
Performance Heterogeneity and Approximate

Reasoning in Description Logic Ontologies

Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler

School of Computer Science
University of Manchester

Manchester, United Kingdom

Abstract. Due to the high worst case complexity of the core reasoning
problem for the expressive profiles of OWL 2, ontology engineers are of-
ten surprised and confused by the performance behaviour of reasoners on
their ontologies. Even very experienced modellers with a sophisticated
grasp of reasoning algorithms do not have a good mental model of rea-
soner performance behaviour. Seemingly innocuous changes to an OWL
ontology can degrade classification time from instantaneous to too long
to wait for. Similarly, switching reasoners (e.g., to take advantage of spe-
cific features) can result in wildly different classification times. In this
paper we investigate performance variability phenomena in OWL ontolo-
gies, and present methods to identify subsets of an ontology which are
performance-degrading for a given reasoner. When such (ideally small)
subsets are removed from an ontology, and the remainder is much easier
for the given reasoner to reason over, we designate them “hot spots”. The
identification of these hot spots allows users to isolate difficult portions
of the ontology in a principled and systematic way. Moreover, we devise
and compare various methods for approximate reasoning and knowledge
compilation based on hot spots. We verify our techniques with a select
set of varyingly difficult ontologies from the NCBO BioPortal, and were
able to, firstly, successfully identify performance hot spots against the
major freely available DL reasoners, and, secondly, significantly improve
classification time using approximate reasoning based on hot spots.

1 Introduction

Reasoning tasks on ontologies expressed in a rich description logic such as that
underlying OWL2 have a high worst case complexity. As a consequence, reasoning
time can be highly unpredictable: seemingly innocuous changes to an ontology
might shift reasoning time from seconds to days; different reasoners might have
wildly different behaviour on the same input. Even seasoned reasoner developers
do not have a mental performance model sufficient to deal with many, particularly
novel, cases (indeed, this fact keeps reasoner optimisation research a lively area).

Mere high worst case complexity, of course, does not entail unpredictability.
The difficulty of determining the satisfiability of propositional k-CNF formu-
lae (the k-SAT problem), for example, is highly predictable by attending to the
“density” (i.e., the ratio of number of clauses to number of distinct variables) of a

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 82–98, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Performance Heterogeneity and Approximate Reasoning 83

formula. Not only is it predictable, but there is an increasingly sophisticated the-
oretical understanding of this behaviour. This predictability has been observed in
various modal logics which correspond to the description logics commonly used
as ontology languages [14,10]. However, several observations belie the utility of
these results: 1) Even for comparatively simple logics such as ALC the number
of parameters becomes unwieldy: while propositional logic has two main param-
eters (for a given size, k!) — number of clauses (L) and number of variables (N)
— ALC adds (at least) modal depth (d), the number of roles (i.e., modalities,
m), and the proportion of modal to propositional atoms [10]. 2) The inputs are
highly regimented and bear little relationship to the sorts of formulae found in
practice, especially in manually crafted artifacts such as ontologies. For exam-
ple, all ontologies have axioms, not just concept expressions, these axioms often
“break up” complex concepts, and reasoners exploit this fact.1 Thus, to predict
behaviour of realistic or naturally occurring ontologies, we need to understand
even more parameters (perhaps dozens), and normalizing away that complexity
is unlikely to be helpful. 3) Reasoners have different suites of optimizations and
even underlying calculi, thus respond differently to these inputs.

Together, these observations suggest that users crafting ontologies are likely
to be surprised2 by the enormous variation in performance behaviour which does
not relate intuitively to the changes they make (either in the ontology or in the
reasoner used). Three basic phenomena startle users: 1) An ontology which takes
seconds to classify3 in one reasoner, effectively fails to terminate with another.
2) Ontologies of similar size and apparent complexity take wildly different times
to classify on the same reasoner. 3) Apparently innocuous changes to a single
ontology result in large increases (or decreases) in classification time.4 Of course,
the primary negative phenomenon is excessive reasoning time.

The most prominent, principled way to cope with this problem is to shift to
a less expressive logic, such as OWL EL, for which classification is decidable in
polynomial time. Reasoning in EL (and similar logics) is not only polynomial
(in general) but has proven to be rather robust to novel input [1,2]. This move is
not always possible, as it involves severe limitations on what can be expressed.
Similarly, approximate reasoning (i.e., giving up on soundness or completeness)
can make reasoning performance significantly better and more predictable, but
at the cost of increased uncertainty about the results [18,16,15]. In practice,
users often modify their ontologies based on folk wisdom (“negation is hard”,
“inverses are hard”), on bespoke advice from reasoner developers, or randomly.

1 “In realistic KBs, at least those manually constructed, large and complex concepts
are seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex.”[9]

2 “[Reasoner] performance can be scary, so much so, that we cannot deploy the tech-
nology in our products.” — Michael Shepard
http://lists.w3.org/Archives/Public/public-owl-dev/2007JanMar/0047.html

3 Throughout, we focus on classification as the key reasoning task, as it is the most
prevalent service invoked by ontology developers.

