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Abstract. This article presents the results of the Model Checking Con-
test held within the SUMo 2011 workshop, a satellite event of Petri Nets
2011. This contest aimed at a fair and experimental evaluation of the
performances of model checking techniques applied to Petri nets.

The participating tools were compared on several examinations (state
space generation, deadlock detection and evaluation of reachability for-
mulæ) run on a set of common models (Place/Transition and Symmetric
Petri nets). The collected data gave some hints about the way techniques
can scale up depending on both examinations and the characteristics of
the models.

This paper also presents the lessons learned from the organizer’s point
of view. It discusses the enhancements required for future editions of the
Model Checking Contest event at the Petri Nets conference.
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1 Introduction

When verifying a system with formal methods, such as Petri nets, one may have
several questions such as:

“When creating the model of a system, should we use structural anal-
ysis or an explicit model checker to debug the model?”
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“When verifying the final model of a highly concurrent system, should
we use a symmetry-based or a partial order reduction-based model
checker?”

“When updating a model with large variable domains, should we use
a decision diagram-based or an abstraction-based model checker?”

Results that help to answer these questions are spread among numerous papers
in numerous conferences. The choice of the models and tools used in benchmarks
is rarely sufficient to answer these questions. Benchmark results are available a
long time after their publication, even if the computer architecture has changed
a lot. Moreover, as they are executed over several platforms and composed of
different models, conclusions are not easy.

The objective of the Model Checking Contest @ Petri nets is to compare the
efficiency of verification techniques according to the characteristics of the models.
To do so, the Model Checking Contest compares tools on several classes of models
with scaling capabilities, e.g., values that set up the “size” of the associated state
space.

Through a benchmark, our goal is to identify the techniques that can tackle a
given type of problem identified in a “typical model”, for a given class of problem
(e.g., state space generation, deadlock detection, reachability or causal analysis,
etc.).

The first edition of the Model Checking Contest @ Petri nets took place
within the context of the SUMo workshop (International Workshop on Scalable
and Usable Model Checking for Petri Nets and other models of concurrency), co-
located with the Petri Nets and ACSD 2011 conferences, in Newcastle, UK. The
original submission procedure was published early March 2011 and submissions
gathered by mid-May 2011. After some tuning of the execution environment,
the evaluation procedure was operated on a cluster early June. Results were
presented during the SUMo workshop, on June 21st, 20111.

Let us mention similar events we are aware of. The Hardware Model Check-
ing Contest2 started in 2007 focuses on circuit verification by means of model
checking. It is now associated with the CAV (Computer Aided Verification) and
FLOC (Federated Logic Conference) conferences. This event ranks the three best
tools according to a selected benchmark. It is an almost yearly event (2007, 2008,
2010 and 2011).

The Timing Analysis Contest3 within PATMOS 2011 (International Work-
shop on Power and Timing Modeling, Optimization and Simulation) also con-
siders the verification of electronic designs with a focus on timing analysis.

The Verified Software Competition4 hold within the Verified Software: The-
ories, Tools and Experiments (VSTTE) conference [24], in August 2010. This
1 This presentation can be found at http://sumo.lip6.fr/MCC-2011-report/
MCC-2011-report.pdf, and raw data of the benchmarks at http://sumo.lip6.fr/
MCC-2011-report/MCC-results-data.zip

2 http://fmv.jku.at/hwmcc11/index.html
3 http://patmos-tac.inesc-id.pt
4 http://www.vscomp.org

http://sumo.lip6.fr/MCC-2011-report/MCC-2011-report.pdf
http://sumo.lip6.fr/MCC-2011-report/MCC-2011-report.pdf
http://sumo.lip6.fr/MCC-2011-report/MCC-results-data.zip
http://sumo.lip6.fr/MCC-2011-report/MCC-results-data.zip
http://fmv.jku.at/hwmcc11/index.html
http://patmos-tac.inesc-id.pt
http://www.vscomp.org


Report on the MCC@Petri Nets 2011 171

competition was held as a forum where researchers could demonstrate the
strengths of their tools through the resolution of five problems. The main objec-
tive of this event was to evaluate the efficiency of theorem proving tools against
SAT-solving.

The Satisfiability Modulo Theories Competition5 takes place within the con-
text of the CAV conference. Since 2005, its objective is to evaluates the decision
procedures for checking satisfiability of logical formulas.

Finally, the SAT Competitions6 proposes to evaluate the performance of SAT
solvers. This event occurs yearly since 2002 and identifies new challenging bench-
marks each years.

With respect to these existing events, the Model Checking Contest at Petri
Nets puts emphasis on the specification of parallel and distributed systems and
their qualitative analysis. So far, we consider Petri Nets as input specification
(later editions might also consider other formalisms suitable for concurrency).

The goal of this paper is to report the experience from this first Model Check-
ing Contest. It reflects the vision of the MCC’2011 organizers, as it was first pre-
sented aside the conferences in Newcastle, revised and augmented by feedback
from the tool developers who participated in this event. All tool developers are
listed in Section 9.

The article is structured as follows. Section 2 presents the evaluation method-
ology, before a brief presentation of the models in Section 3 and the participating
tools in Section 4. Then, Sections 5 to 7, detail some observations we made about
the efficiency of techniques with regards to their implementation in the participat-
ing tools. Finally, Section 8 discusses some issues risen by this first edition of the
Model Checking Contest as well as some clues for the organization of next editions.

All over the paper, we outline in this way the lessons learned from the first edition.
These lessons constitute changes to be applied in the next edition of this event.

2 Evaluation Methodology

The Model Checking Contest is based on one major assumption: there is no silver
bullet in model checking. Thus, the choice of the techniques should depend on:

– the characteristics of the model, for instance its formalism (Place/Transition
net or Symmetric net), the marking bounds (safe or unsafe nets), or the
number of synchronizations in a model;

– the action to be performed by the model checker, for instance state space gener-
ation, deadlock detection, or evaluation of reachability, CTL or LTL formulæ;

– the possible interaction between techniques, for instance abstractions with
partial orders, or decision diagrams with symmetries;

– the position in the development process, for instance when the model is being
designed, during its debugging, or during its final checking.

