Automatic Typing of DBpedia Entities

Aldo Gangemi'!, Andrea Giovanni Nuzzolese!'2, Valentina Presutti’,
Francesco Draicchio', Alberto Musetti', and Paolo Ciancarini!-?

1 STLab-ISTC Consiglio Nazionale delle Ricerche, Rome, Italy
2 Dipartimento di Scienze dell'Informazione, Universita di Bologna, Italy

Abstract. We present Tipalo, an algorithm and tool for automatically
typing DBpedia entities. Tipalo identifies the most appropriate types
for an entity by interpreting its natural language definition, which is
extracted from its corresponding Wikipedia page abstract. Types are
identified by means of a set of heuristics based on graph patterns, dis-
ambiguated to WordNet, and aligned to two top-level ontologies: Word-
Net supersenses and a subset of DOLCE+DnS Ultra Lite classes. The
algorithm has been tuned against a golden standard that has been built
online by a group of selected users, and further evaluated in a user study.

1 Introduction

Wikipedia is a large-scale resource of content capturing encyclopedic knowl-
edge collaboratively described by the crowds. Entities described in Wikipedia
are formally represented in DBpedia, the RDF translation of information from
many localized versions of Wikipedia, eminently the English one. There are
DBpedia datasets providing types for entities, but a large number of them is
still untyped, or has a very specialized type, and types are taken from ontologies
that have heterogeneous granularities or assumptions (e.g., 272 infobox-based
types in the DBpedia ontology (DBPO against almost 290,000 category-based
in YAGO [I7]). This situation makes it difficult to identify a proper reference
ontology for Wikipedia, or to reuse DBpedia knowledge with a good precision.
While it is reasonable to have limited semantic homogeneity on the Web, it is
highly desirable to bring a more organized and complete typing to DBpedia
entities. Knowing what a certain entity is (e.g., a person, organization, place, in-
strument, etc.) is key for enabling a number of desirable functionalities such as
type coercion [10], data pattern extraction from links [I4], entity summarization
(cf. Google Knowledge Graph), automatic linking, etc.

The two de facto reference ontologies for DBpedia resources are currently
DBPO and YAGO. Both provide types for DBpedia entities, and in particular
YAGO has high performances as far as typing quality is concerned. However,
their coverage is partial, both extensionally (number of typed resources), and
intensionally (conceptual completeness), since they rely on Wikipedia categories,
and infoboxes (that are not included in all Wikipedia pages). In addition, the

! http://dbpedia.org/ontology/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 65-8T] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

http://dbpedia.org/ontology/

66 A. Gangemi et al.

number of resources that could be typed from Wikipedia content is even larger
than the number of Wikipedia pages: for example, many DBpedia entities are
referenced by fragments of Wikipedia pages. Our aim is to enable automatic
typing of entities by exploiting the natural language (NL) definitions from their
corresponding Wikipedia pages. Hence, without relying on categorization, or on
the presence of structured data such as Wikipedia infoboxes.

Although there are numerous Natural Language Processing (NLP) approaches
to learning ontologies from text, they need training phases that can take a long
time, and may need a huge manually annotated corpus in order to perform
training. When dealing with large-scale corpora such as Wikipedia, we need to
identify sustainable procedures as far as speed is concerned. Therefore, none of
the existing NLP resources (cf. Section [2) can be directly used to perform the
automatic typing of DBpedia entities that we propose here.

We present Tipalo, a tool that automatically assigns types to DBpedia enti-
ties based on their NL definitions as provided by their corresponding Wikipedia
pages. We use a tool (cf. FRED [10]) that implements deep parsing methods
based on frame semantics for deriving RDF and OWL representations of NL
sentences. On top of it, we have implemented a procedure to extract types from
the RDF representation of definitions. The procedure is tailored to Wikipedia
pages, and reuses a tool for word sense disambiguation (cf. UKB [I]) to automat-
ically link the extracted types to WordNet. We also use alignments of WordNet
to two top-level ontologies: WordNet super senses, and DUL+DnS Ultralitd?.

Results show that Tipalo can extend typing of DBpedia entities with high
accuracy, and support the incremental definition of a Wikipedia ontology that
emerges from what is written in the articles, rather than from metadata or
statistical observations.

The contribution of this paper can be summarized as follows:

— a tool, named Tipalo, implementing a process for automatically typing DB-
pedia entities, based on their NL definitions, which is fast enough to be used
in realistic projects, while performing with good precision and recall;

— a sample Wikipedia ontology, incrementally built with Tipalo, encoded in
two semantic resources: (i) the Wikipedia entity types dataset, containing
automatically typed (and evaluated) DBpedia entities extracted from 627
definitions; (ii) the Wikipedia class taxonomy dataset, including WordNet
types, WordNet super senses, DUL types, and new defined types put in a
rdfs:subClass0f taxonomy;

— an updated mapping between WordNet 3.0 synsets and top-level ontology
classes, released as RDF datasets;

— a golden standard of 100 typed entities, manually annotated through a col-
laborative effort supported by an online tool that manages user agreement.

The whole procedure can be executed by means of a web serviedd. In order to
favor reuse and repeatability of our approach and experiments, the web service,

2 http://www.ontologydesignpatterns.org/ont/dul/DUL. owl
3http://wit.istc.cnr.it/stlab-tools/tipalo

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://wit.istc.cnr.it/stlab-tools/tipalo

Automatic Typing of DBpedia Entities 67

tools, and resources that we have produced are all publicly available from the
Wikipedia Ontology pageﬁ.