4 Esp. distressing are removals that increase time, and additions which decrease it
dramatically.

http://lists.w3.org/Archives/Public/public-owl-dev/2007JanMar/0047.html

84 R.S. Gonçalves, B. Parsia, and U. Sattler

We need a better understanding of reasoning performance variability, or at
least methodologies for analyzing it in particular cases. The contributions of
this paper are as follows: for an ontology O that a reasoner R takes ‘too long’ to
classify, we have designed and thoroughly evaluated (1) a technique for analyzing
the performance variability of R on O, (2) a technique to isolate subsets of O
that contribute negatively to R’s high classification time, so called hot spots, and
(3) a series of techniques to approximate the hot spot in O.

Firstly, we have verified, via technique (1), that there exist two kinds of per-
formance profiles; an ontology-reasoner pair can be performance “heterogeneous”
or performance “homogeneous”, depending on whether there are certain kinds of
performance variability between subsets of the ontology. Secondly, we identified
very small subsets of an ontology whose removal causes a significant decrease in
classification time, i.e., hot spots, using technique (2). Indeed we show that perfor-
mance heterogeneous ontology-reasoner pairs are highly likely to have such sub-
sets which are detectable by our methods. Thirdly, and finally, we show that if
there is a hot spot for an ontology-reasoner pair, then we can approximate it in
such a way that our criteria for a hot spot (i.e., classification time boost and size)
are maintained.

2 Preliminaries

We assume the reader to be reasonably familiar with ontologies and OWL [22],
as well as the underlying description logics (DLs) [8]. An ontology O is a set of
axioms, and its signature (the set of individuals, concept and role names used)

is denoted ˜O. We use the notion of a locality-based module [5], which is a subset
of an ontology O that preserves all consequences of O w.r.t. to a signature Σ.
An x-module M extracted from an ontology O for a signature Σ is denoted x-
mod(Σ,O), for x one of �⊥*,� or ⊥. A justification J of a consequence α is a ⊆-
minimal subset of an ontologyO that is sufficient for α to hold [11]. The reasoning
time of an ontology O using reasoner R, denoted RT(O, R),5 comprises the time
for consistency checking, classification (computing atomic subsumptions) and
coherence (concept satisfiability). The set of atomic subsumptions resulting from
the classification of an ontology O is denoted Cl(O).

3 Materials

In order to test our methods we need a reasonable corpus of “problem” on-
tologies. We derived one from the NCBO BioPortal, a large collection of user
contributed, “working” ontologies covering a wide range of biomedical domains
[13]. We gathered all ontologies from the BioPortal, and performed a reasoner
performance test across this corpus. Four major, freely available DL reasoners
were used: Pellet (v2.2.2) [20], HermiT (v1.3.6) [19], FaCT++ (v1.5.3) [21], and

5 When R is clear from the context, we also use RT(O).

Performance Heterogeneity and Approximate Reasoning 85

JFact (v0.9).6 The experiment machine is an Intel Xeon Quad-Core 3.20GHz,
with 32GB DDR3 RAM dedicated to the Java Virtual Machine (JVM v1.5). The
system runs Mac OS X 10.6.8, all tests were run using the OWL API v3.3 [7].

The entire BioPortal corpus contains 216 ontologies. We discarded all ontolo-
gies with reasoning times, for all reasoners, below 60 seconds (i.e., the “easy”
ontologies). This leaves 13 ontologies, 3 of which did not classify within 10 hours:
the IMGT7 ontology with Pellet, GALEN8 with all reasoners, and GO-Ext.
(Gene Ontology Extension),9 with FaCT++ and JFact.

The naive approach to determining heterogeneity is to enumerate the “accept-
ably” small subsets of the ontology and measure the classification time for each.
Given that our ontologies range from 100s to over 100,000 axioms, this is obvi-
ously infeasible. Random testing of acceptably small subsets might be effective
assuming that a sufficiently large proportion of those subsets were, in fact, hot
spots, though our preliminary experiments in this direction were unpromising.
Instead, we performed two sorts of heterogeneity detection. In the first, “coarse
grained” method, we classify ontology-reasoner pairs as performance heteroge-
neous or homogenous by attending to performance fluctuations (or lack thereof)
over relatively large, evenly increasing subsets of the ontology. In the second,
we apply two simple heuristics for selecting candidate subsets, and then ver-
ify whether they conform to our hot spot criteria. The second method directly
verifies our heterogeneity condition.

4 Coarse Grained Prediction

For current purposes, we focus on performance variability of a single reasoner for a
given ontology. In particular, we are always examining the difference in reasoning
time of select subsets of a given, hard-for-a-specific-reasoner ontology. We do this
for several reasons: 1) it simulates a common user scenario (e.g., editing or trying
to “optimize” an ontology) and 2) we are investigating the backgroundassumption
that ontologies which are difficult (e.g., approach the worst case) are often so in a
“fragile” way, i.e., their performance is sensitive to small changes.

We say that an ontology is performance homogenous for a reasoner if there is
a linear factor L and variable k such that for all M ⊆ O and for k · |M | = |O|,
we have that L · k · RT(M) ≈ RT(O). An ontology which is not performance
homogeneous we call performance heterogeneous. It is important to note that,
in both cases, the performance profile of the ontology and its subsets may be
predictable (even if we currently do not know how to predict it).

