reduced hourly rates.
This type of reservation operates on a time-interval basis. At the beginning
of each time-interval, the end-user may adjust the amount of resources to be
reserved by the CSP for the next time-interval. Conducted research studies can
be classified into short-term reservation plans [3, 4] (e.g., fine granularity of
10-minute/1-hour time-intervals) and long-term reservation plans (e.g., several
years time-intervals) [5, 6].

In [3], the authors investigated pricing policies for guaranteed bandwidth
reservation in the Cloud on a short-term basis such as hours or tens of minutes.
Requests are characterized by an estimated average bandwidth requirement, its
variability, and the percentage of the traffic flow to be satisfied with guaranteed
bandwidth. As for the CSP, it computes the current bandwidth reservation in or-
der to guarantee the required performance in a probabilistic way. It also decides
on the reservation fee taking into account the burstiness and the time correla-
tion of the various requests. The authors in [4] investigated a similar problem
where a broker is introduced between the CSPs and the end-users. While the
broker sells guarantees to end-users individually, it jointly reserves bandwidth

32 F. Dı́az Sánchez et al.

from multiple CSPs for the mixed demand, exploiting statistical multiplexing
to save reservation cost. The problem was solved using a game theory approach
where the equilibrium bandwidth price depends on the demand expectation, its
burstiness as well as its correlation to the market.

The long-term reservation plan has been first studied in [5]. The authors con-
sidered a single CSP and proposed an algorithm that selects the number of VMs
to be reserved by an end-user while deploying a service in the Cloud. In order to
cope with request fluctuations and unpredictability, additional resources may be
dynamically provisioned with an on-demand plan. The proposed algorithm min-
imizes the global cost of using a mixture of reserved and on-demand instances by
taking advantage of the different pricing models within the same provider. The
authors of [6] generalized the problem to the context of multiple CSPs taking
into account the uncertainty on end-users future requests and providers resource
prices. They formulated the problem as an integer stochastic program and solved
it numerically using various approaches.

2.2 Advance Reservation Specified by End-Users

In this type of AR, end-users have a higher flexibility as they can specify, in
addition to their capacity requirements, various time constraints associated with
the execution of their jobs. Time constraints can be expressed in terms of various
parameters such as ready-time, job duration, and job deadline. Thus, end-users
have the opportunity to reserve in advance the estimated required resources for
the completion of their jobs without any further commitment. In the sequel, we
define the AR window as the time-interval delimited by the ready-time and the
deadline of a given job request. AR specified by end-users can be classified into
three main categories as follows:

a) Strict Start and Completion Time: This type of job is characterized by
a job duration equal to its AR window. In other words, end-users require the
resources at a specified exact time in the future and for a specified duration.
This type of jobs does not leave any flexibility to the CSP to reschedule the job
at a different time period. Several studies have shown that jobs with strict start
and completion time lead to high fragmentation of the resources availability by
increasing the number of time intervals that are left unused [7, 8]. These time
intervals can be used by other types of requests such as spot and on-demand
instances.

The authors of [9] investigated the provisioning of computing, storage, and
networking resources in order to satisfy AR requests. They considered several
basic services and highlighted how distributed data storage and multicast data
transfer can satisfy a larger number of end-users and improve resource utiliza-
tion of CSPs. The business model of the aforementioned problem has been in-
vestigated in [10]. The authors proposed and compared three pricing strategies
assessing the expectations of both end-users and CSPs.

b) Flexible Start But Strict Completion Time: This type of jobs is char-
acterized by a higher flexibility than the former as the AR window is larger

An Economic Agent Maximizing Cloud Provider Revenues 33

than its execution time. However, these jobs are time-critical and, if accepted,
the CSP must ensure that they will complete prior to their firm deadline. Thus,
CSPs may use various mechanisms to efficiently arrange, manage, and monitor
their resources. For instance, the authors in [1] introduced a model based on
computational geometry that allows CSPs to record and efficiently verify the
availability of their resources during the SLA negotiation and planning phase.
According to this model, when the CSP lacks resources, a flexible alternative
solution, referred to as counter-offer, can be generated in order to satisfy the
end-user. Hence, the CSP’s reputation can be enhanced by improving its ability
to satisfy as many end-users as possible leading to higher resource utilization
and consequently higher profits. The authors in [11] investigated a negotiation
mechanism that allows either parties (CSPs and end-users) to modify the SLA or
to make counter proposals in order to converge to a mutually acceptable agree-
ment. In the investigated scenarios, once the SLA has been agreed upon, the
CSP has to execute the job at the specified time. Numerical simulations have
been carried out to highlight the benefit brought by time-flexible job requests.
The authors in [12] investigated the impact of the AR window size on the block-
ing probability and the resource utilization for various models of inter-arrival
and service times under the first-come-first-served scheduling policy.