5 http://www.smtcomp.org
6 http://www.satcompetition.org

http://www.smtcomp.org
http://www.satcompetition.org
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There is already plenty of publications on theoretical complexity of model check-
ing algorithms. Theoretical complexity is sometimes misleading, as it can hide
huge constants, that make algorithms unusable in practice. Moreover, the effi-
ciency of tools varies a lot, even when they use the same techniques.

An experimental evaluation of tools efficiency is thus required in model check-
ing. Articles about tools also provide benchmarks that have numerous draw-
backs [22]:

– They usually cover only some selected tools on some selected models. Thus,
benefits of involved algorithms for some model characteristics cannot be
evaluated.

– The choice of the tools used for comparison is sometimes biased, because the
authors may not know other good competing tools, or because they could
not convert their models to process them.

– There is no guarantee that the comparison is fair, because the authors of
the article may not know other tools as well as their own tool. For instance,
some settings can require some expertise to be set appropriately.

– As benchmarks are performed on several architectures, they also cannot be
compared between articles.

2.1 The Overall Procedure

For the first edition of the Model Checking Contest, only a subset of all actions
provided by model checkers were requested. They are called “examinations”:

– computation of the state space with a report on its size;
– computation of the deadlocks with a report on their number;
– evaluation of reachability formulæ to detect wether a state, depicted by a logic

formula, can be reached from the initial state or not (10 satisfiable ones and
10 unsatisfiable ones) with a report on the computed results (true or false).

Examinations were run on several parameterized models. Each model has a “scal-
ing value”, used to increase its complexity, for instance the number of philoso-
phers in the Dining Philosophers problem. For each model, each scaling param-
eter value defines a model instance. The Model Checking Contest provided all
model instances in Petri Net Markup Language format. As tools were allowed
to give their own version of the models, as long as examinations return the
same results, we fixed all scaling values before the contest, and provided them
in advance to the participants.

Model checking has two “enemies”: memory consumption when it comes to
store large state spaces (or portion of state space) and computation time, when
the number of states grows. There is usually a trade-off between lower memory
footprint and lower computation time. Thus, our objective was to measure both
memory and CPU usage.

The “examinations” requested for the contest were performed thanks to an
invocation script that iterated invocation of each tool over models instances.
This invocation script is presented in Algorithm 1.
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Input: M , a set of scalable models to be processed
foreach m ∈ M do

Operate a prologue for m
foreach v, scaling values for m do

Operate state space generation on m for scale value v
Operate deadlock computation on m for scale value v
Operate check of satisfiable reachability formulæ on m for scale value v
Operate check of unsatisfiable reachability formulæ on m for scale value
v

Operate an epilogue for m

Algorithm 1. Actions performed for each tool by the invocation script

When a tool fails on a model for a particular scaling value, we still try the tool
for higher values. This ensures that a tool can fail for any reason on a scaling
parameter, and still compete for other values. It has a cost, as we cannot exit
the loop and thus save overall computation time for the contest. As we can
expect an increase in the number of participating tools, the number of models
and the number of scaling values, we might consider this optimization in the
next Model Checking Contest.

Prologue and epilogue. A prologue is executed prior to any execution performed
on a model. This prologue enables one to prepare data for a given model if
necessary. For example, LoLA used this prologue to compile itself on the executing
machine, thus avoiding library compatibility problems.

When all examinations have been processed for all the scaling values of a given
model, an epilogue is executed, typically to enable tools to delete temporary files.

There is no time or memory usage measures for the prologue and the epilogue
actions. These actions are considered as “preparations” for the contest. Tool
developers were free to put any preprocessing of the model into the prologue.
Some tools like LoLA compile the tool during the first execution of the prologue.
Some others include their preprocessing inside the examinations: for instance
PNXDD unfolds the model and computes a DD variable order during examinations.

To measure the whole computation time for all tools, we should, in the next
edition, measure time and memory spent in the prologue and epilogue, making
the computation time more comparable between tools

Examination. Other actions required by the model checkers are executed in a
confined environment, to restrict the total execution time of the full evaluation.
Both time and memory are reported in a log file. The way confinement and
measures were performed is presented in Section 2.2.

Operating a command is performed through a wrapper script customized
by the tool submitter. This script must report results of the examination in
a standardized and structured way. The results are the number of states in
state space generation, the number of deadlocks, or the evaluation of a formula.
Moreover, the tool must list the techniques used to work on the examination.
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These techniques may be specific to a given examination, the value of a scaling
parameter or the processed model.

2.2 Confinement and Measure of CPU and Memory Usage

Evaluation of tools was performed on a cluster of 24 hyper-threaded 2.4 GHz
bi-Pentium Xeon 32 bits with 2 GBytes of memory and running Linux Man-
driva 2010-2. Monitored actions were confined to the following constraints: 1 800
seconds of CPU and 1.75 GBytes of maximum memory7.

Prior to the submission deadline, we were using for our tools a solution that
appeared to be efficient: memtime8 from the UPPAAL community. This program
works similarly to the time Unix command, but reports both CPU time and
memory allocation up to a maximum that can be easily configured.

Once submissions were collected, we discovered that reported memory usage
was only concerning the top process (a shell script due to the wrapper script
encapsulation technique), even if memory confinement was working well. We thus
only used memtime for its confinement capabilities and CPU measures associated
with the memusage command that provides a log of all allocations in the system.
We evaluated memory consumption by parsing these log files. The idea is to
show the memory use peak, that corresponds to the “user feeling”.

The solution we elaborated allowed us to perform measures in a satisfactory
way. However, it was too intrusive because it is based on an interposition library
that overrides memory allocation and has an impact on performances.

Also, the computation of a diagnostic of a failure (time or memory exhaustion)
could not be fully automated, some case having to be checked manually from
the log themselves like, in LoLA or PNXDD, where some memory overflow were
initially detected as stack overflow.
For the next edition, executions will be run on virtual machines (e.g. QMU) that
could be monitored from “outside”, thus allowing more flexibility and safety in
measures, as well as the support of other operating systems (such as Windows).

3 The Selected Models

For this first edition, seven models were selected: three Place/Transition nets,
and four colored nets modeled in Symmetric nets. These models were selected
from known and reused benchmarks. We provide a brief description of the models
here. Due to lack of space, we cannot provide a picture of the models in this
article, but it can be found in the Model Checking Contest web site9.