In this experiment, each ontology is divided into 4 and 8 random subsets
of equal size, and the classification times of these subsets as increments are
measured (i.e., we measure, for the 4-part division, RT(O1), RT(O1 ∪ O2),
RT(O1 ∪ O2 ∪ O3), RT(O), where O1,O2,O3 are subsets of O). Both

6 http://jfact.sourceforge.net/
7 http://www.imgt.org/IMGTindex/ontology.html
8 http://www.co-ode.org/galen/
9 http://www.geneontology.org/

http://jfact.sourceforge.net/
http://www.imgt.org/IMGTindex/ontology.html
http://www.co-ode.org/galen/
http://www.geneontology.org/

86 R.S. Gonçalves, B. Parsia, and U. Sattler

measurements are carried out several times per ontology (at least 10, though
often more), where each time the list of axioms in O is shuffled.

Note that we are testing a very small number of subsets of each ontology,
so, in principle, that we see “smooth” behaviour could be due to insufficient
sampling. However, because each increment is rather large, we hope that it will
contain (in a behaviour exhibiting way) any hot spots.

Overall 4 out of 13 ontology/reasoner pairs exhibit roughly linear performance
growth in our tests (see Figures 1c and 1d for characteristic graphs). GALEN
proved infeasible to work with (even only half the ontology gave reasoning times of
over 10 hours), and was discarded. The remainder exhibited non-linear and some-
times highly variable performance behaviour. For example, Figure 1e shows that
even the very coarse, 4-part division method can detect strange performance pat-
terns, although the more fine grained, predictably, is more detailed (Figure 1f).
Contrariwise, Figure 1a shows a rather smooth, if non-linear, curve. It is tempt-
ing to think that that smoothness indicates a relatively predictable performance
profile, but as we see in the more fine grained view (Figure 1b) this is not true.
However, this supports (though, obviously, does not confirm) our hypothesis that
ontologies with non-linear growth, whether smooth or jaggy, are performance het-
erogeneous. In our corpus, they certainly exhibit surprising variability.

While we were unable to run this test sufficient enough times to attain statis-
tical significance for all ontologies, the data gathered is already highly suggestive
of reasoner performance behaviour on our test corpus. During the execution of
this experiment we noted a curious phenomenon: While in most ontologies we
managed to achieve convergence on the overall classification time on each run,
in the GO-Ext ontology this did not happen. Surprisingly, the classification time
of GO-Ext with Pellet, under exactly the same experimental conditions, varies
from seconds to hours; more specifically, the range is from 27 seconds to 1 hour
and 14 minutes (Figure 2). A unique case as it may be (in our corpus), it suffices
to illustrate not only the need for performance analysis solutions, but also the
difficulty of the problem in cases such as this one.

5 Performance Hot Spots

We hypothesise that if an ontology is performance heterogeneous for a reasoner,
then there exists at least one “small” subset of that ontology whose removal
results in a “significant” change in the classification time (positive or negative).
That is, when there exists a subset M of a given ontology O such that (1) M is
“acceptably small” (typically, |M| � |O|), and (2) RT(O\M) � (or �)RT(O).
We call such a subset M, which witnesses the performance heterogeneity of O, a
“hot spot”, by way of analogy with program profilers. The analogy is imperfect
as we cannot say whether such bits themselves consume an inordinate amount
of time, or whether they have some more diffuse triggering effect.

Obviously, the exact nature of the smallness of M relative to O and the
respective classification times depend on non-intrinsic considerations. In general,
we consider subsets below 20% of the ontology and speed-ups of at least an order
of magnitude, and preferably more.

Performance Heterogeneity and Approximate Reasoning 87

(a) ChEBI 4-part division (Pellet) (b) ChEBI 8-part division (Pellet)

(c) Gazetteer 4-part division (HermiT) (d) Gazetteer 8-part division (HermiT)

(e) EFO 4-part division (Pellet) (f) EFO 8-part division (Pellet)

(g) ICF 4-part division (HermiT) (h) ICF 8-part division (HermiT)

Fig. 1. Performance heterogeneity tests of select ontologies. All times in seconds.

88 R.S. Gonçalves, B. Parsia, and U. Sattler

(a) Times in chronological order.

(b) Times in ascending order.

Fig. 2. Classification times (in seconds) of the GO-Ext ontology with Pellet

Given that exhaustive search is unpromising, indeed the search space is un-
manageable; for a number of axioms n, variable k, and considering only subsets
of size below 20% of n, the possible subsets are all unique combinations of n
of size k, for 1 � k � 0.2n, we need some other method for producing good
“candidate hot spots”, i.e., subsets that are likely to be hot spots. In [23], the
authors suggest that the satisfiability checking (SAT) time of an atomic concept
is an indicator of the total time the reasoner spends on or “around” those atomic
concepts during classification. In particular, they observe that in their examined
ontologies, relatively few concepts (2-10 out of 1000s) took enormously more
time to check their satisfiability than for the rest of the concepts. Since sub-
sumption testing is reduced to satisfiability checking, it is at least prima facie
plausible that the stand alone satisfiability time is correlated with a “hot spot”.
Indeed, the authors were able to “repair” their sample ontologies, by removing
a small number of axioms based on guidance from SAT times.

