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Preface

The Semantic Web has come a long way. What started as a vision of a
machine-readable Web over ten years ago now consists of a vibrant community
of researchers, practitioners, enthusiast, companies, and, finally, users. Topics
that were once cutting-edge research have now arrived in the mainstream and
have even become part of political agendas. The sharing of public information
in the form of linked data has become a major argument for the transparency
of administrations, and institutions around the globe are putting their data on-
line. Companies from various sectors such as the BBC, Google, IBM, or The
New York Times release products that are based on Semantic Web technologies.
Against all prophecies of failure, the Semantic Web is flourishing.

The International Semantic Web Conference is the premier forum for Seman-
tic Web research, where cutting-edge scientific results and technological innova-
tions are presented, where problems and solutions are discussed, and where the
future of this vision is being developed. It brings together specialists in fields
such as artificial intelligence, databases, social networks, distributed comput-
ing, Web engineering, information systems, human–computer interaction, natu-
ral language processing, and the social sciences for tutorials, workshops, presen-
tations, keynotes, and sufficient time to have detailed discussions.

This volume contains the main proceedings of the 11th International Seman-
tic Web Conference (ISWC 2012), which was held in Boston, USA, in November
2012. Even though the economic times are anything but easy we received tremen-
dous response to our calls for papers from a truly international community of
both researchers and practitioners. Every paper was thoroughly evaluated follow-
ing practices appropriate for its track and its evaluation measure. The breadth
and scope of the papers finally selected for inclusion in this volume speak to the
quality of the conference and to the contributions made by researchers whose
work is presented in these proceedings. As such, we were all honored and proud
that we were invited to serve the community in the stewardship of this edition
of ISWC.

The Research Track of the conference attracted 186 submissions, 41 of which
were accepted, resulting in a 22% acceptance rate. Each paper received at least
three, and sometimes as many as five, reviews from members of the Program
Committee. After the first round of reviews, authors had the opportunity to
submit a rebuttal, leading to further discussions among the reviewers, a meta-
review and a recommendation from a member of the Senior Program Committee
(SPC). The SPC held a 10-hour virtual meeting in order to select the final set
of accepted papers, paying special attention to papers that were borderline or
had at least one recommendation for acceptance. In many cases, additional last-
minute reviews were sought out to better inform the SPC’s decision.
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As the Semantic Web develops, we find a changing variety of subjects that
emerge. This year the keywords of accepted papers were distributed as fol-
lows (frequency in parentheses): knowledge representation and reasoning (13),
querying the Semantic Web and database technologies (10), ontology engineering
(7), machine learning and information extraction (7), data mining and analysis
(6), ontology mapping (6), linked data (5), languages, tools and methodologies
(4), interacting with Semantic Web data (4), instance mapping (4), evaluation
(4), social and emergent semantics (4), cleaning, assurance, and provenance (4),
search and information retrieval (3), federated/distributed systems (3), scalable
systems (3), Semantic Web services (3), exploiting the social Web (3), knowledge
acquisition (2), natural language processing (2), query languages (2), uncertainty
(2), modeling users and contexts (2), semantic streams and sensors (2), ontol-
ogy learning (1), user interfaces (1), mashing up data and processes (1), trust,
privacy and security (1), and personalized access (1).

This edition of the International Semantic Web Conference marks the intro-
duction of the Evaluations and Experiments Track. The goal of this track is to
consolidate research material and to gain new scientific insights and results by
providing a place for in-depth experimental studies of significant scale. It aims
at promoting experimental evaluations in Semantic Web/Linked Data domains
where availability of experimental datasets and reproducibility of experiments
are highly important.

The Evaluations and Experiments track received 35 submissions from all ar-
eas of the Semantic Web: including reasoning, querying, searching, matching,
and annotating. Papers were of two main categories, namely, evaluation (com-
paring several approaches to a problem) and corpus analysis. To our surprise,
testing a hypothesis through an experiment was not explicitly considered. We
also received very few papers aiming at reproducing existing experiments. Eight
papers were accepted, corresponding to a 23% acceptance rate. Each paper was
reviewed by at least three members of the Program Committee paying special at-
tention to the reproducibility criteria. In spite of the limited number of accepted
papers, they address a large range of areas, such as linked stream data, feder-
ated query processing, tag recommendation, entity summarization, and OWL
reasoning.

The Semantic Web In-Use Track received 77 submissions. At least three mem-
bers of the In-Use Program Committee provided reviews for each paper. Seven-
teen papers were accepted – a 22% acceptance rate. The large number of submis-
sions this year demonstrated the increasingly diverse breadth of applications of
Semantic Web technologies in practice. The papers demonstrated how semantic
technologies are applied in a variety of domains, including eGovernment, smart
cities, biomedicine, or question answering. Several papers dealt with applying
reasoning for a variety of use cases, while others dealt with streaming data and
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processing complex events. A number of infrastructure papers contributed to the
state of art for Linked Open Data and for querying large data sets. Very exciting
application papers demonstrated how semantic technologies are applied in di-
verse ways, starting from using linked data in mobile environments to employing
full-fledged artificial intelligence methods in real-time use cases.

The Doctoral Consortium is a key event at the ISWC conference. PhD stu-
dents in the Semantic Web field get an opportunity to present their thesis pro-
posals and to interact with leading academic and industrial scientists in the
field, who act as their mentors. Out of 21 submissions to the Doctoral Consor-
tium, six were accepted as for presentation at the conference. For discussion at
the special Consortium-only session on 12 November, nine additional proposals
were selected. The Doctoral Consortium day is organized as a highly interactive
event, in which students present their proposals and receive extensive feedback
and comments from the mentors as well as from their peers.

A unique aspect of the ISWC conference is the Semantic Web Challenge, now
in its 10th year, with the goal of demonstrating practical progress toward achiev-
ing the vision of the Semantic Web. Organized this year by Diana Maynard and
Andreas Harth, the competition enables practitioners and scientists to showcase
leading-edge real-world applications of Semantic Web technology.

The keynote talks given by leading scientists or practitioners in their field
further enriched the ISWC program. Thomas W. Malone, the director of the
Center for Collective Intelligence at the Massachusetts Institute of Technology,
discussed the phenomenon of collective intelligence and how it interrelates with
the Semantic Web. Jeanne Holm, an evangelist for data.gov, discussed the chang-
ing global landscape of data sharing and the role the Semantic Web is playing in
it. Mark Musen, a professor of medicine of the Stanford Center for Biomedical
Informatics Research, discussed how the fundamental challenges of AI are still
with us and await embracing to fulfill the vision of the Semantic Web. And last
but not least, Nigel Shadbolt, Deputy Head of the School of Electronics and
Computer Science at the University of Southampton, gave a lively dinner talk.

As in previous ISWC editions, the conference included an extensive Tuto-
rial and Workshop program. Claudia d’Amato and Thomas Scharrenbach, the
Chairs of this track, selected a stellar and diverse collection of 9 tutorials and
18 workshops, where the only problem that the participants faced was which of
the many exciting workshops to attend. Workshops and tutorials were chosen on
the ground of two different but complementary criteria: maintaining the history
of the most promising, challenging, and highly attended workshops such as the
Ontology Matching Workshop, the Consuming Linked Data Workshop, the On-
tology Patterns Workshop, or the Uncertainty Reasoning for the Semantic Web
Workshop and highlighting the attention on new, challenging, and visionary re-
search trends as testified by the Programming the Semantic Web Workshop,
the Semantic Sensor Network Workshop, the Web of Linked Entities Workshop,
the Semantic Technologies Applied to Biomedical Informatics and Individualized
Medicine Workshop, the Web of Data for E-Commerce Tutorial, the Machine
Learning for Linked Data Tutorial, the Linked Data for Development Tutorial, or
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the Financial Information Management using the Semantic Web Tutorial. Also,
particular attention was dedicated to the heterogeneity and scalability issues
and related aspects, which explains the choice of the Workshop on Large and
Heterogeneous Data and Quantitative Formalization in the Semantic Web, the
Tutorial on RDF Query Processing in the Cloud, and the Tutorial on Scalable
Semantic Processing of Hudge, Distributed Real-Time Streams.

We would like to thank Birte Glimm and David Huynh for organizing a lively
Poster and Demo Session. As in 2011, the Posters and Demos were introduced
in a Minute Madness Session, where every presenter got 60 seconds to provide
a teaser for their poster or demo.

Ivan Herman, Tom Heath, and Tim Berners-Lee coordinated a top-flight
Industry Track where end-users of Semantic Web and Linked Data technologies
shared their “warts and all” experiences with the research community. The track
attracted presentations from enterprises of all scales, from startups through to
software, hardware, and retail giants such as Oracle, Cray, Cisco, EMC, and
BestBuy.

We are indebted to Eva Blomqvist, our Proceedings Chair, who provided
invaluable support in compiling the volume that you now hold in your hands
(or see on your screen) and exhibited superhuman patience in allowing the other
Chairs to stretch deadlines to the absolute limits. Many thanks to Jen Golbeck,
the Fellowship Chair, for securing and managing the distribution of student
travel grants and thus helping students who might not have otherwise attended
the conference to come to Boston. Peter Mika and David Wood were tireless in
their work as Sponsorship Chairs, knocking on every conceivable virtual “door”
and ensuring an unprecedented level of sponsorship this year. We are especially
grateful to all the sponsors for their generosity.

As has been the case in the past, ISWC 2012 also contributed to the linked
data cloud by providing semantically annotated data about many aspects of
the conference. This contribution would not have been possible without the ef-
forts of Li Ding our Metadata Chair. Oshani Seneviratne, our Publicity Chair,
was tirelessly twittering and sending old-fashioned (and highly appreciated) an-
nouncements on the mailing lists, creating far more lively “buzz” than ISWC
ever had.

Our very special thanks go to the Local Organization Team, led by Lalana
Kagal. She did an outstanding job of handling local arrangements, thinking of
every potential complication way before it arose, often doing things when mem-
bers of the Organizing Committee were only beginning to think about asking
for them. We managed to juggle so many balls, that some of us were dizzy
just looking at it. Special thanks go to the staff of MIT conference services –
Cathi Di Iulio Levine, Nicole Silva, Lynne Alyson Lenker, and Eva Cabone –
for their enormous resourcefulness, foresight, and anticipation of the conference
needs and requirements. Also many thanks for the designers at the University
of Zurich Multimedia and e-Learning Services, who provided all the design work
often going beyond the call of any duty.
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Finally, we would like to thank all members of the ISWC Organizing
Committee not only for handling their tracks superbly, but also for their wider
contribution to the collaborative decision-making process in organizing the
conference.

September 2012 Philippe Cudré-Mauroux
Jeff Heflin

Program Committee Co-chairs
Research Track

Manfred Hauswirth
Josie Xavier Perreira
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Driving Innovation with Open Data

and Interoperability

(Keynote Talk)

Jeanne Holm

Data.gov, U.S. General Services Administration
jeanne.m.holm@jpl.nasa.gov

Abstract

Data.gov, a flagship open government project from the US government, opens
and shares data to improve government efficiency and drive innovation. Sharing
such data allows us to make rich comparisons that could never be made before
and helps us to better understand the data and support decision making. The
adoption of open linked data, vocabularies and ontologies, the work of the W3C,
and semantic technologies is helping to drive Data.gov and US data forward.
This session will help us to better understand the changing global landscape of
data sharing and the role the semantic web is playing in it.

This session highlights specific data sharing examples of solving mission prob-
lems from NASA, the White House, and many other governments agencies and
citizen innovators.



The Semantic Web and Collective Intelligence

(Keynote Talk)

Thomas Malone

MIT Sloan School of Management, Cambridge, MA
malone@mit.edu

Abstract

The original vision of the Semantic Web was to encode semantic content on
the web in a form with which machines can reason. But in the last few years,
we’ve seen many new Internet-based applications (such as Wikipedia, Linux, and
prediction markets) where the key reasoning is done, not by machines, but by
large groups of people.

This talk will show how a relatively small set of design patterns can help
understand a wide variety of these examples. Each design pattern is useful in
different conditions, and the patterns can be combined in different ways to create
different kinds of collective intelligence. Building on this foundation, the talk
will consider how the Semantic Web might contribute to–and benefit from–these
more human-intensive forms of collective intelligence.



Tackling Climate Change: Unfinished Business

from the Last “Winter”

(Keynote Talk)

Mark A. Musen

Stanford Center for Biomedical Informatics Research, Stanford University
musen@stanford.edu

Abstract

In the 1990s, as the World Wide Web became not only world wide but also dense
and ubiquitous, workers in the artificial intelligence community were drawn to
the possibility that the Web could provide the foundation for a new kind of AI.
Having survived the AI Winter of the 1980s, the opportunities that they saw
in the largest, most interconnected computing platform imaginable were obvi-
ously compelling. With the subsequent success of the Semantic Web, however,
our community seems to have stopped talking about many of the issues that re-
searchers believe led to the AI Winter in the first place: the cognitive challenges
in debugging and maintaining complex systems, the drift in the meanings as-
cribed to symbols, the situated nature of knowledge, the fundamental difficulty
of creating robust models. These challenges are still with us; we cannot wish
them away with appeals to the open-world assumption or to the law of large
numbers. Embracing these challenges will allow us to expand the scope of our
science and our practice, and will help to bring us closer to the ultimate vision
of the Semantic Web.
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Freddy Lécué, Anika Schumann, and Marco Luca Sbodio

deqa: Deep Web Extraction for Question Answering . . . . . . . . . . . . . . . . . 131
Jens Lehmann, Tim Furche, Giovanni Grasso,
Axel-Cyrille Ngonga Ngomo, Christian Schallhart, Andrew Sellers,
Christina Unger, Lorenz Bühmann, Daniel Gerber, Konrad Höffner,
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MORe: Modular Combination of OWL

Reasoners for Ontology Classification

Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford

Abstract. Classification is a fundamental reasoning task in ontology
design, and there is currently a wide range of reasoners highly optimised
for classification of OWL 2 ontologies. There are also several reasoners
that are complete for restricted fragments of OWL 2 , such as the OWL
2 EL profile. These reasoners are much more efficient than fully-fledged
OWL 2 reasoners, but they are not complete for ontologies containing
(even if just a few) axioms outside the relevant fragment. In this paper,
we propose a novel classification technique that combines an OWL 2
reasoner and an efficient reasoner for a given fragment in such a way that
the bulk of the workload is assigned to the latter. Reasoners are combined
in a black-box modular manner, and the specifics of their implementation
(and even of their reasoning technique) are irrelevant to our approach.

1 Introduction

Classification—the problem of identifying the subsumption relationships be-
tween all pairs of classes in the input ontology—is a fundamental reasoning
task in ontology design. For expressive ontology languages, however, the decision
problems associated with classification have a very high worst-case complexity;
in particular, subsumption with respect to an OWL 2 ontology is known to be
a 2Nexptime-complete problem [15,6].

In spite of these discouraging complexity results, highly optimised reasoners
such as Pellet [21], FaCT++ [22], RacerPro [10] and HermiT [8] are able to
classify many ontologies used in applications. The optimisations employed by
these reasoners aim not only to improve performance on individual subsump-
tion tests, but also to reduce the number of tests performed when classifying a
given ontology—most OWL 2 reasoners use variants of the well-known Enhanced
Traversal Algorithm to incrementally construct a compact representation of the
subsumption relation, along with the told subsumptions optimisation, which pro-
vides an inexpensive way of identifying “obvious” subsumption relationships that
hold in the input ontology [2,11]. Identifying obvious non-subsumptions is also
important, as most possible subsumption relationships do not hold, and has been
addressed by optimisations such as completely defined concepts, which identifies a
fragment of the ontology for which told subsumptions provide complete informa-
tion, model-merging, and other related techniques that exploit the computations
performed during individual class satisfiability tests [23,11,9,8].

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 1–16, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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However, notwithstanding extensive and ongoing research into optimisation
techniques, the classification of large ontologies—such as the SNOMED medi-
cal ontology—can still require a very large number of subsumption tests, and
even if no individual test is very costly, the total amount of time required for
classification can still be large. This (and other performance issues) has moti-
vated a growing interest in so-called lightweight description logics : weaker logics
that enjoy favourable computational properties. OWL 2 includes several profiles
(language fragments) based on such lightweight DLs, including OWL 2 EL, a
profile based on the EL++ DL for which most standard reasoning tasks can be
performed in polynomial time [19]. Very efficient profile-specific reasoners have
been developed for OWL 2 EL, including CEL [3] and ELK [16], which can
classify ontologies as large as SNOMED in just a few seconds.

Unfortunately, a reasoner for profile L (an L-reasoner) is only able to (com-
pletely) classify ontologies in the L profile (L-ontologies), and restricting the
ontology to a given profile may be undesirable or even infeasible in practice,
with many existing ontologies falling outside all of the tractable profiles of OWL
2. In many cases, however, such ontologies contain only a relatively small number
of axioms that are outside one of the tractable fragments. For example, of the
219,224 axioms in the latest version of the National Cancer Institute Ontology
(NCI), only 65 are outside the OWL 2 EL profile. Using a suitable L-reasoner
to efficiently classify most classes (i.e., to find all their subsumers) in the sig-
nature (or vocabulary) of a given ontology might, therefore, lead to significant
improvements in performance. Unfortunately, using an L-reasoner in this way is
far from simple, as even a single axiom that is outside L could affect every class
in the ontology.

In this paper, we propose a novel technique where an efficient L-reasoner and
a fully fledged OWL 2 reasoner are combined in a modular way to classify an
OWL 2 ontology. More precisely, given an OWL 2 ontology O, and a fragment
L of OWL 2 , our classification algorithm proceeds as follows:

1. It computes a signature ΣL ⊆ Sig(O) and an L-ontologyML ⊆ O such that
the classes in ΣL can be completely classified using only the axioms in ML.

2. It computes an ontology ML ⊆ O such that the classes in O \ ΣL can be

fully classified using only the axioms in ML.

3. It classifies ML using a fully-fledged OWL 2 reasoner and then completes
the classification of O by classifying ML using an L-reasoner.

Step 1 involves two important technical challenges. First, ΣL should be as large
as possible; in particular, for ontologies with only a few non L-axioms, it is
reasonable to expect ΣL to contain most of the ontology’s signature. Second,
ML must be complete for ΣL; i.e., if a subsumption relationship between two
classes in ΣL is entailed by O, then it must also be entailed by ML. Although
techniques such as the completely defined concepts optimisation can be used to
identify a fragment of the ontology that is complete for a certain signature, these
techniques are very restricted—they are not applicable to all OWL 2 ontologies,
and even when they are applicable they use a fixed fragment of OWL 2 that
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is much smaller than the OWL 2 EL profile. In contrast, we exploit module
extraction [5,4] to develop a technique that provides the following compelling
features:

– It is general and flexible, as it is neither tied to any particular fragment or
profile L of OWL 2, nor to any particular reasoner or reasoning technique.

– It is easy to implement, as reasoners are combined in a black-box manner,
with no modification of their internals being required.

– It exhibits “pay-as-you-go” behaviour when an L-ontology is extended with
axioms outside L: on the one hand, the use of an L-reasoner is not precluded
by the extension; on the other hand, performance degrades gracefully with
the number of additional non L-axioms.

We believe that our results are interesting from both a theoretical and a practical
point of view. From a theoretical point of view, we show that given an OWL
2 ontology O that is not captured by any known tractable fragment of OWL
2, it is often possible to identify a large subset Σ of its signature such that all
subsumers of classes in Σ w.r.t. O can be computed using a polynomial time
classification algorithm. From a practical point of view, our experiments with a
prototype implementationMORe,1 which integrates the OWL 2 reasoner HermiT
and the OWL 2 EL reasoner ELK, illustrate the potential of this approach for
optimising classification and providing a modular reasoning system with robust
pay-as-you-go performance.

2 Preliminaries

We assume basic familiarity with the W3C standard OWL 2 [6] and its EL profile
[19]. When talking about ontologies and axioms we implicitly refer to OWL 2
ontologies and axioms, and when talking about OWL 2 we implicitly refer to
OWL 2 under the direct semantics [20].

For compactness reasons, we adopt description logic notation rather than
OWL syntax in examples and definitions; hence we also assume basic familiarity
with the syntax and semantics of the DLs SROIQ [12] and EL++ [1], which
provide the logical underpinning for OWL 2 and OWL 2 EL, respectively.

We consider the standard notions of signature (or vocabulary), interpretations
and models, entailment, satisfiability, and class subsumption. We denote with
Sig(O) (respectively, Sig(α)) the signature of an ontology O (respectively, of an
axiom α), and use the greek letters Σ and Γ to denote signatures. We denote
with L a generic fragment of OWL 2—either one of its profiles or any other
possible fragment for which we may have an efficient reasoner. Finally, given an
OWL 2 ontology O, we denote with OL the set of L-axioms in O.

2.1 Module Extraction

Intuitively, a module M for an ontology O w.r.t. a signature Σ is an ontology
M⊆ O such that M and O entail the same axioms over Σ [5].

1 Modular OWL Reasoner.
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BursitisOrCellulitisOfKnee
��������������������

≡
�
BursitisOfKnee � CellulitisOfKnee
��������������������������

(1)

BursitisOfKnee ≡ Bursitis � ∃hasLocation.Knee (2)

BursitisOfJoint ≡ Bursitis � ∃hasLocation.Joint (3)

Bursitis � Swelling (4)

Cellulitis � Swelling � ∃hasOrigin.Infection (5)

InfectiousDisease ≡ ∃hasOrigin.Infection (6)

∃hasOrigin.� � Disease (7)

Knee � Joint (8)

Fig. 1. The example ontology Oex. Its only non OWL 2 EL axiom is underlined

This intuition is typically formalised using the notions of deductive and model-
based conservative extensions [17,5]. In this paper, we define modules in terms
of the model-based notion of conservative extension.

Definition 1 (Model Conservative Extension). Let O be an ontology and
let Σ ⊆ Sig(O). We say that O is a model conservative extension of M ⊆ O
w.r.t. Σ if, for every model I = (ΔI , ·I) ofM, there exists a model J = (ΔJ , ·J )
of O such that ΔI = ΔJ and XI = XJ for every symbol X ∈ Σ.

That is, O is a model conservative extension ofM for Σ if every model ofM can
be extended to a model of O without changing either the interpretation domain,
or the interpretation of the symbols in Σ.

Definition 2 (Module). Let O be an ontology and let Σ be a signature. We say
that M ⊆ O is a module for O w.r.t. Σ if O is a model conservative extension
of M w.r.t. Σ.

In particular, if M is a module for O w.r.t. Σ, then the following condition
holds: for each axiom α with Sig(α) ⊆ Σ, we have M |= α iff O |= α.

Example 1. Consider the ontology Oex, given in Figure 1, which we will use as a
running example. Consider also the fragmentOex

1 = {(1), (2), (3), (4), (8)} ofOex.
Let I be an arbitrary model of Oex

1 . We can obtain a model of Oex by interpreting
all symbols in Sig(Oex

1 ) in the same way as I, and all symbols outside Sig(Oex
1 )

as the empty set. Thus, Oex is a model conservative extension of Oex
1 , and Oex

1

is a module for Oex w.r.t. Sig(Oex
1 ). As a result, Oex and Oex

1 entail exactly the
same axioms constructed using only symbols from Sig(Oex

1 ). ♦

The problem of checking whether M is a module for O w.r.t. Σ is, however,
already undecidable for fairly lightweight fragments of OWL 2, such as the OWL
2 EL profile [18]; therefore, approximations are needed in practice. The following
sufficient condition for model conservativity is known to work well [5,7].



MORe: Modular Combination of OWL Reasoners for Ontology Classification 5

Definition 3 (∅-locality). Let Σ be a signature. An interpretation I is ∅-local
for Σ if for every class A �∈ Σ and every property R �∈ Σ, we have AI = RI = ∅.
An axiom α is ∅-local for Σ if I |= α for each I that is ∅-local for Σ. An ontology
O is ∅-local for Σ if every axiom in O is ∅-local for Σ.

Example 2. It is easy to check that the ontology Oex \Oex
1 , consisting of axioms

(5), (6) and (7), is ∅-local w.r.t. Sig(Oex
1 ). For example, to see that axiom (5)

is indeed ∅-local w.r.t. Sig(Oex
1 ), consider any I that interprets all symbols in

(5) other than those in Sig(Oex
1 ) as the empty set. Thus, we have CellulitisI =

hasOriginI = InfectionI = ∅. Clearly, both left and right hand sides of axiom (5)
are interpreted as the empty set by I (see below) and hence I satisfies (5).

∅︷ ︸︸ ︷
Cellulitis � Swelling � ∃

∅︷ ︸︸ ︷
hasOrigin .

∅︷ ︸︸ ︷
Infection︸ ︷︷ ︸

∅ ♦

Checking ∅-locality for OWL 2 axioms is, however, a Pspace-complete problem
[5]. Since our goal is to optimise classification, checking ∅-locality might still
be too costly. Instead, we will use ⊥-locality—a well-known sufficient syntactic
condition for ∅-locality which has been successfully used for both ontology reuse
and reasoning problems [5,14,7,4].

The grammar defining ⊥-locality for SROIQ can be found in the literature
[4,5]. It suffices to note that ⊥-locality can be checked in polynomial time and
that it implies ∅-locality. Furthermore, the following property holds [4,5]:

Proposition 1. If an axiom α is ⊥-local w.r.t. a signature Σ, then α is ⊥-local
w.r.t. Σ′ for any Σ′ ⊆ Σ.

We use ⊥-locality to define the notion of ⊥-module. The fact that ⊥-locality
implies ∅-locality ensures that, if M is a ⊥-module for O w.r.t. Σ (as defined
next), then it is a module for O w.r.t. Σ.

Definition 4 (⊥-module). Let O be an ontology and let Σ be a signature. We
say thatM⊆ O is a ⊥-module for O w.r.t. Σ if O\M is ⊥-local for Σ∪Sig(M).

Example 3. It was pointed out in Example 2 that Oex \ Oex
1 is ∅-local w.r.t.

Sig(Oex
1 ). In particular, Oex \ Oex

1 is also ⊥-local w.r.t Sig(Oex
1 ), and therefore

Oex
1 is a ⊥-module for Oex w.r.t Sig(Oex

1 ). ♦

The algorithm for ⊥-module extraction [7] is given in Algorithm 1. This algo-
rithm computes the unique smallest ⊥-module for a given O and Σ (the smallest
subsetM⊆ O s.t. O\M is ⊥-local for Σ∪Sig(M)). We refer to such a smallest
⊥-module as the ⊥-module for O w.r.t. Σ, and denote it with M[O,Σ].

Example 4. Suppose that we want to extract a ⊥-module for O w.r.t. Γ , with

Γ = {Knee,Bursitis, hasLocation}

It can be observed in Algorithm 1 that new symbols added to the module’s
signature in some iteration may cause more axioms to be added to the module
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Algorithm 1. ⊥-module(O, Σ)

Input: an ontology O and a signature Σ

1: M := ∅; O′ := O
2: repeat
3: changed := false
4: for all α ∈ O′ do
5: if α not ⊥-local w.r.t Σ ∪ Sig(M) then
6: M :=M∪ {α}; O′ := O′ \ {α}
7: changed := true
8: until changed = false
9: return M

in subsequent iterations. The algorithm stops once a fixpoint is reached and no
more symbols need to be added to the module’s signature.

On the first iteration, we would only add axioms (2), (4) and (8) to our
module. Then, due to having added Joint and BursitisOfKnee to the module’s
signature, we would have to add axioms (1) and (3) as well. We would thus find
that M[Oex,Γ ] coincides with Oex

1 and its signature is precisely Sig(Oex
1 ). ♦

In addition to being modules as in Definition 2, ⊥-modules enjoy a property that
makes them especially well-suited for optimising classification [4].

Proposition 2. Let O be an ontology, let A,B be classes in Sig(O) ∪ {�,⊥},
let Σ ⊆ Sig(O) with A ∈ Σ, and let M⊆ O be a ⊥-module in O w.r.t. Σ. Then
O |= A � B iff M |= A � B.

Example 5. Proposition 2 implies that O �|= Bursitis � Cellulitis. Indeed, we have
that Bursitis ∈ Γ but Cellulitis /∈ Sig(M[O,Γ ]); therefore, it must be the case that
M[O,Γ ] �|= Bursitis � Cellulitis, and thus O �|= Bursitis � Cellulitis. ♦

3 Modular Classification of Ontologies

Consider an ontology O such that most of the axioms in it are expressed in some
restricted fragment L of OWL 2. This is the case, considering L = OWL 2 EL,
for our example ontology Oex, whose L-fragment Oex

L contains all the axioms in
Oex except axiom (1).

Our first goal is to identify a signature ΣL ⊆ Sig(O) such that the corre-
sponding ⊥-module M[O,ΣL] is contained in the L-fragment OL of O. We call

any such ΣL an L-signature for O. Proposition 2 ensures that an L-reasoner
can then be used to determine all the subsumers of classes in ΣL. Section 3.1
addresses the problem of identifying as large an L-signature as possible.

Once an L-signature ΣL has been identified, the use of a fully-fledged OWL
2 reasoner can be restricted to computing the subsumers of the classes in the
complementary signatureΣL = Sig(O)\ΣL. The details of how our classification
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algorithm combines the use of both an L-reasoner and an OWL 2 reasoner as
black boxes are given in Section 3.2.

3.1 Computing an L-signature

The definition of ⊥-module suggests a simple “guess and check” algorithm for
computing a (maximal) L-signature for O: consider all subsets Σ ⊆ Sig(O)
in decreasing size order and, for each of them, check whether M[O,Σ] is an L-
ontology. This could, however, be quite costly, and as our objective is to optimise
classification we propose a goal directed algorithm. Although our algorithm is
not guaranteed to compute a maximal L-signature, it can be implemented very
efficiently; furthermore, as shown in the evaluation section, it typically computes
large L-signatures, provided that OL is a large enough fragment of O.

We start by pointing out that every L-signature ΣL must satisfy the property
(�) below. If (�) does not hold, then M[O,ΣL] will contain some non L-axiom.

Property (�): O \ OL is ⊥-local w.r.t. ΣL

Example 6. Consider again our example ontology Oex and let L be OWL 2 EL.
As already mentioned, the L-fragment Oex

L of Oex contains all axioms in Oex

except for (1). One may think that the signature of Oex
L is an L-signature, which

makes the computation of a maximal L-signature trivial; this is, however, not
the case. Note that the signature of Oex

L , namely

Sig(Oex
L ) = Sig(Oex) \ {BursitisOrCellulitisOfKnee,CellulitisOfKnee}

is not an L-signature for Oex; indeed, axiom (1) is not ⊥-local w.r.t Sig(Oex
L ). In

contrast, we have that axiom (1) is ⊥-local w.r.t.

Γ ′ = {Bursitis, hasLocation, Joint,BursitisOfJoint, Swelling, Infection,
InfectiousDisease,Disease, hasOrigin}

Furthermore,M[Oex,Γ ′] consists of axioms (3), (4) (5) (6) (7), which are all within
the OWL 2 EL fragment; hence, Γ ′ is an L-signature for Oex. ♦

Although Example 6 might suggest that property (�) is also a sufficient condition
for ΣL to be an L-signature in O, this is unfortunately not the case.

Example 7. Consider again the signature Γ from Example 4. Clearly, axiom (1)
(the only non L-axiom in Oex) is ⊥-local w.r.t Γ and hence (�) holds for Γ .
Note, however, that Γ is not an L-signature for Oex since, as already discussed,
axiom (1) is contained inM[Oex,Γ ]. One way to address this problem is to reduce
Γ to Γ \ {Knee}. The corresponding ⊥-module only contains axiom (4), which
implies that such reduced signature is indeed an L-signature for Oex. ♦

Example 7 suggests an algorithm for computing an L-signature for O, which can
be intuitively described as follows.
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1. Reduce Σ0 = Sig(O) to a subset Σ1 of Σ0 such that S0 = O \OL is ⊥-local
w.r.t. Σ1 (thus satisfying (�)).

2. Compute the set S1 of axioms in M[O,Σ1] containing symbols not in Σ1.
3. Reduce Σ1 to a subset Σ2 of Σ1 such that S1 is ⊥-local w.r.t. Σ2.
4. Repeat Steps [2-4] until the set of axioms computed in Step 2 is empty.

The sequence (Σi)i≥0 will eventually converge to a fixpoint (as we will shortly
prove), and this fixpoint will be guaranteed to be an L-signature, ΣL. We next
explain the intuition behind our algorithm with an example.

Example 8. Consider once more our example ontology Oex. As already men-
tioned, the only non OWL 2 EL axiom is (1), so we start with

Σ0 = Sig(Oex)

S0 = {BursitisOrCellulitisOfKnee ≡ BursitisOfKnee � CellulitisOfKnee}

The only way to make axiom (1)⊥-local is by removingBursitisOrCellulitisOfKnee,
BursitisOfKnee and CellulitisOfKnee from Σ0. So we take

Σ1 = Σ0 \ {BursitisOrCellulitisOfKnee,BursitisOfKnee,CellulitisOfKnee}

Next, we computeM[Oex,Σ1] using Algorithm 1. This module contains axiom (2),
which mentions BursitisOfKnee (not in Σ1). Because this class is in the module’s
signature, the module needs to contain axiom (1) as well. This gives us

S1 = {BursitisOrCellulitisOfKnee ≡ BursitisOfKnee � CellulitisOfKnee,

BursitisOfKnee ≡ Bursitis � ∃hasLocation.Knee}

We have seen that, unless axiom (2) in S1 is outside the module, axiom (1)
cannot be outside the module either. Thus, we need to make sure that axiom
(2) is ⊥-local. For this, we can take Σ2 = Σ1 \ {Knee}.

At this point, we need not worry about axiom (1) anymore; it was already
local w.r.t. Σ1, so, by Proposition 1, it will be ⊥-local w.r.t. any subset of Σ1.

Next, we computeM[Oex,Σ2] and find that it contains all axioms in Oex except
for axioms (1), (2) and (8). This implies that all symbols in M[Oex,Σ2] are in Σ2

and hence S3 = ∅. The algorithm then terminates and returns ΣL = Σ2.
Note that ΣL is indeed an L-signature since the module M[Oex,Σ2] does not

contain axiom (1) and hence is an OWL 2 EL ontology. ♦

Note that there can be many ways to perform the signature reduction required
in Steps 1 and 4. In Example 8, for instance, we could have taken Σ2 = Σ1 \
{Bursitis} or Σ2 = Σ1 \ {hasLocation}, or even any subset thereof. Making rea-
sonable choices requires good heuristics. In our implementation our choices are
guided so that as many properties as possible are kept within ΣL. Indeed, on-
tologies typically contain many more classes than properties, and each property
typically occurs in a larger number of axioms; thus, having a property outside
ΣL is likely to cause many other symbols to be left outside ΣL. The following
example illustrates how different choices lead to rather different L-signatures.
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Algorithm 2. L-signature(O)

Input: an ontology O
1: ΣL := Sig(O) ; S := O \ OL
2: canReduce := true
3: while S �= ∅ and canReduce do
4: ΣL := reduce(ΣL,S)
5: if ΣL = ∅ then canReduce := false
6: else S := {α ∈ M[O,ΣL] | Sig(α) �⊆ ΣL}
7: return ΣL

Example 9. As already mentioned, in Example 8 we could have alternatively
chosen to take Σ2 = Σ1 \ {hasLocation}. This would have causedM[O,Σ2] = Oex

again, and we would have obtained

S3 = S2 ∪ {BursitisOfJoint ≡ Bursitis � ∃hasLocation.Joint}

It would now be enough to take Σ3 = Σ2 \ {BursitisOfJoint}, and we would have
S4 = ∅. In this case we would get ΣL = Σ3, which is smaller (and hence less
appealing) than the ΣL obtained in Example 8. ♦

These signature reductions satisfy the same properties that make them “accept-
able”. We can characterise these acceptable reductions as given next.

Definition 5. Given an ontology O, a signature reduction is a function

reduce : P(Sig(O)) × P(O)→ P(Sig(O))

that, given Σ ∈ P(Sig(O)) and S ∈ P(O) not ⊥-local w.r.t. Σ, returns

1. Σ if S = ∅.
2. Σ′ ⊂ Σ s.t. each axiom in S is ⊥-local w.r.t. Σ′ if S �= ∅ and Σ′ exists.
3. ∅ otherwise.

Note that the Cases 1 and 3 correspond to the extreme situations when S = ∅
or when there is no satisfying way of reducing Σ. Case 2 constitutes the essence
of the reduction, namely to compute a strict subset of the signature that makes
the given set of axioms ⊥-local.

Given a particular reduce function, Algorithm 2 accepts an ontology O and
returns a signature ΣL ⊆ Sig(O). Theorem 1 guarantees the termination of
Algorithm 2 as well as its correctness: any non-empty signature returned by the
algorithm is an L-signature for O.

Theorem 1. Let O be an ontology and let reduce be a signature reduction func-
tion. Furthermore, let Si, Σi (i ≥ 0) be defined by the following construction:

(i = 0) : Σ0 = Sig(O) S0 = O \ OL

(i ≥ 1) : Σi = reduce(Σi−1,Si−1) Si = {α ∈M[O,Σi] | Sig(α) �⊆ Σi}
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Finally, let ΣL :=
⋂

i≥0 Σi. Then, the following properties hold:

1. There exists k < |Sig(O)| such that either Σk = ∅ or Sk = ∅.
2. Either ΣL = ∅ or M[O,ΣL] ⊆ OL.

Proof. We first show Claim 1. Suppose Σi �= ∅ for each i ≥ 0. A straightforward
inductive argument would show that Σj ⊆ Σi for each j > i ≥ 0. Furthermore,
Σ0 = Sig(O), so it cannot be the case that Σj ⊂ Σi for each 0 ≤ i < j ≤ |Sig(O)|.
Therefore, there must be some k < |Sig(O)| such that Σk+1 = Σk; by the
definition of reduce, this implies that Sk = ∅.

We finally show Claim 2. Suppose ΣL �= ∅. It is enough to prove that each
α ∈ O \ OL is ⊥-local w.r.t. ΣL ∪ Sig(M[O,ΣL]).

First, we are going to see that Sig(M[O,ΣL]) ⊆ ΣL. According to Claim 1,
there exists k < |Sig(O)| such that Sk = ∅. This implies that, for each axiom
α ∈ M[O,Σk], we have Sig(α) ⊆ Σk. It is easy to see that Sk = ∅ also implies that
Σj = Σk for each j > k. Together with the fact that Σj ⊆ Σi for each j > i ≥ 0,
this implies ΣL =

⋂
i≥0 Σi = Σk. But then for each α ∈ M[O,ΣL] =M[O,Σk] we

have Sig(α) ⊆ Σk = ΣL, and so Sig(M[O,ΣL]) ⊆ ΣL.

Now we can just prove that each α ∈ O \ OL is ⊥-local w.r.t. ΣL. Because
ΣL =

⋂
i≥0 Σi �= ∅, in particular it must be the case that Σ0 �= ∅. By definition

of reduce, either O \OL = ∅, in which case it is immediate that M[O,ΣL] ⊆ OL,
or every axiom in S0 = O \ OL is ⊥-local w.r.t. Σ1 = reduce(Σ0,S0). Then, by
Proposition 1, each α ∈ O \ OL is ⊥-local w.r.t. ΣL ⊆ Σ1. ��

3.2 Black-Box Modular Classification

Having identified a (hopefully large) L-signature for our ontologyO, we can next
proceed to classify the ontology in a modular way.

As already mentioned, we can fully classify the classes in ΣL using only an L-
reasoner. This is a consequence of Proposition 2 and the fact thatM[O,ΣL] ⊆ OL.

To classify the classes in ΣL = Sig(O) \ΣL, however, a fully fledged OWL 2
reasoner is still required. By Proposition 2, the OWL 2 reasoner does not need
to consider all the axioms in O, but only those in the relevant module M

[O,ΣL]
.

Once the OWL 2 reasoner has computed the classification of M
[O,ΣL]

, we

can express the classification result as simple subsumption axioms of the form
A � B. These axioms, together with M[O,ΣL], can be given to the L-reasoner,
which will use the resulting ontology to compute a complete classification of O.

Algorithm 3 describes the entire classification process for a given fragment L
of OWL 2 and a particular signature reduction function reduce. The function
L-signature is as given in Algorithm 2. The function classification returns the
classification of the given ontology (computed using an OWL 2 reasoner) as
a set of axioms of the form A � B. The function classificationL returns the
classification of the given ontology as computed by an L-reasoner.
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Algorithm 3. L-ModularClassification(O)

Input: an OWL 2 ontology O
1: ΣL := L-signature(O) � See Algorithm 2
2: H

ΣL := classification(M
[O,ΣL]

) � using the OWL 2 reasoner

3: H := classificationL(M[O,ΣL] ∪ HΣL) � using the L-reasoner
4: return H

Example 10. Recall the L-signature ΣL for Oex computed in Example 8:

ΣL = {Bursitis, hasLocation,BursitisOfJoint, Joint, Swelling,Cellulitis,
hasOrigin, Infection, InfectiousDisease,Disease}

The complementary signature is

ΣL = {BursitisOrCellulitisOfKnee,BursitisOfKnee,CellulitisOfKnee,Knee}

and the relevant ⊥-module is M
[Oex,ΣL]

= {(1), (2), (3), (4), (8)}. The classifica-

tion of this module leads to the following subsumptions H
ΣL :

CellulitisOfKnee � BursitisOrCellulitisOfKnee BursitisOfJoint � Bursitis
BursitisOfKnee � BursitisOrCellulitisOfKnee Bursitis � Swelling
BursitisOfKnee � BursitisOfJoint Knee � Joint
BursitisOfKnee � Bursitis

We can now use the L-reasoner to classify M[O,ΣL] ∪ HΣL , thus obtaining all
the remaining subsumption relationships that hold in Oex:

Cellulitis � Swelling Cellulitis � InfectiousDisease
InfectiousDisease � Disease Cellulitis � Disease ♦

The following Theorem establishes the correctness of Algorithm 3.

Theorem 2. Let O be an ontology, let reduce be a signature reduction function
and let M[O,ΣL], HΣL be as computed by Algorithm 3. Then, for any two classes
A ∈ Sig(O) and B ∈ Sig(O) ∪ {�,⊥}, we have that

O |= A � B iff (M[O,ΣL] ∪HΣL) |= A � B

Proof. Let A ∈ Sig(O) and B ∈ Sig(O) ∪ {�,⊥}. We consider two cases.

– Case 1: A ∈ ΣL. Then, by Proposition 2, we have that O |= A � B iff
M[O,ΣL] |= A � B. Also, because M[O,ΣL] ⊆ M[O,ΣL] ∪ HΣL , by mono-
tonicity we have thatM[O,ΣL] |= A � B implies (M[O,ΣL]∪HΣL) |= A � B.
It remains to show that

(M[O,ΣL] ∪HΣL) |= A � B implies M[O,ΣL] |= A � B (9)
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Because H
ΣL encodes the classification of M

[O,ΣL]
, we have that

(M[O,ΣL] ∪HΣL) |= A � B implies (M[O,ΣL] ∪M[O,ΣL]
) |= A � B (10)

Now, it is immediate that M[O,ΣL] ∪M[O,ΣL]
⊆ O; thus, because M[O,ΣL]

is a module for O w.r.t. ΣL, it must also be a module forM[O,ΣL]∪M[O,ΣL]

w.r.t. ΣL. So, again by Proposition 2, we have

(M[O,ΣL] ∪M[O,ΣL]
) |= A � B implies M[O,ΣL] |= A � B (11)

Now, (10) and (11) imply (9), as required.

– Case 2: A ∈ ΣL = Sig(O) \ ΣL. Then, by Proposition 2, O |= A � B iff
M

[O,ΣL]
|= A � B. Because H

ΣL represents the classification of M
[O,ΣL]

,

we have M
[O,ΣL]

|= A � B iff H
ΣL |= A � B. It remains to show that

H
ΣL |= A � B iff M[O,ΣL] ∪HΣL |= A � B (12)

Left to right implication holds directly by monotonicity, so let us assume
M[O,ΣL] ∪ H

ΣL |= A � B. Since H
ΣL is the classification of M

[O,ΣL]
,

we have M[O,ΣL] ∪M[O,ΣL]
|= A � B. Now, M

[O,ΣL]
is a ⊥-module for

M[O,ΣL] ∪M[O,ΣL]
⊆ O w.r.t. ΣL since it is a ⊥-module for O w.r.t. ΣL.

By Proposition 2, M
[O,ΣL]

|= A � B, which implies H
ΣL |= A � B. ��

4 Implementation and Experiments

We have implemented our modular reasoner MORe2 in Java using the OWL
API.3 Our implementation of a signature reduction function reduce (see Section
3.1) is based on the ⊥-locality module extractor described in [14].4 Our system
currently integrates ELK, which acts as an OWL 2 EL reasoner, and HermiT,
which plays the role of a fully-fledged OWL 2 reasoner.

In the implementation of the signature reduction, symbols required to make
a set of axioms ⊥-local are selected greedily axiom by axiom. As discussed in
Examples 8 and 9, when selecting symbols it is often a good idea to implement
heuristics that try to keep as many properties as possible within ΣL.

Evaluation on BioPortal Ontologies.We have compared classification times
obtained by MORe and HermiT over a set of large bio-medical ontologies avail-
able from BioPortal.5 Results are summarised in the upper part of Table 1. The
Gene Ontology (GO) and Gazetteer are OWL 2 EL ontologies; therefore, MORe
delegates all the work to ELK, with the consequent performance improvement.
For the latest version of NCI and for Protein, which contain only a small number

2 http://www.cs.ox.ac.uk/isg/tools/MORe/
3 http://owlapi.sourceforge.net/
4 http://www.cs.ox.ac.uk/isg/tools/ModuleExtractor
5 http://bioportal.bioontology.org/

http://www.cs.ox.ac.uk/isg/tools/MORe/
http://owlapi.sourceforge.net/
http://www.cs.ox.ac.uk/isg/tools/ModuleExtractor
http://bioportal.bioontology.org/
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Table 1. MORe vs HermiT. Comparison on BioPortal ontologies and on mapped on-
tologies. Tables show number of axioms outside OWL 2 EL, relative size of ΣL and
M

[O,ΣL]
, and classification times using HermiT and MORe. For MORe we specify the

performance gain w.r.t. HermiT alone and the time taken by HermiT and ELK.

Ontology |O \ OL| |ΣL| |M
[O,ΣL]

|
Classif. time (seconds)

HermiT
MORe

total HermiT ELK

GO 0 100% 0% 7.1 2.2 (↓69.0%) 0 0.1
Gazeteer 0 100% 0% 838.1 28.2 (↓96.6%) 0 15.6

NCI 65 94.9% 15.4% 84.1 28.6 (↓66.0%) 15.8 3.3
Protein 12 98.1% 6.6% 11.4 2.9 (↓74.6%) 0.4 0.9
Biomodels 22,079 45.2% 66.4% 741.4 575.6 (↓22.4%) 540.1 2.6

cellCycle 1 > 99.9% < 0.1% – 13.9 ( – ) <0.1 4.9

NCI+CHEBI 65 95.6% 10.3% 116.6 34.0 (↓70.8%) 16.3 4.1
NCI+GO 65 96.7% 10.4% 110.0 37.6 (↓65.8%) 17.6 3.2
NCI+Mouse 65 96.0% 13.3% 93.7 31.0 (↓66.9%) 16.6 2.6

of axioms outside OWL 2 EL, the obtained ΣL contains most of Sig(O), and
hence MORe significantly outperforms HermiT. Biomodels, however, contains a
large number of axioms outside OWL 2 EL, thus the size of ΣL is proportion-
ally much smaller and MORe must assign a higher workload to HermiT, which
results in a more modest performance gain. Finally, the Cell Cycle ontology is
an extreme case: an ontology that is almost OWL 2 EL and can be classified
efficiently with MORe, while HermiT alone runs out of memory.

Evaluation on Ontologies Integrated via Mappings. We have used the
ontology matching tool LogMap [13] to integrate the latest version of NCI with
other widely used ontologies. Results are summarised in the lower part of Table
1. We can observe that MORe consistently outperforms HermiT by 65-70%.

Evaluation on versions of NCI. We have compared MORe with HermiT on
10 versions of NCI.6 Unsurprisingly, there have been significant variations in 10
years of development; for example, a 2003 version was entirely in OWL 2 EL, a
version in 2009 contained more than 4, 000 axioms outside OWL 2 EL, and the
current version only contains 65. Figure 2 summarises our results; in all cases,
MORe outperforms HermiT.

Extensions of SNOMED. We have manually extended SNOMED (v. Jan
2010), which is fully expressed in OWL 2 EL, with a few disjunctive axioms
suggested by domain experts who are involved in SNOMED’s development. All
these axioms share the same structure; for example,

Sprain of ankle OR foot ≡ Sprain of ankle � Sprain of foot

6 See http://ncit.nci.nih.gov/. We consider the latest version in each year.

http://ncit.nci.nih.gov/
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Fig. 2. Classification times (seconds) for MORe and HermiT on NCI. The X axis in-
dicates the version and the number of axioms outside OWL 2 EL (in parenthesis).

Table 2. Extensions of SNOMED

#� |ΣL| |M
[O,ΣL]

| Classif. time
HermiT MORe

1 99.98% 0.10% 1,788.5 25.3

2 99.94% 0.24% 1,959.2 29.0

3 99.88% 0.52% 1,872.8 29.3

4 99.86% 0.61% 1,933.2 30.9

5 99.86% 0.63% 1,898.6 31.6

6 99.86% 0.63% 1,920.2 31.0

7 99.86% 0.64% 1,884.8 31.8

8 99.85% 0.65% 1,868.2 31.3

9 99.85% 0.66% 1,937.2 31.9

10 99.79% 1.00% 1,863.7 32.8

#� |ΣL| |M
[O,ΣL]

| Classif. time
HermiT MORe

11 99.79% 1.00% 1,922.5 30.6

12 99.79% 1.01% 1,912.4 30.6

13 99.78% 1.02% 1,864.0 30.5

14 99.76% 1.91% 1,890.5 33.0

15 98.76% 3.19% 1,925.9 42.9

16 97.10% 9.79% 1,930.2 138.5

17 97.08% 9.89% 1,927.9 134.7

18 96.27% 13.50% 1,881.4 269.8

19 94.10% 17.65% 1,847.4 401.1

20 94.02% 17.78% 1,904.0 410.8

introduces a new class that is fully defined as the set of all sprains that affect
either the ankle or the foot (or both). In total, 20 such axioms were added to
SNOMED, one by one.

Table 2 presents the results obtained for these extended ontologies. Each of
them is identified, in the first column, by the number of disjunctive axioms
that it contains. The second and third columns indicate the relative sizes of
the computed L-signature and the resulting M

[O,ΣL]
. The last two columns

give the classification times obtained using MORe and HermiT. In most cases
classification times are improved by between one and two orders of magnitude.
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We can observe, however, that axioms 15, 16, 18, and 19 have a significant
effect on the size of ΣL and, consequently, on the size of M

[O,ΣL]
and the total

classification time. This is due to the classes involved in these particular axioms,
which force our algorithm to keep very general classes outside ΣL; for example,
in one of these cases, the class Liquid Substance is removed from the successive
approximations to ΣL at some point during its computation; by Proposition 2,
all classes representing some kind of liquid substance—and therefore subsumed
by the class Liquid Substance—must be left outside ΣL too, which leads to a
significantly smaller L-signature. It is part of our future work plan to improve
the heuristics we use in order to avoid, when possible, leaving out of ΣL classes
that are likely to be high up in the class subsumption hierarchy.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying an OWL 2 ontology
O by exploiting a reasoner for one of its profiles. Our technique allows us to show
that the subsumers of many classes in O can be completely determined using
only the fragment-specific reasoner. Our technique is general and flexible, it ex-
hibits pay-as-you-go behaviour, and it is relatively easy to implement. Although
the implementation in our reasoner MORe is still prototypical, our preliminary
experiments show the potential of our approach in practice.

There are also many interesting possibilities for future work:

– Our heuristics for computing an L-signature are rather basic, and there is
plenty of room for improvement. For example, it might be possible to explore
modular decomposition techniques to compute larger L-signatures [24].

– ⊥-modules provide very strong preservation guarantees (they preserve not
just atomic subsumptions, but evenmodels). It would be interesting to devise
techniques for extracting modules that are more “permissive”, in the sense
that they only provide preservation guarantees for atomic subsumptions.

– Our technique could also be applied to a different notion of locality, as long
as it satisfied a result analogous to Proposition 2.

– We could explore ontology rewriting techniques that complement module
extraction. By rewriting O into an L-ontology O′ such that O′ |= O, and
classifying O′, we can obtain an “upper bound” on the classification of O.

Acknowledgements. This work was supported by the Royal Society, the EU
FP7 project Optique and the EPSRC projects Score!, ExODA and LogMap.
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13. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-Based and Scalable Ontology

Matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288.
Springer, Heidelberg (2011)
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Abstract. Ontology mappings are often assigned a weight or confidence factor
by matchers. Nonetheless, few semantic accounts have been given so far for such
weights. This paper presents a formal semantics for weighted mappings between
different ontologies. It is based on a classificational interpretation of mappings: if
O1 and O2 are two ontologies used to classify a common set X , then mappings
between O1 and O2 are interpreted to encode how elements of X classified in
the concepts of O1 are re-classified in the concepts of O2, and weights are inter-
preted to measure how precise and complete re-classifications are. This semantics
is justifiable by extensional practice of ontology matching. It is a conservative ex-
tension of a semantics of crisp mappings. The paper also includes properties that
relate mapping entailment with description logic constructors.

1 Introduction

Ontology mappings are used to express semantic relations between components of two
heterogeneous ontologies. They are key artifacts for the integration of knowledge en-
coded in distinct schemas. On the one hand, theoretical studies on ontology mappings
give a formal background for crisp mappings, i.e. mappings that express set theoretical
relations — subsumption (� and �), equivalence (≡) and disjointness (⊥) — between
the extensional meaning of the concepts and relations of two ontologies [3,16]. On the
other hand, the majority of the state-of-the-art tools that automatically match ontologies
generate weighted mappings, i.e., crisp mappings associated with a confidence value,
typically a real number between 0 and 1 [5]. There is, however, no shared view on how
these weights should be interpreted, neither in ontology matching nor in related fields
such as database schema matching [6].

In this paper we fill this gap by providing a novel formal semantics for interpreting
the confidence value associated with a mapping. This semantics is not based on stan-
dard probabilistic notions such as ones used to extend Description Logics (DL) and
rule-based descriptions of uncertainty, but instead is based on a classificational inter-
pretation of mappings which reflects a family of approaches used in ontology matching
techniques (see Chapter 4.4. in [5], and [15] as a recent example): if two ontologies

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 17–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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O1 and O2 are used to classify a common set X of items, mappings between O1 and
O2 encode how elements of X classified in the concepts of O1 are re-classified in the
concepts of O2, and weights measure how precise and complete the re-classifications
are. We fall back on precision, recall, and F-measures, as they are used in the context
of classification tasks, for the formalisation of weighted subsumptions and equivalence,
respectively.

The proposed semantics makes it possible to discover inconsistencies and detect
implications over sets of weighted mappings. In other words, to understand when a
mapping can be derived from others, and when sets of mappings are inconsistent. We
introduce a notion of logical consequence between weighted mappings, and investigate
entailment between weighted mappings w.r.t. description logic constructors. Moreover,
we prove that the semantics for weighted mappings introduced in the paper is a conser-
vative extension of the semantics of crisp mappings for a specific class of Distributed
Description Logics (DDLs) [3].

The paper is organised as follows. Section 2 introduces a formal semantics for
weighted mappings, including the notion of (weighted) mapping entailment. In Sec-
tions 3–5 we show the adequacy of the proposed semantics, including the proof that it is
a conservative extension of the semantics of DDL mappings; properties of the mapping
entailment w.r.t. description logic constructors; and variants of the proposed semantics.
In Section 6, we summarise related work, and we finish with concluding remarks.

2 Classificational Semantics for Weighted Mappings

The semantics presented in this paper is designed for weighted mappings between pairs
of ontologies expressed in (a fragment of) first order language with tarskian semantics.
However, for the sake of presentation we focus on a particular fragment of FOL, namely
the description logic ALCO: the basic DL logic ALC extended with nominals. We
choose ALCO to present this semantics, since it is the smallest logic that contains full
propositional connectives, relations and constants. ALCO is a DL logic defined on an
alphabet Σ = CN � RN � ON , where CN is a set of concept symbols, RN is a set
of role symbols, and ON is a set of individual symbols. Complex concept expressions
(simply called concepts) in ALCO are defined by the following grammar:

C,D := �|⊥|A|¬C|C �D|∃R.C|{o}

where A ∈ CN , R ∈ RN and o ∈ ON . As usual, ∀R.C stands for ¬∃R.¬C, and
C �D for ¬(¬C �¬D). A general inclusion axiom (GCI) is an expression of the form
C � D where C and D are concepts.

An interpretation I is a pair I =
〈
ΔI , ·I

〉
where ΔI is a non-empty set, called the

domain of I and ·I is a function such that AI ⊆ ΔI for A ∈ CN , RI ⊆ ΔI × ΔI

for R ∈ RN , and oI ∈ ΔI for o ∈ ON . The interpretation of complex concepts of
ALCO is defined according to the following rules:

�I = ΔI (C �D)I = CI ∩DI

⊥I = ∅ {a}I = {aI}
(¬C)I = ΔI \ CI (∃R.C)I = {x ∈ ΔI |∃y, (x, y) ∈ RI & y ∈ CI}
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An interpretation I satisfies a GCI C � D, in symbols I |= C � D, if CI ⊆ DI .
An ontology O is a set of GCIs. An interpretation satisfies O, in symbols I |= O, if
I |= ϕ for all ϕ ∈ O. A CGI is entailed by an ontology O, in symbols O |= C � D if
I |= C � D, for all interpretations I that satisfy O.
ALCO has the “finite model property”, meaning that if an entailment holds in all

finite interpretations (ones with finite domain), then it is a theorem, in the sense that
it holds for all interpretations. Not all DLs have the finite model property, e.g., adding
cardinality constraints and inverses to ALCO prevents it.

2.1 Weighted Mappings

We start from the definition of mapping presented in [3] that we recall below.

Definition 1. Let {Oi}i∈I be a family of ontologies. A mapping from Oi to Oj is an
expression of the form

i :C r j :D

where C and D are concepts of Oi and Oj , respectively, and r ∈ {�,≡,�,⊥}.

The notion of weighted mapping generalises it by associating mappings to a closed
subinterval of [0, 1].

Definition 2. Let {Oi}i∈I be a family of ontologies. A weighted mapping from Oi to
Oj is an expression of the form

i :C r[a,b] j :D

where C and D are concepts of Oi and Oj , respectively, r ∈ {�,≡,�,⊥} and a, b are
real numbers in the unit interval [0, 1].

Remark 1. Notice that if a > b then [a, b] = ∅ which is a closed subinterval of [0, 1].

2.2 Formal Semantics for Weighted Mappings

Our semantics for weighted mappings is based on the following intuition. Assume that
the concepts of two ontologiesO1 and O2 are used to classify a common set of elements
X . Mappings from O1 to O2 encode how the elements of X classified in the concepts
of O1 are re-classified in the concepts of O2, and the weights encode how precise and
complete these re-classifications are. Let us pin down this intuition and see how it can
be used to define a formal semantics for a weighted mapping 1:C r[a,b] 2:D.

Let X = {x1, . . . , xn} be a non-empty finite set of fresh constants not occurring in
L(O1) or L(O2).1 The set X is meant to represent the set of shared items classified
by concepts of the ontologies O1 and O2. A classification of X in O1 is specified by
virtue of an interpretation I1 of O1 extended with the elements of X as follows. Let C

1 Be aware that X is not a concept name, and that {x1, . . . , xn} is not a concept. Instead X is
a meta-notation used in this paper to refer to an arbitrary finite set.
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be a concept of O1 and xk a fresh constant of X ; we say that xk is classified under C
according to I1 if xI1

k ∈ CI1 . The set

CI1

X = {x ∈ X | xI1 ∈ CI1}

then represents the subset of items of X classified under C according to I1. Note that
CI1

X is a subset of X whereas CI1 is a subset of the domain of the interpretation I1. In
addition, CI1

X is always a finite set while CI1 may be infinite.
Let I1 and I2 be interpretations of O1 and O2, respectively, and let C and D be the

concepts of O1 and O2, occurring in 1:C r[a,b] 2:D. Since we do not want to make any
commitment on the interpretation domains of the two ontologies, it may be the case that
the sets CI1 and DI2 cannot be compared as they might be defined over independent
interpretation domains. Yet the sets CI1

X and DI2

X can be compared as they are both
subsets of X which represent the sets of items of X classified under C according to I1
and under D according to I2, respectively. We can therefore examine the different types
of mappings 1:C r[a,b] 2:D obtained by looking at the different r ∈ {�,≡,�,⊥}.

Intuitively, the mapping 1:C � 2:D is used to express that any item in X which
is classified under C according to I1 is (re-)classified under D according to I2. The
weighted mapping 1:C �[a,b] 2:D is thus used to express the fact that the proportion
of items of X classified under C according to I1 which are (re-)classified under D
according to I2 lies in the interval [a, b]. Assuming that |CI1

X | �= ∅, we can rewrite this
intuition in the formula

|CI1

X ∩DI2

X |
|CI1

X |
∈ [a, b] (1)

which can be seen as the recall of DI2

X w.r.t. CI1

X . Indeed, given two sets A and B, the
recall of B w.r.t. A is defined as

R(A,B) =
|A ∩B|
|A|

unless |A| = 0, in which case R(A,B) = 1. Thus, the condition in (1) can be rephrased
as R(CI1

X , DI2

X ) ∈ [a, b].

Example 1. Let X = {x1, . . . , x10}, and CI1

X and DI2

X as in the two following dia-
grams:

x1 x2

x3 x4

x5

x6

x7

x8

x9

x10 DI2

X

CI1

X
CI1

X

DI2

X

x1 x2

x3 x4

x5

x6

x7

x8

x9

x10

It is immediate to see that on the left hand side diagram,R(CI1

X , DI2

X ) = 2
5 = 0.4 while

on the right hand side diagram, R(CI1

X , DI2

X ) = 2
2 = 1.
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The weighted mapping 1:C �[a,b] 2:D, in turn, is used to express the fact that the
fraction of items of X classified by D according to I2 which are (re-)classified under
C according to I1 lies in the interval [a, b]. Under the assumption that |DI2

X | �= ∅, we
can rewrite this as:

|CI1

X ∩DI2

X |
|DI2

X |
∈ [a, b] (2)

which can be seen as the precision of DI2

X w.r.t. CI1

X . The precision of B w.r.t. A is in
fact given by

P (A,B) =
|A ∩B|
|B|

unless |B| = 0, in which case P (A,B) = 1. Thus, the condition in (2) can be rephrased
as P (CI1

X , DI2

X ) ∈ [a, b].

Example 2. Let X = {x1, . . . , x10}, and CI1

X and DI2

X as in Example 1. It is immediate
to see that in both cases P (CI1

X , DI2

X ) = 2
4 = 0.5.

By keeping the parallelism with classification systems, the natural way to interpret the
weighted mapping 1:C ≡[a,b] 2:D is by means of the F-measure, which is the har-
monic mean of precision and recall. The F-measure of A and B is defined as

F (A,B) = 2 · P (A,B) ·R(A,B)

P (A,B) +R(A,B)

unless P (A,B) and R(A,B) are equal to 0, then F (A,B) = 0. It can be expressed as

F (A,B) = 2 · |A ∩B|
|A|+ |B|

unless |A| = |B| = 0, in which case F (A,B) = 1. In this way, the weighted mapping
1:C ≡[a,b] 2:D encodes that F (CI1

X , DI2

X ) ∈ [a, b].
We conclude the above explanation with the definition of the degree of satisfiability

of a mapping. Then we introduce mapping satisfiability and mapping entailment.

Definition 3 (Degree of satisfiability of a mapping). Let Oi and Oj be two ontologies
and let X be a non-empty finite set of fresh individual constants. Let Ii and Ij be
two interpretations of Oi and Oj , respectively, extended with the set X . The degree
of satisfiability of the mapping i :C r j :D with respect to the pair (Ii, Ij) and X is
denoted by dsX(Ii, Ij , C, r,D) and defined as

dsX(Ii, Ij , C,�, D) = R(CIi

X , D
Ij

X )

dsX(Ii, Ij , C,�, D) = P (CIi

X , D
Ij

X )

dsX(Ii, Ij , C,≡, D) = F (CIi

X , D
Ij

X )

dsX(Ii, Ij , C,⊥, D) = 1− F (CIi

X , D
Ij

X )

The pair (Ii, Ij) satisfies the weighted mapping i :C r[a,b] j :D modulo X , denoted by
(Ii, Ij) |=X i :C r[a,b] j :D, if and only if dsX(Ii, Ij , C, r,D) ∈ [a, b]. If M is a set of
weighted mappings from Oi to Oj , the pair (Ii, Ij) satisfies M modulo X , in symbols,
(Ii, Ij) |=X M , if (Ii, Ij) |=X m for every m ∈M .
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Definition 4 (Mapping satisfiability). Let Oi and Oj be two ontologies and let X be a
non-empty finite set of fresh individual constants. Let M be a set of weighted mappings
from Oi to Oj . The set M is satisfiable modulo X if there exist interpretations Ii and
Ij of Oi and Oj , respectively, such that (Ii, Ij) |=X M ij . We say that the set M is
satisfiable if there exists an X �= ∅ such that M is satisfiable modulo X .

Definition 5 (Mapping entailment). Let Oi and Oj be two ontologies and let X be
a non-empty finite set of fresh individual constants. Also, let M be a set of weighted
mappings from Oi to Oj . The set M entails i :C r[a,b] j :D modulo X , denoted M |=X

i :C r[a,b] j :D, if for every interpretations Ii and Ij of Oi and Oj , respectively, such
that (Ii, Ij) satisfies M modulo X , we have that (Ii, Ij) |=X i :C r[a,b] j :D. The set
M entails i :C r[a,b] j :D, in symbols, M |= i :C r[a,b] j :D, if we have M |=X i :
C r[a,b] j :D for every X �= ∅.

Remark 2 (Inconsistent mappings). In the case of a > b, the mapping i :C r[a,b] j :D
has no satisfying interpretations. That is, mappings defined over empty probability
ranges are inconsistent mappings and we denote them by FALSE. This allows us to
express unsatisfiability of a set of mappings in terms of mapping entailment: if M is a
set of mappings between Oi to Oj , then M |= FALSE is equivalent to stating that M
is not satisfiable. Moreover, notice that FALSE |= i :C r[a,b] j :D, i.e. every mapping
is entailed by the inconsistent mapping.

3 Adequacy and Expressivity of the Semantics

In this section we prove the adequacy of the formal semantics for weighted mappings
proposed in Section 2 by showing that (i) it is a conservative extension of a standard
semantics for crisp mappings; (ii) it can be used to provide a formal interpretation of
the results returned by automatic ontology matching algorithms; and (iii) it is general
enough to provide a uniform formal interpretation of weighted mappings between both
concepts and individuals.

3.1 Backward Compatibility with the Semantics of Crisp Mappings

In order to prove that the classificational semantics presented in this paper provides
a suitable extension of the one for crisp mappings we show that it is a conservative
extension of the DDL-based semantics for crisp mappings presented in [3] when the
intervals [a, b] are either [0, 0] or [1, 1]. First of all, notice that when a and b are either
0 or 1 every mapping can be expressed in terms of �[1,1]. Indeed the following logical
consequences hold:

– i :C �[1,1] j :D is equivalent to j :D �[1,1] i :C
– i :C ≡[1,1] j :D is equivalent to i :C �[1,1] j :D and j :D �[1,1] i :C
– i :C ⊥[1,1] j :D is equivalent to i :C �[1,1] j :¬D
– i :C �[0,0] j :D is equivalent to i :C �[1,1] j :¬D
– i :C �[0,0] j :D is equivalent to i :C �[1,1] j :¬D
– i :C ≡[0,0] j :D is equivalent to i :C �[1,1] j :¬D
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– i :C ⊥[0,0] j :D is equivalent to i :C �[1,1] j :D and j :D �[1,1] i :C
– i :C r[0,1] j :D is equivalent to i :⊥ �[1,1] j :�
– i :C r[1,0] j :D is equivalent to i :� �[1,1] j :⊥

The above guarantees that any weighted mapping from Oi to Oj with weight in
{[0, 0], [0, 1], [1, 0], [1, 1]} can be rewritten as a�[1,1]-mapping between Oi and Oj (i.e.
from Oi to Oj or from Oj to Oi). We say that a set of weighted mappings between Oi

and Oj is in �[1,1]-normal form if they are of the form x :C �[1,1] y :D.

Lemma 1. If M is a set of mappings between two ontologies Oi and Oj with weights
in {[0, 0], [0, 1], [1, 0], [1, 1]}, then M can be rewritten in an equivalent set of mappings
M�[1,1]

in �[1,1]-normal form.

Crisp mappings are defined in DDL via bridge rules, whose syntax and semantics are
as follows: let Ii and Ij be interpretations of the ontologies Oi and Oj , resp. Let ρij ⊆
ΔIi×ΔIj be a domain correspondence relation. In DDL we define four kinds of bridge
rules, but, due to the rewriting described above, the only one that is interesting here is
what the so-called into bridge rule:

(Ii, Ij , ρij) |= i :C
�−→ j :D iff ρij(C

Ii) ⊆ DIj

Lemma 2. Let Oi and Oj be two ontologies.
(1) Let Ii and Ij be two interpretations of Oi and Oj , resp., extended with a non-empty
finite X . Then there exists a domain relation ρij ⊆ ΔIi ×ΔIj such that

(Ii, Ij) |=X i :C �[1,1] j :D iff (Ii, Ij , ρij) |= i :C
�−→ j :D

(2) Let Ii and Ij be interpretations of Oi and Oj with finite domains ΔIi and ΔIj , and
let ρij ⊆ ΔIi × ΔIj be a DDL domain relation. Then there exists a non-empty finite
set X of fresh individuals and interpretations I ′

i and I ′
j extending Ii and Ij , resp., over

X such that

(Ii, Ij , ρij) |= i :C
�−→ j :D iff (I ′

i, I ′
j) |=X i :C �[1,1] j :D

Proof (Outline). For (1) we define ρij = {〈xIi , xIj 〉 | x ∈ X} and then show that

R(CIi

X , D
Ij

X ) = 1 iff ρij(CIi) ⊆ DIj . In order to prove (2) we first choose a set of
fresh constantsX = {x(c,d) | (c, d) ∈ ρij} (i.e one constant for each pair of the domain
relation), and then extend Ii and Ij to I ′

i and I ′
j over X by defining I ′

i(x(c,d)) = c and

I ′
j(x(c,d)) = d. Then, ρij(CIi) ⊆ DIj iff R(C

I′
i

X , D
I′
j

X ) = 1.

Theorem 1. Consider ontologies Oi and Oj in ontology languages that have the finite-
model property (recall that ALCO has this property). Let M be a set of mappings with
weights in {[0, 0], [0, 1], [1, 0], [1, 1]} and M�[1,1]

its �[1,1]-normal form. Let MDDL =

{x :C �−→ y :D | x :C �[1,1] y :D ∈M�[1,1]
} be the set of corresponding DDL bridge

rules. Then, for arbitrary concepts C and D

M |= i :C �[1,1] j :D iff MDDL |=inv i :C
�−→ j :D

where |=inv denotes DDL logical consequence restricted to models where ρij = ρ−1
ji .
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Proof (outline). Let us assume that M�[1,1]
�|= i :C �[1,1] j :D. Then there exists a set

X �= ∅ and interpretations Ii and Ij of Oi and Oj , resp., extended with X such that
(Ii, Ij) |=X M�[1,1]

but (Ii, Ij) �|=X i :C �[1,1] j :D. By Lemma 2, there is a domain

relation ρij for which (Ii, Ij , {ρij , ρji}) |= MDDL and (Ii, Ij , ρij) �|= i :C
r−→ j :D.

Therefore, MDDL �|= i :C
�−→ j :D.

Vice versa, assume MDDL �|= i :C
�−→ j :D. Thus, there is a DDL interpretation

(Ii, Ij , {ρij , ρji}) with ρij = ρ−1
ji such that (Ii, Ij , {ρij , ρij}) |= MDDL whereas

(Ii, Ij , ρij) �|= i :C
�−→ j :D. One can extend the finite domain property of most DLs

supporting qualified existential restrictions to those of DDLs using them via the “global
DL” construction given in [3]. Therefore, we can suppose w.l.o.g that the domains of Ii
and Ij are finite and, thus, ρij and ρij are also finite. By lemma 2, we have that there is
an X such that (Ii, Ij) |=X M�[1,1]

but (Ii, Ij) �|=X i :C �[1,1] j :D. Notice that the
fact that ρij = ρ−1

ji guarantees that the Xs associated to ρij and ρji are the same.

3.2 Interpreting the Results of Ontology Matchers

The semantics presented in Section 2 expresses the weight of a mapping between two
elements by means of an interval [a, b], while ontology matching algorithms usually
return a single confidence value c. Thus, we need to ask ourselves how we can represent
this value c by means of the interval [a, b]. In answering this question we can opt for
several alternatives: we can decide to represent c by means of the (pointwise) interval
[c, c], or the interval [0, c], or the interval [c, 1], or the interval [c − ε, c + ε] centered
in c. This flexibility of representation allows us to capture the different assumptions
which are used by the different algorithms. Let us illustrate this by means of some
examples. If we take a low confidence value c, some algorithms interpret it as an “I
don’t know” answer; others, instead, use it to represent the fact that “the two concepts
are very different”. These two usages of c can be captured in our formalism by two
different encodings: in the first case c is formalized by the interval [c, 1]; in the second
c corresponds to the interval [0, c]. A possible different representation is given when the
result of an ontology matcher expresses an estimation of similarity with some degree
of approximation. In this case the returned value c can be represented by means of the
centered interval [max(0, c − ε),min(c + ε, 1)], where ε is a value between 0 and 0.5
that depends on the level of accuracy of the matching algorithm: the more accurate
the matcher is, the smaller the ε will be. As we can see from these few examples, the
representation of c by means of the pointwise interval [c, c] is only one among a set of
different choices, and a very challenging one, since it says that the ontology matching
algorithm returns the exact level of matching between two elements with a perfect level
of accuracy (i.e. ε = 0).