Note that for this first edition, the scaling value of all P/T models increased
the number of tokens in places, but did not change the structure of the net.
On the contrary, the scaling value of all Colored models increased the number
of places and transitions in the Equivalence P/T net, but not the number of
tokens.
7 To leave 250 MBytes for the operating system.
8 http://www.uppaal.org/
9 http://mcc.lip6.fr/2011

http://www.uppaal.org/
http://mcc.lip6.fr/2011
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The Models. Let us first provide a brief description of the proposed models.

FMS belongs to the GreatSPN and SMART [10] benchmarks. It models a Flexi-
ble Manufacturing System [9]. The scaling parameter corresponds to the num-
ber of initial tokens held in three places. The following values were used:
2, 5, 10, 20, 50, 100, 200, 500.

Kanban [8] models a Kanban system. The scaling parameter corresponds to the
number of initial tokens held in four places. The following values were used:
5, 10, 20, 50, 100, 200, 500, 1 000.

MAPK models a biological system: the Mitogen-Activated Protein Kinase Kas-
cade [20]. The scaling parameter changes the initial number of tokens held in
seven places. The following values were used: 8, 20, 40, 80, 160, 320.

Peterson models Peterson’s mutual exclusion algorithm [35] in its generalized
version for N processes. This algorithm is based on shared memory communica-
tion and uses a loop with N−1 iterations, each iteration is in charge of stopping
one of the competing processes. The scaling factor is the number of involved
processes. The following values were used: 2, 3, 4, 5, 6.

Philosophers models the famous Dining Philosophers problem introduced by
E.W. Dijkstra in 1965 [41] to illustrate an inappropriate use of shared resources,
thus generating deadlocks or starvation. The scaling parameter is the number
of philosophers. The following values were used: 5, 10, 20, 50, 100, 500, 1 000,
5 000, 10 000, 50 000, 100 000.

SharedMemory is a model taken from the GreatSPN benchmarks [7]. It mod-
els a system composed of P processors competing for the access to a shared
memory (built with their local memory) using a unique shared bus. The scal-
ing parameter is the number of processors. The following values were used:
5, 10, 20, 50, 100, 200, 500, 1 000, 2 000, 5 000, 10 000, 20 000, 50 000.

TokenRing is another problem proposed by E.W. Dijkstra [14]. It models a
system where a set of machines is placed in a ring, numbered 0 to N − 1.
Each machine i only knows its own state and the state of its left neighbor,
i.e., machine (i − 1) mod (N). Machine number 0 plays a special role, and
it is called the “bottom machine”. A protocol ensuring non-starvation deter-
mines which machine has a “privilege” (e.g. the right to access a resource). The
scaling parameter is the number of machines. The following values were used:
5, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500.

Characteristics of the Models. All the selected models are bounded. Their
main characteristics are summarized in Table 1. None of the Place/Transition
nets is safe (or 1-bounded) because the scaling parameter affects the initial mark-
ing. On the contrary, all colored models are safe (in the colored sense where each
color cannot appear more than once in a marking) because the scaling parameter
only changes the color types.

We also note some characteristics of our colored models. First, color types are
either a range of integers, or cartesian products of them. There are two types of
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Table 1. Summary of model’s characteristics

Safe Cartesian product Non equal Broadcast Succ & pred
of color types guards function functions

P
/T

FMS
Kanban
MAPK

C
ol

or
ed Peterson � � � � �

Philosophers � � �
SharedMemory � � � �

TokenRing � � � �

guards: the ones using equality only (= or binding with the same input variable)
and others (�=, <,>, ...) that are interesting because they generate asymmetries
in the state space. Arc labels can be a single constant or variable, or use the
“broadcast” that is the set containing all values in a color type. Arcs and guards
may also use incrementation (+n) or decrementation (−n) operators. Finally,
let us note that the “broadcast” can be used to define the initial marking (it is
then a dense one, e.g. all values of the color domain are represented).

When analyzing results of the Model Checking Contest, we observed there
was no safe Place/Transition nets and no unsafe Colored nets. In the 2012
Model Checking Contest, we will scale the Petri nets also by their structure, by
providing the Place/Transition nets equivalents for all Colored nets. For this
first edition we provided two kinds of scaling parameters: one based on the
number of tokens in places, the other based on color domains. For the next
edition, we should also provide a mix between them, and various models with
no scaling parameters, such as industrial cases.

4 Participating Tools

Ten tools where submitted. They are summarized in Table 2.

Table 2. Summary of data on participating tools

Tool Name Team Institution Country Contact Name
ACTIVITY−LOCAL TIK ETHZ Switzerland K. Lampka

AlPiNA CUI/SMV Univ. Geneva Switzerland D. Buchs
Crocodile LIP6/MoVe UPMC France M. Colange
ITS−Tools LIP6/MoVe UPMC France Y. Thierry-Mieg

LoLA Team Rostock Univ. Rostock Germany N. Lohmann & K. Wolf
PNXDD LIP6/MoVe UPMC France E. Paviot-Adet
PeTe Stud. Group d402b Univ. Aalborg Denmark J. Finnemann Jensen
Sara Team Rostock Univ. Rostock Germany H. Wimmel & K. Wolf

YASPA TIK ETHZ Switzerland K. Lampka
helena LIPN/LCR Univ. Paris 13 France S. Evangelista
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Tool Description. We provide here a brief description of the participating tools.

ACTIVITY−LOCAL10 [29] works on any type of Place/Transition nets with in-
hibitor arcs and weighted arcs. It combines decision diagram-based state space
encoding with explicit state space exploration. To avoid the Peak problem ob-
served for decision diagrams with incremental generation, this tool composes
them in an original way. The transition relation induced by the same transi-
tion of the P/T net is encapsulated in its own “submodel”. ACTIVITY−LOCAL
executes an explicit state space traversal for each of these submodels and in-
serts the detected state-to-state transitions into the corresponding DD (one per
submodel).

To cope with dependencies among the transitions of the P/T net, ACTIVITY
−LOCAL structures the explicit exploration as a selective breadth-first scheme.
It only explores the transitions that are in a dependency set of the analyzed
transition.

When a local fixed point is reached, ACTIVITY−LOCAL performs a symbolic
reachability analysis used to elaborate the complete state space. This second step
is implemented as a partitioned symbolic reachability analysis [5], using greedy
chaining [34] and a new DD operator [28].