2 Related Work

The main approaches for typing DBpedia entities are: (i) the DBpedia project
[11], which manually created a DBpedia ontology (DBPO) based on a limited
number of Wikipedia infobox templates. Currently, DBpedia entities having
DBPO types are ~1.83M (version 3.7), against almost 4M Wikipedia pages
(August 2012). Besides its limited extensional coverage, DBPO suffers from lim-
ited intensional coverage [I5] due to the manual extraction procedure on infobox
templates that exist only for a subset of Wikipedia page types; (ii) YAGO [17],
an ontology extracted from Wikipedia categories and infoboxes, and aligned to
a subset of WordNet. YAGO'’s coverage is larger than DBPO (~2.7M entities),
however still incomplete and its intensional completeness is affected by its re-
liance on Wikipedia infoboxes and categories. In [15] learning techniques as well
as rule-based approaches for automatic typing of DBpedia entities have been
analyzed. The analysis confirmed the difficulty of this task, and highlighted the
limits posed by the reliance on Wikipedia categories and infoboxes.

Relevant work related to our method includes Ontology Learning and Popula-
tion (OL&P) techniques [2]. Typically OL&P is implemented on top of machine
learning methods, hence it requires large corpora, sometimes manually anno-
tated, in order to induce a set of probabilistic rules. Such rules are defined
through a training phase that can take a long time. Examples of such methods
include [3I20/18]. All these methods would be hardly applicable to large corpora
such as Wikipedia due to the time and resources they require, if all the poten-
tial types present in NL descriptions need to be extracted. Other approaches to
OL&P use either lexico-syntactic patterns [9], or hybrid lexical-logical techniques
[19], but to our knowledge no practical tools have emerged so far for doing it
automatically while preserving high quality of results. [5] works great for large-
scale information extraction centered on binary relation extraction. However, its
resulting triplet graphs are not interlinked and feature a low recall of relevant
syntactic structures, making it too limited for the automatic typing task.

The method presented in this paper differs from most existing approaches, by
relying on a component named FRED [16], which implements a logical interpre-
tation of NL represented in Discourse Representation Theory (DRT). FRED is
fast and produces an OWL-based graph representation of an entity description,
including a taxonomy of types. We parse FRED’s output graph, and apply a set
of heuristics, so that we can assign a set of types to an entity in a very efficient
way. FRED is an example of machine reading.

Terms used for describing entity types are often polysemous i.e. they can have
more than one meaning. We have empirically observed (on a sample of ~800
entity definitions) that polysemous terms occur in 70% of descriptions; hence,

* The Wikipedia ontologypage http: //www.stlab.istc.cnr.it/WikipediaOntology/
® M — millions.

http://www.stlab.istc.cnr.it/WikipediaOntology/

68 A. Gangemi et al.

the word sense disambiguation (WSD) task is relevant in this context. A good
survey of WSD methods is [12]. We use UKB [I] that shows high accuracy, with
some impact on the speed of the process (cf. Section [). A promising resource
for disambiguation is BabelNet [13], which has produced a substantial alignment
between WordNet and Wikipedia concept-like entities. However, its currently
available dataset is not suitable for implementing a direct WSD functionality.

As a final remark, we mention a recent work on terminology extraction [§]
which describes a number of wikipedia markup conventions that are useful hooks
for defining heuristics. Some of them have been reused in our tool.

3 Data Sources
In the context of this work, we have used and produced a number of resources.

Wikipedia and DBpedia. Wikipedia is a collaboratively built multilingual en-
cyclopedia on the Web. Each Wikipedia page usually refers to a single entity, and
is manually associated to a number of categories. Entities referenced by Wikipedia
pages are represented in DBpedia, the RDF version of Wikipedia. Currently, En-
glish Wikipedia contains 4M articles@, while DBpedia wikilink dataset counts ~15M
distinct entities (as of version 3.6). One main motivation of this big difference in size
is that many linked resources are referenced by sections of Wikipedia pages, hence
lacking explicit categorization or infoboxes. However they have a URI, and a NL de-
scription, hence they are a rich source for linked data. Out of these ~15M resources,
~2.7 are typed with YAGO classes and ~1.83M are typed with DBpedia classes.
We use Wikipedia page contents as input for the definition extractor component
(cf. Section M), for extracting entity definitions.

WordNet 3.0 and WordNet 3.0 supersense RDF. WordNetl] is a large
database of English words. It groups words into sets of synonyms, called synsets,
each expressing a different concept. Although WordNet includes different types
of words such as verbs and adjectives, for the sake of this work we limit the scope
to nouns. Words that may express different meanings, i.e. polysemous words, are
related to different synsets. In this work, we use the WordNet 3.0 RDF portingﬁ
in order to identify the type of an entity. Hence when such type is expressed
by a polysemous word we need to identify the most appropriate one. To this
aim we exploit a WSD engine named UKB, as described in Section [l Further-
more, WordNet 3.0 includes relations between synsets and supersenses, which
are broad semantic categories. WordNet contains 41 supersenses, 25 of which are
for nouns. We have produced a resource named WordNet 3.0 Supersense RDFY
that encodes such alignments as RDF data. This RDF dataset is used by the type
matcher (cf. Section) for producing triples relating entities and supersenses.

5 Source:http://en.wikipedia.org/wiki/Wikipedia:Size_of_WikipedialAug 2012.
" WordNet, http: //wordnet .princeton.edu/

8 http://semanticweb.cs.vu.nl/lod/wn30/

9 http://www.ontologydesignpatterns.org/wn/wn30/wordnet-supersense . rdf

http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://wordnet.princeton.edu/
http://semanticweb.cs.vu.nl/lod/wn30/
http://www.ontologydesignpatterns.org/wn/wn30/wordnet-supersense.rdf

Automatic Typing of DBpedia Entities 69

!

e
Wikipedia
1 2
Definition . FRED
extractor (%) NLP deep parse

e UKE 4
selector (*) Word sense dls_amblguaugn
engine

e R ———
Type matcher (¥)

OntoWordNet Wikipedia class
2012 (%) taxonomy (*)

S —
WordNet 3.0
Supersenses RDF (*

—_
Wikipedia entity
types (%)

Fig. 1. Pipeline implemented by Tipalo for automatic typing of DBpedia entities based
on their natural language descriptions as provided in their corresponding Wikipedia
pages. Numbers indicate the order of execution of a component in the pipeline. The out-
put of a component ¢ is passed as input to the next i+ 1 component. (*) denotes datasets
and tools developed in this work, which are part of our contribution (cf. Section [3).