3.3 Uniform Semantics for Mapping between Concepts and Individuals

The semantics presented in Section 2 gives a uniform framework to interpret mappings
that involve pairs of concepts, and pairs of individuals. If CI

X is the set of elements of
X that could be reclassified in C, aIX is the set of elements of X that could be the same
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as a. Contrary to aI which is an element of the domain ΔI , aIX is a subset of X . For
this reason, we use the same notation for individual as for classes: aIX = {a}IX and we
use the notation 1 :{a} ≡[0.8,1] 2 :{b} to represent the fact a is “almost the same as” b.
According to the formal semantics we have that

(I1, I2) |=X 1:{a} ≡[0.8,1] 2:{b} iff 0.8 ≤ 2 ∗ |{a}I1

X ∩ {b}I2

X |
|{a}I1

X |+ |{b}I2

X |
≤ 1

Therefore, the mapping {a} ≡[0.8,1] {b} states that the harmonic mean of the fraction
of items in X equivalent to a that are also equivalent to b, and the fraction of items in
X equivalent to b which are also equivalent to a is between the numbers 0.8 and 1.

In order to better understand the intuition behind this formalization, consider the
individuals Trento and TrentoTown belonging to two ontologies O1 and O2, resp.
While there are interpretations I1 and I2 in which the two individuals coincide, that
is, {Trento}I1

X = {TrentoTown}I2

X , there may be cases in which Trento is considered
to be an area broader than TrentoTown but still largely overlapping with it. This can
be formalized by considering two interpretations I1 and I2 where {Trento}I1

X includes
{TrentoTown}I2

X , for instance, {Trento}I1

X = {x1, x2, x3, x4} and {TrentoTown}I2

X =
{x1, x2, x3}. In this case the mapping is weighted as

(I1, I2) |=X 1:{Trento} ≡[0.85,0.86] 2:{TrentoTown}

where values 0.85 and 0.86 are obtained as under and over approximation of the fraction

2 ∗

∣∣∣{Trento}I1

X ∩ {TrentoTown}I2

X

∣∣∣∣∣∣{Trento}I1

X

∣∣∣+ ∣∣∣{TrentoTown}I2

X

∣∣∣ = 2 ∗ 3

7
=

6

7

4 Properties of Mapping Entailment

In this section, we show how the proposed semantics can be used to compute additional
mappings which are logical consequences of an initial set of mappings. The proofs are
omitted for lack of space and can be found in [1].

Proposition 1 shows general properties of mapping entailment independently of the
mapping relation considered.

Proposition 1. The following hold:

1. |= i :A r[0,1] j :G

2. FALSE |= i :A r[a,b] j :G

3. i :A r[a,b] j :G |= i :A r[c,d] j :G if [a, b] ⊆ [c, d].
4. i :A r[a,b] j :G, i :A r[c,d] j :G |= i :A r[v,w] j :G, v = max(a, c), w = min(b, d).
5. i :A r[a,b] j :G |= j :G r−1

[a,b] i :A, where r−1 is the inverse relation of r.2

2 Recall that ≡−1 is ≡, �−1 is �, �−1 is �, and ⊥−1 is ⊥.
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Proposition 2 includes properties of mapping entailment which relate equivalence with
subsumption and disjointness.

Proposition 2. The following hold:

1. i :A �[a,b] j :G, i :A �[c,d] j :G |= i :A ≡[v,w] j :G where

v =

{
2ac
a+c if a �= 0 or c �= 0

0 if a = c = 0
and w =

{
2bd
b+d if b �= 0 or d �= 0

0 if b = d = 0

2. i :A ≡[a,b] j :G |= i :A �[v,1] j :G and
i :A ≡[a,b] j :G |= i :A �[v,1] j :G where v = a

2−a

3. i :A ≡[a,b] j :G, i :A �[c,d] j :G |= i :A �[v,w] j :G and
i :A ≡[a,b] j :G, i :A �[c,d] j :G |= i :A �[v,w] j :G where

v =

{
ac

2d−a if a �= 2d

0 otherwise
and w =

⎧⎨⎩
0 if b = 0
bd

2c−b if b �= 0 and b < 2c
1+d

1 otherwise

4. i :A ≡[a,b] j :G |= i :A ⊥[v,w] j :G and
i :A ⊥[a,b] j :G |= i :A ≡[v,w] j :G where v = 1− b and w = 1− a

Proposition 3 introduces properties of mapping entailment with respect to ALCO con-
structors. No property about existential restriction is included, since, as mentioned be-
fore, mappings between roles are not considered in this paper.

Proposition 3. The following hold:

1. i :A �[a,b] j :G |= i :A �[v,w] j :¬G where v = 1− b and w = 1− a

2.
i :A �[a,b] j :G
i :A �[c,d] j :�
i :� �[e,f ] j :G

⎫⎬⎭ |= i :¬A �[v,w] j :G where

v =

{
max

(
0, e−bd

1−c

)
if c �= 1

1 if c = 1
and w =

{
min

(
f−ac
1−d , 1

)
if d �= 1

1 if d = 1

3.
i :A �[a,b] j :G
i :A �[c,d] j :H

}
|= i :A �[v,w] j :G �H where

{
v = max(0, a+ c− 1), and
w = min(b, d)

4.
i :A �[a,b] j :G
i :A �B �[c,d] j :G

}
|= i :A �B �[v,1] j :G where v = ac

5. i :A �[a,b] j :G �H |= i :A �[a,1] j :G

6.
i :A �B �[a,b] j :G
i :A �B �[c,d] j :G

}
|= i :A �[0,w] j :G where w = b

c

7. i :A �[a,b] j :{g} |= i :A �[0,b] j :{g} �G

8. i :{a} �[a,b] j :G |= i :{a} � A �[a,1] j :G
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Notice that proposition 3 does not contain any rule that allow to infer some weight
interval [v, w] of the mapping 1 : A�B �[v,w] 2 : C starting from the weight intervals
[a, a′] and [b, b′] of the mappings i : A �[a,a′] 2 : C and i : B �[b,b′] 2 : C. This
contrasts to what happens for crisp mappings, where 1 : A�B �[1,1] 2 : C is a logical
consequence of the two mappings i : A �[1,1] 2 : C and i : B �[1,1] 2 : C. In general
there is an independence between the weights associated to the mapping of two concepts
and the weight associated to the mapping of their conjunction. Example 3 provides an
evidence of this independence by showing that mappings of the form i : A �[x,x] 2 : C
and i : B �[y,y] 2 : C with high (resp. low) values of x and y are consistent with
mappings of the form 1 : A �B �[z,z] 2 : C with a low (resp. high) value for z.

Example 3. Suppose that O1 contains the concepts Professor and Professional, while
O2 includes the concepts HasFreeTime and EarnsALot. The following two interpreta-
tions I1 and I2

ProfessorI1

X = {x1, . . . , x100} HasFreeTimeI2

X = {x1, . . . , x90, x101, . . . , x190}
ProfessionalI1

X = {x91, . . . , x190} EarnsALotI2

X = {x91, . . . , x100}

satisfies the following mappings:

(I1, I2) |=X 1:Professor �[0.9,0.9] 2:HasFreeTime (3)

(I1, I2) |=X 1:Professional �[0.9,0.9] 2:HasFreeTime (4)

(I1, I2) |=X 1:Professor � Professional �[0.1,0.1] 2:HasFreeTime (5)

(I1, I2) |=X 1:Professor �[0.1,0.1] 2:EarnsALot (6)

(I1, I2) |=X 1:Professional �[0.1,0.1] 2:EarnsALot (7)

(I1, I2) |=X 1:Professor � Professional �[0.9,0.9] 2:EarnsALot (8)

Notice that I1 and I2 satisfy the low weight mapping (5), on the conjunction of two
concepts, as well as the high weight mappings (3) and (4) defined on the two conjunct
concepts. Conversely, the two interpretations satisfy the high weight mapping (8) and
the low weight mapping (6) and (7).

Proposition 4 shows mapping entailments in the presence of local knowledge. Local
entailment in ontology Oi is denoted by |=i. As in the case of weighted mappings, if
we write |=i C r D, we assume that C and D belong to L(Oi).

Proposition 4. The following hold:

1. If |=i A ≡ B and |=j G ≡ H then i :A r[v,w] j :G |= i :B r[v,w] j :H
2. If |=i A � B then i :A �[v,w] j :G |= i :B �[v,1] j :G
3. If |=i A � B then i :A �[v,w] j :G |= i :B �[0,w] j :G
4. If |=i A �B � ⊥ then i :A �[v,w] j :G |= i :B �[0,1−v] j :G

5 Variations on a Theme

There are a number of places above where we have made certain choices that could
have been done differently. We examine some of the alternatives in this section.
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5.1 Interpreting Weighted Equivalence Mappings

The choice of interpreting the weighted equivalence mapping by means of the F-measure
is based on the fact that this is the typical measure used to evaluate the global quality
of a classifier. However, any function f : [0, 1]2 → [0, 1] that satisfies the following
properties can be chosen to combine specific precision and recall values:

1. f(0, 0) = f(1, 0) = f(0, 1) = 0, and f(1, 1) = 1. The motivation for this is so that
in the case of crisp mappings, the weight of an equivalence mapping be the logical
“and” of the weights of the subsumption mappings.

2. f(·, ·) is monotonic in each variable. In other words, if the weight of a subsumption
mapping increases then the value of the equivalence mapping must also increase.

In this paper, f(·, ·) is the F-measure, but parallel studies can be conducted where, for
instance, f(x, y) = max(x, y), f(x, y) = x · y or f(x, y) = x+y

2 .
A different approach to interpret the weighted equivalence mapping, starts from the

usual definition of equivalence in DLs in terms of subsumption: (A ≡ B) iff (A � B)
and (A � B). When dealing with single numbers for precision and recall, it is usually
imposible to combine them into a single value by simple conjunction; hence the use of
F as above. However, when using ranges of scores [a, b] for subsumption relations, one
can define A ≡∨

[a,b] B as the conjunction of A �[a,b] B and A �[a,b] B. This leads to a
natural rule: if A �[a1,b1] B and A �[a2,b2] B then A ≡∨

[v,w] B with v = min(a1, a2)

and w = max(b1, b2).
The current version of our semantics is characterised by the fact that it allows a

single individual in ontology O1 to be matched with certainty to sets of individuals in
O2. That is, we can express {1:book1} ≡[1,1] {2:book1 copy1, 2:book1 copy2}. This
is certainly useful if we want to express the fact that a book (e.g. book1) is equivalent to
all the copies of that book. On the other hand, as pointed out by Cuenca Grau et al [7]
the DDL which corresponds to our semantics, constructed according to Theorem 1 has
certain conclusions that may sometimes be undesirable. The example in [7] starts from
an ontology O1 which states that the concepts Flying and NoNFlying are disjoint and
that all birds can fly, and an ontology O2 which defines the concept Penguin, and it
connects the two ontologies with DDL bridge rules which map Bird onto Penguin and
NoNFlying onto Penguin as described below:

1:NoNFlying � Flying � ⊥, 1:Bird
�−→ 2:Penguin,

1:Bird � Flying, 1:NoNFlying
�−→ 2:Penguin

2:Penguin � �,

The point made in [7] is that if we describe this example in one ontology, by rewriting
�−→ and

�−→ mappings by means of � and � statements, we obtain an unsatisfiable
Penguin concept, as penguins cannot be (flying) birds and non flying creatures at the
same time. In DDL the two ontologies O1, O2 and the above mappings are satisfiable.
Intuitively this happens because a penguin x in ontology O2 can correspond, via the
DDL domain relation, to two distinct objects in O1: one flying, and the other not.
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This effect can be avoided by restricting the domain relation in DDL to be 1-to-1,
as in P-DL [2]. A similar restriction can also be imposed to the semantics of weighted
mappings given in Section 2: one simply requires that the interpretations I1 and I2 be
1-to-1 on the set X .3 It can easily be verified that the corresponding proofs of Lemma 2
and of Theorem 1 go through. Note that in the case of 1-to-1 relations, all satisfiable
mappings between individuals can be reduced to mappings in the intervals [0, 0], [1, 1]
or [0, 1]. That because the value of precision, recall, and F-measure in this case is either
0 or 1.

5.2 A General Framework for Probabilistic Mappings

A natural question to ask is why not simply union the two ontologiesO1 andO2 with the
precision and recall statements expressed as probabilistic subsumptions between their
terms, into one “global” probabilistic DL ontology (PDLO), and then reason with it.
Our answer is that intuitively one wants to keep their domains of interpretation disjoint.
The set X , whose identifiers did not appear in either O1 nor O2, but were independently
interpreted into the domains of O1 and O2 respectively, played a crucial role in this.

We show here how one could create a global PDLO which respects this intuition,
and from which one could draw a variety of conclusions depending on which specific
probabilistic DL was chosen. (See Lukasiewicz and Straccia’s review [13] for a variety
of proposals.) The idea of such a translation is inspired by our earlier work on DDL [3],
where we also constructed a single global DL, though the details of our construction
here are different.

Let us suppose that O1 and O2 are two ontologies and let P = {1:Ak �[a,b] 2:Gk}
be a set of weighted inclusion mapping statements between O1 and O2.

Suppose that DL P is some probabilistic description logic, where one can make
inequality assertions on the probability of subsumptions of the form (E � F) with
probability � p.

Then consider the following translation from O1, O2 and P into a DL P TBox T12:

– The atomic concept symbols of T12 consist of {1 :A | A ∈ CN1} ∪ {2 :G | G ∈
CN2} ∪ {1:ANYTHING, 2:ANYTHING, X}.

– The atomic role symbols of T12 consist of {1 : R | R ∈ RN1} ∪ {2 : S | S ∈
RN2} ∪ {ρ1, ρ2}.

– The axioms of T12 include
• relabelled local axioms of O1 and O2, obtained by prefixing all identifiers and

subconcepts with 1 and 2 respectively.
• transformations of all concepts and axioms, as described in [3], so that comple-

mentation in Oi is with respect to i :ANYTHING only (e.g., ¬1 :A is replaced
by 1:ANYTHING � ¬1:A).

• (1 : ANYTHING � 2 : ANYTHING � ⊥) , expressing the disjointness of the
domains of the two ontologies being mapped.

• axioms restricting ρi to have domain X and range i :ANYTHING for i = 1, 2.
The idea is that ρi will play the role of the interpretation Ii applied to X .

3 This corresponds to requiring the values in X to obey the unique name assumption.
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• for every statement A �[a,b] G add (∃ρ1.1 : A � ∃ρ2.2 : G) with probability
≥ a and (∃ρ1.1 : A � ∃ρ2.2 : G) with probability ≤ b
Essentially, these axioms establish the probabilistic subset relationships be-
tween the elements of X mapped by ρi

• converse axioms for every statement A �[a,b] G, adding (∃ρ2.2 : G� ∃ρ1.1 :
A) with probability ≥ a and (∃ρ2.2 : G � ∃ρ1.1 : A) with probability ≤ b

• If DL P requires all axioms to be stated with a probability, add probability 1
to the axioms built before the last 2 steps.

• In case one wants to simulate the approach presented in this paper, one would
also like to enforce that X is a finite set. If the DL P has the finite model
property, then we are safe since we can restrict ourselves to reasoning in finite
models. Otherwise, if X could be made finite using axioms then so could the
domain concept, �, and it is known that reasoning in only finite models leads
to very different and complex deductions [4].

We believe the above framework (obviously adjusted for differences like the use of
Bayes nets for probabilistic statements) will allow us to explore in the future the dif-
ferences/similarities and benefits/tradeoffs between various ways of defining weighted
mappings based on the numerous proposals for probabilistic DLs in the literature, as
well as the one introduced in this paper. The first candidate for such an investigation will
be Heinsohn’s pioneering proposal for probabilistic DL, ALCP [9]. Heinsohn models
uncertain subsumption between concepts as conditional probabilities — what he calls
p-conditionings — and also considers intervals instead of single values.

6 Related Work

In the last years there has been a growing interest in the management of uncertainty
and vagueness in DLs for the semantic web [13]. Two main lines of research have been
followed: probabilistic generalisations of DLs to deal with uncertainty, and also fuzzy
extensions of DLs to handle vagueness. Since our approach falls into the first category
we only report, in the presence of comprehensive surveys such that [13], some of the
previous attempts to combine DLs with probability, paying special attention to those
related to ontology mapping.

Heinsohn was one of the first to provide a probabilistic extension of description
logics [9]. The language ACLP builds over ACL and adds probabilistic subsumptions
between concepts. These are formalised in terms of the so-called p-conditionings which
encode that the conditional probability of a concept given another concept lies in a
concrete real interval. Heinsohn assumes interpretation domains to be finite, and defines
conditional probabilities in terms of set cardinalities.

Koller et al. presented P-CLASSIC [10] which is a probabilistic generalisation of a
version of the description logic CLASSIC. P-CLASSIC follows Heinsohn’s approach
and aims at answering probabilistic subsumption queries, but its semantics is based on
a reduction to Bayesian networks.

More recently, Lukasiewicz proposed probabilistic extensions of SHOIN (D) and
SHIF(D) [11]. Uncertain knowledge is realised by way of conditional constraints
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which, similarly to p-conditionings, encode interval restrictions for conditional proba-
bilities over concepts. The semantics is based on the notion of lexicographic entailment
in probabilistic default reasoning. Conditional constraints can be applied to individu-
als too. Thus, it is possible to represent, besides statistical knowledge about concepts,
degrees of belief about individuals.

Although these approaches do not tackle the formalisation of ontology mappings
directly, they certainly could be used for this purpose. Given two ontologies O1 and
O2 one could express probabilistic subsumptions between their concepts within one
“global” probabilistic ontology (in one of the formalisms described above), and then
reason with it. The main motivation of this work is to provide a formalism that keeps
the domains of the ontology interpretations disjoint, as it is done in [3,16] for crisp
mappings. The classificational interpretation of mappings is itself a novel approach
and justifies the use of F-measure to model equivalence mappings which could not be
addressed with most of the existing probabilistic description logics.

From a very different perspective, Lukasiewicz et al. presents in [12] a language for
representing and reasoning with uncertain ontology mappings. This approach is based
on the tight integration of disjunctive logic programs under the answer set semantics,
the description logics SHOIN (D) and SHIF(D), and Bayesian probabilities.

The work by Lutz and Schröder [14] introduces a family of probabilistic DLs the
members of which relate to the probabilistic FOL of [8] in the same way as classical
DLs relate to FOL. This family, denoted by Prob-DLs, introduces a set of probabilistic
constructors P∼p where ∼ ∈ {<,≤,=,≥, >} and p ∈ [0, 1] to be applied to concepts
and in some cases also to roles. If C is a concept, then P∼pC is a concept which denotes
objects that are an instance of C with probability ∼ p. The semantics of Prob-DLs is
based on probabilistic interpretations, which extend a classical DL interpretation with a
probability distribution over a set of possible worlds. Concept subsumption in Prob-DLs
refers to classical DL concept subsumption, although in every world. It is claimed that
Prob-DLs are well-suited to capture aspects of uncertainty that are present in almost
all biomedical ontologies. We believe, though, that they do not capture the intended
semantics of ontology mappings.

7 Conclusions

Distributed ontology mappings are highly uncertain. We investigated the possibility to
provide a reclassification semantics for weighted mappings extending DDL semantics.
Reclassification semantics is based on the probability that individuals classified under
a particular concept in one ontology would be classified in another concept in another
ontology. Such a probabilistic view on weights should match the practice of matchers
based on concept extensions or relation to a wider context, e.g., annotated resources.

We showed that such a semantics was preserving the classical DDL semantics in
the sense that if crisp DDL mappings are encoded as weighted mappings with [1, 1]
weights, the consequences correspond. In fact, the reclassification semantics may be
used as an alternative semantics to classical DDL semantics.
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Then, weighted mapping entailment was defined from this semantics. Inferred map-
pings predict the probability of reclassification from weighted mappings. This allows
one to infer mappings across different mapping relations and term constructions. It also
relates mapping inference to (crisp) ontological reasoning. As usual with probabilis-
tic approaches, precision weakens with inference. We also discussed variation of the
proposed framework.

There are several avenues for this work. The most direct one is to apply it to mapping
(or ontology) debugging by ranking given and inferred mappings according to their
weight intervals and help to detect those near mappings which would not appear as
crisp mappings but are mappings of high weight.

Acknowledgements. Manuel Atencia is partially supported under Qualinca project
(ANR-2012-CORD-012) sponsored by the French National Research Agency.
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Abstract. Modelling and understanding various contexts of users is im-
portant to enable personalised selection of Web APIs in directories such
as Programmable Web. Currently, relationships between users and Web
APIs are not clearly understood and utilized by existing selection ap-
proaches. In this paper, we present a semantic model of a Web API
directory graph that captures relationships such as Web APIs, mashups,
developers, and categories. We describe a novel configurable graph-based
method for selection of Web APIs with personalised and temporal as-
pects. The method allows users to get more control over their prefer-
ences and recommended Web APIs while they can exploit information
about their social links and preferences. We evaluate the method on a
real-world dataset from ProgrammableWeb.com, and show that it pro-
vides more contextualised results than currently available popularity-
based rankings.

Keywords: Web APIs, Web services, personalisation, ranking, service
selection, social network.

1 Introduction

The rapid growth of Web APIs and a popularity of service-centric architectures
promote a Web API as a core feature of any Web application. According to
ProgrammableWeb1, a leading service and mashup directory, the number of Web
APIs has steadily increased since 2008. While it took eight years to reach 1,000
APIs in 2008, and two years to reach 3,000 in 2010, it took only 10 months to
reach 5,000 by the end of 2011 [16]. In spite of this increase, several problems are
starting to arise. Old and new not yet popular Web APIs usually suffer from the
preferential attachment problem [14], developers can only run a keyword-based
search in a service directory or they run a Google search to find Web pages that
reference or describe Web APIs. Although there exist a number of sophisticated

1 http://www.programmableweb.com

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 34–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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mechanisms for service discovery, selection and ranking, there is still a lack of
methods that would in particular take into account a wider Web APIs’ and
developers’ contexts including developers’ profiles, information who developed
Web APIs or used them in a mashup, Web APIs’ or mashups’ categories as well
as the time when an API or a mashup was developed or published. With the
popularity of Web APIs and directory services like ProgrammableWeb, it is now
possible to utilize all such information in more sophisticated service selection
methods.

In this paper we develop a novel Web API selection method that provides per-
sonalized recommendations. As an underlying dataset we create so called Linked
Web APIs, an RDF representation of the data from the ProgrammableWeb di-
rectory, that utilizes several well-known RDF vocabularies. The method has the
following characteristics: 1) social and linked–it exploits relationships among
Web APIs, mashups, categories, and social relationships among developers such
as who knows who in the ProgrammableWeb directory, 2) personalized–it takes
into account user’s preferences such as developers the user knows and preferences
that define importances of predicates, and 3) temporal–it takes into account a
time when Web APIs and mashups appeared in the graph for the first time.

We develop a method called the Maximum Activation and show how it can be
used for theWebAPI selection. Themethod calculates amaximumactivation from
initial nodes of the graph (defined by a user profile), to each node from a set where a
node in the set represents aWebAPI candidate.We adopt the term activation from
the spreading activation method[1] and we use it as a measure of a connectivity
between source nodes (initial nodes defined by a user profile) and a target node (a
WebAPI candidate).We use flownetworks as an underlying concept for evaluation
of the maximum activation in the graph. We implement the method as a Gephi
plugin,2 and we evaluate it on several experiments showing that the method gives
better results over traditional popularity-based recommendations.

The remainder of this paper is structured as follows. Section 2 describes the
underlying Linked Web APIs dataset and Section 3 describes the maximum
activation method, its definitions and the algorithm. Section 4 describes several
experiments from running the method on the Linked Web APIs dataset and a
case study that shows how a developer can use the method when creating a
mashup with various Web APIs. Section 5 describes the related work that also
includes information on how the method compares to the spreading activation
method. Finally, Section 6 concludes the paper and describes our future work.

2 Linked Web APIs

Figure 1 shows an extract of the Linked Web APIs dataset of the Pro-
grammableWeb, currently the largest directory of Web APIs. The Linked Web
APIs dataset represents the whole directory as an RDF graph with over 300K
RDF triples. To build the dataset we gathered data about Web APIs, mashups,
their categories, developer profiles, and relationships among Web APIs and

2 https://github.com/jaroslav-kuchar/Maximum-Activation-Method

https://github.com/jaroslav-kuchar/Maximum-Activation-Method
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Fig. 1. Excerpt from the Linked Web APIs dataset

mashups that use them, relationships among Web APIs, mashups and devel-
opers who developed them, and relationships among Web APIs, mashups and
categories. Moreover, we also capture the time of the Web APIs and mashups
when they appeared in the ProgrammableWeb directory for the first time.

Note that there are other information in the ProgrammableWeb that we could
use to make the Linked Web APIs richer such as various technical information
about protocols and data formats. Also, we could better associate the data with
other datasets in the Link Data cloud and publish it to the Linked Data com-
munity. Although we plan to do this in our future work, the Linked Web APIs
dataset that we present here already provides the sufficient information for our
Web API selection method.

The Linked Web API dataset uses several well-known ontologies. Concepts
from FOAF3 ontology (prefix foaf) represent mashup developers as foaf:person
concepts with their social links, concepts from the WSMO-lite [15] ontology
(prefix wl) represent Web APIs as wl:service concepts and their functional
category descriptions. We also use the Dublin Core4 vocabulary (prefix dc)
for properties such as title, creator and date, and the SAWSDL[12] property
sawsdl:modelReference. Further, we create new concepts and properties for which
we use the ls prefix. We define the ls:mashup concept that represents a mashup
and the ls:category concept that represents a functional Web API/mashup cat-
egory. There are following types of edges in the Linked Web APIs:

3 http://xmlns.com/foaf/0.1/
4 http://dublincore.org/documents/dcmi-terms/

http://xmlns.com/foaf/0.1/
http://dublincore.org/documents/dcmi-terms/
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1. User—User: an edge between two user nodes represented with the foaf:knows
property indicating a social link.

2. User—Mashup: an edge between a user and a mashup represented with the
dc:creator property.

3. Mashup—API: an edge between a mashup and an API represented with the
ls:usedAPI property.

4. Mashup—Category, and API—Category: an edge between a mashup/API
and a category represented with the sawsdl:modelReference property.

3 Maximum Activation Method

3.1 Definitions

Let G = (V , E , I) be a graph representing Linked Web APIs where V is a set of
nodes, E is a set of edges and I : E → N is a capacity function which associates
a capacity of an edge with a natural number. A node in V can represent an
API described by the wl:Service concept, a mashup described by the ls:Mashup
concept, a user described by the foaf:Person concept or a category described
by the ls:Category concept. An edge e ∈ E represents a mutual (bidirectional)
relationship between two nodes as follows: for a property in the Linked Web APIs
dataset we create an inverse property such that when (o1, p, o2) is a triple where
o1, o2 correspond to nodes in V and p corresponds to an edge in E , we create a
new triple (o1, p

−1, o2) where p
−1 is an inverse property to p. See Section 3.3 for

additional details.
Let P = {p1, p2, ..., pn}, pi ∈ V be a set of nodes that represent a user profile.

The nodes in P may represent the user himself, nodes that the user likes or
knows or has any other explicit or implicit relationships with. Further, let W =
{w1, w2, ..., wm}, wi ∈ V be a set of nodes that represent a user request as Web
APIs candidates. The Maximum Activation method then calculates a maximum
activation ai for each Web API candidate wi ∈ W . The higher number of the
maximum activation denotes a Web API candidate with a higher rank, that
is the preferred Web API candidate over a Web API candidate with a lower
maximum activation.

We denote an activation that can be sent between two nodes linked with an
edge e as a natural number i(e) ∈ N. The activation sent through an edge cannot
exceed the capacity of the edge defined by the capacity function

I(ei,t) = S(ei) ∗ A(ei,t) (1)

where S(ei) ∈ {x ∈ N|0 ≤ x ≤ 100} is a user preference function that defines
an importance of the edge ei (i.e., how the user sees an importance of semantics
represented by the edge) and A(ei,t) is the exponential ageing function. An im-
portance S(ei) < 50 indicates that the user does not prefer the edge’s semantics,
an importance S(ei) > 50 indicates the the user prefers the edge’s semantics
and the importance S(ei) = 50 indicates a neutral value. A user may chose an
arbitrary number of edges for which he/she defines preferences. Edges for which
the user does not define any preferences have a default preference 50.
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Further, we define the exponential ageing function as

A(ei,t) = A(ei,to) ∗ e−λt (2)

where A(ei,t) is an age of the edge ei at time t, A(ei,to) is the initial age of the
edge ei at the time the edge appeared in the graph G (i.e., values of dc:created
property) and λ is an ageing constant. The ageing constant allows to configure
an acceleration of the ageing process. Since our method gives better results for
better connected nodes in the graph, the ageing function allows to control an
advantage of “older” nodes that are likely to have more links when compared
to “‘younger” ones (see Section 4.1 for discussions on how we setup the ageing
constant and Section 4.3 and 4.4 for differences in results with and without the
ageing function applied).

Note that we currently only apply the ageing function to edges that are linked
with nodes representingWeb APIs andmashups. In other words, we use a creation
date of a Web API or a mashup to evaluate the ageing function of any edge that
links with the Web API or the mashup respectively. We assume that the Web API
or the mashup was created at the same time along with all its edges that connect
it to other nodes in the graph. For all other edges it holds that A(ei,t) = 1.

3.2 Algorithm

We calculate the Maximum Activation according to the following algorithm.

Inputs:
– Graph G = (V , E , I) constructed from the Web Linked APIs dataset.
– A user profile P = {p1, p2, ..., pn}.
– Web API candidates W = {w1, w2, ..., wm}.
– A user preference function S(ei).

Output:
– A set of maximum activations {ai} evaluated for each wi ∈W .

Uses:
– A set C = {e1, e2, ..., ek}, ei ∈ E .
– A function FF that represents the Ford-Fulkerson algorithm [8].

Algorithm:

1: // create a virtual source node p′

2: add node p′ to V
3: for all pi ∈ P do
4: add edge e(p′, pi) to E , S(e)← 100000, A(e)← 1
5: end for
6: // calculate a maximum activation ai from
7: // a virtual node p′ to every Web API candidate wi

8: for all wi ∈ W do
9: C ← FF (p′, wi,G)

10: ai ←
∑

ei∈C(I(ei))
11: end for
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In lines 2–5, the algorithm first creates a virtual node representing a single source
node with links connecting the virtual node and all other nodes from the user
profile. Any edge that connects the virtual node with any other node in the graph
has a capacity set to a very large value so that the edge does not constrain the
maximum activation. In lines 8–11, the algorithm finds a maximum activation
for each Web API candidate wi from the virtual node p′. For this we use the
Ford-Fulkerson algorithm to find a maximum activation from the source node
(i.e., the virtual node) to the target node (i.e., a Web API candidate). We do
not formaly describe the FF algorithm here, however, for the purposes of later
discussion in Section 3.3 we provide its brief description: the FF algorithm first
sets the initial activation for each edge to 0 and tries to find an improving path
on which it is possible to increase the activation by a minimum value greater
then 0. If such path is found, the algorithm increases activations on every edge
on the path and tries to find another path. When no more path is found, the
algorithm ends. The result of FF is the set C that contains every last edge from
all paths from the source towards the target when an improving path is not
possible to find. The maximum activation is the sum of all activations on edges
from C. In line 10, the algorithm finally calculates the maximum activation as
a sum of all activations of edges in C.

3.3 Discussion

Meaning of Maximum Activation Value. As we noted earlier, we interpret
the maximum activation of the graph as a measure that indicates how well the
source nodes are connected with the target. In general, the more improving
paths exist between the source and the target, the higher maximum activation
we can get. However, the value of the maximum activation is also dependent on
constraints and the creation time of Web APIs and mashups along the improving
paths when the ageing function is applied.

Maximum Activation and Edges in C. The edges in C are constraining the
maximum activation which means that if capacities of such edges increase, the
maximum activation can be increased. Note, however, that we assign capacities
based on semantics of egdes thus by changing a capacity on an edge in C, we
also change capacities on other edges not in C. Running the algorithm again
on the graph with new capacities will lead to a different set C and different
maximum activation. In other words, it does not hold that increasing a capacity
on any edge in C will lead to a higher maximum activation. This also means that
maximum activation that our algorithm evaluates has a global meaning while
activations on individual edges do not have any meaning. Defining capacities for
individual edges is the subject of our future work.

Graph G Construction. When we construct the graph G from the Linked Web
APIs dataset, for every predicate we create a bidirectional edge. A graph with
bidirectional edges provides a richer dataset for maximum activation evaluation.
A large graph with unidirectional edges may contain many dead end paths that
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may limit the number of improving paths that the algorithm would be able to
find from the source to the target nodes. Evaluation of maximum activation on
such graph would not provide many interesting results.

4 Experiments

In this section we present several experiments and their results5 that use maxi-
mum activation for the Web APIs selection.

For our experiments we use the full Linked Web APIs dataset. The dataset
contains all user profiles for users that created at least one mashup. We also
extracted profiles on all categories, tags, mashups and Web APIs. The snapshot
we use covers the period from the first published API description in June 2005,
till May 18th, 2012. The snapshot includes 5 988 APIs, 6 628 mashups and
2 335 user profiles. In the experiments we addressed following questions:

– What is the impact of user preference function on results of the maximum
activation?

– How does the ageing factor influence the maximum activation?
– How can the popularity of an API evolve over time?
– How to make the process of building a mashup more personalised and con-

textualised?

4.1 Setting the Ageing Constant

We experimentally set the ageing constant to a value λ = 0.1 and the age
period to one week (t = week). Our graph contains data since June 2005, that
is approximately 360 weeks. Figure 2 depicts an effect on ageing function for
different λ. Note that the higher the constant is, the algorithm promotes the
more recently added APIs and Mashups.

4.2 Impact of the User Preference Function

The user preference function defines an importance of the edge, that is how the
user sees the importance of semantics represented by the edge. For example, the
user can give a higher importance to edges representing a friendship (foaf:knows)
than to edges between mashups and Web APIs (ls:usedAPI). The importance
values, along with the chosen edge ageing constant λ, are used to compute the
total capacity of an edge (see definition (1)). To study the influence of an im-
portance value on a single edge, we were gradually increasing the value from 0
to 100 by a step of 5 and fixed importance values of all other edges to 50. We
run this experiment for 3 different well-known APIs, namely Google Maps, Bing
Maps and Yahoo Maps.

Figure 3 shows the experiment results: the importance value on the edge
API–Mashup (Fig.3(b)) and Mashup–User (Fig.3(g)) does not have influence

5 Full results of the experiments are available at http://goo.gl/GKIbo

http://goo.gl/GKIbo
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Fig. 2. Ageing function

on the maximum activation. Slight influence has the importance value on edges
Mashup–Category (Fig.3(f)), User–Mashup (Fig.3(h)) and User–User (Fig.3(i)).
Fig.3(a) further shows that different importance values have various ranges of
influence: the importance value for the API–Category has influence in a range
0−5 for Yahoo Maps API, 0−10 for Bing Maps API, and 0−15 for Google Maps
API, while higher importance values do not have any influence as the maximum
activation is limited by the capacities of other types of edges.

4.3 Impact of the Ageing Constant λ

The ageing constant λ is a configurable parameter which influences the value
of assigned edge capacity. The higher the λ is, the more recent edges will be
preferred – that is, the older edges will have a lower capacity. In different datasets
edges can occur more or less frequently therefore appropriate value for the λ
should be set. Setting high λ in datasets where the edges occur less frequently
may lead to very low edge capacities and consequently to the low activation
value. In other words, the ageing constant λ makes the selection method more
adaptable to different datasets.

For this experiment we chose a random user Dave Schappell6 and we calcu-
lated the maximum activation for each API candidate in the “mapping” category.
We evaluated the results in the period from 1st of June 2009 (shortly after the
user registered his profile) till 1st of June 2012 with a period of age set to 1
week. We set the ageing constant λ to values 0.01 and 0.1. By setting the ageing

6 http://www.programmableweb.com/profile/daveschappell

http://www.programmableweb.com/profile/daveschappell
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Fig. 3. Impact of Importance values

constant we are able to accelerate the ageing process, that is we get a lower
capacity on older edges. Fig.2 shows, setting the ageing constant to 0.1 we get
higher maximum activation for edges that appeared in the last 50 weeks, and
setting it to 0.01 in the last 350 weeks.

Table 1 shows the configuration of importance values for various types of edges
for this experiment and Table 2 and 3 shows the results of this experiment for λ
set to 0.01 and 0.1 respectively. In these tables, the“PW rank” column shows a
popularity-based ranking used by the ProgrammableWeb which is only based on

Table 1. Importance Value Configuration

Edge name Importance value Edge name Importance value

API–Category 50 Mashup–Category 70
API–Mashup 50 Mashup–User 50
Category–API 70 User–Mashup 90
Category–Mashup 20 User–User 90
Mashup–API 70 / /
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Table 2. Summarised ranking results with λ=0.01

Node ID API name Date created
Max-Activation
λ = 0.01

PW
rank

value rank

2053 Google Maps API 2005-12-05 5559 1 1
2041 Google Earth API 2008-06-01 1080 2 5
2057 Google Maps Data API 2009-05-20 1043 3 8
2052 Google Geocoding API 2010-12-09 1028 4 11
3032 Microsoft Bing Maps API 2009-06-09 853 5 2
2060 Google Maps Flash API 2008-05-17 792 6 6
5827 Yahoo Geocoding API 2006-02-14 715 7 4
5836 Yahoo Maps API 2005-11-19 707 8 3
493 Bing Maps API 2009-06-09 662 9 10
2070 Google Places API 2010-05-20 553 10 18

Table 3. Summarised ranking results with λ=0.1

Node ID API name Date created
Max-Activation
λ = 0.1

PW
rank

value rank

2053 Google Maps API 2005-12-05 503 1 1
5531 Waytag API 2012-04-27 210 2 230
4330 Scout for Apps API 2012-04-20 190 3 202
4535 Google Geocoding API 2010-12-09 184 4 11
3815 Pin Drop API 2012-03-27 135 5 191
5950 Zippopotamus API 2012-04-26 123 6 233
5825 Yahoo Geo Location API 2012-04-23 120 7 230
1836 FreeGeoIP API 2012-03-29 112 8 116
5156 Trillium Global Locator API 2012-04-18 111 9 109
1430 eCoComa Geo API 2012-05-15 108 10 108

a number of mashups used by an API. Google Maps API is the highest ranked
API by our method (for both λ=0.01 and λ=0.1) and also is the highest ranked
by the Programmable Web popularity-based method. For λ = 0.01, the method
favors the recent APIs but also does not ignore APIs that were actively used in
the past 350 months (approx. 7 years).

From the results in Table 3 it is possible to see that the ageing constant
λ = 0.1 promotes newer APIs while at the same time it does not ignore the
all-time popular APIs such as Google Maps API and Google Geocoding.

4.4 Popularity of APIs over Time

In this experiment we examine a popularity of 3 APIs from the “mapping”
category for the user Dave Schappell in different points in time. We use the
configuration in Table 1 and the ageing constant λ set to values 0.01 and 0.1.
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Fig. 4. API popularity over Time

The results show that the Google Maps API has the highest popularity in
both cases for the ageing constant set at 0.01 and 0.1. From Figure 4(a) we
can see that the popularity of Yahoo Maps API and Bing Maps API follows
the popularity of the Google Maps API until the time marked with (1) and
(2). After the times (1) and (2), a popularity of the two APIs starts to fall.
Around December 2010 and January 2012 the popularity of Yahoo Maps API
experienced minimal activation growth due to several new mashups that were
created and used this API.

Figure 4(b) shows a popularity of the three APIs with a more strict edge
ageing. After the first half year, when the popularity of the 3 APIs is nearly
the same, the popularity of the Google Maps API is starting to increase until
the time marked with (1) and stays at this level until the time marked with
(2). Between the times (2) and (4) Google Maps API gained a popularity up to
maximum activation of 1 129, however, it also started to lose some activation
due to a less number of mashups that were using this API. On the other hand,
popularity of the Yahoo Maps API increased around December 2010 (3) due to
its more intensive usage. As we can see, in certain cases, by using the ageing
function we can get better results than the PW’S popularity-based ranking.

4.5 Case Study

In this section we present a case study for personalised API selection to illus-
trate capabilities of our maximum activation method. We have a developer who
wants to improve tourists’ experience in New York, USA by creating the Visi-
tor Mashup. The Visitor Mashup should aggregate information about different
events and information about restaurants in the city and in the area of New
York. Information about various points of events and restaurants should be lay-
ered on the map and dynamically updated when tourists change their locations
and new events and restaurants become available.

Developer starts the process of building the Visitor Mashup by identifying
groups of relevant APIs. As he progresses and selects APIs, the ranking pro-
cess becomes more personalised and contextualised. The process of creating the
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Visitor Mashup is described by following steps when in each step the developer
selects one API:

– Maps API. Developer builds his profile adding “maps” and “location” cat-
egories to it. He assigns a high importance value to the “API–Category”.
Table 4 shows the highest ranked results: Google Maps, Microsoft Bing Maps
and Yahoo Maps. The developer decides to select the Google Maps API.

Table 4. Summarised ranking results for Maps API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

2053 Google Maps API 2005-12-05 13720 1 6509 1 1
3032 Bing Maps API 2009-06-09 3720 2 238 2 10
5836 Yahoo Maps API 2005-11-19 2980 3 172 3 3

– Events API. The developer further searches for events API by updating
his profile with “events” category, adding “Google Maps API” and preserv-
ing “maps” and “location” categories. Further, he increases an importance
value of the “Mashup–API”. Table 5 shows highest ranked results: Seatwave,
Eventful and Upcoming.rg. The developer selects Seatwave API.

– Restaurant API. The developer searches restaurants API by adding
“‘food”, “restaurants” and “menus” categories to his profile. This time the
developer decides to use his social links and to look for APIs used by his
friends developers that he adds to his profile. Table 6 shows the highest
ranked APIs SinglePlatform, Menu Mania and BooRah. The developer se-
lects SinglePlatform API for restaurant information and recommendations.

Table 5. Summarised ranking results for Events API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

4348 Seatwave API 2012-02-28 940 3 842 1 4
1578 Eventful API 2005-10-31 3930 1 710 2 1
5371 Upcoming.rg API 2005-11-19 3220 2 411 3 2
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Table 6. Summarised ranking results for Restaurant API

Node ID API name
Date created

Max-Activation
λ not set

Max-Activation
λ = 0.01

PW
rank

value rank value rank

4522 SinglePlatform API 2012-01-30 150 2 125 1 6
2980 Menu Mania API 2009-12-05 220 1 65 2 1
611 BooRah API 2008-10-31 120 3 30 3 3

5 Related Work

Graph-based representation of services is a relatively new approach. The authors
in [2] propose service selection based on previously captured user preferences
using the “Follow the Leader” model. In [14] the authors construct collabora-
tion network of APIs and propose a social API Rank based on the past APIs’
utilisations. Other approaches that rank services based on results from social
network-based analyses in social API networks can be found in [17] and [13].

A particular method that relates to our work is the already mentioned spread-
ing activation. It is a graph-based technique, originally proposed as a model of
the way how associative reasoning works in the human mind [4]. The spreading
activation requires directed semantic network, e.g. an RDF graph [5,9,7]. The
inputs of the basic spreading activation algorithm are number of nodes with an
initial activation which represent a query or interests of a user. In sequence of
iterations initial (active) nodes pass some activation to connected nodes, usually
with some weighting of connections determining how much spread gets to each.
This is then iterated until some termination condition is met. The termination
conditions is usually represented as a maximum number of activated nodes or a
number of iterations. After the algorithm terminates, activated nodes represent
a similar nodes to the initial set of nodes.

Compared to our maximum activation method, the spreading activation does
not guarantee an activation of a particular node while our method always assigns
an activation if there exists an improving path between source and target nodes.
Although there exist constrained spreading activation methods which utilise se-
mantics of edges [6], no version of the spreading activation takes into account
the “age” of edges as our method does. The maximum activation is better suited
for the Web API selection mainly due to following reasons: 1) it is not known
at which nodes the spreading activation terminates while the Web API selection
problem uses Web API candidates as an input (target nodes), 2) the spreading
activation has a local meaning of activations that indicates a measure that can
be used for recommendations on data whereas maximum activation uses the
value as a global measure of connectivity from source to target nodes.

There are other works in the area of Web Service discovery and selection in-
cluding QoS selection [10,18], collaborative and content-based filtering methods
[3,20,11,19] which are less relevant.
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6 Conclusion and Future Work

A popularity and a growing number of Web APIs and mashups require new
methods that users can use for more precise selection of Web APIs. Current
approaches for searching and selecting Web APIs utilize rankings based on Web
APIs popularity either explicitly expressed by users or a number of Web APIs
used in mashups. Such metrics works well for the large, widely-known and well-
established APIs such as Google APIs, however, they impede adoption of more
recent, newly created APIs. In order to address this problem we proposed a
novel activation-based Web API selection method which takes into account a
user profile and user’s preferences, temporal aspects (the creation time of Web
APIs and mashups) and social links between users. While existing popularity-
based rankings use a single-dimensional ranking criteria (i.e., a number of APIs
used in mashups), our method uses multi-dimensional ranking criteria and with
help of graph analysis methods it provides more precise results. The method
requires a set of Web API candidates, a user profile and evaluates a ranking for
all Web API candidates for the given user profile. The Web API candidates may
result from a service discovery task that usually evaluates a match based on a
coarse-grained search request. Service discovery requests may be represented as
a functional category, for example, the discovery returns all services in the same
category such as a mapping category.

In our future work we want to extend the method so that we can assign capac-
ities to individual edges. In cooperation with ProgrammableWeb.com, we also
plan to improve the Linked Web APIs dataset and eventually make it available
in the Linked Data cloud. We want to enrich this dataset with user profiles from
traditional social networks. We also plan to incorporate to our method various
social network analysis metrics evaluated on the Linked Web APIs dataset. Last
but not least we want to evaluate the method on datasets from the Linked Data
cloud.
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Abstract. In this paper, we describe a mechanism for ontology align-
ment using instance based matching of types (or classes). Instance-based
matching is known to be a useful technique for matching ontologies that
have different names and different structures. A key problem in instance
matching of types, however, is scaling the matching algorithm to (a)
handle types with a large number of instances, and (b) efficiently match
a large number of type pairs. We propose the use of state-of-the art
locality-sensitive hashing (LSH) techniques to vastly improve the scala-
bility of instance matching across multiple types. We show the feasibility
of our approach with DBpedia and Freebase, two different type systems
with hundreds and thousands of types, respectively. We describe how
these techniques can be used to estimate containment or equivalence re-
lations between two type systems, and we compare two different LSH
techniques for computing instance similarity.

Keywords: Ontology Alignment, Schema Matching, Linked Data, Se-
mantic Web.

1 Introduction

Ontology (or schema) matching is a well-studied problem in the literature that
has received considerable attention over the last decade, as is clearly evident
from the large number of papers published over the years [30,15,27,5,17,21,19,
and many others]. In these works, the predominant approach to matching ex-
ploits purely schema-related information, i.e., labels or structural information
about the type hierarchy. This schema-based approach to schema matching is
a practical starting point that proves adequate in a number of applications.
However, schema-based matchers have their limitations, especially in situations
where schema elements have obscured names [27]. This observation gave rise to
a class of instance-based matchers [29,16,4,18,6] in which the instance data are
consulted as well in order to determine the schema mappings.

For both classes of matchers, the focus of most of these past works has been
on achieving high precision and/or recall. While these are important evaluation
metrics to illustrate the correctness of the developed techniques, a metric that

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 49–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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is often ignored in the evaluation is scalability. With the rapid rise in the size
and number of data sources on the web, effective schema matching techniques
must be developed that work at web scale. One only has to look at the Linked
Open Data cloud [7] to be instantly exposed to approximately 300 sources with
thousands of (RDF) types (or classes), with new sources of types added con-
stantly. Data that reside in different sources in the web is clearly associated,
but discovering these relationships can only be achieved if we are able to deduce
which types in the various sources are related. As a simple example, consider
an entity like the city of Boston. It is not hard to see that information for this
entity can be found in the following datasets: (a) the DBpedia entity for Boston
has the type http://dbpedia.org/ontology/City; (b) the Freebase entity
for Boston has the type http://rdf.freebase.com/rdf/location/citytown

or http://rdf.freebase.com/location/location; (c) in RDFa, using
the schema.org vocabulary, it has type http://schema.org/Place or
http://schema.org/City; and (d) the GeoNames entity has the type
http://www.geonames.org/ontology#P.

Clearly, we would like to be able to create matchings between all these types
with the different (often obscure) names in the different sources. Given that
instance-based approaches are more appropriate to deal with the differences in
schema vocabularies, it seems appropriate to consider such techniques in this
context. However, scalability is a key problem in applying these techniques to
web scale. To see why, consider a simple setting in which we have n types in one
data source, m types in another, and we assume that we have l instances for
each of these types. Then existing approaches would require n × m type com-
parisons, where each type comparison requires at least O(l) instance comparison
operations. Clearly, this is not scalable for most realistic usage scenarios.

In this paper, we focus on the problem of scaling instance-based ontology
alignment using locality-sensitive hashing (LSH) [32] techniques drawn from
data mining. Specifically, we show how one can use LSH techniques such as
MinHash [10] and random projection (a.k.a. random hyperplane or RHP) to
estimate instance similarity [13] and hence infer type similarity. To compute
instance similarity between two types, we first need to define the granularity
with which an instance is defined for the purposes of similarity analysis. Whole
instances frequently do not match between different type systems because of
slight differences in representing instances as strings, e.g., “Bank of America”
versus “Bank of America, Ltd”. As a result, we compute instance similarity using
tokenized strings to reduce the probability of misses due to string differences.

Instead of computing pairwise Jaccard similarity for all pairs of instance sets
in the two type systems, we use the MinHash technique to efficiently estimate
Jaccard similarity with a very low error rate while (a) compressing the instance
data to a fixed size for comparison, such that l instances can be succinctly
represented by a set of k hashes, where k is a small fixed number such as 500;
and (b) eliminating most of the irrelevant n×m type comparisons efficiently while
providing mathematical guarantees about false negatives (the algorithm cannot

http://dbpedia.org/ontology/City
http://rdf.freebase.com/rdf/location/citytown
http://rdf.freebase.com/location/location
http://schema.org/Place
http://schema.org/City
http://www.geonames.org/ontology#P
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introduce false positives since it only prunes potentially irrelevant comparisons,
i.e., those with similarity measures below a given threshold).

While set similarity is one metric for measuring instance similarity, it can
be unduly influenced by terms that occur very frequently across all types. We
therefore also estimate cosine similarity of term frequency vectors for instances
of each type, where the term frequencies are weighted by the tf ∗ idf measure.
In the context of instance similarity computations, tf ∗ idf is a weight that
reflects the degree to which a term appears in a particular type, compared to
its occurrence in all types. This measure then corrects for possible biases in the
similarity computation due to frequently occurring words.

As in the case of Jaccard similarity, we estimate cosine similarity on all types
using LSH techniques, because an all-to-all cosine similarity computation is not
feasible in practice. Specifically, we use the random projection method for esti-
mating cosine similarity between term frequency vectors for all candidate type
pairs (i.e., pairs with an expected similarity above a given threshold). The core
idea behind the random projection method relies on choosing a set of k random
hyperplanes to hash the input vectors [13], thus once again allowing comparisons
of k hashes.

Both cosine and Jaccard measures of instance similarity can be affected neg-
atively when the sets of instances between two types being compared have very
disparate sizes. For instance, if type A has 10 instances, and type B has 100
instances, the maximum Jaccard similarity one can get is 10/100 or 0.1. We
measure containment between types as well as their similarity to determine if
the relationship between the two types reflects equivalence or containment.

Our contributions in this paper are: (a) we describe the use of LSH techniques
for the efficient computation of instance-based similarity across disparate ontol-
ogy types or schema elements, (b) we show how these techniques can be used to
estimate containment or equivalence relations between two type systems, (c) we
compare Jaccard similarity and cosine similarity, to correct for possible biases in
estimation of similarity due to frequently occurring words, and (d) we evaluate
the utility of this approach with Freebase and DBpedia, which are two large
linked open datasets with different type systems.

2 Preliminaries: Locality Sensitive Hashing (LSH)

When comparing large numbers of types based on the similarity of their in-
stances, there are two primary scalability hurdles:

– First, to compare two types with L instances each regardless of similarity
metric, at least O(L) operations are required. For large values of L, this
repeated cost becomes the performance bottleneck.

– Second, to compare all pairs of types requires a quadratic computational
cost; but in practice, only pairs of types with a high enough similarity are
of interest. How can we save computation by pruning out those type pairs
with low similarity?
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2.1 Reducing Comparison Cost for One Type Pair

Locality Sensitive Hashing (LSH) [32] addresses the first scalability hurdle by
approximating the similarity in the following way.

Let U be a set of objects, a similarity measure sim is a function from U2 to
the interval of real numbers [0, 1] such that, for u and v in U , sim(u, v) indicates
the relative similarity between u and v. For example, sim(u, v) = 0 indicates no
similarity at all between u and v, whereas sim(u, v) = 1 corresponds to perfect
match between u and v.

Let sim be a similarity measure defined in U2. A family F of hash functions
from U to the set Z of integers is sim-sensitive iff., for any pair (u, v) ∈ U2,
the probability Pr(f(u) = f(v)) that a randomly chosen hash function f of F
hashes u and v to the same value is equal to the similarity sim of u and v, that
is, Pr(f(u) = f(v)) = sim(u, v).

The key idea in LSH is to estimate the similarity sim(u, v) between two
elements u and v more efficiently by randomly sampling hash functions from a
hash family F to estimate the proportion of functions f such that f(u) = f(v).
From the sampling theory, we know that the number of functions, denoted as n,
can be relatively small with a relatively small sampling error (e.g., for n = 500,
the maximum sampling error is about ±4.5% with 95% confidence interval).
Hence, the similarity between u and v can be estimated based on a small number
of functions from the hash family.

2.2 Avoiding Quadratic Comparisons

To address the second hurdle of avoiding the quadratic complexity associated
with comparing all pairs of types, we describe another well known technique,
called banding, that can help efficiently select pairs of types whose similarities
are likely to be above a given threshold.

Let (f1, . . . , fn) be a list of n independent functions from a sim-sensitive
hash family F . The signature matrix, denoted (f1, . . . , fn)-sigM(U), is a matrix
of n rows and |U| columns whose jth column contains the signature, (f1, . . . , fn)-
sig(uj), of the jth element uj of U . The cell (f1, . . . , fn)-sigM(U)[i, j] at row i

Fig. 1. Example of Signature Matrix and bands
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and column j (1 ≤ i ≤ n and 1 ≤ j ≤ |U|) is equal to fi(uj). Figure 1 shows an
example of such a matrix with n = 12 and |U| = 4.

The randomly selected functions (f1, . . . , fn) can be grouped into b mutually
disjoint bands (or groups), each containing r functions (n = b× r) as illustrated
in Figure 1, where b = 4 and r = 3. For two elements uj and uk in U (1 ≤ j <
k ≤ |U|), the pair (uj , uk) is considered a candidate pair iff. there is a band bl (
1 ≤ l ≤ b) such that, for each function f in this band bl, f(uj) = f(uk). In other
words, (uj , uk) is a candidate pair iff. there is a band bl such that the signatures
of uj and uk in that band are equal. For example, in Figure 1, (u1, u2) is a
candidate pair because their signatures have the same value in band 2, whereas
(u1, u3) is not a candidate pair because their signatures are different in all 4
bands. Intuitively, pairs with high enough similarities are more likely to have
their signatures agree in at least one band.

Formally, the probability that a pair (u, v) with similarity s is selected by
this banding technique is 1 − (1 − sr)b. Regardless of the value of r and b, the
curve (see Figure 2) representing the probability that a pair (u, v) is considered
a candidate as a function of sim(u, v) has a characteristic S-shape. This means,
for a given similarity threshold and a given acceptable false negative rate rate
(which means type pairs with similarity above this threshold are missing), r and
b can be chosen so as to maximize the likelihood that the actual false negative
rate remains below the given parameter rate.

In practice, for efficiency (i.e., to avoid pairwise comparisons), in each band
bl, projections of signatures to bl are hashed by a hash function h, and elements
whose projected signatures on bl hash to the same value are put in the same
bucket. Assuming that the chances of collisions for h are negligible, two elements
u and v will end up in the same bucket of a band bl iff. their signatures agree in
the band bl. Finally, a pair (u, v) is considered a candidate iff. there is at least a
band in which u and v are put in the same bucket.

3 Instance-Based Type Matching with LSH

For matching a finite set T of types based on their instances, we take an Infor-
mation Retrieval (IR) approach to associate a list of terms termlist(t) to each
type t ∈ T . Conceptually, for a given type t, we build a document dt by con-
catenating, for a given property (e.g., rdfs:label), all its values for all instances of
t. After applying standard IR processing to dt (e.g., tokenization, lowercasing,
stemming, etc.), we obtain a list of terms termlist(t). For two types t and t′,
we use the similarity between termlist(t) and termlist(t′) as a measure of the
similarity between t and t′. We consider cosine (cossim) similarity and Jaccard
(jaccsim) similarity, and their well known LSH equivalents using the random
projection method and the MinHash method, respectively.

3.1 Cosine Similarity (Random Projection Method)

To measure the cosine similarity of two types, we weight each term r ∈
termlist(t) using the formula termvec(t)[r] = tf (r, dt)×idf(r), where tf (r, dt),
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Fig. 2. Probability of a (u, v) selected as a function of sim(u, v) (r = 7 & b = 25)

the term frequency, is the number of occurrences of r in termlist(t), and idf(r),
the inverse document frequency, is defined as idf(r) = log(|T |/(1 + d)) where d
is the number of types that contain this term r. idf(r) measures how common
the term r is in all types; a very common term (i.e., low idf(r)) is not informa-
tive for type matching. We then use the random projection method to estimate
cosine similarity, which we give a brief introduction below.

If U is a vector space, a traditional metric used to measure the similarity
between two vectors u and v in U is cosine similarity, denoted cossim(u, v)
and defined as the cosine of the angle θ between u and v (see Figure 3). A
closely related similarity to the cosine similarity between two vectors u and v,
the angular similarity angsim(u, v), is defined as angsim(u, v) = π−θ

π , where
θ is the angle between u and v (0 ≤ θ ≤ π). cossim(u, v) is computed from
angsim(u, v) as follows: cossim(u, v) = −cos(π × angsim(u, v)).

For the ease of presentation, we describe how angsim-sensitive family of func-
tions can be constructed. Given two vectors u and v, let P denote the plane they
form, presented in Figure 3. Consider a hyperplane H , which can be character-
ized by one of its normal vectors n. H intersects P in a line. The probability
that a randomly chosen vector n is normal to a hyperplane H whose intersec-
tion with P does not pass between u and v (such as d in Figure 3) is precisely
angsim(u, v) = π−θ

π . The intersection of H and P does not pass between u and
v, iff. the dot products n.u and n.v of n with u and v have the same sign. It follows
that, for a vector space U , the family of functions F = {fw | w ∈ U} defined as
follows is an angsim-sensitive family: for any u and w in U , fw(u) = sign(w.u).

When we try to apply this classical version of random projection to instance-
based type matching, we observe that the computation of the dot product re-
quires a set of random vectors whose size is equal to the total number of distinct
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Fig. 3. Angular Similarity between two vectors

terms in all termlist(t) for t ∈ T . However, this angsim-sensitive family is
impractical for the following reasons:

– First, it is inefficient because it requires storing, in main memory, very large
dimensional randomly generated vectors. For example, for a ±3.2% error
margin at 95% confidence level, about 1000 such vectors need to be kept (or
regularly brought) in main memory. For large dataset such as Linked Data,
the number of distinct terms (i.e., the dimension of the normal vectors) can
be quite large. For reference, the number of words in the English language
is estimated to be slightly above one million.

– Second, it requires that the total number of distinct terms (i.e., the dimen-
sion of the randomly selected vectors) must be known in advance - before
any signature computation or similarity estimation can be performed. This
is a significant hurdle for an efficient distributed and streaming implemen-
tation, where the similarity between two types t and t′ can be computed as
soon as all the terms in termlist(t) and termlist(t′) have been observed.

To address these two limitations, we consider a different angsim-sensitive family
for our problem of instance-based type matching. Given a universal hash family
H [12], a more efficient angsim-sensitive family F ′ = { f ′

h |h ∈ H } to sample
from in our case is defined as follows (with termset(t) = {r | r ∈ termlist(t)}):
for t ∈ T and h ∈ H,

f ′
h(t) =

{
+1 if

∑
r∈termset(t) termvec(t)[r] × h(r) ≥ 0

−1 otherwise

Thus, randomly selecting elements of F ′ is equivalent to randomly selecting
elements of H. Note that f ′

h ∈ F ′ is the same as fw ∈ F where, for a term r,
w[r] = h(r) (w[r] denotes the weight of the term r in vector w).

The angsim-sensitive family F ′ addresses the issues of the standard angsim-
sensitive family F in two ways. First, instead of storing, in main-memory, very
lengthy random vectors, we simply need to store n random hash functions h ∈ H.
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In practice, we use the set of 1000 Rabin Fingerprints [9] of degree 37 (i.e., ir-
reducible polynomials of degree 37) as H. Each randomly selected element of
H can thus be stored in less than 64 bits. Second, for two types t and t′, their
signatures can be computed in a streaming fashion, which means we can update
the signature for each type as the instance values of that type are read incre-
mentally. With the angsim-sensitive family of functions, signature construction
can be done independently for each type and is therefore fully parallelizable. In
practice, we implemented the random projection method with Hadoop.

3.2 Jaccard Similarity (MinHash)

For a type t, the list of tokenized terms for instances of the type termlist(t)
may contain repeated terms. Taking into account term repetition enables us
to distinguish between types with the same set of terms while the terms have
different frequencies between the two types. For each type t in the finite set T
of types, we associate a set of occurrence annotated terms termOccSet(t) =
{r : k | r ∈ termlist(t) & 1 ≤ k ≤ occ(r, termlist(t))} where occ(r, l) denotes
the number of occurrences of a term r in the list l. An occurrence annotated
term r : k of a type t corresponds to the kth occurrence of the term r in the
list termlist(t) of terms of t. We then measure the similarity of two types using
Jaccard similarity on their instance values. Traditionally, the Jaccard similarity
jaccsim(u, v) of two sets u and v elements of U is defined as the ratio of the size of
the intersection of the two sets divided by the size of their union: jaccsim(u, v) =
| u ∩ v |
| u ∪ v | . To address the scalability issues, we employ MinHash, a standard LSH

technique to estimate the Jaccard similarity over the set U of all the sets of
occurrence annotated terms termOccSet(t) with t ∈ T .

MinHash considers a set F of hash functions where each function hmin maps
from U to the set Z of integers as follows: for u ∈ U ,hmin(u) = minx∈uh(x),
where h in a hash function from a universal hash family H1 from U to Z. hmin(u)
computes the minimal value of h on elements of u. Now, given two elements u
and v of U , hmin(u) = hmin(v) iff. the minimal value of h in the union u ∪ v is
also contained in the intersection u ∩ v. It follows that the probability that the
MinHash values for two sets are equal is equivalent to their Jaccard similarity:
Pr(hmin(u) = hmin(v)) = jaccsim(u, v). Thus, F = {hmin | h ∈ H} is a
jaccsim-sensitive family of functions. Then the Jaccard similarity of two sets
can be estimated with the percentage of n such functions whose MinHash values
are equal. Note that the transformation and MinHash computation for each
type is independent of other types, so they can be parallelized in a distributed
computing framework like Hadoop.

In addition to computing the Jaccard similarity between two types t and t′,
we observe that it is important to measure their containment, particularly when
the sizes of termOccSet(t) and termOccSet(t′) are very different. For two

types t and t′, Ct⊆t′ =
|t∩t′|
|t| measures the containment of t in t′. It is equal to

1 Elements of H are assumed to be min-wise independent : for any subset of U , any
element is equally likely to be the minimum of a randomly selected function h ∈ H.
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1 iff. t is contained in t′. It can be expressed in terms of the Jaccard similarity
as follows:

Ct⊆t′ =
jaccsim(t,t′)

jaccsim(t,t′)+1 × (1 + |t′|
|t| )

3.3 Banding Technique to Avoid Pairwise Comparison

Recall that to apply the banding technique, conceptually we construct a signa-
ture matrix for all types, with each column representing a type and the rows
computed from n independent hash functions. Through the banding technique,
we can generate candidate similar pairs; a pair of types becomes candidate for
further computation when they agree in at least one band. For each candidate
pair, we could store both the type URIs and the associated signatures, and dis-
tribute the actual similarity computation based on signatures across a cluster of
machines. However, it raises a strong requirement for both disk I/Os and network
I/Os in a distributed setting; note that the number of candidate pairs could still
be huge using the LSH technique and each pair of signatures take nonignorable
space. The way we address the challenge is to split the similarity computa-
tion in two phases. In phase one, we generate candidate pairs in the format of
(type-uri1, type-uri2). A join of candidate type pairs with the signature ma-
trix will produce a new type pairs in the format of (type-uri1+signature1,
type-uri2). In phase two, another join of the newly generated type pairs with
the signature matrix will do the actual computation of similarity based on the
signatures associated with type-uri1 and type-uri2.

4 Evaluation

In this section, we report the results of applying LSH techniques to find related
pairs of types in Freebase2 (retrieved on May 2012) and DBpedia [1] (version
3.6). Freebase data contains 22,091,640 entities (or topics), and DBpedia con-
tains 1,668,503 entities (or things). These entities have overall 44,389,571 label
values in Freebase and 2,113,596 labels in DBpedia. Since our goal is matching
types based on instances, we prune those types that have less than k number of
instances. For the results reported in this section, we have k = 500 which reduces
the number of types in Freebase from 15,364 to 1,069, and from 238 to 155 in
DBpedia. We further restrict the matching to label properties of the instances
(rdfs:label in DBpedia and /object/name in Freebase). The resulting sets of
types have overall 43,919,815 values in Freebase and 2,042,337 values in DBpe-
dia, which means on average 37,551 values per type. Notice that when compared
to the values before the pruning, the pruned datasets retain 98% and 96% of
their values, respectively. The actual number of instance values for each type
could vary significantly for each type. For example, there are 1,847,416 persons
on Freebase, and 363,752 persons in DBpedia.

2 http://www.freebase.com/

http://www.freebase.com/
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For the reported results, we merge the DBpedia and Freebase datasets and
match all the types in both with themselves. This allows us to evaluate the ef-
fectiveness of the LSH techniques in discovering related types within Freebase,
within DBpedia, and between Freebase and DBpedia. For purposes of the eval-
uation, we eliminate type pairs that match a type with itself from our analysis.
We fix the number of hash functions to 500 for MinHash and 1,000 for RHP.

4.1 Discovering Equivalence and Containment Relations

We first measure the effectiveness of our approach in discovering two kinds of re-
lationships between types: equivalence (i.e., two types refer to similar real-world
concept) and containment (i.e., one type is a subclass of the other). Unfortu-
nately, there are no manual type matchings between DBpedia and Freebase,
although there are instance matches that are connected with owl:sameAs links.
We therefore need to derive ground truth for matching Freebase with DBpedia
types, using the existing owl:sameAs links at the instance level between the two
data sources. We include a pair of types in ground truth if and only if their sets of
instances are linked with at least a given number, θg , of owl:sameAs links, to en-
sure we include valid type pairs in the ground truth. We call θg the ground truth
cardinality threshold. The ground truth for discovery of equivalent and contain-
ment types within a single source is derived similarly by finding the number of
shared instances between types. A pair of types is included in the ground if an
only if there are at least θg number of instances that exist in both types (e.g., if
θg number of instances have both dbpedia:Person and dbpedia:Actor as their
types, the type pair will be included in the ground truth).

We use the traditional information retrieval accuracy measures, namely pre-
cision, recall and F-measure. Precision is the ratio of correct results to all results
retrieved. Recall is the percentage of results in the ground truth that are ac-
tually retrieved. The F-measure is defined as the harmonic mean of precision

and recall, calculated as F =
2× Precision×Recall

Precision+Recall
. For the type matches

based on Jaccard or cosine similarity, we need a similarity threshold to define
non-matches. However, there is no fixed threshold value that works best across
all the types, which makes threshold selection ad-hoc. A common approach in
deciding matches is to sort the matching results in a descending order of the
similarity score, and pick only the top-k results. Again, the value of k can be
different for each type. For this evaluation, we set the value of k for each type t
as the number of types t′ that match with t in the ground truth; in our ground
truth, this value varies from 1 to 86, with an average of 4. We call the resulting
measures variable-k top-k precision, recall and F-measure.

Table 1 shows the variable-k top-k precision, recall and F-measure obtained
with θg = 1, 000. For all cases, RHP outperforms MinHash in terms of accuracy.
Note that these results are obtained without any post-processing, but by sorting
the results based on the estimated Jaccard/cosine similarity values respectively.
The superiority of the cosine metric over Jaccard suggests that tf*idf is an
effective term weighting strategy for instance-based type matching.
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However, a key advantage for Jaccard is that it gives us an indication of
whether there is a containment relationship between two types, which cannot be
derived from cosine similarity. As we discussed earlier, when the sets of instance
values for two types are very different in size, the maximal similarity computed
by either Jaccard will be significantly below 1, even if one of the sets is perfectly
contained in the other. To discover containment relationship between types, we
add a post-processing phase to MinHash that sorts the output type pairs by an
estimation of containment ratio Cu⊆v from one type to the other, as discussed
in Section 3.2. A key problem in measuring accuracy is again the lack of ground
truth. We derived the ground truth for both Freebase and DBpedia using the
following method. We include into the ground truth a pair of types t1 and t2 if
the ratio of the number of instances that have both t1 and t2 as their types to the
number of instances of type t2 is above a threshold θc. For the results reported
in this section, we set θc = 0.8, which means that we have (t1, t2) in the ground
truth if 80% of instances of type t1 also have t2 as their types. For DBpedia,
in addition to the ground truth derived similarly, we use the set of all subclass
relationships in the type hierarchy in the DBpedia ontology as our ground truth.
Note that using the DBpedia ontology as a ground truth is a very conservative
approach. In DBpedia, there is a strict type hierarchy such that Song is a Mu-
sical Work which is in turn a Work, and Work is in fact a Thing. None of the
actual instances of Song are annotated with all their superclasses (e.g. Thing).
But our approach on instance-based type matching requires that instances be
annotated with both subclasses and superclasses in order to find containment.
Therefore using the DBpedia ontology is a very conservative ground truth, but
we nevertheless include it for evaluation purposes. Table 2 shows the accuracy
results for the three cases. The results for DBpedia with the derived ground truth
are far better than those for DBpedia with the ontology as the ground truth.
The results for Freebase are overall worse than that for DBpedia reflecting a
trend we saw in Table 1. We discuss possible reasons for this later.

We also measured the effectiveness of the LSH technique in pruning out a
large number of irrelevant type pairs (i.e., those with low similarity values) from
analysis. To quantify this pruning effect, we define a measure called Reduction
Ratio (RR). This measure is calculated as the ratio of the number of type pairs
for which similarity was computed by the LSH techniques, to the total number
of possible type pairs. (1 − RR) indicates the amount of computation that is
saved by the use of LSH and captures the degree to which LSH was effective for
actual type matching performance. Recall that LSH depends on (a) a similarity
threshold (type pairs with similarity values below it are considered irrelevant)
and (b) the user’s tolerance for a false negative rate (i.e., the degree to which
recall is important to the user). Our experiments were run very conservatively,
with very low similarity thresholds (1% for MinHash and 10% for RHP), and
false negative rates of 10% for MinHash and 5% for RHP. Yet, we obtained
an overall 77% savings in computation (i.e., RR = 23%): only 354,404 type
comparisons were performed out of the 1,498,176 total possible pairs of types.
Table 1 shows the reduction ratio,RR at Max, achieved at the maximum possible
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Table 1. Accuracy of Discovering Equivalent/Subclass Types in Freebase and DBpedia

Freebase-DBpedia Freebase-Freebase DBpedia-DBpedia
MHash RHP MHash RHP MHash RHP

Top-1 Precision 73.7% 75.0% 54.7% 59.9% 84.6% 100.0%
Top-k Precision 48.9% 61.7% 53.8% 60.7% 86.7% 100.0%
Top-k Recall 69.0% 80.4% 17.3% 19.9% 76.5% 82.4%
Top-k F-score 57.2% 69.8% 26.2% 30.0% 81.3% 90.3%

Overall Recall 84.8% 90.5% 87.7% 93.5% 94.1% 94.1%
RR at Max 0.21 0.18 0.22 0.13 0.34 0.05
RR at 80% 0.15 0.04 0.19 0.03 0.05 0.05

value of recall (i.e., for our very conservative setup with little tolerance for false
negatives), and, RR obtained if the threshold and the acceptable false negative
rate were adjusted to produce about 80% recall value. For example, for Freebase-
Freebase case, in our conservative setup where we were willing to accept about
5% false negative rate for RHP, we achieved a 93.5% recall with RHP. At this
recall, reduction ratio is 0.13, i.e., similarity estimation was actually computed
for 13% of the total number of type pairs. However, if 80% recall is acceptable
(i.e., a higher acceptable false negative rate), reduction ratio of 0.03 (i.e., 97%
in savings) can be achieved.

In addition, we compared the running time of similarity computation using
MinHash and RHP signatures, with the exact Jaccard and cosine similarity com-
putation, using a subset of 200 types (100 types from each dataset) containing
overall 3,690,461 label values (average 18,452 values per type). We picked this
smaller subset to make it feasible to run the exact computation on a single ma-
chine for a fair comparison with an implementation of the LSH techniques that
does not take advantage of our Hadoop-based implementation. The experiment
was run on a Linux machine with 4 cores and 24GB of memory. The exact Jac-
card similarity computation took 1,666.28 seconds (28 minutes) while the simi-
larity computation using the MinHash signatures took only 0.409 seconds. The
error in similarity scores was 0.008, and overall 4,958 similarity computations
(out of the possible 40,000) were performed. The exact computation returned
1,152 pairs, and MinHash results missed only 30 of these pairs which means a
recall of 97.4%. The exact cosine similarity took 302.06 seconds to run while the
RHP-based computation took 2.41 seconds. The average error in cosine similar-
ity scores was 0.025, but given our conservative settings which results in block
size 2, no calculations were saved as a result of banding, and therefore the recall
was 100%.

