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Preface by Editor-in-Chief

The sixth issue of LNCS Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC) contains revised and extended versions of a selection
of the best papers from the workshops and tutorials held at the 32nd Interna-
tional Conference on Application and Theory of Petri Nets and Concurrency,
in Newcastle upon Tyne, UK, June 20–24, 2011, edited by Wil van der Aalst
and Jetty Kleijn, and a special section on Networks, Protocols, and Services,
edited by Giuliana Franceschinis, Lars Michael Kristensen, and Marco Ajmone
Marsan. It also contains a paper that was submitted to ToPNoC directly through
the regular submission track.

I would like to thank the five guest editors of this special issue: Wil van der
Aalst, Jetty Kleijn, Giuliana Franceschinis, Lars Michael Kristensen, and Marco
Ajmone Marsan. Moreover, I would like to thank all authors, reviewers, and the
organizers of the Petri net conference satellite workshops, without whom this
issue of ToPNoC would not have been possible.

August 2012 Kurt Jensen
Editor-in-Chief

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC)



LNCS Transactions on Petri Nets and Other

Models of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models
of concurrency ranging from theoretical work to tool support and industrial
applications. The foundation of Petri nets was laid by the pioneering work of
Carl Adam Petri and his colleagues in the early 1960s. Since then, an enormous
amount of material has been developed and published in journals and books and
presented at workshops and conferences.

The annual International Conference on Application and Theory of Petri
Nets and Concurrency started in 1980. The International Petri Net Bibliography
maintained by the Petri Net Newsletter contains close to 10,000 different entries,
and the International Petri Net Mailing List has 1,500 subscribers.

For more information on the International Petri Net community, see:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all large
libraries and are also accessible in LNCS Online (electronically). It is possible to
subscribe to ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency;

– special issues related to particular subareas (similar to those published in
the Advances in Petri Nets series);

– other papers invited for publication in ToPNoC; and
– papers submitted directly to ToPNoC by their authors.

Like all other journals, ToPNoC has an Editorial Board, which is responsible
for the quality of the journal. The members of the board assist in the reviewing
of papers submitted or invited for publication in ToPNoC. Moreover, they may
make recommendations concerning collections of papers for special issues. The
Editorial Board consists of prominent researchers within the Petri net community
and in related fields.

Topics

System design and verification using nets; analysis and synthesis, structure and
behavior of nets; relationships between net theory and other approaches; causal-
ity/partial order theory of concurrency; net-based semantical, logical and alge-
braic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to
nets; higher level net models; timed and stochastic nets; and standardization of
nets.



VIII ToPNoC: Aims and Scope

Applications of nets to: biological systems, defence systems, e-commerce and
trading, embedded systems, environmental systems, flexible manufacturing sys-
tems, hardware structures, health and medical systems, office automation, oper-
ations research, performance evaluation, programming languages, protocols and
networks, railway networks, real-time systems, supervisory control, telecommu-
nications, and workflow.

For more information about ToPNoC, please see: www.springer.com/lncs/
topnoc

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted
as PDF or zipped PostScript files to ToPNoC@cs.au.dk. All queries should be
addressed to the same e-mail address.
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Preface by Guest Editors

This issue of ToPNoC consists of three parts:

1. the first part comprises the revised versions of a selection of the best papers
from the workshops and tutorials held at the 32nd International Conference
on Application and Theory of Petri Nets and Concurrency, in Newcastle
upon Tyne, UK, June 20–24, 2011, and has been edited by Wil van der
Aalst and Jetty Kleijn;

2. the second part consists of papers selected for a special section on Networks,
Protocols, and Services and has been edited by Giuliana Franceschinis, Lars
Michael Kristensen, and Marco Ajmone Marsan;

3. the third part is formed by the paper “Aggregating Causal Runs into Work-
flow Nets” by Boudewijn van Dongen, Jörg Desel, and Wil van der Aalst,
submitted to ToPNoC directly through the regular submission track.

The remainder of this preface introduces these three parts.

Best Workshop Papers from Petri Nets 2011

This part contains revised and extended versions of a selection of the best work-
shop papers presented at the 32nd International Conference on Application and
Theory of Petri Nets and Concurrency (Petri Nets 2011).

We, Wil van der Aalst and Jetty Kleijn, are indebted to the program commit-
tees of the workshops and in particular their chairs. Without their enthusiastic
work this volume would not have been possible. Many members of the pro-
gram committees participated in reviewing the extended versions of the papers
selected for this issue. The following workshops were asked for their strongest
contributions:

– PNSE 2011: International Workshop on Petri Nets and Software Engineering
(chairs: Michael Duvigneau, Kunihiko Hiraishi, and Daniel Moldt),

– BioPPN 2011: International Workshop on Biological Processes and Petri
Nets (chairs: Monika Heiner and Hiroshi Matsuno),

– ART 2011: Applications of Region Theory (chairs: Jörg Desel and Alex
Yakovlev),

– CompoNet 2011: International Workshop on Petri Nets Compositions (chairs:
Hanna Klaudel and Franck Pommereau),

– SUMo 2011: Scalable and Usable Model Checking for Petri Nets and Other
Models of Concurrency (chair: Didier Buchs)

The best papers of these workshops were selected in close cooperation with
their chairs. The authors were invited to improve and extend their results where
possible, based on the comments received before and during the workshop. The
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resulting revised submissions were reviewed by three to five referees. We followed
the principle of also asking for fresh reviews of the revised papers, i.e., from ref-
erees who had not been involved initially in reviewing the original workshop
contribution. All papers went through the standard two-stage journal reviewing
process and eventually eight were accepted after rigorous reviewing and revis-
ing. Presented are a variety of high-quality contributions, ranging from model
checking and system verification to synthesis, and from work on Petri-net-based
standards and frameworks to innovative applications of Petri nets and other
models of concurrency.

The paper by Josep Carmona, The Label Splitting Problem, revisits label
splitting, a technique to satisfy the synthesis conditions through renaming of
problematic labels. To be applicable, the classical theory of regions relies on
stringent conditions on the input automaton. Although some relaxations on
these restrictions were proposed earlier, in general not every automaton can be
synthesized while preserving its behavior using classical approaches. The paper
formalizes the problem of label splitting and proposes extensions that improve
the applicability of the theory of regions.

The paper Distributed Control of Discrete-Event Systems: A First Step, by
Philippe Darondeau and Laurie Ricker, is concerned with the synthesis of dis-
tributed control implemented by asynchronous message passing automata. A
survey of discrete-event systems control is provided. Also distributed Petri nets
and their synthesis and translation to asynchronous communicating automata
are discussed. Then distributed Petri net synthesis techniques are applied to
synthesize distributed supervisory controllers that avoid deadlocks or enforce
home states. An algorithm is proposed and its limitations are discussed. As an
illustration of the method the paper experiments using the 3-dining philosophers
problem, which leads to three (new) distributed solutions of this problem.

The third paper, Extending PNML Scope: A Framework to Combine Petri
Nets Types by Lom-Messan Hillah, Fabrice Kordon, Charles Lakos, and Laure
Petrucci, is concerned with Petri net extensions in the context of the Interna-
tional Standard on Petri nets, ISO/IEC 15909, which comprises three parts.
ISO/IEC 15909-3 aims at defining extensions on the whole family of Petri nets.
This paper elaborates on an extension framework for the third part of the stan-
dard and shows how priorities, times, and inhibitor arcs can be added in the
context of an interleaving semantics.

Ekkart Kindler, in his paper Modelling Local and Global Behaviour: Petri
Nets and Event Coordination, introduces the general idea of Event Coordina-
tion, Notation (ECNO) and of ECNO nets. ENCO can be used to define the
global behavior of a software system on top of existing class diagrams. One of
the major objectives of this notation was to make it easy to integrate model-
based code generation with existing structural models, with existing code, and
other behavioral models. Basically, the ENCO net describes how the local be-
havior of the individual parts of the software is coordinated. ECNO nets have
been implemented as a Petri net type for the ePNK tool, together with a code
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generator that produces code that can be executed by the ECNO execution
engine.

In Model Checking Using Generalized Testing Automata, Ala-Eddine Ben
Salem, Alexandre Duret-Lutz, and Fabrice Kordon continue earlier work on
LTL model checking of stuttering-invariant properties. The automata-theoretic
approach to model checking of linear-time properties relies on ω-automata to rep-
resent infinite executions of a model. Different types of automata have been used
and the current paper proposes to combine features from Testing Automata, and
Transition-Based Generalized Büchi Automata, which leads to the introduction
of Transition-Based Generalized Testing Automata. Experiments on benchmark
models show that TGTA outperform the other approaches in most of the cases.

The paper A Domain Specific Language Approach for Genetic Regulatory
Mechanisms Analysis, by Nicolas Sedlmajer, Didier Buchs, Steve Hostettler,
Alban Linard, Edmundo López Bóbeda, and Alexis Marechal, describes an ap-
proach based on Domain Specific Languages (DSLs). The authors provide a
language called GReg that aims to describe genetic regulatory mechanisms and
their properties. The language is designed to enable model checking. GReg’s ob-
jective is to shield the user from the complexity of those underlying techniques.
The resulting models can be used to discover emerging properties arising from
the complex interactions between biological components.

In his paper Verifying Parallel Algorithms and Programs Using Coloured
Petri Nets, Michael Westergaard describes an approach for the automatic ex-
traction of Coloured Petri Net models from parallel algorithms and programs
where processes communicate via shared memory. This makes it possible to
verify software using a formal model obtained from runnable code. An imple-
mentation of the translation is presented. Moreover, the technique proposed also
supports model-driven development. Consequently, extraction of a model from
an abstract description and generation of correct implementation code can be
combined.

The last paper based on the best papers from the workshops held at the 32nd
International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency is of a different flavor as it is based on a competition
held in the context of the SUMo 2011 workshop. The paper Report on the Model
Checking Contest at Petri Nets 2011, by Fabrice Kordon, Alban Linard, Didier
Buchs, Maximilien Colange, Sami Evangelista, Kai Lampka, Niels Lohmann,
Emmanuel Paviot-Adet, Yann Thierry-Mieg, and Harro Wimmel, presents the
results of this competition. The participating tools were compared on several
tests (state space generation, deadlock detection and reachability analysis) run
on a set of common models (Place/Transition and Symmetric Petri nets). The
collected data gave some hints about the way techniques scale up depending on
both the property investigated and the characteristics of the model. This paper
also presents the lessons learned from the organizers’ point of view and lists
enhancements required for future Model Checking Contests.
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Special Section on Networks, Protocols, and Services

This part of the present ToPNoC issue is dedicated to papers that focus on Petri
net-based techniques and technologies, as well as other models of concurrency,
and their applications to the analysis and design of networks, protocols, and ser-
vices. Computer and telecommunication networks, together with their protocols,
constitute key building blocks of most modern IT systems, since they define the
infrastructures and the services that make possible the cooperation of users, be
they human or machine, through the exchange of information. The engineering
of networks, protocols, and services supporting today’s advanced use of infor-
mation technology is a challenging discipline, which requires careful behavioral
modelling and validation. This makes networks, protocols, and services an im-
portant application domain for the use of Petri net techniques, as well as other
models of concurrency.

This special section is based on papers submitted through an open call for
contributions and invitation to selected researchers in the application domain.
All papers went through a two-stage reviewing process and five papers were
accepted for publication.

In Modelling and Formal Verification of the NEO Protocol, Christine Choppy,
Anna Dedova, Sami Evangelista, Käıs Kläı, Laure Petrucci, and Samir Youcef
present their work on the practical application of high-level Petri nets and a
suite of supporting computer tools for the modelling and verification of a pro-
tocol for the management of large distributed databases. The Petri nets models
are constructed based on a reverse-engineering approach from source code, and
state space exploration is being used to analyze reliability properties of the elec-
tion and bootstrap phases of the NEO protocol. One important finding is the
identification of several aspects where the present NEO protocol implementation
can be improved.

The paper by Sonya Arnold and Jonathan Billington, An Initial Coloured
Petri Net Model of the Hypertext Transfer Protocol Operating Over the Trans-
mission Control Protocol, concentrates on the use of Coloured Petri Nets (CPNs)
for modelling essential features of the Hypertext Transfer Protocol (HTTP),
which is currently undergoing revision by the Internet Engineering Task Force.
A CPN model of the HTTP protocol is presented that relies on an explicit and
rigorous modelling of the service provided by the underlying transport protocol.
State spaces and standard behavioral properties of Petri nets are being used to
verify liveness and termination properties of HTTP and determine tight upper
bounds on interface buffers.

The paper Privacy Compliance Verification in Cryptographic Protocols by
Suriadi Suriadi, Chun Ouyang, and Ernest Foo focuses on the use of CPNs
for constructing executable formal models of privacy enhancing protocols. A
representative protocol in the form of the Private Information Escrow Bound
to Multiple Conditions Protocol (PIEMCP) is considered. A CPN model of the
PIEMCP protocol together with associated modelling techniques is presented
and then temporal logic and model checking techniques are used to formulate
and verify privacy compliance properties under a range of attack scenarios.
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Dario Bruneo, Francesco Longo, and Antonio Puliafito, in their paper Mod-
eling Energy-Aware Cloud Federations with SRNs, develop a methodology based
on stochastic reward nets to evaluate management policies in the context of in-
frastructure as a service clouds. Models are developed for cloud infrastructure
components and it is shown how these can be used to reason analytically about
energy efficiency in hybrid clouds consisting of cooperating private and public
clouds. In this context, federation policies allow clouds to cooperate to han-
dle peak request periods for virtual machines while virtual server consolidation
policies allow infrastructure shutdown of data centre services.

In their paper A SAN-Based Modeling Approach to Performance Evaluation
of an IMS-Compliant Conferencing Framework, Stefano Marrone, Nicola Maz-
zocca, Roberto Nardone, Roberta Presta, Simon Pietro Romano, and Valeria
Vittorini propose a component- and template oriented modelling approach based
on Stochastic Activity Networks (SANs) for reasoning about the performance of
a distributed IP-based multimedia conferencing framework. Performance mod-
els built using the proposed approach are validated via comparison with perfor-
mance measures extracted from a deployed implementation, demonstrating the
accuracy of the result obtained with the approach.

Regular Paper

An earlier version of the paper Aggregating Causal Runs into Workflow Nets
by B.F. van Dongen, J. Desel, and W.M.P. van der Aalst was submitted to the
ART workshop at Petri Nets 2011 and was suggested as a paper for ToPNoC by
the workshop organizers. However, to avoid any conflict of interest, the paper
was submitted to ToPNoC directly through the regular submission track. This
was done because one of the authors (Wil van der Aalst) was also editor of the
special issue based on Petri Nets 2011. The reviewing process was handled by
the Editor-in-Chief, Kurt Jensen.

The paper Aggregating Causal Runs into Workflow Nets provides three algo-
rithms for deriving marked Petri nets from sets of partially-ordered causal runs.
The three aggregation algorithms differ with respect to the assumptions about
the information contained in the causal runs. Unlike most papers on process
mining, the authors use the assumption that events are logged as partial orders
instead of linear traces. Although the work is inspired by applications in the pro-
cess mining and workflow domains, the results are generic and can be applied in
other application domains.

Thanks

As guest editors, we would like to thank all authors and referees who have
contributed to this issue: not only is the quality of this volume the result of the
high scientific value of their work, but we would also like to acknowledge the
excellent cooperation throughout the whole process that has made our work a
pleasant task. Finally, we would like to pay special tribute to Lars Madsen of
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Aarhus University and Ine van der Ligt of Eindhoven University of Technology,
who provided technical support for the composition of this volume and interacted
with the authors. We are also grateful to the Springer/ToPNoC team for the final
production of this issue.

August 2012 Wil van der Aalst
Jetty Kleijn

Giuliana Franceschinis
Lars Michael Kristensen
Marco Ajmone Marsan

Guest Editors, Sixth Issue of ToPNoC
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The Label Splitting Problem

Josep Carmona

Universitat Politècnica de Catalunya, Spain
jcarmona@lsi.upc.edu

Abstract. The theory of regions was introduced by Ehrenfeucht and
Rozenberg in the early nineties to explain how to derive (synthesize) an
event-based model (e.g., a Petri net) from an automaton. To be applica-
ble, the theory relies on stringent conditions on the input automaton. Al-
though some relaxation on these restrictions was done in the last decade,
in general not every automaton can be synthesized while preserving its
behavior. A crucial step for a non-synthesizable automaton is to trans-
form it in order to satisfy the synthesis conditions. This paper revisits
label splitting, a technique to satisfy the synthesis conditions through re-
naming of problematic labels. For the first time, the problem is formally
characterized and its optimality addressed. Some extensions and appli-
cations of the label splitting are presented to illustrate the significance
of this technique.

1 Introduction

The use of formal models as mathematical descriptions of software or hardware
systems opens the door for the adoption of formal methods in many phases of the
design of a complex system. This in turn allows incorporating computer-aided
techniques in the process, including verification and performance evaluation,
disciplines that nowadays resort heavily in simulation. Formal models can be
either state-based (i.e., automata-like) or event-based (e.g., Petri nets), and the
correspondence between models is a challenging problem that we address in this
paper.

The synthesis problem [9] consists in building a Petri net [12,14,15] that has a
behavior equivalent to a given automaton (transition system). The problem was
first addressed by Ehrenfeucht and Rozenberg [10] introducing regions to model
the sets of states that characterize places in the Petri net. The theory is appli-
cable to elementary transition systems, a proper subclass of transition systems
where additional conditions are required, and for which the synthesis produces a
Petri net with isomorphic behavior. These restrictions were significantly relaxed
in [7], introducing the subclass of excitation-closed transition systems, where not
isomorphism but bisimilarity is guaranteed. In an excitation-closed transition
system, for every event the set of states where the event is enabled should be
equal to the intersection of pre-regions (regions where the event exits) of the
event. The theory of this paper relates to the subclass of excitation-closed tran-
sition systems.

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 1–23, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 J. Carmona

When synthesis conditions do not hold, the Petri net derived might have a
behavior in general incomparable to the initial behavior [5], and therefore any
faithful use of such Petri net may be hampered. To overcome this problem,
one might force the synthesis conditions by transforming the initial transition
system. The work in [7] was the first one in addressing this problem, introducing
label splitting as a technique that can be applied when excitation-closure is not
satisfied. The technique is based on renaming the labels of a particular event e
in the transition system: given the whole set of occurrences of the event, these
are relabeled into different labels e1, . . . , ek, thus preserving the event name
but considering each new copy as a new event with respect to the synthesis
conditions.

The new events produced by the label splitting technique increase the com-
plexity of the Petri net derived: each new copy will be transformed into a transi-
tion, and hence the label splitting problem is to find a sequence of splittings that
induces the minimal number of transitions in the derived Petri net. The moti-
vation for this minimization is twofold: first, in many applications the Petri net
derived is a valuable graphical description of (part of) a system, and therefore
its visualization will benefit from having the minimal number of nodes. Second,
by deriving a simpler model, the complexity of algorithms that take this model
as input may be alleviated when the size is minimal. The technique presented
in [7] only presented the label splitting technique as a heuristic to progress
into excitation-closure, i.e., it never considered the optimal application of the
technique.

The label splitting technique presented in this paper is a particular one: it is
defined on the sets of states computed when searching for regions in state-based
synthesis methods [5,7]. These sets, called essential, are the building blocks used
in this paper to decide which labels to split. The methods for label splitting in
the aforementioned papers also use the essential sets for label splitting, but as
described previously, only in a heuristic manner.

In summary, this paper presents a novel view on the label splitting technique.
First, we show how label splitting for excitation closure is nothing else than
coloring a graph using a minimal number (the chromatic number of the graph)
of colors. Second, we characterize the conditions under which an optimal label
splitting can be derived to accomplish excitation closure. Finally, we present an
algorithm that can be used when excitation closure cannot be attained by a
single application of the label splitting technique presented in this paper. This
algorithm is based on a relaxation of the label splitting problem that can be
mapped into the weighted set cover problem.

For the sake of clarity, the theory of this paper will be presented for the
class of safe (1-bounded) Petri nets. The contribution can be extended with no
substantial change for the class of general (k-bounded) Petri nets.

The organization of the paper is the following: in Section 2 we provide the
reader the necessary background to understand the contents of this paper.
Then in Section 3 and Section 4 the core contributions of the paper are presented,
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describing techniques for obtaining regions and forcing (if possible) the synthesis
conditions, respectively. In Section 5 a technique to iteratively apply the methods
described in the previous sections and thus guaranteeing always a solution are
described. Then, in Section 6 we provide applications and extensions of the
presented technique.

2 Preliminaries

In this section we describe the basic elements necessary to understand the theory
of this paper.

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system is a tuple
(S,E,A, sin), where S is a set of states, E is an alphabet of events, such that
S ∩ E = ∅, A ⊆ S × E × S is a set of (labeled) transitions, and sin ∈ S is the
initial state.

We use s
e→ s′ as a shorthand for (s, e, s′) ∈ A, and we write s

∗→ s′ if s = s′ or
there exist a path of labeled transitions (si−1, ei, si) ∈ A where 1 ≤ i ≤ n, for
some n ≥ 1, s0 = s, sn = s′. Let TS = (S,E,A, sin) be a transition system. We
consider connected transition systems that satisfy the following axioms: i) S and
E are finite sets, ii) every event has an occurrence: ∀e ∈ E ∃s, s′ ∈ S : (s, e, s′) ∈
A, and iii) every state is reachable from the initial state: ∀s ∈ S : sin

∗→ s.
In some parts of the paper it will be required to compare transitions systems.

The following definition formalizes a well-known relation between transition
systems.

Definition 2 (Simulation, Bisimulation [1]). Let TS1 = (S1, E,A1, sin1)
and TS2 = (S2, E,A2, sin2) be two TSs with the same set of events. A simulation
of TS1 by TS2 is a relation π between S1 and S2 such that s1πs2 and

– for every s1 ∈ S1, there exists s2 ∈ S2 such that s1πs2.
– for every (s1, e, s

′
1) ∈ A1 and for every s2 ∈ S2 such that s1πs2, there exists

(s2, e, s
′
2) ∈ A2 such that s′1πs

′
2.

When TS1 is simulated by TS2 with relation π, and vice versa with relation π−1,
TS1 and TS2 are bisimilar [1].

Definition 3 (Petri net [12, 14, 15]). A Petri net is a tuple PN =
(P, T, F,M0) where P and T represent finite disjoint sets of places and tran-
sitions, respectively, F ⊆ (P × T ) ∪ (T × P ) is the flow relation. Let markings
be functions M : P → N assigning a number of tokens to each place. Marking
M0 defines the initial state of the system.
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For a node n (place or transition) of a Petri net, •n = {n′|(n′, n) ∈ F}, and
n• = {n′|(n, n′) ∈ F}, are called the predecessor and successor set of n in F ,
respectively. A transition t ∈ T is enabled at marking M if ∀p ∈ •t : M(p) ≥ 1.
The firing of an enabled transition t at M results in a marking M ′ (denoted
M [t〉M ′) such that for each place p:

M ′(p) =

⎧⎪⎨
⎪⎩
M(p)− 1 if p ∈ •t− t•
M(p) + 1 if p ∈ t • − • t
M(p) otherwise.

A marking M ′ is reachable from M if there is a sequence of firings σ = t1t2 . . . tn
that transforms M into M ′, denoted by M [σ〉M ′. A sequence of transitions
σ = t1t2 . . . tn is a feasible sequence if M0[σ〉M , for some M . The set of all
markings reachable from the initial marking M0 is called its Reachability Set.
The Reachability Graph of a Petri net PN (RG(PN)) is a transition system in
which the set of states is the Reachability Set, the events are the transitions of
the net and a transition (M1, t,M2) exists if and only if M1[t〉M2. The initial
state of the Reachability Graph is M0. PN is k-bounded if M(p) ≤ k for all
places p and for all reachable markings M .

2.2 Regions and Synthesis

The theory of regions provides a path beween transition systems and Petri nets.
We now review this theory (the interested reader can refer to [5, 7, 9, 10, 13] for
a complete overview). Given two states s, s′ ∈ S and a subset of states S′ ⊆ S
of a transition system (S,E,A, sin), if s ∈ S′ and s′ ∈ S′, then we say that
transition (s, e, s′) enters S′. If s ∈ S′ and s′ ∈ S′, then transition (s, e, s′) exits
S′. Otherwise, transition (s, e, s′) does not cross S′.

Definition 4. Let TS = (S,E,A, sin) be a transition system. Let S′ ⊆ S be a
subset of states and e ∈ E be an event. The following conditions (in the form of
predicates) are defined for S′ and e:

in(e, S′) ≡ ∃(s, e, s′) ∈ A : s, s′ ∈ S′

out(e, S′) ≡ ∃(s, e, s′) ∈ A : s, s′ ∈ S′

nocross(e, S′) ≡ ∃(s, e, s′) ∈ A : s ∈ S′ ⇔ s′ ∈ S′

enter(e, S′) ≡ ∃(s, e, s′) ∈ A : s ∈ S′ ∧ s′ ∈ S′

exit(e, S′) ≡ ∃(s, e, s′) ∈ A : s ∈ S′ ∧ s′ ∈ S′

Note that nocross(e, S′) = in(e, S′) ∨ out(e, S′). We will abuse the notation
and will use nocross(e, S′, (s, e, s′)) to denote a transition (s, e, s′) that makes
the predicate nocross(e, S′) to hold, and the same for the rest of predicates.

The notion of a region is central for the synthesis of Petri nets. Intuitively,
each region is a set of states and corresponds to a place in the synthesized
Petri net.
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c

(a) (b)

Minimal Regions

1

2r  = { s1, s3 }

3r  = { s2, s4 }

4r  = { s3, s4 }
r  = { s5 }

5

r  = { s1, s2 }

(c)

s2 s3

s4

s5

a b

c

d

Fig. 1. (a) transition system, (b) its minimal regions, (c) Petri net obtained applying
Algorithm of Figure 2

Definition 5 (Region). A set of states r ⊆ S in the transition system TS =
(S,E,A, sin) is called a region if the following two conditions are satisfied for
each event e ∈ E:

– (i) enter(e, r) ⇒ ¬nocross(e, r) ∧ ¬exit(e, r)
– (ii) exit(e, r) ⇒ ¬nocross(e, r) ∧ ¬enter(e, r)

A region is a subset of states in which for all events, all transitions labeled
with that event have exactly the same “entry/exit” relation. This relation will
become the successor/predecessor relation in the Petri net. The event may always
be either an enter event for the region (case (i) in the definition above), or
always be an exit event (case (ii)), or never “cross” the region’s boundaries,
i.e. each transition labeled with e is internal or external to the region, when
the antecedents of neither (i) nor (ii) hold. The transition corresponding to the
event will be predecessor, successor or unrelated with the corresponding place
respectively. Examples of regions are shown in Figure 1: from the transition
system of Figure 1(a), some regions are enumerated in Figure 1(b). For instance,
for region r2, event a is an exit event, event d is an entry event while the rest of
events do not cross the region. Let r and r′ be regions of a transition system. A
region r′ is said to be a subregion of r if r′ ⊂ r. A region r is a minimal region
if there is no other non-empty region r′ which is a subregion of r. Going back
to the example of Figure 1, the regions shown in Figure 1(b) are all minimal
regions of the transition system of Figure 1(a). On the other hand, the region
{s1, s2, s3, s4} is non-minimal. Each transition system TS = (S,E,A, sin) has
two trivial regions: the set of all states, S, and the empty set. The set of non-
trivial regions of TS will be denoted by RTS.

A region r is a pre-region of event e if there is a transition labeled with e
which exits r. A region r is a post-region of event e if there is a transition
labeled with e which enters r. The sets of all pre-regions and post-regions of
e are denoted ◦e and e◦, respectively. By definition it follows that if r ∈ ◦e,
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Algorithm: Petri net synthesis

– For each event e ∈ E generate a transition labeled with e in the Petri net;
– For each minimal region r ∈ RTS generate a place r̂;
– Place r̂ contains a token in the initial marking iff the corresponding

region r contains the initial state of TS sin;
– The flow relation is as follows: e ∈ r̂• iff r is a pre-region of e

and e ∈ •r̂ iff r is a post-region of e, i.e.,

FTS
def
= {(r̂, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}

∪{(e, r̂)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 2. Algorithm for Petri net synthesis from [13]

then all transitions labeled with e exit r. Similarly, if r ∈ e◦, then all transitions
labeled with e enter r.

The procedure given by [13] to synthesize a Petri net, NTS =
(RTS, E, FTS, Rsin), from a transition system TS = (S,E,A, sin) is illustrated
in Figure 2. Notice that only minimal regions are required in the algorithm [9].
Depending on the class of transition systems considered, the algorithm provides
different guarantees: for an elementary transition system1, the algorithm de-
rives a Petri net with behavior isomorphic to the initial transition system. For
excitation-closed transition systems (see Definition 8 below), the algorithm de-
rives a Petri net with behavior bisimilar to the initial transition system. For this
latter class, the algorithm generates 1-bounded Petri nets without self-loops [7].
The generalization of the synthesis algorithm to k-bounded Petri nets can be
found in [5]. An example of the application of the algorithm is shown in Fig-
ure 1. The initial transition system and the set of its minimal regions is given
in Figures 1(a) and (b), respectively. The synthesized Petri net is shown in Fig-
ure 1(c).

The computation of the minimal regions is crucial for the synthesis methods
in [5, 7]. It is based on the notion of excitation region [11].

Definition 6 (Excitation region). The excitation region of an event e, ER(e),
is the set of states at which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ A}

In Figure 1(a), the set ER(c) = {s4} is an example of an excitation region2. The
set of minimal regions, needed in the synthesis algorithm of Figure 2, can be

1 Elementary transition systems are a proper subclass of the transition systems consid-
ered in this paper, where additional conditions to the ones presented in Section 2.1
are required.

2 Excitation regions are not regions in the terms of Definition 5. The term is used for
historical reasons. For instance, ER(c) is not a region.
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Fig. 3. (a) transition system (only numbers of states are shown) with minimal set of
regions {s1, s4, s7}, {s1, s5, s6}, {s2, s3, s4, s7} and {s2, s3, s5, s6} (b) ECTS by label-
splitting, (c) synthesized Petri net, (d) reachability graph of the Petri net

generated from the ERs of the events in a transition system in the following way:
starting from the ER of each event, set expansion is performed on those events
that violate the region condition. A pseudo-code of the expansion algorithm is
given at the end of this subsection (as Algorithm 1).

The following lemma from [7] characterizes the states to be added in the
expansion of ERs:

Lemma 1 (Set of states to become a region [7]). Let TS = (S,E,A, sin)
be a transition system. Let r ⊂ S be a set of states such that r is not a region.
Let r′ ⊆ S be a region such that r ⊂ r′. Let e ∈ E be an event that violates some
of the conditions for r to be a region. The following predicates hold for the sets
r and r′:

1. in(e, r) ∧ (
enter(e, r) ∨ exit(e, r)

)
=⇒

{s|∃s′ ∈ r : (s, e, s′) ∈ A ∨ (s′, e, s) ∈ A} ⊆ r′

2. enter(e, r) ∧ exit(e, r) =⇒
{s|∃s′ ∈ r : (s, e, s′) ∈ A ∨ (s′, e, s) ∈ A} ⊆ r′

3. out(e, r) ∧ enter(e, r) =⇒({s|∃s′ ∈ r : (s, e, s′) ∈ A} ⊆ r′
) ∨ ({s|∃s′ ∈ r : (s′, e, s) ∈ A} ⊆ r′

)
4. out(e, r) ∧ exit(e, r) =⇒({s|∃s′ ∈ r : (s′, e, s) ∈ A} ⊆ r′

) ∨ ({s|∃s′ ∈ r : (s, e, s′) ∈ A} ⊆ r′
)

In cases 1 and 2 above, the violating event e is converted into a nocross event,
where only one way of expanding r is possible. However, in case 3 (4) there are
two possibilities for expansion, depending on whether the violating event will be
converted into a nocross or enter (nocross or exit) event.

Lemma 1 provides the basis for the derivation of the set of essential sets of
states that will be the basis for the theory of this paper. Algorithm 1 presents
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Algorithm 1. Expand States [7]

Input: r is the set of states to be expanded,
explored is the set of expansions already generated

Output: R collects all regions
begin1

if r ∈ explored then return; // avoid repeating computations2

if r is a region then3

R = R - {ri|r ⊂ ri}; // remove supersets (non-minimal) of r4

if ¬∃rj ∈ R : rj ⊆ r then R = R ∪ {r}; // r added if minimal5

return;6

end7

find e ∈ E violating some region condition in r;8

r′ = r ∪ {set of states to legalize e}; // Lemma 1: all cases9

Expand States (r′,explored,R); // Recursion10

explored = explored ∪ {r′};11

if another expansion is needed then // Case 3 or 4 in Lemma 112

r′ = r ∪ {another set of states to legalize e}13

Expand States (r′,explored,R); // Recursion14

explored = explored ∪ {r′}15

end16

end17

the pseudo-code for this procedure. The idea of the procedure is, starting from
a given set of states r (in our setting it will be the excitation region of an event,
as formalized below), if r is a region then update the region set found so far (R)
to delete superset regions of r, and insert r into R if it is minimal according to
R (lines 1–1). If r is not a region, the algorithm expands r by adding states that
are listed in some of the cases that hold from Lemma 1 (lines 1–1). For cases 3 or
4 of Lemma 1, the algorithm performs the other expansion needed, in lines 1–1.
Since initially, the set of states to start with is not a region, at least one case
will provide a set of states for the expansion. The new set obtained is recursively
processed in the same manner, to derive a new set and so on. Moreover, since in
cases 3 and 4 there are two possibilities for expansion, this recursive procedure
branches in each option. Importantly, the procedure generates all the minimal
pre-regions of an event [7].

In summary, set expansion to legalize violating events in a set of states gen-
erates a binary exploration tree, whose leafs are the regions found and internal
nodes are non-regions. An example of such tree can be found in Figure 4. The
following definition formalizes the notion of essential set:

Definition 7 (Essential set of an event). Let TS = (S,E,A, sin) be a tran-
sition system, and let e ∈ E. Essential(e,TS) is the set of sets of states found
by Algorithm 1, with initial set ER(e). Formally:

– ER(e) ∈ Essential(e,TS),
– Let B ⊆ S with B ∈ Essential(e,TS). Then every set B′ constructed from

r = B as described in Lemma 1 is included in Essential(e,TS).
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{s1,s2,s5,s7}
b: enter,in,out
d: enter,in,out

S
region (trivial)

S
region (trivial)

ER(c) = {s2,s5}
b: exit, out

{s2,s3,s5,s6}

add s3,s6
b exit

b no cross
add s1,s7

d no cross
add s4

{s1,s2,s4,s5,s7}
b: enter,in

region

b no cross
add s3,s6

b no cross
add s6

{s1,s2,s5,s6,s7}
c: in,exit
d: in,enter

d no cross
S
region (trivial)

add s3,s4

c no cross
add s3

{s1,s2,s3,s5,s6,s7}

d: enter,in add s4

b no crossb: exit,in

Fig. 4. Computation of essential sets (S = {s1, s2, s3, s4, s5, s6, s7})

Notice that3 Essential(e,TS) ⊆ P(S), and ∀S′ ∈ Essential(e,TS) :
ER(e) ⊆ S′. For instance, in Figure 4 we show the computation of
Essential(c,TS) for the TS of Figure 3(a). Hence, Essential(c,TS) =
{{s2, s5}, {s1, s2, s5, s7}, {s2, s3, s5, s6}, {s1, s2, s4, s5, s7}, {s1, s2, s5, s6, s7},
{s1, s2, s3, s5, s6, s7}, {s1, s2, s3, s4, s5, s6, s7}}. For instance, the three sets of
states {s1, s2, s5, s7}, {s1, s2, s5, s6, s7} and {s2, s3, s5, s6} in Essential(c,TS)
are computed according to case 4 in Lemma 1 on event b, while the set
{s1, s2, s4, s5, s7} is computed from set {s1, s2, s5, s7} to deal with the vi-
olation caused by event d (case 3 in Lemma 1). Notice that the essential
sets found are partitioned into regions and non-regions. Regions are in turn
partitioned into minimal and non-minimal regions. In the example above,
the sets {s2, s5}, {s1, s2, s5, s7}, {s1, s2, s4, s5, s7} and {s1, s2, s3, s5, s6, s7}
are essential sets that are not regions, whereas the sets {s2, s3, s5, s6}, and
{s1, s2, s3, s4, s5, s6, s7} (the leafs of the tree shown in Figure 4) are essential
sets that are regions, being the last one the trivial region.

2.3 Excitation-Closed Transition Systems

In this section we define formally the class of transition systems that will be
considered in this paper.

Definition 8 (Excitation-closed transition systems). A transition system
TS = (S,E,A, sin) is an excitation-closed transition system (ECTS) if it satisfies
the following two axioms:

– Excitation closure (EC): For each event e:
⋂

r∈ ◦e r = ER(e)
– Event effectiveness (EE): For each event e: ◦e = ∅

ECTSs include the class of elementary transition systems [7]. Interestingly, the
excitation closure axiom (EC) for ECTSs is equivalent to the forward closure
condition [10, 13] required for elementary transition systems.

3 P(S) denotes the set of all subsets of S.
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bisimilar (abstracting event instances)

Fig. 5. Relationship between the different objects if label splitting is applied

The synthesis algorithm in Figure 2 applied to an ECTS produces a Petri
net with reachability graph bisimilar to the initial transition system [7]. When
the transition system is not excitation-closed, then it must be transformed to
enforce that property. One possible strategy is to represent every event by multi-
ple transitions labeled with different instances of the same label. This technique
is called label splitting. Figure 3 illustrates the technique. The initial transition
system, shown in Figure 3(a), is not an ECTS: the event c does not satisfy
the EE axiom nor the EC axiom, since no pre-regions of c exist. In order for
the EC/EE axioms on c to be satisfied, one can force the set of states {s2, s5}
(the excitation region of event c) to be a region by applying label splitting. The
set {s2, s5} is not a region because event b violates the region condition (some
b-transitions exit and some others nocross). Hence, following this partition
on the b-transitions with respect to {s2, s5}, the transition system is trans-
formed by splitting the event b into the events b1 and b2, as shown in Fig-
ure 3(b), resulting in an ECTS. The synthesized Petri net, with two transitions
for event b is shown in Figure 3(c). Transition system of Figure 3(b) is split-
morphic [7] to the transition system of Figure 3(a): there exists a surjective
mapping between the sets of events, where different instances (a1, a2, . . .) of
the single event a are mapped to a. The reachability graph of the Petri net
of Figure 3(c), shown in Figure 3(d), is bisimilar to transition system of Fig-
ure 3(b). Moreover, if we abstract away the label indexes in the reachability
graph of Figure 3(d), the equivalence relation between the transition system of
Figure 3(a) and the reachability graph is bisimilarity: the relation π = (si, si),
for 1 ≤ i ≤ 7 is a bisimulation if event instances are abstracted. Figure 5 shows
the relationships between the original transition system, the transformed one
obtained through label splitting, and the reachability graph of the synthesized
Petri net.

Hence in Petri net synthesis label splitting might be crucial for the existence
of a Petri net with bisimilar behavior. The following definition describes the
general application of label splitting:

Definition 9 (Label splitting). Let TS = (S,E,A, sin) be a transition system.
The splitting of event e ∈ E produces a transition system TS′ = (S,E′, A′, sin),
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with E′ = E − {e} ∪ {e1, . . . , en}, and such that every transition (s1, e, s2) ∈ A
corresponds to exactly one transition (s1, ei, s2), and the rest of transitions for
events different from e in A are preserved in A′.

Label splitting is a powerful transformation which always guarantees excitation
closure: any TS can be converted into one where every transition has a different
label. By definition, the obtained TS is ECTS but the size of the derived Petri
net is equal to the size of the obtained ECTS. In this paper we aim at reducing
the number of labels, thus reducing the size of the Petri net derived.

The work presented in this paper considers a particular application of the
label splitting technique which is based on converting a set of states into a
region, described in the next section.

3 Optimal Label Splitting to Obtain a Region

In this section the following problem is addressed: given a transition system
TS = (S,E,A, sin) and a set of states S′ ⊆ S which is not a region, determine
the minimal number of label splittings to be applied in order that S′ becomes a
region. This is a crucial step for the technique presented in the following section
to satisfy the ECTS property for a transition system. The main contribution of
this section is to show that the problem might be reduced to computing the
chromatic number of a graph [17].

First, let us introduce the concept of gradient graph:

Definition 10 (Gradient Graph). Given a transition system TS =
(S,E,A, sin), a set S′ ⊆ S and an event e ∈ E, the gradient graph of e with re-
spect to S′ in TS, denoted as GG(e, S′) = (Ae,M) is an undirected graph defined
as:

– Ae = {(s, x, s′)|(s, x, s′) ∈ A ∧ x = e}, is the set of nodes, and
– M = {{v, v′}|v, v′ ∈ Ae ∧

[(enter(e, S′, v) ∧ (nocross(e, S′, v′) ∨ exit(e, S′, v′))) ∨
(exit(e, S′, v) ∧ (nocross(e, S′, v′) ∨ enter(e, S′, v′)))]} is the set of edges.

Informally, the gradient graph contains as nodes the transitions of an event e,
and an edge exists between two nodes which satisfy different predicates on set
S′, like one transition enter S′ and the other does not, or one transition exit

S′ and the other does not. For instance, the gradient graph on event b and
set of states S′ = {s2, s5} in the transition system of Figure 3(a) is shown in
Figure 6(b) (for the sake of clarity we show in Figure 6(a) only the transitions
on event b from Figure 3(a)).

A graph G = (V,E) is k-colourable if there exists an assignment
α : V → {1, 2, . . . k} for which any pair of nodes v, v′ ∈ V such that {v, v′} ∈ E
satisfy α(v) = α(v′). The chromatic number, χ(G), of a graph G is the minimum
k for which G is k-colourable [17]. The rest of the section shows the relation
between the chromatic number and the optimal label splitting to obtain a region.
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Fig. 6. (a) Projection of the transition system of Figure 3(a) showing only the transi-
tions involving event b with the encircled set of states {s2, s5}, (b) GG(b, {s2, s5}), (c)
coloring

Definition 11 (Label splitting as gradient graph coloring). Given a
transition system TS = (S,E,A, sin), the label splitting of event e according
to a coloring α of the gradient graph GG(e, S′) produces the transition system
TS′ = (S,E′, A′, sin) where E′ = E − {e} ∪ {e1, . . . , en}, with {e1, . . . , en} being
the colors defined by the coloring of GG(e, S′). Every transition (s, e, s′) of event
e is transformed into (s, eα((s,e,s′)), s

′), whilst the rest of transitions of events in
E − {e} are preserved in A′.

For instance, the label splitting of the transition system of Figure 3(a) according
to the coloring shown on Figure 6(c) of GG(b, {s2, s5}) is shown on Figure 3(b).

Proposition 1. Given a transition system TS = (S,E,A, sin) and the gradient
graph GG(e, S′). If event e is split in accordance with a χ(GG(e, S′))-coloring
of GG(e, S′) then the new inserted events {e1, . . . , eχ(GG(e,S′))} satisfy the region
conditions for S′ (cf., Definition 5)).

Proof. By contradiction: assume that there exists ei ∈ {e1, . . . , eχ(GG(e,S′))}
such that conditions of Definition 5 do not hold. Without loss of general-
ity, we assume that there exist (s1, ei, s2) and (s′1, ei, s

′
2) for which predicates

enter(ei, S
′, (s1, ei, s2)) and nocross(ei, S

′, (s′1, ei, s′2)) hold (the other cases can
be proven similarly). But then the nodes (s1, e, s2) and (s′1, e, s

′
2) are connected

by an edge in GG(e, S′), but they are assigned the same color ei. This is a con-
tradiction. �

Notice that, when the graph GG(e, S′) contains no arcs it means that for the set
S′ all the e-transitions satisfy the region predicates of Definition 5. This graph
can be trivially colored with one color, i.e., χ(GG(e, S′)) = 1. Hence, in that case,
according to Definition 11, no increase in the number of labels arises due to the
event splitting, e.g., |E′| = |E − {e} ∪ {e1}| = |E| − 1 + 1 = |E|, with E, E′

being the alphabets of Definition 11. In this case the transformation is denoted
renaming.

Definition 12 (Renaming). If χ(GG(e, S′)) = 1 then the application of label
splitting transformation on event e for S′ is called renaming.
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Clearly, renaming an event e is a cosmetic transformation which does not change
any of the predicates of Definition 5 for the label of the new event on the set of
states considered.

The following corollary provides the first main result of this section that relates
coloring of the gradient graph to obtaining regions in a transition system.

Corollary 1. Given a transition system TS = (S,E,A, sin) and a set S′ ⊆ S. If
every event e is split according to the colors required for achieving χ(GG(e, S′))-
coloring, then S′ is a region in the resulting transition system.

Proof. It follows from iterative application of Proposition 1. �

In the following theorem we abuse the notation and extend the χ operator to
sets of states, and define a lower bound to the number of label splittings:

Theorem 1. Given a transition system TS = (S,E,A, sin), E = {e1, . . . , en}
and a set S′ ⊆ S. Denote χ(S′) = χ(GG(e1, S′)) + . . .+ χ(GG(en, S′)). To make
S′ a region, the minimum number of labels needed including renaming is χ(S′),
and the minimum number of labels needed excluding renaming is χ(S′)− n.

Proof. By contradiction: if there is a k < χ(S′) such that only k labels are
needed to convert S′ into region, then there is an event e ∈ E for which less
than χ(GG(e, S′)) labels are used to split e for satisfying the conditions of Def-
inition 5. This leads to a contradiction to the chromatic number of the graph
GG(e, S′). Finally, notice that formally the application of the transformation in
Definition 11 removes all the original events (some of them are simply renamed
into a new event). Hence it follows that the minimum number of labels excluding
renaming is χ(S′)− n. �

Hence Theorem 1 establishes that at least χ(S′) − n extra labels are needed in
order for S′ to become a region. Clearly, if apart from the splittings derived from
χ(S′), other splittings are additionally done, S′ will still be a region. The theory
presented in this section represents the core idea for the label splitting technique
of this paper. The next section shows how to apply it to obtain ECTSs.

4 Optimal Label Splitting on Essential Sets for Synthesis

Given a non-ECTS, the following question arises: is there an algorithm to
transform it into an ECTS with a minimal number of extra labels? This section
addresses this problem, deriving sufficient conditions under which a positive an-
swer can be given. As was done in previous work [7], in this paper we will restrict
the theory to a particular application of the label splitting: instead of an arbitrary
instantiation of Definition 9 which may split an event of a transition system in an
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arbitrary way, we will only consider the splittings used to convert essential sets
into regions (Definition 11), a technique which has been shown in the previous
section.

We tackle the problem in two phases: first, we show how the ECTS conditions
for an event e (Definition 8) can be achieved by using the essential sets found
in the expansion (see Lemma 1) of the excitation region ER(e), described in
Definition 7. Then we show the conditions under which the strategy can be
applied in the general case, i.e., considering all the events not satisfying some of
the conditions required in Definition 8.

For the definitions and theorems in this section, we assume in the formaliza-
tions a transition system TS = (S,E,A, sin). We use Witness(e,TS) to denote
the sets of essential sets of an event e that are not regions and, if they are con-
verted into regions, both the EC and EE axioms from Definition 8 on e will hold.
Formally:

Definition 13 (Witness sets of an event). Let e ∈ E. Witness(e,TS) is
defined as follows:

C = {S1, . . . , Sk} ∈Witness(e,TS) ⇐⇒ (
⋂

q∈( ◦e ∪ C) q) = ER(e) ∧ (∀Si ∈ C :

Si ∈ Essential(e,TS) ∧ Si /∈ RTS

∧ ¬nocross(e, Si) ∧ ¬enter(e, Si)
)

A witness set contains non-regions Si that are candidates to be pre-regions of
the event (since both ¬nocross(e, Si) and ¬enter(e, Si) hold, and therefore the
only possibility for e in Si is to exit). The intersection of the sets forming a
witness, together with the existing pre-regions of the event, is the excitation
region of the event. Hence, if event e does not satisfy the EC or EE conditions
from Definition 8, the singleton {ER(e)} will always be in Witness(e,TS)4. For
instance, for the TS of Figure 3(a), a witness for event c is {{s2, s5}}. Notice
that if an event satisfies both the EC and EE axioms from Definition 8, then its
witness set is empty.

Finally, if C = {S1, . . . , Sk}, we abuse the notation and use χ(C) to de-
note χ(GG(e1, S1) ∪ . . . ∪ GG(e1, Sk)) + . . . + χ(GG(en, S1) ∪ . . . ∪ GG(en, Sk)),
with E = {e1, . . . , en}. The union operator on gradient graphs is defined as
GG(e, S1) ∪ . . . ∪ GG(e, Sk) = (Ae,M1 ∪ . . . ∪Mk), with Ae and Mi being the
nodes and edges of the graph GG(e, Si), for i = 1, . . . , k cf., Definition 105.
For the example of Figure 3(a), we have χ({{s2, s5}}) = χ(GG(a, {s2, s5}) +
χ(GG(b, {s2, s5}) + χ(GG(c, {s2, s5}) + χ(GG(d, {s2, s5}) = 1 + 2 + 1 + 1 = 5.

First, we start by describing the minimal strategy to make an event satisfy
the conditions of Definition 8:

4 There is a special case where some states in ER(e) are connected through e-
transitions, which can then be considered in a generalization of Definiton 13. For the
sake of readability, we use this simple version of witness.

5 We only consider the union of gradient graphs of the same event.
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Proposition 2. Let C = {S1, . . . , Sk} ∈Witness(e,TS) such that χ(C) is min-
imal, i.e., ∀C′ ∈ Witness(e,TS) : χ(C) ≤ χ(C′). Then, if only label splitting on
essential sets (Definition 11) is considered, χ(C) is the minimal number of labels
needed to make the EC and EE axioms of Definition 8 on e to hold.

Proof. First, it is clear that after applying label splitting on essential sets from a
non-empty witness, the set of pre-regions of e becomes non-empty. We now prove
the minimality of C by contradiction. Assume the EC/EE axioms can hold by the
sole application of label splitting on essential sets and with less labels than χ(C),
where χ(C) is minimal. Then this means that there is a set C′ that can be used
instead of C to make the EC and EE axioms to hold, and which requires fewer
label splittings than χ(C). Since C′ /∈ Witness(e,TS) (otherwise C′ will be the
minimal witness instead of C), then at least one set S′

i ∈ C′ satisfies that S′
i /∈

Essential(e,TS) or S′
i ∈ RTS, since for the rest of witness conditions that can

be violated (intersection not yielding ER(e) or e entering/crossing S′
i, S

′
i cannot

be used to make the EC and EE axioms to hold). In any of the two situations,
we reach a contradiction: if S′

i /∈ Essential(e,TS), then the label splitting is not
applied on essential sets, and if S′

i ∈ RTS, then C′ \ {S′
i} ∈ Witness(e,TS), and

clearly χ(C) > χ(C′ \ {S′
i}). �

Given a non-ECTS, the optimal label splitting problem on essential sets is to
determine which sets to convert into regions in order to satisfy, for each event,
the EE and EC axioms, using the minimal number of labels.

Definition 14 (Optimal label splitting on essential sets). Given the
events e1, . . . , ek ∈ E violating the EC or EE axioms from Definition 8, define
the universe U as Witness(e1,TS) ∪ . . . ∪ Witness(ek,TS). The optimal label
splitting problem is to determine sets S1, . . . , Sn ∈ U such that ∀1 ≤ i ≤ k : ∃C ∈
Witness(ei,TS) : C ⊆ {S1, . . . , Sn} and where χ({S1, . . . , Sn}) is minimal.

Notice that Definition 14 is defined on the set of events violating the EC/EE
condition, selecting a set of essential sets which both requires minimal number
of labels and ensures the EC/EE axioms to hold for these events. An interesting
result guarantees EC/EE preservation for those events that both satisfy initially
the EC/EE axioms and were not split:

Proposition 3. Given an event e ∈ E such that the EC/EE axioms from Defi-
nition 8 hold, and e has not been selected for splitting. Then these axioms hold
in the new transition system obtained after label splitting.

Proof. Label splitting preserves regions: the predicates of Definition 5 that hold
on each region will also hold if some event is split. Hence, the non-empty set of
regions ensuring

⋂
r∈ ◦e r = ER(e) and ◦e = ∅ is still valid after label splitting.

�

However, label splitting may split events for which the EC/EE axioms were satis-
fied or attained. Unfortunately, the new events appearing might not satisfy these
axioms, as the following example demonstrates.
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Fig. 7. (a) Initial transition system where minimal regions are drawed within dashed
lines: all the events but b satisfy the EC axiom, (b) the splitting of e leads to new events
e1 and e2 not satisfying the EC axiom, (c) the final ECTS, where all events have been
split

Example 1. In the transition system of Figure 7(a) events n, c, a and e satisfy
both the EC and EE axioms, since all these events have non-empty set of pre-
regions whose intersection is the excitation region of the event. However, b does
not satisfy neither the EC nor the EE axioms, and the splitting required for b
to satisfy these axioms is done on the essential set {s6}, which requires to split
the event e, resulting in the transition system of Figure 7(b). The new events e1
and e2 arising from the splitting of e do not satisfy the EC axiom (but do satisfy
the EE axiom). This requires further splittings, which as in the case of b, force
the splitting of events resulting in new events that do not satisfy the EC axiom.
Four iterations are required to obtain the ECTS shown in Figure 7(c).

This example invalidates any label splitting strategy that aims at reaching ex-
citation closure in just one iteration by only inspecting the violations to the
EC/EE axioms: in general, when the splitting of some event is applied, its ER
is divided into several ERs for which there might be no set of pre-regions which
guarantees the satisfaction of the EC/EE axioms on these new events arising.
Importantly, the label splitting technique preserves the regions, but new regions
might be necessary for the new events arising from a splitting. Therefore, any
label splitting technique that focuses on EC/EE violations must be an iterative
method (see next section for such a method). However, if the new labels inserted
do not incur violations to the EC/EE axioms, the presented technique guarantees
the optimal label splitting:

Theorem 2. Let TS′ = (S,E′, A′, sin) be the transition system reached after
splitting labels on events e1, . . . , ek that violate the EC/EE axioms of Definition 8
in transition system TS, using the minimal combination of witness S1, . . . , Sn

from Definition 14. Then, if the new events appearing satisfy the EC/EE axioms,
the number of splittings performed is minimal and TS′ is ECTS.
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Proof. The minimality of the witness according to Definition 14 ensures that no
fewer splittings are possible to make e1, . . . , ek to satisfy the EC/EE axioms: if
less splittings were possible by a different set of essential sets, then the essential
sets chosen by Definition 14 will be that set. Moreover, the assumption implies
that the new events arising from the splitting satisfy the EC/EE axioms. Finally,
Proposition 3 guarantees that events that were not split still satisfy the EC/EE
axioms. The set of events E′ is partitioned into these two sets, and therefore TS′

is ECTS. �

Notice that the current characterization of the label splitting problem, as seen
from Theorem 2, is dynamic, i.e., the new labels appearing when problematic
labels are split must satisfy the axioms required in an ECTS in order to guarantee
a minimal number of labels. In contrast, a static characterization will simply
impose constraints on the initial transition system in order to determine the
minimal number of labels required for reaching an ECTS. Static techniques for
solving the label splitting problem may represent an alternative to the techniques
described in this paper.

5 A Greedy Algorithm for Iterative Label Splitting

The optimal label splitting problem presented in the previous section considers
the minimal application of the label splitting technique to satisfy the EE/EC
conditions for the initial set of events. Moreover, it was shown that in general it
may not be possible to reach an ECTS by a single application of the technique.

The label splitting problem is similar to the weighted set cover (WSC) prob-
lem [6]. The WSC problem can be informally described as follows: given a finite
set Y and a family F of subsets of Y , such that every element of Y belongs to
at least one subset in F , and each set Si in F has an associated weight wi, de-
termine a minimum-weight cover, i.e. a set C ⊆ F that contains all the elements
in Y and the sum of the weights of the elements in C is minimal. The WSC
problem is known to be NP-hard, and can be formulated as an integer linear
programming (ILP) model [6]. This section is devoted to show how to encode
in an ILP model the label splitting problem, inspired by the corresponding ILP
formulation for the WSC problem. Moreover, an algorithm for label splitting
that iterates until excitation closure is achieved is presented.

Clearly, the label splitting problem is akin to the WSC problem: if
e1, . . . , ek are the events that do not satisfy the EC or EE axioms, then F =
Witness(e1,TS) ∪ . . . ∪ Witness(ek,TS) is the family of subsets to consider,
and the problem is to find a set of sets of states {S1, . . . , Sn} that i) at least
one witness is covered for each event ei, 1 ≤ i ≤ k, and ii) requires the minimal
number of labels.

The ILP model for the WSC problem simply minimizes the sum of individual
costs of each element Si while covering the set Y . In our setting, we would like
to minimize the number of labels, and hence will use the function χ in the cost
function of the ILP model. Then, based on the ILP model for the WSC problem,
the resulting ILP model for the label splitting problem is:
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min
∑

C∈W χ(C) ·XC (1)

subject to

∀e ∈ {e1, . . . , ek} :
∑

C∈Witness(e,TS) XC ≥ 1

XC ∈ {0, 1}

where e1, . . . ek,∈ E are the set of events that do not satisfy the EC/EE axioms,
W = Witness(e1,TS) ∪ . . . ∪ Witness(ek,TS) and XC denotes the binary
variable that selects witness C to be or not in the solution. A solution to the ILP
model (1) will then minimize the sum of labels needed to convert the witnesses
selected for each event violating the EE/EC axioms into regions6.

Imagine that a solution to model (1) contains a pair of witnesses C1 =
{S1, S2, S3} and C2 = {S2, S3, S4}. Unfortunately, the equality

χ(C1 ∪ C2) = χ(C1) + χ(C2) (2)

does not hold since the fact that C1 and C2 share some set (e.g., share sets S2

and S3) implies that at the right hand side of the equality colors are counted in
every gradient graph of an event, while in the left hand side only one gradient
graph (which is the union of these gradient graphs) is considered. In that situ-
ation one may be counting twice the labels (colors) needed in the right part of
the equality of (2). Notice that ILP model (1) minimizes the sum of labels of
individual witnesses (as done in the right part of equality (2)), and hence it may
provide non-optimal solutions to the label splitting problem. In spite of this, by
using an ILP solver to find an optimal solution for model (1), one may have
a strategy to proceed into deriving an ECTS with reasonable (although maybe
not-optimal) number of label splittings. Hence, our proposed strategy based on
the ILP model (1) is greedy.

Algorithm 2 presents the iterative strategy to derive an ECTS. It first com-
putes the minimal regions of the initial transition system. The algorithm it-
erates when the EE/EC axioms do not hold for at least one event (function
ExcitationClosed(TS′,R)) will return false). Then the main loop of the tech-
nique starts by collecting the witnesses for events violating the EE/EC axioms
of the current transition system, which are provided in the set W (line 5). Then
model (1) based on W is created and an ILP solver is invoked in line 6 that will
provide a solution (a set of witnesses that ensure the satisfaction of the EE/EC
axioms for the problematic events). Notice that for the sake of clarity of the
algorithm, we provide in line 6 the sets that form the cover instead of providing
the particular witness selected for each event (i.e., given a solution C1, . . . , Ck
of model (1), {S1, . . . , Sn} =

⋃
1≤i≤k Ci). In line 7 the splitting of labels corre-

sponding to χ({S1, . . . , Sn}) is performed, ensuring that sets S1, . . . , Sn become
regions. The new regions are appended to the regions found so far (which are still

6 In model (1) it is important to use the ≥ in the constraints part since in an optimal
solution it may happen that an event is covered by more than one witness.
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Algorithm 2. GreedyIterativeSplittingAlgorithm

Input: Transition system TS = (S,E,A, sin)
Output: Excitation-closed transition system TS′ = (S,E′, A′, sin) bisimilar to

TS
begin1

TS′ = TS2

R = GenerateMinimalRegions(TS)3

while not (ExcitationClosed(TS′,R)) do4

W = CollectWitnesses(TS′)5

(S1, . . . , Sn) = Solution ILP model (1)6

TS′ = SplitLabels(TS′, S1, . . . , Sn)7

R = R∪ {S1, . . . , Sn}8

end9

end10

regions, see proof of Proposition 3), and the excitation closure is re-evaluated to
check convergence.

Although in general the presented iterative technique is not guaranteed to
provide an ECTS that has the minimal number of labels, in terms of convergence
the improvements with respect to the previous (also non-optimal) approaches [5,
7] are:

– the whole set of events violating the EE/EC axioms are considered in every
iteration: in previous work only one event is considered at a time, and

– for every event violating the EE/EC axioms, the necessary splittings are
applied to attain excitation closure: on the previous work, only one of the
splittings was applied.

Hence the macro technique presented in this section is meant to speed-up the
achievement of the excitation closure, when compared to the micro techniques
presented in the literature.

6 Extensions and Applications of Label Splitting

The theory presented in this paper may be extended into several directions.
Here we informally enumerate some possible extensions.

Extension to k-Bounded Synthesis. For the sake of clarity, we have
restricted the theory to safe Petri nets. The extension to k-bounded Petri nets
can be done by adapting the notion of gradient graph to use gradients instead of
the predicates required in Definition 5, and lift the notion of region to multisets
instead of sets. Informally, the gradient of an event is an integer value which
represents the modification made by the event on the multiplicity of the region
(see [2,5] for the formal definition of gradient). When more than one gradient is
assigned to a given event in a multiset, then the multiset is not a region. Given a
multiset r which is not a region, the essential sets will be those multisets r′ ≥ r
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such that the number of gradients for some event has decreased, i.e., r′ is a sound
step towards deriving a region from multiset r. The excitation closure definition
(see Definition 8) for the general case should be the one described in [5]: a mul-
tiset which is a region will be a pre-region of an event if its support (set of states
with multiplicity different than 0) includes the excitation region of the event.
The support sets of pre-regions will be intersected and for the event to satisfy
the EC/EE axioms this intersection should be equal to the excitation region of
the event. The concept of the witness set of an event can be naturally adapted
to use multisets instead of sets by using the support of each multiset accordingly.

Label Splitting for Petri Net Classes. Maybe one of the strongest points of
the theory of regions is the capability to guide the synthesis for particular Petri
net classes [4, 7]. The core idea is to select, among the set of all regions, those
that satisfy particular conditions. Here we list some interesting classes that may
be obtained by restricting the label splitting technique presented in this paper.

– In a marked graph [12], every region (place) must have exactly one event
satisfying the enter predicate (input transition) and one satisfying the exit
predicate (output transition), and the rest of events should be nocross. In
general, when the goal is a particular Petri net class defined by conditions on
the structure with respect to the connections to the places, one can simply
select the essential sets that, if transformed into regions by using the theory
of Section 3, will still satisfy these conditions.

– In a state machine [12], every transition has exactly one input and one output
place. One important feature of the regions of a state machine is that they
form a partitioning of the state space of the net [3]. Figure 8(a) shows an
example, where eight regions form the partitioning. The corresponding state
machine is depicted in Figure 8(b). Hence, the selection of essential sets
may be guided to construct partitionings of the state space and therefore
the derivation of a state machine will be guaranteed. The generalization to
conservative Petri nets is also possible by lifting the notion of partitioning
to multi-partitioning [3].

– In a Free-choice net [8], if two different transitions share a place of their pre-
sets, then their pre-sets should be equal (i.e., •t1 ∩ •t2 = ∅ =⇒ •t1 = •t2).
When transforming essential sets into regions by label splitting, an extra
condition is required for selecting the sets to split: for each pair of regions
derived, either none or the whole set of exit events should be shared between
the two. This crucial restriction will guarantee to derive Free-choice nets.

– In an Ordinary Petri net, arcs have always weight one. The extension to
k-bounded Petri nets described before can be restricted to only consider
gradients in the range {−1, 0,+1}, while allowing any multiplicity in the
multisets derived. This will ensure the derivation of ordinary Petri nets.

Clearly, by restricting the class of Petri nets to be derived, one can no longer
ensure bisimilarity between the derived Petri net and the initial transition sys-
tem. This is sometimes acceptable, specially in the context of Process Mining.
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Fig. 8. (a) Example of region partitioning. The eight regions shown in the figure are
identified by natural numbers, i.e., the region where label r exits has states with number
1, the region where r enters has states with number 2 (three states), and so on, (b)
State machine corresponding to the partitioning shown in (a) (places contain the region
number to which they correspond). Notice that this state machine does not contain
the transitions em and s, since they are concurrent with some transitions in the net of
Figure 8(b).

Application to Process Mining. The discovery of a formal process model
from a set of executions (called log) of a system, the conformance of a model
in describing a log, and the enhancement of a process model are the main dis-
ciplines in the novel area of Process Mining [16]. Petri nets are one of the most
popular models used in Process Mining. Importantly, the synthesis conditions of
this paper are relaxed in the context of Process Mining [5], since the derivation
of a simple model is often preferred even if some extra traces are possible in the
model while not observed in the log (this phenomenon is called overapproxima-
tion). Simplicity here may have various meanings, but it usually implies that
the underlying graph of the derived Petri net can be understood by a human.
By requiring the minimal number of labels to be split, the approach presented
in this paper may be interesting in the context of Process Mining, since the by-
product of this optimization is the derivation of Petri nets with minimal number
of transitions, thus being more readable. Hence, in Process Mining the synthesis
conditions may be required for particular events in order to control the degree
of overapproximation that the derived Petri net will have. When a particular
event is forced to satisfy the synthesis conditions, it can be guaranteed with the
theory of this paper that the number of labels will be minimal if label splitting
on essential sets is applied.

7 Conclusions

This paper has presented a fresh look at the problem of label splitting, by re-
lating it to some well-known NP-complete problems like chromatic number or
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set covering. In a restricted application of label splitting based on essential sets,
optimality is guaranteed if certain conditions hold.

Extensions of the technique have been discussed, motivating the appropri-
ateness of using essential sets for label splitting since it allows to control the
derived Petri net: the theory can be adapted to produce k-bounded Petri nets
and interesting Petri net classes. Also, one potential application of the technique
is presented in the area of Process Mining.

As future work, there are some research lines to follow. First, regarding the
technique presented in this paper, it will be very important to study stronger
constraints on the transition system that makes the label splitting on essential
sets technique not to be an iterative process, as happens with the one presented in
this paper. Second, addressing the general problem with unrestricted application
of splitting (i.e., not using essential sets but instead arbitrary selections of labels
to split) might be an interesting direction to follow. Moreover, incorporating
the presented techniques (e.g., Algorithm 2) into our synthesis tool [5] will be
considered.
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Abstract. Distributed control of discrete-event systems (DES) means
control implemented by asynchronous message passing automata that
can neither perform synchronized actions nor can read one another’s
state. We explain some significant differences between this emerging area
and earlier forms of control. Distributed control synthesis is challenging.
To initiate a discussion on this topic, we outline a methodology based
on the synthesis of distributable Petri nets (PN). The methodology is
illustrated via a well-known example from distributed computing, the
dining philosophers, for which three distributed solutions are produced.
The paper provides a survey of DES control for PN researchers and a
survey of distributed PN synthesis for DES researchers, with the intent
to create a common basis for further investigation of this research track.

1 Introduction

Developing control strategies for plants composed of a number of distributed
components that communicate via an asynchronous network, e.g., power grids
and traffic systems, is a significant challenge. In contrast to the control of cen-
tralized systems, communication in a distributed system takes time, and there
is no immediate way to synchronize events in different locations. In this paper,
we focus on the control of discrete-event systems (DES) in a distributed setting,
namely, synthesizing a set of controllers that communicate via an asynchronous
network. Distributed control has largely been neglected in the literature on DES:
we provide a brief survey of DES control in section 2 for the benefit of Petri net
researchers. In this introduction, we preface the literature review with a com-
parison between monolithic control and distributed control, the two extremes of
the evolution outlined in section 2.

A DES G over set of events Σ may be represented by a deterministic au-
tomaton (Q,Σ, δ, q0, QF ) called the plant, where δ : Q × Σ → Q is the partial
transition function, q0 is the initial state, and QF is the set of final (or “marked”)
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states. Given a specification Spec of the desired behavior of G, the goal of control
is to enforce this specification on G and to ensure that final states can always
be reached. In this paper, we ignore final states and consider simplified plants of
the form G = (Q,Σ, δ, q0). A parameter of the control problem is the data of the
observable and controllable events. For the remainder of the paper, we consider
disjoint partitions of the alphabet Σ = Σo�Σuo = Σc�Σuc, whereΣo and Σc are
the sets of observable and controllable events, respectively, and we assume that
every controllable event is observable, i.e., Σc ⊆ Σo. The centralized supervisory
control problem consists of constructing a monolithic supervisor S over the set
of events Σo. That is, we want a deterministic automaton S = (X,Σo, δ, xo),
such that the partially synchronized product of S and G, usually denoted by
S ×G but here denoted by (S/G), satisfies Spec and the following admissibility
requirement is met: for every reachable state (x, q) of (S/G), if an uncontrollable
event e ∈ Σuc is enabled at state q in G, then e should also be enabled at state
x in S.

By distributed control, we mean a situation in which several local supervisors
and a DES cooperate as follows. First, the set of events of the DES is partitioned
over the different locations (Σ = ��∈L Σ�), and for each location � ∈ L, every
event in Σ� results from the synchronized firing of two e-labelled transitions, in
the DES and in the local supervisor S�, respectively. Second, the set of events
of each local supervisor S� is the union of Σ� and a set X� of auxiliary send
and receive events, used to communicate with the other local supervisors in
asynchronous message passing mode. Messages sent from one location to another
are never lost; however, they may overtake one another and the arrival times
cannot be predicted. Distributed supervisors of this type can be implemented
almost directly on any distributed architecture.

Computing a monolithic supervisor and distributing or desynchronizing this
supervisor a posteriori cannot work unless special conditions guaranteeing dis-
tributability have been imposed a priori. Thus, special methods must be inves-
tigated for distributed supervisor synthesis. We are aware of only two efforts in
this direction. Synthesis algorithms for distributed controllers avoiding forbidden
states in infinite systems have been proposed in [18]. The local supervisors com-
municate by FIFO buffers, which might compromise the effective solution of de-
cision problems, but this obstacle is circumvented by regular over-approximation
techniques. The main drawback of the approach is an excess of communication
since any local supervisor must inform directly or indirectly all other supervisors
of every event occurring locally. Prior work along the same line was presented in
[37] for distributed state estimation. A different approach was taken in [9], where
distributed Petri net synthesis is proposed as an effective technique to solve the
distributed supervisory control problem for tolerances. Given a plant G and two
prefix-closed regular languages Lmin and Lmax such that Lmin ⊆ Lmax ⊆ L(G),
where L(G) is the language generated by G, the problem consists of constructing
a supervisor S such that Lmin ⊆ L(S/G) ⊆ Lmax. The distributed version of
this problem was addressed under the auxiliary assumption that supervisor S
may be realized as the reachability graph of a distributed Petri net. This ensures
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that S can always be expressed as an asynchronously communicating automa-
ton, as required. The approach may help enforce safety objectives on services
while guaranteeing a minimal service, but it has high algorithmic complexity
(inherited from Chernikova’s algorithm [6]). However, after attempts to apply
the theory to other significant examples found in the literature on DES supervi-
sory control (e.g., train systems, manufacturing or workflow systems with shared
resources), we convinced ourselves that in most systems of interest, the main con-
trol objective is to avoid deadlocks or to enforce home states or both. It is simply
impossible to express such objectives by tolerance specifications because Lmin

is not known beforehand.
In this paper, we suggest a possible way to synthesize distributed supervisory

controllers that avoid deadlocks or enforce home states. We apply distributed
Petri net synthesis techniques as was done in [9], but instead of computing least
over-approximations of regular languages by Petri net languages (which requires
the use of Chernikova’s algorithm), we compute distributed monitor places in-
duced by regions of the plant separating events from states, which can be done
in polynomial time. There is no obstacle for full automation of this method,
except that the algorithm is non-deterministic and one must handle the global
reachability graph of the plant, even though the plant is distributed. A survey of
distributed Petri nets, their synthesis and their translation to asynchronous com-
municating automata is given in section 3. In the framework presented here, mes-
sages and communications between components are entirely synthesized, which
is novel in DES control. On this basis, our proposed algorithm for distributed
controller synthesis is outlined in section 4, where the limitations of the present
work are also indicated. Many variations of the algorithm are possible since every
rule, based on the order in which the unwanted transitions of G are examined and
removed, determines a corresponding distributed controller synthesis algorithm
that runs in polynomial time in the size of G.

To illustrate the method, we have chosen the n = 3 version of the classical
n dining philosophers problem [17], where the local supervisors are in the forks
and both hands of each philosopher may act concurrently. This example is small,
but, in our opinion, not trivial. We succeeded in producing three distributed
solutions to this problem that could not have been discovered in the absence of
an algorithmic strategy and a software tool. This example and the subsequent
solutions are presented in section 5. Our ongoing work includes extending our
software tool so that we can apply our technique to much larger systems.

2 Decentralized and Asynchronous DES Control

In this section, we explain our understanding of the gradual shift from centralized
control towards distributed control of discrete-event systems (DES), an area still
in its infancy but one that may soon become vital for applications of the theory.

Ramadge and Wonham’s theory of non-blocking supervisory control for DES
was introduced in [26] and developed soon after in [21,27] to cover situations
in which only some of the events generated by the DES are observed, for in-
stance “in situations involving decentralized control” [27]. The basic supervisory
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control problem consists of deciding, for a DES with observable/unobservable
and controllable/uncontrollable events, whether a specified behavior may be
enforced on the DES by some admissible control law. This basic supervisory
control problem is decidable. Moreover, if every controllable event is also ob-
servable, then one can effectively compute the largest under-approximation of
the specified behavior that can be enforced by the supervisory control.

After the work done in [31] and extended in [38], decentralized control refers to
a form of control in which several local supervisors, with different subsets of ob-
servable events and controllable events, cooperate in rounds. In each round, the
local supervisors compute collaboratively the set of all authorized events, and
the DES performs sequences of events taken from this set, where each sequence is
comprised of unobservable events followed by at most one observable event that
ends the round. In each round, the cooperation between the supervisors may
result from an implicit synchronization, e.g., in conjunctive coordination [31],
or be obtained by applying distributed algorithms, i.e., to reach a consensus
on the set of authorized events. In any case, the controlled DES is governed
by a global clock, whose ticks are the occurrences of observable events. This
global clock may not be a problem for embedded system controllers, especially
when they are designed using synchronous programming languages like Lustre
[15]. Yet global clocks are impractical for widely-distributed systems or archi-
tectures, not to mention for distributed workflows or web services. Global clocks
are also impractical in fault-tolerant distributed systems, such as automotive
control systems. This explains why Globally Asynchronous Locally Synchronous
(GALS) architectures have been developed [25]. The existence of non-blocking
decentralized supervisory control for the basic supervisory control problem is de-
cidable in the special case where the “closed” behavior of a DES is equal to the
prefix-closure of its “marked” behavior (the set of event sequences that lead to
some marked states), but this problem is undecidable in the general case without
communication [19,32].

Decentralized control can be extended to the case where supervisors com-
municate [3]. Communication between supervisors is helpful when the correct
control decision cannot be taken by any of the local supervisors in a cooperative
round of decision making. The idea is to ensure that supervisors receive relevant
information about system behavior that they cannot directly observe so that
(at least) one local supervisor can make the correct control decision. Further, it
may be desirable to synthesize an optimal communication protocol, either from
a set-theoretic (e.g., [30]) or quantitative (e.g., [29]) perspective (cardinality of
the information set matters in the former case, while the frequency of occur-
rence of elements in the information set are relevant in the latter case). For
the most part, work in this area has been devoted to the study of synchronous
communication protocols, i.e., protocols that specify which information each su-
pervisor should communicate to the other supervisors within each round. There
are several different approaches: build a correct communication protocol us-
ing a bottom-up approach [3,28]; given a correct communication protocol, use
a top-down approach to reduce it to one that is optimal from a set-theoretic
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perspective [30,34]; and apportion an optimal centralized solution among a set
of communicating supervisors [22].

Decentralized control with communication has also been studied in the con-
text of asynchronous communication protocols, i.e., under the assumption that
information sent by a supervisor to another supervisor in a cooperative round
may be received in a later round. Bounded and unbounded communication delays
(counted in cooperative rounds) have been explored in [33,16]. Communication
channels are modeled as FIFO buffers; however, there is no notion of optimality
since the communication protocol for each supervisor is to simply send all of
its observations to the other supervisors. In the case of unbounded delay, the
decentralized control problem is undecidable [33,16].

Decentralized control with synchronous or asynchronous communication ex-
tends the basic decentralized control problem in the general direction of dis-
tributed control; however, the approach fails to reach this objective. On the one
hand, it is not realistic to envisage synchronous communication in a distributed
context. On the other hand, if asynchronous communication is assumed, then
either distant synchronization or some kind of arbitration [20] is necessary to en-
force decentralized control, but, again, distant synchronization and arbitration
are not realistic in a distributed context.

In the rest of the section, we would like to focus on two specific models of de-
centralized control (with or without communication) proposed in the literature:
one based upon asynchronous automata (requiring synchronous communication),
and the other based upon the asynchronous product of automata (requiring no
communication).

In [24], decentralized control is investigated in the framework of recognizable
trace languages and asynchronous automata [40,23,11]. In an asynchronous au-
tomaton, states are vectors of local states, and transitions are defined on partial
states, i.e., projections of states on a subset of locations. Transitions that concern
disjoint subsets of locations produce independent events, hence asynchronous
automata have partially ordered runs (ergo there is no global clock). Recogniz-
able trace languages have a close relationship with one-safe Petri nets. Indeed,
when locations are in bijective correspondence with places of nets, one-safe nets
generate prefix-closed deterministic and recognizable trace languages. However,
recognizable trace languages need not be prefix-closed, hence the presence of
global final states in asynchronous automata. In [24], a DES is an asynchronous
automaton where an uncontrollable event has exactly one location while a con-
trollable event may have several locations. Every event, i.e., occurrence of a
transition, is observed in all locations concerned in the generating transition.
The goal is to construct for all locations local supervisors that jointly enforce a
specified behavior on the DES, i.e., a specific subset of partially ordered runs.
Local supervisors cooperate in two ways. First, a controllable event with multiple
locations cannot occur in the controlled DES unless it is enabled by all super-
visors in these locations. Second, at each occurrence of a controllable event, all
local supervisors concerned with this event synchronize and communicate to one
another all information that they have obtained so far by direct observation of
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local events and from prior communication with other supervisors. The infor-
mation available to the supervisor in location � is therefore the �-view of the
partially ordered run of the DES, i.e., the causal past of the last event with
location �. The local control in location � is a map from the �-view of runs to
subsets of events with location �, including all uncontrollable events that are
observable at this location. Implementing asynchronous supervisors, as they are
defined above, on distributed architectures first requires the implementation of
a protocol for synchronizing the local supervisors responsible for an event when-
ever the firing of this event is envisaged. One of the main contributions of [24] is
the identification of conditions under which one can effectively decide upon the
existence of asynchronous supervisors, which, moreover, can always be translated
to finite asynchronous automata.

In [7], the goal is not to synthesize directly a decentralized supervisor but,
rather, to transform a centralized (non-blocking and optimal) supervisor into an
equivalent system of local supervisors with disjoint subsets of controllable events.
(A non-blocking supervisor guarantees that the plant may always reach some
final state.) The data for the problem are a DESG and a centralized supervisor S,
defined over a set Σ of observable/unobservable and controllable/uncontrollable
events, plus a partition Σ = ��∈L Σ� of Σ over a finite set of locations. All
local supervisors have the set of events Σ, but the local supervisor S� in location
� is the sole supervisor that can disable controllable events at location �. The
states of S� are the cells of a corresponding control cover. A control cover is a
covering of the set of states of S by cells with the following properties. First, if
two transitions from a cell are labelled by the same event, then they must lead
to the same cell. Second, if two states x and x′ are in the same cell, then for any
reachable states (x, q) and (x′, q′) of S/G and for any event e with location �, if
e is enabled at q and q′ in G, then e should be coherently enabled or disabled at
x and x′ in S. Third, two states in a cell should be coherently final or non-final.
Supervisor localization based on control covers is universal in the sense that it
always succeeds in transforming a centralized supervisor S into an equivalent
family of local supervisors S�. It is worth noting that a local supervisor S� with
language L(S�) may be replaced equivalently by a local supervisor with the
language π(L(S�)) for any natural projection operator π : Σ∗ → (Σ′

�)
∗ such

that Σ� ⊆ Σ′
� ⊆ Σ and L(S�) = π−1π(L(S�)). In the end, for any event e ∈ Σ,

whenever e occurs in the controlled DES, all local supervisors S� such that e ∈ Σ′
�

should perform local transitions labelled by e in a synchronized way.
The approaches taken in [24] and [7] differ significantly. The former approach

is based on asynchronous automata and on the assumption that several local
supervisors may be responsible for the same controllable event. The latter ap-
proach is based on asynchronous product automata and on the assumption that
exactly one local supervisor is responsible for each controllable event. Both ap-
proaches, though, rely on similar requirements for the final implementation of
the asynchronous supervisors. In both approaches, the only way for the local su-
pervisors to cooperate and/or communicate with one another is by synchroniza-
tion on shared events; however, as previously noted, distributed architectures
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do not generally provide protocols for performing synchronized transitions at
different locations.

3 Distributed Controller Synthesis Based on Petri Net
Synthesis

In this section, we recall the background of Petri nets, as well as a framework
for Petri net based distributed controller synthesis [2,9] that we will use in the
remainder of the paper.

Definition 1. A Petri net N is a bi-partite graph (P, T, F ), where P and T
are finite disjoint sets of vertices, called places and transitions, respectively, and
F : (P × T ) ∪ (T × P ) → N is a set of directed edges with non-negative integer
weights. A marking of N is a map M : P → N. A transition t ∈ T is enabled at
a marking M if M(p) ≥ F (p, t) for all places p ∈ P . If t is enabled at M , then
it can be fired, leading to the new marking M ′ (denoted by M [t〉M ′) defined by
M ′(p) = M(p) + F (t, p)−F (p, t) for all p ∈ P .

Definition 2. A Petri net system N is a tuple (P, T, F,M0) where M0 is a
marking of the net (P, T, F ), called the initial marking. The reachability set
RS(N) of N is the set of all markings reached by sequences of transitions from
M0. N is said to be bounded if RS(N) is finite. The reachability graph RG(N)
of N is the transition system (RS(N), T, δ,M0) with the partial transition map
δ : RS(N) × T → RS(N) defined as δ(M, t) = M ′ iff M [t〉M ′ for all markings
M and M ′ in RS(N). The language L(N) of N is the set of its firing sequences,
i.e., words in T ∗ that label sequences of transitions from M0 in RG(N).

Recall that a supervisor for a plantG = (Q,Σ, δ, q0) is a deterministic automaton
S = (X,Σo, δ, xo), such that (S/G) satisfies the following condition: for every
reachable state (x, q) of (S/G), if an uncontrollable event e ∈ Σuc is enabled at
state q in G, then e is also be enabled at state x in S. We say that S is Petri
net definable (PND) if it is isomorphic to the reachability graph of a Petri net
system N with the set of transitions T = Σo. Thus, S is PND if there exists a
Petri net system N = (P, T, F,M0) with the set of transitions T = Σo and a
bijection ϕ : X → RS(N) such that ϕ(x0) = M0 and for all x ∈ X and t ∈ Σo,
δ(x, t) is defined if and only if M [t〉M ′ for M = ϕ(x) and for some marking M ′,
and then M ′ = ϕ(x′) where x′ = δ(x, t).

PND controllers comprised of monitor places for PND plants date back to the
work in [10,39]. Monitor places are linear combinations of places of the net that
define the plant (seen as rows of the incidence matrix of the net), and they are
added to the existing places of this net in order to constrain its behavior. PND
controllers for DES given as labelled transition systems proceed from a similar
idea with one significant difference: since G has no places, the places of the
controller net N are synthesized directly from Spec (the specification) using the
theory of regions, which has been developed together with synthesis algorithms
both for DES and for languages [1,2,8]. This controller net synthesis technique
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was inaugurated in [13]. In that work, the specification Spec was the induced
restriction of G on a subset of “good” states. In the considered case where Spec
is a DES, a region of Spec may be seen as a Petri net system Np with a set of
transitions equal to the set of transition labels in Spec and with a single place
p such that Spec and Spec × RG(Np) are isomorphic, i.e., monitoring Spec by
Np does not affect the behaviour of Spec in any way. In the alternative case
where Spec is a language over the alphabet T , a region of Spec may be seen as a
Petri net system Np with the set of transitions T and with a single place p such
that Spec ∩ L(Np) = Spec. The theory of regions may thus be applied both to
state-oriented specifications given by transition systems and to event-oriented
specifications given by languages.

Since the Petri nets that we consider are labelled injectively (their set of tran-
sitions T is equal to the set Σo of the observable events), it may seem a bit odd
to search for PND controllers instead of general controllers defined by labelled
transition systems. It is well known that languages of injectively labelled and
bounded Petri nets form a strict subset of the regular languages. So, while one
loses generality, one gains only the paltry compensation of a more compact rep-
resentation of controllers. Fortunately, the situation changes radically when one
takes distributed control into account, because in this case controller net synthe-
sis can be tailored to distributed Petri nets. In contrast to general deterministic
automata, distributed Petri nets can always be converted to asynchronously
communicating automata (as we explain below). We contend that the availabil-
ity of this automated translation, defined in [2], is a fair compensation for the
loss of generality, which explains the approach presented in [9] and the modified
approach suggested in the end of this paper. Indeed, we do not know of any other
approach where we can synthesize communications between controllers while at
the same time avoiding the generation of useless communications. This aspect of
the approach provides us with strong motivation for the use of distributed Petri
nets. We recall now from [2] the definition of distributed Petri nets and their
automated translation to asynchronous message passing automata.

Definition 3 (Distributed Petri net system). A distributed Petri net sys-
tem over a set of locations L is a tuple N = (P, T, F,M0, λ) where (P, T, F,M0)
is a Petri net system and λ : T → L is a map, called a location map, subject to
the following constraint: for all transitions t1, t2 ∈ T and for every place p ∈ P ,
F (p, t1) = 0 ∧ F (p, t2) = 0 ⇒ λ(t1) = λ(t2).

Example 1. A distributed Petri net system is depicted in Fig. 1(a). The set of
locations is L = {A,B,C} and each transition x ∈ {a, b, c} has the corresponding
location X . The reachability graph of this net system is shown in Fig. 1(b). �
In a distributed Petri net, two transitions with different locations cannot compete
for tokens, hence distributed conflicts cannot occur, which makes an effective
implementation straightforward. Such a restriction has been mentioned in [36]
in the specific context of Elementary Net Systems (where a place may contain
at most one token). Two transitions with different locations may, though, send
tokens to the same place. Implementing a distributed Petri net system N means



32 P. Darondeau and L. Ricker

A:a B:b

C:c

A:p1 A:p2 B:p3 B:p4

C:p5

2

(a)

1111122010

0021212002

01103

10220
a

a

a

b

b

b

c
c c

(b)

Fig. 1. (a) A distributed Petri net and (b) its reachability graph

producing an asynchronous message passing automaton (AMPA) behaving like
N up to branching bisimulation (see Appendix for precise definitions). Given
any non-negative integer B, let RGB(N) denote the induced restriction of the
reachability graph RG(N) of N on the subset of markings bounded by B, i.e.,
markings M such that M(p) ≤ B for all places p ∈ P . If N defines a controller
for plant G and B is the maximum of M(p) for all places p ∈ P and for all
markingsM of N reached in the partially synchronized product RG(N)/G, then
RG(N)/G and RGB(N)/G are isomorphic even though N may be unbounded.
Transforming N into a B-bounded AMPA with a reachability graph branching
bisimilar to RGB(N) may be done as follows (see [2] for a justification). The
bound B is used only in the last step of the transformation, but its role there is
crucial.

– Given N = (P, T, F,M0, λ), extend λ : T → L to λ : (T ∪ P )→ L such that
λ(p) = λ(t)⇒ F (p, t) = 0 for all p ∈ P and t ∈ T (this is possible by Def. 3).

– For each location � ∈ L, construct a net systemN� = (P�, T�, F�,M�,0), called
a local net, as follows.

• P� = {p | p ∈ P ∧ � = λ(p)} ∪ {(p, �) | p ∈ P ∧ � = λ(p)},
• T� = {t ∈ T | λ(t) = �} ∪
{� ! p | p ∈ P ∧ � = λ(p)} ∪ {� ? p | p ∈ P ∧ � = λ(p)},

• F�(p, t) = F (p, t) and F�(t, p) = F (t, p),
• F�(t, (p, �)) = F (t, p),
• F�((p, �), � ! p) = 1 and F�(� ? p, p) = 1,
• M�,0(p) = M0(p).

In each local net N�, places (p, �) are local clones of places p of other local
nets. Whenever a transition t ∈ T with location � produces tokens for a
distant place p ∈ P (λ(t) = � = λ(p)), the transition t ∈ T ∩ T� produces
tokens in the local clone (p, �) of p. These tokens are removed from the local
clone (p, �) of p by the auxiliary transition � ! p, each firing of which models
an asynchronous emission of the message p. Symmetrically, for any place p
of N with location �, each firing of the auxiliary transition � ? p models an
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asynchronous reception of the message p, resulting in one token put in the
corresponding place p ∈ P�.

– For each location �, compute RGB(N�). The desired AMPA is the collection
of local automata {A� = RGB(N�) | � ∈ L}. Since any local net N� may be
unbounded, the bound B is needed here to guarantee that the local automata
A� are finite. By construction, the AMPA is branching bisimilar to RGB(N),
but not necessarily to RG(N). Each transition of an automaton A� is labelled
either with some t ∈ T ∩T� or with some asynchronous message emission � ! p
or with some asynchronous message reception � ? p. A message p sent from a
location �′ by a transition �′ ! p of the automaton A�′ is automatically routed
towards the automaton A� with the location � = λ(p), where it is received
by a transition � ? p of the automaton A�. No assumption is made on the
relative speed of messages, nor on the order in which they are received.