OntoWordNet (OWN) 2012 is a RDF resource that updates and extends
OWN [7]. OWN is an OWL version of WordNet, which includes semantic align-
ments between synsets and DULplus types. DULplu@, extends DU, which
is the OWL light version of DOLCE + DnS [6] foundational ontology. OWN
2012 contains mappings between 859 general synsets and 60 DULplus classes.
Such mappings have been propagated through the transitive closure of the hy-
ponym relation in order to cover all ~82,000 synsets. In the context of this work,
we have updated OWN to the WordNet 3.0 version, and performed a revision
of the manual mapping relations. Furthermore, we have defined a lightweight
foundational ontology called Dolce Zer, whose classes generalize a number of
DULplus classes used in OWN. We have used a combination of 23 Dolce Zero and
DULplus classes for building a sample Wikipedia ontology. The reduction to 23
classes has been made in order make it comparable to the WordNet supersense
set, and to simplify the task of evaluators.

4 The Automatic Typing Procedure

Tipalo is based on a pipeline of components and data sources, described below,
which are applied in the sequence illustrated in Figure [1l

1% Dolce Ultra Lite Plus ontology, http://www.ontologydesignpatterns.org/ont/
wn/dulplus.owl

' Dolce Ultra Lite ontology, [http://www.ontologydesignpatterns.org/ont/dul/
DUL.owl

12 Dolce Zero ontology, http: //www.ontologydesignpatterns.org/d0.owl

http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/d0.owl

70 A. Gangemi et al.

Viadimir Kramnik

From Wikipedia, the free encyclopedia

IVladimir Borisovich Kramnik (Russian: Bnagimup Gopitcosud Kpamuuk; born 25 June 1975) is a Russian
chess grandmaster. He was the Classical World Chess Champion from 2000 to 2006, and the undisputed World
Chess Champion from 2006 to 2007. He has also won the two strongest tournaments (by rating strength) in
chess history: the 2009 Mikhail Tal Memorial and the 2010 Grand Slam Masters Final. He has won three team
gold medals and three individual medals at Chess Ofympiads.[zl

Fig. 2. First paragraph of the Wikipedia page abstract for the entity “Vladimir Kram-
nik”

1. Extracting definitions from Wikipedia pages (definition extractor).
The first step, performed by the definition extractor, consists in extracting the
definition of a DBpedia entity from its corresponding Wikipedia page abstract.
We identify the shortest text including information about the entity type. Typi-
cally, an entity is defined in the first sentence of a Wikipedia page abstract, but
sometimes the definition is expressed in one of the following sentences, can be
a combination of two sentences, or even implicit. We rely on a set of heuristics
based on lexico-syntactic patterns and Wikipedia markup conventions in order to
extract such sentences. A useful Wikipedia convention is the use of bold charac-
ters for visualizing the name of the referred entity in the page abstract: for ex-
ample consider the Wikipedia page referring to “Vladimir Kramnik”[and the
first paragraph of its abstract, depicted in Figure[2l Let us represent such para-
graph as a sequence of n sentences {s1, ..., s, }. Typically, the bold words refer-
ring to the entity (bold-name) are included in a sentence s;, (i = 1,...,n) that
provides its definition according to a syntactic form of the type: “bold—name <
copula><predicative nominal||predicative adjective>" (where <copula> is usu-
ally a form of the verb to be) e.g., “Vladimir Borisovich Kramnik is a Russian
chess grandmaster”. However, this is not always the case: sometimes, the sentence
s; containing the bold-name does not include any <copula>, while a <copula> can
be found together with a co-reference to the entity, in one of the following sen-
tences s;. In such cases, we extract the entity definition by concatenating these
two sentences i.e. s; + s;. If the abstract does not contain any bold-name, we in-
spect s1: if it contains a <copuld> we return s;, otherwise we concatenate s; with
the first of the next sentences e.g., s;, containing a <copula> (i.e. s1+s;). If none of
the above is satisfied, we return s;. We also apply additional heuristics for dealing
with parentheses, and other punctuation. For the example in Figure 2l we return
s1: Viadimir Borisovich Kramnik is a Russian chess grandmaster, which contains
the bold-name as well as a <copula>.

2. Natural language deep parsing of entity definitions (FRED). Once
the entity definition has been extracted, it should be parsed and represented in a
logical form that includes a set of types. In order to accomplish this task we use

13 http://en.wikipedia.org/wiki/Vladimir_Kramnik

http://en.wikipedia.org/wiki/Vladimir_Kramnik

Automatic Typing of DBpedia Entities 71

wt:chess_grandmaster_1 wt:VladimirBorisovichKramnik
owl:sameAs

rdf:type

k.

wt:RussianChessGrandmaster wt:ChessGrandmaster wt:Grandmaster
rdfs:subClassOf rdfs:subClassOf

