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Abstract. Geldenhuys and Hansen showed that a kind of ω-automata known as
Testing Automata (TA) can, in the case of stuttering-insensitive properties, out-
perform the Büchi automata traditionally used in the automata-theoretic approach
to model checking [10].

In previous work [23], we compared TA against Transition-based Generalized
Büchi Automata (TGBA), and concluded that TA were more interesting when
counterexamples were expected, otherwise TGBA were more efficient.

In this work we introduce a new kind of automata, dubbed Transition-based
Generalized Testing Automata (TGTA), that combine ideas from TA and TGBA.
Implementation and experimentation of TGTA show that they outperform other
approaches in most of the cases.

Keywords: testing automata, model checking, emptiness check.

1 Introduction

Context. The automata-theoretic approach to model checking linear-time properties [28]
splits the verification process into four operations:

1. Computation of the state-space for the model M. This state-space can be seen as an
ω-automaton AM whose language, L (AM), represents all possible infinite execu-
tions of M.

2. Translation of the temporal property ϕ into an ω-automaton A¬ϕ whose language,
L (A¬ϕ), is the set of all infinite executions that would invalidate ϕ.

3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ
whose language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.

4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an
infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem. Different kinds of ω-automata have been used with the above approach. In
the most common case, a property expressed as an LTL (linear-time temporal logic)
formula is converted into a Büchi automaton with state-based acceptance, and a Kripke
structure is used to represent the state-space of the model.

In Spot [17], our model checking library, we prefer to represent properties using
generalized (i.e., multiple) Büchi acceptance conditions on transitions rather than on
states [7]. Any algorithm that translates LTL into a Büchi automaton has to deal with
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generalized Büchi acceptance conditions at some point, and the process of degeneral-
izing the Büchi automaton often increases its size. Several emptiness-check algorithms
can deal with generalized Büchi acceptance conditions, making such an a degeneraliza-
tion unnecessary and even costly [5]. Moving the acceptance conditions from the states
to the transitions also reduces the size of the property automaton [4, 13].

Unfortunately, having a smaller property automaton A¬ϕ does not always imply a
smaller product with the model (AM⊗A¬ϕ), and the size of this product really affects
model checking efficiency. Thus, instead of targeting smaller property automata, some
people have attempted to build automata that are more deterministic [25]. However even
this does not guarantee the product to be smaller.

Hansen et al. [14] introduced a new kind of ω-automaton called Testing Automaton
(TA). These automata are less expressive than Büchi automata since are tailored to
represent stuttering-insensitive properties (such as any LTL property that does not use
the X operator). They are often a lot larger than their equivalent Büchi automaton, but
surprisingly, their high degree of determinism often lead to a smaller product [10]. As
a back-side, TA have two different modes of acceptance (Büchi-acceptance or livelock-
acceptance), and their emptiness check may require two passes, mitigating the benefits
of a having a smaller product.

Objectives. The study of Geldenhuys and Hansen [10] shows TA are statistically more
efficient than Büchi automata. In a previous work [23], we have extended their com-
parison to TGBA, and shown that TA are indeed better when the formula to be verified
is violated (i.e., a counterexample is found), but this is not the case when the property
is verified since the entire state space may have to be visited twice to check for each
acceptance mode of a TA.

This paper introduces a new type of ω-automata, Transition-based Generalized Test-
ing Automata (TGTA), that mixes features from both TA and TGBA. From TA, it reuses
the labeling of transitions with changesets, and simplifications based on stuttering. From
TGBA, it inherits the use of transition-based acceptance conditions. TGTA combine the
advantages of TA and TGBA: it is still statistically more efficient than other ω-automata
when the property is violated but does not require a second pass when no counterexam-
ple is found, thus remaining more efficient than other ω-automata in that situation.

We have implemented this new approach in Spot. This required little effort since
TGTA reuse the emptiness check algorithm of TGBA. We are thus able to compare
TGTA with the “traditional” algorithms we used on TA, BA and TGBA. These experi-
ments show that TGTA compete well on our examples.

Contents. Section 2 provides a brief summary of the three ω-automaton (BA, TGBA
and TA) and pointers to their associated operations for model checking before Section 3
presents TGTA. Section 4 reports our experiments before a discussion in Section 5.

2 Presentation of Three Existing Approaches

Let AP designate the set of atomic proposition of the model. We use AP to build a
linear-time property. Any state of the model is labeled by a valuation of these atomic
propositions. We denote by Σ = 2AP the set of these valuations, which we interpret ei-
ther as a set or as Boolean conjunctions. For instance if AP = {a,b}, then Σ = 2AP =



96 A.-E. Ben Salem, A. Duret-Lutz, and F. Kordon

{{a,b},{a},{b}, /0} but we equivalently interpret it as Σ = {ab,ab̄, āb, āb̄}. All the ex-
ecutions of the model can be represented by a Kripke structure K . An execution of the
model is simply an infinite sequence of such valuations, i.e., an element from Σω.

Definition 1. A Kripke structure over the alphabet Σ = 2AP is a tuple K = 〈S, I,R,L〉.
where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– R⊆ S× S is the transition relation,
– L : S→ Σ is a state-labeling function.

An execution w = k0k1k2 . . . ∈ Σω is accepted by K if there exists an infinite sequence
s0,s1, . . . ∈ Sω such that s0 ∈ I and ∀i ∈ N, L(si) = ki ∧ (si,si+1) ∈ R. The language
accepted by K is the set L (K )⊆ Kω of executions it accepts.

A property can be seen as a set of sequences, i.e., a subset of Σω. Among these proper-
ties, we want to distinguish those that are stuttering-insensitive:

Definition 2. A property, or a language, i.e., a set of infinite sequences P ⊆ Σω, is
stuttering-insensitive iff any sequence k0k1k2 . . . ∈ P remains in P after repeating any
valuation ki or omitting duplicate valuations. Formally, P is stuttering-insensitive iff

k0k1k2 . . . ∈ P ⇐⇒ ki0
0 ki1

1 ki2
2 . . . ∈ P for any i0 > 0, i1 > 0 . . .

Theorem 1. Any LTL\X formula (i.e., an LTL formula that does not use the X oper-
ator) describes a stuttering-insensitive property. Conversely any stuttering-insensitive
property can be expressed as an LTL\X formula [19].

The following sections presents three kinds of ω-automata [8] that can be used to
express properties in the automata-theoretic approach to model checking. Transition-
based Generalized Büchi Automata and Büchi Automata can both express general prop-
erties, while Testing Automata are tailored to stuttering-insensitive properties.

2.1 Transition-Based Generalized Büchi Automata

We begin by defining Transition-based Generalized Büchi Automata (TGBA), which
are a generalization of the better known Büchi automata used for model checking [13].
In our context, the TGBA represents the negation of the LTL property to verify.

Definition 3. A TGBA over the alphabet Σ = 2AP is a tuple G = 〈S, I,R,F〉 where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– F is a finite set of acceptance conditions,
– R ⊆ S× 2Σ× 2F × S is the transition relation, where each element (si,Ki,Fi,di)

represents a transition from state si to state di labeled by the non-empty set of
valuation Ki, and a set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Σω is accepted by G if there exists an infinite path
(s0,K0,F0,s1)(s1,K1,F1,s2)(s2,K2,F2,s3) . . . ∈ Rω where:
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(a) ϕ

āb̄

āb

ab

ab̄ (b) aUGb Gb

ab,ab̄

ab, āb
ab, āb

Fig. 1. (a) A TGBA with acceptance conditions F = { , } recognizing the LTL property ϕ =
GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

The language accepted by G is the set L (G)⊆ Σω of executions it accepts.

Any LTL formula ϕ can be converted into a TGBA whose language is the set of ex-
ecutions that satisfy ϕ. Several algorithms exist to translate an LTL formula into a
TGBA [4, 9, 13, 1].