Example 2. The local net systems NA, NB and NC computed from the net N of
Fig. 1 are displayed from left to right in Fig. 3. The bound B is equal to 3. �

p1 p2

(p3,A) (p5,A)

A?p1 A?p2

A!p3 A!p5

a

(a)

p3 p4

(p5,B) (p2,B)

B?p3 B?p4

B!p5 B!p2

b

(b)

c

(p4,C)

C!p1 C!p4

2
p5

C?p5

(p1,C)

(c)

Fig. 2. Three local net systems

Finally, let us return to controllers. Let G be a DES over a set of events Σ
and Spec be a specification of the desired behavior of G (we purposely remain
vague about the nature of specifications, which may be isomorphism classes of
DES, languages, modal formulas, and so on). Let S = (X,Σo, δ, xo) be a finite-
state admissible supervisor for G, such that (S/G) satisfies the specification
Spec. We say that S is a distributed Petri net definable supervisor (DPND)
if it is isomorphic to the reachability graph of a distributed Petri net N =
(P, T, F,M0, λ) with the set of transitions T = Σo and the location map λ :
Σo → L defined by λ(e) = � if e ∈ Σ�, where λ(e) indicates the locations where
e may be observed and possibly controlled. In view of this isomorphism, since
X is finite, there must exist a finite bound B such that M(p) ≤ B for all places
p ∈ P and for all reachable markings M of N . Therefore, S may be translated
to an equivalent AMPA = {A� = RGB(N�) | � ∈ L}, realizing, in the end, fully
distributed control.
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4 Towards Petri Net Based Distributed Controller
Synthesis

The approach to distributed control that we suggest is to search for admissible
DPND controllers using Petri net synthesis techniques (see [2,8]). These tech-
niques allow us to answer the following questions:

– Given a finite automaton over Σo and a location map λ : Σo → L, can this
automaton be realized as the reachability graph of a distributed Petri net
N = (P, T, F,M0, λ) with set of transitions T = Σo?

– Given a regular language over Σo and a location map λ : Σo → L, can this
language be realized as the set of firing sequences of a distributed Petri net
N = (P, T, F,M0, λ) with set of transitions T = Σo?

The type of net synthesis techniques that should be applied when solving the
distributed supervisory control problem depends upon Spec, the specification
of the control objective to be enforced on the plant G. As previously noted,
when the control objective is to avoid deadlocks or enforce home states, the
detailed method defined in [9] to derive distributed supervisors for the basic
supervisory control problem cannot be applied. In fact, we do not know of any
optimal method to cope with these significant and practical problems. Neverthe-
less, to initiate work in this direction, in this section we propose an algorithm for
computing distributed supervisors that enforce such objectives, based on Petri
net synthesis, that can be performed in polynomial time (w.r.t. the size of G).
The case study presented in next section shows that this algorithm produces
good results when G is isomorphic to the reachability graph of a one-safe net.
For arbitrary plants G, more elaborate algorithms of the same flavour should
be considered and compared for efficiency and for quality of control. Moreover,
some completeness results ought to be established. Before we present the algo-
rithm, we would like to insist again on other two limitations. Because AMPA
derived from distributed Petri nets are a strict subclass of AMPA, distributed
controller synthesis techniques based on Petri net synthesis may fail even though
the distributed supervisory control problem under consideration may be solved
using more general AMPA. Second, to apply Petri net synthesis techniques, G
must be given as a plain transition system, not as a symbolic transition system.
A main merit of the general approach that we suggest here is that no comparable
approach exists yet. The above points illustrate, if it was not yet entirely clear,
that the field for research on distributed controller synthesis remains wide open.

Our algorithm applies to arbitrary plants G = (Q,Σ, δ, q0). In the sequel,
Σ = Σo�Σuo = Σc�Σuc = ��∈L Σ�, where L is the set of distributed locations,
and we use q

σ→ q′ as an alternative representation of δ(q, σ) = q′. We require two
additional definitions before presenting the algorithm. Four transitions q1

σ→ q2,
q′1

σ→ q′2 and q1
τ→ q′1, q2

τ→ q′2 with pairwise identical labels σ and τ (see Fig. 3)
form a distributed diamond in G if the events σ and τ have different locations.
We let ≺ denote the reflexive transitive closure of the relation on transitions
defined as q1

σ→ q2 ≺ q′1
σ→ q′2 and q1

τ→ q′1 ≺ q2
τ→ q′2 if the four transitions form a

distributed diamond.
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q1 q2

σ

q
′

1

τ

q
′

2

τ

σ

Fig. 3. A diamond

If the control objective is to avoid deadlocks, then we call q ∈ Q a bad state if
δ(q, σ) is undefined for all σ ∈ Σ. If the control objective is to enforce the home-
state property on q0, then q ∈ Q is a bad state if q0 cannot be reached inductively
from q. The algorithm proceeds iteratively by switching states to bad, by formally
removing transitions, and by computing distributed monitor places to actually
block the transitions that have been removed. Formally removing a transition off
means replacing q

σ→ q′ by the negative assertion ¬ (q
σ→). A negative assertion

¬ q
σ→ may be enforced by a monitor place [10]. This monitor place is computed

as a region that separates event σ from state q in the reachable restriction of
G which is obtained after removing the bad states (see [2]). Monitor places p
and the inducing regions are, moreover, subject to distribution constraints that
may be expressed as sign constraints. These constraints are the following. First,
F (p, τ) = 0 = F (τ, p) for every unobservable transition τ ∈ Σ \ Σo; second,
F (p, τ) = 0 for every transition τ ∈ Σ with location λ(τ) different from λ(�). In
the following algorithm, we say that w is cycle-free (CF) if δ(q0, u) = δ(q0, v) for
all distinct prefixes u, v of w. (Note that a state that is not in Bad is considered
to be good).

Algorithm 1.

while Bad 
= ∅ do
Select qbad from the set of bad states
Choose CF w s.t. δ(q0, w) = qbad, w = w1σw2 and w1 ∈ Σ∗, w2 ∈ Σ∗

uc, σ ∈ Σc

Set ¬δ(q0, w1)
σ→ in place of δ(q0, w1)

σ→ δ(q0, w1σ) and
similarly remove all predecessor transitions wrt preorder ≺

Remove all unreachable states
Recalculate Bad
while ∃ assertions ¬q σ→ where q is a good state do

if ∃ distributed monitor place p separating σ from q then
Add p to the set of monitor places
Remove the negative assertion ¬q σ→

else
Make q a bad state

end if
end while

end while



36 P. Darondeau and L. Ricker

At the time when this non-deterministic algorithm stops, either q0 has been
added to Bad and then no solution to the distributed control problem is provided,
or a distributed Petri net is obtained by gathering all monitor places, and a
distributed controller is then obtained by transforming this net to an AMPA as
indicated in section 3.

Computing a distributed monitor place by separating an event σ from a state
q takes time polynomial in the size of G, hence the above algorithm runs in
polynomial time. This complexity bound applies to all possible algorithms based
on computing monitor places for blocking unwanted transitions. The policy taken
here is to remove—in one step—one transition and all predecessor transitions
w.r.t. ≺, but more subtle policies could give better results. Note that the above
algorithm is closer in spirit to the ideas in [12] than to the ideas in [9].

5 Distributed Control for Three Dining Philosophers

We would now like to illustrate our Petri net based synthesis method for dis-
tributed controllers on a toy example. We have chosen the well-known problem
of the dining philosophers [17]. The reasons for this choice are twofold. On the
one hand, the problem is easily understood. On the other hand, the size of this
problem can be adjusted to accommodate our partially-implemented algorithm
by decreasing the usual number of philosophers, which is five, to three.

Example 3. Three philosophers ϕ1, ϕ2, and ϕ3 are sitting at a table with a bowl
of spaghetti in the center. Three forks f1, f2, f3 are placed on the table, such
that philosopher ϕi has the fork fi on his right and the fork fi+1 mod 3 on his
left (see Fig. 4(a)). A philosopher alternates periods of eating and periods of
thinking. To eat, he needs both the fork to his direct left and the fork to his
direct right. Therefore, he tries to grab them one after the other while thinking.
A philosopher who thinks with a fork in each hand stops thinking and starts
eating after a finite delay. A philosopher who eats eventually stops eating, puts
down the forks, and starts thinking again after a finite delay. The basic problem
is to avoid deadlock, i.e., the situation in which every philosopher has taken one
fork. A classical solution is to let all philosophers but one, say ϕ1, first take the
fork to their right, and then let ϕ1 first take the fork to his left. An augmented
problem is to avoid the starvation of any philosopher. �
The dining philosophers problem was used in [35] to illustrate the use of super-
visory control techniques for removing deadlocks from multi-threaded programs
with lock acquisition and release primitives. In that work, the emphasis was on
optimal control, not on distribution. In this paper, we do the opposite, i.e., we
give priority to distributed control over optimal control. Moreover, we intend that
local controllers will be embedded in forks, not in philosopher threads. The idea
is that resource managers have fixed locations while processes using resources
are mobile. More specifically, consider the PND plant G defined by the Petri net
N (shown in Fig. 4(b)).

Places f1f , f2f , and f3f are the resting places of the forks f1, f2, and f3,
respectively (fif should be read as “fi is free”), and they are initially marked
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Fig. 4. Modeling the Dining Philosophers Problem:(a) three philosophers; (b) the un-
controlled plant

with one token each. For j ∈ {1, 2, 3} and i ∈ {j, j + 1 mod 3}, “philosopher
ϕj can take fork fi when it is free” (transition tji). After this, “philosopher
ϕj holds fork fi” (condition jhi). A philosopher ϕj with two forks may “start
eating” (transition sej). A philosopher ϕj who is eating (condition ej) can “start
thinking” (transition stj), and then forks fj and fj+1 mod 3 return again to the
table. With respect to distribution, there are four locations as follows. For each
fork fi, i ∈ {1,2,3}, the two transitions which compete for this fork, namely tii
and tji with j = i − 1 mod 3, have location i given by the index of this fork.
All other transitions are given by default to another location 4 that does not
matter.

The control objective is to avoid deadlocks. For simplicity, we assume that all
transitions are observable. The controllable transitions are the transitions which
consume resources, i.e., the transitions tji (philosopher ϕj takes fork fi). The
control objective should be achieved by distributed control and, more precisely,
by a distributed Petri net. The set of transitions T of the controller net may be
any set included in {sej, stj , tjj , tji | 1 ≤ j ≤ 3 ∧ i = j + 1 mod 3}. The loca-
tion map λ : T → {1, 2, 3, 4} is the induced restriction of the map defined by
λ(tij) = j and λ(sej) = λ(stj) = 4 for 1 ≤ j ≤ 3.

The PND plant G under consideration, i.e., the reachability graph of N , has
two sink states M1 and M2, defined by M1(3h1) = M1(1h2) = M1(2h3) = 1 and
M2(1h1) = M2(2h2) = M2(3h3) = 1, respectively (letting M1(p) = 0 or M2(p) =
0 for all other places p). If one disregards distributed control, it is quite easy to
eliminate these two deadlocks by adding two monitor places p1 and p2, the role
of which is to disable the instances of the transitions t31, t12, t23 and t11, t22, t33
that reach M1 and M2 in one step, respectively. The monitor places may be
chosen so that no other transition instance is disabled, hence they do not cause
new deadlocks. Two such monitor places are p1 = 2+st1+st2+st3−t31−t12−t23
(i.e., p1 is initially marked with 2 tokens, there are flow arcs with weight 1 from
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st1, st2 and st3 to p1, and there are flow arcs with weight 1 from p1 to t31, t12
and t23), and p2 = 2 + st1 + st2 + st3 − t11 − t22 − t33. The PND controller
consisting of the monitor places p1 and p2 realizes the optimal control of G for
deadlock avoidance. This optimal controller is unfortunately not a distributed
controller. For one-safe nets, optimal control can always be realized by PND
controllers [12], but the problem is different for DPND controllers.

5.1 A Distributed Controller That Avoids Deadlocks

The reachability graph G of N has 36 states and 78 transitions. An inspection of
G allows us to identify the two subgraphs shown in Fig. 5, where the initial state
is 0 and the deadlock states M1 and M2 are numbered 25 and 11, respectively.
All six transitions that lead in one step to either of the deadlock states 25 and
11 are represented in Fig. 5 and similarly for all predecessors of the deadlocking

transitions 26
t31→ 25 and 16

t22→ 11 w.r.t. preorder ≺. The following distributed

diamonds, given by pairs of vertical edges, have been omitted: (0
t22→ 5, 1

t22→ 6),

(0
t12→ 23, 1

t12→ 24), (30
t22→ 8, 29

t22→ 12) for the leftmost subgraph, and (0
t31→ 1, 5

t31→ 6),

(0
t33→ 19, 5

t33→ 10), (19
t31→ 2, 10

t31→ 7) for the rightmost subgraph. Three occurrences
of t31, resp. t22 in G do moreover not appear in the leftmost, resp. rightmost

subgraph but none of them precedes 26
t31→ 25 nor 16

t22→ 11 (w.r.t. ≺).
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2
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t22
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t33
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Fig. 5. Two ladder-shaped subgraphs leading to deadlock

Following Algorithm 1, to avoid reaching the deadlock states M1 and M2,
one can remove all seven instances of the transitions t31 and t22 indicated in
Fig. 5. Let G1 be the reachable restriction of G defined in this way. Let G1

be the reachable restriction of G defined in this way. G1 has 23 states, none of
which is a sink state. In particular 0, 2, 3, 12, 13, 15, 16, 19, 23, 26, 29 are states in
G1 but 1 and 5 are no longer reachable. The states 2, 12, 19, 23 may be reached
from the initial state 0 by firing in G1 the sequences of events t33 · t31, t23 ·
t22, t33, t12, respectively. All 14 transitions t33 or t22 shown in Fig. 5 can be
blocked by distributed monitor places (which we computed using SYNET [5]).
The resulting DPND controller K1 has four components K1

1 , K
2
1 , K

3
1 , K

4
1 to

plug in the respective locations 1 to 4. K4
1 does nothing but send the other
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t23

st3 t22

t31

t33

st2
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Fig. 6. Local controllers for our example

components asynchronous signals informing them of the occurrences of the start
eating and start thinking events sej and stj . The local controllers K1

1 , K
2
1 , K

3
1

are depicted in Fig. 6. For each controller, the asynchronous flow from other
local controllers is indicated by dashed arrows. K1

1 and K2
1 send messages to K3

1

(indicating that t31 or t22 has occurred) and K3
1 sends messages to K1

1 and K2
1

(indicating that t33 or t23 has occurred) but K1
1 and K2

1 do not communicate
directly. In the design of the distributed controller K1, we have privileged the
transitions t31 and t22. As a result, in the initial state of RG(K1)/G, philosopher
ϕ1 can grab both forks f1 and f2 in parallel while philosophers ϕ2 and ϕ3 can
only fight over fork f3.

Similar controllers may be obtained by choosing t12 and t33, or t23 and t11,
instead of t31 and t22. Unfortunately, neither K1 nor its variations (arising from
a focus on the different events just noted) can avoid starvation. In RG(K1)/G,
for each philosopher there actually exists a reachable state in which he may
act fast enough to prevent the other two from ever eating! Finally, note that
all places of the local controller nets K1

1 , K
2
1 and K3

1 stay bounded by 1 in all
reachable states of RG(K1)/G. Therefore, to transform K1 into an equivalent
asynchronous message passing automaton AMPA, as indicated in section 3, it
suffices to compute the bounded reachability graph RGB(K1) for the bound
B = 1. The component automaton A1 of this AMPA operating at location
1 (and thus obtained from K1

1 ) has 16 states and 52 transitions. The large
numbers of states and transitions may be explained by the protocol used to
receive messages from K3

1 and K4
1 ; indeed, as this protocol is asynchronous, the

6 types of messages may be received at any time and in almost any order.

5.2 Another DPND Controller That Avoids Deadlocks

A quite different distributed controller K2 may be obtained by shifting the fo-
cus to the transitions t31 and t11. By inspecting the reachability graph G of
N again, one can locate the two subgraphs shown in Fig. 7, which contain all
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Fig. 7. Subgraphs leading to deadlock

predecessors of the deadlocking transitions 26
t31→ 25 and 10

t11→ 11. To avoid reach-
ing the deadlock states M1 and M2, following Algorithm 1, one can also choose
to cross off all seven instances of the transitions t31 and t11 indicated in Fig. 7.
Let G2 be the reachable restriction of G defined in this way. G2 has 22 states,
none of which is a sink state. In particular 0, 5, 10, 12, 13, 19, 23, 26, 29 are states
in G2 but the sets of states {6, 8, 9, 1, 30, 25, 24} and {31, 32, 14, 15, 35, 11, 16}
are no longer reachable. The states 5, 19, 23, 29 may be reached from the ini-
tial state 0 by firing in G2 the events t22, t33, t12, t23, respectively. All t31 or t11
transitions shown in Fig. 7 can be blocked by distributed monitor places. The
resulting DPND controller K2 has four components K1

2 , K
2
2 , K

3
2 , K

4
2 to plug in

the respective locations 1 to 4. K2
2 , K

3
2 and K4

2 do nothing but send K1
2 asyn-

chronous signals informing this local controller of the occurrences of the sets of
events {t12}, {t33} and {se1, st1, se3, st3}, respectively. The local controller K1

2

is depicted in Fig. 8. The component automaton A1 of the AMPA derived from
K2 operating at location 1 (thus obtained from K1

2) has again 16 states and 52
transitions.

t31 t11

se1

t33 t12

st3

se3 st1

Fig. 8. K1
2
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Now all control decisions are taken in location 1! In the initial state of
RG(K2)/G, philosopher ϕ2 can take both forks f2 and f3 in parallel, while
philosophers ϕ1 and ϕ3 can only compete with ϕ2 to get forks f2 and f3, respec-
tively. Note that all places of the local controller nets K1

2 stay bounded by 1 in
all reachable states of RG(K2)/G. With respect to starvation, K2 and all similar
controllers have exactly the same drawbacks as K1. K1 and K2 are incomparable
controllers, and we suspect, but have not verified, that they are both maximally
permissive amongst DPND controllers for deadlock avoidance.

5.3 A Distributed Controller That Avoids Starvation

It is possible to produce a DPND controller that avoids both starvation and
deadlocks without following Algorithm 1. We designed such a controller after a
careful inspection of the cycles in the reachability graph of G, and confirmed
that it could be implemented with a distributed Petri net. More specifically, we
considered the set of cycles in G that go through the initial state 0 and contain
each transition tij exactly once (for 1 ≤ i, j ≤ 3). We projected these cycles
to words in {tij | 1 ≤ i, j ≤ 3}6. We strived to extract from the resulting set
of words maximal subsets {w1, . . . , wn} such that {w1, . . . , wn}∗ is the language
of a distributed Petri net. This worked for the set formed of the two words
w1 = t11 · t23 · t12 · t31 · t22 · t33 and w2 = t11 · t33 · t12 · t22 · t31 · t23. Coming back
to G, we extracted from this graph the maximal subgraph G3 with language
included in the inverse projection of {w1, w2}∗. This gave us the graph shown
in Fig. 9. G3 is isomorphic to RG(K3)/G where K3 is a distributed Petri net
comprised of three components K1

3 , K
2
3 and K3

3 , depicted in Fig. 10. Note the
presence of a flow arc with weight 2 in K2

3 . With this solution to the problem,
parallelism disappears completely, and there remains only one state where a
choice is possible. It would be interesting to examine the same problem for a
larger number of philosophers, but fully-automated strategies are necessary for
this purpose.
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Fig. 9. RG(K3)/G
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Fig. 10. A fair controller

6 Conclusion

To move towards a theory of distributed control of DES, we have proposed a
mixture of asynchronous control and communication. A significant advantage of
the proposed methodology is that the way of encoding the information to be
exchanged is automated: the messages sent asynchronously are names of places
of a Petri net produced by synthesis. Yet there remains a sizeable amount of
work to be done: at present, a significant disadvantage of the methodology is the
lack of a general theorem and a fully-automated controller synthesis algorithm
(including heuristics to guide the non-deterministic choice of the transitions to
be removed).
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Appendix

Our Asynchronous Message Passing Automata (AMPA) differ from the com-
municating automata originally introduced by Brand and Zafiropulo [4] in that
communications are not FIFO. Given a finite set of locations L, a B-bounded
AMPA is a collection {A� | � ∈ L} of deterministic finite automata (DFA) to-
gether with a finite set of messages P , where λ : P → L specifies the address
for each message. Each A� = (Q�, Σ� �Σ!

� �Σ?
� , δ�, q0,�) is a DFA with a partial

transition map δ�, and initial state q0,�, where Σ!
� = {�!p | p ∈ P ∧ λ(p) = �}

and Σ?
� = {�?p | p ∈ P ∧ λ(p) = �} are the sets of sending and receiving actions,

respectively. The actions in Σ� are observable. The communication actions in
Σ!

� ∪Σ?
� are unobservable.

The dynamics of a B-bounded AMPA are defined by a transition system
constructed inductively from an initial configuration 〈q0,m0〉 as follows:
– q0 is an L-indexed vector with entries q0,� for all � ∈ L,
– m0 is an P -indexed vector with null entries for all p ∈ P ,
– From any configuration 〈q,m〉, where q is an L-indexed vector with entries

q� ∈ Q� for all � ∈ L and m is a P -indexed vector of integers with entries
mp ≥ 0 for all p ∈ P , there is a transition 〈q,m〉 σ−→ 〈q′,m′〉 in the following
three cases:
• q′� = δ�(q�, σ) for some � ∈ L and σ ∈ Σ�, q

′
k = qk for all k = � and

m′ = m;
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• q′� = δ�(q�, σ) for some � ∈ L and σ = �!p ∈ Σ!
�, q

′
k = qk for all k = �,

m′
p = mp + 1 ≤ B, and m′

r = mr for all r = p;

• q′� = δ�(q�, σ) for some � ∈ L and σ = �?p ∈ Σ?
� , q

′
k = qk for all k = �,

m′
p = mp − 1 ≥ 0, and m′

r = mr for all r = p;

Branching bisimulation was defined by van Glabbeek and Weijland [14] for pro-
cesses with a single unobservable action τ . The following is an adaptation of the
original definition to processes defined by automata with several unobservable
actions. Let Σ = Σo ∪Σuo be a set of labels, where Σo and Σuo are the subsets
of observable and unobservable labels, respectively. Let A = (Q,Σ, δ, q0) and
A′ = (Q′, Σ, δ, q′0) be two automata over Σ. A and A′ are branching bisimilar if
there exists a symmetric relation R ∈ Q × Q′ ∪ Q′ × Q such that (q0, q

′
0) ∈ R

and for all (r, s) ∈ R:

– if δ(r, σ) = r′ and σ ∈ Σuo, then (r′, s) ∈ R;
– if δ(r, σ) = r′ and σ ∈ Σo, then there exists a sequence σ′

1 . . . σ
′
k ∈ Σ∗

uo (where
k = 0 means an empty sequence) such that if one lets δ(s, σ′

1 . . . σ
′
j) = s′j for

j ≤ k, and δ(s′k, σ) = s′, then s′ and all states s′j are effectively defined, and
moreover (r′, s′) ∈ R.
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Abstract. The Petri net standard ISO/IEC 15909 comprises 3 parts. The first
one defines the most used net types, the second an interchange format for these
– both are published. The third part deals with Petri net extensions, in particular
structuring mechanisms and the introduction of additional, more elaborate net
types within the standard.

This paper presents a contribution to elaborate an extension framework for
the third part of the standard. This strategy aims at composing enabling rules
and augmenting constraints in order to build new Petri net types. We show as a
proof of concept how this can be achieved with priorities, times, inhibitor arcs in
the context of an interleaving semantics. We then map this framework onto the
current standard metamodels.

Keywords: Standardisation, PNML, Prioritised Petri Nets, Time Nets.

1 Introduction

Context. The International Standard on Petri nets, ISO/IEC 15909, comprises three
parts. The first one (ISO/IEC 15909-1) deals with basic definitions of several Petri net
types: Place/Transition, Symmetric, and High-level nets1. It was published in Decem-
ber 2004 [13]. The second part, ISO/IEC 15909-2, defines the interchange format for
Petri net models: the Petri Net Markup Language [15] (PNML, an XML-based represen-
tation). This part of the standard was published on February 2011 [14]. It can now be
used by tool developers in the Petri Nets community with, for example, the companion
tool to the standard, PNML Framework [10].

1 In this paper, the term “high-level net” is used in the sense of the standard and corresponds to
coloured Petri nets as in Jensen’s work [16].

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 46–70, 2012.
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The standardisation effort is now focussed on the third part. ISO/IEC 15909-3 aims
at defining extensions on the whole family of Petri nets. Extensions are, for instance,
the support of modularity, time, priorities or probabilities. Enrichments consider less
significant semantic changes such as inhibitor arcs, capacity places, etc. This raises
flexibility and compatibility issues in the standard.

While parts 1 and 2 of the ISO/IEC 15909 standard address simple and common
Petri nets types, part 3 is concerned with extensions. The work on these issues started
with a one-year study group drawing conclusions with respect to the scope to be ad-
dressed. Then, according to the study group conclusions, the standardisation project
was launched in May 2011, for delivery within 5 years.

Contribution. The choices to be made in part 3 of the standard must of course ensure
compatibility with the previous parts. We propose to achieve this goal by using the
notion of orthogonality. It allows us to build a framework to describe the behavioural
semantics of nets in a compositional way. This is achieved by revisiting the firing rule
of several well known Petri net types based on the enabling rule. The objective is to
compose existing enabling rules with augmenting constraints in order to elaborate these
Petri net types consistently. We apply it to P/T nets, Prioritised nets and Time nets.

Associated with this framework is a MDE-based one that allows us to compose
pieces of metamodels corresponding to enabling functions and augmenting constraints
(see section 3.2). This is an important link between the syntax-based way of handling
semantic in MDE techniques and the formal definition of a behavioural semantics.

Based on this framework, we map the selected Petri nets types onto our MDE-based
framework as a proof of concept, as planned for in future evolutions of the standard.

Content. Section 2 recalls some well-known Petri nets types. Then, section 3 presents
the framework to define the behavioural semantics of nets and applies it to the net types
already presented. Section 4 details the MDE-based framework associated with the stan-
dard. Section 5 maps the notions of the behavioral semantics defined in section 3 into
this MDE-based framework to build metamodels of net types suitable for generating
PNML descriptions, followed by a discussion in section 6.

2 Some Petri Nets Definitions

This section introduces the notations for different types of Petri Nets.

2.1 Definition of Place/Transition Nets

This section first introduces Place/Transitions nets.

Definition 1 (Place/Transition Net).
A Place/Transition Net (P/T net) is defined by a tuple N = 〈P, T, Pre, Post, M0〉, where:

– P is a finite set (the set of places of N),
– T is a finite set (the set of transitions of N), disjoint from P,
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– Pre, Post ∈ N|P|×|T | are matrices (the backward and forward incidence matrices),
– M0, a vector in N|P| defining the initial number of tokens in places.

We now introduce M(p), •t, and t• that are respectively:

– the current marking of place p,
– the subset of places which constitute the precondition of a transition t ∈ T ,
– the subset of places which constitute the postcondition of a transition t ∈ T .

From these notations, we can define the enabling and firing rules for P/T nets as follows.

Definition 2 (P/T Net enabling rule).
A transition t ∈ T is enabled in marking M, denoted by M[t〉, iff: ∀p ∈ •t, M(p) �

Pre(p, t).

Definition 3 (P/T Net firing rule).
If a transition t ∈ T is enabled in marking M, it can fire leading to marking M′, denoted
by M[t〉M′, where: ∀p ∈ P, M′(p) = M(p) − Pre(p, t) + Post(p, t).

An inhibitor arc is a special kind of arc that reverses the logic of an input place. Instead
of testing the presence of a minimum number of tokens in the related place, it tests the
lack of tokens.

Definition 4 (Petri Nets with Inhibitor Arcs).
A Petri net with inhibitor arcs is a Petri Net N together with a matrix I ∈ N|P|×|T | of

inhibitor arcs.

Definition 5 (P/T Nets with inhibitor arcs enabling rule).
A transition t ∈ T is enabled in marking M, denoted by M[t〉, iff: ∀p ∈ •t, (M(p) �

Pre(p, t)) ∧ (M(p) � I(p, t)).

Then, the firing rule is identical to the one for P/T nets, provided the transition is en-
abled.

2.2 Definition of Prioritised Petri Nets

This section introduces the definition of prioritised Petri nets.

Definition 6 (Statically Prioritised Petri net).
A Statically Prioritised Petri net is a tuple SPPN = 〈P, T, Pre, Post, M0, ρ〉, where:

– 〈P, T, Pre, Post, M0〉 is a P/T net.
– ρ is the static priority function mapping a transition into R+.

We can also consider the case where the priority of transitions is dynamic, i.e. it depends
on the current marking [1]. This definition was introduced in [18]. Note that the only
difference with statically prioritised Petri nets concerns the priority function ρ.

Definition 7 (Prioritised Petri net).
A Prioritised Petri net is a tuple PPN = 〈P, T, Pre, Post, M0, ρ〉, where:
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– 〈P, T, Pre, Post, M0〉 is a P/T net.
– ρ is the priority function mapping a marking and a transition into R+.

The behaviour of a prioritised Petri net is now detailed, markings being those of the
underlying Petri net. Note that the firing rule is the same as for non-prioritised Petri
nets, the priority scheme influencing only the enabling condition.

Definition 8 (Prioritised enabling rule).
A transition t ∈ T is priority enabled in marking M, denoted by M[t〉ρ, iff:

– it is enabled, i.e. M[t〉, and
– no transition of higher priority is enabled, i.e. ∀t′ : M[t′〉 ⇒ ρ(M, t) ≥ ρ(M, t′).

The definition of the priority function ρ is extended to sets and sequences of transitions
(and even markings M):

– ∀X ⊆ T : ρ(M, X) = max {ρ(M, t) | t ∈ X ∧ M[t〉}
– ∀σ ∈ T ∗ : ρ(M, σ) = min {ρ(M′, t′) | M′[t′〉ρ occurs in M[σ〉ρ}.

For static prioritised nets where ρ(M, t) is a constant function associated with t and
for dynamic prioritised nets, for at least one transition, ρ(M, t) depends on the current
marking. For now, we will consider only dynamically prioritised nets since static ones
are encompassed by these.

If the priority function is constantly zero over all markings and all transitions, then
the behaviour of a Prioritised Petri Net is isomorphic to that of the underlying P/T Net.

Note that we choose to define priority as a positive real-valued function over mark-
ings and transitions — the higher the value, the greater the priority. We could equally
define priority in terms of a rank function which maps markings and transitions to pos-
itive real values, but where the smaller value has the higher priority. This would be
appropriate, for example, if the rank were an indication of earliest firing time.

2.3 Definition of Petri Nets with Time

Time Petri nets (TPN) are Petri nets where timing constraints are associated with the
nodes or arcs. Timing constraints are given as time intervals. This section briefly presents
the definition of TPNs and their semantics [3], then introduces the model we will be fo-
cusing on, which is Time Petri Nets [4], where the timing constraints are associated with
transitions.

Definition 9 (Generic Time Petri net).
A Generic Time Petri net is a tuple 〈P, T, Pre, Post, S 0, I〉 such that:

– 〈P, T, Pre, Post, S 0〉 is a (marked) P/T net (S 0 denotes its initial state, i.e. marking
+ clocks);

– I : X → I(�+) is a mapping from X ∈ {P, T, P × T ∪ T × P} to the set I(�+) of
intervals. These intervals have real bounds or are right-open to infinity.
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Semantics. The semantics of TPNs is based on the notion of clocks. One or more clocks
can be associated with a time interval and the value of all clocks progress synchronously
as time elapses. The firability of enabled transitions depends on having the value of
the related clocks in their associated intervals. A clock may be reset upon meeting a
condition on the marking of the net, usually after the firing of a transition.

The semantics of TPNs is defined in terms of:

– Reset policy: the value of a clock is reset upon firing some transition. It is the only
way to decrease its value. But it is also meaningful not to reset a clock.

– Strong firing policy: in a strong semantics, when the upper bound of the interval
associated with a clock is reached, transitions must fire instantaneously, until the
clock is reset. The clock can go beyond the upper bound of the interval, if there is
no possible instantaneous sequence of firings, in which case dead tokens are usually
generated. This generally models a bad behaviour, since tokens become too old to
satisfy the timing constraints.

– Weak firing policy: in this case, the clock leaving the interval prevents the associated
firings from taking place. Dead tokens may also be generated, but this time they are
considered part of the normal behaviour of the net.

– Monoserver setting: each interval only has one associated clock, which usually
denotes a single task processing.

– Multiserver setting: each interval has more than one associated clock, which usually
denotes the handling of several similar tasks. In this setting, each clock evolves
independently of the others.

Time Petri Nets. We consider in this paper the Time Petri Net model [4], where time
intervals are associated with transitions. The semantics is strong and monoserver. Time
Petri Nets are appropriate for modelling real-time systems. More formally:

Definition 10 (Time Petri net). A Time Petri Net is a tuple 〈P, T, Pre, Post, S 0, α, β〉
where:

– 〈P, T, Pre, Post, S 0〉 is a (marked) P/T net.
– α : T �→ Q+ and β : T �→ Q+ ∪ {∞} are functions satisfying ∀t ∈ T, α(t) ≤ β(t)

called respectively earliest (α) and latest (β) transition firing times.

Functions α and β are the instantiation of I in Generic Time Petri nets (see definition 9)
for Time Petri nets.

Given a marking M, we write En(M) = {t ∈ T | M[t〉} for the set of transitions
enabled in M. A clock is implicitly associated with each transition and a state of the
system is a pair (M, v), where M is a marking and v ∈ REn(M)

+ is a mapping associating
a clock value with each transition enabled in M.

We now define the enabling rule and firing rule of Time Petri nets.

Definition 11 (Time Petri net enabling rule).
A transition t ∈ T is time enabled in state (M, v), denoted by (M, v)[t〉, if:

– it is enabled, i.e. M[t〉, and
– v(t) ∈ [α(t), β(t)].
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Definition 12 (Time Petri net firing rule).
From a state (M, v), two types of transitions are possible:

– if transition t ∈ T is time enabled in state (M, v), firing t leads to state (M′, v′),
denoted by (M, v)[t〉(M′, v′), where:
• ∀p ∈ P, M′(p) = M(p) − Pre(p, t) + Post(p, t), as usual,
• ∀t′ ∈ En(M′), v′(t′) = 0 if t′ is newly enabled (explained below), and v(t′)

otherwise.
– if ∀t ∈ En(M), v(t) + d ≤ β(t), time elapsing by delay d ∈ R+ leads to state (M, v′),

where v′(t) = v(t) + d for all t ∈ En(M).

Various definitions have been proposed for newly enabling of a transition [2,26]. A
common one, called intermediate semantics, states that transition t′ is newly enabled by
the firing of t if:

– t′ belongs to En(M′) and
– either t′ = t or t′ is not enabled in M − Pre(., t) (where Pre(., t) denotes the vector

(Pre(p, t))p∈P).

3 An Engineering Approach to Extension and Composition

In considering extensions to the common Petri net types in parts 1 and 2 of the ISO/IEC
15909 standard, we wish to capture the extensions so that they are as flexible as possible,
and hence applicable to multiple Petri net types. This is an engineering challenge like
any software design — its success will be measured by a number of non-functional
properties like extensibility, maintainability, usability and reusability.

In aiming for this goal, we wish to define extensions as “pieces of semantics” that are
orthogonal. The term orthogonal has been applied in the literature to language design
in a variety of ways depending on the context. We first review some of the literature on
this notion before indicating how we propose to apply it in the standard.

3.1 The Notion of Orthogonality

Orthogonality for Programming Languages. In the context of programming lan-
guage design, Pratt and Zelkowitz put it this way [24]: “The term orthogonality refers
to the attribute of being able to combine various features of a language in all possible
combinations, with every combination being meaningful. [...] When the features of a
language are orthogonal, then the language is easier to learn and programs are easier
to write because there are fewer exceptions and special cases to remember.”

IBM [12] defines orthogonality with respect to extensions on top of a base language
as follows: “An orthogonal extension is a feature that is added on top of a base without
altering the behaviour of the existing language features. A valid program conforming to
a base level will continue to compile and run correctly with such extensions. The pro-
gram will still be valid, and its behaviour will remain unchanged in the presence of the
orthogonal extensions. Such an extension is therefore consistent with the corresponding
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base standard level. Invalid programs may behave differently at execution time and in
the diagnostics issued by the compiler.

On the other hand, a non-orthogonal extension is one that can change the semantics
of existing constructs or can introduce syntax conflicting with the base. A valid program
conforming to the base is not guaranteed to compile and run correctly with the non-
orthogonal extensions.”

Palsberg and Schwartzbach [23] argue that for object-oriented languages, class sub-
stitution is preferred to generic classes because it better complements inheritance as a
mechanism for generating new classes:

– Just like with inheritance, class substitution can be used (repeatedly) to build new
(sub-)classes (p. 147)

– Class substitution is orthogonal to inheritance (p. 147), which is made precise as
follows (p. 152):
• if a class D can be obtained from C by inheritance, then D cannot be obtained

from C by class substitution; and
• if a class D can be obtained from C by class substitution, then D cannot be

obtained from C by inheritance.

The common thread in the above references is that orthogonality of language features
embodies both independence and consistent composition. As examples we might note
the following:

– “The length of time data is kept in storage in a computer system is known as its
persistence. Orthogonal persistence is the quality of a programming system that
allows a programmer to treat data similarly without regard to the length of time the
data is kept in storage.” [27]

– C has two kinds of built-in data structures, arrays and records (structs). It is not or-
thogonal for records to be able to be returned from functions, but arrays cannot. [8]

– In C, a + b usually means that they are added, unless a is a pointer [in which case]
the value of b may be changed before the addition takes place. [8]

Similar concerns are raised by Szyperski in his study of component software. He iden-
tifies an important paradigm of independent extensibility [29]. The essential property is
that independently developed extensions can be combined (p. 84). He notes that tradi-
tional class frameworks are specialised at application construction time and thereafter
disappear as no longer separable parts of the generated application. He argues for in-
dependently extensible systems to specify clearly what can be extended — each one
of these is then referred to as a dimension of (independent) extensibility. These dimen-
sions may not be orthogonal, e.g. extensions to support object serialisation will overlap
extensions to support persistence.

Orthogonality for Concurrent Systems. The term orthogonality has also been ap-
plied in other contexts, and these uses are especially pertinent to our concerns with a
formalism that embodies concurrency.

In the context of the Unix shell, Raymond understands orthogonality to mean side-
effect free [25]. In the context of extensions to the Unix C-shell, Pahl argues that
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“language extension is presented as a refinement process. [...] The property we want
to preserve during the refinement process is behaviour, also called safety refinement
elsewhere. [...] Behaviour preservation is in particular important since it guarantees
orthogonality of the new feature with the basic language.” [22]. In the context of state
charts, orthogonality is presented as a form of conceptual concurrency which is cap-
tured as AND-decomposition [9].

3.2 Application to Petri Net Extensions

It is our intention to apply the above experience from language design to the formulation
of extensions to the base Petri net formalisms, so that we arrive at a set of orthogonal
extensions. As implied by the above discussion, this is an engineering or aesthetic goal
rather than a theoretical one, and its success will be measured by a number of non-
functional properties, including the number of extensions that can be accommodated
before the metamodel architecture needs to be refactored.

Firstly, we recall that where orthogonality is defined with respect to extensions on
top of a base language it was stated that: “An orthogonal extension is a feature that
is added on top of a base without altering the behaviour of the existing language fea-
tures.” In this regard, if we were considering a step semantics, we would follow the
example of Christensen and Hansen who observed that for inhibitor or threshold arcs,
any upper bound on a place marking ought to take into account the tokens added by the
step [5]. This would be required for a step semantics if the diamond rule is to hold for
concurrently enabled transitions.

Secondly, we note that orthogonality embodies both independence and consistent
composition of the language elements. In our subsequent discussion, this applies to the
addition of inhibitor arcs and prioritised transitions. These extensions involve disjoint
attributes and therefore do not interfere with each other and can be applied in any order.

Thirdly, we note that in the context of concurrent systems and specifically the Unix
shell, orthogonality has been understood as requiring extensions to be side-effect free.
For this reason, we do not currently contemplate extensions like that of Reference nets
as implemented in Renew (the Reference Nets Workshop [17]), where transitions can
be annotated with arbitrary (Java) code segments which then prompts warnings in the
user guide of the pitfalls of side effects.

Fourthly, in line with Pahl’s approach to the Unix C-shell, we propose to capture
Petri net extensions in terms of behaviour-preserving refinement. In line with earlier
work [30,19], the extension of a base net N to an extended version N′ is defined as a
morphism: φ : N′ → N. A morphism respects structure and behaviour and thus the com-
ponents of one object are mapped by the morphism to their counterparts in the other. It
is more usual to consider the morphism as mapping the extended form to the base form.
Thus, for example, the (possibly) extended or embellished set of transitions is mapped to
the simpler set, rather than vice versa. Where the extension introduces new attributes and
constructs then φ will essentially be a restriction mapping which ignores the additional
components. Where the extension modifies existing attributes and constructs then φwill
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essentially be a projection mapping. Note that we do not here consider the forms of
refinement appropriate to node refinement, where a node is refined by a subnet.

For example, we might take P/T nets as our base Petri nets. If we extended these with
inhibitor arcs, then, in mapping from the extended to the base form φwould ignore those
arcs. On the other hand, if we extended the base Petri nets so that all tokens included a
time attribute, then φ would project out that additional attribute.

In characterising Petri net extensions, we focus on the firing rule introduced above
and specifically the boolean enabling function: E : N × T → B, where N is the set
of Petri nets. In fact, it is more convenient to work with an extended version in terms
of steps, Y, (i.e. sets of transitions), giving E : N × P(T ) → B.2 We will also need
to refer to the firing rule, which we characterise as a mapping from states to states:
[ 〉 : S → S . Note that we use the more general term state in preference to marking
because we envisage that some extensions may introduce additional state components,
such as a global clock.

Our primary requirement for orthogonal extensions is that extensions maintain be-
havioural consistency with the base formalism:

1. φ(E′(N′, Y′))⇒ φ(E′)(φ(N′), φ(Y′))
In words: if the enabling condition holds in the extended net, then the corresponding
(abstracted) enabling condition holds in the base net.

2. S ′1[Y′〉S ′2 ⇒ φ(S ′1)[φ(Y′)〉φ(S ′2)
In words: if the step Y′ causes a change of state from S ′1 to S ′2 in the extended
system, then the corresponding step φ(Y′) effects the corresponding change of state
from φ(S ′1) to φ(S ′2) in the base system. Note that if φ(Y′) is null (because the step
is part of the additional components and thus ignored by φ), then this should have
no effect on the base system state, i.e. φ(S ′1) = φ(S ′2).

For simplicity, we prefer to work with a more constrained version of the first condi-
tion: E′(N′, Y′) = φ(E′)(φ(N′), φ(Y′)) ∧ E′′(N′, Y′), where E′′ supplies an augmenting
constraint in addition to the enabling rule in the base system3. Of course, there is no
guarantee that this approach will always be applicable, but where it is, the commuta-
tivity and associativity of the conjunction operation will facilitate the orthogonality of
extensions which are disjoint (as noted above for inhibitor arcs and prioritised nets).

The essential element of the extension mechanism contemplated above is that it con-
stitutes a form of refinement that maintains behavioural consistency, in line with Pahl4.
He argues that “Behaviour preservation is in particular important since it guarantees
orthogonality of the new feature with the basic language”.

We extend this to independence of multiple extensions by requiring that they can
be applied in any order and the result is the same. This corresponds to requiring that

2 While restricting our attention to an interleaving semantics, the use of steps is desirable, es-
pecially when the extension introduces additional kinds of transitions or actions (such as the
elapse of time). Then the morphism will be a restriction which ignores those additional tran-
sitions and the behaviour corresponding to these transitions in the base system will be null.
Thus, our steps will typically be singleton or empty sets.

3 This has been motivated by the use of conjunction for refining class invariants and pre- and
post-conditions in Eiffel [20].

4 Quoted in section 3.1.
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for two morphisms, φ and ψ, the square of Fig. 1 commutes. As an example of this,
we might consider the combination of both priorities and time to simple P/T nets. The
interesting question is how the elapse of time would work in such a system — should
time be allowed to elapse when no priority-enabled transition becomes disabled, or
when no enabled transition becomes disabled. The former choice would contradict the
requirement that we should be able to add the refinements in either order.

N’’’

N

N’

N’’

f

y

f

y

Fig. 1. State space for simplified Petri net for device message generation

Against the general background of orthogonality considered in section 3.1, this ap-
proach also has the following properties:

– In line with Raymond, our extensions are side-effect free, in the sense that the only
way for the extended system to affect the state of the base system is for the action
of the extended system to map to an appropriate action in the base system. Thus, if
a different kind of action is introduced, e.g. a procedure call, then it cannot affect
the underlying marking.

– In line with IBM’s definition of orthogonality, an orthogonal extension is a feature
added on top of a base without altering the behaviour of the existing language fea-
tures. This is especially clear if we require extensions to have an identity element,
e.g. a prioritised net where all priorities are the same, or a timed net where the
timing conditions never constrain the firing of the transition.

– The requirement by Pratt and Zelkowitz that an orthogonal language feature can
be added to all other (relevant) existing constructs is not addressed by our proposal
above — it is a matter for the language designer (or in this case, the designer of
the Petri net extension). As in the case of the Unix shell, an orthogonal extension is
side-effect free.

Petri Nets Firing Rule Revisited. In the context of Petri net extensions, it is our in-
tention to ensure that extensions are side-effect free and that they will be formalised as
behaviour-preserving refinements. To do so, let us revisit the definition of a firing rule
in the context of the interleaving semantics [6]:

1. Computation of T ′ = ∪{ti}, the set of enabled transitions. In other words T ′ is
the subset of T for which E(N ∈ N , ti ∈ TN) = true. E is the enabling function
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E : N × T → B, which has two parameters — a net within a net type N ∈ N =
〈P, T, Pre, Post, S 〉 and the transition t ∈ TN to which it applies. E is defined as
follows:

E(N ∈ N , t ∈ TN) :

{
True when t is firable
False otherwise

Note that S of N ∈ N denotes the current state of net N. For a P/T net or a Priori-
tised Net, it is simply the current marking M, while for Time Petri Nets, it corre-
sponds to (M, v) as defined in section 2.3.
Thus firability of a given transition t ∈ TN can be checked. This is also the case in
later definitions of enabling rules.

2. Selection of one t ∈ T ′ to be fired, or some action like the elapse of time as in the
case of Time Petri Nets;

3. Update of the state of N.

Note that Time Petri Nets allow models to evolve by firing a transition or by having
time elapse. Step 2 of our firing rule caters for such alternative actions by insisting that
one action be chosen at each step. Definition 12 ensures that the advance of time does
not disable any already enabled transitions. In this way, we eliminate the possibility of
side effects when there are two concurrent ways for the model to evolve. Thus, at this
stage, the absence of side effects between enabling conditions appears to be a sufficient
requirement to fit within our framework.

In the following section, we revisit in a compositional way some firing rules of well
known types of Petri nets and associated features (inhibitor arcs, time and priorities
management). Then, we compose them to build more elaborate Petri net types.

3.3 Revisiting Basic Enabling Functions and Augmenting Constraints

We now present the enabling functions for P/T nets and their augmenting constraints
for inhibitor arcs, time (in the sense of [4]) and priorities (in the sense of [18]) in the
framework we have developed above.

Enabling Rule for P/T Nets. Let us define Ept(N, t) that returns true when the marking
of input places is sufficient:

Ept(N ∈ N , t ∈ TN ) :

{
True iff ∀p ∈ •t, M(p) � Pre(p, t)
False otherwise

(1)

Enabling Rule for Priorities. Let us define the augmenting constraint Ep(N, t) that
returns true when prio(t) has of the lowest value over the net:

Ep(N ∈ N , t ∈ TN) :

{
True iff ∀t′, ρ(M, t) � ρ(M, t′)
False otherwise

(2)

The enabling condition for P/T nets with priorities is thus:

Enp(N, t) = Ept(N, t) ∧ Ep(N, t) (3)
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Enabling Rule for Time Conditions. Let us define the augmenting constraint Ett(N, t)
that returns true when the local v(t) associated with t is in the range [α, β] (constants
associated with t).

Ett(N ∈ N , t ∈ TN) :

{
True iff v(t) � α(t) ∧ v(t) � β(t)
False otherwise

(4)

The enabling condition for P/T nets with timing constraints is thus:

Ent(N, t) = Ept(N, t) ∧ Ett(N, t) (5)

Note that equation 5 is consistent with definition 11 (enabling function) assuming that
the generic firing rule still allows the action corresponding to the elapse of time.

Augmenting Constraint for Inhibitor Arcs. Let us define the augmenting constraint
Ei(N ∈ N , t ∈ TN) that returns true when there are less tokens than the value specified
on the inhibitor arc (Prei(p, t) � 0).

Ei(N ∈ N , t ∈ TN ) :

{
True iff ∀p ∈ •t s.t. Prei(p, t) > 0 : Prei(p, t) > M(p)
False otherwise

(6)

Composing Inhibitor Arcs with Defined Net Types. We can now combine the defi-
nition of the inhibitor arc augmenting constraint with the net types we already defined,
to build P/T nets with inhibitor arcs (equation 7), Prioritised nets with inhibitor arcs
(equation 8), Time nets with inhibitor arcs (equation 9), Time nets with inhibitor arcs
and priorities (equation 10). More combinations can be elaborated.

Epti(N, t) = Ept(N, t) ∧ Ei(N, t) (7)

Enpi(N, t) = Enp(N, t) ∧ Ei(N, t) = Ept(N, t) ∧ Ep(N, t) ∧ Ei(N, t) (8)

Enti(N, t) = Ent(N, t) ∧ Ei(N, t) = Ept(N, t) ∧ Ett(N, t) ∧ Ei(N, t) (9)

Entpi(N, t) = Ent(N, t) ∧ Ei(N, t) ∧ Ep(N, t) = Ept(N, t) ∧ Ett(N, t) ∧ Ei(N, t) ∧ Ep(N, t) (10)

Discussion. Now we have established a framework that encompasses the formal defi-
nitions of several types of Petri nets. Only interleaving semantics is considered so far.
Moreover, if P/T nets constitute our base Petri nets, the framework could work with
Symmetric Nets or High-Level Nets as well since the enabling functions defined in
this section refer to the notion of state for which only the structure of the marking is
impacted by colours. We do not detail this more due to space limitation.

In the next section, we present the MDE-based framework to compose Petri net types in
a similar way to the formal framework presented here. Then section 5 shows how pri-
oritised and time nets can be elaborated in PNML thanks to the MDE-based framework.
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Place/Transition nets

PNML Core Model

Symmetric nets

High-level Petri nets

«merge» «merge»

«merge»

Fig. 2. Metamodels architecture currently defined in ISO/IEC-15909 Part 2

4 A MDE Framework to Extend and Compose Petri Net Types

As highlighted in the previous section, orthogonality of augmenting constraints as well
as the semantic compatibility of firing rules are crucial for the formal definitions to work
properly. At the syntactic level, upward compatibility is important as well. We consider
upward compatibility as the ability to extract a base net type from its extended version.

We show in this section how the formal concepts developed earlier could be pro-
jected onto the metamodel architecture of the standard, thus yielding a model-based
framework to extend and compose Petri Net types.

4.1 Current Metamodels Architecture

Figure 2 shows an overview of the metamodels architecture currently defined in Part 2
of the standard [11]. This architecture features three main Petri net types: P/T, Sym-
metric and High-level Petri nets. They rely on the common foundation offered by the
PNML Core Model. It provides the structural definition of all Petri nets, which consists
of nodes and arcs and an abstract definition of their labels. There is no restriction on
labels since the PNML Core Model is not a concrete Petri net type.

Such a modular architecture favours reuse between net types. Reuse takes two forms
in the architectural pattern of the standard: import and merge package relationships,
as defined in the UML 2 standard [21].
Import is meant to use an element from another namespace (package) without the

need to fully qualify it. For example, when package A includes: import B.b, then in A
we can directly refer to b without saying B.b. But b still belongs to the namespace B.
In the ISO/IEC 15909-2 standard, Symmetric nets import sorts packages such as Finite
Enumerations, Cyclic Enumerations, Booleans, etc.
Merge is meant to combine similar elements from the merged namespace to the

merging one. For example, let us assume that A.a, B.a and B.b are defined. If B is
merged into A (B being the target of the relationship), it will result in a new package A’:

– all elements of B now explicitly belong to A’ (e.g., A’.b);
– A.a and B.a are merged into a single A’.a which combines the characteristics of

both;
– actually, since A is the merging package (or the receiving package), A becomes A’

(in the model, it is still named A).
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High-level Petri nets

Symmetric nets

Lists

Strings

Integers

ArbitraryDeclarationsTerms

«merge»«import»

«import»

«import»

«import»

«import»

«import»

«import»

«merge»

Fig. 3. Modular construction of High-level Petri Nets based on Symmetric Nets

Merge is useful for incremental definitions (extensions) of the same concept for differ-
ent purposes.

In the standard, this form of reuse is implemented for instance by defining P/T nets
upon the Core Model and High-level nets upon Symmetric nets, as depicted in Figure 2.
Therefore, Symmetric net elements and annotations are also valid in High-Level Petri
nets (but not considered as Symmetric nets namespace elements anymore).

This extensible architecture is compatible with further new net type definitions, as
well as with orthogonal extensions shared by different net types. These two extension
schemes are put into practice for defining Symmetric nets and High-level nets as dis-
cussed in the next section. Prioritised Petri nets, presented in sections 2.2 and 5.1 are
also defined using the same extension schemes.

4.2 Standard Nets Types Modular Definition

With the two forms of reuse, namely import and merge, Symmetric Nets are defined in
the standard upon the PNML Core Model and High-level Petri Nets are defined upon the
Symmetric Nets.

Figure 3 shows how High-level Petri Nets are defined. The merge relationship en-
ables the reuse of the common foundation provided by Symmetric Nets. The provided
concepts are now fully part of the High-level Petri Nets namespace. Then, with the
import relationship, sorts specific to High-level Petri Nets (Lists, Strings, Integers and
Arbitrary Declarations) are integrated to build this new type.

The definition of Symmetric Nets follows the same modular approach (see Figure 4),
where the package of Symmetric Nets merges the PNML Core Model and imports the al-
lowed sorts, the carrier sets of which are finite. The Terms package provides the abstract
syntax to build algebraic expressions denoting the net declarations, place markings, arc
annotations and transition guards.

4.3 Extended Metamodels Architecture Framework

From the common layout of the standards metamodels, we can extract an architectural
pattern which could be used to extend them in order to build new net types.

Figure 5(a) describes such a pattern. The new net type XX Extension YY Petri
Net is built upon an existing Petri net type, which is represented by YY Petri net and
an extension (e.g. priority, time), which is represented by XX Extension. The new net
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Symmetric nets

PNML Core Model
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FiniteEnumerations

FiniteIntRanges
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DotsTerms
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«import»

«import»

«import»

«import»

«import»«import»

«import»

«import»

«import»

«import»
«import»

«import»

Fig. 4. Modular construction of Symmetric Nets based on PNML Core Model

type package imports the extension package, while it merges the existing net one. This
is consistent with the semantics of reuse in the standard architectural pattern, through
the import and merge relationships.

Note that combining independent extensions boils down to performing a conjunct
of several firing rules, which is in essence commutative. Thus, in that case, applying
XX and YY extensions can be done in either order. On another hand, if one extension is
further extended, then these two extensions are no longer independent, and cannot be
applied in a different order.

Figure 5(b) describes the case where the new type is built upon existing net types
only, which have already embedded their own extensions. The observed pattern is then
composed only of the merged ones. This means all building blocks needed to build
the new net type package come from the ones being merged. Therefore, no additional
constructs are necessary. If any specific extension to the new net type is required, then
the pattern of Figure 5(a) is applied.

5 The MDE-Framework Applied to Nets with Priorities and Time

We now use the model-based framework previously defined to build new net types
through extension and composition of metamodels. First, PT-Nets with static and

XX Extension YY Petri Net

XX Extension YY Petri Net

«import» «merge»

(a) Based upon existing type and an ex-
tension

YY ZZ Petri Net

YY Petri Net ZZ Petri Net

«merge» «merge»

(b) Based only upon existing types

Fig. 5. Modular construction of a new net type
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XX Priority YY Petri Net

XX Priorities

«import»

YY Petri Net

«merge»

Fig. 6. Modular construction of prioritised Petri Nets metamodels

dynamic priorities are built, then PT-Nets with time. Afterwards, we present more
elaborate compositions which are the projections of some of the later equations from
section 3.3.

5.1 Metamodels for PT-Nets with Priorities

A prioritised Petri net basically associates a priority description with an existing stan-
dardised Petri net, thus building a new Petri net type. The metamodel in Figure 6 illus-
trates this modular definition approach, in line with the pattern of Figure 5(a). It shows
a blueprint for instantiating a concrete prioritised Petri net type, by merging a concrete
Petri net type and importing a concrete priority package. The XX Priorities package
is the virtual representation of a concrete priority package and the YY Petri Net is
the virtual representation of a concrete Petri net type.

For example, Figure 7 shows a prioritised PT-Net using static priorities only. It is
built upon a standardised PT-Net which it merges, and a Priority Core package,
which it imports. The Priority Core package provides the building blocks to define
Static Priorities, as depicted by Figure 8.

The purpose of the Priority Core package is to provide:

– the root metaclass for priorities, represented by the Prioritymetaclass;
– a priority level, which is an evaluated value represented as a property of the
Prioritymetaclass;

– the ordering policy among the priority values of the prioritised Petri net. This or-
dering policy is represented by the PrioOrderingPolicymetaclass.

The purpose of priority levels is to provide an ordered scalar enumeration of values such
that either the higher the value, the higher the priority, or the lower the value, the higher

PetriNet Priority Core::PrioOrderingPolicy

Transition Priority Core::Priority

ordering

priority

Static Priority PT-Net

PT-NetPriority Core

«import» «merge»

Fig. 7. Prioritised PT-Net metamodel showing how the priority description is attached
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Fig. 8. Core package of priorities

Dynamic Priority PT-Net

Dynamic Priorities PT-Net

«import» «merge»

(a) Prioritised PT-Net

Priority Core

Dynamic Priorities Priority Operators

«import»

«import»

(b) Dynamic priorities

Fig. 9. Prioritised PT-Net metamodel using dynamic priorities

the priority. With the Priority Core package, and thanks to the Priority meta-
class, static priorities can thus be attached to transitions, as in the Static Priority
PT-Net shown in Figure 7.

Using the same approach, Figure 9(a) shows a prioritised PT-Net which uses dynamic
priorities. Dynamic priorities are built upon Priority Core.

This modular construction follows the extension schemes adopted so far in the PNML
standard, explained earlier in this section. For instance, High-Level Petri nets build
upon Symmetric nets that they merge, and new specific sorts (such as List, String and
arbitrary user-defined sorts) that they import. The use of the merge and import rela-
tionships is therefore consistent.

This approach is consistent with the idea that a new Petri net type subsumes the
underlying one it builds upon, but the algebraic expressions it reuses are generally or-
thogonal to net types. Next, we introduce the metamodel for priorities.

Priority Metamodel. Prioritised Petri nets augment other net models (e.g. P/T or Sym-
metric nets) by associating a priority description with the transitions. Such priority
schemes are of two kinds:

– static priorities, where the priorities are given by constant values which are solely
determined by the associated transition5;

– dynamic priorities, where the priorities are functions depending both on the transi-
tion and the current net marking.

Figure 9(b) shows the modular architecture of priorities metamodels. The Priority
Core package (detailed in Figure 8) provides the building blocks to define both Static

5 For high-level nets such as Coloured nets, the priorities are given by constant values which are
solely determined by the associated binding element.
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Fig. 10. Dynamic priorities and priorities operators packages

Priorities and Dynamic Priorities. However, dynamic priorities are further de-
fined using Priority Operators. Dynamic priorities can encompass static ones by
using a constant function (for the sake of consistency in the use of priority operators).

Figure 10 shows how the Dynamic Priorities metamodel is built. A Dynamic-
Priority is a Priority Core::Priority. It contains a priority expression (Prio-
Expr). A concrete priority expression is either a PrioTerm which represents a term, a
PrioConstant which holds a constant value or MarkingRef which will hold a refer-
ence to the marking of a place.

Note that the actual reference to the metaclass representing markings is missing. It
must be added as an attribute (named ref) to MarkingRef once the concrete prioritised
Petri net type is created. Its type will then be a reference to the actual underlying Petri
net type Placemetaclass, which refers to the marking.

A PrioTerm is composed of an operator (PrioOperator) and ordered subterms.
This definition enables priority expressions to be encoded in abstract syntax trees (AST).
For example, the conditional priority expression: if M(P2) > 3 then 3 × M(P2) else
2 × M(P1), is encoded by the AST of Figure 11, assuming that:

– P1 and P2 are places;
– M(P1) and M(P2) are respectively markings of P1 and P2.

Guarded
Expression

GreaterThan

MarkingRef
"P2"

Multiplication Multiplication

PrioConstant
"3"

PrioConstant
"3"

PrioConstant
"2"

MarkingRef
"P2"

MarkingRef
"P1"

Fig. 11. AST of the conditional expression: if M(P2) > 3 then 3 ∗ M(P2) else 2 ∗ M(P1)
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The priority operators are gathered within the Priority Operators package to allow
for more flexibility in extending this priority framework. New operators can thus be
added easily to this package.

Note that all these operators can also be found in ISO/IEC 15909-2, but are scat-
tered among different sorts packages, being directly tied to the most relevant sort. For
the next revision of the standard, we suggest that they be gathered in separate and ded-
icated packages (e.g. arithmetic operators, relational operators, etc.). This refactoring
will allow for more reusability across different Petri net type algebra definitions.

5.2 Metamodels for PT-Nets with Time

Building a metamodel for TPNs starts with defining the metamodel for time features.
We apply the same modular definition approach introduced in earlier sections. Regard-
ing the particularly rich extension domain of TPNs, we explored several design choices.
To ease the extensibility of this family of Petri nets, we sought to maximise the mod-
ularity of the definitions of the different concepts. The metamodel for time features
presented in Figure 12 shows two packages, each containing a set of related features.

Package Time4PetriNets provides the building blocks to include time intervals
and associated clocks, repectively represented by TimeInterval and Clock meta-
classes. Package Semantics4TPNprovides the different representation of the semantics
for TPNs, as presented in section 2.3.

Since TPNs have a rich extension domain, Semantics4TPN is intended to be a flexi-
ble and easily extendable package for the different semantics. We thus have metaclasses
for representing firing policies, reset policies and the server settings in TPNs. They are
defined in another package which is imported by Semantics4TPN. That package is not
shown here since it is too detailed for the granularity level of this example.

Using the metamodel for time features, we now define the metamodel for Time Petri
nets, where time intervals are attached to transitions. Figure 13 shows such a meta-
model, where the semantics policies are attached to the net itself, represented by the
Petrinet metaclass. The new Petri net type package merges that for P/T nets, so as
to be able to build upon existing constructs from P/T nets, within a new namespace.
Note that, since a Petri net evolves using a single semantics only, it is attached to the
whole model. The corresponding metaclasses are therefore attached to the net node in
figure 13.

In a TPN the semantics is monoserver, strong and clocks are reset upon firing of
newly enabled transitions. This can be specified by OCL constraints which will be

- currentValue: Real
Clock

- lowerBound: Real
- upperBound: Real

TimeIntervalintervalclocks

11..n

Time4PetriNets

Semantics4TPN

ClocksServerClocksResetFiring

Fig. 12. Time features for TPNs
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Fig. 13. Time Petri nets

globally attached to the Semantics4TPN package. These constraints are not presented
so as to avoid cluttering the example.

These extensions of P/T nets by time features to build Time Petri nets can be re-
moved, thus easily falling back to P/T nets, in line with the direction stated in sec-
tion 3.2. With such a modular definition approach, it is easy to define the metamodel
for P-time Petri nets6 (P-TPN) and A-time Petri nets7 (A-TPN). For instance, in the
new metamodel of P-TPN, the Place metaclass is associated with TimeInterval and
OCL constraints are updated so that the multiserver semantics is taken into account.

Next, orthogonality of combined features is fully implemented, through the defini-
tion of Time Prioritised Petri nets.

5.3 Metamodels for PT-Nets with Time and Priorities

We now consider building Dynamic Priority Time Petri nets (DPTPN), where two or-
thogonal extensions to P/T nets are combined. The features provided by these exten-
sions are dynamic priorities and time. To do so, two main building blocks, already
defined in earlier sections are needed:

– Dynamic Priority Petri nets, whose metamodel is shown in Figure 9(a), and
– Time Petri nets, whose metamodel is shown in Figure 13.

Figure 14 depicts the metamodel of DPTPNs, where the new Petri net type package
merges the Dynamic Priority PT-Net and the TPN ones. No additional construct is
needed in the new package. Every concept comes from the building blocks, i.e. the
merged packages.

Indeed, in the new package, the Transition metaclasses from the building blocks
are merged, yielding a resulting metaclass which holds a composition relationship with
Dynamic Priorities::DynamicPriority (see Figure 10) and another composition

6 Based on [3], time intervals are associated with places, semantics is multiserver and strong.
7 Based on [3], time intervals are associated with arcs, semantics is multiserver and weak.
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Prioritised TPN

Prioritised PT-Net TPN

«merge» «merge»

Fig. 14. Prioritised TPN builds upon existing
orthogonal net types

Prioritised Inhibitor TPN

Prioritised TPN Inhibitor PT-Net

«merge» «merge»

Fig. 15. Prioritised Inhibitor TPN builds upon
existing orthogonal net types

relationship with TPN::TimeInterval (see Figure 13). The same applies to the re-
sulting PetriNetmetaclass formed by merging those from TPN and Dynamic Priority
PT-Net.

Orthogonality is fully implemented in extending P/T nets through the composition of
these two extensions. Whenever TPN is removed, the whole metamodel will fall back
to Dynamic Priority PT-Net. Whenever Dynamic Priority PT-Net is removed, it will fall
back to TPN. Whenever both extensions are removed, the metamodel will fall back to
the one of P/T nets.

Next, we go one step further, by composing this new net type with special arcs.

5.4 Metamodel for PT-Nets with Time, Priorities and Special Arcs

Finally, we want to build DPTPNs with special arcs, such as inhibitor arcs, as defined
in equation 10. But first, let us define a metamodel for inhibitor PT-Nets.

Figure 16 shows the modular construction of inhibitor PT-Net, which reflects equa-
tion 7. The Inhibitor PT-Net package is actually sufficiently generic to be reused,
by just renaming it, to build another net type with another kind of arc (e.g. reset). It will
just require importing the new extension package, as a substitute for or in addition to
the InhibitorArcExtension one.

Every building block required to construct a metamodel for DPTPNs with inhibitor
arcs is now established. Figure 15 shows the straightforward modular construction of
this new net type.

6 Technological Issues and Discussion

This section discusses technological issues related to the implementation of this model
within the Eclipse Modeling Framework [28] (EMF).

InhibitorArc 
Extension

 - name = "inhibitor" 
Inhibitor

Inhibitor PT-Net

Label
Attribute

Place/Transition Net

«merge»

«import»

ArcArcType
arctype

1

Fig. 16. Modular construction of inhibitor PT-Net
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Current Implementation. The approach advocated here was implemented in PNML

Framework [10], which stands as one of the standard’s companion tools. PNML Frame-
work allows for handling Petri net types in a “Petri net way”, in order to avoid any XML

explicit manipulation. PNML Framework design and development follow model-driven
engineering (MDE) principles and rely on the Eclipse Modeling Framework.

The implementation was successful, its main steps being:

1. designing the new metamodels,
2. annotating them with PNML specific information (tags),
3. assembling them and,
4. pushing a button to generate an API able to manipulate the new Petri net types.

The specific code generated by our templates to export and import models into/from
a PNML file is created using the annotations decorating the metamodels in step 2. The
PNML Framework plugin for Prioritised Petri nets, generated as a proof of concept for
the presented extension approach, is available at http://pnml.lip6.fr/extensions.html. At this
stage, it is provided as an Eclipse project with the PNML-ready source code the reader
can browse and use. In the future, further updates with new net types will be provided
on that web page. With the provision of our tool, it will be possible for other tool
developers to define their own Petri net types, on top of existing ones.

Technological Limitations. We encountered some technological limitations during
step 3 of the process because EMF does not yet offer a very convincing merge operation
between models. The EMF Compare plug-in [7] seems to be a promising project towards
this goal, but it is not yet mature enough for our use of merge. The merge had to be
performed class by class, which is tedious for large metamodels.

OMG acknowledges that the UML package merge is too complex for tools to im-
plement. Even though the Eclipse UML2 plugin currently implements this operation, it
generates some inconsistencies.

Thus, to overcome this problem, we came to use the more robust import operation
between EMF models. The procedure is the following:

1. When the composition pattern is based on merging a single base type into the new
one:

– start from the base Petri net type,
– rename it as the new type,
– imports the extensions.

2. When more than one base Petri net type is involved:
– start from the one that was previously extended the most,
– loop to step 1.

Assessment within the Standardisation Process. The model driven development ap-
proach for the standard metamodels caters for extensibility maintainability, usability
and reusability. However, at this stage, quantitative evaluation requires experimenta-
tions by the community. This is planned within the standardisation process, especially
in part 3.

http://pnml.lip6.fr/extensions.html


68 L.M. Hillah et al.

Moreover, the standardisation team aims at evaluating the opportunity to provide a
more detailed description of the semantical aspects of Petri nets via the definition of the
enabling functions and firing rules.

7 Conclusion

In this paper, we have explored extensions suitable for part 3 of the Petri Net Stan-
dard. We have proposed a framework which justifies describing these extensions as
orthogonal. We have demonstrated how such extensions can be implemented in PNML
Framework, an MDE-based framework which is a companion tool to the standard. This
can be the stepping stone for a more general extension mechanism to integrate new Petri
net types within the standard.

The experiments presented in this paper rely on Place/Transition nets as a basis for
extension. We could equally well have as well chosen Symmetric Nets, or High-level
Petri nets. However, the presentation would have been longer and more clumsy with no
additional technical value.

Beside the immediate outcome for the Petri net community, we consider this as an
interesting contribution for handling formal notations by means of Model Driven En-
gineering techniques. So far, metamodel management is achieved through syntactical
aspects only. Our framework better captures the behavioural semantics of Petri nets by
connecting the enabling rule to the attributes of the Petri net objects.

Future work aims at building a composition framework encompassing a library of
existing net types and extensions, along with rules that express their semantic compati-
bility. This would provide safe guidelines for the construction of new net types, taking
advantage of reuse, and fostering sound contributions to the standard.

Acknowledgments. We thank Béatrice Bérard for her fruitful help with regards to the
time Petri nets aspects. We would also like to thank the anonymous reviewers for their
comments that enriched the paper.
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Abstract. Today, it is possible to generate major parts of a software
system from models. Most of the generated code, however, concerns the
structural parts of the software; the code that concerns the actual func-
tionality or behaviour of the software system is often still programmed
manually. In order to address this problem, we developed the notation
of coordination diagrams, which allows us to define the global behaviour
of a software system on top of existing class diagrams. One of the ma-
jor objectives of coordination diagrams was to make it easy to integrate
them and the code generated from them with existing structural models,
with existing code, and with other behavioural models. Basically, coor-
dination diagrams define how the local behaviour of the individual parts
of the software is coordinated with each other. The main concepts of
coordination diagrams and their semantics are stabilising now: We call
it the Event Coordination Notation (ECNO).

ECNO’s coordination diagrams define the global behaviour of a system
only: they define how the local behaviour is coordinated and jointly ex-
ecuted in so-called interactions. In principle, ECNO is independent from
a specific notation for modelling the local behaviour. For our experiments
with ECNO, however, we implemented a simple modelling notation for the
local behaviour,which is based on Petri nets:ECNOnets. Together, ECNO
coordination diagrams andECNOnets allow us to completely model a soft-
ware system, and generate executable code for it.

In this paper, we discuss the general idea of ECNO and of ECNO
nets. ECNO nets are implemented as a Petri net type for the ePNK tool,
together with a code generator that produces code that can be executed
by the ECNO execution engine.

Keywords: Model-based Software Engineering, Local and global be-
haviour modelling, Event coordination, Petri nets, Code generation.

1 Introduction

Software models and the automatic generation of code from these models are
becoming more and more popular in modern software development – as suggested
by the success of one of the major approaches, the Model Driven Architecture
(MDA) [1]. In many cases, however, modelling and code generation concern the
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structural parts (as for example defined by class diagrams) or the standard parts
of the software only; as soon as actual functionality or specific behaviour of the
software is concerned, these parts of the software are often still programmed
manually. As pointed out in our previous work [2], the reason that the code
for behaviour is often still programmed manually is not so much that there
are no modelling notations for behaviour or that it is difficult to generate code
from behaviour models. The actual reason is that it is tedious to integrate the
behaviour models or the code generated from them with the code generated from
the structural models or with pre-existing code of parts of the software.

Based on some earlier ideas [2–4], events can be used to identify points in
which different parts of the software could engage or participate; then, a coordi-
nation notation can be used for defining which partners can or must participate
in an event in a given situation; a combination of a set of events and the partici-
pating partners that meet the requirements of the coordination model in a given
situation, is called an interaction. This way, the overall behaviour of a system is a
result of the coordination and synchronisation of events combined with the local
behaviour of the different parts. The main concepts of the coordination notation
are fixed now; the resolution of some subtle issues requires more experience with
the practical use of the notation. In order to gain this experience, we have im-
plemented a prototype, which consists of a modelling part, which we call Event
Coordination Notation (ECNO), and a framework and engine for its execution.
From using this prototype, we hope to learn more about which constructs do
help to adequately model and coordinate behaviour and to collect efficiency and
performance results for larger systems and for more complex coordinations. This
way, we intend to fine-tune ECNO’s constructs and notation and to strike a bal-
ance between an adequate and smooth notation on a high level of abstraction
with sufficient expressive power and universality on the one hand, and efficient
and fast execution on the other hand.

ECNO focuses on the coordination of the behaviour of different parts of the
system, i. e. on global behaviour. The local behaviour would still be programmed
manually based on an API, which is part of the ECNO framework (see [5] for
more details). On the one hand, the possibility of programming the local be-
haviour in a traditional way, makes it possible to integrate ECNO with classical
software development approaches. We consider this possibility a major feature of
ECNO – in particular easing the gradual transition from programmed software
to fully modelled software. On the other hand, programming the local behaviour
is not in the spirit of model-based software engineering (MBSE). Therefore, we
started a sideline that is concerned with modelling the local behaviour of parts of
the software from which the code for the local behaviour could be generated fully
automatically. We use an extended version of Place/Transition-systems (P/T-
systems) [6, 7] for that purpose, which we call ECNO nets. The reason for using
Petri nets is mostly our own background in Petri nets and our generic tool, the
ePNK [8], which allows us to easily define new types of Petri nets and which is in-
tegrated to the Eclipse platform, which provides all the necessary infrastructure
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and technology for code generation from models and for software development
in general [9].

We discuss the main concepts of ECNO’s coordination diagrams in Sect. 2
and the concepts of ECNO nets in Sect. 3. The presentation is driven by a run-
ning example. The resulting implementation, the execution engine, and ECNO’s
current tool support are briefly discussed in Sect. 4. In the running example,
we focus on the main concepts of ECNO; some more advanced concepts are dis-
cussed in Sect. 5. The novelty of ECNO lies mainly in the new combination of
well-known and well-established concepts, which are discussed in Sect. 6.

2 The Event Coordination Notation

In this section, we discuss the main ideas and the main concepts of ECNO and
its coordination diagrams. We start with our running example in Sect. 2.1 and
summarise the main concepts in Sect. 2.2.

2.1 Example

We explain the concepts of ECNO by the example of a coffee (and tea) vending
machine. Figure 1 shows a class diagram1 with some extensions concerning events
and their coordination. Therefore, we call it a coordination diagram2.

Before explaining the extensions that concern the coordination, let us have
a brief look at it as a class diagram. The diagram shows the different types of
elements3 that are part of the system and their possible relations: A coin can
be close to the slot, which is represented by the reference from Coin to Slot, or a
coin can be in the slot, which is represented by the reference from Slot to Coin.
There is a Safe to which a coin is passed when a coffee or tea is dispensed. There
is a Panel for the user to interact with the vending machine. The panel can be
connected to controllers, which is represented by the reference from Panel to
Control. A controller is connected to brewers, which can be either coffee or tea
brewers. At last, there is an output device for the beverage, which is connected
to the brewers.

As a class diagram, Fig. 1 can have instances (in UML, this would be object
diagrams), each of which would represent a concrete configuration or situation
of a vending machine. Figure 2 shows the initial configuration of our vending
machine: There are three coins that are ready to be inserted to the slot, and
there are two coffee brewers and one tea brewer; for all other classes, there is
exactly one instance. Remember that, in the instances, the references of the class

1 For the experts: In the tool, this will be an Ecore diagram [9].
2 Note that coordination diagrams are fundamentally different from UML’s commu-

nication diagrams (see Sect. 2.2 for details).
3 In order to point out that our objects are a bit more than objects in the traditional

sense of object orientation, we call them elements throughout this paper. Accord-
ingly, we talk about element types instead of classes.
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Fig. 1. A class and coordination diagram

Fig. 2. A vending machine configuration

diagram are represented by links from one element to another (where a link’s
type is the resp. reference of the class diagram).

Now, let us explain the extensions concerning the coordination of events be-
tween the different elements in Fig. 1: First of all, there are some events men-
tioned in the operations sections of the different element types, like insert, pass,
and return_4 for Coin. This defines in which events the respective elements could
be involved (or participate in). The actual definition of these events is discussed
later (see Fig. 4). More importantly, the references between the different element
types are annotated with events and an additional quantifier, which can be 1 or
ALL. These coordination annotations define the coordination of events and the
participating elements: more precisely, for an element executing some event, it

4 Since return is a keyword of our target language Java, we use an additional underscore
in the event name return_.
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Fig. 3. Another vending machine configuration with two interactions high-lighted

defines which other elements need to participate in the execution of this event.
We call a combination of all the required elements and events an interaction.
Figure 3 shows another configuration of the vending machine after two coins
(cn2 and cn3) have been inserted to the slot. On top of this configuration, two
examples of interactions that are possible in this situation are indicated (note
that more interactions are possible, which are not shown here).

For explaining the meaning of coordination annotations, let us assume that
some element is involved in the execution of some event and that, in the coordi-
nation diagram, the type of this element has a reference that is annotated with
that event. Then, some elements at the other end of the respective links also
need to participate in the interaction. In Fig. 3, for example, panel p is involved
in the event coffee, which is indicated by the dashed line to the event coffee. For
panel p, the coordination annotation coffee:1 at the reference to control implies
that the control also needs to participate in the interaction with that event; in
turn, the reference from control to brewer annotated with coffee:1 requires that
also one brewer must participate: In the interaction that is outlined in Fig. 3,
the choice is coffee brewer cf1; but coffee brewer cf2 would be okay too – giving
rise to another interaction which is not outlined in Fig. 3. For reasons that will
become clear later, the control is required to participate in a pass event together
with a coffee event. This required pass event is again indicated by a dashed line
in Fig. 3. Because of the coordination reference from Control to Slot, the slot is
required to participate in the pass event too. The slot, in turn, has two references
annotated with pass:1, one to the class Coin and one to the class Safe, both of
which must be met. Therefore, one coin and one safe need to participate in the
interaction – this way, the coin will be passed from the slot to the safe, which
will be discussed in more detail later in Sect. 3.1. Altogether, this gives us an
interaction with six elements and two events as outlined in Fig. 3. Note that
another possible interaction in that situation is outlined at the top of Fig. 3.
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insert(Coin coin, Slot slot); reset(); coffee(); cup_in();
pass(Coin coin, Slot slot); cancel(); tea(); cup_out();
return_(Slot slot);

Fig. 4. Event type declarations

As discussed above, a coordination annotation refers to an event and has a
quantifier, which can be 1 or ALL. In the example above, we have discussed the
quantifier 1 already: this quantification means that one partner at the other end
of the links corresponding to that reference must participate.

If the event in the coordination annotation is quantified by ALL, all the ele-
ments at the other end of these links need to participate. In the situation shown
in Fig. 3, there are two coins inserted to the slot, which is represented by the two
links from the slot to the coins cn2 and cn3. If the slot participates in a return_
event, the annotation return_:ALL at the reference from Slot to Coin means, that
both coins must participate in the execution of the event return_, which, as we
will see later, actually returns all coins. Note that this interaction is not outlined
in Fig. 3 in order not to clutter the diagram.

Up to now, events have, basically, been used as names, which were used in co-
ordination annotations to identify other partners that need to participate in an
interaction. In addition to that, events can also be used to exchange information
between the partners of an interaction. To this end, events can have parameters.
The declarations of the events of our vending machine along with their parame-
ters are shown in Fig. 4: in order to distinguish them from the concrete instances
in interactions, we actually call them event types. At a first glance, the decla-
ration of an event type looks like a method declaration. In contrast to methods
however, event types or events do not have behaviour of their own. Events are
used only for synchronising participants in an interaction and to share informa-
tion between them. Moreover, events are shared between different elements and
do not belong to a particular element. This is why events are declared outside
a specific element and are types in their own right. In particular, events do not
have a caller or callee. Therefore, event parameters can be contributed in many
different ways, and by different elements. It is not defined in advance who will
provide and who will use the parameters and in which direction the values will
be propagated. ECNO’s semantics and the ECNO execution engine, however,
guarantee that all elements participating in an interaction have the same pa-
rameters for the same event (instance) – if two partners contribute inconsistent
values to the same event, the interaction is not possible. We will see some more
details of how the local behaviour of an element contributes parameters to an
event and how it uses them in Sect. 3.

A minor extension of coordination diagrams on top of class diagrams are
the GUI annotations. These annotations indicate which elements and events are
relevant to the end user: As the name GUI indicates, this is relevant for the GUI
part of the execution engine for generating buttons and user dialogs.
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2.2 Discussion and Summary of Concepts

Altogether, ECNO’s coordination diagrams extend class diagrams by the explicit
definition of events, resp. event types, and coordination annotations, which define
in which way different elements need to participate in an interaction.

In a given configuration, an interaction can be represented as a set of elements,
where each element is associated with some instances of events of some type.
Note that different elements can be associated with the same event instance and
that an element can be associated with more than one event (see Fig. 3). An
interaction is possible or valid in the given configuration, if for each element each
coordination annotation of its element type is valid :

– For an element, a coordination annotation e:1 is valid, if either the element
is not associated with an event instance of event type e at all, or if there
exists a link for the resp. reference to another element that is associated with
the same event.

– For an element, a coordination annotation e:ALL is valid, if either the element
is not associated with an event instance of event type e or if, for all links for
the resp. reference, all elements at the other end of these links are part of
the same interaction, and all these elements are associated with that same
event.

At a first glance, coordination diagrams look similar to UML’s communication
diagrams (also called collaboration diagrams in earlier versions of UML). But,
there are some fundamental differences between ECNO’s coordination diagrams
and UML’s communication diagrams: First of all, UML’s communication dia-
grams are defined on top of an object diagram; ECNO’s coordination diagrams
are defined on top of class diagrams. Moreover, communication diagrams define
the order in which messages are sent between the objects in a particular setting,
whereas coordination annotations can be considered as independent require-
ments on partners that must participate in an interaction. Methodologically, a
communication diagram is a kind of example scenario. By contrast, ECNO’s
coordination diagrams formulate rules that define which elements and events
need to participate in a valid interaction. In any given configuration, the coor-
dination diagram together with the local behaviour of the elements define all
currently possible interactions. When an interaction is, actually, executed no
order is specified among the different elements.

The basic mechanism for defining these coordination requirements is anno-
tating references of the class diagram with an event type and a quantifier. Each
of these annotations is bilateral. In combination, however, they can require that
many different elements participate in an interaction (cf. Fig. 3): First, there
might be different references for the same event, which require different other
elements to participate. Second, the other elements that are required to par-
ticipate might have references with annotations, which require further elements
to participate; in this way, establishing a chain or network of required elements
until all requirements are met. Third, an event annotation with quantifier ALL
requires that all the elements at the other end of the respective links participate.
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ready

1

brewing

c = coffee();

cup = cup_in();

r = reset();

Fig. 5. Local behaviour of the coffee brewer

Fourth, the local behaviour of an element can require the synchronisation of two
or more different events that all need to be part of the interaction. As we will
see later, the local behaviour of the control in Fig. 8 enforces the combination of
events coffee and pass. The required other event, may in turn impose additional
requirements on participating partners. This way, coordination diagrams define
the global behaviour of a system by coordination annotations based on the local
behaviour of its elements5.

A coordination diagram does not say anything about the possible local be-
haviour of the elements. In essence, the local behaviour answers the following
questions: when can an element participate in an event, what is the local effect
when the element participates in such an interaction, and which events need to
be executed together. The ECNO framework provides an API for programming
the local behaviour for every element [5]. In this paper, we discuss an extended
version of Petri nets for modelling such local behaviour.

3 Modelling Local Behaviour with ECNO Nets

The local behaviour of an element defines when and under which conditions the
element can participate in an event or in a combination of events, and it defines
what happens locally for the element when it participates in an interaction.

3.1 Examples

Not surprisingly, such local behaviour can be defined by a slightly extended
version of P/T-systems, which we call ECNO nets. We discuss the main concepts
of ECNO nets by the help of some elements from our running example first. The
concepts will then be clarified and explained in general in Sect. 3.2.

We start with a simple ECNO net, which models the local behaviour of the
coffee brewer. It is shown in Fig. 5. Except for the annotations associated with the
transitions, this is a conventional P/T-system. A transition annotation relates a
transition to an event6; this annotation is called event binding and is graphically
5 Similar in spirit, but technically very different, Harel and Marelly called the global

behaviour inter-object behaviour and the local behaviour intra-object behaviour [10].
6 We will see later that a transition can actually be bound to more than one event –

this way enforcing the joint execution (the synchronisation) of two different events.
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final ExecutionEngine engine = ExecutionEngine.getInstance(); 

init

1

inserted

i = insert(self, none);

self.getSlot().remove(i.slot);

engine.removeElement(self);

r = return_(none); self.getSlot().add(r.slot);

engine.addElement(self);

end

p = pass(self, none);

import dk.dtu.imm.se.ecno.engine.ExecutionEngine;

Fig. 6. Local behaviour of the coin

represented in bold-faced font. After the event coffee, which represents the user
pressing the coffee button, the coffee is brewed, which will be dispensed, when a
cup is inserted (event cup_in). The reset event is possible only when the coffee
machine is in the init state (no coffee is being made). In this example, the
notation for event bindings might appear overly verbose, and it is not obvious
why the event needs to be assigned to some “variable”, as in c = coffee() in this
case. The reason for denoting an event binding as an assignment will become
clear in the next example, when we need to refer to the event’s parameters in
conditions or actions.

The local behaviour of a coin, which is shown in Fig. 6, is more interesting7.
First of all, the event bindings and the involved events have parameters. Let
us consider the transition that is bound to the insert event first: as we have
seen in Fig. 4, the event insert has two parameters: the coin and the slot. The
event binding refers to these two parameters in the order of their declaration:
The first one, self, assigns the coin itself as the first parameter (coin) to this
event, where self is a keyword allowing the local behaviour of an element to refer
to the element itself. The second parameter is none, which is another keyword
indicating that, in this instance, the coin does not assign a parameter to the
event insert (this parameter is provided by another partner of the interaction).
The other annotation of this transition is the action, which will be executed
when all partners of an interaction are found and the interaction is executed.
This annotation is shown in normal font. For the transition bound to the insert
event, the action does two things: First, it deletes the link to the slot (since it is
inserted now); to this end, the action refers to the element again by self and uses
the API generated from the class diagram by the Eclipse Modeling Framework
(EMF) [9] to remove its link to the slot; the slot that is removed is denoted by

7 Note that in a real model of a vending machine, a coin would probably not have
a behaviour of its own; it is just a piece of metal. For making the example more
interesting, we associate some behaviour with the coin.
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p = pass(none, self); self.getCoin().remove(p.coin);

i = insert(none, self);

self.getCoin().size() < 2

self.getCoin().add(i.coin);

res = reset();

r = return_(self);
self.getCoin().clear();

Fig. 7. Local behaviour: slot

c = cancel(); r = reset();

p = pass(none,none); c = coffee();

p = pass(none,none); t = tea();

Fig. 8. Local behaviour: control

i.slot, where i is the variable to which the insert event was assigned, and slot is
the respective parameter, which, in this case, is assigned to the event by the
element slot (see Fig. 7). In order to refer to the insert event and its parameters,
the notation for an event binding gives a name to every event. Second, the
action removes the coin from the ECNO engine so as not to be visible at the
GUI anymore, where the engine is accessed via the attribute engine, which is
discussed later.

Once the coin is inserted, the ECNO net allows two things to happen: either
the coin can be passed to the safe by the transition that is bound to event pass,
or the coin is returned by the transition bound to event return_. In the case
of a pass event, the coin assigns itself (self) as the coin parameter; and there is
no action. In the case of a return_ event, no parameter is assigned to the event
(none), but the action will add a link from the coin to the slot again, where the
slot is coming from the parameter r.slot of the event return_. Moreover, the coin
registers itself with the engine, so as to be visible in the GUI again.

In the local behaviour of the coin, we see two other extensions of ECNO
nets. At the top, there is an import statement, which, in this case, is needed to
access the ECNO execution engine. The second extension is a declaration and
initialisation of the attribute engine, which is used in the actions of the ECNO
net. These declarations follow the syntax of the Java language. In this case, the
additional Java keyword final actually defines a constant.

Figure 7 shows the local behaviour of the slot. This is a rather degenerated
ECNO net. As a P/T-system, all transitions would be enabled all the time since
their presets are empty. Due to the event bindings, however, the local behaviour
becomes a bit more interesting. We start with explaining the bottom transition:
This transition, actually, has two events bound to it: reset and return_. This
implies that reset and return_ must be executed together; this way, the slot
defines that all coins must be returned during a reset. The slot assigns itself as
a parameter to the return_ event, which is used by the action of the coin to set
the link to this slot again. Moreover, the slot deletes all the links to the coins it
contains (i. e. it returns the coins) using the API generated by EMF.
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The transition bound to the pass event is even simpler. When this event
happens, the link to the coin that is passed (accessible via the parameter p.coin)
is removed (since the coin is moved from the slot to the safe).

At last, let us discuss the top transition of Fig. 7. It is associated with an
insert event, where the slot assigns itself to the event’s slot parameter (since
the slot should contain the coin after the insert). In the action, it sets a link to
that coin. In this transition, we see another modelling concept of ECNO nets: the
condition or guard, which is shown above the transition in italics. This condition
guarantees that an insert event can happen only when there are less than two
coins in the slot, where the condition refers to the list of coins which the slot has
links to by getCoin(). In general a condition can refer to the events’ parameters
and anything that the element (self) can access via the information available in
the object locally or accessible via its API (generated by EMF).