Fig.3. FRED result for the definition “Vladimir Borisovich Kramnik is a Russian
chess grandmaster”

df:type

Fig. 4. FRED result for the definition “Chess pieces, or chessmen, are the pieces de-
ployed on a chessboard to play the game of chess”

owl:sameAs

FRE, a tool that we have presented in [16]. It performs ontology learning by
relying on Boxer [4], which implements computational semantics, a deep parsing
method that produces a logical representation of NL sentences in DRT. FRED
implements an alignment model and a set of heuristics for transforming DRT
representations to RDF and OWL representations. In the context of this work,
FRED is in charge of “reading” an entity NL definition, and producing its OWL
representation, including a taxonomy of types. For example, given the above
definition for Vladimir Kramnik, FRED returns the OWL graph depicted in
Figure Bl containing the following taxonom.

wt :RussianChessGrandmaster rdfs:subClass0f wt:ChessGrandmaster

wt :ChessGrandmaster rdfs:subClass0f wt:Grandmaster

3. Selection of types and type-relations from the OWL graph (type
selector). This step requires to identify, in FRED output graph, the paths
providing typing information about the analyzed entity, and to discard the rest.
Furthermore, we want to distinguish the case of an entity that is represented
as an individual e.g. Vladimir Kramnik, from the case of an entity that is
more appropriately represented as a class e.g., Chess piece. FRED output
looks differently in these two situations as well as depending on the type of
definition e.g., including a copula or parenthetic terms. For example, consider

' FRED is available online at http://wit.istc.cnr.it/stlab-tools/fred
15 wt: http: //www.ontologydesignpatterns.org/ont/wikipedia/type/

http://wit.istc.cnr.it/stlab-tools/fred
http://www.ontologydesignpatterns.org/ont/wikipedia/type/

72 A. Gangemi et al.

Table 1. Graph patterns and their associated type inferred triples for individual
entities. Order reflects priority of detection. [r] € R = {wt:speciesOf, wt:nameOf,
wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf, wt:genreOf, wt:seriesOf}); [anyP] € {x}
— R.

ID graph pattern (GP) inferred ax-
ioms
gp1 e owl:sameAs x && x domain:aliasOf y && y owl:sameAs z && z rdf:type C e rdf:type C
gp2 e rdf:type v && z owl:sameAs y && y domain:aliasOf z && w owl:sameAs z e rdf:type C
&& w rdf:type C

gps e owl:sameAs z && x [r] y && y rdf:type C e rdf:type C'
gpa e owl:sameAs x && x rdf:type C e rdf :type C
gps e dul:associatedWith x && z rdf:type C e rdf:type C

gpe (e owl:sameAs z && x anyP y && y rdf:type C) || (e anyP = && z rdf:type C) e rdf:type C

Table 2. Graph patterns and their associated type inferred triples for class entities.
[r] € R = {wt:speciesOf, wt:nameOf, wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf,
wt:genreOf, wt:seriesOf}); [anyP] € {x} — R.

ID graph pattern (GP) inferred axioms

gp7 « rdf:type e && = owl:sameAs y && y [r] z && z rdf:type C e rdfs:subClass0f C
gps « rdf:type e && = owl:sameAs y && y rdf:type C e rdfs:subClass0f C
gpo « rdf:type e && e dul:associatedWith y && y rdf:type C e rdfs:subClass0f C

gp1o (x rdf:type e && x owl:sameAs y && y [anyP] z && z rdf:type e rdfs:subClass0f C
C) || (z rdf:type e && y [anyP] = && y rdf:type C)

the entity Chess piece, which is a class entity, and is defined by “Chess pieces,
or chessmen, are the pieces deployed on a chessboard to play the game of chess.”.
FRED output graph for such definition is depicted in Figure . In this case,
the graph paths encoding typing information comply with a different pattern
from the one in Figure Bl The role of the type selector is to recognize a set of
graph patterns that allow to distinguish between an entity being a class or an
individual, and to select the concepts to include in its graph of types.

To implement the type selector, we have identified a set of graph patterns
(GP), and defined their associated heuristics by following similar criteria as
lexico-syntactic patterns [9], extended with the exploitation of RDF graph topol-
ogy and OWL semantics. Currently, we use 10 GPs: 4 of them identifying class
entities, and 6 for individual entities. Firstly, the type selector distinguishes if
an entity is either an individual or a class entity: given an entity e, it is an
individual if it participates in a graph pattern of type e owl:samels x, it is a
class if it participates in a graph pattern of type x rdf:type e. As empirically
observed, these two situations are mutually exclusive. After performing this dis-
tinction, the type selector follows a priority order for GP detection and executes
the heuristics associated with the first matching GP. Tables [l and [2 respectively
report the GP sets and their associated heuristics by following the priority order
used for detection, for individual entities and class entities.

16 For space reasons, we include only the portion of the graph of interest in this context.
Readers interested in visualizing the complete graph can submit the sentence to
FRED online http://wit.istc.cnr.it/stlab-tools/fred.

http://wit.istc.cnr.it/stlab-tools/fred

Automatic Typing of DBpedia Entities 73

wt:type_1

owl:sameAs rdf:type

wt:chess_game_1
@ wt:typeOf

rdf:type

v
wt:ChessCame
rdfs:subClassOf @

Fig. 5. FRED result for the definition “Fast chess is a type of chess game in which
each side is given less time to make their moves than under the normal tournament
time controls of 60 to 180 minutes per player”

Table 3. Normalized frequency of GPs on a sample set of ~800 randomly selected
Wikipedia entities

GP frequency (%) GP frequency (%) GP frequency (%) GP frequency (%) GP frequency (%)
gp1 0 gp2 0.15 gp3 3.98 gpa 79.34 gps O
gpe 0.31 gp7 1.11 gps 11.46 gpo 0 gpio 3.65