We next turn to investigate the differences in the evaluation results for infer-
ring equivalence/subclass relations. As shown in Table 1, the similarity measures
we used achieve good accuracy in the Freebase-DBpedia and DBpedia-DBpedia
cases, but not in the Freebase-Freebase case. As we will explain in the next sec-
tion, the reason for this low accuracy is not poor performance of the similarity
measure, but existence of several related types that share similar instance values
and therefore are returned as false positives (e.g., Actor and Music Director).
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Table 2. Accuracy of Discovering Containment Relationship in Freebase and DBpedia

DBpedia-Derived DBpedia-Ontology Freebase-Derived

Top-1 Precision 85.7% 81.3% 74.4%
Top-k Precision 87.0% 85.0% 63.3%
Top-k Recall 55.1% 24.4% 22.0%
Top-k F-score 67.4% 37.9% 32.6%
Overall Recall 55.1% 24.4% 22.6%

4.2 Discovering Semantically Related Types

To investigate the reason behind lower precision in Freebase-Freebase case, we
manually inspected a subset of the results. Upon manual inspection, we observed
that a large portion of wrong matches in top-k results are between types that
are not equivalent, but are semantically related. For example, the two types
represent person entities (e.g., type athlete linked to type tv actor), or in
general, the two types are a subclass of a single type. Based on this observation,
we extended the ground truth for Freebase-Freebase case to include such type
pairs. We first derive subclass relations from instance data, and then add the
pairs of types that are subclasses of the same type to the ground truth. This
improved the variable-k top-k precision score to 66.4% in MinHash with overall
recall at 90.0%, and 69.0% in RHP with overall 78.2% recall. In this case, we
observe that MinHash performs almost as well as RHP in terms of precision,
with better recall. This shows that Jaccard similarity and therefore MinHash
are more suitable in discovering semantically related types.

In our manual inspection of the results, we asked four members of our team
to individually evaluate a set of 144 pairs of types in the Freebase-Freebase re-
sults, that are the top 5 (or less) matches for 50 random types in Freebase.
One of the four members performed the evaluation solely by looking at type
names, while others also inspected a sample of instance values. The evaluator
based only on type names found only 33 out of the 144 pairs accurate, while
others found between 77 and 92 type pairs accurate. The difficulty of matching
by type names only in these scenarios arises both from types with only ma-
chine generated identifiers (e.g., http://rdf.freebase.com/rdf/m/06vwzp1)
and from types with obscure human generated identifiers (e.g., the in-
stances http://rdf.freebase.com/rdf/base/database2/topic are famous
mountains). For the evaluations based on inspection of instance values, 2 out
of 3 evaluators agreed on 88 of the type pairs, for a precision of 61.1%.

5 Related Work

The problem of matching database schema and ontologies with the goal of find-
ing elements that are semantically related has been studied extensively in the
past. In the existing categorization of schema and ontology matching techniques
[22,31,33], our approach falls into the purely instance-based and element-level

http://rdf.freebase.com/rdf/m/06vwzp1
http://rdf.freebase.com/rdf/base/database2/topic
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category, as we rely on instance values rather than element labels and schema
structure and information. Our proposed techniques improve the scalability of
a technique referred to as similarity-based disjoint extension comparison [22],
which unlike the common extension comparison technique [26,28] does not re-
quire the classes to share the same set of instances. Our technique is unsupervised
and can be used to extend existing rule-based matching systems. The inability
to effectively exploit data instances has been recognized as the main drawback
of rule-based techniques [17, page 86]. In the categorization provided by Kang
and Naughton [27], our method falls into the interpreted class of matching tech-
niques since we rely on an interpretation of instance values. However, unlike the
majority of interpreted matchers, we do not rely on attribute names, nor do we
rely on learning and the availability of training data.

Examples of matching systems that use instance values in matching are
COMA++ [2,21], SEMINT [29], LSD [16], Autoplex [4], Glue [18], and DUMAS
[6]. Of these, only COMA++ and DUMAS are unsupervised. COMA++ sup-
ports two instance-based matchers in addition to several schema-based methods:
1) constraint-based matching methods that consider characteristics or patterns
in instance values such as type, average length, and URL or email patterns; 2) a
content-based matcher that builds a similarity matrix by performing a pair-wise
comparison of all instance values and aggregating the result. Our approach can
be seen as a way of making such a content-based matcher scalable. To the best
of our knowledge, we are the first to address the scalability of such all-to-all
instance-based matching. DUMAS relies on identification of duplicate records
by string similarity matching in advance to improve the accuracy and efficiency
of the approach. The attribute identification framework proposed by Chua et
al [25] uses duplicates that are identified by matching key identifier attributes
(as opposed to string matching) and takes into account several properties of
attributes derived from instance values.

There are also instance-based approaches that do not rely on overlapping or
similar instance values, but take into account the correlation between attributes
or their properties. Notably, Kang and Naughton [27] propose a two-step match-
ing that first builds a dependency graph for the attributes in each data source
by mining the instance values, and then uses a graph matching algorithm to
find attribute correspondences. Dai et al [14] propose an information-theoretic
measure to validate the matching results that can work even if both schema
information and instance values do not match (e.g., merging of two customer
databases from companies that do not share any customers). In our work, our
goal is to match elements (types) only if their instance values are similar. The
approach presented in this paper can be used as a part of large-scale data inte-
gration and analytics systems [23] and link discovery systems [24,8]. Our work
is motivated by the massive growth in the amount of data available on the web,
and our experience in matching large enterprise repositories [11,19,20].

For an overview of other schema-based and instance-based techniques, refer
to existing survey articles and books [3,22,27,31,33].
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6 Conclusion

We present an instance-based type matching approach based on locality-sensitive
hashing and evaluate it on linking two large Linked Data sources on the web.
We show how LSH techniques are very effective in pruning large numbers of
irrelevant type comparisons, and point to how they can be deployed for type
matching and type containment.
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Abstract. We present Tı̀palo, an algorithm and tool for automatically
typing DBpedia entities. T̀ıpalo identifies the most appropriate types
for an entity by interpreting its natural language definition, which is
extracted from its corresponding Wikipedia page abstract. Types are
identified by means of a set of heuristics based on graph patterns, dis-
ambiguated to WordNet, and aligned to two top-level ontologies: Word-
Net supersenses and a subset of DOLCE+DnS Ultra Lite classes. The
algorithm has been tuned against a golden standard that has been built
online by a group of selected users, and further evaluated in a user study.

1 Introduction

Wikipedia is a large-scale resource of content capturing encyclopedic knowl-
edge collaboratively described by the crowds. Entities described in Wikipedia
are formally represented in DBpedia, the RDF translation of information from
many localized versions of Wikipedia, eminently the English one. There are
DBpedia datasets providing types for entities, but a large number of them is
still untyped, or has a very specialized type, and types are taken from ontologies
that have heterogeneous granularities or assumptions (e.g., 272 infobox-based
types in the DBpedia ontology (DBPO)1 against almost 290,000 category-based
in YAGO [17]). This situation makes it difficult to identify a proper reference
ontology for Wikipedia, or to reuse DBpedia knowledge with a good precision.
While it is reasonable to have limited semantic homogeneity on the Web, it is
highly desirable to bring a more organized and complete typing to DBpedia
entities. Knowing what a certain entity is (e.g., a person, organization, place, in-
strument, etc.) is key for enabling a number of desirable functionalities such as
type coercion [10], data pattern extraction from links [14], entity summarization
(cf. Google Knowledge Graph), automatic linking, etc.

The two de facto reference ontologies for DBpedia resources are currently
DBPO and YAGO. Both provide types for DBpedia entities, and in particular
YAGO has high performances as far as typing quality is concerned. However,
their coverage is partial, both extensionally (number of typed resources), and
intensionally (conceptual completeness), since they rely on Wikipedia categories,
and infoboxes (that are not included in all Wikipedia pages). In addition, the

1 http://dbpedia.org/ontology/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 65–81, 2012.
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number of resources that could be typed from Wikipedia content is even larger
than the number of Wikipedia pages: for example, many DBpedia entities are
referenced by fragments of Wikipedia pages. Our aim is to enable automatic
typing of entities by exploiting the natural language (NL) definitions from their
corresponding Wikipedia pages. Hence, without relying on categorization, or on
the presence of structured data such as Wikipedia infoboxes.

Although there are numerous Natural Language Processing (NLP) approaches
to learning ontologies from text, they need training phases that can take a long
time, and may need a huge manually annotated corpus in order to perform
training. When dealing with large-scale corpora such as Wikipedia, we need to
identify sustainable procedures as far as speed is concerned. Therefore, none of
the existing NLP resources (cf. Section 2) can be directly used to perform the
automatic typing of DBpedia entities that we propose here.

We present Tı̀palo, a tool that automatically assigns types to DBpedia enti-
ties based on their NL definitions as provided by their corresponding Wikipedia
pages. We use a tool (cf. FRED [16]) that implements deep parsing methods
based on frame semantics for deriving RDF and OWL representations of NL
sentences. On top of it, we have implemented a procedure to extract types from
the RDF representation of definitions. The procedure is tailored to Wikipedia
pages, and reuses a tool for word sense disambiguation (cf. UKB [1]) to automat-
ically link the extracted types to WordNet. We also use alignments of WordNet
to two top-level ontologies: WordNet super senses, and DUL+DnS Ultralite2.

Results show that Tı̀palo can extend typing of DBpedia entities with high
accuracy, and support the incremental definition of a Wikipedia ontology that
emerges from what is written in the articles, rather than from metadata or
statistical observations.

The contribution of this paper can be summarized as follows:

– a tool, named Tı̀palo, implementing a process for automatically typing DB-
pedia entities, based on their NL definitions, which is fast enough to be used
in realistic projects, while performing with good precision and recall;

– a sample Wikipedia ontology, incrementally built with Tı̀palo, encoded in
two semantic resources: (i) the Wikipedia entity types dataset, containing
automatically typed (and evaluated) DBpedia entities extracted from 627
definitions; (ii) the Wikipedia class taxonomy dataset, including WordNet
types, WordNet super senses, DUL types, and new defined types put in a
rdfs:subClassOf taxonomy;

– an updated mapping between WordNet 3.0 synsets and top-level ontology
classes, released as RDF datasets;

– a golden standard of 100 typed entities, manually annotated through a col-
laborative effort supported by an online tool that manages user agreement.

The whole procedure can be executed by means of a web service3. In order to
favor reuse and repeatability of our approach and experiments, the web service,

2 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
3 http://wit.istc.cnr.it/stlab-tools/tipalo
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tools, and resources that we have produced are all publicly available from the
Wikipedia Ontology page4.

2 Related Work

The main approaches for typing DBpedia entities are: (i) the DBpedia project
[11], which manually created a DBpedia ontology (DBPO) based on a limited
number of Wikipedia infobox templates. Currently, DBpedia entities having
DBPO types are ∼1.83M5 (version 3.7), against almost 4M Wikipedia pages
(August 2012). Besides its limited extensional coverage, DBPO suffers from lim-
ited intensional coverage [15] due to the manual extraction procedure on infobox
templates that exist only for a subset of Wikipedia page types; (ii) YAGO [17],
an ontology extracted from Wikipedia categories and infoboxes, and aligned to
a subset of WordNet. YAGO’s coverage is larger than DBPO (∼2.7M entities),
however still incomplete and its intensional completeness is affected by its re-
liance on Wikipedia infoboxes and categories. In [15] learning techniques as well
as rule-based approaches for automatic typing of DBpedia entities have been
analyzed. The analysis confirmed the difficulty of this task, and highlighted the
limits posed by the reliance on Wikipedia categories and infoboxes.

Relevant work related to our method includes Ontology Learning and Popula-
tion (OL&P) techniques [2]. Typically OL&P is implemented on top of machine
learning methods, hence it requires large corpora, sometimes manually anno-
tated, in order to induce a set of probabilistic rules. Such rules are defined
through a training phase that can take a long time. Examples of such methods
include [3,20,18]. All these methods would be hardly applicable to large corpora
such as Wikipedia due to the time and resources they require, if all the poten-
tial types present in NL descriptions need to be extracted. Other approaches to
OL&P use either lexico-syntactic patterns [9], or hybrid lexical-logical techniques
[19], but to our knowledge no practical tools have emerged so far for doing it
automatically while preserving high quality of results. [5] works great for large-
scale information extraction centered on binary relation extraction. However, its
resulting triplet graphs are not interlinked and feature a low recall of relevant
syntactic structures, making it too limited for the automatic typing task.

The method presented in this paper differs from most existing approaches, by
relying on a component named FRED [16], which implements a logical interpre-
tation of NL represented in Discourse Representation Theory (DRT). FRED is
fast and produces an OWL-based graph representation of an entity description,
including a taxonomy of types. We parse FRED’s output graph, and apply a set
of heuristics, so that we can assign a set of types to an entity in a very efficient
way. FRED is an example of machine reading.

Terms used for describing entity types are often polysemous i.e. they can have
more than one meaning. We have empirically observed (on a sample of ∼800
entity definitions) that polysemous terms occur in 70% of descriptions; hence,

4 TheWikipediaontologypage http://www.stlab.istc.cnr.it/WikipediaOntology/
5 M → millions.
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the word sense disambiguation (WSD) task is relevant in this context. A good
survey of WSD methods is [12]. We use UKB [1] that shows high accuracy, with
some impact on the speed of the process (cf. Section 5). A promising resource
for disambiguation is BabelNet [13], which has produced a substantial alignment
between WordNet and Wikipedia concept-like entities. However, its currently
available dataset is not suitable for implementing a direct WSD functionality.

As a final remark, we mention a recent work on terminology extraction [8]
which describes a number of wikipedia markup conventions that are useful hooks
for defining heuristics. Some of them have been reused in our tool.

3 Data Sources

In the context of this work, we have used and produced a number of resources.

Wikipedia and DBpedia. Wikipedia is a collaboratively built multilingual en-
cyclopedia on the Web. EachWikipedia page usually refers to a single entity, and
is manually associated to a number of categories. Entities referenced byWikipedia
pages are represented in DBpedia, the RDF version of Wikipedia. Currently, En-
glishWikipedia contains 4Marticles6,whileDBpediawikilinkdataset counts∼15M
distinct entities (as of version 3.6).Onemainmotivation of this big difference in size
is that many linked resources are referenced by sections ofWikipedia pages, hence
lacking explicit categorization or infoboxes.However they have aURI, and aNLde-
scription, hence they are a rich source for linked data.Out of these∼15Mresources,
∼2.7 are typed with YAGO classes and ∼1.83M are typed with DBpedia classes.
We use Wikipedia page contents as input for the definition extractor component
(cf. Section 4), for extracting entity definitions.

WordNet 3.0 and WordNet 3.0 supersense RDF. WordNet7 is a large
database of English words. It groups words into sets of synonyms, called synsets,
each expressing a different concept. Although WordNet includes different types
of words such as verbs and adjectives, for the sake of this work we limit the scope
to nouns. Words that may express different meanings, i.e. polysemous words, are
related to different synsets. In this work, we use the WordNet 3.0 RDF porting8

in order to identify the type of an entity. Hence when such type is expressed
by a polysemous word we need to identify the most appropriate one. To this
aim we exploit a WSD engine named UKB, as described in Section 4. Further-
more, WordNet 3.0 includes relations between synsets and supersenses, which
are broad semantic categories. WordNet contains 41 supersenses, 25 of which are
for nouns. We have produced a resource named WordNet 3.0 Supersense RDF 9

that encodes such alignments as RDF data. This RDF dataset is used by the type
matcher (cf. Section 4) for producing triples relating entities and supersenses.

6 Source:http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia ,Aug 2012.
7 WordNet, http://wordnet.princeton.edu/
8 http://semanticweb.cs.vu.nl/lod/wn30/
9 http://www.ontologydesignpatterns.org/wn/wn30/wordnet-supersense.rdf

http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://wordnet.princeton.edu/
http://semanticweb.cs.vu.nl/lod/wn30/
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Fig. 1. Pipeline implemented by T̀ıpalo for automatic typing of DBpedia entities based
on their natural language descriptions as provided in their corresponding Wikipedia
pages. Numbers indicate the order of execution of a component in the pipeline. The out-
put of a component i is passed as input to the next i+1 component. (*) denotes datasets
and tools developed in this work, which are part of our contribution (cf. Section 3).

OntoWordNet (OWN) 2012 is a RDF resource that updates and extends
OWN [7]. OWN is an OWL version of WordNet, which includes semantic align-
ments between synsets and DULplus types. DULplus10, extends DUL11, which
is the OWL light version of DOLCE + DnS [6] foundational ontology. OWN
2012 contains mappings between 859 general synsets and 60 DULplus classes.
Such mappings have been propagated through the transitive closure of the hy-
ponym relation in order to cover all ∼82,000 synsets. In the context of this work,
we have updated OWN to the WordNet 3.0 version, and performed a revision
of the manual mapping relations. Furthermore, we have defined a lightweight
foundational ontology called Dolce Zero12, whose classes generalize a number of
DULplus classes used in OWN. We have used a combination of 23 Dolce Zero and
DULplus classes for building a sample Wikipedia ontology. The reduction to 23
classes has been made in order make it comparable to the WordNet supersense
set, and to simplify the task of evaluators.

4 The Automatic Typing Procedure

Tı̀palo is based on a pipeline of components and data sources, described below,
which are applied in the sequence illustrated in Figure 1.

10 Dolce Ultra Lite Plus ontology, http://www.ontologydesignpatterns.org/ont/

wn/dulplus.owl
11 Dolce Ultra Lite ontology, http://www.ontologydesignpatterns.org/ont/dul/

DUL.owl
12 Dolce Zero ontology, http://www.ontologydesignpatterns.org/d0.owl

http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/d0.owl


70 A. Gangemi et al.

Fig. 2. First paragraph of the Wikipedia page abstract for the entity “Vladimir Kram-
nik”

1. Extracting definitions from Wikipedia pages (definition extractor).
The first step, performed by the definition extractor, consists in extracting the
definition of a DBpedia entity from its corresponding Wikipedia page abstract.
We identify the shortest text including information about the entity type. Typi-
cally, an entity is defined in the first sentence of a Wikipedia page abstract, but
sometimes the definition is expressed in one of the following sentences, can be
a combination of two sentences, or even implicit. We rely on a set of heuristics
based on lexico-syntactic patterns and Wikipedia markup conventions in order to
extract such sentences. A useful Wikipedia convention is the use of bold charac-
ters for visualizing the name of the referred entity in the page abstract: for ex-
ample consider the Wikipedia page referring to “Vladimir Kramnik”13 and the
first paragraph of its abstract, depicted in Figure 2. Let us represent such para-
graph as a sequence of n sentences {s1, ..., sn}. Typically, the bold words refer-
ring to the entity (bold-name) are included in a sentence si, (i = 1, ..., n) that
provides its definition according to a syntactic form of the type: “bold−name <
copula><predicative nominal||predicative adjective>” (where <copula> is usu-
ally a form of the verb to be) e.g., “Vladimir Borisovich Kramnik is a Russian
chess grandmaster”. However, this is not always the case: sometimes, the sentence
si containing the bold-name does not include any <copula>, while a <copula> can
be found together with a co-reference to the entity, in one of the following sen-
tences sj . In such cases, we extract the entity definition by concatenating these
two sentences i.e. si + sj. If the abstract does not contain any bold-name, we in-
spect s1: if it contains a <copula> we return s1, otherwise we concatenate s1 with
the first of the next sentences e.g., si, containing a<copula> (i.e. s1+si). If none of
the above is satisfied, we return s1. We also apply additional heuristics for dealing
with parentheses, and other punctuation. For the example in Figure 2 we return
s1:Vladimir Borisovich Kramnik is a Russian chess grandmaster, which contains
the bold-name as well as a <copula>.

2. Natural language deep parsing of entity definitions (FRED). Once
the entity definition has been extracted, it should be parsed and represented in a
logical form that includes a set of types. In order to accomplish this task we use

13 http://en.wikipedia.org/wiki/Vladimir_Kramnik

http://en.wikipedia.org/wiki/Vladimir_Kramnik
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Fig. 3. FRED result for the definition “Vladimir Borisovich Kramnik is a Russian
chess grandmaster”

Fig. 4. FRED result for the definition “Chess pieces, or chessmen, are the pieces de-
ployed on a chessboard to play the game of chess”

FRED14, a tool that we have presented in [16]. It performs ontology learning by
relying on Boxer [4], which implements computational semantics, a deep parsing
method that produces a logical representation of NL sentences in DRT. FRED
implements an alignment model and a set of heuristics for transforming DRT
representations to RDF and OWL representations. In the context of this work,
FRED is in charge of “reading” an entity NL definition, and producing its OWL
representation, including a taxonomy of types. For example, given the above
definition for Vladimir Kramnik, FRED returns the OWL graph depicted in
Figure 3, containing the following taxonomy15.

wt:RussianChessGrandmaster rdfs:subClassOf wt:ChessGrandmaster

wt:ChessGrandmaster rdfs:subClassOf wt:Grandmaster

3. Selection of types and type-relations from the OWL graph (type
selector). This step requires to identify, in FRED output graph, the paths
providing typing information about the analyzed entity, and to discard the rest.
Furthermore, we want to distinguish the case of an entity that is represented
as an individual e.g. Vladimir Kramnik, from the case of an entity that is
more appropriately represented as a class e.g., Chess piece. FRED output
looks differently in these two situations as well as depending on the type of
definition e.g., including a copula or parenthetic terms. For example, consider

14 FRED is available online at http://wit.istc.cnr.it/stlab-tools/fred
15 wt: http://www.ontologydesignpatterns.org/ont/wikipedia/type/
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http://www.ontologydesignpatterns.org/ont/wikipedia/type/


72 A. Gangemi et al.

Table 1. Graph patterns and their associated type inferred triples for individual
entities. Order reflects priority of detection. [r] ∈ R = {wt:speciesOf, wt:nameOf,
wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf, wt:genreOf, wt:seriesOf}); [anyP] ∈ {∗}
− R.

ID graph pattern (GP) inferred ax-
ioms

gp1 e owl:sameAs x && x domain:aliasOf y && y owl:sameAs z && z rdf:type C e rdf:type C
gp2 e rdf:type x && x owl:sameAs y && y domain:aliasOf z && w owl:sameAs z

&& w rdf:type C
e rdf:type C

gp3 e owl:sameAs x && x [r] y && y rdf:type C e rdf:type C
gp4 e owl:sameAs x && x rdf:type C e rdf:type C
gp5 e dul:associatedWith x && x rdf:type C e rdf:type C
gp6 (e owl:sameAs x && x anyP y && y rdf:type C) ‖ (e anyP x && x rdf:type C) e rdf:type C

Table 2. Graph patterns and their associated type inferred triples for class entities.
[r] ∈ R = {wt:speciesOf, wt:nameOf, wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf,
wt:genreOf, wt:seriesOf}); [anyP] ∈ {∗} − R.

ID graph pattern (GP) inferred axioms
gp7 x rdf:type e && x owl:sameAs y && y [r] z && z rdf:type C e rdfs:subClassOf C
gp8 x rdf:type e && x owl:sameAs y && y rdf:type C e rdfs:subClassOf C
gp9 x rdf:type e && e dul:associatedWith y && y rdf:type C e rdfs:subClassOf C
gp10 (x rdf:type e && x owl:sameAs y && y [anyP] z && z rdf:type

C) ‖ (x rdf:type e && y [anyP] x && y rdf:type C)
e rdfs:subClassOf C

the entity Chess piece, which is a class entity, and is defined by “Chess pieces,
or chessmen, are the pieces deployed on a chessboard to play the game of chess.”.
FRED output graph for such definition is depicted in Figure 416. In this case,
the graph paths encoding typing information comply with a different pattern
from the one in Figure 3. The role of the type selector is to recognize a set of
graph patterns that allow to distinguish between an entity being a class or an
individual, and to select the concepts to include in its graph of types.

To implement the type selector, we have identified a set of graph patterns
(GP), and defined their associated heuristics by following similar criteria as
lexico-syntactic patterns [9], extended with the exploitation of RDF graph topol-
ogy and OWL semantics. Currently, we use 10 GPs: 4 of them identifying class
entities, and 6 for individual entities. Firstly, the type selector distinguishes if
an entity is either an individual or a class entity: given an entity e, it is an
individual if it participates in a graph pattern of type e owl:sameAs x, it is a
class if it participates in a graph pattern of type x rdf:type e. As empirically
observed, these two situations are mutually exclusive. After performing this dis-
tinction, the type selector follows a priority order for GP detection and executes
the heuristics associated with the first matching GP. Tables 1 and 2 respectively
report the GP sets and their associated heuristics by following the priority order
used for detection, for individual entities and class entities.

16 For space reasons, we include only the portion of the graph of interest in this context.
Readers interested in visualizing the complete graph can submit the sentence to
FRED online http://wit.istc.cnr.it/stlab-tools/fred.
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Fig. 5. FRED result for the definition “Fast chess is a type of chess game in which
each side is given less time to make their moves than under the normal tournament
time controls of 60 to 180 minutes per player”

Table 3. Normalized frequency of GPs on a sample set of ∼800 randomly selected
Wikipedia entities

GP frequency (%) GP frequency (%) GP frequency (%) GP frequency (%) GP frequency (%)
gp1 0 gp2 0.15 gp3 3.98 gp4 79.34 gp5 0
gp6 0.31 gp7 1.11 gp8 11.46 gp9 0 gp10 3.65

The rationale behind GP priority order resides in ontology design choices
as well as in the way the current implementation of the type selector works.
Sometimes, an entity definition fromWikipedia includes typing information from
a “domain-level” as well as a “meta-level” perspective. For example, from the
definition17 “Fast chess is a type of chess game in which each side is given less
time to make their moves than under the normal tournament time controls of
60 to 180 minutes per player.” we can derive that “Fast chess” is a type (meta-
level type) as well as a chess game (domain-level type). This situation makes
FRED output include a GP detecting “type” as a type i.e., gp8, as well as a
GP detecting “chess game” as a type i.e., gp7, as depicted in Figure 5. In this
version of Tı̀palo our goal is to type DBpedia entities only from a domain-
level perspective. Furthermore, in its current implementation, the type selector
executes only one heuristics: that associated with the first GP that matches in
FRED output graph. Given the above rationale, gp7 is inspected before gp8. The
same rationale applies to GP for individual entities, illustrated in Table 1.

For the dbp:Fast chess18 example, the type selector detects that the entity is
a class and the first GP detected is gp7, hence it produces the additional triples:

dbp:Fast chess rdfs:subClassOf wt:ChessGame

wt:ChessGame rdfs:subClassOf wt:Game

The execution of Tı̀palo pipeline on a sample set of randomly selected ∼800
Wikipedia entities19 has shown that the most frequent GPs are gp4 and gp8,
which is not surprising, since they correspond to the most common linguistic
patterns for definitions. Table 3 reports the frequency of each GP on the sample
set.
17 http://en.wikipedia.org/wiki/Fast_chess
18 dbp: http://dbpedia.org/resource/
19 Details about the definition of the sample set are given in Section 5.

http://en.wikipedia.org/wiki/Fast_chess
http://dbpedia.org/resource/
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The type selector implements an additional heuristics: it detects if any of the
terms referring to a type in the graph can be referenceable as a DBpedia entity.
For example, the term “chess” in the definition of “Fast chess” is resolvable to
dbp:Chess. In such case, the type selector produces the following triple:

dbp:Fast chess rdfs:subClassOf dbp:Chess

This additional heuristics improves the internal linking within DBpedia, result-
ing in higher cohesion of the resource graph.

By following the defined heuristics, we are able to select the terms that refer
to the types of an entity e, and to create a namespace of Wikipedia types that
captures the variety of terms used in Wikipedia definitions20.

4. Word sense disambiguation engine (UKB). After having identified
the concepts expressing the types of an entity and their taxonomical relations,
we have to gather their correct sense: we need a WSD tool. A possible way to
achieve this goal is to identify alignments between the type terms and WordNet
terms. We have approached this issue by applying two alternative solutions on a
sample set of 100 entity definitions. The first approach involves UKB [1], a tool
which returns the WordNet synset for a term, looking for the one that fits best
the context given by the entity definition. UKB provids good results in terms of
precision and recall although its speed performance needs improvement in order
to apply it on a large dataset such as Wikipedia. We have plans for dealing with
this issue in the next future (cf. Secion 5.1). The second solution is to select the
most frequent WordNet sense for a given term, which is very efficient in terms
of speed, but shows lower precision and recall21. This step allows us to assign
a WordNet type (corresponding to the identified synset) to an entity. Referring
to the above example (i.e., definition of fast chess), we produce the following
additional triples22:

wt:ChessGame owl:equivalentTo wn30syn:synset-chess-noun-2

wt:Game owl:equivalentTo wn30syn:synset-game-noun-1

5. Identifying other Semantic Web types (type matcher). So far the
typing process produces a set of newly defined concepts, and disambiguates
them to a WordNet sense. The final step consists in linking such concepts to
other Semantic Web ontologies, in order to support shared interpretation and
linked data enrichment. In order to exemplify this task with respect to the
goal of gathering top-level types23, we have produced and published two RDF

20 Wikipedia class taxonomy, wt: = http://www.ontologydesignpatterns.org/ont/

wikipedia/type/
21 The current implementation of T̀ıpalo relies on UKB for word sense disambiguation.
22 wn30syn: = http://purl.org/vocabularies/princeton/wn30/instances/
23 Any other aligned ontology, or ontology matching component can be used in order

to perform arbitrary type matching.

http://www.ontologydesignpatterns.org/ont/wikipedia/type/
http://www.ontologydesignpatterns.org/ont/wikipedia/type/
http://purl.org/vocabularies/princeton/wn30/instances/
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datasets (see Section 3) containing alignments between WordNet synsets and
Super Senses (broad lexico-semantic categories), and between WordNet synsets
and some foundational ontology classes. The type matcher exploits these align-
ments in order to produce additional rdf:type triples. For example, for the
entity dbp:Fast chess, the type matcher produces e.g. the following triples:

wt:ChessGame rdfs:subClassOf d0:Activity

wt:Game rdfs:subClassOf wn30:supersense-noun act

meaning that the term “chess game” associated with the WordNet sense
wn30syn:synset-chess-noun-2 (as provided by theWSD component) is aligned
to the class Activity of Dolce Zero24 ontology. Analogously, the term “game”
with its sense wn30syn:synset-game-noun-1 is aligned to the WordNet super
sense “act”.

The described five steps compose the Tı̀palo automatic typing procedure,
whose output feeds incrementally a Wikipedia ontology based on the entity def-
initions provided by the crowds, hence able to reflect the richness of natural lan-
guage and with a potentially complete domain coverage. The Wikipedia ontology
is encoded in two semantic resources i.e., the Wikipedia entity types dataset and
the Wikipedia class taxonomy dataset, which are described in Section 5.

5 Results and Evaluation

In this section we report the results of our work, and evaluate them in terms
of precision, recall and time of computation. Our final goal is to incrementally
build a Wikipedia ontology based on how users describe things, hence able to
capture the richness of NL definitions. To this aim, we have developed a web
service, called Tı̀palo, which, given a description of an entity, produces a RDF
named graph describing its typing information by means of DBpedia entities,
WordNet synsets and supersenses, and foundational ontology classes. Besides
the RDF resources described in Section 3, and the methods in Section 4, we
have developed a novel resource and two evaluation tools.

Wikipedia ontology. We have produced a demonstratingWikipedia ontology25

by analyzing a randomly selected sample of 800 Wikipedia pages. The result-
ing Wikipedia ontology consists of two RDF datasets, one containing rdf:type

triples defining DBpedia entity types, and another containing ontology classes
related by means of rdfs:subClassOf and owl:equivalentTo axioms. The two
datasets can be queried through a SPARQL endpoint (or downloaded as dump
files) either as a whole graph or as separated named graphs, each associated with
a single entity. Each named graph has an ID starting with dbpedia followed by
a DBpedia entity local name e.g., dbpedia Vladimir Kramnik.

24 Dolce Zero, http://www.ontologydesignpatterns.org/ont/d0.owl
25 Link available at the Wikipedia ontology page: http://stlab.istc.cnr.it/

stlab/WikipediaOntology/

http://www.ontologydesignpatterns.org/ont/d0.owl
http://stlab.istc.cnr.it/stlab/WikipediaOntology/
http://stlab.istc.cnr.it/stlab/WikipediaOntology/


76 A. Gangemi et al.

Reusable evaluation tools. Additionally, we have developed two tools for
evaluating our method, one for collaboratively building a golden standard, and
the other for evaluating the Wikipedia ontology (both tools are described in
Section 5.1).

5.1 Evaluation

We evaluate our work considering the accuracy of types assigned to the sample
set of Wikipedia entities, and the soundness of the induced taxonomy of types
for each DBpedia entity. The accuracy of types has been measured in two ways:
(i) in terms of precision and recall against a golden standard of 100 entities, and
(ii) by performing a user study. The soundness of the induced taxonomies has
been assessed in a user study.

Building a sample set of Wikipedia pages. We have performed our ex-
periments on a sample set of ∼800 randomly selected Wikipedia pages. From
the 800 set, we have removed all pages without an abstract text, e.g. redirect
pages, categories, and images. The resulting sample includes 627 pages with the
following characteristics: (i) each page has a corresponding DBpedia entity, (ii)
each DBpedia entity has a DBpedia type, a YAGO type, or no type, (iii) 67.62%
of the corresponding DBpedia entities have a YAGO type, 15.47% have a DBPO
type, and 30% of them have no type.

Building a golden standard. We have built amanually annotated golden stan-
dard of Wikipedia entity types based on the sample set used for our experiments.
To support this process we have developed a web-based tool named Wikipedi-
aGold26 thatmanages argumentation among users in order to support them in dis-
cussing and reaching agreement on decisions (agreement was considered reached
with at least 70% users giving the same answer). Ten users with expertise in ontol-
ogy design (four senior researchers and six PhD students in the area of knowledge
engineering) have participated in this task, and have reached agreement on 100 en-
tities. We have used such 100 entities as a golden standard for evaluating and tun-
ing our method. The golden standard can be retrieved from the cited Wikipedia
Ontology page, and it can be useful for future development and for comparing our
work with possible other approaches to this same task.

WikipediaGold is based on a simple user task, repeated iteratively: given an
entity e e.g., dbp:Vladimir Ramnik, WikipediaGold visualizes its definition e.g.,
“Vladimir Borisovich Kramnik is a Russian chess grandmaster.” and asks users
to:

– indicate if e refers to a concept/type or to a specific instance. Users can
select either “is a” or “is a type of” as possible answers. This value allows
us to evaluate if our process is able to distinguish entities which are typical
individuals, from those that are typical classes;

26 Available online at http://wit.istc.cnr.it/WikipediaGold , demonstrating video
at http://wit.istc.cnr.it/stlab-tools/video/

http://wit.istc.cnr.it/WikipediaGold
http://wit.istc.cnr.it/stlab-tools/video/
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Table 4. Performance evaluation of the individual pipeline components

Component precision recall F-measure (F1)
Type selector .93 .90 .92
WSD (UKB) .86 .82 .84

WSD (most frequent sense) .77 .73 .75
Type matcher (Supersense) .73 .73 .73
Type matcher (DUL+/D0) .80 .80 .80

– copy and paste the terms in the definition that identifies the types of e, or
indicate a custom one, if the definition does not contain any. In our example,
a user could copy the term “Russian chess grandmaster”. This information
is meant to allow us evaluating the performances of the type selector ;

– select the most appropriate concepts for classifying e from two list of concepts.
The first list includes 21 WordNet supersenses, and the second list includes
23 classes from DULplus and Dolce Zero. Each concept is accompanied by
a describing gloss and some examples to inform the user about its intended
meaning. In the example, users can select the type “Person” available in both
lists. The two lists of concepts are available online at the Wikipedia ontology
page.

For each answer, users can optionally include a comment motivating their choice.
When there is disagreement among users about an entity, WikipediaGold sub-
mits it again to users who have already analyzed it. In these cases a user can see
other users’ choices and comments, and decide if either to keep her decision, or
to change it. In both cases, a comment motivating own decision must be entered.

Evaluation against the golden standard. Our evaluation is based on mea-
suring precision and recall of the output of the three main steps of the process,
against the golden standard: (i) type selection (step 3), (ii) word sense disam-
biguation (WSD) (step 4), and (iii) type matching (step 5). We also measure
precision and recall of the overall process output.

Table 5. Performance evaluation of the overall process

Typing process precision recall F-measure (F1)
WordNet types .76 .74 .75
Supersenses .62 .60 .61
Dul+/D0 .68 .66 .67

The results shown in Table 4 indicate the performances of the individual com-
ponents. The type selector stands out as the most reliable component (F1 = .92),
which confirms our hypothesis that a rich formalization of definitions and a good
design of graph patterns are a healthy approach to entity typing. The WSD task
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has been performed with two approaches: we analyze its performance by execut-
ing UKB as well as a most-frequent-sense-based (MFS) approach. UKB shows
to perform better (F1 = .84) than MFS (F1 = .75), suggesting that Wikipedia
definitions often include polysemous senses, and that the used language tends
to be specialized i.e., polysemous terms are used with different senses. The type
matcher performs better with DULplus/Dolce Zero types than with WordNet
supersenses, which shows an improvement with respect to the state of the art
considering that WordNet super senses are considered an established and reliable
semantic resource when used as a top-level ontology for WordNet.

Table 5 illustrates the performance of the overall automatic typing process. As
expected, the steps that map the extracted types to WordNet types, super senses,
and top-level ontologies tend to decrease the initial high precision and recall of
the type selector. In fact, when put into a pipeline, errors typically reinforce
previous ones, producing in this case an overall decrease of F1 from .92 of the
type selection step to .75 of the combined type selection and WSD, to .67 with
the addition of DULplus/Dolce Zero alignment (type matcher). However, the
modularity of our process enables the reuse of results that are actually useful to
a certain project, e.g. discarding a step that performs worse.

The good performances observed in our evaluation experiments make us claim
that using Tı̀palo brings advantages when compared to the most prominent
existing approaches i.e., DBpedia project [11] and YAGO [17] to DBpedia entity
typing, for the following reasons: (i) Tı̀palo potentially ensures complete coverage
of Wikipedia domains (intensional coverage) as it is able to capture the reachness
of terminology in NL definitions and to reflect it in the resulting ontology, while
DBpedia and YAGO depend both on the limited intensional completeness of
infobox templates and Wikipedia categories, (ii) Tı̀palo is independent from the
availability of structured information such as infobox templates and Wikipedia
categories, hence ensuring higher extensional completeness as most Wikipedia
entities have a definition while many of them lack infoboxes.

A direct comparison of our results with DBpedia and YAGO approaches oc-
curred to be unfeasible in the scope of this paper because the two approaches
differ from ours on important aspects: they use different reference type systems;
they rely on Wikipedia categories or infobox templates while we rely on the
NL descriptions used for defining Wikipedia entities by the crowds, hence it
is difficult (if not impossible) to compare the derived vocabularies; finally, the
granularity of their type assignments is heterogeneous. These cases make it hard
to define criteria for performing a comparison between the accuracy of the auto-
matically assigned types. Hence, we could not consider either DBpedia or YAGO
suitable golden standards for this specific task, which motivates the construction
of a specific golden standard.

Evaluation by user study. In order to further verify our results, we have
conducted a user study. We have implemented a second Web-based tool, named
WikipediaTypeChecker27 , for supporting users in expressing their judgement on

27 Available online at http://wit.istc.cnr.it/WikipediaTypeChecker, demonstrat-
ing video at http://wit.istc.cnr.it/stlab-tools/video

http://wit.istc.cnr.it/WikipediaTypeChecker
http://wit.istc.cnr.it/stlab-tools/video
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the accuracy of Tı̀palo types assigned to the sample set of Wikipedia entities.
WikipediaTypeChecker is available online.

WikipediaTypeChecker asks users to evaluate the accuracy of Tı̀palo types,
the soundness of the induced taxonomies, and the correctness of the selected
meaning of types, by expressing a judgement on a three-valued scale: yes, maybe,
no. Users’ task, given an entity with its definition, consists of three evaluation
steps. Consider for example the entity dbp:Fast chess: in the first step, users
evaluate the accuracy of the assigned types by indicating the level of correct-
ness of proposed types. In this example, for the entity “Fast chess” three types
are proposed: “Chess game”, “Game”, and “Activity”; in the second step users
validate the soundness of the induced taxonomy of types for an entity. In this
example, the proposed taxonomy is wt:ChessGame rdfs:subClassOf wt:Game;
in the third step users evaluate the correctness of the meaning of individual types
(i.e. WSD). For example, the proposed meaning for “Chess game” is “a board
game for two players who move their 16 pieces according to specific rules; the
object is to checkmate the opponent’s king”. Five users with expertise in knowl-
edge engineering have participated in the user study (three PhD students and
two senior researchers). For each entity and for each evaluation step, we have
computed the average value of judgements normalized to an interval [0,1], which
gives us a value for the precision of results. The results are shown in Table 6,
with a (high) inter-rater agreement (Kendall’s W) of .7928.

Table 6. Results of the user-based evaluation, values indicate precision of results.
Inter-rater agreement (Kendall’s W) is .79, Kendall’s W ranges from 0 (no agreement)
to 1 (complete agreement).

Task Type extraction Taxonomy induction WSD
Correctness .84 .96 .81

These results confirm those observed in the evaluation against a golden stan-
dard (cf. Tables 4 and 5). In this case, we have split the evaluation of the cor-
rectness of extracted types between assigned types (.84), and induced taxonomy
(.96): their combination is comparable to the precision value observed for the
type selector against the golden standard (.93). The performance of the WSD
task is a bit lower (.81 against .86 precision), which suggests the need for addi-
tional evaluation of WSD performance, and exploration of possible alternative
solutions.

Estimating time performance. In the scope of this work, we could only
perform a preliminary estimation of time performances, since we have run the
process on simple desktop machines. The workflow process and storage data

28 Kendall’s W is a coefficient of concordance used for assessing agreement among
raters. It ranges from 0 (no agreement) to 1 (complete agreement), and is particularly
suited in this case as it makes no assumptions regarding the nature of the probability
distribution and handles any number of distinct outcomes.
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have been executed on an Intel Pentium DualCore 2.80GHz with 1GB RAM,
while UKB and FRED run on a Quad-Core Intel Xeon 2,26 GHz RAM 32 GB
Processor Interconnect Speed: 5.86 GT/s. With this setting, the whole process
takes maximum ∼11 seconds per definition (depending on its complexity). Type
selection and top-level matching are instantaneous, while there is a bottleneck
due to UKB performance: our process become extremely fast (maximum ∼2
seconds per definition) if we remove UKB and disambiguate terms by selecting
synsets with the most-frequent-sense-based method (with some degradation in
precision and recall). We remark that in this implementation UKB and FRED
are used as web services and remotely invoked (one machine is in Rome and
another is in Bologna), hence suffering from delay due to network latency. We
are confident that by parallelizing the whole process on a more robust cluster, and
deploying all components and data sources locally, the speed will significantly
increase29, which reasonably suggest the applicability of the process on a large-
scale dataset such as Wikipedia.

6 Conclusions and Future Work

We have presented Tı̀palo, an implemented method that formalizes entity defi-
nitions extracted from Wikipedia for automatically typing DBpedia entities and
linking them to other DBpedia resources, WordNet, and foundational ontolo-
gies. We have experimented Tı̀palo on a sample set of ∼800 Wikipedia entities.
Results have been evaluated against a golden standard and by a user study, and
are up to the task, specially for the pure type selection task. In ongoing work,
we are deploying the tool on a more robust cluster for improving time perfor-
mances and experimenting on a large-scale resource such as the whole Wikipedia.
The medium-term goal is to incrementally build a Wikipedia ontology that re-
flects the richness of terminology expressed by natural language, crowd sourced
definitions of entities.
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Abstract. Due to the high worst case complexity of the core reasoning
problem for the expressive profiles of OWL 2, ontology engineers are of-
ten surprised and confused by the performance behaviour of reasoners on
their ontologies. Even very experienced modellers with a sophisticated
grasp of reasoning algorithms do not have a good mental model of rea-
soner performance behaviour. Seemingly innocuous changes to an OWL
ontology can degrade classification time from instantaneous to too long
to wait for. Similarly, switching reasoners (e.g., to take advantage of spe-
cific features) can result in wildly different classification times. In this
paper we investigate performance variability phenomena in OWL ontolo-
gies, and present methods to identify subsets of an ontology which are
performance-degrading for a given reasoner. When such (ideally small)
subsets are removed from an ontology, and the remainder is much easier
for the given reasoner to reason over, we designate them “hot spots”. The
identification of these hot spots allows users to isolate difficult portions
of the ontology in a principled and systematic way. Moreover, we devise
and compare various methods for approximate reasoning and knowledge
compilation based on hot spots. We verify our techniques with a select
set of varyingly difficult ontologies from the NCBO BioPortal, and were
able to, firstly, successfully identify performance hot spots against the
major freely available DL reasoners, and, secondly, significantly improve
classification time using approximate reasoning based on hot spots.

1 Introduction

Reasoning tasks on ontologies expressed in a rich description logic such as that
underlying OWL2 have a high worst case complexity. As a consequence, reasoning
time can be highly unpredictable: seemingly innocuous changes to an ontology
might shift reasoning time from seconds to days; different reasoners might have
wildly different behaviour on the same input. Even seasoned reasoner developers
do not have a mental performance model sufficient to deal with many, particularly
novel, cases (indeed, this fact keeps reasoner optimisation research a lively area).

Mere high worst case complexity, of course, does not entail unpredictability.
The difficulty of determining the satisfiability of propositional k-CNF formu-
lae (the k-SAT problem), for example, is highly predictable by attending to the
“density” (i.e., the ratio of number of clauses to number of distinct variables) of a
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formula. Not only is it predictable, but there is an increasingly sophisticated the-
oretical understanding of this behaviour. This predictability has been observed in
various modal logics which correspond to the description logics commonly used
as ontology languages [14,10]. However, several observations belie the utility of
these results: 1) Even for comparatively simple logics such as ALC the number
of parameters becomes unwieldy: while propositional logic has two main param-
eters (for a given size, k!) — number of clauses (L) and number of variables (N)
— ALC adds (at least) modal depth (d), the number of roles (i.e., modalities,
m), and the proportion of modal to propositional atoms [10]. 2) The inputs are
highly regimented and bear little relationship to the sorts of formulae found in
practice, especially in manually crafted artifacts such as ontologies. For exam-
ple, all ontologies have axioms, not just concept expressions, these axioms often
“break up” complex concepts, and reasoners exploit this fact.1 Thus, to predict
behaviour of realistic or naturally occurring ontologies, we need to understand
even more parameters (perhaps dozens), and normalizing away that complexity
is unlikely to be helpful. 3) Reasoners have different suites of optimizations and
even underlying calculi, thus respond differently to these inputs.

Together, these observations suggest that users crafting ontologies are likely
to be surprised2 by the enormous variation in performance behaviour which does
not relate intuitively to the changes they make (either in the ontology or in the
reasoner used). Three basic phenomena startle users: 1) An ontology which takes
seconds to classify3 in one reasoner, effectively fails to terminate with another.
2) Ontologies of similar size and apparent complexity take wildly different times
to classify on the same reasoner. 3) Apparently innocuous changes to a single
ontology result in large increases (or decreases) in classification time.4 Of course,
the primary negative phenomenon is excessive reasoning time.

The most prominent, principled way to cope with this problem is to shift to
a less expressive logic, such as OWL EL, for which classification is decidable in
polynomial time. Reasoning in EL (and similar logics) is not only polynomial
(in general) but has proven to be rather robust to novel input [1,2]. This move is
not always possible, as it involves severe limitations on what can be expressed.
Similarly, approximate reasoning (i.e., giving up on soundness or completeness)
can make reasoning performance significantly better and more predictable, but
at the cost of increased uncertainty about the results [18,16,15]. In practice,
users often modify their ontologies based on folk wisdom (“negation is hard”,
“inverses are hard”), on bespoke advice from reasoner developers, or randomly.

1 “In realistic KBs, at least those manually constructed, large and complex concepts
are seldom described monolithically, but are built up from a hierarchy of named
concepts whose descriptions are less complex.”[9]

2 “[Reasoner] performance can be scary, so much so, that we cannot deploy the tech-
nology in our products.” — Michael Shepard
http://lists.w3.org/Archives/Public/public-owl-dev/2007JanMar/0047.html

3 Throughout, we focus on classification as the key reasoning task, as it is the most
prevalent service invoked by ontology developers.

4 Esp. distressing are removals that increase time, and additions which decrease it
dramatically.

http://lists.w3.org/Archives/Public/public-owl-dev/2007JanMar/0047.html
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We need a better understanding of reasoning performance variability, or at
least methodologies for analyzing it in particular cases. The contributions of
this paper are as follows: for an ontology O that a reasoner R takes ‘too long’ to
classify, we have designed and thoroughly evaluated (1) a technique for analyzing
the performance variability of R on O, (2) a technique to isolate subsets of O
that contribute negatively to R’s high classification time, so called hot spots, and
(3) a series of techniques to approximate the hot spot in O.

Firstly, we have verified, via technique (1), that there exist two kinds of per-
formance profiles; an ontology-reasoner pair can be performance “heterogeneous”
or performance “homogeneous”, depending on whether there are certain kinds of
performance variability between subsets of the ontology. Secondly, we identified
very small subsets of an ontology whose removal causes a significant decrease in
classification time, i.e., hot spots, using technique (2). Indeed we show that perfor-
mance heterogeneous ontology-reasoner pairs are highly likely to have such sub-
sets which are detectable by our methods. Thirdly, and finally, we show that if
there is a hot spot for an ontology-reasoner pair, then we can approximate it in
such a way that our criteria for a hot spot (i.e., classification time boost and size)
are maintained.

2 Preliminaries

We assume the reader to be reasonably familiar with ontologies and OWL [22],
as well as the underlying description logics (DLs) [8]. An ontology O is a set of
axioms, and its signature (the set of individuals, concept and role names used)

is denoted Õ. We use the notion of a locality-based module [5], which is a subset
of an ontology O that preserves all consequences of O w.r.t. to a signature Σ.
An x-module M extracted from an ontology O for a signature Σ is denoted x-
mod(Σ,O), for x one of �⊥*,� or ⊥. A justification J of a consequence α is a ⊆-
minimal subset of an ontologyO that is sufficient for α to hold [11]. The reasoning
time of an ontology O using reasoner R, denoted RT(O, R),5 comprises the time
for consistency checking, classification (computing atomic subsumptions) and
coherence (concept satisfiability). The set of atomic subsumptions resulting from
the classification of an ontology O is denoted Cl(O).

3 Materials

In order to test our methods we need a reasonable corpus of “problem” on-
tologies. We derived one from the NCBO BioPortal, a large collection of user
contributed, “working” ontologies covering a wide range of biomedical domains
[13]. We gathered all ontologies from the BioPortal, and performed a reasoner
performance test across this corpus. Four major, freely available DL reasoners
were used: Pellet (v2.2.2) [20], HermiT (v1.3.6) [19], FaCT++ (v1.5.3) [21], and

5 When R is clear from the context, we also use RT(O).
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JFact (v0.9).6 The experiment machine is an Intel Xeon Quad-Core 3.20GHz,
with 32GB DDR3 RAM dedicated to the Java Virtual Machine (JVM v1.5). The
system runs Mac OS X 10.6.8, all tests were run using the OWL API v3.3 [7].

The entire BioPortal corpus contains 216 ontologies. We discarded all ontolo-
gies with reasoning times, for all reasoners, below 60 seconds (i.e., the “easy”
ontologies). This leaves 13 ontologies, 3 of which did not classify within 10 hours:
the IMGT7 ontology with Pellet, GALEN8 with all reasoners, and GO-Ext.
(Gene Ontology Extension),9 with FaCT++ and JFact.

The naive approach to determining heterogeneity is to enumerate the “accept-
ably” small subsets of the ontology and measure the classification time for each.
Given that our ontologies range from 100s to over 100,000 axioms, this is obvi-
ously infeasible. Random testing of acceptably small subsets might be effective
assuming that a sufficiently large proportion of those subsets were, in fact, hot
spots, though our preliminary experiments in this direction were unpromising.
Instead, we performed two sorts of heterogeneity detection. In the first, “coarse
grained” method, we classify ontology-reasoner pairs as performance heteroge-
neous or homogenous by attending to performance fluctuations (or lack thereof)
over relatively large, evenly increasing subsets of the ontology. In the second,
we apply two simple heuristics for selecting candidate subsets, and then ver-
ify whether they conform to our hot spot criteria. The second method directly
verifies our heterogeneity condition.

4 Coarse Grained Prediction

For current purposes, we focus on performance variability of a single reasoner for a
given ontology. In particular, we are always examining the difference in reasoning
time of select subsets of a given, hard-for-a-specific-reasoner ontology. We do this
for several reasons: 1) it simulates a common user scenario (e.g., editing or trying
to “optimize” an ontology) and 2) we are investigating the backgroundassumption
that ontologies which are difficult (e.g., approach the worst case) are often so in a
“fragile” way, i.e., their performance is sensitive to small changes.

We say that an ontology is performance homogenous for a reasoner if there is
a linear factor L and variable k such that for all M ⊆ O and for k · |M | = |O|,
we have that L · k · RT(M) ≈ RT(O). An ontology which is not performance
homogeneous we call performance heterogeneous. It is important to note that,
in both cases, the performance profile of the ontology and its subsets may be
predictable (even if we currently do not know how to predict it).

In this experiment, each ontology is divided into 4 and 8 random subsets
of equal size, and the classification times of these subsets as increments are
measured (i.e., we measure, for the 4-part division, RT(O1), RT(O1 ∪ O2),
RT(O1 ∪ O2 ∪ O3), RT(O), where O1,O2,O3 are subsets of O). Both

6 http://jfact.sourceforge.net/
7 http://www.imgt.org/IMGTindex/ontology.html
8 http://www.co-ode.org/galen/
9 http://www.geneontology.org/

http://jfact.sourceforge.net/
http://www.imgt.org/IMGTindex/ontology.html
http://www.co-ode.org/galen/
http://www.geneontology.org/
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measurements are carried out several times per ontology (at least 10, though
often more), where each time the list of axioms in O is shuffled.

Note that we are testing a very small number of subsets of each ontology,
so, in principle, that we see “smooth” behaviour could be due to insufficient
sampling. However, because each increment is rather large, we hope that it will
contain (in a behaviour exhibiting way) any hot spots.

Overall 4 out of 13 ontology/reasoner pairs exhibit roughly linear performance
growth in our tests (see Figures 1c and 1d for characteristic graphs). GALEN
proved infeasible to work with (even only half the ontology gave reasoning times of
over 10 hours), and was discarded. The remainder exhibited non-linear and some-
times highly variable performance behaviour. For example, Figure 1e shows that
even the very coarse, 4-part division method can detect strange performance pat-
terns, although the more fine grained, predictably, is more detailed (Figure 1f).
Contrariwise, Figure 1a shows a rather smooth, if non-linear, curve. It is tempt-
ing to think that that smoothness indicates a relatively predictable performance
profile, but as we see in the more fine grained view (Figure 1b) this is not true.
However, this supports (though, obviously, does not confirm) our hypothesis that
ontologies with non-linear growth, whether smooth or jaggy, are performance het-
erogeneous. In our corpus, they certainly exhibit surprising variability.

While we were unable to run this test sufficient enough times to attain statis-
tical significance for all ontologies, the data gathered is already highly suggestive
of reasoner performance behaviour on our test corpus. During the execution of
this experiment we noted a curious phenomenon: While in most ontologies we
managed to achieve convergence on the overall classification time on each run,
in the GO-Ext ontology this did not happen. Surprisingly, the classification time
of GO-Ext with Pellet, under exactly the same experimental conditions, varies
from seconds to hours; more specifically, the range is from 27 seconds to 1 hour
and 14 minutes (Figure 2). A unique case as it may be (in our corpus), it suffices
to illustrate not only the need for performance analysis solutions, but also the
difficulty of the problem in cases such as this one.

5 Performance Hot Spots

We hypothesise that if an ontology is performance heterogeneous for a reasoner,
then there exists at least one “small” subset of that ontology whose removal
results in a “significant” change in the classification time (positive or negative).
That is, when there exists a subset M of a given ontology O such that (1) M is
“acceptably small” (typically, |M| � |O|), and (2) RT(O\M)� (or �)RT(O).
We call such a subsetM, which witnesses the performance heterogeneity of O, a
“hot spot”, by way of analogy with program profilers. The analogy is imperfect
as we cannot say whether such bits themselves consume an inordinate amount
of time, or whether they have some more diffuse triggering effect.

Obviously, the exact nature of the smallness of M relative to O and the
respective classification times depend on non-intrinsic considerations. In general,
we consider subsets below 20% of the ontology and speed-ups of at least an order
of magnitude, and preferably more.
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(a) ChEBI 4-part division (Pellet) (b) ChEBI 8-part division (Pellet)

(c) Gazetteer 4-part division (HermiT) (d) Gazetteer 8-part division (HermiT)

(e) EFO 4-part division (Pellet) (f) EFO 8-part division (Pellet)

(g) ICF 4-part division (HermiT) (h) ICF 8-part division (HermiT)

Fig. 1. Performance heterogeneity tests of select ontologies. All times in seconds.
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(a) Times in chronological order.

(b) Times in ascending order.

Fig. 2. Classification times (in seconds) of the GO-Ext ontology with Pellet

Given that exhaustive search is unpromising, indeed the search space is un-
manageable; for a number of axioms n, variable k, and considering only subsets
of size below 20% of n, the possible subsets are all unique combinations of n
of size k, for 1 � k � 0.2n, we need some other method for producing good
“candidate hot spots”, i.e., subsets that are likely to be hot spots. In [23], the
authors suggest that the satisfiability checking (SAT) time of an atomic concept
is an indicator of the total time the reasoner spends on or “around” those atomic
concepts during classification. In particular, they observe that in their examined
ontologies, relatively few concepts (2-10 out of 1000s) took enormously more
time to check their satisfiability than for the rest of the concepts. Since sub-
sumption testing is reduced to satisfiability checking, it is at least prima facie
plausible that the stand alone satisfiability time is correlated with a “hot spot”.
Indeed, the authors were able to “repair” their sample ontologies, by removing
a small number of axioms based on guidance from SAT times.

5.1 Hot Spot Detection

Just knowing the “hard” concepts does not give us a corresponding set of axioms.
For a candidate C, we use the �⊥∗-module of the terms co-occurring with C in
an axiom in O as the module “around” C. This roughly approximates what an
ideal user might do: identify the problem (C) and then “remove it” (i.e., remove
its explicit and implicit presence; the usage gets the explicit while the module
gets the rest; this is an approximation, obviously). We rely on �⊥∗-modules as
these were shown to be the smallest kind of locality-based module [17]. The full
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technique is described by Algorithm 1. To test whether our indicator is effective,
we compare it to candidates generated from randomly selected concepts. For
each member of our set of 12 “hard” BioPortal ontologies we attempted to find
3 witness hot spots while testing no more than 1,000 hot spot candidates. In
each case, we selected candidate hot spots using both the SAT-guided and the
randomly selected concept methods.

Algorithm 1. Identification of hot spots in ontologies.

Input: Ontology O
Output: Set of modules S, wherein for each Mi ∈ S: RT(O \Mi)� RT(O)

S ← ∅; Candidates← ∅; T imes← ∅; max = 1000;
for all atomic concepts C ∈ Õ do {S1: Get SAT times}

T imes← T imes ∪ 〈C,SATtime(C)〉
end for
Sort T imes in descending order of SATtime(C)
Candidates← Candidates ∪ {C with highest SATtime up to max concepts}
for all C ∈ Candidates do {S2: Verify candidate hot spots}
M = �⊥*-mod({t | t co-occurs with C in some α ∈ O},O)
if RT(O \M)� RT(O) then {S3: Test hot spot effectiveness}

S ← S ∪M
end if

end for
return S

The first striking result is that we verified all the coarse-grained heterogeneity
predictions. That is, if an ontology had a linear performance growth curve then
neither method found a hot spot, whereas if the growth curve was non-linear
then we found at least 1 hot spot, and usually 3.10

The hot spots found are described in Table 1. Both techniques were able to
find hot spots most of the time, though the random approach failed in two cases.
For the NEMO/HermiT combination, both approaches failed to find 3 before the
limit, which suggests that hot spots are scarce. Contrariwise, for NCIt/HermiT,
while the random approach failed to find any hot spots, the SAT-guided approach
found them in 7 tests. In general, though not always, the SAT-guided approach
found 3 hot spots in far fewer tests than the random approach (on average,
respectively, in 129 vs. 426 tests), validating concept satisfiability as a significant
indicator. Note that, at this point, we only present classification time boosts, the
completeness of classification results is presented in Table 5.

A difficulty of the SAT-guided approach is the time to test all concepts for sat-
isfiability. For example, we were unable to retrieve precise satisfiability-checking
times for the GO-Ext ontology with FaCT++ and JFact. Instead, we used a
timeout on each concept satisfiability check of 60 seconds. Also note that, for

10 Of course, this could be just that we failed to find the telltale hot spots in the
linear-growth ontologies. However, the overall evidence is highly suggestive.
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Table 1. Comparison of hot spots found via SAT-guided (white rows) and random
(grey rows) concept selection approach. “Nr. Tests” is the number of candidates tested
before either finding 3 hot spots or exhausting the set search space (either the number
of concepts in the ontology or 1000, whichever is smaller). CPU times in seconds.

Ontology
Nr. Nr.

Reasoner RT(O)
Hot Avg. Avg. Nr. Avg. Avg. Avg.

Axioms Concepts Spots RT(O \M) Boost Tests |M| %|O| RT(M)

ChEBI 60,085 28,869 Pellet 65.8
3 12.3 82% 3 186 0.3% 0.55
3 3.5 95% 89 522 1% 0.72

EFO 7,493 4,143 Pellet 61.1
3 9.6 81% 128 68 1% 0.13
3 10.9 82% 863 70 1% 0.14

GO-Ext. 60,293 30,282 Pellet 268.4
3 29.6 89% 36 98 0.2% 0.08
3 31.9 88% 419 17 0.03% 0.06

IMGT 1,112 112
Pellet >54,000

1 26.1 99% 112 98 9% 0.09
1 26.1 99% 112 98 9% 0.09

HermiT 80.4
3 7.8 90% 86 35 3% 8.86
3 7.1 91% 103 36 3% 10.4

NEMO 2,405 1,422 HermiT 76.3
1 5.5 93% 1,000 44 2% 4.63
0 - - 1,000 - - -

OBI 25,257 3,060

HermiT 61.6
3 2.3 96% 3 570 2% 1.56
3 4.3 93% 189 576 2% 1.48

JFact 72.1
3 1.1 93% 3 570 2% 1.12
3 7.4 90% 57 576 2% 1.19

Pellet 119.8
3 11.1 91% 29 708 3% 2.05
3 21.6 82% 133 593 2% 1.76

VO 8,488 3,530 Pellet 4275.9
3 30.4 99% 11 322 4% 1.56
3 371.7 91% 725 262 3% 0.61

NCIt 116,587 83,722 HermiT 430.1
3 16.1 88% 7 3,611 3% 16.14
0 - - 1,000 - - -

this particular ontology, we use (in Table 1 and subsequent ones) the median
time value from the wide range of obtained classification times.

Overall, the hot spot finding mechanism described in Algorithm 1 is feasible,
and successfully identified hot spots in all ontologies deemed performance het-
erogenous. Its run time is faster than the original classification time in 4 out
of 11 cases, including one case (IMGT/Pellet) for which classification did not
terminate within 15 hours. In general, the found hot spots were quite good: they
typically were smaller than our limit (only IMGT/Pellet was above 5% of the
ontology) and often giving massive speedups (e.g., IMGT/Pellet). There is no
indication that hot spots, on their own, are particularly hard, which suggests an
interaction effect, as expected.

5.2 Hot Spot Analysis

In order to investigate whether the removal of each hot spot happened to shift
expensive constructs from the main input to the subset, we verify the expressivity
of the hot spots and the remainder ontology (shown in Table 2).

Notice that, in several cases, the removal of the hot spot does not change the
expressivity of the remainder w.r.t. the whole ontology, e.g. in ChEBI. However
in other, yet few cases, there is a reduction of expressivity, e.g., the hot spots
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Table 2. Expressivity of each original ontology (O), its various hot spots (M) and
corresponding remainders (O \M)

Ontology O O \M M
ChEBI ALE+ ALE+ ALE+
EFO SHOIF SHIF SHOIF

GO-Ext. ALEH+ ALEH+ AL, ALEH+, ALE
IMGT ALCIN ALC, ALCIN ALCI, ALCIN
NEMO SHIQ SHIF SHIQ
OBI SHOIN SHOIN SHOIF , SHOIN
VO SHOIN SHOIN SHOIF
NCIt SH ALCH S

found in EFO leave the remainder without nominals. Similarly in NEMO the
remainder no longer has qualified cardinality restrictions.

In order to get a better understanding of why this performance boost oc-
curs, particularly the interaction effect between each hot spot and the ontology,
we verify whether the removal of the hot spots from these ontologies changes
the number of General Concept Inclusions (GCIs),11 as these are an obvious
potential source of hardness. The results gathered are shown in Table 3.

Table 3. Number of GCIs contained in the each ontology, its hot spots, and their
corresponding remainders

Ontology O O \M1 O \M2 O \M3 M1 M2 M3

EFO 172 163 164 164 9 8 8

GO-Ext 4407 4398 4382 4382 9 25 16

NCIt 42 37 36 36 5 6 6

NEMO 31 30 - - 1 - -

OBI 227 182 193 193 44 33 33

VO 235 196 201 197 39 34 38

IMGT 38 0 0 0 38 38 38

The obvious thing to notice here is that the removal of each of the 3 hot
spots found within IMGT (for HermiT) leaves the remainder with no GCIs at
all. Other cases are not so obvious, indeed in, e.g., NEMO or NCIt, only a few
GCIs are removed from the original ontology. However, there seems to be some
relation between the loss of GCIs from the original ontology into the hot spot, and
the improvement in classification time. We speculate that a glass box approach
to investigating this relation may help disentangle performance difficulties in
specific reasoners, though this is beyond the scope of the paper.

11 Axioms with complex concepts on both sides, e.g., ∃r.A � ∃r.B.
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5.3 Comparison with Pellint

As a final check, we compared our technique with Pellint [12]. Pellint is a “perfor-
mance lint” dedicated specifically to the Pellet reasoner; it draws on the knowl-
edge of the Pellet developers to generate a set of rules for what sorts of constructs
and modelling patterns are likely to cause performance degradation when using
Pellet — essentially it is a Pellet specific, ontology performance tuning expert
system. Pellint not only identifies problem constructs, but it suggests approxima-
tions (typically by weakening or rewriting axioms) which “should” improve perfor-
mance. If the number of axioms touched by Pellint repairs is sufficiently small and
the gain sufficiently large, then Pellint will have identified a hot spot (though, at
most 1). Since we believe that the “predicted homogeneous” ontologies have no hot
spots (and we did not find any), we would expect that, while perhaps improving
their performance, Pellint would not identify a hot spot. Similarly, for non-Pellet
reasoners, we would expect no improvements at all. To check these conjectures we
ran Pellint on all our ontologies and compared reasoning times for all “bad” rea-
soner/ontology combinations for both the Pellint approximated versions, and by
removing the modified axioms (thus providing a direct comparison with Table 1).
The results are shown in Table 4. Note that ontologies for which Pellint found no
lints at all are omitted (5, in total). If Pellint found lints but could not alter them,
then the number of altered axioms will read as 0 and no tests performed.

Table 4. Ontologies for which Pellint found “lints”

Ontology Reasoner RT(O)
Nr. Axioms %|O| Altered(O) O \ {lints}

Altered (lints) Altered RT(O) Boost RT(O) Boost

ChEBI Pellet 65.8 0 - - - - -

EFO Pellet 61.1 172 2% 3.7 94% 3.1 95%

GO-Ext. Pellet 268.4 4407 7% 19.4 93% 5.85 98%

VO Pellet 4275.9 231 3% 119.7 97% 3.32 99%

NCIt HermiT 430.1 42 0.04% 443.4 -3% 448.1 -4%

Coriell
Pellet 923.5

46 0.03%
642.3 30% 631.0 32%

FaCT++ 156.1 159.2 -2% 159.1 -2%
JFact 154.8 154.2 0.4% 143.9 7%

PRPPO Pellet 118.9 0 - - - - -

First, Pellint was not able to find any hot spots in the predicted homogeneous
ontologies, though for one (Coriell/Pellet) it was able to provide a significant
performance boost (32%). This further confirms our linear/homogeneous hy-
pothesis. Second, Pellint found hot spots in 3 out of 8 heterogeneous ontologies,
performing much worse than even random concept selection. When found, the
hot spots where competitive, but not all repaired lints improved performance
(i.e., NCIt/HermiT). Pellint failed to find hot spots in our experiments due to
finding no lints (5 ontologies), having no repairs12 (2 ontologies), or just failing

12 The set of suspect axioms might be a hot spot (or a subset thereof), but without
access to them we cannot test.
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to produce a dramatic enough (or any) effect (4 ontology/reasoner pairs, with
most being non-Pellet). As expected, Pellint found no hot spots or performance
improvements for other reasoners. Of course, this might be just be due to its
overall poor hot spot finding.

Finally, Pellint’s alterations had a noticeable negative effect on reasoning time
compared to simple removal.Whether these approximations significantly save en-
tailments needs to be investigated. Given the high development and maintenance
costs of Pellint, it does not seem viable compared to search based methods.

6 Improving Classification via Hot Spots

The applicability of our hot spot finding method is dependent on how much infor-
mation users are willing to lose. In a realistic edit-compile-deploy scenario, users
may be wary to dispose of parts of their ontology. Thus, in order to avoid this
predicament, we explore a series of approximation and knowledge compilation
techniques, and compare them with a known approximate reasoning method.
The latter is based on a reduction of the input into the tractable fragment of
OWL: EL, as implemented in TrOWL [15]. We implemented the EL reduction
algorithm so as to apply it to any given reasoner other than REL (the reasoner
used within TrOWL). Our approximation-based classifier is denoted ELC.

6.1 Approximate Reasoning

First off, given a hot spot and an ontology, we have an immediate approxi-
mation O \ M of O; It is much easier to reason over than the original on-
tology, though possibly too incomplete w.r.t. Cl(O) (i.e., the set of inferred
atomic subsumptions of O). From hereon we derived two more approximations:
1) Cl(O \M) ∪ Cl(M), which would naturally be more complete than O \M
alone, and 2) O \M ∪ Cl(M), where we expect that the interaction between
inferred subsumptions in M and the remainder will bring us closer to Cl(O).
A comparison of these techniques is shown in Table 5, containing the results of
each of the 3 approximations as well as ELC with the respective reasoner.

Overall the closest approximation is O\M∪Cl(M), which yields an average
completeness of 99.84% and an average boost of 89.3% over the original times.
ELC is typically more complete, though in several cases classifying an ontology
with ELC is much slower than the original RT(O), e.g., ELC failed to classify
the NCIt within 5 hours, compared to ≈7 minutes originally. Similarly with
ChEBI and OBI, the approximation is no faster than the original times. Overall
the average boost via ELC is non-existent, particularly due to the NCIt case.
By excluding that one case, ELC’s average classification time boost is of 33.7%.

Applying the original TrOWL system, with its internal reasoner REL, is not
so much better than using standard DL reasoners on the EL approximations,
particularly since some DL reasoners (e.g., Pellet or FaCT++) are finely tuned
to the EL fragment of OWL. Nevertheless, we analysed those results only to find
that TrOWL has the exact same problem with the NCIt, and out-performs ELC
in 4 out of 7 cases by mere seconds.



94 R.S. Gonçalves, B. Parsia, and U. Sattler

Table 5. Approximate reasoning results for the approximations O \M, Cl(O \M) ∪
Cl(M), O \M∪Cl(M), and, finally, ELC. The completeness of each approach w.r.t.
Cl(O) is denoted “Compl.”.

OntologyReasoner
O \M Cl(O \M) ∪ Cl(M)O \M∪ Cl(M) ELC

Compl. Boost Compl. Boost Compl. Boost Compl. Boost

ChEBI Pellet 55% 89% 55% 89% 100% 84% 100% -207%

EFO Pellet 78% 86% 79% 86% 100% 81% 100% 63%

NCIt HermiT 75% 90% 80% 87% 100% 89% -12 -2651%

NEMO HermiT 97% 96% 98% 92% 100% 96% 99.94% 93%

OBI
HermiT 51% 96% 55% 94% 100% 94% 100% 14%
JFact 51% 91% 55% 90% 99.92% 84% 99.95% -10%
Pellet 50% 88% 54% 88% 100% 86% 100% 54%

IMGT
Pellet 68% 100% 76% 100% 100% 100% 100% 100%
HermiT 92% 92% 97% 78% 99.92% 92% 100% 100%

VO Pellet 50% 98% 52% 98% 98.36% 94% 100% 97%

GO-Ext Pellet 95% 90% 96% 90% 100% 81% 100% 33%

Average 69.2% 92.4% 72.3% 90.4% 99.84% 89.3% 99.99% -210%

6.2 Knowledge Compilation

While the loss of entailments via our best approximation is typically empty, or
very low, we investigate whether a number of knowledge compilation techniques
based on hot spots enjoy the same performance boosts as the approximations in
Section 6.1. These techniques all maintain 100% completeness of knowledge con-
tained in the original ontologies, i.e., they produce logically equivalent knowledge
bases. The rationale behind these techniques is that by adding inferred knowl-
edge (e.g., from a hot spot) to the original ontology, reasoners will not need to
do certain (possibly expensive) subsumption tests, and, as a consequence, should
(at least intuitively) perform faster. The results are shown in Table 6.

First thing to notice here is that adding the inferred class hierarchy of the
parts does not necessarily improve classification time over the whole. There are
cases, such as OBI with JFact, where all compilation techniques took much
longer to classify than the original (note that we timed-out the operation at 5
hours). On the other hand, there are cases where there is mild to noteworthy
improvement, for instance VO classifies 75% faster when we use the second com-
pilation technique, which is a significant improvement with no loss of knowledge.
Similarly the GO-Ext ontology classifies 92% faster with both the second and
third compilation technique. Nevertheless, the results gathered are not nearly
as stable w.r.t. classification time improvement as our approximations, and the
improvements obtained are also not as high as those shown in Section 6.1.

12 The classification of the NCIt was interrupted after running for 5 hours, well above
the original classification time.
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Table 6. Compilation results for the techniques O ∪ Cl(M), O ∪ Cl(O \ M) and
O ∪ Cl(M) ∪ Cl(O \M)

Ontology Reasoner
O ∪ Cl(M) O ∪ Cl(O \M) O ∪ Cl(M) ∪ Cl(O \M)
Time Boost Time Boost Time Boost

ChEBI Pellet 74.5 18% 73.1 19% 73.6 19%

EFO Pellet 51.3 30% 63 14% 62.9 14%

NCIt HermiT 616.1 6% 603.2 8% 614.5 6%

NEMO HermiT 94.9 5% 94.6 6% 98.6 2%

OBI
HermiT 71 -3% 69.1 0% 70.7 -2%
JFact >5hrs - >5hrs - >5hrs -
Pellet 264 -66% 207.5 -31% 276.6 -74%

IMGT
Pellet 36000 33% 36000 33% 36000 33%
HermiT 94.8 -4% 94.9 -4% 94.8 -4%

VO Pellet 1704.4 60% 1066.2 75% 2136.2 50%

GO-Ext Pellet 161.4 56% 30.1 92% 30.6 92%

Average Boost - 14% - 21% - 14%

7 Related Work

In [23], a number of ontology profiling techniques are proposed and realized
in a tool, Tweezers for Pellet. Tweezers allows users to investigate performance
statistics, such as the satisfiability checking time for each concept in the ontology,
but relies on the user to apply this information. Our goal driven technique can
be seen as the automated exploitation of their statistics.