The ECNO net models for the other elements are similar. The last one that
we discuss here is the one for the control. This net is shown in Fig. 8. The first
transition guarantees that an event coffee goes together with an event pass. By
this, it is indirectly guaranteed that there is a coin inserted in the slot when
the corresponding interaction is valid; and other parts of the interaction (the
action of the slot) will pass this coin to the safe – making sure that the coffee is
paid when the coffee button is pressed. Actually, the coffee button on the panel
is enabled only when there is a coin inserted in the slot and when at least one
of the coffee brewers is ready. The second transition does the same for event
tea. The last event synchronises the cancel event (which is triggered by pressing
the cancel button on the panel) with the reset event: this way, it is indirectly
guaranteed that all coins that are currently inserted in the slot are returned
when cancel is pressed (see the ECNO net for the slot in Fig. 7).

3.2 Concepts

The main concept for modelling the local behaviour of an element is to define
when the element can participate in an event or a combination of events and
what happens when the event is executed. In ECNO nets, the event bindings for
transitions define when an event or a combination of some events are possible.

In the event binding, an element can provide values for some parameters for
the respective events. In our example, these parameters where expressions with
values of the element. But, these expressions can be more general. For example,
if we have some event type event(Integer x, Integer y), it would be possible that
an event binding looks as follows: e = event(none, e.x + 1). The meaning of this
is that the element takes the first parameter of the event, increments it, and
assigns that value to the second parameter. If there were more events in the
binding, we could also use a parameter of one event and assign it as a parameter
to another event. There is no restriction in which way this could be done. When
there are cyclic dependencies in the parameter assignments of the partners of an
interaction, however, it will not be possible to assign all parameters. In that case,
the interaction is not valid and will not be executable. The execution engine will
detect that and properly deal with these situations when they occur at runtime.
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In other situations, two or more different elements could try to assign a value to
the same parameter of the same event. Here, we distinguish two cases: if all the
values provided for the same parameter are the same (equal in Java terms), this
is considered to be legal; if the values, however, are not the same, the interaction
is considered to be invalid.

On the one hand, this mechanism of assigning and using parameters provides
much expressive power and flexibility. Within the same interaction, data can be
passed in opposite directions. That is why events are fundamentally different
from function calls or methods invocations – there are no callers or callees, and
the contribution and use of parameters is completely symmetric. On the other
hand, such power requires great care when using this mechanism in order not to
preclude desired interactions by unintended cyclic dependencies. This, however,
is a question of methodology and analysis functions for checking that cycles
of that nature would not occur (which however are yet to be developed). The
ECNO execution engine copes with these situations: it will find all possible legal
interactions – though computing all the parameters might be quite computation
intensive in complex situations. Making this more efficient is ongoing research.

In ECNO nets, transitions have two more extensions: conditions and actions.
Conditions are expressions that may refer to local attributes of the element (and
whatever the element can access from there), and they may refer to the param-
eters of the events that are bound to the respective transition. Conceptually,
the condition is evaluated when all parameters of the events bound to this tran-
sition are available. If, in a given combination of events, the condition of an
element evaluates to false, the interaction is invalid. Only if the conditions of all
participating elements evaluate to true, the interaction is valid and, therefore,
executable. The execution of a valid interaction amounts to executing all the ac-
tions of all participating elements (in an arbitrary order). An action may refer to
and access and change the local attributes of the element and all the elements it
can access by its local attributes or the events’ parameters. An event parameter
itself, however, cannot be changed in order to avoid non-local side effects when
executing all the actions of an interaction. This, basically, follows the principle
of parameter passing in the Java language.

Altogether, ECNO coordination diagrams for modelling the global behaviour
together with ECNO nets for modelling the local behaviour allow us to fully
model the behaviour of a system, in our case the vending machine. The generated
code together with the ECNO execution engine implement that behaviour, which
will be discussed in the next section.

4 ECNO: Engine and Tool

In the previous sections, we have discussed ECNO’s concepts for modelling global
and local behaviour, and how they define valid interactions. Now, we discuss
some details of ECNO’s tool support, its execution engine and the code gen-
erated from ECNO models. Here, we discuss version 0.2.0 of the ECNO pro-
totype, which is deployed as an extension of Eclipse 3.7 (Indigo) based on the
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Fig. 9. ECNO: Tool support

ePNK [8]. The prototype and the instructions on how to install it can be found
on the ECNO Homepage at http://www2.imm.dtu.dk/~eki/projects/ECNO/.
The vending machine example, as discussed in this paper, can be obtained
as an Eclipse project from http://www2.imm.dtu.dk/ eki/projects/ECNO/
version-0.2.0/download/ECNO-topnoc-example-0.2.0.zip.

4.1 ECNO Tool: Vending Machine Example

Figure 9 shows Eclipse with the project of our vending machine example and
some of its models opened. In the Eclipse package explorer on the left-hand
side, the folder model contains all the models for the vending machine example.
From these models, all the code for running the example can be generated fully
automatically. The generated Java packages are contained in the folder src. To
the right of the package explorer, some of the models are open in an editor.

Let us briefly explain the role of the different models, and how they affect the
generated code. VendingMachine.ecore is the Ecore model of the vending machine;
the respective diagram VendingMachine.ecorediag is open in the top-row on the
left. From these and the VendingMachine.genmodel, the code for the structural
part can be generated completely automatically by the standard EMF mech-
anisms. This code is contained in the packages example.emf.vendingmachine.*,
which are not open here and are not discussed since this is standard EMF code.

VendingMachineCoordination.ecno contains the ECNO coordination diagram,
where the graphical representation of this model is contained in VendingMa-
chineCoordination.ecno_diagram. This diagram is open in the bottom row on the

http://www2.imm.dtu.dk/~eki/projects/ECNO/
http://www2.imm.dtu.dk/~eki/projects/ECNO/version-0.2.0/download/ECNO-topnoc-example-0.2.0.zip
http://www2.imm.dtu.dk/~eki/projects/ECNO/version-0.2.0/download/ECNO-topnoc-example-0.2.0.zip
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left in a very simple GMF editor, which uses a slightly different graphical syntax;
the information is the one from Fig. 1 and Fig. 4. Note that this diagram includes
the definition of the event types. The Java class VendingMachineModel in package
example.ecno.vendingmachine.coordination is generated from this model, which
represents the coordination information at run-time. In addition, the classes for
events with parameters8 are generated from this diagram, which can be found
in package example.ecno.vendingmachine.events.

VendingMachineBehaviourModels.pnml contains all the ECNO nets for the local
behaviour of elements with non-trivial behaviour. The ECNO net for the Control
is shown in the bottom row to the right. From these nets, the Java classes in
package example.ecno.vendingmachine.automata are generated. There is one class
for each net and one extra class that is used for making all these behaviour
classes known to the ECNO engine: VendingMachineBehaviour.

Actually, the Java code for the coordination diagrams and the ECNO nets
is generated in a single go. This needs some additional information that defines
the packages to which the different parts of the code should go, and the names
of the generated configuration classes. This information is similar to the EMF
genfile; in our example, it is VendingMachineCoordination.ecnogen. From this file,
the actual code generation is initiated.

The initial configuration of the vending machine is defined in VendingMachine-
Instance.xmi. The editor in the top row to the right shows the configuration from
Fig. 2 in a standard EMF tree editor – it is a so-called dynamic instance of
the Ecore model. Together with some additional configuration information from
VendingMachineInstance.ecnoinstancegen, the code for this instance is generated:
VendingMachineInstance in package example.ecno.vendingmachine.instances. This
Java class can be started as a Java application – as usual in Eclipse.

4.2 Running the Vending Machine Example

When the Java class VendingMachineInstance is started as a Java application, a
GUI will start, which looks like the ones in Fig. 10. The left one shows the GUI of
the vending machine immediately after start up; the middle one shows the GUI
after pressing the “insert” buttons on two coins. Note that the last coin cannot
be inserted anymore, due to the condition that ensures that a slot can not take
more than two coins (see Fig. 7); therefore, the “insert” button is not enabled
in this situation. The GUI to the right shows the situation after pressing the
“coffee” button. Note that since two coins were inserted before and since there
are two independent coffee brewers, you could order the next coffee right away
(indicated by the enabled “coffee” button).

4.3 Code for ECNO Nets

As discussed in Sect. 4.1, there are many different Java classes generated from
the models – some of them generated even by other technologies like EMF. And
8 Events without parameters are, basically, used as names only; therefore, we do not

need a class representing instances of these events.
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Fig. 10. Running machine: initial, after inserting two coins, after ordering a coffee

there is some more code behind the scenes, which is provided by the ECNO
engine and its run-time environment, which integrates the different parts – in
particular the code for the class diagram with the code for the ECNO coordi-
nation diagrams and ECNO nets. For lack of space, we cannot discuss this code
in detail here. But, we give an overview of the code generated for ECNO nets: a
class extending AbstractPetriNetBehaviour from the ECNO run-time, which pro-
vides some infrastructure for mapping Petri net behaviour to ECNO concepts.

Listing 1 shows some snippets from the code that was generated from the
ECNO net for the local behaviour of the coin from Fig. 6, with major omissions,
which are indicated by ellipses. Anyway, it should give an idea of how the gen-
erated code looks like. The first line, shows the import declaration as defined in
the net, and line 5 shows the attribute declaration. Line 4 is an automatically
generated attribute, which “implements” ECNO’s keyword self; this attribute is
set in the constructor of this class, which is not shown in the listing.

The methods enabled and fireImpl implement the enabledness of a transition
and the change of the marking when it fires, where the marking is represented
as an array; since this is trivial, we do not show the details here. The methods
doesAssignParam and getParamAssignment are responsible for assigning the values
to the parameters of a possible event. doesAssignParam says whether, for some
transition, event and parameter (each represented by a number), this transition
would assign a value to the parameter (i. e. whether it is not none in the ECNO
net). If so, the actual value is provided by the method getParamAssignment, which
will need the context of the concrete choice in order to access event parameters
(since this is similar to the action which is discussed next, we do not discuss this
here). evaluateCondition checks the condition of the choice.

The method executeAction executes the actual action once the interaction
with this choice is executed. The transition number of the involved choice is
obtained from the choice. For each case (here we discuss the case 0, which
represents the transition for the insert event), the code of the transition ac-
tion is executed. In order to access the event parameters, however, the events
need to be made available. In our example, the insert event (an instance of the
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Listing 1. Snippets from the Java class generated from the ECNO net Coin

1 import dk.dtu.imm.se.ecno.engine.ExecutionEngine;

public class Coin extends AbstractPetrinetBehaviour {
final private example.emf.vendingmachine.Coin self;

5 final ExecutionEngine engine = ExecutionEngine.getInstance();
...

public boolean enabled(int t) ...

public void fireImpl(int t) ...
10

public boolean doesAssignParam(int t, int e, int p) ...

public Object getParamAssignment(PetriNetChoice c, int e, int p) ...

15 public boolean evaluateCondition(PetriNetChoice c) ...

public void executeAction(PetriNetChoice choice) {
int transition = choice.getTransition();
switch (transition) {

20 case 0: {
Insert i = (Insert) choice.getEventValues("insert");
{ self.getSlot().remove(i.slot); engine.removeElement(self); }
fire(transition);
return;

automatically generated class Insert from the events package) is obtained from
the choice. And then the code from the transitions action (line 22) is executed
and the transition is fired.

Altogether, the code generation is quite straight-forward: the code snippets
from the ECNO nets are literally copied to the right place in the generated class.
There is just some wrapping and preparing code needed to make this work – like
providing the attribute self and obtaining the relevant events in the action (and
similar code, in the methods for condition evaluation and parameter assignment).

4.4 Execution Engine and Controllers

ECNO coordination diagrams and ECNO nets define which interactions are valid
or possible in any given configuration. They do not define which of these inter-
actions must or will be executed. And the ECNO execution engine does not
make this choice either. These choices will be made by controllers : a controller
registers with the ECNO engine for some element and some event type. Once
registered, the ECNO engine will keep these controllers informed about the pos-
sible interactions in which the element could participate for the given event
type. When the controller has obtained a valid interaction, it can schedule it
for execution. The ECNO engine will make sure that interactions are executed
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atomically and without interference of possibly conflicting interactions. As soon
as the enabledness of some interactions changes – either due to the execution of
other interactions or by changes of the structure by other parts of the software
– the respective controllers will be informed. The details on the implementa-
tion of these mechanisms are discussed in a separate paper [11]. In this paper,
it is also discussed how ECNO can be integrated with other technologies and
pre-existing code.

In our example, some standard GUI controllers are automatically set up, when
the engine is started. For every element with an element type that has a GUI tag
and every event type with a GUI tag, a GUI controller will be attached to it. The
ECNO engine will notify these controllers when interactions become enabled or
disabled; then, the respective button of the GUI will update accordingly. The
actual choice of executing the interaction is then made by the end user by clicking
on an enabled button of the GUI.

5 Discussion and Extensions

In the previous sections, we have discussed the main concepts of the Event Coor-
dination Notation and its concepts for coordinating global and local behaviour.
In order to convey the spirit of ECNO, some of its less important concepts were
not discussed yet. In this section, we discuss these additional concepts – all of
which are implemented in the prototype of the ECNO engine (version 0.2.0).

5.1 Coordination Sets

As discussed in Sect. 2, we assumed that, for identifying all the partners that
an element needs when executing some event of type e, we must consider all the
references of the element’s type that have a coordination annotation for e. For
executing the pass event in the slot, for example, two references annotated with
pass, one to element type Coin and the other to Safe, required that a coin and the
safe needed to participate in this interaction – this way, passing the coin from the
slot to the safe. In most of our examples, this is the desired behaviour. In some
cases, however, we do not want to consider all the references that are annotated
by the event type. Sometimes, only one or a particular subset of references would
be needed. To this end, ECNO provides the concept of coordination sets.

A coordination set is a set of references that start at the same element type and
have the same event type attached to it9. For the same event type, an element
type can have several coordination sets. If there is more than one coordination set
for an event type, only for one of these coordination sets all its references must
be considered together when the element is participating in the event. References
that are not in this coordination set are not considered. Putting two references
of the same element type in two different coordination sets would make these

9 Actually, it is an open issue, whether it would make sense to have references with
different event types in the same coordination set.



88 E. Kindler

references an alternative. We did not finally decide yet on a graphical syntax for
a coordination set – it will probably be a label attached to the element that has
a pointer to all the references that belong to the same coordination set (similar
to the simple GMF editor for coordination diagrams in Fig. 9).

Anyway, coordination sets add clutter to the graphical representation of coor-
dination diagrams. In order to avoid clutter in coordination diagrams in standard
situations, where all references with the same event type are in the same coor-
dination set, we introduce an abbreviation, which coincides with the meaning of
coordination diagrams that we used in Fig. 1: For each element type and each
event type, there is a distinguished standard coordination set. Any coordination
reference that is not attached to an explicitly defined coordination set is assumed
to be part of this standard coordination set. Since the diagram from Fig. 1 does
not have explicit coordination sets, all references with the same event type at-
tached belong to the standard coordination set – which is why they are joined,
as discussed in the example.

5.2 Exclusive and Collective Parameters

As discussed before, the parameters of events allow different partners of an inter-
action to share values. Typically, one partner would contribute the value for an
event parameter and many partners would use it. But, it would also be possible
that several partners contribute a value – provided that it is the same value.
Therefore, we call these parameters exclusive.

In some cases, however, we would like to allow different partners to contribute
different values to the same parameter of an event. We call these parameters
collective parameters. In the declaration of an event type, it would be indicated
for each parameter whether it is collective or not. Then, there could be any
number (including zero) of values contributed to such a parameter, but each
partner can contribute at most one value. When such a parameter is accessed in
a condition or an action, it returns a list of all the values that were contributed.

One example of the use of a collective parameter could be that all participating
elements assign themselves as a value to this parameter. This way, a partner
could set links to all the partners of the interaction in its action.

5.3 Inheritance on Events

Another concept is inheritance on events: a derived event type could have some
more parameters than the event type it is derived from. In our example, the
brewer could be associated with a general event drink, which could be specialised
to events coffee and tea in the coffee and tea brewers. This way, the vending ma-
chine can be modelled in a slightly more elegant way. Version 0.2.0 of the ECNO
prototype supports inheritance of events already and comes with a vending ma-
chine example exploiting event inheritance. Note that there are some subtle
issues, like exclusion of multiple inheritance, which we cannot discuss here.
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5.4 Determinism

In any given situation of the system, there is a precisely defined set of valid in-
teractions that are possible. The ECNO engine itself does not make any decision
which one to execute; it only notifies the registered controllers about the possible
interactions (and keeps them posted, when the situation changes). It is up to
the controllers to choose the interaction that should be executed.

In this sense, ECNO is deterministic. Choices between different valid inter-
actions are made by the controllers – in our example, by the end user pressing
buttons on the GUI. The only source of non-determinism within ECNO is the
order of the execution of all the actions of the elements of the interaction. The
idea of ECNO would be that every action makes only local changes in the el-
ement itself based on the parameters of the events and the local attributes.
Under this assumption, also the result of the execution of an interaction would
be deterministic. Since ECNO nets allow arbitrary Java code in the actions, the
ECNO framework cannot guarantee that all changes in the actions are local,
however. In the future, the ECNO framework could be equipped with a policy
that enforces the locality of actions and a mechanism warning the modeller in
case of potential non-determinism. What is reasonable and necessary, however,
would require more examples and more realistic ones. This is why, for now, the
modeller can do whatever he sees fit.

6 Related Work

The ideas for ECNO have developed over some years; they started out in the field
of Business Process Modelling, where we used events and their synchronisation
for identifying and formalising the basic concepts of business process models
and their execution: AMFIBIA [3, 12]. It turned out that these ideas are much
more general and do not only apply in the area of business processes. This
generalisation resulted in MoDowA [4]. MoDowA, however, was tightly coupled
to aspects, and event coordination was possible only for very specific types of
relations. Therefore, the quest for distilling the basic coordination primitive was
still on. In [2], we pointed out some first ideas for such an event coordination
notation, which we call ECNO now.

Actually, none of the concepts of ECNO are particularly new or original. For
example, Petri nets [6, 7] have been made exactly for the purpose of modelling
behaviour. And many different mechanisms have been proposed for coordinat-
ing different Petri nets. For example, the box calculus and M-nets [13, 14] or
an extension of CPNs [15] use synchronisation of transitions for coordinating
different Petri nets. For most Petri net approaches, the synchronisation struc-
ture, however, is static and often between two partners only. Renew [16, 17]
proposes a more general concept of executable Petri nets where the transitions
can have several synchronous channels for synchronising different Petri nets –
which are called up- and down-links. These references are more dynamic, fol-
lowing the structure of the underlying nets-within-nets paradigm [18]. This way,
more than two partners could be synchronised and parameters could be passed
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in both directions. In ECNO, the communication structure is not derived from
the net structure. Instead, ECNO’s coordination diagrams exploit the dynamic
structure of instances of a class diagram.

The idea of events and the way they are synchronised dates back even further.
In the earlier work, they would rather be called actions, which should, however,
not be confused with ECNO’s concept of actions. ECNO’s synchronisation mech-
anism resembles process algebras like CSP [19], CSS [20], the Chemical Abstract
Machine [21] or the π-calculus [22]. But, ECNO is a bit more explicit with whom
to synchronise and with how many partners; the partners with whom an element
needs to synchronise can change dynamically dependent on the changing links
between elements. In ECNO, there can be arbitrarily long chains or networks
of required participants of an interaction. One approach that allows to define
such interactions (via connectors) is BIP [23]; but ECNO embeds a bit smoother
with class diagrams and allows for and is tuned to dynamically changing struc-
tures. And ECNO works together with classical programming. Other parts of the
software can change the configuration as they please; ECNO’s notification and
controller mechanisms will properly update the possible interactions. Moreover,
ECNO’s actions can call methods of other parts of the software, and via an API,
other parts of the software can initiate and hook into interactions.

The ideas of ECNO are an extension of our MoDowA approach (Modelling
Domains with Aspects) [4], which has some similarities with the Theme ap-
proach [24]. In MoDowA, the interactions were restricted and implicitly defined
for two special kinds of relations. In ECNO, this was generalised: we introduced
a separate concept on top of references for making interactions explicit [5]; some
of these ideas came up during the work on a masters thesis [25]. Technically,
ECNO is independent from aspect oriented modelling. Still, it was inspired by
aspect orientation and is close in spirit to aspect oriented modelling (see [26, 27]
for an overview) or subject orientation [28]. Moreover, ECNO could serve as an
underlying technology for implementing aspect oriented models: an aspects of
an object could be represented by a reference from the object to the aspect,
where the coordination annotations would define in which way the aspect joins
into events executed by the object. In a way, events are join points and the
interactions are point cuts as, for example, in AspectJ [29] in aspect oriented
programming. There are two main differences though: in aspect oriented pro-
gramming, the join points are defined in the final program; in that sense, the
join points are programming artefacts and not domain concepts. By contrast,
our events are concepts of the domain! The other difference is the more sym-
metric participation in an interaction. The participants in an interaction are not
only invoked by another element; they can actively contribute parameters, and
even prevent an interaction from happening (if no other partners are available).
A more subtle difference is that interactions in our approach are attached to
objects (actually, we called them elements) and not to lines in a program, and
interactions can only be defined along existing links between the elements. This
is a restriction – but a deliberate one: it provides more structure and avoids
clutter and unexpected interactions between completely unrelated elements.
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One of the main objectives of ECNO and its coordination diagrams is that
the coordination of events should relate to the structural models (e. g. a class
diagram). In this respect, ECNO is similar in spirit to Ptolemy II [30]. In a way,
our coordination diagrams could be considered a specific configurable model
of computation of Ptolemy. Our rationale is the smooth extension of existing
notations and technologies and easing the integration of behaviour models with
structural ones and with pre-existing software.

Whereas other approaches like Executable UML [31] try to obtain executable
models by restricting UML, ECNO proposes an extension on top of class di-
agrams. What is more, the concept of interactions allows us to get rid of the
thread oriented way of “thinking concurrency” – as pointed out in [32]. Inter-
actions are concurrent in nature. In this paper, we did not focus on issues of
behaviour inheritance; but, by attaching and synchronising different ECNO nets
to the same element, different notions of behaviour inheritance as for example
discussed in [33] could be implemented in ECNO.

To sum up, all the individual concepts of ECNO existed before – we did
not invent them. The main contribution of ECNO is the combination of these
concepts. This way, making them more usable in practical software development
in general – and in model-based software engineering in particular. The prototype
implementation of the ECNO execution engine shows that this combination of
concepts can actually be made work.

7 Conclusion

In this paper, we have discussed the main concepts of the Event Coordination
Notation (ECNO). This notation allows defining the global behaviour of a system
by coordinating local behaviour: the global coordination is defined on top of
structural diagrams. In addition, we discussed a specific modelling notation for
the local behaviour which we called ECNO nets. From these models, the code
for the complete system including its behaviour can be generated. The example
shows that the coordination mechanisms of ECNO for defining global behaviour
together with the mechanisms for defining local behaviour are powerful enough
to completely define a system and generate code for it (where the structural parts
could even be generated by another technology – by EMF, in our example).

The most interesting research on ECNO, however, is yet to come: Method-
ology, adequateness of the modelling notation, scalability, and performance still
need more investigation; the constructs need to be adjusted, so as to strike a bal-
ance between these different objectives. The prototype implementation discussed
in this paper, lays the foundation for these investigations.
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Abstract. Geldenhuys and Hansen showed that a kind of ω-automata known as
Testing Automata (TA) can, in the case of stuttering-insensitive properties, out-
perform the Büchi automata traditionally used in the automata-theoretic approach
to model checking [10].

In previous work [23], we compared TA against Transition-based Generalized
Büchi Automata (TGBA), and concluded that TA were more interesting when
counterexamples were expected, otherwise TGBA were more efficient.

In this work we introduce a new kind of automata, dubbed Transition-based
Generalized Testing Automata (TGTA), that combine ideas from TA and TGBA.
Implementation and experimentation of TGTA show that they outperform other
approaches in most of the cases.

Keywords: testing automata, model checking, emptiness check.

1 Introduction

Context. The automata-theoretic approach to model checking linear-time properties [28]
splits the verification process into four operations:

1. Computation of the state-space for the model M. This state-space can be seen as an
ω-automaton AM whose language, L (AM), represents all possible infinite execu-
tions of M.

2. Translation of the temporal property ϕ into an ω-automaton A¬ϕ whose language,
L (A¬ϕ), is the set of all infinite executions that would invalidate ϕ.

3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ
whose language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.

4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an
infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem. Different kinds of ω-automata have been used with the above approach. In
the most common case, a property expressed as an LTL (linear-time temporal logic)
formula is converted into a Büchi automaton with state-based acceptance, and a Kripke
structure is used to represent the state-space of the model.

In Spot [17], our model checking library, we prefer to represent properties using
generalized (i.e., multiple) Büchi acceptance conditions on transitions rather than on
states [7]. Any algorithm that translates LTL into a Büchi automaton has to deal with

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 94–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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generalized Büchi acceptance conditions at some point, and the process of degeneral-
izing the Büchi automaton often increases its size. Several emptiness-check algorithms
can deal with generalized Büchi acceptance conditions, making such an a degeneraliza-
tion unnecessary and even costly [5]. Moving the acceptance conditions from the states
to the transitions also reduces the size of the property automaton [4, 13].

Unfortunately, having a smaller property automaton A¬ϕ does not always imply a
smaller product with the model (AM⊗A¬ϕ), and the size of this product really affects
model checking efficiency. Thus, instead of targeting smaller property automata, some
people have attempted to build automata that are more deterministic [25]. However even
this does not guarantee the product to be smaller.

Hansen et al. [14] introduced a new kind of ω-automaton called Testing Automaton
(TA). These automata are less expressive than Büchi automata since are tailored to
represent stuttering-insensitive properties (such as any LTL property that does not use
the X operator). They are often a lot larger than their equivalent Büchi automaton, but
surprisingly, their high degree of determinism often lead to a smaller product [10]. As
a back-side, TA have two different modes of acceptance (Büchi-acceptance or livelock-
acceptance), and their emptiness check may require two passes, mitigating the benefits
of a having a smaller product.

Objectives. The study of Geldenhuys and Hansen [10] shows TA are statistically more
efficient than Büchi automata. In a previous work [23], we have extended their com-
parison to TGBA, and shown that TA are indeed better when the formula to be verified
is violated (i.e., a counterexample is found), but this is not the case when the property
is verified since the entire state space may have to be visited twice to check for each
acceptance mode of a TA.

This paper introduces a new type of ω-automata, Transition-based Generalized Test-
ing Automata (TGTA), that mixes features from both TA and TGBA. From TA, it reuses
the labeling of transitions with changesets, and simplifications based on stuttering. From
TGBA, it inherits the use of transition-based acceptance conditions. TGTA combine the
advantages of TA and TGBA: it is still statistically more efficient than other ω-automata
when the property is violated but does not require a second pass when no counterexam-
ple is found, thus remaining more efficient than other ω-automata in that situation.

We have implemented this new approach in Spot. This required little effort since
TGTA reuse the emptiness check algorithm of TGBA. We are thus able to compare
TGTA with the “traditional” algorithms we used on TA, BA and TGBA. These experi-
ments show that TGTA compete well on our examples.

Contents. Section 2 provides a brief summary of the three ω-automaton (BA, TGBA
and TA) and pointers to their associated operations for model checking before Section 3
presents TGTA. Section 4 reports our experiments before a discussion in Section 5.

2 Presentation of Three Existing Approaches

Let AP designate the set of atomic proposition of the model. We use AP to build a
linear-time property. Any state of the model is labeled by a valuation of these atomic
propositions. We denote by Σ = 2AP the set of these valuations, which we interpret ei-
ther as a set or as Boolean conjunctions. For instance if AP = {a,b}, then Σ = 2AP =
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{{a,b},{a},{b}, /0} but we equivalently interpret it as Σ = {ab,ab̄, āb, āb̄}. All the ex-
ecutions of the model can be represented by a Kripke structure K . An execution of the
model is simply an infinite sequence of such valuations, i.e., an element from Σω.

Definition 1. A Kripke structure over the alphabet Σ = 2AP is a tuple K = 〈S, I,R,L〉.
where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– R⊆ S× S is the transition relation,
– L : S→ Σ is a state-labeling function.

An execution w = k0k1k2 . . . ∈ Σω is accepted by K if there exists an infinite sequence
s0,s1, . . . ∈ Sω such that s0 ∈ I and ∀i ∈ N, L(si) = ki ∧ (si,si+1) ∈ R. The language
accepted by K is the set L (K )⊆ Kω of executions it accepts.

A property can be seen as a set of sequences, i.e., a subset of Σω. Among these proper-
ties, we want to distinguish those that are stuttering-insensitive:

Definition 2. A property, or a language, i.e., a set of infinite sequences P ⊆ Σω, is
stuttering-insensitive iff any sequence k0k1k2 . . . ∈ P remains in P after repeating any
valuation ki or omitting duplicate valuations. Formally, P is stuttering-insensitive iff

k0k1k2 . . . ∈ P ⇐⇒ ki0
0 ki1

1 ki2
2 . . . ∈ P for any i0 > 0, i1 > 0 . . .

Theorem 1. Any LTL\X formula (i.e., an LTL formula that does not use the X oper-
ator) describes a stuttering-insensitive property. Conversely any stuttering-insensitive
property can be expressed as an LTL\X formula [19].

The following sections presents three kinds of ω-automata [8] that can be used to
express properties in the automata-theoretic approach to model checking. Transition-
based Generalized Büchi Automata and Büchi Automata can both express general prop-
erties, while Testing Automata are tailored to stuttering-insensitive properties.

2.1 Transition-Based Generalized Büchi Automata

We begin by defining Transition-based Generalized Büchi Automata (TGBA), which
are a generalization of the better known Büchi automata used for model checking [13].
In our context, the TGBA represents the negation of the LTL property to verify.

Definition 3. A TGBA over the alphabet Σ = 2AP is a tuple G = 〈S, I,R,F〉 where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– F is a finite set of acceptance conditions,
– R ⊆ S× 2Σ× 2F × S is the transition relation, where each element (si,Ki,Fi,di)

represents a transition from state si to state di labeled by the non-empty set of
valuation Ki, and a set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Σω is accepted by G if there exists an infinite path
(s0,K0,F0,s1)(s1,K1,F1,s2)(s2,K2,F2,s3) . . . ∈ Rω where:
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(a) ϕ

āb̄

āb

ab

ab̄ (b) aUGb Gb

ab,ab̄

ab, āb
ab, āb

Fig. 1. (a) A TGBA with acceptance conditions F = { , } recognizing the LTL property ϕ =
GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

The language accepted by G is the set L (G)⊆ Σω of executions it accepts.

Any LTL formula ϕ can be converted into a TGBA whose language is the set of ex-
ecutions that satisfy ϕ. Several algorithms exist to translate an LTL formula into a
TGBA [4, 9, 13, 1].

Figure 1 shows two examples of TGBA: one deterministic TGBA derived from the
LTL formula GFa∧GFb, and one non-deterministic TGBA derived from aUGb. The
LTL formulæ that label states represent the property accepted starting from this state
of the automaton: they are shown for the reader’s convenience but not used for model
checking. As can be inferred from Fig. 1(a), an LTL formula such as

∧n
i=1 GF pi can be

represented by a one-state deterministic TGBA with n acceptance conditions.
Any infinite path in these examples is accepted if it visits all acceptance conditions

(represented by colored dots on the transitions) infinitely often.
Testing a TGBA for emptiness amounts to the search of a strongly connected com-

ponent that contains at least one occurrence of each acceptance condition. This can be
done in different ways [5]. We are using Couvreur’s SCC-based emptiness check al-
gorithm [4] because it needs to traverse the state-space only once, and its complexity
does not depend on the number of acceptance conditions. This algorithm is detailed in
Appendix B.

2.2 Büchi Automata

Compared to TGBA, the more traditional Büchi Automata (BA) have only one state-
based acceptance condition.

One common way to obtain a BA from an LTL formula is to first translate the formula
into some Generalized Büchi Automata with multiple acceptance conditions (it could
be a TGBA [13, 9] or a state-based GBA [12]) and then to degeneralize this automaton
to obtain a single acceptance condition.

Definition 4. A BA over the alphabet Σ = 2AP is a tuple B = 〈S, I,R,F〉 where:
– S is a finite set states,
– I ⊆ S is the set of initial states,
– F ⊆ S is a finite set of acceptance states,
– R⊆ S×2Σ×S is the transition relation where each transition is labeled by a set of

valuations.
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(a) ϕ
ϕ

ϕ

ab

ab̄, āb̄

āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

(b) aUGb Gb

ab,ab̄

āb,ab

āb,ab

Fig. 2. Two examples of BA, with acceptance states shown as double circles. (a) A BA for the
LTL property ϕ = GFa∧GFb obtained by degeneralizing the TGBA for Fig. 1(a). (b) A BA for
the LTL property aUGb.

An execution w = k0k1k2 . . . ∈ Σω is accepted by B if there exists an infinite path
(s0,K0,s1)(s1,K1,s2)(s2,K2,s3) . . . ∈ Rω such that:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀i ∈N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

The language accepted by B is the set L (B)⊆ Σω of executions it accepts.

Theorem 2. TGBA and BA have the same expressive power: any TGBA can be con-
verted into a language-equivalent BA and vice-versa [4, 13].

The process of converting a TGBA into a BA is called degeneralization. In the worst
case, a TGBA with s states and n acceptance conditions will be degeneralized into a BA
with s× (n+ 1) states.

Figure 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The
automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The
worst case of the degeneralization occurred here, since the TGBA with 1 state and n
acceptance conditions was degeneralized into a BA with n+ 1 states. It is known that
no BA with less than n+ 1 states can accept the property

∧n
i=1 GF pi so this Büchi

automaton is optimal [3]. The property aUGb, on the right hand side of the figure, is
easier to express: the BA has the same size as the TGBA.

In the other way, a BA can be seen as a TGBA, by simply marking transitions leaving
acceptance states as accepting, without adding states nor transitions. Algorithms that
input TGBA can therefore be easily adapted to process BA. More importantly, BA can
be checked for emptiness using the same one-pass emptiness-check algorithm.

2.3 Testing Automata

Testing Automata (TA) were introduced by Hansen et al. [14] to represent stuttering-
insensitive properties. While a Büchi automaton observes the value of the atomic propo-
sitions AP, the basic idea of TA is to detect the changes in these values; if a valuation
of AP does not change between two consecutive valuations of an execution, the TA
can stay in the same state. To detect infinite executions that end stuck in the same TA
state because they are stuttering, a new kind of acceptance states is introduced: livelock-
acceptance states.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the set
of atomic propositions that differ (e.g., ab̄⊕ab= {b}). Technically, this is implemented
with an XOR operation (also denoted by the symbol ⊕).
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Definition 5. A TA over the alphabet Σ = 2AP is a tuple T = 〈S, I,U,R,F,G〉. where:

– S is a finite set of states,
– I ⊆ S is the set of initial states,
– U : I → 2Σ is a function mapping each initial state to a set of valuations (set of

possible initial configurations),
– R⊆ S×Σ× S is the transition relation where each transition (s,k,d) is labeled by

a changeset: k ∈ Σ is interpreted as a (possibly empty) set of atomic propositions
whose value must change between states s and d,

– F ⊆ S is a set of Büchi-acceptance states,
– G⊆ S is a set of livelock-acceptance states.

An execution w = k0k1k2 . . . ∈ Σω is accepted by T if there exists an infinite sequence
(s0,k0⊕ k1,s1)(s1,k1⊕ k2,s2) . . . (si,ki⊕ ki+1,si+1) . . . ∈ (S×Σ× S)ω such that:

– s0 ∈ I with k0 ∈U(s0),
– ∀i ∈N, either (si,ki⊕ ki+1,si+1) ∈ R (the execution progresses in the TA), or ki =

ki+1∧ si = si+1 (the execution is stuttering and the TA does not progress),
– Either, ∀i ∈ N, (∃ j ≥ i, k j = k j+1)∧ (∃l ≥ i, sl ∈ F) (the TA is progressing in a

Büchi-accepting way), or, ∃n ∈ N, (sn ∈ G∧ (∀i ≥ n, si = sn ∧ ki = kn)) (the se-
quence reaches a livelock-acceptance state and then stays on that state because the
execution is stuttering).

The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

To illustrate this definition, consider Fig. 3d, representing a TA for aUGb.

– The execution ab; āb;ab; āb;ab; āb;ab; . . . is Büchi accepting. A run recognizing
such an execution must start in state 2, then it always changes the value of a, so

it has to take transitions labeled by {a}. For instance it could be the run 2
{a}−−→

4
{a}−−→ 4

{a}−−→ 4 · · · or the run 2
{a}−−→ 3

{a}−−→ 4
{a}−−→ 4 · · · Both visit the run state 4 ∈ F

infinitely often, so they are Büchi accepting.
– The execution ab; āb; āb; āb; . . . is livelock accepting. An accepting run starts in

state 2, then moves to state 4, and stutters on this livelock-accepting state. Another
possible accepting run goes from state 2 to state 3 and stutters in 3 ∈G.

– The execution ab;ab̄;ab;ab̄;ab;ab̄; . . . is not accepted. It would correspond to a run
alternating between states 2 and 1, but such a run is neither Büchi accepting (does
not visit any F state) nor livelock-accepting (it passes through state 2 ∈G, but does
not stay into this state continuously).

Property 1. The language accepted by a testing automaton is stuttering-insensitive.

Proof. This follows from definition of accepted executions: a TA may not change its
state when an execution stutters, so stuttering is always possible. ��

Construction of a Testing Automaton from a Büchi Automaton. Geldenhuys and
Hansen [10] have shown how to convert a BA into a TA by first converting the BA into
an automaton with valuations on the states, and then converting this automaton into a
TA by computing the difference between the labels of the source and destination of each
transition. The next proposition implements these first two steps at once.
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aUGb Gb

ab,ab̄

āb,ab

āb,ab

(a) Initial BA for aUGb.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b}

/0

{a,b}
{b}

{a}

{a}
/0

/0

{a}

/0
{a}

/0

{a}

/0

(b) After the construction from property 2.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b} {a,b}{b}

{a}

{a}

{a}
{a} {a}

(c) After the simplifications from property 3.

1ab̄

2ab

3āb

4

{b}
{a,b}{b}

{a}
{a}

{a}

{a}

(d) After bisimulation.

Fig. 3. Steps of the construction of a TA from a BA. States with a double enclosure belong to
either F or G: states in F \G have a double plain line, states in G\F have a double dashed line,
and states in F ∩G use a mixed dashed/plain style.

Property 2 (Converting a BA into a TA [10]). For any BA B = 〈SB , IB ,RB ,FB〉 over
the alphabet Σ = 2AP and such that L (B) is stuttering insensitive, let us define the TA
T = 〈ST , IT ,UT ,RT ,FT , /0〉 with ST = SB ×Σ, IT = IB ×Σ, FT = FB ×Σ and

– ∀(s,k) ∈ IT ,UT ((s,k)) = {k}
– ∀(s,k) ∈ ST ,∀(s′,k′) ∈ ST ,

((s,k),k⊕ k′,(s′,k′)) ∈ RT ⇐⇒ ∃K ∈ 2Σ, ((s,K,s′) ∈ RB)∧ (k ∈ K)
Then L (B) = L (T ).

Figure 3b shows the result of applying this construction to the example Büchi automaton
shown for aUGb. This testing automaton does not yet use livelock-acceptance states (the
G set). The next property, again from Geldenhuys and Hansen [10], shows how filling
G allows to remove all transitions labeled by /0.

Property 3 (Using G to simplify a TA [10]). Let T = 〈S, I,U,R,F,G〉 be TA. By com-
bining the first three of the following operations we can remove all transitions of the
form (s, /0,s′) (i.e. stuttering-transitions) from a TA. The fourth simplification can be
performed along the way.
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1. If Q ⊆ S is a Strongly Connected Component (SCC) such that Q∩ F = /0 (it is
Büchi accepting), and any two states q,q′ ∈Q can be connected using a non-empty
sequence of stuttering-transitions (q, /0,q1) · (q1, /0,q2) · · · (qn, /0,q′) ∈ R∗, then the
testing automaton T ′ = 〈S, I,U,F,G∪Q〉 is such that L (T ′) = L (T ). Such a
component Q is called an accepting Stuttering-SCC.

2. If there exists a transition (s, /0,s′) ∈ R such that s′ ∈ G, the automaton T ′′ =
〈S, I,R\ {(s, /0,s′)},F,G∪{s}〉 is such that L (T ′′) = L (T ).

3. If T does not contain any accepting Stuttering-SCC, and there exists a transi-
tion (s, /0,s′) ∈ R such that s′ cannot reach any state from G using only tran-
sitions labeled by /0, then these transitions can be removed. I.e., the automaton
T ′′′ = 〈S, I,R\ {(s, /0,s′)},F,G〉 is such that L (T ′′′) = L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle nor a livelock-
acceptance state can be removed without changing the automaton’s language.

The resulting TA can be further simplified by merging bisimilar states (two states are
bisimilar if the automaton can accept the same executions starting for either of these
states). This can be achieved using any algorithm based on partition refinement [e.g.,
27], taking {F ∩G,F \G,G\F,S \ (F∪G)} as initial partition.

Fig. 3 shows how a BA denoting the LTL formula aUGb is transformed into a TA by
applying prop. 2, prop. 3, and finally merging bisimilar states.

A TA for GFa∧GFb is too big to be shown: even after simplifications it has 11
states and 64 transitions.

An unfortunate consequence of having two different ways of accepting executions
(livelock or Büchi), is that the emptiness-check algorithm required during model check-
ing must perform two passes on the whole state space in the worst case. Geldenhuys and
Hansen [10] have devised a heuristic that often renders the second pass useless when
the formula is violated. Another optimization we present in Appendix D is to omit the
second pass when no livelock-accepting states is encountered during the first pass.

3 Transition-Based Generalized Testing Automata

This section introduces a new kind of automaton that combines features from both TA
and TGBA. From TA, we take the idea of labeling transitions with changesets, however
we remove the use of livelock-acceptance (because it may require a two-pass emptiness
check), and the implicit stuttering. From TGBA, we inherit the use of transition-based
generalized acceptance conditions.

The resulting Chimera, which we call Transition-based Generalized Testing Automa-
ton (TGTA), accepts only stuttering-insensitive languages like TA, and inherits advan-
tages from both TA and TGBA: it has a simple one-pass emptiness-check procedure (the
same as the one for TGBA), and can benefit from reductions based on the stuttering of
the properties pretty much like a TA. Livelock acceptance states, which are no longer
supported, can be emulated using states with a Büchi accepting self-loop labeled by /0.

Definition 6. A TGTA over the alphabet Σ is a tuple T = 〈S, I,U,R,F〉 where:

– S is a finite set of states,
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aUGb Gb

ab,ab̄

ab, āb

ab, āb

(a) Initial TGBA for aUGb.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b}

/0

{a,b}
{b}

{a}

{a}
/0

{a}

{a}

/0

{a}

/0

/0

/0

(b) TGTA obtained by property 4.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab ab

Gb, āb āb

{b}

{b}/0

{a,b}

{a,b}

{b}

{a}

{a}

/0

{a}

/0

{a}

/0

{a}

/0

(c) TGTA after simplifications by property 5.

1ab̄

2ab

3āb

4 ab, āb

{b}

{b}
/0

{a,b}

{a,b}
{b}

{a}
{a}

/0

{a}

/0

{a}

/0

(d) TGTA after bisimulation.

Fig. 4. TGTA obtained after various steps while translating the TGBA representing aUGb, into a
TGTA with F = { }

– I ⊆ S is the set of initial states,
– U : I → 2Σ is a function mapping each initial state to a set of symbols of Σ
– F is a finite set of acceptance conditions,
– R⊆ S×Σ× 2F× S is the transition relation, where each element (si,ki,Fi,di) rep-

resents a transition from state si to state di labeled by a changeset ki interpreted
as a (possibly empty) set of atomic propositions whose value must change between
states si and di, and the set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Σω is accepted by T if there exists an infinite path
(s0,k0⊕ k1,F0,s1)(s1,k1⊕ k2,F1,s2)(s2,k2⊕ k3,F2,s3) . . . ∈ Rω where:

– s0 ∈ I with k0 ∈U(s0) (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

Figure 4d shows a TGTA constructed for aUGb in the same way as we did for Fig. 3d.
The only accepting runs are those that see infinitely often. The reader can verify that
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s s0 · · · sn

q q′...

. . .k /0 /0
/0

/0

/0

(a) Before stuttering-transitions ( /0) reduction.

s s0 sn

...

. . .k

k

/0

(b) After reduction.

Fig. 5. Using stuttering-transitions to simplify a TGTA

all the executions taken as example in section 2.3 are still accepted, but not always
with the same runs (for instance ab; āb; āb; āb; . . . is accepted by the run 2,4,4,4, . . .,
but not by the run 2,3,3,3, . . .). This small difference is due to the way we emulate
livelock-accepting states, as we shall describe later (in Property 5).

Construction of a TGTA from a TGBA. We now describe how to build a TGTA
starting from a TGBA. The construction is inspired by the one presented in section 2.3
to construct a TA from a BA. In future work we plan to implement a direct translation
from LTL to TGTA, but the construction presented below is enough to show the benefits
of using TGTAs, and makes it easier to understand how TGTAs relates from TGBAs.

Our first property is the counertpart of Prop. 2: we can construct a TGTA from a
TGBA by moving labels to states, and labeling each transition by the set difference
between the labels of its source and destination states. While doing so, we keep the
generalized acceptance conditions on the transitions. An example is shown on Fig 4b.

Property 4 (Converting TGBA into TGTA). For any TGBA G = 〈SG , IG ,RG ,F〉 over
the alphabet Σ = 2AP and such that L (G) is stuttering insensitive, let us define the
TGTA T = 〈ST , IT ,UT ,RT ,F〉 with ST = SG ×Σ, IT = IG ×Σ and

(i) ∀(s,k) ∈ IT ,UT ((s,k)) = {k}
(ii) ∀(s,k) ∈ ST ,∀(s′,k′) ∈ ST ,

((s,k),k⊕ k′,F1,(s′,k′)) ∈ RT ⇐⇒ ∃K ∈ 2Σ, ((s,K,F1,s′) ∈ RG)∧ (k ∈ K)

Then L (G) = L (T ). (See appendix E for a proof.)

The next property is the pendent of Prop. 3 to simplify the automaton by removing
stuttering-transitions. Here we cannot remove self-loop transitions labeled by /0, but we
can remove all others. The intuition behind this simplification is illustrated on Fig 5a:
s0 is reachable from state s by a non-stuttering transition, but s0 can reach an accepting
stuttering-cycle by following only stuttering transitions. In the context of TA we would
have to declare s0 as being a livelock-accepting state. For TGTA, we replace the accept-
ing stuttering-cycle by adding a self-loop labeled by all acceptance conditions on sn,
then the predecessors of s0 are connected to sn as in Fig. 5b.

Property 5 (Using stuttering-transitions to simplify a TGTA). Let T = 〈S, I,U,R,F〉
be TGTA such that L (T ) is stuttering insensitive. By combining the first three of the
following operations, we can remove all stuttering-transitions that are not self-loop (see
Fig. 5). The fourth simplification can be performed along the way.
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1. If Q ⊆ S is a SCC such that any two states q,q′ ∈ Q can be connected using a se-
quence of stuttering-transitions (q, /0,F0,q1)(q1, /0,F1,q2) · · · (qn, /0,Fn,q′)∈R∗ with
F0∪F1∪·· ·∪Fn = F, then we can add an accepting stuttering self-loop (q, /0,F,q)
on each state q∈Q. I.e., the TGTA T ′= 〈S, I,U,R∪{(q, /0,F,q) | q∈Q},F〉 is such
that L (T ′) = L (T ). Let us call such a component Q an accepting Stuttering-
SCC.

2. If there exists an accepting Stuttering-SCC Q and a sequence of stuttering-transi-
tions (s0, /0,F1,s1)(s1, /0,F2,s2) · · · (sn−1, /0,Fn,sn)∈R∗ such that sn ∈Q and s0, s1, ...
sn−1 ∈ Q (Fig. 5a), then:

– For any non-stuttering transition, (s,k, f ,s0) ∈ R going to s0 and such that k =
/0, the TGTA T ′′ = 〈S, I,U,R∪{(s,k, f ,sn)},F〉 is such that L (T ′′) = L (T ).

– If s0 ∈ I, the TGTA T ′′ = 〈S, I∪{sn},U ′′,R,F〉 with ∀s = sn,U ′′(s) =U(s) and
U ′′(sn) =U(sn)∪U(s0), is such that L (T ′′) = L (T ).

3. Let T † = 〈S, I†,U†,R†,F〉 be the TGTA obtained after repeating the previous two
operations as much as possible (i.e., T † contains all the transitions and initial
states that can be added by the above two operations). Then, we can add non-
accepting stuttering self-loops (s, /0, /0,s) to all states that did not have an accepting
stuttering self-loop because T describes a stuttering invariant property. Also we
can remove all stuttering-transitions that are not self-loops since stuttering can
be captured by self-loops after the previous two operations. More formally, the
automaton T ′′′ = 〈S, I†,U†,R′′′,F〉 with R′′′ = {(s,k, f ,d) ∈ R† | k = /0∨ (s = d∧
f = F)}∪{(s, /0, /0,s) | (s, /0,F,s) ∈ R†} is such that L (T ′′′) = L (T †) = L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle can be removed
from the automaton without changing its language. (See appendix E for proofs.)

Here again, an additional optimization is to merge bisimilar states, this can be achieved
using the same algorithm used to simplify a TA, taking S as initial partition and taking
into account the acceptance conditions of the outgoing transitions. All these steps are
shown on Fig. 4.

We can think of a TGTA as a TGBA whose transitions are labeled by changesets
instead of atomic proposition valuations. When checking a TGBA for emptiness, we
are looking for an accepting cycle that is reachable from an initial state. When checking
a TGTA for emptiness, we are looking exactly for the same thing. The same empti-
ness check algorithm can be used, because emptiness check algorithms do not look at
transition labels.

This is a nice feature of TGTA, not only because it gives us a one-pass emptiness
check, but also because it eases the implementation of the TGTA approach in a TGBA-
based model checker. We need only to implement the conversion of TGBA to TGTA and
the product between a TGTA and a Kripke structure. We discuss our implementation in
the next section.

4 Experimentation

This section presents our experimentation of the various types of automata within our
tool Spot [17]. We first present the Spot architecture and the way the variation on the
model checking algorithm was introduced. Then we present our benchmarks (formulæ
and models) prior to the description of our experiments.



Model Checking Using Generalized Testing Automata 105

4.1 Implementation on Top of Spot

Spot is a model-checking library offering several algorithms that can be combined to
build a model checker [7]. Figure 6 shows the building blocks we used to implement
the three approaches.

One point that we did not discuss so far is that in the automata-theoretic approach, the
automaton used to represent the property to check has to be synchronized with a Kripke
structure representing the model. Depending on the kind of automaton (TGBA, BA, TA,
TGTA), this synchronized product has to be defined differently. Only the TGBA and
BA approaches can share the same product definition. The definitions of these different
products follow naturally from the definition of the runs on each automata. We refer the
reader to Appendix A for a definition of all these products.

The TGBA, BA, and TGTA approaches share the same emptiness check, while a
dedicated algorithm is required by the TA approach. In Fig. 6, no direct translation
is provided from LTL to TGTA (this is also true for BA and TA). This could be in-
vestigated later, the need being, so far, to assess their interest before optimizing the
translation process.

In order to evaluate our approach on “realistic” models, we decided to couple the
Spot library with the CheckPN tool [7]. CheckPN implements Spot’s Kripke structure
interface in order to build the state space of a Petri net on the fly. This Kripke structure
is then synchronized with an ω-automaton (TGBA, BA, TA or TGTA) on the fly, and
fed to the suitable emptiness check algorithm. The latter algorithm drives the on-the-
fly construction: only the explored part of the product (and the associated states of the
Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it
saves memory, because the state-space is computed as it is explored and thus, does not
need be stored. Secondly, it also saves time when a property is violated because the
emptiness check can stop as soon as it has found a counterexample. However, on-the-
fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm
such as the one for TA that does two traversals of the full state-space in the worst case
(e.g. when the property holds) will pay twice the price of that construction.

Kripke
Structure

LTL
Formula

LTL2TGBA

TGBA2BA

BA2TA

TGBA2TGTA

Sync. Product
(classic)

Sync. Product
(TA)

Sync. Product
(TGTA)

Emptiness 
check (classic)

Emptiness
check (TA)

TRUE or
counterexample

Fig. 6. The experiment’s architecture in SPOT. Three command-line switches control which one
of the approaches is used to verify an LTL formula on a Kripke structure. The new components
required by the TGTA approach are outlined in Gray.
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In the CheckPN implementation of the Kripke structure, the Petri Net marking are
compressed to save memory. The marking of a state has to be uncompressed every time
we compute its successors, or when we compute the value of the atomic properties on
this state. These two operations often occur together, so there is a one-entry cache that
prevents the marking from being uncompressed twice in a row.

4.2 Benchmark Inputs

We selected some Petri net models and formulæ to compare these approaches.

Case Studies. The following two bigger models, were taken from actual cases studies.
They come with some dedicated properties to check.

PolyORB models the core of the µbroker component of a middleware [16] in an
implementation using a Leader/Followers policy [21]. It is a Symmetric Net and, since
CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for
a configuration involving three sources of data, three simultaneous jobs and two threads
(one leader, one follower) is composed of 189 places and 461 transitions. Its state space
contains 61 662 states1. The authors propose to check that once a job is issued from a
source, it must be processed by a thread (no starvation). It corresponds to:

Φ1 = G(MSrc1 → F(DOSrc1))∧G(MSrc2 → F(DOSrc2))∧G(MSrc3 → F(DOSrc3))

MAPK models a biochemical reaction: Mitogen-activated protein kinase cascade [15].
For a scaling value of 8 (that influences the number of tokens in the initial marking),
it contains 22 places and 30 transitions. Its state space contains 6.11× 106 states. The
authors propose to check that from the initial state, it is necessary to pass through states
RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ2 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

Toy Examples. A first class of four models were selected from the Petri net litera-
ture [2, 20]: the flexible manufacturing system (FMS), the Kanban system, the Peterson
algorithm, and the slotted-ring system. All these models have a parameter n. For the
Peterson algorithm, and the slotted-ring, the models are composed of n 1-safe subnets.
For FMS and Kanban, n only influences the number of tokens in the initial marking.

We chose values for n in order to get state space having between 2× 105 to 3× 106

nodes except for Peterson that is 6.3× 108 nodes. The objective is to have non trivial
state spaces to be synchronized.

Types of Formulæ. As suggested by Geldenhuys and Hansen [10], the type of formula
may affect the performances of the various algorithms. In addition to the formulæ Φ1

and Φ2 above, we consider two classes of formulæ:

1 This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189-
value vector. PolyORB with three sources of data, three simultaneous jobs and three threads
would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.
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– RND: randomly generated LTL formulæ (without X operator). Since random for-
mulæ are very often trivial to verify (the emptiness check needs to explore only a
handful of states), for each model we selected only random formulæ that required
to explore more than 2000 states with the three approaches.

– WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly gener-
ated LTL formula. This represents the verification of ϕ under the weak-fairness
hypothesis

∧n
i=1 GF pi. The automaton representing such a formula has at least n

acceptance conditions which means that the BA will in the worst case be n+1 times
bigger than the TGBA. For the formulæ we generated for our experiments we have
n≈ 3.23 on the average.

All formulæ were translated into automata using Spot, which was shown experimentally
to be very good at this job [22, 6]. The time spent doing the conversion from LTL to
TGBA and then to TGTA (bisimulation included) is not measured in this benchmark.
This translation process is almost instantaneous (<0.1s), and even if its runtime could
be improved (for instance with a direct translation from LTL to TGTA) it is clearly a
non significant part of the run time of the different model checking approaches, where
all the time is spent performing the emptiness check of the product (built on-the-fly)
between the Kripke structure and the property automaton.

4.3 Results

Table 1 shows how for TGBA, TA and TGTA approaches deal with toy models and
random formulæ. We omit data for BA since they are always outperformed by TGBA.
For space reason, we also omit the table showing toy models against weak-fairness
formulæ [23], because it shows results similar to those of table 1.

Table 2 shows the results of the two cases studies against random, weak-fairness, and
dedicated formulæissued from the studies.

These tables separate cases where formulæ are verified from cases where they are
violated. In the former (left sides of the tables), no counterexample are found and the
full state space had to be explored; in the latter (right sides) the on-the-fly exploration of
the state space stopped as soon as the existence of a counterexample could be computed.

All values shown in all tables are averaged over 100 different formulas (except for the
lines Φ1 and Φ2 in Table 2, where only one formula is used). For instance we checked
Peterson5 against 100 random formulæ that had no counterexample, and against 100
random formulæ that had a counterexample. The average and maximum are computed
separately on these two sets of formulæ.

Column-wise, these tables show the average and maximum sizes (states and transi-
tions) of: (1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗AM

of the property with the model; and (3) the subset of this product that was actually ex-
plored by the emptiness check. For verified properties, the emptiness check of TGBA
and BA always explores the full product so these sizes are equal, while the emptiness
check of TA always performs two passes on the full product so it shows double values.
On violated properties, the emptiness check aborts as soon as it finds a counterexample,
so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time
(in hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check,
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Fig. 7. Performance (transitions explored by the emptiness check) of TGTA against TA and
TGBA

including the on-the-fly computation of the subset of the product that is explored. The
time spent constructing the property automata from the formulæ is not shown (it is
negligible compared to that of the emptiness check).

Figure 7 compares the number of visited transitions when running the emptiness
check; plotting TGTA against TA and TGBA. This gives an idea of their relative perfor-
mance. Each point corresponds to one of the 4100 evaluated formulas (2050 violated
with counterexample as black circles, and 2050 verified having no counterexample as
green crosses). Each point below the diagonal is in favor of TGTA while others are in fa-
vor of the other approach. Axes are displayed using a logarithmic scale. No comparison
is presented with BA since they are less efficient than TGBA [23].

All these tests were run on a 64bit Linux system running on an Intel Core 2 Quad
Processor Q9400 at 2.66GHz, with 4GB of RAM.

5 Discussion

Although the state space of cases studies can be very different from random state
spaces [18], a first look at our results confirms two facts already observed in previous
studies [10]: (1) although the TA constructed from properties are usually a lot larger than
TGBA (and even larger than BA [23]), the average size of the full product is smaller
thanks to the more deterministic nature of the TA. (2) For violated properties, the TA
approach explores less states and transitions on the average than TGBA or BA.

We complete this picture by showing run times, by separating verified properties
from violated properties, and by also evaluating the TGBA approach.

It should be noted that our implementation has been improved since our previous
experiments [23] where the cost of computing labels in the Kripke structure was higher
than it is now (we use a cache). This change mainly benefit to testing automata, because
they query two labels by transition of the Kripke structure (to compute an xor between
source label and destination label) while other approaches query only one label.

For weak-fairness formulæ, we show only the results for cases studies because for
toy examples we obtain similar results as random formulæ.
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On verified properties the results are very straightforward to interpret when looking
at the number of transitions explored by the emptiness check. TA outperform TGBA
except for both Random and weak-fairness properties against Peterson, Ring and Poly-
ORB. These are typical cases where the TA emptiness check has to perform two passes:
this can be observed in the tables 1 and 2 when the number of transitions visited by the
emptiness check is on the average twice the number of transitions of the product.

In these three cases, the TGTA approach, with its single-pass emptiness check, is a
clear improvement over TA. On the left scatter plots of Fig. 7, these cases where the
TGTA approach is twice faster than TA’s, appear as a linear cloud of green crosses
below the diagonal (because the axes are displayed using a logarithmic scale).

In the other where TA need only one pass on the average (e.g. Kanban, MAPK),
TGTA and TA have similar performance, with a slight advantage for TGTA because the
products are smaller.

As a consequence the TGTA approach outperforms TGBA and TA in all cases on
verified properties.

On violated properties, it is harder to interpret these tables because the emptiness
check will return as soon as it finds a counterexample. Changing the order in which
non-deterministic transitions of the property automaton are iterated is enough to change
the number of states and transitions to be explored before a counterexample is found: in
the best case the transition order will lead the emptiness check straight to an accepting
cycle; in the worst case, the algorithm will explore the whole product until it finally finds
an accepting cycle. Although the emptiness check algorithms for the three approaches
share the same routines to explore the automaton, they are all applied to different kinds
of property automata, and thus provide different transition orders.

We believe that the TA and TGTA, since they are more deterministic [10], are less
sensitive to this ordering. Also, in all of our experiments the TA approach has always
found the counterexample in the first pass of the emptiness check algorithm. This sup-
ports Geldenhuys and Hansen’s claim that the second pass was seldom needed for vi-
olated properties (less than 0.005% of the cases in their experiments [10]). Finally, in
the tables 1 and 2, we observe that the TGTA approach explores the smallest products
on the average.

6 Conclusion

This paper is the sequel of a preliminary work [23] experimenting LTL model check-
ing of stuttering-insensitive properties with various techniques: Büchi automata (BA),
Transition-based Generalized Büchi Automata and Testing Automata [10]. At this time,
conclusions were that TA outperformed BA and sometimes TGBA for unverified prop-
erties (i.e., when a counterexample was found). However, this was not the case when no
counterexample was computed since the entire state space may had to be visited twice
to check for each acceptance mode of a TA (Büchi acceptance or livelock-acceptance).

This paper extends the above work by proposing a new type of ω-automaton: Tran-
sition-based Generalized Testing Automata (TGTA). It inherits from TA the labeling
of transitions by changesets and, from TGBA, the use of transition-based acceptance
conditions. The idea is to combine advantages observed on both TA and TGBA.
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TGTA have been implemented in Spot easily, because only two new algorithms are
required: the conversion of a TGBA into a TGTA, and a new definition of a product
between a TGTA and a Kripke structure.

We have run benchmarks to assess their interest. Experiments reported that, in most
cases, TGTA outperform TA and TGBA when no counterexample is found in the system
and are comparable when the property is violated.

We conclude that there is nothing to lose by using TGTA to verify stuttering-
insensitive properties, since they are always at least as good as TA and TGBA.

Future Work. We plan additional work to enable symbolic model checking with TGTA,
thus allowing us to tackle much larger state spaces than in explicit model checking. An-
other idea would be to provide a direct conversion of LTL to TGTA, without the inter-
mediate TGBA step. We believe a tableau construction such as the one of Couvreur [4]
could be easily adapted to produce TGTA.
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A Product Definitions

A.1 Product of TGBA (or BA) with a Kripke Structure

The product of a TGBA with a Kripke structure is a TGBA whose language is the
intersection of both languages.

Definition 7. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TGBA
G = 〈SG , IG ,RG ,FG 〉 the product K ⊗G is the TGBA 〈S, I,R,F〉 where

– S = SK × SG ,
– I = IK × IG ,
– R = {((s,s′),LK (s), f ,(d,d′)) | (s,d) ∈ RK , (s′,k, f ,d′) ∈ RG , LK (s) ∈ k}
– F = FG .

Property 6. We have L (K ⊗G) = L (K )∩L (G) by construction.

Since a BA can be seen as a TGBA with a unique acceptance set, and all state-based
acceptance conditions pushed to the outgoing transitions, the same construction can be
used to make a product between a Kripke structure and a BA.

A.2 Product of a TA with a Kripke Structure

For TGBA (or BA) the synchronized product with a Kripke structure can be defined as
another TGBA (or BA). In the case of testing automata, the product of a Kripke and
a TA is not a TA: while an execution in a TA is allowed to stutter on any state, the
execution in a product must always progress.

Definition 8. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TA T = 〈ST , IT ,UT ,
RT ,FT ,GT 〉, the product K ⊗T is an automaton 〈S, I,U,R,F,G〉 where

– S = SK × ST ,
– I = {(s,s′) ∈ IK × IT | LK (s) ∈UT (s

′)},
– ∀(s,s′) ∈ I,U((s,s′)) = {LK (s)},
– R = {((s,s′),k,(d,d′)) | (s,d) ∈ RK , (s′,k,d′) ∈ RT , k = LK (s)⊕LK (d)}

∪{((s,s′), /0,(d,d′)) | (s,d) ∈ RK , s′ = d′, LK (s) = LK (d)}
– F = SK ×FT , and G = SK ×GT .

An execution w = k0k1k2 . . . ∈ Kω is accepted by K ⊗ T if there exists an infinite se-
quence (s0,k0⊕k1,s1)(s1,k1⊕k2,s2) . . . (si,ki⊕ki+1,si+1) . . . ∈ (S×K×S)ω such that:

– s0 ∈ I with k0 ∈U(s0),
– ∀i ∈N,(si,ki⊕ ki+1,si+1) ∈ R (we are always progressing in the product)
– Either, ∀i ∈N, (∃ j ≥ i, k j = k j+1)∧ (∃l ≥ i, sl ∈ F) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈N,∀i ≥ n,(ki = kn)∧ (si ∈ G) (a suffix of the
execution stutters in G).

Property 7. We have L (K ⊗T ) = L (K )∩L (T ) by construction.
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A.3 Product of a TGTA with a Kripke Structure

The product of a TGTA with a Kripke structure is a TGTA.
Comparing this definition with the previous two products shows the double inher-

itance of TGTA. This product is similar to the product between a TA and a Kripke
structure, expect it does not deal with livelock acceptance states and implicit stuttering.
It is also similar to the product of a TGBA with a Kripke structure, except for the use
of changesets on transitions, and the initial labels (U).

Definition 9. For a Kripke structure K = 〈SK , IK ,RK ,LK 〉 and a TGTA T = 〈ST , IT ,
UT , RT ,FT 〉, the product K ⊗T is a TGTA 〈S, I,U,R,F〉 where

– S = SK × ST ,
– I = {(s,s′) ∈ IK × IT | LK (s) ∈UT (s

′)},
– ∀(s,s′) ∈ I,U((s,s′)) = {LK (s)},
– R = {((s,s′),k, f ,(d,d′)) | (s,d) ∈ RK , (s′,k, f ,d′) ∈ RT , k = LK (s)⊕LK (d)}
– F = FT .

Property 8. We have L (K ⊗T ) = L (K )∩L (T ) by construction.

B Model Checking Using TGBA

When doing model checking with TGBA the two important operations are the trans-
lation of the linear-time property ϕ into a TGBA A¬ϕ and the emptiness check of the
product of the Kripke structure K with A¬ϕ: this product K ⊗A¬ϕ is a TGBA. Numer-
ous algorithms translate LTL formulæ into TGBA [13, 4, 1, 26]. We use Couvreur’s
one [4] with some optimizations [6].

Testing a TGBA for emptiness amounts to the search of a strongly connected com-
ponent that contains at least one occurrence of each acceptance condition. It can be
done in two different ways: either with a variation of Tarjan or Dijkstra algorithm [4]
or using several nested depth-first searches to save memory [26]. The latter proved to
be slower [5], so we are using Couvreur’s SCC-based emptiness check algorithm [4].
Another advantage of the SCC-based algorithm is that their complexity does not depend
on the number of acceptance conditions.

Algorithm. 1 presents an iterative version of Couvreur’s algorithm [4]. This algo-
rithm computes on the fly the maximal Strongly Connected Components: it performs
a Depth-First Search (DFS) for SCC detection and then merges the SCCs belonging to
the same maximal SCC into a single SCC. After each merge, if the union of all accep-
tance conditions occurring in the merged SCC is equal to F , then an accepting run is
found. todo is the DFS stack. It is used by the procedure DFSpush to push the states
of the current DFS path and the set of their successors that have not yet been visited.
H maps each visited state to its rank in the DFS order, and H[s] = 0 indicates that s is
a dead state (i.e., s belongs to a maximal SCC that has been fully explored). Figure 9
illustrates a run of this algorithm on a small example.

The SCC stack stores a chain of partial SCCs found during the DFS. For each SCC
the attribute root is the DFS rank (H) of the first state of the SCC, acc is the set of all
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1 Input: A product TGBA G = 〈S, I,R,F〉
2 Result: true if and only if L (G) = /0
3 Data: todo: stack of 〈state ∈ S,succ⊆ R〉

SCC: stack of
〈root ∈N, la⊆ F,acc⊆ F,rem⊆ S〉
H: map of S !→N

max← 0
4 begin
5 foreach s0 ∈ I do
6 DFSpush( /0, s0)
7 while ¬todo.empty() do
8 if todo.top().succ = /0 then
9 DFSpop()

10 else
11 pick one 〈s,_,a,d〉 off todo.top().succ
12 if d ∈ H then
13 DFSpush(a, d)
14 else if H[d]> 0 then
15 merge(a, H[d])
16 if SCC.top().acc = F then
17 return false

18 return true

19 DFSpush(la⊆ F, s ∈ S)
20 max← max+1
21 H[s]← max
22 SCC.push(〈max, la, /0, /0〉)
23 todo.push(〈s,{〈q, l,a,d〉 ∈ R | q = s}〉)
24 DFSpop()
25 〈s,_〉 ← todo.pop()
26 SCC.top().rem.insert(s)
27 if H[s] = SCC.top().root then
28 foreach s ∈ SCC.top().rem do
29 H[s]← 0
30 SCC.pop()

31 merge(la⊆ F, t ∈N)
32 r← /0
33 acc← la
34 while t < SCC.top().root do
35 acc← acc∪SCC.top().acc

∪SCC.top().la
36 r← r∪SCC.top().rem
37 SCC.pop()
38 SCC.top().acc← SCC.top().acc∪acc
39 SCC.top().rem← SCC.top().rem∪ r

Algorithm 1. Emptiness check algorithm for TGBA

acceptance conditions belonging to the SCC, la is the acceptance conditions of the tran-
sition between the previous and the current SCC, and rem contains the fully explored
states of the SCC. Figure 8 shows how acc and la are used in the SCC search stack.

The algorithm begins by pushing in SCC each state visited for the first time (line 12),
as a trivial SCC with an empty acc set (line 22). Then, when the DFS explores a transi-
tion t between two states s and d, if d is in the SCC stack (line 14), therefore t closes a
cycle passing through s and d in the product automaton.This cycle “strongly connects”
all SCCs pushed in the SCC stack between SCC[i] and SCC[n]: the two SCCs that re-
spectively contains the states d and s (SCC[n]] is the top of the SCC stack). All the SCCs
between SCC[i] and SCC[n] are merged (line 15) into SCC[i]. The merge of acceptance
conditions is illustrated by Fig. 8: a “back” transition t is found between SCC[n] and
SCC[i], therefore the latest SCCs (from i to n) are merged. The acceptance conditions
of the merged SCC is equal to the union of SCC[i].acc∪SCC[i+1].la∪SCC[i+1].acc∪
·· ·∪SCC[n].la∪SCC[n].acc∪ t.la. If this union is equal to F , then the merged SCC is
accepting and the algorithm return false (line 17): the product is not empty.

SCC[i−1].acc SCC[i].acc SCC[i+1].acc SCC[n].acc
SCC[i−1].la SCC[i].la SCC[i+1].la SCC[n].la

t.la

Fig. 8. SCC stack: the use of the SCCs fields la and acc
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Fig. 9. Six intermediate steps in a run of algorithm 1. The states s1, . . . ,s5 are labeled by their
value in H. The stack of roots of SCCs (the root stack in the algorithm) and the DFS search stack
(induced by the recursive calls to DFSpush()) are displayed on the side. An interpretation of the
SCC stack in term of SCCs is given as yellow blobs on the automaton.
(a) Initially the algorithm performs a DFS search by declaring each newly encountered state
as a trivial SCC. (b) When the transition from s4 to s3 is processed, the algorithm detects that
H[s3] = 0 which means the transition creates a cycle and all SCCs between s4 and s3 are merged.
(c) When the DFS exits the non-accepting {s3,s4} SCC, it marks all its states as dead (H[s] = 0).
(d) When the DFS tries attempt to visit a dead state, it ignores it. (e) Visiting the transition from s5
to s1 will merge three SCCs into one, but it does not yet appear to be accepting because the white
acceptance has not been seen. (f) Finally visiting the transition from s2 back to s1 will contribute
white acceptance condition to the current SCC, and the algorithm will stop immediately because
it has found an SCC labeled by all acceptance conditions.
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C Model Checking Using BA

Since a BA can be seen as a TGBA by pushing acceptance conditions from states to
outgoing transitions, the emptiness check from Algorithm. 1 also works. Other algo-
rithms, specific to BA, are based on two nested depth-first searches. The comparison of
these different emptiness checks raised many studies [11, 24, 5], and for this work we
only consider the SCC-based algorithm presented here.

D Emptiness Check Using TA

Testing Automata require a dedicated algorithm because there are two ways to detect
an accepting cycle in the product:

– Büchi acceptance: a cycle containing at least one Büchi-acceptance state (F) and at
least one non-stuttering transition (i.e., a transition (s,k,s′) with k = /0),

– livelock acceptance: a cycle composed only of stuttering transitions and livelock
acceptance states (G).

1 Input: A product K ⊗T = 〈S, I,U,R,F,G〉
2 Result: true if and only if L (T ) = /0
3 Data: todo: stack of 〈state ∈ S,succ⊆ R〉

SCC: stack of 〈root ∈N, lk ∈ 2AP,k ∈
2AP,acc⊆ F,rem⊆ S〉
H: map of S !→N

max← 0, Gseen← f alse
4 begin
5 if ¬ first-pass() then return false
6 if Gseen then return second-pass()
7 return true
8 first-pass()
9 foreach s0 ∈ I do

10 DFSpush1( /0, s0)
11 while ¬todo.empty() do
12 if todo.top().succ = /0 then
13 DFSpop()
14 else
15 pick one 〈s,k,d〉 off todo.top().succ
16 if d ∈ H then
17 DFSpush1(k, d)
18 else if H[d]> 0 then
19 merge1(k, H[d])
20 if (SCC.top().acc = /0)∧

(SCC.top().k = /0) then return
false

21 if (d ∈ G)∧ (SCC.top().k = /0) then
return false

22 return true

23 DFSpush1(lk ∈ 2AP, s ∈ S)
24 max← max+1
25 H[s]← max
26 if s ∈ F then
27 SCC.push(〈max, lk, /0,{s}, /0〉)
28 else
29 SCC.push(〈max, lk, /0, /0, /0〉)
30 todo.push(〈s,{〈q,k,d〉 ∈ R | q = s}〉)
31 if s ∈ G then
32 Gseen← true

33 merge1(lk ∈ 2AP, t ∈N)
34 acc← /0
35 r← /0
36 k← lk
37 while t < SCC.top().root do
38 acc← acc∪SCC.top().acc
39 k← k∪SCC.top().k∪SCC.top().lk
40 r← r∪SCC.top().rem
41 SCC.pop()
42 SCC.top().acc← SCC.top().acc∪acc
43 SCC.top().k← SCC.top().k∪ k
44 SCC.top().rem← SCC.top().rem∪ r

Algorithm 2. The first-pass of the Emptiness check algorithm for TA products
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Fig. 10. Example product between a Kripke structure and a TA. The bold cycle is livelock-
accepting.

A straightforward emptiness check would have two passes: a first pass to detect Büchi
acceptance cycles, it corresponds to Algorithm. 2 without the test at line 21 and a second
pass presented in Algorithm. 3 to detect livelock acceptance cycles. It is not possible
to merge these two passes into a single DFS: the first DFS requires the full product
exploration while the second one must consider stuttering transitions only. These two
passes are an inconvenient when the property is satisfied (no counterexample) since the
entire state-space has to be explored twice.

With line 21 included in Algorithm. 2, the first-pass detects both Büchi and some
livelock-acceptance cycles. Since in certain cases it may fail to report some livelock-
acceptance cycles, a second pass is required to look for possible livelock-acceptance
cycles.

This first-pass is based on the TGBA emptiness check algorithm presented in
Algorithm. 1 with the following changes:

– In each item scc of the SCC stack: the field scc.acc contains the Büchi-accepting
states detected in scc, scc.lk is analogous to la in Fig. 8 but it stores the change-set
labeling the transition coming from the previous SCC, and scc.k contains the union
of all change-sets in scc (lines 39 and 43).

– After each merge, SCC.top() is checked for Büchi-acceptance (line 20) or livelock-
acceptance (line 21) depending on the emptiness of SCC.top().k.

Figure 10 illustrates how the first-pass of Algorithm. 2 can fail to detect the livelock
accepting cycle in a product K ⊗ T as defined in def. 8. In this example, GT = {1}
therefore (3,1) and (2,1) are livelock-accepting states, and C2 = [(3,1)→ (2,1)→
(3,1)] is a livelock-accepting cycle.

However, the first-pass may miss this livelock-accepting cycle depending on the
order in which it processes the outgoing transitions of (3,1). If the transition t1 =
((3,1),{p},(0,0)) is processed before t2 = ((3,1), /0,(2,1)), then the cycle C1 = [(0,0)
→ (1,0)→ (2,1)→ (3,1)→ (0,0)] is detected and the four states are merged in the
same SCC before exploring t2. After this merge (line 19), this SCC is at the top of the
SCC stack. Subsequently, when the DFS explores t2, the merge caused by the cycle C2

does not add any new state to the SCC, and the SCC stack remains unchanged. There-
fore, the test line 21 still return false because the union SCC.top().k of all change-sets
labeling the transitions of S is not empty (it includes for example t1’s label: {p}). The
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1 Data: todo: stack of 〈state ∈ S,succ⊆ S〉
SCC: stack of 〈root ∈N,rem⊆ S〉
H: map of S !→N

max← 0; init ← I
2 second-pass()
3 while ¬init.empty() do
4 pick one s0 off init
5 if s0 ∈ H then DFSpush2( /0, s0)
6 while ¬todo.empty() do
7 if todo.top().succ = /0 then
8 DFSpop()
9 else

10 pick one d off todo.top().succ
11 if d ∈ H then
12 DFSpush2(d)
13 else if H[d]> 0 then
14 merge2(H[d])
15 if (d ∈ G) then return false

16 return true

17 DFSpush2(s ∈ S)
18 max← max+1
19 H[s]← max
20 SCC.push(〈max, /0〉)
21 todo.push(〈s,{d ∈ S | (s, /0,d) ∈ R}〉)
22 init ← init ∪{d ∈ S | (s,k,d) ∈ R,k = /0}
23 merge2(t ∈N)
24 r← /0
25 while t < SCC.top().root do
26 r← r∪SCC.top().rem
27 SCC.pop()
28 SCC.top().rem← SCC.top().rem∪ r

Algorithm 3. The second-pass of the TA emptiness check algorithm

first-pass algorithm then terminates without reporting any accepting cycle, missing
C2.

Had the first-pass processed t2 before t1, it would have merged the states (3,1)
and (2,1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of
all change-sets of the SCC containing this cycle. However, this union may include non-
stuttering transitions belonging to other cycles of the SCC. In this case, the second-pass
is required to search for livelock-acceptance cycles, ignoring the non-stuttering transi-
tions that may belong to the same SCC.

The second-pass (Algorithm. 3) is a DFS exploring only stuttering transitions
(line 21). To report a livelock-accepting cycle, it detects “stuttering-SCCs” and tests
if they contain a livelock-accepting state (line 15).

Ignoring the non-stuttering transitions during the DFS, may lead to miss some parts
of the product so any destination of a non stuttering transition is stored in init for later
exploration (line 22).

In the algorithm proposed by Geldenhuys and Hansen [10], the first pass uses a
heuristic to detect livelock-acceptance cycles when possible. This heuristic detects more
livelock-acceptance cycles than Algorithm. 2. In certain cases this first pass may still
fail to report some livelock-acceptance cycles. Yet, this heuristic is very efficient: when
counterexamples exist, they are usually caught by the first pass, and the second is rarely
needed. However, when properties are verified, the second pass is always required.

Optimizations. In our experimentation, we implement the algorithm proposed by Gel-
denhuys and Hansen [10] including the heuristic and we have added some improve-
ments to the first pass:
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1. If no livelock-acceptance state is visited during the first pass, then the second pass
can be disabled: this is the purpose of variable Gseen. In our experiments, this
optimization greatly improves the performance of the TA approach in the cases
where the formula is verified.

2. A cycle detected during the first pass is also accepted if it contains a livelock-
acceptance state (sK ,sT ) such that sT has no successor. Indeed, from this state, a
run can only executes stuttering transitions. Therefore, a cycle containing this state,
is composed only of stuttering transitions: it is a livelock accepting cycle.

E Proofs for TGTA Construction

Proof of property 4.
(((⊆⊆⊆))) Let w = k0k1k2 . . . ∈ L (G) be an execution accepted by G . By Def. 3, this ex-
ecution is recognized by a path (s0,K0,F0,s2)(s2,K1,F1,s2) . . . ∈ Rω

G of G , such that
s0 ∈ I, ∀i ∈N,(ki ∈ Ki), and ∀ f ∈ F, ∀i ∈N, ∃ j≥ i, f ∈ Fj. By applying (ii) and (i), we
can see that there exists a corresponding path ((s0,k0),k0⊕k1,F0,(s1,k1))((s1,k1),k1⊕
k2,F1,(s2,k2)) . . . ∈ Rω

T of T such that (s0,k0) ∈ IT , k0 ∈UT ((s0,k0)), and still ∀ f ∈
F, ∀i ∈N, ∃ j ≥ i, f ∈ Fj. By Def. 6 we therefore have w ∈L (T ).
(((⊇⊇⊇))) Let w=w0w1w2 . . .∈L (T ) be an execution accepted by T . By Def. 6, this execu-
tion is recognized by a path ((s0,k0),w0⊕w1,F0,(s1,k1))((s1,k1),w1⊕w2,F1,(s2,k2))
. . . ∈ Rω

T of T such that (s0,k0) ∈ IT , w0 ∈ UT ((s0,k0)), and ∀ f ∈ F, ∀i ∈ N, ∃ j ≥
i, f ∈ Fj. Of course we have wi⊕wi+1 = ki⊕ ki+1 but this does not suffice to imply
that ki = wi. However (i) tells us that w0 ∈UT ((s0,k0)) = {k0} so w0 = k0, and since
wi⊕wi+1 = ki⊕ki+1 it follows that wi = ki. By applying (ii) can now find a correspond-
ing path (s0,K0,F0,s2)(s2,K1,F1,s2) . . . ∈ Rω

G of G , such that s0 ∈ I, ∀i ∈N,(wi = ki ∈
Ki), and ∀ f ∈ F, ∀i ∈N, ∃ j ≥ i, f ∈ Fj. By Def. 3 we therefore have w ∈L (G). ��
Proof of property 5.

1. (((T ′′′ ⊇⊇⊇ T ))) Obvious because we are only adding transitions. (((T ′′′ ⊆⊆⊆ T ))) Let R′ =
R∪ {(q, /0,F,q) | q ∈ Q}. Consider an accepting execution w = k0k1k2 . . .L (T ′)
recognized by an accepting path π′ on T ′. Any transition of π′ that is not in R is
a self-loop (q, /0,F,q) that has been added to R′ because an accepting stuttering-
SCC exists in R around q: so any (q, /0,F,q) ∈ R′ can be replaced by a sequence
of stuttering transitions (q, /0,G0,q1)(q1, /0,G1,q2) . . . (qn, /0,Gn,q) ∈ R∗ such that
G0 ∪G1 ∪ . . .Gn = F . The path π ∈ Rω obtained by replacing all such transitions
is an accepting path of T that recognizes a word that is stuttering equivalent to w.
Since L (T ) is stuttering-insensitive, it must also contain w. ��

2. (((T ′′′′′′ ⊇⊇⊇ T ))) Obvious for the same reason. (((T ′′′′′′ ⊆⊆⊆ T ))) We consider the case where
s0 is non initial (the initial case is similar). Let R′′ = R∪ {(s,k, f ,sn)}. Consider
an accepting execution w = k0k1k2 . . .L (T ′′) recognized by a path π′′ on T ′′. Let
π be the path on T obtained by replacing in π′′ any occurrence of (s,k, f ,sn) ∈
(R′′ \ R) by the sequence (s,k, f ,s0)(s0, /0,F1,s1)(s1, /0,F2,s2) · · · (sn−1, /0,Fn,sn) ∈
R∗. The path π ∈ Rω is also an accepting path of T that recognizes a word that is
stuttering equivalent to w. Since L (T ) is stuttering-insensitive, it must also contain
w. ��
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3. L (T †) = L (T ) by application of the previous two properties, therefore L (T †)
is a stuttering-insensitive language. L (T ′′′) is also a stuttering-insensitive lan-
guage because T ′′′ is obtained from T † that recognizes a stuttering-insensitive
language, by adding stuttering self-loops on all its states before removing all
stuttering-transitions that are not self-loops.
To prove that two stuttering-insensitive languages are equal, it is sufficient to verify
that they contain the same words of the following two forms:

– w = k0k1k2 . . . with ∀i ∈N,ki⊕ ki+1 = /0 (non-stuttering words), or
– w = k0k1k2 . . . (kn)

ω with ∀i < n,ki⊕ ki+1 = /0 (terminal stuttering words)
All other accepted words can be generated by duplicating letters in the above words.
Since we have only touched stuttering transitions, it is clear that the non-stuttering
words of L (T ) are the non-stuttering words of L (T ′′′).
We now consider the case of a terminal stuttering word w = k0k1k2 . . . (kn)

ω with
∀i < n,ki⊕ ki+1 = /0.
(((T ′′′′′′′′′ ⊆⊆⊆ T †))) The path π′′′ that recognizes w in T ′′′ has the form (s0,k0⊕ k1,F0,s1)
(s1,k1 ⊕ k2,F1,s2) . . . (sn, /0,F,sn)

ω where all transitions are necessarily from T †

because we have only added in T ′′′ transitions of the form (s, /0, /0,s). π′′′ is thus
also an accepting path of T † and w ∈L (T †).
(((T ′′′′′′′′′ ⊇⊇⊇ T †))) The path π† that recognizes w in T † does only stutter after kn. Because
this is an accepting path, it has a lasso-shape, where the cyclic part is only stuttering
and accepting. Let us denote it π† = (s0,k0⊕ k1,F0,s1)(s1,k1⊕ k2,F1,s2) . . . (sn−1,
kn−1⊕ kn,Fn−1,sn)(sn, /0,Fn,sn+1) . . . [(sm, /0,Fm,sm+1) . . . (sl , /0,Fl ,sm)]

ω, with
∀i < n,ki⊕ ki+1 = /0.
Thanks to property 5.1, the accepting cycle [(sm, /0,Fm,sm+1) . . . (sl , /0,Fl ,sm)] of π†

can be replaced by an accepting self-loop (sm, /0,F,sm). And thanks to property 5.2,
the transitions from sn−1 to sm can be replaced by a single transition (sn−1,kn−1⊕
kn,Fn−1,sm). The resulting path π′′′=(s0,k0⊕k1,F0,s1)(s1,k1⊕k2,F1,s2) . . . (sn−1,
kn−1⊕ kn,Fn−1,sm)(sm, /0,F,sm)

ω is an accepting path of T ′′′ that accepts w, so
w ∈L (T ′′′). ��

4. This is a classical optimization on Büchi automata. ��
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Abstract. Systems biology and synthetic biology can be considered as
model-driven methodologies. In this context, models are used to discover
emergent properties arising from the complex interactions between com-
ponents. Most available tools propose simulation frameworks to study
models of biological systems. Simulation only explores a limited num-
ber of behaviors of these models. This may lead to a biased view of
the system. On the contrary, model checking explores all the possible
behaviors. The use of model checking in the domain of life sciences is
limited. It suffers from the complexity of modeling languages designed
by and for computer scientists. This article describes an approach based
on Domain Specific Languages. It provides a comprehensible, yet for-
mal, language called GReg to describe genetic regulatory mechanisms
and their properties, and to apply powerful model checking techniques
on them. GReg’s objective is to shelter the user from the complexity of
those underlying techniques.

1 Introduction

Nowadays, the most widespread practices in biology, to observe the behavior
of a living system, are in vivo and in vitro experiments. There is clearly an
emerging field of research including systems biology and synthetic biology where
experiments are partially performed in silico (i.e., by means of techniques from
computer science). In systems biology, the models are used to formalize the
knowledge gathered from the study of living systems. Such models allow to
predict and identify abnormal or emergent behaviors. This approach eases the
understanding of the system and the design of new experiments. The synthetic
biology approach covers the design and construction of reliable biological func-
tions or systems not found in nature. In this domain, models are designed from
a specification (i.e., a desired behavior) and then used to construct and verify
newly engineered systems. This approach is similar to software development.

Investigation through formal models of biological systems is not as widely
spread as in other natural sciences such as chemistry and physics. This is partly
due to the complexity of the living systems, the strenuosity to formalize biological
concepts, and the difficulty to perform experiments on living systems to validate
models. [17] presents a detailed survey of the formal languages used to model ge-
netic regulatory systems. Another reason is that building formal models requires

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 123–145, 2012.
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a deep knowledge of formalisms that are often too complex for non-experts. To
overcome this difficulty, we propose to use the Domain Specific Language (DSL)
approach [13]. A DSL is a language designed to be understandable by a domain
expert and, at the same time, translatable into a formal language.

This paper presents the Gene Regulation Language (GReg), a DSL for the
modeling of genetic regulatory mechanisms. GReg models are transformed to
logical regulatory networks [33,8]. Regulatory networks are abstractions of ge-
netic regulatory mechanisms modeled through biological rules over a set of inter-
connected modules. The occurrence of interesting events in the biological system
is represented as logical properties expressed on the states of these modules. This
is similar to the kind of properties computer scientists validate on hardware and
software systems (e.g., deadlocks and invariants).

Several authors tackled the verification of biological system’s properties using
model checking techniques [11]. They rely on the expression of models in a formal
language. This makes the model checking approach impractical for people who
do not master such formal languages.

For instance, Fages et al. [7] introduce the chemical abstract machine BioCham.
The purpose of their language is to model interaction networks. This language is
more general than strictly necessary for the modeling of regulatory mechanisms.
Moreover, to verify properties on such models, the user must design formulae
in a temporal logic that is a complex formal language. To harness that prob-
lematic, Monteiro et al. [21] suggest to develop a query language closer to the
domain. The syntax of GReg’s query language uses similar properties patterns,
namely occurrence/exclusion, consequences and sequences. A major difference
between GReg and the other languages that model genetic regulatory mech-
anisms is that its modeling and querying syntaxes are close to the domain.
Furthermore, GReg’s modularity leverages the reusability and extensibility of
the presented approach. It helps to adapt the language concepts, the concrete
syntax as well as the transformation to an underlying computational model to
the evolution of the user requirements.