The rationale behind GP priority order resides in ontology design choices
as well as in the way the current implementation of the type selector works.
Sometimes, an entity definition from Wikipedia includes typing information from
a “domain-level” as well as a “meta-level” perspective. For example, from the
definitiod] “Fast chess is a type of chess game in which each side is given less
time to make their moves than under the normal tournament time controls of
60 to 180 minutes per player.” we can derive that “Fast chess” is a type (meta-
level type) as well as a chess game (domain-level type). This situation makes
FRED output include a GP detecting “type” as a type i.e., gpg, as well as a
GP detecting “chess game” as a type i.e., gp7, as depicted in Figure Bl In this
version of Tipalo our goal is to type DBpedia entities only from a domain-
level perspective. Furthermore, in its current implementation, the type selector
executes only one heuristics: that associated with the first GP that matches in
FRED output graph. Given the above rationale, gp7 is inspected before gps. The
same rationale applies to GP for individual entities, illustrated in Table [II

For the dbp:Fast chessy example, the type selector detects that the entity is
a class and the first GP detected is gp7, hence it produces the additional triples:

dbp:Fast chess rdfs:subClass0f wt:ChessGame

wt :ChessGame rdfs:subClassOf wt:Game

The execution of Tipalo pipeline on a sample set of randomly selected ~800
Wikipedia entitied'd has shown that the most frequent GPs are gps and gps,
which is not surprising, since they correspond to the most common linguistic
patterns for definitions. Table [§ reports the frequency of each GP on the sample
set.

" http://en.wikipedia. org/wiki/Fast_chess
18 dbp: http://dbpedia.org/resource/
19 Details about the definition of the sample set are given in Section

http://en.wikipedia.org/wiki/Fast_chess
http://dbpedia.org/resource/

74 A. Gangemi et al.

The type selector implements an additional heuristics: it detects if any of the
terms referring to a type in the graph can be referenceable as a DBpedia entity.
For example, the term “chess” in the definition of “Fast chess” is resolvable to
dbp:Chess. In such case, the type selector produces the following triple:

dbp:Fast chess rdfs:subClass0f dbp:Chess

This additional heuristics improves the internal linking within DBpedia, result-
ing in higher cohesion of the resource graph.

By following the defined heuristics, we are able to select the terms that refer
to the types of an entity e, and to create a namespace of Wikipedia types that
captures the variety of terms used in Wikipedia definitiong*H.

4. Word sense disambiguation engine (UKB). After having identified
the concepts expressing the types of an entity and their taxonomical relations,
we have to gather their correct sense: we need a WSD tool. A possible way to
achieve this goal is to identify alignments between the type terms and WordNet
terms. We have approached this issue by applying two alternative solutions on a
sample set of 100 entity definitions. The first approach involves UKB [I], a tool
which returns the WordNet synset for a term, looking for the one that fits best
the context given by the entity definition. UKB provids good results in terms of
precision and recall although its speed performance needs improvement in order
to apply it on a large dataset such as Wikipedia. We have plans for dealing with
this issue in the next future (cf. Secion [5I). The second solution is to select the
most frequent WordNet sense for a given term, which is very efficient in terms
of speed, but shows lower precision and recal. This step allows us to assign
a WordNet type (corresponding to the identified synset) to an entity. Referring
to the above example (i.e., definition of fast chess), we produce the following
additional triple:

wt:ChessGame owl:equivalentTo wn30syn:synset-chess-noun-2

wt:Game owl:equivalentTo wn30syn:synset-game-noun-1

5. Identifying other Semantic Web types (type matcher). So far the
typing process produces a set of newly defined concepts, and disambiguates
them to a WordNet sense. The final step consists in linking such concepts to
other Semantic Web ontologies, in order to support shared interpretation and
linked data enrichment. In order to exemplify this task with respect to the
goal of gathering top-level type, we have produced and published two RDF

20 Wikipedia class taxonomy, wt: = http://www.ontologydesignpatterns.org/ont/
wikipedia/type/

21 The current implementation of Tipalo relies on UKB for word sense disambiguation.

22 wn30syn: = http://purl. org/vocabularies/princeton/wn30/instances/

23 Any other aligned ontology, or ontology matching component can be used in order
to perform arbitrary type matching.

http://www.ontologydesignpatterns.org/ont/wikipedia/type/
http://www.ontologydesignpatterns.org/ont/wikipedia/type/
http://purl.org/vocabularies/princeton/wn30/instances/

Automatic Typing of DBpedia Entities 75

datasets (see Section B]) containing alignments between WordNet synsets and
Super Senses (broad lexico-semantic categories), and between WordNet synsets
and some foundational ontology classes. The type matcher exploits these align-
ments in order to produce additional rdf:type triples. For example, for the
entity dbp:Fast chess, the type matcher produces e.g. the following triples:

wt:ChessGame rdfs:subClass0f dO:Activity

wt:Game rdfs:subClass0f wn30:supersense-noun act

meaning that the term “chess game” associated with the WordNet sense
wn30syn:synset-chess-noun-2 (as provided by the WSD component) is aligned
to the class Activity of Dolce Zerd?d ontology. Analogously, the term “game”
with its sense wn30syn:synset-game-noun-1 is aligned to the WordNet super
sense “act”.

The described five steps compose the Tipalo automatic typing procedure,
whose output feeds incrementally a Wikipedia ontology based on the entity def-
initions provided by the crowds, hence able to reflect the richness of natural lan-
guage and with a potentially complete domain coverage. The Wikipedia ontology
is encoded in two semantic resources i.e., the Wikipedia entity types dataset and
the Wikipedia class taxonomy dataset, which are described in Section

5 Results and Evaluation

In this section we report the results of our work, and evaluate them in terms
of precision, recall and time of computation. Our final goal is to incrementally
build a Wikipedia ontology based on how users describe things, hence able to
capture the richness of NL definitions. To this aim, we have developed a web
service, called Tipalo, which, given a description of an entity, produces a RDF
named graph describing its typing information by means of DBpedia entities,
WordNet synsets and supersenses, and foundational ontology classes. Besides
the RDF resources described in Section Bl and the methods in Section H we
have developed a novel resource and two evaluation tools.