In [4] the author proposes three techniques to automatically identify poten-
tially expensive “constructs” (concepts, roles or axioms). These techniques search
for “suspect” constructs by recursively splitting an ontology in different manners,
and individually testing performance over the parts until suspects are found.
While their actual attempt was rather ad hoc, it does suggest an alternative
discovery mechanism (as they did find some hot spots).

In [3] the authors present a form of OWL reasoner benchmarking based on
justifications. JustBench computes all justifications for entailments in a given
ontology, and measures the performance of reasoners on those justifications. The
authors hoped that they would find justifications that were hot spots themselves
(or indicators thereof), but this hope was not borne out by their experiments.

8 Discussion and Applications

Unlike with hot spots in programs, there is no straightforward relationship be-
tween the performance of a “hot spot” in isolation and the effect it has on the
ontology as a whole (see the last column in Table 1). Our results have shown that
there is no precise co-relation between the classification time of a hot spot alone,
and the reduction in classification time when such hot spot is removed. This is
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somewhat similar to the fact that in a program, if an individually quick function
is called sufficiently often, it may be the performance bottleneck for that program.
That is, looking at the performance of the function in isolation is not sufficient to
determine its effect on the overall runtime. However, in our case, there are many
possible and currently unknown ways that a performance hot spot might affect
overall runtime, and yet not exhibit pathological behaviour on its own. Indeed,
the fact that sometimes adding axioms is sufficient to eliminate performance prob-
lems shows that isolating behaviour is not a reliable predictor of integrated effect.
It would be interesting to seek out inverse hot spots, that is, acceptably small sub-
sets whose removal greatly increases the classification time of an ontology, though
these would have less end user applicability. Of course, merely finding hot spots
does not provide any explanation of performance patterns, it merely provides tools
for investigating them. On the other hand, it is a purely black box technique, thus,
unlike Pellint, does not require such insight to be effective.

Our investigation was partly inspired by our observation of user coping tech-
niques for recalcitrant ontologies, thus it is natural to seek to apply them in such
scenarios. The basic idea is straightforward enough: Present the user with a se-
lection of hot spots and let them select the most appropriate one to “set aside”
(permanently or temporarily) or to rewrite into a less damaging approximation.
Of course, we might want hot spots with somewhat different properties, e.g.,
that the remainder ontology is a module rather than the hot spot, so that “safe
edits” to the remainder will not alter the meaning of the hot spot. We might use
heuristics to select a hot spot for automated removal or approximation. Modular
hot spots might be presented to the user so they can attempt to have a clearer
understanding of “what was removed.”

Our techniques could benefit reasoner developers as well. For example, a hot
spot gives the developer a pair of almost identical ontologies with vastly different
performance behaviour. By comparing the profiling reports on their reasoners
processing these inputs, the developer might gain additional insight.

Currently, we have concentrated on satisfiability-checking time of atomic con-
cepts as the indicator for hot spots. There are clearly alternatives for this, e.g.,
small atoms [6] or justifications, as well as brute force methods [4].

All our experiments, as they stand, can be improved in two dimensions: 1)
more input ontologies are always better, and 2) our sampling, particularly in the
coarse grained method, is very low. Clearly, they were sufficient to reveal some
interesting phenomena, but not to establish statistically significant findings.

Finally, it may be possible to derive Pellint-like rules directly from hot spots
extracted from a large number of ontologies. While requiring maintenance, it
would be inherently much faster than our approaches as it would not require
any reasoning at all.
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Abstract. Detecting, much less understanding, the difference between
two description logic based ontologies is challenging for ontology engi-
neers due, in part, to the possibility of complex, non-local logic effects of
axiom changes. First, it is often quite difficult to even determine which
concepts have had their meaning altered by a change. Second, once a
concept change is pinpointed, the problem of distinguishing whether the
concept is directly or indirectly affected by a change has yet to be tack-
led. To address the first issue, various principled notions of “semantic
diff” (based on deductive inseparability) have been proposed in the lit-
erature and shown to be computationally practical for the expressively
restricted case of ELHr-terminologies. However, problems arise even for
such limited logics as ALC: First, computation gets more difficult, be-
coming undecidable for logics such as SROIQ which underly the Web
Ontology Language (OWL). Second, the presence of negation and dis-
junction make the standard semantic difference too sensitive to change:
essentially, any logically effectual change always affects all terms in the
ontology. In order to tackle these issues, we formulate the central notion
of finding the minimal change set based on model inseparability, and
present a method to differentiate changes which are specific to (thus di-
rectly affect) particular concept names. Subsequently we devise a series
of computable approximations, and compare the variously approximated
change sets over a series of versions of the NCI Thesaurus (NCIt).

1 Introduction

Determining the significant differences between two documents (so-called “diff”)
is a standard and significant problem across a wide range of activities, notably
software development. Standard textual diffing algorithms perform poorly on de-
scription logic (DL) based ontologies, both for structural reasons (e.g., ontology
serializations, such as those of OWL, tend not to impose stable ordering of ax-
ioms), and due to the highly non-local and unintuitive logical effects of changes
to axioms. This gave rise to several diff notions for OWL ontologies, encompass-
ing various types of change detection and impact analysis mechanisms. Within
change detection there are two key dimensions of change: syntactic and seman-
tic, leading to syntactic and semantic diffs. The former, e.g. those diffs based
on OWL’s notion of “structural equivalence” [3,7,11], detect asserted changes
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between ontologies, and thus are of interest for, e.g., versioning. In [3] we ad-
dressed the problem of identifying and characterising the impact of such asserted
changes by, for instance, pinpointing whether each change produces a logical ef-
fect. However, that work focused exclusively on axiom level analysis. Since OWL
ontologies are sets of axioms, this is a natural level of analysis. However, ontolo-
gies often serve as ways to manage controlled vocabularies, that is, the set of
axioms is a development time artifact supporting the delivery of a hierarchically
organized set of categorical terms. In such cases, end users are most directly
concerned with changes to the terms themselves and may not even have access
to the axioms. Thus, the modeller must not only be aware of the axioms they
have touched, but how those changes affect the concepts in the ontology.

For the purpose of determining entailment (and ergo term) differences, recent
notions of semantic difference based on conservative extensions have provided
a robust theoretical and practical basis for analysing these logical effects [6].
Unfortunately, semantic difference is computationally expensive even for inex-
pressive logics such as EL. For the very expressive logics such as SROIQ (the
DL underlying OWL 2) it is undecidable [9]. Furthermore, standard semantic
difference runs into other difficulties in more expressive logics when we consider
differences w.r.t. all terms in both ontologies. In particular, if we compare entail-
ment sets over logics with disjunction and negation we end up with vacuously
altered terms: any logically effectual change will alter the meaning of every term.

To address this vacuity problem, we present a non-trivializable notion of se-
mantic difference of concepts, which includes a mechanism for distinguishing
directly and indirectly affected concepts. To address the undecidability of even
our refined semantic difference problem for the SROIQ (i.e., OWL 2) DL, we de-
fine a series of motivated semantic diff approximations for expressive description
logics. These algorithms are evaluated on a select subset of the National Can-
cer Institute (NCI) Thesaurus (NCIt) corpus, by a comparison of the changes
found via the proposed approximations and related approaches. Our experiments
show that our strongest approximation, “Grammar diff”, finds significantly more
changes than all other methods across the corpus, and far more than are iden-
tified in the NCIt change logs. We show that distinguishing direct and indirect
changes is necessary for making concept based change logs manageable.

2 Preliminaries

We assume the reader to be familiar with ontologies and OWL, as well as the
underlying description logics (DLs) [1]. We use terms to refer to concept and role
names. When comparing two ontologies we refer to them as O1 and O2, and their
signatures (i.e., the set of terms occurring in them) as Õ1 and Õ2, respectively.

Throughout this paper we refer to Õ1 ∪ Õ2 as Σu. This signature is the natural
subject of comparison of terminological changes between two ontologies. The
signature of an axiom α is denoted α̃.

Throughout this paper we use the standard description and first order logic
notion of entailment; an axiom α entailed by an ontologyO is denotedO |= α. We
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refer to an effectual addition (removal) from O1 to O2 as an axiom α such that
α ∈ O2 and O1 �|= α (α ∈ O1 and O2 �|= α) [3]. Thus two ontologies are logically
equivalent, denoted O1 ≡ O2, if there is no effectual change (addition or removal)
betweenO1 andO2. The set of subconcepts of an ontologyO is recursively defined
as all subconcepts found in each axiom of O, plus {�,⊥}. W.l.o.g, we define all
diff functions asymmetrically, thus to get the full diff between two ontologies we
compute Diff(O1,O2) (for additions) and Diff(O2,O1) (for removals).

The restriction of an interpretation I to a set of terms Σ is denoted I|Σ .
Two interpretations I and J coincide on a signature Σ (denoted I|Σ = J |Σ) if
ΔI = ΔJ and tI = tJ for each t ∈ Σ.

Throughout this paper we use the notion of model conservative extension
(mCE) [2,9], and associated inseparability relation [13]. The axioms expressible
in a DL L over a set of terms Σ is denoted L(Σ).

Definition 1. Given two ontologies O1, O2 over a DL L, and a signature Σ.

O2 is model Σ-inseparable from O1 (O1 ≡mCE
Σ O2) if(1)

{I|Σ | I |= O1} = {J |Σ | J |= O2}
O2 is deductive Σ-inseparable from O1 w.r.t. L (O1 ≡L

Σ O2) if(2)

{α ∈ L(Σ) | O1 |= α} = {α ∈ L(Σ) | O2 |= α}
Diff(O1,O2)

L
Σ = {η ∈ L(Σ) | O1 �|= η and O2 |= η}(3)

Note that Diff(O1,O2)
L
Σ = ∅ if and only if O1 ≡L

Σ O2. Also, bear in mind (esp.
for the running example) that O1 �≡L

Σ O2 implies O1 �≡mCE
Σ O2. In the remainder

of this paper we use SROIQ General Concept Inclusions (GCIs) for L, and omit
L if this is clear from the context.

3 Exisiting Semantic Diff

Diff(O1,O2)Σ alone, if non-empty, tells us that there are new entailments ex-
pressed in the designated signature, but does not pick out specific terms in that
signature. The CEX [6] diff method focuses on elements of Diff(O1,O2)Σ , so
called witness axioms, with specific forms — subsumptions with an atomic left
hand (resp. right hand) side, i.e., of the form A � C (resp. C � A) where A
is atomic and C is a possibly complex concept, called the witness concept. All
terms that appear in those positions in axioms in Diff(O1,O2)Σ form the set
of affected terms (denoted AT(O1,O2)Σ). By restricting attention to changes
to individual terms (rather than to sets of terms together), CEX 1) becomes
decidable1, 2) produces manageable diff reports (AT(O1,O2)Σ is a subset of the
signature, not of the powerset of the signature), and 3) the diff report is nicely
interpretable. CEX gets interpretability both by focusing on changes to individ-
ual terms in themselves (instead of on coordinated changes to sets of terms) and
by exploiting the natural directionality of its witness axioms.

1 At least for the restricted case of acyclic ELHr terminologies (EL extended with role
inclusions and range restrictions).
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CEX divides AT(O1,O2)Σ into specialised, denoted AT(O1,O2)
L
Σ, and gen-

eralised, designated AT(O1,O2)
R
Σ, concept names depending on whether a term

appears on the left or right hand side of a witness axiom (the same term may
appear in both). The CEX algorithm is sound and complete: If there is a witness
axiom for a term A in the deductive closure of O2, then CEX will find it.

The computational complexity of deciding Σ-entailment is undecidable for
expressive DLs such as SROIQ. For EL it is already ExpTime-complete [10],
while for ALC, ALCQ, and ALCQI it is 2ExpTime-complete [9]. Thus, CEX
is computationally infeasible for expressive logics. Moreover, when considering
differences over Σu, a direct extension of Σ-difference for more expressive logics
such as ALC would be futile; when we step beyond EL as a witness language
into more expressive logics with disjunction and negation, if O1 �≡ O2 then
AT(O1,O2)Σ contain all terms in Σ. Consider the following EL ontologies: O1 =
{A � B}, and O2 = {A � B,C � D}. Clearly O2 is a conservative extension
of O1 w.r.t. Σ = {A,B}, but if we consider Σu then that is no longer the case;
a witness axiom for the separability would be, e.g., η := A � ¬C � D. This
witness “witnesses” a change to every concept A′ ∈ Σu; for each witness axiom
η′ : A′ � ¬C � D we have that O1 �|= η′, while O2 |= η′. Such a witness would
suffice to pinpoint, according to Σ-difference, that all terms in Σu have changed:
AT(O1,O2)Σu

= Σu since � � ¬C � D. Consequently, this kind of witness is
uninteresting for any particular concept aside from �. Likewise, a change A � ⊥
implies that, for all B in the signature of the ontology in question, we have that
A � B. Yet these consequences are of no interest to any concept B.

Similar to the case of the least common subsumer [8], the presence of disjunc-
tion (and negation) trivialises definitions that are meaningful in less expressive
logics. Thus we need to refine our diff notion when dealing with propositionally
closed witness languages.

A simple approach to coping with the dual problems of computational diffi-
culty and triviality is to use a relatively inexpressive witness language. For exam-
ple, ContentCVS [5] computes an approximation of AT(O1,O2)

L
Σ (i.e., A � C)

for OWL 2 DL where C conforms to a specific grammar (B is atomic):

Grammar Gcvs : C −→ B | ∃r.B | ∀r.B | ¬B
Grammar Gcvs is a bit ad hoc, being based on the designers intuitions of what
might be “interesting” but yet inherently finite. In a user study of ContentCVS,
users criticised “the excessive amount of information displayed when using larger
approximations of the deductive difference” [5]. The users were not presented
with the affected terms directly, only via presentation of the witness axioms.
ContentCVS avoids triviality by not allowing axiom encoding witness concepts.

4 Semantic Diff

Given the shortcomings of existing methodologies, and the triviality of Σu-
difference in expressive ontologies, we present a semantic diff method that a)
determines which concepts have been affected by changes. For exposition rea-
sons, we concentrate on concepts, though roles are easily added. And b) identifies
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which concepts have been directly (or indirectly) changed. Ideally, a solution to
these problems would be 1) a computationally feasible diff function (for OWL
2 DL), 2) based on a principled grammar, that 3) returns those concept names
affected by changes between two ontologies, while 4) distinguishing whether each
concept name is directly (or indirectly) specialised and/or generalised.

Consider the toy ontologies O1 and O2 defined in Table 1; they will be used
throughout this section as a running example.

Table 1. Ontologies O1 and O2

O1 O2

α1 : A � B β1 : A � B
α2 : B � C β2 : B � C �D
α3 : D � ∃r.E β3 : D � ∃r.E
α4 : E � ∀s.G β4 : E � ∀s.(G � F )
α5 : ∃r.I � J β5 : ∃r.I � J

β6 : ∀t.H � I

4.1 Determining the Change Set

Given two ontologies O1 and O2, such that O1 �≡ O2 (i.e., there exists at
least one effectual change in Diff(O1,O2)), we know that O1 and O2 are not
Σ-inseparable (for Σ := Σu) w.r.t. model inseparability, i.e., O1 �≡mCE

Σ O2

since an effectual change implies some change in semantics. In order to
pinpoint this change, we need to find the set of terms Σ′ s.t. O1 is mCE-
inseparable from O2 w.r.t. the remaining signature Σ \ Σ′: O1 ≡mCE

Σ\Σ′ O2.
Then we know that, from O1 to O2, there are no changes in entailments over
Σ \ Σ′. We refer to this set of terms Σ′ as the Minimal Change Set (de-
noted MinCS(O1,O2)), in the sense that we can formulate a non-trivial witness
axiom η over Σ′ s.t. O1 �|= η but O2 |= η. Thus we denote these terms as affected.

Definition 2 (Minimal Affected Terms). A set Σ′ ⊆ Σ is a set of minimal
affected terms between O1 and O2 if:

O1 �≡mCE
Σ′ O2 and for all Σ′′ � Σ′ : O1 ≡mCE

Σ′′ O2.

The set of all such sets is denoted MinAT(O1,O2).

In order to form the minimal change set, we take the union over all sets of
affected terms in MinAT(O1,O2).

Definition 3 (Minimal Change Set). The minimal change set, denoted
MinCS(O1,O2), of two ontologies is defined as follows:

MinCS(O1,O2) :=
⋃
MinAT(O1,O2) , and

MinCS(O1,O2)
C
:= {C | C is a concept name in MinCS(O1,O2)}.

From the example ontologies in Table 1 we have that {A,D} is a set of minimal
affected terms between O1 and O2; O1 �≡mCE

{A,D} O2, because O1 �|= A � D
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whileO2 |= A � D. {A,D} is minimal sinceO1 ≡mCE
{A} O2, and similarly for {D}.

Analogous cases can be made for {B,D} via witness axiom B � D, {E, s, F}
via E � ∀s.F , {r, t,H, J} via ∃r.∀t.H � J , and finally {t,H, I} via β6. So the
minimal change set (restricted to concept names) between these two ontologies

is MinCS(O1,O2)
C
:= {A,B,D,E, F,H, I, J}.

4.2 Characterising Concept Impact

Prior to determining how a concept in a signature Σ has changed (e.g., it has
a new superconcept), we employ a diff function Φ which, given two ontologies
and Σ, formulates a set of witness axioms over Σ, denoted ΦDiff(O1,O2)Σ ,
such that, for each η ∈ ΦDiff(O1,O2)Σ : O1 �|= η and O2 |= η. Now given such
a set ΦDiff(O1,O2)Σ , we can tell apart specialised and generalised concepts
depending on whether the witness concept is on the right or left hand side of the
witness axiom, accordingly. Furthermore, we regard a concept name A as directly
specialised (generalised) via some witness C if there is no concept name B that
is a superconcept (subconcept) of A, and C is also a witness for a change in B.
Otherwise A changed indirectly.

Definition 4. A diff function Φ returns a subset ΦDiff(O1,O2)Σ of
Diff(O1,O2)Σ. For a diff function Φ, the sets of affected concept names for
a signature Σ are:

Φ-AT(O1,O2)
�
Σ =

{
{�} if there is a � � C ∈ ΦDiff(O1,O2)Σ
∅ otherwise

Φ-AT(O1,O2)
⊥
Σ =

{
{⊥} if there is a C � ⊥ ∈ ΦDiff(O1,O2)Σ
∅ otherwise

Φ-AT(O1,O2)
L
Σ= {A ∈ Σ | there exists A � C ∈ ΦDiff(O1,O2)Σ and

� � C /∈ ΦDiff(O1,O2)Σ}

ΦAT(O1,O2)
R
Σ = {A ∈ Σ | there exists C � A ∈ ΦDiff(O1,O2)Σ and

C � � /∈ ΦDiff(O1,O2)Σ}

Φ-AT(O1,O2)Σ =
⋃

Y ∈{L,R,�,⊥} Φ-AT(O1,O2)
Y
Σ

Given a concept name A ∈ Φ-AT(O1,O2)
L
Σ (analogously A ∈ Φ-AT(O1,O2)

R
Σ),

and a set of terms Σ+ := Σ ∪ {�,⊥}, we define the following notions:

A direct change of A is a witness C s.t. A � C (C � A) ∈ ΦDiff(O1,O2)
and there is no B ∈ Σ+ s.t. O2 |= A � B (O2 |= B � A),O2 �|= A ≡ B, and
B � C (C � B) ∈ ΦDiff(O1,O2) .

An indirect change of A is a witness C s.t. A � C (C � A) ∈ ΦDiff(O1,O2)
and there is at least one B ∈ Σ+ s.t. O2 |= A � B (O2 |= B � A),
O2 �|= A ≡ B and B � C (C � B) ∈ ΦDiff(O1,O2) .

Concept A is purely directly changed if it is only directly changed
(analogously for purely indirectly changed).
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As a consequence of Definition 4, Φ-AT(O1,O2) ⊆ MinCS(O1,O2). Once again,
take as an example the ontologies in Table 1; we have that B is purely directly
specialised via witness D: O1 �|= B � D and O2 |= B � D, while A is indirectly
specialised via the same witness, since O1 �|= A � D, O2 |= A � D, O2 |= A � B
andB � D ∈ Diff(O1,O2). In other words, conceptA changes viaB. Additionally,
the conceptD is directly generalised via B, but indirectly generalised via A. Thus
D is not purely directly changed, but rather we have amixed effect on the concept.

The distinction between directly and indirectly affected concept names, in ad-
dition to the separation of concepts affected via � and ⊥, allows us to overcome
the problem described in Section 3, w.r.t. propositionally closed description log-
ics. If there exists a global change to � (analogously to ⊥), it is singled out
from the remaining localised changes, and its effect is appropriately marked as
an indirect change to every concept name. Thus the diff results are no longer
“polluted” by vacuous witnesses such as those exemplified and discussed in Sec-
tion 3. The notion of “change effect” as per Definition 4 is applicable to any diff
function Φ that produces a set of witness axioms ΦDiff(O1,O2)Σ .

4.3 Diff Functions

Deciding the minimal change set between two ontologies involves deciding
whether, for a given signature Σ, two ontologies are mCE-inseparable w.r.t. Σ.
Since mCE-inseparability is undecidable for SROIQ [9],2 we devise several sound
but incomplete approximations to the problem of computing the minimal change
set: to start with, “Subconcept” diff, denoted SubDiff(O1,O2)Σ , and “Grammar”
diff, denoted GrDiff(O1,O2)Σ . The set of differences that would be captured by a
simple comparison of concept hierarchies between two ontologies, i.e., differences
in atomic subsumptions, is denoted AtDiff(O1,O2)Σ . Hereafter we refer to the
semantic diff notion used within ContentCVS as CvsDiff(O1,O2)Σ.

The SubDiff(O1,O2)Σ approximation is based on subconcepts explicitly as-
serted in the input ontologies, and returns those differences in entailments of
type C � D, where C and D are possibly complex concepts from the set of
Σ-subconcepts of O1 and O2 (see Definition 5). It is at least conceivable that
many entailments will involve subconcepts, and, if that is the case, those would
be witnesses that the user could understand and, indeed, may have desired. Fur-
thermore, this notion may find entailment differences that would not show up if
we restrict ourselves to either atomic subsumptions, or specific forms of entail-
ments (in the manner of CvsDiff(O1,O2)Σ). The restriction to forms of concepts
explicit in either ontology, however, limits the amount of change captured. In
our ontologies in Table 1, e.g., the change to concept D: O1 �|= D � ∃r.∀s.F ,
while O2 |= D � ∃r.∀s.F , cannot be captured by SubDiff(O1,O2)Σ . However,
the rationale behind this approach is that we could detect other kinds of change
in a principled and relatively cheap way, e.g., we have that O1 �|= A � ∃r.E,
and O2 |= A � ∃r.E. Obviously we could arbitrarily extend our entailment
grammar to, for instance, a subset of the SROIQ closure, thus finding even

2 Indeed mCE-inseparability is already undecidable for general EL ontologies [10].
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more witnesses. Though our aim is to capture as much change as possible while
maintaining both computational feasibility and legibility of witness axioms.

Nevertheless, in order to avoid only considering witnesses in their explicitly
asserted form, we extend the previous diff notion to GrDiff(O1,O2)Σ , which de-
tects differences in additional types of entailments using the following grammars
(where SC, SC′ stand for subconcepts of O1 ∪ O2, and r a role name):

Grammar GL : C −→ SC | SC � SC′ | ∃r.SC | ∀r.SC | ¬SC
Grammar GR : C −→ SC | SC � SC′ | ∃r.SC | ∀r.SC | ¬SC

GrDiff(O1,O2)Σ combines the basic intuitions about interesting logical forms
with the ontology specific information available from SubDiff(O1,O2)Σ to be
somewhat less ad hoc. By restricting fillers of the restrictions to the (inherently)
finite set of subconcepts, we ensure termination. The grammars are slightly op-
timized to avoid pointless redundancies, such as testing for A � C � D which
is equivalent to A � C and A � D. It is not obvious how to reasonably extend
these grammars to incorporate features such as number restrictions.

In terms of computational complexity, there are two dimensions to be consid-
ered: 1) the complexity of deciding entailment in the input language, and 2) the
number of entailment tests. Regarding the latter, the maximum number of can-
didate witness axioms is polynomial in the number of the inputs’ subconcepts,
namely quadratic for SubDiff(O1,O2)Σ and cubic for GrDiff(O1,O2)Σ .

The semantic difference between ontologies w.r.t. each mentioned diff
function, including CEX and CvsDiff(O1,O2)Σ , is boiled down to finding an
entailment that holds in O2 but not O1; what varies between each function is
the kind of entailment grammar used, which in turn dictates the computational
feasibility of the diff function.

Definition 5. Given two ontologies, a diff function Φ, and a signature Σ, the
set of Σ-differences is:

ΦDiff(O1,O2)Σ := {η ∈ Φ-ax | O1 �|= η ∧ O2 |= η ∧ η̃ ⊆ Σ}

where the set Φ-ax is defined as follows:

if Φ = At, {C � D | C,D ∈ Σ}
if Φ = Sub, {C � D | C,D subconcepts in O1 ∪ O2}
if Φ = Gr, {C � D |D a concept over GL, or C a concept over GR}
if Φ = Cvs, {C � D | C ∈ Σ and D a concept over Gcvs}
if Φ = CEX, {C � D | C,D subconcepts in L(Σ)}

Applying the diff functions At, Sub, and Gr from Definition 5 to our example
ontologies from Table 1, we get the sets of affected terms described in Table 2.

The differences in atomic subsumptions are easily identifiable, and follow from
axioms α1, α2 in O1 and their β1, β2 counterparts in O2. In addition to these,
SubDiff(O1,O2)Σ pinpoints the axioms β4 and β5 as new entailments in O2, thus
concept E is regarded as specialised via β4, and I generalised via β5. Finally
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Table 2. Affected concepts (specialised, generalised and total) between O1 and O2

according to the mentioned diff notions

Φ = At Φ = Sub Φ = Gr MinCS(O1,O2)
C

Φ-AT(O1,O2)
L
Σ {A,B} {A,B,E} {A,B,D,E} -

Φ-AT(O1,O2)
R
Σ {D} {D, I} {D, I, J} -

Φ-AT(O1,O2)Σ {A,B,D} {A,B,D,E, I} {A,B,D,E, I, J} Σ \ {C,G}

GrDiff(O1,O2)Σ spots two more affected concepts: D is specialised via witness
axiom D � ∃r.∀s.(F � G), and J is generalised via ∃r.∀t.H � J . Taking into

account MinCS(O1,O2)
C , it is evident that the more we expand our entailment

grammar, the closer we get to the actual change set, while remaining decidable –
as long as the language generated by the grammar is finite. We already discussed
the computational upper bound above, and will comment on the performance of
our implementation in Section 5.

It is not hard to see that there are subset relations between each diff, and
the set MinCS(O1,O2) that they approximate, as per Lemma 1:

Lemma 1. Given two ontologies and a signature Σ:

At-AT(O1,O2)Σ ⊆ Sub-AT(O1,O2)Σ ⊆ Gr-AT(O1,O2)Σ ⊆MinCS(O1,O2)

Cvs-AT(O1,O2)Σ ⊆ Gr-AT(O1,O2)Σ ⊆MinCS(O1,O2)

As for CEX, its current implementation only takes as input acyclic ELHr

terminologies, that is, ELHr TBoxes which are 1) acyclic and 2) every concept
appears (alone) on the left-hand side of an axiom exactly once. In order to apply
CEX to knowledge bases that are more expressive than ELHr terminologies,
one must rely on approximation algorithms. An EL approximation does not
suffice, as there may exist cycles, GCIs, or more than one axiom with the same
left hand side. Therefore, as a means to apply CEX to expressive ontologies, we
use two ELHr approximations.

Definition 6. For an ontology O, we define the approximation function
ELHrApp1(O) that approximates O into ELHr as follows:

(a) Remove all axioms with a non-atomic left hand side and all non-EL axioms.
(b) If there is an equivalence axiom with an atomic left or right hand side X,

and a non-empty set of subsumptions Ψ that have X on their left hand side,
remove all axioms in Ψ .

(c) Break cycles by non-deterministically removing axioms in cycles until the
resulting ontology is cycle-free.

(d) Remove all but one axiom with a given atomic left-hand side.

The approximation function ELHrApp2(O) is the same as ELHrApp1(O) but
with Step (d) replaced with (d’) as follows:
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(d’) Replace the set of axioms with a common left hand side concept A, e.g.,
{A � C,A � D}, with a subsumption between A and the conjunction of all
concepts on the right hand side of all such axioms, e.g., A � C �D.

Based on these approximation algorithms, we can now use CEX as a sub-routine
in a diff function for non-ELHr ontologies.

Definition 7. Given two ontologies, a signature Σ, and an ELHr approxima-
tion function ELHrAppi(O), the set of Σ-differences CexiDiff(O1,O2)Σ is:

1. For each j ∈ {1, 2}, execute ELHrAppi(Oj), resulting in O′
j.

2. Apply CEX to (O′
1, O′

2, Σ), resulting in the change set: TempCS.
3. For each α ∈ TempCS, add α to CexiDiff(O1,O2)Σ if O1 �|= α and O2 |= α.

Given the loss of axioms during the input approximation step (via the ELHr

approximation functions), especially due to its non-deterministic nature, we may
well introduce spurious changes. Thus Step 3 in Definition 7 is designed to ensure
that changes detected within the ELHr approximations (obtained in Step 2) are
sound changes w.r.t. the whole (untouched) input ontologies. In other words,
to verify which detected changes are due to the approximation step. Obviously,
this approximation-based procedure throws away a lot of information and is not
deterministic. However, even such an approximation can offer useful insight, par-
ticularly if it finds changes that other methods do not. There are more elaborate
existing approximation approaches (e.g., [12]), but they generally do not pro-
duce ELHr terminology, so their use requires either changing the approximation
output or updating CEX to take non-terminological EL input.

5 Empirical Results

The object of our evaluation is a subset of the NCIt corpus used in [3], with
expressivity ranging from ALCH(D) to SH(D). More specifically, we take into
account 14 versions (out of 103 in the whole corpus) of the NCIt (from release
05.06f to 06.08d), and perform consecutive, pairwise comparisons between those
versions which contain concept-based change logs. These versions range from
≈70,000 to ≈85,000 logical axioms, and from ≈43,000 to ≈57,000 concept names.
In order to investigate the applicability of our approach we (1) compare the re-
sults obtained via our approximations with those output by Cex1Diff(O1,O2)Σ ,
Cex2Diff(O1,O2)Σ and CvsDiff(O1,O2)Σ , (2) compare the number of (purely)
directly and indirectly affected concepts, and, finally, (3) inspect whether the
devised approximations capture changes not reported in the NCIt change logs.

The experiment machine used is an Intel Xeon Quad-Core 3.20GHz with 16Gb
DDR3 RAM. The system runs Mac OS X 10.6.8, Java Virtual Machine (JVM
v1.5), and all tests were run using the OWL API (v3.2.4) [4].
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Table 3. Number of concepts processed per minute by each diff function Φ

Φ = Cex1 Φ = Cex2 Φ = At Φ = Sub Φ = Cvs Φ = Gr

#Concepts/Min. 151 143 13,547 127 58 50

In terms of computation times, the average number of concepts processed
per minute by each diff function is shown in Table 3.3 The typical total
time ranges from seconds for AtDiff(O1,O2)Σ , to about 30 minutes for the
Cex1Diff(O1,O2)Σ , Cex2Diff(O1,O2)Σ , and Sub-AT(O1,O2)Σ to hours for
GrDiff(O1,O2)Σ and CvsDiff(O1,O2)Σ .

GrDiff(O1,O2)Σ and CvsDiff(O1,O2)Σ are rather computationally expensive;
the current implementation uses a naive “generate-and-test” approach, where, for
each concept, we generate candidate witnesses from the grammar until a witness is
found or we exhaust the set. There is clearly considerable scope for optimization.

5.1 Diff Comparison

The comparison of each diff w.r.t. the total number of affected concept names
found is presented in Table 4. Figure 1 shows a comparison of the number
of affected concept names found by Cvs-AT(O1,O2)Σ and Gr-AT(O1,O2)Σ
within the randomly selected signatures. Due to computational issues regard-
ing GrDiff(O1,O2)Σ and CvsDiff(O1,O2)Σ, instead of comparing each pair of
NCIt versions w.r.t. Σu, we take a random sample of the terms in Σu (generally
n ≈ 1800) such that a straightforward extrapolation allows us to determine that
the true proportion of changed terms in Σu lies in the confidence interval (+-3%)
with a 99% confidence level.

In general, Gr-AT(O1,O2)Σ , even taking into account the confidence inter-
val, consistently detects more affected concepts (both L and R, i.e., specialised
and generalised, accordingly) than all other diffs. The CEX-based approximation
Cex1-AT(O1,O2)Σ performs poorly across the board, consistently capturing less
affected concepts than even a comparison of atomic subsumptions. The second
CEX-based approximation Cex2-AT(O1,O2)Σ , however, typically detects more
affected terms than At-AT(O1,O2)Σ , apart from two cases (d6 and d10), but
still less than Sub-AT(O1,O2)Σ . Regardless of this result, it is not the case
that Sub-AT(O1,O2)Σ is always better than Cex2-AT(O1,O2)Σ , as the lat-
ter actually detects more generalised concept names than Sub-AT(O1,O2)Σ
in all but one case. The gathered evidence suggests that indeed combining
these approaches would perhaps result in a preferable semantic diff solution
than one or the other, as exhibited by the higher average coverage of 59% in
Un-AT(O1,O2)Σ (although only an 8% increase w.r.t. to the average coverage
of Sub-AT(O1,O2)Σ). As expected, Gr-AT(O1,O2)Σ captures more specialised

3 Note that, originally, CvsDiff(O1,O2)Σ only computes AT(O1,O2)
L
Σ, but in or-

der to provide a direct comparison with the diffs here proposed we also compute
AT(O1,O2)

R
Σ according to the Gcvs grammar.
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Table 4. Number of affected concept names, AT(Oi,Oi+1)Σ , found by each diff func-
tion (in addition to Un-AT := {Cex1-AT∪Cex2-AT∪ Sub-AT}) w.r.t. Σ := Σu, and
their respective coverage w.r.t. Gr-AT(Oi,Oi+1)Σ . At this point, no distinction is made
between direct and indirect changes.

Comparison Cex1-AT Cex2-AT At-AT Sub-AT Un-AT Gr-AT

d1 1,134 1,922 1,416 2,131 3,311 43,096
d2 877 1,746 1,208 1,816 3,307 43,928
d3 5,415 6,287 6,135 6,528 8,818 45,639
d4 2,145 6,198 3,676 45,932 45,932 46,929
d5 3,964 7,656 4,978 15,691 15,758 48,075
d6 2,298 3,718 3,923 6,203 8,570 48,629
d7 1,893 3,393 3,217 6,330 7,508 49,189
d8 6,387 7,397 6,806 7,428 8,957 54,870
d9 1,655 4,460 2,745 5,329 6,913 55,555
d10 1,512 3,681 4,553 6,415 8,147 55,948
d11 1,102 3,026 1,714 4,325 5,916 57,036

Avg. Cov. 18% 23% 27% 55% 59%
Min. Cov. 3% 8% 5% 18% 21%
Max. Cov. 47% 49% 52% 100% 100%

Fig. 1. Comparison of number of specialised concepts found by Cvs-AT(O1,O2)Σ and
Gr-AT(O1,O2)Σ within the signature samples of the NCIt (y-axis: number of concept
names, x -axis: comparison identifier)

concepts than Cvs-AT(O1,O2)Σ in all cases, evidenced in Figure 1.4 Both of
these diff approaches resolve all terms in the random signature as generalised.

4 Note that, since Gr-AT(O1,O2)
R
Σ = Cvs-AT(O1,O2)

R
Σ , we only present in Figure 1

the results of Gr-AT(O1,O2)
L
Σ and Cvs-AT(O1,O2)

L
Σ .
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Thus the projected value implies that nearly, if not every term in the full signa-
ture has been generalised.

5.2 Splitting Direct and Indirect Changes

Having the results of each diff at hand, i.e., the set of affected concepts and,
for each of these, the set of witnesses, we can then tell apart those concept
names that are directly, indirectly, or both directly and indirectly affected.
Note that, as an optimisation within the implementation of GrDiff(O1,O2)Σ
and CvsDiff(O1,O2)Σ diff, we only compute one witness per concept. Thus we
do not possess the full set of witnesses, making the distinction of directly and
indirectly affected concepts possibly unsound and incomplete. As such, we apply
this distinction only to SubDiff(O1,O2)Σ and AtDiff(O1,O2)Σ . Figure 2 shows
the total number of purely direct, purely indirect, and both directly and indi-
rectly affected concepts found within At-AT(O1,O2)Σ and Sub-AT(O1,O2)Σ .
Note that the size of SubDiff(O1,O2)Σ can be smaller than AtDiff(O1,O2)Σ ,
as in versions v3 and v4. For these particular cases, we bring to the front the
smaller value (i.e. SubDiff(O1,O2)Σ), and the value of AtDiff(O1,O2)Σ becomes

Fig. 2. Comparison of purely directly (“P.D.”), purely indirectly (“P.I.”), and both di-
rectly and indirectly (denoted “Mix”) affected concepts found within At-AT(O1,O2)Σ
(denoted “At”), and Sub-AT(O1,O2)Σ (denoted “Sub”) in NCIt versions (y-axis: num-
ber of concept names, x -axis: comparison identifier)
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the increment. Also, this figure presents the total number of changes; the union
of AT(O1,O2)

L
Σ and AT(O1,O2)

R
Σ.

In general, the number of purely directly changed concepts is much smaller
than the number of purely indirect or mixed. One case is particularly surprising:
Sub-AT(O1,O2)Σ contains 43,326 purely indirect changes in v4, and only 1,122
purely direct ones. In an ontology engineering scenario, where one or more people
are required to analyse such change sets, having this mechanism for isolating
changes of most interest is conceivably a preferable means to analyse a change
set, in addition to providing a basis for producing more intelligible change logs
with impact analysis.

5.3 Analysis of the NCIt Change Logs

The change logs supplied with each version of the NCIt contain those concept
names which were subject to changes. However, it is unclear whether each re-
ported change may also (or solely) relate to annotation changes. It could be
the case that a reported concept change is purely ineffectual as well. In spite of
this ambiguity, it should be expected that a change log contains at least those
concept names that are directly changed, and this is what we aim to find out in
our next experiment; we extract the concept names mentioned in the change log,
and verify whether the obtained direct changes for each NCIt comparison are
contained in said change logs. The results are shown in Table 5, comparing the
number of directly affected concept names found within At-AT(O1,O2)Σ and
Sub-AT(O1,O2)Σ , and how many of those are not present n the NCIt change
logs. Overall, we determined that the change logs are missing a lot of direct

Table 5. Number of directly affected concepts 1) in AT(O1,O2)
L
Σ (denoted “L”), 2)

in AT(O1,O2)
R
Σ (denoted “R”), 3) in the union of those two sets (denoted “Total”),

and 4) that do not appear in the NCIt change logs (denoted “Missed in Log”), found
by AtDiff(O1,O2)Σ and SubDiff(O1,O2)Σ for Σ := Σu

NCIt At-AT(O1,O2)Σ Sub-AT(O1,O2)Σ
version L R Total Missed in Log L R Total Missed in Log

d1 646 294 896 798 820 298 1,060 953

d2 565 274 772 149 1,147 294 1,298 211

d3 2,321 891 2,991 315 2,791 898 3,090 445

d4 1,624 1,187 2,683 190 2,725 1,198 2,814 432

d5 1,555 1,009 2,465 243 8,038 1,186 9,142 317

d6 890 385 1,130 199 1,306 401 1,485 199

d7 1,190 704 1,637 273 2,720 780 2,935 511

d8 6,075 1,421 6,389 5,546 6,411 1,465 6,693 5,723

d9 1,481 420 1,766 207 2,607 478 2,782 322

d10 3,321 370 3,579 216 4,964 427 5,217 298

d11 753 378 1,043 300 1,404 472 1,643 582

Total 20421 7,333 25,351 8,436 34,933 7,897 38,159 9,993
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changes. More specifically, on average, At-AT(O1,O2)Σ contains 767 directly af-
fected concept names not mentioned in the change logs, while Sub-AT(O1,O2)Σ
uncovers 908 such concept names per NCIt comparison.

Subsequently we verify whether the affected concepts in Cex1-AT(O1,O2)Σ ,
Cex2-AT(O1,O2)Σ , At-AT(O1,O2)Σ and Sub-AT(O1,O2)Σ are contained in
the NCIt change logs. This is presented in Table 6. Overall we see that none
of the diffs captures the exact number of reported concept changes in the logs.
The maximum coverage of the change log occurs in comparisons d4 and d5, where
Sub-AT(O1,O2)Σ captures 96% and 91% of the concept names mentioned in the
logs, accordingly. By taking the union of affected concepts found by the CEX-
based approximations and Sub-AT(O1,O2)Σ , the average coverage of the change
logs increases to 73%.

Table 6. Number of affected concept names, AT(Oi,Oi+1)Σ , found by each diff func-
tion (in addition to Un-AT := {Cex1-AT∪Cex2-AT∪ Sub-AT}) w.r.t. Σ := Σu within
the NCIt change logs

NCIt Change
Cex1-AT Cex2-AT At-AT Sub-AT Un-AT

Version Log

d1 2,159 107 168 103 126 269
d2 1,399 520 773 725 974 1,013
d3 4,234 2,497 2,973 3,102 3,148 3,150
d4 8,447 1,327 1,598 2,734 8,117 8,117
d5 3,847 1,595 2,655 2,602 3,503 3,504
d6 2,470 866 1,147 1,141 1,312 1,406
d7 5,302 1,217 1,253 1,982 2,668 2,699
d8 2,556 688 885 875 993 1,003
d9 3,945 1,060 2,205 1,878 2,530 2,755
d10 6,046 978 3,824 3,551 4,076 6,046
d11 2,065 628 764 853 1,091 1,168

Avg. Coverage 27% 43% 46% 67% 73%

6 Discussion

First thing to notice is that Sub-AT(O1,O2)Σ finds more affected concepts than
At-AT(O1,O2)Σ , Cex1-AT(O1,O2)Σ , and Cex2-AT(O1,O2)Σ , while often not
reaching close to the projected values of Gr-AT(O1,O2)Σ (the average coverage
being 55%). The latter captures more specialised concepts within the selected
signatures than Cvs-AT(O1,O2)Σ , while the number of generalised concepts is
the same for both diffs (i.e., the full signature).

Considering the high number of affected concepts in Sub-AT(O1,O2)Σ on
comparisons d4 and d5 of the NCIt, one can argue that analysing such a change
set would be difficult. By categorising concept names in the change set according
to whether they are directly or indirectly affected, we get a succinct representa-
tion of a change set, thus significantly reducing information overload. Note that,
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e.g., in d4 there are 45,825 specialised concepts, out of which there are only
78 purely directly specialised concepts, and the majority of the remainder are
purely indirectly specialised concepts (43,100). Similarly in d5, from 15,254 spe-
cialised concepts there are only 1,527 purely direct specialisations. Immediately
we see that this mechanism can provide an especially helpful means to 1) assist
change analysis, by, e.g., confining the changes shown upfront to only (purely)
direct ones, and 2) generate more informative concept-based change logs.

7 Conclusions

We have formulated the problem of finding the set of affected terms between
ontologies via model inseparability, and presented feasible approximations to
finding this set. We have shown that each of the approximations can find consid-
erably more changes than those visible in a comparison of concept hierarchies.
Both sound approximations devised capture more changes than the CEX-based
approximations. The restrictions imposed by CEX on the input ontologies make
change-preserving approximations a challenge, as we have seen in our attempt
to reduce the NCIt to EL in a less naive way.

The proposed distinction between (purely) direct and indirect changes allows
users to focus on those changes which are specific to a given concept, in addition
to masking possibly uninteresting changes to any and all concept names (such as
those obtained via witnesses constructed with negation and disjunction), thereby
making change analysis more straightforward. As demonstrated by the NCIt
change log analysis, we have found a (often high) number of direct changes
that are not contained in the NCIt change logs, which leads us to believe the
recording of changes does not seem to follow from even a basic concept hierarchy
comparison, but rather a seemingly ad hoc mechanism.

In future work we aim to optimise the devised approximations so as to compare
all NCIt versions w.r.t. their signature union, and combine the information from
this concept oriented diff with our axiom oriented one.
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5. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Support-
ing concurrent ontology development: Framework, algorithms and tool. Data and
Knowledge Engineering 70(1), 146–164 (2011)



Concept-Based Semantic Difference in Expressive Description Logics 115

6. Konev, B., Walther, D., Wolter, F.: The Logical Difference Problem for Description
Logic Terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 259–274. Springer, Heidelberg (2008)
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Abstract. The distributed and heterogeneous nature of Linked Open
Data requires flexible and federated techniques for query evaluation.
In order to evaluate current federation querying approaches a general
methodology for conducting benchmarks is mandatory. In this paper, we
present a classification methodology for federated SPARQL queries. This
methodology can be used by developers of federated querying approaches
to compose a set of test benchmarks that cover diverse characteristics
of different queries and allows for comparability. We further develop a
heuristic called SPLODGE for automatic generation of benchmark queries
that is based on this methodology and takes into account the number of
sources to be queried and several complexity parameters. We evaluate
the adequacy of our methodology and the query generation strategy by
applying them on the 2011 billion triple challenge data set.

1 Introduction

The Linked Data cloud offers a huge amount of machine readable, structured
data and its full potential can only be leveraged by querying over multiple data
sources. Therefore, efficient query processing on the Linked Data cloud is cur-
rently an active research area and different novel optimization approaches have
been published [1,9,15,29,31]. As there is currently no common benchmark for
federated Linked Data query evaluation, different datasets and different queries
are being employed for the evaluation, which often prevents a direct comparison
of approaches. A common benchmark based on actual queries on the Linked
Data cloud could solve this problem. But since applications for Linked Data
query processing are not in wide use yet such query collections are currently not
available. Hence, the use of real queries in a Linked Data benchmark is not a
viable option anytime soon.

Benchmarks serve different purposes. A major objective is to compare the
performance of different implementations. Moreover, the quality of a system can
be assessed by testing common cases and corner cases, e. g. queries with high
complexity or queries which generate large intermediate result sets. Artificial
datasets are usually highly structured [6] and allow for a well controlled evalua-
tion environment. But an adaptation mimicking the Linked Data characteristics
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is not straightforward. Besides, benchmarks like SP2Bench [27], LUBM [10], or
BSBM [4] are typically designed for evaluating centralized RDF stores and we
consider them inappropriate for the evaluation of query processing across Linked
Data. Evaluation approaches based on real data can use hand-crafted queries,
like in FedBench [26], or automatically generated queries as in [11]. Either way,
the queries should expose characteristics which are assumed to cover a suffi-
ciently large variety of real queries. However, meaningful queries can only be
generated manually with a lot of effort because the content of the data sources
needs to be analyzed in advance. In contrast, automatic query generation is
less tedious and can produce many queries with specific characteristics, even for
varying data sources as in the Linked Data cloud.

In this paper we abstract from specific query interfaces, i. e. query processing
could be based on SPARQL endpoints, URI resolution, or the integration of data
dumps. Our contribution is a methodology and a toolset for the systematic
generation of SPARQL queries which cover a wide range of possible requests on
the Linked Data cloud. A classification of query characteristics provides the basis
for the query generation strategy. The query generation heuristic of SPLODGE
(SPARQL Linked Open Data Query Generator) employs stepwise combination
of query patterns which are selected based on predefined query characteristics,
e. g. query structure, result size, and affected data sources. Constant values are
randomly chosen and a verification step checks that all constraints are met.

In the following, we start with a review of related work. Then, in Section 3,
we provide some necessary background information on both RDF and SPARQL.
In Section 4 we conduct a thorough investigation of query characteristics in the
context of Linked Data and, in Section 5, we continue with the presentation of
our query generation approach SPLODGE. We give some insights on the imple-
mentation of our system in Section 6 and evaluate our approach in Section 7. In
Section 8 we conclude with a summary and some final remarks.

2 Related Work

Federated SPARQL query processing is receiving more attention lately
and a number of specific approaches have already been published, e. g.
[30,23,11,25,12,15,13,29,9]. Stuckenschmidt et al. [30] employ indices for match-
ing path patterns in queries while Harth et al. [11] use a (compressed) index of
subjects, predicates, and objects in order to match queries to sources. DARQ [23]
and SPLENDID [9] make use of statistical information (using hand-crafted data
source descriptions or VOID [2], respectively) rather than (indices of) the content
itself. FedX [29] focuses on efficient query execution techniques using chunked
semi-joins. Without any precomputed statistics and a source selection based on
SPARQL ASK queries it solely relies on join order heuristics for the query opti-
mization. Recent work by Buil-Arada et al. [5] investigates the complexity and
optimization of SPARQL 1.1 federation queries where data sources are already
assigned to query expressions.

The evaluation of the above approaches is usually conducted with artificial
datasets or real datasets using hand-crafted queries. LUBM [10] was one of the
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first benchmarks for evaluating (centralized) RDF triple store implementations.
It allows for generating synthetic datasets of different sizes representing rela-
tions between entities from the university domain. The Berlin SPARQL Bench-
mark (BSBM) [4] and the SP2Bench [27] are more recent benchmarks, as well
based on scalable artificial datasets. BSBM is centered around product data
and the benchmark queries mimic real user interaction. SP2Bench employs the
DBLP publications schema. Its data generator ensures specific characteristics
of the data distribution while the benchmark queries include also less common
and complex expressions like UNION, FILTER, and OPTIONAL. LUBM, BSBM, and
SP2Bench are hardly applicable for benchmarking federation systems because
the data is very structured and Linked Data characteristics can not be achieved
through data partitioning.

Benchmarking with real Linked Data is, for example, provided by FedBench
[26]. It employs preselected datasets from the Linked Data cloud, e. g. life science
and cross domain. Different query characteristics are covered with common and
complex query pattern which yield in some cases many hundred thousand re-
sults. However, due to the limitation to a few hand-picked datasets and queries,
FedBench lacks scalability with respect to the Linked Data cloud. DBPSB [17]
employs benchmark queries which are derived from query logs of the official
DBpedia endpoint. All queries are normalized, clustered, and the most frequent
query patterns, including JOIN, UNION, OPTIONAL, solution modifiers, and filter
conditions, are used as basis for a variable set of benchmark queries. It remains
open if the queries, which cover only DBpedia, are representative for Linked
Data. LIDAQ [31] provides benchmark queries based on crawled Linked Data.
The query complexity, using either star-shaped or path-shaped join patterns, is
limited to a maximum of three joins. Other query operators or additional solu-
tion modifiers are not considered. The query generator produces sets of similar
queries by doing random walks of certain breadth or depth. DBPSB and LIDAQ
do not consider result size or number of data sources in their query generation.

3 Background

The Resource Description Framework RDF is the core data representation format
in the Linked Data cloud. Let U be a set of URIs, L a set of literals and B a set of
blank nodes as defined in [14] with U , L and B being pairwise disjoint. The sets
U , L, and B provide the vocabulary for representing knowledge according to the
guidelines for publishing Linked Open Data [3]. The basic concept of knowledge
representation with RDF is the RDF triple or RDF statement.

Definition 1 (RDF statement, RDF graph). An RDF statement is a triple
S ∈ (U∪B)×U×(U∪L∪B). An RDF graph G is a finite set of RDF statements.
For an RDF statement S = (s, p, o) the element s is called subject, p is called
predicate, and o is called object.

Example 1. A listing of RDF statements describing a publication by Paul Erdös
(namespace definitions are omitted for better readability).
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1 dblp:ErdosL96 rdf:type foaf:Document.
2 dblp:ErdosL96 dc:title ”d−complete sequences of integers”.

3 dblp:ErdosL96 dc:creator dblp:Paul Erdos.
4 dblp:ErdosL96 dc:creator dblp:Mordechai Levin.

5 dblp:Paul Erdos rdf:type foaf:Person.
6 dblp:Paul Erdos foaf:name ”Paul Erdos”.

7 dblp:Mordechai Levin foaf:name ”Mordechai Levin”.
8 dblp:Mordechai Levin rdf:type foaf:Person.

In this paper, we are interested in settings where RDF statements are distributed
over a (possible large) set of different sources.

Definition 2 (Federated RDF Graph). A federated RDF graph F is a finite
set F = {G1, . . . ,Gn} with RDF graphs G1, . . . ,Gn. Let F = {G1, . . . ,Gn} be a
federated RDF graph. By abusing notation, we sometimes write (s, p, o) : G to
denote that (s, p, o) ∈ G for G ∈ F .

Example 2. We extend Example 1 (as illustrated in [8]) with RDF statements
distributed across three Linked Data sources.

DBLP DBpedia Freebase

dblp:Erdos96

foaf:Document

”d-complete sequences of integers”

dblp:Paul Erdosdblp:Mordechai Levin

foaf:Person

”Paul Erdős””Mordechai Levin”

rdf:type

dc:title

dc:creator
dc:creator

rdfs:labelrdfs:label

rdf:type
rdf:type

dbpedia:Paul Erdős

dbpedia:Hungary

dbpedia:Budapest

”Paul Erdős”

dbpp:name
dbpp:nationality

dbpp:birthPlace

fbase:guid.9202a8c04...

fbase:hungary

”Erdős Pál”

fbase:value

fbase:nationality
owl:sameAs

owl:sameAs

owl:sameAs

The SPARQL Protocol and RDF Query Language (or simply SPARQL) [22] is the
standard query language for RDF graphs. The core notion of SPARQL are graph
patterns. Let V be a set of variables disjoint from both U and L and E(V ) the
set of filter expressions on V , cf. [22].

Definition 3 (Graph Patterns). A triple pattern is a triple in (U ∪B∪V )×
(U ∪ V ) × (U ∪ L ∪ V ) and a basic graph pattern is a set of triple patterns.
Every basic graph pattern is also a graph pattern. If P1, P2 are graph patterns
and E ∈ E(V ) then P1 UNION P2, P1 OPTIONAL P2, and P1 FILTER E are graph
patterns as well.

A basic graph pattern consisting of one or more triple patterns is a template
that is matched in an RDF graph if all triple patterns are satisfied. Furthermore,
the UNION combination of two patterns match if any of the two pattern matches.
The OPTIONAL pattern matches if its first pattern matches. Additionally, further
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variables might get bound if the second pattern matches as well. The FILTER

pattern matches if the first pattern matches and the filter expression is satisfied.
SPARQL supports four different types of queries, namely SELECT, ASK, CON-

STRUCT, and DESCRIBE queries. Their main difference is the format of the query
result. Given a graph pattern P and a set x ⊆ V the query SELECT x WHERE P
returns tuples of variable bindings for x such that the graph pattern P , with
variables substituted accordingly, is present in the queried RDF graph. A query
ASK P returns true iff the graph pattern P is satisfiable (with some variable
bindings). A recent study [20] of query logs of the official DBpedia endpoint
revealed that the number of CONSTRUCT and DESCRIBE queries is not significant.
Therefore, we will ignore those query types in this paper. Let BGP (P ) be the
set of basic graph patterns and TP (P ) be the set of triple patterns appearing in
a graph pattern P . For a graph pattern P and an RDF graph R let eval(P,G)
be the set of possible assignments of the variables in P — i. e. functions σ of the
form σ : V → U ∪B ∪ L — such that the resulting graph pattern is satisfied in
G. We refer the interested reader to [22] for the complete semantics of SPARQL.

The SPARQL federation extension [21] introduces the two keywords SERVICE
and BINDINGS and enables SPARQL queries on federated RDF graphs. While the
SERVICE keyword is used for specifying RDF graphs to be queried within the
federated system, the BINDINGS keyword provides means for passing the values
of bounded variables to sub-queries on other RDF graphs. However, this exten-
sion only allows for the specification of federated queries when the individual
RDF graphs are known to be able to answer the given sub-queries. The task of
determining which RDF graphs to ask for certain sub-queries is outside the scope
of the federation extension but has to be addressed by other mechanisms.

4 Parameterizing Queries

At the end of the previous section we pointed out that SPARQL querying in fed-
erated environments poses serious demands on distributed querying techniques.
In order to evaluate approaches for federated SPARQL processing, multi-source
queries are of major interest. Moreover, SPARQL queries used for evaluation are
typically classified and parametrized along several further dimensions, e. g. with
respect to complexity. However, due to the sparsity of the Linked Data cloud
[24] there are today only a few real-world queries that show these characteris-
tics. For an objective evaluation and comparison with state-of-the-art systems
the developer of a federated query processing system, however, needs real data
and realistic SPARQL queries. Therefore, specifically designed evaluation queries
should cover common characteristics of real queries and include a sufficiently
large set of SPARQL features. In the following, we develop a methodology and a
toolkit that can be used by developers of approaches to federated query process-
ing for evaluating their system in a reproducible and comparable manner. There,
a developer’s first step is to select and combine query parameters to fit the de-
sired evaluation scenario, e. g. common queries and corner cases. The next step is
the query generation according to the defined parameters. Finally, the evaluation
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is conducted and results are presented. In order to make an evaluation repro-
ducible, the chosen parameters and queries should be disclosed as well. In the
following, we discuss different properties of SPARQL queries including aspects
of distributed query processing.

We studied analysis results of real SPARQL queries [20,16,7] and features of
RDF benchmarks [10,4,27,11,17] to compile query characteristics (i. e. proper-
ties) which we consider important for a query processing benchmark on Linked
Data. One may argue about the choice of query characteristics. However, we
do not claim completeness and like to encourage extensions of the classification
parameters.

The first set of query characteristics relate to the semantic properties of SPARQL,
i. e. the Query Algebra.

Query Type. SPARQL supports four query types, namely SELECT, CONSTRUCT,
ASK, and DESCRIBE. They define query patterns in a WHERE clause and return
a multiset of variable bindings, an RDF graph, or a boolean value, respec-
tively. DESCRIBE queries can also take a single URI and return an RDF graph.

Join Type. SPARQL supports different join types, i. e. conjunctive join (.), dis-
junctive join (UNION), and left-join (OPTIONAL). These joins imply a different
complexity concerning the query evaluation [28].

Result Modifiers. DISTINCT, LIMIT, OFFSET, and ORDER BY alter the result set
which is returned. They also increase the complexity for the query evaluation.

The next properties deal with the Query Structure, i. e. how basic graph patterns
are combined in a complex graph pattern.

Variable Patterns. There are eight different combinations for having zero to
three variables in subject, predicate, or object position of an RDF triple
pattern. Some of these combinations, like bound predicate with variables in
subject and/or objection position, are more common than others.

Join Patterns. Joins are defined by using the same variable in different triple
patterns of a basic graph pattern. Typical join combinations are subject-
subject joins (star shape) and subject-object joins (path shape). The com-
bination of star-shaped and path-shaped joins yields a hybrid join pattern.

Cross Products. Conjunctive joins over triple patterns which do not share a
common variable imply cross products. While the join parts can be evaluated
independently, the cross product may involve large intermediate result sets.

The third group of properties deals with Query Cardinality, i. e. the number of
sources, the number or joins, and the result size. Following, let P be a graph
pattern, F be a federated RDF graph, and let FP ⊆ F the set of relevant data
sources for P , i. e. FP = {G ∈ F | ∃ S ∈ TP (Q) : eval(S,G) �= ∅ }.

Number of Sources. Our benchmark methodology is designed for query exe-
cution across Linked Data. Therefore, the number of data sources involved
in query answering is an important factor, i. e. sources(P ) = |FP |.
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Number of Joins. Joining multiple triple patterns increases the complexity of
a query. The number of joins joins(P ) is defined for basic graph patterns,
i. e. conjunctive joins over a set of triple patterns, as shown below.

Query Selectivity. The proportion between the overall number of triples in
the relevant graphs and the number of triples which are actually matched by
query patterns is the query selectivity sel(P ). A query with high selectivity
yields less results than a query with low selectivity.

joins(P ) =
∑

bgp∈BGP (P )

(|bgp| − 1), sel(P ) =

∑
G∈FP

|eval(P,G)|∑
G∈FP

|G|

According to the above characteristics, we parameterize benchmark queries such
that they cover common queries and corner cases. As result of the query genera-
tion we want queries with a specific query structure which span multiple Linked
Data sources. Hence, the parameters for join structure and the number of data
sources involved are predominant for the query generation. However, there is a
dependency between join structure and covered sources. Typical SPARQL queries
have path-shaped and star-shaped join patterns or a combination thereof. Path
joins span multiple data sources if two patterns are matched by different data
sources but have an entity in common which occurs in subject or object position,
respectively. Note that for a unique path the number of different data sources
is limited by the number of joined triple pattern. Star-shaped join patterns,
like {(?x,isA,foaf:Person),(?x,foaf:name,?name)}, which match entities in
multiple data sources are less interesting for Linked Data queries because they
represent unions of unrelated entities.

The combination of path-shaped and star-shaped join patterns produces more
complex query structures. They are supported in the query parameterization by
defining join rules. These include the join combination, usually via subject or
object, and the attachment position with respect to an existing path-shaped join
pattern. Corner cases can exhibit a high number of joined triple patterns leading
to long paths or “dense” stars. Note that, for reasons of simplicity, we do not
consider joins via the predicate position and loops in the query patterns.

5 Query Generation with SPLODGE

With the definition of the query parameterization we can now go into detail of our
query generation process SPLODGE. The query generator SPLODGE produces
random queries with respect to the query parameters using an iterative approach.
In each step, a triple pattern is chosen according to the desired query structure
and added if the resulting query pattern fulfills all cardinality constraints. The
iteration finishes when all structural constraints are satisfied or when they cannot
be satisfied without a violation of the cardinality constraints. In the latter case,
the generator cannot produce any query. As the last step, a query is modified
with respect to the complexity constraints. In the following, the algorithm and
the heuristics are explained in more detail.
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5.1 Path Join Pattern Construction

Our query generator SPLODGE starts with the creation of path-shaped join pat-
terns. Let F = {G1, . . . ,Gn} be a federated RDF graph. Given a parameterization
of n patterns and m sources (m ≤ n), the algorithm constructs a sequence of
triple pattern

PathJoin(n,m) = (t1, . . . , tn) ∈ ((U ∪ L ∪ V )× (U ∪ V )× (U ∪ L ∪ V ))n

such that

∀ i = 1, . . . , n− 1 : obj(ti) = subj(ti+1) and |{Gj | ∃j : ti ∈ Gj}| = m.

If m < n then several triple patterns can have the same data source. The dis-
tribution of sources among triple patterns is randomly chosen in order to allow
for variations.

Computing a valid sequence PathJoin(n,m) directly on the original data, is,
in general, infeasible due to the huge search space in a federated RDF graph. We
therefore take a heuristic approach which facilities statistical information and
cardinality estimation heuristics. In order to limit the effort needed to acquire
sophisticated statistics on the various data sources, we restrain our attention to
path-shaped join pattern generation with bounded predicates. Note, however,
that bound predicates may be replaced with variables in a post-processing step.

Definition 4 (Linked Predicate Patterns). A linked predicate pattern l is
a quadruple l = (p1,G1, p2,G2) with p1, p2 ∈ U , G1,G2 ∈ F , and G1 �= G2. The
set of valid linked predicate patterns in F is defined as

L(F) = {(p1,G1, p2,G2) | ∃ s, o, x ∈ U ∪B ∪ L : (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}
Further, we define the following sets of triples which can be matched with the
first or second pattern in a linked predicate pattern

φ(p1,G1, p2,G2) = {(s, x) | (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}
τ(p1,G1, p2,G2) = {(x, o) | (s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2}

The combination of some L1 = (p1,G1, p2,G2) and L2 = (p2,G2, p3,G3) will
only return results if τ(p1,G1, p2,G2) ∩ φ(p2,G2, p3,G3) �= ∅, i. e. bindings for
the object o in the first linked predicate patterns must also be part of the join
bindings x in the second linked predicate pattern, e. g. {(?s,dc:creator,?x),
(?x,owl:sameAs,?o)} and {(?s,owl:sameAs,?y),(?y,dbpp:name,?o)} can be
combined to form a path of three patterns (cf. example 2), but there will be no
result if “Mordechai Levin” is bound to ?x because he is not included in DBpedia.

In order to compute the result size for a path-shaped join pattern we need to
estimate the overlap between two arbitrary linked predicate patterns. A compu-
tation of all possible join paths is not feasible for such a large dataset.

Definition 5 (Joined Predicate Pattern Size). For a sequence of linked
predicate patterns (p1,G1), . . . , (pn,Gn) we define the join size as∏

i=1..n

|σpi (Gi)| ·
∏

i=2..n−1

js(pi−1,Gi−1, pi,Gi, pi+1,Gi+1)
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with σpi(Gi) = {(s, pi, o) ∈ Gi} and the join selectivity (js)

js(pi−1,Gi−1, pi,Gi, pi+1,Gi+1) =
|τ(pi−1,Gi−1, pi,Gi)| · |φ(pi,Gi, pi+1,Gi+1)|

|σpi(Gi)|2

The pattern join selectivity is a value in the interval [0, 1]. The lower the value,
the higher the selectivity of the pattern combination and the less results will
be returned. In order to prevent pattern combinations that do not return any
results, we prefer selectivity values closer to 1.

5.2 Star Join Pattern Construction

Star-shaped join patterns extend path-shaped join pattern at predefined anchor
points, i. e. at a specific triple pattern in the triple pattern path. Without an
anchor point the star join will represent an individual query pattern which is
combined via UNION with the other query patterns. The query parameterization
also defines the number of triple patterns in the star join and if the join variable
is in subject or object position. The anchor triple pattern is automatically part
of the star join. Hence, it defines the join variable, the source restriction, and
the first predicate to be included in the star join.

StarJoin(n,G) = (t1, . . . , tn) ∈ ((U ∪ L ∪ V )× (U ∪ V )× (U ∪ L ∪ V ))n

such that

∀ i = 1, . . . , n : subj(t1) = . . . = subj(tn) ∨ obj(t1) = . . . = obj(tn) and

|{t ∈ StarJoin(n,G)} ∩ {t ∈ PathJoin(k, l)}| = 1

The second condition above formalizes the requirement that the star join inter-
sects with the main path join in one triple pattern. As with path-shaped join
pattern, the computation of StarJoin(n,G) combinations on the original data
is, in general, infeasible. Thus, statistics-based heuristics are also employed to
combine triple patterns with bound predicates. A star-shaped join pattern will
only produce results if at least one entity matches all of the triple patterns, i. e.
every predicate occurs in a combination with the same entity (always in subject
or object position) in the same data source. We utilize Characteristic Sets [18]
to capture the co-occurrence of predicates with the same entities. Characteristic
sets are basically equivalence classes based on distinct predicate combinations.
They keep track of the number of different entities and the number for RDF
triples for each predicate in the characteristic set. The latter value can be higher
due to multi-value predicates. In addition, we extended the statistics with infor-
mation about the data source a characteristic set occurs in.

Definition 6 (Characteristic Sets). We define the characteristic set SC(s,G)
of a subject s (cf. [18]) with respect to a data source G and a federated graph F
with G ∈ F via

SC(s,G) := {p | ∃ o : (s, p, o) ∈ G}
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and abbreviate SC(F) := {SC(s,Gi) | ∃ s, p, o : (s, p, o) ∈ Gi}. Further, reverse
characteristic sets are used to estimated the result size for star-join patterns
with the join variable in object position.

The number of results for a star-join pattern need to be taken into account for
the cardinality estimation of the path-join pattern it is attached to. Therefore, we
count the number of triples in source G which contain the subjects (or objects) of
all matching characteristic sets combined with the predicate of the anchor triple
pattern. The selectivity is calculated similar to Definition 5 as shown below and
multiplied with the cardinality of the path-join pattern:

js(G, (p1, . . . , pn)) :=
|{(s, p1) | {p1, . . . , pn} ⊆ SC(s,G)}|

|σp1(G)|
So far, we described how a star- join pattern is combined with a path-join pat-
tern. This approach is extensible to combine multiple patterns and produce
complex queries with mixed join patterns as depicted in Fig. 1. Due to space
constraints, we do not go into further details.

Fig. 1. Query structure generation process. First, triple patterns are combined as path-
joins, i. e. (?a p1 ?b), (?b p2 ?c), (?c p3 ?d), then star-joins are created for ?a, ?b, ?c.

6 Implementation

The implementation of the query generation is divided into two phases: statistics
collection and the query generation based on the statistics. For our prototype
implementation1 we used the 2011 billion triple challenge dataset2 containing
about 2 billion quads, i. e. subject, predicate, object, and context. We did some
pre-processing and cleanup and aggregated all contexts to their common domain
name (i. e. {john,jane}.livejournal.com→ livejournal.com). As a result, we reduced
the 7.4 million different contexts to 789 common domains. Query patterns across
different data sources are created based on these reduced domain contexts.

SPLODGE requires statistical information during query generation, i. e. for
selecting triple patterns and for estimating the result size and the number of
involved data sources. Due to the huge size of the Linked Data cloud, there is a
trade-off between the level of statistical details and the overall space requirement
for storing the meta data. Therefore, SPLODGE employs only predicate statistics,
as the number of distinct predicates is much smaller compared to the number of
distinct URIs in the datasets. Moreover, comprehensive statistics also impose a
significant processing overhead.

1 SPLODGE is open source and available at http://code.google.com/p/splodge/
2 http://km.aifb.kit.edu/projects/btc-2011/

http://code.google.com/p/splodge/
http://km.aifb.kit.edu/projects/btc-2011/
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6.1 Pattern Statistics

For deciding whether triple patterns can be combined during query construc-
tion, we need information about the co-occurrence of predicates in RDF state-
ments. For path-joins two predicates co-occur if the respective RDF statements
are joined via subject/object. In addition to knowing whether predicates p1, p2
co-occur we also need the number #G(p) of RDF statements in each G that
mention predicate p, i. e. #G(p) = |{(s, p, o) ∈ G}|.

Example 3. Following table shows co-occurrence statistics for path-joins (cf.
Def. 4). Each tuple (p1,G1, n1, p2,G2, n2) represents a linked predicate pattern
(s, p1, x) ∈ G1 ∧ (x, p2, o) ∈ G2 with the respective RDF triple counts n1 and n2.

p1 G1 n1 p2 G2 n2

owl:sameAs http://data.gov.uk/ 22 foaf:knows http://dbpedia.org 31
owl:sameAs http://open.ac.uk/ 58 foaf:knows http://dbpedia.org 17
rdfs:seeAlso http://bio2rdf.org/ 15 rdf:type http://www.uniprot.org/ 38
rdfs:seeAlso http://zitgist.com/ 49 rdfs:label http://musicbrainz.org/ 36

For star-joins, we rely on Characteristic Sets [18]. They define equivalence classes
for resources based on predicate combinations, i. e. URIs and blank nodes in sub-
ject position of RDF statements are in the same characteristic set if they have
exactly the same set of predicates. Characteristic sets count the number of enti-
ties in such an equivalence class and the number of occurrences for each predicate.
The latter helps to identify frequent occurrences of multi-valued predicates. We
extend the characteristic sets to include the data source as well.

Example 4. The table below shows the statistical data for a specific character-
istic set defined by the predicates (rdf:type, rdfs:label, rdf:sameAs). Each entry is
associated with one data source G and contains the number of resources #res
and the number of RDF triples ni per predicate pi in the data source.

G #res p1 n1 p2 n2 p3 n3

http://bio2rdf.org/ 632 rdf:type 632 rdfs:label 844 owl:sameAs 632
http://www.uniprot.org/ 924 rdf:type 924 rdfs:label 924 owl:sameAs 924

http://data.gov.uk/ 1173 rdf:type 1421 rdfs:label 1173 owl:sameAs 1399

For the sake of readability, we use URIs (with namespace prefixes) in the examples
above. In reality, we employ a dictionary for all predicate and source URIs and
only store the entry’s index number in the statistics table.

6.2 Verification

The purpose of the verification step is to ensure that all desired constraints
are met by the generated queries. The query semantics and the query structure
are easy to check by inspecting the syntax and query patterns of the produced
SPARQL queries. In fact, these constraints are always met as the query genera-
tion is driven by the specified query structure. However, the generated queries
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may not satisfy the cardinality constraints due to the estimations used by the
heuristics. A reliable validation would have to execute each query on the actual
data sets which is impossible because of the sheer size of the Linked Data cloud
and the absence of a query processing implementation which can execute all pos-
sible types of benchmark queries in a short time. Moreover, corner case queries
are intended to be hard to evaluate.

Our solution in SPLODGE is to compute a confidence value for each query. It
defines how likely a query can return the desired number of results. We reject
queries if their confidence value lies below a certain threshold. The confidence
value is computed based on the minimum selectivity of all joins in a query.

7 Evaluation

Having explained the technical details and algorithms for the query generation
we will now have a look at the evaluation of the generated queries. Evaluation
in this context basically means checking if the generated queries meet the prede-
fined cardinality constraints, i. e. if they can actually return results which were
obtained from different data sources. Due to the random query generation pro-
cess using cardinality estimates it is not uncommon that different queries with
the same characteristics basically yield different result sizes and cover a range
of various data sources. Hence, we want to evaluate two aspects: (1) how many
queries in a query set fail to return any result, and (2) how good does the esti-
mated result size match the actual results size of the queries. Furthermore, we
count the number of data sources which are involved in answering a queries.
To allow for an objective comparison of the effectiveness of the triple pattern
selection criteria we perform the query generation with three different heuristics
which are used for choosing triple patterns. For this evaluation the queries are
restricted to SPARQL SELECT queries with conjunctive joins of triple patterns
with bound predicate and unbound subject and unbound object.

7.1 Query Creation Heuristics

A naive approach would just randomly select predicates for use in the triple
patterns of the query. For our comparison we use three different pattern selection
algorithms, ranging from basic to more elaborate heuristics in order to increase
the probability that the generated queries meet the desired constraints.

Baseline uses random selection of data sources and bound predicates in the data
sources. It does not check if there is a connection between the data sources
via the chosen predicates.

SPLODGElite creates queries as described in Sec. 5. Two triple patterns are
combined (in a path-join or star-join) if the statistics indicate the existence
of resources which can be matched by the respective predicate combination.
SPLODGElite does not apply validation based on a confidence value.