Among the tools available in this domain, the main analysis approach is sim-
ulation. Simulation is generating and analyzing a limited sample of possible
system behaviors. This technique is not convenient when looking for rare or ab-
normal behaviors (e.g., cancer). A possible approach, in this case, is to use model
checking instead of simulation. Model checking consists in generating and ana-
lyzing the complete set of possible behaviors of a model. Such technique suffers
from the huge number of possible states of biological systems. This problem is
well-known to the model checking community, where it is called the state space
explosion [34]. In both cellular interactions and software systems the state space
explosion is due to their concurrent nature and the size of the variables domains.
Therefore, techniques developed for the model checking of hardware and soft-
ware systems are adapted to biological interactions. For instance, the symbolic
encoding of the state space [6].

In this paper we show a work in progress in our group. We present GReg, an
application of the DSL approach for modeling and analyzing biological
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systems based on formal modeling and reasoning. Advanced techniques for defin-
ing Domain Specific Languages, giving their semantics and analyzing them using
symbolic model checking are presented. The paper is organized as follows:

First, we describe in Section 2 the usage and creation of Domain Specific
Language. Then, in Section 3, we put our work in context by describing the
related work. Subsequently, in Section 4 we delineate precisely the part of the
biological domain that GReg covers. The following two sections describe GReg.
In the first place, we describe the structure of the language in Section 5 and
then we outline a translation from GReg to Petri Nets and mention an example
of a possible extension in Section 6. A complete yet simple example is presented
in Section 7. Finally, we present the future work and the conclusion in Section 8.

2 DSL Approach

A DSL is a programming or specification language tailored for a given domain; it
presents a reduced set of terms closely related to this domain. This approach has
been very effective in domains such as software engineering, finance, and physics.
Using a DSL has three main objectives. First, learning the language should be
easy for someone with enough domain knowledge, even if this person does not
have previous knowledge of programming or specification languages. Second,
the number of errors made by a novice user should be drastically reduced as the
expressivity of the language is reduced to the minimum necessary. Third, creating
a DSL is a simpler task than creating a full language, as there exists many tools
supporting the approach (e.g., Eclipse Modeling Project (EMP)[10]).

In our approach, presented in Figure 1, the DSL semantics are defined by
transformation into a formal language where complex operations (e.g., model
checking) can be performed. Often a pre-existing language might be selected to
this end. Usually, the scope of the target language is broader than the scope of
the DSL. This allows using the same target language and its associated tools for
different DSLs. The results obtained in the computational language are trans-
lated back to the DSL and returned to the user.

After the creation of the initial model, all the following steps must be fully
automated, to hide the underlying complexity from the end user. In the case of
model checking, the computation tool in Figure 1 is a model checker, and the
result is the answer of whether the system verifies or not a given property, along
with an eventual counter-example. In this case, the model checker will return
a counter-example specified in its own language. An automatic transformation
must translate this result back to the domain of the user, to effectively shield
him from the possibly complex computational formal language.

2.1 The Design of DSLs

The person in charge of the DSL creation is a language engineer. This person
should obviously have a certain knowledge about the language creation process,
but he/she should also master the computational language, to define correct
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Fig. 1. DSL computational process

and efficient transformations. Furthermore, he/she should be in contact with at
least one domain expert, to settle the requirements and verify the correctness
and completeness of the language created. The creation of a DSL follows a set
of specific steps. First, the language engineer identifies the abstract concepts
of the domain. These concepts include the basic elements of the domain, the
interactions between these elements and the precise boundaries of the consid-
ered domain. Based on these concepts, the language engineer defines a set of
expressions used to create a specific model based on these abstract concepts.
This is called the concrete syntax. Finally, the language engineer sets forth the
semantics of the language, usually by transformation to an existing language.
Domain experts validate the three steps of the DSL creation process: the domain
must be correctly defined, the expressions of the concrete syntax must be close
to the already existing languages in the domain, and the execution must return
the expected results. This creation/validation process often leads to an iterative
development of the language.

A main advantage of a modular structure like the one in Figure 1 is its
flexibility. We could replace the computational domain while keeping exactly
the same language. For instance, GReg models are currently translated to
Petri Nets [27] (see section 6). We could define a transformation from GReg
to Systems Biology Markup Language (SBML), without changing the language.
As SBML takes text files for input, we would need a tool to produce text files
from GReg models, like the model to text transformation tool XPand [10]. More-
over, DSLs can be extended using metamodeling composition techniques, as
in [19]. Such extension mechanisms allow the creation of a core DSL, with a
minimum of expressivity, and a set of possible extensions that are applied to
build more complex languages. Note that such extensions must work both on
the specification language level and in the transformations. This eases the cre-
ation of new related languages, as most of the basic notions that were previously
defined are reused. In Section 5, we present the current version of GReg. The
language is simple, but it may be used as a building block for more complex
languages.
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2.2 The Design of a DSL for Biological Process

There are various DSLs tailored to the biological processes, e.g., SBML [14]
and SBGN [22]. These two well-known languages cover a wide range of systems,
mainly in the bio-chemical domain. GReg, instead, focuses on a more precise
specification of the genetic regulatory mechanisms as described in Section 4.

While creating GReg, we followed the design steps mentioned
before according to the biological mechanisms. For its implemen-
tation we used the Eclipse Modeling Project [10] approach, which
includes tools like the Eclipse Modeling Framework (EMF), XText, the
Atlas Transformation Language (ATL) and XPand. We first created a meta-
model of the domain using EMF, and we defined a concrete syntax with XText.
XText provides a set of tools to create an editor for a given language, with
some user-friendly features such as syntax highlighting, on the fly syntax check-
ing and auto-completion. As a computational platform we chose AlPiNA[5].
AlPiNA is a model checking tool for Algebraic Petri Nets (APNs) [35]. It aims
to perform efficient model checking on models with extremely large state spaces,
using Σ Decision Diagrams (DDs) [3] to tackle the state explosion problem.
AlPiNA’s input languages were also defined using the EMP approach. This
allowed us to use ATL to define the semantic transformations. GReg is thus fully
integrated in the Eclipse/EMP framework.

3 Related Work

In this section we compare six well-known tools with our approach. We first
define a few criteria such as the kind of analysis, the supported formalism and
the supported exchange format.

Domain Language. To be productive, the syntax of the input language should
be as close as possible to the actual domain of the user. This input lan-
guage can be textual (like in tools that use SBML [14]) or graphical (like
Systems Biology Graphical Notation (SBGN) [22]).

Simulation & Model Checking. Although there are many tools adapted to
biological process design and simulation, only a few of them allow exhaustive
exploration of the state space. While simulation is very useful during model
elaboration, an exhaustive search may help to discover pathological cases
that would have never been explored by simulation.

Discrete & Continuous. Continuous models are often used to model the bi-
ological systems, but they are less appropriate to model checking techniques
than discrete models. Discrete formalisms allow a complete exploration of
the state space while preserving the qualitative properties of the system, as
mentioned in [33].

Exchange Format. The supported interchange format is an important feature
as it allows us to bridge the gap between different tools and therefore enables
the user to use the most adapted tool to hand. SBML is a common inter-
change format based on XML. It is used to describe biochemical reactions,
gene regulation and many other biological processes.
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Table 1 presents a comparison of existing tools based on the previous criteria.

Table 1. Tool comparison table
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GReg � � � � � � � AlPiNA GReg
GINsim � � � � � � � NuSMV GINML
GNA � � � � � � � NuSMV GNAML
BioCham � � � � � � � NuSMV SBML
Snoopy � � � � � � � IDD-CSL SBML
Cell Illustrator �1 � � � � � � CSML
BioTapestry � � � � � � � SBML

Gene Interaction Network simulation (GINsim) [25] is a tool for the
modeling and simulation of genetic regulatory networks. It models genetic
regulatory networks based on a discrete formalism [9,24]. These models are
stored using the XML-based format GINML. The simulation computes a
state transition graph representing the dynamical behavior network. GINsim
uses a graphical DSL called Logical Regulatory Graph (LRG) [8]. Models in
LRG are graphs, where nodes are regulatory components (i.e., molecules and
genes) and arcs are regulatory interactions (i.e., activation and repression)
between the nodes.

Genetic Network Analyser (GNA) [1] is a tool for the modeling and sim-
ulation of genetic regulators networks. The simulator uses piecewise-linear
differential equations to generate a state transition graph that describes the
qualitative dynamics of the network [18]. It also offers model checking.

Biochemical Abstract Machine (BioCham) [12] is a software for model-
ing and analyzing biochemical systems. The system is described using chem-
ical reaction rules. This software proposes different simulators (boolean,
differential, and stochastic). It embeds a temporal logic language used to
formalize and validate temporal properties [7].

Cell Illustrator [32] is an example of a commercial simulation tool for contin-
uous and discrete domains. The graphical formalism is based on Petri Nets,
called Hybrid Functional Petri Nets with extensions (HFPNe), which add
the notions of continuous and generic processes and quantities [23]. The
XML-based exchange file format used in Cell Illustrator is called CSML.

1 Note that, we do not consider the tool’s functionalities, only the modeling language
(HFPNe).
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Snoopy [31] is a framework based on Petri Nets formalisms for the modeling
and analysis of biomolecular networks. Several Petri Nets classes are avail-
able, namely: PN, Stochastic PN and Continuous PN [28].

BioTapestry [30] is a free and open source software to create and refine graph-
ical models of genetic regulatory networks. BioTapestry offers a symbolic
representation of genes, their products, and their interactions [20].

Let us compare GReg with the above tools. GReg proposes two key features: it
has a built-in query language (GQL), and it proposes more fine grained models
of genetic regulatory mechanisms compared to other existing languages or tools.
For example LRGs only proposes two types of regulation: activation and re-
pression. SBML also proposes only two types of regulation: trigger (activation),
inhibition (repression). The tools depending on these formalisms, like GINsim or
GNA, have to use this abstraction. As stated previously, GReg models may be
transformed to SBML. Such transformation would induce a loss of information,
as GReg defines four types of regulation (see section 4). Note that a transforma-
tion from SBML to GReg would also lose some information, as GReg does not
handle the kinetic information.

BioCham is a modeling tool that uses chemical concepts that are low-level
when applied to the biological domain. Nevertheless, its expressivity is greater
than GReg’s chemical language. Moreover, BioCham has been thoroughly used
and tested. Thus, we could define transformations from our model to BioCham’s
chemical languages, which would take advantage of BioCham’s features while
keeping our high-level language concepts.

Pedersen et al. [26], similarly to BioCham present a language with detailed
transformational semantics to Petri Nets (PNs). However, the syntax of the pro-
posed language looks like a programming language, hence it is not adapted to
non expert users.

Snoopy and Cell Illustrator are both tools derived and using the Petri Net
formalism. PNs are good modeling formalism when it comes to concurrent and
asynchronous processes, however it is not adapted to biologists.

4 Chemical and Biological Models Covered by GReg

The purpose of GReg is to model genetic regulatory mechanisms controlling the
DNA to protein process. This section gives a definition of the domain covered
by the current version of GReg. We will describe later some possible extensions
of the language, to cover a broader domain. In this section, we first describe
molecules and reactions, the basic building blocks of regulatory mechanisms.
Then we describe chemical compartments and their hierarchical organization.
Finally, we define the regulatory mechanisms themselves.

4.1 Molecules and Reactions

Let M be a non-empty set of molecules. In our case, M does not include the
genome of the system, only the proteome and the molecules taken from the
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environment. These molecules are located inside chemical compartments, with a
given concentration. In the following, we model the concentration of a molecule
in the system as a discrete set of levels, as in [33]. If a molecule has n distinct
regulatory roles, we define n + 1 levels. These levels are naturally ordered by
concentration, i.e., a level 2 concentration corresponds to a higher concentration
than level 1. As the levels are ordered, we constrain the changes of the molecular
level to a discrete unit, i.e.,Δl = 1.

Molecules interact with each other by means of chemical reactions. A reac-
tion consumes and produces some molecules, respectively called reactants and
products, with the participation of a set of catalysts. Formally, we define a chem-
ical reaction as an element of (M → N) × (M → B) × (M → N), where the
three components correspond to the reactants, products and catalysts respec-
tively (N denotes the natural numbers and B the Booleans). For each reactant
and catalyst, the associated natural number is the concentration level of the
respective molecule needed for the reaction to occur. A simple reaction example
is CO2@3+ C → CO, where we say that if molecules CO2 and C have at least
concentration 3 and 1 respectively, then they will react and produce molecule
CO. Note that we do not consider stoichiometric coefficients for the reactions as
we solely work on the concentration levels. Thus, the operator @ in the reaction
does not indicate the number of CO2 molecules that participate in the reaction,
but the minimal concentration of CO2 required for the reaction to take place. In
an actual reaction, a catalyst is both a reactant and product. Instead, for read-
ability reasons, we defined a special category for the catalysts, distinct from the
products and reactants. Thus, in a reaction, the three sets of catalysts, reactants
and products must be mutually disjoint.

A special kind of reactions, called transport reactions, defines the transfer of
molecules from one location to another. In this case, we add the location to the
definition of the reaction. For instance, we may define O2(X)+C(X)→ CO(Y )
to indicate that the two reactants in a location X produce carbon dioxide in the
location Y . These locations are in fact chemical compartments, defined below.

4.2 Chemical Compartments

In our system, molecules are located inside chemical compartments, where they
undergo a specific set of reactions. We define the abstract notion of a chemical
compartment as a pair 〈Lvl ,R〉. Lvl is a function M → N that defines the
concentration level of each molecule inside the compartment (an absent molecule
will be associated to a level 0). R is a set of reactions that take place in the
compartment. This means that each compartment has a different set of reactions.

Chemical compartments have a hierarchical organization:

– At the top we consider a cell network, a simple chemical compartment that
contains a set of cells. We note a cell network as a tuple ν = 〈Lvl ,R, Φ〉,
where Φ is the set of cells in the network.

– A cell φ = 〈Lvl ,R, μ,Ω〉 ∈ Φ contains a possibly empty set of organelles
(functional subunits of the cell) Ω, and a genetic regulatory mechanism μ
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(defined below). This regulatory mechanism is optional. For instance, an
eukaryote cell contains a special organelle, the nucleus, which contains the
regulatory mechanism. On the other hand, a prokaryote cell does not have
a nucleus, and the regulatory mechanism is directly located in the cell.

– An organelle ω = 〈Lvl ,R, μ〉 ∈ Ω is the lowest compartment in the compart-
ment hierarchy. Organelles may also contain a genetic regulatory mechanism
μ. Examples of organelles with mechanisms are nuclei and mitochondria.

Cells and organelles are separated from their environment by a membrane (i.e.,
selective barrier) allowing molecule transfer between them. Note that this model
allows the construction of currently non observed cells, like prokaryote cells with
nucleus, or eukaryote cells with multiple nuclei. The validity of the specification
is delegated to the biologist (i.e., domain expert).

4.3 Genetic Regulatory Mechanisms

A gene is a portion of genomic sequence (DNA or RNA) that stores the infor-
mation relative to the production of a given set of molecules. The production
of the molecules coded in a gene is regulated by some other molecules: some of
them increase the rate of production, some others decrease it, and some modify
the set of molecules produced. For this, the gene contains regulation sites, where
specific molecules are bound to perform the regulation. Our idealized gene struc-
ture (Figure 2) is composed of two regions: promoter and transcribed regions.
Formally, we define a gene γ as a pair 〈Mγ , Σ〉 where Mγ ⊆ M is the non-empty
set of molecules coded by the gene, and Σ is a set of regulation sites.

I1 O1 In On start A1 T1 An Tn stop

promoter region transcribed region

Fig. 2. Idealized gene structure

There are four types of regulatory sites. To illustrate each one of them, we will
use a small example of a gene γ that encodes a molecule m with the regulation
of four molecules a, b, c and d.

Initiation (I) An initiation site defines which molecules increase the produc-
tion rate of the encoded molecules in Mγ . Such molecules are called ac-
tivators. A different combination of activators regulates each level of the
production rate. This combination is expressed as a Boolean formula over
the levels of the activators. For instance, we could define our gene γ to pro-
duce molecule m up to level 1 with the activator a at level 2, up to level 2
with a combination of activators a or b, each at level 3, and up to level 3 with
the activator a and b at level 3. For the molecule m to reach a concentration
level of 3, it must first reach level 1 (activator a is needed), then level 2 (one
of a or b is needed), and finally level 3 (both a and b are needed). Initiation
sites are located in the promoter region of the gene.
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Operator (O) An operator site defines the molecules that block the produc-
tion of the encoded molecules. These molecules are called repressors. Unlike
initiation sites, only one combination of molecules regulates an operator site.
In our example, if c is a repressor of γ, molecule m will not be produced at
all, independently of the activators, and its concentration will decrease in
time. Operator sites are located in the promoter region.

Termination (T) A termination site interrupts the transcription process
when the correct molecules are bound, hence modifying the set of produced
molecules. Termination sites are located in the transcribed region. In our ex-
ample, we may have a termination site intended for molecule d. If d is present
at the right concentration level, the transcription process of γ is interrupted
and a new molecule n is produced instead of m.

Anti-termination (A) The action of anti-termination sites is the only regu-
lation considered in this paper that takes into account the physical position
(i.e., locus) of genes inside chromosomes. If the correct set of molecules is
bound to an anti-termination site, the transcription of the next gene in the
chromosome is enabled in addition to the current gene. Anti-termination
sites are located in the transcribed region.

This definition allows to define currently non observed regulation site positions,
as we do not impose an order between initiation and operator sites. The same
applies for termination and anti-termination sites. This allows to design artificial
genes, like in synthetic biology. Genes may be organized in chromosomes. A
chromosome is defined by a sequence of loci, where each locus contains a sequence
of genes. Note that the same gene may be present on one or more chromosomes,
and also at different loci of the same chromosome. Moreover, not all genes are
in a chromosome (e.g., a virus). Thus, we define a genetic regulatory mechanism
as a pair 〈C , Γμ〉, where C is a set of chromosomes (which themselves contain a
set of genes) and Γμ is a set of genes that are not located in a chromosome.
Regulatory mechanisms are contained in cells and organelles. To sum up, a
genetic regulatory mechanism describes the production of molecules coded by
genes. The molecules, produced from a given gene or taken from the environment,
can regulate the production of other genes or themselves, forming a complex
relation system. As stated before, having a precise syntax of the system, like
the one we gave in this section, is necessary to perform model checking. For
non-expert users, manipulating such mathematical notations can be a strenuous
task. The objective of GReg is to help the users to express their systems in a
non-ambiguous notation, using the domain vocabulary.

5 GReg: Gene Regulation Language

GReg is composed of three specific DSLs tailored for genetic regulatory mech-
anisms. This section describes these three languages. Two of them are used to
specify models of the biological domain defined in Section 4. First we present
GReg Mechanism Language (GML), the language used to define the genetic reg-
ulatory mechanisms, and then we show GReg Network Language (GNL), used
to model the location of regulatory mechanisms in hierarchical structures of
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chemical compartments. Finally we introduce GReg Query Language (GQL),
used to specify the queries to be executed in the models specified with GReg,
in order to verify their expected properties. Note that the full definition of the
languages is to be found in[29].

To present GML, we use an excerpt of the lac operon model taken from [15].
Listing 1 shows the overall structure of a GReg mechanism specification.

mechanism lac_operon i s
use −− use o f a mechanism
−− use o f o t h e r mechanisms
molecules
−− d e c l a r a t i o n o f mo l e c u l e s
reactions
−− d e c l a r a t i o n o f r e a c t i o n s
chromosomes
−− d e c l a r a t i o n o f chromosomes
gene −− d e c l a r a t i o n o f a gene
−− d e c l a r a t i o n o f o t h e r gene s

end lac_operon

Listing 1. GReg mechanism specification

The mechanism is named
(lac_operon). It specifies the
molecules occurring in the mech-
anism, and the chemical reactions
among these molecules. The GReg
description also specifies the genes
with their properties and orga-
nization into chromosomes. The
use keyword is used to im-
port a mechanism from another
file, allowing us to reference the
molecules and genes declared in
the imported mechanism. This al-
lows an easy instantiation of particular combinations of mechanisms.

The molecules section specifies the molecules occurring in the mechanism.
For instance, in Listing 2, the lac_operon mechanism uses molecules lactose,
allolactose, lacI, lacZ, lacY, lacA, cAMP, CAP, etc. Molecules are only described
by their names, as it is the only information relevant in our language.

mechanism lac_operon i s
molecules

lactose , allolactose ,
lacI , lacZ , lacY , lacA ,
cAMP , CAP

...
end lac_operon

Listing 2. Molecules declaration

The DSL approach emphasizes
specification of only the required in-
formation for the particular domain.
No molecules other than the ones de-
scribed here can be used in the mecha-
nism. This constraint is useful for the
user creating a GReg specification, as
spelling errors in molecule names are
detected. After the molecules declara-

tion, a GML description specifies the chemical reactions that take part in the
mechanism. Listing 3 presents the reactions that take part in the lac operon
mechanism.

mechanism lac_operon i s
...
reactions

induction : lacI + allolactose → _
allo : lactose @ 2 → allolactose cat lacZ @ 2

...
end lac_operon

Listing 3. Reactions declaration
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Each reaction has a name, for instance induction in Listing 3. Unlike usual
chemical notations, we do not use stoichiometric coefficient, because the con-
centration of the molecules is modeled as sequences of discrete levels. Instead,
the @ keyword is used to specify the minimal levels of the reactants and catalysts
needed for a reaction. For instance, induction reaction can only occur if lactose
and lacZ are at least at concentration level 1. As the result of the chemical reac-
tion is to increment the products level, it is not possible to use the @ keyword
with a product. By default, molecule levels are valued 1.

A reaction can be either irreversible (→ ) or reversible (↔ ). In our example,
the reaction induction is a degradation of lacI and allolactose. A degradation is
an irreversible reaction where products are not interesting, thus the reactants are
simply removed from the system. Each reaction can also have catalysts specified
using the keyword cat. For instance, allo is a reaction catalyzed by lacZ.

Listing 4 presents the genes specification. For instance, rep is a minimal gene
(i.e., not regulated). A minimal gene defines at least the molecules it codes.

mechanism lac_operon i s
...
gene rep

codes lacI
end rep
gene lac

codes lacZ , lacY , lacA
s i te s

I s1 : cAMP and CAP = 1
O s2 : lacI @ 2

end lac
end lac_operon

Listing 4. Genes declaration

If they are relevant, regulation
sites are also specified in a section
with the sites keyword. The lac
gene defines a regulated gene with
two regulation sites I and O , to-
gether with the molecule acting on
them. Note that GReg also allows
to define several regulation sites for
I, O, A, T (Induction, Operator,
Anti-termination and Termination
sites, see Section 4.3). Each regula-
tion site may define a name which is
used to specify the site’s properties.
For instance, I and O sites of the lac gene are named s1 and s2.

As presented previously for chemical reactions, the @ keyword allows the
specification of the minimal required molecules levels acting at a regulation site.
For instance, molecule lacI represses gene lac if its concentration level is at
least 2. Otherwise, lacI has no effect in this gene. As several molecules can act
simultaneously on one regulation site, GReg allows to combine molecules with
Boolean operators and, or and xor for a regulation site. For instance, the I site
of gene lac specifies that cAMP and CAP are required to activate this site. The
= operator allows to specify the target level (the level attributed to the gene’s
products) once this site is active. By default, target levels are valued 1.

The role of a T site is to interrupt the transcription process, GReg allows to
specify the reduced set of molecules produced when these sites are active.

The chromosomes section, illustrated in Listing 5, is used to specify one or
more chromosomes. A chromosome defines a sequence of loci, a locus is defined
by two braces. Note that the genes order in each locus does not matter.
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mechanism lac_operon i s
...
chromosomes

c : {rep}, {lac ,lac ’}
...

end lac_operon

Listing 5. Chromosomes declaration

Defining chromosomes is mandatory
when using anti-termination (A) sites.
The definition of an A site indicates the
next gene target level whose transcription
will be enabled if the site is activated.

So far we have seen how to describe ge-
netic regulatory mechanisms using GML.
Now we present GNL, the language used

to describe networks of cells containing these mechanisms. Listing 6 shows the
overall structure of a GReg network specification.

network C_elegans i s
molecules
−− d e c l a r a t i o n o f mo l e c u l e s
reactions
−− d e c l a r a t i o n o f r e a c t i o n s
ce l l −− d e c l a r a t i o n o f a c e l l
−− d e c l a r a t i o n o f o t h e r c e l l s

end C_elegans

Listing 6. GReg network specification

A network definition specifies
the molecules that may be ex-
changed between its cells, as well
as the chemical reactions among
these molecules. It also describes
the transport reactions between a
cell and the network. The GNL
description also specifies the cells
along with their properties.

Listing 7 presents the overall structure of a cell. The cell is named (E_coli).
ce l l E_coli i s

use −− use o f a mechanism
−− use o f o t h e r mechanisms
molecules
−− d e c l a r a t i o n o f mo l e c u l e s
reactions
−− d e c l a r a t i o n o f r e a c t i o n s
organelle −− d e c l . o f an o rg .
−− d e c l . o f o t h e r o r g a n e l l e s

end E_coli

Listing 7. GReg cell specification

The use keyword imports a
mechanism from another file,
all the molecules declared in
the mechanism are also accessi-
ble in the cell specification. The
molecules and reactions sections
are optional, they are used to de-
scribe the specific chemical be-
haviors of the cell, e.g., transport
reactions occurring with its or-
ganelles. An organelle has a sim-

ilar definition as the one presented for cells in Listing 7. Note that we do not
allow organelle nesting inside organelles (see Section 4).

use "lac_operon .gml"
l eve l s

l1 : lacZ = 1
l2 : lacZ = 0, lacI = 2

queries
bool a : exists l1
paths b : paths l1 , l2
paths c : paths l1 .. l2

Listing 8. GQL queries specification

GNL and GML are used to model
cell networks and their regulatory
mechanisms. The objective of creating
such models is to verify some proper-
ties on them, with the use of an un-
derlying model checker. For this, we
need a language to define such prop-
erties. This language is called GQL.
Listing 8 shows an example of GQL
specification. A GQL file has two sections: the levels and the queries. The
levels section is used to define some combination of molecule levels. In Listing 8,
l1 specifies only a level for lacZ among all molecules defined in lac_operon. The
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queries section uses the levels defined above to express complete queries. The
exists query returns true if predefined level exists. The paths query is used to
retrieve all paths from the state space matching the sequence of predefined lev-
els. In our example, query b returns the paths where l2 is a direct successor of
l1. Query c returns the paths where l2 is a successor of l1, without requiring it
to be a direct successor.

use "lac_operon .gml"
use "lac_operon .gql"
i n i t i a l l y lac_operon has

lactose = 2
lacI = 1

execute
i f a then (b and c)

Listing 9. GReg configuration

Models created with GML, GNL
and GQL use a GReg configuration
specification to define the initial lev-
els of the molecules and the actual
queries to be computed by the model
checker, from a list defined in a GQL
file. This allows to easily repeat exper-
iments for the same mechanism with
several initial quantities. The configu-

ration specification is composed of two sections. Listing 9 shows an example of
such specification. The first one starts with the initially keyword and defines
the genes or molecules initial levels. The second starts with the execute keyword
and is used to specify which queries will be executed by the model checker.

6 Semantics of GReg

As mentioned in Section 2, the semantics of DSLs are defined through transfor-
mation into a computational language. For GReg, we implemented a transforma-
tion to AlPiNA [5], a model checker for Algebraic Petri Nets (APNs) [35]. After
a brief introduction to Petri Net, this section gives some translation patterns
from GReg to APNs. Due to space limitations, we avoid here to describe the
full transformation. Instead, we limit ourselves to some chosen transformation
patterns that show the essence of the approach. The details of the transforma-
tion and its implementation are to be found in[29]. Finally, this section sketches
briefly a possible extension of the language.

Figure 3 presents a general overview of the transformation from GReg to
AlPiNA. Note that, as described in Section 2, DSLs have a modular structure
separating the specification language from the computational mechanisms. As
described in Section 5, GReg is composed of three languages: GML, which is
used to describe the genetic regulatory mechanisms, GNL for the chemical com-
partments hierarchy (see Section 4.2) and GQL, for the expected properties of
the system. Together, the composition of these three languages forms GReg. An
automatic transformation is used to produce a PN for AlPiNA from a model cre-
ated with these languages. The regulatory mechanisms described with GNL are
translated to AlPiNA’s APNs. The queries expressed with GQL are translated
to AlPiNA’s properties. On the other hand, AlPiNA does not handle hierarchi-
cal models yet, and thus we did not define a translation from GNL files. We
are currently working on an extension of AlPiNA to handle hierarchical models.
Moreover, another formalism like CO-OPN[2] may be used instead of AlPiNA
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to handle models where the hierarchy is important. The possibility to add eas-
ily language extensions is a prominent feature of GReg. This matter is briefly
discussed in Section 6.3.

AlPiNA is used to perform model checking on the models obtained by trans-
formation, by evaluating the properties on the corresponding APN. It produces
a result, which is either a positive answer (the model satisfies the property), or
a counterexample, i.e., a state of the system that violates the property. To be
consistent with the DSL approach described in Section 2, this counterexample
must be translated again to the DSL. This means that a marking of an APN
must be translated back to a state of a logical regulatory network. For the mo-
ment, we did not implement such translation. In Figure 3, the dashed figures
are the ones we plan to implement in the future. All other concepts have been
implemented, the details can be found in [29].
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Fig. 3. DSL computational process for Greg using AlPiNA

6.1 Petri Nets Presentation

Petri Nets are a graphical formalism adapted to the representation of concurrent
and asynchronous processes. They were initially invented for the description of
chemical processes, then developed in computer science, and nowadays used in
biology in several tools and formalisms. A Petri Net is a bipartite graph com-
posed of places (circles), that represent the local states of processes or resources,
and transitions (rectangles) that represent actions.

Places contain tokens, which represent processes or resources. The Petri Nets
used in this article (Algebraic Petri Nets [35]) are a particular kind of colored
Petri Net: their tokens contain values (integers for instance). Figure 4 shows
an example of a Petri Net and all its allowed executions. A transition can be
executed (fired) if it can pick one token with the correct value in all its pre-
places. It then generates tokens in all its post-places. Figure 4 shows transitions
that can be fired using�, whereas transitions that cannot be fired are annotated
with �. Each Petri net of the figure represents one state of the system.
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Fig. 4. Example of Petri Net and its possible executions

6.2 Transformation Patterns

This section presents the patterns used in the transformations from a GReg
specification to APNs. In the nets below, the tokens represent molecules. Their
values are only natural numbers, representing the current level of the molecule.
For simplicity, we present only patterns where one gene codes for a unique pro-
tein. The other cases result in more complex patterns with more transitions.

Transitions are labeled with guards, which are a conjunction of simple condi-
tions. For the sake of readability, the guards are written using usual arithmetic
notation instead of AlPiNA’s syntax.

Figure 5 presents a gene with two initiation (I) sites. The first transition
increases the level of M from 0 to 1 if activator B is present. The third transition
does the same from level 1 to 2 if C is present. When none of the activators (B,C)
are present, the level of the gene may also be decremented until it reaches zero
(second and fourth transitions).

Note when several initiation (I) sites are defined with identical levels, they are
all combined using logical disjunctions in order to produce a guarded transition.

gene G
codes M
s i te s

I one : B = 1
I two : C = 2

end G

G Sites B

C

m

b

c

0 < b b
0

1
01

0

0 < c c1
2

0
2

1

Fig. 5. Pattern 1

Figure 6 presents a gene with one initiation (I) site and one operator (O)
site. When the activator B is present and the repressor C is absent, the level of
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gene G
codes M
s i te s

I act : B
O rep : C

end G

G Sites B

C

m
b

c

0 ≤ m < M+

0 < bm

m+1 b

00 < m ≤ M+

(0 < c) ∨ (0 = b)

m

m-1

b

c

Fig. 6. Pattern 2

M increases. Inversely, the level of the gene decreases when the activator B is
absent or the repressor C is present.

Figure 7 presents a gene with one termination (T) site. When the repressor B
is present (0<b), the product N is produced instead of M.

gene G
codes M
s i te s

T rep : B = N
end G

G Sites

B
m

n

b

0 ≤ m < M+
m

m+1 0

0 ≤ n < N+

0 < bn

n+1 b

Fig. 7. Pattern 3

Figure 8 presents two genes (G,H) contiguous on the same chromosome. The
gene G specifies an anti-termination (A) site, that, when activated, will also allow
the transcription of the next gene H. In Figure 8 we omitted the production of
gene G as it is not regulated, because this gene does not define a regulation site
such as I, O or T and has no preceding gene in chromosome C.

chromosomes
C : { G },{ H }

gene G
codes M
s i te s

A act : B
end G
gene H

codes N
end H

H Sites B

n b

0 ≤ m < M+

0 < bn

n+1

b

0 < m ≤ M+n

n-1

0

Fig. 8. Pattern 4
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6.3 Extending GReg

As stated previously, the extensibility of GReg is one of its paramount features.
We cannot fully develop this feature in this article. Instead, this section briefly
describes one possible extension. As concepts such as time and probabilities play
an important role in biology, the kinetic information of the gene transcription
and other chemical reactions is a good candidate for a language extension.

As mentioned in Section 3, it is possible to change GReg’s computational
language. The framework described in Figure 3 is helpful to easily add new
concepts to the language while reusing the existing syntactical and semantic
elements defined in GReg. Let us sketch how to adapt the language and the
transformation to support a new concept such as kinetic information.

1. The first step is to modify the syntax of GReg to support information about
the rate of the reactions. For instance, adding a promoter keyword to the
gene specification, allows to specify the gene transcription rate when no
regulation occurs. Similarly, site specifications would be extended to specify
transcription rate under regulation. Furthermore, the specification of the
reactions should indicate a rate with a keyword K.

2. The second step is to choose a new computation model and associated model
checker that supports time. As APNs (i.e., the current underlying formal-
ism), do not support timed computations, a choice would be to use timed
colored Petri nets and CPN-Tools as a computation tool [16].

3. Finally, the transformation from GReg to the computation language must
be changed accordingly. As timed colored Petri nets are similar to APNs this
mainly consists in adding more information to the transformed model.

7 Example

We present a simple example of a genetic regulatory mechanism with three genes
expressed in GReg, taken from [33]. Gene Y is activated by the product of gene
X. Genes X and Z are repressed by the products of genes Z and Y respectively.
The products of genes X, Y and Z are molecules x, y and z respectively. Figure 9
presents a graphical (LRG) model derived from this example, and Listing 10
presents the equivalent textual model defined in (GReg).

We show one transformation from this model to Petri Nets that produces
an APN shown in Figure 10. This APN is obtained by composing three times a
pattern similar to the one in Figure 6, by means of fusion of places. Note that the
APN in Figure 10 is the folding (an equivalent but more compact model) of the
P/T called Multi-level Regulatory Petri net (MRPN) in [8]. Unlike the APNs
resulting from our transformations, MRPN only considers the levels of the genes,
without taking into account the levels of the molecules. If needed, this abstraction
could easily be done on the transformation from GReg to Algebraic Petri Nets,
by replacing all the molecules levels with genes levels. As stated before, the DSL
approach allows us to define multiple transformations to different computational
languages, each with different considerations.
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X Y

Z

Fig. 9. LRG model of example

mechanism example i s
molecules x, y, z
gene X codes x

s i te s O : z
end X
gene Y codes y

s i te s I : x
end Y
gene Z codes z

s i te s O : y
end Z

end example

Listing 10. GReg model of Figure 9

From these models AlPiNA is able to compute the state space and to identify
all deadlocks without requiring any additional input from the user. A deadlock
is a situation where no more events can occur in the system. Strictly speaking,
in real biological systems there are no deadlocks but livelocks, a situation where
events still occur but without changing the state of the system. The states where
such situations occur are usually called stable states or attractors.

The example in Figure 9 and Listing 10 has eight states reachable from an
initial marking in which all molecules are at level zero (x,y,z) = (0,0,0). The
state transition graph is shown in Figure 11. Model checking of the example
finds two stable states: (1,1,0) and (0,0,1).

use "example .greg "
l eve l s

l1 : x = 1, y = 1
l2 : x = 1
l3 : y = 1
l4 : x = 0, y = 0, z = 0
l5 : x = 1, y = 1, z = 1

queries
states a : at l1
paths b : paths l2 , l3
paths c : cycles l4 .. l5
nat d : length shortest c

Listing 11. GReg query example

The user defines the expected sys-
tem properties with GQL queries.
Listing 11 defines five levels (l1 to
l5) and four queries. The first query
returns the set of states where the
level of x and y is equal to one and
stores them in variable a. To compute
this, the query is transformed into
an AlPiNA property, shown in List-
ing 12. The result obtained is the set
of states {(1,1,0) ;(1,1,1)}.

The second query returns the set
of paths in which the first state has a
level of x equal to one, and the second state has a level of y equal to one. The
result is stored in variable b. Four paths are obtained, all with a length of one :
(1,0,0) -> (1,1,0) ; (1,0,1) -> (1,1,1) ; (1,1,1) -> (1,1,0) ; (1,1,1) -> (0,1,1)

s1 : exists ($x in x, $y in y :
(($x equals suc(zero )) and ($y equals suc(zero ))) = false

Listing 12. AlPiNA property expression of at query in Listing 11
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Fig. 10. APN model of example in Figure 9 and Listing 10
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Fig. 11. State transition graph of example in Figure 9 and Listing 10

The third query returns the set of cycles where the first state has a level
matching l4, and there exists a subsequent state whose level matches l5. The
result is stored in variable c. Note that the result of the cycles query is a set of
paths. Only one cycle is obtained :
(0,0,0) -> (1,0,0) -> (1,0,1) -> (1,1,1) -> (0,1,1) -> (0,1,0) -> (0,0,0) -> ...

The last query is an example where operators are combined to build new
queries and reuse previous results. It combines the two operators length and
shortest and applies them on the set of paths c. This query should be read as
"return the length of the shortest path in the given set of paths". In our example,
the length of the cycle is six.
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8 Conclusion and Future Work

This paper presents Gene Regulation Language (GReg), a DSL dedicated to
the modeling of genetic regulatory mechanisms. GReg is given as an example
of the DSL-based verification process. We describe the creation of a language
tailored to the understanding of domain experts, and how this language can
be translated into a formal model where model checking can be applied. Model
checking is a very well known verification technique used in computer science.
Its main advantage over simulation is the complete exploration of the state space
of the model, thus allowing to discover rare but potentially interesting events. A
query language to express the properties of such events is embedded with GReg.

The languages and transformations shown in this article have been imple-
mented and tested on several toy examples. We also asked biologists to assess
the expressivity and usability of the language. Although the first feedback seems
promising, there is much room for improvement. We foresee three main axes of
future development: improving the expressivity of the modeling and query lan-
guages, assessing the usability of the approach and exploring the mitigation of
the state space explosion.

Extending the Expressivity of GReg. Concepts such as time and proba-
bilities (e.g., kinetic information) play an important role in biology and
are therefore good candidates for a language extension. As briefly sketched
in Section 6.3, the framework described in Section 2 is very helpful to easily
add new concepts to the language while reusing the existing syntactical and
semantic elements defined in GReg. As there exists no model checker that is
yet capable of managing every dimensions (e.g., time, probabilities, complex
data types) we have to choose some of the dimensions and to project the
Greg model on the chosen target computational model.

Improving its Usability. Textual domain specific languages constitute a first
step towards democratization of formal methods. Although highly efficient,
textual languages are usually not as intuitive as graphical languages. On
the other hand, graphical domain specific languages are especially good in
the early phase of the modeling and for documentation, but they are often
less practical when the model grows. The tools in EMP that we used to
create GReg allow us to define a graphical version of the same language,
thus keeping the best of both worlds. Another way to ease the modeling
phase is to allow import/export of models from/to other formalisms and
standards such as SBML. Finally, as it is important for the end user to fully
understand and trust the model, we will add simulation in addition to model
checking. As it focuses on a restricted set of behaviors, simulation is faster
than model checking. This is especially useful while designing the model.

Mitigating the State Space Explosion. So far, we have done little experi-
mentation in this area for real biological processes. This weakness is being
worked on, using studies found in the literature and adapted to GReg. We
are also working on a more detailed comparison to other tools dedicated to
biological problems, like GINsim. Nevertheless, we conducted several studies



144 N. Sedlmajer et al.

on usual IT protocols and software models that show that AlPiNA can han-
dle huge state spaces [4]. This suggests promising results in the regulatory
mechanisms domain.

The development of GReg is a work in progress, we would like to set up more
collaborations with biologists interested in exploiting formal techniques from
computer science to discover rare events. We think that we can make, in the
near future, a useful contribution to life sciences based on advanced techniques
borrowed from computer science.
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Abstract. Coloured Petri nets have proved to be a useful formalism for
modeling distributed algorithms, i.e., algorithms where nodes communi-
cate via message passing. Here we describe an approach for automatic
extraction of models of parallel algorithms and programs, i.e., algorithms
and programs where processes communicate via shared memory. The
models can be verified for correctness, here to prove absence of mutual
exclusion violations and to find dead- and live-locks. This makes it possi-
ble to verify software using a model-extraction approach using coloured
Petri nets, where a formal model is extracted from runnable code. We
extract models in a manner so we can also support a model-driven de-
velopment approach, where code is generated from a model, enabling a
combined approach, supporting extracting a model from an abstract de-
scription and generation of correct implementation code. We illustrate
our idea by applying the technique to a parallel implementation of ex-
plicit state-space exploration.

Our approach builds on having a coloured Petri net model correspond-
ing to the program and using the model to verify properties. We have
already treated generation of code from coloured Petri nets, so in this
paper we focus on the translation the other way around. We have an
implementation of the translation from code to coloured Petri nets.

1 Introduction

Parallel and distributed computing address important problems of scalability
in computer science, where some problems are too large or complex to be han-
dled by just one computer. Until now, the focus has mostly been on distributed
algorithms, i.e., algorithms running on multiple computers communicating via
a network, as access to parallel computers, i.e., computers capable of running
multiple processes communicating via shared memory (RAM), has been limited.
For this reason, there are many papers on modeling distributed algorithms, such
as network protocols [1–4]. With the advance of cheap multi-core processors
and cheap multi-processor systems, access to multiple cores has become more
common, and the development and analysis of algorithms for parallel processing
becomes very interesting. As parallel computing allows much faster communica-
tion between processes, tasks that were not previously feasible or efficient to do
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concurrently, become interesting. In this paper, we present our experiences de-
veloping parallel algorithms with synchronization mechanisms. The algorithms
are verified by means of coloured Petri nets (CPNs) [5]. This work was moti-
vated by our need for a parallel state-space exploration algorithm. In this paper,
we provide an approach that allows us to extract a model for analysis from a
program or abstractly described algorithm in a systematic way. We do this in a
way that allows us to automatically generate a (skeleton) implementation of the
algorithm subsequently. We use a simple state-space algorithm as an example,
but the approach has also been used for other parallel algorithms, such as parts
of a protocol for operational support [6], and is generally applicable for other
parallel algorithms as well. The method can also be used for non-parallel algo-
rithms, but we focus on the new challenges arising when moving from sequential
to parallel processing.

Classically, formal models can partake in a development in two different ways:
by extracting an implementation from a model, which we call model-driven soft-
ware engineering, or by extracting a model from an implementation, which we
call model-extraction. Our focus in this paper is on model-extraction but in a
way that allows us to also do code generation, thereby allowing a new combined
approach. The model-driven engineering approach is shown in Fig. 1 (top) and
shows that we start with a model that is verified according to one or more prop-
erties. If it satisfies the desired properties, we can extract a program, otherwise
we refine the model. Examples of this approach are within hardware synthe-
sis [7, 8], using a CPN simulator to drive a security system [9], or general code
generation from a restricted class of CPNs [10]. The model-extraction approach
is shown in Fig. 1 (bottom). Here, we do not start with a model, but rather with
a program. From the program, we extract a model and verify it for correctness.

m
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if ok
then 1`m
else empty
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if ok
then empty
else 1`c

COUNTER_EXAMPLE

MODEL

Model
Refinement

MODEL

initial_model
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m p
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1
1`initial_model
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Fig. 1. Model-driven software engineering (top) and model-extraction (bottom)
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If an error is found, the resulting error-trace is replayed on the original program
to determine if it can be reproduced there. If not, the abstraction used to extract
the model is refined and the cycle restarts. This approach is rarely used in the
high-level Petri net world, but is employed by, e.g., FeaVer [11] to translate C
code to PROMELA code usable in SPIN [12], Java PathFinder [13] to translate
Java programs to PROMELA, SLAM [14] for automatically translating C device
drivers to boolean programs, BLAST [15] for model-checking C programs, and
many other tools.

The model-driven software engineering and model-extraction approaches have
different strengths and weaknesses. The main strength of the model-driven soft-
ware engineering approach is that it is possible to verify an algorithm before
implementation and we can even get a guaranteed-correct (template) implemen-
tation with little or no user-interaction. The disadvantage is that the approach
is of little use for already existing software. The model-extraction approach pre-
cisely alleviates this by extracting a model from an existing implementation
automatically, ensuring there is correspondence between the model and imple-
mentation. The main disadvantage is that we need an implementation of a,
perhaps faulty, algorithm before analysis can start.

We would like to provide a translation supplying as many of the strengths of
these approaches as possible. Here we aim at supporting model-extraction in a
way that allows subsequent code generation. In [10] we introduce the sub-class
of CPNs called process-partitioned coloured Petri nets (PP-CPNs), which al-
lows us to generate executable code from a PP-CPN model, thus supporting the
model-drive software engineering approach. The focus of this paper is to support
the model-extraction approach. We aim at doing so in a way that the extracted
model later can be used for code generation, i.e., we make sure that the extracted
models are PP-CPNs. This has the advantage that not only do we support both
approaches in Fig. 1, we also provide foundations for a third merged approach,
shown in Fig. 2. Here, we can do round-trip engineering, where we take an im-
plementation as input, verify and correct it on the level of a model, and, instead
of manually updating the implementation, use the automatically generated one
as input for the next iteration. We can of course also do the modification directly
in the code based on the counter-example if desired. When we find no more er-
rors, we directly transfer the model to Ok for program extraction. This is only
necessary if we wish to extract a program in a language different from the input
language. The model never terminates, reflecting that the development and error
checking is an ongoing process.

The use of (a slightly restricted class of) CPNs allows us to refine data-
structures as much as required and even using actual data-structures of the
original algorithm or program. We assume that we additionally have or can
derive an abstraction of all data-types used. Derivation of abstractions of the
data-types used can be done by the user or automatically using counter-example
guided abstraction refinement (CEGAR) [16] as implemented in SLAM [14] and
BLAST [15]. CEGAR automatically improves abstractions by replaying errors
found in an abstract model on the original program and using information about
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Fig. 2. Approach combining model-driven software engineering and model-extraction

why a given error-trace cannot be replayed in the original program to refine the
abstraction. Here we are not concerned with abstraction refinement, and assume
the user takes care of this. In this paper we focus on model-extraction, and
present an implementation able to automatically generate a PP-CPN model
from a program in a simple but expressive language.

The rest of this paper is structured as follows: in the next section, we introduce
process-partitioned coloured Petri nets as defined in [10] and a simple algorithm
for state-space generation which we use as a running example to illustrate our
idea. In Sect. 3, we introduce our approach to generating PP-CPN models from
algorithms using a naive parallel version of the algorithm presented in Sect. 2.
In Sect. 4, we identify a problem in the original parallelization, fix the problem
and show that the problem is no longer present in a modified version. Finally,
in Sect. 5, we sum up our conclusions and provide directions for future work.
Readers are assumed to have some familiarity with general coloured Petri nets
but not PP-CPNs. An earlier version of this paper has been published as [17].
The earlier version did not have an implementation of the translation, so the
description of the translation is much more detailed in this version. We also
provide more details on abstraction refinement.

2 Background

In this section, we briefly introduce CPNs and process-partitioned CPNs as
defined in [10]. We also give a simple algorithm for explicit state-space generation
which we use as an example in the remainder of the paper.

Coloured Petri Nets. The definition of process-partitioned CPNs use the
definitions and notation of CPNs from [5, Chap. 4] as a basis. CPNs consist of
places , transitions , and arcs . Places are typed and arcs have expressions that
may contain variables. The model-driven software engineering approach shown
in Fig. 1 is a CPN, and here places are drawn as ovals, transitions as rectangles,
and they are connected with arcs. Places and transitions can have names; in Fig 1
names are drawn inside the figure representing places/transitions, e.g., we have
a place named Ok (the remaining places do not have names) and a transition
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named Verification. Places have types , corresponding to types of variables in
normal programming languages; the place types are typically written below or
below and to the right of places; in Fig. 1, the place Ok has type MODEL. Places
additionally can have a marking, a multi-set of tokens (values) residing on the
place. We write the marking of a place in a rectangle close to the place and the
total number of tokens in a circle on the place; in Fig. 1, the unnamed place
to the top left has a marking of 1‘initial_model, i.e., a single token with value
initial_model. All other places contain no tokens, which is per convention not
shown. The marking of a place before executing transitions is the initial marking;
the model in Fig. 1 is shown in its initial marking.

Places and transitions are connected by arcs having arc expressions, e.g., if
ok then 1‘m else empty on the arc from Verification to Ok. Arc expressions are
expressions that may contain free typed variables. We use the terms input arc
and output arc to refer to all arcs having a given place/transition as source and
destination, respectively. We extend this to also include input place and output
place to denote all source places of input arcs of a transition and target places
of output arcs.

A transition and an assignment of values to all free variables on arcs sur-
rounding the transition is called a binding element or just a binding. We write
a binding by writing the name of the transition and a list of assignments to all
variables in brackets, like Verification〈m=initial_model,ok=true,c=[]〉. A binding
is enabled in a marking if evaluating the expressions on all input arcs result in
a multi-set of tokens that is a subset of the tokens residing on the correspond-
ing input place in the marking. In the example in Fig. 1, the binding element
Verification〈m=initial_model,ok=true,c=[]〉 is enabled as the unnamed place at
the upper left does contain a token with the value initial_model. The binding
element Model Refinement〈m=initial_model,c=[]〉 is not enabled, as the counter
example place contains no tokens (and thus in particular no token with value []).
A binding can be executed , by removing all tokens from input places according
to evaluations of the corresponding arc expressions and adding new tokens to
all output places according to arc expressions on output arcs. We say that a
transition is enabled if there are any enabled bindings of the transition. In Fig. 1
only Verification is enabled, and enabling of transitions is indicated by a bold
outline. Transitions can additionally have guards , an extra expression written
in square brackets next to it. These further limit the enabling as they have to
evaluate to true for the transition to be enabled. No transition in Fig. 1 has a
guard, but the transition assign in Fig. 6 (i) has guard [id1’ = id2] .

Hierarchical Coloured Petri Nets. CPNs have a module concept, where
subpages are represented by substitution transitions, inducing a hierarchy of the
pages. Graphically, we draw substitutions as transitions using a double outline.
The model in Fig. 6 (c) has two substitution transitions, Then and Else. Param-
eters to subpages are specified as port places that have a direction (In, Out, or
I/O). The model fragment in Fig. 6 (c) has three parameters, S of type In, and E
and R of type Out. Port places are assigned to socket places on the page of the
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substitution transition. These assignments are not shown explicitly graphically,
but are often obvious from context (port and corresponding socket places have
the same name or there is only one port place with the correct type). For exam-
ple, we would use the fragment in Fig. 6 (c) as a subpage of the S1 substitution
transition of the fragment in Fig. 6 (b). The port place S of fragment (c) would
be assigned to the socket place S of (b), E of (c) to the unnamed place of (b),
and R to R. The semantics is defined as replacing the substitution transition by
the contents of the subpage, merging places in a port/socket relationship. We
call this procedure flattening. This can be done automatically and is reversible,
so in the remainder of this paper, we allow introducing and removing hierarchy
whenever convenient, using it only to aid in presentation.

Process-Partitioned Coloured Petri Nets. In [10] we introduce the notion
of process-partitioned CPNs (PP-CPNs). All models in the following sections of
this paper are PP-CPN models. While this is important for the generation of
code from extracted models, it is not important for the actual extraction, so we
shall not go into too much detail about the nature of PP-CPNs, but only give a
general idea of this subclass. Interested readers are invited to refer to [10] for a
full formal definition of PP-CPNs.

PP-CPNs are CPNs, which are partitioned into separate kinds of processes. In
this paper, we are only interested in models containing a single kind of process,
so we just look at process subnets (Def. 2 in [10]). A single process subnet is
a PP-CPN, but not necessarily the other way around. In this paper, whenever
we talk about PP-CPNs, we assume they consist of exactly one process subnet.
A process subnet is a CPN with a distinguished process colour set serving as a
process identifier. The models in Fig. 7 are examples of PP-CPNs (we provide a
detailed description of the models in Sect. 3). The process colour set of this model
is PROCESS. The places of a process subnet are partitioned into process places ,
local places , and shared places (in [10], we additionally introduce buffer places for
asynchronous communication between processes, but these are not used here).
These places correspond to the control flow, local variables, and shared variables
of programs. Process places must be typed by the process colour set (in the
example, entry and exit and all places si are process places), local places must be
typed by a product of the process colour set and any other type (in the example,
s, ss, and the condition places), and shared places can have any type (in the
example, waiting and visited).

In the initial marking, exactly one of the process places contains all tokens
of the process colour set and all remaining process places are empty (model-
ing that all processes start in the same location in the program). In Fig. 7, the
entry place contains all (two) processes and none of the other process places
contain any tokens. Local places initially contain exactly one token for each
process so that if we project onto the component of the process colour set, we
obtain exactly one copy of all values of the set (modeling that all local vari-
ables must be initialized). This is seen on s, ss, and the condition places of Fig. 7.
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All shared places contain exactly one value (modeling that shared variables must
be initialized). This is seen on visited and waiting in Fig. 7. All arc expressions
must ensure that tokens are preserved.

We have chosen to adopt the notion from [10] that we cannot create new
processes or destroy processes even though nothing in our approach breaks if
we allow dynamic instantiation and destruction of processes. This is mainly for
simplicity as we did not need dynamic instantiation in our examples. We allow
a slightly relaxed syntax for PP-CPNs here compared to [10], as we allow using
constants on input arcs, relying on pattern matching to determining enabling of
transitions depending on input data instead of guards. This is done for legibility
of patterns for conditionals and can easily be undone by instead using a variable
and checking for the correct value in the guard.

1: Waiting := Model.initial()
2: Visited := Model.initial()
3: while not Waiting.isEmpty() do
4: s := Waiting.head()
5: Waiting := Waiting.remove(s)
6: // Do any handling of s here
7: for all b in s.enabled() do
8: ss := s.execute(b)
9: if not Visited.contains(ss) then

10: Waiting := Waiting.add(ss)
11: Visited := Visited.add(ss)
12: endif
13: endfor
14: endwhile

Fig. 3. State-space exploration algorithm

State-space Generation. State-
space generation is a means of analy-
sis of formal models, such as the ones
specified by means of CPNs. A sim-
ple implementation is shown in Fig. 3.
We start in the initial marking of
the model and compute all enabled
bindings. We then systematically exe-
cute each, note the markings we reach
by executing bindings, store them in
Waiting, and repeat the procedure
for each of these newly discovered
markings. To also terminate in case of
loops, we store all markings for which
we have already computed successors
in Visited and avoid expanding them
again. We often call a marking a state
in the context of state-space analysis.

3 Approach

We introduce our approach to verifying parallel algorithms by a parallel version
of the algorithm for generating state-spaces shown in Fig. 3. The basic idea is
to use the loop of Fig. 3 for each process and share the use of Waiting and
Visited, naturally with appropriate locking. From this algorithm, we illustrate
our approach to extract a PP-CPN model. The approach is completely general,
though.

A simple way to parallelize Fig. 3 is shown in Fig. 4. The comments in lines
1, 6, and 23 are reintroduced in a subsequent refinement. In this first version,
we initialize as before (ll. 2–3). We have moved the main loop to a separate
procedure, computeStateSpace. We perform mostly the same loop as before
(ll. 8–17), but instead of testing for emptiness and picking an element of the queue
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in three steps, we do so using a procedure pickAndRemoveElement (ll. 7 and
16). The implementation of pickAndRemoveElement (ll. 22–32) does the same
as we did before, except we return a bottom element notFound if no elements
are available, and use that in the condition of the loop (l. 8). This forces us to
perform the pick in two places: before the first invocation of the loop (l. 7) and at
the end of the loop (l. 16). Handling of states (l. 9) and iteration over all enabled
bindings (ll. 10–15) is the same as before. Now, instead of checking if a state is
a member of Visited and conditionally adding it to the set, we do both in a
single step as shown in the procedure addCheckExists (ll. 12 and 34–40). We do
this under the assumption that adding an element to the set does nothing if the
element is already there. If the state was not already in Visited, we add it to
Waiting (l. 13). The reason for this re-organization is that we now assume that
pickAndRemoveElement, addCheckExists, and the access to Waiting in line
25 are atomic. We ensure this by acquiring locks in pickAndRemoveElement
and addCheckExists (ll. 24 and 35). This allows us to start two instances of
computeStateSpace in parallel in line 22. We will not argue for the correctness of
either Fig. 3 or Fig. 4, but note that it is easy to convince ourselves that if one is
correct so is the other, with the assumption that pickAndRemoveElement and
addCheckExists happen atomically.

1: // bool Waiting
2: Waiting := Model.initial()
3: Visited := Model.initial()
4:
5: proc computeStateSpace() is
6: // bool s
7: s := pickAndRemoveElement()
8: while not s = notFound do
9: // Handle s here

10: for all b in s.enabled() do
11: ss := s.execute(b)
12: if addCheckExists(ss) then
13: Waiting := Waiting.add(ss)
14: endif
15: endfor
16: s := pickAndRemoveElement()
17: endwhile
18: endproc
19:
20: computeStateSpace() ||

computeStateSpace()

22: proc pickAndRemoveElement() is
23: // bool s
24: lock pick
25: if Waiting.isEmpty() then
26: return notFound
27: endif
28: s := Waiting.head()
29: Waiting := Waiting.remove(s)
30: return s
31: unlock
32: endproc
33:
34: proc addCheckExists(s) is
35: lock add
36: contains := Visited.contains(s)
37: Visited := Visited.add(s)
38: return not contains
39: unlock
40: endproc

Fig. 4. Naive parallel state-space algorithm
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3.1 Model Extraction

To go from Fig. 4 to a PP-CPN model, we first extract the control-flow of the
algorithm including generating representations of data, and then we refine the
update of data until we can prove the desired properties of the model.

The main idea of our translation is shown in Fig. 5. We start with a program,
and perform some simplifications of it to ease translation. We then translate the
simplified program to a CPN model using templates for each construct. Finally,
we simplify the resulting model to ease analysis.

We assume we have a parsed program with the syntax seen below. All algo-
rithms presented in this paper adhere to the syntax. We use this syntax instead
of a stock language for two reasons: To keep the syntax independent of a concrete
language and for ease of parsing for simple prototyping. While this may seem
off as our goal is to verify existing programs, it suffices for a prototype imple-
mentation, and our translation works on abstract syntax only, so adapting to a
concrete syntax is only as much work as writing the parser. We allow unparsed
content in our programs; this should be further defined to improve abstraction
refinement, but this is not our primary focus here, so we have decided to allow
this for simplicity.

Our syntax is simple but expressive, and contains most of the elements one
would expect in a programming language. A program is a list of procedure def-
initions, parallel procedure invocations, and statements (which are assumed to
be atomic except for procedure invocation). A procedure definition has a list
of parameters (which may or may not have a specified type) and comprises
a list of statements. Types can either be specific types or any type identi-
fier. Statements are either definitions of variables, assignments of expressions
to variables, if statements, while loops, for all loops, repeat loops, sections pro-
tected by a lock, returns from a procedure, or an expression. Expressions can be
parenthesized or negated, and are either function calls, identifiers, or anything
(unparsed content). Expressions can always be followed by a list of method
invocations.

〈program〉 ::=��
� �

� � 〈procedure〉

�

� ‘||’ �

� 〈id〉 ‘(’ ‘)’ � �

� 〈stmt〉 �

� �

� � ��

initial_program

PROGRAM

program
Desugar

SIMPLIFIED_PROGRAM

Translate
program' program' cpnet

CPNET

Simplify
cpnet

Result
cpnet'

CPNET

1 1`initial_program

Fig. 5. Translation approach
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〈procedure〉 ::=�� ‘proc’ 〈id〉 ‘(’ �

� ‘,’ �

� �〈type〉 〈id〉
� 〈id〉 �

� �

� �

� ‘)’ ‘is’ �

� 〈stmts〉 ‘endproc’ ��

〈type〉 ::=�� � ‘int’
� ‘bool’ �

� 〈id〉 �

� ��

〈stmts〉 ::=�� �

� �

� 〈stmt〉 �

� �

� ��

〈stmt〉 ::=�� � 〈type〉 〈id〉
� 〈id〉 ‘:=’ 〈exp〉 �

� ‘if’ 〈exp〉 ‘then’ 〈stmts〉 �‘else’ 〈stmts〉
� �

� ‘endif’ �

� ‘while’ 〈exp〉 ‘do’ 〈stmts〉 ‘endwhile’ �

� ‘for all’ 〈id〉 ‘in’ 〈exp〉 ‘do’ 〈stmts〉 ‘endfor’ �

� ‘repeat’ 〈stmts〉 ‘until’ 〈exp〉 �

� ‘lock’ 〈id〉 〈stmts〉 ‘unlock’ �

� ‘return’ 〈exp〉 �

� 〈expression〉 �

��

� ��

〈expression〉 ::=�� � ‘(’ 〈expression〉 ‘)’
� ‘not’ 〈expression〉 �

� 〈id〉 �

� 〈id〉 ‘(’ �

� ‘,’ �

� �‘not’
� �

� 〈id〉 �

� �

� ‘)’ �

� 〈unparsed〉 �

� �

� �

� �

� ‘.’ 〈id〉 ‘(’ �

� ‘,’ �

� 〈expression〉 �

� �

� ‘)’ �

� �

� ��

While our grammar is useful for humans, it is not suitable for translation to
CPN models. Instead, we rewrite our programs according to syntactical rules, to
simplify the programs. We replace for all loops with while loops, i.e., ‘for all’
〈id〉 ‘in’ 〈expression〉 ‘do’ 〈stmts〉 ‘endfor’≡ ‘all_’〈id〉 ‘:=’ 〈expression〉 ‘while’
‘all_’〈id〉 ‘.’ ‘hasMore’ ‘(’ ‘)’ ‘do’ 〈id〉‘:=’ ‘all_’〈id〉 ‘.’ ‘getFirst’ ‘(’ ‘)’
〈stmts〉 ‘endwhile’. Then, we remove all method invocations (as they are not
supported by Standard ML, the inscription language of CPN Tools). We do
this by replacing method invocation by simple invocation, i.e., 〈exp〉 ‘.’ 〈id〉 ‘(’
〈exp_1 〉 ‘,’ . . . ‘,’ 〈exp_n〉 ‘)’ ≡ 〈id〉 ‘(’ 〈exp〉 ‘,’ 〈exp_1 〉 ‘,’ . . . ‘,’ 〈exp_n〉
‘)’. We also force the use of the else path in if statements, introducing one with



156 M. Westergaard

an empty statement list if neccesary. Finally, we simplify statements, so only
variables or negated variables are used in expressions other than assignments.
This is done using several rules, introducing temporary variables as needed.
One such rule is ‘while’ 〈exp〉 ‘do’ 〈stmts〉 ‘endwhile’ ≡ ‘condition’ ‘:=’ 〈exp〉
‘while’ ‘condition’ ‘do’ 〈stmts〉 ‘condition’ ‘:=’ 〈exp〉 ‘endwhile’. We could
also translate repeat loops to while loops, but have chosen not to as this yields
simpler models. We allow negations in most conditions (but not in if statements).
Thus, we get programs adhering to a simplified grammar replacing the 〈stmt〉
and 〈exp〉 productions with:

〈stmt〉 ::=�� � 〈type〉 〈id〉
� 〈id〉 ‘:=’ 〈exp〉 �

� ‘if’ 〈id〉 ‘then’ 〈stmts〉 ‘else’ 〈stmts〉 ‘endif’ �

� ‘while’ �‘not’
� �

� 〈id〉 ‘do’ 〈stmts〉 ‘endwhile’ �

� ‘repeat’ 〈stmts〉 ‘until’ �‘not’
� �

� 〈id〉 �

� ‘lock’ 〈id〉 〈stmts〉 ‘unlock’ �

� ‘return’ �‘not’
� �

� 〈id〉 �

� ��

〈expression〉 ::=�� � 〈id〉

� 〈id〉 ‘(’ �

� ‘,’ �

� 〈id〉 �

� �

� ‘)’ �

� 〈unparsed〉 �

� ��

Extracting the control-flow of a procedure consists of creating the process
places and transitions of the model. We do that using templates, very similar to
the workflow-patterns [18] for low-level Petri nets. In Fig. 6 we show the patterns
necessary to translate programs using our simple pseudo-code language to a PP-
CPN model. The first patterns (a-f) define the basic control flow and are atomic
actions, sequence of statements, conditional, while loop, repeat loop, and critical
section, corresponding to productions 3–6 of 〈stmt〉 and 〈stmts〉. The type P is
the process colour set and for each pattern, the place S is the start place, E the
end place, and R a special place pointing to the end of the procedure. All places
created are process places except for the Mutex place, which is a shared place,
and the condition places, which are local places. The intuition of each fragment
is that we start a block in S and execute towards E. At any point, we may also
do early termination, going to R. Fragments (a-e) should be self-explanatory;
in fragment (f) we make sure to release the mutex no matter how we leave the
critical section. Also, the Mutex place is a shared place, which means it is shared
among all instances of the fragment. The top level of each procerdure is shown as
fragment (g), where we see we get all input parameters (if any), p_id1. . . p_idk,
all global variables (g_id1. . . g_idm, and all local variables (l_id1. . . l_idn). On
normal termination we move a token from E to R to ensure a single exit point,
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and store the return value on Return Value. Explicit returns are handled by
fragment (h), which diverts control to the R place and updates the Return Value.
All global and local variables, parameters, and the return value place is also
passed on to each fragment, but this is not shown here for simplicity.

In the initial abstraction, we approximate the type of all variables with UNIT,
and local and shared places are not connected to transitions for reading. All
conditions are of type BOOL and assigned values non-deterministically. For each
variable, we introduce a place with the same name as the variable and two CPN
variables, one with the same name as the original variable and a version with a
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Fig. 6. Patterns for control structures
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prime. The first is used for reading old values and the primed version is used for
updating with new values. The following fragments are all described as if they are
using local variables; they can all use global variables, in which case the process id
component is removed. Updating values is handled by fragment (i). Procedure
invocation is handled by fragments (j) and (k). (j) handles the case where a
procedure is defined in the program and (k) when it is not (i.e., constitute a
library function or a function whose action we abstract away). Invocation in both
cases assigns values (id1. . . idk) for each of the parameters of the procedure, and
binds the return value to the correct return value (id). We note that procedure
fragments only have one exit for processes, so we only connect the E place to the
invocation, leaving the R place unconnected (so a return only returns from the
inner-most procedure). Pattern (l) and (m) are used for abstraction refinement
and are introduced in the next subsection.

Applying this extraction to the computeStateSpace procedure of Fig. 4, we
obtain Fig. 7 (left). The model has been manually laid out, we have simplified
the generated names for legibility, and we have hidden the process id flowing
along the bold arcs. The details are not important and the model is provided
only to show the unreduced output of the translation. We translate procedures
without use of hierarchy in our implementation, so all places and transitions
pertaining to a single procedure are contained in a single page (but we have a
page for each procedure). We can see the two loops, one from the branch-off
around the middle of the long chain and back to the beginning and one from the
bottom to the middle. We can see 3 branches, corresponding to the two loops
and the if statement. We note that due to the program simplification, we get
significantly more transitions than we have lines in the procedure. All transitions
have a name from the line number used to generate it and a sequence number to
ensure all transitions have unique names. The model in Fig. 7 (left) is good for
getting a basic understanding of the control flow of the system, but impractical
for analysis and detailed understanding as a lot of steps do not contribute to
the behavior, especially the long lines of transitions not accessing any data and
that unconditionally move from one state to the next. This also causes state-
space explosion without providing benefits for analysis. It is therefore desirable
to remove such transitions. We additionally merge lock releases with the last
transitions of each procedure, also omitting an unconditional step (not applicable
in this model). Doing this, we obtain the model in Fig. 7 (right). We can now
see the 3 procedure calls as substitution transitions and global, local, and 4
generated variables as the marked places.

Abstraction Refinement. The initial abstraction allows execution of traces
not allowed in the original program. In the model in Fig. 7 (right), it is possible to
first terminate process 1 and have process 2 continue computation, i.e., execute:

// Process 1 enters and leaves pickAndRemoveElement in l7_10
l8_11〈pid=computeStateSpace(1)〉 →
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Fig. 7. Control-flow of model (left) and model after reduction (right)
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l8_12〈pid=computeStateSpace(1),c=false〉 →
l8_14〈pid=computeStateSpace(1)〉 → // Terminate process 1
// Process 2 enters and leaves pickAndRemoveElement in l7_10
l8_11〈pid=computeStateSpace(2)〉 →
l8_12〈pid=computeStateSpace(2),c=true〉 →
l8_14〈pid=computeStateSpace(2)〉 → // Process 2 continues

This is not possible in Fig. 4. The model does find all possible interleavings of
the process, though, so if the state-space does not contain any erroneous states,
neither will the program.

Abstraction refinement consists of using more elaborate types on local and
shared places and of applying pattern (m) of Fig. 6 to bind identifiers instead
of non-determinism. Refinements must limit the behavior of previous models
(which formally must be able to simulate any refinement if we ignore local and
shared places), and must be true to the original program. If we add an explicit
type to a variable in our program, our tool automatically applies pattern (m)
for variables in all expressions. Furthermore, our tool will change the type of the
place corresponding to the declared type accordingly. We need to parse (parts
of) expressions in order to find all places a variable is read. If 〈unparsed〉 content
is used, it is inserted verbatim in the model without any processing using pattern
(l) of Fig. 6. This is done for simplicity of implementation of our prototype and
means that an expression using the 〈unparsed〉 production reads a variable, this
is not detected.

Here we do a simple refinement to avoid the situation where one process can
decide that Waiting is empty just to have the other immediately afterward decide
it is not. For this, we refine the type of Waiting to a BOOL, indicating whether
the Waiting set is empty or not, and refine the type of s to indicate whether
notFound was returned from isEmpty. Refining s and Waiting we obtain the
model in Fig. 8. At the left, we see the refined model for computeStateSpace
with changes highlighted. Due to the size of the model, we have just zoomed
in on the changed parts. We have manually added place-/transition-names cor-
responding to Fig. 7 (right) to process places and transitions. We have more
transitions in the refined model as they no longer can be reduced away due to
refinement. To the right, we see the generated code for pickAndRemoveElement
(top) and pickAndRemoveElement (bottom). All global variables are shared
among all pages, local variables on subpages correspond to the actual parame-
ters on computeStateSpace, the return value is mapped as well, and so are the
entry-/exit-points. We have two instances of pickAndRemoveElement with dif-
ferent entry-/exit-point mappings. All ports are of type I/O due to a technicality
in our translation, but as the port type carries no semantics, this is no problem.
We get the refinement by explicitly declaring the types of s and Waiting in lines
1, 6, and 23 in Fig. 4.

Refining a variable means the place corresponding to a variable is accessed and
updated according to the program. The value of waiting is initially false (as we
add the initial state in line 2 of Fig. 4) and we do not care about the initial value



Verifying Parallel Algorithms and Programs Using Coloured Petri Nets 161

(pid, s)

(pid, c')(pid, c)

(pid, c3')(pid, c3)

pid

(pid, false)(pid, true)

waiting'

waiting

(pid, s)

(pid, true) (pid, false)

(pid, c3')
(pid, c3)

(pid, s)

(pid, true)

(pid, false)

(pid, c')

(pid, c)

l8_36
(l8_34)

[c' = (s=notFound)]

l16_35

pickAndRemoveElement

l10_34

l12_33
(l12_31)

l12_32
(l12_30)

l13_31

[waiting' =
   (add(waiting))]

l12_30

addCheckExists

l12_24
(l12_22)

l11_23

l10_21
(l10_19) l10_20

l10_19

l10_17

l8_16
(l8_14)

l8_15
(l8_13)

l8_14
(l8_12)

[c' = (s=notFound)]

l8_13

l7_12

pickAndRemoveElement

l6_0

s17
(s16)

P

s16

P

s15
(s15)

P

s14
(s13)

P

s13

P

s12
(s9)

P

s10
(s9)

P

s9

P

s8

P

s6

P

s5

P

s4
(s3)

P

s3

P

s2

P

s1

P

E

P

S

P

c3

PxBOOL

ss

PxSS

c PxBOOL

s

PxBOOL

c2

PxBOOL

waiting

BOOL

1`()

VISITED

visited

2 1`computeStateSpace(1)++
1`computeStateSpace(2)

2 1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

2

1`(computeStateSpace(1),())++
1`(computeStateSpace(2),())

2

1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

21`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

2 1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

1 1`false

1 1`()

(pid, s)

(pid, s)

(pid, c')(pid, c)

(pid, true)

(pid, false)

(pid, c')

(pid, c)

l8_36
(l8_34)

[c' = (s=notFound)]

l8_16
(l8_14)

l8_15
(l8_13)

l8_14
(l8_12)

[c' = (s=notFound)]

s17
(s16)

P

s4
(s3)

P

c PxBOOL

s

PxBOOL

2

1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

21`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

(pid, s)(

(pid, c')((pid, c)

(pid, c3')(p , )(pid, c3')(pid, c3')

pidi

(pid, false)fd, true)utr(pid, tr,d, 

waiting'

waiting

(pid, s)i s)

l8_36
(l8_34)

[c' = (s=notFound)]

l16_35

ppickAndRemoveElementp

l10_34

l12_33
(l12_31)

l12_32
(l12_30)

l13_31

[waiting' ==
   (add(waiting))]n

l12_30

addCheckExists

l12_24
(l12_22)

l11_23

s17
(s16)

P

s16

P

s15
(s15)

P

s14
(s13)

P

s13

P

s12
(s9)

P

(s9)
P

s9

P

ss

PxSS

c2

PxBOOL

waiting

BOOLL

2

1`(computeStateSpace(1),())++
1`(computeStateSpace(2),())

2 1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

1 1`false

(pid, s)(

(pid, c')((pid, c)

l8_36
(l8_34)

[c' = (s=notFound)]

s17
(s16)

P
(pid, s)

s

PxBOOL

pid

l12_24
(l12_22)

l11_23

l10_21
(l10_19)

s12
(s9)

P

s10
(s9)

P

2

1`(computeStateSpace(1),false)++
1`(computeStateSpace(2),false)

[c   (s notFound)]

waiting

BOOL

false

s15
(s15)

P

s16

P

l13_31

[waiting' =
   (add(waiting))]

l12_32
(l12_30)

l12_33
(l12_31)

waiting

waiting'

pid

1 1`false

true

true

false

false

false

(pid, s)

(pid, discard)

(pid, s)

(pid, s)

waiting'

waiting

waiting

(pid, s')

(pid, s)

(pid, false)

(pid,
true)

(pid,
notFound)

(pid,
discard)

pid

waiting

(pid, c')
(pid, c)

true

l1_11

l29_10

l28_9

[s' = (head(waiting))]

l25_8l25_7

l1_6

l25_5 [c' = (isEmpty(waiting))]

l24_2

s9

P

s8

P

s7

P

s6

P

s5

P

s2

P

Mutex
pick

pick

true

MUTEX

E
I/O P

S
I/O P

c

PxBOOL

s

PxBOOL

Return
Value

I/O PxBOOL

waiting
I/O BOOL

visited
I/O VISITED

1 1`true

2 1`(computeSS(1),false)++
1`(computeSS(2),false)

2

1`(computeSS(1),false)++
1`(computeSS(2),false)

2

1`(computeSS(1),false)++
1`(computeSS(2),false)

1

1`false

1 1`()

false

false

(pid,
contains')

(pid, contains)

true

l1_29

l35_25

s1

P

Mutex
add

add

true

MUTEX

E
I/O P

S
I/O P

Return
Value

I/O PxBOOL

s
I/O

waiting
I/O BOOL

visited
I/O VISITED

true

1 1`true

2

1`(computeSS(1),false)++
1`(computeSS(2),false)

2 1`(computeSS(1),())++
1`(computeSS(2),())

1 1`false

1 1`()

Fig. 8. Refined CPN model of state-space algorithm

of s, as it will be set before it is read. We make sure to read and update the values
of waiting and s faithfully. Most of this happens in the pickAndRemoveElement
fragment to the right in Fig. 8. We generate guards for updates, but it is up
to the user to implement the functions used. In our example, we see a guard
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for the transition l25_5 setting c’ based on the value of isEmpty(waiting). We
implement the functions isEmpty, head (used in l28_9), and add (used in l13_31).
isEmpty is the identity function (as the abstract value of waiting models whether
the data-structure is empty). head returns the negation of its parameter (if the set
is empty we cannot return a value, otherwise we can), and add always returns
false (as adding an element always makes the data-structure non-empty). We
have removed generated guards for l29_10 and l10_39 to make the result non-
deterministic. We have explicitly added a reference to s in computeStateSpace
transitions l8_14 and l8_36 as it is used as part of an unparsed expression (s =
notFound). We can no longer execute the erroneous trace on this refined model.

4 Analysis

The main reason we started this work in the first place was to analyze parallel
algorithms. Our focus is on new problems arising when creating parallel algo-
rithms, not on proving correctness of serial algorithms. We therefore assume
that algorithms are correct under certain mutual-exclusion assumptions, and
search for such violations. We are also interested in potential dead- and live-
locks. Assuming a valid refinement, we ensure absence of safety violations in the
model guarantees absence in the real program as we can simulate all executions
of the algorithm. This includes proving absence of mutual-exclusion violations.
We cannot use our approach to ensure the absence of dead-locks, as we deal
with over-approximations of the possible interleavings and further restricting
the behavior may introduce new dead-locks, but we can still find dead-locks and
remove them from the implementation.

We can do state-space analysis of the derived models from Figs. 7 and Fig. 8,
and obtain state-spaces with 47,141 states for the original, unreduced model
(Fig. 7 (left)), 18,139 states for the reduced model (Fig. 7 (right)), showing that
reduction is important, and 15,934 states for the refined model (Fig. 8). We
easily prove that the mutex property is not violated for the two critical regions.

Dead-locks and Live-locks. As all processes have a distinguished start and
end-state, we can recognize dead-locks and live-locks in the model. A dead-lock
is a state without successors (a dead state) where not all processes reside on E.
We can find dead-locks in CPN Tools using the query:

� �
1 fun te rmina l node =
2 Mark . computeStateSpace ’E 1 node = P. a l l ( )

4 L i s t . f i l t e r ( fn n => not ( t ermina l n ) ) ( ListDeadMarkings ( ) )
� �

The function terminal tests whether the Marking of E on the page computeStateS-
pace (the top level) contains all tokens of P and line 4 removes all terminal states
from the dead states (markings in CPN Tools terminology) and only returns non-
terminal states. None of the models in Figs. 7 and Fig. 8 have dead-locks; the
models in Fig. 7 have 64 dead states, where all process ids reside on E and the
conditions have various values. The model in Fig. 8 has 48 dead states, where
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all process ids reside on E, Waiting is true, s is notFound for all processes, and
conditions have various values, except for the ones controlling termination.

Live-locks are harder to recognize. We only consider live-locks in the absence
of dead-locks. A model has a strong live-lock if the dead states of the model do
not constitute a home space, i.e., if it is not always possible to reach one of the
dead states. A strong live-lock in the model does not necessarily imply a live-
lock in the original algorithm, but can be used to identify parts of the original
program that should be further investigated. None of the models in Fig. 7 have
strong live-locks. We can test this in CPN Tools using the query:

� �
1 HomeSpace ( ListDeadMarkings ( ) )
� �

A model may have a weak live-lock if its state-space has a loop. A loop may
also just indicate that a loop may execute an unbounded number of times. Both
models in Fig. 7 and the refined one in Fig. 8 have loops. This is caused by
the loops in the algorithm and are perfectly acceptable. A particular interesting
kind of live-lock is a loop reachable from a state where E contains tokens. This
means that even after one of the processes has terminated, the amount of work
done by another process is unbounded. We have already seen that Fig. 7 exhibits
this due to too abstract modeling, i.e., that process 1 may decide that Waiting is
empty initially and terminate, just to have 2 decide it is non-empty and continue
computation. We have seen this is not possible in the original algorithm, which
caused us to refine the model to Fig. 8. We would therefore expect that no such
live-lock was present in the refined model. Maybe surprisingly, one such does
exist. We can find this by searching for all nodes where E contains tokens which
are reachable from themselves via a non-trivial loop. In CPN Tools, we can find
these using the query:

� �
1 fun s e l fReachabl e node =
2 le t

3 val nodes = OutNodes node
4 fun t e s t [ ] = node
5 | t e s t (n : : r e s t ) =
6 i f n = node
7 then t e s t r e s t
8 e lse i f ( SccReachable (n , node ) )
9 then n

10 e lse t e s t r e s t
11 in

12 t e s t nodes
13 end

15 fun pr ed i ca t e node =
16 i f Mark . computeStateSpace ’E 1 node = empty
17 then f a l s e
18 e lse s e l fReachab le node <> node

20 PredAllNodes pr ed i ca t e
� �

The function selfReachable computes all successors of the given node and for each
of these, unless it is the node itself, test whether the given node is reachable from
the successor. If the node is, the successor is returned, otherwise the original node
is. The predicate tests if E at the top level is empty. If not, it tests if the node is
non-trivially reachable from itself. Finally, we apply this predicate to the entire
state space. We can use early termination by replacing line 20 by:
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� �
20 PredNodes ( EntireGraph , pred icate , 1)

� �

We can replace the 1 by any number of examples we want. We can get a witness
using:

� �
1 ArcsInPath (1 , L i s t . hd ( PredNodes ( EntireGraph , pred i ca te , 1 ) ) )
� �

We can get the shortest path to such a node using:
� �

1 fun s ho r t e s t ( node : : nodes ) =
2 le t

3 fun t e s t path [ ] = path
4 | t e s t path (n : : nn ) =
5 l e t

6 val path ’ = ArcsInPath (1 , n)
7 in

8 i f Li s t . l ength path > Li s t . l ength path ’
9 then t e s t path ’ nn

10 else t e s t path nn
11 end

12 in

13 t e s t ( ArcsInPath (1 , node ) ) nodes
14 end

16 sh o r t e s t ( PredAllNodes pre d i ca t e )
� �

Here, the function shortest uses a helper function, test, which computes a shortest
path to a node and compares with the current globally shortest path and returns
the shortest one of the two. We can get a list of binding elements for analysis using:

� �
1 L i s t .map ArcToBE ( sh o r t e s t ( PredAllNodes pr ed i ca t e ) )
� �

For our example, we get that such a path is achieved by having one process enter
pickAndRemoveElement and end up setting Waiting to true at l29_10 (which is
the first time a choice occurs). Then, the process leaves pickAndRemoveElement
and the other process starts. The just started process enters pickAndRemoveEle-
ment, discovers that Waiting is empty, leaves pickAndRemoveElement and ter-
minates. Now, the first process continues, sets Waiting to false in l13_31, only
stopping when it has performed all the work on its own.

This is also possible in the algorithm in Fig. 4, and even quite likely as the two
processes will test Waiting initially, one of them will consume the only element
it contains initially, and other processes terminate. This also occurred in reality
in our first implementation.

To fix this, we notice that the reason one process terminates prematurely in
the previous example is that it decided to terminate while the other can still
add new states to Waiting. The idea of an improved algorithm is to ensure that
no processes may terminate when others may produce new states. This prompts
us to make the improvement seen in Fig. 9. We reuse addCheckExists and
pickAndRemoveElement from Fig. 4, and define a new procedure for picking,
pickWithCounter (ll. 27–36) which is used in place of the original pickAnd-
RemoveElement (ll. 43 and 52). We use MayAdd as a counter of the number
of processes which may add new states to Waiting. We add an additional loop
around the previous main loop ensuring we only quit when MayAdd is zero.

We use the same approach to translate the program to a CPN model, using
the same refinements for s and Waiting and no abstraction of MayAdd. We
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1: bool Waiting
2: Waiting := Model.initial()
3: Visited := Model.initial()
4: int MayAdd
5: MayAdd := 0
6: . . .

27: proc pickWithCounter() is
28: bool s
29: lock withCounter
30: s := pickAndRemoveElement()
31: if not s = notFound then
32: MayAdd := MayAdd + 1
33: endif
34: return s
35: unlock
36: endproc
37:
38: computeStateSpace() ||

computeStateSpace()

40: proc computeStateSpace() is
41: bool s
42: repeat
43: s := pickWithCounter()
44: while not s = notFound do
45: // Do any handling of s here
46: for all b in s.enabled() do
47: ss := s.execute(b)
48: if addCheckExists(ss) then
49: Waiting := Waiting.add(ss)
50: endif
51: endfor
52: s := pickWithCounter()
53: MayAdd := MayAdd − 1
54: endwhile
55: until MayAdd=0
56: endproc

Fig. 9. More involved state-space algorithm

obtain a model with a state-space with 143,372 nodes, 56 dead states, no dead-
locks, and no live-locks. We have no weak live-locks reachable from a state where
E contains tokens. Due to the translation being done automatically instead of
manually, we actually found an error in the algorithm described in [17]. That
algorithm is the same as the one in Fig. 9 except the one in [17] had lines 52 and
53 swapped, which allows one process to terminate while the other is between
lines 52 and 53. In [17] we did not catch that due to the manual construction of
the model, but with our automatic translation we did.

Verification of the two process case has given us confidence that the algo-
rithm will work with any number of processes. We have also investigated an
extended version additionally adding a check-point mechanism where all threads
are paused while Waiting and Visited are written to disk in a consistent con-
figuration.

We also used the method to verify the implementation of a slightly simplified
version of the protocol for operational support developed in [6,19]. The protocol
supports a client which sends a request to an operational support service, which
mediates contact to a number of operational support providers. The protocol
developed in [6,19] has support for running all participants on separate machines,
but we are satisfied with an implementation running the operational support
server and providers on the same machine. We therefore have to send fewer
messages, but need to access shared data on the server. We devised a fine-grained
locking mechanism and used the method devised in this paper to prove that it
enforces mutual exclusion and causes no dead-locks, increasing our confidence
that the implementation works.
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5 Conclusion and Future Work

We have given an approach for correct implementation of parallel algorithms.
The approach allows users to extract a model from an algorithm written in an
implementation or abstract language and verify correctness using state-space
analysis. The approach also facilitates the generation of skeleton implementa-
tion code from the verified model using the approach from [10] as we rely on
process-partitioned coloured Petri nets. Finally, we can also combine the two ap-
proaches, which facilitates writing an algorithm in an abstract language, extract
a model for verification, and then extract a skeleton implementation. We have
implemented a translation from a simple language to CPN models. The power
of having an implementation is seen by the fact that we caught an error in the
algorithm published earlier in [17] which erroneously had two lines swapped.

Verification of software by means of models is not new. Code-generation from
models have been used in numerous projects. The approach has been most suc-
cessful for generating specification of hardware from low-level Petri nets and
other formalisms to synthesize hardware such as computer chips [7, 8]. The ap-
proach has also been applied to high-level Petri nets to generate lower level
controllers [9] and more general software [10]. Model extraction was pioneered
by FeaVer [11], which made it possible to extract PROMELA models from
C code using user-provided abstractions, and Java PathFinder [13] which did
the same for Java programs. The approach has successfully been refined using
counter-example guided abstraction refinement (CEGAR) [16] which was first
implemented by Microsoft SLAM [14], which extracts and automatically refines
abstractions from C code for Microsoft Windows device drivers, and refined by
BLAST [15]. While the tools for model-extraction support a full development
cycle by abstraction refinement and reuse for modified implementations, the idea
of combining the two approaches is to the best of our knowledge new. The com-
bination allows some interesting perspectives. The perspective we have focused
on in this paper is the ability to write an algorithm in pseudo-code, extract a
model from the code, and generate an implementation in a real language. An-
other perspective is supporting a full cycle as well, where we extract a model
from a program, find and fix an error in the model, and emit code that is merged
with the original code, supporting a cycle where we do not need to fix problems
in the original code but can do so at the model level. The use of coloured Petri
nets instead of a low-level formalism allows us to use the real data-types used in
the program instead of abstractions, much like how FeaVer allows using C code
as part of PROMELA models, but with the added bonus that the operations
are a true part of the modeling language rather than an extension that requires
some trickery to handle correctly.

The work presented here is far from done. While our prototype allows us to
verify simple but non-trivial examples, it cannot cope with more complicated
systems. The main problem is that the state-space is growing very large, even
just for the example seen in Fig. 9 with 2 processes (which has a state-space
with 143,372 states). We can alleviate this by more reduction rules and more
sophisticated translations. For example, we currently only consider transitions
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on single pages when removing unconditional paths. Also, updates to local vari-
ables are done concurrently, which is sub-optimal. We can alleviate this by using
partial order reduction [20, 21] or by using transition priorities and giving such
transitions high priority. Manually giving all transitions accessing only local data
high priority reduces the state-space of the resulting model to 49,162 states.

We would also like to make the implementation more intelligent with respect
to how types are handled. Currently, only directly declared types are taken into
account. This means the prototype incorrectly generates an unrefined type on
Return Value of addCheckExists in Fig. 8 even though we can see it is used
as a boolean in line 12 of Fig. 4. It would be nice to use type unification to
avoid this. It would also be interesting to make more advanced type analysis,
propagating refinements, so we only have to refine s either in line 6 or in line 23
of Fig. 4. This would also allow us to not automatically refine the conditions of
all conditionals, further simplifying generated models. We also want to improve
how complicated expressions are parsed, i.e., reduce how often the 〈unparsed〉
production is used. This would remove some manual labor (like adding arcs to
places for l8_14 and l8_36 in Fig. 8 due to line 8 of Fig. 4 containing unparsed
content). More importantly, more intelligent parsing would allow us to do simple
abstraction automatically, only asking users when unknown functions are called.
In the longer term, it would be interesting to assist users with this using replay
on the original program.