5.1 Hot Spot Detection

Just knowing the “hard” concepts does not give us a corresponding set of axioms.
For a candidate C, we use the �⊥∗-module of the terms co-occurring with C in
an axiom in O as the module “around” C. This roughly approximates what an
ideal user might do: identify the problem (C) and then “remove it” (i.e., remove
its explicit and implicit presence; the usage gets the explicit while the module
gets the rest; this is an approximation, obviously). We rely on �⊥∗-modules as
these were shown to be the smallest kind of locality-based module [17]. The full

Performance Heterogeneity and Approximate Reasoning 89

technique is described by Algorithm 1. To test whether our indicator is effective,
we compare it to candidates generated from randomly selected concepts. For
each member of our set of 12 “hard” BioPortal ontologies we attempted to find
3 witness hot spots while testing no more than 1,000 hot spot candidates. In
each case, we selected candidate hot spots using both the SAT-guided and the
randomly selected concept methods.

Algorithm 1. Identification of hot spots in ontologies.

Input: Ontology O
Output: Set of modules S, wherein for eachMi ∈ S: RT(O \Mi)� RT(O)
S ← ∅; Candidates← ∅; T imes← ∅; max = 1000;
for all atomic concepts C ∈ ˜O do {S1: Get SAT times}

T imes← T imes ∪ 〈C,SATtime(C)〉
end for
Sort T imes in descending order of SATtime(C)
Candidates← Candidates ∪ {C with highest SATtime up to max concepts}
for all C ∈ Candidates do {S2: Verify candidate hot spots}
M = 	⊥*-mod({t | t co-occurs with C in some α ∈ O},O)
if RT(O \M)� RT(O) then {S3: Test hot spot effectiveness}

S ← S ∪M
end if

end for
return S

The first striking result is that we verified all the coarse-grained heterogeneity
predictions. That is, if an ontology had a linear performance growth curve then
neither method found a hot spot, whereas if the growth curve was non-linear
then we found at least 1 hot spot, and usually 3.10

The hot spots found are described in Table 1. Both techniques were able to
find hot spots most of the time, though the random approach failed in two cases.
For the NEMO/HermiT combination, both approaches failed to find 3 before the
limit, which suggests that hot spots are scarce. Contrariwise, for NCIt/HermiT,
while the random approach failed to find any hot spots, the SAT-guided approach
found them in 7 tests. In general, though not always, the SAT-guided approach
found 3 hot spots in far fewer tests than the random approach (on average,
respectively, in 129 vs. 426 tests), validating concept satisfiability as a significant
indicator. Note that, at this point, we only present classification time boosts, the
completeness of classification results is presented in Table 5.

A difficulty of the SAT-guided approach is the time to test all concepts for sat-
isfiability. For example, we were unable to retrieve precise satisfiability-checking
times for the GO-Ext ontology with FaCT++ and JFact. Instead, we used a
timeout on each concept satisfiability check of 60 seconds. Also note that, for

10 Of course, this could be just that we failed to find the telltale hot spots in the
linear-growth ontologies. However, the overall evidence is highly suggestive.

90 R.S. Gonçalves, B. Parsia, and U. Sattler

Table 1. Comparison of hot spots found via SAT-guided (white rows) and random
(grey rows) concept selection approach. “Nr. Tests” is the number of candidates tested
before either finding 3 hot spots or exhausting the set search space (either the number
of concepts in the ontology or 1000, whichever is smaller). CPU times in seconds.

Ontology
Nr. Nr.

Reasoner RT(O) Hot Avg. Avg. Nr. Avg. Avg. Avg.
Axioms Concepts Spots RT(O \M) Boost Tests |M| %|O| RT(M)

ChEBI 60,085 28,869 Pellet 65.8
3 12.3 82% 3 186 0.3% 0.55
3 3.5 95% 89 522 1% 0.72

EFO 7,493 4,143 Pellet 61.1
3 9.6 81% 128 68 1% 0.13
3 10.9 82% 863 70 1% 0.14

GO-Ext. 60,293 30,282 Pellet 268.4
3 29.6 89% 36 98 0.2% 0.08
3 31.9 88% 419 17 0.03% 0.06

IMGT 1,112 112
Pellet >54,000

1 26.1 99% 112 98 9% 0.09
1 26.1 99% 112 98 9% 0.09

HermiT 80.4
3 7.8 90% 86 35 3% 8.86
3 7.1 91% 103 36 3% 10.4

NEMO 2,405 1,422 HermiT 76.3
1 5.5 93% 1,000 44 2% 4.63
0 - - 1,000 - - -

OBI 25,257 3,060

HermiT 61.6
3 2.3 96% 3 570 2% 1.56
3 4.3 93% 189 576 2% 1.48

JFact 72.1
3 1.1 93% 3 570 2% 1.12
3 7.4 90% 57 576 2% 1.19

Pellet 119.8
3 11.1 91% 29 708 3% 2.05
3 21.6 82% 133 593 2% 1.76

VO 8,488 3,530 Pellet 4275.9
3 30.4 99% 11 322 4% 1.56
3 371.7 91% 725 262 3% 0.61

NCIt 116,587 83,722 HermiT 430.1
3 16.1 88% 7 3,611 3% 16.14
0 - - 1,000 - - -

this particular ontology, we use (in Table 1 and subsequent ones) the median
time value from the wide range of obtained classification times.