SPLODGE extends SPLODGElite with a computation of confidence values based
on individual join selectivity. It discards queries if the confidence value is
below a certain threshold, i. e. if individual joins in a query are too selective.
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7.2 Setup

Representative query parameterizations are obtained by analyzing the different
query structures of the FedBench queries [26]. An overview for the life-science
(LS), cross-domain (CD), and linked data (LD) queries is given in Fig. 2. For sim-
plification of the presentation, we only show the join structure and omit bound
subjects/objects, filter expressions and optional parts. Queries with unbound
predicate were not considered. We can basically model all of the join patterns
with the parameterization described in Sec. 4. But due to space restrictions we
will only consider selected queries in the evaluation. Query generation and eval-
uation need to be tailored for a specific dataset. We chose the 2011 billion triple
challenge dataset. It contains about two billion triples and covers a large number
of Linked Data sources.

Fig. 2. Query Patterns as exposed by the FedBench queries [26] with bound predi-
cates. Query set (1) has a single star-join, sets (2)-(4) are path-joins combined with
star-joins, (5) are two combined star-joins, and sets (6)-(8) are combinations of multi-
ple path-joins and star-joins. (1):LD[5,7], (2):LD[1,2,9,10,11], (3):CD[5,6,7],LS[3],LD[3]
(4):CD[3],LD[8], (5):LS[6,7], (6):CD[4], (7):LS[4], (8):LS[5],LD[4].

The major challenge for the query generation is to produce path-join queries
across different datasets. The sparsity of links between datasets makes it difficult
to create long path-joins and ensure non-empty result sets. To better explore
this problem space, we focused in our evaluation on path-join queries where
each triple triple pattern needs to be matched by a different data source. Such
queries represent interesting corner cases, as all triple patterns must be evaluated
independently. Moreover, since the triple patterns have only bound predicates,
many data source may be able to return results for a single triple pattern, thus
increasing the number of data sources that need to be contacted. We generated
sets of 100 random queries for path-joins of length 3–6 and executed them to
obtain the actual number of results. All triples of the billion triple challenge
dataset 2011 were loaded into a single RDF3X [19] repository.

7.3 Results

The evaluation of all queries from a query set on such a large dataset takes
quite long, i. e. several hours for specific queries. The main reason is that some
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Fig. 3. Comparison of SPLENDIDlite and SPLENDID using different confidence values,
i. e. minimum join selectivity of 0.0001, 0.001, or 0.01, respectively. For each batch of
100 queries the number of non-empty results (left) and the minimum, maximum result
size and the quantiles for 0.2, 0.5 and 0.8 (right) are shown.

queries produce very large (intermediate) result sets. A timeout of two minutes
is set for a query to finish. For each batch of 100 queries we count the number of
queries which returned non-empty results. Additionally, minimum, maximum,
median, as well as 0.2 and 0.8 quantiles for all result sizes in a query batch are
measured. We compare the results for SPLENDIDlite and the regular SPLENDID
query generation where the confidence value is defined by a minimum selectivity.

Figure 3 shows that SPLENDIDlite produces only a few queries and the base-
line even fails to create any query which can return results. Using the confidence
value based on join selectivity increases the number of non-empty results sets
significantly, i. e. from 20 to around 60 for three join patterns and by a factor of
3 to 30 for more join patterns. However, for path-joins with six triple patterns
it was not possible to generate any query where the minimum join selectivity
is 0.01. Considering the minimum and maximum result size we can not see any
clear behavior. The minimum result size is always well below 10. The maximum
goes in some case up to several million results while the 80% quantile remains
below 10000 results (except for a selectivity of 0.001 and six join patterns). All
query sets have a median value of less than one hundred results. The difference
is smallest when the query sets have a similar number of non-empty results.

We also observe that many predicates in the queries represents schema vo-
cabulary, e. g. rdf:type, rdfs:subClassOf, owl:disjointWith. This becomes
even more noticeable the longer the path-join.

8 Summary and Future Work

We presented a methodology and a toolset for systematic benchmarking of feder-
ated query processing systems for Linked Data. The novel query generation ap-
proach allows for flexible parameterization of realistic benchmark queries which
common scenarios and also corner cases. A thorough analysis of query character-
istics was conducted to define the dimensions for the parameterization space of
queries, including structural, complexity, and cardinality constraints. The imple-
mentation of SPLODGE is scalable and has proven to produce useful benchmark
queries for the test dataset of the 2011 billion triple challenge.
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So far, the query generation handles all predicates equally. With respect to
sub-type and sub-property definitions a separate handling of schema information
would allow for creating queries suitable for inference benchmarking. For future
work, an extension of the statistical information would be helpful to include filter
expression in the generated queries. Finally, we intend to use the benchmark
queries for the evaluation of federated query processing on Linked Data.
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Abstract. Recent developments in hardware have shown an increase in paral-
lelism as opposed to clock rates. In order to fully exploit these new avenues of
performance improvement, computationally expensive workloads have to be ex-
pressed in a way that allows for fine-grained parallelism. In this paper, we address
the problem of describing RDFS entailment in such a way. Different from previ-
ous work on parallel RDFS reasoning, we assume a shared memory architecture.
We analyze the problem of duplicates that naturally occur in RDFS reasoning and
develop strategies towards its mitigation, exploiting all levels of our architecture.
We implement and evaluate our approach on two real-world datasets and study
its performance characteristics on different levels of parallelization. We conclude
that RDFS entailment lends itself well to parallelization but can benefit even more
from careful optimizations that take into account intricacies of modern parallel
hardware.

1 Introduction

Reasoning is an important aspect of the Semantic Web vision. It is used for making
explicit previously only implicit knowledge, thus making it available to non-reasoning
query engines and as a means for consistency checking during ontology engineering
and applications. Applied to large amounts of data, reasoning has been computationally
demanding, even if restricted to less expressive RDFS entailment. The idea of concur-
rent reasoning on parallel hardware has therefore been of research interest for quite
some time. Previous work on parallelizing reasoning has focused on cluster-based im-
plementations on top of shared nothing architectures that require significant expenses in
hardware costs [7,19,21]. Since scalability of parallel RDFS reasoning has been shown
by such work, looking at other parallel architectures seems a promising approach.

Over the last years the number of CPU cores available in commodity hardware has
increased while the clock rates have not changed much. At the same time graphics
processing units (GPUs) have been successfully used for general purpose computing
tasks [11]. GPUs provide an even higher level of parallelism by reducing the complexity
of a single compute unit and are thus referred to as massively parallel hardware. In order
to exploit such high levels of parallelism provided by modern hardware, it is essential
to devise algorithms in such a way that fine-grained parallelisms become possible.
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In this paper, we consider the problem of parallel RDFS reasoning on massively
parallel hardware. In contrast to work on cluster-based implementations, we assume
a shared memory architecture as is found on such hardware and exposed by modern
parallel programming frameworks like CUDA1 or OpenCL2. Our goal is to devise and
implement an approach that is agnostic of the actual hardware parallelism (i. e. number
of cores) and thus able to exploit any degree of parallelism found.

We show that applying the same principles as used in cluster-based approaches in
our architecture often incurs a performance impairment, due to massive amounts of
duplicates generated by naïve parallel application of RDFS entailment rules. To better
understand the nature and origin of those duplicates, we study the problem on two
different datasets. We derive two approaches that make use of shared memory in order
to prevent duplicate triples from being materialized. Our implementation is based on
the OpenCL framework and can thus be used on a wide range of devices, including
multicore CPUs and modern GPUs. We evaluate our system on two real-world datasets
in the range of tens of millions of triples.

The remainder of this paper is structured as follows. We give an introduction to
both classical and parallel RDFS reasoning and discuss related work in Section 2. We
describe our approach and its implementation in Section 3 and report on experimental
results in Section 4. We conclude and give an outlook on future work in Section 5.

2 Background

2.1 RDFS Entailment

The W3C recommendation on RDF semantics defines a vocabulary with special mean-
ing the interpretation of which can give rise to new triples [5]. In addition, a set of
rules are presented whose repeated application is said to yield the RDFS closure of an
RDF graph. In this paper, we consider a subset of the RDFS vocabulary that has been
shown to capture ‘the essence’ of RDFS, called the ρdf vocabulary [9]. Table 1 shows
those RDFS rules that produce the closure for the ρdf vocabulary. Note that these rules
contain all the rules from the RDFS vocabulary that have at least two antecedents. We
ignore rules with only one antecedent since, as was already noted in [19], their (trivial)
entailments can be computed easily in a single pass over the data. As in previous pub-
lications, all figures given in this work have been determined without using RDFS ax-
iomatic triples. However, the system described is capable of including those axiomatic
triples that make use of the ρdf vocabulary subset. In particular, the infinite number of
axiomatic container membership properties are not included since ρdf does not contain
such properties.

2.2 Parallelizing RDFS Entailment

A more detailed inspection of the rules presented in Table 1 reveals two classes. Roughly
speaking, there are (i) rules that operate solely on schema triples and (ii) rules that op-
erate on a schema triple and an instance triple.

1 http://www.nvidia.com/object/cuda_home_new.html
2 http://www.khronos.org/opencl/

http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
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Table 1. Subset of the RDFS entailment rules with two antecedents

(5) p rdfs:subPropertyOf q & q rdfs:subPropertyOf r =⇒ p rdfs:subPropertyOf r
(11) C rdfs:subClassOf D & D rdfs:subClassOf E =⇒ C rdfs:subClassOf E

(2) s p o & p rdfs:domain D =⇒ s rdf:type D
(3) s p o & p rdfs:range R =⇒ o rdf:type R
(7) s p o & p rdfs:subPropertyOf q =⇒ s q o
(9) s rdf:type B & B rdfs:subClassOf C =⇒ s rdf:type C

Rules of the first kind compute the transitive closure of a property. In Table 1 those
rules are shown in the upper section (rules (5) and (11)).

The second kind of rule is shown in the lower part of Table 1 (rules (2), (3), (7),
and (9)). We refer to each of these rules as a join rule, since it essentially computes
a database join between instance and schema triples with the join attribute being the
subject of the schema triple and either the property or the object of an instance triple.

Since no rules depend on two instance triples, each can be applied to different in-
stance triples in parallel. Such a data parallel task is well suited to GPU workloads due
to their ability of efficiently scheduling large numbers of threads. Communication of
entailment results is then only necessary between application of different rules. The ap-
plication of each join rule can thus be considered an embarrassingly parallel3 problem.

1 @base <http://example.com/> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3

4 <p> rdfs:domain <C> .
5 <C> rdfs:subClassOf <D> .
6 <A> <p> "O1", "O2", "O3" .

Listing 1. RDF graph that produces duplicates when rules (2) and (9) are applied to it

Treating RDFS reasoning as such a problem, however, can lead to suboptimal per-
formance, since RDFS entailment has an inherent tendency towards producing dupli-
cate triples. To see that, consider the RDF graph in Listing 1. When applying rule
(2) to it, each of the triples in line 6 together with the one in line 4 would entail
the same triple 〈A, rdf:type,C〉. Applying rule (9) thereafter would entail the triple
〈A, rdf:type,D〉, again three times. Since, in this case, duplicates are generated by
the same rule we refer to them as local duplicates. Another kind of duplicate can be
generated by entailing triples that have already been entailed by a previous rule. Those
duplicates we refer to as global duplicates.

The duplicate problem has been acknowledged in previous work. Urbani et al., for
example, combine rules (2) and (3) and cluster instance triples by equality of subject

3 An embarrassingly parallel problem refers to a problem where very little or no communication
is needed.
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and object, so as to not entail the same rdf:type statements via rdfs:domain or rdfs
:range. The full extent of the problem is not addressed in their work, however, as they
do not materialize triples. In Subsection 3.4 we analyze the ramifications that this incurs
on performance and discuss approaches to mitigate the problem.

2.3 OpenCL Programming Model

OpenCL is a vendor-agnostic programming model and API for parallel programming.
In OpenCL, parallel workloads are expressed in the form of compute kernels that are
submitted for execution on a parallel device. Since the way in which kernels are written
allows for fine-grained parallelism, such devices can range from manycore CPUs to
massively parallel GPUs. Execution and submission of kernels are controlled by a host
program, which usually runs on the CPU. An instance of a compute kernel (run on a
compute device) is called a work item or simply a thread4. Work items are combined
into work groups, where those items have access to low-latency shared memory and the
ability to synchronize load/store operations using memory barriers. Each work item is
assigned a globally (among all work items) and locally (within a work group) unique
identifier which also imposes a scheduling order. Those can be used to compute memory
offsets for load and store operations. Data transfer between the host system and compute
units is done via global memory to which all work items have access, albeit with higher
latency. OpenCL provides no means for memory allocation on the device. This means
that all output buffers must be allocated on the host before executing a kernel. For
workloads with a dynamic result size (like RDFS reasoning) this implies a problem.
Section 3.3 discusses our approach to this problem.

In this paper we refer to device when we talk about the hardware component on
which a compute kernel is executed, while we refer to controlling code as being exe-
cuted on the host. Note that in the OpenCL programming model both host and device
can refer to the same CPU.

2.4 Related Work

Related work on RDFS entailment has primarily focused on distributing the reasoning
workload on a cluster of compute nodes.

An embarrassingly parallel implementation of RDFS entailment over a compute
cluster is presented in [21]. Their work uses an iterative fixpoint approach, applying
each RDFS rule to triples until no new inferences can be made. Triples generated by
different nodes are written to separate files. Thus, duplicates are not detected and con-
sume both memory bandwidth and storage space.

An interesting approach to parallel RDFS reasoning using distributed hash tables is
presented by Kaoudi et al. [7]. They give algorithms for both forward and backward
chaining and an analytical cost model for querying and storage.

Oren et al. describe a distributed RDFS reasoning system on a peer network [13].
Their entailment is asymptotically complete since only a subset of generated triples are
forwarded to other nodes. Duplicate elimination is performed on a node determined by

4 In this work we use the terms work item and thread interchangeably.
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the hash value of a triple. Each node keeps a local bloom filter with all seen triples and
deletes subsequent triples that hash to the same positions. This approach is incompatible
with our complete reasoning implementation: bloom filters operate with a controllable
false positive rate. A triple that is detected as being a duplicate might actually be a false
positive and is thus erroneously deleted.

Urbani et al. describe a parallel implementation of the RDFS rule set using the
MapReduce framework [19]. They introduce a topological order of the RDFS rules
such that there is no need for fixpoint iteration. Our work in principle is based on this
approach by using the same rule ordering (see Section 3.3). However, they do not ma-
terialize triples and thus do not encounter the duplicate detection problem.

The most recent work on single-node RDFS entailment is found in [3]. In this work,
RDFS entailment rules for annotated data as described in [17] are implemented on top
of PostgreSQL. Furthermore, idempotency of rules (5) and (11) is shown. Since their
result can easily be extended to classical RDFS entailment (and thus ρdf), we make use
of that result as well. In difference to this work, our implementation operates in main
memory but has no problem dealing with datasets even bigger than those used by the
authors to evaluate their approach.

Rule-based parallel reasoners for the OWL 2 EL profile have been presented for
TBox [8] and ABox reasoning [14]. Both works rely on a shared queue for centralized
task management. In our work, tasks are described in a much more fine-grained manner
and global synchronization is only necessary during kernel passes.

Other related work deals with specialized algorithms for GPU computing. The par-
allel prefix sum (or scan) over a vector of elements computes for each index i the sum
of elements with indexes 0 . . . i−1 (exclusive) or 0 . . . i (inclusive). Our scan implemen-
tation is based on the work of Sengupta et al. [16], while our sorting algorithm draws
inspiration from Satish et al. [15].

3 Approach

In this section we describe our approach and its implementation in detail. We explain
how data is prepared and how it is stored. We then describe how each of the ρdf rules
is implemented in our system. Subsection 3.4 discusses problems we encountered with
regard to duplicate triples and how we address them.

3.1 Data Representation

Parsing and preparing the data are performed in serial which therefore tends to dominate
the process. We use the Turtle parser implementation from RDF-3X [10] with a few
modifications. All string values (i. e. URIs and literal objects) are encoded to 64-bit
integers. This serves three purposes:

– it guarantees that each value is of fixed length, simplifying the implementation of
data structures,

– comparing integers is much faster than comparing strings,
– strings are on average longer than 8 bytes which means we essentially perform data

compression, thus lowering the required memory bandwidth.
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The dictionary is stored in a disk file which is mapped into memory using the mmap
system call. The file contains buckets storing the literal identifier along with character
data and the address of potential overflow buckets. In order to save space, we doubly
hash dictionary entries: A hash value is computed for each literal string to be stored in
the dictionary. This hash is used as an index into a second hash table that associates it
with an offset into the dictionary file. Since literal identifiers are consecutive integers,
the reverse index, which maps literal identifiers to string values, is just a vector of file
offsets with the id being the vector index (direct addressing). For entries that are less
than a virtual memory page size in length, we ensure they do not span a page boundary:
If the entry is larger than the space left on the current page (4096 bytes on most systems)
we place it entirely on the next page.

We use the 48 least significant bits (i. e. bits 0–47) for value encoding and the 16 most
significant bits (bits 48–63) for storing associated metadata (e. g. whether the encoded
value is a literal or a blank node). This is needed since RDFS rules as presented in
[5] are incomplete if applied to standard RDF graphs [18]. To solve this problem we
internally store a generalized RDF graph (i. e. we allow literals in subject position as
well as blank nodes in predicate position). For RDF output, however, we need to be able
to detect those non-RDF triples.

3.2 Data Storage and Indexing

Data is stored in memory in STL5 data structures. We use one std:vector of terms
storing a column of RDF terms which is reminiscent to what column-oriented database
systems store [1]. In other words, we keep a separate vector for all subjects, properties,
and objects, enabling us to quickly iterate over the attributes of adjacent triples which is
a common operation when preparing data for the reasoning stage. In addition, a fourth
vector holds flags for each triple; e. g.., entailed triples are stored with an entailed flag
which allows us to easily determine those.

The index into these vectors is kept in a hash table which is indexed by triple. An
amortized constant-time hash lookup is hence sufficient to determine whether a triple
has already been stored or not. The cost for this lookup is about half of the cost for
actually storing the triple.

The storage layer also implements the iterator concept known from STL containers.
A triple iterator can be used to retrieve all stored triples. In order to produce entailed
triples only, a special iterator is provided that skips over all triples whose entailed flag
is not set.

3.3 Sound and Complete Rule Implementation

As previously noted, our algorithm is based on the rule ordering in [19] with a few dif-
ferences. Due to each rule being executed in a separate kernel run (pass), our approach
involves an implicit global synchronization step that is inherent to submitting a ker-
nel to an OpenCL device. Hence all entailments created during one pass are seen by all

5 Standard Template Library–part of the C++ standard library.
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subsequent ones. In particular, if a schema triple is created during a rule application, it
will be used as such by subsequent rules. In addition, we perform a fixpoint iteration
over rules (5) and (7). This is necessary since rule (7) is able to produce arbitrary triples,
including schema triples, and is itself dependent on rule (5). Since it is possible to ex-
tend the RDFS vocabulary with custom properties, the fixpoint iteration is necessary to
materialize all schema triples before applying other rules. Figure 1 depicts our approach
with its four passes as well as synchronization steps in between.

Rules (5) + (7) Rule (2) Rule (3) Rules (9) + (11)

fixpoint iteration

global 
synchronization

global 
synchronization

global 
synchronization

Fig. 1. Passes for computing the subset of the RDFS rules considered in this work

Computing Transitive Closure-Based Rules. Parallel algorithms for computing the
transitive closure of a graph are based on boolean matrix multiplication as proposed by
Warshall [20]. Due to its regular access pattern, it maps easily to the OpenCL mem-
ory model. Transitive property hierarchies on RDF graphs, however, tend to be very
sparse. In YAGO2 Core, for instance, the number of vertices taking part in the rdfs
:subClassOf relation is 365,419, while the number of triples using that property in
the full closure is about 3.4 million. Representing such a graph in a quadratic matrix is
wasteful since most entries will be zero. In YAGO2 Core, it is also infeasible because
storing the adjacency matrix of 365,419 vertices would require almost 16 GiB, if each
entry is compressed to a single bit.

A space-efficient serial algorithm for calculating the transitive closure of a graph
was presented by Nuutila [12]. We tried the implementation found in the Boost Graph
Library6 but it was unable to cope with the graph size from YAGO2 Core. We thus
provide our own implementation of that algorithm which is computed serially on the
host. A parallel implementation of the algorithm from [12] is beyond the scope of this
paper and will be reserved for future work.

Computing Join Rules. In our parallel implementation, each thread is assigned a sin-
gle instance triple based on its global identifier. Thus, a join rule needs to find a match-
ing subject of a schema triple.

A very efficient join algorithm in database systems is known as the hash join [4].
Hash joins are typically used in cases where a large relation must be joined with a
smaller one. A hash table is populated with the values of the smaller relation. For each
value of the large relation, a simple hash lookup can determine whether there is a match.
Once a matching schema subject has been found, the objects of all schema triples for
that particular rule can be used to materialize new triples.

6 http://www.boost.org/libs/graph/

http://www.boost.org/libs/graph/
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A hash-join implementation of the process works as follows. Consider rule (9) from
Table 1. The object (B) of a given triple is hashed and matched against all rdfs:
subClassOf schema triples. If a match is found all of its successors (C) become objects
of new triples that need to be written to the output vector.

In the OpenCL computing model, this is, however, impossible. All buffers for storing
results must be allocated on the host before kernel invocation. We therefore compute
join rules in two passes. During the first pass, each thread performs the join with schema
triples as described above. Instead of materializing new triples, it just writes the number
of results it would produce and the index of the matched schema triple to the output.
A prefix sum over the result numbers then yields for each thread the number of results
that will be written by threads with a lower id. This value is equal to the index into the
global result vector at which the thread can write its result. In a second pass each thread
reads the matched schema index and materializes new triples.

The hash table with schema elements is stored in two separate vectors. One vec-
tor holds bucket information with an offset into the second vector and the number of
overflow entries it contains. Since it has an entry for each calculated hash index it can
contain empty values when there is no schema subject that hashes to a given value. The
second vector stores the buckets with the schema subject and the number of successors
packed into a single 64-bit value, followed by the successors of the schema subject. For
hashing we use a modified version of Google CityHash7 which we tailored to an input
length of 8 bytes.

3.4 Avoiding Duplicates

As discussed in Subsection 2.2, simple application of RDFS rules can lead to duplicate
triples being generated. To study the nature of these duplicates and where they originate
from, we analyzed generated triples for each rule on two datasets. Table 2 shows the
amount of new triples as well as duplicates generated by each rule for both data sets.
Consider rules (2) and (3) in the DBpedia dataset. Rule (2) produces more than 20 times
as many duplicates as it produces unique triples while (3) produces about nine times as
many. Rules (11) and (9) combined produce more than 40,000 times as many duplicates
as useful triples.

This huge amount of duplicates not only waste memory but also bandwidth when
being copied from and to the device. For each duplicate triple there must be determined
that it actually is a duplicate which requires a hash table lookup in our implementation.
The cost can be even higher if other or no index structures are used. Our storage layer
can determine whether a given triple is a duplicate in about half the time it takes to
store it. Given the figures above, between five and ten times the amount of work done in
the storage layer is thus wasted on detecting duplicates. To eliminate this overhead it is
important to detect duplicates as early as possible by avoiding their materialization. In
the following sections we devise two strategies for dealing with duplicates of different
origin as discussed in Subsection 2.2. We refer to these as the G strategy for global du-
plicates and the L strategy for local duplicates. In Section 4 we compare both strategies
with respect to their efficacy on different datasets.

7 http://code.google.com/p/cityhash/

http://code.google.com/p/cityhash/
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Table 2. Number of triples generated per rule for DBpedia (ca. 26 million triples) and
YAGO2 Core (ca. 36 million triples) datasets

DBpedia YAGO2 Core

Rule Triples Duplicates Ratio Triples Duplicates Ratio

(5) 0 0 – 0 19 >
(7) 0 0 – 3,551,361 88,477 0.03
(2) 368,832 7,630,029 21 6,450,781 13,453,038 2.1
(3) 568,715 4,939,870 8.7 409,193 1,511,512 3.7
(11) 259 610 2 3,398,943 366,764 0.1
(9) 0 8,329,278 > 6,685,946 3,173,957 0.5
(11+9) 259 10,398,328 42,162 35,061,599 57,969,000 1.7
all 1,650,607 23,775,152 14 45,766,218 89,370,361 2.0

Preventing Global Duplicates. RDFS rules are verbose—the same conclusions can
be derived from different rules. Detecting such duplicates can only be done by allowing
each thread a global view of all the triples that are already stored. Since all rules that
produce large amounts of duplicates (i. e. (2), (3), and (9)) create triples with rdf:type
as the predicate, it is sufficient to index only those triples8. We use an indexing scheme
and a hash table similar to the one used for the schema elements when computing the
hash join. Our index is stored in two vectors: one maps the calculated hash value to a
bucket address, while the other one holds the buckets. The structure of buckets can be
kept simpler since, with a fixed predicate, each needs to contain only a subject and an
object. Due to its size, local memory cannot be used and we need to keep the index
in global device memory. Store operations to global memory cannot be synchronized
among threads in different work groups. Thus our index is static and is not extended
during computation.

Removing Local Duplicates. Avoiding rule-local duplicates on a global level cannot
be done in OpenCL, since global synchronization is not possible during kernel exe-
cution. Accordingly, we instead remove those duplicates on the device after they have
been materialized but before they are copied to the host. This frees the host from having
to deal with those duplicates.

Our procedure for locally removing duplicates is shown in Algorithm 1. It works
by first sorting the values in local memory. Each thread then determines whether its
neighbor’s value is a duplicate of its own value and if so, writes 1 into a flag buffer. A
parallel prefix sum is then performed over the flags. Thereafter, the flag buffer contains
for each thread the number of duplicate entries in threads with lower ids. If the flag
determined by a thread in line 4 was 0 (i. e. its neighbor’s value is not a duplicate of
its own), it is the first in a series of duplicates. Thus it copies its value to a position
in the global output buffer that is k positions lower than its own id, where k is a local
displacement value obtained from the scanned flag buffer.

8 Rule (11), though producing a large number of duplicates, is implemented in a serial algorithm
on the host and can thus not be addressed by this strategy.
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Input: global thread id g
Input: local thread id l
Input: local buffer lbuf
Input: flag buffer flags
Input: global result buffer gbuf
Result: global buffer gbuf with locally unique values

1 flagsl ←− 0, gbufl ←− 0
2 local_sort(lbuf)
3 if l > 0 then

4 if lbufl = lbufl−1 then flagsl ←− 1
5 else flagsl ←− 0
6 f ←− flagsl
7 prefix_sum(flags)
8 if f = 0 then

9 k ←− flagsl
10 gbufg−k ←− lbufl

Algorithm 1. Removing duplicates within a work group using local device memory

3.5 Improving Work Efficiency on GPU Devices

On modern GPUs work items do not execute in isolation. Independent of the work group
size they are scheduled in groups of 64 (AMD) or 32 (NVIDIA), called wavefront or
warp, respectively. All threads within such a group must execute the same instructions
in lock-step. That is, different code paths due to control flow statements are executed by
all items, throwing away results that are not needed (predication).

A naïve implementation of our algorithm that loops over all successors of a join
match to materialize triples would thus incur wasted bandwidth. To address this prob-
lem, we move the loop up to the thread level, effectively increasing the number of work
items for the second pass. Each work item then materializes at most one triple. To this
end each thread gets passed a local successor index identifying which successor it has
to compute for a given subject.

4 Experimental Results

In this section, we evaluate our implementation with two real-world data sets. The DB-
pedia dataset consists of the DBpedia Ontology, Infobox Types and Infobox Properties
from DBpedia 3.7 [2], together amounting to more than 26 million triples. The second
dataset is YAGO2 Core [6] in the version released on 2012-01-09, which is sized at
about 36 million triples.

We perform two different experiments. First, to show scalability on different levels
of hardware parallelism, we measure running times of our reasoning algorithm for each
dataset with different numbers of CPU cores used. We achieve this by partitioning the
CPU device into sub-devices with the respective number of cores9. For this experiment,

9 This OpenCL 1.2 feature is not yet available on GPUs.
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we used an Opteron server with four CPUs having 8 cores each. It is exposed to OpenCL
as a single device having 32 compute units (cores). For our experiment we created sub-
devices with 16, 8, 4 and 2 compute units.

In order to study effectiveness of our optimizations, we performed another experi-
ment using a GPU device with 20 compute units. We measure kernel running time as
well as the time for computing the complete entailment. This includes time for setting
up index structures, executing our rule implementations, detecting any duplicates and
storing all entailed triples. We give results for no optimization, removing local dupli-
cates, preventing global duplicates as well as for both kinds of optimizations combined.

In order to compare our implementation with existing work we set up the system
described by Damásio et al. [3]. We used PostgreSQL 9.1.3 installed on our Ubuntu
system and configured it to use 6 GiB of system memory as buffer cache. Time mea-
surements of rule implementations were done by having PostgreSQL print timestamps
before and after each experiment and subtracting the values. To set up the system, we
followed the authors’ blog entry10. We performed the largest rdfs:subClassOf tran-
sitive closure experiment (T2) and the largest full closure experiment (T6) using the
non-annotated rule sets and the fastest implementation variant as reported in [3]. Be-
tween repetitions we emptied all tables and re-imported the data. The results of this
experiment are shown in Table 3. For T6 we had to disable literal detection within the
materialization kernel, which normally prevents triples with literal subjects from be-
ing materialized. Experiment T2 can be used to determine the baseline speedup that is
gained by using a native C++ implementation without GPU acceleration or parallelism
over the PL/pgSQL implementation used by Damásio and Ferreira [3]. We determined
this baseline speedup to be about 2.6. Experiment T6 is executed about 9.5 times faster
by our system. That is, our system actually performs more than three times better than
what one could expect given given the baseline speedup.

Table 3. Closure computation times for experiments T2 and T6 done by Damásio and Ferreira [3]
repeated on our hardware and the system described in this paper

Input triples Output triples Damásio (ms) Our system (ms) Speedup

T2 366,490 3,617,532 23,619.90 9,038.89 2.6×
T6 1,942,887 4,947,407 18,602.43 1,964.49 9.5×

Note that experiment T6 has also been done by Urbani et al. [19] on their MapRe-
duce implementation in more than three minutes. For this graph (∼1.9 million triples)
our system is much faster since the whole graph including index structures fits easily
into main memory, while the overhead of the MapReduce framework dominates their
experiment. This result would likely change if a significantly larger graph was used.
Sufficient disk-based data structures for managing such a graph are, however, beyond
the scope of this paper.

10 http://ardfsql.blogspot.de/

http://ardfsql.blogspot.de/
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4.1 Experimental Setup

Each experiment was repeated five times and the minimum of all five runs was taken.
The benchmark system used was a Linux desktop running Ubuntu 12.04 with an Intel
Core i7 3770 CPU and 8 GiB of system memory. The GPU used in our experiments was
a midrange AMD Radeon HD 7870 with 2 GiB of on-board memory and 20 compute
units. For scalability experiments, we used an Opteron server running Ubuntu Linux
10.04. It was equipped with four AMD Opteron 6128 CPUs, each having eight cores
and a total 128 GiB of system memory.

All experiments were run using AMD APP SDK version 2.7 and timings were deter-
mined using AMD APP profiler version 2.5.1804. C++ code was compiled with Clang
3.111 on the desktop and GCC 4.7.1 on the server using libstdc++ in both cases.

The source code of our implementation is available on GitHub12. Due to their size
datasets are not part of the source code repository and can be recreated as described in
the next section.

4.2 Data Scaling

Both datasets were scaled as follows: (1) all schema triples were separated, (2) instance
triples were scaled to 1/2, 1/4th, 1/8th, and 1/16th of the original size, (3) scaled instance
triples were combined with all schema triples. The resulting number of instance triples
for each dataset are shown in Table 4 along with the number of entailed triples. DBpedia
datasets use 3,412 schema triples, YAGO2 datasets contain 367,126 schema triples.

Table 4. Datasets used in our experiments

Dataset Instance triples Entailed triples Dataset Instance triples Entailed triples

DBpedia 26,471,572 1,650,607 YAGO2 35,176,410 45,766,218
DBpedia/2 13,235,786 1,266,526 YAGO2/2 17,588,205 41,801,394
DBpedia/4 6,617,893 860,982 YAGO2/4 8,794,102 35,684,268
DBpedia/8 3,308,946 545,002 YAGO2/8 4,397,051 19,045,508
DBpedia/16 1,654,473 318,037 YAGO2/16 2,198,525 10,938,726

4.3 Results and Discussion

Results of our first experiment are depicted in Figure 2. For up to 16 compute units, the
kernel running time is approximately halved when the number of cores is doubled. If
all 32 compute units are used the running time can be seen to even slightly increase.
Note that the Opteron CPUs used in this experiment have a feature similar to Intel’s
Hyper-threading where some CPU resources are shared by two cores. Thus it remains
unclear whether the observed effect is due to limitations of our algorithm or congestion
of shared CPU resources.
11 http://clang.llvm.org/
12 https://github.com/0xfeedface/grdfs

http://clang.llvm.org/
https://github.com/0xfeedface/grdfs
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Fig. 2. Kernel running times on different numbers of CPU cores

Table 5 shows benchmark results on the GPU device for two datasets and different
combinations of duplicate removal strategies. For DBpedia we use the full dataset, we
use the YAGO2/8 dataset only since the full closure of YAGO2 does not fit into the GPU
memory. Note that, in this case, the closure would have to be computed in several runs
but an algorithm for dynamic data partitioning lies beyond the scope of this paper and
will be addressed in future work. In Table 5 one can see that the sorting step involved in
the Local strategy does increase the kernel running time to about four to seven times that
of the plain kernels without duplicate removal. The result is a reduction of the number
of duplicates by factor of up to 13 for YAGO2 and 2 for the DBpedia dataset. The total
time needed for computing the closure is reduced by 13 % for DBpedia and 11 % for
YAGO2 by this strategy.

The Global deduplication strategy appears to be less effective in terms of overall
speedup. Even though the number of duplicates reduced by it for the DBpedia dataset
is about seven times that of the Local strategy, closure computation is sped up by only

Table 5. Kernel and complete closure computing times on the GPU device with Local (L), Global
(G) or both duplicate removal strategies. The speedup is shown for the complete computation over
the None strategy.

Dataset Strategy Kernel time (ms) Closure time (ms) Duplicates Speedup

DBpedia None 28.444 6,884.15 23,775,152
L 120.915 6,083.76 12,165,520 13.2 %
G 52.305 6,635.60 1,511,758 3.7 %
L+G 117.400 6,557.94 1,057,470 5 %

YAGO2/8 None 25.565 21,625.19 31,552,221
L 187.169 19,554.09 2,399,898 10.6 %
G 53.948 21,622.31 29,357,936 0 %
L+G 215.947 19,807.66 1,786,753 9.2 %
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3.7 %. For the YAGO2 dataset, Global deduplication does not lead to a significant de-
crease in duplicates.

One possible explanation for the reduced efficacy of the Global strategy lies in our
implementation. We use a hash table that is built on the host and thus requires a sig-
nificant amount of serial work. Results shown in Table 5 suggest this cost to be almost
half that of removing duplicates. The Local strategy, on the other hand, is performed
entirely in parallel, thus coming almost for free when compared to the Global strategy.
One possible improvement that we will look at in the future is computing the hash table
on the device.

Table 6. Kernel execution and total closure computation time on CPU and GPU

Device Kernel execution (ms) Total (ms)

Core i7 3770 (CPU) 647.311 5509.92
Radeon HD 7870 (GPU) 114.683 5881.54

When comparing kernel execution times on GPU and CPU devices (shown in Table 6),
one can see that in our system kernels execute about five times faster on the GPU than
on the CPU. This is probably due to the large amount of parallelism exposed by modern
GPUs. However, this does not translate into shorter closure calculation times. If com-
putation is done on the CPU, host and device memory are essentially the same and no
copying takes place. On a GPU however, data must be copied over the PCI Express bus
to the device and results have to be copied back. Therefore to fully exploit GPU devices
the data transfered must be kept at a minimum. At the moment we do not handle this very
well since the OpenCL programming model requires buffers to be allocated in advance.
If duplicates are later detected the size of buffers cannot be reduced accordingly. Instead,
duplicate values are overwritten with zeros which allows easy detection on the host but
does not reduce the amount of data transfered.

5 Conclusion and Future Work

In difference to previous related work that mainly focused on distributed reasoning
via a cluster of compute notes, in this paper we tackled the problem of computing
a significant subset of the RDFS closure on massively parallel hardware in a shared
memory setting. We devised algorithms that can in theory exploit such high levels of
parallelism and showed their scalability to at least 16 cores on CPU hardware.

In addition, we addressed two issues that make parallel RDFS reasoning non-trivial:
i) we introduced a fixpoint iteration over rules (5) and (7) to support extension of the
RDFS vocabulary and ii) we devised two independent strategies for dealing with the
large number of duplicate triples that occur in naïve application of RDFS entailment
rules. In particular, we could show our Local strategy to be highly effective in terms of
speedup gain. The comparatively high cost for the Global strategy make it less effective
in our system. However, if the aim lies in maximum reduction of duplicates (e. g. if the



RDFS Reasoning on Massively Parallel Hardware 147

cost for duplicate detection is very high) both strategies need to be applied. One aspect
of future work is thus reducing the setup cost for the Global strategy by bulding data
structures on the device.

The reason for our implementation showing no performance gain on massively par-
allel GPU hardware over CPU hardware is due to wasted memory bandwidth when
copying large amounts of data to and off the device. To overcome this future research
on compressed data structures for massively parallel hardware is needed. Currently, we
are not aware of any such work.

In order to cope with datasets of arbitrary size our in-memory data store would need
to be replaced by a sufficient disk-based storage scheme. Such schemes specifically
designed for RDF data and query workloads are already being researched. Since rea-
soning and query workloads could be different, designing such schemes specifically for
reasoning systems might be a promising approach as well.

Massively parallel hardware is also used for cloud computing platforms that combine
several devices13. So far, our work focused on using a single OpenCL device per reason-
ing workload. An obvious extension would be the use of several devices by partitioning
instance triples and replicating schema triples on all devices.

Lastly, exploiting a different aspect of modern GPU hardware could be the use of
annotated RDF data as described in [17]. In this work, each RDF triple is annotated
with a real number ϕ ∈ [0, 1]. The tradeoffs typically made in GPU chip design fa-
vor floating-point over integer arithmetic. Thus, extended RDFS rules from [17] would
likely benefit from being executed on the floating-point units of modern GPUs.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
helpful comments on earlier versions of the paper. In particular, we would like to thank
Peter F. Patel-Schneider for the fruitful discussion on properties of our approach.

Parts of this work have been funded by the K-Drive project.

References

1. Abadi, D.: Query Execution in Column-Oriented Database Systems. PhD thesis, Mas-
sachusetts Institute of Technology (2008)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia – A crystallization point for the Web of Data. Web Semantics: Science, Services
and Agents on the World Wide Web 7(3), 154–165 (2009)

3. Damásio, C.V., Ferreira, F.: Practical RDF Schema Reasoning with Annotated Semantic
Web Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 746–761. Springer, Heidelberg
(2011)

4. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood, D.A.: Imple-
mentation Techniques for Main Memory Database Systems. In: Proc. of the 1984 ACM SIG-
MOD Intl. Conf. on Management of Data, pp. 1–8. ACM (1984)

5. Hayes, P.: RDF Semantics. W3C Recommendation, W3C (2004),
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

13 http://aws.amazon.com/about-aws/whats-new/2010/11/15/
announcing-cluster-gpu-instances-for-amazon-ec2/

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://aws.amazon.com/about-aws/whats-new/2010/11/15/announcing-cluster-gpu-instances-for-amazon-ec2/
http://aws.amazon.com/about-aws/whats-new/2010/11/15/announcing-cluster-gpu-instances-for-amazon-ec2/


148 N. Heino and J.Z. Pan

6. Hoffart, J., Berberich, K., Weikum, G.: YAGO2: a Spatially and Temporally Enhanced
Knowledge Base from Wikipedia. Artificial Intelligence Journal, Special Issue on Artificial
Intelligence, Wikipedia and Semi-Structured Resources (2012)

7. Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS Reasoning and Query Answering on
Top of DHTs. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516. Springer, Heidelberg
(2008)

8. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent Classification of EL Ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer, Heidelberg (2011)

9. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg
(2007)

10. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. In: Proc. of the VLDB
Endowment, pp. 647–659. VLDB Endowment (2008)

11. Nickolls, J., Dally, W.J.: The GPU Computing Era. IEEE Micro 30(2), 56–69 (2010)
12. Nuutila, E.: An efficient transitive closure algorithm for cyclic digraphs. Information Pro-

cessing Letters 52(4), 207–213 (1994)
13. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., Ten Teije, A., van Harmelen, F.: Marvin: A

platform for large-scale analysis of Semantic Web data. In: Proc. of the WebSci 2009 (2009)
14. Ren, Y., Pan, J.Z., Lee, K.: Parallel ABox Reasoning of EL Ontologies. In: Pan, J.Z., Chen,

H., Kim, H.-G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS,
vol. 7185, pp. 17–32. Springer, Heidelberg (2012)

15. Satish, N., Harris, M., Garland, M.: Designing Efficient Sorting Algorithms for Manycore
GPUs. In: Proc. of the IEEE Intl. Symp. on Parallel & Distributed Processing (2009)

16. Sengupta, S., Harris, M., Zhang, Y., Owens, J.: Scan primitives for GPU computing. In: Proc.
of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pp.
97–106. Eurographics Association (2007)

17. Straccia, U., Lopes, N., Lukácsy, G., Polleres, A.: A General Framework for Representing
and Reasoning with Annotated Semantic Web Data. In: Proc. of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI 2010), pp. 1437–1442. AAAI Press (2010)

18. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. Web Semantics: Science, Services
and Agents on the World Wide Web 3, 79–115 (2005)

19. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning Using
MapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

20. Warshall, S.: A Theorem on Boolean Matrices. Journal of the ACM 9(1), 11–12 (1962)
21. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds

of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer,
Heidelberg (2009)



 

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 149–164, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

An Efficient Bit Vector Approach to Semantics-Based 
Machine Perception in Resource-Constrained Devices 

Cory Henson, Krishnaprasad Thirunarayan, and Amit Sheth 

Ohio Center of Excellence in Knowledge-Enabled Computing (Kno.e.sis) 
Wright State University, Dayton, Ohio, USA 

Abstract. The primary challenge of machine perception is to define efficient 
computational methods to derive high-level knowledge from low-level sensor 
observation data. Emerging solutions are using ontologies for expressive 
representation of concepts in the domain of sensing and perception, which 
enable advanced integration and interpretation of heterogeneous sensor data. 
The computational complexity of OWL, however, seriously limits its 
applicability and use within resource-constrained environments, such as mobile 
devices. To overcome this issue, we employ OWL to formally define the 
inference tasks needed for machine perception – explanation and discrimination 
– and then provide efficient algorithms for these tasks, using bit-vector 
encodings and operations. The applicability of our approach to machine 
perception is evaluated on a smart-phone mobile device, demonstrating 
dramatic improvements in both efficiency and scale. 

Keywords: Machine Perception, Semantic Sensor Web, Sensor Data, Mobile 
Device, Resource-Constrained Environments. 

1 Introduction 

In recent years, we have seen dramatic advances and adoption of sensor technologies 
to monitor all aspects of our environment; and increasingly, these sensors are 
embedded within mobile devices. There are currently over 4 billion mobile devices in 
operation around the world; and an estimated 25% (and growing) of those are smart 
devices1. Many of these devices are equipped with sensors, such as cameras, GPS, 
RFID, and accelerometers. Other types of external sensors are also directly accessible 
to mobile devices through either physical attachments or wireless communication 
protocols, such as Bluetooth. Mobile applications that may utilize this sensor data for 
deriving context and/or situation awareness abound. Consider a mobile device that’s 
capable of communicating with on-body sensors measuring body temperature, heart 
rate, blood pressure, and galvanic-skin response. The data generated by these sensors 
may be analyzed to determine a person’s health condition and recommend subsequent 
action. The value of such applications such as these is obvious, yet difficult 
challenges remain. 
                                                           
1
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The act of observation performed by heterogeneous sensors creates an avalanche of 
data that must be integrated and interpreted in order to provide knowledge of the 
situation. This process is commonly referred to as perception, and while people have 
evolved sophisticated mechanisms to efficiently perceive their environment – such as 
the use of a-priori knowledge of the environment [1-2] – machines continue to 
struggle with the task. The primary challenge of machine perception is to define 
efficient computational methods to derive high-level knowledge from low-level sensor 
observation data. From the scenario above, the high-level knowledge of a person’s 
health condition is derived from low-level observation data from on-body sensors. 

Emerging solutions to the challenge of machine perception are using ontologies to 
provide expressive representation of concepts in the domain of sensing and 
perception, which enable advanced integration and interpretation of heterogeneous 
sensor data. The W3C Semantic Sensor Network Incubator Group [3] has recently 
developed the Semantic Sensor Network (SSN) ontology [4-5] that enables expressive 
representation of sensors, sensor observations, and knowledge of the environment. 
The SSN ontology is encoded in the Web Ontology Language (OWL) and has begun 
to achieve broad adoption within the sensors community [6-8]. Such work is leading 
to a realization of a Semantic Sensor Web [9]. 

OWL provides an ideal solution for defining an expressive representation and 
formal semantics of concepts in a domain. As such, the SSN ontology serves as a 
foundation for our work in defining the semantics of machine perception. And given 
the ubiquity of mobile devices and the proliferation of sensors capable of 
communicating with them, mobile devices serve as an appropriate platform for 
executing machine perception. Despite the popularity of cloud-based solutions, many 
applications may still require local processing, e.g., for privacy concerns, or the need 
for independence from network connectivity in critical healthcare applications. The 
computational complexity of OWL, however, seriously limits its applicability and use 
within resource-constrained environments, such as mobile devices [10]. 

To overcome this issue, we develop encodings and algorithms for the efficient 
execution of the inference tasks needed for machine perception: explanation and 
discrimination. Explanation is the task of accounting for sensory observations; often 
referred to as hypothesis building [2,11]. Discrimination is the task of deciding how to 
narrow down the multitude of explanations through further observation [1,2]. The 
efficient algorithms devised for explanation and discrimination use bit vector operations, 
leveraging environmental knowledge encoded within a two-dimensional bit matrix.  

To preserve the ability to share and integrate with knowledge on the Web, lifting 
and lowering mappings between the semantic representations and the bit vector 
representations are provided. Using these mappings, knowledge of the environment 
encoded in RDF (and shared on the Web, i.e., as Linked Data) may be utilized by 
lowering the knowledge to a bit matrix representation. On the other hand, knowledge 
derived by the bit vector algorithms may be shared on the Web (i.e., as Linked Data), 
by lifting to an RDF representation. 

The applicability of our approach to machine perception is evaluated on a smart-
phone mobile device, demonstrating dramatic improvements in both efficiency and 
scale. In this paper, we present three novel contributions towards efficient machine 
perception in resource-constrained environments: 
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1. Formal definition of two primary inference tasks, in OWL, that are generally 
applicable to machine perception – explanation and discrimination. 

2. Efficient algorithms for these inference tasks, using bit vector operations. 
3. Lifting and lowering mappings to enable the translation of knowledge between 

the high-level semantic representations and low-level bit-vector representations. 
 
Section 2 discusses the application of the SSN ontology for representing sensor 
observations and a-priori environmental knowledge. Section 3 specifies explanation 
and discrimination, as an extension to the SSN ontology. The efficient bit vector 
algorithms, as well as the lifting and lowering mappings, are provided in Section 4. 
Our approach is evaluated in Section 5, followed by related work in Section 6, and 
conclusions in Section 7.  

2 Semantic Sensor Network Ontology 

The Semantic Sensor Network (SSN) ontology [4-5] was developed by the W3C 
Semantic Sensor Network Incubator Group [3] to serve the needs of the sensors 
community. This community is currently using it for improved management of sensor 
data on the Web, involving annotation, integration, publishing, and search [6-8]. The 
ontology defines concepts for representing sensors, sensor observations, and 
knowledge of the environment.  

The SSN ontology serves as a foundation to formalize the semantics of perception. 
In particular, the representation of observations and environmental knowledge are 
employed. An observation (ssn:Observation) is defined as a situation that 
describes an observed feature, an observed property, the sensor used, and a value 
resulting from the observation (note: prefix ssn is used to denote concepts from the 
SSN ontology).  A feature (ssn:FeatureOfInterest; for conciseness, 
ssn:Feature will be used throughout the paper) is an object or event in an 
environment, and a property (ssn:Property) is an observable attribute of a feature. 
For example, in cardiology, elevated blood pressure is a property of the feature 
Hyperthyroidism. To determine that blood pressure is elevated requires some pre-
processing; however, this is outside the scope of this work. An observation is related 
to its observed property through the ssn:observedProperty relation. 

Knowledge of the environment plays a key role in perception [1-2]. Therefore, the 
ability to leverage shared knowledge is a key enabler of semantics-based machine 
perception. In SSN, knowledge of the environment is represented as a relation 
(ssn:isPropertyOf) between a property and a feature. To enable integration with 
other ontological knowledge on the Web, this environmental knowledge design 
pattern is aligned with concepts in the DOLCE Ultra Lite ontology2. Figure 1a 
provides a graphical representation of environmental knowledge in SSN, with 
mappings to DOLCE. An environmental knowledgebase, storing facts about many 
features and their observable properties, takes the shape of a bipartite graph. 
(Throughout the paper, KB will be used to refer to environmental knowledgebase). 
Figure 1b shows an example KB with concepts from cardiology.  
                                                           
2   
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Fig. 1. (a) Graphical representation of environmental knowledge in the SSN ontology, with 
mappings to DOLCE Ultra Lite (prefix dul). (b) Graphical representation of an example 
environmental knowledgebase in cardiology, taking the shape of a bipartite graph. This 
knowledgebase is derived from collaboration with cardiologists at ezDI (http://www.ezdi.us/). 

3 Semantics of Machine Perception 

Perception is the act of deriving high-level knowledge from low-level sensory 
observations [11]. The challenge of machine perception is to define computational 
methods to achieve this task efficiently. Towards the goal of providing a formal 
semantics of machine perception, we will define the primary components (inference 
tasks) of perception in OWL, as an extension of the SSN ontology. The two main 
components of perception are explanation and discrimination.  

3.1 Semantics of Explanation  

Explanation is the act of accounting for sensory observations; often referred to as 
hypothesis building [2,11]. More specifically, explanation takes a set of observed 
properties as input and yields the set of features that explain the observed properties. 
A feature is said to explain an observed property if the property is related to the 
feature through an ssn:isPropertyOf relation. A feature is said to explain a set of 
observed properties if the feature explains each property in the set. Example: Given 
the KB in Figure 1b, Hyperthyroidism explains the observed properties elevated 
blood pressure, clammy skin, and palpitations. 

Explanation is used to derive knowledge of the features in an environment from 
observation of their properties. Since several features may be capable of explaining a 
given set of observed properties, explanation is most accurately defined as an 
abductive process (i.e., inference to the best explanation) [11]. Example: the observed 
properties, elevated blood pressure and palpitations, are explained by the features 
Hypertension and Hyperthyroidism (discussed further below). While OWL has not 
been specifically designed for abductive inference, we will demonstrate that it does 
provide some of the expressivity needed to derive explanations.  

The formalization of explanation in OWL consists of two steps: (1) derive the set 
of observed properties from a set of observations, and (2) utilize the set of observed 
properties to derive a set of explanatory features. 
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ObservedProperty: An observed property is a property that has been observed. Note 
that observations of a property, such as elevated blood pressure, also contain 
information about the spatiotemporal context, measured value, unit of measure, etc., 
so the observed properties need to be “extracted” from the observations. To derive the 
set of observed properties (instances), first create a class ObservedProperty. For 
each observation o in ssn:Observation create an existentially quantified property 
restriction for the ssn:observedProperty— relation, and disjoin them as follows 
(note: x— represents the inverse of relation x):   

 

DEF 1: ObservedProperty ≡ ssn:observedProperty—.{o1}  …  
ssn:observedProperty—.{on} 

ExplanatoryFeature: An explanatory feature is a feature that explains the set of 
observed properties. To derive the set of explanatory features, create a class 
ExplantoryFeature, and for each observed property p in ObservedProperty 
create an existentially quantified property restriction for the ssn:isPropertyOf— 
relation, and conjoin them as follows:   

 

DEF 2: ExplanatoryFeature ≡  ssn:isPropertyOf—.{p1}  …  
ssn:isPropertyOf—.{pn}  

 

To derive the set of all explanatory features, construct the ObservedProperty class 
and execute the query ObservedProperty(?x) with an OWL reasoner. Then, 
construct the ExplanatoryFeature class and execute the query 
ExplanatoryFeature(?y).  

 
Example: Assume the properties elevated blood pressure and palpitations have been 
observed, and encoded in RDF (conformant with SSN): 

 

ssn:Observation(o1), ssn:observedProperty(o1, elevated blood pressure) 
ssn:Observation(o2), ssn:observedProperty(o2, palpitations) 

 

Given these observations, the following ExplanatoryFeature class is constructed: 
 

ExplanatoryFeature ≡  ssn:isPropertyOf—.{elevated blood pressure}  
ssn:isPropertyOf—.{palpitations} 

 

Given the KB in Figure 1b, executing the query ExplanatoryFeature(?y) can 
infer the features, Hypertension and Hyperthyroidism, as explanations: 

  

ExplanatoryFeature(Hypertension)  
ExplanatoryFeature(Hyperthyroidism) 

 

This encoding of explanation in OWL (see DEF 2) provides an accurate simulation of 
abductive reasoning in the Parsimonious Covering Theory [12], with the single-
feature assumption3 [13-14]. The Description Logic expressivity of the explanation 
task is ALCOI4,5, with ExpTime-complete complexity [15]. 
                                                           
3 Single-feature assumption specifies that an explanatory feature is a single individual. 
4 Using DL constructs: , ,  , {a}, R— 
5  
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3.2 Semantics of Discrimination  

Discrimination is the act of deciding how to narrow down the multitude of 
explanatory features through further observation. The innate human ability to focus 
attention on aspects of the environment that are essential for effective situation-
awareness stems from the act of discrimination [1,2,16]. Discrimination takes a set of 
features as input and yields a set of properties. A property is said to discriminate 
between a set of features if its presence can reduce the set of explanatory features. 
Example: Given the KB in Figure 1b, the property clammy skin discriminates 
between the features, Hypertension and Hyperthyroidism (discussed further below). 

The ability to identify discriminating properties can significantly improve the 
efficiency of machine perception [17]. Such knowledge can then be used to task 
sensors capable of observing those properties. 

To formalize discrimination in OWL, we will define three types of properties: 
expected property, not-applicable property, and discriminating property. 
 

ExpectedProperty: A property is expected with respect to (w.r.t.) a set of features if 
it is a property of every feature in the set. Thus, if it were to be observed, every 
feature in the set would explain the observed property. Example: the property elevated 
blood pressure is expected w.r.t. the features, Hypertension, Hyperthyroidism, and 
Pulmonary Edema. To derive the set of expected properties, create a class 
ExpectedProperty, and for each explanatory feature f in ExplanatoryFeature, 
create an existentially quantified property restriction for the ssn:isPropertyOf 
relation, and conjoin them as follows:   

 

DEF 3: ExpectedProperty ≡  ssn:isPropertyOf.{f1}  …  
ssn:isPropertyOf.{fn} 

 

NotApplicableProperty: A property is not-applicable w.r.t. a set of features if it is 
not a property of any feature in the set. Thus, if it were to be observed, no feature in 
the set would explain the observed property. Example: the property clammy skin is 
not-applicable w.r.t. the features, Hypertension and Pulmonary Edema. To derive the 
set of not-applicable properties, create a class NotApplicableProperty, and for 
each explanatory feature f in ExplanatoryFeature, create a negated existentially 
quantified property restriction for the ssn:isPropertyOf relation, and conjoin them 
as follows: 
 

DEF 4: NotApplicableProperty ≡  ¬ ssn:isPropertyOf.{f1}  …  ¬ ssn:isPropertyOf.{fn} 
 

DiscriminatingProperty: A property is discriminating w.r.t. a set of features if it is 
neither expected nor not-applicable. Observing a discriminating property would help 
to reduce the number of explanatory features. Example: As stated above, the property 
clammy skin is discriminating w.r.t. the features, Hypertension and Hyperthyroidism, 
as it would be explained by Hyperthyroidism, but not by Hypertension. To derive the 
set of discriminating properties, create a class, DiscriminatingProperty, which is 
equivalent to the conjunction of the negated ExpectedProperty class and the 
negated NotApplicableProperty class. 
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DEF 5: DiscriminatingProperty ≡  ¬ExpectedProperty  ¬NotApplicableProperty 
 

To derive the set of all discriminating properties, construct the ExpectedProperty 
and NotApplicableProperty classes, and execute the query 
DiscriminatingProperty(?x).  
 

Example: Given the explanatory features from the previous example, Hypertension 
and Hyperthyroidism (Section 3.1), the following classes are constructed: 
 

ExpectedProperty ≡  ssn:isPropertyOf.{Hypertension} 
ssn:isPropertyOf.{Hyperthyroidism} 

 
NotApplicableProperty ≡  ¬ ssn:isPropertyOf.{Hypertension}  ¬ ssn:isPropertyOf.{Hyperthyroidism} 
 
Given the KB in Figure 1b, executing the query DiscriminatingProperty(?x) 
can infer the property clammy skin as discriminating:  
 

DiscriminatingProperty(clammy skin) 
 

To choose between Hypertension and Hyperthyroidism, task a sensor to measure 
galvanic skin response (i.e., for clammy skin). The Description Logic expressivity of 
the discrimination task is ALCO6, with PSpace-complete complexity [15]. 

4 Efficient Bit Vector Algorithms for Machine Perception 

To enable their use on resource-constrained devices, we now describe algorithms for 
efficient inference of explanation and discrimination. These algorithms use bit vector 
encodings and operations, leveraging a-priori knowledge of the environment. Note 
that this work does not support reasoning for all of OWL, but supports what is needed 
for machine perception, which is useful in a variety of applications. Table 1 
summarizes the data structures used by our algorithms. 

Table 1. Quick summary of data structures used by the bit vector algorithms 

                                     (note: |x| represents the number of members of x). 
Name Description About (type, size) 
KBBM Environmental knowledge Bit matrix of size |ssn:Property| x |ssn:Feature| 
OBSVBV Observed properties Bit vector of size |ssn:Property| 
EXPLBV Explanatory features Bit vector of size |ssn:Feature| 
DISCBV Discriminating properties Bit vector of size |ssn:Property| 

4.1 Lifting and Lowering of Semantic Data 

To preserve the ability to share and integrate with knowledge on the Web, lifting and 
lowering mappings between the semantic representations and bit vector representations 

                                                           
6 Using DL constructs: ,   {a}, ¬C. 
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are provided. Using these mappings, 
knowledge of the environment encoded in 
RDF, as well as observed properties 
encoded in RDF, may be utilized by 
lowering them to a bit vector representation. 
Knowledge derived by the bit vector 
algorithms, including observed properties, 
explanatory features, and discriminating 
properties, may be shared on the Web, by 
lifting them to an RDF representation. 
 
Environmental knowledge: An 
environmental knowledgebase is 
represented as a bit matrix KBBM, with rows 
representing properties and columns 
representing features. KBBM[i][j] is set to 1 
(true) iff the property pi is a property of 
feature fj. To lower an SSN KB encoded in 
RDF: for all properties pi in 
ssn:Property, create a corresponding 
row in KBBM, and for all features fj in 
ssn:Feature, create a corresponding 
column. Set KBBM[i][j] to 1 iff there exists 
a ssn:isPropertyOf(pi,fj) relation. 
Figure 2a shows an example KB, from 
Figure 1b, which has been lowered to a bit 
matrix representation. Index tables are also 
created to map between the URI’s for 
concepts in the semantic representation to their corresponding index positions in the bit 
vector representation. Figures 2b and 2c show example index tables for properties and 
features.  
 
Observed Properties: Observed properties are represented as a bit vector OBSVBV, 
where OBSVBV[i] is set to 1 iff property pi has been observed. To lower observed 
properties encoded in RDF: for each property pi in ssn:Property, OBSVBV[i] is set 
to 1 iff ObservedProperty(pi). To lift observed properties encoded in OBSVBV: 
for each index position i in OBSVBV, assert ObservedProperty(pi) iff  
OBSVBV[i] is set to 1. To generate a corresponding observation o, create an individual 
o of type ssn:Observation, ssn:Observation(o), and assert 
ssn:observedProperty(o,pi). 
 

Explanatory Features: Explanatory features are represented as a bit vector EXPLBV. 
EXPLBV[j] is set to 1 iff the feature fj explains the set of observed properties 
represented in OBSVBV (that is, it explains all properties in OBSVBV that are set to 1). 
To lift explanatory features encoded in EXPLBV: for each index position j in EXPLBV, 
assert ExplanatoryFeature(fj) iff EXPLBV[j] is set to 1. 

Discriminating Properties: Discriminating properties are represented as a bit vector 
DISCBV where DISCBV[i] is set to 1 iff the property pi discriminates between the set 

Fig. 2. (a) Example environmental
knowledgebase in the domain of cardiology, from
Figure 1b, represented as a bit matrix. Index tables
are used for lifting and lowering environmental
knowledge between a semantic representation and
bit vector representation. (b) Index table for
properties. (c) Index table for features. 
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of explanatory features represented in EXPLBV. To lift discriminating properties 
encoded in DISCBV: for each index position i in DISCBV, assert 
DiscriminatingProperty(pi) iff DISCBV[i] is set to 1. 

4.2 Efficient Bit Vector Algorithm for Explanation  

The strategy employed for 
efficient implementation of 
the explanation task relies 
on the use of the bit vector 
AND operation to discover 
and dismiss those features 
that cannot explain the set 
of observed properties. It 
begins by considering all 
the features as potentially explanatory, and iteratively dismisses those features that 
cannot explain an observed property, eventually converging to the set of all 
explanatory features that can account for all the observed properties. Note that the 
input OBSVBV can be set either directly by the system collecting the sensor data or by 
translating observed properties encoded in RDF (as seen in Section 4.1).   

We will now sketch the correctness of the explanation algorithm w.r.t. the OWL 
specification (Section 3.1). For each index position in EXPLBV that is set to 1, the 
corresponding feature explains all the observed properties. (See note about indices7).  

Theorem 1: Given an environmental knowledgebase KB, and it’s encoding as 
described in Section 4.1 (i.e., KBBM), the following two statements are equivalent: 
S1:  The set of m observed properties {pk1, …, pkm},  i.e., ObservedProperty(pk1)  …  ObservedProperty(pkm), is explained by the feature fe, implies 

ExplanatoryFeature(fe). 
S2:  The Hoare triple8 holds:  { i  {1, …, m}: OBSVBV[ki] = 1 }  
                        Algorithm 1: Explanation                   
                        { EXPLBV[e] = 1 }. 

Proof (S1  S2): The ObservedProperty assertions are captured by the proper 
initialization of OBSVBV, as stated in the precondition. Given (i) S1, (ii) the 
single-feature assumption, (iii) the definition: ExplanatoryFeature ≡ 
ssn:isPropertyOf—.{pk1}  …  ssn:isPropertyOf—.{pkm}, and 

(iv) the fact that ExplanatoryFeature(fe) is provable, it follows that i  
{1, …, m}: ssn:isPropertyOf(pki,fe) is in KB. By our encoding, i  {1, 
…, m}: KBBM[ki][e] = 1. Using lines 5-7, the fact that EXPLBV[e] is initialized to 

                                                           
7  Note that property pki has property index ki and feature fej has feature index ej. So ki ranges 

over 0 to |ssn:Property|-1 and e/ej range over 0 to |ssn:Feature|-1. i and j are merely indices 
into the enumeration of observed properties and their explanatory features, respectively. 
Thus, i ranges over 1 to |ssn:Property| and j ranges over 1 to |ssn:Feature|. (In practice, 
initially i is small and j is large, and through each cycle of explanation and discrimination, i 
increases while j diminishes.) 

8  {P} S {Q} where P is the pre-condition, S is the program, and Q is the post-condition. 
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1 and is updated only for i  {1, …, m} where OBSVBV[ki] = 1, we get the final 
value of EXPLBV[e] = KBBM[k1][e] AND … AND KBBM[km][e] = 1 (true). 

(S2  S1): Given that { i  {1, …, m}: OBSVBV[ki] = 1} and {EXPLBV[e] = 1} 
(pre and post conditions), it follows that i  {1, …, m}: KBBM[ki][e] = 1 must 
hold. According to our encoding, this requires that i  {1, …, m}: 
ssn:isPropertyOf(pki,e) holds. Using the definition of 
ExplanatoryFeature, it follows that ExplanatoryFeature(e) is 
derivable  (that is, fe explains all the observed properties {pk1, …, pkm}).   

 

Theorem 2: The explanation algorithm (Algorithm 1) computes all and only those 
features that can explain all the observed properties. 

Proof: The result follows by applying Theorem 1 to all explanatory features. Q.E.D. 

4.3 Efficient Bit Vector Algorithm for Discrimination  

The strategy employed for 
efficient implementation of the 
discrimination task relies on the 
use of the bit vector AND 
operation to discover and 
indirectly assemble those 
properties that discriminate 
between a set of explanatory 
features. The discriminating 
properties are those that are 
determined to be neither 
expected nor not-applicable.  

In the discrimination 
algorithm, both the discriminating 
properties bit vector DISCBV and 
the zero bit vector ZEROBV, are initialized to zero. For a not-yet-observed property at 
index ki, the bit vector PEXPLBV can represent one of three situations: (i) PEXPLBV = 
EXPLBV holds and the kith property is expected; (ii) PEXPLBV = ZEROBV holds and the 
kith property is not-applicable; or (iii) the kith property discriminates between the 
explanatory features (and partitions the set). Eventually, DISCBV represents all those 
properties that are each capable of partitioning the set of explanatory features in EXPLBV. 
Thus, observing any one of these will narrow down the set of explanatory features. 

We will now sketch the correctness of the discrimination algorithm w.r.t. the 
OWL specification (Section 3.2). Each explanatory feature explains all the observed 
properties. Lemma 1 shows that this is equivalent to all the observed properties being 
expected properties of the explanatory features.  
 
Lemma 1: If m observed properties {pk1, …, pkm}, i.e., ObservedProperty(pk1)  

…  ObservedProperty(pkm), are explained by n features {fe1, …, fen}, i.e., 
ExplanatoryFeature(fe1)  …  ExplanatoryFeature(fen), then the 
following holds: i: 1 ≤ i ≤ m:  ObservedProperty(pki)  
ExpectedProperty(pki). 
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Proof Sketch: The result is obvious from the definition: ExplanatoryFeature ≡ 
ssn:isPropertyOf—.{pk1}  …  ssn:isPropertyOf—.{pkm}. So, i, 
j: 1 ≤ i ≤ m /\ 1 ≤ j ≤ n: ssn:isPropertyOf(pki,fej). ExpectedProperty 

≡ ssn:isPropertyOf.{fe1}  …  ssn:isPropertyOf.{fen}. 
 

Lemma 2 restates the assertion (from Lemma 1) that observed properties are also 
expected properties of explanatory features, in terms of the bit vector encoding. 
 
Lemma 2: The initial values of EXPLBV and OBSVBV satisfy the assertion: ki: 

(OBSVBV[ki] = 1)  [ e: (EXPLBV[e] = 1)  (KBBM[ki][e]) = 1)]. And hence, 
i: (OBSVBV[ki] = 1)  [ e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e])]. 

Proof Sketch: The claim follows from Lemma 1 and the bit vector encoding. 
 
Lemma 3 generalizes Lemma 2 to elucidate an efficient means to determine when a 
not-yet-observed property is expected, w.r.t. a set of explanatory features. 
 

Lemma 3:  Given property ki (pki) has not-yet been observed, i.e., OBSVBV[ki] = 0, 
ExpectedProperty(pki)  iff    e: (EXPLBV[e] /\ KBBM[ki][e]) = EXPLBV[e]. 

 
Lemma 4 demonstrates an efficient means to determine when a not-yet-observed 
property is not-applicable, w.r.t. a set of explanatory features. 
 
Lemma 4:  For explanatory features EXPLBV {fe | EXPLBV[e] = 1}, 

NotApplicableProperty(pki) iff  e: (EXPLBV[e] /\ KBBM[ki][e]) = 
ZEROBV[e]. 

Proof Sketch: The result follows from: (i) the definition of 
NotApplicableProperty w.r.t. the set of explanatory features: 
NotApplicableProperty(pki) iff ki, e: ExplanatoryFeature(fe)  ¬ ssn:isPropertyOf(pki,fe); (ii) [ e: ExplanatoryFeature(fe) iff 
EXPLBV[e] = 1]; and (iii) ki, e: [¬ ssn:isPropertyOf(pki,fe)  
KBBM[ki][e] = 0].  

 

Theorem 3: The discrimination algorithm (Algorithm 2) computes all and only those 
properties that can discriminate between the explanatory features. 

Proof: A not-yet-observed property is discriminating if it is neither expected nor not-
applicable. The result follows from the definition of discriminating property, 
Lemma 3, and Lemma 4. Q.E.D. 

5 Evaluation 

To evaluate our approach, we compare two implementations of the explanation and 
discrimination inference tasks. The first utilizes an OWL reasoner as described in 
Section 3, and the second utilizes the bit vector algorithms described in Section 4. 
Both implementations are coded in Java, compiled to a Dalvik9 executable, and run on 
a Dalvik virtual machine within Google’s Android10 operating system for mobile 
                                                           
9   
10  
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devices. The OWL implementation uses Androjena11, a port of the Jena Semantic 
Web Framework for Android OS. The mobile device used during the evaluation is a 
Samsung Infuse12, with a 1.2 GHz processor, 16GB storage capacity, 512MB of 
internal memory, and running version 2.3.6 of the Android OS. 

To test the efficiency of the two approaches, we timed and averaged 10 
executions of each inference task. To test the scalability, we varied the size of the KB 
along two dimensions – varying the number of properties and features. In the OWL 
approach, as the number of observed properties increase, the ExplanatoryFeature 
class (DEF 2) grows more complex (with more conjoined clauses in the complex class 
definition). As the number of features increase, the ExpectedProperty class (DEF 
3) and NotApplicableProperty class (DEF 4) grows more complex. In the bit 
vector approach, as the number of properties increase, the number of rows in KBBM 
grows. As the number of features increase, the number of columns grows. 

To evaluate worst-case complexity, the set of relations between properties and 
features in the KB form a complete bi-partite graph13. In addition, for the explanation 
evaluations, every property is initialized as an observed property; for the 
discrimination evaluations, every feature is initialized as an explanatory feature. This 
creates the worst-case scenario in which every feature is capable of explaining every 
property, every property needs to be explained, and every feature needs to be 
discriminated between. The results of this evaluation are shown in Figure 3. 

 

Fig. 3. Evaluation results: (a) Explanation (OWL) with O(n3) growth, (b) Explanation (bit 
vector) with O(n) growth, (c) Discrimination (OWL) with O(n3) growth, and (d) Discrimination 
(bit vector) with O(n) growth. 

                                                           
11  
12  
13  (accessed: June 

8, 2012). 
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Result of OWL Evaluations: The results from the OWL implementations of 
explanation and discrimination are shown in Figures 3a and 3c, respectively. With a KB 
of 14 properties and 5 features, and 14 observed properties to be explained, explanation 
took 688.58 seconds to complete (11.48 min); discrimination took 2758.07 seconds 
(45.97 min). With 5 properties and 14 features, and 5 observed properties, explanation 
took 1036.23 seconds to complete (17.27 min); discrimination took 2643.53 seconds 
(44.06 min). In each of these experiments, the mobile device runs out of memory if the 
number of properties or features exceeds 14. The results of varying both properties and 
features show greater than cubic growth-rate (O(n3) or worse). For explanation, the effect 
of features dominates; for discrimination, we are unable to discern any significant 
difference in computation time between an increase in the number of properties vs. 
features. 
 
Result of Bit Vector Evaluations: The results from the bit vector implementations of 
explanation and discrimination are shown in Figures 3b and 3d, respectively. With a 
KB of 10,000 properties and 1,000 features, and 10,000 observed properties to be 
explained, explanation took 0.0125 seconds to complete; discrimination took 0.1796 
seconds. With 1,000 properties and 10,000 features, and 1,000 observed properties, 
explanation took 0.002 seconds to complete; discrimination took 0.0898 seconds. The 
results of varying both properties and features show linear growth-rate (O(n)); and the 
effect of properties dominates. 
 

Discussion of Results: The evaluation demonstrates orders of magnitude improvement 
in both efficiency and scalability. The inference tasks implemented using an OWL 
reasoner both show greater than cubic growth-rate (O(n3) or worse), and take many 
minutes to complete with a small number of observed properties (up to 14) and small KB 
(up to 19 concepts; #properties + #features). While we acknowledge the possibility that 
Androjena may have shortcomings (such as an inefficient reasoner and obligation to 
compute all consequences), our results are in line with Ali et al. [10] that also found 
OWL inference on resource-constrained devices to be infeasible. On the other hand, the 
bit vector implementations show linear growth-rate (O(n)), and take milliseconds to 
complete with a large number of observed properties (up to 10,000) and large KB (up to 
11,000 concepts).  

Consider the mobile application in which a person’s health condition is derived   
from on-body sensors. A person’s condition must be determined quickly, i.e., within 
seconds (at the maximum), so that decisive steps can be taken when a serious health 
problem is detected. Also, for the application to detect a wide range of disorders (i.e., 
features) from a wide range of observed symptoms (i.e., properties) the KB should be 
of adequate size and scope. In practice, an application may not require a KB of 11,000 
concepts; however, many applications would require more than 19 concepts. 

The comparison between the two approaches is dramatic, showing asymptotic 
order of magnitude improvement; with running times reduced from minutes to 
milliseconds, and problem size increased from 10’s to 1000’s. For the explanation and 
discrimination inference tasks executed on a resource-constrained mobile device, the 
evaluation highlights both the limitations of OWL reasoning and the efficacy of 
specialized algorithms utilizing bit vector operations.  



162 C. Henson, K. Thirunarayan, and A. Sheth 

 

6 Related Work 

The ability to derive high-level knowledge from low-level observation data is a 
challenging task. As argued in this paper, a promising approach to machine 
perception involves the use of Semantic Web technologies. This approach is quickly 
evolving into an active area of research. Our work differs from related efforts in three 
ways: (1) the use of OWL for defining the perception inference tasks, (2) the 
definition of perception as an abductive process, and (3) the efficient execution of the 
inference tasks using bit vector operations. 

Previous works have utilized OWL for representing concepts in the domain of 
sensing [4,5,18,19]. Subsequently, First-Order Logic (FOL) rules were often 
employed to derive knowledge of the features in the environment [20-22].  Taylor et 
al. [23] have used Complex Event Processing to derive knowledge of events from 
observation data encoded in SSN. However, as we have shown, several inference 
tasks useful for machine perception do not require the full expressivity of FOL; they 
are expressible in OWL, a decidable fragment of FOL.  