AlPiNA11 [23] stands for Algebraic Petri nets Analyzer and is a symbolic model
checker for Algebraic Petri nets. It can verify various state properties expressed
in a first order logic property language.

Algebraic Petri nets (APNs) (Petri nets + Abstract Algebraic Data Types)
is a powerful formalism to model concurrent systems in a compact way. Usually,
concurrent systems have very large sets of states, that grow very fast in rela-
tion to the system size. Symbolic Model Checking (DD-based one) is a proven
technique to handle the State Space Explosion for simpler formalisms such as
Place/Transition nets. AlPiNA extend these concepts to handle algebraic values
that can be located in net places.

For this purpose AlPiNA uses enhanced DDs such as Data Decision Diagrams
and Set Decision Diagrams for representing the place vectors and Σ Decision
Diagrams [3] for representing the values of the APN. It also allows to specify
both algebraic and topological clusters to group states together and thus to
reduce the memory footprint. Particular care has been taken to let users freely
model their systems in APNs and in a second independent step to tune the
optimization parameters such as unfolding rules, variable order, and algebraic
clustering. Compared to Colored net approaches, AlPiNA [4] solves problems
related to the unbounded nature of data types and uses the inductive nature
of Abstract Algebraic Data Types to generalize the unfolding and clustering
techniques to any kind of data structure.

AlPiNA’s additional goal is to provide a user friendly suite of tools for checking
models based on the Algebraic Petri nets formalism. In order to provide great
user experience, it leverage on the powerful eclipse platform.

10 No official distribution yet.
11 Tool is available at http://alpina.unige.ch.

http://alpina.unige.ch
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Crocodile12 [12] was initially designed as a demonstration tool for the so-called
symbolic/symbolic approach [39]. It combines two techniques for handling the
combinatorial explosion of the state space that are both called “symbolic”.

The first “symbolic” technique concerns the reduction of the reachability graph
of a system by its symmetries. The method used in Crocodile was first intro-
duced in [6] for the Symmetric nets, and was then extended to the Symmetric
nets with Bags (SNB) in [18]. A symbolic reachability graph (also called quotient
graph) can be built for such types of Petri nets, thus dramatically reducing the
size of the state space.

The second “symbolic” technique consists in storing the reachability graph
using decision diagrams, leading to a symbolic memory encoding. Crocodile
relies on Hierarchical Set Decision Diagrams [13]. These present several interest-
ing features, such as hierarchy, and the ability to define inductive operations.

Still under development, Crocodile essentially generates the state space of
a SNB and then processes reachability properties.

ITS−Tools13 [40] are a set of tools to analyze Instantiable Transition Systems,
introduced in [40]. This formalism allows compositional specification using a no-
tion of type and instance inspired by component oriented models. The basic ele-
mentary types are labeled automata structures, or labeled Petri nets with some
classical extensions (inhibitor arcs, reset arcs. . . ). The instances are composed
using event-based label synchronization.

The main strength of ITS−Tools is that they rely on Hierarchical Set Decision
Diagrams [13] to perform analysis. These decision diagrams support hierarchy,
allowing to share representation of states for some subsystems. When the system
is very regular or symmetric, recursive encodings [40] may even allow to reach
logarithmic overall complexity when performing analysis. Within the contest, the
Philosophers and TokenRing examples proved to be tractable using this recursive
folding feature.

Set Decision Diagrams also offer support for automatically enabling the “satu-
ration” algorithm for symbolic least fixpoint computations [19], a feature allowing
to drastically reduce time and memory consumption. This feature was used in
all computations.

LoLA14 [43] is an explicit Petri net state space verification tool. It can verify a va-
riety of properties ranging from questions regarding single Petri net nodes (e.g.,
boundedness of a place or quasiliveness of a transition), reachability of a given
state or a state predicate, typical questions related to a whole Petri net (e.g.,
deadlock freedom, reversibility, or boundedness), and the validity of temporal
logical formulae such as CTL. It has been successfully used in case studies from
various domains, including asynchronous circuits, biochemical reaction chains,
services, business processes, and parameterized Boolean programs.

12 Tool is available at http://move.lip6.fr/software/Crocodile.
13 Tool is available at http://ddd.lip6.fr.
14 Tool is available at http://www.informatik.uni-rostock.de/tpp/lola.

http://move.lip6.fr/software/Crocodile
http://ddd.lip6.fr
http://www.informatik.uni-rostock.de/tpp/lola
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For each property, LoLA provides tailored versions of state space reduction
techniques such as stubborn sets, symmetry reduction, coverability graph gen-
eration, or methods involving the Petri net invariant calculus. Depending on the
property to be preserved, these techniques can also be used in combination to
only generate a small portion of the state space.

For the Model Checking Contest, only one configuration of LoLA was submitted
since, in the beginning, the necessary efforts were not predictable. This configu-
ration was tailored for checking the reachability of a state that satisfies a given
state predicate. This check was combined with two reduction techniques. First,
a dedicated version of the stubborn sets [37] aimed at exploiting concurrency in
the model and that allows to prioritize the firing of those transitions that lead to
states closer to the goal state. This method is known to perform extremely well
on reachable states while other methods [27] also available in LoLA would excel
on unreachable states. Second, LoLA calculates place invariants to determine so-
called implicit places [38]. The marking of such places does not need to be stored
explicitly, but can be deduced from the marking of the other places. Typically, this
reduction allows to reduce the memory usage by 20% to 60%.

PNXDD15 generates the state-space of Place/Transition nets. When Colored nets
are used in the Model Checking Contest, equivalent P/Ts are obtained after
an “optimized” unfolding [25] (unused places and transitions are detected and
suppressed).

State Space storage relies on Hierarchical Set Decision Diagrams [13] (SDDs).
These are decision diagrams with any data type associated to arcs (see e.g., [32]
for an overview of DD-like structures). If the associated data type is another
SDD, hierarchical structures can be constructed.

Since PNXDD exploits hierarchy, a state is seen as a tree, where the leaves
corresponds to places marking. This particular structure offers greater sharing
opportunities than a, for instance, vector based representation. The conception
of such a tree is critical to reach good performances and heuristics are being
elaborated for this purpose [21]. The one used for the Model Checking Contest
is based on [1]: for colored models that do scale via the size of color types, PNXDD
uses a tree-like version of this heuristic, while the original version is kept when
colored models only scale via the number of tokens in the initial marking.