Overall, the hot spot finding mechanism described in Algorithm 1 is feasible,
and successfully identified hot spots in all ontologies deemed performance het-
erogenous. Its run time is faster than the original classification time in 4 out
of 11 cases, including one case (IMGT/Pellet) for which classification did not
terminate within 15 hours. In general, the found hot spots were quite good: they
typically were smaller than our limit (only IMGT/Pellet was above 5% of the
ontology) and often giving massive speedups (e.g., IMGT/Pellet). There is no
indication that hot spots, on their own, are particularly hard, which suggests an
interaction effect, as expected.

5.2 Hot Spot Analysis

In order to investigate whether the removal of each hot spot happened to shift
expensive constructs from the main input to the subset, we verify the expressivity
of the hot spots and the remainder ontology (shown in Table 2).

Notice that, in several cases, the removal of the hot spot does not change the
expressivity of the remainder w.r.t. the whole ontology, e.g. in ChEBI. However
in other, yet few cases, there is a reduction of expressivity, e.g., the hot spots

Performance Heterogeneity and Approximate Reasoning 91

Table 2. Expressivity of each original ontology (O), its various hot spots (M) and
corresponding remainders (O \M)

Ontology O O \M M
ChEBI ALE+ ALE+ ALE+
EFO SHOIF SHIF SHOIF

GO-Ext. ALEH+ ALEH+ AL, ALEH+, ALE
IMGT ALCIN ALC, ALCIN ALCI, ALCIN
NEMO SHIQ SHIF SHIQ
OBI SHOIN SHOIN SHOIF , SHOIN
VO SHOIN SHOIN SHOIF
NCIt SH ALCH S

found in EFO leave the remainder without nominals. Similarly in NEMO the
remainder no longer has qualified cardinality restrictions.

In order to get a better understanding of why this performance boost oc-
curs, particularly the interaction effect between each hot spot and the ontology,
we verify whether the removal of the hot spots from these ontologies changes
the number of General Concept Inclusions (GCIs),11 as these are an obvious
potential source of hardness. The results gathered are shown in Table 3.

Table 3. Number of GCIs contained in the each ontology, its hot spots, and their
corresponding remainders

Ontology O O \M1 O \M2 O \M3 M1 M2 M3

EFO 172 163 164 164 9 8 8

GO-Ext 4407 4398 4382 4382 9 25 16

NCIt 42 37 36 36 5 6 6

NEMO 31 30 - - 1 - -

OBI 227 182 193 193 44 33 33

VO 235 196 201 197 39 34 38

IMGT 38 0 0 0 38 38 38

The obvious thing to notice here is that the removal of each of the 3 hot
spots found within IMGT (for HermiT) leaves the remainder with no GCIs at
all. Other cases are not so obvious, indeed in, e.g., NEMO or NCIt, only a few
GCIs are removed from the original ontology. However, there seems to be some
relation between the loss of GCIs from the original ontology into the hot spot, and
the improvement in classification time. We speculate that a glass box approach
to investigating this relation may help disentangle performance difficulties in
specific reasoners, though this is beyond the scope of the paper.

11 Axioms with complex concepts on both sides, e.g., ∃r.A � ∃r.B.

92 R.S. Gonçalves, B. Parsia, and U. Sattler

5.3 Comparison with Pellint

As a final check, we compared our technique with Pellint [12]. Pellint is a “perfor-
mance lint” dedicated specifically to the Pellet reasoner; it draws on the knowl-
edge of the Pellet developers to generate a set of rules for what sorts of constructs
and modelling patterns are likely to cause performance degradation when using
Pellet — essentially it is a Pellet specific, ontology performance tuning expert
system. Pellint not only identifies problem constructs, but it suggests approxima-
tions (typically by weakening or rewriting axioms) which “should” improve perfor-
mance. If the number of axioms touched by Pellint repairs is sufficiently small and
the gain sufficiently large, then Pellint will have identified a hot spot (though, at
most 1). Since we believe that the “predicted homogeneous” ontologies have no hot
spots (and we did not find any), we would expect that, while perhaps improving
their performance, Pellint would not identify a hot spot. Similarly, for non-Pellet
reasoners, we would expect no improvements at all. To check these conjectures we
ran Pellint on all our ontologies and compared reasoning times for all “bad” rea-
soner/ontology combinations for both the Pellint approximated versions, and by
removing the modified axioms (thus providing a direct comparison with Table 1).
The results are shown in Table 4. Note that ontologies for which Pellint found no
lints at all are omitted (5, in total). If Pellint found lints but could not alter them,
then the number of altered axioms will read as 0 and no tests performed.