In [13], the authors investigated the resource provisioning problem in a market-
oriented Cloud considering ARs with flexible window size that is a function of the
requirements and the budgets of end-users. The aim of this study is to propose
a fair management algorithm that guarantees the QoS (Quality of Service) re-
quirements of end-users while increasing the expected benefit of CSPs. For this
purpose, the authors introduced a weighted cost function that enables service dif-
ferentiation relying on time constraints disparity of the requests. An exact linear
formulation [13] as well as a heuristic approach [14] have been considered for the
numerical performance evaluation. Instead of charging fixed prices, the authors in
[15] propose to automatically adjust the price for accessing the resources, when-
ever necessary, in order to increase the CSP revenues. By charging variable prices,
CSPs can give incentives to end-users with less urgent requirements to shift to us-
ing the service during off-peak periods and benefit from lower prices. As the prices
are adjusted based on the expected workload and the resource availability, ARs
submitted a long time in advance are privileged with cheaper prices compared to
late ARs.

Similar investigations have been carried out in a slightly different environ-
ment. The new environment allows the CSP to modify the execution schedule of
already accepted ARs in order to accommodate new requests right up until each
execution starts [16]. Such rescheduling of existing jobs is carried out while re-
specting the deadline constraints specified in the SLA. The authors have shown
that this mechanism can mitigate the negative effects of AR and improve the
performance of reservation-based schedulers as it tends to reduce the amount of
time intervals where resources remain free. Another solution to improve resource
utilization is to make use of comprehensive overbooking which is particularly ef-
ficient in scenarios with no-show policy, job cancelation [17], and over-estimated

34 F. Dı́az Sánchez et al.

execution time of jobs [18]. In this context, rescheduling existing jobs may allow
overbooked jobs to get access to the resources during their full execution period
if previous jobs do not show up or finish earlier. The Earliest Deadline First
scheduler have been investigated to provide probabilistic real-time guarantees
for AR over time-shared machines [19]. With this scheduling strategy, an admis-
sion control policy is developed where new job requests are accepted if they do
not break the QoS constraints of previously accepted reservations. This can be
achieved for instance by changing the priority of the running jobs to ensure that
the execution completes prior to its deadline.

c) Flexible Start and Completion Time: This type of jobs is also character-
ized by a high flexibility. However, the AR window is not clearly defined. Instead
of defining a ready-time and a firm deadline for the execution of each job, the
end-user provides a set of time-intervals along with its preferences represented by
a utility function. The utility function represents the level of satisfaction that the
end-user will experience as a result of the negotiation outcome. This satisfaction
may depend on several parameters such as the time of execution, the price of the
resources, the delays, the QoS requirements, etc. Usually, not being able to reach
an agreement is the worst possible outcome and the end-user receives a null util-
ity as its request is rejected. Dynamic pricing based on resource utilization and
end-users classification was introduced in [20]. Such dynamic pricing strategy al-
lows the CSP to adapt the price to set incentives for using the resources during
off-peak periods. Two different approaches, which are already well established
in other areas, are compared in [21] namely, reservation realized by derivative
markets in a perfect competition CSPs environment and yield management tech-
niques assuming an imperfect competition environment. The authors analyze the
different requirements in order to apply the proposed approaches in the Cloud
and provide models to derive the suitable reservation price. The authors in [22]
introduced a bilateral negotiation mechanism for Cloud service reservation that
simultaneously considers price and execution time. Numerical simulations have
been used to compare the proposed mechanism to traditional pricing models
used by current CSPs namely, fixed-prices for on-demand and reserved instances,
and variable prices for spot instances. The Time-of-Use pricing policy has been
investigated in [23]. According to this policy, the price of accessing resources
is totaly independent from the utilization ratio of the requested resources but
varies within a day. The optimal pricing strategy that maximizes the end-user
satisfaction is derived.

3 Problem Formulation

In this paper, we focus our investigations on VM provisioning and usage for
compute-intensive and/or processing-intensive scientific applications. Under this
assumption, all VMs are already configured with a considerable amount of CPU
resources and dedicated memory space. Once a job is running on a given VM,
the underlying resources associated with this VM (e.g., CPU power, memory
space, network bandwidth, etc.) are intensively used and cannot benefit from

An Economic Agent Maximizing Cloud Provider Revenues 35

statistical multiplexing. Therefore, an incoming job request only has to express
its requirements in terms of VMs without explicitly specifying their configura-
tions. Although the end-users have the illusion of infinite resources within the
Cloud, the CSPs are always constrained with limited resource availability. For
this purpose, we consider in this study a large data-center, owned by a single
CSP, that can host up to N VMs.