PeTe16 is a graphical Petri net modeling and verification tool written in
C++/Qt. PeTe can answer reachability formulæ using two techniques. First,
PeTe attempts to disprove reachability of a query using over-approximation.
This is done by solving the state equation using integer programming. If a so-
lution is found PeTe attempts to tighten the approximation using trap testing
as presented in [15]. Detailed description and variations of this approach can be
found in [15].

If over-approximation cannot disprove reachability, PeTe attempts to prove
reachability with straightforward Best-First-Search of the state space, using a

15 Tool is available at https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd.
16 Tool is available at https://github.com/jopsen/PeTe.

https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd
https://github.com/jopsen/PeTe
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simple heuristic presented in [17]. So far, PeTe does not support state space gener-
ation or deadlock detection. PeTe is maintained and available under GNU GPLv3.

Sara17 uses the state equation, known to be a necessary criterion for reacha-
bility and in a modified way also for other properties like coverability, to avoid
enumerating all possible states of a system [36]. A minimal solution of the state
equation in form of a transition vector is transformed into a tree of possible firing
sequences for this solution. A firing sequence using all the transitions given in
the solution (with the correct multiplicity) reaches the goal.

For tree pruning, partial order reduction is used, especially in the form of
stubborn sets [37,26]. If the goal cannot be reached using the obtained solution,
places that do not get enough tokens are computed. Constraints are built and
added to the state equation (in a CEGAR-like fashion [11]). These constraints
modify the former solution by adding transition invariants, temporarily allowing
for additional tokens on the undermarked places.

Sara detects unreachable goals either from an unsatisfiable state equation
or by cutting the solution space to finite size when the repeated addition of
transition invariants is known not to move towards the goal. A more involved
explanation of the algorithm behind Sara can be found in [42].

YASPA18 relies on Zero-Suppressed Decision Diagrams (ZDDs) [33,31] together
with a partitioned symbolic reachability analysis [5] and greedy chaining [34].
However, contrary to other decision diagram-based tools it neither depends on
pre-generated symbolic representations of state-to-state transitions, nor on the
use of standard decision diagram operators. Instead, symbolic reachability anal-
ysis is carried out by means of customized ZDD-algorithms that are directly
synthesized from the Place/Transition net with inhibitor arcs.

As a key feature the synthesized ZDD operators are organized in a strictly local
manner. This is achieved by assigning an identity semantics to those variables of
the decision diagram which refer to places that are neither pre nor post condition
of a given transition. Moreover, the ZDD operators apply decision diagram-related
recursion rules which implement the subtraction, addition and testing of tokens.

By executing these synthesized ZDD operators in a fixed point iteration,
YASPA delivers the state space and transition relation of the system.

helena19 [16] is an explicit state model checker for High Level Petri nets. It is
a command-line tool available available under the GNU GPL.

helena tackles the state explosion problem mostly through a reduction of par-
allelism operated at two stages of the verification process. First, static reduction
rules are applied on the model in order to produce a smaller net that – provided
some structural conditions are verified – is equivalent to the original one but has
a smaller reachability graph. Second, during the search, partial order reduction
is employed to limit, as much as possible, the exploration of redundant paths in
the reachability graph. This reduction is based on the detection of independent
17 Tool is available at http://www.service-technology.org/tools/download.
18 Tool is available at http://www.tik.ee.ethz.ch/~klampka.
19 Tool is available at http://helena-mc.sourceforge.net .

http://www.service-technology.org/tools/download
http://www.tik.ee.ethz.ch/~klampka
http://helena-mc.sourceforge.net
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transitions of the net at a given marking. Other reduction techniques are also
implemented by helena, e.g., state compression, but were disabled during the
contest due to their inadequacy with the proposed models.

Summary of Techniques Used by Participating Tools. Altogether, these
tools implement numerous techniques, as summarized in Table 3. We note that
several tools stack several techniques such as decision diagrams with (sometimes)
symmetries, or abstractions with partial orders.

We also note that numerous types of decision diagrams are used in partici-
pating tools. YASPA uses customized Zero-Suppressed Multi-Terminal Decision
Diagrams [30]. ITS−Tools, PNXDD, Crocodile and AlPiNA are using Hierarchi-
cal Set Decision Diagrams [40]. AlPiNA also uses a variant called Σ Decision
Diagrams dedicated to algebraic systems [3].

Table 3. Summary of techniques used by tools

Reachability Deadlock Formula
Graph Detection Evaluation

ACTIVITY−LOCAL Explicit
Decision Diagrams

AlPiNA Decision Diagrams Decision Diagrams

Crocodile Symmetries Symmetries
Decision Diagrams Decision Diagrams

ITS−Tools Decision Diagrams Decision Diagrams Decision Diagrams
Symmetries (opt) Symmetries (opt) Symmetries (opt)

LoLA
Explicit

Partial Orders
State Compression

PNXDD Decision Diagrams

PeTe
Explicit

State Equation

Sara
Abstractions

Partial Orders
State Equation

YASPA Decision Diagrams

helena
Explicit

Explicit Abstractions
Partial Orders

In the next edition, more precision will be required to classify techniques.

5 Observations on State Space Generation

This section analyzes the results of the Model Checking Contest for state space
generation. It first presents the highest parameter computed by the tools for
each model. Then it compares in Section 5.1 the maximum parameter reached,
together with the evolution of computation time and memory consumption on
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Place/Transition net models, before doing the same analysis on Colored net
models in Section 5.2. We have found this distinction to be the most significant
for state space generation.

Table 4 summarizes the highest parameter reached by the tools for each model.
This table, as well as Tables 5 and 6, should be interpreted using the legend below:

The tool does not participate.
The tool participates, but cannot compute for any scaling value.
The tool participates.
The tool participates and reaches the best parameter among tools.
The tool participates and reaches the maximum parameter.

n ? The tool fails for an unknown reason, after reaching parameter n.
n � The tool fails because of memory exhaustion, after reaching parameter n.
n � The tool fails because of maximum time is elapsed, after reaching parameter n.