Our current method focuses on parallel algorithms with a fixed number of
identical processes, but there is nothing in our approach preventing us from
extending this to also handle distributed settings with asynchronous communi-
cation using buffer places and different kinds of processes; the code generation
in [10] even supports that out of the box. While the fixed number of processes
used in this paper works well for simple algorithms, more advanced algorithms
may need to spawn processes. Nothing in our approach inherently forbids this,
but the code generation in [10] does not support this out of the box. We believe
that it should be quite easy to devise a construction for starting new processes
and adapt the code generation to handle this.

Our current approach does not support recursive (or mutually recursive) pro-
cedures, as we create a static sub-page for each procedure call. This is done for
simplicity in the prototype, but could easily be changed to explicit hand-over of
control among several top-level pages. This is similar to dynamic process instan-
tiation and interprocess communication and can be implemented by adding to
each procedure setup and teardown transitions initializing and removing local
variables, and maintaining a mapping between process identifiers.
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Abstract. This article presents the results of the Model Checking Con-
test held within the SUMo 2011 workshop, a satellite event of Petri Nets
2011. This contest aimed at a fair and experimental evaluation of the
performances of model checking techniques applied to Petri nets.

The participating tools were compared on several examinations (state
space generation, deadlock detection and evaluation of reachability for-
mulæ) run on a set of common models (Place/Transition and Symmetric
Petri nets). The collected data gave some hints about the way techniques
can scale up depending on both examinations and the characteristics of
the models.

This paper also presents the lessons learned from the organizer’s point
of view. It discusses the enhancements required for future editions of the
Model Checking Contest event at the Petri Nets conference.

Keywords: Petri Nets, Model Checking, Contest.

1 Introduction

When verifying a system with formal methods, such as Petri nets, one may have
several questions such as:

“When creating the model of a system, should we use structural anal-
ysis or an explicit model checker to debug the model?”

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 169–196, 2012.
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“When verifying the final model of a highly concurrent system, should
we use a symmetry-based or a partial order reduction-based model
checker?”

“When updating a model with large variable domains, should we use
a decision diagram-based or an abstraction-based model checker?”

Results that help to answer these questions are spread among numerous papers
in numerous conferences. The choice of the models and tools used in benchmarks
is rarely sufficient to answer these questions. Benchmark results are available a
long time after their publication, even if the computer architecture has changed
a lot. Moreover, as they are executed over several platforms and composed of
different models, conclusions are not easy.

The objective of the Model Checking Contest @ Petri nets is to compare the
efficiency of verification techniques according to the characteristics of the models.
To do so, the Model Checking Contest compares tools on several classes of models
with scaling capabilities, e.g., values that set up the “size” of the associated state
space.

Through a benchmark, our goal is to identify the techniques that can tackle a
given type of problem identified in a “typical model”, for a given class of problem
(e.g., state space generation, deadlock detection, reachability or causal analysis,
etc.).

The first edition of the Model Checking Contest @ Petri nets took place
within the context of the SUMo workshop (International Workshop on Scalable
and Usable Model Checking for Petri Nets and other models of concurrency), co-
located with the Petri Nets and ACSD 2011 conferences, in Newcastle, UK. The
original submission procedure was published early March 2011 and submissions
gathered by mid-May 2011. After some tuning of the execution environment,
the evaluation procedure was operated on a cluster early June. Results were
presented during the SUMo workshop, on June 21st, 20111.

Let us mention similar events we are aware of. The Hardware Model Check-
ing Contest2 started in 2007 focuses on circuit verification by means of model
checking. It is now associated with the CAV (Computer Aided Verification) and
FLOC (Federated Logic Conference) conferences. This event ranks the three best
tools according to a selected benchmark. It is an almost yearly event (2007, 2008,
2010 and 2011).

The Timing Analysis Contest3 within PATMOS 2011 (International Work-
shop on Power and Timing Modeling, Optimization and Simulation) also con-
siders the verification of electronic designs with a focus on timing analysis.

The Verified Software Competition4 hold within the Verified Software: The-
ories, Tools and Experiments (VSTTE) conference [24], in August 2010. This
1 This presentation can be found at http://sumo.lip6.fr/MCC-2011-report/
MCC-2011-report.pdf, and raw data of the benchmarks at http://sumo.lip6.fr/
MCC-2011-report/MCC-results-data.zip

2 http://fmv.jku.at/hwmcc11/index.html
3 http://patmos-tac.inesc-id.pt
4 http://www.vscomp.org

http://sumo.lip6.fr/MCC-2011-report/MCC-2011-report.pdf
http://sumo.lip6.fr/MCC-2011-report/MCC-2011-report.pdf
http://sumo.lip6.fr/MCC-2011-report/MCC-results-data.zip
http://sumo.lip6.fr/MCC-2011-report/MCC-results-data.zip
http://fmv.jku.at/hwmcc11/index.html
http://patmos-tac.inesc-id.pt
http://www.vscomp.org
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competition was held as a forum where researchers could demonstrate the
strengths of their tools through the resolution of five problems. The main objec-
tive of this event was to evaluate the efficiency of theorem proving tools against
SAT-solving.

The Satisfiability Modulo Theories Competition5 takes place within the con-
text of the CAV conference. Since 2005, its objective is to evaluates the decision
procedures for checking satisfiability of logical formulas.

Finally, the SAT Competitions6 proposes to evaluate the performance of SAT
solvers. This event occurs yearly since 2002 and identifies new challenging bench-
marks each years.

With respect to these existing events, the Model Checking Contest at Petri
Nets puts emphasis on the specification of parallel and distributed systems and
their qualitative analysis. So far, we consider Petri Nets as input specification
(later editions might also consider other formalisms suitable for concurrency).

The goal of this paper is to report the experience from this first Model Check-
ing Contest. It reflects the vision of the MCC’2011 organizers, as it was first pre-
sented aside the conferences in Newcastle, revised and augmented by feedback
from the tool developers who participated in this event. All tool developers are
listed in Section 9.

The article is structured as follows. Section 2 presents the evaluation method-
ology, before a brief presentation of the models in Section 3 and the participating
tools in Section 4. Then, Sections 5 to 7, detail some observations we made about
the efficiency of techniques with regards to their implementation in the participat-
ing tools. Finally, Section 8 discusses some issues risen by this first edition of the
Model Checking Contest as well as some clues for the organization of next editions.

All over the paper, we outline in this way the lessons learned from the first edition.
These lessons constitute changes to be applied in the next edition of this event.

2 Evaluation Methodology

The Model Checking Contest is based on one major assumption: there is no silver
bullet in model checking. Thus, the choice of the techniques should depend on:

– the characteristics of the model, for instance its formalism (Place/Transition
net or Symmetric net), the marking bounds (safe or unsafe nets), or the
number of synchronizations in a model;

– the action to be performed by the model checker, for instance state space gener-
ation, deadlock detection, or evaluation of reachability, CTL or LTL formulæ;

– the possible interaction between techniques, for instance abstractions with
partial orders, or decision diagrams with symmetries;

– the position in the development process, for instance when the model is being
designed, during its debugging, or during its final checking.

5 http://www.smtcomp.org
6 http://www.satcompetition.org

http://www.smtcomp.org
http://www.satcompetition.org
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There is already plenty of publications on theoretical complexity of model check-
ing algorithms. Theoretical complexity is sometimes misleading, as it can hide
huge constants, that make algorithms unusable in practice. Moreover, the effi-
ciency of tools varies a lot, even when they use the same techniques.

An experimental evaluation of tools efficiency is thus required in model check-
ing. Articles about tools also provide benchmarks that have numerous draw-
backs [22]:

– They usually cover only some selected tools on some selected models. Thus,
benefits of involved algorithms for some model characteristics cannot be
evaluated.

– The choice of the tools used for comparison is sometimes biased, because the
authors may not know other good competing tools, or because they could
not convert their models to process them.

– There is no guarantee that the comparison is fair, because the authors of
the article may not know other tools as well as their own tool. For instance,
some settings can require some expertise to be set appropriately.

– As benchmarks are performed on several architectures, they also cannot be
compared between articles.

2.1 The Overall Procedure

For the first edition of the Model Checking Contest, only a subset of all actions
provided by model checkers were requested. They are called “examinations”:

– computation of the state space with a report on its size;
– computation of the deadlocks with a report on their number;
– evaluation of reachability formulæ to detect wether a state, depicted by a logic

formula, can be reached from the initial state or not (10 satisfiable ones and
10 unsatisfiable ones) with a report on the computed results (true or false).

Examinations were run on several parameterized models. Each model has a “scal-
ing value”, used to increase its complexity, for instance the number of philoso-
phers in the Dining Philosophers problem. For each model, each scaling param-
eter value defines a model instance. The Model Checking Contest provided all
model instances in Petri Net Markup Language format. As tools were allowed
to give their own version of the models, as long as examinations return the
same results, we fixed all scaling values before the contest, and provided them
in advance to the participants.

Model checking has two “enemies”: memory consumption when it comes to
store large state spaces (or portion of state space) and computation time, when
the number of states grows. There is usually a trade-off between lower memory
footprint and lower computation time. Thus, our objective was to measure both
memory and CPU usage.

The “examinations” requested for the contest were performed thanks to an
invocation script that iterated invocation of each tool over models instances.
This invocation script is presented in Algorithm 1.
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Input: M , a set of scalable models to be processed
foreach m ∈ M do

Operate a prologue for m
foreach v, scaling values for m do

Operate state space generation on m for scale value v
Operate deadlock computation on m for scale value v
Operate check of satisfiable reachability formulæ on m for scale value v
Operate check of unsatisfiable reachability formulæ on m for scale value
v

Operate an epilogue for m

Algorithm 1. Actions performed for each tool by the invocation script

When a tool fails on a model for a particular scaling value, we still try the tool
for higher values. This ensures that a tool can fail for any reason on a scaling
parameter, and still compete for other values. It has a cost, as we cannot exit
the loop and thus save overall computation time for the contest. As we can
expect an increase in the number of participating tools, the number of models
and the number of scaling values, we might consider this optimization in the
next Model Checking Contest.

Prologue and epilogue. A prologue is executed prior to any execution performed
on a model. This prologue enables one to prepare data for a given model if
necessary. For example, LoLA used this prologue to compile itself on the executing
machine, thus avoiding library compatibility problems.

When all examinations have been processed for all the scaling values of a given
model, an epilogue is executed, typically to enable tools to delete temporary files.

There is no time or memory usage measures for the prologue and the epilogue
actions. These actions are considered as “preparations” for the contest. Tool
developers were free to put any preprocessing of the model into the prologue.
Some tools like LoLA compile the tool during the first execution of the prologue.
Some others include their preprocessing inside the examinations: for instance
PNXDD unfolds the model and computes a DD variable order during examinations.

To measure the whole computation time for all tools, we should, in the next
edition, measure time and memory spent in the prologue and epilogue, making
the computation time more comparable between tools

Examination. Other actions required by the model checkers are executed in a
confined environment, to restrict the total execution time of the full evaluation.
Both time and memory are reported in a log file. The way confinement and
measures were performed is presented in Section 2.2.

Operating a command is performed through a wrapper script customized
by the tool submitter. This script must report results of the examination in
a standardized and structured way. The results are the number of states in
state space generation, the number of deadlocks, or the evaluation of a formula.
Moreover, the tool must list the techniques used to work on the examination.
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These techniques may be specific to a given examination, the value of a scaling
parameter or the processed model.

2.2 Confinement and Measure of CPU and Memory Usage

Evaluation of tools was performed on a cluster of 24 hyper-threaded 2.4 GHz
bi-Pentium Xeon 32 bits with 2 GBytes of memory and running Linux Man-
driva 2010-2. Monitored actions were confined to the following constraints: 1 800
seconds of CPU and 1.75 GBytes of maximum memory7.

Prior to the submission deadline, we were using for our tools a solution that
appeared to be efficient: memtime8 from the UPPAAL community. This program
works similarly to the time Unix command, but reports both CPU time and
memory allocation up to a maximum that can be easily configured.

Once submissions were collected, we discovered that reported memory usage
was only concerning the top process (a shell script due to the wrapper script
encapsulation technique), even if memory confinement was working well. We thus
only used memtime for its confinement capabilities and CPU measures associated
with the memusage command that provides a log of all allocations in the system.
We evaluated memory consumption by parsing these log files. The idea is to
show the memory use peak, that corresponds to the “user feeling”.

The solution we elaborated allowed us to perform measures in a satisfactory
way. However, it was too intrusive because it is based on an interposition library
that overrides memory allocation and has an impact on performances.

Also, the computation of a diagnostic of a failure (time or memory exhaustion)
could not be fully automated, some case having to be checked manually from
the log themselves like, in LoLA or PNXDD, where some memory overflow were
initially detected as stack overflow.
For the next edition, executions will be run on virtual machines (e.g. QMU) that
could be monitored from “outside”, thus allowing more flexibility and safety in
measures, as well as the support of other operating systems (such as Windows).

3 The Selected Models

For this first edition, seven models were selected: three Place/Transition nets,
and four colored nets modeled in Symmetric nets. These models were selected
from known and reused benchmarks. We provide a brief description of the models
here. Due to lack of space, we cannot provide a picture of the models in this
article, but it can be found in the Model Checking Contest web site9.

Note that for this first edition, the scaling value of all P/T models increased
the number of tokens in places, but did not change the structure of the net.
On the contrary, the scaling value of all Colored models increased the number
of places and transitions in the Equivalence P/T net, but not the number of
tokens.
7 To leave 250 MBytes for the operating system.
8 http://www.uppaal.org/
9 http://mcc.lip6.fr/2011

http://www.uppaal.org/
http://mcc.lip6.fr/2011
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The Models. Let us first provide a brief description of the proposed models.

FMS belongs to the GreatSPN and SMART [10] benchmarks. It models a Flexi-
ble Manufacturing System [9]. The scaling parameter corresponds to the num-
ber of initial tokens held in three places. The following values were used:
2, 5, 10, 20, 50, 100, 200, 500.

Kanban [8] models a Kanban system. The scaling parameter corresponds to the
number of initial tokens held in four places. The following values were used:
5, 10, 20, 50, 100, 200, 500, 1 000.

MAPK models a biological system: the Mitogen-Activated Protein Kinase Kas-
cade [20]. The scaling parameter changes the initial number of tokens held in
seven places. The following values were used: 8, 20, 40, 80, 160, 320.

Peterson models Peterson’s mutual exclusion algorithm [35] in its generalized
version for N processes. This algorithm is based on shared memory communica-
tion and uses a loop with N−1 iterations, each iteration is in charge of stopping
one of the competing processes. The scaling factor is the number of involved
processes. The following values were used: 2, 3, 4, 5, 6.

Philosophers models the famous Dining Philosophers problem introduced by
E.W. Dijkstra in 1965 [41] to illustrate an inappropriate use of shared resources,
thus generating deadlocks or starvation. The scaling parameter is the number
of philosophers. The following values were used: 5, 10, 20, 50, 100, 500, 1 000,
5 000, 10 000, 50 000, 100 000.

SharedMemory is a model taken from the GreatSPN benchmarks [7]. It mod-
els a system composed of P processors competing for the access to a shared
memory (built with their local memory) using a unique shared bus. The scal-
ing parameter is the number of processors. The following values were used:
5, 10, 20, 50, 100, 200, 500, 1 000, 2 000, 5 000, 10 000, 20 000, 50 000.

TokenRing is another problem proposed by E.W. Dijkstra [14]. It models a
system where a set of machines is placed in a ring, numbered 0 to N − 1.
Each machine i only knows its own state and the state of its left neighbor,
i.e., machine (i − 1) mod (N). Machine number 0 plays a special role, and
it is called the “bottom machine”. A protocol ensuring non-starvation deter-
mines which machine has a “privilege” (e.g. the right to access a resource). The
scaling parameter is the number of machines. The following values were used:
5, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500.

Characteristics of the Models. All the selected models are bounded. Their
main characteristics are summarized in Table 1. None of the Place/Transition
nets is safe (or 1-bounded) because the scaling parameter affects the initial mark-
ing. On the contrary, all colored models are safe (in the colored sense where each
color cannot appear more than once in a marking) because the scaling parameter
only changes the color types.

We also note some characteristics of our colored models. First, color types are
either a range of integers, or cartesian products of them. There are two types of
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Table 1. Summary of model’s characteristics

Safe Cartesian product Non equal Broadcast Succ & pred
of color types guards function functions

P
/T

FMS
Kanban
MAPK

C
ol

or
ed Peterson � � � � �

Philosophers � � �
SharedMemory � � � �

TokenRing � � � �

guards: the ones using equality only (= or binding with the same input variable)
and others (=, <,>, ...) that are interesting because they generate asymmetries
in the state space. Arc labels can be a single constant or variable, or use the
“broadcast” that is the set containing all values in a color type. Arcs and guards
may also use incrementation (+n) or decrementation (−n) operators. Finally,
let us note that the “broadcast” can be used to define the initial marking (it is
then a dense one, e.g. all values of the color domain are represented).

When analyzing results of the Model Checking Contest, we observed there
was no safe Place/Transition nets and no unsafe Colored nets. In the 2012
Model Checking Contest, we will scale the Petri nets also by their structure, by
providing the Place/Transition nets equivalents for all Colored nets. For this
first edition we provided two kinds of scaling parameters: one based on the
number of tokens in places, the other based on color domains. For the next
edition, we should also provide a mix between them, and various models with
no scaling parameters, such as industrial cases.

4 Participating Tools

Ten tools where submitted. They are summarized in Table 2.

Table 2. Summary of data on participating tools

Tool Name Team Institution Country Contact Name
ACTIVITY−LOCAL TIK ETHZ Switzerland K. Lampka

AlPiNA CUI/SMV Univ. Geneva Switzerland D. Buchs
Crocodile LIP6/MoVe UPMC France M. Colange
ITS−Tools LIP6/MoVe UPMC France Y. Thierry-Mieg

LoLA Team Rostock Univ. Rostock Germany N. Lohmann & K. Wolf
PNXDD LIP6/MoVe UPMC France E. Paviot-Adet
PeTe Stud. Group d402b Univ. Aalborg Denmark J. Finnemann Jensen
Sara Team Rostock Univ. Rostock Germany H. Wimmel & K. Wolf

YASPA TIK ETHZ Switzerland K. Lampka
helena LIPN/LCR Univ. Paris 13 France S. Evangelista
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Tool Description. We provide here a brief description of the participating tools.

ACTIVITY−LOCAL10 [29] works on any type of Place/Transition nets with in-
hibitor arcs and weighted arcs. It combines decision diagram-based state space
encoding with explicit state space exploration. To avoid the Peak problem ob-
served for decision diagrams with incremental generation, this tool composes
them in an original way. The transition relation induced by the same transi-
tion of the P/T net is encapsulated in its own “submodel”. ACTIVITY−LOCAL
executes an explicit state space traversal for each of these submodels and in-
serts the detected state-to-state transitions into the corresponding DD (one per
submodel).

To cope with dependencies among the transitions of the P/T net, ACTIVITY
−LOCAL structures the explicit exploration as a selective breadth-first scheme.
It only explores the transitions that are in a dependency set of the analyzed
transition.

When a local fixed point is reached, ACTIVITY−LOCAL performs a symbolic
reachability analysis used to elaborate the complete state space. This second step
is implemented as a partitioned symbolic reachability analysis [5], using greedy
chaining [34] and a new DD operator [28].

AlPiNA11 [23] stands for Algebraic Petri nets Analyzer and is a symbolic model
checker for Algebraic Petri nets. It can verify various state properties expressed
in a first order logic property language.

Algebraic Petri nets (APNs) (Petri nets + Abstract Algebraic Data Types)
is a powerful formalism to model concurrent systems in a compact way. Usually,
concurrent systems have very large sets of states, that grow very fast in rela-
tion to the system size. Symbolic Model Checking (DD-based one) is a proven
technique to handle the State Space Explosion for simpler formalisms such as
Place/Transition nets. AlPiNA extend these concepts to handle algebraic values
that can be located in net places.

For this purpose AlPiNA uses enhanced DDs such as Data Decision Diagrams
and Set Decision Diagrams for representing the place vectors and Σ Decision
Diagrams [3] for representing the values of the APN. It also allows to specify
both algebraic and topological clusters to group states together and thus to
reduce the memory footprint. Particular care has been taken to let users freely
model their systems in APNs and in a second independent step to tune the
optimization parameters such as unfolding rules, variable order, and algebraic
clustering. Compared to Colored net approaches, AlPiNA [4] solves problems
related to the unbounded nature of data types and uses the inductive nature
of Abstract Algebraic Data Types to generalize the unfolding and clustering
techniques to any kind of data structure.

AlPiNA’s additional goal is to provide a user friendly suite of tools for checking
models based on the Algebraic Petri nets formalism. In order to provide great
user experience, it leverage on the powerful eclipse platform.

10 No official distribution yet.
11 Tool is available at http://alpina.unige.ch.

http://alpina.unige.ch
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Crocodile12 [12] was initially designed as a demonstration tool for the so-called
symbolic/symbolic approach [39]. It combines two techniques for handling the
combinatorial explosion of the state space that are both called “symbolic”.

The first “symbolic” technique concerns the reduction of the reachability graph
of a system by its symmetries. The method used in Crocodile was first intro-
duced in [6] for the Symmetric nets, and was then extended to the Symmetric
nets with Bags (SNB) in [18]. A symbolic reachability graph (also called quotient
graph) can be built for such types of Petri nets, thus dramatically reducing the
size of the state space.

The second “symbolic” technique consists in storing the reachability graph
using decision diagrams, leading to a symbolic memory encoding. Crocodile
relies on Hierarchical Set Decision Diagrams [13]. These present several interest-
ing features, such as hierarchy, and the ability to define inductive operations.

Still under development, Crocodile essentially generates the state space of
a SNB and then processes reachability properties.

ITS−Tools13 [40] are a set of tools to analyze Instantiable Transition Systems,
introduced in [40]. This formalism allows compositional specification using a no-
tion of type and instance inspired by component oriented models. The basic ele-
mentary types are labeled automata structures, or labeled Petri nets with some
classical extensions (inhibitor arcs, reset arcs. . . ). The instances are composed
using event-based label synchronization.

The main strength of ITS−Tools is that they rely on Hierarchical Set Decision
Diagrams [13] to perform analysis. These decision diagrams support hierarchy,
allowing to share representation of states for some subsystems. When the system
is very regular or symmetric, recursive encodings [40] may even allow to reach
logarithmic overall complexity when performing analysis. Within the contest, the
Philosophers and TokenRing examples proved to be tractable using this recursive
folding feature.

Set Decision Diagrams also offer support for automatically enabling the “satu-
ration” algorithm for symbolic least fixpoint computations [19], a feature allowing
to drastically reduce time and memory consumption. This feature was used in
all computations.

LoLA14 [43] is an explicit Petri net state space verification tool. It can verify a va-
riety of properties ranging from questions regarding single Petri net nodes (e.g.,
boundedness of a place or quasiliveness of a transition), reachability of a given
state or a state predicate, typical questions related to a whole Petri net (e.g.,
deadlock freedom, reversibility, or boundedness), and the validity of temporal
logical formulae such as CTL. It has been successfully used in case studies from
various domains, including asynchronous circuits, biochemical reaction chains,
services, business processes, and parameterized Boolean programs.

12 Tool is available at http://move.lip6.fr/software/Crocodile.
13 Tool is available at http://ddd.lip6.fr.
14 Tool is available at http://www.informatik.uni-rostock.de/tpp/lola.

http://move.lip6.fr/software/Crocodile
http://ddd.lip6.fr
http://www.informatik.uni-rostock.de/tpp/lola
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For each property, LoLA provides tailored versions of state space reduction
techniques such as stubborn sets, symmetry reduction, coverability graph gen-
eration, or methods involving the Petri net invariant calculus. Depending on the
property to be preserved, these techniques can also be used in combination to
only generate a small portion of the state space.

For the Model Checking Contest, only one configuration of LoLA was submitted
since, in the beginning, the necessary efforts were not predictable. This configu-
ration was tailored for checking the reachability of a state that satisfies a given
state predicate. This check was combined with two reduction techniques. First,
a dedicated version of the stubborn sets [37] aimed at exploiting concurrency in
the model and that allows to prioritize the firing of those transitions that lead to
states closer to the goal state. This method is known to perform extremely well
on reachable states while other methods [27] also available in LoLA would excel
on unreachable states. Second, LoLA calculates place invariants to determine so-
called implicit places [38]. The marking of such places does not need to be stored
explicitly, but can be deduced from the marking of the other places. Typically, this
reduction allows to reduce the memory usage by 20% to 60%.

PNXDD15 generates the state-space of Place/Transition nets. When Colored nets
are used in the Model Checking Contest, equivalent P/Ts are obtained after
an “optimized” unfolding [25] (unused places and transitions are detected and
suppressed).

State Space storage relies on Hierarchical Set Decision Diagrams [13] (SDDs).
These are decision diagrams with any data type associated to arcs (see e.g., [32]
for an overview of DD-like structures). If the associated data type is another
SDD, hierarchical structures can be constructed.

Since PNXDD exploits hierarchy, a state is seen as a tree, where the leaves
corresponds to places marking. This particular structure offers greater sharing
opportunities than a, for instance, vector based representation. The conception
of such a tree is critical to reach good performances and heuristics are being
elaborated for this purpose [21]. The one used for the Model Checking Contest
is based on [1]: for colored models that do scale via the size of color types, PNXDD
uses a tree-like version of this heuristic, while the original version is kept when
colored models only scale via the number of tokens in the initial marking.

PeTe16 is a graphical Petri net modeling and verification tool written in
C++/Qt. PeTe can answer reachability formulæ using two techniques. First,
PeTe attempts to disprove reachability of a query using over-approximation.
This is done by solving the state equation using integer programming. If a so-
lution is found PeTe attempts to tighten the approximation using trap testing
as presented in [15]. Detailed description and variations of this approach can be
found in [15].

If over-approximation cannot disprove reachability, PeTe attempts to prove
reachability with straightforward Best-First-Search of the state space, using a

15 Tool is available at https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd.
16 Tool is available at https://github.com/jopsen/PeTe.

https://srcdev.lip6.fr/trac/research/NEOPPOD/wiki/pnxdd
https://github.com/jopsen/PeTe
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simple heuristic presented in [17]. So far, PeTe does not support state space gener-
ation or deadlock detection. PeTe is maintained and available under GNU GPLv3.

Sara17 uses the state equation, known to be a necessary criterion for reacha-
bility and in a modified way also for other properties like coverability, to avoid
enumerating all possible states of a system [36]. A minimal solution of the state
equation in form of a transition vector is transformed into a tree of possible firing
sequences for this solution. A firing sequence using all the transitions given in
the solution (with the correct multiplicity) reaches the goal.

For tree pruning, partial order reduction is used, especially in the form of
stubborn sets [37,26]. If the goal cannot be reached using the obtained solution,
places that do not get enough tokens are computed. Constraints are built and
added to the state equation (in a CEGAR-like fashion [11]). These constraints
modify the former solution by adding transition invariants, temporarily allowing
for additional tokens on the undermarked places.

Sara detects unreachable goals either from an unsatisfiable state equation
or by cutting the solution space to finite size when the repeated addition of
transition invariants is known not to move towards the goal. A more involved
explanation of the algorithm behind Sara can be found in [42].

YASPA18 relies on Zero-Suppressed Decision Diagrams (ZDDs) [33,31] together
with a partitioned symbolic reachability analysis [5] and greedy chaining [34].
However, contrary to other decision diagram-based tools it neither depends on
pre-generated symbolic representations of state-to-state transitions, nor on the
use of standard decision diagram operators. Instead, symbolic reachability anal-
ysis is carried out by means of customized ZDD-algorithms that are directly
synthesized from the Place/Transition net with inhibitor arcs.

As a key feature the synthesized ZDD operators are organized in a strictly local
manner. This is achieved by assigning an identity semantics to those variables of
the decision diagram which refer to places that are neither pre nor post condition
of a given transition. Moreover, the ZDD operators apply decision diagram-related
recursion rules which implement the subtraction, addition and testing of tokens.

By executing these synthesized ZDD operators in a fixed point iteration,
YASPA delivers the state space and transition relation of the system.

helena19 [16] is an explicit state model checker for High Level Petri nets. It is
a command-line tool available available under the GNU GPL.

helena tackles the state explosion problem mostly through a reduction of par-
allelism operated at two stages of the verification process. First, static reduction
rules are applied on the model in order to produce a smaller net that – provided
some structural conditions are verified – is equivalent to the original one but has
a smaller reachability graph. Second, during the search, partial order reduction
is employed to limit, as much as possible, the exploration of redundant paths in
the reachability graph. This reduction is based on the detection of independent
17 Tool is available at http://www.service-technology.org/tools/download.
18 Tool is available at http://www.tik.ee.ethz.ch/~klampka.
19 Tool is available at http://helena-mc.sourceforge.net .

http://www.service-technology.org/tools/download
http://www.tik.ee.ethz.ch/~klampka
http://helena-mc.sourceforge.net
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transitions of the net at a given marking. Other reduction techniques are also
implemented by helena, e.g., state compression, but were disabled during the
contest due to their inadequacy with the proposed models.

Summary of Techniques Used by Participating Tools. Altogether, these
tools implement numerous techniques, as summarized in Table 3. We note that
several tools stack several techniques such as decision diagrams with (sometimes)
symmetries, or abstractions with partial orders.

We also note that numerous types of decision diagrams are used in partici-
pating tools. YASPA uses customized Zero-Suppressed Multi-Terminal Decision
Diagrams [30]. ITS−Tools, PNXDD, Crocodile and AlPiNA are using Hierarchi-
cal Set Decision Diagrams [40]. AlPiNA also uses a variant called Σ Decision
Diagrams dedicated to algebraic systems [3].

Table 3. Summary of techniques used by tools

Reachability Deadlock Formula
Graph Detection Evaluation

ACTIVITY−LOCAL Explicit
Decision Diagrams

AlPiNA Decision Diagrams Decision Diagrams

Crocodile Symmetries Symmetries
Decision Diagrams Decision Diagrams

ITS−Tools Decision Diagrams Decision Diagrams Decision Diagrams
Symmetries (opt) Symmetries (opt) Symmetries (opt)

LoLA
Explicit

Partial Orders
State Compression

PNXDD Decision Diagrams

PeTe
Explicit

State Equation

Sara
Abstractions

Partial Orders
State Equation

YASPA Decision Diagrams

helena
Explicit

Explicit Abstractions
Partial Orders

In the next edition, more precision will be required to classify techniques.

5 Observations on State Space Generation

This section analyzes the results of the Model Checking Contest for state space
generation. It first presents the highest parameter computed by the tools for
each model. Then it compares in Section 5.1 the maximum parameter reached,
together with the evolution of computation time and memory consumption on
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Place/Transition net models, before doing the same analysis on Colored net
models in Section 5.2. We have found this distinction to be the most significant
for state space generation.

Table 4 summarizes the highest parameter reached by the tools for each model.
This table, as well as Tables 5 and 6, should be interpreted using the legend below:

The tool does not participate.
The tool participates, but cannot compute for any scaling value.
The tool participates.
The tool participates and reaches the best parameter among tools.
The tool participates and reaches the maximum parameter.

n ? The tool fails for an unknown reason, after reaching parameter n.
n � The tool fails because of memory exhaustion, after reaching parameter n.
n � The tool fails because of maximum time is elapsed, after reaching parameter n.

Table 4. Results for the state space generation examination
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Philosophers 500 � 10 � 100 000 1 000 � 10 �

SharedMemory 20 ? 20 � 50 000 100 � 10 �

TokenRing 10 ? 50 � 15 � 10 �

Table 3 shows that almost all the tools competing for state space generation
use decision diagrams. So, this technique seems to be the most common choice
when doing state space generation. From Table 4, we observe that among DD-
based tools, there is a great variation in the maximum scaling parameter reached.
The ratio between the value reached by the worst and the best DD-based tools
is 1 : 5 for TokenRing and 1 : 10 000 for Philosophers.

Comparing tools for the state space examination is not a trivial task. The
Model Checking Contest organizers encountered several problems, all concerning
the returned size of the state space, which was initially used to check the answers:

1. For helena, both tool developers and the Model Checking Contest orga-
nizers agreed to disable all optimizations – structural reductions and state
compression – because they lead to the generation of a 1-state reachability
graph. It did not seem to make sense in this examination.

2. Crocodile on Colored net also returns fewer states, because it is computing
the quotient reachability graph.

3. We also noted, for FMS and TokenRing, a variation in the state space size,
that was apparently due to some variation in the encoding of the model.
Some tools, like ACTIVITY−LOCAL and YASPA adapted the model taken from
GreatSPN, for instance by removing instantaneous transitions. These varia-
tions did not seem large enough to require the tool developers to check their
models and tools.
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Fig. 1. Memory and time measure for state space generation on the FMS model

5.1 Place/Transition Net Models

Note that, for Place/Transition net models, the sizes of the state space for the
highest parameter reached by the tools are:

FMS200 = 1.95× 1025 states
Kanban500 = 7.09× 1026 states
MAPK160 = 1.06× 1023 states

Figure 1 shows the memory and time evolution of state space generation for the
FMS model. It is typical of what we observe for this examination on Place/Tran-
sition nets. It experimentally shows that we can divide DD-based tools into two
groups: the first one (“bad results”) only reaches FMS20 (around 6× 1012 states)
at most, the second one (“good results”) reaches FMS100 (around 2.7 × 1021

states) at most.
The “bad results” group is composed of Crocodile, AlPiNA and ACTIVITY−

LOCAL. All these tools are not dedicated to Place/Transition nets: Crocodile is
intended for Colored nets with bags in tokens, AlPiNA is optimized for Algebraic
Petri nets, and ACTIVITY−LOCAL works on any type of P/T nets with inhibitor
arcs and weighted arcs. These three tools do not get better results on the two
other P/T models, Kanban and MAPK. Crocodile has bad performances be-
cause it does not know how to exploit symmetries from Place/Transition nets;
moreover, it appeared that management of multisets of tokens needed some im-
provement. The developers of AlPiNA discovered that it has bad performance
for P/Ts because the tool is implicitly optimized for safe Petri nets.

On the contrary, tools that handle formalisms closer to the Place/Transition
nets obtain good results. YASPA, ITS−Tools and PNXDD handle at least FMS100.
YASPA is a bit less effective on Kanban, and is comparable to the “bad tools” for
MAPK. We noted that for Kanban, the results are not consistent with measures
made by the author of YASPA, that shows similar performance as for FMS (we
could not find any explanation for this).

Among the “good results” group, we can see that PNXDD has better results than
ITS−Tools for FMS and Kanban. The explanation is that for these nets, PNXDD
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Fig. 2. Memory measure for state space generation (Philosophers)

does not use hierarchical DDs, contrary to ITS−Tools. Because the scaling value
only increases the number of tokens, and not the size of the net, the cost of using
hierarchy is not covered by the gains it provides.

No tool could reach the maximum scaling value for Place/Transition nets (500
for FMS, 1 000 for Kanban, 320 for MAPK). As these numbers have been se-
lected based on known results in papers, this is not surprising. On the contrary
PNXDD is close to the maximum parameters. For the next Model Checking Con-
test, scaling parameter of the 2011 models will be increased. This analysis of
the examinations should be done each year, in order to increase tools efficiency,
as it was observed in the SAT Competition.

5.2 Colored Net Models

We provide in Figure 2 the memory measure for the Philosophers model and
in Figure 3 the CPU consumption for SharedMemory. Since one technique is
very efficient, the leftmost part of the figures show measures for all the scaling
parameter while the rightmost part only focus on the subset of values where
all tools provide results. These figures are of interest because they show some
extreme performance of some techniques in favorable cases.

Execution of tools on colored models showed interesting points:

– helena obtains results comparable to some decision diagram-based tools on
SharedMemory and TokenRing (see Figure 4 for TokenRing). As all opti-
mizations of helena are disabled for this examination, it shows that these
DD-based tools are quite inefficient for these models;

– Crocodile has heterogeneous results: it is as good as AlPiNA on Shared-
Memory (see Figure 3b), but reaches only a low parameter on Philosophers
(see Figure 2b). This is apparently due to a non optimal exploitation of
symmetries; optimization could also be performed on the implementation;

– ITS−Tools reaches impressive parameters compared to the other tools on
the Colored net models it handled.
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Fig. 3. CPU measure for state space generation (SharedMemory)

Thus, we can divide the tools into two groups: the “quite good” one containing
all tools except ITS−Tools, and the “excellent” one containing this last tool.

Figures 2a and 3a illustrate the real interest of a technique, used in ITS−
Tools, associated to hierarchical decision diagrams: “recursive folding” [40]. This
technique can be activated for very regular models such as Philosophers and
SharedMemory. It consist in splitting recursively the model in subcomponents.
First, the system is split in “two halfs”, and then each half in “two fourth”,
etc. Associated with the hierarchical decision diagrams used in ITS−Tools, the
result is impressive: this tool is able to process both models for the maximum
provided values. In both cases, the number of states exceeds the floating points
representation. For smaller parameters, the state space sizes are given below:

Philosophers10 000 = 1.63× 104771 states
SharedMemory10 000 = 5.43× 104778 states

Figures 2b and 3b are a zoom on the left part of figures 2a and 3a. It shows the
performances of "second tools" that correspond to the following state space size:

Philosophers1 000 = 1.13× 10477 states
SharedMemory100 = 5.15× 1047 states

Figure 4 shows measures for the TokenRing model where the recursive fold-
ing technique cannot be activated. Decision diagram-based tools are much less
performant than previously, the largest computed state space holds 1.98× 1027

states “only”.
Apart the results of ITS−Tools, the results of PNXDD and AlPiNA are useful

for another remark. When comparing these two tools on Philosophers, Shared-
Memory and TokenRing, we see that AlPiNA and PNXDD have comparable results
on Philosophers and TokenRing, whereas PNXDD is far better on SharedMemory
(due to different hierarchical structures). From this, we can deduce that Hierar-
chy in decision diagrams offers interesting results.
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Fig. 4. Measure for state space generation (TokenRing)

There is a large difference between the performances of DD-based tools for
Philosophers and SharedMemory (many orders of magnitude for the values of
both scaling parameters), whereas the difference is lower for TokenRing. But
ITS−Tools and PNXDD should get closer results on TokenRing, as there is no
recursive folding for this model. Although both tools use the underlying Place/-
Transition nets for this colored model, the unfolding of color, as well as the
construction of the hierarchical structure, are not the same.

Decision diagram based tools clearly can reach impressive scaling values for
state space generation, when using hierarchical decision diagrams together with
recursive folding. To do state space generation, we can recommend three tools:
PNXDD is very efficient and works both for Place/Transition nets and Colored
nets, YASPA is dedicated to Place/Transition nets and has heterogeneous results,
and ITS−Tools is extremely efficient on Coloreds but requires to manually trans-
form the model.
Academic models seem easy for the good state space generators. We should
provide some industrial models in the next Model Checking Contest, as they
are usually not as regular as academic models.

The Peterson model seems reluctant to all the implemented techniques. Only
three tools could handle it, and the best processed scaling values are very low: 5
for PNXDD, 3 for AlPiNA and 2 for helena. This corresponds to very small state
spaces compared to the ones reached for other models:

Peterson3 = 2.07× 104 states
Peterson5 = 6.30× 108 states

6 Observations on Deadlock Detection

The data collected for deadlock detection is summarized in Table 5. It must
be read as Table 4. Let us note that only three tools did participate in this
examination.
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Table 5. Results for the deadlock detection examination
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As this examination required to count the number of deadlocks instead of just
discovering one, some tools could not participate. For instance, LoLA stops
when the first deadlock is found. We should only ask for the detection of at
least one deadlock in the next edition of the Model Checking Contest, to have
more competing tools. We will also propose to refer to deadlocks in formula to
be evaluated.

In Table 4, we see that helena has an inconstant behavior. It works very well
for FMS, reaching the maximum scaling value in constant time and memory, as
shown in Figure 5. On the contrary, this tool handles only small instances for
the other models. It shows that abstractions and partial orders provide good
results is this case where both CPU and memory usage are almost constant.
The abstraction mechanism used by helena is based on Berthelot’s structural
reductions [2], that remove transitions irrelevant from a concurrency perspective.
FMS is a perfect case for that method in that it exhibits a lot of parallelism but
little concurrency.

For all models, except FMS and Peterson, and especially Colored ones, the
results are close to state space generation: decision diagram based tools obtain
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Fig. 5. Measures for deadlock examination on FMS
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Fig. 6. Measures for deadlock examination on SharedMemory

quite good results, especially ITS−Tools when recursive folding can be applied.
Figure 6 shows the evolution of CPU time and memory consumption for the
SharedMemory model, where recursive folding enables ITS−Tools to process
all instances. The dominance of decision diagram techniques in this examination
is probably due to the fact that, since it was required to report the number of
deadlocks instead of just the detection of at least one, tools must investigate
the full state space, thus making this examination behave like the state space
generation.

7 Observations on Reachability Formulas

The data collected for evaluation of satisfiable and unsatisfiable reachability
formulæ is summarized in Table 6. It must be read as Table 4.

From Table 6, we can clearly state that for Place/Transition nets, there are
tools that perform extremely well for satisfiable formulæ (LoLA and Sara) where
some others are much better for unsatisfiable formulæ (PeTe and Sara). In that
context, decision diagram based tools can perform well (see ITS−Tools), but
do not reach the maximum values. The reason why LoLA does not reach a very
high parameter on Kanban is still not understood. Sara is clearly interesting
for Place/Transition nets, as it reaches the maximum scaling value for both
satisfiable and unsatisfiable formulæ.

The formulæ to verify were only conjunctions of place markings. The efficiency
of tools may depend on the operators used in properties. For instance, formulæ
with disjunctions and inequalities can lead to worse results in Sara. The 2012
Model Checking Contest should thus provide more different formulæ, and also
describe their properties, to get a detailed analysis of the tools’ performances.
Note also that Sara gives an answer very quickly, as seen for FMS in Figure 7.

Tools that perform well on satisfiable formulæ for P/T nets are LoLA and Sara.
These tools explore the state space and stop their execution as soon as they
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Table 6. Results for the reachability formulæ examination
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Fig. 7. Evolution of CPU consumption for reachability properties on FMS

have found a violation of the property to be verified. Thus, since a satisfiable
formula is verified before the full state space is explored, they perform better on
satisfiable formulæ than on unsatisfiable ones.

Tools that perform well on unsatisfiable formulæ for P/T nets are PeTe and
Sara. To do so, they first evaluate the state equation of the P/T net against
the reachability formula. If the result of such an evaluation shows the formula
is structurally unverifiable, the tool does not need to explore, even partially, the
state space. Otherwise, exploration to extract a counter-example is necessary.

Sara combines the two techniques and is thus quite efficient in both cases.
This effect is illustrated in Figure 7 that is representative of the behavior of tools
for P/Ts.
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Fig. 8. Evolution of CPU consumption satisfiable formulæ (MAPK)

Figure 8 illustrates an interesting fact on partial order with LoLA on the
MAPK benchmark (both CPU and memory). For satisfiable formulæ, both mem-
ory and CPU performances are much better for MAPK320 than for MAPK8. This
is due to the less parallel nature of MAPK for small scaling values, thus degrad-
ing performances of partial order techniques. When the scaling parameter grows,
parallelism is generated and the technique becomes useful.

The data for Colored net models permit similar observations as for state space
generation, because only decision diagram based tools participated, except LoLA
for the Philosophers model. We can observe that LoLA has difficulties to scale
up with this model. This may be because when the parameter grows, this model
has more places, whereas P/T models only have more tokens. However, if we
can state that decision diagrams are a good technique for reachability analysis,
the collected data are not sufficient to generalize this assertion to reachability
properties.

8 Discussion

This section proposes a global discussion on the Model Checking Contest’2011
results from several points of view. First, we focus on the user (i.e., an engineer
willing to verify software) point of view in Section 8.1. Then, Section 8.2 considers
the tool developer point of view. Last, Section 8.3 recalls the lessons learned by
the Model Checking Contest organizers for the next edition.

8.1 Engineer Point of View: There Is No Silver Bullet

Models, like software, have a lifecycle. It can be roughly decomposed into: its
creation, its verification, and its evolution. However, the evolution phase is a
sequence of editions and verifications. Thus, the model lifecycle can be simplified
in a sequence of edition and of verification. During each phase, properties are
checked on the model. But the kind of properties may vary.
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We have used two kinds of properties in this Model Checking Contest: dead-
lock detection and reachability properties. For both, we can also distinguish the
case where the property is satisfiable, and the case where it is not.

For Place/Transition Net Models. During the model development, we want
to debug the model. To do so, the chosen properties must be checked quickly. Ex-
cept the case when ITS−Tools can use recursive folding, all tools spend at least
10 seconds to answer (for very small configurations) ; the answering time grows
rapidly. Thus, deadlock detection is currently not efficient enough to debug large
models. Instead, tools like PeTe, LoLA and Sara can answer in less than 1 second
for reachability properties. Sara gives a quick answer whether the property is sat-
isfiable or not, whereas LoLA is more efficient when the property is satisfiable, and
PeTe when it is not. A good idea would be to run both LoLA and PeTe in paral-
lel and stop them as soon as one of them answers. Reachability properties could
even be checked in background, while editing the model. Then, for users, model
creation would be very close to source code edition in modern IDEs, that make use
of continuous on-the-fly compilation.

During the model verification phase, all tools can be used, as there is time to
do longer checks. Deadlock detection is currently adapted to this phase, as it is
a rather long process. For Place/Transition nets, there is no added value in state
space generation, as reachability properties can be checked during the edition
phase.

For deadlocks, helena can be impressively efficient, for the FMS model, or
not as good as decision diagram based tools. There should be some investigations
on why. Also, ITS−Tools shows impressive performance when models can be
“folded”. Hierarchical extensions of Petri nets are clearly interesting.

For Colored Net Models. Decision diagram based tools are very efficient
for state space computation. Using this state space they are then able to find
deadlocks and check properties. But state space computation is usually quick
only for small models. As most tools that do not use decision diagrams did
not participate for Colored net models, we cannot conclude yet about which
techniques should be used.

We must provide P/T equivalents for all Colored models in the next Model
Checking Contest, so that more tools can compete.

8.2 Lessons Learned by Tool Developers

The Model Checking Contest can help tool developers to discover some un-
expected behaviors and compare strategies and techniques among the various
participating tools in common situations.

As an illustration, AlPiNA developers discovered that it is currently mostly
adapted to safe Petri nets. The tool got bad results on all the Place/Transition
nets of the contest. Analysis revealed that AlPiNA inefficiency on non-safe nets
is due to the particular decision diagrams used in the tool.
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The contest is also a good way to test the integration of model checkers in an
“alien” environment. This can be a basis to extend cooperation and exchange of
data between model checkers and promote further cooperation.

As an illustration, LoLA follows several UNIX principles. This made an inte-
gration to the contest scripts very smooth. First, for each model, there was a
dedicated compiled version of LoLA that can exploit any possible optimization
the CPU architecture could offer. Second, “UNIX pipelines” made the evaluation
of the reachability results very simple (use of grep to filter outputs).

8.3 Points Risen by the Discussion at MCC’2011

Several points were raised during the discussion held during the MCC’2011 in
Newcastle. We present here the most interesting ones.

A Difficult Model: Peterson. One point was outlined in the Model Checking
Contest: the Peterson model seems reluctant to all the implemented techniques.
The best processed scaling values are 5 (PNXDD) for the state space generation
and 3 (helena, AlPiNA) for deadlock detection. This corresponds to very small
state spaces compared to the ones reached for other models. This exhibits an
interesting situation to be handled by tools.

Need for a “Push-Button” Examination. As it is organized, the Model
Checking Contest is efficient to identify how some model characteristics could
be tackled by some model checking techniques. However, this does not cover
the use of model checkers by non-specialists. For this kind of users there should
be a efficient “push-button” use of such tools. This aspect should be considered
in further editions of the Model Checking Contest. An idea should be to find
“surprise models” from case studies, that are not known by the competitors when
they submit (and only published when results are known).

Doing CPU and Memory Measures Is Tricky. Measuring and confining
software executions during this first Model Checking Contest was not trivial.
Tools are written in several languages, some of which are based on shell scripts,
interpreters or virtual machines. Moreover, tools are allowed to create subpro-
cesses and catch signals. To avoid most problems while not being intrusive, we
plan to execute tools within a virtual machine monitored to operate time and
memory measures.

9 Conclusion

This paper reported our experience with the first Model Checking Contest @
Petri nets. This event and its results were welcomed by the Petri Net Community,
as the discussion held at a special session of SUMo’2011 showed.

From the tool developers’ point of view, such an event allows to compare
tools on a common benchmark that could become a public repository. Also,
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some mechanisms established for the contest, such as a language to elaborate
the formula to be verified could become, over the years, a common way to provide
formulæ to the various tools developed by the community.

Results also provided hints to the tool developers with regards to the opti-
mization of some techniques in their tool. At least, developers of AlPiNA and
Crocodile attest that some development is being currently done to improve the
model checking engine from the results of the model checking contest. This will
benefit to the entire community.

From the organizer’s point of view, numerous lessons were learned on the
process, the analysis of results and the selection of benchmark models. Several
points will be integrated in further edition of the Model Checking Contest.

As an illustration, the next edition to be held in 2012 comes with a new step in
the process: a call for models that will allow us to gather more models, exposing
tools to a larger range of situations. Properties will be extended to CTL and LTL
formulas, as well as with structural properties, such as bounds or liveness, and
their counterpart in temporal logic. Finally, a “blind” set of models will also be
proposed to reproduce a situation where tools are used “as is” by non specialists
(and thus with default optimization activated only).
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Abstract. In order to manage very large distributed databases such as
those used for banking and e-government applications, and thus to han-
dle sensitive data, an original peer-to-peer transaction protocol, called
NEO, was proposed. To ensure its effective operation, it is necessary to
check a set of critical properties. The most important ones are related
to availability of data that must be guaranteed by the system. Thus,
our objective aims at verifying critical properties of the NEO protocol
so as to guarantee such properties are satisfied. The model is obtained
by reverse-engineering from the source code and then formal verification
is performed. We focus in this article on the two phases of the NEO
protocol occurring at the initialisation of the system. The first one, the
election phase, aims at designating a special node that will pilot the over-
all system. The bootstrap protocol, triggered at the end of the election,
ensures that the system will enter its operational state in a coherent
way. Therefore, the correctness of these two phases is mandatory for the
reliability of the system.

1 Introduction

Nowadays, several complex software are developed to manage increasingly huge
distributed databases like those used for e-government, Internet based infor-
mation systems or commerce registries applications. The challenge with such
software is to guarantee the access to these databases, maintain them and en-
sure a mandatory high level of reliability. Moreover, the development of such
applications is a crucial problem which requires to elaborate reliable and safe
distributed database management software. Therefore, it is necessary to use for-
mal methods to specify the behaviour of such applications and to develop tools
to automatically check whether this behaviour satisfies the desired properties.

The Zope Object Database (ZODB) [3] is a popular object database which
is included as part of the Zope web application server. It is best known for its
use for a Central Bank, to manage the monetary of 80 million people in 8 coun-
tries [8]. It is also known for its use for accounting, ERP (Enterprise Resource
Planning), CRM (Customer Relationship Management), ECM (Enterprise Con-
tent Management) and knowledge management.
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However, the current Zope architecture does not apply for huge data collec-
tions yet. In order to overcome this limitation, a new peer-to-peer transaction
protocol, called NEO, was designed. This protocol also enjoys ensuring both
safety and reliability, which is not easy to achieve for distributed systems us-
ing traditional testing techniques. For this, the NEO protocol is based on the
following principles: a decentralised peer-to-peer architecture, a duplication of
data on different storage nodes, and fault tolerance. Thus, the NEO protocol
is a complex architecture implementing various protocol mechanisms where the
verification becomes a crucial problem. A description of the context and the
general functioning of the NEO protocol can be found in [4].

We distinguish two important phases in the NEO protocol execution, namely
the election phase and the bootstrap phase. In order to designate a primary mas-
ter that will pilot the overall system, the election phase is first triggered when
the cluster is started. After this phase, the bootstrap protocol is initiated. The
specification and verification are conducted, focused on the election and boot-
strap phases, the master nodes among which the primary master is designated,
and the storage nodes the database is distributed on.

The objective of our work is to analyse critical properties of the NEO protocol
so as to guarantee that such properties are satisfied. The model construction is
achieved by reverse-engineering, extracting coloured Petri net [13] models from
the source code, and then verification is performed. In this paper, we focus on
the modelling as well as the verification of properties. This specification work
requires choices of adequate abstraction levels both for the modelling and the
verification stages. We revise the work presented in [6] on the election phase
and extend it to the bootstrap protocol. For the election phase, the following
properties are studied: (i) one and only one primary master is elected, (ii) all
nodes know the primary master’s identity and (iii) the election phase eventually
terminates. The following critical properties, regarding the bootstrap protocol,
are addressed: (i) all storage nodes eventually reach the final state, (ii) for any
system partition, there exists at least one storage node which contains the objects
of this partition1 and (iii) at the end of the protocol, there is no empty storage
node (i.e. with no associated partition). More details of these properties are given
in Sections 4 and 5, respectively. Various tools have been used in this project.
For modelling, we used Coloane [1] and CPN Tools [14], and for verification
Helena [9] and CPN Tools.

The rest of the paper is organised as follows. Section 2 recalls the general
functioning of the NEO protocol. In Section 3, we present the tools we used
in order to model and to analyse the election and the bootstrap phases of the
protocol. Section 4 presents the modelling and the formal analysis of the election
phase. Section 5 presents the bootstrap protocol model for which an analysis of
the desired properties is also explained. Finally, Section 6 concludes the paper
and gives some perspectives to this work.

1 For the sake of readability, an element of the partition table is called a partition
hereafter (by abuse of language).
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2 The Neo System

This section informally describes the general functioning of the NEO system pro-
tocol implemented in Python. We first introduce the different kinds of network
nodes involved before detailing the different stages the system can go through.
The phases modelled in this article will be explained in greater details in Sec-
tions 4 and 5.

2.1 Participating Nodes
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Fig. 1. The NEO-protocol topology

Different kinds of nodes play dedicated
roles in the protocol, as depicted by the
architecture in Figure 1:

storage nodes handle the database it-
self. Since the database is distributed,
each storage node cares for a part of
the database, according to a partition
table. To avoid data loss in case of a
node failure, data is duplicated, and is
thus handled by at least two storage
nodes.

master nodes handle the transactions
requested by the client nodes and for-
ward them to the appropriate storage
nodes. A distinguished master node, called primary master, handles the oper-
ations. Secondary masters (i.e. the other master nodes) are ready to become
primary master in case of a failure of this node. They also inform other nodes
of the identity of the primary master (light grey arrows in Figure 1).

the administration node is used for manual setup if needed (dashed arrow
in Figure 1).

client nodes correspond to the machines running applications concerned with
the database objects. Thus, they request either read or write operations.
They first ask the primary master which storage nodes are concerned with
their data, and can then contact them directly.

2.2 Lifecycle of the NEO System

At the system startup, the primary master is elected among all master nodes.
The primary master maintains the key information for the protocol to operate.
Among these, the partition table indicates which parts of the database are as-
signed to the different storage nodes. This allows for duplication which is vital
in case of a crash.

After the election of a primary master, the system goes through various stages
with the purpose of checking that all transactions were completely processed, and
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thus that the database is consistent across the different storage nodes. We will
refer to this second step as the bootstrap protocol.

Finally, the system enters its operational state. Clients can then access the
database through the elected primary master.

This repartition of roles raises several issues. The system topology is in con-
stant evolution: nodes can fail and become unavailable, they can restart, or new
nodes can be added. The failure of the primary master has dire consequences
since it affects the whole system. A new election must then take place among
the remaining secondary masters and the whole process starts again.

We focus in the next sections on the first two stages of this cycle that are
vital for the reliability of the system and the consistency of the database.

3 Tools

There now exists a profusion of state space analysis tools based on the Petri
nets formalism. In March 2011, the Petri net tools database [16] reported about
thirty Petri net tools able to perform model checking. Each is characterised by
the family of nets it supports (e.g. place-transition nets, coloured nets, algebraic
nets), the algorithms it employs (e.g. explicit vs. symbolic states), the state space
reduction techniques it implements (e.g. symmetry, partial order reductions), or
the kind of properties it can analyse (e.g. safety, liveness). Therefore, choosing
the adequate tool in a verification project is a very difficult task that can require
some expertise in the underlying principles of the tool. Rather than favouring a
single tool we actually picked out several ones during this project. We give below
an overview of these tools as well as the reasons that motivated our choices. In
Section 3.2 we present the new composition tool we built so as to broaden the
interface facilities between the modelling and the verification tools we use.

3.1 Tools Used in the Context of the Neoppod Project

Four Petri net tools have been used so far in this project.

CPN-AMI [11] is a verification platform with structural analysis and model
checking facilities provided through different dedicated tools (e.g. Great-
SPN [2], Prod [17]).

Helena [9] is a high-level Petri net model checker that provides a high-level
language for net description and several state space reduction techniques
(e.g. static net reductions, partial order reduction [7]).

Coloane [1] is not stricto sensu a Petri net tool but a generic graphical editor
available as an Eclipse plugin. Coloane can produce nets in CPN-AMI and
Helena input formats. A composition tool for Coloane has been implemented
in the context of this project to facilitate our analysis. This tool will be
described in Section 3.2.

CPN Tools [14] is famous for its nice graphical interface, its high-level language,
based on SML, and its support of hierarchy [12] allowing the user for creating
nets in a modular way and with different abstraction levels.
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The first three tools have been used during the analysis of the election proto-
col while the bootstrap protocol has been modelled with CPN Tools. This choice
was mainly motivated by the complexity of the data structures handled during
these two steps. The election protocol relies on relatively simple structures (e.g.
lists) while the bootstrap protocol makes use of more elaborate ones (e.g. the
partition table) that were hard to abstract away without losing too much inter-
esting information. Therefore, we considered relevant to use CPN Tools for the
analysis of the bootstrap protocol to benefit from its rich language even though
this tool does not offer the same verification capabilities as CPN-AMI or He-
lena. At last, two reasons drove us for using both CPN-AMI and Helena for the
election protocol. First, these two tools do not implement the same algorithms
and reduction techniques. Second, the description language of Helena is richer
than that of symmetric nets [5] that is the underlying language of the CPN-AMI
platform. Therefore, Helena allowed us to keep a model closer to the protocol
concepts (as regards data types).

3.2 A New XML-Based Composition Tool

Although Coloane has a nice Eclipse based interface it still suffers from a draw-
back in that it does not support any kind of hierarchy or modularity. Thus, we
chose to develop a composition tool that, given a set of XML Coloane files and
an XML file (provided by the user) describing a composition scheme, produces
the flattened net resulting from the composition and that can be used as input
to verification tools, e.g. Helena.

This tool supports various kinds of transformations inspired from [12] such as
the place fusion merging instances of the same place located in different nets, or
the transition substitution that replaces an abstract transition with a given sub-
net describing the actual behaviour of the transition. However, the tool is still at
a prototype stage and some issues have not been tackled yet. For instance, places
can be fused in a bad way, and no guarantee can be made on the correctness of
the output net: this has to be made by the model designer.

To illustrate the essence of the tool we provide in Figure 2 a sample of the
composition file written during the analysis of the election protocol. Starting
from a set of subnets (declarations in lines ll. 4–11) each describing a module of
the final net, the composition tool performs operations written in lines ll. 13–22.
The first one (lines ll. 13–15) substitutes abstract transition poll by the homonym
net in net electPrimary. The last operation to be performed (line l. 22) merges
all places sharing the same name.

The tool provides some flexibility since some modules or the application of
some operations may be conditioned by the definition (or non-definition) of sym-
bols (see e.g. operations at lines l. 16 or l. 19 applied only if symbol faults is not
defined) at the tool invocation. Thus, the system modeller does not necessarily
have to change the net when analysing different configurations, as it may be
sufficient to call the tool with the appropriate symbols. Finally, let us point out
that this tool is totally independent from the language used for arc inscriptions:
we used it for both symmetric nets and Helena nets.
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Fig. 2. A sample of the composition file used for the election protocol model

4 Formal Analysis of the Election Protocol

Due to the critical aspect of the election protocol, we developed a detailed model
of this phase to be able to simulate it and perform state space analysis. Since
the protocol is designed to be (to some extent) fault tolerant, we proceeded by
injecting faults in a model designed on the basis of the ideal scenario where no
fault (e.g. a master node failure, a connection loss) can occur. We describe in
this section the modelling and analysis process we followed. As mentioned in Sec-
tion 3, we extracted both symmetric and Helena nets from the election protocol.
However, due to space constraints we focus in this section on the symmetric net,
and we provide a sample of the Helena net in Section 4.5.

4.1 Overview of the Election Protocol and Its Implementation

The goal of the election is to select among all alive masters the one with the
greatest uuid , a unique identifier chosen randomly by each node at its startup.

The election proceeds in two steps: a negotiation step performed by a master
node to discover if it is the primary master or not; followed by an announce-
ment step during which all masters discover the identity of the primary master
and check for its liveness.

The functioning of this protocol is illustrated by the message sequence chart
of Figure 3 that describes a typical election scenario between three master nodes
M1, M2 and M3. We only depict the message exchanges from the perspective of
master M2 which is elected as the primary master. Of course masters M1 and M3
also have to ask for the same information. Initially, a master node only knows the
network addresses (IP address + port number) of its peers provided to it through
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Master M1
uuid = 132

Master M2
uuid = 897

Master M3
uuid = 657

AnswerPrim(nil)

RequestId

AcceptId(132)

AnnouncePrim(897)

AskPrim

AnswerPrim(nil)

RequestId

AcceptId(657)

AnnouncePrim(897)

AskPrim

AskPrim
AskPrim

AnswerPrim(M2,897)

AnswerPrim(M2,897)

Fig. 3. Message sequence chart describing an
election scenario followed by a crash and reboot
of master M1

a configuration file. It learns the
uuids of all its peers during the
negotiation step. First it asks
the other nodes if they know
a primary master by broadcast-
ing an AskPrim message. Other
masters answer with an Answer-
Prim message possibly contain-
ing the uuid and the network
address of the elected primary
master. In our example, these
messages are empty since the
election is still taking place. The
purpose of this first exchange is
mainly related to fault tolerance
as explained below. Upon recep-
tion of the AnswerPrim message,
the master asks its peer its uuid
by sending a RequestId message
to it. The answer to this message is an AcceptId containing the uuid of the con-
tacted node. This process ends when the master has negotiated with all other
master nodes, i.e. it knows the uuid of all its peers. A master node which did
not receive any AcceptId message with a uuid greater than its own knows it is
itself the primary master.

During the announcement step, the primary master announces to its peers
that it is actually the primary master by broadcasting an AnnouncePrim message
containing its uuid. Secondary masters wait for this message that they interpret
as a confirmation of the existence of an alive primary master. All masters can
then exit the election protocol.

In case a master experiences a fault (e.g. master M1 in our example) it asks,
after its reboot, the identity of the primary master by broadcasting an askPrim
message. The answerPrim messages it will then receive will contain the identity
of this master and the awakened node will enter the secondary master state.

A message of type ReelectPrim may also be sent by a master if it detects
a problem during the election, e.g. two primary masters have been designated.
Upon its reception, a master will cancel its current work, and restart the election
process from the beginning. In a faultless scenario this situation should however
not occur.

This example also highlights the fact that entering the election phase is a local
decision made by a master at its startup or if it considers the primary as crashed.
Thus some master(s) may be in the election mode while others are executing the
normal protocol.

The implementation of the election protocol relies on a few data structures.
The most important ones are two sets belonging to the Master thread class
identifying, for a specific master m, all its peers it is not connected to and has to
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do so (m.unconnected), or is negotiating with (m.negotiating). The termination
of the negotiation step is conditioned by the emptiness of these two sets: at that
point, the node has contacted all its peers and received all their uuids. To have a
better understanding of the contents of these sets, it seems necessary to mention
the different events that have an impact on these two sets:

– initially, m puts in the m.unconnected set all masters it considers as alive ;
– when a connection of m is accepted by n, m moves n from m.unconnected to

m.negotiating ;
– as m receives an AcceptId message from n it discards n from m.negotiating ;
– finally if m detects the crash of master n it deletes n from both sets.

4.2 Model Architecture

The model consists of 18 modules, each of them modelling a specific part of the
code. Among them, the most important ones are the three modules listed below.

electPrimary models the main method implementing the election protocol.
poll models the polling method used to wait for and handle incoming packets.
electionFailure models the handling of an exception raised when some synchro-

nisation fault is detected. The master raising this exception stops the current
election process and triggers a new one.

In some figures, there are abstract (or meta-) transitions (transitions secPoll,
poll, sendAskPs, sendAnnPs, primaryPoll in Figure 6, all transitions except die in
Figure 12(a), and all transitions in Figure 13(b)) that are then substituted by our
composition tool with the appropriate concrete net (or subnet). Such subnets
always have two transitions start and end corresponding to the start and the
end of the activity. Guards are put in small notes linked to the corresponding
transition (see Figure 9). Some arc labels, markings or guards depend on the
parameters of our model although they are automatically generated by a pre-
processing of the net. The number of masters was set to 2 in the configuration
used for this paper. As usual, all instances of places with the same name are
merged.

4.3 Detailed Specification of Some Key Elements

General Declarations. Fig. 4 gives the main colour classes we use for mod-
elling the election protocol. Class M ranging from 0 to MN (the number of master
nodes) is used to identify masters, with constant 0 specifying a null value2.

The message values (e.g. AskP, RI) of the MSG_TYPE class correspond to
the messages (e.g. AskPrim, RequestId) introduced in Section 4.1 and Figure 3.
Finally, items of class NEG specify the state of a negotiation between master m
and one of its peers p:
2 Note that we do not distinguish in our model the uuid from the network address.

It may however be worth modelling, in a future version, situations where a master
reboots and is assigned a greater new uuid, as it may impact the current election
process.
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1 parameter
2 MN = 2;
3 class
4 BOOL i s [F , T ] ;
5 M i s 0 . . MN;
6 MSG_TYPE i s [ AskP , AnsP , RI , AI , AnnP, RP ] ;
7 NEG i s [NONE, CO, DONE] ;

Fig. 4. Colour classes of the election model

NONE means that p has not been contacted: p ∈ m.unconnected.
CO means that m has contacted p and is waiting for its uuid: p ∈ m.negotiating.
DONE means that m knows the uuid of p: p /∈ m.negotiating ∪ m.unconnected.

Figure 5 represents some places shared by all modules of our net together with
their colour class and initial marking. Place masterState models the current
knowledge that any master m has of the primary master. An invariant prop-
erty states that for any m ∈ 1..MN there is a unique token 〈m,iam,pm〉 in this
place, where iam=F means “I am not the primary master” and iam=T means “I
am the primary master or I do not know a primary master yet”, and pm is the
uuid of the primary master (or 0 if it is not known yet).

Fig. 5. Global places shared by all modules of the election model

Tokens in place negotiation specify the content of sets unconnected and nego-
tiating for all masters. For any pair of masters (m,n) with m = n, there is always
a unique token 〈m,n,neg〉 that specifies the current status of the negotiation
between m and n as specified above in the description of class NEG.

For each message sent and not processed yet there is a token 〈r,s,t,d〉 in place
network where r is the receiver, s the sender, t ∈ MSG_TYPE the type of the
message, and d the uuid encapsulated in the message (meaningful only if t =
AnsP, i.e. AnswerPrim).

Last, places electionInit (marked with Σm∈{1..MN}〈m〉), electedPrimary, and
electedSecondary model different stages of the main election method: start of
the negotiation, start of the election in “primary mode” or in “secondary mode”.

Net Modelling the Main Election Method. The net of Figure 6 is a high-
level view of the election method. The subnet on the left-hand side of the figure
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models the negotiation process with the broadcast of AskPrim messages (transi-
tion sendAskPs) and the network polling (transition poll). As soon as a master m
knows it is a secondary master, a token 〈m〉 is present in place electedSecondary.
It then keeps polling the network (transition secPoll) until it knows the identity
of the primary master. The subnet on the right-hand side models the behaviour
of the primary master. Message announcePrim is broadcasted (transition sen-
dAnnPs) and then the primary master keeps processing the messages received
(transition primaryPoll).

Fig. 6. Net modelling the main election method

Fig. 7. Net modelling
the poll method

The Polling Mechanism. A key element of the pro-
tocol algorithm is method poll that is called by nodes to
handle messages received from the network (the polling
mechanism is also used in the bootstrap phase pre-
sented in Section 5). This method is called by an event
manager to which several handlers — one for each mes-
sage type — are attached, and it only handles a single
packet at each call by invoking the appropriate han-
dler. In Figure 7 it is modelled by an input transition
start putting a token in place pollStart. After process-
ing a message, a token 〈m〉 is present in place pollEnd
and the master can then exit method poll (transition
end). This is realised through the merging of these two
places with their homonyms in the message handler nets (e.g., Fig. 9) as detailed
below. Each transition modelling a message processing also moves a token from
pollStart to pollEnd. Specifically for the case of meta-transition poll, we also in-
clude in its subnet the nodes of Figure 8. These model the exit condition of the
negotiation step. The negotiation is over for master m if it is not negotiating
with any other master anymore: there must not be any token 〈m,n,neg〉 with
neg = DONE in place negotiation. Depending on the content of place master-
State, the token 〈m〉 in pollStart will move to place electedPrimary or electedSec-
ondary — both fused with their homonym places of net electPrimary (Figure 6).
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If m has not received an AcceptId with a uuid greater than its own (see the
corresponding handler in Figure 10), then a token 〈m,T,0〉 is still present in
place masterState and changed to 〈m,T,m〉 since m learns it is the primary master
(transition iAmPrimary). Otherwise, masterState is marked with token 〈m,F,pm〉
and m knows it is a secondary master (transition iAmSecondary).

Fig. 8. Net modelling the decision process: master m has negotiated with all other
masters and can decide of its role

Message Handlers. Nets modelling message handlers are presented in Fig. 9,
Fig. 10 and Fig. 11 along with the corresponding Python code. These nets follow
the same pattern. Their transitions model the handling of a received message by
removing one token from place network (the message received) and moving token
〈m〉 (the receiving master) from place pollStart to place pollEnd, hence specifying
the message has been processed and the master can exit the poll function (see
the net of Figure 7). The variable s of each transition identifies the sender of the
message. Alternatively, the master token can be put in place electionFailed if the
processing of the message raises the ElectionFailure exception.

As handlers of message types RequestId and AskPrim are rather straightfor-
ward we have chosen to focus on types AnswerPrim, AcceptId and AnnouncePrim.

For messages of type AnswerPrim (Figure 9) we distinguish three cases:
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Fig. 9. Handler for message type AnswerPrim
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– the peer s does not know any primary master (transition handleAnsP1). Local
data are not changed by master m that replies to master s with a RequestId
message (arc from handleAnsP1 to network);

– transition handleAnsP2 is fired if s knows a primary master (p<>0) and m
does not know any or knows the same one (pm=0 or pm=p). The local data
of m held in place masterState is updated and, once again, m replies to s
with a RequestId message;

– last, an ElectionFailure exception (ll. 6–9) is raised if m and s both know a
different primary master. This is modelled by transition handleAnsP3.
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Fig. 10. Handler for message type AcceptId

At the reception of an AcceptId message (Figure 10), master m ignores the
message if the enclosed uuid s is smaller than its uuid (transition handleAI1) or,
if s>m (transition handleAI2), updates its local data by setting its primary field
to False (ll. 8–9). In both cases, the content of place negotiation is changed to
specify that m has finished negotiating with s: s is removed from the negotiating
set of m (ll. 10–11). This will possibly trigger the exit by master m from the
negotiation phase and enable one of the two transitions of the net of Figure 8.

Finally, a message of type AnnouncePrim can be handled in two ways (Fig-
ure 11) depending on the local data of the receiver m:

– m does not think it is the primary master. It thus accepts the sender s as the
primary master and updates its local data: the token 〈m,iam,pm〉 becomes
〈m,F,s〉.

– m also considers itself as the primary master (ll. 7–8 modelled by transition
handleAnnP2) and thus raises exception ElectionFailure.

We mentioned that some synchronisation problems trigger the raise of exception
ElectionFailure caught in the body of the main method of the election. One of
the requirements of the protocol is that, in the absence of faults, this exception
is not raised. Therefore, in that first modelling step, we left out the handling of
this exception and verified through state space analysis that this exception may
not be raised.
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Fig. 11. Handler for message type AnnouncePrim

4.4 Injecting Faults in the Model

In sections 4.2 and 4.3, we only considered in our models the ideal situation
where no malfunction may occur. Since the NEO system is intended to tolerate
faults, it is a primary concern to enhance our models in order to analyse such
scenarios. This injection of faults in the model raises several issues. First, we
have to define the nature of the faults we are interested in. Both for modelling
and state explosion issues we need to focus on some specific kinds of faults.
Second, we must — for the same reasons — abstract the way these faults may
occur. If we choose, for instance, to model packet losses, this means focusing on
the loss of some specific “strategic” packets, even if any packet may be lost. Last,
according to the faults we choose to model we need to reinvestigate the election
program in order to determine which pieces of code that were abstracted away
in our first modelling step (because they dealt with this kind of faults, e.g. the
raise or handling of an exception) now need to be considered.

It appeared, during several meetings with the system designers, that the sys-
tem should be able to recover from the crash of a master. The election protocol
should also tolerate other types of faults, e.g., the loss of message, but since most
of these are directly handled by lower level layers, they were not considered here.
We then decided to restrain the occurrence of such events to two specific situa-
tions: the beginning of the election (when any master may be “allowed” to crash),
and when a master learns it is the primary master, i.e. when transition iAmPri-
mary of the net of Figure 8 is fired. The first scenario is the most realistic one:
in most cases, the election begins precisely because of a primary master failure.
The second one is due to the specific role of the primary master: it announces
its existence to other masters, announcement that will cause the exit from the
election protocol. Therefore, its failure is a critical event compared to the crash
of a secondary master that has few consequences. As previously mentioned, a
look at the election code reveals that these events would typically raise Election-
Failure, exception caught in the main method of the election algorithm. Other
exceptional cases are managed in the election code, but most of these deal with
errors that are out of the scope of our study, or are defensive programming issues.
Therefore these were left out.
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Modelling the Crash of a Master Node. The net of Figure 12(a) is the
main net of Figure 6 modified to include the crash of a master. A fault is simply
modelled by transitions crash and primCrash putting a token 〈m〉 in place crashed.
After its crash, a master may reboot and join again the election (transition
reboot) or be considered as permanently dead (transition die) — at least during
the election process. The details of the meta-transition reboot are not given due
to lack of space. It consists of reinitialising all the internal data of the master,
i.e. the content of places masterState and negotiation, and setting back the token
〈m,F〉 in place live (described below) to 〈m,T〉.

Transitions crash and primCrash are substituted by the net of Figure 12(b)
modelling the effect of a crash on the global system. In order to be visible by
other masters, a crash must have two side effects. First, the token 〈m,T〉 in place
live modelling the fact that master m is alive (and considered as such by other
masters) is changed to 〈m,F〉. Second, the network must be purged from all the
messages sent to (or by) master m. Otherwise, if m recovers from its crash, it
may handle a message received prior to its crash, an impossible scenario that
we should not model. Also, a message is automatically ignored by the receiving
master if it detects the crash of the sender. So, rather than changing the message
handlers nets we decided to also purge the network from messages sent by m.
This is the purpose of transitions removeRec and removeSent3. If transition end
becomes enabled, the network does not contain any message with the identity
of master m. To guarantee that no message that has to be removed from place
network is received meanwhile by another master we ensure this treatment is
atomic by protecting it with place lock. The meta-net of the poll function has
naturally been changed in such a way that this lock has to be grabbed before a
message is handled.

Faults Detection. The detection by a master m of the crash of one of its
peers p is modelled by the net of Figure 12(c). Depending on the state of m this
detection has different consequences.

If m initiated a negotiation with p and is still waiting for its uuid, it aborts
the negotiation as soon as it detects its failure. From the model perspective
this consists of removing p from both s.unconnected and s.negotiating. This first
situation is modelled by transition peerCrashed that replaces token 〈m,p,neg〉 by
〈m,p,DONE〉 if master p is dead, i.e. 〈p,F〉 ∈ live.

Alternatively, if m is a secondary master waiting for the announcement of the
primary master election it can consider this one as dead if it does not receive an
AnnouncePrim message after some amount of time. The expiration of this timeout
is followed by the raise of exception ElectionFailure. The transition timeout models
3 In order to ease the readability we have used inhibitor arcs to check the completion

of the network purge. Since the verification tools we use do not support inhibitor
arcs, the actual model includes a place counting the number of messages sent by (or
to) any master. Zero-test is made via this place. Moreover, note that, due to the
additional combinatorics this would generate, we do not model the possibility that
a packet is received and handled between a sender crash and this crash detection by
the receiver.
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(a)
(b)

(c)

Fig. 12. Insertion of master node crashes in the model. Fig. 12(a): The top level net
extended with crashes. Fig. 12(b): Side effects of a crash. Fig. 12(c): Detection of the
crash of a master node.

this second scenario. One of its pre-conditions is the token 〈m,F,0〉 to be in place
masterState to specify that m is a secondary master not aware of the identity of
the primary master.

Last, a secondary master m will raise exception ElectionFailure if it detects
the failure of the primary master. This is the purpose of transition primCrashed.
The master must be aware of the identity of the primary master to raise this
exception, i.e. 〈pm,F〉 ∈ live (with pm = 0).

All these transitions are waiting for a token to be in place pollStart to become
firable. Hence, they will be included in the appropriate meta-transition of the
main net: transition peerCrashed will be put in the subnet of the meta-transition
poll while transitions primCrashed and timeout will appear in the subnet of tran-
sition secPoll.

Handling of Exception ElectionFailure. Modelling the handling of this ex-
ception is essential if one wants to analyse the election protocol in the presence
of faults since most synchronisation issues or fault detections will be followed by
this exception raise. The code for handling this exception that we had voluntar-
ily put aside in our first modelling phase can be seen on Figure 13(a). It consists
of three parts: the broadcast of a ReelectPrim message intended to ask all peers
to stop the current election process and start a new one (ll. 4–6); the processing



212 C. Choppy et al.

1 def e l ectPr imary ( s e l f ) :
2 . . .
3 except El e c t i onFa i lu r e :
4 for conn in em . g e tC l i e n tL i s t ( ) :
5 conn . no t i f y ( ReelectPrimary ( ) )
6 conn . abort ( )
7 t = time ( )
8 while em. ge tC l i en tL i s t ( )
9 and time ( ) < t + 10:

10 try :
11 em. p o l l ( 1)
12 except El ec t i onFa i l u r e :
13 pass

14 for conn in em . g e tC l i e n tL i s t ( ) :
15 conn . c l o s e ( )
16 for conn in em . ge t Se r ve rL i s t ( ) :
17 conn . c l o s e ( )
18 # re s t a r t the ne go t i a t i on

(a) (b)

(c)

Fig. 13. Modelling the handler of exception ElectionFailure. Fig. 13(a): Handler of ex-
ception ElectionFailure. Fig. 13(b): Net modelling the exception handler. Fig. 13(c):
Handler of message type ReelectPrim.

of incoming messages for some amount of time (ll. 7–13); and the closing of all
connections (ll. 14–17). After that, the master restarts the election process.

The corresponding net is in Figure 13(b). Its structure reflects roughly the
code. The transition sendRps (of which we do not show the details here) puts a
token 〈n,m,RP,0〉 in place network for each alive master n = m. We then close
connections (transition closeConnections). The subnet implementing this transi-
tion is exactly the one corresponding to the crash of a master (see Figure 12(b)).
Indeed, from the viewpoint of another master, closing connections is equivalent
to consider the master as crashed. This has the consequence of removing all
messages of master m from the network. At last, the firing of transition initData
reinitialises the internal data of the master and makes it alive to other masters
in order to restart the negotiation. The subnet implementing this transition is
the same as the subnet of transition reboot of the net of Figure 12(a). We see
that the handler of this exception is quite equivalent to the crash and reboot
of a master. We have left out the call to the poll method at l. 11. Indeed, its
purpose is mainly to ensure that all peers have received the ReelectPrim message
before closing the connections, and to ignore other ReelectPrim messages that
could be received meanwhile (see ll. 12–13). Handling other messages is useless
insofar as the election will be triggered again. This kind of timing issues needs
not to be modelled. At last, Figure 13(c) depicts the net of the handler of Re-
electPrim messages. At the reception of this message a master simply raises the
electionFailure exception.

4.5 Alternative Modelling with Helena

The Helena model has exactly the same module structure but is written in the
language of the Helena tool [9]. Figure 14 presents a sample of the final model.
The place network always contains a single token c of type chans. For each pair
of masters (s,r), c[s,r] is the list of messages sent by s to r. The broadcast by
master s of a message m is achieved by function broadcast. One of its parameters
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1 type i d : range 1 . . 3 ;
2 type msgType : enum (AskP ,AnsP , RI , AI ,AnnP ,RP) ;
3 type msg : struct { msgType t ; id p ; } ;
4 type msgList : l i s t [ i n t ] of msg with capacity 10 ;
5 type conns : vector [ mid , mid ] of bool ;
6 type chans : vector [ mid , mid ] of msgList ;
7 place network {dom : chans ; in i t : <([empty])> } ;
8 place conns {dom : conns ; in i t : <([ true ])> } ;
9 function broadcast (mid s ,msg m,

10 chans c , conns co ) −> chans {
11 for ( r in mid)
12 i f ( s != r and co [ s , r ] )
13 c [ s , r ] := c [ s , r ] & m;
14 return c ;
15 }

(a) (b)

Fig. 14. Sample of the Helena model. Fig. 14(a): Some type and function declarations.
Fig. 14(b): Model of the broadcast of a ReelectPrim message.

is the matrix co specifying which masters s is connected to. The broadcast of Re-
electPrim messages can then be modelled with a single transition (Figure 14(b)),
instead of performing a loop.

This language allowed us to model some features more concisely and to relax
some constraints we had with symmetric nets that prevented us from modelling
some parts of the protocol. For instance, the connection loss between masters is
another type of faults that could be easily modelled in this new model. Although
the system is not expected to tolerate such faults, the system designers were still
interested to have some feedback on how the system could behave in the presence
of disconnections and to which extent it could tolerate such faults. Broadcast of
messages can also be modelled as shown by Figure 14(b). List types can also be
used to model FIFO channels.

Note that this additional modelling effort was relatively small since the mod-
elling tools we use (Coloane and our composition tool) are largely independent
of the type of high-level net. Therefore, in many cases, we only had to rewrite
arc labels from one language to another, an easy task, although a bit tedious.

4.6 Analysis

State space analysis has been conducted on the election model. Symmetric net
modules were first assembled to produce a single net describing the protocol. In
order to use symbolic tools of the CPN-AMI platform [11], this net was then un-
folded in a low-level one using optimised techniques [15] and finally reduced [10]
to produce a smaller net (but equivalent with respect to the specified properties).

The Helena model briefly described in Section 4.5 was also analysed using a
slightly different procedure: since Helena can directly analyse high-level nets, the
unfolding step was not performed, and the reduction was directly applied to the
high-level net.

For the election protocol we formulated four requirements R0–R3 given below.
First, we have seen that, if we do not consider faults, it is important that no
exception is ever raised (R0). Two requirements are also logically required for
the election protocol (R1 and R2). At last, we want to be sure the cluster can
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Table 1. State space analysis of some configurations

Configuration Nodes Arcs Terminal Analysis Results
Masters Crashes Disconnections nodes R0 R1 R2 R3

2 no 0 78 116 1 ✓ ✓ ✓ ✓

1 102 165 6 ✕ ✕ ✕

yes 0 329 650 6 ✓ ✓ ✕

1 434 968 10 ✕ ✕ ✕

3 no 0 49,963 169,395 1 ✓ ✓ ✓ ✓

1 57,526 206,525 52 ✕ ✕ ✕

yes 0 1,656,002 6,446,764 31 ✓ ✓ ✕

1 2,615,825 10,313,162 84 ✕ ✕ ✕

enter its operational state (R3).
R0 — The ElectionFailure exception is not raised.
R1 — A single primary master is elected.
R2 — All masters are aware of the identity of the elected primary master.
R3 — The election eventually terminates.

Properties R0, R1 and R2 can be expressed as safety properties while R3
reduces to the absence of cycles in the reachability graph.

Next, we give some elements on the analysis of different configurations we
experimented with, and present two suspicious election scenarios encountered.

Analysis of Some Instances. State space analysis has been performed on some
instances of the election model listed in Table 1. It also gives statistics we have
gathered on their reachability graphs. A configuration is characterised by the
number of masters (column Masters) joining the election, the possibility of ob-
serving master crashes (column Crashes), and the number of disconnections that
may occur (column Disconnections). The table gives for each configuration the
number of nodes, arcs and terminal nodes of its state space and indicates for
each of the three requirements we have checked whether it is matched (✓) or
not (✕) for this configuration. Requirement R0 was only checked for faultless
configurations as the raise of an exception is naturally expected in the presence
of faults. Our observations are the following ones:

– in the faultless configurations (N,no,0), the election behaves as expected;
– the possibility of a master crash does not break requirements R1 and R2

but does not guarantee the termination of the protocol even if we put aside
trivial infinite scenarios during which a master keeps crashing and rebooting;

– connection loss between two masters is a severe kind of fault in the sense
that the protocol does not show any guarantee in their presence. We actually
found out very few situations where requirements R1–R3 are still verified
despite a disconnection.

Faulty Scenarios. The first scenario is quite straightforward and could be discov-
ered by simulating any configuration that includes a disconnection possibility.



Modelling and Formal Verification of the NEO Protocol 215

Let us assume that the protocol is executed by two masters. If they get dis-
connected, then two elections will take place. Each master is isolated and thus
declares itself as the primary master. Some storage nodes will then connect to
one master and others will connect to the other master. Hence, there will really
be two NEO clusters running separately and the data on the storage nodes will
progressively diverge. This scenario is actually not unrealistic if we remember
that nodes can be distributed worldwide.

A second suspicious scenario is due to lower level implementation details re-
lated to the handling of exception ElectionFailure. It can be reproduced with 3
master nodes M1, M2 and M3. Let us assume that M3 gets elected but crashes
immediately after being elected. M2 (or M1) then detects this crash, raises ex-
ception ElectionFailure and sends a ReelectPrim message to M1. M1 receives this
message and automatically proceeds the same way. Now let us assume that mean-
while M2 closes all its connections and restarts the election before M1 sends its
ReelectPrim message. The ReelectPrim message is therefore not received in the
handling of exception ElectionFailure (in which case it would be ignored) but
after the restart of the election process. This will again cause M2 to raise an
ElectionFailure exception, send a ReelectPrim message to M1. If M1 receives its
message after it restarts the election (as M2 did), it will proceed exactly the
same way. Hence, we can observe situations where M1 and M2 keep exchanging
ReelectPrim messages that cancel the current election and restart a new one,
thus constituting a livelock. The election will never terminate.

Both problems have been reported to the system designers. They are con-
sidering some extensions that could prevent the first scenario. It was not clear
whether the second scenario is an actual bug or if it is a spurious error due to an
over-abstraction in our modelling. Tests were carried out in order to reproduce
this situation. Actually, a programming language side effect avoids this problem.
The engineers will work on the code to remove this ambiguity.

5 Formal Analysis of the Bootstrap Protocol

The general goal of the bootstrap protocol initiated after the election of the
primary master is to ensure that the database is in a consistent state before the
system enters its operational state. To reach this consistent state, the following
points must be checked:

– All expected data are stored on the storage nodes that are responsible of it.
– All transactions (in its database meaning) have been completed.
– All nodes have the same partition table and are aware of the identifiers (IDs)

of the last transaction performed and of the last object updated.

In Figure 15, the different phases of primary master and storage nodes are dis-
played along a time axis. This graph corresponds to the normal work of the pro-
tocol. An error occuring in one phase may cause the recall of preceding phases.
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Fig. 15. Primary master and storage nodes phases in time

Each phase (e.g. verification, recovery) in the lifecycle of a node is charac-
terised by a handler specifying how the different messages expected during this
phase are handled. From the code perspective, a handler is a Python class con-
taining one method per type of packet expected. This method is triggered upon
the reception of such a packet. In the absence of the appropriate method, the
packet is rejected and an exception raised. These handlers are called by the poll
method that has been described in more details in Section 4.

Right after its election the primary master first does some preliminary work:
it announces itself, and checks the list of known storage nodes. Normally, during
this period of time a storage node should connect to the primary master and
set up the verification handler. It means that from the storage side a verifica-
tion phase begins. Meanwhile, the primary master starts a recovery manager.
After the recovery manager finishes its work, the primary master starts the ver-
ification manager, which verifies all the pending transactions on storage nodes.
Verification phases of storage and primary nodes finish at the same time. Then
the primary master sets up its service handler, and the storage node sets up
an initialisation one, moving to an initialisation phase. When the initialisation
phase is completed, the storage node goes to service state, performing replica-
tion (hatching on Figure 15) of data from time to time (a first time at the very
beginning since some data might be missed while the storage node was down).

To be in the operational state, a storage node must be connected to the
primary master, have an up-to-date partition table, the last identifiers (last
transaction ID and last object ID) and the list of available nodes (regardless of
their type). All this is obtained during the first phases of the storage cycle. The
cluster state reached is then sound since data is consistent across storage nodes
before the cluster becomes operational.

If an exception is caught while the system is operational, it may lead to restart
the execution from one of the preliminary phases, according to the exception
handled. For example, in case the primary master crashes, a new master node
is elected and storage nodes must receive from this new primary master all the
information listed above.

5.1 Model Architecture

The graphical conventions are the same as in Section 4.2. For instance, poll_ver
(see Figure 16) is an abstract transition which is “implemented” by the net of
Figure 7. Places from initial to operate in Figure 16 model the control flow of
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storage nodes. The model of the poll function introduced in the previous section
has been reused during the modelling of the bootstrap protocol. Therefore, we
only describe in this section the packet handlers of the bootstrap steps.

Shared Places. Places network (described in Section 4.3), has_pt_ni_lid, Las-
tOID and LastTID model important resources of the protocol and are shared by
several modules.

– Place has_pt_ni_lid allows to check when storage nodes can move from
the verification phase to the operational mode. It always contains, for each
storage node s, a single token 〈s, pt, ni, lid〉 such that pt = T iff s received
the partition table; ni = T iff s received the list of nodes belonging to
the cluster (i.e. the node information); and lid = T iff s received the last
identifiers regarding the partition table.