Figure 1 shows two examples of TGBA: one deterministic TGBA derived from the
LTL formula GFa∧GFb, and one non-deterministic TGBA derived from aUGb. The
LTL formulæ that label states represent the property accepted starting from this state
of the automaton: they are shown for the reader’s convenience but not used for model
checking. As can be inferred from Fig. 1(a), an LTL formula such as

∧n
i=1 GF pi can be

represented by a one-state deterministic TGBA with n acceptance conditions.
Any infinite path in these examples is accepted if it visits all acceptance conditions

(represented by colored dots on the transitions) infinitely often.
Testing a TGBA for emptiness amounts to the search of a strongly connected com-

ponent that contains at least one occurrence of each acceptance condition. This can be
done in different ways [5]. We are using Couvreur’s SCC-based emptiness check al-
gorithm [4] because it needs to traverse the state-space only once, and its complexity
does not depend on the number of acceptance conditions. This algorithm is detailed in
Appendix B.

2.2 Büchi Automata

Compared to TGBA, the more traditional Büchi Automata (BA) have only one state-
based acceptance condition.

One common way to obtain a BA from an LTL formula is to first translate the formula
into some Generalized Büchi Automata with multiple acceptance conditions (it could
be a TGBA [13, 9] or a state-based GBA [12]) and then to degeneralize this automaton
to obtain a single acceptance condition.

Definition 4. A BA over the alphabet Σ = 2AP is a tuple B = 〈S, I,R,F〉 where:
– S is a finite set states,
– I ⊆ S is the set of initial states,
– F ⊆ S is a finite set of acceptance states,
– R⊆ S×2Σ×S is the transition relation where each transition is labeled by a set of

valuations.
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(a) ϕ
ϕ

ϕ

ab

ab̄, āb̄

āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

(b) aUGb Gb

ab,ab̄

āb,ab

āb,ab

Fig. 2. Two examples of BA, with acceptance states shown as double circles. (a) A BA for the
LTL property ϕ = GFa∧GFb obtained by degeneralizing the TGBA for Fig. 1(a). (b) A BA for
the LTL property aUGb.

An execution w = k0k1k2 . . . ∈ Σω is accepted by B if there exists an infinite path
(s0,K0,s1)(s1,K1,s2)(s2,K2,s3) . . . ∈ Rω such that:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀i ∈N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

The language accepted by B is the set L (B)⊆ Σω of executions it accepts.

Theorem 2. TGBA and BA have the same expressive power: any TGBA can be con-
verted into a language-equivalent BA and vice-versa [4, 13].

The process of converting a TGBA into a BA is called degeneralization. In the worst
case, a TGBA with s states and n acceptance conditions will be degeneralized into a BA
with s× (n+ 1) states.

Figure 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The
automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The
worst case of the degeneralization occurred here, since the TGBA with 1 state and n
acceptance conditions was degeneralized into a BA with n+ 1 states. It is known that
no BA with less than n+ 1 states can accept the property

∧n
i=1 GF pi so this Büchi

automaton is optimal [3]. The property aUGb, on the right hand side of the figure, is
easier to express: the BA has the same size as the TGBA.

In the other way, a BA can be seen as a TGBA, by simply marking transitions leaving
acceptance states as accepting, without adding states nor transitions. Algorithms that
input TGBA can therefore be easily adapted to process BA. More importantly, BA can
be checked for emptiness using the same one-pass emptiness-check algorithm.

2.3 Testing Automata

Testing Automata (TA) were introduced by Hansen et al. [14] to represent stuttering-
insensitive properties. While a Büchi automaton observes the value of the atomic propo-
sitions AP, the basic idea of TA is to detect the changes in these values; if a valuation
of AP does not change between two consecutive valuations of an execution, the TA
can stay in the same state. To detect infinite executions that end stuck in the same TA
state because they are stuttering, a new kind of acceptance states is introduced: livelock-
acceptance states.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the set
of atomic propositions that differ (e.g., ab̄⊕ab= {b}). Technically, this is implemented
with an XOR operation (also denoted by the symbol ⊕).
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Definition 5. A TA over the alphabet Σ = 2AP is a tuple T = 〈S, I,U,R,F,G〉. where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– U : I → 2Σ is a function mapping each initial state to a set of valuations (set of

possible initial configurations),
– R⊆ S×Σ× S is the transition relation where each transition (s,k,d) is labeled by

a changeset: k ∈ Σ is interpreted as a (possibly empty) set of atomic propositions
whose value must change between states s and d,

– F ⊆ S is a set of Büchi-acceptance states,
– G⊆ S is a set of livelock-acceptance states.

An execution w = k0k1k2 . . . ∈ Σω is accepted by T if there exists an infinite sequence
(s0,k0⊕ k1,s1)(s1,k1⊕ k2,s2) . . . (si,ki⊕ ki+1,si+1) . . . ∈ (S×Σ× S)ω such that:

– s0 ∈ I with k0 ∈U(s0),
– ∀i ∈N, either (si,ki⊕ ki+1,si+1) ∈ R (the execution progresses in the TA), or ki =

ki+1∧ si = si+1 (the execution is stuttering and the TA does not progress),
– Either, ∀i ∈ N, (∃ j ≥ i, k j �= k j+1)∧ (∃l ≥ i, sl ∈ F) (the TA is progressing in a

Büchi-accepting way), or, ∃n ∈ N, (sn ∈ G∧ (∀i ≥ n, si = sn ∧ ki = kn)) (the se-
quence reaches a livelock-acceptance state and then stays on that state because the
execution is stuttering).

The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

To illustrate this definition, consider Fig. 3d, representing a TA for aUGb.

– The execution ab; āb;ab; āb;ab; āb;ab; . . . is Büchi accepting. A run recognizing
such an execution must start in state 2, then it always changes the value of a, so

it has to take transitions labeled by {a}. For instance it could be the run 2
{a}−−→

4
{a}−−→ 4

{a}−−→ 4 · · · or the run 2
{a}−−→ 3

{a}−−→ 4
{a}−−→ 4 · · · Both visit the run state 4 ∈ F

infinitely often, so they are Büchi accepting.
– The execution ab; āb; āb; āb; . . . is livelock accepting. An accepting run starts in

state 2, then moves to state 4, and stutters on this livelock-accepting state. Another
possible accepting run goes from state 2 to state 3 and stutters in 3 ∈G.

– The execution ab;ab̄;ab;ab̄;ab;ab̄; . . . is not accepted. It would correspond to a run
alternating between states 2 and 1, but such a run is neither Büchi accepting (does
not visit any F state) nor livelock-accepting (it passes through state 2 ∈G, but does
not stay into this state continuously).

Property 1. The language accepted by a testing automaton is stuttering-insensitive.

Proof. This follows from definition of accepted executions: a TA may not change its
state when an execution stutters, so stuttering is always possible. ��

Construction of a Testing Automaton from a Büchi Automaton. Geldenhuys and
Hansen [10] have shown how to convert a BA into a TA by first converting the BA into
an automaton with valuations on the states, and then converting this automaton into a
TA by computing the difference between the labels of the source and destination of each
transition. The next proposition implements these first two steps at once.
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aUGb Gb

ab,ab̄

āb,ab

āb,ab

(a) Initial BA for aUGb.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b}

/0

{a,b}
{b}

{a}

{a}
/0

/0

{a}

/0
{a}

/0

{a}

/0

(b) After the construction from property 2.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b} {a,b}{b}

{a}

{a}

{a}
{a} {a}

(c) After the simplifications from property 3.

1ab̄

2ab

3āb

4

{b}
{a,b}{b}

{a}
{a}

{a}

{a}

(d) After bisimulation.

Fig. 3. Steps of the construction of a TA from a BA. States with a double enclosure belong to
either F or G: states in F \G have a double plain line, states in G\F have a double dashed line,
and states in F ∩G use a mixed dashed/plain style.

Property 2 (Converting a BA into a TA [10]). For any BA B = 〈SB , IB ,RB ,FB〉 over
the alphabet Σ = 2AP and such that L (B) is stuttering insensitive, let us define the TA
T = 〈ST , IT ,UT ,RT ,FT , /0〉 with ST = SB ×Σ, IT = IB ×Σ, FT = FB ×Σ and

– ∀(s,k) ∈ IT ,UT ((s,k)) = {k}
– ∀(s,k) ∈ ST ,∀(s′,k′) ∈ ST ,

((s,k),k⊕ k′,(s′,k′)) ∈ RT ⇐⇒ ∃K ∈ 2Σ, ((s,K,s′) ∈ RB)∧ (k ∈ K)
Then L (B) = L (T ).