Wikipedia ontology. We have produced a demonstrating Wikipedia ontolog
by analyzing a randomly selected sample of 800 Wikipedia pages. The result-
ing Wikipedia ontology consists of two RDF datasets, one containing rdf : type
triples defining DBpedia entity types, and another containing ontology classes
related by means of rdfs:subClassOf and owl:equivalentTo axioms. The two
datasets can be queried through a SPARQL endpoint (or downloaded as dump
files) either as a whole graph or as separated named graphs, each associated with
a single entity. Each named graph has an ID starting with dbpedia followed by
a DBpedia entity local name e.g., dbpedia Vladimir Kramnik.

24 Dolce Zero, http://www.ontologydesignpatterns.org/ont/d0.owl
% Link available at the Wikipedia ontology page: http://stlab.istc.cnr.it/
stlab/WikipediaOntology/

http://www.ontologydesignpatterns.org/ont/d0.owl
http://stlab.istc.cnr.it/stlab/WikipediaOntology/
http://stlab.istc.cnr.it/stlab/WikipediaOntology/

76 A. Gangemi et al.

Reusable evaluation tools. Additionally, we have developed two tools for
evaluating our method, one for collaboratively building a golden standard, and
the other for evaluating the Wikipedia ontology (both tools are described in

Section [B)).

5.1 Evaluation

We evaluate our work considering the accuracy of types assigned to the sample
set of Wikipedia entities, and the soundness of the induced taxonomy of types
for each DBpedia entity. The accuracy of types has been measured in two ways:
(i) in terms of precision and recall against a golden standard of 100 entities, and
(ii) by performing a user study. The soundness of the induced taxonomies has
been assessed in a user study.

Building a sample set of Wikipedia pages. We have performed our ex-
periments on a sample set of ~800 randomly selected Wikipedia pages. From
the 800 set, we have removed all pages without an abstract text, e.g. redirect
pages, categories, and images. The resulting sample includes 627 pages with the
following characteristics: (i) each page has a corresponding DBpedia entity, (ii)
each DBpedia entity has a DBpedia type, a YAGO type, or no type, (iii) 67.62%
of the corresponding DBpedia entities have a YAGO type, 15.47% have a DBPO
type, and 30% of them have no type.

Building a golden standard. We have built a manually annotated golden stan-
dard of Wikipedia entity types based on the sample set used for our experiments.
To support this process we have developed a web-based tool named Wikipedi-
aGold?Y that manages argumentation among users in order to support them in dis-
cussing and reaching agreement on decisions (agreement was considered reached
with at least 70% users giving the same answer). Ten users with expertise in ontol-
ogy design (four senior researchers and six PhD students in the area of knowledge
engineering) have participated in this task, and have reached agreement on 100 en-
tities. We have used such 100 entities as a golden standard for evaluating and tun-
ing our method. The golden standard can be retrieved from the cited Wikipedia
Ontology page, and it can be useful for future development and for comparing our
work with possible other approaches to this same task.

WikipediaGold is based on a simple user task, repeated iteratively: given an
entity e e.g., dbp:Vladimir Ramnik, WikipediaGold visualizes its definition e.g.,
“Vladimir Borisovich Kramnik is a Russian chess grandmaster.” and asks users
to:

— indicate if e refers to a concept/type or to a specific instance. Users can
select either “is a” or “is a type of” as possible answers. This value allows
us to evaluate if our process is able to distinguish entities which are typical
individuals, from those that are typical classes;

26 Available online at http://wit.istc.cnr.it/WikipediaGold) demonstrating video
at http://wit.istc.cnr.it/stlab-tools/video/

http://wit.istc.cnr.it/WikipediaGold
http://wit.istc.cnr.it/stlab-tools/video/

Automatic Typing of DBpedia Entities 7

Table 4. Performance evaluation of the individual pipeline components

Component precision recall F-measure (F1)
Type selector .93 .90 .92
WSD (UKB) 86 82 84

WSD (most frequent sense) 7 .73 .75

Type matcher (Supersense) .73 .73 .73

Type matcher (DUL+/DO0) .80 .80 .80

— copy and paste the terms in the definition that identifies the types of e, or
indicate a custom one, if the definition does not contain any. In our example,
a user could copy the term “Russian chess grandmaster”. This information
is meant to allow us evaluating the performances of the type selector;

— select the most appropriate concepts for classifying e from two list of concepts.
The first list includes 21 WordNet supersenses, and the second list includes
23 classes from DULplus and Dolce Zero. Each concept is accompanied by
a describing gloss and some examples to inform the user about its intended
meaning. In the example, users can select the type “Person” available in both
lists. The two lists of concepts are available online at the Wikipedia ontology

page.

For each answer, users can optionally include a comment motivating their choice.
When there is disagreement among users about an entity, WikipediaGold sub-
mits it again to users who have already analyzed it. In these cases a user can see
other users’ choices and comments, and decide if either to keep her decision, or
to change it. In both cases, a comment motivating own decision must be entered.

Evaluation against the golden standard. Our evaluation is based on mea-
suring precision and recall of the output of the three main steps of the process,
against the golden standard: (i) type selection (step 3), (ii) word sense disam-
biguation (WSD) (step 4), and (iii) type matching (step 5). We also measure
precision and recall of the overall process output.