– Places LastOID and LastTID contain, for each (storage or master) node n,
the last object (resp. transaction) identifier id the node is aware of. This
information is modelled by a token 〈n, id〉 in the corresponding place.

Global Level Storage Node Model. The model in Fig. 16 together with the
declarations in Table 2 represent the functioning of a storage node from a global
perspective. Every storage node starts its life cycle in place initial. It then listens
to connections with some identification handler (transition start_listen puts a
storage token into place listen_conn), and handles all the attempts of other
nodes to connect. This is typically used during the replication phase, when some
storage node has detected that it is out-of-date. It connects to another storage
node that currently has the up-to-date copy of the required data.

The primary master also starts listening to connections at some moment.
From then on, other nodes can connect to it. Note that no node can connect to
another one if the second one is not listening to connections.

The next important step in the storage node life cycle is the connection to
the primary master. Formally, it waits until place primary contains a token (in
the current version of the model it means that the primary master has an-
nounced itself; later it should be modelled by exchange of messages) and a place
listen_conn has the same token, meaning that the primary master has opened

Table 2. Declarations for the nets in Figures 16–19

class domain
SN is 0..10; SNxOPER is 〈SN,OP〉;
MN is 1..3; SNxPTxNIxLID is 〈SN,PT,NI,LID〉;
MTYPE is [AskNI,AskPT,AskLID]; NODE is [SN,MN];
OP,PT,NI,LID,REP is [T,F]; NODExNODE is 〈NODE,NODE〉;
PART is 1..20; MESS is 〈NODE,NODE,MTYPE,INT〉;
PSTATE is [UP,OUT]; SNxID is 〈SN,ID〉
ID is 1..100; SNxPART is 〈SN,PART〉
NSTATE is [RN,TD,DW,BR]; NODExNSTATE is 〈NODE,NSTATE〉

PARTxINT is 〈PART,INT〉
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init : ��
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��
�
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start�listen

〈s〉

〈s〉 〈s〉
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〈s〉

〈s〉

〈pm〉

〈s, pm〉
〈pm〉
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〈s〉
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〈s〉

〈s〉

〈s, T 〉
〈pm〉
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〈pm, s, ���
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���〉 poll�init

〈s〉
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〈s〉

〈s〉

〈s, T, T, T 〉

Fig. 16. Storage nodes global level

a listening connection. Transition conn_to_pm checks the presence of these two
tokens via test-arcs, puts one token containing a pair of storage and primary
nodes into place live, which means that henceforth the connection between these
two nodes is established. A storage token is put into place verif, saying that
the storage node has started its verification phase by setting up a verification
handler on its primary master connection.

The verification phase is supervised by the primary master, i.e. a storage node
only receives messages and handles them (transition poll_ver) until one of the
handlers changes the value of the variable operational to true. In the net, place
operational contains as many tokens as there are storage nodes in the system.
Each of these tokens consists of a storage node identifier and the current value
of its internal variable operational. As soon as it becomes true, the storage node
sends a message asking for the actual version of the partition table, the last
identifiers and the node information to the network (transition ask_pt_ni_lid)
and proceeds to the initialisation phase (place init).

Similarly, the storage node stays in place init listening to incoming messages
(transition poll_init) until it receives the partition table, the last IDs (last trans-
action identifiers) and the node information.

Finally, a storage token arrives in place operate. Hence, the storage node has
reached its operational state and starts providing service. If everything goes
correctly, it remains in this state forever. If an operation failure occurs, the life
cycle continues from connection to primary, but the current version of the model
does not cope with errors yet.
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Fig. 17. Model of the partition table

The Partition Table. The partition table is one of the key elements of the
protocol implementation. It allows for making a correspondence between pieces
of data and the storage nodes where they (or their copies) are saved. The overall
data is divided into partitions. The number of partitions is defined by the system
administrator before the cluster is started, according to physical parameters of
the system such as the expected volume of data, the number of available storage
nodes, and the degree of data safety (how many replicas should be saved). The
number of partitions cannot be changed during the cluster life cycle. For each
object, the number of partitions to which it belongs is defined by the simple
formula: (Object Identifier) modulo (Number of Partitions). So, the partition
number is equal to the remainder of the division of Object Identifier by the
Number of Partitions.

In the partition table, each row corresponds to one partition and contains the
IDs of the storage nodes where the partition is located. Figure 17 represents the
basic model of the partition table that contains two transitions: add_cell allow-
ing to add a partition and del_cell allowing to delete a partition. The internal
structure of the table is represented by two places: partition_table and num-
ber_of_repl. The first one contains pairs 〈storageID, partitionID〉 establishing
a correspondence between partitions and storage nodes. If the protocol operates
correctly, there should be no duplicates. Place number_of_repl contains exactly
one token per partition that includes its ID and the number of tokens in the place
partition_table corresponding to it. The other places model the input arguments
for the functions add and delete, and are shared with other subnets.

5.2 Formal Modelling of the Verification Phase

Figure 18 presents the models handling messages, that are called when a storage
node is in the verification phase. The goal of this phase is to check that all ex-
pected information persists and there is no pending transaction. The process of
verification is managed by the primary master. All transitions have two common
input places: pollStart (corresponding to a storage node that is handling a mes-
sage) and network (corresponding to the message that is being handled). There
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(a) “Ask partition table”
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(c) “Notify partition changes”
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(d) “Start operation”

Fig. 18. Verification phase handlers of storage nodes for different message types

is also one common output place pollEnd where a storage token is placed after
handling a message. Handling ask messages (with ask in the name) finishes with
a response that is put into place network, to notify it is sent:

1. handleAskPT (Ask Partition Table, Figure 18(a)) — Since it is not possible to
model the complete partition table without facing the state space explosion
problem, only the ID number of the table is sent. Thus the response from a



Modelling and Formal Verification of the NEO Protocol 221

storage node to a AskPT message is of type AnsPT with the current partition
table ID as parameter.

2. handleAskLID (Ask Last IDs, Figure 18(b)) — When a storage node receives
an AskLID message, the primary master requests the last transaction ID and
last modified object ID. If any of these numbers is greater than the one
currently known by the primary master, the latter saves those IDs obtained
from the storage node and considers them as last. Hence, transition han-
dleAskLID takes two tokens from places LastOID and LastTID respectively
(corresponding to the storage node that is currently handling this message)
and replies with an answer message to the network place of type AnsLID: re-
ceiver pm, sender s, information K(oid,tid) (where K is a one-to-one mapping
from naturals to pairs of natural numbers).

3. handleNotPCh (Notify Partition Changes, Figure 18(c)) — This message is
sent by the primary master in case the structure of the partition table is
changed. This may happen for different reasons: some storage nodes crashed,
new storage nodes are added or the distribution of the partitions is not
uniform. This message actually contains all the rows of the table that have
been changed, but for the modelling purposes only the partition table ID is
sent. Hence transition handleNotPCh replaces a token corresponding to the
current storage node in place pt_id with a new one with the ID just received.
From then on, this storage node contains this partition table.

4. handleStartOp (Start Operation, Figure 18(d)) — This message is sent when
the primary master considers the verification phase finished and allows to
proceed to the next stage. Transition handleStartOp sets the value of the
token in place operational to true. In the global level model, this activates
transition ask_pt_ni_lid and storage nodes can move from place verif to init.

5.3 Formal Modelling of the Initialisation Phase

The goal of the initialisation phase (Figure 19) is that every node has the same
partition table, and the IDs of last transaction and last modified object. The
handlers for receiving last IDs and nodes information from the primary master
are very simple. Storage nodes just save the values received in the appropriate
places and change the corresponding boolean.

Similar to the verification phase, all transitions have two common input places
(pollStart and network) and one common output place pollEnd.

1. handleNotNI (Notify Node Information, Figure 19(a)) — The primary mas-
ter uses NotNI messages to announce to the storage nodes their new status.
If the new status of a storage node is DW (down), TD (temporarily down)
or BR (broken), it closes its connection with the primary master and shuts
down. Formally, transition handleNotNI replaces a token corresponding to
current storage node from s_state with one corresponding to the new status
(function NState(i) is a simple mapping of integer i to the colour domain
of storage states). It also removes a token with current storage and primary
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Fig. 19. Initialisation phase handlers of storage nodes for different message types

master nodes from place live, signifying that the connection between them
is down and adds the storage node to place dead.

2. handleAnsLID (Answer Last ID, Figure 19(b)) — The storage node saves
its last object ID in its database (place LastOID) and changes the value of
has_pt_ni_lid from false to true, meaning that it now knows last IDs.

3. handleAnsNI (Answer Node Information, Figure 19(c)) — Similar to the pre-
vious message, only the boolean value of has_pt_ni_lid is changed.
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4. handleAnsPT (Answer Partition Table, Figure 19(d)) — The corresponding
boolean is also changed, and a token in pt_id is replaced with the one con-
taining the new partition table ID received in the message.

5.4 Desired Properties

The engineers working on the NEO protocol provided us with more than 70
properties (related to the whole system and not only to the election and boot-
strap phases) they would like to check on our models. These descriptions had
first to be refined for several reasons: the terms used to express some properties
had different meanings according to the context, several properties were poorly
expressed and had to be refined, others were really trivial to check and only re-
quired a careful look at the implementation, . . . Therefore, the statements were
rewritten and we (with the engineers of the NEO protocol) retained three main
requirements, namely R4, R5 and R6, that concern the bootstrap protocol.

R4 - The first requirement for the bootstrap phase states that all storage nodes
eventually reach the operational mode. It actually implies that the following two
conditions hold:

– All storage nodes have reached the operational state in every terminal node.
– The reachability graph is acyclic.

R5 - According to this requirement, there is at least one storage node, for each
partition, that will be responsible for storing that partition.
R6 - Similarly, the third requirement, implying that any storage node will store
at least one partition, can also be expressed as a reachability property.

5.5 Analysis Results

We analysed several configurations of our CPN model through simulation and
then through state space analysis. Table 3 provides statistics on the reachability
graphs of these various instances. Each configuration is defined by a number
of storage nodes (column N), and a replication factor (column Repl.), i.e. the
number of storage nodes a partition is kept on.

For all configurations we analysed, the reachability graph is acyclic. Hence,
the termination of the bootstrap protocol is guaranteed. Moreover, all terminal
markings respect our three requirements R4, R5 and R6 presented in Section 5.4
and describe only acceptable termination states of the bootstrap protocol:

Table 3. State space results for several configurations

Configuration Markings Terminal Transitions
N Repl. markings
1 1 537 9 905
2 1 22,952 106 57,059
2 2 76,590 106 217,897
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– all storage nodes and the primary master have reached the operational state;
– the database is consistent: a partition is owned by at least one storage node

and no storage node is empty.

Terminal markings only differ on the content of place network containing mes-
sages in communication channels. This could mean that some messages (those
still present in the network in the termination states) are not required for the
system to be operational since they are not consumed. Therefore, the protocol
could possibly be optimised by avoiding some messages in specific situations.

It is noteworthy that the state space grows considerably with the number of
storage nodes. Actually, more than the number of nodes involved, the number of
messages exchanged is the major bottleneck in our analysis. Indeed, each time
a node invokes function poll it can treat numerous different packets received,
hence generating a comparable number of transitions. We believe that the use
of partial order reductions [7] could efficiently tackle this issue. Since in most
cases the order in which incoming packets are treated is irrelevant, the use of
this technique should naturally leverage this source of combinatorial explosion.

To conclude this analysis section we will stress the fact that although we did
not find any actual problem in the implementation, we plan to perform further
model checking with larger configurations and other analysis tools, e.g. using
partial order or symmetry based reductions [5].

6 Conclusion and Perspectives

In this paper, we have presented our work on the modelling and analysis of
the first two (and essential) steps of the NEO system, a protocol developed
to manage very large distributed databases. The correctness of these steps is
vital since it implies a coherent system state and database consistency when
clients start querying the database. Checking this correctness is also probably
the most difficult point since, once the system is functioning, synchronisations
ensuring data consistency seem simpler. Modelling is achieved using a reverse-
engineering approach from the code. It required to devise appropriate choices to
work on relevant and useful levels of abstraction at different steps. To this end,
we used several tools motivated by the different complexities of the objects to be
modelled: namely Coloane, CPN-AMI, CPN tools and Helena. We also identified
a lack in the modeling tools we used in that, besides CPN tools, they do not
easily support the creation of nets modularly and hierarchically structured. This
observation led us to define an XML-based composition language to ease our
task. This is, to our best knowledge, the first attempt to define such a language.

The outcome of this analysis was profitable to the system designers in several
ways. First, we could discover several suspicious election scenarios that led them
to make their code more robust. Second, our analysis confirmed that a connection
loss between two masters is a severe fault from which the system will not recover
in most situations. Last, we increased their confidence in the bootstrap protocol
by checking several configurations in which all expected properties are verified.
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In the future, three extensions of the work presented here will be considered.
First, we intend to take into account the storage nodes failure during bootstrap.
Several mechanisms are implemented by the protocol to manage this kind of
issue and it is worthwhile analysing them through model checking. Second, we
plan to verify the considered properties when the number of storage nodes is
not known in advance, and thus take into account the fact that the number of
storage nodes can change dynamically during execution. Finally, we plan to use
other analysis techniques, especially through Coloane which can interface with
several verification tools such as Great-SPN [2] and Prod [17].
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Abstract. Transfer of resources in the World Wide Web is achieved by
using the Hypertext Transfer Protocol (HTTP). The most widely used
version of HTTP in the Internet is HTTP/1.1 published as Request for
Comments 2616. HTTP/1.1 is currently undergoing revision and is be-
ing restructured into a 7 part document by the Internet Engineering
Task Force. Part 1 includes a description of the operation of HTTP over
reliable transport connections, and is currently a relatively mature Inter-
net Draft. It is therefore timely to subject these revisions to a rigorous
analysis using formal techniques. This paper presents an initial Coloured
Petri Net model of HTTP operating over transport connections provided
by the Transmission Control Protocol (TCP). This requires modelling
HTTP entities, the transport service provided by TCP, and their inter-
actions. The design of the model, including its underlying assumptions
and validation, is discussed and reachability analysis results are reported.
Insights are gained into: the size of the state space as a function of web
requests; and the dimensioning of buffers required in HTTP entities.

Keywords: HTTP, persistent and non-persistent connections, reliable
transport service, Coloured Petri Nets, reachability analysis.

1 Introduction

Our tendency to obtain information on-line is steadily increasing with advances
in Internet technologies. Information is most commonly stored on the World
Wide Web and accessed with a web browser. The transfer of information be-
tween a web browser (the client) and a web server (the server) is achieved us-
ing request-response transactions governed by the Hypertext Transfer Protocol
(HTTP) [6].

HTTP/1.1 is specified in Request for Comments (RFC) 2616 [6], published
by the Internet Engineering Task Force (IETF) [15]. Over the last few years, a
new working group known as HTTPbis [10] has been formed within the IETF
to refine RFC 2616. The HTTPbis charter states that the working group will
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incorporate errata and updates, and remove ambiguities while resisting the in-
troduction of new functionality. However, where existing procedures have proved
to be faulty, new elements of procedure may be introduced to fix the fault. What
has eventuated is a 7 part specification which redefines HTTP/1.1. HTTP/1.1
is a relatively complex protocol, with just Part one [7] spanning 82 pages (when
the change log is removed), with a body of 65 pages (compared with the Trans-
mission Control Protocol (TCP) [14] with 85 pages).

The standard behaviour of HTTP/1.0 [1] was to establish and release a TCP
connection for every request-response pair. Research on the performance of this
design demonstrated how inefficiently HTTP operated over TCP [9, 13]. While
HTTP/1.0 made no provision for keeping connections open for multiple request-
response pairs (know as persistent connections) in its documented form, some
experimental implementations used the Keep-Alive header to request a TCP
connection remain open for multiple request-response pairs. This design proved
faulty as it was unable to interoperate with intermediate HTTP/1.0 proxies [12].
It was not until RFC 2068 HTTP/1.1 [5] (later replaced by RFC 2616 [6]) was
standardised that persistent connections became the default behaviour. To man-
age these connections, HTTP/1.1 introduced a mechanism by which a client and
a server can signal the close of the connection. HTTP/1.1-part1 [7] clarifies the
management of persistent connections. The removal of ambiguities and clarifi-
cation surrounding persistent connection management is a current and ongoing
task for HTTPbis. HTTP/1.1-part 1 is currently at version 17, and in 2011, 5
different versions were produced, demonstrating the high level of activity within
the group. It is therefore timely to develop a formal and hence unambiguous
specification of HTTP procedures and their management of persistent connec-
tions, particularly TCP connections. Further, section 2.3 of HTTP/1.1-part1
states that it does not address the mapping of request and response messages
to transport service data units (SDUs). Hence this paper focuses on providing a
formal model of HTTP and its management of persistent connections (according
to Part 1), including the mapping of messages to transport SDUs.

Previous research on persistent connections has concentrated on demonstrat-
ing their performance advantages. Heidemann et al. [9] discuss the performance of
HTTP operating over several transport protocols, including TCP and UDP. Their
article analyses TCP connection start-up costs but does not consider the detail of
the closing mechanisms.Wu et al [17] model persistent connections using Stochas-
tic Petri Nets and consider how they perform under various workloads. However,
their model does not consider HTTP procedures operating over a transport con-
nection in any detail. Gvozdanovic et al. [8] discusses traffic generation using Petri
nets and HTTP, but in this case the transport service is not considered. Wells et
al. [16] provide a timed hierarchical Coloured Petri Net model of HTTP/1.0 pro-
cedures, but do not consider HTTP/1.1 persistent connections. They do consider
detailed models of HTTP’s operation over TCP, but the TCP modules are not
provided in [16]. Their model is aimed at simulation-based performance analysis
of web servers, and although the modelling formalism supports functional analysis
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using state spaces, no state space analysis is reported due to the size and complex-
ity of their model.

To overcome some of these limitations, we present a hierarchical Coloured
Petri Net (CPN) model of HTTP/1.1 operating over the service provided by
TCP. We firstly list the assumptions made and then provide an abstract model
suited to functional analysis using state spaces. All modules are described so that
HTTP’s interaction with the transport service is readily apparent. We include
the ability of HTTP/1.1 to signal connection closure to a peer and to open 2
successive connections to support the delivery of a request, when faced with
premature closure of the first connection by the server. Further, we analyse the
model using state spaces and provide some initial results.

Compared with previous work, this paper makes several contributions. Firstly
it provides the first Coloured Petri Net model of the handling of persistent
connections in HTTP/1.1. This includes the ability of both the client and server
to signal connection closure and for the client to be able to reopen connections
to a server that has failed to deliver the response, during a single HTTP session.
Secondly, the details of the transport service are included and it is shown how
requests and responses are mapped to transport service data units. Thirdly, the
model is shown to be amenable to state space analysis. This has allowed us to
firstly validate the behaviour of the model, and then to prove basic properties
of the protocol including correct termination and absence of livelock. We also
provide some insight into the maximum number of messages that can reside in
HTTP buffers and the transport service during execution of the protocol.

The rest of the paper is organised as follows. Section 2 describes HTTP/1.1’s
procedures [7]. Our model is presented in section 3 with analysis results in section
4. We draw some conclusions and discuss future work in section 5. This paper
assumes knowledge of Coloured Petri Nets [11].

2 HTTP

HTTP has been developed to support distributed and collaborative information
systems through the use of hypertext. It is an application protocol residing
above the Transmission Control Protocol in the Internet Protocol Architecture.
It uses a client/server paradigm where the client establishes a connection to
send requests and servers accept connections in order to respond to requests.
Clients that support persistent connections may send their requests in lock-step,
waiting for each response before issuing the next request, or they may pipeline [6]
their requests. Pipelining allows a client to make multiple requests on a single
connection without waiting for each response. Servers must send their responses
to pipelined requests in the same order that the requests were received.

Client requests are typically triggered by user actions such as clicking on a
hypertext link in a browser to obtain a web page. This stimulates the HTTP
client (browser) to open a transport connection. Once the connection is estab-
lished the request is sent to the server. If successful, the response is returned
to the client. The response may contain references to further resources (such as
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images). To obtain these resources, the client must make further requests either
on the same transport connection or by opening new and possibly concurrent
connections. Once all resources have been obtained, the user will be able to view
the completed web page.

HTTP/1.1-part 1 specifies: the general architecture of HTTP, including Uni-
form Resource Identifier (URI) schemes; message formats, parsing and rout-
ing; syntax notation and transfer codings; connection types and their operation;
header field definitions; registration requirements; and security considerations.
Our paper focuses on section 6.1 Persistent Connections and section 8.1 Con-
nection, where the header field associated with non-persistent connections is
discussed.

2.1 HTTP/1.1 Messages

There are 2 HTTP message types: a request from the client and a response from
the server. HTTP messages consist of a start-line followed by a series of optional
header fields and an optional message body. Requests and responses differ only
in the syntax of this start-line. A request start-line consists of a method, uniform
resource identifier (URI) and the version of HTTP being used by the client. The
method specifies the operation to be performed on the resource, such as GET
(get the resource located at the URI) or PUT (put the resource at the location
specified by the URI). An example request is: GET http://www.unisa.edu.au
HTTP/1.1 which will open the home page of the University of South Australia. A
response start-line contains the HTTP version in use by the server, a status-code
and a reason-phrase. The status-code is a 3 digit code indicating the result of the
request and the reason-phrase is a textual explanation of that code. An example
response is HTTP/1.1 200 OK which indicates the request was successful.

2.2 HTTP/1.1 Connection: Close Header

HTTP/1.1 assumes a persistent connection will be used unless the client or the
server signals otherwise. This signaling is achieved through the inclusion of the
header field Connection: close in either a request or a response. A requirement
for HTTP/1.1 clients and servers not supporting persistent connections is that
Connection: close must be included in every request and every response. The
transport connection may be closed by the client, or the server or by both con-
currently.

If the client includes the Connection: close in a request, it may initiate a
graceful close of the transport connection either before it receives the response
or after, or it may wait for the server to close the transport connection. When the
client sends the Connection: close header it is letting the server know that it will
not send any further requests on the current transport connection. The trans-
port service supports graceful close whereby, once the client closes the transport
connection, it may still receive responses until the server has closed its end of
the transport connection. When the client receives a Connection: close header
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in a response from the server it must not send any further requests. It may close
the transport connection or wait for the server to do so.

When the server includes the Connection: close header it may close the trans-
port connection after it has sent its response, or it may choose to wait for the
client to close the transport connection. By sending the Connection: close header
the server is signaling to the client that it no longer supports the persistent con-
nection.

If the server receives a Connection: close header, it knows that this will be the
last request received. After it has sent its response it may close the transport
connection or it may wait for the client to initiate transport connection release.

In addition, the client or server may close the transport connection at any
time (as stated in section 6.1.4 and 6.1.5 of [7]), regardless of the inclusion of
the Connection: close header. For example, the user may close the web browser
in the middle of a web page request or the server or client may time-out waiting
for a request or a response. Time-outs of the transport connection are discussed
in section 6.1.4 of [7]. Time-outs are not mandated for persistent connections in
HTTP/1.1, however maintaining inactive connections indefinitely is not practical
and therefore they are discussed in [7]. When the client sends a request it may
wait a pre-determined amount of time before deciding that the response is not
forthcoming. This results in a client time-out causing the client to discard the
current request, initiate a graceful close of the transport connection and notify
the user. Likewise a server may not maintain an idle connection with a client
indefinitely. This may result in a server time-out whereby the server initiates a
graceful close of the transport connection. If a request has not been responded
to after the connection has been closed (from a server time-out for example),
section 6.1.5 [7] states “Client software MAY reopen the transport connection
and retransmit the aborted sequence of requests without user interaction...”.
Section 6.1.5 of [7] also states “The automatic retry SHOULD NOT be repeated
if the second sequence of requests fails”. If no response has been received for
a request after 2 attempts, the request will be discarded and an error message
reported to the user.

3 Initial CPN Model of HTTP/1.1

Using an incremental approach [2] our philosophy in modelling HTTP/1.1 is
to capture its essential behaviour in an initial model, which we then validate.
In particular, the model includes operating over persistent and non-persistent
transport connections and the management of transport connections during an
HTTP session.

3.1 Modelling Assumptions

In order to handle the complexity of HTTP, we make some simplifying assump-
tions in our initial model. We also attempt to clarify HTTP’s procedures.
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1. Proxies. Although HTTP clients and servers may operate over intermediaries
such as proxies, they add considerable complexity and are out of the scope of
our initial model. Thus we only consider direct connections between clients
and servers.

2. Numbers of clients and servers. A client can interact with many servers
during a browsing session, and likewise a server will normally have many
clients interacting with it. However, each invocation of HTTP is between a
single client and a single server. Thus we only consider one client interacting
with one server as a single client/server pair is representative of the logical
behaviour of HTTP. This allows us to abstract from location information
(both the URI and the Host header field), as discussed below under the
message abstraction assumption.

3. Connections. As discussed in section 2 a client may open multiple parallel
connections to the server if it needs to obtain several resources. To reduce
complexity we consider that the client only establishes one connection with
the server at any time. However, we do consider the automatic reopening of
the connection by the client if the connection is closed before a response has
been received, as this is an important part of managing persistent connec-
tions. Further, we also model the timeouts at the client and server (discussed
in section 6.1.4 of [7]) which monitor inactive connections. This is achieved
by allowing the connection to be released by the server or client at any time
after it has been established.

4. Pipelining. Pipelining of requests is optional and adds considerable complex-
ity to the operation of HTTP, especially when taking into account reopening
of connections. For this reason it has not been included in our initial model.

5. Responses automatically generating requests. We do not include a mecha-
nism for a response to automatically trigger the sending of further requests.
This often results in the opening of multiple connections or using pipelining
which are out of scope for our initial model.

6. HTTP message abstraction. In order to model persistent connections we
must consider the use of requests and responses which may (or may not)
include the Connection: close header. We are not concerned with the type
of method used in the request, except that we assume that the method is
idempotent1 (which caters for most methods). In the future we may wish
to expand this model to include specific methods (therefore our CPN dec-
larations have provision for this) so for realism we simply use the GET
method. We do not include error handling and therefore only consider the
server successfully responding to requests. Successful responses use status
codes in the 200 range and their corresponding reason-phrases. We abstract
from this class of status codes (and reason-phrases) by just using the value
“success” to represent any one of them. This is valid because the basic op-
eration of HTTP does not depend on a particular code in the 200 range or

1 Idempotent methods are those that have the same effect if sent multiple times. The
automatic reopening of connections excludes the use of non-idempotent methods
(such as POST), so they are excluded from the current model.
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its reason-phrase. We assume that the client and server both use HTTP/1.1
procedures, and thus are not checking backward compatibility of HTTP/1.1
with earlier versions. This allows us to exclude the version number when
modelling requests and responses. Because we only consider a single client
and a single server, we do not need to model the URI, nor the mandatory
Host header field. We do not model optional header fields, except for the
Connection: close, which is important for persistent connections. We also do
not include the message body as it does not affect the basic operation of
HTTP.

7. HTTP aborting connections. HTTP Part 1 only mentions gracefully clos-
ing connections. Thus we do not consider HTTP entities aborting con-
nections. While connections may be aborted in implementations of HTTP,
there is no specification dictating how this may occur. In addition, aborts
add considerable complexity and are therefore out of scope for our initial
model.

8. Persistent and non-persistent connections. Although HTTP Part 1 recom-
mends persistent connections as the default behaviour, it also allows for
non-persistent connections using the Connection: close header as discussed
in section 2. Because Part 1 uses the words “may” and “should” in this con-
text, we assume that a) the client or server can change its operation from
a persistent to a non-persistent connection at anytime, and b) that it does
not necessarily need to signal closing the connection with the close header
before closing. Thus we model this situation non-deterministically. Part 1
states “Once the close has been signaled, the client MUST NOT send any
more requests on that connection.” and also “If either the client or the server
sends the close token in the Connection header field, that request becomes
the last one for the connection.” We interpret this to mean that once the
client has included the Connection: close header in a request, or received
a response with the Connection: close header, it will not send any more
requests.

9. Transport service. HTTP/1.1 assumes that it will operate over a reliable
transport protocol with in-order delivery of messages. We have chosen to
model the transport service based on TCP as it fulfils these criteria and
is most commonly used in practice. We assume that the transport service
always accepts connections and that they are successfully established and
released. An abort service is not included in our initial model of the transport
service.

3.2 Model Structure

Our CPN model of HTTP is created using CPN Tools [4]. It is a hierarchical
model organised into 3 levels, as shown in Fig. 1. The structure of HTTP and its
environment are described in the HTTP architecture module. The second level
models the HTTP client and server and transport service. The client and server
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HTTP_CLIENT

TC_OPENING TC_CLOSINGTC_DATA_TRANSFER

TRANSPORT SERVICE

HTTP ARCHITECTURE

S_CMC_CM S_PROCESS_REQ

HTTP_SERVER

C_SEND_RCV

Fig. 1. HTTP CPN Model Hierarchy

have sub-modules involving transport connection management (CM) associated
with a HTTP session, and the sending and receiving of HTTP messages. The
transport service has 3 sub-modules including opening, closing and data transfer.

The model contains 14 places, 10 substitution transitions and 34 executable
transitions.

3.3 Overview Model

The CPN module in Fig. 2 describes the HTTP architecture. It consists of 6
places and 3 substitution transitions that together model web browser inter-
action with a HTTP client, the transport service, and a HTTP server and its
storage.

TRANSPORT_SERVICE
Transport_Service

HTTP_SERVER
HTTP_SERVER

HTTP_CLIENT
HTTP_CLIENT

BROWSER_INTERFACE 1`[WP_REQ]

WEB_REQ_LIST

S_SDU_IN

1`[]

C_SDU_LIST

C_SDU_IN

1`[]

S_SDU_LIST

S_SDU_OUT

1`[]

S_SDU_LIST

C_SDU_OUT

1`[]

C_SDU_LIST

SERVER_STORAGE 1`[]

REQ_LIST

HTTP_CLIENT HTTP_SERVER

Transport_Service

Fig. 2. HTTP Architecture

The BROWSER INTERFACE place holds user requests that are issued to the
HTTP CLIENT. It is typed by WEB REQ LIST, a list of WEB REQUESTS
as seen in Listing 1, line 2. In our model, WEB REQUESTS is just a singleton
set, comprising WP REQ, which is a request for a web page.
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Listing 1. Declarations for the HTTP CPN Model

1 (∗ −−−−WEB REQUESTS−−−− ∗)
2 colset WEB_REQUESTS = with WP_REQ;

3 var wr: WEB_REQUESTS;

4 colset WEB_REQ_LIST = list WEB_REQUESTS;

5 var wr_list : WEB_REQ_LIST;

6

7 (∗ −−−−HTTP MESSAGE−−−− ∗)
8 colset METHOD = with GET;

9 colset STATUS = with success ;

10 colset HEADERFIELD = with Connection_close | none;

11 colset REQUEST = record method: METHOD * header:HEADERFIELD;

12 var rq:REQUEST ;

13 colset RESPONSE = record scode:STATUS* header:HEADERFIELD;

14 var rs:RESPONSE ;

15 colset REQ_LIST = list REQUEST ;

16 var rq_list : REQ_LIST ;

17

18 (∗ −−−−HTTP CLIENT−−−− ∗)
19 colset C_SESS_STATE = with C_TC_CLOSED | C_OPENING_TC | REQUESTING

20 | REQUEST_CLOSE | C_CLOSING_TC;

21 var cstate: C_SESS_STATE;

22 colset C_SDU = union ESTABLISH + CONFIRM + cdata:REQUEST

23 + C_RELEASE;

24 colset C_SDU_LIST = list C_SDU;

25 var cq, cq1: C_SDU_LIST;

26 colset NUMBER_OF_TRIES = int with 0 .. 2;

27 var num_tries: NUMBER_OF_TRIES;

28

29 (∗ −−−−HTTP SERVER−−−− ∗)
30 colset S_SESS_STATE = with S_TC_CLOSED | WFR | RESPONDING

31 | RESPONDING_RELEASE | S_CLOSING_TC;

32 var sstate: S_SESS_STATE;

33 colset S_SDU = union S_OPEN + CHECK + ACCEPT + sdata:RESPONSE

34 + S_RELEASE;

35 colset S_SDU_LIST = list S_SDU;

36 var sq, sq1: S_SDU_LIST;

37

38 (∗ −−−−TRANSPORT SERVICE−−−− ∗)
39 colset C_SAP_STATE = with C_CLOSED | OCP | C_DTR | C_NDS | C_NDR;

40 var sc: C_SAP_STATE;

41 colset S_SAP_STATE = with S_IDLE | ICP | S_DTR | S_NDS | S_NDR

42 | S_CLOSED ;

43 var ss: S_SAP_STATE;

The SERVER STORAGE place receives client requests for in-order process-
ing. It is typed by REQ LIST which is a list of REQUESTs as seen in Listing 1,
line 11. Although it is not necessary to use lists, because when pipelining is
not included there will only be one request at a time in SERVER STORAGE,
it is convenient for detecting that the place is empty (using the empty list),
and preparing the model for pipelining. A REQUEST is modelled as a record
containing a METHOD (line 8) and a HEADERFIELD (line 10). METHOD
is an enumerated type containing the single HTTP/1.1 request method GET.
Likewise HEADERFIELD is an enumerated type containing 2 entries: Connec-
tion close and none. All header fields apart from the Host header are optional
in any HTTP message. The Host header specifies the host and port number of
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the resource being requested. As discussed in section 3.1, we only need to con-
sider one client and one server, and hence we do not need to include the Host
header. The inclusion of none (representing no header) allows us to include the
Connection: close header or not, non-deterministically, when sending a message
(as discussed in the section 3.4).

The HTTP CLIENT and HTTP SERVER interact with the transport service
via the interface places C SDU OUT, C SDU IN, S SDU IN and S SDU OUT.
C SDU OUT and S SDU IN are typed by C SDU LIST which is a list over
C SDU as seen in Listing 1, lines 22 and 23. C SDU is a union of request messages
(REQUEST) and the Service Data Units (SDU): ESTABLISH, CONFIRM and
C RELEASE. The client issues an ESTABLISH to the transport service when it
wishes to initiate a connection, likewise it issues a C RELEASE when it wishes
to close its end of the connection. CONFIRM is used by the transport service
when opening a connection. The other 2 places, C SDU IN and S SDU OUT
are typed by S SDU LIST which is a list over S SDU as seen in Listing 1, lines
33 and 34. S SDU is a union of response messages (RESPONSE) and SDUs:
ACCEPT, S RELEASE, S OPEN and CHECK. RESPONSE (Listing 1, line 13)
is a record consisting of a STATUS and a HEADERFIELD. STATUS (Listing 1,
line 9) is a singleton colour set consisting of success (meaning that the request
was successful). ACCEPT is sent by the transport service to the client to indicate
that it has accepted the connection. S RELEASE is sent by the server when it
wishes to close its end of the connection. S OPEN is issued when the server
is ready for connection requests, and CHECK is used by the transport service
when establishing connections.

3.4 HTTP Client

Fig. 3 depicts the HTTP client. It consists of 2 substitution transitions and 3
additional places: PENDING REQUESTS, NUM TRIES and CLIENT STATE.
PENDING REQUESTS, typed by REQ LIST (Listing 1, line 15), models HTTP
requests that need to be sent to the server. It is required for retrying requests.
Thus a request is only deleted when a response is received. Lists are used for the
same reason they are used to type SERVER STORAGE. NUM TRIES stores
the number of times a particular request is sent. CLIENT STATE models the
state of the HTTP client during a session. While HTTP is generally considered a
stateless protocol, state must be defined (see Listing 1, lines 19 and 20) in order
to manage persistent connections as we now explain.

– C TC CLOSED. A transport connection does not exist. The client will open
a connection if it receives a web request from its user.

– C OPENING TC. An open request (ESTABLISH) has been sent to the
transport service and the client is waiting to receive an ACCEPT.

– REQUESTING. The transport connection has been established and the first
request sent. The client may send requests and receive responses and initiate
connection closure.

– REQUEST CLOSE. The client has sent its last request on the connection.
It may still receive responses, or initiate connection closure.
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Fig. 3. HTTP Client

– C CLOSING TC. The client has initiated connection closure by sending a
C RELEASE SDU to the server. It is unable to send requests but may still
receive and process responses.

The C CM substitution transition is the client’s connection manager and is re-
sponsible for opening and closing connections. C SEND RCV sends and receives
HTTP messages.

C CM, depicted in Fig. 4, has 6 executable transitions. Initially, the HTTP
CLIENT is in the C TC CLOSED state (shown in Fig. 3) and a web request
has been received by the BROWSER INTERFACE (see Fig. 2). Before a re-
quest can be sent a transport connection must be established. This is achieved
by firing REQUEST TC, sending an ESTABLISH SDU to the transport service.
REQUEST TC removes the web request and creates a HTTP request that con-
tains a method (GET) and a header and stores it in PENDING REQUESTS.
The header can be either Connection close or none to represent the use of non-
persistent or persistent connections respectively. Firing this transition changes
the state of the client to C OPENING TC. REQUEST TC will not fire if there
is a request pending and hence a new connection will not be established for the
next request until the current request has been processed (either by receiving a
response or by declaring it failed).

Once the connection has been established by the transport service an AC-
CEPT SDU is received causing TC ESTABLISH AND SEND 1st REQUEST
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Fig. 4. HTTP Client Connection Manager

to fire. The firing of this transition causes 3 changes. Firstly a copy of the re-
quest in PENDING REQUESTS is sent to the transport service for delivery to
the server. Secondly the number of attempts to send the request is incremented
by 1. Thirdly the client changes state to REQUESTING (if the header was none)
or REQUEST CLOSE (if the header was Connection close).

The two transitions involved in the client initiating closing a connection are
RELEASE TC and C TIMEOUT. RELEASE TC fires when the client is in RE-
QUEST CLOSE, that is, after the client has sent a Connection: close header.
RELEASE TC sends a C RELEASE and changes state to C CLOSING TC.
C TIMEOUT occurs when the client wishes to issue a time-out on the
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Fig. 5. HTTP Client Send and Receive

connection and discard any pending requests. This may occur in either the RE-
QUESTING or REQUEST CLOSE state. The occurrence of C TIMEOUT sends
a C RELEASE, removes any requests in PENDING REQUESTS, changes state
to C CLOSING TC and resets NUM TRIES to zero. Note that neither of these
two transitions will occur if the client has already received a release from the
server.

C RCV RELEASE models the receipt of a S RELEASE SDU. When in RE-
QUESTING or REQUEST CLOSE, the client has yet to close its end of the
connection, so responds with a C RELEASE. This is not required in the other
states. On firing, the client’s state becomes C TC CLOSED.

REQUEST REOPEN TC occurs when the connection has been released be-
fore a response has been received. It attempts to re-establish the connection so
that the request can be resent. The guard on this transition ensures the request
has only been sent once before, thus complying with [7]. On firing, this transi-
tion sends an ESTABLISH SDU to the transport service and changes state from
C TC CLOSED to C OPENING TC.

C SEND RCV includes 4 executable transitions as shown in Fig. 5. Transi-
tion, SEND NEXT REQUEST, models the operation of persistent connections
by sending a new request on an already established connection. This transition
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is enabled when there is a web page request in the BROWSER INTERFACE,
the client is in the REQUESTING state and there are no requests in PEND-
ING REQUESTS. When the transition occurs, NUM TRIES is set to 1, the
header for the request is chosen non-deterministically, a copy of the request is
stored in PENDING REQUESTS, and the state changes to REQUEST CLOSE
only if it is the last request to be sent on the connection.

When a request has been sent twice but the server has responded by closing
the connection, the request is discarded and an error message reported to the
user. This is modelled by REQUEST FAILED. PROCESS RESPONSE mod-
els the successful receipt of a response. It removes the initiating request from
PENDING REQUESTS, sets NUM TRIES to zero ready for the sending of the
next request, and remains in the same state, unless it receives the Connec-
tion: close header in the REQUESTING state, in which case it moves to RE-
QUEST CLOSE to prevent any further requests being made.

DISCARD RESPONSES will fire when a response is received by the client
that it is no longer interested in. This may occur after the client has timed-out
(C TIMEOUT occurs) waiting for the response. DISCARD RESPONSES fires
when the client is in C CLOSING TC, PENDING REQUESTS is empty and a
response is received in S SDU IN.

3.5 The HTTP Server

The HTTP server model consists of 2 substitution transitions and 1 additional
place, SERVER STATE, as shown in Fig. 6.
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1`S_TC_CLOSED

S_SESS_STATE

S_SDU_OUT
I/O
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I/O C_SDU_LIST

SERVER_STORAGE
I/O

REQ_LIST

I/O

I/O I/O

S_PROCESS_REQ S_CM

Fig. 6. HTTP Server

SERVER STATE is typed by S SESS STATE (Listing 1, lines 30-31). Like
C SESS STATE, this place models the state of the server’s HTTP session:



240 S. Arnold and J. Billington

WFR

RESPONDING_RELEASE

RESPONDING

rq_list

cq C_RELEASE::cq

S_TC_CLOSED

sq1

if sstate <> S_CLOSING_TC
 then sq1^^[S_RELEASE, S_OPEN] 
else sq1^^[S_OPEN]

sstate

cq

C_RELEASE::cq

ESTABLISH::cqcq

S_TC_CLOSED

[]

S_CLOSING_TC

sqsq^^[S_RELEASE]

WFR

REL_RCVD_STILL_RESPONDING

[rq_list<>[]]

RECEIVE_RELEASE

[sstate=WFR orelse
sstate=S_CLOSING_TC]

OPEN_TC

INITIATE_TC_CLOSE

SERVER_STORAGE
I/O

REQ_LIST

S_SDU_OUT
I/O

S_SDU_LIST

S_SDU_IN
I/O

C_SDU_LIST

SERVER_STATE
I/O

S_SESS_STATE

I/O

I/O I/O

I/O

Fig. 7. Server Connection Manager

– S TC CLOSED. A transport connection does not exist. The HTTP server
is ready to receive an ESTABLISH SDU from the transport service.

– WFR. In this state the server is waiting for a request, after a connection has
been established with the client. It may initiate connection closure from this
state or wait for the client to close first.

– RESPONDING. The server has received a request and is in the process of
formulating the response.

– RESPONDING RELEASE. The server has received a C RELEASE while
processing a request. This state is required to ensure that the server sends
the requested response before closing its end of the connection.

– S CLOSING TC. In this state the server has closed its end of the transport
connection. Hence any request that is received will not be responded to and
is thus discarded.

S PROCESS REQ models the receipt of a client request and the sending of an
appropriate response, while S CM models connection management.

S CM is shown in Fig. 7. It consists of 4 additional transitions. Initially the
server is in the S TC CLOSED state, as specified in Fig. 6. When an ESTAB-
LISH SDU is received, OPEN TC fires changing SERVER STATE to WFR
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(waiting for request). The server may close the transport connection (INITI-
ATE TC CLOSE) when it is in the WFR state. The firing of this transition
changes SERVER STATE to S CLOSING TC. The server will not gracefully
close while it is processing a request and hence the list in SERVER STORAGE
must be empty. It may abort the session, but this is currently outside the scope
of our initial model.

When the server receives a C RELEASE SDU, one of two transitions will fire
depending on the state of the server. If in RESPONDING, the server is currently
processing a request. Therefore the REL RCVD STILL RESPONDING transi-
tion will fire changing the server state to RESPONDING RELEASE. This will
ensure the client’s release request is responded to immediately after sending the
last response (see transition SEND LAST RESPONSE in Fig. 8). If the server
is in a state where it is immediately able to respond to the release (WFR or
S CLOSING TC) RECEIVE RELEASE will occur changing the server state to
S TC CLOSED and sending a S RELEASE SDU to the transport service, if one
has not already been sent. The server will also indicate to the transport service
that it is ready to receive further requests by issuing a S OPEN, corresponding
to a passive open command in TCP.
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Fig. 8. Server Processing Requests
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S PROCESS REQUEST is shown in Fig. 8. It has 3 executable transitions:
RCV REQUEST; SEND RESPONSE; and SEND LAST RESPONSE. When a
request is received (S SDU IN), RCV REQUEST fires sending the request to
place SERVER STORAGE for processing when in state WFR and changing
state to RESPONDING. Requests are discarded in any other state.

While in the RESPONDING state, the server may send its response to the
client. This is modelled by SEND RESPONSE. On firing, this transition removes
the request from SERVER STORAGE, modelling the finalisation of request pro-
cessing, and sends the response, which may include the Connection: close header.
The server moves back to WFR, waiting for another request.

SEND LAST RESPONSE occurs when the server is in state RESPOND-
ING RELEASE and there is a request in SERVER STORAGE. This transition
removes the last request from SERVER STORAGE and sends the response fol-
lowed immediately by S RELEASE and S OPEN (to indicate that it is ready to
receive further requests) and changes the state of the server to S TC CLOSED.

3.6 Transport Service

The transport service is based on [3] which defines some of the terminology
used in this section. Our transport service models the essential capabilities pro-
vided by TCP including connection establishment, reliable data transfer and
graceful closure. It differs from [3] in several important ways. Firstly, we do not
include the abort service, as HTTP [7] only mentions the use of gracefully clos-
ing connections. Secondly, we significantly modify the establishment service to
make it better reflect TCP’s operation. This involves including internal CHECK
and CONFIRM messages to obtain TCP’s sequencing of service primitives, i.e.
that the client considers the connection to be established before the server does,
which is not the case in [3]. Thirdly we enhance the service to allow for multiple
serial connections, which requires the inclusion of a TC IDLE interface tran-
sition, corresponding to the receipt of TCP’s passive open command. Finally,
we include explicit communication with the application (HTTP) via the SDU
interface places.

The top level page for the transport service (TS) is shown in Fig. 9. It com-
prises 3 substitution transitions connected to the 4 SDU interface places and
2 new places, SAPc and SAPs, that record the states of the Transport Service
Access Points (T-SAPs) for the client and server respectively. TC OPENING,
TC DATA TRANSFER and TC CLOSING are the 3 substitution transitions
that model the connection establishment, data transfer and connection release
services and are described below.

TC OPENING is shown in Fig. 10. It includes 2 places, C S and S C, which
represent order preserving channels between the client and the server and are
typed by the colour sets C SDU LIST and S SDU LIST respectively. These chan-
nel places also occur in the other 2 substitution transition pages (see Figs. 11 and
12) using place fusion. Connection management is controlled by 2 state places:
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Fig. 10. Connection Establishment Service

SAPc, typed by C SAP STATE (see Listing 1, line 39), and SAPs, typed by
S SAP STATE (Listing 1, lines 41 and 42). SAPc is initially in the CLOSED
state, while SAPs is in IDLE, indicating that the TCP entity in the server is ready
to establish connections. The HTTP client initiates connection establishment
with an ESTABLISH SDU. On the occurrence of TC CONNECT req, the client
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SAP changes state to Outgoing Connection Pending (OCP) and sends the ES-
TABLISH SDU (implemented in TCP by a SYN segment) over the channel. The
server checks if this ESTABLISH SDU is legitimate (it may be an old duplicate)
by returning a CHECK message to the client and moves to the Incoming Con-
nection Pending (ICP) state. Given that the CHECK is OK, the TS client issues
an ACCEPT SDU to HTTP, changes state to Data Transfer Ready (C DTR)
and sends a CONFIRM message back to the server (TC CONNECT cnf). Once
the server receives the CONFIRM (TC ESTABLISH cnf), it establishes the con-
nection by sending an ESTABLISH SDU to HTTP and moving to S DTR.

As mentioned before, after the connection is closed at the server end, the
HTTP server can indicate to the TS that it is ready for further requests by issu-
ing a S OPEN command. This changes the SAPs state to S IDLE (TC IDLE),
allowing the next connection to be established.

TC DATA TRANSFER. Requests and responses are transported in data
SDUs as shown in Fig. 11. This is similar to [3], but does not include an ur-
gent data service and is tuned for HTTP messages. It provides in-order lossless
channels in both directions. More details are given in [3].

sq1sq1^^[sdata(rs)] sdata(rs)::sq1 sq1

cq1cq1 cq1^^[cdata(rq)]cdata(rq)::cq1

sc

sq

sdata(rs)::sq

sq

sq^^[sdata(rs)] ss

sc

ss

cq

cdata(rq)::cq

cq

cq^^[cdata(rq)]

C_TC_DATA_ind

[sc=C_DTR orelse sc=C_NDS]

S_TC_DATA_req

[ss=S_DTR orelse ss=S_NDR]

S_TC_DATA_ind

[ss=S_DTR orelse ss=S_NDS]

C_TC_DATA_req

[sc=C_DTR orelse sc=C_NDR]

S_SDU_OUT

I/O

S_SDU_LIST

S_SDU_IN
I/OC_SDU_LIST

C_SDU_IN

I/O

S_SDU_LIST

C_SDU_OUT
I/O C_SDU_LIST

S_C
Fusion 2

1`[]

S_SDU_LIST

C_S
Fusion 1

1`[]

C_SDU_LIST

SAPc
I/O

C_SAP_STATE SAPs
I/O

S_SAP_STATE
I/OI/O

Fusion 1

Fusion 2

I/O

I/O

I/O

I/O

Fig. 11. Data Transfer Service

TC CLOSING. When either the client or the server wishes to close the trans-
port connection, a RELEASE SDU is issued to the transport service as shown
in Fig. 12. This page models graceful release where data in transit is not lost by
the TS (see [3] for further details). Note that each side can close the connection
independently and hence simultaneous release is included.
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Fig. 12. Connection Release Service

3.7 Validation of the Model

We validated the model in a number of ways. Firstly, the model has been de-
veloped incrementally [2] and has now been through 7 iterations. At each stage
we checked the model using single step simulation, partial state spaces and full
state spaces. We also checked the model carefully against the HTTP specifica-
tion [7], especially sections 6 and 8. The model was also checked independently
by each author. When reviewing the 6th iteration we discovered that the client
could reopen the connection after it had been released by itself. This was not
intended. We therefore revised Fig. 4 to prevent this behaviour from occurring
by removing the request if the activity timer expired.

When using full state spaces we ran a series of incremental tests [2]. Firstly we
validated that our model was able to correctly establish a connection. Secondly
we validated its ability to send requests and receive responses once the connection
was established but without including connection closure. Thirdly we validated
the closing procedures from the established state, by testing a) closure by the
client only, b) closure by the server only and c) concurrent closure by both client
and server. Finally we tested the full model. All these tests have allowed us to
discover various modelling errors which were subsequently removed. For example,
in an earlier version of the model we had included transitions that modelled the
discarding of RELEASE SDUs when they were received in unexpected states.
For all test cases these transitions were dead and were subsequently removed
from the model.

Once these incremental tests were completed, we instrumented the model with
an additional place in the HTTP client send and receive module (Fig. 5) (called
RESPONSE NOTIFICATION) which stored responses and request failures in
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the order they were received. This allowed us to validate that for each request
there was a corresponding response for different numbers of web page requests.
This was the case, except when the server closed prematurely, in which case the
response was replaced by a failure notification.

Before analysing the complete model, to be discussed in section 4, we also
analysed its behaviour for two special cases: a) non-persistent connections (when
the Connection close header was included in each request and response) and b)
persistent connections only (when the close header was not used). This led to
smaller state spaces. Case a) resulted in state spaces that were approximately
half the size of those presented in section 4, while for case b) they were about
one third the size. This allowed the behaviour to be examined in more detail
giving further confidence in the correctness of the model.

4 State Space Analysis Results

Once we were satisfied our model was working as expected, we ran a series of
test cases investigating standard behavioural properties including liveness, home
state and boundedness. In all tests, initially the client and server state places are
CLOSED as is SAPc, SAPs is IDLE, NUM TRIES is 0 and SERVER STORAGE,
PENDING REQUESTs, all interface SDU places and the transport service chan-
nels contain the empty list. We then varied the number of web page requests in
BROWSER INTERFACE from 1 to 200. Selected results are given in Table 1,
which summarises CPN Tool’s state space report.

Table 1. State Space Analysis Test Case Results

Property/Reqs 1 2 3 4 5 10 20 50 100 200

State Space Nodes 703 1455 2207 2959 3711 7471 14991 37551 75151 150351
State Space Arcs 1711 3546 5381 7216 9051 18226 36576 91626 183376 366876
Scc Graph Nodes 703 1455 2207 2959 3711 7471 14991 37551 75151 150351
Scc Graph Arcs 1711 3546 5381 7216 9051 18226 36576 91626 183376 366876
Dead Markings 1 1 1 1 1 1 1 1 1 1
Home Markings 1 1 1 1 1 1 1 1 1 1
Dead Transitions 1 None None None None None None None None None
Time (Seconds) 0 0 1 1 1 3 8 27 86 319

State Space Statistics. For all tests, and as shown in Table 1, we see that the
number of the state space nodes (SSN) and state space arcs (SSA) are linear in
the number of requests (r) and given by:

SSN(r) = 752r − 49, r ≥ 1
SSA(r) = 1835r− 124, r ≥ 1

This is expected as the markings of all other places re-occur for each length of
the list in BROWSER INTERFACE.
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Cyclic Behaviour. For all tests, the Strongly Connected Component graph is
the same as the state space, signifying the absence of cyclic behaviour in the
system. Cycles should not be present due to the number of attempts to send the
same request on a new connection being different.

Dead Markings and Home Markings. As seen in Table 1, all tests reveal a
single dead marking which is also a home marking. This verifies that the protocol
does not livelock. The dead marking for each test case is the same and has the
following properties:

– BROWSER INTERFACE contains the empty list, signifying that all re-
quests have been processed by HTTP.

– Both the server and the client are closed as expected when the protocol
terminates.

– SAPc is CLOSED and SAPs is IDLE and the channel places contain empty
lists demonstrating that the transport connection has been closed correctly.

– SERVER STORAGE has an empty list. This shows that there are no re-
quests still being processed in the server when the protocol terminates.

– NUM TRIES contains zero. This is expected as after all requests have been
sent this place must be set to zero for the next request attempt.

– PENDING REQUESTS contains the empty list, therefore no requests have
been made that have not received a response or failed.

– All SDU interface places contain empty lists as expected when the protocol
terminates.

We thus conclude that the protocol terminates correctly.

Dead Transitions. Table 1 shows that test 1 has 1 dead transition, which is
SEND NEXT REQUEST. As mentioned in Section 3, this only fires when there
is a new request to send and the connection is open. So we expect it to be dead
for test 1. Note that it is not dead for all other tests.

Boundedness Properties. The following boundedness properties hold for all
test cases.

All places have best upper and lower integer bounds of 1 as expected because
they are either state places, queueing places comprising a single list, or a counter
(NUM TRIES). The best upper multi-set bounds for SERVER STORAGE and
PENDING REQUESTS confirm that only 1 request may be pending (no pipelin-
ing occurs) as these places hold either a single request or an empty list. The upper
multiset bounds for NUM TRIES reveal that it may hold the values 0, 1 or 2.
This implies that only 2 attempts can be made to send a HTTP request, as
required.

The best upper multi-set bounds reveal that C SDU OUT can have a maxi-
mum of 3 SDUs in its list, i.e. [cdata(rq), C RELEASE, ESTABLISH]. When the
client sends an ESTABLISH to C SDU OUT, it cannot send any further SDUs
until the ESTABLISH has been consumed and an ACCEPT received. Therefore
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C SDU OUT is limited to a maximum of 3 SDUs. The C S channel can also hold
a maximum of 3 messages given by [cdata(rq), C RELEASE, ESTABLISH] and
[CONFIRM, cdata(rq), C RELEASE]. Once an ESTABLISH or a C RELEASE
is issued by the HTTP client, it must be consumed and responded to by the
transport service before the client can send any further SDUs. This is also the
case for S SDU IN which can hold [ESTABLISH, cdata(rq), C RELEASE]. Be-
fore any further SDUs may be added, the C RELEASE must be consumed so
that the HTTP server can issue a S OPEN to allow its transport service entity
to return to IDLE, ready for the next connection.

S SDU OUT’s list also has a maximum length of 3, which occurs in [cdata(rs),
S RELEASE, S OPEN]. The server is unable to issue further SDUs until the
S OPEN has been consumed by the transport service and it has received an
ESTABLISH. The S C channel can hold up to 2 messages as seen in the list
[cdata(rs), S RELEASE]. The S RELEASE must be consumed by the client
and the connection re-established before any further SDUs can be added. The
maximum length of the list in C SDU IN is 2 given in the lists [ACCEPT,
S RELEASE] and [cdata(rs), S RELEASE]. The S RELEASE must be con-
sumed by the client, the connection re-established and a request sent before
any further SDUs can be added to this list. It is not possible to have a cdata(rs)
and an ACCEPT in the list at the same time as the client must process the
ACCEPT before a request is sent and responded to.

5 Conclusion

This paper has presented an initial CPN model of HTTP/1.1 [7] with emphasis
on its essential features, including the use of persistent transport connections. In
particular, the model includes the signalling of connection closure between client
and server, client and server time-outs due to the connection being idle and the
ability to re-open a connection when the server closes it before sending a re-
sponse. The model includes a detailed transport service that allows for multiple
serial connections to be established and released, using the graceful close mecha-
nism. The full model is provided in the paper to allow others to experiment with
it. The model is extensible, allowing different methods to be added if required.
HTTP requires that after 2 attempts to obtain a response have failed due to
premature closing of the connection by the server, then no further automatic
attempts to re-open the connection should be made. Thus the value 2 is ‘hard
coded’ into the model. However, the model can be easily extended to allow for
any number of serial connections to be attempted, by using a symbolic constant
‘MaxTries’ instead, and initialising it in a ‘val’ statement in the declarations.

Our state space analyses have shown that the size of the state space is linear
in the number of requests, and we provide expressions for the numbers of nodes
and arcs in the state space as a function of the number of requests. All state
spaces generated have just 1 dead marking that is also a home state. This shows
that the protocol does not include any livelocks. We also conclude that the
dead marking is an expected state corresponding to correct termination. The
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state spaces demonstrate that when more than 1 request is made on the same
connection, there are no dead transitions. We expect there to be 1 dead transition
(SEND NEXT REQUEST) when just 1 request is made which is corroborated
by the analysis. We have also investigated bounds on the interface buffers and
transport service channels and discovered that they will not need to hold any
more than 3 messages.

The model is useful because it captures the essential behaviour of HTTP/1.1,
and is amenable to analysis which allows us to confirm important properties
(e.g. liveness and termination) and to provide insights into buffer and channel
bounds. However, the model also has limitations which relate to the assumptions
made when creating the model. We would firstly like to relax the assumption
regarding the server always accepting connections, and also to allow the check
on ESTABLISH SDUs to fail. This requires enhancing the transport service.
Secondly, we would like to include pipelining of requests. Future work will also
consider relaxing the other assumptions made in section 3.1 and may include
quantitative analysis similar to Wells et al [16].
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Abstract. To provide privacy protection, cryptographic primitives are
frequently applied to communication protocols in an open environment
(e.g. the Internet). We call these protocols privacy enhancing protocols
(PEPs) which constitute a class of cryptographic protocols. Proof of the
security properties, in terms of the privacy compliance, of PEPs is de-
sirable before they can be deployed. However, the traditional provable
security approach, though well-established for proving the security of
cryptographic primitives, is not applicable to PEPs. We apply the for-
mal language of Coloured Petri Nets (CPNs) to construct an executable
specification of a representative PEP, namely the Private Information
Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal se-
mantics of the CPN specification allow us to reason about various privacy
properties of PIEMCP using state space analysis techniques. This inves-
tigation provides insights into the modelling and analysis of PEPs in
general, and demonstrates the benefit of applying a CPN-based formal
approach to the privacy compliance verification of PEPs.

1 Introduction

To achieve privacy-enhancing features, cryptographic primitives employed in a
privacy enhancing protocol (PEP) normally have rich features (e.g. verifiable en-
cryption) which extend the common encryption and signature capabilities often
used in other types of cryptographic protocols (e.g. authentication protocols).
For example, emulating the off-line anonymity afforded by cash transactions,
a PEP can ensure that when a user purchases goods on-line, the on-line seller
does not learn the identity of the user, but at the same time can be assured that
the user’s identity has been previously verified by a known trusted entity such
that the identity can be revealed when needed. Recently, the Trusted Platform
Module (TPM) technology - which provides secure hardware storage of cryp-
tographic keys and implementation of cryptographic primitives - has also been
used in PEPs [24].

An important issue in the design of applied cryptographic protocols, such as
PEPs, is to ensure that they work correctly and do not contain errors that may
weaken the security protection provided by the cryptographic primitives em-
ployed. While the provable security approach [14] is a widely-accepted method

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 251–276, 2012.
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used to prove the security properties of cryptographic primitives, it is not suit-
able to verify privacy compliance properties of PEPs. The main reason is that
provable security emphasizes on proving the properties of a cryptographic al-
gorithm (as evidenced by the use of ideal cryptographic models, such as the
random oracle model - see [5, 17]), while the privacy compliance properties of a
PEP are behavioural and can be more naturally reasoned as properties of com-
munication protocols. For example, one of the privacy properties verified in this
paper is the enforceable conditions property (detailed in Sect. 4.3). This prop-
erty is concerned with whether the messages exchanged between protocol entities
are such that enough safeguards are included to ensure that a user’s PII is in-
deed only revealed when certain conditions are satisfied, even in the presence of
malicious behaviours from the entities involved. Consequently, attacks in PEPs
normally arise from the existence of multi-party entities who attempt to exploit
weaknesses in the design of a protocol, not directly at the algorithms of the cryp-
tographic primitives employed. Furthermore, due to the lack of computer-aided
tool support, the provable security approach is prone to errors [16].

Formal methods and languages allow the construction of unambiguous and
precise models that can be analysed to identify errors and to verify correctness
before implementation. Some of them, such as Coloured Petri Nets (CPNs) [13],
provide a graphical modelling capability, and have tool support. The application
of formal methods has been demonstrated to lead to reliable and trustworthy
security protocols [2, 8]. However, to the best of our knowledge, verification of
PEPs using formal methods is yet to mature.

In this paper, we propose a CPN-based approach to construct a formal speci-
fication of a representative PEP, namely the Private Information Escrow Bound
to Multiple Conditions Protocol (PIEMCP) [20], and to verify its privacy com-
pliance properties.1 CPNs are a widely-used formal language for system specifi-
cation, design, simulation and verification. CPNs provide a graphical modelling
language capable of expressing concurrency and system concepts at different lev-
els of abstraction. With the support of CPN Tools, basic constructs of Petri nets
are enriched with the functional programming language Standard ML (SML) [12]
such that various high-level data type definition and functions can be defined
and used in the model.

PIEMCP involves non-trivial multi-party communication (6 or more entities
in general) and employs complex cryptographic primitives and TPM functional-
ities. The hierarchical structuring mechanism of CPNs supports a modular ap-
proach in capturing the behaviour of PIEMCP at different levels of abstraction.
Using SML, the essential structures and behaviours of a wide variety of privacy-
enhancing cryptographic primitives can be captured through a “black-box-style”
abstraction such that only the essential features remain. By parameterising the
protocol model with different types of attacks, a large number of attack scenarios
are captured for analysis. The CPN model of PIEMCP is executable and can be
analysed to verify the privacy properties of the protocol using the state spaces
generated from the parameterised CPN model.

1 This paper is an extension from our earlier work [22].
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The contributions of this paper are two-fold. Firstly, it demonstrates the use
of a CPN-based approach to model and verify the privacy properties of a PEP.
To our knowledge, our work so far has been the only attempt at the formal
verification of PEPs using CPNs. Secondly, the paper proposes several modelling
and analysis approaches that have been (or can be) applied to other PEPs [19,24].
These can be used as preliminary guidelines for a general CPN-based approach
for modelling and verification of PEPs.

This paper is structured as follows. Sect. 2 briefly explains PIEMCP. Sect. 3
proposes the modelling approach and describes selected parts of the CPN model
of PIEMCP. Based on this CPNmodel, Sect. 4 details the verification of PIEMCP
focusing on a set of privacy compliance properties. Related work is discussed in
Sect. 5 with conclusions provided in Sect. 6. We assume that the reader has basic
knowledge of CPNs. While we endeavour to explain the basic idea of PIEMCP,
given the space constraints, prior knowledge in the area of information security
and privacy is useful.

2 Overview of PIEMCP

PIEMCP [20] is used in a federated single-sign on (FSSO) environment whereby
a user only has to authenticate once to an identity provider (IdP) to access
services from multiple service providers (SPs). The entities involved are users,
IdPs, SPs, and an anonymity revocation manager (ARM) or referees. An IdP
assures SPs that although users are anonymous, when certain conditions are
fulfilled, the users’ identity can be revealed. A user’s identity refers to a set of
personally identifiable information (PII). Although the services that SPs provide
can be delivered without the need of PII, they require the PII to be revealed
by an ARM or referees when certain conditions are satisfied. An example of
conditions would be “the user X ’s PII should only be revealed to SP1 if the
user has posted some inflammatory/illegal messages/pictures on the forum”.

PIEMCPconsists of four stages, namelyPII escrow (PE), key escrow(KE),mul-
tiple conditions (MC) binding, and revocation. An execution of the protocol in-
volves two distinct sessions: the escrow session which consists of a sequential exe-
cution of the PE, KE and MC stages, and the revocation session which consists of
an execution of the revocation stage. Auser can runn escrow sessions, duringwhich
his/her PII is hidden (anonymous).At least one escrow sessionhas to be completed
before a revocation session can start. During the revocation session, the user’s PII
linked to a specific SP in a specific escrow session is revealed. For n escrow sessions,
each withm-number of SPs, up to n×m revocation sessions can be performed.

PIEMCP has two variants: one uses a trusted ARM for anonymity revocation
while the other uses a group of referees (no ARM). While these two variants
overlap to a certain degree, in this paper, we only consider the second variant of
PIEMCP because it involves concurrent behaviours which highlight the relevance
of CPN as the modelling language. Figure 1 depicts the main message exchanges
between the entities of this protocol. For simplicity, a double-arrowed line is an
abstraction of an exchange of one or more messages which collectively achieve a
single cryptographic operation (normally a proof-of-knowledge operation).
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The PE stage begins when a user requests a service from a service provider
SP1. This triggers the agreement between user and SP1 of conditions (denoted
Cond1) whose fulfillment allows the PII to be revealed to SP1, and a set of
UCHVE parameters (explained in the ensuing paragraphs). SP1 then sends a
message NT-PE-1 containing Cond1 and UCHVE parameters to the IdP to es-
crow the user’s PII. The IdP contacts the user to obtain his encrypted PII (NT-
PE-2). The user then encrypts his PII using a Verifiable Encryption (VE) scheme
under a freshly generated public (pubkVE ) and private (privkVE) key pair.
The output of this VE operation is a ciphertext denoted as VE(PII)pubVE . The
user sends to the IdP, NT-PE-3 which comprises of VE(PII)pubVE and pubkVE .
The user keeps privkVE which is needed to decrypt VE(PII)pubVE . Next, the
user and the IdP engage in a cryptographic “proof-of-knowledge” (PK) protocol
(NT-PE-4). This is to prove to the IdP that the VE ciphertext given correctly
hides some certified PII without letting the IdP learn the value of the PII itself.
We denote this operation as PKVE. The output of PKVE is an acceptance or
rejection of VE(PII)pubVE . A successful PKVE operation will lead to the IdP
generating and sending a pseudonym to the user (NT-PE-5).

The KE stage is started after the user receives and stores the pseudonym.
The IdP and the user now engage in another PK protocol - the Direct Anony-
mous Attestation (DAA) (NT-KE-1). This is to convince the IdP that the user
is using a valid TPM device while concealing the identity of the TPM device. A

Fig. 1. Message exchanges within the four stages of PIEMCP
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successful DAA prompts the user’s TPM to generate (1) a universal custodian-
hiding verifiable group encryption (UCHVE) of privVE under Cond1 (denoted
as UCHVE(privkVE)

1...n
Cond1 and (2) a TPM proof of a correct UCHVE execu-

tion. In the rest of this paper, the generation of such UCHVE ciphertext with
the TPM proof are represented by a TPM module, called TPM Module 2. The
UCHVE(privkVE)

1...n
Cond1 actually is a group of n distinct ciphertext pieces which

can later be given to a group of n referees among whom there are t (t ≤n)
designated referees. Only the designated referees can decrypt their respective
ciphertext pieces. At least k (k ≤ t) decrypted pieces are required to recover the
VE private key (i.e. k is the threshold value). Both UCHVE(privkVE)

1...n
Cond1 and

the corresponding TPM proof are sent to the IdP in NT-KE-2. The IdP then ver-
ifies the proof and if correct, prepares a response NT-KE-3 to SP2 which includes
the VE(PII)pubVE and UCHVE(privkVE)

1...n
Cond1. Having obtained VE(PII)pubVE

and UCHVE(privkVE)
1...n
Cond1, SP1 now can, with the help of referees, recover the

user’s PII when Cond1 is fulfilled, but cannot do so until that time. SP1 then
confirms to the user that his/her PII has been escrowed successfully.

In the MC stage, the user goes to another service provider SP2 to request ser-
vice. This time SP2 requests the IdP to escrow the privkVE in NT-MC-1 under
conditions Cond2 (i.e. Cond1 = Cond2) and UCHVE parameters that have been
agreed between user and SP2. The IdP requests the user’s TPM to produce
UCHVE(privkVE)

1...n
Cond2 (that is, a new UCHVE encryption of privkVE under

Cond2) and the associated TPM proof (NT-MC-2). The user then performs the re-
quested operation and sends UCHVE(privkVE)

1...n
Cond2 with the correspondingTPM

proof in NT-MC-3 (in other words, the TPM Module 2 is executed again). The IdP
verifies the TPM proof of UCHVE(privkVE)

1...n
Cond2, and if correct, prepares a re-

sponse NT-MC-4 to SP2 which includes VE(PII)pubVE and UCHVE(privkVE)
1...n
Cond2.

Similar to SP1, SP2 now has the necessary ciphertexts which, with referees’ help,
can reveal the user’s PII when Cond2 are satisfied, but cannot do so yet at this
point. SP2 then confirms to the user that his/her PII has been escrowed
successfully.

For any subsequent service providers that the user contacts within an es-
crow session, the user and the service provider only need to execute the MC
stage activities. Therefore, the MC stage activities are specific to the second and
subsequent service providers visited by the user, while the PE and KE stage
activities are specific to only the first SP visited by the user.

The revocation stage is executed when the agreed conditions are satisfied and
when a user has completed at least one escrow session. Assuming that Cond1 is
satisfied, SP1 sends a revocation request NT-REV-11...n to each of the n referees.
For each referee ri, the message NT-REV-1i consists of UCHVE(privkVE)

i
Cond1

and Cond1. Each referee then checks if Cond1 is fulfilled, and if so, the ref-
eree tries to decrypt the given ciphertext piece. Only the designated referees
can decrypt the ciphertext pieces. If decryption is successful, each designated
referee sends the decrypted data NT-REV-21...t to SP1. When k (k ≤ t) or more
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decrypted data are received, SP1 can recover privVE , and subsequently decrypt
VE(PII)pubVE to recover the user’s PII.

Above we described the normal execution of PIEMCP (i.e. without attacks).
However, each of the parties involved may behave maliciously resulting in various
attack scenarios. The design goal of PIEMCP is to achieve the required security
behaviour with and without considering the attacks. In the next section, a CPN
model of PIEMCP is presented which can be configured to capture both normal
scenario and attack scenarios.

3 CPN Model of PIEMCP

3.1 Modelling Approach

We introduce two modelling approaches specific to PEPs: the Cryptographic
Primitive Abstraction and the Model Parameterization with Attacks. We have
also captured the TPM Provable Execution modelling approach in our model
but it is not described in this paper (for details, see [18, Section F.2]).

Cryptographic Primitive Abstraction. To capture complex cryptographic beha-
viours, we firstly model the representation of a ciphertext as a CPN colour set,
and then capture its operations using SML functions. This approach is flexible
and inclusive as virtually any type of cryptographic primitives can be captured.
The CPN record type can encode the necessary information to represent a
primitive properly, and SML can be used to simulate the operations. The cryp-
tographic operations captured by SML functions are “symbolic” rather than an
actual operation. For example, an encryption function defined in our approach
does not perform the actual encryption, rather, we impose certain restriction on
what the recipient of this ciphertext can do with this message (such as not being
able to extract the message without having a correct decryption key).

Our approach of expressing cryptographic operations as functions promotes
reuse which leads to a cleaner and more concise model. A disadvantage of this
approach is that the modeler has to consciously follow the restriction imposed
on cryptographic messages produced by these functions as CPN Tools does not
automatically enforce these restrictions. In Sect. 3.2, we demonstrate this ap-
proach by modelling a VE ciphertext and a zero-knowledge operation (PKVE).
The complexity of UCHVE ciphertext prevents us from describing it due to space
constraint; however, it is available in the referenced thesis [18, pp. 196].

We also propose a technique to capture the commonly-used message signing
and verification operations. We define a CPN colour set for the message to be
signed, followed by a definition of its signature. A signed message is a pair con-
sisting of the message and its signature. The verification of a signed message upon
the receipt of the message is enforced within a transition guard. If the signature
verification fails, the message integrity and/or authenticity are compromised. As
a result, the guard returns a false value, thus preventing any further processing
on the message – a so-called fail-stop mechanism.
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Model Parameterization with Attacks. We propose the parameterisation ap-
proach to modelling attacks such that one or more attacks can be switched
on or off depending on the environmental assumptions. We scope our work to
only consider malicious insiders - which we consider to be a greater concern
in PEPs. The Dolev-Yao intruder model [11] (which represents an external in-
truder), while relevant, is not considered in this paper. There are many attacks
that a malicious insider could launch. Creating a new model to capture each type
of attack (existing or new) scales poorly as the number of attacks grows. Param-
eterisation allows the re-use of the existing model while allowing it to behave
differently according to the attacks being set - virtually allowing thousands of
possible attack scenarios to be captured. We have modelled 14 types of attacks
using 14 parameters, each with a boolean value of “true” (on) or “false” (off),
which theoretically can capture 214 possible attack scenarios. The attack param-
eters are then referred to in the arc-inscriptions, transition guards, or transition
code-regions. Note that although it is not necessary to consider all attack sce-
narios (see Sect. 4), the ability of our model to capture a comprehensive attack
scenario may be exploited in the future to allow other types of analysis.

The advantage of this approach is that we do not have to change the model
(e.g. adding/deleting transitions) to obtain different behaviours. The disadvan-
tage however is that it may reduce the readability of the model due to the
addition of parameter inscriptions (such as if/else statements) and may make
model debugging more difficult as the number of attacks increases. This ap-
proach risks the introduction of complexity during model validation in compar-
ison to having two separate models (one without attacks and one with attacks).
However, this risk is somewhat compensated with an easier model maintenance
practice: changes to the basic behaviour of the model only need to be applied
once to the model and its effect will apply to all other parameterized behaviours.
This is not the case when we have two or more separate models.

3.2 Model Description

The PIEMCP model is a hierarchical CPN consisting of 4 levels: 1 main (top-
level) page, 5 second-level pages, 13 third-level pages, and 1 fourth-level page.
As detailed in Sect. 2, a sequential execution of the PE, the KE, and the MC
stage forms one escrow session. For simplicity, our model covers a minimum full
protocol execution: the PIEMCP CPN model allows sequential execution of a
certain number of escrow session (determined by the model parameter session)
followed by one revocation session. Note that it is possible for both the escrow
and revocation session to run in parallel, however, modelling such concurrency
does not capture any additional behaviour of the protocol as these two sessions
are assumed to be distinct, i.e. they do not interfere with each other.2 Therefore,
our model currently does not capture this parallelism.

2 While it may be interesting to model and analyze the security properties of our
protocol in the presence of parallel escrow and revocation sessions, we reserve this
for future work.
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The revocation page can be executed after the completion of at least one
escrow session. Selected parts of the PIEMCP CPN model are described to
demonstrate the modelling approaches detailed in Sect. 3.1. Relevant CPN colour
sets definitions and functions are provided in Table 1.

Main page. Figure 2 shows the top-level page which captures the protocol en-
tities (represented as substitution transitions) and the communication channels
between any two entities (as places with thick lines). Since these communication
channels represent application-layer communication, we assume the existence of
no errors commonly associated with lower-layer communication channels (such
as data loss). While it may be possible to fold the three SP1 REFEREE chan-
nels into one, we decided to split them into three to improve readability (i.e. to
explicitly separate distinct logical communication channels between entities).

As explained in Sect. 2, the PE and KE stage activities are specific to the first
service provider (e.g. SP1) visited by the user, while the MC stage activities are

Table 1. Colour set definition
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Fig. 3. The PIEMCP CPN – USER second-level page

specific to the second and subsequent service providers (e.g. SP2). Therefore, we
decided to separate the modelling of SP activities into two substitution transi-
tions (SP1 and SP2) due to their non-overlapping activities.

Second-level Pages. The multi-stage operation of PIEMCP is detailed on the
second-level pages for each of the entities. For example, the second-level page for
the user is shown in Figure 3 whereby the sequential execution of the PE, KE
(with SP1), and MC (with SP2) stages is modelled. The completion of the MC
stage signals the completion of one escrow session and may trigger the execution
of another escrow session by marking the place START SETUP. The determination
of whether or not to execute another escrow depends on the model parame-
ter session and is explained in detail in the extended version of this paper
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[21, Appendix A.2]. Furthermore, the completion of an escrow session also means
that, theoretically, the user PII for that particular escrow session is now revoca-
ble. However, as explained in the beginning of Sect. 3.2, our model will only allow
the execution of the revocation stage after the completion of a certain number
of escrow sessions as determined by the parameter session. Similar second-level
pages for IdP, SP1, and SP2 have also been modelled (detailed in the extended
version of this paper [21, Appendix A.1]).

Third-level Pages. The details of the IdP’s, SPs’, and user’s activities during
the PE, KE, MC, and revocation stages are provided on the third-level pages.
Four examples of such pages are provided in Figures 4 to 7. Note that the main
transitions in Figures 4 to 6 have been annotated with a number (located at
the bottom-right corner of each of the transitions) indicating the normal order
(i.e. all attack parameters switched off) in which they occur.

Figure 4 depicts the model of the IdP’s activities during the PE stage. This
page demonstrates the message signing and verification approach. The input
arc to the transition IDP VERIFIES SP1 REQ AND STARTS PII ESCROW (Figure 4, top
centre) contains a variable escrowReqSig of colour set SIGNED SP REQ within the
union colour set IDP SP1 (see Table 1 lines 14, 15 and 26). The escrowReqSig

variable represents an SP1-signed message whose content is the conditions string.
This message is equivalent to message NT-PE-1 in Figure 1. As the IdP receives
this message, it verifies the signature validity which is captured in the transition
guard of the same transition. If the guard expression (verifyEscrowReqSig(
escrowReqSig)) returns true, the signature is valid and the transition is enabled,
allowing the IdP to contact the user to proceed with the PE stage.

Figure 5 depicts the details of the user’s activites. This page models the gen-
eration of necessary cryptographic data by the user. Here, we demonstrate how
complex cryptographic primitive behaviours can be modelled. The VE cipher-
text is defined as the colour set CIPHER VE PII (see Table 1 line 10) which is a
record consisting of four fields: the message itself, the public encryption key,
the label under which the message is encrypted, and the provability property. A
provable ciphertext means that the recipient of the ciphertext can validate that
the received ciphertext correctly encrypts some claimed value (in this case the
user’s PII) without the recipient learning the value of either the PII itself or the
decryption key. We consider the message field inside a colour set that represents
a ciphertext to be unreadable. The model in Figure 5 captures the generation of
a VE ciphertext of PII, the result of which will trigger the placement of a token
in the PII VE CIPHER place (Figure 5, top-right).

The VE operations, including the encryption and decryption operations, are
captured as functions (see Table 1 lines 30-35). As stated in Sect. 3.1, our encryp-
tion operation does not perform the actual message encryption and decryption
operation. Rather, these operations are abstracted into two functions – veEnc

and decVE – and an auxilliary function veKeysRel. The function veEnc trans-
forms the main inputs for a VE encryption algorithm and outputs a token typed
by the colour set CIPHER VE PII. The decryption operation (1) takes as input
a representation of a VE private key and the ciphertext to be decrypted, (2)
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Fig. 4. The PIEMCP CPN – IDP PE page
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checks if the private key and the public key used to produce the ciphertext satis-
fies some relation (as captured by veKeysRel) and if the condition string given
is indeed the same as the one used for producing the ciphertext, then it outputs
the result (3) in the form of the DECRYPT OUTPUT colour set (Table 1 line 22):
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the first element indicates the success/failure of the decryption, and the second
element contains the decrypted message (in case of success).

Next, the user sends the NT-PE-3 message (containing the VE ciphertext
of PII, and the public VE key) to the IdP - represented by the transition
U SENDS PII ESCROW DATA (Figure 5, middle-right). When the IdP receives this
message, the PKVE operation is triggered (NT-PE-4). Here, we demonstrate how
a complex zero-knowledge proof protocol like PKVE is modelled in CPN. We
break this operation into three transitions across the USER PE and the IDP PE

pages (indicated with grey-filled transitions): the START PKVE transition triggered
by IdP to signal the user the start of such a protocol (Figure 4, centre), the
GENERATE PKVE PROOF transition executed on the user side to generate the re-
quired PKVE proof data (Figure 5, middle-bottom), and the VERIFY PKVE PROOF

transition executed by the IdP to verify the given PKVE proof data (Figure 4,
middle-left). The result of PKVE is represented by the place PKVE RESULT. The es-
sential processing required by the IdP to verify the correctness of the proof is
captured by the function pkve3, which is invoked in the arc inscription from the
transition VERIFY PKVE PROOF to the place PKVE RESULT. Upon a successful PKVE,
the IdP generates a pseudonym and sends it to the user to be used for that
particular session.

Figure 5 also shows the attack parameterisation approach mentioned in
Sect. 3.1. The USER ATTACK2 parameter (see the output arc inscription from the
transition U SENDS PII ESCROW DATA to the place IDP USER around the centre of
Figure 3) depicts the behaviour of a malicious user who falsifies/gives an incor-
rect VE public key to the IdP in the NT-PE-2 message. Thus, when USER ATTACK2

is set to “true”, the user will send an incorrect VE public key value (represented
as “0”), otherwise, a correct value is sent.

Figure 6 shows the model for the revocation stage. The first transition (top)
SP1 RETRIEVES FULFILLED CONDITIONS is only enabled if the total number of exe-
cuted escrow sessions (represented by the variable counter) is greater than the
value of the parameter session. The completion of an escrow session increases
the value of counter by one, and as a result, the completion of session-number
of escrow sessions will result in the value of counter to be session+1. Hence,
the guard to the above transition essentially ensures that there must be at least
x-number of escrow sessions completed before the revocation stage can start
(whereby x is determined by the session parameter).

Next, SP1 firstly retrieves the condition string of a completed escrow session
which is deemed to have been fulfilled (the model parameter toRevoke - Table 1
line 40 - determines the corresponding completed escrow session). This data is
retrieved from the stored session data executed through the code segment as-
sociated with the transition SP1 RETRIEVES FULFILLED CONDITIONS (which is not
shown in Figure 6). Note that the session data were previously stored by SP1
at the completion of the KE stage (details available in the extended version of
this paper [21, Appendix A.4]). Figure 6 also demonstrates the parameterisa-
tion of another attack parameter SP ATTACK3 whereby a service provider may

3 Definition of this function is available in the referenced thesis [18, pp. 305].
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Fig. 6. The PIEMCP CPN – SP1 REV page (revocation stage initiated by SP1)

attempt to revoke a user’s PII by including the trivial “easy to fulfill” condition
string (which is different from what was agreed with the user previously during
the escrow stage). This is captured in the two output arcs from the transition
SP1 RETRIEVES FULFILLED CONDITIONS. The setting of SP ATTACK3 will mark the
place ATTACK CONDITIONS (Figure 6, top left) with the “easy to fulfill” condition
string and no token will be sent to the place ACTUAL CONDITIONS (Figure 6, top
right). In the absence of this attack, the place ACTUAL CONDITIONS will be marked
with the actual condition string as read from the session data file and the place
ATTACK CONDITIONS will not have any token.

SP1 then sends a PII revocation request to all referees, modelled by the transi-
tion SP1 SENDS REVOKE REQUEST (Figure 6, middle right), by sending the condition
string and the UCHVE pieces which are retrieved by reading the session data
stored previously (achieved through code-region not shown in Figure 6). The
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details of each referee’s model are described later in this section; at this stage,
when the SP1 receives the decrypted UCHVE pieces, it will then attempt to
recover the VE private key. This is captured by the input arc to the transi-
tion SP1 RECOVERS VE PRIVATE KEY (Figure 6, bottom left). This arc inscription
requires t (representing the threshold value) successfully decrypted pieces of the
UCHVE ciphertext by referees before the message (i.e. the VE private key) can
be decrypted. This page also demonstrates how CPN can be used to capture the
concurrent processing required (amongst the referees) during the UCHVE de-
cryption process. The combination of the modelling approach used on this page
and the referee pages (desribed in the ensuing text) therefore demonstrates how
we can captures a threshold decryption process using CPN.

The details of the referees’ model are described below. Figure 7 (left-hand
side) shows the detailed referees’ activities during the revocation stage. Since the
operations of each referee are the same, we decided to create one REFEREE page
which can be instantiated for individual referees. An example of a REFEREE page
instance is shown in Figure 7 (right-hand side). To capture the different runtime
behaviour of individual referees, we parameterise each REFEREE page instance (on
the ALL REFEREE page) with two main parameters: the referee number (ID) and
the condition fulfillment decision (the REFEREE NUMBER i and COND FULFILLMENT i

places respectively, where i={1,2,3}). The later parameter is used to capture
the (non-)malicious behaviour of a referee and is determined through the setting
of its initial value. For example, the initial marking of COND FULFILLMENT 1 (Fig-
ure 7, top left) states that when all attack parameters which affects the referees’

Fig. 7. ALL REFEREES page (left) and a REFEREE page instance (right)
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decision of conditions fulfillment (i.e. REF ATTACK1 and SP ATTACK3) are false,
the model considers both situations whereby the 1st Referee (REFEREE 1) agrees
and disagrees to the fulfillment of the conditions; hence the place is initialized
with both a true token and a false token.

When any one of the attacks listed above is set to true, we now need to
be able to differentiate between “honest” referee and “malicious” referee. The
REF ATTACK1 parameter captures the behaviour of malicious referees which agree
on some conditions fulfillment even when it is not the case. An honest referee will
state the actual fulfillment of the conditions, hence, for REFEREE 1 (which repre-
sents an honest referee - consistent with our protocol assumption that there exists
at least one honest designated referee), the value of the place COND FULFILLMENT 1

(Figure 7, top left) is set according to the model parameter condActually. For
malicious referees (REFEREE 2 and REFEREE 3), the initial value of their correspond-
ing places, COND FULFILLMENT 2 and COND FULFILLMENT 3 (Figure 7, left middle),
will be set to true (when REF ATTACK1 is set to true) to capture the mali-
cious behaviour decsribed before. The attack parameter SP ATTACK3 is defined
to capture the behaviour of a service provider attempting to launch a revocation
session using a set of made-up conditions which will most likely cause the refer-
ees to agree to their fulfillment. When this parameter is switched on, the initial
marking for the above-mentioned places of all referees is a true token.

Figure 7 (right) also shows the parameterization of malicious referees who
attempt to pool all decrypted UCHVE pieces amongst themselves with the
hope of being able to recover the VE private key (captured by the parame-
ter REF ATTACK2). By studying the inscription of the arc from the transition
REF DECRYPTS AND SENDS UCHVE PIECE to place REFEREES UCHVE DECRYPT EXTRA COPY

(Figure 7, bottom right) and by observing the parameter honestRef set to 1 (Ta-
ble 1 line 39), this malicious behaviour only applies to REFEREE 2 and REFEREE 3.

4 Verification of PIEMCP

4.1 Analysis Approach

We conduct the verification of PIEMCP using state space analysis. The verifi-
cation can be complex due to the numerous avenues by which attackers could
attempt to break the privacy protection provided by PIEMCP. We propose to
scope the verification within a set of plausible known attack scenarios.

The verification of PIEMCP takes into account both the absence and pres-
ence of attack behaviours, and is carried out in two stages: the baseline behaviour
analysis (Sect. 4.2) and privacy compliance verification (Sect. 4.3). Firstly, the
baseline behaviour analysis is performed through standard state space analy-
sis, including the inspection of proper session termination, deadlock/livelock
freedom, and absence of unexpected dead transitions. As a result, the analysis
informs us about the baseline correctness of PIEMCP. Next, we specify a set
of common privacy compliance properties of PIEMCP using ASK-CTL [9], a
dialect of Computational Tree Logic (CTL), supported by CPN Tools. These
property statements are then interpreted into queries for model-checking the
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state spaces generated from the PIEMCP CPN model to prove if the privacy
compliance holds for the protocol.

The PIEMCP CPN model has an initial state where the protocol can begin
the setup process and the session number is initialised with the first session’s
identifier and the three referee identifiers are specified. This is captured by the
initial marking M0 where the places START SETUP and SESSION on the USER page
(Figure 3, bottom) and the three REFEREE NUMBER i (i = 1, 2, 3) places on the
ALL REFEREES page (Figure 7, left-hand side) are marked accordingly. Further-
more, our model has a session parameter to execute two sequential escrow
sessions before a revocation is started (see Table 1 line 37).

In the absence of attack behaviour (that is, all attack parameters are set to
false), the state space generated from the above configuration has 606 nodes
and 1374 arcs, and contains no cycles (given the fact that the SCC graph has the
same number of nodes and arcs). The PIEMCP CPN model is then configured
to include a number of known attacks, and is executed under each of the config-
urations. A set of state spaces is generated capturing the behaviour of PIEMCP
with the corresponding attack scenarios.

We introduce some notations to be used. CPNM0

P denotes the PIEMCP CPN

model with an initial marking M0. P
PageName
PlaceName and T

PageName
TransitionName refer to a specific

place and transition in the CPN model, respectively. The marking of a place is
then written as M(P PageName

PlaceName).

4.2 Baseline Behaviour Analysis

The standard state space report generated from CPNM0

P without any attack be-
haviour (when all the attack parameters are set to false) shows that there are 8
dead markings. A close inspection of these markings indicates that they reflect all
8 different protocol termination points based on the dynamic conditions fulfill-
ment decision (boolean decision) by the 3 referees modelled on the ALL REFEREES

page (Figure 7). Also, there are three dead transitions: T SPI REV
USE ATTACK COND (Figure 6),

T ALL REFEREES
REFEREE FILTERS DECRYPT RESULT, and T ALL REFEREES

REF RECOVERS VE PRIVATE KEY (Figure 7-left). These
are expected dead transitions because they reflect attack behaviours.