Table 4. Results for the state space generation examination
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Philosophers 500 � 10 � 100 000 1 000 � 10 �

SharedMemory 20 ? 20 � 50 000 100 � 10 �

TokenRing 10 ? 50 � 15 � 10 �

Table 3 shows that almost all the tools competing for state space generation
use decision diagrams. So, this technique seems to be the most common choice
when doing state space generation. From Table 4, we observe that among DD-
based tools, there is a great variation in the maximum scaling parameter reached.
The ratio between the value reached by the worst and the best DD-based tools
is 1 : 5 for TokenRing and 1 : 10 000 for Philosophers.

Comparing tools for the state space examination is not a trivial task. The
Model Checking Contest organizers encountered several problems, all concerning
the returned size of the state space, which was initially used to check the answers:

1. For helena, both tool developers and the Model Checking Contest orga-
nizers agreed to disable all optimizations – structural reductions and state
compression – because they lead to the generation of a 1-state reachability
graph. It did not seem to make sense in this examination.

2. Crocodile on Colored net also returns fewer states, because it is computing
the quotient reachability graph.

3. We also noted, for FMS and TokenRing, a variation in the state space size,
that was apparently due to some variation in the encoding of the model.
Some tools, like ACTIVITY−LOCAL and YASPA adapted the model taken from
GreatSPN, for instance by removing instantaneous transitions. These varia-
tions did not seem large enough to require the tool developers to check their
models and tools.
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Fig. 1. Memory and time measure for state space generation on the FMS model

5.1 Place/Transition Net Models

Note that, for Place/Transition net models, the sizes of the state space for the
highest parameter reached by the tools are:

FMS200 = 1.95× 1025 states
Kanban500 = 7.09× 1026 states
MAPK160 = 1.06× 1023 states

Figure 1 shows the memory and time evolution of state space generation for the
FMS model. It is typical of what we observe for this examination on Place/Tran-
sition nets. It experimentally shows that we can divide DD-based tools into two
groups: the first one (“bad results”) only reaches FMS20 (around 6× 1012 states)
at most, the second one (“good results”) reaches FMS100 (around 2.7 × 1021

states) at most.
The “bad results” group is composed of Crocodile, AlPiNA and ACTIVITY−

LOCAL. All these tools are not dedicated to Place/Transition nets: Crocodile is
intended for Colored nets with bags in tokens, AlPiNA is optimized for Algebraic
Petri nets, and ACTIVITY−LOCAL works on any type of P/T nets with inhibitor
arcs and weighted arcs. These three tools do not get better results on the two
other P/T models, Kanban and MAPK. Crocodile has bad performances be-
cause it does not know how to exploit symmetries from Place/Transition nets;
moreover, it appeared that management of multisets of tokens needed some im-
provement. The developers of AlPiNA discovered that it has bad performance
for P/Ts because the tool is implicitly optimized for safe Petri nets.

On the contrary, tools that handle formalisms closer to the Place/Transition
nets obtain good results. YASPA, ITS−Tools and PNXDD handle at least FMS100.
YASPA is a bit less effective on Kanban, and is comparable to the “bad tools” for
MAPK. We noted that for Kanban, the results are not consistent with measures
made by the author of YASPA, that shows similar performance as for FMS (we
could not find any explanation for this).

Among the “good results” group, we can see that PNXDD has better results than
ITS−Tools for FMS and Kanban. The explanation is that for these nets, PNXDD
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Fig. 2. Memory measure for state space generation (Philosophers)

does not use hierarchical DDs, contrary to ITS−Tools. Because the scaling value
only increases the number of tokens, and not the size of the net, the cost of using
hierarchy is not covered by the gains it provides.

No tool could reach the maximum scaling value for Place/Transition nets (500
for FMS, 1 000 for Kanban, 320 for MAPK). As these numbers have been se-
lected based on known results in papers, this is not surprising. On the contrary
PNXDD is close to the maximum parameters. For the next Model Checking Con-
test, scaling parameter of the 2011 models will be increased. This analysis of
the examinations should be done each year, in order to increase tools efficiency,
as it was observed in the SAT Competition.

5.2 Colored Net Models

We provide in Figure 2 the memory measure for the Philosophers model and
in Figure 3 the CPU consumption for SharedMemory. Since one technique is
very efficient, the leftmost part of the figures show measures for all the scaling
parameter while the rightmost part only focus on the subset of values where
all tools provide results. These figures are of interest because they show some
extreme performance of some techniques in favorable cases.

Execution of tools on colored models showed interesting points:

– helena obtains results comparable to some decision diagram-based tools on
SharedMemory and TokenRing (see Figure 4 for TokenRing). As all opti-
mizations of helena are disabled for this examination, it shows that these
DD-based tools are quite inefficient for these models;

– Crocodile has heterogeneous results: it is as good as AlPiNA on Shared-
Memory (see Figure 3b), but reaches only a low parameter on Philosophers
(see Figure 2b). This is apparently due to a non optimal exploitation of
symmetries; optimization could also be performed on the implementation;

– ITS−Tools reaches impressive parameters compared to the other tools on
the Colored net models it handled.
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Fig. 3. CPU measure for state space generation (SharedMemory)

Thus, we can divide the tools into two groups: the “quite good” one containing
all tools except ITS−Tools, and the “excellent” one containing this last tool.

Figures 2a and 3a illustrate the real interest of a technique, used in ITS−
Tools, associated to hierarchical decision diagrams: “recursive folding” [40]. This
technique can be activated for very regular models such as Philosophers and
SharedMemory. It consist in splitting recursively the model in subcomponents.
First, the system is split in “two halfs”, and then each half in “two fourth”,
etc. Associated with the hierarchical decision diagrams used in ITS−Tools, the
result is impressive: this tool is able to process both models for the maximum
provided values. In both cases, the number of states exceeds the floating points
representation. For smaller parameters, the state space sizes are given below:

Philosophers10 000 = 1.63× 104771 states
SharedMemory10 000 = 5.43× 104778 states

Figures 2b and 3b are a zoom on the left part of figures 2a and 3a. It shows the
performances of "second tools" that correspond to the following state space size:

Philosophers1 000 = 1.13× 10477 states
SharedMemory100 = 5.15× 1047 states

Figure 4 shows measures for the TokenRing model where the recursive fold-
ing technique cannot be activated. Decision diagram-based tools are much less
performant than previously, the largest computed state space holds 1.98× 1027

states “only”.
Apart the results of ITS−Tools, the results of PNXDD and AlPiNA are useful

for another remark. When comparing these two tools on Philosophers, Shared-
Memory and TokenRing, we see that AlPiNA and PNXDD have comparable results
on Philosophers and TokenRing, whereas PNXDD is far better on SharedMemory
(due to different hierarchical structures). From this, we can deduce that Hierar-
chy in decision diagrams offers interesting results.
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Fig. 4. Measure for state space generation (TokenRing)

There is a large difference between the performances of DD-based tools for
Philosophers and SharedMemory (many orders of magnitude for the values of
both scaling parameters), whereas the difference is lower for TokenRing. But
ITS−Tools and PNXDD should get closer results on TokenRing, as there is no
recursive folding for this model. Although both tools use the underlying Place/-
Transition nets for this colored model, the unfolding of color, as well as the
construction of the hierarchical structure, are not the same.