Second, as opposed to approaches using deductive (FOL) rules, we believe that 
perception is an abductive process [11]. The integration of OWL with abductive 
reasoning has been explored [24]; requiring modification of OWL syntax and/or 
inference engine [25]. We demonstrated that, under the single-feature assumption, 
abductive consequences can be computed using standard OWL reasoners. 

And third, while OWL is decidable, the computational complexity still limits  
its practical use within resource-constrained environments. A recent W3C  
Member Submission [26] proposes a general-purpose RDF binary format for  
efficient representation, exchange, and query of semantic data; however, OWL 
inference is not supported. Several approaches to implementing OWL inference on 
resource-constrained devices include [10,27,28,29]. Preuveneers et al. [28] have 
presented a compact ontology encoding scheme using prime numbers that is capable 
of class-subsumption. Ali et al. [10] have developed Micro-OWL, an inference engine 
for resource-constrained devices implementing a subset of OWL constructs, but it is 
not expressive enough for our inference tasks. McGlothlin et al. [30] serialize RDF 
datasets and materialize data inferred through OWL reasoning using bit vectors. For 
our inference tasks, however, it is not scalable. Since we cannot predict which 
observed properties require explanation, this approach would generate and materialize 
an ExplanatoryFeature class for all possible (exponentially many) combinations 
of observable properties. In contrast, we have deployed specially tailored linear 
algorithms that compute explanation and discrimination efficiently.  

7 Conclusions and Future Work 

We have demonstrated an approach to machine perception on resource-constrained 
devices that is simple, effective, and scalable. In particular, we presented three novel 
contributions: (1) a simple declarative specification (in OWL) of two inference tasks 
useful for machine perception, explanation and discrimination; (2) efficient 
algorithms for these inference tasks, using bit vector operations; and (3) lifting and 
lowering mappings to enable the translation of knowledge between semantic 
representations and the bit vector representations. 
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The bit vector encodings and algorithms yield significant and necessary computational 
enhancements – including asymptotic order of magnitude improvement, with running 
times reduced from minutes to milliseconds, and problem size increased from 10’s to 
1000’s. The approach is prototyped and evaluated on a mobile device, with promising 
applications of contemporary relevance (e.g., healthcare/cardiology). Currently, we are 
collaborating with cardiologists to develop a mobile app to help reduce hospital 
readmission rates for patients with congestive heart failure. This is accomplished through 
the creation of a cardiology knowledgebase and use of the explanation and discrimination 
inference tasks to recognize a person’s health condition and suggest subsequent actions. 

In the future, we plan to investigate more expressive approaches to explanation 
(beyond the single-feature assumption), rank explanatory features based on likelihood 
and/or severity, and rank discriminating properties based on their ability to reduce the 
number of explanatory features. In addition, we plan to extend our approach to stream 
reasoning by incorporating (i) periodic sampling and updating of observations, and 
(ii) explaining observations within a time window.  

As the number and ubiquity of sensors and mobile devices continue to grow, the 
need for computational methods to analyze the avalanche of heterogeneous sensor 
data and derive situation awareness will grow. Efficient and scalable approaches to 
semantics-based machine perception, such as ours, will be indispensable. 
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Abstract. Most of the semantic content available has been generated automati-
cally by using annotation services for existing content. Automatic annotation is
not of sufficient quality to enable focused search and retrieval: either too many
or too few terms are semantically annotated. User-defined semantic enrichment
allows for a more targeted approach. We developed a tool for semantic annotation
of digital documents and conducted an end-user study to evaluate its acceptance
by and usability for non-expert users. This paper presents the results of this user
study and discusses the lessons learned about both the semantic enrichment pro-
cess and our methodology of exposing non-experts to semantic enrichment.

1 Introduction

Current internet search engines typically match words syntactically; semantic analysis
is not supported. The Semantic Web envisions a network of semantically-enriched con-
tent containing links to explicit, formal semantics. So far, most of the semantic content
available has been generated automatically by either wrapping existing data silos or by
using annotation services for existing content. We believe, however, that the success of
the Semantic Web depends on reaching a critical mass of users creating and consuming
semantic content. This would require tools that hide the complexity of semantic tech-
nologies and match the compelling simplicity of Web 2.0 applications: light-weight,
easy-to-use, and easy-to-understand. Very little research has been done on supporting
non-expert end-users in the creation of semantically-enriched content.

We studied the process of manual creation of semantic enrichments by non-experts.
For this, non-expert users were observed interacting with an example annotation sys-
tem. We used loomp, an authoring system for semantic web content [1]. In its initial
design phase, loomp received positive feedback from non-expert users (e.g., journalists
and publishing houses). Their feedback revealed great interest in adding “metadata” to
content but also some difficulty in understanding the underlying principles of seman-
tic annotations. This motivates research to derive guidelines for the design of adequate
annotator tools for non-experts and to gain insight into non-experts’ understanding of
semantic annotations. To explore the experience of non-experts in operating a semantic
annotation tool, we therefore conducted a user study of the loomp annotator component.
This paper reports on the results of this user study and discusses its implications for the
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semantic web community. We will argue that manual semantic annotations need spe-
cialized task experts (instead of domain experts) and we note a lack of clearly defined
use cases and accepted user-centred quality measures for semantic applications.

The remainder of this paper is structured as follows: In Section 2 we explore related
work in evaluating the usability of semantic web tools. Section 3 introduces loomp
and the One Click Annotator. The methodology and setup of our study is explained in
Section 4. Section 5 reports on the results of the study, while Section 6 discusses the
implications of the study results. Section 7 summarizes the contributions of our study
and draws conclusions for semantic web tool design.

2 Related Work

Here we discuss research related to the loomp OCA and its evaluation.

Annotation Tools. Annotation can be done either automatically or manually (or in
combination). Automatic annotation tools are typically evaluated only for precision and
recall of the resulting annotations [2,3,4]. Most manual annotation tools have never been
evaluated for their usability; many are no longer under active development [5,6,7]. We
classify current manual systems into commenting tools [8,9,10], web-annotation tools
[11,12], wiki-based systems [13,14,15], and content composition systems [1,16], digital
library tools [17,18,19], and linguistic text analysis [20].

Naturally, due to their different application fields, the tools encounter different chal-
lenges in interaction design and usability (e.g. wiki tools require users to master an
annotation-specific syntax and to cope with many technical terms). However, we believe
the most significant challenge for user interaction design is defined by the conceptual
level of semantic annotation. That is, the annotation process is conceptually different
if tools support simple free-text annotation (e.g.,[8,9,10]), offer a shared vocabulary
of concepts (e.g., [6,7,11]), use a local semantic identity (by thesaurus or ontology,
e.g., [5,13,15]), or use shared semantic identity (e.g., by linked ontologies referencing
with a linked data server such as DBpedia, e.g., [2,3,18]). The development of most
annotation tools has a strong focus on providing novel functionality. For the manual an-
notation tools, usability was typically a factor in the interface development. However,
end-user evaluations of interface and user interaction are very rare.

End-User Experience of Annotations. Few system evaluations have considered end-
user experiences. Handschuh carried out a tool evaluation with user involvement; how-
ever, participants were used merely to provide annotation data that was then analysed
for inter-annotator correlation [7,21]. Furthermore, the researchers expressed disap-
pointment about the low quality of annotations. Feedback on the participants’ expe-
rience and their mental model of the process were not sought. Bayerl et al. [22] stresses
the importance of creating schemas and systems that are manageable for human anno-
tators. They developed a method for systematic schema development and evaluation of
manual annotations that involves the repeated annotation of data by a group of coders.
Erdmann et al. [23] performed studies on manual and semi-automatic annotation involv-
ing users. They describe their participants as “more or less” able to annotate webpages.
However, the majority of issues identified were of a syntactic nature that could easily
be remedied by tool support. Work on rhetorical-level linguistic analysis of scientific
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texts is closely related to semantic annotation [20]. Teufel performed user studies in
which she looked for stability (same classification over time by same annotator) and re-
producibility (same classification by different annotators; similar to Handschuh’s inter-
annotator correlation). Similar to [22], she found that complex schemas may lead to
lower quality annotations, and subsequently simplified the predefined set of common
concepts that was used in the evaluation (from 23 to 7 concepts). Teufel assumed that
annotators would be task-trained and familiar with the domain. We discuss observations
of these studies relating to semantic understanding in Section 6.

Benchmarking. A number of researchers have discussed methodologies for comparing
annotation tools using benchmarks [24,25]. Maynard developed a set of evaluation cri-
teria for performance as well as for usability, accessibility and inter-operability [24,26].
However, usability here refers to practical aspects such as ease of installation and online
help, and does not contain concepts of interaction design, user acceptance and effective-
ness. Schraefel and Karger [27] identify ontology-based annotation as one of the key
concepts of SW technologies and defined a set of quality criteria. One of these is us-
ability, which for them covers ease-to-learn, ease-of-use and efficiency. Uren et al. [28]
developed a survey of annotation tools in which “user-centered collaborative design”
was one of the requirements. However, they mainly explore the ease-of-use of tool in-
tegration into existing workflows. They furthermore assumed that annotation would be
created by “knowledge workers.” Most benchmarks focus on (user-independent) per-
formance measures; usability concepts are seldom included and rarely evaluated. Cas-
tro [25] observes that in the semantic web area, technology evaluation is seldom carried
out even though a number of evaluation and benchmark frameworks exist.

HCI Challenges in the Semantic Web. A series of workshops on Semantic Web HCI
identified areas for research contribution, one of which is the capture of semantically-
rich metadata without burdening the user [26]. Karger suggests hiding the complexity
of the Semantic Web by developing tools that look like existing applications and to
develop better interfaces to bring the semantic web forward “before AI is ready” [29].
Jameson addresses a number of concerns of the SW community about user involvement
and stresses the value of both positive and negative results of user studies [30].

Ontology Engineering. The development of ontologies faces similar challenges to that
of the semantic annotation of texts: It is a complex task that often needs (manual) user
input [31,32,33]. However, ontology engineering is typically executed by experts in se-
mantic technologies and is not necessarily suitable for end-users. However, Duineveld
at al. [31] report that often the bottleneck in building ontologies still lies in the social
process rather than in the technology. User-oriented evaluation focuses predominantly
on syntactic problems (e.g., how much knowledge of the representation language is re-
quired), but not on conceptual questions such as the user’s mental models of the system.

Summary. Even though aspects of HCI and user involvement have been identified as
important aspects for Semantic Web technologies, typical benchmarks and evaluation
strategies do not contain complex user aspects. Few studies involving end-users have
been executed in the context of semantic annotations. In particular, manual annotation
tools have so far not been systematically evaluated for appropriate interaction design
and semantic understanding. System evaluations that incorporated human participants
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did not seek their feedback on interaction issues nor did they evaluate the participants’
mental models of the system interaction. So far, issues of understanding of semantic
annotations by (non-expert) users have not been studied in a systematic manner.

3 Semantic Content Enrichment Using loomp

loomp is a light-weight authoring platform for creating, managing, and accessing se-
mantically enriched content. Similarly to content management systems allowing people
unfamiliar with HTML to manage the content of websites, loomp allows people unfa-
miliar with semantic technologies to manage semantically enriched content. loomp’s
One Click Annotator enables users to add semantic annotations to texts. We first dis-
cuss user-related design considerations for the loomp OCA, and then briefly give an
introduction into the concepts of the OCA.

3.1 User-Oriented Design Considerations

A key goal for loomp OCA was to hide the complexity of semantic technologies
(cf. [29]) but nevertheless allow for the creation of meaningful and consistent anno-
tations. We identified following key requirements for non-expert users.

Established interaction patterns. Karger argues that there is an advantage of making Se-
mantic Web applications look like existing applications and to use familiar interaction
paradigms. [29,27]. A similar argument has been made in the area of personal infor-
mation management, where new tools are more successful if they are able to extend
the functionality of existing applications rather than introducing an entirely new way of
doing things [34]. For the loomp One Click Annotator, we therefore adopt well-known
interaction procedures of widely used software (such as text highlighting and formatting
in MS WordTM).

Simple vocabularies. It has been shown that complex thesauri and category structures
are disadvantageous for quality annotations [22,20]. For a given task, users may only
require a small part of a vocabulary that is modeled in a large ontology with deep
hierarchical structures. Thus, loomp OCA only offers an appropriate subset of terms
and provides support in choosing the right annotation.

Contextual semantic identity. The RDF data model differs in subtle ways from the cog-
nitive models that humans create for the content of a text. In RDF, resources are assigned
URIs for unique identification and disambiguation of concepts and instances. Although
people may recognize URLs as addresses of websites, they are not used to identify-
ing real-world entities by URL/URIs and are typically not familiar with the concept
of namespaces. Instead, humans use labels to refer to entities (e.g., “baker”) and dis-
ambiguate meaning by the textual context (e.g., as reference to the person Baker or the
profession baker). The annotator has to bridge this gap between objective knowledge (as
encoded in the RDF data model) and subjective knowledge of human cognition [35,36].
The loomp OCA aims to support this process by presenting labels and contextual in-
formation for identification of semantic identity.

Focus on the user’s task. Handschuh and Staab observed that semantic authoring and
semantic annotations have to go hand in hand [37]. As a consequence, we integrated the
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Fig. 1. loomp OCA: Conceptual data model

loomp OCA toolbar for creating semantic annotations seamlessly into the loomp editor,
so that the user can add annotations without being distracted from their primary task.

3.2 loomp OCA Conceptual Design

loomp’s domain model consists of content elements, ontological concepts and annota-
tions that create links between them, as well as encapsulating documents. Each docu-
ment consists of a sequence of content elements (see Fig. 1), where a content element
can belong to several documents. We use DBpedia as the base ontology to identify
annotation concepts (classes) and instances.

The loomp OCA offers a selection of class ontologies (subsets of DBpedia) to
present vocabularies to the users (see Fig. 2, B and C).

A user can assign an annotation to a text atom (i.e. a part of a content element) in
two steps.

1. The user marks an atom in the text field and then selects a concept from an offered
vocabulary (see Fig. 2, B). For example, they mark the atom Frankfurt and select the
concept City from the vocabulary Geography. Internally, the system then creates a
link between the atom and the concept id, which is inserted into the content element
as RDFa element (transparent to the user).

2. The system sends the text of the atom as a query to DBpedia. The labels of the
resulting instances are filtered by the concept, and then presented to the user for
selection. For example, the system sends Frankfurt as a query to DBpedia, where all
instances containing this phrase are identified. The result set is then filtered by the
concept term city. The user is presented with the resulting instance list containing
references to Frankfurt/Oder and Frankfurt/Main (see Fig. 2, right). They identify
the appropriate instance to be linked to the atom. Internally, the system creates a
second link for the atom, linking to the instance id (here, linking to the DBpedia id
of Frankfurt (Oder), see Fig. 1).

The creation of the links from the atom to both concept id and instance id allows iden-
tification of link knowledge, such as the type of the instance resource (Frankfurt (Oder)
rdf:type City1). As a result, when linking atoms from different documents to the same

1 For example, encoded as (dbp:uri5 rdf:type dbp:uri3), using ids from Fig. 1.
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Fig. 2. Interface of loomp OCA

semantic identifier (e.g., to the DBpedia id of Frankfurt (Oder)), a user creates concep-
tual cross-links between these documents. As this paper focuses on the user interaction
with the loomp OCA, we refer for technical details of loomp OCA to [1,38].

4 User Study Methodology

We studied the usability of the loomp OCA in an end-user study. Following Degler [39],
who evaluated methods for improving interaction design for the Semantic Web, we per-
formed usability tests and interviews with real users (not student stand-ins). The aim of
our study was to (1) evaluate the suitability of the tool for non-experts, and (2) explore
how non-expert users experience and apply the concept of annotating texts. Even though
the loomp system is fully operational, the user study was executed with a paper pro-
totype. This allowed us to gather feedback from non-expert users in a non-threatening
technology-free context. A paper prototype consists of mock-up paper-based versions
of windows, menus and dialog boxes of a system. One of two researchers plays the role
of the ‘system’, the other one acts as facilitator. Participants are given realistic tasks to
perform by interacting directly with the prototype – they “click” by touching the proto-
type buttons or links and “type” by writing their data in the prototype’s edit fields. The
facilitator conducts the session; the participants are video-taped and notes are taken.
The ‘system’ does not explain how the interface is supposed to work, but merely sim-
ulates what the interface would do. In this manner, one can identify which parts of the
interface are self-explanatory and which parts are confusing. Because the prototype is
all on paper, it can be modified very easily to fix the problems. Paper prototyping is
an established usability method, which has been shown to allow greater flexibility in
reacting to user activities and to elicit high quality and creative feedback as users do not
feel restricted by an apparently finished software product [40]. The user study was set
up as follows:

Paper prototype. Mirroring the loomp OCA interface, the paper prototype consisted
of two windows (see Fig. 3). All UI components of the functional software described
in Section 3 are present: (A) the text pane, (B) the annotation toolbar consisting of two
parts, (C) the annotation sidebar, and (D) the resource user (as separate pop-up window).
The framework of the user interface and outlines of interaction elements were printed
on paper and cut to size; alternatives and pull-down menus were simulated by folding
the paper into concertinas. All labels on interaction elements were hand-written to allow
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Fig. 3. Paper prototype of the loomp OCA

dynamic changes. The available texts to annotate were printed onto text pane templates.
Designing the paper prototype in this way allowed us to react easily to unexpected user
behaviour (e.g., by creating resources for unexpected annotations) and to make small
changes to the user interface on the fly.

The participants received a marker pen to simulate the use of a computer mouse
(used for highlighting text in the text pane and selecting UI elements by clicking with
closed pen). This simulated mouse was readily accepted by the users; some additionally
invented right clicks and Alternate keys. The fast changing highlighting of UI elements
(indicated by a pressed button and colour change in the loomp software) were indicated
by pen caps being placed onto the elements (see top left of Fig. 3).

Texts and Ontology. We prepared two texts for annotation that contained only general
knowledge concepts. Thus every participant was a domain expert. The first document
was used as a training set; it contained a short text about Konrad Adenauer, the first
chancellor of West Germany. This allowed the participants to explore the interface with-
out any pressure to “get it right.” The second, longer text was about the weather and
universities being closed during the cold period. Both texts were based on news portal
entities that were shortened for the study. We adapted the texts so as to explore in-
teresting semantic problems, such as place names with similar words (Frankfurt (Oder)
and Frankfurt/Main), nested concepts (Universität Konstanz) and fragmented references
(Konrad Hermann Joseph Adenauer and Konrad Adenauer referring to the same per-
son). These adaptations ensured that participants had to select the correct resources to
link to an atom. We used the same underlying ‘news’ ontology for both texts. A subset
of classes of this ontology was selected manually to provide a set of concepts tailored to
the example texts (while allowing for variations). The classes were grouped into three
named vocabularies: Persons & Organizations, Events, and Geography. They contained
12, 8, and 10 annotations respectively. Identical underlying ontology and annotations
sets were used for learning and application phase.

Study phases. The study was performed by two researchers: the first interacted with the
participants, while the second acted as system simulator (no direct interaction between
participants and second researcher). The study was performed in four phases: introduc-
tion, learning phase, application phase, and guided interview. During the introduction,
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Fig. 4. Participants’ self assessment

the aim of the project and the prototype were explained and the participant was shown
the paper prototype. During learning phase and application phase, the participant inter-
acted with the prototype. The researchers took notes and recorded the interactions. In
the learning phase, the researcher explained the purpose of the application by way of a
use case for semantic search and thus illustrated the need for semantic annotations. The
participant received instructions on the task of annotating. Participants were given time
to familiarize themselves with both the task and the interface. In the application phase,
the longer text was used with the same task. The participants were encouraged to think
out loud while making decisions in interaction with the prototype, instead of asking for
the ‘correct’ procedure. The study had 12 participants (up to 1.5 hours interaction each).

5 Results

We here describe our observations of how participants interacted with the One Click An-
notator. We differentiate between general observations about the participants (Sect. 5.1),
observations related to the interaction with UI elements (Sect. 5.3) and observations re-
lated to the task of creating semantic annotations (Section 5.4). Implications for tool
design and the Semantic Web community will be discussed in Section 6.

5.1 Participant Demographics

As the tool is designed for non-experts, we selected 12 participants with varied back-
grounds (e.g., librarians, PR managers, secretaries). We enquired about their familiarity
with word processing (as a measure of computer literacy), tagging (as an annotation
task), computer science and Semantic Web (as technical expertise). Participants rated
their knowledge on a 5-point scale (1=no knowledge, 5=very knowledgeable). Fig. 4
shows the distribution of expertise for the 12 participants. 11 of 12 participants are
computer literate (basic computer literacy is a requirement for loomp), six are familiar
with tagging and setting annotations and thus have advanced computer literacy skills.
Six participants have very little knowledge in computer science and Semantic Web; they
are (technical) non-experts – the user group for which loomp was designed. Based on
their self-assessment, we identified participants P̄1, P̄4, P̄6, P̄7, P̄9 and P̄12 as technical
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experts (CS+SW knowledge≥ 6) and participants P
¯
2, P

¯
3, P

¯
5, P

¯
8, P

¯
10 and P

¯
11 as non-

experts (CS+SW knowledge < 5). Throughout the paper, we visually indicate expertise
thus: P

¯
x and P̄x. We observe that technical experts are also (highly) computer literate.

5.2 UI Elements: Observed Interaction Patterns

We now describe participant interactions with the key elements of the loomp OCA with
a focus on the participants’ understanding of the annotation process.

i) Annotation toolbar (A+B in Fig.3). Some participants had difficulties interact-
ing with the annotation toolbar. Some participants selected first an annotation without
highlighting atoms. P̄1 had forgotten to select an atom first; P̄12 intended to use the
annotation as a paint brush to assign it to several atoms. A number of participants had
difficulty remembering the available concepts they had just looked at.

ii) Text pane (C). Most participants had no problems selecting atoms to assign anno-
tations. Five of 12 participants tried to create nested annotations, which is currently not
supported in OCA. Taking the atom Universität Konstanz as an example, they wanted
to assign Educational institution to the phrase and City to the term Konstanz. Two par-
ticipants (P̄4, P

¯
10) lost the annotation of the city because the later assignment of the

larger atom Universität Konstanz overwrote the previous smaller atom Konstanz. Only
P̄4 understood and corrected the mistake. P

¯
10 observed the loss of annotation but did

not recognize the problem. In contrast, two participants allocated Educational institution
before allocating City with the result that the first annotation covered only the atom Uni-
versität. Five of 12 participants wanted to assign more than one annotation to the same
atom, e.g., Adenauer is a person and a politician. Participant P̄12 wanted to use the
ALT-key to select all text occurrences of an atom and then select the annotation only
once to link all occurrences to the same resource (e.g., all occurrences of the same city
name). The same participant suggested that the system should also support the follow-
ing process: Users highlight all text occurrences of entities of the same type (e.g., all
cities), click on an annotation button, and choose a resource to each of these one after
the other.

iii) Annotation sidebar (D). Participants used the annotation sidebar either as a sim-
ple list for compiling the created annotations, or as a tool for highlighting occurrences
of created annotations (P̄1, P̄7) and for copying existing annotations to newly selected
atoms (P̄9, P

¯
11). P̄9 also clicked on the concept (e.g., Person) of an annotation shown in

the sidebar and, thus, filtered the entries of the sidebar according to that concept. Partic-
ipants did not recognize the temporal order of annotations in the sidebar (Participant P̄4
suggested they be sorted alphabetically).

iv) Resource selector (E). Several participants had difficulties in understanding the
resource selector. The selector recommends resources for a selected atom, which was
readily accepted by the participants without reflecting on the source of the recommen-
dations. The recommendations are created based on DBpedia search results for the atom
text. As a consequence, generic atom names (e.g., university) lead to long result lists (P̄7
was so overwhelmed by the long result list that he closed the window without select-
ing an entry). Only five of the participants (P̄1, P̄6, P̄7, P̄9, P

¯
10) recognized the text

field as a means for searching for resources manually and only two of them (P̄7, P
¯
10)

understood the filter option below the search field.
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5.3 Task: Understanding Semantic Concepts

We were interested in participants’ conceptual understanding of the creation of seman-
tic annotations. We evaluated the selected atoms and annotations, as well as the partici-
pants’ reaction to the resources recommended in the resource selector.

i) Quality of Annotations. Fig. 5 shows an analysis of the annotations created by the
participants (second phase only). The gold-standard annotation for the text contained
eight annotations (for the given vocabulary). An annotated atom is considered seman-
tically meaningful if it refers to a named entity, e.g., if participants allocated City to
the atom Dresden within Technische Universität Dresden. Finally, annotations are con-
sidered semantically meaningless if they do not refer to a named entity, e.g., light and
heating are turned off. Six of 12 participants identified at least six correct annotations
and another one created 5 of 8 correct annotations. However, two participants addition-
ally created many semantically meaningless annotations (P

¯
10,P̄12). P

¯
2 and P

¯
5 failed to

create any meaningful annotations.
ii) Assuming system knowledge. Six participants switched from being an information

provider to an information consumer in the course of the study (P
¯
2, P

¯
3, P

¯
5, P

¯
8, P̄9,

P
¯
11). (P

¯
3 “Now I want to know something about his political career;” P

¯
2: “Now I can-

not find any information”). Three of them clicked concepts without selecting any text
because they expected that the system would highlight the respective named entities,
e.g., highlight all mentioned cities. Five participants assumed that the system comes
with background knowledge (e.g., P

¯
8 clicked on the term ‘chancellor’ and said “There

should be a list of chancellors of FRG.”)
iii) Selecting annotations. In the first annotation step (see Section 3.2), four partic-

ipants wanted to create a summary of the text by selecting whole sentences as atoms
(P̄1, P

¯
2, P

¯
3, P̄6). For example, P̄1 selected light and heating are turned off and allo-

cated the annotation Political Event. P̄6 comented that “Somehow the whole text is an
event.”The selection of unsuitable atoms resulted in difficulties when selecting the cor-
rect annotation: P

¯
10 selected the atom library and allocated Educational Institution. She

observed: “I find it difficult to find the correct annotation.” She proceeded similarly with
laboratory and office. Several participants aimed to annotate such classes of instances
(in addition to instances), which almost always led to the unnecessary creation of new
resources. We also observed difficulties when one concept is a subclass of another one
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(e.g., Person and Politician). As the prototype did not support overlapping annotations,
almost all participants chose the more specific concept. Only P̄4 explained that he as-
sumed the system would contain information about the relationship between the two
concepts. In contrast, three participants (P̄7, P̄9, P

¯
10) developed a workaround and an-

notated one occurrence with Person and another one with Politician. Four participants
had difficulty deciding on the granularity of atoms (P̄4, P

¯
8 P̄9, P

¯
10), e.g., whether to

annotate the city in the atom Technische Universität Dresden.
iv) Interaction patterns. We observed different strategies for creating annotations.

Two participants (P
¯
8, P̄12) first seemed to select a vocabulary and then scan the text for

occurrences of matching atoms, e.g., to annotate all cities (P̄12: “The cities are done
now.”). P̄12 suggested having an “annotation painter” (similar to the format painter in
office software) that allows for selecting a concept from a vocabulary and then select-
ing atoms. Another common strategy was to annotate an entity and search for further
occurrences in the text. A few participants felt unsure whether they had created enough
annotations, e.g., P̄7 commented “I would ask a colleague.”

v) Identifying entities. In the second annotation step (see Section 3.2) of linking atom
to resource, we observed problems in choosing the appropriate entry in the resource
selector. P̄9 wanted to annotate the name of the river Oder in the name of the city
Frankfurt/Oder. The resource selector offered two rivers, one of them within the correct
region. P̄9 wondered: “Why is that, is that one river or two?” and continued by creating
a new resource. However, all five participants annotating Frankfurt/Oder successfully
selected Frankfurt (Oder) as resource (i.e., it was clear that both labels referred to the
same city).

vi) Additional knowledge work. During the learning phase, five participants wanted to
insert additional information, e.g., create cross references or even extend a vocabulary.
For example, P̄1 wanted to relate Kim Astrid Magister with Technical University Dresden
because she was the spokeswoman of that university. Later, while annotating the term
Christmas the same participant stated: “I want to create synonyms because I can create
a larger vocabulary faster.” Another participant wanted to convert units, e.g., 150 kmph
to mph. P̄6 was not satisfied with the available vocabularies and wanted to add his own.

5.4 Reflection: Participant Feedback

We interviewed the participants about their experience in using the loomp OCA. Fig. 6
shows the participants’ self-assessment regarding their mastery of annotations (1=no
knowledge, 5=completely understood). These results are also interesting in the light of
the quality of the created annotations (see Fig. 5).

We asked the participants for feedback on their understanding of annotations (left),
ease of creating annotations (middle), and the ease of creating the right annotation
(right). 9 participants found annotations easy to understand, 7 found it easy to create
annotations, and 3 found it easy to create the right annotations. On average, expert
participants (P̄1, P̄4, P̄6, P̄7, P̄9, P̄12) found annotations easier to understand (4.42 vs
4.0) and create (4.17 vs 3.33) than non-experts. However, both experts and non-experts
found it somewhat difficult to select the right annotations (both 3.33).
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6 Discussion

We now discuss the insights gained from the study and draw conclusions for the design
of manual annotation tools for the semantic web. We distinguish between Semantic Web
2.0 approach to annotations and the closed world of a corporate context. People respon-
sible for creation of corporate content are typically domain experts but non-experts with
respect to semantic web.

Task Understanding. Some participants expected the system to be all-knowing and
all-powerful. This well-known aspect from novice computer users (cf. [41]) here ap-
plied to non-experts with respect to semantic technologies. They assumed background
knowledge about people mentioned in the documents, as well as complex semantic re-
lationships between concepts in the vocabulary. This was tightly interwoven with the
problem of participants’ switching roles from information provider to information con-
sumer. The task of providing conceptual, semantic information seemed so foreign to
some of the participants that eventually ingrained habits of information consumers came
to the fore; see Sect. 5.2/ii. This was different for participants with a strong CS/SW
background; they created higher quality annotations (5.2/i) and also felt more confident
about the task (5.4). However, these individuals would not be suitable as knowledge
workers in a corporate environment (too highly skilled technically), but could be for an
open crowd-sourcing approach.

Suitability of Non-experts. Based on annotation results, we identified three groups
of participants: acceptable annotators (P̄4, P̄7, P̄9, P̄12), annotators with room for im-
provement (P̄1, P

¯
8, P

¯
10, P

¯
11), and failed annotators (P

¯
2, P

¯
3, P

¯
5, P̄6), see Sect. 5.3/i-iii.

We hypothesize that the results for the first two groups may be improved by further
instructions on correct annotation. We do not believe that participants in the last group
are suited as annotators. This is surprising as some were in professions that required
regular creation of keywords and tagging for books (e.g., P

¯
5: librarian). We note that

the participants in the group of acceptable annotators were all technical experts. Com-
paring their individual backgrounds we observed that participants of the second had
more experience in working with text, in managing knowledge, and were more open to
new conceptual ideas those in the third group. Furthermore, technical knowledge does
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not always guarantee high quality annotations (see Sect. 5.3/i). We conclude that se-
mantic annotations cannot be done by domain experts (as typically assumed in the SW
context) but needs task experts. These would be familiar not just with the domain (as
all our participants were) but also with the subtleties of the annotation task.

User Guidance through Vocabularies. Even though the three provided vocabularies
were relatively small, it was difficult for some participants to know which concepts to
select and when to stop (5.2/i+5.3/iv). We concur with observations in [22,20], and ob-
serve that a reduction in size of available vocabularies and annotations helps to keep
annotators focused on identifying (named) entities and will increase the quality of an-
notations. However, reducing the size of the vocabulary is not always a viable option
and therefore documentation (SW2.0) and education (corporate) have to be explored.
Dynamic online history in the annotation sidebar had mixed results (5.2/iii) and needs
to be explored further.

Semantic Identity. All participants were able to select the correct resource from the list
if the entries contained enough information to identify the entity they had in mind. Prob-
lems arose when participants were unable to disambiguate recommended entities. Only
four technical experts and one non-expert recognized the search field and the filter in
the Resource selector (5.2/iv). No correlation was detected between the understanding
of the resource selector and the correctness of annotations (5.3/i+v). However, selec-
tion of atoms dominated the annotation process. If in doubt about atoms, participants
created new resource ids. It highlights the importance of educating annotators with the
conceptual model of semantic identity and its difference to tagging. We believe non-
expert users need targeted teaching material with appropriate use cases highlighting the
benefits of annotation-based applications.

Interaction Patterns Aligning to Mental Model. The paper prototype resembled the
look and feel of MS Word (following [29]) to allow easy recognition of known interac-
tion patterns (5.2/i+ii). However, we found that the participants’ mental model of how
the system works had strong references to Internet-based interactions, even though the
interface did not contain any typical Web elements (5.3/ii+vi). P

¯
11 mentioned wikipedia

search as a related concept. One reason for this mismatch may be the participants’ (con-
ceptual or practical) familiarity with web-based tagging. Thus it needs to be explored
which references and expectations non-expert users bring to semantic web systems.

Corporate vs. Public Semantic Web. The usage context of annotators in a corporate or
public setting may differ significantly (e.g., editing new text vs. annotation of existing
text). Clear use cases may help explore these user expectations and usage contexts.
Furthermore, questions of annotation quality are expected to be answered differently
within each of these contexts (cf. 5.2/i). Corporate semantic web annotations would
be expected to follow a pre-defined semantics with quality measures of inter-annotator
correlation [7] and stability & reproducibility [20]. However, in the public Semantic
Web 2.0 sector, variation in annotation may not only be permissible (5.2/iii) but sought
as an opportunity to reflect multiple perspectives on a source (e.g., supporting the needs
of vision-impaired people [4]).

Annotation Nesting. A number of participants wanted to create nested annotations
(5.2/ii+5.3/iii). loomp OCA does not currently support nested annotations as it uses
XHMTL+RDFa to include annotations into the texts. Overlapping annotations cannot
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easily be represented in XHTML as they they would result in ill-formed XML. Visu-
alization of nested annotations is also challenging [42]. We therefore focused on the
annotation process in a paper prototype according to loomp OCA and did not allow for
nested annotations. However, the observations of our study clearly indicate a need for
the support of nested annotations.

7 Conclusions and Future Work

In this paper, we described a user study to evaluate the conceptual understanding of se-
mantic annotations by non-expert users. All participants of the user study were computer-
literate domain experts, six of the 12 were non-experts with respect to semantic
technologies.

The results of our user study indicated that not every domain expert is a good anno-
tator due to difficulties in the understanding of the conceptual model of semantic anno-
tations. Though some participants had familiarity with providing content and metadata
(e.g., from their occupational background), many fell back into the role of content con-
sumers and expected the editor to provide information. Because very few use cases and
applications for non-experts require the creation of semantic annotations, we assume
these participants were insufficiently accustomed to this task. Even though most partic-
ipants readily understood the process of creating annotations, we observed a number of
challenges: granularity of atoms (e.g., sentence, phrase, word), well-formed atoms (i.e
referring to named entities), annotating both instances and concepts, complexity of vo-
cabulary, and the tendency to create new resources even though an appropriate resource
exists. Some participants wanted to create a summary or synonyms instead of annota-
tions; they felt unsure if an annotation was useful or whether they had finished. We see
the reasons for these difficulties predominantly in the lack of conceptual understanding,
a lack of easy-to-understand use cases and in deficits in the interaction design.

Although the study used the graphical interface of the loomp One Click Annota-
tor, our results can be transferred to other editors for manually or semi-automatically
annotating contents by non-experts:

Task experts: Current literature distinguishes between technical experts and domain
experts. Based on our study observations, we introduce the new concept of task
experts. Task experts are domain experts who conceptually understand the task of
annotating texts and have insight into the characteristics of semantic annotations
(e.g., semantic identity).

Need for use cases: We note a lack of use cases illustrating the process of annotating
texts and demonstrating the benefits of semantic annotations. Use cases may need
to be customized to corporate or public semantic web context.

Semantic identity: For high quality annotations, users need help in selecting appropri-
ate resources for linking. The recommendation algorithm therefore plays an impor-
tant role, and needs to be supported by an appropriate interface representation of
recommended resources to users. In particular, these need to take into account that
users have difficulties distinguishing between instances and classes of instances.

User evaluation methodology: We noted a lack of commonly accepted quality mea-
sures for manual semantic annotation. Furthermore, there is a lack of clearly de-
fined methodologies for evaluating the user aspects of semantic web applications.
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We currently investigate user interaction with a variety of software prototypes for se-
mantic annotation [42] as well as their implications for digital document reposito-
ries [43]. For future research, we plan to conduct further user studies on semantic
annotation in more specific usage contexts, such as combined editing and annotating in
a corporate setting. Furthermore, loomp users may first invoke an automatic annotation
service and then revise the generated annotations manually (e.g., to resolve overlapping
or ambiguous annotations). A similar approach of a-posteriori annotation is supported
by RDFaCE [11]. We plan to evaluate the influence of such pre-existing annotation sets
on the subsequent manual annotation.

We plan to additionally investigate alternative user interfaces for selecting annota-
tions and resources. We are interested in the impact of clearly defined use cases with
practical relevance and accompanying teaching material on the quality of annotations
defined by non-experts.

References
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Abstract. We propose a framework for querying probabilistic instance
data in the presence of an OWL2 QL ontology, arguing that the interplay
of probabilities and ontologies is fruitful in many applications such as
managing data that was extracted from the web. The prime inference
problem is computing answer probabilities, and it can be implemented
using standard probabilistic database systems. We establish a PTime vs.
#P dichotomy for the data complexity of this problem by lifting a corre-
sponding result from probabilistic databases. We also demonstrate that
query rewriting (backwards chaining) is an important tool for our frame-
work, show that non-existence of a rewriting into first-order logic implies
#P-hardness, and briefly discuss approximation of answer probabilities.

1 Introduction

There are many applications that require data to be first extracted from the
web and then further processed locally, by feeding it into a relational database
system (RDBMS). Such web data differs in several crucial aspects from tradi-
tional data stored in RDBMSs: on the one hand, it is uncertain because of the
unreliability of many web data sources and due to the data extraction process,
which relies on heuristic decisions and is significantly error prone [23]; on the
other hand, web data is often provided without explicit schema information and
thus requires interpretation based on ontologies and other semantic techniques.
This latter aspect is addressed by ontology languages such as OWL2. In par-
ticular, the OWL2 QL profile is a popular lightweight ontology language that is
tailored towards enriching standard RDBMS query answering with an ontology
component, thus allowing the user of semantic technologies to take advantage of
the maturity and effiency of such systems [6]. While the current techniques de-
veloped around OWL2 QL are well-suited to deal with the interpretation aspect
of web data, they are not able to deal with its uncertainty. In this paper, we
propose and analyze a framework for data storage and querying that supports
ontologies formulated in (a fragment of) OWL2 QL, but also features prominent
aspects of probabilistic database models to explicitly represent uncertainty. In
a nutshell, our approach relates to probabilistic database systems (PDBMSs) in
the same way that traditional OWL2 QL query answering relates to RDBMSs.

In our framework, we adopt data models from the recently very active area of
probabilistic databases [7,31], but use an open world assumption as is standard in
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the context of OWL2 QL. Specifically, we store data in description logic ABoxes
enriched with probabilities that are attached to probabilistic events, which can
either be modeled explicitly (resulting in what we call pABoxes) or be implicitly
associated with each ABox assertion (resulting in ipABoxes). For example, a
pABox assertion SoccerPlayer(messi) can be associated with an event expression
e1∨e2, where e1 and e2 represent events such as ‘web extraction tool x correctly
analyzed webpage y stating that Messi is a soccer player’. We generally assume
all events to be probabilistically independent, which results in a straightforward
semantics that is similar to well-known probabilistic versions of datalog [27,12].
Ontologies are represented by TBoxes formulated in the description logic DL-
Lite, which forms a logical core of the ontology language OWL2 QL. We are then
interested in computing the answer probabilities to conjunctive queries (CQs);
note that probabilities can occur only in the data, but neither in the ontology
nor in the query. We believe that this setup is of general interest and poten-
tially useful for a wide range of applications including the management of data
extracted from the web, machine translation, and dealing with data that arises
from sensor networks. All these applications can potentially benefit from a fruit-
ful interplay between ontologies and probabilities; in particular, we argue that
the ontology can help to reduce the uncertainty of the data.

In database research, practical feasibility is usually identified with PTime

data complexity, where data complexity means to treat only the (probabilistic)
data as an input while considering both the TBox and the query to be fixed. The
main aim of this paper is to study the data complexity of ontology-based access
to probabilistic data (pOBDA) in the concrete framework described above. As a
central tool, we use query rewriting (also called backwards chaining), which is
an important technique for traditional ontology based data access (OBDA), i.e.,
answering CQs in the presence of a DL-Lite TBox over non-probabilistic data [6].
Specifically, the idea is to rewrite a given CQ q and DL-Lite TBox T into an SQL
(equivalently: first-order) query qT such that for any ABoxA, the certain answers
to q over A relative to T are identical with the answers to qT over A viewed as
a relational database instance. We set out with observing that rewritings from
traditional OBDA are useful also in the context of pOBDA: for any pABox A,
the probability that a tuple a is a certain answer to q over A relative to T
is identical to the probability that a is an answer to qT over A viewed as a
probabilistic database. This lifting of query rewriting to the probabilistic case
immediately implies that one can implement pOBDA based on existing PDBMSs
such as MayBMS, Trio, and MystiQ [1,33,5].

Lifting also allows us to carry over the dichotomy between PTime and #P-
hardness for computing the probabilities of answers to unions of conjunctive
queries (UCQs) over probabilistic databases recently obtained by Dalvi, Suciu,
and Schnaitter [8] to our pOBDA framework provided that we restrict ourselves
to ipABoxes, which are strictly less expressive than pABoxes. Based on a care-
ful syntactic analysis, we provide a transparent characterization of those CQs q
and DL-Lite TBoxes T for which computing answer probabilities is in PTime.
We then proceed to showing that query rewriting is a complete tool for proving
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PTime data complexity in pOBDA, in the following sense: we replace DL-Lite
with the strictly more expressive description logic ELI, which is closely related
to the OWL2 profile OWL2 EL and where, in contrast to DL-Lite, rewritings
into first-order queries do not exist for every CQ q and TBox T ; we then prove
that if any (q, T ) does not have a rewriting, then computing answer probabil-
ities for q relative to T is #P-hard. Thus, if it is possible at all to prove that
some (q, T ) has PTime data complexity, then this can always be done using
query rewriting. Both in DL-Lite and ELI, the class of queries and TBoxes
with PTime data complexity is relatively small, which leads us to also consider
the approximation of answer probabilities, based on the notion of a fully poly-
nomial randomized approximation scheme (FPRAS). It is not hard to see that
all pairs (q, T ) have an FPRAS when T is formulated in DL-Lite, but this is
not the case for more expressive ontology languages such as ALC. Note that
these results are in the spirit of the non-uniform analysis of data complexity
recently initiated in an OBDA context in [26]. We defer some proofs to the ap-
pendix of the long version of this paper, available at http://www.informatik.uni-
bremen.de/tdki/research/papers.html.

Related Work. The probabilistic ABox formalism studied in this paper is inspired
by the probabilistic database models in [9], but can also be viewed as a variation
of probabilistic versions of datalog and Prolog, see [27,12] and references therein.
There have recently been other approaches to combining ontologies and proba-
bilities for data access [11,14], with a different semantics; the setup considered
by Gottlob, Lukasiewicz, and Simari in [14] is close in spirit to the framework
studied here, but also allows probabilities in the TBox and has a different, rather
intricate semantics based on Markov logic. In fact, we deliberately avoid proba-
bilities in the ontology because (i) this results in a simple and fundamental, yet
useful formalism that still admits a very transparent semantics and (ii) it enables
the use of standard PDBMSs for query answering. There has also been a large
number of proposals for enriching description logic TBoxes (instead of ABoxes)
with probabilities, see [24,25] and the references therein. Our running application
example is web data extraction, in the spirit of [16] to store extracted web data
in a probabilistic database. Note that It has also been proposed to integrate both
probabilities and ontologies directly into the data extraction tool [13]. We be-
lieve that both approaches can be useful and could even be orchestrated to play
together. Finally, we note that the motivation for our framework is somewhat
similar to what is done in [30], where the retrieval of top-k-answers in OBDA is
considered under a fuzzy logic-like semantics based on ‘scoring functions’.

2 Preliminaries

We use standard notation for the syntax and semantics of description logics
(DLs) and refer to [3] for full details. As usual, NC, NR, and NI denote countably
infinite sets of concept names, role names, and individual names, C,D denote
(potentially) composite concepts, A,B concept names, r, s role names, R and S
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role names or their inverse, and a, b individual names. When R = r−, then as
usual R− denotes r. We consider the following DLs.

In DL-Lite, TBoxes are finite sets of concept inclusions (CIs) B � B′ and
B�B′ � ⊥ with B and B′ concepts of the form ∃r, ∃r−, � or A. Note that there
is no nesting of concept constructors in DL-Lite. This version is sometimes called
DL-Litecore and includes crucial parts of the OWL2 QL profile; some features of
OWL2 QL are omitted in DL-Litecore, mainly to keep the presentation simple.
ELI is a generalization of DL-Lite without ⊥ (which we will largely disregard

in this paper for reasons explained later on) and offers the concept constructors
�, C �D, ∃r.C, and ∃r−.C. In ELI, a TBox is a finite set of CIs C � D with
C and D (potentially) compound concepts.

In DLs, data is stored in an ABox, which is a finite set of concept assertions
A(a) and role assertions r(a, b). We use Ind(A) to denote the set of individual
names used in the ABox A and sometimes write r−(a, b) ∈ A for r(b, a) ∈ A.

The semantics of DLs is based on interpretations I = (ΔI , ·I) as usual [3].
An interpretation is a model of a TBox T (resp. ABox A) if it satisfies all
concept inclusions in T (resp. assertions in A), where satisfaction is defined in
the standard way. An ABox A is consistent w.r.t. a TBox T if A and T have a
common model. We write T |= C � D if for all models I of T , CI ⊆ DI and
say that C is subsumed by D relative to T .

Conjunctive queries (CQs) take the form ∃y.ϕ(x,y), with ϕ a conjunction of
atoms of the form A(t) and r(t, t′) and where x,y denote (tuples of) variables
taken from a set NV and t, t′ denote terms, i.e., a variable or an individual name.
We call the variables in x the answer variables and those in y the quantified
variables. The set of all variables in a CQ q is denoted by var(q) and the set
of all terms in q by term(q). A CQ q is n-ary if it has n answer variables and
Boolean if it is 0-ary. Whenever convenient, we treat a CQ as a set of atoms and
sometimes write r−(t, t′) ∈ q instead of r(t′, t) ∈ q.

Let I be an interpretation and q a CQ with answer variables x1, . . . , xk. For
a = a1 · · · ak ∈ NI

k, an a-match for q in I is a mapping π : term(q) → ΔI such
that π(xi) = ai for 1 ≤ i ≤ k, π(a) = aI for all a ∈ term(q)∩NI, π(t) ∈ AI for all
A(t) ∈ q, and (π(t1), π(t2)) ∈ rI for all r(t1, t2) ∈ q. We write I |= q[a] if there
is an a-match of q in I. For a TBox T and an ABox A, we write T ,A |= q[a] if
I |= q[a] for all models I of T and A. In this case and when all elements of a
are from Ind(A), a is a certain answer to q w.r.t. A and T . We use certT (q,A)
to denote the set of all certain answers to q w.r.t. A and T .

As done often in the context of OBDA, we adopt the unique name assumption
(UNA), which requires that aI �= bI for all interpretations I and all a, b ∈ NI with
a �= b. Note that, in all logics studied here, query answers with and without UNA
actually coincide, so the assumption of the UNA is without loss of generality.

3 Probabilistic OBDA

We introduce our framework for probabilistic OBDA, starting with the definition
of a rather general, probabilistic version of ABoxes. Let E be a countably infinite
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set of atomic (probabilistic) events. An event expression is built up from atomic
events using the Boolean operators ¬, ∧, ∨. We use expr(E) to denote the set of
all event expressions over E . A probability assignment for E is a map E → [0, 1].

Definition 1 (pABox). A probabilistic ABox (pABox) is of the form (A, e, p)
with A an ABox, e a map A → expr(E), and p a probability assignment for EA,
the atomic events in A.

Example 1. We consider as a running example a (fictitious) information extrac-
tion tool that is gathering data from the web, see [16] for a similar setup. Assume
we are gathering data about soccer players and the clubs they play for in the
current 2012 season, and we want to represent the result as a pABox.

(1) The tool processes a newspaper article stating that ‘Messi is the soul of the
Argentinian national soccer team’. Because the exact meaning of this phrase
is unclear (it could refer to a soccer player, a coach, a mascot), it generates
the assertion Player(messi) associated with the atomic event expression e1 with
p(e1) = 0.7. The event e1 represents that the phrase was interpreted correctly.

(2) The tool finds the Wikipedia page on Lionel Messi, which states that he is
a soccer player. Since Wikipedia is typically reliable and up to date, but not
always correct, it updates the expression associated with Player(messi) to e1∨ e2
and associates e2 with p(e2) = 0.95.

(3) The tool finds an HTML table on the homepage of FC Barcelona saying
that the top scorers of the season are Messi, Villa, and Pedro. It is not stated
whether the table refers to the 2011 or the 2012 season, and consequently we
generate the ABox assertions playsfor(x,FCbarca) for x ∈ {messi, villa, pedro} all
associated with the same atomic event expression e3 with p(e3) = 0.5. Intuitively,
the event e3 is that the table refers to 2012.

(4) Still processing the table, the tool applies the background knowledge that
top scorers are typically strikers. It generates three assertions Striker(x) with
x ∈ {messi, villa, pedro}, associated with atomic events e4, e

′
4, and e′′4 . It sets

p(e4) = p(e′4) = p(e′′4 ) = 0.8. The probability is higher than in (3) since being
a striker is a more stable property than playing for a certain club, thus this
information does not depend so much on whether the table is from 2011 or 2012.

(5) The tool processes the twitter message ‘Villa was the only one to score a
goal in the match between Barca and Real’. It infers that Villa plays either for
Barcelona or for Madrid, generating the assertions playsfor(villa,FCbarca) and
playsfor(villa, realmadrid). The first assertion is associated with the event e5, the
second one with ¬e5. It sets p(e5) = 0.5.

Now for the semantics of pABoxes (A, e, p). Each E ⊆ EA can be viewed as a
truth assignment that makes all events in E true and all events in EA \E false.

Definition 2. Let (A, e, p) be a pABox. For each E ⊆ EA, define a corre-
sponding non-probabilistic ABox AE := {α ∈ A | E |= e(α)}. The function p
represents a probability distribution on 2EA, by setting for each E ⊆ EA:

p(E) =
∏
e∈E

p(e) ·
∏

e∈EA\E
(1− p(e)).
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The probability of an answer a ∈ Ind(A)n to an n-ary conjunctive query q over
a pABox A and TBox T is

pA,T (a ∈ q) =
∑

E⊆EA : a∈certT (q,AE)

p(E).

For Boolean CQs q, we write p(A, T |= q) instead of pA,T (() ∈ q), where ()
denotes the empty tuple.

Example 2. Consider again the web data extraction example discussed above.
To illustrate how ontologies can help to reduce uncertainty, we use the DL-Lite
TBox

T = { ∃playsfor � Player Player � ∃playsfor
∃playsfor− � SoccerClub Striker � Player }

Consider the following subcases considered above.

(1) + (3) The resulting pABox comprises the following assertions with associated
event expressions:

Player(messi) � e1 playsfor(messi,FCbarca) � e3

playsfor(villa,FCbarca) � e3 playsfor(pedro,FCbarca) � e3

with p(e1) = 0.7 and p(e3) = 0.5. Because of the statement ∃playsfor � Player,
using T (instead of an empty TBox) increases the probability of messi to be an
answer to the query Player(x) from 0.7 to 0.85.

(5) The resulting pABox is

playsfor(villa,FCbarca) � e5 playsfor(villa, realmadrid) � ¬e5

with p(e5) = 0.5. Although Player(villa) does not occur in the data, the proba-
bility of villa to be an answer to the query Player(x) is 1 (again by the TBox-
statement ∃playsfor � Player).

(3)+(4) This results in the pABox

playsfor(messi,FCbarca) � e3 Striker(messi) � e4

playsfor(villa,FCbarca) � e3 Striker(villa) � e′4
playsfor(pedro,FCbarca) � e3 Striker(pedro) � e′′4

with p(e3) = 0.5 and p(e4) = p(e′4) = p(e′′4) = 0.8. Due to the last three CIs in T ,
each of messi, villa, pedro is an answer to the CQ ∃y.playsfor(x, y)∧SoccerClub(y)
with probability 0.9.

Related Models in Probabilistic Databases. Our pABoxes can be viewed as an
open world version of the probabilistic data model studied by Dalvi and Suciu
in [9]. It is as a less succinct version of c-tables, a traditional data model for
probabilistic databases due to Imielinski and Lipski [18]. Nowadays, there is an
abundance of probabilistic data models, see [15,29,2] and the references therein.
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All these models provide a compact representation of distributions over poten-
tially large sets of possible worlds. Since we are working with an open world
semantics, pABoxes instead represent a distribution over possible world descrip-
tions. Each such description may have any number of models. Note that our
semantics is similar to the semantics of (“type 2”) probabilistic first-order and
description logics [17,25].

Dealing with Inconsistencies. Of course, some of the ABoxes AE might be incon-
sistent w.r.t. the TBox T used. In this case, it may be undesirable to let them
contribute to the probabilities of answers. For example, if we use the pABox

Striker(messi) � e1 Goalie(messi) � e2

with p(e1) = 0.8 and p(e2) = 0.3 and the TBox Goalie � Striker � ⊥, then
messi is an answer to the query SoccerClub(x) with probability 0.24 while one
would probably expect it to be zero (which is the result when the empty TBox is
used). We follow Antova, Koch, and Olteanu and advocate a pragmatic solution
based on rescaling [2]. More specifically, we remove those ABoxes AE that are
inconsistent w.r.t. T and rescale the remaining set of ABoxes so that they sum
up to probability one. In other words, we set

p̂A,T (a ∈ q) =
pA,T (a ∈ q)− p(A, T |= ⊥)

1− p(A, T |= ⊥)

where ⊥ is a Boolean query that is entailed exactly by those ABoxes A that are
inconsistent w.r.t. T . The rescaled probability p̂A,T (a ∈ q) can be computed in
PTime when this is the case both for pA,T (a ∈ q) and p(A, T |= ⊥). Note that
rescaling results in some effects that might be unexpected such as reducing the
probability of messi to be an answer to Striker(x) from 0.8 to ≈0.74 when the
above TBox is added.

In the remainder of the paper, for simplicity we will only admit TBoxes T
such that all ABoxes A are consistent w.r.t. T .

4 Query Rewriting

The main computational problem in traditional OBDA is, given an ABox A,
query q, and TBox T , to produce the certain answers to q w.r.t. A and T . In the
context of lightweight DLs such as DL-Lite, a prominent approach to address
this problem is to use FO-rewriting, which yields a reduction to query answering
in relational databases. The aim of this section is to show that this approach
is fruitful also in the case of computing answer probabilities in probabilistic
OBDA. In particular, we use it to lift the PTime vs. #P dichotomy result on
probabilistic databases recently obtained by Dalvi, Suciu, and Schnaitter [8] to
probabilistic OBDA in DL-Lite.
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4.1 Lifting FO-Rewritings to Probabilistic OBDA

We first describe the query rewriting approach to traditional OBDA. A first-
order query (FOQ) is a first-order formula q(x) constructed from atomsA(x) and
r(x, y) using negation, conjunction, disjunction, and existential quantification.
The free variables x are the answer variables of q(x). For an interpretation I,
we write ans(q, I) to denote the answers to q in I, i.e., the set of all tuples a
such that I |= q[a]. In what follows, we use IA to denote the ABox A viewed as
an interpretation (in the obvious way). A first-order (FO) TBox is a finite set
of first-order sentences.

Definition 3 (FO-rewritable). A CQ q is FO-rewritable relative to an FO
TBox T if one can effectively construct a FOQ qT such that certT (q,A) =
ans(qT , IA) for every ABox A. In this case, qT is a rewriting of q relative to T .

For computing the answers to q w.r.t. A and T in traditional OBDA, one can
thus construct qT and then hand it over for execution to a database system that
stores A.

The following observation states that FO-rewritings from traditional OBDA
are also useful in probabilistic OBDA. We use pdA(a ∈ q) to denote the prob-
ability that a is an answer to the query q given the pABox A viewed as a
probabilistic database in the sense of Dalvi and Suciu [8]. More specifically,

pdA(a ∈ q) =
∑

E⊆EA |a∈ans(q,IAE
)

p(E)

The following is immediate from the definitions.

Theorem 1 (Lifting). Let T be an FO TBox, A a pABox, q an n-ary CQ,
a ∈ Ind(A)n a candidate answer for q, and qT an FO-rewriting of q relative
to T . Then pA,T (a ∈ q) = pdA(a ∈ qT ).

From an application perspective, Theorem 1 enables the use of probabilistic
database systems such as MayBMS, Trio, and MystiQ for implementing proba-
bilistic OBDA [1,33,5]. Note that it might be necessary to adapt pABoxes in an
appropriate way in order to match the data models of these systems. However,
such modifications do not impair applicability of Theorem 1.

From a theoretical viewpoint, Theorem 1 establishes query rewriting as a
useful tool for analyzing data complexity in probabilistic OBDA. We say that
a CQ q is in PTime relative to a TBox T if there is a polytime algorithm
that, given an ABox A and a candidate answer a ∈ Ind(A)n to q, computes
pA,T (a ∈ q). We say that q is #P-hard relative to T if the afore mentioned
problem is hard for the counting complexity class #P, please see [32] for more
information. We pursue a non-uniform approach to the complexity of query
answering in probabilistic OBDA, as recently initiated in [26]: ideally, we would
like to understand the precise complexity of every CQ q relative to every TBox T ,
against the background of some preferably expressive ‘master logic’ used for T .
Note, though, that our framework yields one counting problem for each CQ and
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TBox, while [26] has one decision problem for each TBox, quantifying over all
CQs.

Unsurprisingly, pABoxes are too strong a formalism to admit any tractable
queries worth mentioning. An n-ary CQ q is trivial for a TBox T iff for every
ABox A, we have certT (A, q) = Ind(A)n.

Theorem 2. Over pABoxes, every CQ q is #P -hard relative to every first-order
TBox T for which it is nontrivial.

Proof. The proof is by reduction of counting the number of satisfying assign-
ments of a propositional formula.1 Assume that q has answer variables x1, . . . , xn

and let ϕ be a propositional formula over variables z1, . . . , zm. Convert ϕ into
a pABox A as follows: take q viewed as an ABox, replacing every variable x
with an individual name ax; then associate every ABox assertion with ϕ viewed
as an event expression over events z1, . . . , zm and set p(zi) = 0.5 for all i. We
are interested in the answer a = ax1 · · · axn . For all E ⊆ EA with E �|= ϕ, we
have AE = ∅ and thus a /∈ certT (q,AE) since q is non-trivial for T . For all
E ⊆ EA with E |= ϕ, the ABox AE is the ABox-representation of q and thus
a ∈ certT (q,AE). Consequently, the number of assignments that satisfy ϕ is
pA,T (a ∈ q) ∗ 2m. Thus, there is a PTime algorithm for counting the number of
satisfying assignments given an oracle for computing answer probabilities for q
and T . ❏

Theorem 2 motivates the study of more lightweight probabilistic ABox for-
malisms. While pABoxes (roughly) correspond to c-tables, which are among
the most expressive probabilistic data models, we now move to the other end
of the spectrum and introduce ipABoxes as a counterpart of tuple independent
databases [9,12]. Argueably, the latter are the most inexpressive probabilistic
data model that is still useful.

Definition 4 (ipABox). An assertion-independent probabilistic ABox (short:
ipABox) is a probabilistic ABox in which all event expressions are atomic
and where each atomic event expression is associated with at most one ABox
assertion.

To save notation, we write ipABoxes in the form (A, p) where A is an ABox
and p is a map A → [0, 1] that assigns a probability to each ABox assertion.
In this representation, the events are only implicit (one atomic event per ABox
assertion). For A′ ⊆ A, we write p(A′) as a shorthand for p({e ∈ E | ∃α ∈ A′ :
e(α) = e}). Note that p(A′) =

∏
α∈A′ p(α) ·

∏
α∈A\A′(1 − p(α)) and thus all

assertions in an ipABox can be viewed as independent events; also note that for
any CQ q, we have pA,T (a ∈ q) =

∑
A′⊆A:a∈certT (q,A′) p(A′). Cases (1) and (4) of

our web data extraction example yield ipABoxes, whereas cases (2), (3), and (5)
do not. We refer to [31] for a discussion of the usefulness of ipABoxes/tuple
independent databases. For the remainder of the paper, we assume that only
ipABoxes are admitted unless explicitly noted otherwise.

1 Throughout the paper, we use the standard oracle-based notion of reduction origi-
nally introduced by Valiant in the context of counting complexity [32].
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4.2 Lifting the PTime vs. #P Dichotomy

We now use Theorem 1 to lift a PTime vs. #P dichotomy recently obtained in
the area of probabilistic databases to probabilistic OBDA in DL-Lite. Note that,
for any CQ and DL-Lite TBox, an FO-rewriting is guaranteed to exist [6]. The
central observation is that, by Theorem 1, computing the probability of answers
to a CQ q relative to a TBox T over ipABoxes is exactly the same problem as
computing the probability of answers to qT over (ipABoxes viewed as) tuple
independent databases. We can thus analyze the complexity of CQs/TBoxes
over ipABoxes by analyzing the complexity of their rewritings. In particular,
standard rewriting techniques produce for each CQ and DL-Lite TBox an FO-
rewriting that is a union of conjunctive queries (a UCQ) and thus, together with
Theorem 1, Dalvi, Suciu and Schnaitter’s PTime vs. #P dichotomy for UCQs
over tuple independent databases [8] immediately yields the following.

Theorem 3 (Abstract Dichotomy). Let q be a CQ and T a DL-Lite TBox.
Then q is in PTime relative to T or q is #P-hard relative to T .

Note that Theorem 3 actually holds for every DL that enjoys FO-rewritability,
including full OWL2 QL. Although interesting from a theoretical perspective,
Theorem 3 is not fully satisfactory as it does not tell us which CQs are in
PTime relative to which TBoxes. In the remainder of this chapter, we carry out
a careful inspection of the FO-rewritings obtained in our framework and of the
dichotomy result obtained by Dalvi, Suciu and Schnaitter, which results in a
more concrete formulation of the dichotomy stated in Theorem 3 and provides
a transparent characterization of the PTime cases. For simplicity and without
further notice, we concentrate on CQs that are connected, Boolean, and do not
contain individual names.

For two CQs q, q′ and a TBox T , we say that q T -implies q′ and write q �T q′

when certT (q,A) ⊆ certT (q
′,A) for all ABoxes A. We say that q and q′ are T -

equivalent and write q ≡T q′ if q �T q′ and q′ �T q. We say that q is T -minimal
if there is no q′ � q such that q ≡T q′. When T is empty, we simply drop it from
the introduced notation, writing for example q � q′ and speaking of minimality.
To have more control over the effect of the TBox, we will generally work with
CQs q and TBoxes T such that q is T -minimal. This is without loss of generality
because for every CQ q and TBox T , we can find a CQ q′ that is T -minimal
and such that q ≡T q′ [4]; note that the answer probabilities relative to T are
identical for q and q′.

We now introduce a class of queries that will play a crucial role in our analysis.

Definition 5 (Simple Tree Queries). A CQ q is a simple tree if there is a
variable xr ∈ var(q) that occurs in every atom in q, i.e., all atoms in q are of
the form A(xr), r(xr , y), or r(y, xr) (y = xr is possible). Such a variable xr is
called a root variable.

As examples, consider the CQs in Figure 1, which are all simple tree queries.
The following result shows why simple tree queries are important. A UCQ q̂ is
reduced if for all disjuncts q, q′ of q̂, q � q′ implies q = q′.
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Theorem 4. Let q be a CQ and T a DL-Lite TBox such that q is T -minimal
and not a simple tree query. Then q is #P-hard relative to T

Proof. (sketch) Let qT be a UCQ that is an FO-rewriting of q relative to T . By
definition of FO-rewritings, we can w.l.o.g. assume that q occurs as a disjunct
of qT . The following is shown in [8]:

1. if a minimal CQ does not contain a variable that occurs in all atoms, then
it is #P-hard over tuple independent databases;

2. if a reduced UCQ q̂ contains a CQ that is #P-hard over tuple independent
databases, then q̂ is also hard over tuple independent databases.

Note that since q is T -minimal, it is also minimal. By Points 1 and 2 above,
it thus suffices to show that qT can be converted into an equivalent reduced
UCQ such that q is still a disjunct, which amounts to proving that there is no
disjunct q′ in qT such that q � q′ and q′ �� q. The details of the proof, which is
surprisingly subtle, are given in the appendix. ❏

To obtain a dichotomy, it thus remains to analyze simple tree queries. We say
that a role R can be generated in a CQ q if one of the following holds: (i) there
is an atom R(xr, y) ∈ q and y �= xr; (ii) there is an atom A(xr) ∈ q and
T |= ∃R � A; (iii) there is an atom S(x, y) ∈ q with x a root variable and such
that y �= x occurs only in this atom, and T |= ∃R � ∃S. The concrete version
of our dichotomy result is as follows. Its proof is based on a careful analysis of
FO-rewritings and the results in (the submitted journal version of) [8].

Theorem 5 (Concrete Dichotomy). Let T be a DL-Lite TBox. A T -minimal
CQ q is in PTime relative to T iff

1. q is a simple tree query, and
2. if r and r− are T -generated in q, then {r(x, y)} �T q or q is of the form
{S1(x, y), . . . , Sk(x, y)}.

Otherwise, q is #P-hard relative to T .

As examples, consider again the queries q1, q2, and q3 in Figure 1 and let T∅ be
the empty TBox. All CQs are T∅-minimal, q1 and q2 are in PTime, and q3 is
#P-hard (all relative to T∅). Now consider the TBox T = {∃s � ∃r}. Then q1
is T -minimal and still in PTime; q2 is T -minimal, and is now #P-hard because
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both s and s− is T -generated. The CQ q3 can be made T -minimal by dropping
the r-atom, and is in PTime relative to T .

Theorems 4 and 5 show that only very simple CQs can be answered in PTime.
This issue is taken up again in Section 6. We refrain from analyzing in more detail
the case where also answer variables and individual names can occur in CQs, and
where CQs need not to be connected. It can however be shown that, whenever
a connected Boolean CQ q is in PTime relative to a DL-Lite TBox T , then any
CQ obtained from q by replacing quantified variables with answer variables and
individual names is still in PTime relative to T .

5 Beyond Query Rewriting

We have established FO-rewritability as a tool for proving PTime results for CQ
answering in the context of probabilistic OBDA. The aim of this section is to
establish that, in a sense, the tool is complete: we prove that whenever a CQ q is
not FO-rewritable relative to a TBox T , then q is #P-hard relative to T ; thus,
when a query is in PTime relative to a TBox T , then this can always be shown
via FO-rewritability. To achieve this goal, we select a DL as the TBox language
that, unlike DL-Lite, also embraces non FO-rewritable CQs/TBoxes. Here we
choose ELI, which is closely related to the OWL2 EL profile and properly gen-
eralizes DL-Lite (as in the previous sections, we do not explicitly consider the
⊥ constructor). Note that, in traditional OBDA, there is a drastic difference in
data complexity of CQ-answering between DL-Lite and ELI: the former is in
AC0 while the latter is PTime-complete.

We focus on Boolean CQs q that are rooted, i.e., q involves at least one indi-
vidual name and is connected. This is a natural case since, for any non-Boolean
connected CQ q(x) and potential answer a, the probability pA,T (a ∈ q(x))
that a is a certain answer to q w.r.t. A and T is identical to the probability
p(A, T |= q[a]) that A and T entail the rooted Boolean CQ q[a]. Our main
theorem is as follows.

Theorem 6. If a Boolean rooted CQ q is not FO-rewritable relative to an ELI-
TBox T , then q is #P-hard relative to T .

Since the proof of Theorem 6 involves some parts that are rather technical, we
defer full details to the appendix and present only a sketch of the ideas. A central
step is the following observation, whose somewhat laborious proof consists of a
sequence of ABox transformations. It uses a notion of boundedness similar to
the one introduced in [26], but adapted from instance queries to CQs.

Lemma 1. If a Boolean rooted CQ q is not FO-rewritable relative to an ELI-
TBox T , then there exists an ABox A and assertions R3(a3, a2), R2(a2, a1),
R1(a1, a0) such that A, T |= q, but A′, T �|= q when A′ is A with any of the
assertions R3(a3, a2), R2(a2, a1), R1(a1, a0) dropped.

We now prove Theorem 6 by a reduction of the problem of counting the number of
satisfying assignments for a monotone bipartite DNF formula, which is known to



194 J.C. Jung and C. Lutz

R2

a3

b1
R3

R3

...

c1

cny

a0
...

R1

R1
bnx

...

...

R2

Fig. 2. Gadget for the #P-hardness proof

be #P-hard. The reduction is similar to what was done in [9]. More specifically,
input formulas are of the form ψ = (xi1 ∧ yj1) ∨ · · · ∨ (xik ∧ yjk) where the set
X of variables that occur on the left-hand side of a conjunction in ψ is disjoint
from the set Y of variables that occur on the right-hand side of a conjunction
in ψ.

For the reduction, let ψ be a formula as above, X = {x1, . . . , xnx}, and Y =
{y1, . . . , yny}. We define an ipABox (Aψ , pψ) by starting with the ABox A from
Lemma 1 and duplicating the assertions R3(a3, a2), R2(a2, a1), R1(a1, a0) using
fresh individual names b1, . . . , bnx and c1, . . . , cny . This is indicated in Figure 2
where, in the middle part, there is an R2-edge from every bi to every cj . Apart
from what is shown in the figure, each bi receives exactly the same role assertions
and outgoing edges that a2 has in A, and each ci is, in the same sense, a duplicate
of a1 in A.

In the resulting ipABoxAψ, every assertion except those of the form R3(a3, bi)
and R1(ci, a0) has probability 1; specifically, these are all assertions in Aψ that
are not displayed in the snapshot shown in Figure 2 and all R2-edges in that
figure. The edges of the form R3(a3, bi) and R1(ci, a0) have probability 0.5.
For computing the answer probability p(Aψ , T |= q), one has to consider the
ABoxes A′ ⊆ Aψ with p(A′) > 0. Each such ABox has probability 1

2|X|+|Y | and
corresponds to a truth assignment δA′ to the variables in X ∪ Y : for xi ∈ X ,
δA′(xi) = 1 iff R3(a3, bi) ∈ A′ and for yi ∈ Y , δA′(yi) = 1 iff R1(ci, a0) ∈ A′.
Let #ψ the number of truth assignments to the variables X ∪ Y that satisfy ψ.
To complete the reduction, we show that p(Aψ , T |= q) = #ψ

2|X|+|Y | . By what was
said above, this is an immediate consequence of the following lemma, proved in
the appendix.

Lemma 2. For all ABoxes A′ ⊆ Aψ with pψ(A′) > 0, δA′ |= ψ iff A′, T |= q.

This finishes the proof of Theorem 6. As a by-product, we obtain the following;
the proof can be found in the long version.

Theorem 7 (ELI dichotomy). Let q be a connected Boolean CQ and T an
ELI-TBox. Then q is in PTime relative to T or #P-hard relative to T .

6 Monte Carlo Approximation

The results in Sections 4 and 5 show that PTime complexity is an elusive prop-
erty even for ipABoxes and relatively inexpressive TBox languages such as DL-
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Lite and ELI. Of course, the same is true for probabilistic databases, even for
very simple data models such as tuple independent databases. To address this
fundamental problem, researchers are often trading accuracy for efficiency, re-
placing exact answers with approximate ones. In particular, it is popular to use
Monte Carlo approximation in the incarnation of a fully polynomial randomized
approximation scheme (FPRAS). In this section, we discuss FPRASes in the
context of probabilistic OBDA.

An FPRAS for a Boolean CQ q and TBox T is a randomized polytime al-
gorithm that, given an ipABox A and an error bound ε > 0, computes a real
number x such that

Pr
( |p(A, T |= q)− x|

p(A, T |= q)
≤ 1

ε

)
≥ 3

4
.

In words: with a high probability (the value of 3
4 can be amplified by standard

methods), the algorithm computes a result that deviates from the actual result
by at most the factor 1

ε .
It follows from the proof of Theorem 2 and the fact that there is no FPRAS

for the number of satisfying assignments of a propositional formula (unless the
complexity classes RP and NP coincide, which is commonly assumed not to be
the case) that, over pABoxes, there is no FPRAS for any CQ q and TBox T .
Thus, we again have to restrict ourselves to ipABoxes. As observed in [9], it is an
easy consequence of a result of Karp and Luby [21] that there is an FPRAS for
every CQ over tuple independent databases. By Theorem 1, there is thus also an
FPRAS for every CQ q and DL-Lite TBox T over ipABoxes. The same is true
for every FO-rewritable TBox formulated in ELI or any other TBox language.
This observation clearly gives hope for the practical feasibility of probabilistic
OBDA.

It is a natural question whether FPRASes also exist for (CQs and) TBoxes for-
mulated in richer ontology languages. No general positive result can be expected
for expressive DLs that involve all Boolean operators; the basic such DL is ALC
with concept constructors ¬C, C �D, and ∃r.C, a typically well-behaved frag-
ment of OWL DL. As analyzed in detail in [26], there is a large class of Boolean
CQs q and ALC-TBoxes T such that, given a non-probabilistic ABox A, it is
coNP-hard to check the entailment A, T |= q. A computation problem whose
decision version is coNP-hard cannot have an FPRAS [19], and thus we obtain
the following.

Theorem 8. There are CQs q and ALC-TBoxes T such that there is no FPRAS
for q and T .

In ELI, entailment by non-probabilistic ABoxes can be checked in PTime for all
CQs q and TBoxes T . By what was said above, the interesting cases are those
that involve a TBox which is not FO-rewritable. For example, answering the
query A(a) and TBox {∃r.A � A} over ipABoxes roughly corresponds to a di-
rected, two-terminal version of network reliability problems, for which FPRASes
can be rather hard to find, see for example [20,34]. We leave a detailed analysis
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of FPRASes for (CQs q and) ELI-TBoxes T as interesting future work. Ideally,
one would like to have a full classification of all pairs (q, T ) according to whether
or not an FPRAS exists.