Many scientific applications such as telemedicine, multimedia, or air traffic
flow management require the combination and orchestration of several services
to meet their requirements. As the resources are being shared by multiple ap-
plications which are completely unaware of each other, the use of AR has been
proposed as a means to provide time-guarantees on the successful completion
of the submitted jobs. The AR mechanism allows end-users to reserve enough
resources across independently administrated domains prior to their job’s exe-
cution. In order to efficiently handle ARs, the CSP needs information regarding
the required quantity of resources, the ready-time as well as the execution time
of the jobs. As the execution time of the applications may vary from one run to
another, it is a tedious task for end-users to provide these values. This is espe-
cially true for distributed applications since their execution time highly depends
on the interaction between the various implied services.

Due to demand uncertainty, job requests can be classified into under-estimated
and over-estimated jobs. Over-estimated jobs will run for a shorter period in
comparison to their stipulated execution time. Conversely, under-estimated jobs
will run for a longer period than expected. Such inaccuracy in estimating job
execution time can result in lower resource utilization and higher rejection rates.
However, performance degradation is less severe for job requests characterized by
flexible start but strict completion time, or flexible start and completion time.
Indeed, these types of jobs can benefit from the backfilling mechanism where
the CSP reschedules all the accepted jobs in order to adapt to the changing
conditions. For instance, when an over-estimated job leaves the system, the CSP
invokes the scheduler in order to achieve larger contiguous idle time periods.
These idle periods can facilitate the accommodation of future requests as well as
the provisioning of additional time for requests that have exceeded their specified
execution time. Thus, instead of aborting the execution of under-estimated jobs,
the CSP investigates the feasibility of providing them with extra-time without
missing the deadlines of other accepted jobs.

Nevertheless, to the best of our knowledge, demand uncertainty has never been
investigated in the context of ARs characterized by strict start and completion
time. Previous investigations in this matter assume that the jobs are perfectly
known [7–10] or propose to terminate any under-estimated application that is
still executing once its reservation period expires. In our study, we offer to handle
the extra-time required by some jobs at a higher price on a best-effort basis.
Moreover, we propose to manage any resource conflict that may arise between
an under-estimated job and another already reserved job while complying with
the SLA terms and maximizing the CSP revenues.

36 F. Dı́az Sánchez et al.

3.1 Job Characterization

Scientific applications are typically modeled as workflows consisting of tasks,
data elements, control sequences, and data dependencies. A workflow describes
the order in which several jobs must be performed by different entities in order
to achieve a given outcome. A workflow management engine is responsible for
managing and controlling the execution of these jobs. It also allows end-users to
specify their requirements using the workflow specification. Thus, the workflow
Ωi of a given end-user U i can be modeled by a sequence of jobs ωi

j , where j

denotes the index of the job ωi
j in the workflow Ωi (j = 1 · · · J i). Each job

ωi
j , characterized by “strict start and completion time” (cf. Section 2.2a), is

represented by a tuple (ni
j , α

i
j , β

i
j , γ

i
j), where n

i
j denotes the number of required

VMs, αi
j the ready-time of the job, βi

j its completion time estimated by the

end-user, and γij its real completion time obtained once executed on the given
cluster. A workflow completes when all its jobs are completed. In our study, we
have considered a set of M workflows (i = 1 · · ·M) composed of a sequence of
jobs to be executed within a given time interval [0, Δ].

3.2 Initial Scheduling of Job Requests

Since ARs are made prior to job execution, the CSP can use various scheduling
approaches in order to optimize the resource utilization of its infrastructure,
and consequently increases its revenues. At this stage, the CSP has only the
knowledge of the execution time estimated by end-users. Even though these
estimations are often imprecise, the CSP has to decide whether to accept (�i =
1) or reject (�i = 0) each workflow Ωi depending on its resources availability.
As stated previously, a workflow Ωi is accepted if all its jobs ωi

j (j = 1 · · · J i)
can be satisfied.

The initial scheduling problem can be formulated as follows. Given the number
N of VMs and the set of M workflows, the CSP has to determine, for each
accepted workflow, the physical machine that will host it. This should be carried
out while respecting the limited resources of the CSP and the fixed ready-time
and completion time of end-users jobs. The main objective of the CSP at this
stage is to maximize the utilization G of its resources which can be expressed
mathematically as:

G =
1

N ×Δ

M∑

i=1

J i∑

j=1

�i × ni
j ×

(
βi
j − αi

j

)
. (1)

This problem turns out to be similar to the 2-dimensional bin packing problem
with rejection. In order to solve this problem, we will use a very straightforward
sequential algorithm commonly known as “Decreasing First Fit” (FFD) algo-
rithm. This a simple offline heuristic algorithm that achieves a near-optimal so-
lution for the classical 1-dimensional bin packing problem [24]. The FFD strategy
operates in two phases. First, it sorts the workflows in decreasing order of their

An Economic Agent Maximizing Cloud Provider Revenues 37

cumulated reservation time
(∑J i

j=1(β
i
j − αi

j)
)
. Then, it processes the workflows

according to the previous order, and schedules the jobs of the selected workflow
in the first VM with sufficient remaining capacity during their respective reser-
vation intervals. If none of the VMs can (partially or fully) accommodate the
incoming workflow, the workflow will be rejected.