Decision diagram based tools clearly can reach impressive scaling values for
state space generation, when using hierarchical decision diagrams together with
recursive folding. To do state space generation, we can recommend three tools:
PNXDD is very efficient and works both for Place/Transition nets and Colored
nets, YASPA is dedicated to Place/Transition nets and has heterogeneous results,
and ITS−Tools is extremely efficient on Coloreds but requires to manually trans-
form the model.
Academic models seem easy for the good state space generators. We should
provide some industrial models in the next Model Checking Contest, as they
are usually not as regular as academic models.

The Peterson model seems reluctant to all the implemented techniques. Only
three tools could handle it, and the best processed scaling values are very low: 5
for PNXDD, 3 for AlPiNA and 2 for helena. This corresponds to very small state
spaces compared to the ones reached for other models:

Peterson3 = 2.07× 104 states
Peterson5 = 6.30× 108 states

6 Observations on Deadlock Detection

The data collected for deadlock detection is summarized in Table 5. It must
be read as Table 4. Let us note that only three tools did participate in this
examination.
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Table 5. Results for the deadlock detection examination
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As this examination required to count the number of deadlocks instead of just
discovering one, some tools could not participate. For instance, LoLA stops
when the first deadlock is found. We should only ask for the detection of at
least one deadlock in the next edition of the Model Checking Contest, to have
more competing tools. We will also propose to refer to deadlocks in formula to
be evaluated.

In Table 4, we see that helena has an inconstant behavior. It works very well
for FMS, reaching the maximum scaling value in constant time and memory, as
shown in Figure 5. On the contrary, this tool handles only small instances for
the other models. It shows that abstractions and partial orders provide good
results is this case where both CPU and memory usage are almost constant.
The abstraction mechanism used by helena is based on Berthelot’s structural
reductions [2], that remove transitions irrelevant from a concurrency perspective.
FMS is a perfect case for that method in that it exhibits a lot of parallelism but
little concurrency.

For all models, except FMS and Peterson, and especially Colored ones, the
results are close to state space generation: decision diagram based tools obtain
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Fig. 5. Measures for deadlock examination on FMS
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Fig. 6. Measures for deadlock examination on SharedMemory

quite good results, especially ITS−Tools when recursive folding can be applied.
Figure 6 shows the evolution of CPU time and memory consumption for the
SharedMemory model, where recursive folding enables ITS−Tools to process
all instances. The dominance of decision diagram techniques in this examination
is probably due to the fact that, since it was required to report the number of
deadlocks instead of just the detection of at least one, tools must investigate
the full state space, thus making this examination behave like the state space
generation.

7 Observations on Reachability Formulas

The data collected for evaluation of satisfiable and unsatisfiable reachability
formulæ is summarized in Table 6. It must be read as Table 4.

From Table 6, we can clearly state that for Place/Transition nets, there are
tools that perform extremely well for satisfiable formulæ (LoLA and Sara) where
some others are much better for unsatisfiable formulæ (PeTe and Sara). In that
context, decision diagram based tools can perform well (see ITS−Tools), but
do not reach the maximum values. The reason why LoLA does not reach a very
high parameter on Kanban is still not understood. Sara is clearly interesting
for Place/Transition nets, as it reaches the maximum scaling value for both
satisfiable and unsatisfiable formulæ.

The formulæ to verify were only conjunctions of place markings. The efficiency
of tools may depend on the operators used in properties. For instance, formulæ
with disjunctions and inequalities can lead to worse results in Sara. The 2012
Model Checking Contest should thus provide more different formulæ, and also
describe their properties, to get a detailed analysis of the tools’ performances.
Note also that Sara gives an answer very quickly, as seen for FMS in Figure 7.

Tools that perform well on satisfiable formulæ for P/T nets are LoLA and Sara.
These tools explore the state space and stop their execution as soon as they
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Table 6. Results for the reachability formulæ examination
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Fig. 7. Evolution of CPU consumption for reachability properties on FMS

have found a violation of the property to be verified. Thus, since a satisfiable
formula is verified before the full state space is explored, they perform better on
satisfiable formulæ than on unsatisfiable ones.

Tools that perform well on unsatisfiable formulæ for P/T nets are PeTe and
Sara. To do so, they first evaluate the state equation of the P/T net against
the reachability formula. If the result of such an evaluation shows the formula
is structurally unverifiable, the tool does not need to explore, even partially, the
state space. Otherwise, exploration to extract a counter-example is necessary.

Sara combines the two techniques and is thus quite efficient in both cases.
This effect is illustrated in Figure 7 that is representative of the behavior of tools
for P/Ts.
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Fig. 8. Evolution of CPU consumption satisfiable formulæ (MAPK)

Figure 8 illustrates an interesting fact on partial order with LoLA on the
MAPK benchmark (both CPU and memory). For satisfiable formulæ, both mem-
ory and CPU performances are much better for MAPK320 than for MAPK8. This
is due to the less parallel nature of MAPK for small scaling values, thus degrad-
ing performances of partial order techniques. When the scaling parameter grows,
parallelism is generated and the technique becomes useful.

The data for Colored net models permit similar observations as for state space
generation, because only decision diagram based tools participated, except LoLA
for the Philosophers model. We can observe that LoLA has difficulties to scale
up with this model. This may be because when the parameter grows, this model
has more places, whereas P/T models only have more tokens. However, if we
can state that decision diagrams are a good technique for reachability analysis,
the collected data are not sufficient to generalize this assertion to reachability
properties.