Figure 3b shows the result of applying this construction to the example Büchi automaton
shown for aUGb. This testing automaton does not yet use livelock-acceptance states (the
G set). The next property, again from Geldenhuys and Hansen [10], shows how filling
G allows to remove all transitions labeled by /0.

Property 3 (Using G to simplify a TA [10]). Let T = 〈S, I,U,R,F,G〉 be TA. By com-
bining the first three of the following operations we can remove all transitions of the
form (s, /0,s′) (i.e. stuttering-transitions) from a TA. The fourth simplification can be
performed along the way.
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1. If Q ⊆ S is a Strongly Connected Component (SCC) such that Q∩ F �= /0 (it is
Büchi accepting), and any two states q,q′ ∈Q can be connected using a non-empty
sequence of stuttering-transitions (q, /0,q1) · (q1, /0,q2) · · · (qn, /0,q′) ∈ R∗, then the
testing automaton T ′ = 〈S, I,U,F,G∪Q〉 is such that L (T ′) = L (T ). Such a
component Q is called an accepting Stuttering-SCC.

2. If there exists a transition (s, /0,s′) ∈ R such that s′ ∈ G, the automaton T ′′ =
〈S, I,R\ {(s, /0,s′)},F,G∪{s}〉 is such that L (T ′′) = L (T ).

3. If T does not contain any accepting Stuttering-SCC, and there exists a transi-
tion (s, /0,s′) ∈ R such that s′ cannot reach any state from G using only tran-
sitions labeled by /0, then these transitions can be removed. I.e., the automaton
T ′′′ = 〈S, I,R\ {(s, /0,s′)},F,G〉 is such that L (T ′′′) = L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle nor a livelock-
acceptance state can be removed without changing the automaton’s language.

The resulting TA can be further simplified by merging bisimilar states (two states are
bisimilar if the automaton can accept the same executions starting for either of these
states). This can be achieved using any algorithm based on partition refinement [e.g.,
27], taking {F ∩G,F \G,G\F,S \ (F∪G)} as initial partition.

Fig. 3 shows how a BA denoting the LTL formula aUGb is transformed into a TA by
applying prop. 2, prop. 3, and finally merging bisimilar states.

A TA for GFa∧GFb is too big to be shown: even after simplifications it has 11
states and 64 transitions.

An unfortunate consequence of having two different ways of accepting executions
(livelock or Büchi), is that the emptiness-check algorithm required during model check-
ing must perform two passes on the whole state space in the worst case. Geldenhuys and
Hansen [10] have devised a heuristic that often renders the second pass useless when
the formula is violated. Another optimization we present in Appendix D is to omit the
second pass when no livelock-accepting states is encountered during the first pass.

3 Transition-Based Generalized Testing Automata

This section introduces a new kind of automaton that combines features from both TA
and TGBA. From TA, we take the idea of labeling transitions with changesets, however
we remove the use of livelock-acceptance (because it may require a two-pass emptiness
check), and the implicit stuttering. From TGBA, we inherit the use of transition-based
generalized acceptance conditions.

The resulting Chimera, which we call Transition-based Generalized Testing Automa-
ton (TGTA), accepts only stuttering-insensitive languages like TA, and inherits advan-
tages from both TA and TGBA: it has a simple one-pass emptiness-check procedure (the
same as the one for TGBA), and can benefit from reductions based on the stuttering of
the properties pretty much like a TA. Livelock acceptance states, which are no longer
supported, can be emulated using states with a Büchi accepting self-loop labeled by /0.

Definition 6. A TGTA over the alphabet Σ is a tuple T = 〈S, I,U,R,F〉 where:

– S is a finite set of states,
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aUGb Gb

ab,ab̄

ab, āb

ab, āb

(a) Initial TGBA for aUGb.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b}

/0

{a,b}
{b}

{a}

{a}
/0

{a}

{a}

/0

{a}

/0

/0

/0

(b) TGTA obtained by property 4.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab ab

Gb, āb āb

{b}

{b}/0

{a,b}

{a,b}

{b}

{a}

{a}

/0

{a}

/0

{a}

/0

{a}

/0

(c) TGTA after simplifications by property 5.

1ab̄

2ab

3āb

4 ab, āb

{b}

{b}
/0

{a,b}

{a,b}
{b}

{a}
{a}

/0

{a}

/0

{a}

/0

(d) TGTA after bisimulation.

Fig. 4. TGTA obtained after various steps while translating the TGBA representing aUGb, into a
TGTA with F = { }

– I ⊆ S is the set of initial states,
– U : I→ 2Σ is a function mapping each initial state to a set of symbols of Σ
– F is a finite set of acceptance conditions,
– R⊆ S×Σ× 2F× S is the transition relation, where each element (si,ki,Fi,di) rep-

resents a transition from state si to state di labeled by a changeset ki interpreted
as a (possibly empty) set of atomic propositions whose value must change between
states si and di, and the set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Σω is accepted by T if there exists an infinite path
(s0,k0⊕ k1,F0,s1)(s1,k1⊕ k2,F1,s2)(s2,k2⊕ k3,F2,s3) . . . ∈ Rω where:

– s0 ∈ I with k0 ∈U(s0) (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

Figure 4d shows a TGTA constructed for aUGb in the same way as we did for Fig. 3d.
The only accepting runs are those that see infinitely often. The reader can verify that
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s s0 · · · sn

q q′...

. . .k /0 /0
/0

/0

/0

(a) Before stuttering-transitions ( /0) reduction.

s s0 sn

...

. . .k

k

/0

(b) After reduction.

Fig. 5. Using stuttering-transitions to simplify a TGTA

all the executions taken as example in section 2.3 are still accepted, but not always
with the same runs (for instance ab; āb; āb; āb; . . . is accepted by the run 2,4,4,4, . . .,
but not by the run 2,3,3,3, . . .). This small difference is due to the way we emulate
livelock-accepting states, as we shall describe later (in Property 5).

Construction of a TGTA from a TGBA. We now describe how to build a TGTA
starting from a TGBA. The construction is inspired by the one presented in section 2.3
to construct a TA from a BA. In future work we plan to implement a direct translation
from LTL to TGTA, but the construction presented below is enough to show the benefits
of using TGTAs, and makes it easier to understand how TGTAs relates from TGBAs.

Our first property is the counertpart of Prop. 2: we can construct a TGTA from a
TGBA by moving labels to states, and labeling each transition by the set difference
between the labels of its source and destination states. While doing so, we keep the
generalized acceptance conditions on the transitions. An example is shown on Fig 4b.

Property 4 (Converting TGBA into TGTA). For any TGBA G = 〈SG , IG ,RG ,F〉 over
the alphabet Σ = 2AP and such that L (G) is stuttering insensitive, let us define the
TGTA T = 〈ST , IT ,UT ,RT ,F〉 with ST = SG ×Σ, IT = IG ×Σ and

(i) ∀(s,k) ∈ IT ,UT ((s,k)) = {k}
(ii) ∀(s,k) ∈ ST ,∀(s′,k′) ∈ ST ,

((s,k),k⊕ k′,F1,(s′,k′)) ∈ RT ⇐⇒ ∃K ∈ 2Σ, ((s,K,F1,s′) ∈ RG)∧ (k ∈ K)

Then L (G) = L (T ). (See appendix E for a proof.)

The next property is the pendent of Prop. 3 to simplify the automaton by removing
stuttering-transitions. Here we cannot remove self-loop transitions labeled by /0, but we
can remove all others. The intuition behind this simplification is illustrated on Fig 5a:
s0 is reachable from state s by a non-stuttering transition, but s0 can reach an accepting
stuttering-cycle by following only stuttering transitions. In the context of TA we would
have to declare s0 as being a livelock-accepting state. For TGTA, we replace the accept-
ing stuttering-cycle by adding a self-loop labeled by all acceptance conditions on sn,
then the predecessors of s0 are connected to sn as in Fig. 5b.