Table 4. Ontologies for which Pellint found “lints”

Ontology Reasoner RT(O) Nr. Axioms %|O| Altered(O) O \ {lints}
Altered (lints) Altered RT(O) Boost RT(O) Boost

ChEBI Pellet 65.8 0 - - - - -

EFO Pellet 61.1 172 2% 3.7 94% 3.1 95%

GO-Ext. Pellet 268.4 4407 7% 19.4 93% 5.85 98%

VO Pellet 4275.9 231 3% 119.7 97% 3.32 99%

NCIt HermiT 430.1 42 0.04% 443.4 -3% 448.1 -4%

Coriell
Pellet 923.5

46 0.03%
642.3 30% 631.0 32%

FaCT++ 156.1 159.2 -2% 159.1 -2%
JFact 154.8 154.2 0.4% 143.9 7%

PRPPO Pellet 118.9 0 - - - - -

First, Pellint was not able to find any hot spots in the predicted homogeneous
ontologies, though for one (Coriell/Pellet) it was able to provide a significant
performance boost (32%). This further confirms our linear/homogeneous hy-
pothesis. Second, Pellint found hot spots in 3 out of 8 heterogeneous ontologies,
performing much worse than even random concept selection. When found, the
hot spots where competitive, but not all repaired lints improved performance
(i.e., NCIt/HermiT). Pellint failed to find hot spots in our experiments due to
finding no lints (5 ontologies), having no repairs12 (2 ontologies), or just failing

12 The set of suspect axioms might be a hot spot (or a subset thereof), but without
access to them we cannot test.

Performance Heterogeneity and Approximate Reasoning 93

to produce a dramatic enough (or any) effect (4 ontology/reasoner pairs, with
most being non-Pellet). As expected, Pellint found no hot spots or performance
improvements for other reasoners. Of course, this might be just be due to its
overall poor hot spot finding.

Finally, Pellint’s alterations had a noticeable negative effect on reasoning time
compared to simple removal.Whether these approximations significantly save en-
tailments needs to be investigated. Given the high development and maintenance
costs of Pellint, it does not seem viable compared to search based methods.

6 Improving Classification via Hot Spots

The applicability of our hot spot finding method is dependent on how much infor-
mation users are willing to lose. In a realistic edit-compile-deploy scenario, users
may be wary to dispose of parts of their ontology. Thus, in order to avoid this
predicament, we explore a series of approximation and knowledge compilation
techniques, and compare them with a known approximate reasoning method.
The latter is based on a reduction of the input into the tractable fragment of
OWL: EL, as implemented in TrOWL [15]. We implemented the EL reduction
algorithm so as to apply it to any given reasoner other than REL (the reasoner
used within TrOWL). Our approximation-based classifier is denoted ELC.

6.1 Approximate Reasoning

First off, given a hot spot and an ontology, we have an immediate approxi-
mation O \ M of O; It is much easier to reason over than the original on-
tology, though possibly too incomplete w.r.t. Cl(O) (i.e., the set of inferred
atomic subsumptions of O). From hereon we derived two more approximations:
1) Cl(O \M) ∪ Cl(M), which would naturally be more complete than O \M
alone, and 2) O \ M ∪ Cl(M), where we expect that the interaction between
inferred subsumptions in M and the remainder will bring us closer to Cl(O).
A comparison of these techniques is shown in Table 5, containing the results of
each of the 3 approximations as well as ELC with the respective reasoner.

Overall the closest approximation is O\M∪Cl(M), which yields an average
completeness of 99.84% and an average boost of 89.3% over the original times.
ELC is typically more complete, though in several cases classifying an ontology
with ELC is much slower than the original RT(O), e.g., ELC failed to classify
the NCIt within 5 hours, compared to ≈7 minutes originally. Similarly with
ChEBI and OBI, the approximation is no faster than the original times. Overall
the average boost via ELC is non-existent, particularly due to the NCIt case.
By excluding that one case, ELC’s average classification time boost is of 33.7%.

Applying the original TrOWL system, with its internal reasoner REL, is not
so much better than using standard DL reasoners on the EL approximations,
particularly since some DL reasoners (e.g., Pellet or FaCT++) are finely tuned
to the EL fragment of OWL. Nevertheless, we analysed those results only to find
that TrOWL has the exact same problem with the NCIt, and out-performs ELC
in 4 out of 7 cases by mere seconds.

94 R.S. Gonçalves, B. Parsia, and U. Sattler

Table 5. Approximate reasoning results for the approximations O \M, Cl(O \M) ∪
Cl(M), O \M∪Cl(M), and, finally, ELC. The completeness of each approach w.r.t.
Cl(O) is denoted “Compl.”.