8 Discussion

This section proposes a global discussion on the Model Checking Contest’2011
results from several points of view. First, we focus on the user (i.e., an engineer
willing to verify software) point of view in Section 8.1. Then, Section 8.2 considers
the tool developer point of view. Last, Section 8.3 recalls the lessons learned by
the Model Checking Contest organizers for the next edition.

8.1 Engineer Point of View: There Is No Silver Bullet

Models, like software, have a lifecycle. It can be roughly decomposed into: its
creation, its verification, and its evolution. However, the evolution phase is a
sequence of editions and verifications. Thus, the model lifecycle can be simplified
in a sequence of edition and of verification. During each phase, properties are
checked on the model. But the kind of properties may vary.
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We have used two kinds of properties in this Model Checking Contest: dead-
lock detection and reachability properties. For both, we can also distinguish the
case where the property is satisfiable, and the case where it is not.

For Place/Transition Net Models. During the model development, we want
to debug the model. To do so, the chosen properties must be checked quickly. Ex-
cept the case when ITS−Tools can use recursive folding, all tools spend at least
10 seconds to answer (for very small configurations) ; the answering time grows
rapidly. Thus, deadlock detection is currently not efficient enough to debug large
models. Instead, tools like PeTe, LoLA and Sara can answer in less than 1 second
for reachability properties. Sara gives a quick answer whether the property is sat-
isfiable or not, whereas LoLA is more efficient when the property is satisfiable, and
PeTe when it is not. A good idea would be to run both LoLA and PeTe in paral-
lel and stop them as soon as one of them answers. Reachability properties could
even be checked in background, while editing the model. Then, for users, model
creation would be very close to source code edition in modern IDEs, that make use
of continuous on-the-fly compilation.

During the model verification phase, all tools can be used, as there is time to
do longer checks. Deadlock detection is currently adapted to this phase, as it is
a rather long process. For Place/Transition nets, there is no added value in state
space generation, as reachability properties can be checked during the edition
phase.

For deadlocks, helena can be impressively efficient, for the FMS model, or
not as good as decision diagram based tools. There should be some investigations
on why. Also, ITS−Tools shows impressive performance when models can be
“folded”. Hierarchical extensions of Petri nets are clearly interesting.

For Colored Net Models. Decision diagram based tools are very efficient
for state space computation. Using this state space they are then able to find
deadlocks and check properties. But state space computation is usually quick
only for small models. As most tools that do not use decision diagrams did
not participate for Colored net models, we cannot conclude yet about which
techniques should be used.

We must provide P/T equivalents for all Colored models in the next Model
Checking Contest, so that more tools can compete.

8.2 Lessons Learned by Tool Developers

The Model Checking Contest can help tool developers to discover some un-
expected behaviors and compare strategies and techniques among the various
participating tools in common situations.

As an illustration, AlPiNA developers discovered that it is currently mostly
adapted to safe Petri nets. The tool got bad results on all the Place/Transition
nets of the contest. Analysis revealed that AlPiNA inefficiency on non-safe nets
is due to the particular decision diagrams used in the tool.
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The contest is also a good way to test the integration of model checkers in an
“alien” environment. This can be a basis to extend cooperation and exchange of
data between model checkers and promote further cooperation.

As an illustration, LoLA follows several UNIX principles. This made an inte-
gration to the contest scripts very smooth. First, for each model, there was a
dedicated compiled version of LoLA that can exploit any possible optimization
the CPU architecture could offer. Second, “UNIX pipelines” made the evaluation
of the reachability results very simple (use of grep to filter outputs).

8.3 Points Risen by the Discussion at MCC’2011

Several points were raised during the discussion held during the MCC’2011 in
Newcastle. We present here the most interesting ones.

A Difficult Model: Peterson. One point was outlined in the Model Checking
Contest: the Peterson model seems reluctant to all the implemented techniques.
The best processed scaling values are 5 (PNXDD) for the state space generation
and 3 (helena, AlPiNA) for deadlock detection. This corresponds to very small
state spaces compared to the ones reached for other models. This exhibits an
interesting situation to be handled by tools.

Need for a “Push-Button” Examination. As it is organized, the Model
Checking Contest is efficient to identify how some model characteristics could
be tackled by some model checking techniques. However, this does not cover
the use of model checkers by non-specialists. For this kind of users there should
be a efficient “push-button” use of such tools. This aspect should be considered
in further editions of the Model Checking Contest. An idea should be to find
“surprise models” from case studies, that are not known by the competitors when
they submit (and only published when results are known).

Doing CPU and Memory Measures Is Tricky. Measuring and confining
software executions during this first Model Checking Contest was not trivial.
Tools are written in several languages, some of which are based on shell scripts,
interpreters or virtual machines. Moreover, tools are allowed to create subpro-
cesses and catch signals. To avoid most problems while not being intrusive, we
plan to execute tools within a virtual machine monitored to operate time and
memory measures.

9 Conclusion

This paper reported our experience with the first Model Checking Contest @
Petri nets. This event and its results were welcomed by the Petri Net Community,
as the discussion held at a special session of SUMo’2011 showed.

From the tool developers’ point of view, such an event allows to compare
tools on a common benchmark that could become a public repository. Also,
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some mechanisms established for the contest, such as a language to elaborate
the formula to be verified could become, over the years, a common way to provide
formulæ to the various tools developed by the community.

Results also provided hints to the tool developers with regards to the opti-
mization of some techniques in their tool. At least, developers of AlPiNA and
Crocodile attest that some development is being currently done to improve the
model checking engine from the results of the model checking contest. This will
benefit to the entire community.

From the organizer’s point of view, numerous lessons were learned on the
process, the analysis of results and the selection of benchmark models. Several
points will be integrated in further edition of the Model Checking Contest.

As an illustration, the next edition to be held in 2012 comes with a new step in
the process: a call for models that will allow us to gather more models, exposing
tools to a larger range of situations. Properties will be extended to CTL and LTL
formulas, as well as with structural properties, such as bounds or liveness, and
their counterpart in temporal logic. Finally, a “blind” set of models will also be
proposed to reproduce a situation where tools are used “as is” by non specialists
(and thus with default optimization activated only).
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