Property 5 (Using stuttering-transitions to simplify a TGTA). Let T = 〈S, I,U,R,F〉
be TGTA such that L (T ) is stuttering insensitive. By combining the first three of the
following operations, we can remove all stuttering-transitions that are not self-loop (see
Fig. 5). The fourth simplification can be performed along the way.
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1. If Q ⊆ S is a SCC such that any two states q,q′ ∈ Q can be connected using a se-
quence of stuttering-transitions (q, /0,F0,q1)(q1, /0,F1,q2) · · · (qn, /0,Fn,q′)∈R∗ with
F0∪F1∪·· ·∪Fn = F, then we can add an accepting stuttering self-loop (q, /0,F,q)
on each state q∈Q. I.e., the TGTA T ′= 〈S, I,U,R∪{(q, /0,F,q) | q∈Q},F〉 is such
that L (T ′) = L (T ). Let us call such a component Q an accepting Stuttering-
SCC.

2. If there exists an accepting Stuttering-SCC Q and a sequence of stuttering-transi-
tions (s0, /0,F1,s1)(s1, /0,F2,s2) · · · (sn−1, /0,Fn,sn)∈R∗ such that sn ∈Q and s0, s1, ...
sn−1 �∈ Q (Fig. 5a), then:

– For any non-stuttering transition, (s,k, f ,s0) ∈ R going to s0 and such that k �=
/0, the TGTA T ′′ = 〈S, I,U,R∪{(s,k, f ,sn)},F〉 is such that L (T ′′) = L (T ).

– If s0 ∈ I, the TGTA T ′′ = 〈S, I∪{sn},U ′′,R,F〉 with ∀s �= sn,U ′′(s) =U(s) and
U ′′(sn) =U(sn)∪U(s0), is such that L (T ′′) = L (T ).

3. Let T † = 〈S, I†,U†,R†,F〉 be the TGTA obtained after repeating the previous two
operations as much as possible (i.e., T † contains all the transitions and initial
states that can be added by the above two operations). Then, we can add non-
accepting stuttering self-loops (s, /0, /0,s) to all states that did not have an accepting
stuttering self-loop because T describes a stuttering invariant property. Also we
can remove all stuttering-transitions that are not self-loops since stuttering can
be captured by self-loops after the previous two operations. More formally, the
automaton T ′′′ = 〈S, I†,U†,R′′′,F〉 with R′′′ = {(s,k, f ,d) ∈ R† | k �= /0∨ (s = d∧
f = F)}∪{(s, /0, /0,s) | (s, /0,F,s) �∈ R†} is such that L (T ′′′) = L (T †) = L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle can be removed
from the automaton without changing its language. (See appendix E for proofs.)

Here again, an additional optimization is to merge bisimilar states, this can be achieved
using the same algorithm used to simplify a TA, taking S as initial partition and taking
into account the acceptance conditions of the outgoing transitions. All these steps are
shown on Fig. 4.

We can think of a TGTA as a TGBA whose transitions are labeled by changesets
instead of atomic proposition valuations. When checking a TGBA for emptiness, we
are looking for an accepting cycle that is reachable from an initial state. When checking
a TGTA for emptiness, we are looking exactly for the same thing. The same empti-
ness check algorithm can be used, because emptiness check algorithms do not look at
transition labels.

This is a nice feature of TGTA, not only because it gives us a one-pass emptiness
check, but also because it eases the implementation of the TGTA approach in a TGBA-
based model checker. We need only to implement the conversion of TGBA to TGTA and
the product between a TGTA and a Kripke structure. We discuss our implementation in
the next section.

4 Experimentation

This section presents our experimentation of the various types of automata within our
tool Spot [17]. We first present the Spot architecture and the way the variation on the
model checking algorithm was introduced. Then we present our benchmarks (formulæ
and models) prior to the description of our experiments.
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4.1 Implementation on Top of Spot

Spot is a model-checking library offering several algorithms that can be combined to
build a model checker [7]. Figure 6 shows the building blocks we used to implement
the three approaches.

One point that we did not discuss so far is that in the automata-theoretic approach, the
automaton used to represent the property to check has to be synchronized with a Kripke
structure representing the model. Depending on the kind of automaton (TGBA, BA, TA,
TGTA), this synchronized product has to be defined differently. Only the TGBA and
BA approaches can share the same product definition. The definitions of these different
products follow naturally from the definition of the runs on each automata. We refer the
reader to Appendix A for a definition of all these products.

The TGBA, BA, and TGTA approaches share the same emptiness check, while a
dedicated algorithm is required by the TA approach. In Fig. 6, no direct translation
is provided from LTL to TGTA (this is also true for BA and TA). This could be in-
vestigated later, the need being, so far, to assess their interest before optimizing the
translation process.

In order to evaluate our approach on “realistic” models, we decided to couple the
Spot library with the CheckPN tool [7]. CheckPN implements Spot’s Kripke structure
interface in order to build the state space of a Petri net on the fly. This Kripke structure
is then synchronized with an ω-automaton (TGBA, BA, TA or TGTA) on the fly, and
fed to the suitable emptiness check algorithm. The latter algorithm drives the on-the-
fly construction: only the explored part of the product (and the associated states of the
Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it
saves memory, because the state-space is computed as it is explored and thus, does not
need be stored. Secondly, it also saves time when a property is violated because the
emptiness check can stop as soon as it has found a counterexample. However, on-the-
fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm
such as the one for TA that does two traversals of the full state-space in the worst case
(e.g. when the property holds) will pay twice the price of that construction.

Kripke
Structure

LTL
Formula

LTL2TGBA

TGBA2BA

BA2TA

TGBA2TGTA

Sync. Product
(classic)

Sync. Product
(TA)

Sync. Product
(TGTA)

Emptiness 
check (classic)

Emptiness
check (TA)

TRUE or
counterexample

Fig. 6. The experiment’s architecture in SPOT. Three command-line switches control which one
of the approaches is used to verify an LTL formula on a Kripke structure. The new components
required by the TGTA approach are outlined in Gray.
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In the CheckPN implementation of the Kripke structure, the Petri Net marking are
compressed to save memory. The marking of a state has to be uncompressed every time
we compute its successors, or when we compute the value of the atomic properties on
this state. These two operations often occur together, so there is a one-entry cache that
prevents the marking from being uncompressed twice in a row.

4.2 Benchmark Inputs

We selected some Petri net models and formulæ to compare these approaches.

Case Studies. The following two bigger models, were taken from actual cases studies.
They come with some dedicated properties to check.

PolyORB models the core of the µbroker component of a middleware [16] in an
implementation using a Leader/Followers policy [21]. It is a Symmetric Net and, since
CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for
a configuration involving three sources of data, three simultaneous jobs and two threads
(one leader, one follower) is composed of 189 places and 461 transitions. Its state space
contains 61 662 states1. The authors propose to check that once a job is issued from a
source, it must be processed by a thread (no starvation). It corresponds to:

Φ1 = G(MSrc1→ F(DOSrc1))∧G(MSrc2→ F(DOSrc2))∧G(MSrc3→ F(DOSrc3))

MAPK models a biochemical reaction: Mitogen-activated protein kinase cascade [15].
For a scaling value of 8 (that influences the number of tokens in the initial marking),
it contains 22 places and 30 transitions. Its state space contains 6.11× 106 states. The
authors propose to check that from the initial state, it is necessary to pass through states
RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ2 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

Toy Examples. A first class of four models were selected from the Petri net litera-
ture [2, 20]: the flexible manufacturing system (FMS), the Kanban system, the Peterson
algorithm, and the slotted-ring system. All these models have a parameter n. For the
Peterson algorithm, and the slotted-ring, the models are composed of n 1-safe subnets.
For FMS and Kanban, n only influences the number of tokens in the initial marking.

We chose values for n in order to get state space having between 2× 105 to 3× 106

nodes except for Peterson that is 6.3× 108 nodes. The objective is to have non trivial
state spaces to be synchronized.

Types of Formulæ. As suggested by Geldenhuys and Hansen [10], the type of formula
may affect the performances of the various algorithms. In addition to the formulæ Φ1

and Φ2 above, we consider two classes of formulæ:

1 This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189-
value vector. PolyORB with three sources of data, three simultaneous jobs and three threads
would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.
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– RND: randomly generated LTL formulæ (without X operator). Since random for-
mulæ are very often trivial to verify (the emptiness check needs to explore only a
handful of states), for each model we selected only random formulæ that required
to explore more than 2000 states with the three approaches.

– WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly gener-
ated LTL formula. This represents the verification of ϕ under the weak-fairness
hypothesis

∧n
i=1 GF pi. The automaton representing such a formula has at least n

acceptance conditions which means that the BA will in the worst case be n+1 times
bigger than the TGBA. For the formulæ we generated for our experiments we have
n≈ 3.23 on the average.

All formulæ were translated into automata using Spot, which was shown experimentally
to be very good at this job [22, 6]. The time spent doing the conversion from LTL to
TGBA and then to TGTA (bisimulation included) is not measured in this benchmark.
This translation process is almost instantaneous (<0.1s), and even if its runtime could
be improved (for instance with a direct translation from LTL to TGTA) it is clearly a
non significant part of the run time of the different model checking approaches, where
all the time is spent performing the emptiness check of the product (built on-the-fly)
between the Kripke structure and the property automaton.

4.3 Results

Table 1 shows how for TGBA, TA and TGTA approaches deal with toy models and
random formulæ. We omit data for BA since they are always outperformed by TGBA.
For space reason, we also omit the table showing toy models against weak-fairness
formulæ [23], because it shows results similar to those of table 1.

Table 2 shows the results of the two cases studies against random, weak-fairness, and
dedicated formulæissued from the studies.

These tables separate cases where formulæ are verified from cases where they are
violated. In the former (left sides of the tables), no counterexample are found and the
full state space had to be explored; in the latter (right sides) the on-the-fly exploration of
the state space stopped as soon as the existence of a counterexample could be computed.

All values shown in all tables are averaged over 100 different formulas (except for the
lines Φ1 and Φ2 in Table 2, where only one formula is used). For instance we checked
Peterson5 against 100 random formulæ that had no counterexample, and against 100
random formulæ that had a counterexample. The average and maximum are computed
separately on these two sets of formulæ.

Column-wise, these tables show the average and maximum sizes (states and transi-
tions) of: (1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗AM

of the property with the model; and (3) the subset of this product that was actually ex-
plored by the emptiness check. For verified properties, the emptiness check of TGBA
and BA always explores the full product so these sizes are equal, while the emptiness
check of TA always performs two passes on the full product so it shows double values.
On violated properties, the emptiness check aborts as soon as it finds a counterexample,
so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time
(in hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check,
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Fig. 7. Performance (transitions explored by the emptiness check) of TGTA against TA and
TGBA

including the on-the-fly computation of the subset of the product that is explored. The
time spent constructing the property automata from the formulæ is not shown (it is
negligible compared to that of the emptiness check).

Figure 7 compares the number of visited transitions when running the emptiness
check; plotting TGTA against TA and TGBA. This gives an idea of their relative perfor-
mance. Each point corresponds to one of the 4100 evaluated formulas (2050 violated
with counterexample as black circles, and 2050 verified having no counterexample as
green crosses). Each point below the diagonal is in favor of TGTA while others are in fa-
vor of the other approach. Axes are displayed using a logarithmic scale. No comparison
is presented with BA since they are less efficient than TGBA [23].

All these tests were run on a 64bit Linux system running on an Intel Core 2 Quad
Processor Q9400 at 2.66GHz, with 4GB of RAM.

5 Discussion

Although the state space of cases studies can be very different from random state
spaces [18], a first look at our results confirms two facts already observed in previous
studies [10]: (1) although the TA constructed from properties are usually a lot larger than
TGBA (and even larger than BA [23]), the average size of the full product is smaller
thanks to the more deterministic nature of the TA. (2) For violated properties, the TA
approach explores less states and transitions on the average than TGBA or BA.

We complete this picture by showing run times, by separating verified properties
from violated properties, and by also evaluating the TGBA approach.

It should be noted that our implementation has been improved since our previous
experiments [23] where the cost of computing labels in the Kripke structure was higher
than it is now (we use a cache). This change mainly benefit to testing automata, because
they query two labels by transition of the Kripke structure (to compute an xor between
source label and destination label) while other approaches query only one label.

For weak-fairness formulæ, we show only the results for cases studies because for
toy examples we obtain similar results as random formulæ.



Model Checking Using Generalized Testing Automata 111

On verified properties the results are very straightforward to interpret when looking
at the number of transitions explored by the emptiness check. TA outperform TGBA
except for both Random and weak-fairness properties against Peterson, Ring and Poly-
ORB. These are typical cases where the TA emptiness check has to perform two passes:
this can be observed in the tables 1 and 2 when the number of transitions visited by the
emptiness check is on the average twice the number of transitions of the product.

In these three cases, the TGTA approach, with its single-pass emptiness check, is a
clear improvement over TA. On the left scatter plots of Fig. 7, these cases where the
TGTA approach is twice faster than TA’s, appear as a linear cloud of green crosses
below the diagonal (because the axes are displayed using a logarithmic scale).

In the other where TA need only one pass on the average (e.g. Kanban, MAPK),
TGTA and TA have similar performance, with a slight advantage for TGTA because the
products are smaller.

As a consequence the TGTA approach outperforms TGBA and TA in all cases on
verified properties.

On violated properties, it is harder to interpret these tables because the emptiness
check will return as soon as it finds a counterexample. Changing the order in which
non-deterministic transitions of the property automaton are iterated is enough to change
the number of states and transitions to be explored before a counterexample is found: in
the best case the transition order will lead the emptiness check straight to an accepting
cycle; in the worst case, the algorithm will explore the whole product until it finally finds
an accepting cycle. Although the emptiness check algorithms for the three approaches
share the same routines to explore the automaton, they are all applied to different kinds
of property automata, and thus provide different transition orders.

We believe that the TA and TGTA, since they are more deterministic [10], are less
sensitive to this ordering. Also, in all of our experiments the TA approach has always
found the counterexample in the first pass of the emptiness check algorithm. This sup-
ports Geldenhuys and Hansen’s claim that the second pass was seldom needed for vi-
olated properties (less than 0.005% of the cases in their experiments [10]). Finally, in
the tables 1 and 2, we observe that the TGTA approach explores the smallest products
on the average.

6 Conclusion

This paper is the sequel of a preliminary work [23] experimenting LTL model check-
ing of stuttering-insensitive properties with various techniques: Büchi automata (BA),
Transition-based Generalized Büchi Automata and Testing Automata [10]. At this time,
conclusions were that TA outperformed BA and sometimes TGBA for unverified prop-
erties (i.e., when a counterexample was found). However, this was not the case when no
counterexample was computed since the entire state space may had to be visited twice
to check for each acceptance mode of a TA (Büchi acceptance or livelock-acceptance).

This paper extends the above work by proposing a new type of ω-automaton: Tran-
sition-based Generalized Testing Automata (TGTA). It inherits from TA the labeling
of transitions by changesets and, from TGBA, the use of transition-based acceptance
conditions. The idea is to combine advantages observed on both TA and TGBA.
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TGTA have been implemented in Spot easily, because only two new algorithms are
required: the conversion of a TGBA into a TGTA, and a new definition of a product
between a TGTA and a Kripke structure.

We have run benchmarks to assess their interest. Experiments reported that, in most
cases, TGTA outperform TA and TGBA when no counterexample is found in the system
and are comparable when the property is violated.

We conclude that there is nothing to lose by using TGTA to verify stuttering-
insensitive properties, since they are always at least as good as TA and TGBA.

Future Work. We plan additional work to enable symbolic model checking with TGTA,
thus allowing us to tackle much larger state spaces than in explicit model checking. An-
other idea would be to provide a direct conversion of LTL to TGTA, without the inter-
mediate TGBA step. We believe a tableau construction such as the one of Couvreur [4]
could be easily adapted to produce TGTA.
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A Product Definitions

A.1 Product of TGBA (or BA) with a Kripke Structure

The product of a TGBA with a Kripke structure is a TGBA whose language is the
intersection of both languages.

Definition 7. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TGBA
G = 〈SG , IG ,RG ,FG 〉 the product K ⊗G is the TGBA 〈S, I,R,F〉 where

– S = SK × SG ,
– I = IK × IG ,
– R = {((s,s′),LK (s), f ,(d,d′)) | (s,d) ∈ RK , (s′,k, f ,d′) ∈ RG , LK (s) ∈ k}
– F = FG .

Property 6. We have L (K ⊗G) = L (K )∩L (G) by construction.