7 Conclusion

We have introduced a framework for ontology-based access to probabilistic data
that can be implemented using existing probabilistic database system, and we
have analyzed the data complexity of computing answer probabilities in this
framework. There are various opportunities for future work. For example, it
would be interesting to extend the concrete dichotomy from the basic DL-Lite
dialect studied in this paper to more expressive versions of DL-Lite that, for ex-
ample, allow role hierarchy statements in the TBox. It would also be worthwhile
to add probabilities to the TBox instead of admitting them only in the ABox;
this is done for example in [27,12], but it remains to be seen whether the seman-
tics used there is appropriate for our purposes. Finally, it would be interesting
to study the existence of FPRASes for approximating answer probabilities when
TBoxes are formulated in ELI.
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Abstract. A key issue in semantic reasoning is the computational com-
plexity of inference tasks on expressive ontology languages such as OWL
DL and OWL 2 DL. Theoretical works have established worst-case com-
plexity results for reasoning tasks for these languages. However, hardness
of reasoning about individual ontologies has not been adequately char-
acterised. In this paper, we conduct a systematic study to tackle this
problem using machine learning techniques, covering over 350 real-world
ontologies and four state-of-the-art, widely-used OWL 2 reasoners. Our
main contributions are two-fold. Firstly, we learn various classifiers that
accurately predict classification time for an ontology based on its metric
values. Secondly, we identify a number of metrics that can be used to
effectively predict reasoning performance. Our prediction models have
been shown to be highly effective, achieving an accuracy of over 80%.

1 Introduction

Ontologies are essential building blocks of the Semantic Web. However, the high
expressivity of ontology languages also incurs high computational complexity.
For example, it has been shown that SHOIN (D), the description logic (DL)
underlying OWL DL, is of worst-case NExpTime-complete complexity [10].
The complexity of SROIQ(D), the DL underlying OWL 2 DL, is even higher
(2NexpTime-complete) [7].

The past decade has seen the development of highly optimized inference
algorithms for description logics, with tableau algorithms [2] being a leading
exemplar. A number of high-performance tableaux-based reasoners have been
developed, including FaCT++ [19], HermiT [15], Pellet [16] and TrOWL [18].
Despite the tremendous progress in ontology reasoning, the high theoretical
worst-case complexity results for OWL DL and OWL 2 DL still implies that
core reasoning services may be computationally very expensive. For example, it
is shown in [4] that although the simpler OWL 2 EL profile has polynomial-time
inference algorithms [1], reasoning about large ontologies in OWL 2 EL (Gene
Ontology, NCI Thesaurus and SNOMED CT) still requires considerable amounts
of time and computational resources.

Moreover, worst-case complexity does not necessarily indicate real-world per-
formance on individual ontologies. In this context, it is noteworthy that reasoner

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 198–214, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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benchmarking has been conducted previously [12,6,4]. However, these works only
compared inference performance on a small set of ontologies. They did not at-
tempt to correlate characteristics of ontologies with their inference performance.
Hence, they do not provide insight into what makes inference difficult on a given
ontology.

Metrics have been used widely and successfully to model artefact complexity
in combinatorics and software engineering. We believe that they can be similarly
applied to the problem of modelling of ontology inference performance, using a
set of ontology metrics like those defined in [24] as a basis. In this paper, we
tackle the challenge of predicting ontology classification performance by applying
machine learning techniques.

Specifically, we conduct a comprehensive and rigorous investigation, using
more than 350 real-world ontologies and 4 widely-used OWL 2 DL reasoners
(FaCT++, HermiT, Pellet and TrOWL).1 Multiple classifiers and feature se-
lection algorithms are tested for their effectiveness. Moreover, 27 metrics are
studied for their suitableness for performance prediction. To the best of our
knowledge, to date this is the most comprehensive study on characterizing on-
tology inference performance, and it is the first study on predicting ontology
inference performance.

The main contributions of this paper can be summarized as follows:

Prediction Model. We learn a random forest-based classifier that is consis-
tently accurate in predicting ontology classification time using metrics. The
accuracy of the classifier is over 90% for HermiT and TrOWL, and over 80%
for FaCT++ and Pellet.
Key Metrics. A set of 8 ontology metrics are identified according to their
effectiveness in predicting classification performance. These metrics can provide
additional insights into ontology engineering and maintenance.

2 Background and Related Work

Works mostly closely related to ours are the ones that compare the performance
of OWL reasoners. Benchmarking of description logics (hence ontology) reason-
ers is not a new topic. However, with the rapid advances made in reasoning
algorithms and reasoners, there is sustained interest and need for repeated and
rigorous evaluation. Early works [8,9] mainly used synthetic TBoxes for evaluat-
ing system performance on less expressive languages (ALC and its predecessors).
In [17], Tempich and Volz developed a systematic method of generating syn-
thetic ontologies. They also performed k-means clustering on 95 medium-sized
ontologies (65 class expressions and 25 properties on average) and obtained 3
clusters of ontologies, using a number of different language constructs as features.
Wang and Parsia [20] developed Tweezers, a profiler for Pellet, that is capable of

1 Note that TrOWL is a reasoning infrastructure that is capable of performing incom-
plete reasoning for OWL 2 DL through approximation [13]. The degree of complete-
ness is not the focus of this paper and hence is not tested.
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collecting inference results and performance statistics. The authors demonstrated
how such data can be used to modify an ontolgy to speed up reasoning.

In [3], 4 ontologies, each from a language with a different expressivity
(RDFS(DL), OWL Lite, OWL DLP and OWL DL) were chosen to compare
a number of OWL reasoners. Both TBox and ABox reasoning tasks were com-
pared for a number of reasoners and reason-able triple stores such as Sesame.
Reasoner benchmarking has been done using either synthetic or real-world on-
tologies [12,6]. More recently, 8 modern reasoners are compared on 3 large OWL
2 EL ontologies (Gene Ontology, NCI Thesaurus and SNOMED CT) [4]. Various
dimensions of the OWL reasoners were discussed with a focus on performance.
The authors drew the conclusion that there is significant performance variabil-
ity among reasoners and it should be further investigated. This work partially
motivated our investigation in this paper.

In the SEALS project,2 the Storage and Reasoning Systems Evaluation Cam-
paign 2010 aimed at the evaluation of DL-based reasoners. In the evaluation, the
performance of three reasoners: FaCT++, HermiT, and jcel were measured and
compared in terms of a suite of standard inference services such as classification,
class/ontology satisfiability, and logical entailment. Although the evaluation pro-
duces a good performance comparison summary of the different reasoners, it does
not seem to identify what impact ontology characteristics have on the perfor-
mance of these reasoners.

There has been research on the development of a series of metrics for analyzing
ontology complexity. For example, some metrics have been proposed [22,23] for
analyzing ontology complexity by examining the quantity, ratio, and correlativ-
ity of classes and relations in a given ontology. However, the metrics developed
in this work focused on characteristics of classes without considering a broader
range of ontology characteristics. Also, these metrics were mainly designed to
analyze complexity evolution and distribution of ontologies, but not for predict-
ing the reasoning performance of ontologies. The work [5] defined some metrics
to analyze structural complexity of a given ontology. However, it focused only on
analyzing coupling between classes as a measure of ontology complexity. Thus,
it does not provide any evidence of how the metrics can be used in analyzing
reasoning performance of ontologies.

In [24] we proposed a suite of metrics with the aim of characterizing different
aspects of ontology design complexity. These metrics consider a broader range
of ontology characteristics, and hence are more suitable for the task of perfor-
mance prediction. All the metrics can be calculated automatically and efficiently,
allowing us to leverage them for predicting reasoning performance.

3 Ontology Metrics

In [24] a total of 8 ontology metrics were defined with the aim of measuring
different aspects of the design complexity of OWL ontologies. These metrics are
defined on a graph representation of an ontology and are used in this paper as

2 http://www.seals-project.eu

http://www.seals-project.eu
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a set of features for predicting reasoner performance. They can be divided into
two categories: ontology-level metrics (ONT) and class-level metrics (CLS). In
addition to these 8 metrics, we have defined some other metrics that measure
different aspects of an ontology’s size and structural characteristics. The metrics
are defined on the asserted logical axioms in an ontology and they can be divided
into two more categories: anonymous class expressions (ACE) and properties
(PRO). For each ontology, we record the sum of each of the CLS, ACE and
PRO metrics. Hence there are 27 distinct metrics in total.

Note that syntactic sugar axioms such as EquivalenceClasses, Disjoint
Classes and PropertyChain are transformed into pair-wise axioms with a
quadratic increase in the number of axioms.

– Ontology-level Metrics (ONT). The ONT metrics measure the overall char-
acteristics of a given ontology. Besides the 4 metrics defined previously in [24],
including SOV (size of vocabulary), ENR (edge-node ratio), TIP (tree im-
purity) and EOG (entropy of graph), we define 2 new ONT metrics:
• CY C (Cyclomatic complexity). CY C is defined as CY C = #E−#N+2∗cc,
where cc is the number of strongly connected components of the ontology
represented as a graph. CY C measures the number of linearly independent
paths in the ontology graph.

• RCH (Expression richness). RCH measures the ratio between the number
of anonymous class expressions and the total number of class expressions
(including named classes).

– Class-level Metrics (CLS). Classes are first-class citizens in OWL ontolo-
gies, hence we use the 4 CLS metrics defined in [24] to capture characteristics
of classes in an ontology. These metrics are NOC (number of children), DIT
(depth of inheritance), CID (class in-degree), and COD (class out-degree).

– Anonymous Class Expressions (ACE). ACE are an important ingredi-
ent in building up expressive classes. The ACE metrics records, for each kind
of anonymous class expression, the number of occurrences in an ontology.
There are altogether 9 metrics: enumeration (ENUM), negation (NEG),
conjunction (CONJ), disjunction (DISJ), universal/existential quantifica-
tion (UF/EF ) and min/max/exact cardinality (MNCAR/MXCAR/CAR).

– Properties (PRO). Similarly, property declarations and axioms may impact
reasoning performance. The 8 PRO metrics record the number of occurrences
of each type of property declaration/axiom: object/datatype property declara-
tion (OBP/DTP ), functional (FUN), symmetric (SYM), transitive (TRN),
inverse functional (IFUN), property equivalence (EQV ) and inverse (INV ).

Note that although there is no metric specifically for ontology expressivity (EL,
QL, etc.), such information is implicitly captured by the ACE and PRO metrics
as 0 for a metric indicates the absence of a particular language construct.

4 Investigation Methodology

The principal aims of this paper are two-fold: (1) identifying predictive models
that accurately estimate reasoning performance of unknown ontologies, and (2)
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experimentally discovering significant metrics that influence reasoning perfor-
mance. The key steps in our investigation can be summarized as follows:

Scoping. There are a number of main reasoning tasks on ontologies, including
classification and consistency checking, which are equivalent to each other [2].
We found that classification takes significantly longer than consistency checking,
and that there is a significant discrepancy between consistency checking time
reported by the reasoners. Thus, we focus on the more difficult reasoning task,
classification, and aim to provide insight into prediction models and key metrics
embedded in the models. We perform classification on a number of ontologies
using different publicly available reasoners. As stated previously, our analysis is
conducted on 4 actively-maintained, open-source and widely-used OWL 2 DL
reasoners: FaCT++, HermiT, Pellet and TrOWL.

Data Collection. We collect a number of ontologies with varying character-
istics, including the application domain, file size, underlying ontology language,
etc. We compute, for each ontology in the collection, (1) its metric values as
presented in Section 3, and (2) an average performance time for the reasoning
task of ontology classification for each of the 4 reasoners.

Furthermore, since our goal is to learn classifiers, the continuous reasoning
time values need to be discretized in order to assign (i.e. classify) ontologies into
separate groups (i.e. class labels) based on their reasoning time.

Feature Selection. We hypothesize that different metrics may have differ-
ent effects on ontology classification performance. Feature selection is a very
widely-used techniques in data pre-processing to remove irrelevant features. A
number of feature selection algorithms are applied to identify and quantitatively
study the ontology metrics that have a strong impact on performance. These
algorithms typically fall into two categories. Feature ranking algorithms (fea-
ture selectors) rank the features by a metric and eliminate all features that do
not achieve an adequate threshold. Subset selection algorithms search the set
of possible features for the optimal subset. In this work, we consider 6 different
feature selectors, since we are interested in ranking individual features (metrics)
and then finding relevant features based on their ranks. These are the infor-
mation gain (InfoGain), information gain ratio (GainInfo), support vector ma-
chine based weighting (SVM), ReliefF-based (ReliefF), symmetrical uncertainty
(Symm), and chi-squared statistic (ChiSquared) feature selectors.

Predictive Model Development. In this work, we develop predictive models
using classification techniques (in the machine learning sense) to predict reason-
ing performance of the classification task (in the ontology reasoning sense). In
our evaluation, the categories of ontologies are obtained from discretization of
the reasoning time of the ontologies for the task, as stated above. Each ontology
is represented as a pair consisting of a subset of metrics and the corresponding
category. The subset of metrics is found using the feature selectors described
above. Given a dataset consisting of a set of ontologies, we choose the training
and test data based on standard 10-fold cross validation, in which each dataset
is divided into 10 subsets. Of the 10 subsets, 1 subset is retained as testing data,
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and the remaining 9 subsets are used as training data. The validation process is
then repeated 10 folds (times).

It is well-known that different classifiers tend to produce different prediction
performance. Hence, we employ various classifiers and identify the most effective
one to build a predictive model for a given dataset. The effectiveness of each
classifier is determined through its classification accuracy (simply accuracy),
often considered to be the best performance indicator for evaluating classifiers.3

It measures the proportion of correctly classified ontologies against all ontologies
in the testing data.

We implement 9 representative classifiers that are available in Weka [21], with
the aim of finding the best predictive models for the four reasoners. These are
classified into 5 categories: Bayesian classifiers (BayesNet (BN) and NäıveBayes
(NB)), decision tree-based classifiers (J48, RandomForest (RF), REP Tree (RT)),
rule-based classifiers (DecisionTable (DT)), a regression-based classifier (Sim-
pleLogistic (SL)), and lazy classifiers (IBk[1≤k≤10] and K*).

Key Metrics Determination. Identifying the metrics that most highly im-
pact reasoning time can provide insights for ontology engineering. In this step,
such metrics are identified by further analyzing outcomes of the feature selectors
utilized in the previous step. More specifically, by examining the metrics used
in the classifier chosen in the predictive model for each dataset, we can identify
which metrics, in conjunction with the classifier, contribute most to accuracy.

Given a dataset of metrics for each reasoner, we apply the 9 classifiers on
various subsets of metrics that are identified by the 6 feature selectors. Then,
we identify the best predictive model for the reasoner consisting of the following
three dimensions: (1) a particular classifier leading to the best accuracy, (2) a
particular metric subset, used for the classifier, and a specific feature selector
that has found the subset, and (3) the prediction performance (accuracy) result
achieved by the classifier with the metric subset. The discovered metric subset
for each reasoner is designated as key metrics leading to its best predictive
model. Furthermore, we measure the impact of individual metrics with respect
to constructing predictive models for the 4 reasoners based on statistical analysis.

5 Data Collection

A total of 358 real-world, public-domain ontologies are collected for this work.
No preprocessing (cleansing) is done. A large number of these ontologies are
collected from the Tones Ontology Repository and NCBO BioPortal.4 These on-
tologies vary in file size, ranging from less than 4KB to almost 300MB. However,
it is worth noting that file size is not a very good indicator of reasoning perfor-
mance, as a small ontology (such as the DOLCE ontology) may owl:imports

a large number of other ontologies, which make up the potentially very large

3 F-measure is measured and found to be completely positively correlated to accuracy.
For brevity reasons, we only report our experimental results in accuracy.

4 http://owl.cs.manchester.ac.uk/repository/, http://www.bioontology.org/

http://owl.cs.manchester.ac.uk/repository/
http://www.bioontology.org/
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import closure that a reasoner considers. Note that all ontologies collected from
BioPortal are large, with at least 10,000 terms. The expressivity of these on-
tologies ranges from OWL 2 EL and QL to OWL Full. At the same time, this
collection also includes some well-known hard ontologies such as FMA, DOLCE,
Galen, NCI Thesaurus and the Cell Cycle Ontology (CCO).

The values of all metrics are calculated; and the distribution of 8 representa-
tive metrics are shown in Figure 1, where the metric values are plotted in log
scale and ranked by the values. As can be seen quite clearly, the values for these
metrics span a large range, from 0 to more than 105, and to more than 107 for
DIT . Moreover, as expected, the majority of ontologies have metric values in
the middle of the range, with a few having values closer to the boundary.

Classification time for all ontologies is also collected. All the experiments
are performed on a high-performance server running OS Linux 2.6.18 and Java
1.6 on an Intel (R) Xeon X7560 CPU at 2.27GHz with a maximum of 40GB
allocated to the 4 reasoner.5 OWLAPI version 3.2.4 is used to load ontologies
and interface with the reasoners. The reasoners that are invoked are: FaCT++
1.5.3, HermiT 1.3.5, Pellet 2.3.0 and TrOWL 0.8. REL is the underlying reasoner
used by TrOWL. These metrics will be revisited in Section 7.
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Fig. 1. Distributions of values of 8 metrics

For each ontology and each reasoner, CPU time for classification is averaged
over 10 independent runs and recorded. Loading and pairwise subsumption test
time is are not included. Trivially simple ontologies (with reasoning time≤ 0.01s)
are later excluded from the experiment to reduce the skewness of the dataset.
Some hard ontologies take an extremely long time to classify. Hence, we apply a

5 To accommodate large ontologies and potential memory leaks in reasoners (due to
repeated invocations).
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50,000-second cutoff for all the reasoners. The distribution of the raw reasoning
time for the four reasoners can be found in Figure 2, where classification time
(in log scale) is ordered and plotted against the ontologies. It can be observed
that FaCT++, HermiT and Pellet all have some ontologies reaching the cut-off
time, while TrOWL successfully classifies all ontologies.6 It can also be seen that
for relatively easy ontologies (≤ 10s), FaCT++ and TrOWL seem to dominate
the other 2 reasoners. Compared to performance data reported in [4], the per-
formance on the same ontologies (GO and NCI Thesaurus) seems to be much
worse in our experiments, running the same reasoners. Upon closer inspection
we notice that the versions of the “same” ontologies are different – we are using
more recent versions (current as of November 2011) of these ontologies, which
are much larger than those versions used in [4].
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Fig. 2. Raw classification time of the four reasoners

As stated in the previous section, discretization is a necessary first step be-
fore classifiers can be trained. After raw run time values are collected, they are
discretized into 5 bins, where the bin ‘T’ contains the trivially simple ontologies
(classification time ≤ 0.01s). The other 4 bins are of unit interval width. The
interval width is used as the exponent of the reasoning time, i.e., 10i is the cutoff
point between bin i and bin i+ 1, 1 ≤ i ≤ 4. These 4 bins are labelled ‘A’, ‘B’,
‘C’ and ‘D’. A summary of the discretization and the number of ontologies for
each reasoner in each bin is shown in Table 1. It can be seen in the table that
each reasoner fails to perform classification on a number of ontologies due to
parsing or processing errors or the ontology being inconsistent.

It is worth pointing out that the server where the experiments are performed
is very capable. Although 100 seconds is not a very long time, the same ontology
will take much longer to run on a less powerful computer (mobile devices in
particular).

6 We note again that this may be due to TrOWL’s incomplete reasoning approach.
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Table 1. Discretization of reasoning time and number of ontologies in each bin

Discretized label Classification time Fact++ HermiT Pellet TrOWL

T T ≤ 0.01s 161 77 138 188

A 0.01s < A ≤ 1s 75 154 126 105

B 1s < B ≤10s 16 35 38 17

C 10s < C ≤ 100s 6 12 12 13

D 100s < D 11 13 16 14

Total discretized 269 291 330 337

Ontologies in error 89 67 28 21

More analysis of the performance characteristics of the reasoners can be found
in [11]. All the ontologies, their metric values and reasoning time can be found
at http://www.csse.monash.edu/~yli/metrics_perf/.

6 Predictive Models

In this section, we present the first contribution of our work, the construction and
analysis of predictive models for classification performance. Our analysis shows
that consistently high accuracy (> 80%) is achieved for all of the 4 reasoners.

Using 9 classifiers and 6 feature selectors, we learn predictive models as spec-
ified in Section 4. For each classifier, the 6 feature selectors are applied to find
the best set of metrics. The set of metrics leading to the best accuracy for the
classifier and the feature selector is then recorded. The accuracy values of the
9 classifiers are measured. More specifically, an accuracy value is measured for
each classifier with 6 different collections of best metrics identified by each of the
6 feature selectors. Eventually, a single set of the best metrics for each (classifier,
feature selector) pair is collected.

Section 6.1 presents and analyzes the overall accuracy results of the 4 reason-
ers. Section 6.2 further characterizes the best predictive model and discusses the
effect of feature selection.

6.1 Accuracy Distribution and Analysis

For the 4 reasoners, the accuracy distributions of the 9 classifiers (across the
6 feature selectors) are measured and presented in boxplots in Figure 3. Box-
plots provide an excellent visual summary of a distribution through 5 statistical
measures: minimum data value (MIN), lower quartile (Q1), median (Q2), upper
quartile (Q3), maximum data value (MAX). Further, we enhance the boxplots
by additionally showing the mean (AVG) of the accuracy data measured for a
single classifier across the 6 feature selectors.

A box itself contains the middle 50% of the accuracy data measured by a
classifier with the 6 feature selectors; the upper box area (in blue) denotes the
50th−75th percentile (Q2−Q3) of the data, and the lower box area (in yellow)
denotes the 25th−50th percentile (Q1−Q2). The remaining 50% of the data is
contained within the areas between the box and the vertical lines or “whiskers”.

http://www.csse.monash.edu/~yli/metrics_perf/
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Fig. 3. Boxplots displaying the accuracy distribution for the 4 reasoners

The ends of the whiskers indicate the minimum and maximum accuracy values.
The line inside the box indicates the median value of the accuracy data. The
mean of the accuracy is represented by a red circle in the box. Among the above
6 statistical measures, the values of 2 measures, maximum (MAX) and mean
(AVG) accuracy, are shown in the plot.

A number of important observations can be made from Figure 3.

– RF (RandomForest) is the most stable predictive model. For all the 4 reason-
ers’ performance, RF has the smallest difference of 1.42 between MIN and
MAX, while BN has the largest of 4.57. This indicates that RF leads to the
most reliable and stable accuracy results, while BN leads to the most variable
accuracy results.

– Ontology metrics entail good predictive models. The range of the MAX accu-
racy for the 4 reasoners is from 84.26 (by BN for FaCT++) to 91.28 (by RF
for TrOWL). This indicates that particular subsets of ontology metrics, identi-
fied by different feature selectors, can be effectively leveraged for building good
predictive models for classification reasoning performance of the reasoners.

– RF is the best classifier leading to the best predictive models for the 4 reasoners.
We examine which classifiers lead to the best predictive models for the 4
reasoners through statistical analysis of central tendency (e.g. mean) of the
measured quantitative values. We compute the mean of the 6 quantitative
values shown in Figure 3 across the 4 reasoners. The results are presented in
Table 2. The best result in the mean values for each criterion is denoted in
boldface. Table 2 clearly shows that RF leads to the best predictive models
for all the 4 reasoners for all the 6 measures. In the following section, we
describe these models in more detail.
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Table 2. The mean quantitative values of the 9 classifiers across the 4 reasoners

Classifier
6 Statistical Measures

MIN Q1 Q2 AVG Q3 MAX

BN 81.38 82.89 83.41 83.94 84.74 82.30
NB 79.85 79.94 80.23 80.79 82.68 80.66
SL 82.98 83.54 84.12 84.17 85.11 83.47
IBk 82.54 82.88 83.11 83.51 85.00 82.09
K* 82.31 83.70 84.16 84.72 86.15 82.83
DT 82.50 83.04 83.19 83.51 84.40 82.78
RT 81.27 82.40 82.91 83.43 83.80 80.75
RF 85.85 85.97 86.41 86.68 87.30 86.03
J48 82.09 82.90 83.34 83.53 84.63 82.66

6.2 Best Predictive Models

As each reasoner employs a different set of algorithms and optimization tech-
niques, they may exhibit significantly different performance on the same on-
tology. As a result, the performance of classifiers may be different for the 4
reasoners as well. In this subsection, we further analyze the best classifiers and
feature selectors to understand the reasoner-specific behaviours.

As discussed in the previous subsection, RandomForest (RF) is the overall
best classifier. This may in part be due to the nature of RF – that it is an
ensemble classifier that consists of many decision trees. Figure 4 shows, for RF
and each reasoner, the MAX classification accuracy (%) for each feature selector,
and also their average. The numeric label on top of each bar denotes the number
of metrics identified by the corresponding feature selector.
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RF achieves consistently high accuracy, all higher than 80% for each reasoner
with an overall average of 86.03%. For TrOWL, RF achieves 90.38% accuracy on
average. It suggests that RF can be effectively used in predicting classification
reasoning performance. It also reinforces our belief that ontology metrics can be
effective in learning predictive models for the reasoning performance. Moreover,
it also opens up the potential to apply our approach to predicting reasoning
performance of other reasoners.

It can be observed that each best accuracy result comes with a different num-
ber of ontology metrics. The numbers vary from 4 (ReliefF for Pellet) to 25
(ChiSquared for FaCT++). Note that not once is the entire set of 27 metrics
chosen by any feature selector. This finding establishes the validity of our hypoth-
esis, presented in Section 4, that feature selectors can be leveraged to discover
more significant metrics that impact on building more strong predictive models
for classification reasoning performance.

7 Key Metrics Identification

In this section, we present the second main contribution of this work, the iden-
tification of important metrics that have a strong impact on classification per-
formance. Such knowledge can contribute the task of ontology engineering and
maintenance. This identification is achieved through a rigorous quantification of
impact factors of all 27 ontology metrics used in the classifiers constructed in
the previous section.

As discussed in the previous section (Table 2), all of the 9 classifiers achieve
mean accuracy of at least 80% for all the 4 reasoners. Such high accuracy makes
the case for investigating the metrics used by all the classifiers and feature selec-
tors. Two factors influence the significance of a given metric: (1) how frequently
it gets selected to be used in the classifiers, and (2) how much it contributes to
prediction of reasoning performance. In other words, the more frequently a met-
ric is used in the predictive models (as chosen by the feature selectors), and the
more weight it has in the classifiers that use it, the more it influences ontology
classification performance. Hence, we combine these two factors to calculate the
impact factor of all the metrics.

Let metrics be denoted mi, 1 ≤ i ≤ 27, classifiers be denoted by cj, 1 ≤ j ≤ 9,
feature selectors be denoted fk, 1 ≤ k ≤ 6, and reasoners be denoted rl, 1 ≤ l ≤ 4.
We denote with fsj,k,l the set of metrics selected for each classifier cj by feature
selector fk for reasoner rl. We further denote with #fsj,l|i the total number of
occurrences of metric mi in all metric sets identified by the feature selectors for
classifier cj and reasoner rl (0 ≤ #fsj,l|i ≤ 6).

Similarly, let rj,li,k denote the weight of the metric mi assigned by feature

selector fk for the pair (cj , rl) (rj,li,k = 0 if mi is not selected), normalized by

max(rj,l∗,k) so that it is between [0, 1]. We average over all the feature selectors

to obtain the average ranked weight rli,j =
∑6

k=1 rj,li,k

6 of mi.
Algorithm 1 describes the calculation of the impact factor for all the metrics.



210 Y.-B. Kang, Y.-F. Li, and S. Krishnaswamy

Input: Metric number of occurrences f(i, j, k, l)
Input: Metric weight r(i, j, k, l)
Output: Impact factor for each metric mif i, 1 ≤ i ≤ 27

1 foreach reasoner rl do
2 Initialize 27× 9 matrices mftl,mf l, rl, nmf l

3 mftli,j ← #fsj,l|i /* Metric frequency per classifier */

4 mf l
i,j ←

mftli,j∑27
i=1 mftli,j

/* Normalization */

5 rli,j ←
∑6

k=1 r
j,l
i,k

6
/* Average ranked weight */

6 mf l ← mf l ◦ rl /* Combining frequency with weight */

7 nmf l
i,j ← a+ (1− a)× mf l

i,j

max(mf l
∗,j)

/* Max frequency normalization */

8 end
9 Initialize 27× 9 matrix nmf for each (mi, cj), 27× 1 vector mif for each mi

10 nmf←
∑4

l=1 nmf l

4
/* Average over the reasoners */

11 mif i ←
∑9

j=1 nmfi,j

9
/* Average over the classifiers */

12 mif i ←
mif i

max(mif)
/* Normalization over max */

13 return mif

Algorithm 1: The calculation of the impact factor of metrics

For each reasoner (lines 1-8), the combined scores taking into account number
of occurrences and weight for each metric are calculated. On line 3, we calculate
the total number of occurrences of each metric for each classifier in a 27×9matrix
mftl (metric frequency table). For example, if a metric ‘SOV’ (denoted m2) is
in the sets of metrics selected by 4 out of the 6 feature selectors for the classifier
RF (denoted c1) and reasoner Pellet (denoted r3), then mft32,1 = 4. Each mftli,j
value is then normalized by dividing by the total number of occurrences of all
metrics for classifier cj on line 4.

From the raw weight r(i, j, k, l), we obtain the weight rli,j by averaging over
all the 6 feature selectors on line 5. Line 6 then combines the frequency and the
averaged weight of each metric by taking the entrywise product of matrices mf l

and rl.
Note that one problem of the measure mf l as calculated on line 6 is that the

difference of impact factors between higher and lower frequency metrics tend to
be too large. For example, it seems unlikely that 6 occurrences of a metric with
a ranked scored rl in the collection of a classifier in mftl truly carry 6 times the
significance of a single occurrence with the same or similar ranked score rl. To
avoid this problem, we apply a normalization technique similar to maximum term
frequency normalization [14] to mf l on line 7 to obtain the normalized impact
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factor values for each (metric, classifier) pair for each reasoner. Parameter a is
a value between 0 and 1 and is generally set to 0.4 [14]. It is a smoothing term

whose role is to dampen the contribution of
mf l

i,j

max(mf l
∗,j)

. In this step we also scale

down mf l
i,j by the largest frequency values of all metrics in the collection for a

classifier cj .
Eventually, the impact factor values are averaged over all 4 reasoners and all

9 classifiers to obtain the final impact factor values of the metrics (lines 10-11).
The metrics can be grouped into a number of categories according to the

quartiles their mif values fall into: Strong Impact (SI, 0.75 < mif ≤ 1), Normal
Impact (NI, 0.5 < mif ≤ 0.75), Weak Impact (WI, 0.25 < mif ≤ 0.5), and Very
Weak Impact (VI, 0 ≤ mif ≤ 0.25). The ranking and categorization results are
shown in Figure 5.
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Fig. 5. Normalized impact factors of all the ontology metrics

The 11 metrics in SI, NI and WI are all commonly used in the best predictive
models presented in Figure 4. Except in one case, all metric sets selected by
feature selectors for RF (in Figure 4) are a superset of the 11 metrics in SI, NI
and WI in Figure 5. The exception is the set of metrics selected by ReliefF for
TrOWL, where there are only 4 metrics. In this case, however, the 4 metrics also
belong to these 3 categories. It can be concluded that these 11 metrics form a core
group of metrics that are important for predicting classification performance.

Furthermore, it can be observed in Figure 5 that a group of 8 metrics (SI
and NI) have high impact on reasoning performance, and that there is a clear
separation of mif scores between these two groups of metrics and the rest of
the metrics. Specifically, it can be clearly seen that (1) the number of existential
quantification restrictions (EF ), (2) the size of an ontology (SOV ), (3) the
number of independent paths (CY C), (4) the characteristics of named classes
(the 4 CLS metrics) and (5) the non-treelike-ness of the inheritance graph (TIP )
have a strong impact on prediction performance.
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As mentioned previously, the impact factor indicates a metric’s relative influ-
ence on (the prediction of) classification performance. The 8 metrics identified
above can hence be used to guide ontology engineering. For example, reducing the
size of the ontology (SOV ), reducing the number of independent paths (CY C),
reducing the degree of classes (CID and COD) and making the inheritance
graph more tree-like (TIP ) may significantly improve reasoning performance of
the ontology.

8 Conclusion

Terminological reasoning has been shown to be a computationally expensive
problem, especially for expressive languages such as OWL DL and OWL 2 DL.
Despite tremendous progress in the past decade in the design and development
of highly optimized algorithms and reasoners, ontology classification is still a
very challenging task, as demonstrated by previous benchmarking works and
our own experiments. It is therefore highly desirable to be able to quantitatively
analyze and predict reasoning performance using syntactic features.

Metrics have been successfully used to capture different aspects of the syntac-
tic/structural characteristics of various kinds of artefacts (software, combinato-
rial problems, etc.), including their complexity and empirical hardness. In this
paper we propose, develop and evaluate the use of ontology metrics as an effec-
tive basis for predict reasoning time for the task of ontology classification. To
the best of our knowledge, this is the first such study to apply machine learning
techniques (classification) to predict reasoning time for ontologies.

Our contributions in this paper are three-fold: (1) the development of highly
effective (over 80% accuracy) predictive models to estimate the reasoning time
for an ontology given its metric values, for four widely-used OWL 2 DL reasoners,
(2) the identification of a set of 8 metrics that have the most impact/correlation
with reasoning performance, and (3) a rigorous empirical validation of the pro-
posed methodology with a set of over 350 real-world ontologies, the largest study
so far in terms of the size of the dataset.

A number of future directions are planned for this work. We will further study
the statistical significance of our predictive models and key metrics. Other met-
rics, such as language profile and number of (hidden) GCIs, will be investigated
to evaluate their effectiveness in reasoning time prediction. The effect of op-
timisation techniques on reasoning performance will also be investigated. We
also plan to investigate other reasoning tasks (consistency checking) and other
machine learning techniques (regression analysis). The degree of incompleteness
of TrOWL will also be studied to quantify its impact on prediction accuracy.
Lastly, we will study the feasibility of generating synthetic ontologies with spec-
ified reasoning performance with metric values as parameters. Such ontologies
will be very valuable in the analysis and optimization of reasoning algorithms.
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Abstract. Data provenance is the history of derivation of a data ar-
tifact from its original sources. As the real-life provenance records can
likely cover thousands of data items and derivation steps, one of the
pressing challenges becomes development of formal frameworks for their
automated verification.

In this paper, we consider data expressed in standard Semantic Web
ontology languages, such as OWL, and define a novel verification formal-
ism called provenance specification logic, building on dynamic logic. We
validate our proposal by modeling the test queries presented in The First
Provenance Challenge, and conclude that the logic core of such queries
can be successfully captured in our formalism.

1 Introduction

In this paper, we propose and study a novel logic-based approach to formal
verification of data provenance records in the Semantic Web environment.

Motivation. Data provenance is the history of derivation of a data artifact from
its original sources [1,2]. A provenance record stores all the steps and contex-
tual aspects of the entire derivation process, including the precise sequence of
operations executed, their inputs, outputs, parameters, the supplementary data
involved, etc., so that third parties can unambiguously interpret the final data
product in its proper context. It has been broadly acknowledged that provenance
information is crucial for facilitating reuse, management and reproducibility of
published data [3,1]. For instance, the ability of verifying whether past experi-
ments conformed to some formal criteria is a key in the process of validation of
eScientific results [4]. As provenance records can cover thousands of data items
and derivation steps, one of the pressing challenges becomes development of for-
mal frameworks and methods to automate verification. Such a logic back-end for
practical reasoning tools could, e.g. be useful for provenance-driven data query-
ing, or for validating conformance of provenance records to formal specifications.

Let us consider a concrete example taken from The First Provenance Chal-
lenge (FPC) — a community effort aimed at understanding the capabilities of
available provenance systems [5]. In FPC, 17 teams competed in answering 9
queries over data provenance records (see Figure 1) obtained from executing a

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 215–230, 2012.
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Fig. 1. A data provenance record describing a run of the FPC workflow [5]

real-life scientific workflow for creating population-based “brain atlases” of high
resolution anatomical data. One representative task was to:

Q6. Find all output averaged images of softmean (average) procedures, where the
warped images taken as input were align warp’ed using a twelfth order nonlinear
1365 parameter model, i.e. where softmean was preceded in the workflow, directly
or indirectly, by an align warp procedure with argument -m 12.

A distinctive feature of this sort of queries is their inherent two-dimensionality:
the domain data (here: image identifiers) is queried relative to its meta-level
provenance description. To date all existing approaches to support such queries
are based on ad hoc combinations of techniques and formalisms, dependent on
the internal representation structures, and are procedural in nature. Given the
semantic character of the task, and in light of the soon to be expected stan-
dardization of the Provenance vocabularies by W3C,1 a logic-based language
for querying and verifying provenance graphs, which could significantly improve
reusability and generalisability, is critically missing. This paper closes this gap.

Methodology. We introduce provenance specification logic (PSLM ) which, to the
best of our knowledge, offers the first systematic view on the logical foundations
of formal verification of data provenance records. Our focus is on data expressed
in the Semantic Web ontology languages, such as OWL and RDF(S), whose
formal core is essentially captured by Description Logics (DLs) [6], underpinning
the Semantic Web architecture.

The basic idea is very intuitive. A data provenance record is represented as
a directed graph, with certain nodes being treated as identifiers for datasets,
containing the data involved in the respective stages of the computation. We
construct the basic variant of our logic, called PSL, by substituting atoms of
Propositional Dynamic Logic (PDL) with queries belonging to a selected query

1 See http://www.w3.org/2011/prov/wiki/Main_Page

http://www.w3.org/2011/prov/wiki/Main_Page


Formal Verification of Data Provenance Records 217

language. The dynamic component, thus inherited from PDL, enables expressing
complex provenance patterns, while the embedded queries support access to
data artifacts. In the second step, we lift this approach to cater for scenarios
in which provenance graphs are themselves described in dedicated provenance
ontologies. This way, we obtain the target formalism PSLM , which, on top of the
functionalities offered by PSL, also facilitates the use of a rich metalanguage.

This mechanism is highly independent from the employed representation for-
malisms, and can be reused in a plug-and-play fashion for a number of combi-
nations of ontology–query languages. Moreover, we demonstrate that PSLM is
computationally well-behaved. By separating the DL-level reasoning tasks from
the pure model checking of provenance graphs, we obtain a PTime-completeness
result, carried over from the model checking problem in PDL, which remains in-
variant to the particular choice of the employed ontology/query languages.

Contents. In this work we deliver three main contributions: 1) We introduce
PSLM , a declarative language for expressing complex constraints over data
provenance records. 2) By systematically studying the collection of test queries
from FPC, mentioned above, we show that PSLM offers desired modeling ca-
pabilities. 3) Finally, we provide a computational analysis of the approach, and
report on some satisfying results.

In the remainder of this paper, we first give a short overview of the related
work (Section 2) and preliminary notions (Section 3). Next, we incrementally in-
troduce PSLM (Sections 4, 5) and validate it against the test queries (Section 6).
Finally, we study the computational aspects of our framework (Section 7).

2 Related Work

Provenance is nowadays recognized as one of the critical problems to be ad-
dressed by the Semantic Web community, attracting increasing interest, e.g.
[7]. Existing Semantic Web-based approaches to the problem of verification and
querying, such as [8] are persistently technology-driven, and employ combina-
tions of web services, ontologies, triple stores, SPARQL queries, etc. and fail to
lay down systematic perspectives on the formal foundations of the problem. Note-
worthy exceptions are [9] and [10] which provide, respectively: reproducibility
semantics, which are executional in nature, and logic program-based framework
for reasoning with a provenance-annotated linked data, where both annotations
and data language are specifically restricted. Our paper goes beyond those pro-
posals by providing a cohesive declarative semantic framework based on standard
logic and ontology languages, and rich metamodels.

On the formal level, the problem of provenance verification bears a strong re-
semblance to the traditionally studied verification of transition systems, which in
principle encourages the use of similar logic-based techniques [11]. This analogy,
however, must be treated with caution. While in usual transition systems states
represent complete, propositional abstractions of system’s configurations, in the
data provenance context states are effectively datasets, reflecting the knowledge
of the system in a certain configuration. This creates a need for more expressive
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verification formalisms, extending the basic program logics, such as PDL [12].
Even Dynamic DLs [13], which are capable of modeling transition systems with
states corresponding to DL knowledge bases, are not flexible enough to express
rich constraints on the data level. Some other verification formalisms, of a more
suitable, data-oriented flavor, have been proposed for verification of data-driven
systems [14], knowledge base programs [15], or workflow schemas [16]. However,
the central motivation behind their design is to enable representation of all per-
missable data-altering operations over a fixed data language, with the aim of
studying general properties of programs composed of such operations. Conse-
quently, the considered representation languages are strongly restricted in order
to ensure decidability of those properties. Such general problems, however, are
not of a primary interest in our case, since a provenance record describes by
definition a single, completed computation process, which one wants to study
ex-post. Hence, rather than abstracting from the richness of a given system and
focusing on its possible behaviors, we must enable reasoning machinery which
can maximally utilize the available information about the system.

3 Preliminaries

For clarity of exposition, in this paper we consider data represented and managed
within the framework of Description Logics (DLs), noting that all claims made in
this context extend naturally to arbitrary fragments of OWL/RDF(S) languages.
In what follows, we briefly recap the preliminaries regarding DLs, and further
formalize the notion of data provenance record.

3.1 Description Logics

We use the standard nomenclature and notation for the syntax and semantics
of DLs. We refer the reader to [6] for full details. A DL language L is specified
by a vocabulary Σ = (NC , NR, NI), where NC is a set of concept names, NR

a set of role names and NI a set of individual names, and by a selection of
logical operators enabling construction of complex concepts, roles and axioms.
Different combinations of operators give rise to DLs of different expressiveness
and computational complexity, from the highly expressive SROIQ, underpin-
ning the OWL 2 DL language, to the lightweight EL++ or the DL-Lite family,
on which tractable OWL profiles are based [17]. For instance, the DL ALCO, a
substantial fragment of OWL 2 DL, permits the following constructors:

Concepts:
� | ⊥ | A ∈ NC | ¬C | C �D | C �D | ∃r.C | ∀r.C | {a}

Axioms:
C � D | C(a) | r(a, b)

where r ∈ NR, a, b ∈ NI and C,D are (possibly complex) concepts.

From the data management perspective, a set of concept inclusions C � D is
typically considered an ontology which provides access to instance data, repre-
sented as a set of assertions of the form A(a), r(a, b) [18]. We implicitly abide
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by this distinction, but for simplicity refer rather to the general notion of a DL
knowledge base.

Definition 1 (Knowledge base). A knowledge base K over a DL language
L is a finite set of axioms allowed by the syntax of L. The set of all knowledge
bases over L is denoted by K(L).

The semantics of L is given in terms of the usual model-theoretic interpretations.
An interpretation I is a model of a knowledge base iff it satisfies all its axioms.
We say that an axiom φ is entailed by a knowledge base K, denoted as K |= φ
iff φ is satisfied in every model I of K.

Further, we recall the notion of conjunctive queries (CQs) — the most popular
class of first-order queries studied in the context of DLs [19]. The problem of
answering CQs is known to be decidable for most DLs, and is effectively handled
by existing tools, such as DL reasoners (e.g. Pellet) or, as in case of DL-Lite
family, relational database management systems (e.g. Mastro2). Let NV be a
countably infinite set of variables. A conjunctive query over a DL language L
with the vocabulary Σ = (NC , NR, NI) is a first-order formula φ = ∃�y.q(�x, �y),
where �x, �y ∈ NV are sequences of variables and q is a conjunction of atoms over
Σ. The free variables �x occurring in φ are also called the answer variables and
denoted as avar(φ). For a CQ φ, a φ-substitution is a mapping μ : avar(φ) !→ NI .
We write μ(φ) to denote the formula resulting from applying μ to φ. We call
μ a certain answer to φ w.r.t. a knowledge base K, whenever K |= μ(φ), i.e.
whenever μ(φ) is satisfied in all models I of K.

3.2 Data Provenance Records

The definition of a provenance record that we adopt here, and further refine in
Section 5, is the simplest abstraction of the proposals currently discussed in the
course of a W3C standardization effort. Those proposals, building largely on the
specification of the Open Provenance Model [2], consider a provenance record to
be a basic graph structure (such as presented in Figure 1) representing the whole
documented history of interactions between processes and data artifacts during a
certain computation, where data artifacts are in fact datasets (knowledge bases)
expressed in DLs. The choice of the OPM foundations for our approach is mo-
tivated largely by the fact that OPM is suggested as the intended formalism
for representing provenance in the expected W3C recommendation. In principle,
however, the level of abstraction which we endorse here goes beyond particular,
concrete encodings of provenance information, and builds only on generic prove-
nance notions present also in other formalisms used for recording provenance,
such as Proof Markup Language [20,21]. Crucially, our approach generalizes over
any (transition) graph-based representation of data provenance.

A directed graph is a pair (V,E), where V is a non-empty set of nodes and
E is a set of ordered pairs from V × V , called edges. A bipartite graph is a
graph (V ∪W,E), where V ∪W is a set of nodes and E a set of edges such that

2 See http://www.dis.uniroma1.it/quonto/

http://www.dis.uniroma1.it/quonto/
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E ⊆ V ×W ∪W ×V . An edge-labeled graph is a triple (V,E, l), such that (V,E)
is a graph and l : E !→ R assigns a relation name from a set R to every edge
in E. A graph (V,E) is called acyclic iff for every node v ∈ V , there exists no
sequence w1, . . . , wn ∈ V , such that (v, w1), . . . , (wn−1, wn), (wn, v) ∈ E.

Definition 2 (Provenance graph). An L-provenance graph is a tuple G =
(P,D,E, l, k), where (P ∪ D,E, l) is a bipartite, directed, acyclic, edge-labeled
graph, and k is a function k : D !→ K(L). The nodes in P are called processes
and in D data artifacts.

By convention, we identify process nodes with unique process invocations that
occurred during the recorded computation, and data artifact nodes with the
corresponding DL knowledge bases {k(d) | d ∈ D} that were involved. Note,
that we do not presume any specific causal relationships between the represented
entities. We are only interested in the formal properties of the graphs.

4 Provenance Specification Logic

Formal verification is the task of checking whether a certain formal structure
satisfies the property described by a given formula of a dedicated specification
language. The properties of data provenance records which we aim to capture
here are essentially complex relationships between the structural patterns oc-
curring in the provenance graphs and the contents of data artifacts. Three typ-
ical constraints, representative of most reasoning tasks requested from practical
provenance systems [3,4,5], are e.g.:

1. r(a, b) holds in data artifact d1 and d1 is reachable via edge succeeds from
processes p1 and p2,

2. a data artifact in which D(a) does not hold is reachable via a finite sequence
of two-step edge compositions wasGeneratedBy -used from a data artifact in
which D(a) holds,

3. if D(a) holds in any data artifact related to process p1 via either input1 or
input2, then p1 must be related via output to some data artifact in which
r(a, y) holds, for some arbitrary y.

These informally stated properties are clearly satisfied by the respective prove-
nance graphs, illustrated in Figure 2, where nodes p1, p2 represent process nodes,
and d1, d2, d3 data artifacts, whose contents are listed inside the nodes.

The ability of expressing constraints of this flavor is the key feature of a big
family of program verification formalisms based on dynamic logics, in partic-
ular the prominent Propositional Dynamic Logic (PDL) [12]. The provenance
specification logic (PSL), which we introduce below, is a data-oriented extension
of PDL. Essentially, we substitute propositional letters of PDL formulas with
queries belonging to a certain query language. The dynamic component of PSL
enables explicit modeling of requested provenance patterns, while the queries al-
low for accessing the contents of data artifacts. The choice of an adequate query
language is in principle an application-driven decision, depending strongly on
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Fig. 2. Sample provenance graphs

the underlying data language. For instance, if data artifacts use RDF(S) repre-
sentation, a natural candidate is SPARQL [22]. As our focus is on the general DL
setup, we consider the class of conjunctive queries, as introduced in Section 3.

Definition 3 (PSL: syntax). Let G = (P,D,E, l, k) be an L-provenance graph
and R the set of relation names used in G. Then the provenance specification
language over G is the smallest language induced by the following grammar:

Object queries:
φ := CQs over L

Path expressions:
π := r | π;π | π ∪ π | π− | π∗ | v? | α?
where r ∈ R and v ∈ P ∪D,

Provenance formulas:
α := {φ} | � | 〈π〉α | α ∧ α | ¬α

Whenever convenient we use the usual abbreviations ⊥ = ¬�, [π] = ¬〈π〉¬,
α ∨ β = ¬(¬α ∧ ¬β) and α→ β = ¬α ∨ β.

Following the CQ notation, by avar(α) we denote the set of all free (answer)
variables occurring in a provenance formula α, i.e. the union of all answer vari-
ables from the CQs embedded in α. Note, that different CQs are allowed to
share same answer variables. This way one can capture interesting data depen-
dencies between the contents of data artifacts. An α-substitution is a mapping
μ : avar(α) !→ NI and μ(α) denotes the result of applying μ to α. We say that
μ(α) is satisfied in an L-provenance graphG = (P,D,E, l, k) in a node v ∈ P ∪D
iff G, v � μ(α), where the satisfaction relation � is defined as follows.

Definition 4 (PSL: semantics). The satisfaction relation � for PSL formulas
is given by a simultaneous induction over the structure of provenance formulas
and path expressions, w.r.t. a substitution μ. For an L-provenance graph G =
(P,D,E, l, k) and every v, w ∈ P ∪D:

Provenance formulas:

G, v � {φ} iff v ∈ D and k(v) |= μ(φ),
G, v � �,
G, v � 〈π〉α iff there exists w ∈ P ∪D, s.t. G � v

π−→ w and G,w � α,
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G, v � α ∧ β iff G, v � α and G, v � β,
G, v � ¬α iff G, v �� α,

Path expressions:

G � v
r−→ w iff (v, w) ∈ E and l(v, w) = r,

G � v
π;σ−→ w iff there is u ∈ P ∪D s.t. G � v

π−→ u and G � u
σ−→ w,

G � v
π∪σ−→ w iff G � v

π−→ w or G � v
σ−→ w,

G � v
π−
−→ w iff G � w

π−→ v,

G � v
π∗
−→ w iff v(

π−→)∗w, where (
π−→)∗ is the transitive reflexive closure of

π−→ on G,

G � v
v?−→ v,

G � v
α?−→ v iff G, v � α.

Observe, that unlike in typical transition systems, only selected nodes in prove-
nance graphs — exactly the data artifacts in D — represent the states over
which object queries can be evaluated. Irrespective of this deviation, the model
checking problem, underlying formal verification tasks, is defined as usual.

Model Checking 1 (PSL formulas) Given an L-provenance graph G = (P,
D,E, l, k), a node v ∈ P ∪D, a PSL provenance formula α and an α-substitution
μ, decide whether G, v � μ(α).

It is easy to check that the following PSL formulas express precisely the prop-
erties from the three examples presented in the opening of this section, and are
satisfied by the specified graphs, nodes and substitutions (Figure 2):

1. α := 〈p1?; succeeds ; d1?〉({r(x, y)} ∧ 〈succeeds−; p2?〉�),
where G1, p1 � μ(α) for μ = {x !→ a, y !→ b},

2. α := {D(x)} ∧ 〈(wasGeneratedBy ; used)∗〉¬{D(x)},
where G2, d1 � μ(α) for μ = {x !→ a},

3. α := 〈p1?〉(〈(input1 ∪ input2)
−〉{D(x)} → 〈output〉{∃y.r(x, y)}),

where G3, p1 � μ(α) for μ = {x !→ a}.

For a more practical illustration, we model two use-cases from the eScience do-
main. The first one illustrates a typical problem of provenance-based validation
of an eScience experiment, reported in [4].

Example 1. A bioinformatician, B, downloads a file containing sequence data
from a remote database. B then processes the sequence using an analysis service.
Later, a reviewer, R, suspects that the sequence may have been a nucleotide
sequence but processed by a service that can only analyze meaningfully amino
acid sequences. R determines whether this was the case.

α := {∃y.Sequence(x) ∧ analysis-result(x, y)} →
[output ; analysis-service?; input ]({Amino-acid(x)} ∧ ¬{Nucleotide(x)})
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Solution: The requested property is satisfied by a graph G if G, v � μ(α) for
every v ∈ P ∪ D and α-substitution μ = {x !→ a}, where a is the sequence
in question. Naturally, we presume a certain underlying representation model,
where e.g. analysis-service is the name of the cited service, the result of analysis
is given via an axiom of type analysis-result(a, y), etc. For lack of space we do
not sketch such models for any of the remaining examples, relying on a proper
reconstruction by the reader.

As the second example, we formalize one of the queries from FPC [5].

Example 2. See Q6 in Section 1 (cf. Figure 1).

α := {Image(x)} ∧ 〈wasGeneretedBy ; softmean1...n; used〉({∃y.Image(y)} ∧
〈(wasGeneratedBy ; used)∗;wasGeneratedBy ; align-warp1...m〉�)

where softmean1...n := softmean1? ∪ . . . ∪ softmeann? includes all invocations
of softmean process in the graph, while align-warp1...m := align-warp1? ∪ . . . ∪
align-warpm? all invocations of align warp with the specified parameter value.

Solution: For every v ∈ P ∪D and α-substitution μ, if G, v � μ(α), then μ is
a requested resource.

Observe, that in the latter example not all information requested in the query
can be expressed is the PSL formula in a direct, declarative manner. Namely,
the selection of softmean and align warp invocations has to be encoded by an
exhaustive enumeration of all the nodes satisfying the specified description. This
shortcoming, which affects the high-level modeling capabilities of our formalism,
is exactly what motivates the extension introduced in the next section.

5 Provenance Metalanguage

In practice, the relevant provenance information can be much richer than re-
flected in our abstract notion of provenance graphs. Typically, provenance
records account also for the execution context of all processes, including their
parametrization, time, responsible actors, etc. [1,2,3]. Moreover, they use com-
plex taxonomies for classifying all these resources. Consequently, the structure
of a provenance graph, along the accompanying contextual information, is com-
monly expressed by means of another DL-based language, used orthogonally to
that representing the contents of data artifacts [23,3]. For instance, the prove-
nance graph G implicitly referred to in Example 2, would be likely represented
as a knowledge base containing, among others, the axioms listed in Table 1.
Formally, we define such a meta-level representation of provenance graphs as
follows.

Definition 5 (Metalanguage, metaknowledge base). LetG = (P,D,E, l, k)
be an L-provenance graph and R the set of relation names used in G. Let LG be
a DL language with the vocabulary Γ = (MC ,MR,MI), such that R ⊆ MR and
P ∪D ⊆ MI , and KG a knowledge base over LG. Then, LG is called the metalan-
guage andKG = (KG, k) themetaknowledge base overG iff the following conditions
are satisfied:
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Table 1. A DL knowledge base encoding (part of) a provenance graph

Artifact � ¬Process Softmean � Process
Artifact � ∀wasGeneratedBy .Process Align-warp � Process
Process � ∀used .Artifact Align-warp � ∃hasArgValue .String
Softmean(softmean i) - for every node softmean i

Align-warp(align-warpi) - for every node align-warpi
hasArgValue(align-warpi, “-m 12”) - for every node align-warpi corre-

sponding to an invocation of align
warp with argument “-m 12”

1. D = {v ∈MI | KG |= Artifact(v)}, for a designated concept Artifact ∈MC,
2. for every r ∈ R and v, w ∈ MI, it holds that (v, w) ∈ E and l(v, w) = r iff
KG |= r(v, w).

Assuming the names in MI are interpreted uniquely, it is easy to see that the
structure of G is isomorphically encoded in the set of role assertions, over role
names in R, entailed by KG. As the positions of data artifacts remain unaltered,
one can immediately rephrase the definition of the satisfaction relation �, to
show that for any PSL formula α, node v ∈ P ∪D, and an α-substitution μ it is
the case that G, v � μ(α) iff KG, v � μ(α). More interestingly, however, we can
instead slightly extend the provenance specification language to make a vital use
of the newly included meta-level information.

Definition 6 (PSLM : syntax). Let G = (P,D,E, l, k) be an L-provenance
graph and LG, KG the metalanguage and the metaknowledge base over G, respec-
tively. Then the provenance specification language (with metalanguage) over KG

is the smallest language induced by the grammar of PSL over G (Definition 3),
modulo the revision of path expressions:

Path expressions:
π := r | π;π | π ∪ π | π− | π∗ | v? | C? | α?
where r ∈MR, v ∈MI and C is a concept in LG,

For a PSLM provenance formula α, and an α-substitution μ, we say that μ(α)
is satisfied a metaknowledge base KG in an instance v ∈ MI iff KG, v � μ(α),
where the satisfaction relation � is defined as follows.

Definition 7 (PSLM : semantics). The satisfaction relation � for PSLM for-
mulas is given by a simultaneous induction over the structure of provenance
formulas and path expressions, w.r.t. a substitution μ. Let LG be the metalan-
guage with vocabulary Γ = (MC ,MR,MI) and KG = (KG, k) the metaknowledge
base over an L-provenance graph G. For all individual names v, w ∈MI :

Provenance formulas:

KG, v � {φ} iff KG |= Artifact(v) and k(v) |= μ(φ),

KG, v � 〈π〉α iff there exists w ∈MI, s.t. KG � v
π−→ w and KG, w � α,
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Path expressions:

KG � v
r−→ w iff KG |= r(v, w),

KG � v
π;σ−→ w iff there is u ∈MI s.t. KG � v

π−→ u and KG � u
σ−→ w,

KG � v
C?−→ v iff KG |= C(v),

where the remaining conditions are exactly as in Definition 4 (modulo G/KG).

The model checking problem is rephrased accordingly.

Model Checking 2 (PSLM formulas) Given a metaknowledge base KG over
an L-provenance graph G, an instance v ∈MI, a PSLM provenance formula α,
and an α-substitution μ, decide whether KG, v � μ(α).

The usefulness of the presented extension, in particular of the test operator C?,
which allows for referring to graph nodes generically by their types, inferred from
the metaknowledge base, can be observed in the following example.

Example 3. See Q6 in Section 1 and Example 2. We restate the formula α as:

α := {Image(x)} ∧ 〈wasGeneretedBy ; Softmean?; used〉
({∃y.Image(y)} ∧ 〈(wasGeneratedBy ; used)∗;wasGeneratedBy ;

(Align-warp � ∃hasArgValue.{“-m 12”})?〉�)

where KG, in the metaknowledge base KG = (KG, k), contains (among others)
the axioms from Table 1.

Solution: For every v ∈ MI and α-substitution μ, if KG, v � μ(α), then μ is a
requested resource.

Compared to its PSL variant from Example 2, the PSLM formula used in Ex-
ample 3 is much more succinct and explicitly represents all requested informa-
tion. More importantly, thanks to the use of a generic vocabulary for classifying
nodes (here: concepts Softmean, Align-warp�∃hasArgValue.{“-m 12”}), instead
of their enumerations, the formula is also more input-independent, in the sense
that it can be directly reused to verify/query alternative provenance records
obtained from running the same workflows.

6 Evaluation

In order to validate our approach in practical scenarios, we have analyzed the
complete list of test queries from The First Provenance Challenge, which to our
knowledge constitutes a so far unique ‘golden standard’ for the provenance com-
munity. Below we model possible solutions using the logic PSLM and elaborate
on our findings.

Q1. Find the process that led to Atlas X Graphic / everything that caused Atlas
X Graphic to be as it is. This should tell us the new brain images from which
the averaged atlas was generated, the warping performed etc.
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α1 := (� ∨ {�(x)}) ∧ 〈(used− ∪ wasGeneratedBy−)∗;Atlas-X-Graphic?〉�

Solution: Every v ∈MI and μ such that K, v � μ(α1) are requested resources.

Q2. Find the process that led to Atlas X Graphic, excluding everything prior to
the averaging of images with softmean.

α2 := α1 ∧ [(used− ∪ wasGeneratedBy−)∗]¬〈wasGeneratedBy−; Softmean?〉�

Solution: Every v ∈MI and μ such that K, v � α2 are requested resources.

Q3. Find the Stage 3, 4 and 5 details of the process that led to Atlas X Graphic.

Comment: This is a complex search/verification task, whose reasoning parts
can be accomplished by a mix of formulas used in Q1, Q2. Essentially, one must
decide what the relevant details are and retrieve them by applying appropriate
provenance formulas over the provenance graphs.

Q4. Find all invocations of procedure align warp using a twelfth order nonlinear
1365 parameter model, i.e. align warp procedure with argument -m 12, that ran
on a Monday.

α4 := 〈(Align-warp � ∃hasArgValue.{“-m 12”} � ∃executedOn.Monday)?〉�

Solution: Every v ∈MI such that K, v � α4 is a requested resource.

Q5. Find all Atlas Graphic images outputted from workflows where at least one
of the input Anatomy Headers had an entry global maximum=4095. The contents
of a header file can be extracted as text using the scanheader AIR utility.

α5 := 〈AtlasGraphic?〉({Image(x)} ∧ 〈(wasGeneratedBy ; used)∗〉
〈AnatomyHeader?〉{hasValue(global-maximum, “4095”)})

Solution: For every v ∈ MI and μ such that K, v � μ(α5), μ is a requested
resource.

Q6. Example 3, discussed in the previous section.

Q7. A user has run the workflow twice, in the second instance replacing each
procedures (convert) in the final stage with two procedures: pgmtoppm, then pn-
mtojpeg. Find the differences between the two workflow runs. The exact level of
detail in the difference that is detected by a system is up to each participant.

Comment: This is a complex search/verification task, whose reasoning parts
can be accomplished by posing a number of model checking problems. Essentially,
for each relevant provenance formula one must verify it over both graphs and
compare the obtained answers.

Q8. A user has annotated some anatomy images with a key-value pair cen-
ter=UChicago. Find the outputs of align warp where the inputs are annotated
with center=UChicago.
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α8 := {�(x)} ∧ 〈wasGeneratedBy ;Align-warp?; used ;AnatomyImage?〉
{∃y.(Image(y) ∧ center(y,UChicago))}

Solution: For every v ∈ MI and μ such that K, v � μ(α8), μ is a requested
resource.

Q9. A user has annotated some atlas graphics with key-value pair where the
key is studyModality. Find all the graphical atlas sets that have metadata an-
notation studyModality with values speech, visual or audio, and return all other
annotations to these files.

α9 := 〈AtlasGraphic?; ∃studyModality .{speech}? ∪ ∃studyModality .{visual}? ∪
∃studyModality .{radio}?〉�

Solution: Every v ∈ MI such that K, v � α9 is a requested resource. Finding
other annotations can be accomplished by posing a number of model checking
problems w.r.t. the identified resources.

The above analysis shows that typical reasoning tasks over data provenance
records consist of two components: search and logical verification. As far as ver-
ification is concerned, the logic PSLM proves well suited for modeling requested
properties and queries. In particular, out of the 9 considered problems, at least
5 — Q1, Q2, Q5, Q6, Q8 — can be solved directly, using a combination of
all distinctive features of PSLM , namely: PDL-like path expressions, embedded
CQs and the metalanguage. Queries Q4, Q9 can be answered without the use
of embedded CQs. Problems Q3, Q7 and partially Q9 are in fact descriptions of
complex search/verification tasks, which can be decomposed into a number of
individual verification problems. Those, in turn, can be addressed using PSLM

in the same fashion as in the remaining cases.

7 Reasoning and Complexity

The close relationship of PSLM to PDL can be conveniently exploited on the
computational level. Crucially, PSLM model checking can be decoupled into two
separate problems:

1. construction of a finite-state transition system and a PDL formula (involving
polynomially many CQ answering / DL entailment problems),

2. PDL model checking.

This technically unsurprising, but fully intended result has some significant the-
oretical and practical implications. From the theoretical perspective, it allows for
identifying a complexity bound, invariant to the cost of reasoning with the par-
ticular DL languages used in the representation. From the practical viewpoint,
it opens up a possibility of building simple, yet well-grounded and efficient rea-
soning architectures based on existing, highly optimized DL reasoners, query
engines (e.g. Mastro), and PDL model checkers (e.g. MCPDL3).

3 See http://www2.tcs.ifi.lmu.de/~axelsson/veri_non_reg/pdlig_mc.html

http://www2.tcs.ifi.lmu.de/~axelsson/veri_non_reg/pdlig_mc.html
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In the following, we sketch the reduction procedure. Its full description and
the missing proofs are presented in the online technical report [24]. First, recall
the notion of a finite-state transition system.

Definition 8 (Transition system). Let P = {p, q, . . .} be a set of proposi-
tional letters and A = {r, s, . . .} a set of atomic program names. Then a finite-

state transition system is a tuple S = (W, { r−→| r ∈ A}, I}), where:
– W is a finite, non-empty set of elements called states,
–

r−→⊆W ×W is a transition relation corresponding to program r,
– I : W !→ 2P is a propositional valuation function.

Let α be a PSLM provenance formula, μ an α-substitution, LG a metalanguage
with vocabulary Γ = (MC ,MR,MI), and KG = (KG, k) a metaknowledge base
over an L-provenance graph G. Given this input, we define a finite-state tran-
sition system S(KG, μ(α)) = (W, { r−→| r ∈ A}, I}), essentially, by turning indi-
viduals of KG into states of the system, structuring the transition relations in
the system isomorphically to the corresponding role relationships in KG, and by
encoding all relevant information about the individuals in KG in the valuation
I over a designated set of propositional letters corresponding to concepts and
CQs. This reduction step involves a polynomial number of decision problems of
the form KG |= C(v) and k(v) |= μ(φ), where v ∈ MI , C is a concept in LG

and φ is a CQ. Further, we transform the formula μ(α) by consistently applying
substitutions of designated propositions for the corresponding PSLM subformu-
las in μ(α). The resulting expression μ(α)PDL is a well-formed PDL formula.
Thanks to such “propositionalization” of the input we obtain the following re-
duction result, where S, v |= ϕ denotes the model checking problem in PDL, i.e.
the problem of deciding whether a PDL formula ϕ is satisfied in state v of the
transition system S.
Theorem 1 (PSLM vs. PDL). KG, v � μ(α) iff S(KG, μ(α)), v |= μ(α)PDL.

It is known that the complexity of model checking in PDL is PTime-complete
[12]. Moreover, the size of the transition system S(KG, μ(α)) and of the formula
μ(α)PDL is polynomial in �(KG, α, μ), where �(KG, α, μ) is the total size of KG, α
and μmeasured in the number of symbols used. This means, that by disregarding
the cost of DL reasoning involved in the construction of S(KG, μ(α)), we obtain
the following time bound.

Theorem 2 (PSLM model checking: complexity). Let KG be a metaknow-
ledge base, expressed in LG, over an L-provenance graph G. Model checking
PSLM formulas over KG is PTime

DL-complete, where DL is an oracle answer-
ing CQs in L and deciding DL entailment in LG.

Finally, we observe that for a given problem KG, v � α there are at most 2�(KG,α)

different α-substitutions μ, and thus, maximum 2�(KG,α) different possible pairs
S(KG, α), μ(α)

PDL to be considered. In practice this number can be dramati-
cally reduced by using smart heuristics to guess only potentially “promising”
substitutions. Analogically, the described procedure of constructing the transi-
tion systems leaves a considerable space for practical optimizations.
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8 Conclusion

In this paper we have introduced the provenance specification logic PSLM— a
dynamic logic-based formalism for verification of data provenance records. The
validation, which we have conducted using the test queries of The First Prove-
nance Challenge, shows that a typically requested reasoning task over a data
provenance record consist of two components: search and logical verification. As
far as the search aspect goes beyond the scope of this work and remains an
interesting problem in its own right, requiring smart retrieval and heuristic tech-
niques, we have demonstrated that the logical reasoning part can be successfully
captured using the logic and the framework developed here. Moreover, we have
shown that the computational cost of performing such tasks is very moderate,
and depends mostly on the expressiveness of the languages used for representing
the data and the provenance record.

With this contribution, we hope to pave the way towards more systematic and
formal studies of the logical problems emerging on the intersection of data-level
representations with their meta-level provenance/contextual descriptions, which,
in our belief, are of rapidly growing importance in the large-scale, distributed,
data- and semantics-rich environments of the Semantic Web and eScience.

Acknowledgments. The authors thank Paul Groth for inspiring discussions
on the ideas presented in this paper, and Davide Ceolin for helpful comments.
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Abstract. The paper presents an approach for cost-based query planning for
SPARQL queries issued over an OWL ontology using the OWL Direct Semantics
entailment regime of SPARQL 1.1. The costs are based on information about the
instances of classes and properties that are extracted from a model abstraction
built by an OWL reasoner. A static and a dynamic algorithm are presented which
use these costs to find optimal or near optimal execution orders for the atoms of
a query. For the dynamic case, we improve the performance by exploiting an in-
dividual clustering approach that allows for computing the cost functions based
on one individual sample from a cluster. Our experimental study shows that the
static ordering usually outperforms the dynamic one when accurate statistics are
available. This changes, however, when the statistics are less accurate, e.g., due
to non-deterministic reasoning decisions.

1 Introduction

Query answering—the computation of answers to users’ queries w.r.t. ontologies and
data—is an important task in the context of the Semantic Web that is provided by many
OWL reasoners. Although much effort has been spent on optimizing the ‘reasoning’
part of query answering, i.e., the extraction of the individuals that are instances of a
class or property, less attention has been given to optimizing the actual query answering
part when ontologies in expressive languages are used. The SPARQL query language,
which was standardized in 2008 by the World Wide Web Consortium (W3C), is widely
used for expressing queries in the context of the Semantic Web. We use the OWL Direct
Semantics entailment regime of SPARQL 1.1 according to which RDF triples from ba-
sic graph patterns are first mapped to extended OWL axioms which can have variables
in place of classes, properties and individuals and are then evaluated according to the
OWL entailment relation. We focus only on queries with variables in place of individ-
uals since such queries are very common. We call the extended OWL axioms query
atoms or atoms.

In the context of databases or triple stores, cost-based ordering techniques for finding
an optimal or near optimal join ordering have been widely applied [12,13]. These tech-
niques involve the maintenance of a set of statistics about relations and indexes, e.g.,
number of pages in a relation, number of pages in an index, number of distinct values
in a column, together with formulas for the estimation of the selectivity of predicates
and the estimation of the CPU and I/O costs of query execution that depends amongst

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 231–246, 2012.
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others, on the number of pages that have to be read from or written to secondary mem-
ory. The formulas for the estimation of selectivities of predicates (result output size of
query atoms) estimate the data distributions using histograms, parametric or sampling
methods or combinations of them.

In the context of reasoning over ontologies, the formulas should take the cost of
executing specific reasoner tasks such as entailment checks or instance retrievals into
account. The precise estimation of this cost before query evaluation is difficult as this
cost takes values from a wide range. For example, the description logic SROIQ, which
underpins the OWL 2 DL standard, has a worst case complexity of 2-NExpTime [6] and
typical implementations are not worst case optimal. The hypertableau algorithm that we
use has a worst-case complexity of 3-NExpTime in the size of the ontology [9,6].1

In this paper we address the optimization task of ordering the query atoms. The opti-
mization goal is to find the execution plan (an order for the query atoms) which leads to
the most efficient execution of the query by minimizing the number of needed reasoning
tasks and the size of intermediate results. The execution plan which satisfies the above
property is determined by means of a cost function that assigns costs to atoms within
an execution plan. This cost function is based on heuristics and summaries for statistics
about the data, which are extracted from an OWL reasoner model. We explore static
and dynamic algorithms together with cluster based sampling techniques that greedily
explore the execution plan search space to determine an optimal or near optimal exe-
cution plan. Static ordering refers to the finding of a join order before query evaluation
starts whereas dynamic ordering determines the ordering of query atoms during query
evaluation, taking advantage of already computed query atom results.

2 Preliminaries

In this section we briefly present an overview of the model building tableau and hyper-
tableau calculi and give a brief introduction to SPARQL queries. For brevity, we use the
description logic (DL) [1] syntax for examples.

Checking whether an individual s0 (pair of individuals 〈s0, s1〉) is an instance of a
class C (property R) w.r.t. an ontology O is equivalent to checking whether the class
assertion ¬C(c0) (the negation of the class assertion C(s0)) or the property assertion
(∀R.¬{s1})(s0) (s0 is only R-related to individuals that are not s1) is inconsistent w.r.t.O.
To check this, most OWL reasoners use a model construction calculus such as tableau or
hypertableau. In the remainder, we focus on the hypertableau calculus [9], but a tableau
calculus could equally be used and we state how our results can be transferred to tableau
calculi. The hypertableau calculus starts from an initial set of assertions and, by apply-
ing derivation rules, it tries to construct (an abstraction of) a model of O. Derivation
rules usually add new class and property assertion axioms, they may introduce new in-
dividuals, they can be nondeterministic, leading to the need to choose between several
alternative assertions to add or they can lead to a clash when a contradiction is detected.
To show that an ontology O is (in)consistent, the hypertableau calculus constructs a
derivation, i.e., a sequence of sets of assertions A0, . . . , An, such that A0 contains all
assertions in O, Ai+1 is the result of applying a derivation rule to Ai and An is the final

1 The 2-NExpTime result for SHOIQ+ increases to 3-NExpTime when adding role chains [6].



Cost Based Query Ordering over OWL Ontologies 233

set of assertions where no more rules are applicable. If a derivation exists such that
An does not contain a clash, then O is consistent and An is called a pre-model of O.
Otherwise O is inconsistent. Each assertion in a set of assertions Ai is derived either
deterministically or nondeterministically. An assertion is derived deterministically if
it is derived by the application of a deterministic derivation rule from assertions that
were all derived deterministically. Any other derived assertion is derived nondetermin-
istically. It is easy to know whether an assertion was derived deterministically or not
because of the dependency directed backtracking that most (hyper)tableau reasoners
employ. In the pre-model, each individual s0 is assigned a label L(s0) representing the
classes it is (non)deterministically an instance of and each pair of individuals 〈s0, s1〉 is
assigned a label L(〈s0, s1〉) representing the properties through which individual s0 is
(non)deterministically related to individual s1.

The WHERE clause of a SPARQL query consists of graph patterns. Basic graph
patterns (BGPs) can be composed to more complex patterns using operators such as
UNION and OPTIONAL for alternative and optional selection criteria. The evaluation
of (complex) graph patterns is done by evaluating each BGP separately and combining
the results of the evaluation. We only consider the evaluation of BGPs since this is
the only thing that is specific to a SPARQL entailment regime. We further focus on
conjunctive instance queries, i.e., BGPs that retrieve tuples of individuals, which are
instances of the queried classes and properties. Such BGPs are first mapped to OWL
class and (object) property assertions that allow for variables in place of individuals
[7]. For brevity, we directly write mapped BGPs in DL syntax extended to allow for
variables. We use the term query in the remainder for such BGPs. W.l.o.g., we assume
that queries are connected [2].