3.3 Pay-as-you-Book Pricing Model

Numerous economic models, including microeconomic and macroeconomic prin-
ciples, have been investigated in the literature for setting the appropriate price
for accessing a service. A pricing policy can be derived from various parameters
such as the supply-and-demand and their value to the end-users. The commod-
ity market, posted price, tender, bargaining, and auction models are among the
commonly used economic models for managing the resources in the Cloud [25].
In this paper, we focus on the Pay-as-you-Book pricing model. It is a flat price
commodity market model where the CSP specifies its service price and charges
end-users for the amount of resources they reserve. Let ΓR be the hourly rate of
a reserved instance. ΓR is independent of the service quality and the number of
jobs. Upon, the acceptance of a workflow Ωi, the CSP expects the payment of a
reward or fee for the successful completion of this reservation. This reservation
fee Ci can be expressed as follows:

Ci =
J i∑

j=1

ni
j × (βi

j − αi
j)× ΓR. (2)

If all the jobs of a given workflow Ωi finish within their respective reservation
period (γij ≤ βi

j), the end-user does not have to pay any additional fee. However,
it may happen that a job takes more time to execute than initially estimated
(γij > βi

j). In this case, the CSP can allocate the required resources for a longer

period for a higher hourly rate ΓO on a best-effort basis (ΓO > ΓR). In other
words, the CSP cannot guarantee that the job will continue running until its
real completion time γij . Let θ

i
j be the time when an under-estimated job ωi

j

successfully ends (θij = γij) or is forced to terminate by the CSP if the resources

are reserved for executing another job (θij < γij). In this case, the end-user is

requested to pay, for each under-estimated job ωi
j , an additional fee F i

j equal to:

F i
j = ni

j × (θij − βi
j)× ΓO. (3)

When the CSP accepts an AR, the end-user expects to be able to access the
agreed resources at the specified ready-time. However, changes may occur be-
tween the time when the end-user submits the reservation and this specified
ready-time. This can happen for various reasons such as end-users canceling or
modifying requests, resource failures, and errors in the estimation of the execu-
tion time. Since an AR is considered as a commitment by the CSP, failing to
meet this commitment may result in the provider paying the end-user a penalty

38 F. Dı́az Sánchez et al.

P i
j larger than the reservation fee. For each rejected job at its ready-time, the

CSP is requested to reimburse the end-user an amount P i
j equal to:

P i
j = ni

j × (βi
j − αi

j)× (ΓR + ΓP), (4)

where ΓP represents the credit that the CSP has to return to the end-user if it
is unable to start the job.

3.4 An Economic Agent for Maximizing CSP Revenues

According to the previous description, we can distinguish three scenarios namely,
over-estimated jobs (cf. Figure1a), under-estimated jobs without any conflict
(cf. Figure1b), and under-estimated jobs resulting in a conflict (cf. Figure1c)
with other ARs. The first two scenarios are trivial since the CSP does not have
to intervene and the AR will end normally. For these scenarios, the CSP can
keep the reservation fee and will obtain an additional fee for executing any under-
estimated job (θij = max(βi

j , γ
i
j)). However, in the third scenario, a conflict arises

as an under-estimated job ωi
j is competing for the same resources as an incoming

AR ωi′
j′ . Thus, the CSP has to decide at the ready-time αi′

j′ of the new AR ωi′
j′

whether to keep running the under-estimated job ωi
j or abort it.

Targeting higher revenues, the CSP first has to estimate the average extra-
time δ required by such jobs. This can be easily obtained by analyzing the past
history of all compute-intensive job executions and hence adjusting δ accordingly.
Based on this estimation, the CSP can evaluate the different choices for resolving
any conflict. On one hand, if the under-estimated job ωi

j is kept running, the

CSP estimates getting from end-user U i an additional fee equal to �1 = ni
j ×

(δ + βi
j − αi′

j′) × ΓO. However, the CSP has to pay the end-user U i′ a penalty

P i′
j′ equal to �2 = ni′

j′ × (βi′
j′ − αi′

j′) × (ΓR + ΓP). On the other hand, if the

under-estimated job ωi
j is aborted and the new AR ωi′

j′ is executed, the CSP can
keep the reservation fee but will not obtain any additional benefit. By comparing
the values of �1 and �2, the CSP will decide on the best way to resolve this
conflict. If the CSP decides to keep the under-estimated job, it should negotiate
with the owner of the incoming AR if it accepts to delay its current execution
and gets in exchange the penalty specified in the SLA and a new time slot for
executing its job. We assume that the end-user can accept such a proposal with
a probability ρ.