Since a BA can be seen as a TGBA with a unique acceptance set, and all state-based
acceptance conditions pushed to the outgoing transitions, the same construction can be
used to make a product between a Kripke structure and a BA.

A.2 Product of a TA with a Kripke Structure

For TGBA (or BA) the synchronized product with a Kripke structure can be defined as
another TGBA (or BA). In the case of testing automata, the product of a Kripke and
a TA is not a TA: while an execution in a TA is allowed to stutter on any state, the
execution in a product must always progress.

Definition 8. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TA T = 〈ST , IT ,UT ,
RT ,FT ,GT 〉, the product K ⊗T is an automaton 〈S, I,U,R,F,G〉 where

– S = SK × ST ,
– I = {(s,s′) ∈ IK × IT | LK (s) ∈UT (s

′)},
– ∀(s,s′) ∈ I,U((s,s′)) = {LK (s)},
– R = {((s,s′),k,(d,d′)) | (s,d) ∈ RK , (s′,k,d′) ∈ RT , k = LK (s)⊕LK (d)}

∪{((s,s′), /0,(d,d′)) | (s,d) ∈ RK , s′ = d′, LK (s) = LK (d)}
– F = SK ×FT , and G = SK ×GT .

An execution w = k0k1k2 . . . ∈ Kω is accepted by K ⊗ T if there exists an infinite se-
quence (s0,k0⊕k1,s1)(s1,k1⊕k2,s2) . . . (si,ki⊕ki+1,si+1) . . . ∈ (S×K×S)ω such that:

– s0 ∈ I with k0 ∈U(s0),
– ∀i ∈N,(si,ki⊕ ki+1,si+1) ∈ R (we are always progressing in the product)
– Either, ∀i ∈N, (∃ j ≥ i, k j �= k j+1)∧ (∃l ≥ i, sl ∈ F) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈N,∀i ≥ n,(ki = kn)∧ (si ∈ G) (a suffix of the
execution stutters in G).

Property 7. We have L (K ⊗T ) = L (K )∩L (T ) by construction.
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A.3 Product of a TGTA with a Kripke Structure

The product of a TGTA with a Kripke structure is a TGTA.
Comparing this definition with the previous two products shows the double inher-

itance of TGTA. This product is similar to the product between a TA and a Kripke
structure, expect it does not deal with livelock acceptance states and implicit stuttering.
It is also similar to the product of a TGBA with a Kripke structure, except for the use
of changesets on transitions, and the initial labels (U).

Definition 9. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TGTA T = 〈ST , IT ,
UT , RT ,FT 〉, the product K ⊗T is a TGTA 〈S, I,U,R,F〉 where

– S = SK × ST ,
– I = {(s,s′) ∈ IK × IT | LK (s) ∈UT (s

′)},
– ∀(s,s′) ∈ I,U((s,s′)) = {LK (s)},
– R = {((s,s′),k, f ,(d,d′)) | (s,d) ∈ RK , (s′,k, f ,d′) ∈ RT , k = LK (s)⊕LK (d)}
– F = FT .

Property 8. We have L (K ⊗T ) = L (K )∩L (T ) by construction.

B Model Checking Using TGBA

When doing model checking with TGBA the two important operations are the trans-
lation of the linear-time property ϕ into a TGBA A¬ϕ and the emptiness check of the
product of the Kripke structure K with A¬ϕ: this product K ⊗A¬ϕ is a TGBA. Numer-
ous algorithms translate LTL formulæ into TGBA [13, 4, 1, 26]. We use Couvreur’s
one [4] with some optimizations [6].

Testing a TGBA for emptiness amounts to the search of a strongly connected com-
ponent that contains at least one occurrence of each acceptance condition. It can be
done in two different ways: either with a variation of Tarjan or Dijkstra algorithm [4]
or using several nested depth-first searches to save memory [26]. The latter proved to
be slower [5], so we are using Couvreur’s SCC-based emptiness check algorithm [4].
Another advantage of the SCC-based algorithm is that their complexity does not depend
on the number of acceptance conditions.

Algorithm. 1 presents an iterative version of Couvreur’s algorithm [4]. This algo-
rithm computes on the fly the maximal Strongly Connected Components: it performs
a Depth-First Search (DFS) for SCC detection and then merges the SCCs belonging to
the same maximal SCC into a single SCC. After each merge, if the union of all accep-
tance conditions occurring in the merged SCC is equal to F , then an accepting run is
found. todo is the DFS stack. It is used by the procedure DFSpush to push the states
of the current DFS path and the set of their successors that have not yet been visited.
H maps each visited state to its rank in the DFS order, and H[s] = 0 indicates that s is
a dead state (i.e., s belongs to a maximal SCC that has been fully explored). Figure 9
illustrates a run of this algorithm on a small example.

The SCC stack stores a chain of partial SCCs found during the DFS. For each SCC
the attribute root is the DFS rank (H) of the first state of the SCC, acc is the set of all



116 A.-E. Ben Salem, A. Duret-Lutz, and F. Kordon

1 Input: A product TGBA G = 〈S, I,R,F〉
2 Result: true if and only if L (G) = /0
3 Data: todo: stack of 〈state ∈ S,succ⊆ R〉

SCC: stack of
〈root ∈N, la⊆ F,acc⊆ F,rem⊆ S〉
H: map of S �→N

max← 0
4 begin
5 foreach s0 ∈ I do
6 DFSpush( /0, s0)
7 while ¬todo.empty() do
8 if todo.top().succ = /0 then
9 DFSpop()

10 else
11 pick one 〈s,_,a,d〉 off todo.top().succ
12 if d �∈ H then
13 DFSpush(a, d)
14 else if H[d]> 0 then
15 merge(a, H[d])
16 if SCC.top().acc = F then
17 return false

18 return true

19 DFSpush(la⊆ F, s ∈ S)
20 max← max+1
21 H[s]← max
22 SCC.push(〈max, la, /0, /0〉)
23 todo.push(〈s,{〈q, l,a,d〉 ∈ R | q = s}〉)
24 DFSpop()
25 〈s,_〉 ← todo.pop()
26 SCC.top().rem.insert(s)
27 if H[s] = SCC.top().root then
28 foreach s ∈ SCC.top().rem do
29 H[s]← 0
30 SCC.pop()

31 merge(la⊆ F, t ∈N)
32 r← /0
33 acc← la
34 while t < SCC.top().root do
35 acc← acc∪SCC.top().acc

∪SCC.top().la
36 r← r∪SCC.top().rem
37 SCC.pop()
38 SCC.top().acc← SCC.top().acc∪acc
39 SCC.top().rem← SCC.top().rem∪ r

Algorithm 1. Emptiness check algorithm for TGBA

acceptance conditions belonging to the SCC, la is the acceptance conditions of the tran-
sition between the previous and the current SCC, and rem contains the fully explored
states of the SCC. Figure 8 shows how acc and la are used in the SCC search stack.

The algorithm begins by pushing in SCC each state visited for the first time (line 12),
as a trivial SCC with an empty acc set (line 22). Then, when the DFS explores a transi-
tion t between two states s and d, if d is in the SCC stack (line 14), therefore t closes a
cycle passing through s and d in the product automaton.This cycle “strongly connects”
all SCCs pushed in the SCC stack between SCC[i] and SCC[n]: the two SCCs that re-
spectively contains the states d and s (SCC[n]] is the top of the SCC stack). All the SCCs
between SCC[i] and SCC[n] are merged (line 15) into SCC[i]. The merge of acceptance
conditions is illustrated by Fig. 8: a “back” transition t is found between SCC[n] and
SCC[i], therefore the latest SCCs (from i to n) are merged. The acceptance conditions
of the merged SCC is equal to the union of SCC[i].acc∪SCC[i+1].la∪SCC[i+1].acc∪
·· ·∪SCC[n].la∪SCC[n].acc∪ t.la. If this union is equal to F , then the merged SCC is
accepting and the algorithm return false (line 17): the product is not empty.