Table 5. Performance evaluation of the overall process

Typing process precision recall F-measure (F1)

WordNet types .76 .74 .75
Supersenses .62 .60 .61
Dul+/D0 .68 .66 .67

The results shown in Table[dlindicate the performances of the individual com-
ponents. The type selector stands out as the most reliable component (F'1 = .92),
which confirms our hypothesis that a rich formalization of definitions and a good
design of graph patterns are a healthy approach to entity typing. The WSD task

78 A. Gangemi et al.

has been performed with two approaches: we analyze its performance by execut-
ing UKB as well as a most-frequent-sense-based (MFS) approach. UKB shows
to perform better (F1 = .84) than MFS (F1 = .75), suggesting that Wikipedia
definitions often include polysemous senses, and that the used language tends
to be specialized i.e., polysemous terms are used with different senses. The type
matcher performs better with DULplus/Dolce Zero types than with WordNet
supersenses, which shows an improvement with respect to the state of the art
considering that WordNet super senses are considered an established and reliable
semantic resource when used as a top-level ontology for WordNet.

Table[Hlillustrates the performance of the overall automatic typing process. As
expected, the steps that map the extracted types to WordNet types, super senses,
and top-level ontologies tend to decrease the initial high precision and recall of
the type selector. In fact, when put into a pipeline, errors typically reinforce
previous ones, producing in this case an overall decrease of F'1 from .92 of the
type selection step to .75 of the combined type selection and WSD, to .67 with
the addition of DULplus/Dolce Zero alignment (type matcher). However, the
modularity of our process enables the reuse of results that are actually useful to
a certain project, e.g. discarding a step that performs worse.

The good performances observed in our evaluation experiments make us claim
that using Tipalo brings advantages when compared to the most prominent
existing approaches i.e., DBpedia project [I1] and YAGO [I7] to DBpedia entity
typing, for the following reasons: (i) Tipalo potentially ensures complete coverage
of Wikipedia domains (intensional coverage) as it is able to capture the reachness
of terminology in NL definitions and to reflect it in the resulting ontology, while
DBpedia and YAGO depend both on the limited intensional completeness of
infobox templates and Wikipedia categories, (ii) Tipalo is independent from the
availability of structured information such as infobox templates and Wikipedia
categories, hence ensuring higher extensional completeness as most Wikipedia
entities have a definition while many of them lack infoboxes.

A direct comparison of our results with DBpedia and YAGO approaches oc-
curred to be unfeasible in the scope of this paper because the two approaches
differ from ours on important aspects: they use different reference type systems;
they rely on Wikipedia categories or infobox templates while we rely on the
NL descriptions used for defining Wikipedia entities by the crowds, hence it
is difficult (if not impossible) to compare the derived vocabularies; finally, the
granularity of their type assignments is heterogeneous. These cases make it hard
to define criteria for performing a comparison between the accuracy of the auto-
matically assigned types. Hence, we could not consider either DBpedia or YAGO
suitable golden standards for this specific task, which motivates the construction
of a specific golden standard.

Evaluation by user study. In order to further verify our results, we have
conducted a user study. We have implemented a second Web-based tool, named
Wikipedia Type Checken?’], for supporting users in expressing their judgement on

2T Available online at http://wit.istc.cnr.it/WikipediaTypeChecker) demonstrat-
ing video at http://wit.istc.cnr.it/stlab-tools/video

http://wit.istc.cnr.it/WikipediaTypeChecker
http://wit.istc.cnr.it/stlab-tools/video

Automatic Typing of DBpedia Entities 79

the accuracy of Tipalo types assigned to the sample set of Wikipedia entities.
WikipediaTypeChecker is available online.

WikipediaTypeChecker asks users to evaluate the accuracy of Tipalo types,
the soundness of the induced taxonomies, and the correctness of the selected
meaning of types, by expressing a judgement on a three-valued scale: yes, maybe,
no. Users’ task, given an entity with its definition, consists of three evaluation
steps. Consider for example the entity dbp:Fast chess: in the first step, users
evaluate the accuracy of the assigned types by indicating the level of correct-
ness of proposed types. In this example, for the entity “Fast chess” three types
are proposed: “Chess game”, “Game”, and “Activity”; in the second step users
validate the soundness of the induced taxonomy of types for an entity. In this
example, the proposed taxonomy is wt:ChessGame rdfs:subClass0f wt:Game;
in the third step users evaluate the correctness of the meaning of individual types
(i.e. WSD). For example, the proposed meaning for “Chess game” is “a board
game for two players who move their 16 pieces according to specific rules; the
object is to checkmate the opponent’s king”. Five users with expertise in knowl-
edge engineering have participated in the user study (three PhD students and
two senior researchers). For each entity and for each evaluation step, we have
computed the average value of judgements normalized to an interval [0,1], which
gives us a value for the precision of results. The results are shown in Table [6],
with a (high) inter-rater agreement (Kendall’s W) of 79,

Table 6. Results of the user-based evaluation, values indicate precision of results.
Inter-rater agreement (Kendall’s W) is .79, Kendall’s W ranges from 0 (no agreement)
to 1 (complete agreement).

Task Type extraction Taxonomy induction WSD
Correctness .84 .96 .81

These results confirm those observed in the evaluation against a golden stan-
dard (cf. Tables [and [{). In this case, we have split the evaluation of the cor-
rectness of extracted types between assigned types (.84), and induced taxonomy
(.96): their combination is comparable to the precision value observed for the
type selector against the golden standard (.93). The performance of the WSD
task is a bit lower (.81 against .86 precision), which suggests the need for addi-
tional evaluation of WSD performance, and exploration of possible alternative
solutions.

Estimating time performance. In the scope of this work, we could only
perform a preliminary estimation of time performances, since we have run the
process on simple desktop machines. The workflow process and storage data

28 Kendall’s W is a coefficient of concordance used for assessing agreement among
raters. It ranges from 0 (no agreement) to 1 (complete agreement), and is particularly
suited in this case as it makes no assumptions regarding the nature of the probability
distribution and handles any number of distinct outcomes.