OntologyReasoner
O \M Cl(O \M) ∪ Cl(M)O \M∪ Cl(M) ELC

Compl. Boost Compl. Boost Compl. Boost Compl. Boost

ChEBI Pellet 55% 89% 55% 89% 100% 84% 100% -207%

EFO Pellet 78% 86% 79% 86% 100% 81% 100% 63%

NCIt HermiT 75% 90% 80% 87% 100% 89% -12 -2651%

NEMO HermiT 97% 96% 98% 92% 100% 96% 99.94% 93%

OBI
HermiT 51% 96% 55% 94% 100% 94% 100% 14%
JFact 51% 91% 55% 90% 99.92% 84% 99.95% -10%
Pellet 50% 88% 54% 88% 100% 86% 100% 54%

IMGT
Pellet 68% 100% 76% 100% 100% 100% 100% 100%
HermiT 92% 92% 97% 78% 99.92% 92% 100% 100%

VO Pellet 50% 98% 52% 98% 98.36% 94% 100% 97%

GO-Ext Pellet 95% 90% 96% 90% 100% 81% 100% 33%

Average 69.2% 92.4% 72.3% 90.4% 99.84% 89.3% 99.99% -210%

6.2 Knowledge Compilation

While the loss of entailments via our best approximation is typically empty, or
very low, we investigate whether a number of knowledge compilation techniques
based on hot spots enjoy the same performance boosts as the approximations in
Section 6.1. These techniques all maintain 100% completeness of knowledge con-
tained in the original ontologies, i.e., they produce logically equivalent knowledge
bases. The rationale behind these techniques is that by adding inferred knowl-
edge (e.g., from a hot spot) to the original ontology, reasoners will not need to
do certain (possibly expensive) subsumption tests, and, as a consequence, should
(at least intuitively) perform faster. The results are shown in Table 6.

First thing to notice here is that adding the inferred class hierarchy of the
parts does not necessarily improve classification time over the whole. There are
cases, such as OBI with JFact, where all compilation techniques took much
longer to classify than the original (note that we timed-out the operation at 5
hours). On the other hand, there are cases where there is mild to noteworthy
improvement, for instance VO classifies 75% faster when we use the second com-
pilation technique, which is a significant improvement with no loss of knowledge.
Similarly the GO-Ext ontology classifies 92% faster with both the second and
third compilation technique. Nevertheless, the results gathered are not nearly
as stable w.r.t. classification time improvement as our approximations, and the
improvements obtained are also not as high as those shown in Section 6.1.

12 The classification of the NCIt was interrupted after running for 5 hours, well above
the original classification time.

Performance Heterogeneity and Approximate Reasoning 95

Table 6. Compilation results for the techniques O ∪ Cl(M), O ∪ Cl(O \ M) and
O ∪ Cl(M) ∪ Cl(O \M)

Ontology Reasoner
O ∪ Cl(M) O ∪ Cl(O \M) O ∪ Cl(M) ∪ Cl(O \M)
Time Boost Time Boost Time Boost

ChEBI Pellet 74.5 18% 73.1 19% 73.6 19%

EFO Pellet 51.3 30% 63 14% 62.9 14%

NCIt HermiT 616.1 6% 603.2 8% 614.5 6%

NEMO HermiT 94.9 5% 94.6 6% 98.6 2%

OBI
HermiT 71 -3% 69.1 0% 70.7 -2%
JFact >5hrs - >5hrs - >5hrs -
Pellet 264 -66% 207.5 -31% 276.6 -74%

IMGT
Pellet 36000 33% 36000 33% 36000 33%
HermiT 94.8 -4% 94.9 -4% 94.8 -4%

VO Pellet 1704.4 60% 1066.2 75% 2136.2 50%

GO-Ext Pellet 161.4 56% 30.1 92% 30.6 92%

Average Boost - 14% - 21% - 14%

7 Related Work

In [23], a number of ontology profiling techniques are proposed and realized
in a tool, Tweezers for Pellet. Tweezers allows users to investigate performance
statistics, such as the satisfiability checking time for each concept in the ontology,
but relies on the user to apply this information. Our goal driven technique can
be seen as the automated exploitation of their statistics.

In [4] the author proposes three techniques to automatically identify poten-
tially expensive “constructs” (concepts, roles or axioms). These techniques search
for “suspect” constructs by recursively splitting an ontology in different manners,
and individually testing performance over the parts until suspects are found.
While their actual attempt was rather ad hoc, it does suggest an alternative
discovery mechanism (as they did find some hot spots).

In [3] the authors present a form of OWL reasoner benchmarking based on
justifications. JustBench computes all justifications for entailments in a given
ontology, and measures the performance of reasoners on those justifications. The
authors hoped that they would find justifications that were hot spots themselves
(or indicators thereof), but this hope was not borne out by their experiments.

8 Discussion and Applications

Unlike with hot spots in programs, there is no straightforward relationship be-
tween the performance of a “hot spot” in isolation and the effect it has on the
ontology as a whole (see the last column in Table 1). Our results have shown that
there is no precise co-relation between the classification time of a hot spot alone,
and the reduction in classification time when such hot spot is removed. This is

96 R.S. Gonçalves, B. Parsia, and U. Sattler

somewhat similar to the fact that in a program, if an individually quick function
is called sufficiently often, it may be the performance bottleneck for that program.
That is, looking at the performance of the function in isolation is not sufficient to
determine its effect on the overall runtime. However, in our case, there are many
possible and currently unknown ways that a performance hot spot might affect
overall runtime, and yet not exhibit pathological behaviour on its own. Indeed,
the fact that sometimes adding axioms is sufficient to eliminate performance prob-
lems shows that isolating behaviour is not a reliable predictor of integrated effect.
It would be interesting to seek out inverse hot spots, that is, acceptably small sub-
sets whose removal greatly increases the classification time of an ontology, though
these would have less end user applicability. Of course, merely finding hot spots
does not provide any explanation of performance patterns, it merely provides tools
for investigating them. On the other hand, it is a purely black box technique, thus,
unlike Pellint, does not require such insight to be effective.