SCC[i−1].acc SCC[i].acc SCC[i+1].acc SCC[n].acc
SCC[i−1].la SCC[i].la SCC[i+1].la SCC[n].la

t.la

Fig. 8. SCC stack: the use of the SCCs fields la and acc
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Fig. 9. Six intermediate steps in a run of algorithm 1. The states s1, . . . ,s5 are labeled by their
value in H. The stack of roots of SCCs (the root stack in the algorithm) and the DFS search stack
(induced by the recursive calls to DFSpush()) are displayed on the side. An interpretation of the
SCC stack in term of SCCs is given as yellow blobs on the automaton.
(a) Initially the algorithm performs a DFS search by declaring each newly encountered state
as a trivial SCC. (b) When the transition from s4 to s3 is processed, the algorithm detects that
H[s3] �= 0 which means the transition creates a cycle and all SCCs between s4 and s3 are merged.
(c) When the DFS exits the non-accepting {s3,s4} SCC, it marks all its states as dead (H[s] = 0).
(d) When the DFS tries attempt to visit a dead state, it ignores it. (e) Visiting the transition from s5
to s1 will merge three SCCs into one, but it does not yet appear to be accepting because the white
acceptance has not been seen. (f) Finally visiting the transition from s2 back to s1 will contribute
white acceptance condition to the current SCC, and the algorithm will stop immediately because
it has found an SCC labeled by all acceptance conditions.
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C Model Checking Using BA

Since a BA can be seen as a TGBA by pushing acceptance conditions from states to
outgoing transitions, the emptiness check from Algorithm. 1 also works. Other algo-
rithms, specific to BA, are based on two nested depth-first searches. The comparison of
these different emptiness checks raised many studies [11, 24, 5], and for this work we
only consider the SCC-based algorithm presented here.

D Emptiness Check Using TA

Testing Automata require a dedicated algorithm because there are two ways to detect
an accepting cycle in the product:

– Büchi acceptance: a cycle containing at least one Büchi-acceptance state (F) and at
least one non-stuttering transition (i.e., a transition (s,k,s′) with k �= /0),

– livelock acceptance: a cycle composed only of stuttering transitions and livelock
acceptance states (G).

1 Input: A product K ⊗T = 〈S, I,U,R,F,G〉
2 Result: true if and only if L (T ) = /0
3 Data: todo: stack of 〈state ∈ S,succ⊆ R〉

SCC: stack of 〈root ∈N, lk ∈ 2AP,k ∈
2AP,acc⊆ F,rem⊆ S〉
H: map of S �→N

max← 0, Gseen← f alse
4 begin
5 if ¬ first-pass() then return false
6 if Gseen then return second-pass()
7 return true
8 first-pass()
9 foreach s0 ∈ I do

10 DFSpush1( /0, s0)
11 while ¬todo.empty() do
12 if todo.top().succ = /0 then
13 DFSpop()
14 else
15 pick one 〈s,k,d〉 off todo.top().succ
16 if d �∈ H then
17 DFSpush1(k, d)
18 else if H[d]> 0 then
19 merge1(k, H[d])
20 if (SCC.top().acc �= /0)∧

(SCC.top().k �= /0) then return
false

21 if (d ∈ G)∧ (SCC.top().k = /0) then
return false

22 return true

23 DFSpush1(lk ∈ 2AP, s ∈ S)
24 max← max+1
25 H[s]← max
26 if s ∈ F then
27 SCC.push(〈max, lk, /0,{s}, /0〉)
28 else
29 SCC.push(〈max, lk, /0, /0, /0〉)
30 todo.push(〈s,{〈q,k,d〉 ∈ R | q = s}〉)
31 if s ∈ G then
32 Gseen← true

33 merge1(lk ∈ 2AP, t ∈N)
34 acc← /0
35 r← /0
36 k← lk
37 while t < SCC.top().root do
38 acc← acc∪SCC.top().acc
39 k← k∪SCC.top().k∪SCC.top().lk
40 r← r∪SCC.top().rem
41 SCC.pop()
42 SCC.top().acc← SCC.top().acc∪acc
43 SCC.top().k← SCC.top().k∪ k
44 SCC.top().rem← SCC.top().rem∪ r

Algorithm 2. The first-pass of the Emptiness check algorithm for TA products
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Fig. 10. Example product between a Kripke structure and a TA. The bold cycle is livelock-
accepting.

A straightforward emptiness check would have two passes: a first pass to detect Büchi
acceptance cycles, it corresponds to Algorithm. 2 without the test at line 21 and a second
pass presented in Algorithm. 3 to detect livelock acceptance cycles. It is not possible
to merge these two passes into a single DFS: the first DFS requires the full product
exploration while the second one must consider stuttering transitions only. These two
passes are an inconvenient when the property is satisfied (no counterexample) since the
entire state-space has to be explored twice.

With line 21 included in Algorithm. 2, the first-pass detects both Büchi and some
livelock-acceptance cycles. Since in certain cases it may fail to report some livelock-
acceptance cycles, a second pass is required to look for possible livelock-acceptance
cycles.

This first-pass is based on the TGBA emptiness check algorithm presented in
Algorithm. 1 with the following changes:

– In each item scc of the SCC stack: the field scc.acc contains the Büchi-accepting
states detected in scc, scc.lk is analogous to la in Fig. 8 but it stores the change-set
labeling the transition coming from the previous SCC, and scc.k contains the union
of all change-sets in scc (lines 39 and 43).

– After each merge, SCC.top() is checked for Büchi-acceptance (line 20) or livelock-
acceptance (line 21) depending on the emptiness of SCC.top().k.

Figure 10 illustrates how the first-pass of Algorithm. 2 can fail to detect the livelock
accepting cycle in a product K ⊗ T as defined in def. 8. In this example, GT = {1}
therefore (3,1) and (2,1) are livelock-accepting states, and C2 = [(3,1)→ (2,1)→
(3,1)] is a livelock-accepting cycle.

However, the first-pass may miss this livelock-accepting cycle depending on the
order in which it processes the outgoing transitions of (3,1). If the transition t1 =
((3,1),{p},(0,0)) is processed before t2 = ((3,1), /0,(2,1)), then the cycle C1 = [(0,0)
→ (1,0)→ (2,1)→ (3,1)→ (0,0)] is detected and the four states are merged in the
same SCC before exploring t2. After this merge (line 19), this SCC is at the top of the
SCC stack. Subsequently, when the DFS explores t2, the merge caused by the cycle C2

does not add any new state to the SCC, and the SCC stack remains unchanged. There-
fore, the test line 21 still return false because the union SCC.top().k of all change-sets
labeling the transitions of S is not empty (it includes for example t1’s label: {p}). The
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1 Data: todo: stack of 〈state ∈ S,succ⊆ S〉
SCC: stack of 〈root ∈N,rem⊆ S〉
H: map of S �→N

max← 0; init← I
2 second-pass()
3 while ¬init.empty() do
4 pick one s0 off init
5 if s0 �∈ H then DFSpush2( /0, s0)
6 while ¬todo.empty() do
7 if todo.top().succ = /0 then
8 DFSpop()
9 else

10 pick one d off todo.top().succ
11 if d �∈ H then
12 DFSpush2(d)
13 else if H[d]> 0 then
14 merge2(H[d])
15 if (d ∈ G) then return false

16 return true

17 DFSpush2(s ∈ S)
18 max← max+1
19 H[s]← max
20 SCC.push(〈max, /0〉)
21 todo.push(〈s,{d ∈ S | (s, /0,d) ∈ R}〉)
22 init← init ∪{d ∈ S | (s,k,d) ∈ R,k �= /0}
23 merge2(t ∈N)
24 r← /0
25 while t < SCC.top().root do
26 r← r∪SCC.top().rem
27 SCC.pop()
28 SCC.top().rem← SCC.top().rem∪ r

Algorithm 3. The second-pass of the TA emptiness check algorithm

first-pass algorithm then terminates without reporting any accepting cycle, missing
C2.

Had the first-pass processed t2 before t1, it would have merged the states (3,1)
and (2,1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of
all change-sets of the SCC containing this cycle. However, this union may include non-
stuttering transitions belonging to other cycles of the SCC. In this case, the second-pass
is required to search for livelock-acceptance cycles, ignoring the non-stuttering transi-
tions that may belong to the same SCC.

The second-pass (Algorithm. 3) is a DFS exploring only stuttering transitions
(line 21). To report a livelock-accepting cycle, it detects “stuttering-SCCs” and tests
if they contain a livelock-accepting state (line 15).