4 Numerical Results

4.1 Experimental Setup

In our simulations, we consider a single CSP with limited resources that can host
up to N = 10 VMs simultaneously. We consider a simulation period of 4 days (or
equivalently Δ = 96 hours). In our investigations, we only consider workflows Ωi

An Economic Agent Maximizing Cloud Provider Revenues 39

i
j

i
j

i
j

'
'
i
j

a)

i
j

i
j

i
j

'
'
i
j

i
j

i
j

'
'
i
j

i
j

b)

i
j

i
j

i
j

'
'
i
j

i
j

i
j

'
'
i
j

i
j

c) rejected is if
dropped is if

'
'

'
'

i
j

i
j

i
j

i
ji

j

i
j

'
'
i
j

Fig. 1. Possible scenarios of running jobs

with one single job (J i = 1) requiring a single VM (ni
j=1). The ready-time αi

j of
a job is chosen uniformly in the interval [0, Δ = 96[while its estimated execution
time μi

j follows a negative exponential law of mean μ̂ = 5 hours bounded by a

maximum duration of 8 hours (βi
j = αi

j + μi
j). The percentage ψ of under-

estimated jobs varies in the set {20%, 30%, 40%} and the extra-time λij required

by these reservations also follows a negative exponential law of mean λ̂ equal to
1 or 2 hours (γij = βi

j + λij). Without loss of generality, we have fixed the value

of ΓR to 1 and assumed that ΓO = 3 and ΓP = 1. Finally, the probability ρ of
a successful negotiation between the CSP and the end-users has been fixed to
100%.

Under the aforementioned parameters, we have chosen to consider two differ-
ent AR loads: light loads with M = 100 and heavy loads with M = 200. These
AR loads have been inspired from the traces found in [26]. These traces provide,
among other information, the submit time, the requested time, the execution
time, the identifier, and the status of the jobs.

All experiments have been repeated 1000 times. For each scenario, we report
the average values computed over these different runs of:

• The percentage Ri of ARs that are rejected at the end of the offline initial
scheduling.

• The percentage Rd of ARs that are accepted at the end of the offline ini-
tial scheduling but are dropped during their execution because they under-
estimated their execution time.

• The percentage Rr of ARs that are accepted at the end of the offline initial
scheduling but are rejected at their ready-time because the CSP decided to
keep running an under-estimated job.

• The percentage Ra of ARs that are accepted and executed during their com-
plete activity period. It is obvious that the following equation holds:

Ri +Rd +Rr +Ra = 1. (5)

40 F. Dı́az Sánchez et al.

• The revenues Ξ of the CSP computed as a function of ΓR, ΓO, and ΓP as
follows:

Ξ =
∑

i

Ci +
∑

{extended ωi
j}
F i

j −
∑

{rejected ωi
j}
P i
j. (6)

It is worth noting that in our investigations, we assume that the CSP expenses
(i.e., CapEx and OpEx) do not change with the number of running jobs.
Hence, the CSP profits have the same trend as the CSP revenues and could
be deduced accordingly.

• The average utilization ratio χ of the CSP resources during the simulation
period Δ. χ is computed in the same way as G (Eq. (1)) taking into account
the aforementioned percentages Rd and Rr.

As stated previously, the AR mechanism allows end-users to reserve enough
resources across independently administrated domains prior to job execution.
The end-users may also have QoS requirements that can be expressed in terms
of various parameters such as deadlines, security, trust, and budget associated
with service invocation. The QoS parameters along with the time and quantity of
resources requested by the end-user are encoded in the SLA. Thus, the SLA can
be viewed as a formal agreement between the CSP and the end-users specifying
the services, priorities, responsibilities, guarantees, etc. of both parties. In this
study, the SLA is defined, among other parameters, by:

• The set of workflows
{
Ωi =

{
ωi
j(n

i
j , α

i
j , β

i
j), ∀j = 1 · · · J i

}
, ∀i = 1 · · ·M}

to

be executed. For each job ωi
j , the number of required VMs as well as their

ready and estimated completion times are also specified.

• The hourly rate ΓR for running an AR and the hourly rate ΓO for extending
it beyond its estimated completion time.

• The credit ΓP due by the CSP to the end-user in the case of non-compliance
with the SLA terms.

4.2 Reference Scenarios

The goal of this study is to investigate an economic agent responsible for resource
management under a Pay-as-you-Book pricing model. This economic agent has
to achieve “end-user satisfaction” by providing QoS guarantees for ARs, “cost
effectiveness” by efficiently maximizing the CSP revenues, and “robustness” by
intelligently handling uncertainties such as those in user-estimated execution
times. In order to assess the performance of the proposed agent, we will introduce
three intuitive strategies that can be adopted by the CSP.