Moreover, the report shows that both the upper and the lower integer bounds
of the place P USER

SESSION is 1 (i.e. a place invariant). This is expected since the place
is marked with the identifier of an ongoing escrow session throughout the pro-
tocol execution (where sessions are executed one by one without interruption).
Also, the place P ALL REFEREES

REF RECOVERED VE PRIVATE KEY is always empty, which is expected as
it reflects the modelling strategy for capturing problems (which then marks this
place) with the basic design of the PIEMCP itself. In conclusion, the state space
report confirms the expected baseline behaviour of PIEMCP without attacks.

For the PIEMCP with attacks (when one or more attack parameters are set
to true), the expected baseline behaviour is to stop the protocol execution as
soon as an attack is detected - a fail-stop behaviour. We would like to validate
that the PIEMCP CPN model exhibits such behaviour when taking into account
all possible attack scenarios.
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Table 2. The set of attack parameters, their effects on the PIEMCP stages, and the
number of attack scenarios to consider

Entity Parameter Escrow Session Revc. Description
PE KE MC

User USER ATTACK1 T Incorrect PII and Cond1 used to

generate VE(PII)pubVE

USER ATTACK2 T Incorrect pubkV E sent to IdP

USER ATTACK3 T Incorrect UCHVE parameters used

USER ATTACK4 T Non-agreed “hard to fulfill”

conditions used in TPM Module2

Service SP ATTACK1 T Non-agreed “easy to fulfill”

Provider conditions forwarded to IdP

SP ATTACK11 T during PE and KE respectively

SP ATTACK12 T Non-agreed UCHVE parameters

forwarded to IdP

SP ATTACK2 T Non-agreed “easy to fulfill”

conditions forwarded to IdP at MC

SP ATTACK22 T Non-agreed UCHVE parameters

forwarded to IdP at MC

SP ATTACK3 T See explanation for Figure 6, pp. 262

SP ATTACK6 T SP2 uses invalid signature key

SP ATTACK7 T SP1 and SP2 use the same

condition within an escrow session

Referee REF ATTACK1 T See explanation for Figure 6 and

REF ATTACK2 T Figure 7, pp. 262

Number of attack 23-1 24-1 24-1 23-1
scenarios to consider

Table 2 details all the 14 attack parameters considered, and the particular
stage of PIEMCP where each attack may take place. As mentioned in Sect. 3,
the PIEMCP CPN model captures sequential executions of the four stages in
the order that PE is followed by KE, then MC and optionally Revocation stage
at last. Following this order, we first allow only the attacks to occur in the PE
stage. There are 23−1 attack scenarios resulting from combinations of 3 attack
parameters (USER ATTACK1, USER ATTACK2 and SP ATTACK1). These are captured by
7 configurations of CPNM0

P which then lead to the generation of 7 state spaces.
Analysis of these state spaces shows that the protocol detects the above attacks
and terminates within the PE stage. Similarly, we allow only the attacks to occur
in the subsequent KE, MC, and Revocation stages, respectively, and the analysis
results show that for each of the stages the protocol detects the relevant attacks
and terminates within that stage.

From the above analysis, it follows that due to the sequential execution of
the four stages of PIEMCP and the fact that the fail-stop mechanism does work
within each of these stages, once an attack occurs in an earlier stage (e.g. PE) the
protocol terminates within that stage, regardless of whether or not the attacks
are allowed to happen in a subsequent stage (e.g. KE, MC, or Revocation).
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Therefore, the total 44 attack scenarios that pass the above fail-stop behaviour
validation cover the behaviour of all possible 214 attack scenarios in PIEMCP
based on the list of 14 attack parameters specified in Table 2.

4.3 Privacy Compliance Verification

We define four privacy compliance properties for PIEMCP. These are formalised
as ASK-CTL statements over CPNM0

P . CPN Tools support ASK-CTL [9] as
an implementation of a subset of CTL (mainly the “until” operator) over the
state spaces of CPN models. ASK-CTL implements two basic path quantification
operators to capture this logic: Exist Until(A1, A2) and Forall Until(A1,
A2). The Exist Until operator means that there must be at least one path,
from a given state, whereby predicate A1 holds for every state in the path until
the state where predicate A2 holds. The Forall Until operator is similar,
except that it requires all paths to fulfill A1 until A2 is true. From these, two
derived path quantification operators are Pos(A)=Exist Until(true, A) and
Ev(A)=Forall Until(true, A), which check the reachability of a state in
which predicate A holds. More specifically, Pos(A) checks if there is at least
one path that leads to a state where A holds (i.e. it is possible to reach such
a state), while Ev(A) checks if all paths lead to a state where A holds (i.e. it
must eventually reach such a state).4

Below, we use the above ASK-CTL temporal operators, a dialect of those in
CTL, to specify four privacy compliance properties in the context of PIEMCP.
We introduce some notations to be used in the property definitions. Firstly,
we divide the 14 attack parameters into two groups: Ases for the set of attack
parameters targeting an escrow session, and Arev for the set of attack parameters
targeting a revocation stage. More specifically,

– Ases = {USER ATTACK1, USER ATTACK2, USER ATTACK3, USER ATTACK4, SP ATTACK1,
SP ATTACK11, SP ATTACK12, SP ATTACK2, SP ATTACK22, SP ATTACK6, SP ATTACK7}

– Arev = {SP ATTACK3, REF ATTACK1, REF ATTACK2}
Next, we define two predicates with respect to an escrow session or a revocation:

– S is the set of escrow sessions, ∀s ∈ S, SessionsM = (M(P Main
SESSION) = 1‘s)

– R is the set of revocable sessions, ∀r ∈ R, RevokingrM = (M(P SP1 REV
BEING REVOKED) = 1‘r)

We refer to various places and transitions in the formalization of properties.
Given the space constraints, only the formalization of the enforceable conditions
can be followed using the CPN pages that have been described in Sect. 3.2.
Other properties refer to certain places/transitions located within those CPN
pages which are described in the Appendix.

Multiple Conditions. In PIEMCP, when no attack occurs during an es-
crow session, the multiple conditions property requires that the protocol always
reaches the end of the session, and also each SP should receive an escrowed PII

4 ASK-CTL provides many other operators, which we do not use in the compliance
property specification.
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that is cryptographically bound to conditions which are different from one SP to
another. Any attacks which may comprimise this property must be detected and
caused a premature ending of the protocol. We have configured the CPN model
with one attack parameter that may compromise this property, SP ATTACK7, which
depicts the scenario of SPs colluding to use the same condition string with the
same user in a session. The goal of this attack is to make sure that all SPs in-
volved in an escrow session share the same condition string such that when it is
satisfied, all SPs within that escrow session are authorized to learn the user’s PII.
Therefore, in such a scenario, we expect the user to detect it and prematurely
end its interaction with the malicious SP.

We formalize the above informal property definition as follows: In CPNM0

P ,
in the absence of attack behaviour, when the protocol runs to the end of an
escrow session, the place P USER MC

CAM START NEXT SESSION is marked signaling the end of a
MC stage (i.e. the end of a session - see [21, Figure 16] for the corresponding
CPN model), and the place P Main

SESSION (Figure 2) is marked by the session identifier
of that escrow session. The two places, P SP1 KE

UCHVE COND and P SP2
UCHVE COND (see [21, Figure

15, Figure 18] for the corresponding CPN models), which are used to store the
above conditions regarding an escrowed PII for SP1 and SP2 respectively, should
be marked by different conditions at the end of an escrow session. Informally,
this means that the value of Cond1 and Cond2 (referred to in Section 2) must
not be the same (Cond1 = Cond2).

When SP ATTACK7 is switched on, the desired behaviour of our protocol (re-
flecting the non-violation of this property) is captured by those execution paths
which lead to a marking where P USER MC

CAN REQUEST SP2 SERVICE (see [21, Figure 16] for the
corresponding model) is marked with a false token.

Property 1 (Multiple Conditions). With the following predicates:

– SessionEnd M = (M(P USER MC
CAM START NEXT SESSION) = 1‘e)

– DiffCondSP M = (M(P SP1 KE
UCHVE COND) = ∅ ∧ M(P SP2

UCHVE COND) = ∅ ∧
M(P SP1 KE

UCHVE COND) = M(P SP2
UCHVE COND))

– ReqSP2Fail M = (M(P USER MC
CAN REQUEST SP2 SERVICE) = 1‘false)

PIEMCP has multiple conditions property iff CPNM0

P has the following be-
haviour:

– if all the attack parameters Ases are false, then
∀s ∈ S, ∀M ∈M0>: Ev(Sessions M ∧ SessionEnd M ∧ DiffCondSP M)

– otherwise, if SP ATTACK7 (and others in Ases are false), then
∃s ∈ S, ∃M ∈M0>: Ev(Sessions M ∧ ReqSP2FailM) ��

Zero-knowledge. In PIEMCP, when there are no attacks during an escrow
session, and before the revocation of a user’s PII for that escrow session, the
zero-knowledge property requires that the IdP must validate that the cipher-
texts (and the corresponding parameters) it possesses are correct while at the
same time does not learn the value of the user’s PII. When there are attacks
which may compromise this property, we require our protocol to be able to detect
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it. A malicious entity (such as user) may falsify the ciphertexts or their related
parameters with the hope that the IdP does not detect it and still accepts the
ciphertexts and the related parameters. If this situation occurs, then this prop-
erty is violated due to flaws in the design of our protocol. We have modelled six
attacks that may compromise this property with the parameters: USER ATTACK1,
USER ATTACK2, USER ATTACK3, USER ATTACK4, SP ATTACK12, and SP ATTACK22. All of
these attacks involve either the user or SPs sending to the IdP some incor-
rect/falsified ciphertexts and/or related parameters. For example, USER ATTACK1

involves the user sending to the IdP a ciphertext which encrypts some “garbage”
data. The details of how we model these attacks are available in the extended
version of this paper [21, Appendix B] (among which USER ATTACK2 was described
in Sect. 3.2).

We formalize this property as follows: In CPNM0

P , three places, P IDP PE
PKVE RESULT

(Figure 4, bottom-left corner), P IDP KE
TPM PROOF VERIFICATION RESULT ( [21, Figure 14], and

P IDP MC
TPM PROOF VERIFICATION RESULT ( [21, Figure 17]), capture the correctness of the en-

cryption. When there are no attacks, all three places must be marked by a true

token; when any of the above-mentioned attacks is switched on, at least one of
the three places must be marked by a false token.

Property 2 (Zero-knowledge). With the following predicates:

– UsrVE-T M = (M(P IDP PE
PKVE RESULT) = 1‘true)

– UsrVE-F M = (M(P IDP PE
PKVE RESULT) = 1‘false)

– UchveKE-T M = (M(P IDP KE
TPM PROOF VERIFICATION RESULT) = 1‘true)

– UchveKE-F M = (M(P IDP KE
TPM PROOF VERIFICATION RESULT) = 1‘false)

– UchveMC-T M = (M(P IDP MC
TPM PROOF VERIFICATION RESULT) = 1‘true)

– UchveMC-F M = (M(P IDP MC
TPM PROOF VERIFICATION RESULT) = 1‘false)

PIEMCP has zero-knowledge property iff CPNM0

P has the following behaviour:

– if all the attack parameters in Ases are false, then ∀s ∈ S:
Ev(Sessions ∧ UsrVE-T ∧ UsrTPM-T ∧ UchveKE-T ∧ UchveMC-T) ∧
¬Pos(Sessions ∧ (UsrVE-F ∨ UsrTPM-F ∨ UchveKE-F ∨ UchveMC-F))

– if USER ATTACK1 ∨ USER ATTACK2 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions ∧ UsrVE-F) ∧ ¬Pos(Sessions ∧ UsrVE-T)

– if USER ATTACK3 ∨ USER ATTACK4∨ SP ATTACK12 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions ∧ UchveKE-F) ∧ ¬Pos(Sessions ∧ UchveKE-T)

– if SP ATTACK22 (and others in Ases are false),
then ∃s ∈ S: Ev(Sessions ∧UchveMC-F) ∧ ¬Pos(Sessions∧UchveMC-T) ��

Enforceable Conditions. The enforceable conditions property requires that
a user’s PII should never be revealed unless all designated referees agree that
the cryptographically bound conditions are satisfied and that the referees must
not be able to learn the value of the PII themselves (they can only decrypt
UCHVE ciphertext pieces which does not allow them to learn the PII - at
least k decrypted UCHVE pieces are needed). This requirement applies regard-
less of whether there are any attack behaviours or not. Possible attacks that
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can be launched to compromise this property include those parameterised by
REF ATTACK1 and REF ATTACK2 (both attacks have been described in Sect. 3.2).

We formalize this property as follows. Note that the fulfilment status of cer-
tain revocation conditions for a session is captured by parameter condActually

(Table 1 line 36). In CPNM0

P , if condActually does not hold, then: (1) the num-
ber of decrypted UCHVE pieces (|M(P SP1 REV

UCHVE DECRYPT SUCCESS)| in Figure 6, bottom
left) by the designated referees must be fewer than the minimum number of ref-
erees (k) needed for a successful PII revocation, and (2) the user PII must not be
revealed by checking the marking which indicates the revelation of the user PII
(M(P SP1 REV

RECOVERED USER PII) = ∅ in Figure 6, bottom right corner) in each revoking ses-
sion must not be reached too. When condActually holds, we expect the number of
decrypted UCHVE pieces to be greater or equal to k, and that the user’s PII must
eventually be revealed. Finally, we must ensure that the marking indicating ille-
gal recovery of private VE key by the referees (M(P ALL REFEREES

REF RECOVERED VE PRIVATE KEY) = ∅
in Figure 7, bottom left corner) is not reachable.

Property 3 (Enforceable Conditions). With these predicates and notations:

– HasRefVEKey M = (M(P ALL REFEREES
REF RECOVERED VE PRIVATE KEY) = ∅)

– HasRecUsrPII M = (M(P SP1 REV
RECOVERED USER PII) = ∅)

– HasRevocation M = (M(P SP1 REV
SESSION BEING REVOKED) = ∅)

– k = 2, ..., n specifies the minimum number of referees who need to confirm
the fulfilment of revocation conditions for a successful PII revocation

– [M0> is the set of reachable markings (from the initial marking M0)

PIEMCP has enforceable conditions property if and only if CPNM0

P , with all
the parameters in Ases being false, has the following behaviour:

– ¬Pos(HasRefVEKey)
– if ¬condActually, then

• ∀M ∈ [M0>: HasRevocation(M)⇒ |M(P SP1 REV
UCHVE DECRYPT SUCCESS)| < k

• ∀ r ∈ R: ¬Pos(Revokingr ∧ HasRecUsrPII))
– otherwise (condActually)

• ∃M ∈ [M0>: HasRevocation(M)⇒ |M(P SP1 REV
UCHVE DECRYPT SUCCESS)| ≥ k

• ∀ r ∈ R:Ev(Revokingr∧HasRecUsrPII)) ��

Conditions Abuse Resistant. The conditions abuse resistant property re-
quires that an SP and an IdP must not be able to make the user to encrypt the
PII or the VE private key, under a set of conditions different from those orig-
inally agreed. Similarly, an SP or IdP must not be able to successfully revoke
the user’s PII using conditions different from those originally agreed. Various
attacks which may compromise this property have been modelled (USER ATTACK1,
SP ATTACK1, USER ATTACK4, SP ATTACK11, SP ATTACK2, and SP ATTACK3). From the
brief explanation of these attacks shown in Table 2, we can see that these at-
tacks all involve manipulating the condition string at various stages of PIEMCP.
The details of how we modelled these attacks are available in the full version of
this paper [21, Appendix B] (with the exception of SP ATTACK3 which have been
explained in detail in Section 3.2).
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We formalize this property as follows: When there are no attacks, the crypto-
graphically bound conditions used to produce a VE ciphertext must be the same
as the one originally agreed (EqGenVEConds, EqSP1UchveConds, EqSP2UchveConds).
When there are attacks targeting the general conditions used in the PE stage
(parameterised by USER ATTACK1 and SP ATTACK1), we expect that the IdP is able
to detect such an attempt to use incorrect conditions (different from those orig-
inally agreed, which is captured by ¬EqGenVEConds) thus resulting in the incor-
rect encryption (UsrVE-F). Similar behaviour applies to the scenarios involving
USER ATTACK4 and SP ATTACK11 as well as those involving SP ATTACK2.

For attacks targeting the use of invalid conditions during the revocation stage
(parameterised by SP ATTACK3), we expect that the transition T SP1 REV

USE ATTACK COND (Fig-
ure 6, middle-left) is not a dead transition anymore, and that the marking which
indicates the revelation of user’s PII (HasRecUsrPII), or the illegal revelation of
VE private key (HasRefVEKey) should not be reached.

The following CPN pages (and the corresponding figures in which these pages
are shown) are used in the property definition: SETUP [21, Figure 10], USER PE

(Figure 5), USER KE [21, Figure 16], USER MC [21, Figure 13], IDP PE (Figure 4),
IDP KE [21, Figure 14], and IDP MC [21, Figure 17].

Property 4 (Conditions Abuse Resistant). With these predicates and notations:

– HasGenCond M = (M(P SETUP
GEN COND) = ∅)

– HasVECond M = (M(P USER PE
PII VE CIPHER) = ∅)

– HasSP1Cond M = (M(P SETUP
SP1 COND) = ∅)

– HasSP1UchveCond M = (M(P USER KE
KVE UCHVE CIPHER) = ∅)

– HasSP2Cond M = (M(P USER MC
SP2 COND) = ∅)

– HasSP2UchveCond M = (M(P USER MC
KVE UCHVE CIPHER) = ∅)

– EqGenVEConds(M,M ′) = (M(P SETUP
GEN COND) = M ′(P USER PE

PII VE CIPHER))
– EqSP1UchveConds(M,M ′) = (M(P SETUP

SP1 COND) = M ′(P USER KE
KVE UCHVE CIPHER))

– EqSP2UchveConds(M,M ′) = (M(P USER MC
SP2 COND) = M ′(P USER MC

KVE UCHVE CIPHER))

– EqVECondIDP M = (M(P IDP PE
GEN COND) = ∅ ∧ M(P IDP PE

IDP VE CIPHER) = ∅ ∧
M(P IDP PE

GEN COND) = M(P IDP PE
IDP VE CIPHER))

– EqUchve1CondIDP M = (M(P IDP KE
CIPHER UCHVE KVE) = ∅ ∧ M(P IDP KE

AGREED COND) = ∅ ∧
M(P IDP KE

CIPHER UCHVE KVE) = M(P IDP KE
AGREED COND))

– EqUchve2CondIDP M = (M(P IDP MC
CIPHER UCHVE KVE) = ∅ ∧ M(P IDP MC

AGREED COND) = ∅ ∧
M(P IDP MC

CIPHER UCHVE KVE) = M(P IDP MC
AGREED COND))

– UsrVE-F, UchveKE-T, and UchveKE-F, refer to definitions in Property 2
– HasRefVEKey and HasRecUsrPII, refer to definitions in Property 3

– BE(T ) is the set of all binding elements for a transition (instance) T

– ∀M,M ′∈[M0>, ∀be∈BE, M
be→M ′: M ′ is reachable from M upon firing be

PIEMCP has conditions abuse resistant property if and only if CPNM0

P has the
following behaviour:

– if all the parameters Ases ∪ Arev are false, then for each escrow session
s ∈ S, and for markings M,M ′ ∈ [M0> such that SessionsM and SessionsM ′:
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• HasGenCondM ∧ HasVECondM ′ ⇒ EqGenVEConds(M,M ′)
• HasSP1CondM ∧ HasSP1UchveCondM ′ ⇒ EqSP1UchveConds(M,M ′)
• HasSP2CondM ∧ HasSP2UchveCondM ′ ⇒ EqSP2UchveConds(M,M ′)

– if USER ATTACK1 ∨ SP ATTACK1 (and others in Ases ∪ Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UsrVE-F) ∧ ¬Pos(Sessions ∧ UsrVE-T ∧ EqVECondIDP)

– if USER ATTACK4 ∨ SP ATTACK11 (and others in Ases ∪Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UchveKE-F) ∧

¬Pos(Sessions ∧ UchveKE-T ∧ EqUchve1CondIDP)
– if USER ATTACK2 (and others in Ases ∪ Arev are false), then
∃ s ∈ S: Ev(Sessions ∧ UchveMC-F) ∧

¬Pos(Sessions ∧ UchveMC-T ∧ EqUchve2CondIDP)
– if SP ATTACK3 (and others in Ases ∪ Arev are false), then

• ∃ be ∈ BE(T SP1 REV
USE ATTACK COND): ∃M,M ′∈[M0>[M

be→M ′]
(i.e. T SP1 REV

USE ATTACK COND is not a dead transition)
• ¬Pos(HasRefVEKey)
• ∃ r ∈ R: ¬Pos(Revokingr ∧HasRecUsrPII) ��

The above four property specifications have been implemented into ASK-CTL
queries (based on the full syntax of ASK-CTL) in CPN Tools for model-checking
the state spaces of CPNM0

P . The results of the execution of these queries over the
45 state spaces in total (capturing the protocol without attack or with various
attacks, refer to Table 2) demonstrate that PIEMCP satisfies these four privacy
compliance properties.

5 Related Work

Formal methods based on process algebra have been used to model and ver-
ify security protocols (such as LySa [8]). Process algebra allows the modelling
of a system’s behaviour as a set of algebraic statements. Common verification
techniques used with process algebra include equational reasoning and model
checking [4]. For example, the Pi-Calculus [15] supports labeled transition se-
mantics in modelling a system. This allows the verification of protocols through
state exploration techniques such as model checking. However, we choose not to
use process algebra approach because of its complexity which tends to (unneces-
sarily) complicate even simple things [1]. In comparison to the graphical-based
modelling approach in CPNs, the pi-calculus approach is a less intuitive ap-
proach to model a large distributed system such as PEPs. Model validation can
only be performed by users who are experts in both the protocol itself and the
process algebra syntax. Nevertheless, pi-calculus-based approach has been used
to verify privacy-related technologies, such as the DAA protocol [3].

State exploration techniques (such as state space analysis and model checking)
have also been widely used for security protocol analysis. Examples belonging to
this category are Scyther [10], and ProVerif [7]. These are state-of-the-art tools
capable of automatically detecting attacks in many security protocols. The main
reason we do not use these tools is because the types of security properties verifi-
able by these tools are not relevant to PEPs. Instead, they are mostly relevant to
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authentication and key agreement protocols, i.e. secrecy, authenticity, and their
variants. When protocols related to privacy are verified using these tools, the
privacy property is reduced to confidentiality and authenticity. We argue that
this is a simplistic approach to verifying privacy and that privacy does not sim-
ply equate to confidentiality and/or authenticity. The behaviour of a protocol
in preserving or violating a user’s privacy is just as important. These tools also
lack the rich graphical and simulation support of CPNs.5 Therefore, we do not
find these tools to be suitable for our purpose. Although CPNs have been widely
used to analyze industrial communication protocols (such as Transmission Con-
trol Protocol (TCP) [6]), its use in the area of security protocols is still new with
limited documented cases. For example, Al-Azzoni et al [2] used CPN to model
and verify the Tatebayashi, Matsuzaki, and Newman (TMN) key exchange pro-
tocol [23]. The main difference between our work and theirs is that they focus
on verifying the secrecy property of the TMN protocol, while our work focus
on verifying the privacy behaviour of PEPs. The work presented in this paper
is an extension of our earlier work [22]. The main differences include: (1) the
improvement of the PIEMCP CPN model by re-structuring the model in terms
of modularisation of individual entities, their communication channels, and dif-
ferent stages of operations; (2) the inclusion of the dynamic referee behaviour,
i.e. the ALL REFEREES page and instantiation of the one REFEREE page according to
the number of referees involved; (3) a detailed analysis of the attack scenarios,
which leads to the finding of a set of necessary configurations of the PIEMCP
CPN model capturing all possible attack behaviours; (4) the elaboration of pri-
vacy compliance properties in terms of an improved formalisation of property
definitions which we believe is more precise and fine-grained (e.g. each property
is now defined in terms of a set of relevent attack behaviours, instead of a “blan-
ket” approach used in the previous work [22]); and (5) analysis and verification
of PIEMCP based on the updated CPN model and privacy compliance property
definitions.

6 Conclusion

We have shown that CPNs can be used to model complex PEPs, a class of
cryptographic protocols, and support the verification of their privacy compliance
properties based on state space analysis. We have also proposed several modelling
techniques, notably the cryptographic primitive abstraction (capturing complex
primitives and zero-knowledge proof protocol) and parameterised attacks. We
have also shown how we can formalise and verify privacy compliance properties
using standard state space analysis techniques and ASK-CTL queries.

Future work involves refinement and generalization of the modelling and anal-
ysis approaches proposed in this paper such that they can be applied to other
PEPs. We also hope to build a better user front-end to simplify and automate
the tasks required in the modelling and verification of PEPs. The function of

5 Scyther provides some static graphical support. However, it falls short of interactive
protocol simulation and graphically-driven protocol specification.
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such a front-end could be as simple as aiding users with the configuration of
attack parameters without the need of knowing CPNs. Another long-term goal
is to achieve automated attack detections for PEPs using a CPN-based approach.
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Abstract. Cloud computing is a challenging technology that promises
to strongly modify the way computing and storage resources will be ac-
cessed in the near future. However, it may demand huge amount of en-
ergy if adequate management policies are not put in place. In particular,
in the context of Infrastructure as a Service (IaaS) Cloud, optimization
strategies are needed in order to allocate, migrate, consolidate virtual
machines, and manage the switch on/switch off period of a data centre.
In this paper, we present a methodology based on stochastic reward nets
(SRNs) to investigate the more convenient strategies to manage a feder-
ation of two or more private or public IaaS Clouds. Several policies are
presented and their impact is evaluated, thus contributing to a rational
and efficient adoption of the Cloud computing paradigm.

Keywords: Cloud computing, Energy saving, Quality of Service, Per-
formance evaluation, Stochastic reward nets.

1 Introduction

Energy saving is one of the most critical challenges of the 21th century, calling
for efforts in a wide range of research fields, e.g., economics, engineering, chem-
istry. In the Information and Communications Technology (ICT) area, energy
aware initiatives are recently classified under the term Green computing [1]. In
this context, the Cloud paradigm is emerging as a promising technology able to
rationalize the use of hardware resources by providing ubiquitous on demand ac-
cess to virtual resources available on the Internet [2]. By moving applications on
the Cloud, it is possible to manage load peaks reducing data center inefficiencies
due to low resources utilization.

Clouds provide services at three different levels: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). In the
present work, we focus on IaaS Clouds that provide users with computational
resources in the form of virtual machine (VM) instances deployed in a remote
data center. In the literature, a distinction is recently being made among public
and private IaaS Clouds [3]. A public Cloud is offered as a service, usually over
an Internet connection, by an off-site third-party provider who bills on a fine-
grained utility computing basis. Relationship between customers and providers

K. Jensen et al. (Eds.): ToPNoC VI, LNCS 7400, pp. 277–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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are regulated by Service Level Agreements (SLA). Such contracts characterize
a service in terms of quality requirements, performance, and availability con-
straints, security, responsibility penalties, and methods of payment. Examples
of public IaaS Clouds are Amazon EC2 [4] and IBM Smart Business Cloud [5,6].
Nowadays, public Clouds are widely known by the general public, while private
Clouds are advancing as a promising technique able to allow a single organization
to manage its own infrastructure in a scalable, reliable, and energy-aware way.
We are witnessing the recent spreading of numerous software projects aiming at
providing Cloud middleware that can be used to create private Clouds on top of
classical hardware infrastructures with the aim of optimizing resources utiliza-
tion and energy consumption. Examples of Cloud middleware are Eucalyptus [7]
and openQRM [8].

Federation [9] is the next frontier in this context. Being deployed inside the
internal firewall, a private Cloud is usually locally accessed by the organization
users and it cannot be exploited by external entities. Throughout federation,
different small and medium private Clouds, belonging to the same or to different
organizations, can join each other to achieve a common goal, usually represented
by the optimization of resources utilization. A single private Cloud can use its
own infrastructure to deal with normal load conditions and can ask to its feder-
ated Cloud partners more resources to absorb load bursts. On the other hand, in
an energy-aware Green computing context, virtual server consolidation policies
[10] can be put in place to allow small organizations to completely turn off their
infrastructure when the maintenance and energy costs are too high with respect
to the load. Relationship among federated private Clouds are also regulated by
SLAs. Configurations in which public and private Clouds interact among them-
selves are usually called hybrid Clouds.

The interest in topics related to energy saving in the field of Cloud computing
is confirmed by the specific scientific literature and by the proliferation of several
research projects, mainly aiming at proposing energy management policies [11]
and VM consolidation techniques [12]. The validation of such approaches is usu-
ally performed through simulation [13]. Similarly, the problem of assessing the
Quality of Service (QoS) offered by Cloud computing is an issue of primary and
strategic importance. Powerful strategies are needed to guarantee SLA commit-
ments and the performance analysis and prediction are essential instruments to
define such strategies [14]. Several techniques have been used in the QoS and per-
formance evaluation of Cloud infrastructures and services [15] mainly based on
real measurement or experimental frameworks. Traditional measurement based
performance evaluation requires extensive experimentation with each workload
and system configuration and may not be feasible in terms of cost due to sheer
scale of Cloud. A simulation model can be developed and solved but in contrast
with an analytic model, it might be time consuming as the generation of sta-
tistically significant results may require many simulation runs [16]. Stochastic
modeling is a more attractive alternative because of lower relative cost of solving
the model while covering large parameter space [17].
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In this paper, we present an analytical methodology based on stochastic reward
nets (SRNs) [18], an extension of generalized stochastic Petri nets, to investigate
the cost/benefit of different energy saving strategies to manage a federation of two
or more Clouds in the context of IaaS. Public and private Clouds are both taken
into consideration. The methodology is based on a compositional approach: the
main components characterizing a typical private Cloud infrastructure are iden-
tified and represented using basic SRN models able to capture their functional
and non-functional behavior. A basic SRN is also associated to each public Cloud
infrastructure. Such basic SRNs are composed, according to the structure of the
actual Cloud federated environment that has to be analyzed, with the aim of ob-
taining a complete model. Finally, such model can be solved and useful perfor-
mance parameters can be obtained considering the final goal to reduce the overall
management costs. Several aspects and policies characterizing a Cloud system,
such as federation and VM consolidation [19], are taken into consideration and
their impact is evaluated, thus contributing to a rational and efficient adoption of
the Cloud computing paradigm.

The paper is organized as follows. Section 2 describes the assumptions and
formulates the problem. The basic SRN models associated to the Cloud compo-
nents are illustrated in Section 3 while the criteria for their composition into the
final model are described in Section 4. In such a section, a case study and the
corresponding model are also shown. Performance assessments are discussed in
Section 5. Related works are described in Section 6. Finally, concluding remarks
and future works are presented in Section 7.

2 Assumptions and Problem Formulation

In the ecosystem of IaaS Clouds we take as a reference, both private and public
Clouds are allowed (hybrid federated Cloud environment). We assume a scenario
in which N private federated IaaS Clouds interact among each other and collab-
orate in order to optimize the resources utilization and the energy consumption,
while still fulfilling user requests. In particular, we assume that private Clouds
can federate each other by stipulating peer-to-peer business dealings and can
back up on public Cloud services in order to deal with specific overload situa-
tions. M public Clouds can be present. Our aim is to represent such a scenario
using of a composed SRN model and to quantify the advantages deriving from
energy management, federation, and VM consolidation policies, both from the
private organization and the user point-of-views.

2.1 Private Clouds

Fig. 1 shows our reference architecture for a single private IaaS Cloud. The
main components and their interactions are highlighted. All the entities that
we take into consideration are usually present in all the most used IaaS Cloud
middleware. In the following, we provide a high level description of the behavior
of each component in the system.
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Fig. 1. Architecture of a single private IaaS Cloud

Cluster Management - Whenever a user request is processed in a private IaaS
Cloud, a set of pre-built disk images is used to deploy one or more VM instances
on the private organization data center. We assume that the data center of the
ith private Cloud (with 1 ≤ i ≤ N) is composed of si physical machines (PMs)
organized into a single blade center. A PM can be usually shared by multiple VMs
according to the CPU, RAM, and disk capacity requested by each VM but, as a
simplifying assumption, we consider the case in which a single VM can be deployed
on eachPMand each user request is related to a single VM instantiation. ACluster
Manager (CM) translates the user requests into VM instantiation actions. New
requests are accepted until the maximum CM queue capacity is reached; further
requests are dropped. qCQi indicates the maximum queue capacity for the ith CM.

If a free PM exists, a request is taken from the CM queue and a VM instanti-
ation action is performed. We suppose that, in order to execute a VM on a PM
belonging to the local blade center, the CM simply needs to send an activation
request to the PM hypervisor that can immediately mount the corresponding
pre-built VM image from a distributed local file system with negligible time de-
lay. Finally, once a VM ends its task, the corresponding image is stored back
to the local distributed file system and the corresponding PM is let free to ac-
cept other requests. We assume the VM completion time in the ith Cloud to be
exponentially distributed with rate λri .
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Energy Management - If an energy management policy is active, the private
Cloud blade center and the associated chiller refrigerator (that usually represents
the main cause of energy loss) can be switched off in order to reduce the energy
consumption and save money. An Energy Manager (EM) monitors the state of
the private Cloud and determines if the blade center can be switched on or off.
Different policies can be taken into consideration in this context. In particular,
the power off and power on actions can be triggered depending on the status of
the managed Cloud infrastructure, e.g., the utilization of the blade center, the
number of requests in the system queues, the current load. The set of conditions
for the power off action to be triggered on the ith private Cloud need to be
verified for a certain amount of time, namely toffi . More fine grained energy
management policies can be implemented such as activating/deactivating the
single PMs. Our methodology is general enough to represent such management
strategies. However, to simplify the presentation of the proposed approach, in
this paper we assume that the energy management policy operates at the whole
blade center level. We assume that the time necessary for the blade center to be
switched on or off is negligible.

Federation - If a federation policy is active, a Federation Broker (FB) is used
to communicate with external private or public Clouds in order to redirect user
requests that cannot be fulfilled locally. New requests are accepted until the
maximum FB queue capacity is reached; further requests are dropped. qBQi

indicates the maximum queue capacity for the FB associated to the ith private
Cloud. If a request stays in the FB queue for a time greater than tfi and at least
one of the federated Clouds is able to accept it, then the request is forwarded.
An External Cluster Interface (ECI) allows the CM to communicate with other
CMs and to transfer the pre-built VM images related to the redirected requests.
As soon as a VM is transferred from the local Cloud, the corresponding request
is inserted in the CM queue of the remote Cloud to be processed. We assume
that an exponentially distributed time delay with rate λti is necessary in order
for a VM image to be copied to the external Cloud storage. A maximum number
of Ti ∈ N simultaneous transfers can be performed.

VM Consolidation - Finally, if a VM consolidation policy is set, a Migration
Manager (MM) can trigger a consolidation action in order to migrate the VMs
executing on the local data center to an available external Cloud. The goal of a
consolidation action is usually to force a power off of the local blade center. If a
Cloud exists willing to accept the migrating VMs, the ECI starts the transfer of
the VM images. As soon as the VM migrations are completed, the corresponding
requests are inserted in the remote CM queue to be started up again on the
remote Cloud. Also in this case, we assume that an exponentially distributed
time delay with rate λmi is necessary in order for a VM image to be migrated
from the ith private Cloud. The VM consolidation is an atomic task and it is
triggered only if all the running VMs can be transferred to a remote Cloud and
if such a condition stays for a time greater than a certain threshold tmi . In this



282 D. Bruneo, F. Longo, and A. Puliafito

way, at the end of a VM consolidation the blade center will result empty, thus
allowing the scheduling of a switch off operation.

VM Requests Arrival Process - An important aspect in the scenario that
we are taking into consideration is the modeling of the load. In order to take into
account the dependency on the hours of a day, we model the VM request arrival
process as a Markov modulated Poisson process (MMPP) with two states. We
indicate with λdi the rate of the arrival process for the ith private Cloud during
the day hours, while λni represents the rate of the arrival process during the
night hours. λdn and λnd are the rates associated with the transitions between
the two states of the MMPP, representing the alternation between day and night.

2.2 Public Clouds

We take into consideration a scenario in which M public IaaS Clouds are avail-
able. As already mentioned, we suppose that private Clouds can back up on
public Clouds in order to deal with load bursts that cannot be managed by
the local infrastructure and by any of the private federated partners. We sup-
pose that a public Cloud does not share information about its current status
and about the internal policies that regulates the management of its infrastruc-
ture. For such a reason, we prefer to model only the external behavior of the
public Cloud with respect to its client. The SLAs that are stipulated to regu-
late this kind of commercial relationships are usually based on availability and
price constraints. A public Cloud client usually asks for a certain level of service
availability to be guaranteed. On top of it a corresponding price is agreed on a
computation time basis. Another parameter is related to the maximum number
of VMs that can be contemporaneously running. For such reasons, in the fol-
lowing we assume that a public Cloud can be easily included in the considered
scenario by simply modeling its availability, the maximum number of submitted
VMs, and their execution time. We assume that the public Cloud can be in one
of two states: available or not available. We indicate with aj (1 ≤ j ≤M) the jth

public Cloud availability, i.e., the portion of time that the public Cloud stays in
its available state while we use Rj to define the maximum number of VMs con-
temporaneously running. Finally, λprj represents the rate of the exponentially
distributed VM completion time.

2.3 System Policies

By mean of the proposed methodology, we are able to analyze different manage-
ment policies. However, for a matter of clarity, in the remainder of the paper we
will consider the following specific management policies.

Energy Management - The EM triggers a power off when no VMs are instan-
tiated in the blade center, no requests are waiting in the system queues, and no
consolidation and/or federation actions are being performed, i.e., no VM images
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are being transfered among Clouds. On the other hand, a power on is triggered
on the ith Cloud blade center when the number of total requests waiting in the
system queues is greater than a certain threshold Pi ∈ N.

Federation - The FB of the ith Cloud interacts with the corresponding ECI in
order to submit the request to an available federated external Cloud if the local
blade center is off, the CM queue is full, or a consolidation/power off action is
being performed. The ECI of the pth remote private Cloud accepts an external
request if its blade center is on, it is not extremely loaded, i.e., the number of
requests in its queues is not greater that a certain threshold Ep ∈ N, and if no
consolidation/power off action is currently being performed.

VM Consolidation - We assume that a consolidation action is triggered in
the ith Cloud when the number of VM instances currently running in the blade
center is less than a threshold Mi ∈ N, and no requests are waiting in the
queues. The MM of the pth remote Cloud accepts an external VM consolidation
if its blade center is on, the number of PMs available to accept VM instances is
greater that a certain threshold Cp ∈ N, and if no consolidation/power off action
is currently being performed.

3 Modeling Private and Public Cloud Components

Let us describe the methodology for the performance and energy consumption
analysis of the hybrid federated Cloud ecosystem described in Section 2. The
final goal is to show how to translate the scenario and the assumptions reported
in the previous section into a formal SRN model. SRNs [18] are extensions of
generalized stochastic Petri nets (GSPNs) [20]. In SRNs, every tangible marking
of the net can be associated with a reward rate thus facilitating the computation
of a variety of performance measures. Key features of SRNs are: (1) each tran-
sition may have an enabling function (also called a guard) so that a transition
is enabled only if its marking-dependent enabling function is true; (2) marking
dependent arc multiplicities are allowed; (3) marking dependent firing rates are
allowed; (4) transitions can be assigned different priorities; (5) besides traditional
output measures obtained from a GSPN, such as throughput of a transition and
mean number of tokens in a place, more complex measures can be computed by
using reward functions.

In this section, we present the basic SRN models for each of the private
Cloud building blocks of Fig. 1 and for a generic public Cloud infrastructure.
We also show the evaluation that can be performed on top of each of them. Such
evaluation is conducted through the estimation of a set of steady-state measures.
In order to define all the measures, the following notation is used: E{#P} is the
expected number of tokens in place P , Th{T } is the expected throughput of
transition T , and Pr{e} is the probability that event e occurs.

Note that the enabling functions described in the following allow to model the
policies described in Section 2.3. However, our methodology is general enough
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Fig. 2. The SRN model for the day/night alternation

Fig. 3. The SRN model for the VM request arrival process to the ith private Cloud

to deal with a variety of different energy and management policies by simply
changing some of the enabling functions associated to the sub-model transitions
without need to change the model structure.

VM Requests Arrival Process - Let us start with the model of the load.
Fig. 2 represents the basic SRN that models the two stages of the MMPP, i.e.,
the alternation between day and night. Moving a token between places D and
N , transitions T dn and T nd model the switching between such stages. They
are exponentially distributed transitions with rate λdn and λnd, respectively.
Fig. 3 depicts the basic SRN model for the VM request arrival process to the ith

private Cloud. Transitions T load highi and T load lowi represent the request
arrival during the day and night hours, respectively. The rates associated to such
exponentially distributed transitions are λhi and λli , respectively and, as soon
as they fire, they insert a token into place RQi modeling the arrival of a new
VM request. The enablement of such transitions depends on the MMPP stage
alternation and it is regulated by the following enabling functions:

fload highi =

{
1, if #D = 1

0, otherwise

fload lowi =

{
1, if #N = 1

0, otherwise

Other configurations can be modeled by changing the enabling functions asso-
ciating the high load condition to the night stage or increasing the number of
stages, e.g., modeling the presence of different timezones.
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From the model of Fig. 3, the expected number of requests per time unit to
the ith Cloud (Ai) can be computed as:

Ai = Th{T load highi}+ Th{T load lowi}. (1)

Fig. 4. The SRN model for the Cluster Manager of the ith private Cloud

Cluster Manager - The SRN model for the CM of the ith private Cloud is
depicted in Fig. 4. Place CQi represents the CM queue. A token in this place
models a VM request waiting for a free PM in order to be instantiated. Immediate
transition t CQ dropi models the drop of a single request and it is associated
with the enabling function fCQ dropi that allows it to be enabled if the maximum
queue capacity has been reached, i.e., as soon as the number of tokens in place
CQi is equal to qCQi + 1:

fCQ dropi =

{
1, if #CQi = qCQi + 1

0, otherwise

The blade center is modeled by place PMi. Tokens in such place model PMs
that are available to accept VM instances.

If a PM is available and a request is present in the CM queue, immediate
transition t insti fires, modeling the VM instantiation process. Such transition
extracts a token from places CQi and PMi and puts a token in place VMi.
The number of tokens in such place represents the number of VMs currently in
execution in the blade center. The exponentially distributed transition T runi

models the time necessary for a VM to complete its task. The VM executions are
concurrent tasks and, for this reason, transition T runi is marking dependent
and its rate is proportional to the number of tokens in place VMi (#VMi ·λri).
As soon as transition T runi fires, it moves a token from place VMi to place
PMi modeling the presence of a PM newly available to accept requests.

From the model of Fig. 4, several measures can be computed. In particular,
the CM drop probability (P i

CMd
), i.e., the probability for a request to be dropped
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due to the ith CM queue being full, can be computed as:

P i
CMd

= Pr{#CQi = qCQi} (2)

while, according to Little’s law, the expected CM waiting time (T i
CMw

) can be
computed as:

T i
CMw

= E{#CQi}/Th{tinsti}. (3)

Finally, information about the utilization of the ith Cloud blade center can be
provided computing the expected number of local running VMs (Ri

l) as:

Ri
l = E{#VMi} (4)

Fig. 5. The SRN model for the Energy Manager of the ith private Cloud

Energy Manager - Fig. 5 depicts the SRN model for the EM of the ith private
Cloud. Places ONi and OFFi model the power status of the blade center. In
particular, if si tokens are present in place OFFi the blade center is off. Oth-
erwise, if zero tokens are present in place OFFi, the blade center is on. The
presence of si tokens in place ONi in Fig. 5 is motivated by the fact that the
EM sub-model is designed in order to be composed with the CM sub-model as
explained in Section 4. Immediate transitions t oni and t offi model the power
on and power off of the blade center, respectively, moving si tokens from place
OFFi to place ONi and vice-versa. Transition t offi is associated with the en-
abling function foffi that allows it to be enabled only if a token is present in
place SWi:

foffi =

{
1, if #SWi = 1

0, otherwise

A token can be moved in such place by the exponentially distributed transition
T triggeri that models the condition for the power off action to be triggered. In
particular, transition T triggeri presents a rate equal to 1/toffi . As detailed in
Section 2, toffi is the time for which the power off condition needs to be verified
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for a power off action to be triggered1. Enabling function ftriggeri , associated
with transition T triggeri, allows it to be enabled only if the power off condition
is verified:

ftriggeri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if #ONi = si AND #CQi = #BQi = 0 AND

(∀p⇒ #FW PRp
i = #MG PRp

i = 0) AND

(∀q ⇒ #FW PU q
i = #MG PU q

i = 0)

0, otherwise

with 1 ≤ p ≤ N and p = i and 1 ≤ q ≤M .
Immediate transition t compli fires as soon the power off is completed, i.e., it

has an enabling function fcompli that allows it to be enabled if #OFFi = si:

fcompli =

{
1, if #OFFi = si

0, otherwise

Similarly, the enabling function foni associated with transition t oni allows it to
be enabled only if the condition for a power on action to be triggered is verified:

foni =

{
1, if #CQi +#BQi > Pi

0, otherwise

From the model of Fig. 5, the Off probability (P i
off ) can be computed. This is

the probability that the blade centre of the ith Cloud is off. Over a long period,
such a probability can be considered as the percentage of the overall time during
which the blade centre can be turned off (e.g., a value of 0.4 means that a blade
centre can be turned off, during a year, for a cumulative period equal to 146
days). It can be computed as:

P i
off = Pr{#OFFi = si}. (5)

Federation Broker - The SRN model for the FB of the ith private Cloud is
depicted in Fig. 6. Place BQi represents the FB queue. A token in this place
models a VM request waiting for a decision about its destination, i.e., whether
it should be accepted locally or it should be forwarded to one of the federated
Clouds. Immediate transition t BQ dropi models the drop of a single request
and it is associated with the enabling function fBQ dropi that allows it to be
enabled if the maximum queue capacity has been reached, i.e., as soon as the
number of tokens in place BQi is equal to qBQi + 1:

fBQ dropi =

{
1, if #BQi = qBQi + 1

0, otherwise

1 The choice to model timeouts through the use of exponentially distributed transitions
is motivated by the decision to keep the model complexity as low as possible. Other
solutions can be considered in order to increase the model accuracy, e.g., the use of
phase type distributions as done in [21,22].
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...
...

...
...

Fig. 6. The SRN model for the Federation Broker of the ith Cloud

Transitions t admiti and T waiti model the federation policy. In particular, the
firing of immediate transition t admiti extracts a token from place BQi and puts
it in place ADi representing a request being accepted and enqueued locally. Its
enabling function fadmiti allows it to be enabled if the condition for a request
to be accepted by the local Cloud is verified:

fadmiti =

⎧⎪⎨
⎪⎩
0, if #OFFi = si OR #CQi = qCQi OR

#SWi = #PMGi = 1

0, otherwise

Exponentially distributed transition T waiti models the forwarding of the re-
quest to a partner Cloud. It is associated with a marking dependent rate equal
to #BQi ·1/tfi (tfi has been defined as the time during which a request needs to
wait in queue before being scheduled in a federated Cloud) and with an enabling
function fwaiti that allows it to be enabled only if there is a federated Cloud
(either private or public) available to accept a forwarded request. Moreover, the
enabling function of transition T waiti takes into consideration the maximum
number of simultaneous transfer that can be performed (as will be clear in the
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following the total number of tokens in places FW PRp
i and FW PU q

i needs to
be less than Ti):

fwaiti
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if ((∃p : #CQp + #BQp ≤ Ep AND #SWp = #OFFp = #PMGp = 0) OR

(∃q : #AVq = 1 AND #PRq < Rq)) AND
∑

p #FW PRp
i +

∑
q #FW PUq

i < Ti

0, otherwise

When transition T waiti fires, it puts a token in place SLFi and the conflict
among the immediate transitions t forw prpi and t forw puq

i models the selec-
tion of the federated Cloud (either private or public) to which the request will
be forwarded. Each transition in the set t forw prpi (t forw puq

i ) has an asso-
ciated enabling function fforw prpi

(fforw puq
i
) that allows it to be enabled if the

corresponding Cloud is able to accept the request:

fforw prpi
=

⎧⎪⎨
⎪⎩
1, if #CQp +#BQp ≤ Ep AND

#SWp = #PMGp = #OFFp = 0

0, otherwise

fforw puq
i
=

{
1, if #AVq = 1 AND #PRq < Rq

0, otherwise

If more than one Cloud is available, a random choice is performed and the token
is moved to the corresponding place FW PRp

i (FW PUp
i ). Higher priority is

associated to the set of transitions t forw prpi in order to give priority to private
Clouds with respect to public Clouds. A token in one of such places models
a VM image being transfered to the target Cloud. Transitions T transf prpi
(T transf puq

i ) with marking dependent rate #FW PRp
i ·λti ( #FW PU q

i ·λti)
represent the completion of a transfer process and the insertion of the request
in the remote queue, i.e., a token in one of the places RQ PRp

i (RQ PU q
i ).

Several measures can be computed based on the model of Fig. 6. First of all,
the FB drop probability (P i

FBd
), i.e., the probability for a request to be dropped

due to the ith FB queue being full, can be computed as:

P i
FBd

= Pr{#BQi = qBQi}. (6)

The expected FB waiting time (T i
FBw

), i.e., the time elapsed from the request
arrival to the decision about where to submit it, can be computed, according to
Little’s law, as follows:

T i
FBw

= E{#CQi}/(Th{tadmiti}+ Th{Twaiti}). (7)

Similarly, the expected FB transmission time (T i
FBt

) can be computed by con-
sidering the time that a request waits before being transferred and the actual
transfer time as follows:

T i
FBt

= E{#SLFi}/Th{Twaiti}+ 1/λti (8)
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The goal of the FB is to make a decision about where to submit a request. The
local admission probability (P i

l ) can be computed as:

P i
l = Th{admiti}/(Th{admiti}+ Th{waiti}) (9)

while the remote admission probability (P i
r) is simply given by:

P i
r = 1− P i

l . (10)

Finally, the requests that are redirected to a partner Cloud can be accepted in
a private or public Cloud. The remote admission in a private Cloud probability
(P i

rpr ) is given by:

P i
rpr =

∑N
p=1 Th{T transf prpi }∑N

p=1 Th{T transf prpi }+
∑M

q=1 Th{T transf puq
i }

(11)

while the remote admission in a public Cloud probability (P i
rpu) is, of course,

equal to:
P i
rpu = 1− P i

rpr . (12)

Migration Manager - The MM of the ith private Cloud can be modeled
through the SRN depicted in Fig. 7. The structure of the sub-model is very
similar to the one related to the FB. Tokens in place RVMi represent the VMs
currently running in the Cloud blade center while a token in placeNMGi models
the normal operative condition of the Cloud infrastructure in which no consoli-
dation action is being performed. Exponentially distributed transition T starti
models such action to be triggered. In particular, it presents a rate equal to 1/tmi

and it is associated with the enabling function fstarti that allows it to be enabled
only if the particular condition associated to the triggering of a consolidation
action is verified:

fstart1 = 1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if #VMi < Mi AND #CQi = #BQi = 0 AND

((∃p : #ONp > Cp AND #SWp = #PMGp = #OFFp = 0) OR

(∃q : #AVq = 1 AND #PRq < Rq))

0, otherwise

tmi has been defined as the time during which such condition needs to be verified
for a consolidation to be scheduled. As soon as transition T starti moves a
token to place PMGi, the consolidation is triggered and one of the transitions
t migr prci (with 1 ≤ p ≤ N and p = i) and t migr puq

i (with 1 ≤ q ≤ M)
will be enabled and will fire. In fact, each of such transitions is associated with
an enabling function f migr prpi (f migr puq

i ) that allows it to be enabled if a
token is present in place PMGi and the corresponding federated private (public)
Cloud is able to accept the VMs being migrated:

fmigr prpi
=

⎧⎪⎨
⎪⎩
1, if #PMGi = 1 AND

#ONp > Cp AND #SWp = #PMGp = #OFFp = 0

0, otherwise
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Fig. 7. The SRN model for the Migration Manager of the ith Cloud

fmigr puq
i
=

{
1, if #PMGi = 1 AND #AVq = 1 AND #PRq < Rq

0, otherwise

Their conflict represents a random choice among the available Clouds. Also in
this case, a higher priority is associated to private Clouds. Input and output arcs
of transitions t migr prpi (t migr puq

i ) have a marking dependent multiplicity.
They behave as flushing arcs moving all the tokens from place RVMi to one
of the MG PRp

i (MG PU q
i ) places. Such a particular semantic is pictorially

represented with a ∼ on the arc, ∼ meaning #RVMi.
Tokens in such places model the VMs being migrated. The time necessary for

the migration to be completed is represented by the exponentially distributed
transitions T copy prpi (T copy puq

i ) whose rate is equal to #MG PRp
i · λmi

(#MG PU q
i · λmi) in order to model a concurrent transfer. As soon as the mi-

gration is completed the corresponding VM requests are enqueued in the remote
queue by inserting tokens in places MQ PRp

i (MQ PU q
i ) and transition t stopi

is enabled to fire, modeling the conclusion of the consolidation action. Transition
t stopi has an enabling function f stopi associated that allows it to be enabled
only if no tokens are present in places MG PRp

i and MG PU q
i :

fstopi =

{
1, if (∀p⇒ #MG PRp

i = 0) AND (∀q ⇒ #MG PU q
i = 0)

0, otherwise
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Transitions t migr prpi (t migr puq
i ) also put back tokens in place EPMi that

models the empty blade center PMs. Finally, priorities of transitions t migr prpi
and t migr puq

i have to be higher than priority of transition t stopi in order for
the whole mechanism to work properly.

From the model of Fig. 7 the probability that a migration is performed toward
a private Cloud (P i

mpr
) can be computed as:

P i
mpr

=

∑N
p=1 Th{t migr prpi }∑N

p=1 Th{t migr prpi }+
∑M

q=1 Th{t migr puq
i }

(13)

while the probability that a migration is performed toward a public Cloud (P i
mpu

)
is, of course, equal to:

P i
mpr

= 1− P i
mpu

. (14)

Fig. 8. The SRN model for the jth public Cloud

Public Cloud - Fig. 8 shows the SRN sub-model for the jth (with 1 ≤ j ≤M)
public Cloud. Places AVj and BSj model the available and busy states, respec-
tively. Exponentially distributed transitions T availj and T busyj represent the
switching among the two states. In order to model the availability guaranteed
by the public Cloud to its clients, rates λavj and λbsj , associated to such tran-
sitions, have to be set such that λbsj/(λavj + λbsj ) = aj . Place PRj represents
the computational resources of the public Cloud, hidden to the external clients,
while exponentially distributed transition T finishj models the execution time
of a VM within the public infrastructure. Its rate #PRj · λfj depends on the
number of token in place PRj in order to model a concurrent execution.

The expected number of VMs running in a public Cloud (Rj
pu) can be easily

computed as:
Rj

pu = E{#PRj}. (15)

4 Modeling Hybrid Federations of Clouds

In this section, we provide the guidelines to compose the SRN sub-models asso-
ciated to each of the private Cloud building blocks of Fig. 1 and to the generic
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public Cloud infrastructure, according to the structure of the Cloud federated
environment that has to be analyzed. We also present a case study and show how
global measures can be computed on top of the SRN composed model associated
to it in order to obtain high level information about energy and management
costs.

4.1 Composition Criteria

If no energy, federation, or consolidation management is put in place a simple
Cloud infrastructure model can be obtained by composing place RQi in the
load sub-model with place CQi of the CM sub-model. In such a way, the tokens
representing the VM requests are inserted in the place modeling the CM queue.

On the other side, in a private Cloud infrastructure in which an energy man-
agement policy is put in place, the SRN of Fig. 5 has to be composed with the
CM sub-model of Fig. 4 in order to represent the on/off cycles that the blade
center undergoes. In particular, place ONi in the EM sub-model needs to be
composed with place PMi in the CM sub-model. This is the main motivation
for the presence of si tokens in place ONi in Fig. 5.

Similarly, the presence of a FB in the ith private Cloud can be taken into
account by composing the SRN represented in Fig. 6 with the SRNs modeling
the load and the CM of the same Cloud and the SRNs associated to the federated
Clouds. In particular, place BQi in the FB sub-model needs to be composed with
place RQi of the load SRN in order to represent the submission of new requests
to the FB queue. Similarly, place ADi in the SRN associated to the FB has to
be composed with place CQi in the CM sub-model so that the local accepted
requests are enqueued in the CM queue. Finally, each place RQ PRp

i (RQ PU q
i )

needs to be composed with place CQp (PRq) in the SRN associated to the pth

(qth) federated private (public) Cloud so that the forwarded requests are actually
enqueued in the remote queue of the partner system.

The composition rules in case of presence of a MM in the ith private Cloud are
very similar. The SRN represented in Fig. 7 needs to be composed with the SRN
modeling the corresponding Cloud CM and with the sub-models associated to
the partner Clouds. In particular, place RVMi in the MM sub-model needs to be
composed with place VMi of the CM SRN in order to represent the migration
of currently executing VMs while each place MQ PRp

i (MQ PU q
i ) has to be

composed with the corresponding place CQp (PRq) in the SRN associated to
the pth (qth) federated private (public) Cloud.

With respect to the model scalability, complex scenarios in which several
sub-models are composed could give rise to a significant growth of the model
state space. Given that the state space cardinality is the parameter that mainly
influences the performance of numerical solution techniques, increases in sys-
tem complexity could make the analytical solution unfeasible. In such cases, it
is always possible to study the model through alternative techniques. In the
last years, in fact, symbolic techniques have been applied to manage huge state
spaces, as described in [23], [24] where a synthesis of the techniques based on
appropriate data structures (binary decision diagram and its evolutions) and
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Kronecker algebra is done. Thanks to this representation, asynchronous systems
with state spaces of size 1060 up to 10600 can be managed for particular regular
systems, as experimentally shown in [25]. Other techniques are also applicable.
For example, in [26] interactive sub-models approach is applied to an IaaS Cloud
system. In any case, when the state space becomes unmanageable the discrete-
event simulation represents a valid alternative, and it can be applied to SRNs
without any restrictions either on the state space dimension or on the firing time
event distributions.

4.2 Case Study

To demonstrate how the proposed modeling approach works, we take into con-
sideration a scenario where a hybrid federation of Clouds is composed of two
geographically distributed private IaaS Clouds and one public Cloud, as repre-
sented in Fig. 9. We choose to represent a hybrid federation of Clouds in order
to highlight the advantages offered by this kind of configuration.

Fig. 9. The hybrid Cloud federation under exam

By composing the basic SRN models of the Cloud components described in
the previous sections, it is possible to obtain the global SRN model for the actual
Cloud infrastructure under analysis. Such a model is shown in Fig. 10 where the
presence of three sub-models, each of which is associated to one of the three
IaaS Clouds, is highlighted. The corresponding enabling functions are obtained
by applying the rules reported in Section 3. The model reported in Fig. 10
corresponds to a configuration where both federation and VM consolidation
techniques are used. Other configurations will be used as comparison: one where
only the federation is adopted, one composed of the single Cloud 1 with only the
Energy Manager, and one composed of the single Cloud 1 without any energy
saving strategy. The SRN models of such further configurations can be easily
obtained by removing the corresponding sub-models from the model of Fig. 10
according to the composition criteria reported in Section 4.1.
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Fig. 10. The SRN model

4.3 Global Measures

In addition to the measures derived from a single model (as described in Section
3), a set of global measures can be obtained on top of the composed model. In
the following, we will focus our analysis on the private Cloud 1 that is the one
that exploits a hybrid federation configuration.

Expected Waiting Time (T 1
w) - This is the time elapsed from the request

arrival to the VM instantiation. We have to distinguish among the local waiting
time (that is computed summing the time spent in the FB queue and the time
spent in the CM queue) and the remote waiting time (that is computed summing
the time spent in the FB queue, the time to transfer the VM, and, if the VM is
transferred to a private Cloud, the time spent in the remote CM queue). In order
to obtain an average index, the local and remote waiting time can be composed
by a weighted sum with respect to the local and remote admission probabilities:

T 1
w = T 1

FBw
+ T 1

CMw
· P 1

l + T 1
FBt

· P 1
r + T 2

CMw
· P 1

r · P 1
rpr . (16)

Drop Probability (P 1
d ) - This is the probability that a request is dropped by

Cloud 1. It can be computed combining the drop probability of the FB queue
with the drop probability of the CM queue:
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P 1
d = P 1

FBd
+ (1− P 1

FBd
) · P 1

CMd
. (17)

Migration Probability (P 1
m) - This is the probability that a VM is migrated

due to a VM consolidation action. It can be computed as follows:

P 1
m = (Th{t migr pr21}+ Th{t migr pu1

1})/Th{t inst1}. (18)

Weekly Operating Costs (O1
c) - The operating costs can be computed by

summing over a week the costs related to the energy consumptions and the costs
related to the use of the public Cloud:

O1
c = OT ∗ 3600 · [(1− P 1

off ) ·EC/3600 +R1
pu · CC/3600] (19)

where OT is the observation time (a week) in hours, EC is the energy cost per
hour, and CC is the public Cloud cost per hour related to the use of a single
VM.

Expected Number of Accepted Users During a Week (A1
u) - This is

the number of users served by Cloud 1 during a week and it can be computed
starting from the number of requests and the drop probability:

A1
u = OT · A1 · (1− P 1

d ). (20)

5 Numerical Results

In this section, we focus on the performance, in terms of energy saving, that
can be reached using federation and VM consolidation techniques and we also
quantify the impact of such techniques on the QoS perceived by the users. Our
aim is to provide a quantitative evaluation of the costs/benefits associated to
a particular cloud strategy, thus allowing system managers to properly set the
configuration parameters with respect to a specific working condition.

The model of Fig. 10 was solved using the WebSPN simulation tool [27], and
fixing the model parameters as listed in Table 1. For the sake of simplicity and
without loss of generality, we consider two Clouds with the same parameters.
Such parameters have been set in accordance to the relevant literature. In partic-
ular, Cloud dimensions, VM execution times, and buffer sizes have been chosen
to represent a medium size Cloud as reported in [26]. The arrival rate has been
correspondingly set in order to produce as high as possible utilization values as
usually desired by Cloud providers in real scenarios. Migration times are calcu-
lated considering the average dimension of a typical VM and the standard WAN
network bandwidth. However, due to the large variety of Cloud systems, other
parameter configurations can be easily adopted, without invalidating the model
capabilities.
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Table 1. Parameter configuration

Parameter Value Parameter Value

N 2 M 1
s1,2 32 E1,2, M1,2 5
P1,2 [1,6] R1 20
T1,2 10 C1,2 2
qBQ1,2 , qCQ1,2 10 a1 0.98

λ−1
h1,2

[75,715] (sec) λ−1
l1,2

10*λ−1
h1,2

λ−1
dn , λ−1

nd 12 (hours) λ−1
r1,2

, λ−1
f1

1 (hours)

λ−1
t1,2

, λ−1
m1,2

30 (min) toff1,2
, tf1,2 , tm1,2 60 (sec)

OT 168 (hours) EC 2 ($/hour)
CC 0.2 ($/hour · V M)

Simulation has been carried out by performing 5, 000 independent runs and
by asking for a confidence level of 90%. However, the confidence intervals are
not shown in the following graphs since they are very tight. The final measures
have been obtained in the order of hours on a single processor core.

Fig. 11 shows the steady state probability that the blade centre of Cloud 1
is off versus the arrival rate. If Cloud 1 adopts only an energy manager, it can
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Fig. 11. Probability P 1
off that a blade centre is off versus the arrival rate varying the

energy saving strategies

be observed that the off probability is about 0.4 when the system is low loaded
and it decreases when the arrival rate increases reaching a value near 0. Remark-
able improvements can be obtained by using the federation. In fact, redirecting,
when possible, the load toward the other Clouds we are able to increase the off
probability. However, if only the federation technique is adopted, such improve-
ments become less evident when the load increases. The best performance can
be obtained by using also the VM consolidation technique. In this way, the sys-
tem is able to adapt its behavior to the actual load, thus improving the energy
efficiency. For example, when λh1,2 = 0.0134 job/sec the federation technique
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does not allow us to frequently turn off the blade centre, while through the VM
consolidation technique an off probability near to 0.3 is reached.

A QoS-oriented performance analysis can be carried out by investigating the
delays introduced in the service provisioning. Fig. 12 shows the waiting time
perceived by users with respect to the different energy saving strategies. Such a
value is compared with the waiting time obtained using a blade centre always
switched on, in order to distinguish the delays due to the energy saving tech-
niques from those related to the blade centre capacity. We can highlight two
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Fig. 12. Waiting time T 1
w versus the arrival rate varying the energy saving strategies

different conditions. When the load is low (λh1,2 < 0.074 job/sec) the waiting
time associated to the blade centre always switched on is almost null. On the
other hands, if an energy saving strategy is adopted (curve ’EM’), it is possible
to observe that the waiting time increases when the load decreases due to the
time the blade centre is off while waiting for a consistent number (P1) of users
to serve. When the load increases (λh1,2 > 0.074 job/sec), the waiting time as-
sociated to the energy saving strategy is equal to that of a blade centre always
switched on. From the analysis of such a figure, it is also possible to quantify
the QoS reductions due to the federation and VM consolidation techniques. For
example, when λh1,2 = 0.0110 job/sec the waiting time associated to the adop-
tion of the federation (curve ’EM + FB’) is about 620 sec and it reaches a value
of about 800 sec if also the VM consolidation technique is used (curve ’EM +
FB + MM’) due to the increased number of migrated VMs from the federated
private Cloud 2. Such values can be compared with the waiting time experienced
by users when no energy saving policies are adopted. In this way, it is possible
to find a trade off between the advantages obtained in terms of power saving
(see Fig. 11) and the effects on the QoS perceived by the users.

Another QoS index is represented by the probability that a request is dropped
(see Fig. 13). In this case, we can appreciate the improvements, in terms of per-
ceived QoS, produced by the federation and consolidation techniques. In fact,
due to the presence of the public Cloud that is characterized by a high avail-
ability, the drop probability can be maintained to a low value, notwithstanding
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the system load. On the contrary, if the Cloud is not federated, the probabil-
ity rapidly increases when the arrival rate increases and the system reaches a
saturation condition.

From the provider point-of-view, interesting indexes can be obtained mea-
suring the probability that a new VM is redirected from Cloud 1 to federated
Clouds (see Fig. 14). From such an index it is possible to estimate the QoS
levels perceived by the users: in fact, foreign VMs could be affected by latency
or sudden disconnections due to the network conditions. It can be noted that
when the load is low such a probability decreases. This is due to the fact that
the probability that Cloud 1 is off decreases and then the VMs can be locally
admitted. When the system is overloaded the probability increases because the
Cloud 1 reaches its capacity and the incoming request have to be redirected to
the public Cloud.
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From a combination of the proposed indexes, it is possible to carry out a
costs/benefits analysis, by quantifying both the advantages (in terms of en-
ergy/money saving) due to the blade centre switch off and the penalties related
to possible SLA violations.

For example, it is possible to compute the operating costs as the sum of
the energy costs and the costs related to the public Cloud. Fig. 15 shows the
operating costs obtained varying the energy saving strategies. Such costs can
be compared with the costs related to a Cloud always active (curve ’without
EM’). If only the Energy Manager is adopted (curve ’EM’) it is possible to
obtain only a moderated cost reduction and only if the load is very low. On the
contrary, using the federation and VM consolidation techniques it is possible to
adapt the costs to the system load thus obtaining a quasi-linear trend. In this
case, it is possible to observe that when the load is high, the operating costs
are higher than those of the single Cloud without federation. This is due to the
fact that the number of accepted users is higher. In fact, observing Fig. 16 it
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is possible to observe that, thanks to the federation with the public Cloud, the
number of accepted users linearly increases with the arrival rate (curves ’EM
+ FB’ and ’EM + FB + MM’) and the system does not saturate even if the
number of requests exceed its capacity. Such considerations can be summarized
by calculating the operating cost per user, as shown in Fig. 17. In this graph
we can observe that when the load is low the federate Clouds allow to reduce
the operating cost per user through the exploitation of opportune energy saving
strategies. Such advantages become irrelevant when the system is high loaded.
In fact, in this case the operating costs per user are similar notwithstanding the
adopted strategy. However, in such a condition the benefits related to the use of
federated Clouds are related to the capacity to serve a greater number of users
without affect the operating cost per user and without the need to carry out
investments to increase the Cloud capacity in terms of available CPU.

Finally, let us give an example of how the model can be used to obtain use-
ful insights on the system parameter settings. Fig. 18 shows the variations on
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the weekly operating costs obtained by changing the power on threshold, i.e.,
the number of users that the system has to wait before a power on action is
triggered. Such a parameter influences the system behavior by forcing the Cloud
infrastructure to be always on when its value is low, or by making a strong use of
federated Clouds when its value is high. We can observe that an optimal param-
eter configuration can be obtained by balancing the costs related to the energy
consumption and to the use of the public Cloud. Such an example demonstrates
the power of the proposed model and its usefulness in the management of a real
Cloud system.

6 Related Work

Modeling and performance evaluation are still emerging topics in the Cloud area.
From an analysis of the state of the art, we can observe that the majority of works
study the problem by resorting to simulation [28], [29], [30] or by conducting
experimental trials on real Cloud systems [31], [32], [33] in order to monitor and
benchmark cloud based applications [15], [34].

To the best of our knowledge, only few works propose a formal analytical study
also focusing on the provider point-of-view. A first attempt to adopt state-space
Markovian techniques to model Cloud systems is found in [26]. An interacting
stochastic model approach is used in order to reduce the model complexity and to
analyze very large systems. The proposed models are represented by continuous
time Markov chains and take into account aspects related to the system reliability
and system performability. The work mainly focuses on the analytical technique
while the analysis part shows only some examples with a limited system size.
In a subsequent work, authors extend the applicability of the proposed model
to the energy consumption analysis [35]. However, there are some differences
between such a work and our proposed model. In fact, the authors model a
system broker able to balance the load among three server pools characterized by
a different status of the PMs: hot (running), warm (turned on, but not ready),
and cold (turned off). They do not take into consideration the possibility to
extend the broker with federation capabilities as presented here. Moreover, no
VM consolidation techniques are taken into consideration within the same pool
or among different pools. Nevertheless, the interacting model approach is very
interesting and it could be also used to extend our model to more complex
scenarios. Another adopted technique to model Cloud systems is queueing theory
(e.g., see [36] and references therein).

With respect to Cloud workload characterization, the arrival process in Cloud
systems can be hardly predictable and/or variable with the time of day. For
example, in [37] authors show how periodic patterns with a time period of one
day can be observed in the workload of the production data center of a multi-
national company. In [38], Pacheco-Sanchez et al. demonstrate that Markovian
arrival processes can be adopted as a tool for performance prediction of servers
deployed in the Cloud. For such reasons, we choose to characterize the Cloud
workload with an MMPP arrival process.
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Other interesting works, mainly focusing on performance evaluation of Cloud
systems, are the following. Yigitbasi et al. [39] proposed an experimental frame-
work to analyze the resource acquisition and resource release times in Amazon
EC2 under variety of workloads while Voorsluys et al. [40] showed performance
analysis of VM live migration and its impacts on SLAs. In [41], Wu et al. pro-
vided performance models for live migration which can be used to predict the
VM migration time given the application behavior and the resources available
for migration. Our analytic model can benefit from these studies for parameter
tuning. In [42], Gmach et al. proposed three different cost models that can be
used by service providers who make significant investments in new virtualized
data centers in order to recover costs for infrastructure resources. They pre-
sented a detailed study involving hundreds of workloads in order to demonstrate
the results. Such a work can be used to validate our model and to demonstrate
how it can be exploited for cost analysis of IaaS Clouds. In [43], Govindan et
al. described a practical technique for predicting performance interference due
to shared processor caches among VMs consolidated on the same PM. In [44],
Rhoden et al. focused on per-node efficiency, performance, and predictability
in Cloud data centers. The results of these work could be used to complement
our model and improve our placement decisions for given performance and cost
objectives. In [45], Goudarzi et al. considered SLA-based resource allocation
problem for multi-tier applications in Cloud. The processing, memory require-
ment, and communication resources were considered as three search dimensions,
in which optimization was performed. Such a work could be useful to extend our
performance model to consider heterogeneous requests. In [46], Lenk et al. pro-
posed a new method for performance evaluation of IaaS Clouds by taking into
account the type of application running in a VM and can be used to evaluate
the performance actually available on a certain IaaS platform. Validation of our
performance model can be performed w.r.t this work.

There is a considerable literature more related to the improvement of the
power consumption of computer systems. For an overview of recent develop-
ments related to Cloud Computing, see [47]. Some economic heuristics for the
allocation of servers in a cluster were presented in [48]. More recently, in [49]
a queueing model is used to analyze the problem of managing a service cen-
ter where clients leave the system if they have to wait too long before starting
service. In such a work, a block of servers is designated as reserve and the re-
serves are powered up when the number of jobs in the system is sufficiently
high, and are powered down when that number is sufficiently low. The question
of how to choose the number of reserves, and the up and down thresholds are
answered. Similar models were examined in [50], [51], [52]. The main difference
with the proposed approach, apart from the analytic technique used, is related
to federation and VM migration policies that are not faced in such works.

7 Conclusions

This paper addressed the problem of energy management in a Cloud environ-
ment. We presented a SRN model that was successfully solved in order to analyze
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several management strategies of IaaS Clouds with the final objective to reduce
energy costs. We are currently organizing a real testbed where the presented
strategies will be implemented and their impact measured and compared against
the analytical results presented in this paper, to further validate our modeling
approach.
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Abstract. This paper proposes a Stochastic Activity Networks (SANs)
based approach to performance analysis of a conferencing framework
compliant with the IP multimedia core network subsystem specification.
The proposed approach relies on the OsMoSys modeling methodology
and applies some concepts of component software engineering to the
development of formal models. The paper introduces the possibility of
building template models in order to enable the definition of families of
models and describes the implementation of a library of reusable SANs
modeling the components of the conferencing framework. Starting from
the model library, we analyze the performance of a current implementa-
tion of the conferencing framework by instantiating and composing SAN
models. Scalability and computational complexity are also addressed.
We validate the resulting model of the conferencing system and discuss
the advantages of the proposed approach through a comparative analysis
with the results of an experimental campaign conducted over a real-world
testbed implementation.
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1 Introduction

The IP Multimedia Subsystem (IMS) is a standardized Next Generation Net-
working (NGN) architecture that has been conceived for telecom operators will-
ing to provide advanced services on top of both mobile and fixed networks [1]. In
the IMS envisioned scenario, heterogeneous devices are supported and users have
to be able to ubiquitously exploit the entire portfolio of available services, which
entails support for roaming as well as for flexible and transparent adaptation to
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context changes. To achieve the aforementioned goals, IMS makes extended use
of Voice over IP (VoIP) technologies and open IP protocols.

Conferencing services are one of the most challenging among those engineered
on top of such framework. They offer advanced communication experience to
end-users exploiting a combination of audio, video, instant messaging, desktop
sharing and other media, and impose a number of stringent requirements to the
underlying network infrastructure.

Due to its recent birth, the IMS architecture is currently far from reaching
its steady-state with respect to the complete definition of the overall infrastruc-
ture and related standards. Furthermore, to date only a few early trials and
deployments of the architecture are underway. This leaves space to a number
of open issues that still have to be faced, both at the infrastructure and at the
service level, as well as, crosswise, for a systematic approach to the performance
evaluation.

In this paper we introduce and apply an extension of the OsMoSys modeling
methodology [2] to an IMS-compliant implementation of a conferencing plat-
form [3] in order to perform performance and QoS (Quality of Service) analysis
of the system. Specifically, the paper describes the development process of a
library of reusable Stochastic Activity Networks (SANs) modeling the compo-
nents of the conferencing framework. The contribution of this work is twofold:
i) it describes a case study motivated by a real need, providing the performance
and scalability models of the conferencing system, ii) it proposes a modeling
approach which copes with both reuse and complexity of models. To this aim
the paper introduces the concept of Model Templates enabling the definition of
a family of models from one model description, as well as the usage of model
stubs which can be used in order to reduce both simulation time and memory
consumption during the analysis phase.

The paper is organized as follows. First the conferencing framework is de-
scribed in Section 2 to provide the reader with the needed background informa-
tion. We motivate and position our work in Section 3. Section 4 presents the
methodological contribution of the paper and introduces the concept of Model
Template. The SANs models obtained by applying the modeling process are pre-
sented in Section 5. In Section 6 the role played by model stubs and reduction
techniques is discussed. The models are validated in Section 7 through a com-
parative analysis with the results of an experimental campaign conducted over a
real-world testbed implementation of an IMS conferencing framework. We show
the advantages of the proposed modeling approach by exploiting both complete
and reduced models. Finally Section 8 contains some concluding remarks and
discusses some directions of our future work.

2 Conferencing Framework

In this Section we help the reader understand the main aspects related to the
conferencing system which has been the subject of our modeling efforts.

The conferencing platform we analyzed offers advanced conferencing features:
system users, named “participants” or “conferencing clients”, are enabled to
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create and join conferences involving any kind of media stream, including audio
and video, as well as instant messaging or even gaming. Different conference
kinds (“blueprints”) are supported and can be highly customized by users aim-
ing to create conferences best fitting their needs. The system is conceived to
be scalable, i.e., able to support an increasing number of conferencing clients.
This property is obtained by a proper co-operation mechanism among different
“centralized conferencing islands”, which will be illustrated afterwards.

As already mentioned, the conferencing system has the considerable advan-
tage of being realized by exploiting standard architectural design specifications
and protocols, deployed by eminent standardization organizations of both the
Internet and the Telecommunication communities, namely the 3GPP and the
IETF (Internet Engineering Task Force). As for the IMS specification, it com-
plies with the standard defined in the 3GPP document [4] describing how IMS
logical elements can be orchestrated in order to make the IMS network capable
to support conferencing services. On the IETF hand, the system is an actual
implementation of the RFC document dedicated to Centralized Conferencing
(also known by the acronym “XCON”) [5], that defines both the protocols and
the components needed to fit advanced conferencing service requirements. For
the sake of conciseness, we herein describe only the main concepts and entities
of the aforementioned standards that are relevant for this work.

Based on the mentioned 3GPP specification, two logical planes can be iden-
tified: the “control plane” and the “media plane”. The control plane deals with
issues related to the set-up of the multi-media multi-user communication, as
well as those related to overcoming the heterogeneity of both the access net-
works and the end-user devices. The media plane faces all the matters related
to the media flows transmitted and received by users, such as, for example, the
transcoding across different media formats and the switching of different media
streams among conferencing participants.

The most important entities for our work are: User Equipment (UE): the
device used by the conferencing user to participate in the conference; Application
Server (AS): the server-side entity responsible for the implementation of the
conferencing application logic; Media Resource Function Controller (MRFC):
the logical entity devoted to control operations on media streams according to
information provided by the AS; Media Resource Function Processor (MRFP):
the entity in charge to perform media processing by acting as a media mixer.

According to the IETF XCON standard, the conferencing application logic
involves different functionality, including the signaling management for the call
set-up, the delivery of conference notifications to participants, the creation and
modification of conference instances according to user preferences, the handling
of moderation and so on.

Given this bird’s-eye overview of the main reference standards, we now provide
further details of the real-world conferencing system we took under analysis. In
such system, the AS provides all the XCON functionality. Moreover, it acts as a
MRFC by managing the MRFP, which is implemented as a different component
that we will call from now on “media mixer”. According to the identified logical
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entities, the IMS elements have been replaced in the system with real-world
components, either by properly extending existing open source components (like,
e.g., in the case of the Application Server elements), or by creating them from
scratch (like, e.g., in the case of the media mixer). The resulting IMS compliant
architecture, as well as its implementation details, are introduced in [3,6,7].

In what follows, two different conferencing scenarios are considered: a central-
ized conferencing scenario and a distributed conferencing scenario. The second
one has been introduced in order to improve the scalability of the conferencing
framework. A recent implementation of such scenario has been proposed in [3].

2.1 Centralized Conferencing Scenario

Figure 1 presents a simplified view of the system, showing the main IMS com-
ponents we mentioned before. We refer to such IMS cloud as to a “centralized
island” of the system, since all signaling messages from conferencing clients are
directed to the same centralized AS and hence realize, at the level of the control
plane, a typical star topology. Being the center of such topology, the AS is also
called “conferencing focus”, or simply “focus”.

On the basis of the adopted conference blueprint, the AS issues commands
to the media mixer, which is the system entity in charge of performing the
audio and video mixing functions needed to deliver to each conference user the
proper mixed stream, according to her/his preferences as well as to the supported
capabilities of the device she/he uses. The multimedia streams generated and/or
consumed by each participant are in fact always exchanged with the media mixer,
hence realizing a star topology also on the media plane.

The AS and the media mixer can be logically grouped into an integrated
server-side logical entity, called “Conferencing Server”, making available all the
functions needed to provide the conferencing service, both on the control plane
and on the media plane.

2.2 Distributed Conferencing Scenario

We herein move the attention to the distributed scenario, in which several cen-
tralized conferencing clouds are interconnected and cooperate in order to provide
the conferencing service in a distributed manner (Figure 2).

Under the assumption that all conference participants refer to the focus in the
home network of the conference initiator, which we call the “main” focus, the IMS
centralized conferencing solution keeps on working also in the scenario where the
conference participants belong to networks owned by different telecom operators.
Though, in a fully distributed scenario, the above case should be dealt with by
providing each involved network with a specific focus managing the associated
local users who subscribed to the conference. It is up to the main focus in the
conference initiator’s home network to provide all other focus entities with up-
to-date conference information. Such foreign focus entities thus play a twofold
role. On one hand, they act as a regular conference focus for the participants
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belonging to their underlying managed network; on the other hand, they appear
as normal participants to the focus in the conference initiator’s home network.

Similarly, on the media plane, multiplexing/demultiplexing of multimedia
streams generated by local users is up to each local media mixer. The resulting
stream coming from foreign media mixers to the main media mixer (i.e., the
mixer located in the island where the distributed conference has been created) is
handled in the same way as the media flow of an ordinary conferencing client. In
order to achieve consistency in a conference involving more islands, a dedicated
communication channel exists between each pair of focus entities participating
in the conference (“Server to Server (S2S) Channel” in Figure 2). Such channel is
used to exchange conference information, as well as to manage synchronization
issues.

3 Motivation and Related Work

This work is willing to provide a modeling approach to accomplish performance
evaluation of actual IMS-compliant conferencing platforms in order to support
their design and deployment phases. With this goal in mind, we start considering
the IMS-compliant conferencing framework described in Section 2. Such a system
is a very good example of the effort aimed at providing a contribution to the
solution of the above mentioned IMS-related open issues, with special regard to
the need for actual implementations of IMS architectures and services.

The considered system has been already the subject of a thorough exper-
imental benchmarking campaign carried out on a real testbed [6,7] aimed at
conducting a performance and scalability analysis of both the centralized and
the distributed architectures. The experimental results showed that, in a con-
trolled network scenario, as the number of users increases, CPU utilization of
the centralized server becomes the most critical performance index, since such
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server is responsible for the management of both the signaling dialogs with each
conferencing client and the media streams mixing function. In particular, man-
aging the media plane turned out to be much more onerous than controlling
the signalling plane. This led the developers to focus on the performance of the
media plane, which definitely represents the limiting factor as far as scalability
is concerned.

The mentioned experimentations required a lot of efforts. For each trial, a real
laboratory testbed has been properly set up and a realistic set of conferencing
sessions has been reproduced over it. Each such session was actually instantiated
by replaying a proper set of recorded traces associated with actual conferences
and hence mimicking in a reliable fashion the actual behavior of end-users and
servers. This approach does not clearly solve the issue of assessing as timely as
possible (i.e., during the design and capacity planning phases, before the actual
deployment of the numerous infrastructure components) the main non-functional
features of a conference, like performance and dependability. This clearly calls
for a need to make available a set of flexible tools for the assessment of the afore-
mentioned requirements, which naturally lend themselves to a multidimensional,
multi-faceted characterization.

A common approach to performance evaluation of networked systems which
does not require real testbed implementations is of course based on the usage of
network simulators. Nevertheless the current leading network simulators (such
as ns-2, ns-3, OPNET Modeler, etc.) do not offer complete support for IMS [8];
in particular, they do not support the modeling of the media plane through em-
bedded components, but usually rely on third-party implementations of some
of the required IMS media plane functions. Compared with the experimental
and the simulation approaches, formal modeling presents several advantages. It
allows for performance evaluation and performance prediction thus supporting
the early phases of the development of the system and providing the possibility
to easily evaluate several conference blueprints. This also allows for sensitivity
and stability analysis on a number of parameters, including those associated
with Quality of Service, which gives the service providers an effective means
to plan and schedule conferences according with the expected QoS levels. A
further advantage in using formal modeling is the possibility to model and ana-
lyze anomalous behaviors due to attacks, faults, overloads or degraded operating
modes. In this paper we mainly address the aspects related to the scalability and
performance of the system. Several works can be found in the literature aiming
at mainly analyzing access control and protocols by developing formal models,
but focusing on security [9], protection [10,11], dependability [12] and protocol
validation [13]. To the best of our knowledge there are not many attempts at
modeling the IMS-compliant conferencing frameworks specifically oriented to-
wards the study of the media plane.

Multimedia conferencing systems have already been a playground for the ap-
plication of formal modeling. Several works focused on the orchestration of the
different building-blocks a multimedia conferencing platform relies on, as it is
the case in [14]. In the cited work, the authors mainly use Petri Nets and related
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modeling languages to perform composition correctness validation. Other re-
searchers leverage Petri nets to model conferencing media flows characteristics,
as well as time synchronization mechanisms. These approaches are definitely
more relevant to our work, since we are concerned with media plane modeling
rather than compositional aspects. In [15] authors use TPNs to properly de-
scribe the temporal scheduling of the multimedia presentation process, within
the inter- and intra-streams synchronization constraints. TPN models of such
mechanism are used to support the implementation of a system capable to con-
trol streams synchronization in a video conferencing application. As opposed to
the mentioned work, we do not analyze media streams management to drive the
construction of a system from scratch, but rather to model the workload of an
existing conferencing media mixer and study its performance.

Since our goal is to provide a flexible tool for the evaluation of performance
and scalability, we use SAN models to describe the conferencing server behavior,
while dealing with users mixing preferences and coping with the diversity of the
involved media and related codecs. SANs are more suitable than TPNs to our
aims because of their modeling power and efficiency. Specifically, they provide
the basic modeling mechanisms to easily integrate, in the models, data structures
representing messages, as well as to replicate and compose submodels.

As anticipated, the focus of this paper is on both scalability and performance
aspects of the system. The analysis is carried out by alternately varying: a) the
scenario (centralized vs distributed); b) the number of participants; c) the kind of
deployed conference (e.g., presence/absence of the moderator, presence/absence
of transcoding mechanisms). From now on, for the sake of simplicity, we con-
sider conferences with only audio streams (audio conferences): this simplification
allows us to better explain our approach without losing in generality.

4 Model Development Process

In this Section we present the development process adopted to build the perfor-
mance model of the conferencing system described in Section 2. The modeling
approach is founded on well known principles: it is compositional and hierarchi-
cal, and promotes model reuse. In particular we refer to the OsMoSys modeling
methodology [2] which was born to support compositional and multiformalism
modeling. Here we do not exploit multiformalism but we rather take advan-
tage from the separation between interface and implementation of submodels.
The IMS-conferencing case study requires that a clear separation of concerns
is adopted in modeling the behavior of the different entities of the framework.
Moreover, the heterogeneity of devices, the variability of the number of partic-
ipants and the need for scalability suggest that proper solutions must be found
to provide the modeling approach with the necessary flexibility. Possible answers
to these issues are proposed:

1. separation of concerns: the first step of the model development process is to
define the behavioral levels of the system. They will be modeled in isolation
and then composed through model interfaces.
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2. enabling model reuse: we propose to extend the OsMoSys methodology by
introducing the concept of Model Template in order to easily define a fam-
ily of models sharing part of their definition and allowing for parametric
specification of some elements of the models themselves.

3. dealing with model scalability: the simulation time and space occupation
needed to solve the models are very high as the number of participants
increases: we propose two solutions to this issue, described in Section 6.

4.1 Separation of Concerns: Modeling Levels

In Figure 3 the structure of both the Participant (Client Side) and the Confer-
encing Server (Server Side) entities is shown. Since we deal with performance
and scalability analysis of the system, we concentrate the modeling efforts on the
media plane: in fact, as remarked in Section 3, experimental campaigns showed
that operations like transcoding and mixing of the participants’ media streams
are the most demanding ones in terms of required resources and hence have the
strongest impact on the overall system performance.

user

application

device

access
network

device

access
network

Client Side

Server Side

management

Fig. 3. Reference modeling schema

Client Side is composed by the following levels. User: at this level the media
streams are produced (output streams) or consumed (input streams). The user
is characterized by the role she/he plays in the conference (moderator, speaker,
observer, etc.) and by the load that she/he produces. Application: at this level
the streams are encoded/decoded. For example, the application samples and
encodes the audio signal coming from the user’s microphone. The production
rate of the messages depends on the type of encoding (i.e., codecs adopted),
as well as on both the power and the number of CPUs. Device: this level is
in charge of bundling output streams into packets or viceversa (i.e., assembling
input streams). At this level the features of the participant’s communication
device (the User Equipment) are taken into account. The main parameters are
the power and the number of CPUs. Access network: it represents the access
network of the device and is characterized by its connection speed.

Server Side levels are the following ones.Management: it includes the server-
side functionality for the provisioning of the conferencing service on the media
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plane in each centralized conferencing cloud. More precisely, as already men-
tioned, we skip the modeling of the Application Server component, while stress-
ing the details of the media mixer component in charge to perform media streams
management on the basis of the particular kind of conference. Device and Ac-
cess network levels are the same as the client-side ones.

4.2 Enabling Model Reuse: Components and Templates

The modeling approach we adopt to model the conferencing framework is based
on the OsMoSys (Object-baSed multi-formalism MOdeling of SYStems) model-
ing methodology [2]. The vision underlying OsMoSys is to apply the concepts of
component software engineering to the development of formal models in order to
provide a practical support to model engineering. According to OsMoSys a model
is an object of a Model Class which encapsulates the details of its implemen-
tation (the model structure is expressed by a formal language). Hence, models
are components which communicate via interfaces. An interface is a subset of
elements of the model structure which may be used to exchange information
among models (for example, the value of parameters, indices or the overall state
of the model). The role of the interfaces has already been addressed in [16,17].