Our investigation was partly inspired by our observation of user coping tech-
niques for recalcitrant ontologies, thus it is natural to seek to apply them in such
scenarios. The basic idea is straightforward enough: Present the user with a se-
lection of hot spots and let them select the most appropriate one to “set aside”
(permanently or temporarily) or to rewrite into a less damaging approximation.
Of course, we might want hot spots with somewhat different properties, e.g.,
that the remainder ontology is a module rather than the hot spot, so that “safe
edits” to the remainder will not alter the meaning of the hot spot. We might use
heuristics to select a hot spot for automated removal or approximation. Modular
hot spots might be presented to the user so they can attempt to have a clearer
understanding of “what was removed.”

Our techniques could benefit reasoner developers as well. For example, a hot
spot gives the developer a pair of almost identical ontologies with vastly different
performance behaviour. By comparing the profiling reports on their reasoners
processing these inputs, the developer might gain additional insight.

Currently, we have concentrated on satisfiability-checking time of atomic con-
cepts as the indicator for hot spots. There are clearly alternatives for this, e.g.,
small atoms [6] or justifications, as well as brute force methods [4].

All our experiments, as they stand, can be improved in two dimensions: 1)
more input ontologies are always better, and 2) our sampling, particularly in the
coarse grained method, is very low. Clearly, they were sufficient to reveal some
interesting phenomena, but not to establish statistically significant findings.

Finally, it may be possible to derive Pellint-like rules directly from hot spots
extracted from a large number of ontologies. While requiring maintenance, it
would be inherently much faster than our approaches as it would not require
any reasoning at all.

References

1. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL — A Polynomial-Time Reasoner
for Life Science Ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

Performance Heterogeneity and Approximate Reasoning 97

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in EL+. In: Proc. of
DL 2006 (2006)

3. Bail, S., Parsia, B., Sattler, U.: JustBench: A Framework for OWL Benchmarking.
In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 32–47.
Springer, Heidelberg (2010)

4. Charaniya, S.: Facilitating DL Reasoners Through Ontology Partitioning. Master’s
thesis, Nagpur University, India (2006)

5. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. of Artificial Intelligence Research 31 (2008)

6. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: Atomic decomposition. In: Proc. of IJCAI 2011 (2011)

7. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL 2
ontologies. In: Proc. of OWLED 2009 (2009)

8. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of KR 2006 (2006)

9. Horrocks, I.: The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press (2003)

10. Horrocks, I., Patel-Schneider, P.F.: Evaluating optimised decision procedures for
propositional modal k(m) satisfiability. J. of Automated Reasoning 28, 173–204
(2002)

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 267–280.
Springer, Heidelberg (2007)

12. Lin, H., Sirin, E.: Pellint - a performance lint tool for Pellet. In: Proc. of OWLED-
08EU (2008)

13. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet,
C., Rubin, D.L., Storey, M.A., Chute, C.G., Musen, M.A.: Bioportal: Ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Research 37,
W170–W173 (2009)

14. Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random
modal formulae for testing decision procedures. J. of Artificial Intelligence Re-
search 18, 351–389 (2003)

15. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness Preserving Approximation for TBox Rea-
soning. In: Proc. of AAAI 2010 (2010)

16. Rudolph, S., Tserendorj, T., Hitzler, P.: What Is Approximate Reasoning? In:
Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 150–164. Springer,
Heidelberg (2008)

17. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proc. of DL 2009 (2009)

18. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelli-
gence 74, 249–310 (1995)

19. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In:
Proc. of OWLED-08EU (2008)

20. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. of Web Semantics 5(2) (2007)

98 R.S. Gonçalves, B. Parsia, and U. Sattler

21. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 292–297. Springer, Heidelberg (2006)

22. W3C OWL Working Group: OWL 2Web Ontology Language: Document overview.
W3C Recommendation (October 27, 2009), http://www.w3.org/TR/owl2-syntax/

23. Wang, T.D., Parsia, B.: Ontology Performance Profiling and Model Examination:
First Steps. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 595–608. Springer,
Heidelberg (2007)

http://www.w3.org/TR/owl2-syntax/

	Performance Heterogeneity and Approximate
Reasoning in Description Logic Ontologies
	Introduction
	Preliminaries
	Materials
	Coarse Grained Prediction
	Performance Hot Spots
	Hot Spot Detection
	Hot Spot Analysis
	Comparison with Pellint

	Improving Classification via Hot Spots
	Approximate Reasoning
	Knowledge Compilation

	Related Work
	Discussion and Applications
	References