On-Demand Approach: No ARs are made at all and the resource allocation is
performed online. Upon the arrival of a new job request ωi

j, the CSP evaluates its
instantaneous resource utilization. If enough free resources are available, the new
request is accepted; otherwise, it is rejected. In return, the end-user is expected
to pay a higher price ΓO for accessing the resources as they are not reserved in

An Economic Agent Maximizing Cloud Provider Revenues 41

advance. This approach does not ensure end-user satisfaction with a workflow
composed of multiple jobs as there is no guarantee that all its job instances
will be accepted. However, as we have considered in our experiments’ workflows
with a single job, the on-demand approach can be considered as a good reference
scenario. Moreover, for workflows with a single job, this strategy is characterized
by a null percentage of dropped ARs during their execution (Rd = 0) and a null
percentage of rejected ARs prior to their execution (Rr = 0).

Highest Priority to Running Jobs (HPRU): Under this strategy, the CSP
will never abort a running job and always try to postpone the incoming AR that
causes the conflict to a later period through negotiations. The only incentive for
the end-user to accurately estimate its job execution time is motivated by the
lower price of reserved instances (ΓO > ΓR). This strategy is characterized by
a null percentage of dropped ARs during their execution (Rd = 0).

Highest Priority to Reserved Jobs (HPRE): Under this strategy, under-
estimated jobs are penalized as they are aborted whenever a conflict arises after
they have executed for their estimated execution times. In order to protect their
application from forced termination, end-users with critical applications must
ensure that the estimated execution times are sufficient for their applications
to be completed. This strategy is characterized by a null percentage of rejected
ARs prior to their execution (Rr = 0).

4.3 Performance Evaluation

Impact of the Number of Submitted Jobs: In this first scenario, we have
fixed the percentage ψ of under-estimated jobs to 20% and the average extra-
time required by these jobs to λ̂ = 1.

Table 1. Impact of the number of submitted jobs

M = 100 jobs M = 200 jobs

Ri Rd Rr χ Ξ Ri Rd Rr χ Ξ

Initial Scheduling 0.10% 0% 0% 35.45% 30500 7.64% 0% 0% 67.51% 58000

On-Demand 0.20% 0% 0% 38.54% 99750 9.68% 0% 0% 67.01% 173250

HPRU 0.10% 0% 8.17% 35.09% 33750 7.64% 0% 10.01% 64.77% 61000

HPRE 0.10% 8.97% 0% 37.15% 32750 7.64% 11.29% 0% 69.64% 61000

Economic Agent 0.10% 6.42% 2.32% 37.03% 35250 7.64% 8.00% 2.91% 69.34% 64750

As expected, the on-demand approach ensures the highest CSP revenues as
the end-users are paying a higher price during all the execution of their jobs
(ΓO = 3 × ΓR). It also achieves a high overall acceptance ratio Ra as it does
not have to deal with estimation uncertainties. This latter behavior is expected
to change in the case of workflows with multiple jobs. We notice that both
the HPRU and the HPRE strategies achieve similar revenues Ξ for the CSP.

42 F. Dı́az Sánchez et al.

However, the HPRU strategy achieves the highest acceptance ratio Ra for AR,
while the HPRE has a better performance in terms of resource utilization χ. Our
proposed economic agent achieves slightly lower resources utilization compared
to the HPRE strategy and keeps the percentage of rejected AR prior to their
execution Rr at an acceptable value. In summary, our proposed economic agent
is a trade-off in terms of resource utilization and acceptance ratio between the
intuitive HPRU and HPRE strategies, but outperforms both of them in terms of
CSP revenues. Indeed, our proposed economic agent achieves an average increase
of almost 6% in the CSP revenues. These conclusions still hold independently of
the number of submitted jobs.

Impact of the Percentage of under-Estimated Jobs and Their Exe-
cution Extra-Time: In this scenario, we vary the percentage ψ of under-
estimated jobs in {20%, 30%, 40%} and the average extra-time λ̂ required by
these jobs in {1, 2}.