Ignoring the non-stuttering transitions during the DFS, may lead to miss some parts
of the product so any destination of a non stuttering transition is stored in init for later
exploration (line 22).

In the algorithm proposed by Geldenhuys and Hansen [10], the first pass uses a
heuristic to detect livelock-acceptance cycles when possible. This heuristic detects more
livelock-acceptance cycles than Algorithm. 2. In certain cases this first pass may still
fail to report some livelock-acceptance cycles. Yet, this heuristic is very efficient: when
counterexamples exist, they are usually caught by the first pass, and the second is rarely
needed. However, when properties are verified, the second pass is always required.

Optimizations. In our experimentation, we implement the algorithm proposed by Gel-
denhuys and Hansen [10] including the heuristic and we have added some improve-
ments to the first pass:
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1. If no livelock-acceptance state is visited during the first pass, then the second pass
can be disabled: this is the purpose of variable Gseen. In our experiments, this
optimization greatly improves the performance of the TA approach in the cases
where the formula is verified.

2. A cycle detected during the first pass is also accepted if it contains a livelock-
acceptance state (sK ,sT ) such that sT has no successor. Indeed, from this state, a
run can only executes stuttering transitions. Therefore, a cycle containing this state,
is composed only of stuttering transitions: it is a livelock accepting cycle.

E Proofs for TGTA Construction

Proof of property 4.
(((⊆⊆⊆))) Let w = k0k1k2 . . . ∈ L (G) be an execution accepted by G . By Def. 3, this ex-
ecution is recognized by a path (s0,K0,F0,s2)(s2,K1,F1,s2) . . . ∈ Rω

G of G , such that
s0 ∈ I, ∀i ∈N,(ki ∈ Ki), and ∀ f ∈ F, ∀i ∈N, ∃ j≥ i, f ∈ Fj. By applying (ii) and (i), we
can see that there exists a corresponding path ((s0,k0),k0⊕k1,F0,(s1,k1))((s1,k1),k1⊕
k2,F1,(s2,k2)) . . . ∈ Rω

T of T such that (s0,k0) ∈ IT , k0 ∈UT ((s0,k0)), and still ∀ f ∈
F, ∀i ∈N, ∃ j ≥ i, f ∈ Fj. By Def. 6 we therefore have w ∈L (T ).
(((⊇⊇⊇))) Let w=w0w1w2 . . .∈L (T ) be an execution accepted by T . By Def. 6, this execu-
tion is recognized by a path ((s0,k0),w0⊕w1,F0,(s1,k1))((s1,k1),w1⊕w2,F1,(s2,k2))
. . . ∈ Rω

T of T such that (s0,k0) ∈ IT , w0 ∈ UT ((s0,k0)), and ∀ f ∈ F, ∀i ∈ N, ∃ j ≥
i, f ∈ Fj. Of course we have wi⊕wi+1 = ki⊕ ki+1 but this does not suffice to imply
that ki = wi. However (i) tells us that w0 ∈UT ((s0,k0)) = {k0} so w0 = k0, and since
wi⊕wi+1 = ki⊕ki+1 it follows that wi = ki. By applying (ii) can now find a correspond-
ing path (s0,K0,F0,s2)(s2,K1,F1,s2) . . . ∈ Rω

G of G , such that s0 ∈ I, ∀i ∈N,(wi = ki ∈
Ki), and ∀ f ∈ F, ∀i ∈N, ∃ j ≥ i, f ∈ Fj. By Def. 3 we therefore have w ∈L (G). ��
Proof of property 5.

1. (((T ′′′ ⊇⊇⊇ T ))) Obvious because we are only adding transitions. (((T ′′′ ⊆⊆⊆ T ))) Let R′ =
R∪ {(q, /0,F,q) | q ∈ Q}. Consider an accepting execution w = k0k1k2 . . .L (T ′)
recognized by an accepting path π′ on T ′. Any transition of π′ that is not in R is
a self-loop (q, /0,F,q) that has been added to R′ because an accepting stuttering-
SCC exists in R around q: so any (q, /0,F,q) ∈ R′ can be replaced by a sequence
of stuttering transitions (q, /0,G0,q1)(q1, /0,G1,q2) . . . (qn, /0,Gn,q) ∈ R∗ such that
G0 ∪G1 ∪ . . .Gn = F . The path π ∈ Rω obtained by replacing all such transitions
is an accepting path of T that recognizes a word that is stuttering equivalent to w.
Since L (T ) is stuttering-insensitive, it must also contain w. ��

2. (((T ′′′′′′ ⊇⊇⊇ T ))) Obvious for the same reason. (((T ′′′′′′ ⊆⊆⊆ T ))) We consider the case where
s0 is non initial (the initial case is similar). Let R′′ = R∪ {(s,k, f ,sn)}. Consider
an accepting execution w = k0k1k2 . . .L (T ′′) recognized by a path π′′ on T ′′. Let
π be the path on T obtained by replacing in π′′ any occurrence of (s,k, f ,sn) ∈
(R′′ \ R) by the sequence (s,k, f ,s0)(s0, /0,F1,s1)(s1, /0,F2,s2) · · · (sn−1, /0,Fn,sn) ∈
R∗. The path π ∈ Rω is also an accepting path of T that recognizes a word that is
stuttering equivalent to w. Since L (T ) is stuttering-insensitive, it must also contain
w. ��
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3. L (T †) = L (T ) by application of the previous two properties, therefore L (T †)
is a stuttering-insensitive language. L (T ′′′) is also a stuttering-insensitive lan-
guage because T ′′′ is obtained from T † that recognizes a stuttering-insensitive
language, by adding stuttering self-loops on all its states before removing all
stuttering-transitions that are not self-loops.
To prove that two stuttering-insensitive languages are equal, it is sufficient to verify
that they contain the same words of the following two forms:

– w = k0k1k2 . . . with ∀i ∈N,ki⊕ ki+1 �= /0 (non-stuttering words), or
– w = k0k1k2 . . . (kn)

ω with ∀i < n,ki⊕ ki+1 �= /0 (terminal stuttering words)
All other accepted words can be generated by duplicating letters in the above words.
Since we have only touched stuttering transitions, it is clear that the non-stuttering
words of L (T ) are the non-stuttering words of L (T ′′′).
We now consider the case of a terminal stuttering word w = k0k1k2 . . . (kn)

ω with
∀i < n,ki⊕ ki+1 �= /0.
(((T ′′′′′′′′′ ⊆⊆⊆ T †))) The path π′′′ that recognizes w in T ′′′ has the form (s0,k0⊕ k1,F0,s1)
(s1,k1 ⊕ k2,F1,s2) . . . (sn, /0,F,sn)

ω where all transitions are necessarily from T †

because we have only added in T ′′′ transitions of the form (s, /0, /0,s). π′′′ is thus
also an accepting path of T † and w ∈L (T †).
(((T ′′′′′′′′′ ⊇⊇⊇ T †))) The path π† that recognizes w in T † does only stutter after kn. Because
this is an accepting path, it has a lasso-shape, where the cyclic part is only stuttering
and accepting. Let us denote it π† = (s0,k0⊕ k1,F0,s1)(s1,k1⊕ k2,F1,s2) . . . (sn−1,
kn−1⊕ kn,Fn−1,sn)(sn, /0,Fn,sn+1) . . . [(sm, /0,Fm,sm+1) . . . (sl , /0,Fl ,sm)]

ω, with
∀i < n,ki⊕ ki+1 �= /0.
Thanks to property 5.1, the accepting cycle [(sm, /0,Fm,sm+1) . . . (sl , /0,Fl ,sm)] of π†

can be replaced by an accepting self-loop (sm, /0,F,sm). And thanks to property 5.2,
the transitions from sn−1 to sm can be replaced by a single transition (sn−1,kn−1⊕
kn,Fn−1,sm). The resulting path π′′′=(s0,k0⊕k1,F0,s1)(s1,k1⊕k2,F1,s2) . . . (sn−1,
kn−1⊕ kn,Fn−1,sm)(sm, /0,F,sm)

ω is an accepting path of T ′′′ that accepts w, so
w ∈L (T ′′′). ��

4. This is a classical optimization on Büchi automata. ��
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