80 A. Gangemi et al.

have been executed on an Intel Pentium DualCore 2.80GHz with 1GB RAM,
while UKB and FRED run on a Quad-Core Intel Xeon 2,26 GHz RAM 32 GB
Processor Interconnect Speed: 5.86 GT/s. With this setting, the whole process
takes maximum ~11 seconds per definition (depending on its complexity). Type
selection and top-level matching are instantaneous, while there is a bottleneck
due to UKB performance: our process become extremely fast (maximum ~2
seconds per definition) if we remove UKB and disambiguate terms by selecting
synsets with the most-frequent-sense-based method (with some degradation in
precision and recall). We remark that in this implementation UKB and FRED
are used as web services and remotely invoked (one machine is in Rome and
another is in Bologna), hence suffering from delay due to network latency. We
are confident that by parallelizing the whole process on a more robust cluster, and
deploying all components and data sources locally, the speed will significantly
increasd”, which reasonably suggest the applicability of the process on a large-
scale dataset such as Wikipedia.

6 Conclusions and Future Work

We have presented Tipalo, an implemented method that formalizes entity defi-
nitions extracted from Wikipedia for automatically typing DBpedia entities and
linking them to other DBpedia resources, WordNet, and foundational ontolo-
gies. We have experimented Tipalo on a sample set of ~800 Wikipedia entities.
Results have been evaluated against a golden standard and by a user study, and
are up to the task, specially for the pure type selection task. In ongoing work,
we are deploying the tool on a more robust cluster for improving time perfor-
mances and experimenting on a large-scale resource such as the whole Wikipedia.
The medium-term goal is to incrementally build a Wikipedia ontology that re-
flects the richness of terminology expressed by natural language, crowd sourced
definitions of entities.

References

1. Agirre, E., Soroa, A.: Personalizing pagerank for word sense disambiguation. In:
Proceedings of the 12th Conference of the European chapter of the Association
for Computational Linguistics (EACL 2009), Athens, Greece. The Association for
Computer Linguistics (2009)

2. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. Springer (2006)

3. Cimiano, P., Volker, J.: Text2onto - a framework for ontology learning and data-
driven change discovery (2005)

4. Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale nlp with c&c
and boxer. In: Proceedings of the ACL 2007 Demo and Poster Sessions, Prague,
Czech Republic, pp. 33-36 (2007)

29 We have plans to perform additional tests in such an environment in the immediate
future.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Automatic Typing of DBpedia Entities 81

Etzioni, O., Fader, A., Christensen, J., Soderland, S., Mausam: Open information
extraction: The second generation. In: IJCAI, pp. 3-10. IJCAI/AAAT (2011)
Gangemi, A.: Norms and plans as unification criteria for social collectives. Au-
tonomous Agents and Multi-Agent Systems 17(1), 70-112 (2008)

Gangemi, A., Navigli, R., Velardi, P.: The OntoWordNet Project: Extension and
Axiomatization of Conceptual Relations in WordNet. In: Meersman, R., Schmidt,
D.C. (eds.) CoopIS/DOA/ODBASE 2003. LNCS, vol. 2888, pp. 820-838. Springer,
Heidelberg (2003)

Hartmann, S., Szarvas, G., Gurevych, I.: Mining multiword terms from wikipedia.
In: Pazienza, M.T., Stellato, A. (eds.) Semi-Automatic Ontology Development:
Processes and Resources, pp. 226-258. IGI Global, Hershey (2012)

Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
COLING, pp. 539-545 (1992)

Kalyanpur, A., Murdock, J.W., Fan, J., Welty, C.: Leveraging Community-Built
Knowledge for Type Coercion in Question Answering. In: Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC
2011, Part II. LNCS, vol. 7032, pp. 144-156. Springer, Heidelberg (2011)
Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - A Crystallization Point for the Web of Data. Journal of Web
Semantics 7(3), 154-165 (2009)

Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2)
2009

l(\Tavig)li, R., Ponzetto, S.P.: BabelNet: Building a very large multilingual seman-
tic network. In: Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, Uppsala, Sweden, July 11-16, pp. 216-225 (2010)
Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic Knowl-
edge Patterns from Wikipedia Links. In: Aroyo, L., Welty, C., Alani, H., Taylor, J.,
Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS,
vol. 7031, pp. 520-536. Springer, Heidelberg (2011)

Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Type inference through
the analysis of wikipedia links. In: WWW 2012 Workshop on Linked Data on the
Web (LDOW 2012). CEUR (2012)

Presutti, V., Draicchio, F., Gangemi, A.: Knowledge Extraction Based on Dis-
course Representation Theory and Linguistic Frames. In: ten Teije, A., Volker, J.,
Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles,
N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 114-129. Springer,
Heidelberg (2012)

Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: 16th International World Wide Web Conference (WWW 2007). ACM Press,
New York (2007)

Tanev, H., Magnini, B.: Weakly supervised approaches for ontology population. In:
Proceedings of the 2008 Conference on Ontology Learning and Population: Bridg-
ing the Gap between Text and Knowledge, pp. 129-143. 10S Press, Amsterdam
(2008)

Vélker, J., Rudolph, S.: Lexico-logical acquisition of owl dl axioms — an integrated
approach to ontology refinement (2008)

Witte, R., Khamis, N., Rilling, J.: Flexible ontology population from text: The
owlexporter. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J.,
Piperidis, S., Rosner, M., Tapias, D. (eds.) LREC. European Language Resources
Association (2010)

	Automatic Typing of DBpedia Entities
	Introduction
	Related Work
	Data Sources
	The Automatic Typing Procedure
	Results and Evaluation
	Evaluation

	Conclusions and Future Work
	References