Table 2. Impact of the percentage of under-estimated jobs and their execution extra-
time

λ̂ = 1 λ̂ = 2

Ri Rd Rr χ Ξ Ri Rd Rr χ Ξ

ψ
=

2
0
%

Initial Scheduling 7.64% 0% 0% 67.51% 58000 7.43% 0% 0% 67.58% 58000

On-Demand 9.68% 0% 0% 67.01% 173250 11.12% 0% 0% 68.31% 176250

HPRU 7.64% 0% 10.01% 64.77% 61000 7.43% 0% 11.21% 65.89% 65000

HPRE 7.64% 11.29% 0% 69.64% 61000 7.43% 12.81% 0% 70.15% 61500

Economic Agent 7.64% 8.00% 2.91% 69.34% 64750 7.43% 5.53% 6.51% 69.40% 67500

ψ
=

3
0
%

Initial Scheduling 7.44% 0% 0% 67.45% 58000 7.45% 0% 0% 67.49% 58000

On-Demand 11.10% 0% 0% 68.24% 176250 13.48% 0% 0% 70.66% 180750

HPRU 7.44% 0% 14.34% 63.60% 62000 7.45% 0% 15.91% 65.22% 67750

HPRE 7.44% 17.07% 0% 70.61% 62250 7.45% 19.34% 0% 71.38% 63250

Economic Agent 7.44% 11.89% 4.33% 70.15% 67750 7.45% 9.52% 8.09% 69.98% 71750

ψ
=

4
0
%

Initial Scheduling 7.51% 0% 0% 67.54% 58000 7.48% 0% 0% 67.48% 58000

On-Demand 12.68% 0% 0% 69.52% 179250 15.97% 0% 0% 71.27% 183750

HPRU 7.51% 0% 18.10% 62.66% 62750 7.48% 0% 19.89% 64.71% 69750

HPRE 7.51% 22.71% 0% 71.78% 63750 7.48% 25.50% 0% 72.63% 62500

Economic Agent 7.51% 15.67% 5.59% 71.11% 71000 7.48% 12.36% 10.27% 70.72% 75250

As the initial scheduling does not have any knowledge about the error in
estimating the execution time, it achieves the same performance independently
of the values of ψ and λ̂. We notice that the percentage of ARs that are rejected
prior to their executionRr in the HPRU strategy increases with the percentage of
under-estimated jobs. However, this increase is less pronounced than the increase
observed in the HPRE strategy for the percentage of dropped ARs during their
executionRd. Finally, our proposed economic agent keeps its superiority and still
achieves a trade-off in terms of resource utilization and acceptance ratio between

An Economic Agent Maximizing Cloud Provider Revenues 43

the HPRU and HPRE strategies, but it outperforms both of them in terms of
CSP revenues. Indeed, as the percentage of under-estimated jobs increases, the
additional gain in the CSP revenues increases from almost 6% for ψ = 20% to
around 12.25% for ψ = 40%. Moreover, as the average extra-time required by
the jobs increases, the difference between the HPRU and the HPRE strategies
becomes more pronounced as the HPRU strategy achieves higher revenues.

5 Conclusions

Reflecting the recent trend of augmenting Cloud computing with AR provi-
sioning plans, we investigate in this paper the problem of resource provisioning
under a Pay-as-you-Book pricing model considering ARs characterized by under-
estimated execution times. Our model offers to handle the extra-time required
by jobs at a higher price, on a best-effort basis. Indeed, the extra-time required
by an AR plan may lead to resource conflicts with other AR plans. In order
to resolve such resource conflicts, we propose in this work an economic agent
responsible for managing the under-provisioning problem. Our economic agent
aims to achieve the end-user satisfaction by complying with the SLA terms on
one hand as well as the CSP satisfaction by maximizing its revenues through in-
telligent resource management on the other hand. In this paper, we limited our
investigations to compute-intensive applications requesting Virtual Machines.
However, this work can be easily generalized to any IaaS resources.

In order to assess the performance of our proposed agent, we have compared
our proposed economic agent with two intuitive approaches that systematically
prioritize reserved jobs or currently running jobs. Our economic agent achieves
a trade-off between the two intuitive strategies in terms of resource utilization
and acceptance ratio, but outperforms both of them in terms of CSP revenues.
These conclusions still hold independently of the number of submitted jobs,
the percentage of under-estimated jobs, and the average duration of the extra-
time required. Future studies will extend the results presented in this paper
to the case of workflows with multiple jobs. In addition, we intend to enhance
the initial scheduling algorithm in order to introduce higher flexibility in the
decisions of the economic agent. This economic agent could be be augmented
with additional features that implement overbooking techniques. In doing so,
the CSP can overcome performance degradation in case of job cancellations.

Acknowledgments. This work is granted by the CompatibleOne project
funded by French institutions.