The OsMoSys methodology may be very effective in modeling the conferencing
system since a component-based approach emphasizes the separation of concerns.
Nevertheless, the problem we deal with is characterized by a variable number of
peers (Conferencing Servers and/or Participants), as well as by the heterogeneity
of the involved applications and devices. Hence, we need mechanisms to easily
provide a specification for generating models based on parameters. With this
aim in mind, in this paper we explore the possibility of extending OsMoSys by
defining Model Templates.

Model Templates may introduce a powerful feature in formal modeling, since
they allow to specify with a single model description an entire family of re-
lated models, called template models. Similarly to Class Templates introduced
by several programming languages, Model Templates require one or more type
parameters to specify how to generate a specific instance from a generic model
template. The type parameters refer to the type of one or more elements of
the model structure, including the type (i.e., the Model Class) of submodels.
It is also possible to use non-type parameters, e.g., to specify the number of
replicas of a subset of elements (including submodels). The complete definition
of Model Templates in OsMoSyS is part of an ongoing work. In this paper we
define and exploit a specific case of non-type parameters. The formal definition
and application of type parameters are out of the scope of this work.

Some research papers have been published proposing template based ap-
proaches, all limited to some extent: in [18] typed parameters template are in-
troduced for Petri Nets models. In [19] the focus shifts onto Stochastic Activity
Networks and on the possibility to change the behavior of the model according to
non-type parameter values. Other works focus on the possibility to both replicate
and join submodels inside a compositional approach [20,21]. To the best of our
knowledge, there are no works aimed at defining a generic modeling approach in
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which formal models are templates developed in terms of type and/or non-type
parameters that can be specified at instantiation time.

In order to define the Model Templates according to the OsMoSys nota-
tion, some preliminary definitions are due. Formally, a Model Class MCF is
a triplet (T, S, SM) where: T is the class name, S is the graph structure of
the class, SM is a set of submodels. MCF is compliant with a formalism F
and its structure S is a graph of elements of F . Specifically, from now on we
will call N the set of nodes and E the set of edges of S. For example, if a
Model Class is compliant with the Petri Nets formalism, its structure will com-
prise Place, Transition (the nodes of the graph) and Arc (its edges). It holds:
S = ExternalS ∪ InternalS; ExternalS ∩ InternalS = % where ExternalS is
the subset of the interface elements of the Model Class and InternalS is the
subset of elements that are encapsulated by the class.

Let us define a Model Template MTF as a pair (MCF , PAR) where MCF is
a Model Class and PAR is a set of non-type parameters:

PAR = {p1, p2, . . . pn}, n � 1.

Definition 1. A non-type parameter is a triplet pi = (li, SSi, fi), where li is
the name of the parameter; SSi is a subgraph of S, SSi = (NNi, EEi) with
NNi ⊆ N and EEi = {e = (m,m1) ∈ E|m,m1 ∈ NNi}.
A synthetic notation for the Model Template is MTF < l1, l2, . . . ln >.

Definition 2. An instancing function is fi : N −→ M1
F where M1

F is the set
of the Model Classes compliant with the formalism F .
An instancing function fi must specify how the Model Template should be (au-
tomatically) instantiated by using the non-type parameters. A synthetic notation
for an instance is MTF < v1, v2, . . . vn > where vi is the value on which fi is
computed.

(a)

A

D C
B

E

SSn

SSm

(b)

A

D2 C1B

E2

C2 C3

D1E1
MTsample<n,m>

Fig. 4. A Model Template example

An example is depicted in Figure 4, in which a simple case of replication is
shown. A Model Template is on the left (Figure 4(a)), let it be:

MTsample = (MCsample, {pn, pm})
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where: pn = (n, SSn, fn) and pm = (m,SSm, fm) are the non-type parameters.
The subsets of the model structure in the dashed boxes (SSn and SSm) may be
replicated and a template model may be generated by providing the value of the
two non-type parameters. Both subnets include a submodel (the white square).
The Model Template is denoted by MTsample < n,m > while the template
model is denoted by MTsample < 2, 3 > and is shown in Figure 4(b). The model
is obtained by specifying the values 2 and 3 for the number of replicas of SSn

and SSm, respectively1. In this example we use a simple instancing function
that copies a sub-graph as many times as indicated in the parameter value:
all the replicas are then connected to the rest of the model by replicating arcs
connecting the sub-graph with the rest of the structure, too. In the example,
the subgraph SSn and the arc from A to D are replicated twice. Of course, a
renaming function is also needed to avoid conflicting names.

The instancing functions must be provided in order to state how the template
models have to be generated. In the example a simple instancing function is used
which allows for replication of a part (or the whole) of the model structure. It
is defined by induction as follows.

We denote as MTF < x > a Model Template with a parameter (x, SSx, f)
where SSx = (NNx, EEx). Let EEx be the subset of EEx connecting nodes of
NNx and of N −NNx.

– S1 = S: the function does not change anything in the structure of the Model
Class;

– ∀v ≥ 2, let f(v − 1) = (Tv−1, SSv−1, SMv−1) and f(v) = (Tv, SSv, SMv):
1. Tv is calculated by a renaming function;
2. NNv = NNv−1 ∪NNx and EEv = EEv−1 ∪EEx ∪EEx, i.e., the graph

generated at v is built by joining the one generated at v − 1 with a new
replica of SSx and the arcs connecting the new replica with the rest of
the structure (not included in SSx);

3. SMv = SM

Notice that it might hold that SSx = S, thus allowing for the replication of an
entire model.

In the next Section, the modeling approach herein described is exploited to
develop a library for the implementation of the models associated with an IMS-
compliant conferencing framework. Such library contains both Model Classes and
Model Templates, compliant with the SAN formalism, that must be customized
and instantiated according to the different available blueprints.

5 Modeling the Conferencing Framework

This Section details how the modeling approach described in Section 4 is applied
to generate the SAN models of the conferencing system. Models are described

1 Note that E is an interface element: this approach can be used to replicate model
interfaces, too.
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according to a bottom-up approach: first, we introduce the models realizing each
level of the conferencing system in isolation (Figure 3); then, we show how they
are composed in order to obtain the models of both the Client Side and the
Server Side. Some of the models described in this Section are template models,
since they are obtained by instantiating specific Model Templates (specifically,
User, Management, Client Side and Server Side). The subnets we will introduce
to perform the composition in Subsection 5.6 are template models, too. The
remaining models (Application, Device and Access Network) are not templates.
For the sake of conciseness, only the formalization of the User Model Tem-
plate, according to the notation presented in Subsection 4.2, is reported in the
following.

5.1 User Level

In the conferencing context a user has the same behavior independently from the
specific medium she/he uses (audio, video, etc). This behavior may be modeled
by a state machine: a User Model Template that produces and consumes a
generic multimedia stream UserSAN = (UserMCSAN , {(K,S, fK)}) is shown in
Figure 5, where UserMCSAN = (userMedia, S,∅): the SM set of UserMCSAN

is empty and fK is the instancing function described in the previous Section.
User has one parameter K that represents the number of the media streams
related to the user. Note that SSK=S, i.e., this is the trivial case in which the
entire structure of UserMCSAN must be replicated. Hence, UserSAN < 1 >
coincides with the Model Class UserMCSAN . In order to show the flexibility of
this mechanism, Figure 6 shows the template model UserSAN < 2 > modeling
a user who makes use of both video and audio.

The interface of this model is represented by the two placesMediaInbound and
MediaOutbound, respectively for inbound and outbound traffic. The user may be
in a Producing or in a Waiting state (i.e., “talking” and “not talking” for the
audio media) represented by ordinary places. The timed transitions (P2W and
W2P) model the switch between the two states. When the transition P2W fires,
a token is removed from the MediaOutbound place by the output gate OG0.
On the contrary, when the transition W2P fires, a token is added to the place
MediaOutbound by the gate OG1.

SSk

Fig. 5. The User Model Template Fig. 6. The audio conference user model



320 S. Marrone et al.

5.2 Application Level

At this level, we model the behavior of the encoding and decoding processes, on
both Client and Server Sides. For each medium associated with the Participant,
two different models are created, one for each stream direction: inbound-decode
and outbound-encode. Therefore, we have a number of instances of the inbound
and outbound Application model depending on the media enjoyed by the partici-
pant The two patterns of inbound and outbound application models are depicted
in Figure 7 and Figure 8, respectively. The former model is able to maintain a
token in the output place starting from a set of structured tokens (messages)
arriving at the app in place. The latter is instead devoted to the production of
structured tokens to be put into the app out place, with the presence of an in-
coming media flow being represented by a token in the input place. In detail, the
interfaces of the inbound application model are represented by the places output
and app in: a structured token in app in indicates the presence of a message
ready to be decoded; after the decoding process (that keeps the CPU busy), the
decoded data are ready to be played out. On the left of the image there is a
watchdog that is responsible for maintaining the token in the output place: two
places playing and noPlaying with the connected transitions and gates imple-
ment the state machine related to the watchdog.

Fig. 7. The inbound Application model

A specular behavior is manifested by the outbound application model. A
token in the input place indicates the presence of an external flow that needs
to be encoded. In this case, IG1 enables the sampling transition that fires after
a sample length and produces a new sample in the samples place. Upon arrival
of a specific number of tokens in the samples place, depending on the encoding
standard used, IA1 is enabled and, if the CPU is not busy, the generation of
a message is activated. After a predefined processing time, Tcpu fires and the
message is made available at the output interface app out.

Fig. 8. The outbound Application model



Performance Evaluation of an IMS-Compliant Conferencing Framework 321

5.3 Device Level

The device layer is responsible for the decomposition of all output streams pro-
duced by a Participant, encoded with application messages, into one or more
packets, or, viceversa, for the assembly of input packets into application mes-
sages. All the application level media streams are conveyed in an outbound
Device model that decomposes each message into a number of packets, accord-
ing to the length of the message itself, assigning to each of them an incremental
identifier. Therefore, each packet is characterized by the message number and
packet number that allow receivers to assemble the packets into application mes-
sages. Figure 9 depicts the SAN model of the device on both Client Side and
Server Side: this model can be connected either to a network layer model or to
an application layer working in both inbound and outbound configurations. The
model interface resides in the dev in (input) and the dev out (output) places. In
detail, the two input gates, IG1 and IG2, verify either the presence of a message
(in the output configuration) or the arrival of the last frame of a message (in
the input configuration) on the dev in place. These two gates are able to recog-
nize the direction in which the model has been assembled thanks to the packet
number: if this value is not specified (or it is set to a meaningless conventional
value, like, e.g., 0) it means that the model is working in outbound configura-
tion, inbound otherwise. When an application message is (packets are) ready to
be decomposed (assembled), the User Equipment processes it (them) until the
related packets are (application message is) put into the output interface.

5.4 Access Network Level

The network layer is responsible for getting packets from a source peer (Confer-
encing Server or Participant) and transferring them to the backbone network,
when in outbound configuration, or viceversa, when in inbound configuration.
The transfer time depends on the nature of the communication medium (Wire-
less, Wired, DSL, UMTS, etc.) to which the User Equipment is connected. Fig-
ure 10 depicts the SAN model of the access network: as for the device model, it is
generic in the direction of communication (inbound/outbound) and the transfer
time actually represents a parameter of the model. The interfaces of this model
reside into net in (input) and net out (output) places, respectively.

Fig. 9. The Device model Fig. 10. The Access Network
model
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5.5 Management Level

The Management level is specific to the Conferencing Server and it is not present
in the model on the Client Side. This level is responsible for transcoding between
the different media codecs adopted by participants, as well as for forwarding mes-
sages to them, by relying on stored information about the conference (that the
Conferencing Server needs to keep in memory). The overall model of this level
instantiates the aforementioned application model templates (inbound and out-
bound) to transcode messages, in conjunction with another model, described in
this paragraph, that deals with the generation and transmission of messages.
The overall Management model, like the application models, is specific to the
particular media and can hence be instantiated ST times (ST being the num-
ber of media streams involved in the conference). Figure 11 depicts the SAN
representation of this additional model.

Fig. 11. The Server Side Management additional model

Given its function, the additional model offers two interfaces to the device level
(app in and app out), as well as four connection points with the inbound applica-
tion model (app in inbound and decodedMessages) and with the outbound appli-
cation model (samples outbound and app out), both used for potential messages
transcoding. When a new message arrives at the server application level on the
interface app in, IG1, IA1, OG1 check whether the codec used in the message
is the standard codec chosen for the conference. In this case the message is put
into the decodedMessages place; otherwise, it may be transferred to the inbound
application model through the app in inbound place. The transcoded messages
produced by the inbound application model are put into the decodedMessages
place, where the CPU finds only messages encoded with the standard codec,
which are elaborated and sent to all participants through OG2. Before putting
messages into the app out place, the server checks the codec of choice for each
participant and, if not consistent with the standard one, it puts the samples into
the samples outbound place (connected to the outbound application model) for
the correct message encoding.

5.6 Composing Model Stacks

The aim of this Subsection is twofold: it first shows how composition has been
applied and then how it has been implemented in the Möbius framework [22].
A two-level composition strategy has been implemented: an “intra-stack” com-
position to create Participant and Conferencing Server composed models, and
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User<K>

app_in_1

Participant<N,M>

access network

...

app_in_N app_out_1 app_out_M

device

Fig. 12. Client Side stack Model Template

app_in_1

Management<X>

access network

app_in_X app_out_1 app_out_X

device

Fig. 13. Server Side stack Model Template

an “inter-stack” composition at a higher level to create the overall conferencing
system model. The “intra-stack” compositions representing the Client Side and
the Server Side model stacks are shown in Figure 12 and Figure 13, respectively.

Starting from the top of the Figure 12, the Model Template described in
Subsection 5.1 is used inside the User level according to the parameter K (the
number of involved media). At the Application level, several models described in
Subsection 5.2 are used. The number of inbound and outbound application model
replicas is determined from N and M, representing, respectively, the number of
received and transmitted media streams. The two values of N and M can be
different (and not equal to K) in those cases when a client is producing but
not receiving a specific medium (like, e.g, for a mobile phone, not equipped
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with a camera, which is not capable to generate its own video stream, but can
nonetheless receive video sent by other participants). In the simplest case of
an audio conference where all participants can both listen and speak we have
K = M = N = 1. Both at device and at access network levels two models,
according to the direction of the media flows, are instantiated. It is clear that
the whole Participant model is itself a Model Template since entire submodels
can be replicated. Figure 13 depicts the “intra-stack” composition at Server
Side where the different part is represented by the Management model (since
Server Side and Client Side use the same Device and Access Network models).
The model is in charge of representing the Conferencing Server’s audio and
video mixing functions: in order to capture such concepts, the model is built
by using hierarchical composition. In fact, transcoding media streams may be
necessary depending on the adopted encoding-decoding formats, as well as on the
capabilities of the involved devices. Encoding and decoding are modeled by using
the application model templates (respectively app out and app in) described in
the previous paragraph. These are model templates in X parameter, that is the
number of the different encoders and decoders used in the conference.

The “intra-stack” composition is performed by place superpositions, where it
is naturally possible, or by using some interconnection SANs: Figure 14 shows
the Model Template of the interconnection network between device and appli-
cation models on the inbound branch of both Participant Side and Server Side.
Figure 15 shows the real instantiation obtained by replicating, for two media (au-
dio and video), the SSn subgraph. The latter model allows to connect the device
level of a Participant/Conferencing Server to the two inbound application mod-
els. It basically represents a simple messages separator, working in accordance
with the media to which they refer.

SSn

Fig. 14. The Device-to-Application com-
position network Model Template

Fig. 15. A Device-to-Application compo-
sition network model

The “inter-stack” composition, starting from the definition of conference de-
ployment (in terms of the number of conference participants, as well as overall
Conferencing Server configuration), joins all the instances of the peers stack
model (Participants and Conferencing Server) through a proper network, on the
basis of a provided topology.

The two composition steps described above are implemented into the Möbius
framework by means of the Rep and Join operators [22]. The set of participants
is created by replication and instantiation of the entire Client Side model stack.
Figure 16 shows an example of an overall composed model of a centralized au-
dio conferencing system. The “intra-stack” composition has been implemented
through the participant and server Join models; similarly, the“inter-stack”
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intra-stack composition intra-stack composition

inter-stack composition

Fig. 16. The overall composed system model

composition is given by the combined action of both the Rep (to replicate partic-
ipants) and the system Join model (acting as a top level joining all the involved
entities). To identify single participants, by assigning a specific id to each of them,
a simple idAssignment model has been implemented. This model is similar to
the one proposed in [21] and allows to associate an index to each participant
instance. Indeed, having non-anonymous participants is critical when, for exam-
ple, a measure on a specific instance is requested or a different behavior must
be modeled for it. The composition SAN is in this case trivial, since different
models have to share some communication places.

6 Dealing with Model Scalability: Stub and Reduced
Models

The composed model of a complete conferencing system, shown at the end of the
previous section, requires increasing simulation time and memory space during
the solving phase and thus call for the introduction of scalable solutions. These
problems are due to the huge use of extended places containing data structures
arrays that need a high start time to be solved. A possible solution relies on
storing data in a database, while keeping in memory just the references to the
tuples. However, this strategy is not effective enough for our scope because it
just helps overcome the memory consumption issue, while leaving unaffected
the computation time. Therefore, we herein propose two different approaches
to face scalability issues: (i) stub models, that replace some levels of peer stack
with simplified models, and (ii) reduced models, that take the place of the entire
peer stack. These two techniques are not mutually exclusive and can be jointly
used to model the system. They introduce different approximation levels that
we have analyzed by means of simulations. We show the obtained results in the
following section.
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6.1 Stub Model

A stub model, as in software development techniques, may simulate the behavior
of an existing, more detailed, model or be a temporary substitute for a yet to
be developed model, hence reducing the complexity of a complete one. The stub
models can be used to perform analysis at a precise level among those previously
identified, by simulating the behavior of the remaining ones. The use of stubs is
simplified by the layered nature of system and models, as well as by the compo-
sitional nature of the modeling methodology: clearly, a stub for a generic model
layer must exhibit the same interface of the models it replaces. Stub models,
like the complete one, do not prevent from identifying the single participant and
assigning it a different behavior. They also reduce memory occupation for the
complete stack; though, as it will be shown in the following, they still entail a
significant computational complexity. The approximation introduced by a stub
model is proportional to its ability to represent the missing levels: the greater the
accuracy of the model, the lower the error on results. The adoption of stubs can
be useful for two different purposes: i) to focus on the model of a specific level,
in which case a stub acts as a substitute for the models of the lower levels; ii)
to build a smaller scale model of the overall conferencing system, by considering
just one or few levels both for participants and for the server.

6.2 Reduced Model

In many cases the analysis of a conferencing system is conducted to calibrate or
to estimate the performance features of the conferencing server: in these cases we
can ignore the identification of each single participant, hence allowing for more
participant stacks to be collapsed into a reduced model. The reduced model is
here presented: it can be connected directly to the Conferencing Server model
stack and it generates the load related to n participants without instantiating
all of them. This model is depicted in Figure 17: (i) the distribution function of
the production transition models the average rate with which messages are pro-
duced by a single participant; (ii) the activeClients place is used to store, at each
instant of time, the number of transmitting participants; (iii) the verifyClients
input gate checks the presence of at least one token in the associated place and
is used to either increase or decrease the number of active participants, for ex-
ample in case of configurations involving moderation; (iv) the generateMessages
output gate injects packets into the network. This simple model introduces an
acceptable approximation in the evaluation of server-side performance, with rea-
sonable complexity, as well as reduced memory occupation, as demonstrated in
the next Section. Though, it does not allow to conduct performance evaluations
at the client side.

Fig. 17. The client reduced model



Performance Evaluation of an IMS-Compliant Conferencing Framework 327

7 Evaluation of the Proposed Approach

This Section assesses the proposed approachbymeans of experimental campaigns.
Our objectives are: i) validation of the proposed models through a comparison
with real data; ii) assessment of the scalability of the modeling methodology; iii)
analysis of its power and flexibility when addressing different conference configu-
rations (e.g., with/without transcoding, with/without moderation, etc.).

To this purpose and according to related works [6,7] we choose CPU usage of
the Conferencing Server (for an audio conference) as a key performance indica-
tor. Such measure is usually computed with respect to the number of participants
connected to the conferencing system. Before showing the results of our analy-
sis, a description of the system configuration parameters used in the trials must
be given (Table 1). For the sake of coherence, such parameters have been cho-
sen according to the above cited works. The first two objectives are fulfilled in
Subsection 7.1 and the third one in Subsection 7.2

7.1 Validation with Real Data

This group of simulations aims at demonstrating the equivalence between our
models and real experimental data. In order to achieve this goal, we compared
the estimated CPU usage obtained by solving models with the values reported
in [6,7]. This validation requires a high level of scalability in terms of number of

Table 1. System parameters

Parameter Description Value

pkts per msg Packets generated at device level for each appli-
cation level message.

1

sample len Duration of a single audio sample (according to
G.711 specification).

0.125 ms

samples per msg Samples contained in an application level mes-
sage (according to G.711 specification).

160

sample dim Dimension of an audio sample 8 bit

app in Tcpu mean
app out Tcpu mean

Mean CPU time needed to decode/encode a mes-
sage at the application level.

1.3E-4 ms

app in Tcpu var
app out Tcpu var

Variance of CPU time needed to decode/encode
a message at application level.

1.3E-5 ms

mngmt Tcpu mean Mean of CPU time spent by the server to gener-
ate a single application message

1.3E-4
ms/msg

mngmt Tcpu var Variance of CPU time spent by the server to
generate a single application message

1.3E-5
ms/msg

dev Tcpu mean Mean CPU time to decompose/recompose a
message at device level.

0.6E-6 ms

dev Tcpu var Variance of CPU time to decompose/recompose
a message at device level.

0.6E-7 ms

net band Upstream/downstream bandwidth needed for a
message

67 Kbit/s
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Fig. 18. Scalability analysis: CPU usage Fig. 19. Scalability analysis: simulation
time

participants: for this reason, we introduce at first a comparative analysis of the
complete model with stub and reduction approaches to evaluate their scalability
features.

Complete vs stub vs reduced model. Based on the specific well-defined reference
scenario, the three models are compared: a complete model obtained by compos-
ing the server stack with the replicas of the participant stack; a model obtained
by substitution of the device and access network levels with stub SAN models;
a model built using reduction techniques as defined in Section 6. The accuracy
of the stub and reduced models compared to the complete one, that is the esti-
mated CPU usage of the Conferencing Server against the number of connected
participants, is reported in Figure 18. The simulation times associated with these
studies are instead reported in Figure 19. The two analyses have been conducted
for a number of participants between 5 and 110: a quick look at the graphs tells
us that the reduced model is able to analyze up to 110 participants within rea-
sonable simulation time. The complete model is instead capable to arrive at a
maximum of 75 participants on the computer used for the simulation (Intel(R)
Core(TM) 2 Duo @ 2.53GHz, 2 GB RAM) due to RAM saturation during the
solving phase. The reduced model scales very well in simulation time and, ac-
cording to the first diagram, it is also as accurate as the complete model for the
considered conference scenario. The drawback in its use resides in the poten-
tially unsatisfactory level of detail: some analyses that require non-anonymous
participants (e.g., the QoS of the conference as perceived by end-user), cannot
be conducted because of its limited description of the participants’ model stacks.
On the contrary, a stub solution seems to best strike the balance between ac-
curacy, simulation time and level of detail. In particular, the considered stub
models superpose communication places without introducing CPU effort at de-
vice and network levels: the accuracy can be further improved by constructing
more realistic (yet less performing) stub networks.

Reduced model vs real data. We compare the solutions obtained with the reduced
model with the real experimental data for the two different configurations de-
scribed in Section 2: a) centralized scenario, where a single focus acts as the
Conferencing Server for a number of participants varying from 25 and 300; b)
distributed scenario, where a “two islands” configuration is used for load balanc-
ing purposes (150 participants per focus). The results are reported in Figure 20



Performance Evaluation of an IMS-Compliant Conferencing Framework 329

Fig. 20. Reduced model vs real data: centralized scenario

Fig. 21. Reduced model vs real data: distributed scenario

and Figure 21, respectively. In both scenarios the reduced model fits well the
real measured data.

7.2 Evaluating Power and Flexibility

So far we have validated our approach both in terms of accuracy of the results
and scalability. The next two experiments point out the power and flexibility
of the proposed modeling approach by evaluating the system’s performance un-
der different conference configurations. More precisely, we evaluate the effects
of moderation and transcoding on the CPU usage of the central Conferencing
Server for an audio conference. The aforementioned experiments are conducted
by varying two key simulation parameters: the probability of being muted by the
moderator and the probability of a flow to be transcoded. For both of them, we
employed complete models, limiting to a value of 50 the number of participants.
In the performed simulations, all participants use identical devices and present
the same probability to talk and probability to have their flows be transcoded.
However, the adoption of a complete stack model allows us to assign different
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Fig. 22. CPU usage vs number of users
for different Prel values

Fig. 23. CPU usage vs Prel for different
conference sizes

behaviors and different devices to each user. This paves the way for further
analysis that can be realized by introducing heterogeneity in the composition of
the participants set. Moreover, this enables future works on performance studies
conducted from a user’s perspective, by focusing on parameters like, e.g., the
performance of user devices, endpoint CPU utilization, perceived delay, etc..

Complete model: moderation-based conference. In this study, starting from a sam-
ple conference, we evaluate the difference between the CPU usage of the Confer-
encing Server either in the presence or in the absence of moderation. According
to the User model described in Section 5, the evaluation can be characterized by
the Prel parameter, that is the probability to release a conversation when talking
(or, similarly, to be muted by the moderator in a moderation-based conference).
Several values of the Prel parameter have been used for the analysis. Figure 22
and Figure 23 show the results of these simulations, by highlighting a reduction
on the CPU usage as long as the Prel parameter increases. This is clearly due
to the reduced number of incoming audio flows to be processed.

Complete model: conference with transcoding In the last experiment we evaluate
the potential impact due to the presence of transcoding. We suppose that a por-
tion Cdtrcd of participants does not need any transcoding, while the remaining
part requires that the Conferencing Server transcodes messages (which increases
server CPU usage). Several values of Cdtrcd have been used. The results are
shown in Figure 24 and Figure 25. We can notice how the CPU workload is

Fig. 24. CPU usage vs number of users
for different Cdtrcd

Fig. 25. CPU usage vs Cdtrcd for different
conference sizes
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progressively lighter as long as the number of participants needing server-side
transcoding decreases (i.e., by increasing the value of the Cdtrcd parameter).

8 Conclusions and Future Works

In this paper we have used Stochastic Activity Networks to analyze the perfor-
mance of a conferencing framework compliant with the most recent standard
proposals currently under discussion within the international research commu-
nity. We do believe that our work presents a number of interesting facets.

First, it does represent a successful example of cross fertilization between two
extremely active (yet often uncorrelated) research communities: (i) the network-
ing community on one side, which mainly focuses on real-world implementations
of the designed architectures, by embracing a pure engineering approach; (ii)
the “performability” community on the other side, which usually opts for a
more structured approach, whereby the designed architectures are mostly stud-
ied through the application of formal methods. Thanks to such cross fertilization,
we were able to reach the twofold objective of both validating the suitability of
the formal characterization of our real-world implementation of the distributed
conferencing scenario and assessing the validity of the measurements we per-
formed on the field.

Second, once demonstrated the applicability of the formal approach, we moved
the focus to the potential improvements deriving from the adoption of a compo-
sitional approach, which introduces the possibility of building model templates
in order to enable the definition of families of models. By implementing a li-
brary of reusable SANs specifically devised to model the behavior of the various
components of the conferencing framework, we were able to analyze the main
performance figures associated with our current implementation of the conferenc-
ing framework through the proper composition of SAN templates. The results of
the experiments we conducted clearly demonstrate that the proposed approach
can be fruitfully exploited in order to: (i) easily compose and build the complete
system model; (ii) analyze in an agile fashion the system’s behavior; (iii) simplify
the very first phases of the entire life cycle of a real system (i.e., before its actual
deployment).

The promising results obtained so far, encourage us to keep on investigating
the proposed approach, by extending the modeling power through the adoption
of multi-formalism techniques. Our aim is to further investigate model tem-
plates by moving the focus to the study of advanced functionality of the real
system, with special regard to non functional requirements associated with its
dependability properties. We have already started to work on the analysis of the
system’s behavior in the presence of faults (either accidental or due to malicious
users’ behaviors) and we plan to present the results of this further study as part
of the dissemination activities related to our research efforts.

Automatic generation of Model Classes from Model Templates is made pos-
sible by the definition of instancing functions. Its full implementation is part of
the ongoing work about the development of a complete generic formal modeling
approach.
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Abstract. This paper provides three aggregation algorithms for deriv-
ing system nets from sets of partially-ordered causal runs. The three
algorithms differ with respect to the assumptions about the information
contained in the causal runs. Specifically, we look at the situations where
labels of conditions (i.e. references to places) or events (i.e. references to
transitions) are unknown. Since the paper focuses on aggregation in the
context of process mining, we solely look at workflow nets, i.e. a class of
Petri nets with unique start and end places. The difference of the work
presented here and most work on process mining is the assumption that
events are logged as partial orders instead of linear traces. Although the
work is inspired by applications in the process mining and workflow do-
mains, the results are generic and can be applied in other application
domains.

1 Introduction

This paper proposes different approaches to “discover” process models from ob-
served runs, i.e., runs (also known as causal nets or occurrence nets, cf. [14])
are aggregated into a single Petri net that captures the observed behavior. Runs
provide information about events together with pre- and post-conditions which
constitute a (partial) order between these events. This is useful in many domains
where processes are studied based on their recorded behavior, such as:

– Discovering administrative processes by following the document flows in the
organization with the goal to improve efficiency.

– Auditing processes in organizations in order to make sure that they conform
to some predefined rules.

– Constructing enterprise models by observing transaction logs or document
flows in enterprise systems such as SAP, Peoplesoft and Oracle.

– Monitoring the flow of SOAP messages between web-services to see how
different services interact.

– Observing patient flows in hospitals to improve careflows and to verify med-
ical guidelines.
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There are many techniques to discover process models based on sequential event
logs (also known as transaction logs, audit trails, etc). People working on pro-
cess mining techniques [6] generally tackle situations where processes may be
concurrent and the set of observations is incomplete. Especially since the set of
possible sequences is typically larger than the number of process instances, it is
unrealistic to assume that all possible sequences have been observed.

In many applications, event logs are assumed to be linear, for example since
all events are ordered in time. However, there are many processes where it is
possible to monitor causal dependencies (e.g., by analyzing the dataflows). In
the examples mentioned before, it is easy to identify situations where activities
are causally linked by documents or explicit messages which can be monitored
and hence explicit information about the causal dependencies between events
is available. Consider for example service-oriented systems where one service
calls another service. These services have input and output data. Using these
dataflow one can find explicit causal dependencies. Furthermore, we encoun-
tered several Business Process Management (BPM) systems that actually log
behavior using a representation similar to runs. The ad-hoc workflow manage-
ment system InConcert of Tibco (formerly Xerox) allows end users to define
and modify process instances (e.g., customer orders) while capturing the causal
dependencies between the various activities. The representation used by these
systems directly corresponds to the notion of runs. The analysis tool ARIS PPM
(Process Performance Monitor) of IDS Scheer can extract runs represented as
so-called instance EPCs (Event-driven Process Chains) from systems such as
SAP R/3 and Staffware. These examples show that in real-life systems and pro-
cesses runs can be recorded or already are being recorded, thus motivating the
work presented in this contribution.

The remainder of this paper is structured as follows. After discussing related
work in Section 2 and some preliminary definitions in Section 3, we provide
algorithms for the aggregation of runs. In Section 4, three algorithms are pre-
sented for the aggregation of runs for the situations depicted in Figures 1 to 3.
Figures 1 to 3 each show two runs on the left-hand side and the most likely can-
didate for the aggregated model on the right hand side. The first algorithm we
present assumes we have full knowledge of each event, its preconditions and its
postconditions. This is shown in Figure 1, where all events and conditions are la-
beled and these labels uniquely identify the corresponding transition or place in
the aggregated model. Then, we assume that we cannot uniquely identify events,
i.e. the label of an event may refer to multiple transitions, as shown in Figure 2,
where send goods and send bill cannot be distinguished, since both of them are
recorded as send something. In the aggregated model however, two occurrences
of the transition send something have been identified. Finally, we provide an al-
gorithm that assumes less knowledge about pre- and post-conditions, as shown
in Figure 3, where no conditions have labels, while the corresponding aggregated
model shows the same structure as in Figure 1. In Section 5, we formally prove
that the algorithms we presented in Section 4 are correct, i.e. that the aggregated
nets can reproduce the original causal nets. We conclude the paper in Section 6.
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Fig. 1. Example of aggregating runs with known event and condition labels (Sec-
tion 4.1)
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Fig. 2. Example of aggregating runs with known condition labels and unknown or
non-unique event labels (Section 4.2)
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Fig. 3. Example of aggregating runs with known event labels and unknown condition
labels (Section 4.3)
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2 Related Work

For an extensive overview of the process mining domain, we refer to the recent
book on process mining [2].

Since the mid-nineties several groups have been working on techniques for
automated process discovery based on event logs [5, 7, 8, 12, 13, 20, 28, 29]. In [6]
an overview is given of the early work in this domain. The idea to apply pro-
cess mining in the context of workflow management systems was introduced
in [8]. In parallel, Datta [13] looked at the discovery of business process models.
Cook et al. investigated similar issues in the context of software engineering pro-
cesses [12]. Herbst [22] was one of the first to tackle more complicated processes,
e.g., processes containing duplicate tasks. Most of the classical approaches have
problems dealing with concurrency. The α-algorithm [7] is an example of a sim-
ple technique that takes concurrency as a starting point. However, this simple
algorithm has problems dealing with complicated routing constructs and noise
(like most of the other approaches described in literature).

In all of the algorithms mentioned above, these tasks (i.e., events) in each
case are totally ordered (typically based on the timestamps). In this paper, we
take a different approach. We start by looking at so-called runs. These runs are a
partial ordering on the tasks within each case. However, in addition to the partial
ordering of tasks, we may have information about the local states of the system
from which the logs originated, i.e. for each event the pre- and post-conditions
are known. This closely relates to the process mining algorithms presented in [17]
and [18]. However, also in these papers only causal dependencies between events
are considered and no state information is assumed to be known.

The generation of system nets from their causal runs has been investigated
before. The first publication on this topic is [27]. Here the basis is assumed to be
the set of all runs. These runs are folded, i.e., events representing the occurrence
of the same transition are identified, and so are conditions representing a token
on the same place. In [15] a similar folding approach is taken, but there the
authors start with a set of causal runs, as we do in the present paper. [15]
does not present algorithms in details for the aggregation of runs but rather
concentrates on correctness criteria for the derived system net. [11] presents an
aggregation algorithm that constructs event-driven process chains from sets of
partially ordered sets of events (without conditions).

The problem tackled in this paper is closely related to the so-called synthesis
problem of Petri nets (see [16] and [19] for the synthesis of elementary net systems
and [9] for more general cases). In this work, the behavior is given in the form
of state graphs (where the events are known but the states are anonymous). In
process mining, the observed behavior is not complete and it is not known, which
process executions lead to identical global states. More recently, [26] extracts
Petri nets from models which are based on Message Sequence Charts (MSCs), a
concept quite similar to causal runs. Less related is the work presented in [21],
where a special variant of MSCs is used to generate a system implementation.

In [24], so-called regions are defined for partial orders of events representing
runs. These regions correspond to anonymous places of a synthesized place/
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transition net, which can generate these partial orders. In contrast to our work,
the considered partial orders are any linearizations of causal orders, i.e., two
ordered events can either occur in a sequence (then there is a causal run with a
condition ”between” the events) or they can occur concurrently. Consequently,
conditions representing tokens on places are not considered in these partial orders
whereas our approach heavily depends on these conditions. More recently, this
region-based approach was used for the synthesis of place/transition nets from
sets of finite [10] or infinite [11] partially ordered sets of events.

3 Preliminaries

In this section, we introduce some basic definitions used in the remainder of this
paper and formalize the starting point for the aggregation of partially ordered
runs. Typically, a partial order is represented by a graph, and therefore we
introduce some concepts related to graphs, such as a complete subgraph and a
graph coloring. A graph-coloring is a way to label the nodes of a graph in such
a way that no two neighboring nodes (i.e. nodes connected by an edge) have the
same color.

Definition 3.1. (Graphs)
Let G = (N,E) be a directed graph, i.e. N is the set of nodes and E ⊆ N ×N is
the set of edges. If N ′ ⊆ N , we say that G′ = (N ′, E ∩ (N ′ ×N ′)) is a subgraph
of G. G is a complete graph if and only if E = (N ×N).

In the sequel, we assume G = (N,E) is a directed graph.

Definition 3.2. (Undirected path in a graph)
Let a ∈ N and b ∈ N . We define an undirected path from a to b as a sequence of
nodes denoted by < n1, . . . , nk > with k ≥ 1 such that n1 = a and nk = b and
∀i∈{1...k−1}((ni, ni+1) ∈ E ∨ (ni+1, ni) ∈ E).

Definition 3.3. (Connected graph)
G is a connected graph if for all n1, n2 ∈ N holds that there is an undirected
path from n1 to n2. A set of vertices N ′ ⊆ N generates a maximal connected
subgraph if it is a maximal set of vertices generating a connected subgraph.

Definition 3.4. (Graph coloring)
Let μ be a set of colors. A function f : N → μ is a coloring function if, for all
(n1, n2) ∈ E, either n1 = n2 or f(n1) = f(n2).

Lemma 3.5. (Colorings on subgraphs can be combined)
Let E1, E2 ⊆ E, such that E1 ∪ E2 = E. Furthermore, let f : N → μ be a
coloring function on the graph (N,E1) as well as a coloring function on the
graph (N,E2). Then f is also a coloring function on G.

Proof. Let (n1, n2) ∈ E and n1 = n2. Since E = E1 ∪ E2, we either have
(n1, n2) ∈ E1 or (n1, n2) ∈ E2. Since f is a coloring function on both (N,E1)
and (N,E2), f(n1) = f(n2). ��
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In graphs, we would like to be able to talk about predecessors and successors of
nodes. Therefore, we introduce a special notation for that.

Definition 3.6. (Pre-set and post-set)

Let n ∈ N . We define
G•n = {m ∈ N | (m,n) ∈ E} as the pre-set and n

G•= {m ∈
N | (n,m) ∈ E} as the post-set of n with respect to the graph G. If the context
is clear, the superscript G may be omitted, resulting in •n and n•.
As stated in the introduction, our starting point is not only a partial order of
events within a case, but also information about the state of a case. Since we
want to be able to represent both events and states, Petri nets provide a natural
basis for our approach. In this paper, we use the standard definition of finite
marked place/transition (P/T-nets) nets N = (P, T, F,M0).

Definition 3.7. (Bag)
Let S be a set. A bag over S is a function from S to the natural numbers IN.

Definition 3.8. (Place/Transition net)
N = (P, T, F,M0) is a marked place/transition net (or P/T-net) if:

– P is a finite set of places,

– T is a finite, non-empty set of transitions, such that P ∩ T = ∅,
– F ⊆ (P × T ) ∪ (T × P ) is the flow relation of the net,

– M0 : P → IN represents the initial marking of the net, where a marking is a
bag over the set of places P .

Note that any P/T-net N = (P, T, F,M0) defines a directed graph ((P ∪ T ), F ).
In this paper, we restrict ourselves to P/T-nets where for each transition t holds
that •t = ∅ and t• = ∅.
Definition 3.9. (Bag notations)
We use square brackets for the enumeration of the elements of a bag represent-
ing a marking of a P/T-net. The sum of two bags (X � Y ), the presence of an
element in a bag (a ∈ X), and the notion of subbags (X ≤ Y ) are defined in a
straightforward way, and they can handle a mixture of sets and bags. Further-
more,

⊎
a∈A

(
f(a)

)
denotes the sum over the bags that are results of function f

applied to the elements a of a bag A.

Petri nets specify processes. The behavior of a Petri net is given in terms of
causal nets, representing process instances (i.e. cases). Therefore, we introduce
some concepts (notation taken from [14]). First, we introduce the notion of a
causal net, this is a specification of one process instance.

Definition 3.10. (Causal net)
The P/T-net (C,E,K, S0) is called a causal net if:

– for every place c ∈ C holds that | • c| ≤ 1 and |c • | ≤ 1,

– the transitive closure of K is irreflexive, i.e. it is a partial order on C ∪ E,

– for each place c ∈ C holds that S0(c) = 1 if •c = ∅ and S0(c) = 0 if •c = ∅.
In causal nets, we refer to places as conditions and to transitions as events.
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Each event of a causal net should refer to a transition of a corresponding P/T-net
and each condition should refer to a token on some place of the P/T-net. These
references are made by mapping the conditions and the events of a causal net
onto places and transitions, respectively, of a Petri net. We call the combination
of a causal net and such a mapping a run.

Definition 3.11. (Run)
A run (N,α, β) of a P/T-net (P, T, F,M0) is a causal net N = (C,E,K, S0),
together with two mappings α : C → P and β : E → T , such that:

– For each event (transition) e ∈ E, the mapping α induces a bijection from
•e to •β(e) and a bijection from e• to β(e)•,

– α(S0) = M0 where α is generalized to markings by α : (C → IN) → (P →
IN), such that α(S0)(p) =

∑
c|α(c)=p S0(c).

The causal behavior of the P/T-net (P, T, F,M0) is defined as its set of runs. To
avoid confusion, the P/T-net (P, T, F,M0) is called system net in the sequel.

In this paper, we take a set of runs as a starting point. From these runs, we
generate a system net describing the behavior of all individual runs. Remember
that we do not assume to have all runs as a starting point.

4 Aggregation of Runs

In this section, we introduce an approach that takes a set of runs as a starting
point. From this set of runs, a system net is constructed. Moreover, we need
to find a mapping from all the events and conditions in the causal nets to the
transitions and places in the system net. From Definition 3.11, we know that
there should exist a bijection between all conditions in the pre- or post-set of
an event in the causal net and the pre- or post-set of a transition in a system
net. Therefore, two conditions belonging to the pre- or post-set of a single event
should not be mapped onto the same place. This restriction is in fact merely
another way to express the fact that our P/T-nets do not allow for more than
one edge between a place and a transition or vice versa. More generally, we
define a labeling function on the nodes of a graph as a function that does not
give the same label to two nodes that have a common element in their pre-sets
or a common element in their post-sets.

Definition 4.1. (Labeling function)
Let μ be a set of labels. Let G = (N,E) be a graph. Let R = {(n1, n2) ⊆
N ×N | n1

G• ∩n2
G• = ∅ ∨ G•n1∩ G•n2 = ∅}. We define f : N → μ to be a labeling

function if f is a coloring function on the graph (N,R).

We focus on the aggregation of runs that originate from a Petri net with clearly
defined starting state and completion state, i.e. processes that describe a lifespan
of some case. This assumption is very natural in the context of workflow man-
agement systems. However, it applies to many other domains where processes
are instantiated for specific cases. Hence, we will limit ourselves to a special class
of Petri nets, namely workflow nets.
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Definition 4.2. (Workflow nets)
A P/T-net N = (P, T, F,M0) is a workflow net (WF-net) if:

1. P contains an input place pini such that •pini = ∅,
2. P contains an output place pout such that pout• = ∅,
3. there is a path from pini to every node and a path from every node to pout,

4. M0 = [pini], i.e. the initial marking marks only pini.

As a consequence, a WF-net has exactly one input place. When looking at a
run of a WF-net, we can therefore conclude that there is exactly one condition
containing a token initially and all other conditions do not contain tokens. A set
of causal nets fulfilling this condition and some structural consequences is called
a causal set.

Definition 4.3. (Causal set)
Let n ∈ IN and let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a set of causal nets. We
call this set a causal set if the sets Ci, Ei and Ki are pairwise disjoint and, for
0 ≤ i < n holds:

–
∑

c∈Ci
Si(c) = 1, i.e. exactly one condition has an empty pre-set,

– If for some c ∈ Ci, holds that Si(c) = 1 and e ∈ c•, then {c} = •e, i.e. each
event in the postset of an initially marked condition has only this condition
in its preset,

– If for some c ∈ Ci, holds that c• = ∅ and e ∈ •c, then e• = {c}, i.e. each
event in the preset of a condition with empty postset (representing a token
on the place pout) has only this condition in its postset.

The concept of constructing a system net from a causal set is called aggregation.
This concept can be applied if we assume that each causal net in the given set
can be called a run of some system net. From Definition 3.11 we know that we
need two mappings α and β satisfying the two properties mentioned. Using the
definition of a system net and the relation between system nets and runs, we can
conclude that any aggregation algorithm should have the following functionality:

– it should provide the set of places P of the system net,

– it should provide the set of transitions T of the system net,

– it should provide the flow relation F of the system net,

– it should provide the initial marking M0 of the system net,

– for each causal net in the causal set, it should provide the mappings αi :
Ci → P and βi : Ei → T , in such a way that for all causal nets, αi(Si) is
the same (i.e. they have the same initial marking) and they induce bijections
between pre- and post-sets of events and their corresponding transitions.

Each event that appears in a causal net has a corresponding transition in the
original system net. Moreover, bijections exist between the pre- and post-sets of
this event and the corresponding transitions. In order to express this in terms
of labeling functions of causal nets, we formalize this concept using the notion
of transition equivalence.
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Definition 4.4. (Transition equivalence)
Let μ, ν be two disjoint sets of labels. Let Φ = {Ni = (Ci, Ei,Ki, Si) | 0 ≤ i < n}
be a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a
corresponding set of labeling functions for each (Ci, Ei,Ki, Si). We define (Φ, Ψ)
to respect transition equivalence if and only if for each ei ∈ Ei and ej ∈ Ej with
βi(ei) = βj(ej) the following holds:

– for each (ci, ei) ∈ Ki there is a (cj , ej) ∈ Kj such that αi(ci) = αj(cj),

– for each (ei, ci) ∈ Ki there is a (ej, cj) ∈ Kj such that αi(ci) = αj(cj).

Using the concepts of a causal set and transition equivalence, we introduce three
aggregation algorithms with different requirements on the available information.
First, in Section 4.1 we introduce an algorithm to aggregate causal nets where
all places and transitions have known labels. Then, in Section 4.2, we show an
algorithm that can deal with the situation where different transitions have the
same label. The final algorithm, presented in Section 4.3, deals with the situation
where transitions are correctly labeled, but places are not labeled at all.

4.1 Aggregation with Known Labels

In this section, we present an aggregation algorithm that assumes that we know
all mapping functions, and that these mapping functions adhere to the definition
of a run. To illustrate the aggregation process, we make use of a running example.
Consider Figure 4 where four parts of runs are shown. We assume that the events
A,B,C,D,E,F and G do not appear in any other part of each run.

Our first aggregation algorithm is called ALK (short for “All Labels Known”).
This algorithm assumes known labels for events and known labels for conditions,
such as in Figure 4. These labels refer to concrete transitions and places in the
aggregated system net.

Definition 4.5. (ALK aggregation algorithm)
Let μ, ν be two disjoint sets of labels. Let Φ be a causal set of size n with causal
nets (Ci, Ei,Ki, Si) (0 ≤ i < n).

Furthermore, let {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a set of labeling
functions respecting transition equivalence, such that for all causal nets αi(Si)
is the same. We construct the system net (P, T, F,M0) belonging to these runs
as follows:

– P =
⋃

0≤i<n rng(αi) is the set of places (note that P ⊆ μ)1,

– T =
⋃

0≤i<n rng(βi) is the set of transitions (note that T ⊆ ν),

– F =
⋃

0≤i<n{(αi(c), βi(e)) ∈ P × T | (c, e) ∈ Ki ∩ (Ci × Ei)}∪⋃
0≤i<n{(βi(e), αi(c)) ∈ T × P | (e, c) ∈ Ki ∩ (Ei × Ci)}

is the flow relation,

– M0 = α0(S0) is the initial marking.

1 With rng we denote the range of a function, i.e. rng(f) = {f(x) | x ∈ dom(f)}.
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Fig. 4. Four examples of parts of runs

The result of the ALK aggregation algorithm applied to the parts presented in
Figure 4 is shown in Figure 5. Another example is given in Figure 1.

The aggregated net shown in Figure 5 can generate the runs of Figure 4.
However, it also allows for the possibility to execute transitions F followed by
C. The token flow from F to C through place p1 was never directly observed
in any of the runs. Nonetheless, from the run in Figure 4(a) we can see that
the C can fire using a token from p1 and from the run in Figure 4(d) we can
derive that transition F indeed produces this token, hence no “new” behavior is
introduced.

The ALK algorithm is a rather trivial aggregation over a set of runs. Although
we prove its correctness in Section 5.1, the algorithm relies on the assumption
that the mapping functions αi and βi are known for each causal net. Further-
more, we assume two sets of labels μ and ν to be known. However, when applying
these techniques in the context of process mining, it is often not realistic to as-
sume that all of these are present. Therefore, in the remainder of this paper, we
relax some of these assumptions to obtain more usable aggregation algorithms
for process mining.

. . .
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p2 B

C

D

E

F

G

. . .

Fig. 5. The aggregated Petri net

4.2 Aggregation with Duplicate or Missing Transition Labels

In this section, we assume that the causal set used to generate the system net
and the labeling functions do not respect transition equivalence (Definition 4.4).
We introduce an algorithm to change the labeling function for events in such a
way that this property holds again. In the domain of process mining, the problem
of so-called “duplicate transitions” (i.e. several transitions with the same label)
is well-known (cf. [3, 23, 25]). Therefore, there is a need for algorithms to find
out which events actually belong to which transition. We assume that we have
causal nets with labeling functions, where some events have the same label, even
though they may refer to different transitions (see Figure 6). Note that this
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figure is similar to Figure 4, except that we now labeled the events previously
labeled with F and G with a new label X .

Since the previous aggregation algorithm given in Definition 4.5 assumes that
transition equivalence holds, we provide an algorithm to redefine the labeling
functions for events it this is not the case.

Definition 4.6. (Relabeling algorithm)
Let μ, ν be two disjoint sets of labels. Let Φ = {Ni | Ni = (Ci, Ei,Ki, Si) ∧
0 ≤ i < n} be a causal set and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤
i < n} be a set of labeling functions in (Ci, Ei,Ki, Si) such that αi(Si) is the
same for all causal nets. Furthermore, assume that μ and ν are minimal, i.e.⋃

0≤i<n rng(αi) = μ and
⋃

0≤i<n rng(βi) = ν. Let E� =
⋃

0≤i<n Ei be the set of
all events in the causal set.

We define the relabeling algorithm as follows:

1. Define �	⊆ E�×E� as an equivalence relation on the elements of E� in such
a way that ei �	 ej with ei ∈ Ei and ej ∈ Ej if and only if βi(ei) = βj(ej),

αi(
Ni• ei) = αj(

Ni• ej), and αi(ei
Ni• ) = αj(ej

Ni• ).

2. For each e ∈ E�, we say eqvl(e) = {e′ ∈ E� | e �	 e′}.
3. Let ν′ be the set of equivalence classes of �	, i.e. ν′ = {eqvl(e) | e ∈ E�}.
4. For all causal nets (Ci, Ei,Ki, Si) and labeling functions αi, define a labeling

function β′
i : Ei → ν′ such that for an event ei, β

′
i(ei) = eqvl(ei), i.e. it

returns the equivalence class of �	 containing ei.

After re-labeling the events, the part of the run shown in Figure 6(d) is rela-
beled to include the pre- and post-conditions. Figure 7 shows the fragment after
relabeling. (We only show the relabeling with respect to the post-conditions.)
Applying the ALK algorithm of Definition 4.5 to the relabeled runs yields the
result as shown in Figure 8. Note that we do not show the ν′ labels explicitly,
i.e. B refers to the equivalence class of events labeled B.

What remains to be shown is that our algorithm does not only work for
our small running example, but also in the general case. The only difference
between the assumptions in Definition 4.5 and Definition 4.6 is the requirement
with respect to transition equivalence. Therefore, if suffices to show that after
applying the relabeling algorithm on a causal set, we can establish transition
equivalence.

Property 4.7. (Transition equivalence holds after relabeling)
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Fig. 6. Four examples of parts of runs
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Fig. 7. The relabeled part of Figure 6(d)
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Fig. 8. Part of the aggregated net

Let μ, ν be two disjoint sets of labels. Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n}
be a causal set, and let Ψ = {(αi : Ci → μ, βi : Ei → ν) | 0 ≤ i < n} be a
set of labeling functions in (Ci, Ei,Ki, Si), such that αi(Si) is the same for all
causal nets. After applying the relabeling algorithm, the property of transition
equivalence holds for (Φ, Ψ ′), with Ψ ′ = {(αi : Ci → μ, β′

i : Ei → ν′) | 0 ≤ i < n},
and β′

i as defined in Definition 4.6.

Proof. We prove that Property 4.4 holds for (Φ, Ψ ′) after applying the relabeling
function. Assume (Ci, Ei,Ki, Si) and (Cj , Ej ,Kj, Sj) are two causal nets from Φ.
The new function β′

i is indeed a function, since for each event ei ∈ Ei there exists
exactly one equivalence class containing ei. Furthermore, let ei ∈ Ei and ej ∈ Ej ,
such that β′

i(ei) = β′
j(ej). We know that ei �	 ej and from the definition of �	,

we know that αi(•ei) = αj(•ej) and αi(ei•) = αj(ej•), which directly implies
transition equivalence. ��
The algorithm presented above is capable of finding events that have the same
label, but correspond to different transitions in the system net. When no tran-
sition labels are known at all, it can be applied to find all transition labels, by
using an initial ν = {τ} and initial mapping functions βi, mapping everything
onto τ . However, in that case, no distinction can be made between events that
have the same pre- and post-set, but should have different labels. After applying
this relabeling algorithm, the ALK algorithm of Section 4.1 can be used to find
the system net belonging to the given causal nets.

4.3 Aggregation with Unknown Place Labels

In Section 4.2, we have shown a way to identify the transitions in a system net,
based on the labels of events in causal nets. However, what if condition labels
are not known? Notice that the difference to other approaches based on partial
orders is that here we do know the conditions constituting the order between
events but do not know which two conditions refer to a token in the same place
of the P/T-net representing the process.

So, in this section, we take one step back. We assume all events to refer to
the correct transition, as we did in Section 4.1 and we try to identify the labels
of conditions. We introduce an algorithm to aggregate causal nets to a system
net, such that the original causal nets are indeed runs of that system net.

In Figure 9, we again show our small example of the aggregation problem,
only this time there are no labels for conditions p1 and p2, which we did have
in Figures 4 and 6.
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Fig. 9. Four examples of parts of runs

Consider the four runs of Figure 9. Remember that they are parts of causal
nets, in such a way that the tasks A,B,C,D,E, F and G do not appear in
any other way in another causal net. In contrast to the algorithms presented in
previous sections, we cannot always derive a unique aggregated system net for
causal nets if we do not have labels for the conditions. Instead, we define an
aggregation class, describing a class of WF-nets that could have generated these
causal nets. The following table shows some requirements all WF-nets in the
aggregation class of our example should satisfy.

Table 1. Information derived from runs shown in Figure 9

Fragment Conclusions

Fig. 9(a) A• = •B � •C
Fig. 9(b) A• = •D
Fig. 9(c) E• = •B
Fig. 9(d) F • �G• = •D

The information in Table 1 is derived from the runs of Figure 9 in the following
way. Figure 9(a) shows that the transition A produces two tokens in two places
and that transitions B and C consume these two tokens, while at the same time
they do not need more input. Hence, we can conclude that in any aggregated net,
the multiset of tokens produced by A should be equal to the multiset of tokens
consumed by B and C together, which is stated in the first line of Table 1.

In the general case, this information can be derived using the concept of a
segment, which can be considered to be the context of a condition in a causal net.
A segment consists of two sets of events (an input set and an output set), such
that the tokens produced by the transitions in the system net, corresponding
to the events in the input set are exactly the tokens consumed by the transi-
tions corresponding to the events in the output set, i.e. we formally capture the
relations described in Table 1.

Definition 4.8. (Segment)
Let N = ((C,E,K), S0) be a causal net and let N ′ = (C′, Ein, Eout) be such
that C′ ⊆ C, Ein ∪ Eout ⊆ E, Ein = ∅ and Eout = ∅. We call N ′ a segment if:

– for all c ∈ C′ holds that •c ⊆ Ein and c• ⊆ Eout, and

– for all e ∈ Ein holds that e• ⊆ C′, and
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Fig. 10. Two aggregated nets

– for all e ∈ Eout holds that •e ⊆ C′, and
– the subgraph of N made up by C′ ∪ Ein ∪ Eout is connected.

We call the events in Ein the input events and the events in Eout the output
events.

A segment is called minimal if C′ is minimal, i.e. if there does not exist a
segment N ′′ = (C′′, E′

in, E
′
out) with C′′ ⊂ C′ and C′′ = ∅.

For the fragments of Figure 9, it is easy to see that each of them contains only
one minimal segment, where the input events are the events on the left hand
side and the output events are the events on the right hand side.

The meaning of a segment is as follows. If we have a run and a segment in
that run, then we know that after all events in the input set of the segment
occurred, all the events in the output set occurred in the execution represented
by this run. This translates directly to a marking in a system net, since the
occurrence of a set of transitions would lead to some marking (i.e. a bag over
places), which enables another set of transitions. Furthermore, each transition
only produces one token in each output place. Combining this leads to the fact
that for each minimal segment in a causal net the bag of places following the
transitions corresponding to the input events of the segment should be the same
as the bag of places preceding the transitions corresponding to the output set of
events, as indicated in Table 1.

Clearly, when looking only at these fragments, what we are looking for are
the places that should be put between tasks A,E, F and G on the one hand,
and B,C and D on the other hand. Therefore, we only focus on this part of the
causal nets. For this specific example, there are two possibilities, both of which
are equally correct, namely the two WF-net fragments shown in Figure 10.

From the small example, we have seen that it is possible to take a set of causal
nets without labels for any of the conditions (but with labels for all the events)
and to define a class of potential system nets of the causal nets. In the remainder
of this section, we show that this is indeed possible for all causal sets. For this,
we first introduce the NCL algorithm.

4.4 NCL Algorithm

Before presenting the NCL algorithm (which stands for “No Condition Labels”),
we first take a look at a more intuitive example. Consider Figure 11, where we
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Fig. 11. Three causal nets of a review process of a paper

present three causal nets, each of which corresponds to a paper review process. In
the first causal net, three reviewers are invited to review the paper and after the
three reviews are received, the paper is accepted. In the second causal net, only
two reviews are received (the third one is not received on time), but the paper
is rejected nonetheless (apparently the two reviewers that replied rejected the
paper). In the third example only one review is received in time, and therefore
an additional reviewer is invited, which hands in his review in time, but does
not accept the paper.

As we stated before, we define an aggregation class of a causal set that contains
all WF-nets that are capable of generating the causal nets in the causal set. The
information needed for this aggregation class comes directly from the causal
nets, using minimal segments. In Table 2, we present the conclusions we can
draw based on the three causal nets of Figure 11. In this table we consider bags
of pre- and post-sets of transitions in the aggregation class. The information in
this table is obtained from the causal nets in the following way. Consider for
example Figure 11(a), where Invite reviewers is followed by Get review 1,Get
review 2 and Get review 3. This implies that the bag of output places of invite
reviewers should be the same as the sum over the bags of the input places of
Get review 1, Get review 2 and Get review 3.
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Table 2. Information derived from review example

Causal net Conclusions on transitions in the aggregation class

Fig. 11(a) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Get review 3”

“Get review 1” • �
“Get review 2” • �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Accept paper”

|“Accept paper” • | = 1

Fig. 11(b) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” �
•“Get review 2” �
•“Time-out review 3”

“Get review 1” • �
“Get review 2” • �
“Time-out review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Reject paper”

|“Reject paper” • | = 1

Fig. 11(c) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Time-out review 1” �
•“Time-out review 2” �
•“Get review 3”

“Time-out review 1” • �
“Time-out review 2” • �
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Invite add. reviewer”

“Invite add. reviewer”• = •“Get add. review”

“Get add. review”• = •“Reject paper”

|“Reject paper” • | = 1

Definition 4.9. (NCL algorithm: Aggregation Class)
Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let N = (P, T, F,M0)
be a marked WF-net. For each causal net Ni ∈ Φi, let βi : Ei → T be a mapping
from the events of that causal net to T , such that βi is a labeling function for
Ei. We define AΦ, the aggregation class of Φ, as the set of all pairs (N,B) such
that the following conditions are satisfied:

1. T =
⋃

0≤i<n rng(βi) is the set of transitions, i.e. each transition appears as
an event at least once in some causal net,
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2. For all p ∈ P holds that
N•p ∪ p

N• = ∅,
3. M0 = [pini] and

N•pini = ∅,
4. B is the set of all labeling functions, i.e. B = {βi | 0 ≤ i < n}. We use βi ∈ B

to denote the labeling function for events belonging to Ni ∈ Φ,

5. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds

that if Si(
Ni• e) = 1 then pini ∈N•t,

6. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds

that |tN• | = |eNi• | and | N•t| = | Ni• e|,
7. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T

holds that |tN• ∩⋃
t′∈T ′(

N•t′)| ≥∑
e′∈Ei,β(e′)∈T ′ |eNi• ∩ Ni• e′|,

8. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T

holds that |⋃t′∈T ′(t′
N•)∩ N•t| ≥∑

e′∈Ei,β(e′)∈T ′ |e′Ni• ∩ Ni• e|,
9. For each causal net Ni = (Ci, Ei,Ki, Si) and any minimal segment

(C′
i, Ein, Eout) of Ni, holds that

⊎
e∈Ein

(
βi(e)

N•
)
=

⊎
e∈Eout

(
N•βi(e)

)
.

Definition 4.9 defines an aggregation class of models in the following way:

– For each workflow net in the class, Items 1 to 4 define the transitions, places,
initial marking and the labeling functions, labeling all events and conditions
of each causal net with the transitions and places of that workflow net.

– Item 5 guarantees that all events in causal sets consuming the initial to-
kens are labeled with output transitions of the initially marked place in the
workflow net.

– Item 6 guarantees that, for all events, the numbers of input and output
conditions correspond to the numbers of input and output places of the
corresponding transition.

– Items 7 and 8 refer to the token flow in the model, in relation to the causal
nets, i.e. when considering the flow between a set of transitions and one
other transitions (in any direction), the number of tokens ever observed in
any causal set cannot be larger than the number of tokens allowed according
to the model. Hence, choices in the model do not correspond to parallel
behavior in any causal net.

– Figure 12 is used to gain more insight into Item 9 of Definition 4.9. In
the lower causal net of that figure, there is a token traveling from A to D
and another one from B to C. The upper causal net only connects A and
C. Assuming that these are the only causal nets in which these transitions
appear, we know that the conditions between A and D and between B
and C should represent a token in the same place, since there is a minimal
segment ({c4, c5, c6}, {A,B}, {C,D}) in the lower causal net and therefore,
A • �B• = •C � •D = [p1, 2p2].

Consider the information presented in Table 2 and the two Petri nets in Fig-
ure 13. Both nets in Figure 13 adhere to all constraints of Table 2. As this
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Fig. 12. Example explaining the use of bags
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Fig. 13. Two possible aggregated nets, both obeying the constraints of Table 2

example shows, there is no unique Petri net satisfying all constraints. Instead,
there is a class of nets satisfying all constraints.

The condition provided in Item 9 of Definition 4.9 provides the key to con-
structing the actual elements of the aggregation class. By considering all minimal
segments in the provided runs that refer to the same transitions, possible sets of
places can be identified that satify this condition. However, in this paper, we do
not provide construction steps for constructing the aggregation class. Instead,
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in the next section, we show that if a set of runs is generated by a system net,
then that system net is a member of the aggregation class.

5 Correctness of the Aggregation Algorithms

In Section 4, we described three scenarios for which we can construct an ag-
gregated net from a set of runs. In Section 4.1, we showed the ALK algorithm,
which assumes that in the runs, all conditions and events are labeled with the
corresponding places and transitions of the aggregated net. In Section 4.2, we
showed that in case some transition labels are duplicated or missing, we can still
use the ALK algorithm after relabeling the transitions using the surrounding
places. Finally, in Section 4.3, we presented the NCL algorithm that provides
an aggregation class of nets that are all capable of reproducing the given set of
runs in which none of the conditions is labeled.

In this section, we formally prove correctness of the ALK and the NCL
algorithms.

5.1 Correctness of the ALK Algorithm

The ALK algorithm defines a single aggregated net for a given set of runs.
In order to prove its correctness, we show that the runs used as input can be
generated by the resulting aggregated net.

Property 5.1. (The ALK algorithm is correct)
For all 0 ≤ i < n and Ni = (Ci, Ei,Ki, Si), the tuple (Ni, αi, βi) is indeed a
run of N = (P, T, F,M0) (i.e., the requirements stated in Definition 3.11 are
fulfilled).

Proof. Since we assumed that all causal nets Ni = (Ci, Ei,Ki, Si) are elements
of the causal set Φ, we need to prove the following for each αi and βi.

1. αi is a function from Ci onto P . This trivially follows from Definition 4.5.

2. βi is a function from Ei onto T . This trivially follows from Definition 4.5.

3. αi(Si) = M0 holds by definition, since it holds for S0 and for all causal nets,
αi(Si) is the same.

4. For each event e ∈ Ei, the mapping αi induces a bijection from •e to •βi(e)
and a bijection from e• to βi(e)•.
Let e ∈ Ei. We start by showing that αi(

Ni• e) =N•βi(e) and αi(e
Ni• ) = βi(e)

N• .
Assume p ∈ αi(

Ni• e)\ N•βi(e), i.e. there exists a c ∈ Ci with (c, e) ∈ Ki, such
that p = αi(c), βi(e) = t and (p, t) ∈ F . Clearly this contradicts with the

definition of F in Definition 4.5. Now assume p ∈N•βi(e) \ αi(
Ni• e), i.e. there

is a (p, t) ∈ F such that βi(e) = t and there is no c ∈ Ci with αi(c) = p,
such that (c, e) ∈ Ki. If this is the case in all causal nets for 0 ≤ i < n, then
this leads to a contradiction since this would imply (p, t) ∈ F (cf. Definition
of F in Definition 4.5). If there is a 0 ≤ j < n, such that (c′, e′) ∈ Kj with
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βj(e
′) = t and αj(c

′) = p, then there has to be a c ∈ Ci such that (c, e) ∈ Ki,

since αi(
Ni• e) = αj(

Ni• e′) (cf. Definition 4.4). Combined with the fact that αi

and βi are labeling functions, αi(
Ni• e) =N•βi(e) and αi(e

Ni• ) = βi(e)
N• yields

the bijection. Similar arguments apply for the post-set.
��

Property 5.1 shows that the ALK algorithm indeed results in a system net of
which the causal nets used as input are runs.

5.2 Correctness of the NCL Algorithm

In case that no condition labels are present, the NCL algorithm defines an equiv-
alence class of aggregated nets. In this section, we show that for each net in this
aggregation class, the causal nets used as inputs can be considered runs. Fur-
thermore, we show that if we take the runs of a sound workflow model as input,
then that model is part of the aggregation class.

Definition 4.9 defines a finite class of WF-nets for a causal set. What remains
to be given are the conditions under which it is a finite non-empty class of
Petri nets and the proof that each Petri net with its mappings is indeed a system
net for the causal set. To prove this, we first introduce the concept of a condition
graph.

Definition 5.2. (Condition graph)
Let Ni = (Ci, Ei,Ki, Si) be a causal net. The undirected graph ΔNi = (Ci, A),

with A = {(c1, c2) ∈ Ci × Ci | ∃e∈Ei{c1, c2} ⊆Ni• e ∨ {c1, c2} ⊆ e
Ni• } is called a

condition graph. Note that (c1, c2) ∈ A implies that (c2, c1) ∈ A.

We use condition graphs to prove that each Petri net with its mappings in the
aggregation class of a causal set is indeed a system net for that causal set. For
this, we first introduce some lemmas on these condition graphs that show the
relation between condition graphs and causal nets. We start by showing that
pre- and post-sets of events correspond to complete subgraphs in the condition
graph, i.e. subgraphs where each pair of nodes is connected by an edge.

Lemma 5.3. (Pre- and post sets relate to complete subgraphs in con-
dition graphs)
Let Ni = (Ci, Ei,Ki, Si) be a causal net and ΔNi = (Ci, A) its condition graph.

We show that, for each e ∈ Ei, holds that ΔNi restricted to
Ni• e is a complete

subgraph and ΔNi restricted to e
Ni• is a complete subgraph. Furthermore, for

each complete subgraph (C′, A′), there exists an e ∈ Ei such that C′ ⊆Ni• e or

C′ ⊆ e
Ni• .

Proof. Since for all {c1, c2} ⊆Ni• e, holds that (c1, c2) ∈ A by definition, the

first part is correct. The same applies to e
Ni• . Now assume (C′, A′) is a complete

subgraph. Assume {c1, c2} ⊆ C′. and c1 = c2. Since we are looking at a complete
subgraph, we know (c1, c2) ∈ A′, therefore there exists an e1 ∈ Ei, such that

{c1, c2} ⊆Ni• e1 or {c1, c2} ⊆ e1
Ni• .
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Assume {c1, c2} ⊆Ni• e1 (The proof is symmetrical for e1
Ni• ).

Now assume c3 ∈ C′ such that c1 = c3 and c2 = c3. Let

c3 ∈Ni• e1. We show that this leads to a contradiction. Since

for all c ∈ C holds that |cNi• | ≤ 1 and {c1, c2} ⊆Ni• e1, we
know that there must be an e2 ∈ Ei, such that {c2, c3} ⊆
e2

Ni• .

c1 c2

c3

e1

e2e3

Similarly, we know that there is an e3 ∈ Ei, such that {c1, c3} ⊆ e3
Ni• . However,

since | Ni• c3| ≤ 1, this implies that e2 = e3 and thus {c1, c2, c3} ⊆ e2
Ni• . ��

Using the fact that each pre- and post-set correspond to a complete subgraph,
we can infer that each minimal segment in a causal net corresponds to a con-
nected subgraph in the condition graph, i.e. a subgraph such that there is a path
between each two nodes. Furthermore, we show that these connected subgraphs
are maximal, i.e. all nodes in the subgraph are only connected to nodes inside
the subgraph.

Lemma 5.4. (Minimal segments correspond to maximal connected sub-
graphs in condition graphs)
Let Ni = (Ci, Ei,Ki, Si) be a causal net and ΔNi = (Ci, A) its condition graph.
Let (C′, Ein, Eout) be a minimal segment in Ni. We show that (C′, A∩(C′×C′))
is a maximal connected subgraph of ΔNi .

Proof. From Definition 4.8 we know that the graph (C′ ∪Ein ∪Eout,Ki∩ ((C′ ∪
Ein ∪ Eout) × (C′ ∪ Ein ∪ Eout))) is a connected graph. Now, let c ∈ C′ be a

condition in the minimal segment and assume that {ein} =Ni• c and {eout} = c
Ni• .

From Lemma 5.3, we know that ein
Ni• and

Ni• eout make up a complete subgraph

in ΔNi and since c ∈Ni• eout ∩ ein
Ni• that these two complete subgraphs make

up a connected subgraph. By induction over the elements of C′, it is easy to
show that C′ makes up a connected subgraph in ΔNi . Therefore, each minimal
segment defines a complete subgraph G′ in ΔNi . Furthermore, let G′ = (C′, A′)
be the connected subgraph of ΔNi corresponding to the segment. Let c ∈ Ci \C′

and assume there exists a c′ ∈ C′, such that (c, c′) ∈ A. This implies that there

is an e ∈ Ei, such that {c, c′} ⊆Ni• e or {c, c′} ⊆ e
Ni• . However, this implies that

e ∈ Ein or e ∈ Eout, either of which imply that c ∈ C′. Therefore, such a c does
not exist and G′ is maximal. ��
At this point, we look at the definitions of Section 3 again. If we assume that
we have a system net and the causal behavior of this system net, we can derive
the next lemma using Definition 3.4.

Lemma 5.5. (System nets color condition graphs)
Let N = (P, T, F,M0) be a system net and (Ni, αi, βi) be a run of that system
net, with Ni = (Ci, Ei,Ki, Si). Furthermore, let ΔNi = (Ci, A) be the condition
graph of Ni. The mapping αi : Ci → P is a coloring function of ΔNi , with the
set of colors being P .

Proof. Let n1, n2 ∈ Ci be two nodes in ΔNi with n1 = n2. For αi to be a
coloring, αi(n1) = αi(n2) should hold if (n1, n2) ∈ A. Assume (n1, n2) ∈ A. This
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means that there is an e ∈ Ei such that {n1, n2} ⊆Ni• e or {n1, n2} ⊆ e
Ni• . From

Definition 3.11, we know that αi induces a bijection from
Ni• e to

N•βi(e) and from

e
Ni• to βi(e)

N• . Therefore, αi(n1) = αi(n2). ��
We have shown that system nets color condition graphs. However, we can go
one step further and introduce the concept of a condition coloring, which is a
coloring on the condition graph, such that the coloring function, when applied to
the conditions in a causal net, induces local bijections for the input and output
sets of events.

Definition 5.6. (Condition coloring)
Let Φ be a causal set and let AΦ be the aggregation class of Φ. Moreover, let
(N,B) ∈ AΦ, with N = (P, T, F,M0) and let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a
causal net and ΔNi = (Ci, A) be the condition graph of Ni. Assume αi : Ci → P
is a function, such that αi is a coloring on ΔNi and for all c ∈ Ci holds that

αi(c) ∈ {p ∈ P | β(Ni• c) ⊆N• p ∧ β(c
Ni• ) ⊆ p

N•}. 2 We then call αi a condition
coloring of ΔNi .

The concept of a condition coloring we introduced here is often referred to in
mathematics as a list coloring.

Lemma 5.7. (Condition coloring induces bijections)
Let Φ be a causal set and let AΦ be the aggregation class of Φ, and let (N,B) ∈
AΦ, with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
ΔNi = (Ci, A) be the condition graph of Ni. Let αi : Ci → P be a condition

coloring of ΔNi . We show that for all e ∈ Ei, αi induces a bijection from
Ni• e to

N•βi(e) and from e
Ni• to β(ei)

N• .

Proof. The requirements stated in Definition 4.9, imply that | Ni• e| = | N•β(e)|.
Furthermore, since ΔNi restricted to

Ni• e is a complete graph (Lemma 5.3), and

αi is a coloring function (Lemma 5.5), we know that |αi(
Ni• e)| = | Ni• e| Since

all elements in
Ni• e are mapped to different colors. Combining both implies that

|αi(
Ni• e)| = | N•βi(e)|.

For all c ∈Ni• e holds that αi(c) ∈ {p ∈ P | βi(
Ni• c) ⊆N• p ∧ βi(c

Ni• ) ⊆ p
N•}

(Definition 5.6) and c
Ni• = {e}, because Ni is a causal net we know that αi(c) ∈

{p ∈ P | βi(e) ∈ p
N•} and thus αi(c) ∈N•βi(e). Since this holds for all c ∈Ni• e, we

can conclude that αi(
Ni• e) ⊆N•βi(e). By combining the above, we can conclude

that αi(
Ni• e) =N•β(e), and thus that αi induces a bijection from

Ni• e to
N•βi(e). A

similar proof holds for the mapping from e
Ni• to βi(e)

N• . ��
At this point we still need to prove the following for an arbitrary WF-net in the
aggregation class. For each causal net in a causal set, we should be able to color
its condition graph using a condition coloring. If we are able to construct such
a coloring, we have satisfied the first requirement stated in Definition 3.11.

2 Note that β is generalized, i.e. for a set E holds that β(E) = {β(e) | e ∈ E}.
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Lemma 5.8. (Condition coloring exists)
Let Φ be a causal set, let AΦ be the aggregation class of Φ, and let (N,B) ∈ AΦ,
with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
ΔNi = (Ci, A) be the condition graph of Ni. Let βi ∈ B be the labeling function
belonging to Ni. We show that we can construct a mapping αi : Ci → P , such
that αi is a condition coloring of ΔNi .

Proof. First, we look at the initial condition, i.e. the initially marked source

condition. Assume c ∈ Ci such that
Ni• c = ∅. We call c

Ni• = {e}. From the

definition of a causal set (Def. 4.3), we know that {c} =Ni• e and thus that there

is no c′ ∈ Ci with c = c′ and (c, c′) ∈ A. We know that
N•βi(e) = {pini} (Def. 4.9).

By setting αi(c) = pini, we have a correct coloring for the initial condition c in
N .

Second, we look at the final conditions, i.e. the sink conditions. Assume c ∈ Ci

such that c
Ni• = ∅. We call

Ni• c = {e}. From the definition of a causal set (Def. 4.3),

we know that {c} = e
Ni• and thus that there is no c′ ∈ Ci with c = c′ and

(c, c′) ∈ A. We know that |βi(e)
N• | = 1 (Def. 4.9). We say that βi(e)

N•= {p}. By
setting αi(c) = p, we have a correct coloring for any final condition c in Ni.

Finally, we split the graph up into two subgraphs. Let Ain = {(c1, c2) ∈ A | Ni•
c1 =

Ni• c2} and let Aout = {(c1, c2) ∈ A | c1 Ni• = c2
Ni• }. Using the definition of

a condition graph it is easy to see that Ain ∪ Aout = A. We now show that for
each subgraph δin(Ni) = (C,Ain) and δout(Ni) = (C,Aout) we can construct at
least one condition coloring. Then, we show that there is at least one condition
coloring that is the same for both subgraphs after which we can use Lemma 3.5
to show that this is a condition coloring on the complete graph.

Consider the subgraph δin(Ni) = (C,Ain). Using Lemma 5.3, it is easy to see
that this graph consists of several complete components and that each component

is a complete graph. Let e ∈ Ei. We know that e
Ni•⊆ C and that e

Ni• defines
a complete component in δin(Ni). Now, let V1, . . . , Vn be maximal sets, such

that for each 0 < i ≤ n holds that Vi ⊆ E
Ni• and for all c1, c2 ∈ Vi holds that

c1
Ni• = c2

Ni• . For each Vi and c ∈ Vi, we say that Vi,in = {e} and Vi,out = c
Ni• .

From Definition 5.6, we know that for each c ∈ Vi must hold that αi(c) ∈ {p ∈
P | βi({e}) ⊆N•p ∧ β(Vi,out) ⊆ p

N•}. Using Item 7 of Definition 4.9, we first prove
a necessary condition for this. Assume βi({e}) = {t}, and βi(Vi,out) = T ′ = {t′}.
Item 7 shows us that |tN• ∩ N• t′| ≥∑

e′∈Vi,out
|eNi• ∩ Ni• e′|. From the definition of

partition V , we know that
∑

e′∈Vi,out
|eNi• ∩ Ni• e′| = |Vi|. Furthermore, t

N• ∩ N•t′ =

{p ∈ P | βi(Vi,in) ⊆N•p ∧ βi(Vi,out) ⊆ p
N•}. Therefore we know that there are at

least enough colors available for each partition Vi. The same way of reasoning
can be used to show that there are at least enough colors available for each set
of partitions υ ⊆ {V1, . . . , Vn}. (The latter requires the use of Item 8 instead of
7 of Definition 4.9). Therefore, there exists at least one condition coloring for
the entire subgraph δin(Ni). Similarly, this can be shown for δout(Ni).

At this point, we have shown that we can construct condition colorings for
two subgraphs of δ(Ni), namely δin(Ni) and δout(Ni). The final part of the
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proof use Item 9 of Definition 4.9, since we now have to show that the same
condition coloring can be constructed for both subgraphs. For this purpose, we
consider a segment (C′, Ein, Eout) in Ni. Since segments correspond to connected
components of δ(Ni), it is sufficient to show that the same condition coloring
can be constructed for δin(Ni) and δout(Ni), restricted to C′, which we call
δ′in(Ni) and δ′out(Ni). From the definition of a segment, it is clear that this
restriction does not disturb the structure of δin(Ni) and δout(Ni), i.e. in both
graphs, each connected component is still a complete subgraph. Now consider
a possible condition coloring on δ′in(Ni). Each color given to a condition in
that graph refers to a place in the causal net. However, multiple conditions
can be mapped onto each place, namely one condition for each token that was
produced in that place by an element of Ein. The same holds for δ′out(Ni), i.e.
multiple condition can be mapped onto each place, namely one condition for
each token that was consumed by a succeeding element of Eout. Since Item 9 of
Definition 4.9 states that the tokens produced by Ein are the tokens consumed
by Eout, it must be possible to construct the same condition coloring αi for both
δ′in(Ni) and δ′out(Ni). Using Lemma 3.5, we then know that this coloring αi is a
condition coloring on δ(Ni)

′, i.e. the restriction of δ(Ni) to C′.
Since we can now provide a condition coloring on each connected component

of δ(Ni), we have shown that we can construct a condition coloring on the entire
graph δ(Ni). ��

To clarify the rather complex proof of Lemma 5.8 we use an example. Consider
a causal net containing the fragment of a WF-net presented in Figure 14. We
numbered the conditions 1 through 8 to be able to distinguish them. Now, assume
that the two Petri nets presented in Figure 15 are parts of two alternative system
nets appearing in the aggregation class of that causal net.

The proof of Lemma 5.8 depends on the condition graph of a run. Therefore,
in Figure 16 we present the condition graph of the run presented in Figure 14.
Note that we labeled the edges to show from which event the edge was derived.

In Lemma 5.8, the condition graph of Figure 16 (i.e. δ(Ni) in the lemma) is
split up into two subgraphs, namely one for the input side of events (i.e. δin(Ni),
see Figure 17) and one for the output sides of events (i.e. δout(Ni), see Figure 18).

Then the proof continues, by showing that for each of these two subgraphs it
is possible to provide a condition coloring. Figure 19 shows the possible labels
for each subgraph and both Petri nets from Figure 15. It is easy to see that this
indeed leads to several possible colorings in each graph.

At this point it is proven that it is always possible to construct two coloring
functions on the input and output subgraph that give the same label to each
condition in both graphs. If we look at Figure 19 and we take the input subgraph
shown in Figure 15(a) (i.e. the left-top figure) then it is easy to see that it is
possible to label c4 with p2 and c5 with p1. This however is not possible in the
output subgraph, since neighbor c6 has to be mapped onto p1. Instead, there
is only one mapping that is the same for both subgraphs. The last part of the
proof uses the fact that for each segment the input enables the output. This
implies that the token that is placed in p1 has to be consumed from there again.
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Fig. 14. A part of a run containing two
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Fig. 15. Two parts of system nets in the
aggregation class of Figure 14
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Fig. 16. Part of the condition graph of the run of Figure 14
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Fig. 17. Input subgraph of Figure 16
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Fig. 18. Output subgraph of Figure 16

Therefore, if we would label c5 with p1 then this would be the same as saying
that transition A produces a token in p1 which is consumed by transition F
again. However, transition F also consumes another token from p1, namely the
one corresponding to c6, i.e. coming from transition B. This violates the fact
that only one edge can exist between a place and a transition.

Figure 20 shows the only possible condition coloring of the condition graph
of Figure 16, using the labels provided by the system net of Figure 15(a) and
Figure 21 shows the only possible condition coloring of the condition graph of
Figure 16, using the labels provided by the system net 15(b). Note that in general
additional condition colorings may be possible.
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From Figures 20 and 21, we can conclude that both system nets depicted in
Figure 15 are indeed capable of producing the causal net of Figure 14, since we
can construct a condition coloring on the condition graphs.

What remains to be shown is that the condition coloring also fulfills the last
part of the definition of a run, namely the demand with respect to the initial
marking. Furthermore, we conclude that at least three places are needed in the
system net and that, for example, the place between C and G could also be p1.

Lemma 5.9. (Initial marking can be mapped)
Let Φ be a causal set, let AΦ be the aggregation class of Φ and let (N,B) ∈ AΦ

with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
ΔNi = (Ci, A) be the condition graph of Ni. Let αi : Ci → P , such that αi is a
condition coloring of ΔNi . We show that αi(Si) = M0.

Proof. From Definition 4.9, we know that M0 = [pini]. Furthermore, from Def-
inition 4.3, we know that there is exactly one c ∈ Ci with S(c) = 1. Moreover,
using Lemma 5.8, we conclude that αi(c) = pini and thus αi(Si) = [pini] = M0.

��
Finally, we can combine everything and state that eachWF-net in an aggregation
class is indeed a system net of a causal set.
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Labels according to Figure 15(a).
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Fig. 19. Possible condition colorings for the subgraphs of figures 17 and 18
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Fig. 20. The condition coloring of
Figure 16 according to Figure 15(a)
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Fig. 21. The condition coloring of Fig-
ure 16 according to Figure 15(b)
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Property 5.10. (Aggregation class only contains system nets)
Let Φ be a causal set, let AΦ be the aggregation class of Φ and let (N,B) ∈ AΦ

with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net with event
labeling function βi ∈ B, condition graph ΔNi = (Ci, A) and αi : Ci → P a
condition coloring of ΔNi . Then (Ni, αi, βi) is a run of N .

Proof. This result combines Lemma 5.7, which shows that for all e ∈ Ei, αi

induces a bijection from
Ni• e to

N•βi(e) and from e
Ni• to βi(e)

N• and Lemma 5.9
which shows that αi(Si) = M0. ��
We have shown that it is possible to take a set of causal nets and construct a
system net such that each causal net is a run of that system net, as long as
the causal nets have one initially marked condition. What we did not show are
the conditions under which the aggregation class is not empty. These conditions
however, cannot be given based on a set of causal nets. Even if these causal nets
belong to one causal set, this is still not enough. What we can show however,
is that if we start from a sound WF-net as a system net, generate a set of runs
and remove the labels of places, the original WF-net is in the aggregation class.
For the full definition of soundness, we refer to [1, 4].

Property 5.11. (A system net is in the aggregation class of its runs)
Let N = (P, T, F,M0) be a sound WF-net. We consider N to be a system net.
Let B = {(Ni, αi, βi) | 0 ≤ i < n} be the causal behavior of that system net,
such that each (Ni, αi, βi) is a run of that system net, with Ni = (Ci, Ei,Ki, Si).
Let B = {βi | 0 ≤ i < n} and Φ = {Ni | 0 ≤ i < n} be a causal set. We show
that (N,B) ∈ AΦ.

Proof. We show that all conditions of Definition 4.9 are satisfied.

1. T =
⋃

0≤i<n rng(βi) is the set of transitions. Since the WF-net is sound, there
are no dead transitions thus implying that in its causal set each transition
appears as an event at least once.

2. For all p ∈ P holds that
N•p∪pN• = ∅. Since every sound WF-net is connected,

this condition is satisfied,

3. M0 = [pini] and
N•pini = ∅. Since N is a WF-net, there is exactly one place

pini ∈ P , such that
N•pini = ∅ and M0 = [pini],

4. B is the set of all labeling functions, i.e. B = {βi | 0 ≤ i < n}.
5. For each causal net Ni, with e ∈ Ei and βi(e) = t and

Ni• e = {c}, holds that
if Si(c) = 1 then pini ∈N• t. Since Si(c) = 1, we know that

Ni• c = ∅. Now
assume αi(c) = p. The fact that for all e′ ∈ Ei, αi induces local bijections

from e′ Ni• to βi(e
′)N• implies that

N• p = ∅ and since N is a workflow net,
this implies that p = pini. Moreover, the fact that for all αi induces local

bijections from
Ni• e to

N•t implies that pini ∈N•t,

6. For each causal net Ni, with e ∈ Ei and βi(e) = t holds that |tN• | = |eNi• |
and | N•t| = | Ni• e|. Since αi induces bijections from e

Ni• to t
N• and from

Ni• e to
N•t, this condition is satisfied,
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7. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|tN• ∩⋃
t′∈T ′(

N• t′)| ≥ ∑
e′∈Ei,βi(e′)∈T ′ |eNi• ∩ Ni• e′|. Let e ∈ Ei with βi(e) = t

and let T ′ ⊆ T . Assume that there |tN• ∩⋃
t′∈T ′(

N• t′)| = m, i.e. there are m

places between t and T ′. Furthermore, assume that
∑

e′∈Ei,βi(e′)∈T ′ |eNi• ∩ Ni•
e′| < m. Since for all e′ ∈ Ei with betai(ei) = ti, αi induces local bijections

from
Ni• ei to

N• ti, we know that there are at least two c1, c2 ∈ e
Ni• that are

mapped onto the same p ∈ P . However, since p ∈ t
N• this violates the local

bijection property of αi,

8. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|⋃t′∈T ′(t′
N•)∩ N•t| ≥∑

e′∈Ei,βi(e′)∈T ′ |e′Ni• ∩ Ni• e|. The proof for this property
is similar to the previous one.

9. For each causal net Ni and any segment (C′
i, Ein, Eout) of Ni holds that⊎

e∈Ein

(
βi(e)

N•
)
=

⊎
e∈Eout

(
N•βi(e)

)
. This property relates to soundness. If

one set of transitions produces tokens then these tokens will be consumed by
another set of transitions (i.e. no tokens are “left behind” in the execution
of a sound WF-net). The only exception is the transition that produces a
token in the output place, but that transition cannot produce any tokens in
any other place. Therefore, in each run, the input events of a segment will
enable the output events of that segment.

��
The NLC algorithm takes a set of causal nets without condition labels as a
starting point. From these nets, an aggregation class of WF-nets is defined. In
this section, we have formally proven that every element of the aggregation class
indeed is capable of constructing the causal nets used as input. Furthermore, if
the runs were generated from some sound WF-net, then the WF-net itself is in
that aggregation class.

6 Conclusion

In this paper, we looked at process mining from a new perspective. Instead
of starting with a set of traces, we started with runs which constitute partial
orders on events. We presented three algorithms to generate a Petri net from
these runs. The first algorithm assumes that, for each run, all labels of both
conditions and events are known. The second algorithm relaxes this by assuming
that some transitions can have the same label (i.e. duplicate labels are allowed in
the system net). This algorithm can also be used if only condition/place-labels
were recorded. Finally, we provided an algorithm that does not require condition
labels, i.e. the event/transition labels are known, the condition/place labels are
unknown and duplicate transition labels are not allowed.

The results presented in this paper hold for a subclass of Petri nets, the so-
called WF-nets. However, the first two algorithms presented here can easily be
generalized to be applicable to any Petri net. For the third algorithm this can
also be done, however, explicit knowledge about how the initial markings of
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various runs relate is needed. When taking a set of runs as a starting point, this
knowledge is not present in the general case.
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