References

1. Lu, K., Roblitz, T., Yahyapour, R., Yaqub, E., Kotsokalis, C.: QoS-aware SLA-
based Advanced Reservation of Infrastructure as a Service. In: IEEE CloudCom
Conference (November-December 2011)

44 F. Dı́az Sánchez et al.

2. Dı́az Sánchez, F., Doumith, E.A., Gagnaire, M.: Impact of Resource over-
Reservation (ROR) and Dropping Policies on Cloud Resource Allocation. In: IEEE
CloudCom Conference (November-December 2011)

3. Niu, D., Feng, C., Li, B.: Pricing Cloud Bandwidth Reservations Under Demand
Uncertainty. In: ACM Sigmetrics/Performance Conference (2012)

4. Niu, D., Feng, C., Li, B.: A Theory of Cloud Bandwidth Pricing for Video-on-
Demand Providers. In: IEEE INFOCOM Conference (March 2012)

5. San-Aniceto, I., Moreno-Vozmediano, R., Montero, R., Llorente, I.: Cloud Capac-
ity Reservation for Optimal Service Deployment. In: IARIA Cloud Computing
Conference (September 2011)

6. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of Resource Provisioning Cost
in Cloud Computing. IEEE Transactions on Services Computing 5(2) (April-June
2012)

7. Smith, W., Foster, I., Taylor, V.: Scheduling with Advanced Reservations. In:
International IPDPS Symposium (2000)

8. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems 13(3) (March 2002)

9. Aoun, R., Doumith, E.A., Gagnaire, M.: Resource Provisioning for Enriched
Services in Cloud Environment. In: IEEE CloudCom Conference (November-
December 2010)

10. Aoun, R., Gagnaire, M.: Towards a Fairer Benefit Distribution in Grid Environ-
ments. In: IEEE/ACS AICCSA Conference (May 2009)

11. Venugopal, S., Chu, X., Buyya, R.: A Negotiation Mechanism for Advance Re-
source Reservations Using the Alternate Offers Protocol. In: International IWQoS
Workshop (June 2008)

12. Kaushik, N., Figueira, S., Chiappari, S.: Flexible Time-Windows for Advance
Reservation Scheduling. In: IEEE MASCOTS Symposium (September 2006)

13. Aoun, R., Gagnaire, M.: An Exact Optimization Tool for Market-Oriented Grid
Middleware. In: IEEE CQR Workshop (May 2009)

14. Aoun, R., Gagnaire, M.: Service Differentiation Based on Flexible Time Con-
straints in Market-Oriented Grids. In: IEEE GLOBECOM Conference (November-
December 2009)

15. Yeo, C.S., Venugopal, S., Chu, X., Buyya, R.: Autonomic Metered Pricing for a
Utility Computing Service. Future Generation Computer Systems 26(8) (October
2010)

16. Netto, M.A., Bubendorfer, K., Buyya, R.: SLA-Based Advance Reservations with
Flexible and Adaptive Time QoS Parameters. In: International ICSOC Conference
(2007)

17. Sulistio, A., Kim, K.H., Buyya, R.: Managing Cancellations and No-Shows of
Reservations with Overbooking to Increase Resource Revenue. In: IEEE CCGRID
Conference (May 2008)

18. Birkenheuer, G., Brinkmann, A.: Reservation-Based Overbooking for HPC Clus-
ters. In: IEEE CLUSTER Conference (September 2011)

19. Konstanteli, K., Kyriazis, D., Varvarigou, T., Cucinotta, T., Anastasi, G.: Real-
Time Guarantees in Flexible Advance Reservations. In: IEEE COMPSAC Confer-
ence, vol. 2 (July 2009)

20. Püschel, T., Neumann, D.: Management of Cloud Infrastructures: Policy-Based
Revenue Optimization. In: International ICIS Conference (December 2009)

An Economic Agent Maximizing Cloud Provider Revenues 45

21. Meinl, T., Anandasivam, A., Tatsubori, M.: Enabling Cloud Service Reservation
with Derivatives and Yield Management. In: IEEE CEC Conference (November
2010)

22. Son, S., Sim, K.M.: A Price-and-Time-Slot-Negotiation Mechanism for Cloud Ser-
vice Reservations. IEEE Transactions on Systems, Man, and Cybernetics 42(3)
(June 2012)

23. Saure, D., Sheopuri, A., Qu, H., Jamjoom, H., Zeevi, A.: Time-of-Use Pricing
Policies for Offering Cloud Computing as a Service. In: IEEE SOLI Conference
(July 2010)

24. Yue, M.: A Simple Proof of the Inequality FFD(L) � 11/9 OPT(L) + 1, ∀L for
the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica (English
Series) 7(4) (1991)

25. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource
Management and Scheduling in Grid Computing. Concurrency and Computation:
Practice and Experience 7(13-15) (2002)

26. Parallel Workloads Archive: Logs of Real Parallel Workloads from Production
Systems, http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

	An Economic Agent Maximizing Cloud Provider Revenues under a Pay-as-you-Book Pricing Model
	Introduction
	Related Work
	Advance Reservation Specified by Cloud Service Providers
	Advance Reservation Specified by End-Users

	Problem Formulation
	Job Characterization
	Initial Scheduling of Job Requests
	Pay-as-you-Book Pricing Model
	An Economic Agent for Maximizing CSP Revenues

	Numerical Results
	Experimental Setup
	Reference Scenarios
	Performance Evaluation

	Conclusions
	References