Definition 1. Let O be an ontology with signature S O = (CO,RO, IO), i.e., S O consists
of all class, property and individual names occurring in O. We assume that S O also
contains OWL’s special classes and properties such as owl:Thing. Let V be a countably
infinite set of variables disjoint from CO, RO and IO. A term t is an element from V ∪ IO.
Let C ∈ CO be a class, R ∈ RO a property, and t, t′ ∈ IO ∪ V terms. A class atom is an
expression C(t) and a property atom is an expression R(t, t′). A query q is a non-empty
set of atoms. We use Vars(q) to denote the set of variables and Inds(q) for the set of
individuals occurring in q and set Terms(q) = Vars(q) ∪ Inds(q). We use |q| to denote
the number of atoms in q.

Let q = {at1, . . . , atn} be a query. A mapping μ for q over O is a total function
μ : Terms(q) → IO such that μ(a) = a for each a ∈ Inds(q). The set Γq of all possible
mappings for q is defined as Γq := {μ | μ is a mapping for q}. A solution mapping μ
for q over O is a mapping such that O |= C(μ(t)) for each class atom C(t) ∈ q and
O |= R(μ(t), μ(t′)) for each property atom R(t, t′) ∈ q.

3 Extracting Individual Information from Reasoner Models

The first step in the ordering of query atoms is the extraction of statistics, exploiting
information generated by reasoners. We use the labels of an initial pre-model to pro-
vide us with information about the classes the individuals belong to or the properties in
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Algorithm 1. initializeKnownAndPossibleClassInstances
Require: a consistent SROIQ ontology O to be queried
Ensure: sets K[C] (P[C]) of known (possible) instances for each class C of O are computed
1: An := buildModelFor(O)
2: for all ind ∈ IO do
3: for all C ∈ LAn (ind) do
4: if C was derived deterministically then
5: K[C] := K[C] ∪ {ind}
6: else
7: P[C] := P[C] ∪ {ind}
8: end if
9: end for

10: end for

which they participate. We exploit this information similarly as was suggested for deter-
mining known (non-)subsumers for classes during classification [3]. In the hypertableau
calculus, the following two properties hold for each ontology O and each constructed
pre-model An for O:

(P1) for each class name C (property R), each individual s0 (pair of individuals 〈s1, s2〉)
in An, if C ∈ LAn (s0) (R ∈ LAn (〈s1, s2〉)) and the assertion C(s0) (R(s1, s2)) was
derived deterministically, then it holds O |= C(s0) (O |= R(s1, s2)).

(P2) for an arbitrary individual s0 in An (pair of individuals 〈s1, s2〉 in An) and an arbi-
trary class name C (simple property R), if C � LAn (s0) (R � LAn (〈s1, s2〉)), then
O 
|= C(s0) (O 
|= R(s1, s2)).

The term simple property refers to a property that is neither transitive nor has a transitive
subproperty.

We use these properties to extract information from the pre-model of a satisfiable on-
tology O as outlined in Algorithm 1. In our implementation we use a more complicated
procedure to only store the direct types of each individual. The information we extract
involves the maintenance of the sets of known and possible instances for all classes
of O. The known instances of a class C (K[C]) are the individuals that can be safely
considered instances of the class according to the pre-model, i.e., for each individual
i ∈ K[C], C(i) was derived deterministically in the pre-model. Similarly, the possible
instances of a class C (P[C]) are the individuals i such that C(i) was derived nonde-
terministically. These possible instances require costly consistency checks in order to
decide whether they are real instances of the class.

For simple properties, a procedure to find the known and possible instances of a prop-
erty or, given an individual, the known and possible property successors or predecessors
can be defined similarly. For non-simple properties, O is expanded with additional ax-
ioms that capture the semantics of the transitive relations before the buildModelFor
procedure is applied since (hyper)tableau reasoners typically do not deal with transi-
tivity directly [9]. In particular, for each individual i and non-simple property R, new
classes Ci and CR

i are introduced and the axioms Ci(i) and Ci � ∀R.CR
i are added to

O. The consequent application of the transitivity encoding [9] produces axioms that
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propagate CR
i to each individual s that is reachable from i via an R-chain. The known

and possible R-successors for i can then be determined from the CR
i instances.

The technique presented in this paper can be used with any (hyper)tableau calculus
for which properties (P1) and (P2) hold. All (hyper)tableau calculi used in practice that
we are aware of satisfy property (P1). Pre-models produced by tableau algorithms as
presented in the literature also satisfy property (P2); however, commonly used opti-
mizations, such as lazy unfolding, can compromise property (P2), which we illustrate
with the following example. Let us assume we have an ontology O containing the ax-
ioms A � ∃R.(C  D), B ≡ ∃R.C and A(a). It is obvious that in this ontology A is a
subclass of B (hence O |= B(a)) since every individual that is R-related to an individual
that is an instance of the intersection of C and D is also R-related to an individual that
is an instance of the class C. However, even though the assertion A(a) occurs in the
ABox, the assertion B(a) is not added in the pre-model when we use lazy unfolding.
With lazy unfolding, instead of treating B ≡ ∃R.C as two disjunctions ¬B � ∃R.C and
B � ∀R.(¬C) as is typically done for complex class inclusion axioms, B is only lazily
unfolded into its definition ∃R.C once B occurs in the label of an individual. Thus,
although (∃R.(C  D))(a) would be derived, this does not lead to the addition of B(a).

Nevertheless, most (if not all) implemented calculi produce pre-models that satisfy
at least the following weaker property:

(P3) for an arbitrary individual s0 in An and an arbitrary class C where C is primitive
in O,2 if C � LAn (s0), then O 
|= C(s0).

Hence, properties (P2) and (P3) can be used to extract (non-)instance information from
pre-models. For tableau calculi that only satisfy (P3), Algorithm 1 can be modified
accordingly. In particular, for each non-primitive class C in O we need to add to P[C]
the individuals in O that do not include the class C in their label.

The proposed technique for determining known and possible instances of classes
and properties can be used in the same way with both tableau and hypertableau reason-
ers. Since tableau algorithms often introduce more nondeterminism than hypertableau,
one might, however, find less deterministic derivations, which results in less accurate
statistics.

3.1 Individual Clustering

In this section, we describe the procedure for creating clusters of individuals within an
ontologyO using the constructed pre-model An of O. Two types of clusters are created:
class clusters and property clusters. Class clusters contain individuals having the same
classes in their label and property clusters contain individuals with the same class and
property labels. Property clusters are divided into three categories, those that are based
on the first individual of property instances, those based on the second individual and
those based on both individuals. First we define, for an ontology O with pre-model An,
the relations P1 and P2 that map an individual a from O to the properties for which a
has at least one successor or predecessor, respectively:

2 A class C is considered primitive in O if O is unfoldable [14] and it contains no axiom of the
form C ≡ E.
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P1(a) = {R | ∃b ∈ IO such that R ∈ LAn (〈a, b〉)}
P2(a) = {R | ∃b ∈ IO such that R ∈ LAn (〈b, a〉)}

Based on these relations, we partition IO into class clusters CC = {C1, . . . ,Cn}, property
successor clusters PC1 = {C1

1, . . . ,C
n
1}, property predecessor clusters PC2 = {C1

2, . . . ,C
n
2}

and IO × IO into property clusters PC12 = {C1
12, . . . ,C

n
12} such that the clusters satisfy:

∀C ∈ CC.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2)))

∀C ∈ PC1.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2) and P1(a1) = P1(a2)))

∀C ∈ PC2.(∀a1, a2 ∈ C.(LAn (a1) = LAn (a2) and P2(a1) = P2(a2)))

∀C ∈ PC12.(∀〈a1, a2〉, 〈a3, a4〉 ∈ C.(LAn (a1) = LAn (a3),LAn(a2) = LAn (a4) and

LAn (〈a1, a2〉) = LAn (〈a3, a4〉)))

4 Query Answering and Query Atom Ordering

In this section, we describe two different algorithms (a static and a dynamic one) for
ordering the atoms of a query based on some costs and then we deal with the formulation
of these costs. We first introduce the abstract graph representation of a query q by means
of a labeled graph Gq on which we define the computed statistical costs.

Definition 2. A query join graph Gq for a query q is a tuple (V, E, EL), where

– V = q is a set of vertices (one for each query atom);
– E ⊆ V × V is a set of edges such that 〈at1, at2〉 ∈ E iff Vars(at1) ∩ Vars(at2) � ∅

and at1 � at2;
– EL is a function that assigns a set of variables to each 〈at1, at2〉 ∈ E such that

EL(at1, at2) = Vars(at1) ∩ Vars(at2).

In the remainder, we use a, b for individual names, x, y for variables, q for a query
{at1, . . . , atn} with query join graph Gq, and Ωq for the solution mappings of q.

Our goal is to find a query execution plan, which determines the evaluation order for
atoms in q. Since the number of possible execution plans is of order |q|!, the ordering
task quickly becomes impractical. In the following, we focus on greedy algorithms for
determining an execution order, which prune the search space considerably. Roughly
speaking, we proceed as follows: We define a cost function, which consists of two com-
ponents (i) an estimate for the reasoning costs and (ii) an estimate for the intermediate
result size. Both components are combined to induce an order among query atoms. In
this paper, we simply build the sum of the two cost components, but different combi-
nations such as a weighted sum of the two values could also be used. For the query
plan construction we distinguish static from dynamic planning. For the former, we start
constructing the plan by adding a minimal atom according to the order. Variables from
this atom are then considered bound, which changes the cost function and might induce
a different order among the remaining query atoms. Considering the updated order, we
again select the minimal query atom that is not yet in the plan and update the costs.
This process continues until the plan contains all atoms. Once a complete plan has been
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determined the atoms are evaluated. The dynamic case differs in that after selecting an
atom for the plan, we immediately determine the solutions for the chosen atom, which
are then used to update the cost function. While this yields accurate cost estimates, it
can be very costly when all solutions are considered for updating the cost function.
Sampling techniques can be used to only test a subset of the solutions, but we show in
Section 5 that random sampling, i.e., randomly choosing a percentage of the individ-
uals from the so far computed solutions, is not adequate. For this reason, we propose
an alternative sampling approach that is based on the use of the previously described
individual clusters. We now make the process of query plan construction more precise,
but we leave the exact details of defining the cost function and the ordering it induces
to later.

Definition 3. A static (dynamic) cost function w.r.t. q is a function s : q × 2Vars(q) →
R × R (d : q × 2Γq → R × R). The two costs are combined to yield a static ordering �s

(dynamic ordering �d), which is a total order over the atoms of q.
An execution plan for q is a duplicate-free sequence of query atoms from q. The initial

execution plan is the empty sequence and a complete execution plan is a sequence
containing all atoms of q. For Pi = (at1, . . . , ati) with i < n an execution plan for q
with query join graph Gq = (V, E, EL), we define the potential next atoms qi for Pi

w.r.t. Gq as qi = q for Pi the initial execution plan and qi = {at | 〈at′, at〉 ∈ E, at′ ∈
{at1, . . . , ati}, at ∈ q \ {at1, . . . , ati}} otherwise. The static (dynamic) ordering induces an
execution plan Pi+1 = (at1, . . . , ati, ati+1) with ati+1 ∈ qi and ati+1 �s at (ati+1 �d at) for
each at ∈ qi such that at � ati+1.

For i > 0, the set of potential next atoms only contains atoms that are connected to
an atom that is already in the plan since unconnected atoms will cause an unnecessary
blowup of the number of intermediate results. Let Pi = (at1, . . . , ati) with i ≤ n be an
execution plan for q. The procedure to find the solution mappingsΩi for Pi is recursively
defined as follows: Initially, our solution set contains only the identity mapping Ω0 =

{μ0}, which does not map any variable to any value. Assuming that we have evaluated
the sequence Pi−1 = (at1, . . . , ati−1) and we have found the set of solution mappings
Ωi−1, in order to find the solution mappings Ωi of Pi, we use the instance retrieval tasks
of reasoners to extend the mappings in Ωi−1 to cover the new variables of ati or the
entailment check service of reasoners if ati does not contain new variables. A detailed
description of the method for evaluating a query atom together with optimizations can
be found in our previous work [7].

We now define the cost functions s and d more precisely, which estimate the cost of
the required reasoner operations (first component) and the estimated result output size
(second component) of evaluating a query atom. The intuition behind the estimated
value of the reasoner operation costs is that the evaluation of possible instances is much
more costly than the evaluation of known instances since possible instances require
expensive consistency checks whereas known instances require cheap cache lookups.
The estimated result size takes into account the number of known and possible instances
and the probability that possible instances are actual instances. Apart from the relations
K[C] and P[C] (K[R] and P[R]) for the known and possible instances of a class C
(property R) from Section 3, we use the following auxiliary relations:
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Definition 4. Let R be a property and a an individual. We define sucK[R] and preK[R]
as the set of individuals with known R-successors and R-predecessors, respectively:

sucK[R] := {i | ∃ j.〈i, j〉 ∈ K[R]} and preK[R] := {i | ∃ j.〈 j, i〉 ∈ K[R]}.

Similarly, we define sucK[R, a] and preK[R, a] as the known R-successors of a and the
known R-predecessors of a, respectively:

sucK[R, a] := {i | 〈a, i〉 ∈ K[R]} and preK[R, a] := {i | 〈i, a〉 ∈ K[R]}.

We analogously define the functions sucP[R], preP[R], sucP[R, a], and preP[R, a] by
replacing P[C] and P[R] with K[C] and K[R], respectively. We write CL to denote the
cost of a cache lookup in the internal structures of the reasoner, CE for the cost of an
entailment check, and PIS for the possible instance success, i.e, the estimated percentage
of possible instances that are actual instances.

The costs CL and CE are determined by recording the average time of previously per-
formed lookups and entailment checks for the queried ontology, e.g., during the initial
consistency check, classification, or for previous queries. In the case of CE , we multi-
ply this number with the depth of the class (property) hierarchy since we only store the
direct types of each individual (properties in which each individual participates) and, in
order to find the instances of a class (property), we may need to check all its subclasses
(subproperties) that contain possible instances. The time needed for an entailment check
can change considerably between ontologies and even within an ontology (depending
on the involved classes, properties, and individuals). Thus, the use of a single constant
for the entailment cost is not very accurate, however, the definition of different entail-
ment costs before executing the reasoning task is very difficult.

The possible instance success, PIS , was determined by testing several ontologies and
checking how many of the initial possible instances were real ones, which was around
50% in nearly all ontologies.

4.1 The Static and Dynamic Cost Functions

The static cost function s takes two components as input: a query atom and a set con-
taining the variables of the query atom that are considered bound. The function returns
a pair of real numbers for the reasoning cost and result size for the query atom.

Initially, all variables are unbound and we use the number of known and possible
instances or successors/predecessors to estimate the number of required lookups and
consistency checks for evaluating the query atom and for the resulting number of map-
pings. For an input of the form 〈C(x), ∅〉 or 〈R(x, y), ∅〉 the resulting pair of real numbers
for the computational cost and the estimated result size is computed as

〈|K[at]| ·CL + |P[at]| ·CE , |K[at]| + PIS · |P[at]|〉,

where at denotes the predicate of the query atom (C or R). If the query atom is a prop-
erty atom with a constant in the first place, i.e., the input to the cost function is of the
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form 〈R(a, x), ∅〉, we use the relations for known and possible successors to estimate the
computational cost and result size:

〈|sucK[R, a]| ·CL + |sucP[R, a]| ·CE , |sucK[R, a]| + PIS · |sucP[R, a]|〉.
Analogously, we use preK and preP instead of sucK and sucP for an input of the form
〈R(x, a), ∅〉. Finally, if the atom contains only constants, i.e., the input to the cost func-
tion is of the form 〈C(a), ∅〉, 〈R(a, b), ∅〉, the function returns 〈CL, 1〉 if the individual is a
known instance of the class or property, 〈CE , PIS〉 if the individual is a possible instance
and 〈CL, 0〉 otherwise, i.e., if the individual is a known non-instance.

After determining the cost of an initial query atom, at least one variable of a conse-
quently considered atom is bound, since during the query plan construction we move
over atoms sharing a common variable and we assume that the query is connected. We
now define the cost functions for atoms with at least one variable bound. We make the
assumption that atoms with unbound variables are more costly to evaluate than atoms
with all their variables bound. For a query atom R(x, y) with only x bound, i.e., func-
tion inputs of the form 〈R(x, y), {x}〉, we use the average number of known and possible
successors of the property to estimate the computational cost and result size:

〈 |K[R]|
|sucK[R]| ·CL +

|P[R]|
|sucP[R]| ·CE ,

|K[R]|
|sucK[R]| +

|P[R]|
|sucP[R]| ·PIS

〉

In case only y in R(x, y) is bound, we use the predecessor functions preK and preP
instead of sucK and sucP. Note that we now work with an estimated average number
of successors (predecessors) for one individual.

For the remaining cases (atoms with all their variables bound), we use formulas that
are comparable to the ones above for an initial plan, but normalized to estimate the
values for one individual. The normalization is important for achieving compatibility
with the formulas described above for inputs of the form 〈R(x, y), {x}〉 and 〈R(x, y), {y}〉.
For an input query atom of the form C(x) with x a bound variable we use

〈 |K[C]|
|IO| ·CL +

|P[C]|
|IO| ·CE ,

|K[C]| + PIS ·|P[C]|
|IO|

〉

Such a simple normalization is not always accurate, but leads to good results in most
cases as we show in Section 5. Similarly, we normalize the formulae for property atoms
of the form R(x, y) such that {x, y} is the set of bound variables of the atom. The two
cost components for these atoms are computed as

〈 |K[R]|
|IO| ·CL +

|P[R]|
|IO| ·CE ,

|K[R]| + PIS ·|P[R]|
|IO|·|IO|

〉

For property atoms with a constant and a bound variable, i.e., atoms of the form R(a, x)
(R(x, a)) with x a bound variable, we use sucK[R, a] and sucP[R, a] (preK[R, a] and
preP[R, a]) instead of K[R] and P[R] in the above formulae.

The dynamic cost function d is based on the static function s, but only uses the first
equations, where the atom contains only unbound variables or constants. The function
takes a pair 〈at, Ω〉 as input, where at is a query atom and Ω is the set of solution
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Table 1. Query Ordering Example

Atom Sequences Known Instances Possible Instances Real from Possible Instances
1 C(x) 200 350 200
2 R(x,y) 200 200 50
3 D(y) 700 600 400
4 R(x,y), C(x) 100 150 100
5 R(x,y), D(y) 50 50 40
6 R(x,y), D(y), C(x) 45 35 25
7 R(x,y), C(x), D(y) 45 40 25

mappings for the atoms that have already been evaluated, and returns a pair of real
numbers using matrix addition as follows:

d(at, Ω) =
∑
μ∈Ω

s(μ(at), ∅)

When sampling techniques are used, we compute the costs for each of the potential next
atoms for an execution plan by only considering one individual of each relevant cluster.
Which cluster is relevant depends on the query atom for which we compute the cost
function and the previously computed bindings. For instance, if we compute the cost of
a property atom R(x, y) and we already determined bindings for x, we use the property
successor cluster PC1. Among the x bindings, we then just check the cost for one binding
per cluster and assign the same cost to all other x bindings of the same cluster.

A motivating example showing the difference between static and dynamic ordering
and justifying why dynamic ordering can be beneficial in our setting is shown below.
Let us assume that a query q consists of the three query atoms: C(x), R(x, y), D(y).
Table 1 gives information about the known and possible instances of these atoms within
a sequence. In particular, the first column enumerates possible execution sequences
S i = (at1, . . . , ati) for the atoms of q. Column 2 (3) gives the number of mappings to
known (possible) instances of ati (i.e., the number of known (possible) instances of ati)
that satisfy at the same time the atoms (at1, . . . , ati−1). Column 4 gives the number of
possible instances of ati from Column 3 that are real instances (that belong toΩi). Let us
assume that we have 10,000 individuals in our ontologyO. We will now explain via the
example what the formulas described above are doing. We assume that CL ≤ CE which
is always the case since a cache lookup is less expensive than a consistency check. In
both techniques (static and dynamic) the atom R(x, y) will be chosen first since it has
the least number of possible instances (200) while it has the same (or smaller) number
of known instances (200) as the other atoms:

s(R(x, y), ∅) = d(R(x, y), {μ0}) = 〈200 ·CL + 200 ·CE , 200 + PIS · 200〉,
s(C(x), ∅) = d(C(x), {μ0}) = 〈200 ·CL + 350 ·CE , 200 + PIS · 350〉,
s(D(y), ∅) = d(D(y), {μ0}) = 〈700 ·CL + 600 ·CE , 700 + PIS · 600〉.

In the case of static ordering, the atom C(x) is chosen after R(x, y) since C has less
possible (and known) instances than D (350 versus 600):
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s(C(x), {x}) =
〈

200
10, 000

· CL +
350

10, 000
·CE ,

200 + 350 · PIS

10, 000

〉
,

s(D(y), {y}) =
〈

700
10, 000

· CL +
600

10, 000
·CE ,

700 + 600 · PIS

10, 000

〉
.

Hence, the order of evaluation in this case will be P = (R(x, y),C(x),D(y)) leading to
200 (row 2)+150 (row 4)+40 (row 7) entailment checks. In the dynamic case, after the
evaluation of R(x, y), which gives a set of solutions Ω1, the atom D(y) has fewer known
and possible instances (50 known and 50 possible) than the atom C(x) (100 known and
150 possible) and, hence, a lower cost:

d(D(y), Ω1) = 〈50 ·CL + 150 ·CL + 50 ·CE , 50 + 0 + 50 · PIS〉,
d(C(x), Ω1) = 〈100 ·CL + 0 · CL + 150 ·CE , 100 + 0 + 150 · PIS〉.

Note that applying a solution μ ∈ Ω1 to D(y) (C(x)) results in a query atom with a
constant in place of y (x). For D(y), it is the case that out of the 250 R-instances, 200
can be handled with a look-up (50 turn out to be known instances and 150 turn out not to
be instances of D), while 50 require an entailment check. Similarly, when considering
C(x), we need 100 lookups and 150 entailment checks. Note that we assume the worst
case in this example, i.e., that all values that x and y take are different. Therefore, the
atom D(y) will be chosen next leading to the execution of the query atoms in the order
P = (R(x, y),D(y),C(x)) and the execution of 200 (row 2) + 50 (row 5) + 35 (row 6)
entailment checks.

5 Evaluation

We tested our ordering techniques with the Lehigh University Benchmark (LUBM) [4]
as a case where no disjunctive information is present and with the more expressive Uni-
versity Ontology Benchmark (UOBM) [8] using the HermiT3 hypertableau reasoner.
All experiments were performed on a Mac OS X Lion machine with a 2.53 GHz Intel
Core i7 processor and Java 1.6 allowing 1GB of Java heap space. We measure the time
for one-off tasks such as classification separately since such tasks are usually performed
before the system accepts queries. The ontologies and all code required to perform the
experiments are available online.4

We first used the 14 conjunctive ABox queries provided in LUBM. From these,
queries 2, 7, 8, 9 are the most interesting ones in our setting since they contain many
atoms and ordering them can have an effect in running time. We tested the queries on
LUBM(1,0) and LUBM(2,0) which contain data for one or two universities respec-
tively, starting from index 0. LUBM(1,0) contains 17,174 individuals and LUBM(2,0)
contains 38,334 individuals. LUBM(1,0) took 19 s to load and 0.092 s for classification
and initialization of known and possible instances of classes and properties. The clus-
tering approach for classes took 1 s and resulted in 16 clusters. The clustering approach

3 http://www.hermit-reasoner.com/
4 http://code.google.com/p/query-ordering/

http://www.hermit-reasoner.com/
http://code.google.com/p/query-ordering/
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Table 2. Query answering times in milliseconds for LUBM(1,0) and LUBM(2,0) using i) the
static algorithm ii) the dynamic algorithm, iii) 50% random sampling (RSampling), iv) the con-
structed individual clusters for sampling (CSampling)

LUBM(1,0) LUBM(2,0)
Query Static Dynamic RSampling CSampling Static Dynamic RSampling CSampling
∗2 51 119 390 37 162 442 1,036 153
7 25 29 852 20 70 77 2,733 64
8 485 644 639 551 622 866 631 660
∗9 1,099 2,935 3,021 769 6,108 23,202 14,362 3,018

for properties lasted 4.9 s and resulted in 17 property successor clusters, 29 property
predecessor clusters and 87 property clusters. LUBM(2,0) took 48.5 s to load and 0.136
s for classification and initialization of known and possible instances. The clustering
approach for classes took 3.4 s and resulted in 16 clusters. The clustering approach for
properties lasted 16.3 s and resulted in 17 property successor clusters, 31 property pre-
decessor clusters and 102 property clusters. Table 2 shows the execution time for each
of the four queries for LUBM(1,0) and LUBM(2,0) for four cases: i) when we use the
static algorithm (columns 2 and 6), ii) when we use the dynamic algorithm (columns
3 and 7), iii) when we use random sampling, i.e., taking half of the individuals that
are returned (from the evaluation of previous query atoms) in each run, to decide about
the next cheapest atom to be evaluated in the dynamic case and iv) using the proposed
sampling approach that is based on clusters constructed from individuals in the queried
ontology (columns 4 and 8). The queries marked with (*) are the queries where the
static and dynamic algorithms result in a different ordering. In queries 7 and 8 we ob-
serve an increase in running time when the dynamic technique is used (in comparison to
the static) which is especially evident on query 8 of LUBM(2,0), where the number of
individuals in the ontology and the intermediate result sizes are larger. Dynamic order-
ing also behaves worse than static in queries 2 and 9. This happens because, although
the dynamic algorithm chooses a better ordering than the static algorithm, the interme-
diate results (that need to be checked in each iteration to determine the next query atom
to be executed) are quite large and hence the cost of iterating over all possible map-
pings in the dynamic case far outweighs the better ordering that is obtained. We also
observe that a random sampling for collecting the ordering statistics in the dynamic
case (checking only 50% of individuals in Ωi−1 randomly for detecting the next query
atom to be executed) leads to much worse results in most queries than plain static or
dynamic ordering. This happens since random sampling often leads to the choice of a
worse execution order. The use of the cluster based sampling method performs better
than the plain dynamic algorithm in all queries. In queries 2 and 9, the gain we have
from the better ordering of the dynamic algorithm is much more evident. This is the
case since we use at most one individual from every cluster for the cost functions com-
putation and the number of clusters is much smaller than the number of the otherwise
tested individuals in each run.

In order to show the effectiveness of our proposed cost functions we compared the
running times of all the valid plans (plans constructed according to Definition 3) with
the running time of the plan chosen by our method. In the following we show the results
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Table 3. Statistics about the constructed plans and chosen orderings and running times in mil-
liseconds for the orderings chosen by Pellet and for the worst constructed plans

Query PlansNo Chosen Plan Order Pellet Plan Worst Plan
Static Dynamic Sampling

2 336 2 1 1 51 4,930
7 14 1 1 1 25 7,519
8 56 1 1 1 495 1,782
9 336 173 160 150 1,235 5,388

for LUBM(1, 0), but the results for LUBM(2,0) are comparable. In Table 3 we show,
for each query, the number of plans that were constructed (column 2), the order of the
plan chosen by the static, dynamic, and cluster based sampling methods if we order the
valid plans by their execution time (columns 3,4,5; e.g., a value of 2 indicates that the
ordering method chose the second best plan), the running time of HermiT for the plan
that was created by Pellet5 (column 6) as well as the running time of the worst con-
structed plan (column 7). The comparison of our ordering approach with the approach
followed by other reasoners that support conjunctive query answering such as Pellet
or Racer6 is not very straightforward. This is the case because Pellet and Racer have
many optimizations for instance retrieval [11,5], which HermiT does not have. Thus,
a comparison between the execution times of these reasoners and HermiT would not
convey much information about the effectiveness of the proposed query ordering tech-
niques. The idea of comparing only the orderings computed by other reasoners with
those computed by our methods is also not very informative since the orderings chosen
by different reasoners depend much on the way that queries are evaluated and on the
costs of specific tasks in these reasoners and, hence, are reasoner dependent, i.e., an
ordering that is good for one reasoner and which leads to an efficient evaluation may
not be good for another reasoner. We should note that when we were searching for or-
derings according to Pellet, we switched off the simplification optimization that Pellet
implements regarding the exploitation of domain and range axioms of the queried on-
tology for reducing the number of query atoms to be evaluated [10]. This has been done
in order to better evaluate the difference of the plain ordering obtained by Pellet and
HermiT since our cost functions take into account all the query atoms.

We observe that for all queries apart from query 9 the orderings chosen by our algo-
rithms are the (near)optimal ones. For queries 2 and 7, Pellet chooses the same ordering
as our algorithms. For query 8, Pellet chooses an ordering which, when evaluated with
HermiT, results in higher execution time. For query 9, our algorithms choose plans from
about the middle of the order over all the valid plans w.r.t. query execution time, which
means that our algorithms do not perform well in this query. This is because of the
greedy techniques we have used to find the execution plan which take into account only
local information to choose the next query atom to be executed. Interestingly, the use
of cluster based sampling has led to the finding of a better ordering, as we can see from
the running time in Table 2 and the better ordering of the plan found with cluster based

5 http://clarkparsia.com/pellet/
6 http://www.racer-systems.com

http://clarkparsia.com/pellet/
http://www.racer-systems.com
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Table 4. Query answering times in seconds for UOBM (1 university, 3 departments) and statistics

Query Static Dynamic CSampling PlansNo Chosen Plan Order Pellet Plan Worst Plan
Static Dynamic Sampling

4 13.35 13.40 13.41 14 1 1 1 13.40 271.56
9 186.30 188.58 185.40 8 1 1 1 636.91 636.91

11 0.98 0.84 1.67 30 1 1 1 0.98 > 30 min
12 0.01 0.01 0.01 4 1 1 1 0.01 > 30 min
14 94.61 90.60 93.40 14 2 1 1 > 30 min > 30 min
q1 191.07 98.24 100.25 6 2 1 1 > 30 min > 30 min
q2 47.04 22.20 22.51 6 2 1 1 22.2 > 30 min

sampling techniques compared to static or plain dynamic ordering (Table 3). The order-
ing chosen by Pellet for query 9 does also not perform well. We see that, in all queries,
the worst running times are many orders of magnitude greater than the running times
achieved by our ordering algorithms. In general, we observe that in LUBM static tech-
niques are adequate and the use of dynamic ordering does not improve the execution
time much compared to static ordering.

Unlike LUBM, the UOBM ontology contains disjunctions and the reasoner makes
also nondeterministic derivations. In order to reduce the reasoning time, we removed
the nominals and only used the first three departments containing 6,409 individuals. The
resulting ontology took 16 s to load and 0.1 s to classify and initialize the known and
possible instances. The clustering approach for classes took 1.6 s and resulted in 356
clusters. The clustering approach for properties lasted 6.3 s and resulted in 451 prop-
erty successor clusters, 390 property predecessor clusters and 4,270 property clusters.
We ran our static and dynamic algorithms on queries 4, 9, 11, 12 and 14 provided in
UOBM, which are the most interesting ones because they consist of many atoms. Most
of these queries contain one atom with possible instances. As we see from Table 4,
static and dynamic ordering show similar performance in queries 4, 9, 11 and 12. Since
the available statistics in this case are quite accurate, both methods find the optimal
plans and the intermediate result set sizes are small. For both ordering methods, atoms
with possible instances for these queries are executed last. In query 14, the dynamic al-
gorithm finds a better ordering which results in improved performance. The effect that
the cluster based sampling technique has on the running time is not as obvious as in
the case of LUBM. This happens because in the current experiment the intermediate
result sizes are not very large and, most importantly, because the gain obtained due to
sampling is in the order of milliseconds whereas the total query answering times are in
the order of seconds obscuring the small improvement in running time due to sampling.
In all queries the orderings that are created by Pellet result in the same or worse running
times than the orderings created by our algorithms.

In order to illustrate when dynamic ordering performs better than static, we also cre-
ated the two custom queries:

q1 = { isAdvisedBy(x,y), GraduateStudent(x), Woman(y) }
q2 = { SportsFan(x), GraduateStudent(x), Woman(x) }

In both queries, P[GraduateStudent], P[Woman] and P[isAdvisedBy] are non-empty,
i.e., the query concepts and properties have possible instances. The running times for
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dynamic ordering are smaller since the more accurate statistics result in a smaller num-
ber of possible instances that have to be checked during query execution. In particular,
for the static ordering, 151 and 41 possible instances have to be checked in query q1 and
q2, respectively, compared to only 77 and 23 for the dynamic ordering. Moreover, the
intermediate results are generally smaller in dynamic ordering than in static leading to
a significant reduction in the running time of the queries. Interestingly, query q2 could
not be answered within the time limit of 30 minutes when we transformed the three
query classes into a conjunction, i.e., when we asked for instances of the intersection
of the three classes. This is because for complex classes the reasoner can no longer use
the information about known and possible instances and falls back to a more naive way
of computing the class instances. Again, for the same reasons as before, the sampling
techniques have no apparent effect on the running time of these queries.

6 Related Work

The problem of finding good orderings for the atoms of a query issued over an ontology
has already been preliminarily studied [10,5].

Similarly to our work, Sirin et al. exploit reasoning techniques and information pro-
vided by reasoner models to create statistics about the cost and the result size of query
atom evaluations within execution plans. A difference is that they use cached models for
cheaply finding obvious class and property (non-)instances, whereas in our case we do
not cache any model or model parts. Instead we process the pre-model constructed for
the initial ontology consistency check and extract the known and possible instances of
classes and properties from it. We subsequently use this information to create and update
the query atom statistics. Moreover, Sirin et al. compare the costs of complete execution
plans —after heuristically reducing the huge number of possible complete plans — and
choose the one that is most promising before the beginning of query execution. This
is different from our cheap greedy algorithm that finds, at each iteration, the next most
promising query atom. Our experimental study shows that this is equally effective as the
investigation of all possible execution orders. Moreover, in our work we have additionally
used dynamic ordering combined with clustering techniques, apart from static ones, and
have shown that these techniques lead to better performance particularly in ontologies
that contain disjunctions and do now allow for purely deterministic reasoning.

Haarslev et al. discuss by means of an example the ordering criteria they use to find
efficient query execution plans. In particular, they use traditional database cost based
optimization techniques, which means that they take into account only the cardinality
of class and property atoms to decide about the most promising ordering. As previously
discussed, this can be inadequate especially for ontologies with disjunctive information.

7 Conclusions

In the current paper, we presented a method for ordering the atoms of a conjunctive
instance query that is issued over an OWL ontology. We proposed a method for the
definition of cost formulas that are based on information extracted from models of a
reasoner (in our case HermiT). We have devised two algorithms, a static and a dy-
namic one, for finding a good order and show through an experimental study that static
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techniques are quite adequate for ontologies in which reasoning is deterministic. When
reasoning is nondeterministic, however, dynamic techniques often perform better. The
use of cluster based sampling techniques can improve the performance of the dynamic
algorithm when the intermediate result sizes of queries are sufficiently large, whereas
random sampling was not beneficial and often led to suboptimal query execution plans.

Future work will include the definition of additional cost measures and sampling
criteria for ordering query atoms and the evaluation of our ordering techniques on a
broader set of ontologies and queries.

Acknowledgements This work was done within the Transregional Collaborative Re-
search Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG).
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Abstract. We describe a system that incrementally translates SPARQL
queries to Pig Latin and executes them on a Hadoop cluster. This system
is designed to work efficiently on complex queries with many self-joins
over huge datasets, avoiding job failures even in the case of joins with
unexpected high-value skew. To be robust against cost estimation er-
rors, our system interleaves query optimization with query execution,
determining the next steps to take based on data samples and statistics
gathered during the previous step. Furthermore, we have developed a
novel skew-resistant join algorithm that replicates tuples corresponding
to popular keys. We evaluate the effectiveness of our approach both on a
synthetic benchmark known to generate complex queries (BSBM-BI) as
well as on a Yahoo! case of data analysis using RDF data crawled from
the web. Our results indicate that our system is indeed capable of pro-
cessing huge datasets without pre-computed statistics while exhibiting
good load-balancing properties.

1 Introduction

The amount of Linked Open Data (LOD) is strongly growing, both in the form
of an ever expanding collection of RDF datasets available on the Web, as well
semantic annotations increasingly appearing in HTML pages, in the form of
RDFa, microformats, or microdata such as schema.org.

Search engines like Yahoo! crawl and process this data in order to provide more
efficient search. Applications built on or enriched with LOD typically employ a
warehousing approach, where data from multiple sources is brought together,
and interlinked (e.g. as in [11]).

Due to the large volume and, often, dirty nature of the data, such Extrac-
tion, Transformation and Loading (ETL) processes can easily be translated into
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“killer” SPARQL queries that overwhelm the current state-of-the-art in RDF
database systems. Such problems typically come down to formulating joins that
produce huge results, or to RDF database systems that calculate the wrong join
order such that the intermediate results get too large to be processed. In this
paper, we describe a system that scalably executes SPARQL queries using the
Pig Latin language [16] and we demonstrate its usage on a synthetic benchmark
and on crawled Web data. We evaluate our method using both a standard cluster
and the large MapReduce infrastructure provided by Yahoo!.

In the context of this work, we are considering some key issues:

Schema-Less. A SPARQL query optimizer typically lacks all schema knowl-
edge that a relational system has available, making this task more challenging.
In a relational system, schema knowledge can be exploited by keeping statistics,
such as table cardinalities and histograms that capture the value and frequency
distributions of relational columns. RDF database systems, on the other hand,
cannot assume any schema and store all RDF triples in a table with Subject,
Property, Object columns (S,P,O). Both relational column projections as well as
foreign key joins map in the SPARQL equivalent into self-join patterns. There-
fore, if a query is expressed in both SQL and SPARQL, on the physical algebra
level, the plan generated from SPARQL will typically have many more self-joins
than the relational plan has joins. Because of the high complexity of join order
optimization as a function of the number of joins, SPARQL query optimization
is more challenging than SQL query optimization.

MapReduce and Skew. Linked Open Data ETL tasks which involve cleaning,
interlinking and inferencing have a high computational cost, which motivates
our choice for a MapReduce approach. In a MapReduce-based system, data is
represented in files and that can come from recent Web crawls. Hence, we have
an initial situation without statistics and without any B-trees, let alone multiple
B-trees. One particular problem in raw Web data is the high skew in join keys
in RDF data. Certain subjects and properties are often re-used (most notorious
are RDF Schema properties) which lead to joins where certain key-values will
be very frequent. These keys do not only lead to large intermediate results, but
can also cause one machine to get overloaded in a join job and hence run out of
memory (and automatic job restarts provided by Hadoop will fail again). This is
indeed more general than joins: in the sort phase of MapReduce, large amounts
of data might need to be sorted on disk, severely degrading performance.

SPARQL on Pig. The Pig Latin language provides operators to scan data
files on a Hadoop cluster that form tuple streams, and further select, aggregate,
join and sort such streams, both using ready-to-go Pig relational operators as
well as using user-defined functions (UDFs). Each MapReduce job materializes
the intermediate results in files that are replicated in the distributed filesystem.
Such materialization and replication make the system robust, such that the jobs
of failing machines can be restarted on other machines without causing a query
failure. However, from the query processing point of view, this materialization
is a source of inefficiency. The Pig framework attempts to improve this situation
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by compiling Pig queries into a minimal amount of Hadoop jobs, effectively
combining more operators in a single MapReduce operation. An efficient query
optimization strategy must be aware of it and each query processing step should
minimize the number of Hadoop jobs.

Our work addresses these challenges and proposes an efficient translation of
some crucial operators into Pig Latin, namely joins, making them robust enough
to deal with the issues typical of large data collections.

Contributions. We can summarize the contributions of this work as follows. (i)
We have created a system that can compute complex SPARQL queries on huge
RDF datasets. (ii) We present a runtime query optimization framework that is
optimized for Pig in that it aims at reducing the number of MapReduce jobs,
therefore reducing query latency. (iii) We describe a skew-resistant join method
that can be used when the runtime query optimization discovers the risk for
a skewed join distribution that may lead to structural machine overlap in the
MapReduce cluster. (iv) We evaluate the system on a standard cluster and a
Yahoo! Hadoop cluster of over 3500 machines using synthetic benchmark data,
as well as real Web crawl data.

Outline. The rest of the paper is structured as follows. In Section 2 we present
our approach and describe some of its crucial parts. In Section 3 we evaluate
our approach on both synthetic and real-world data. In Section 4 we report on
related work. Finally, in Section 5, we draw conclusions and discuss future work.

2 SPARQL with Pig: Overview

In this section, we present a set of techniques to allow efficient querying over data
on Web-scale, using MapReduce. We have chosen to translate the SPARQL 1.1
algebra to Pig Latin instead of making a direct translation to a physical algebra
in order to readily exploit optimizations in the Pig engine. While this work is
the first attempt to encode full SPARQL 1.1 in Pig, a complete description of
such process is elaborate and goes beyond the scope of this paper.

The remaining of this section is organized as follows: in Sections 2.1 and 2.2,
we present a method for runtime query optimization and query cost calculation
suitable for a batch processing environment like MapReduce. Finally, in subsec-
tion 2.3, we present a skew detection method and a specialized join predicate
suitable for parallel joins under heavy skew, frequent on Linked Data corpora.

2.1 Runtime Query Optimization

We adapt the ROX query optimization algorithm [1,10] to SPARQL and MapRe-
duce. ROX interleaves query execution with join sampling, in order to improve
result set estimates. Our specific context differs to that of ROX in that:

– SPARQL queries generate a large number of joins, which often have a multi-
star shape [5].
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Algorithm 1. Runtime optimization

1 J : Set of join operators in the query
2 L: List of sets of (partial) query plans
3 void optimize joins(J) {
4 execute(J)
5 L0:=(J)
6 i:=1
7 while (Li−1 �= ∅)
8 for (j ∈ Li−1)
9 for (I ∈ {L0...Li−1})

10 for (k ∈ I)
11 if (j �= k)
12 Li.add(construct(j,k))
13 if (stddev(cost(Li))/mean(cost(Li)) > t)
14 prune(Li)
15 sample(Li)
16 i:=i+ 1
17 }

– The overhead of starting MapReduce jobs in order to perform sampling is
significant. The start-up latency for any MapReduce job lies within tens of
seconds and minutes.

– Given the highly parallel nature of the environment, executing several queries
at the same time has little impact on the execution time of each query.

Algorithm 1 outlines the basic block of our join order optimization algorithm. To
cope with the potentially large number of join predicates in SPARQL queries, we
draw from dynamic programming and dynamic query optimization techniques,
constructing the plans bottom-up and partially executing them.

Initially, we extract from the dataset the binding for all the statement patterns
in the query and calculate their cardinalities. From initial experiments, given the
highly parallel nature of MapReduce, we have concluded that the cost of this op-
eration is amortized over the execution of the query since we are avoiding several
scans over the entire input. Then, we perform a series of construct-prune-sample
cycles. The construct phase generates new solutions from the partial solutions
in the previous cycles. These are then pruned according to their estimated cost.
The remaining ones are sampled and/or partially executed. The pruning and
sampling phases are optional. We will only sample if stddev(costs)/mean(costs)
is higher than some given threshold, so as to avoid additional optimization over-
head if the cost estimates for the candidate plans are not significantly different.

Construct. During the construct phase (lines 6-10 in Algorithm 1), the results
of the previous phases are combined to generate new candidate (partial) plans.
A new plan is generated by either adding an argument to an existing node when
possible (e.g. making a 2-way join a 3-way join) or by creating a new join node.
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Algorithm 2. Bi-focal sampling in Pig

1 DEFINE bifocal sampling(L, R, s, t)
2 RETURNS FC {
3 LS = SAMPLE L s;
4 RS = SAMPLE R s;
5 LSG = GROUP LS BY S;
6 RSG = GROUP RS BY S;
7 LSC = FOREACH LSG GENERATE flatten(group), COUNT(LSG) as c;
8 RSC = FOREACH RSG GENERATE flatten(group), COUNT(RSG) as c;
9 LSC = FOREACH LSC GENERATE group::S as S ,c as c;

10 RSC = FOREACH RSC GENERATE group::S as S ,c as c;
11 SPLIT LSC INTO LSCP IF c>=t, LSCNP IF c<t;
12 SPLIT RSC INTO RSCP IF c>=t, RSCNP IF c<t;
13 // Dense
14 DJ = JOIN LSCP BY S, RSCP BY S using ’replicated’;
15 DJ = FOREACH RA GENERATE LSCP::c as c1, RSCP::c as c2;
16 // Left sparse
17 RA = JOIN RSC BY S, LSCNP BY S;
18 RA = FOREACH RA GENERATE LSCNP::c as c1, RSC::c as c2;
19 // Right sparse
20 LA = JOIN LSC BY S, RSCNP BY S;
21 LA = FOREACH LA GENERATE LSC::c as c1, RSCNP::c as c2;
22 // Union results
23 AC = UNION ONSCHEMA DA, RA, LA;
24 $FC = FOREACH AC GENERATE c1∗c2 as c;}

Prune. We pick the k% cheapest plans in the previous phase, using the cost cal-
culation mechanism described in Section 2.2. The remaining plans are discarded.

Sample. To improve the accuracy of the estimation, we fully execute the plan
up to depth 1 (i.e. the entire plan minus the upper-most join). Then, we use
Algorithm 2 to perform bi-focal sampling [6].

There is a number of salient features in our join optimization algorithm:

– There is a degree of speculation, since we are sampling only after constructing
and pruning the plans. We do not select plans based on their calculated cost
using sampling, but we are selecting plans based on the cost of their ‘sub-
plans’ and the operator that will be applied.

– Nevertheless, our algorithm will not get ‘trapped’ into an expensive join,
since we only fully execute a join after we have sampled it in a previous
cycle.

– Since we are evaluating multiple partial solutions at the same time, it is
essential to re-use existing results for our cost estimations and to avoid un-
necessary computation. Since the execution of Pig scripts and our run-time
optimization algorithm often materialize intermediate results anyway, the
latter are re-used whenever possible.
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2.2 Pig-Aware Cost Estimation

Using a MapReduce-based infrastructure gives rise to new challenges in cost
estimation. First, queries are executed in batch and there is significant overhead
in starting new batches. Second, within batches, there is no opportunity for
sideways information passing [14], due to constraints in the programming model.
Third, when executing queries on thousands of cores, load-balancing becomes
very important, often outweighing the cost for calculating intermediate results.
Fourth, random access to data is either not available or very slow since there
are no data indexes. On the other hand, reading large portions of the input is
relatively cheap, since it is an embarrassingly parallel operation.

In this context, we have developed a model based on the cost of the following:
Writing a tuple (w); Reading a tuple (r); The cost of a join per tuple. In Hadoop,
a join can be performed either during the reduce phase (jr), essentially a com-
bination of a hash-join between machines and a merge-join on each machine, or
during the map phase (jm), by loading one side in the memory of all nodes, es-
sentially a hash-join. Obviously, the latter is much faster than the former, since
it does not require repartitioning of the data on one side or sorting, exhibits
good load-balancing properties, and requires that the input is read and written
only once; The depth of the join tree(d), when considering only the reduce-phase
joins. This is roughly proportional to the number of MapReduce jobs required
to execute the plan. Considering the significant overhead of executing a job, we
consider this separately from reading and writing tuples.

The final cost for a query plan is calculated as the weighted sum of the above,
with indicatory weights being 3 for w, 1 for r, 10 for jr, 1 for jm and a value
proportional to the size of the input for d.

2.3 Dealing with Skew

The significant skew in the term distribution of RDF data has been recognized as
a major barrier to efficient parallelization [12]. In this section, we are presenting
a method to detect skew and a method for load-balanced joins in Pig.

Detecting Skew. To detect skew (and estimate result set size), we are present-
ing an implementation of bi-focal sampling [6] for Pig and report the pseudocode
in Algorithm 2. Similar to join optimization, one of the main goals is to minimize
the number of jobs. L, R, s and t refer to the left side of the join, the right side
of the join, the sampling rate and the number of tuples that the memory can
hold respectively. Initially, we sample the input (lines 3-4), group by the join
keys (lines 6-7) and count the number of occurrences of each key (lines 7-10).
We split each side of the join by key popularity using a fixed threshold, which
is dependent on the amount or memory available to each processing node (lines
11-12). We then perform a join between tuples with popular keys (lines 14-15)
and a join for each side for tuples with non-popular keys and the entire input
(lines 17-21).

This algorithm generates seven MapReduce jobs out of which two are Map-
only jobs that can be executed in parallel and four are jobs with Reduce phases



Robust Runtime Optimization and Skew-Resistant Execution 253

that happen concurrently in pairs. In fact, it is possible to implement our al-
gorithm in two jobs, programming directly on Hadoop instead of using Pig
primitives.

Determining Join Implementation. In Pig, it is up to the developer to choose
the join implementation. In our system, we choose according to the following:

– If all join arguments but one fit in memory, then we perform a replicated
join. Replicated joins are performed on the Map side by loading all arguments
except for one into main memory and streaming through the remaining one.

– If we have a join with more than two arguments and more than one of them
does not fit in memory, we are performing a standard (hash) join.

– If the input arguments or the results of the (sampled) join present significant
skew, we perform the skew-resistant join described in the following section.

Skew-Resistant Join. As a by-product of the bi-focal sampling technique pre-
sented previously, we have the term distribution for each side of the join and
an estimate of the result size for each term. Using this information, we can es-
timate the skew as the ratio of the maximum number of results for any key to
the average number of results over all keys. Hadoop has some built-in resistance
to skewed joins by means of rescheduling jobs to idle nodes, which is sufficient
for cases where some jobs are slightly slower than others. Furthermore, Pig has
a specialized join predicate to handle a skewed join key popularity [7], by virtue
of calculating a key popularity histogram and distributing the jobs according
to this. Nevertheless, neither of these algorithms can effectively handle skewed
joins where a very small number of keys dominates the join. We should further
note that, since there is no communication between nodes after a job execution
has started, a skewed key distribution will cause performance problems even if
the hit rate for those keys is low. This is because MapReduce will still need to
send all the tuples corresponding to these popular keys to a single reduce task.

Our algorithm executes a replicated join for the keys that have a highly skewed
distribution in the input and a standard join for the rest. In other words, joining
on keys that are responsible for load unbalancing is done by replicating one side
on each machine and performing a local hash join. For the remaining keys, the
join is executed by grouping the two sides by the join key and assigning the
execution of each group to a different machine (as is standard in Pig). In Algo-
rithm 3, we present the Pig Latin code for an example join of expressions A and
B1, on positions O and S respectively. Initially, we sample and extract the top-k
popular terms for each side (lines 3-12), PopularA and PopularB respectively.
Then, for each side of the input, we perform two left joins to associate tuples
with PopularA and PopularB (lines 14-17). This allows us to split each of our
inputs to three sets (lines 19-25), marked accordingly in Figure 1:

1. The tuples that correspond to keys that are popular on the other side (e.g.
for expression A the keys in PopularB). For side B, we put an additional

1 For brevity, we have omitted some statements that project out columns that are not
relevant for our algorithm.
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Fig. 1. Schematic representation of the joins to implement the skew-resistant join

requirement, namely that the key is not in PopularB. This is done to avoid
producing the results for tuples that are popular twice.

2. The tuples that correspond to keys that are popular on the same side (e.g.
for expression A the keys in PopularA).

3. The tuples that do not correspond to any popular keys on either side.

We use the above to perform replicated joins for the tuples corresponding to
popular terms and standard joins for the tuples that are not. The tuples in A
corresponding to popular keys in A (APopInA) are joined with the tuples in
B that correspond to popular keys in A using a replicated join (line 28). The
situation is symmetric for B (line 29). The tuples that do not correspond to
popular keys from either side are processed using a standard join (line 31). The
output of the algorithm is the union of the results of the three joins.

We should note that our algorithm will fail if APopInB and BPopInA are not
small enough to be replicated to all nodes. But this can only be true if there are
some keys that are popular in both sets. Joins with such keys would anyway lead
to an explosion in the result set (since the result size of each of these popular
keys is the product of their appearances in each side).

3 Evaluation

We present an evaluation of the techniques presented in this paper using syn-
thetic and real data, and compare our approach to a commercial RDF store.

We have used two different Hadoop clusters in our evaluation: a modest clus-
ter, part of the DAS-4 distributed supercomputer, and a large cluster installed at
Yahoo!. The former was used to perform experiments in isolation and consists of
32 dual-core nodes, with 4GB of RAM and dual HDDs in RAID-0. The Yahoo!
Hadoop cluster we have used in our experiment consists of over 3500 nodes, each
with two quad-core CPUs, 16 GB RAM and 900GB of local space. This cluster
is used in a utility computing fashion and thus we do not have exclusive access,
meaning that we can not exploit the full capacity of the cluster and our runtimes
at any point might be (negatively) influenced by the jobs of other users. We thus
only report actual, but not best possible performance.

In order to compare our approach with existing solutions, we deployed Vir-
tuoso v7 [4], a top-performing RDF store, on an extremely high-end server: a
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Algorithm 3. Skew-resistant join

1 DEFINE skew resistant join(A, B, k)
2 RETURNS result {
3 SA = SAMPLE A 0.01; //Sample first side
4 GA = GROUP SA BY O;
5 GA2 = FOREACH GA GENERATE COUNT STAR(SA), group;
6 OrderedA = ORDER GA2 BY $0 DESC;
7 PopularA = LIMIT OrderedA k;
8 SB = SAMPLE B 0.01; //Sample second side
9 GB = GROUP SB BY S;

10 GB2 = FOREACH GB GENERATE COUNT STAR(SB), group;
11 OrderedB = ORDER GB2 BY $0 DESC;
12 PopularB = LIMIT OrderedB k;
13
14 PA = JOIN A BY O LEFT, PopularA BY O USING ’replicated’;
15 PPA= JOIN PA BY O LEFT, PopularB BY S USING’replicated’;
16 PB = JOIN B BY S LEFT, PopularB BY S USING ’replicated’;
17 PPB= JOIN PB BY S LEFT, PopularA BY S USING ’replicated’;
18
19 SPLIT PPA INTO APopInA IF PopularA::O is not null,
20 APopInB IF PopularB::S is not null, ANonPop IF
21 PopularA::0 is not null and PopularB::S is not null;
22
23 SPLIT PPB INTO BPopInB IF PopularB::S is not null, BPopInA
24 IF PopularA::O is not null and PopularB::S is null, BNonPop
25 IF PopularA::0 in not null and PopularB::S is not null;
26
27 // Perform replicated joins for popular keys
28 JA= JOIN BPopInB BY S, APopInB BY O USING ’replicated’;
29 JB= JOIN APopInA BY S, BPopInA BY S USING ’replicated’;
30 // Standard join for non−popular keys
31 JP = JOIN ANonPop BY O, BNonPop BY S;
32
33 $result = UNION ONSCHEMA JA, JB, JP; }

4-socket 2.4GHz Xeon 5870 server (40 cores) with 1TB of main memory and 16
magnetic disks in RAID5, running Red Hat Enterprise Linux 6.0.

We chose two datasets for the evaluation. Firstly, the Berlin SPARQL bench-
mark [3], Business Intelligence use-case v3.1 (BSBM-BI). This benchmark con-
sists of 8 analytical query patterns from the e-commerce domain. The choice for
this benchmark is based on the scope of this work, namely complex SPARQL
queries from an analytical RDF workload.

Secondly, we also used our engine for some analytical queries on RDF data
that Yahoo! has crawled from the Web. This data is a collection of publicly
available information on the Web encoded or translated in RDF. The dataset
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Query 1B DAS4 1B Y! 10B Y!

1 38m 1h50m 1h17m

2 13m 23m 31m

3 17m 18m 24m

4 38m 1h34m 54m

5 1h4m 3h10m 1h52m

6 48m 34m 1h19m

7 26m 43m 46m

8 1h 1h59m 1h38m

(a) Execution time of the BSBM
queries on 1B data on the DAS-4 and
Yahoo! cluster

Query Cold runtime Warm runtime

1 3m46s 1m48s

2 41s 15s

3 29m 24m5s

4 52m6s 50m55s

5 11m42s 5m19s

6 6s 0.06s

7 50s 9ms

8 39m58s 36m22s

(b) Runtime of the BSBM queries using Vir-
tuoso

Fig. 2. BSBM query execution time

that we used consists of about 26 billion triples that correspond to about 3.5
terabytes of raw data (328 gigabytes compressed).

3.1 Experiments

In our evaluation, we measured: (i) the performance of our approach for large
datasets. To this end, we launched and recorded the execution time of all the
queries on BSBM datasets of 1 and 10 billion triples. (ii) The effectiveness of our
dynamic optimization technique. To this purpose, we measured the cost of this
process and what is its effect on the overall performance. (iii) The load-balancing
properties of our system. To this end, we have performed a high-level evaluation
of the entire querying process in terms of load balancing, and we have further
focused on the performance of the skew-resistant join, which explicitly addresses
load-balancing issues.

General Performance. We have launched all 8 BSBM queries on 1 billion
triples on both clusters and on 10 billion triples using only the Yahoo! cluster.

In Figure 2a, we report the obtained runtimes. We make the following ob-
servations: First of all, the fastest queries (queries 2 and 3) have a runtime of
a bit less than 20 minutes on the DAS-4 cluster. The slowest is query 5, with
a runtime of about one hour. For the 1B-triple dataset, the execution times on
the Yahoo! cluster are significantly higher than those on the DAS-4 cluster. This
is due to (a) the fact that the Yahoo! cluster is shared with other users, so, we
often need to wait for the jobs of other users to finish execution and (b) the much
larger size of the Yahoo! cluster, introducing additional coordination overhead.

We also note that the runtime does not proportionally increase with the data
size on the Yahoo! cluster: the runtimes for the one and ten billion-triple datasets
are comparable. Such behavior is explained by the fact that a proportional
amount of resources is allocated to the size of the input and the (significant)
overhead to start MapReduce jobs does not increase. Our approach, combined
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Listing 1.1. Exploratory SPARQL queries

SELECT (count(?s) as ?f) (min(?s) as ?ex) ?ct ?di ?mx ?mi{
{SELECT ?s (count(?s) as ?ct) (count(distinct ?p) as ?di) (max(?p) as ?mx)

(min(?p) as ?mi) {?s ?p ?o.} GROUP BY ?s}
GROUP BY ?ct ?di ?mx ?mi ORDER BY desc(?f) LIMIT 10000}

SELECT ?p (COUNT(?s) AS ?c) {?s ?p ?o.} GROUP BY ?p ORDER BY ?c

SELECT ?C (COUNT(?s) AS ?n ) {?s a ?C.} GROUP BY ?C ORDER BY ?n

with the large infrastructure at Yahoo! allows us to scale to much larger inputs
while keeping the runtime fairly constant.

To verify the performance in a real-world scenario and on messy data, we
have launched three non-selective SPARQL queries, reported in Listing 1.1, over
an RDF web crawl of Yahoo!. The first query is used for identifying ”charac-
teristic sets” [13]: frequently co-occurring properties with a subject. The second
identifies all the properties used in the dataset and sorts them according to their
frequency. The third identifies the classes with the most instances. These queries
are typical of an exploratory ETL workload on messy data, aimed at creating a
basic understanding of the structure and properties of a web-crawled dataset.

From the computation point of view, the first two queries have non-bound
properties and the last one has a very non-selective property (rdf:type) . There-
fore they will touch the entire dataset, including problematic properties that
cause skew problems. The runtime of these three queries was respectively 1 hour
and 21 minutes, 29 minutes and 25 minutes. The first query required 6 MapRe-
duce jobs to be computed. The second and third each required 3 jobs.

It is interesting to compare the performance for BSBM against a standard
RDF store (Virtuoso), even if the approaches are radically different. We loaded
10 billion BSBM triples on the platform described previously. This process took
61 hours (about 2.5 days) and was performed in collaboration with the Virtuoso
development team to ensure that the configuration was optimal.

We executed the 8 BSBM queries used in this evaluation and we report the
results in Figure 2b. For some queries, Virtuoso is many orders of magnitude
faster than our approach (namely, for the simpler queries like queries 1,2, 6 and
7). For the more expensive queries, the difference is less pronounced. However,
this performance comes at the price of a loading time of 61 hours, necessary to
create the database indexes. To load the data and run all the queries on Virtu-
oso, the total runtime amounts to 63 hours, while in our MapReduce approach,
it amounts to 8 hours and 40 minutes. Although we can not generalize this con-
clusion to other datasets, the loading cost of Virtuoso is not amortized for a
single query mix in BSBM-BI.

In this light, the respective advantages of the two systems are in running many
cheap queries for Virtuoso and running a limited number of expensive queries for
our system. Furthermore, our system can exploit existing Hadoop installations
and run concurrently with heterogenous workloads.
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Table 1. Breakdown of query runtimes on 1B BSBM data

Query Cost input Cost dyn. Final query

extraction optimizer execution

1 5m58s 12m12s 19m43s

2 4m22s n.a. 9m5s

3 5m46s n.a. 11m58s

4 6m22s 14m41s 16m55s

5 7m37s 34m3s 23m21s

6 8m12s 14m25s 25m10s

7 5m17s 6m17s 14m3s

8 8m7s 25m14s 27m2s

Fig. 3. Maximum task runtime divided by the average task runtime for a query mix
(left). Comparison of load distribution between the skew-resistant join and the standard
Pig join (right).

Dynamic Optimizer. As discussed in Section 2.1, query execution consists of
three phases: (a) triple pattern extraction, (b) best execution plan identification
using dynamic query optimization and (c) full query plan execution.

In Table 1, we summarize the execution time of each of these three phases for
the 8 BSBM queries on the DAS-4 cluster, using the one billion triple dataset.
We observe that extracting the input patterns is an operation that takes between
4 and 8 minutes, depending on the size of the patterns. Furthermore, the cost of
dynamic optimization is significant compared to the total query execution time
and largely depends on the complexity of the query, although, in our approach,
part of the results are calculated during the optimization phase.

Load Balancing. As the number of processing nodes increases, load-balancing
becomes increasingly important. In this section, we present the results concerning
the load balancing properties for our approach.

Due to the synchronization model of MapReduce, it is highly desirable that
no task takes significantly longer than others. In Figure 3 (left), we present
the maximum task execution time, divided by the average execution time for all
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tasks launched for a query mix on the DAS-4 cluster. The x axis corresponds
both to time and the queries that correspond to each job, the y axis corresponds
to the time it took to execute the slowest task divided by the time it took to
execute a task, on average. In a perfectly load-balanced system, the values in
y would be equal to 1. In our system, except for a single outlier, the slowest
tasks generally take less than twice the average time, indicating that the load
balancing of our system is good. A second observation is that the load imbalance
is higher in the reduce jobs. This is expected, considering that, in our system,
the map tasks are typically concerned with partitioning the data (and process
data chunks of equal size), while the reduce tasks process individual partitions.

Data skew becomes increasingly problematic as the number of processing
nodes increases, since it generates unbalance between the workload of each
node [12]. In the set of experiments described in this section, we analyze the
performance of the skew-resistent join that we have introduced in Section 2.3 to
efficiently execute joins on data with high skew.

To this purpose, we launched an expensive join using the 1 billion BSBM
dataset and we analyzed the performance of the standard and the skew-resistant
join. Our experiments were performed on the DAS-4 cluster, since we required
a dedicated cluster to perform a comparative analysis. Considering that this
platform uses only 32 nodes in total, the effect on the Yahoo! cluster would have
been much more pronounced (since it is several orders of magnitude bigger).

We launched a join that used the predicate of the triples as a key; namely,
we have performed a join of pattern (?s ?p ?o) with pattern (?p ?p1?o1). Such
joins are common in graph analysis, dataset characterization [13] and reasoning
workloads (e.g. RDFS rules 2-3 and 7).

The runtime using the classical join was of about 1 hour and 29 minutes. On
the other side, the runtime using the skew-resistant join was about 57 minutes.
Therefore, such a join has a significant impact on performance, in the presence
of skew. The impact is even higher if we consider that the skew-resistant join
requires 21 jobs to finish while the classical job requires a single one.

The reason behind such increase of performance lies in the way the join is
performed, and in particular, the amount and distribution of work that the
reduce tasks need to do, as reported in Figure 3 (right). We see that some
reducers receive a much larger number of records than others (these are the ones
at the end of the x axis), implying that some nodes will need to perform much
more computation than others. With the skew-resistant join, all the joins among
popular terms are performed in the map phase and as a result, all the reducers
receive a similar amount of tuples in the input.

We also report reduce task statistics for the the skew-resistant join imple-
mentation in Pig, which calculates a histogram for join keys to better distribute
them across the join tasks. Although the size of the cluster is small enough to
ensure an even load-balance, we note that the standard Pig skewed join sends
almost double the number of records to each reduce task. This is attributed to
fact that our approach shifts much of the load for joining to the Map phase.
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4 Related Work

We have compared our approach with previous results from three related ar-
eas: (i) MapReduce query processing (ii) adaptive and sampling-based query
optimization and (iii) cluster-aware SPARQL systems.

In the relational context, similar efforts towards SQL query processing over a
MapReduce cluster are e.g. Hive [21] and HadoopDB [2]. Both projects do not
provide query optimization when data is raw and unprocessed. Data import is a
necessary first step in HadoopDB and may be costly. In Hive, query optimization
based on statistics is only available if the data has been analyzed as a prior step.

On-the-fly query optimization in Manimal [9] analyzes MapReduce jobs on-
the-fly and tries to enhance them by inserting compression code and sometimes
even on-the-fly indexing and index lookup steps.

Situations where there is absence of data statistics in the relational context
of query optimization has led to work on sampling and run-time methods. Our
work reuses the bi-Focal sampling algorithm [6] which came out of the work in
the relational community to use sampling for query result size estimation. In
this work, we have adapted the bi-focal algorithm using the Pig language.

The rigid structure of MapReduce and high latencies in starting new jobs led
us to adjust the dynamic re-optimization strategies to these constraints. Other
interesting run-time approaches are sideways-information passing [14] in large
RDF joins. These are not easily adaptable to the constraints of MapReduce.

With the ever growing sizes of RDF data available, scalability has been a
primary concern and major RDF systems such as Virtuoso [4], 4store [18], and
BigData [20] have evolved to parallel database architectures targeting cluster
hardware. RDF systems typically employ heavy indexing, going as far as creating
replicated storage in all six permutations of triple order [15,22], which makes
data import a heavy process. Such choice puts them in a disadvantage when
the scenario involves processing huge amounts of raw data. As an alternative
to the parallel database approach, there are several other projects that process
SPARQL queries over MapReduce. PIGSparQL [19] performs a direct mapping
of SPARQL to Pig without focusing on optimization. RAPID+ [17] provides
a limited form of on-the-fly optimization where look-ahead processing tries to
combine multiple subsequent join steps. The adaptiveness of this approach is
however limited compared to our sampling based run-time query optimization.

5 Conclusions

In this paper, we have presented an engine for the processing of complex analytic
SPARQL 1.1 queries, based on Apache Pig. In particular, we have developed:
(i) a translation from SPARQL 1.1 to Pig Latin, (ii) a method for runtime
join optimization based on a cost model suitable for MapReduce-based systems,
(iii) a method for result set estimation and join key skew detection, and (iv) a
method for skew-resistant joins written in Pig. We have evaluated our approach
on a standard and a very large Hadoop cluster used at Yahoo! using synthetic
benchmark data and real-world data crawled from the Web.
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In our evaluation, we established that our approach can answer complex ana-
lytical queries over very large synthetic data (10 Billion triples from BSBM) and
over the largest real-world messy dataset in the literature (26 Billion triples).
We compared our performance against a state-of-the-art RDF store on a large-
memory server, even though the two approaches bear significant differences.
While our approach is not competitive in terms of query response time, our sys-
tem has the advantage that it does not require a-priori loading of the data, and
thus has far better loading plus querying performance. Furthermore, our system
runs on a shared architecture of thousands of machines, significantly easing de-
ployment and potentially scaling to even larger volumes of data. We verified that
the load in our system is well-balanced and our skew-resistant join significantly
outperforms the standard join of Pig for skewed key distributions in the input.

In this work, for the first time, it has been shown that MapReduce is suited
for very large-scale analytical processing of RDF graphs and it is, in fact, better
suited than a traditional RDF store in a setting where a relatively small number
of queries will be posted on a very large dataset.

We see future work in optimizing our architecture to further reduce overhead.
This could be achieved by turning to an approach that adaptively indexes part
of the input or performs part of the computation outside of Pig so as to reduce
the number of jobs. Similarly, parts of the skew-resistant join can be already
calculated during Bi-focal sampling (e.g. sampling and extracting the popular
terms for the input relations).

Although in this paper we have presented our algorithm to handle skewed
joins in the context of Pig, we expect that the result is transferrable to a general
parallel data-processing framework.

Summarizing, in this paper, we have presented a technique with which tech-
nologies like MapReduce and Pig can be employed for large-scale SPARQL
querying. The presented results are promising and set the lead for a new viable
alternative to traditional RDF stores for executing expensive analytical queries
on large volumes of RDF data.
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Abstract. We present a large-scale relation extraction (RE) system which learns
grammar-based RE rules from the Web by utilizing large numbers of relation
instances as seed. Our goal is to obtain rule sets large enough to cover the actual
range of linguistic variation, thus tackling the long-tail problem of real-world
applications. A variant of distant supervision learns several relations in parallel,
enabling a new method of rule filtering. The system detects both binary and n-ary
relations. We target 39 relations from Freebase, for which 3M sentences extracted
from 20M web pages serve as the basis for learning an average of 40K distinctive
rules per relation. Employing an efficient dependency parser, the average run time
for each relation is only 19 hours. We compare these rules with ones learned from
local corpora of different sizes and demonstrate that the Web is indeed needed for
a good coverage of linguistic variation.

Keywords: information extraction, IE, relation extraction, RE, rule based RE,
web scale IE, distant supervision, Freebase.

1 Introduction

Tim Berners-Lee defines the Semantic Web as “a web of data that can be processed
directly and indirectly by machines” [4]. Today, there is still a long way to go to reach
the goal of a true Semantic Web because most information available on the Web is still
encoded in unstructured textual forms, e. g., news articles, encyclopedia like Wikipedia,
online forums or scientific publications. The research area of information extraction
(IE) aims to extract structured information from these kinds of unstructured textual
data. The extracted information can be instances of concepts such as persons, locations
or organizations, or relations among these concepts. Relation extraction (RE) deals with
the automatic detection of relationships between concepts mentioned in free texts. It can
be applied for automatically filling and extending knowledge databases and for semantic
annotation of free texts. In recent research, distant supervision has become an important
technique for data-driven RE (e. g. [15, 16, 22, 32]) because of the availability of large
knowledge bases such as Yago [21] and Freebase1. Distant supervision utilizes a large
number of known facts of a target domain for automatically labeling mentions of these
facts in an unannotated text corpus, hence generating training data.

1 http://www.freebase.com/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 263–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We develop a large-scale RE system that employs Freebase facts as seed knowledge
for automatically learning RE rules from the Web in the spirit of distant supervision.
The obtained rules can then be applied for the extraction of new instances from new
texts. Freebase is a fact database containing some 360 million assertions about 22 mil-
lion entities such as people, locations, organizations, films, books, etc. We extend the
distant supervision approach to RE by combining it with existing means for accommo-
dating relations with arity > 2. To the best of our knowledge, this is the first approach
to RE which can learn large-scale grammar-based RE rules for n-ary relations from the
Web in an efficient way. We try to learn from the Web as many such rules as possible.
For these rules, we adopt the rule formalism of the DARE framework [31], because it
accommodates relations of various complexity and is expressive enough to work with
different linguistic formalisms, in particular, results of deeper analysis such as depen-
dency structures. When applied to parsed sentences, the learned rules can detect relation
mentions, extract the arguments and associate them with their respective roles. There-
fore, the results can be directly used as input for a knowledge database. In comparison to
statistical-classifier approaches like [15, 16], our approach does not only come up with
a web-scale RE system but also delivers the extraction rules as an important knowl-
edge source, which can be reused for question answering, textual entailment and other
applications.

Our method is applied to 39 relations from the domains Awards, Business and Peo-
ple modeled in Freebase. About 2.8M instances of these relations were retrieved from
Freebase as seed knowledge, from which about 200,000 were turned into Bing queries,
resulting in almost 20M downloaded web pages. 3M sentences matched by seed facts
were utilized to learn more than 1.5M RE rule candidates. Run time for learning was
reduced by parallelization with three server machines (16 cores with 2.4 GHz each; 64
GB RAM). We utilize a very efficient dependency parser called MDParser [24]. In our
experiments, it takes around 120 ms to parse one sentence of the average length of 25
words. For each relation, the average run time for the entire rule learning process takes
only 19 hours.

Our experiments show that the large number of learned rules make useful candidates
of RE rules. These rules produce a higher recall than semi-supervised bootstrapping on
a domain-relevant small corpus or distant supervision on a large local corpus. However,
precision is hampered by a large number of invalid candidate rules. But many of the
invalid rule candidates are learned for multiple relations, even for incompatible ones.
Therefore, we use the rule overlap between relations for effective filtering. This tech-
nique is a new variant of previously proposed methods, i. e., counter training [7, 33] and
coupled learning [6]. It is better suited for distant supervision learning, since it works
directly on the rule sets without needing a confidence feedback of extracted instances.

2 Related Work

Real-world applications often benefit from the extraction of n-ary relations, in particu-
lar, in the case of event extraction. Very often more than two arguments of an event are
mentioned in a single sentence, e. g., in the following example.
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Example 1. Prince Albert has married the former Olympic swimmer Charlene Wittstock
in a Catholic ceremony in Monaco.

Here, three arguments of a wedding event are mentioned: the two persons (Prince Al-
bert, Charlene Wittstock) and the location (Monaco). In general, the binary relation
only approaches (e. g, [17, 19, 20]) do not employ the existing syntactic and semantic
structures among n > 2 arguments and rely on a later component to merge binary rela-
tions into relations of higher complexity (e. g., [14]). As described above and explained
in Section 4.2, DARE [31] provides a rule extraction strategy, which allows rules to
have more than 2 arguments, when they co-occur in one sentence.

Approaches with surface-oriented rule representation (e. g., [11–13, 19]) prefer to
employ shallow linguistic analyses thus circumventing less efficient full syntactic pars-
ing for large-scale RE tasks. These formalisms are robust and efficient but only handle
binary relations. They work best for relations whose arguments usually co-occur in
close proximity within a sentence and whose mentions exhibit limited linguistic vari-
ation. In contrast, systems learning RE rules from syntactic structures such as depen-
dency graphs are able to detect relation arguments spread widely across a sentence
(e. g., [31, 34]). However, these approaches are usually applied only to relatively small
corpora.

The minimally-supervised bootstrapping paradigm takes a limited number of ini-
tial examples (relation instances or patterns) and labels free texts during several iter-
ations (e. g., [2, 20, 34]). These approaches often suffer from semantic drift and the
propagation of errors across iterations [15]. Furthermore, their performance is strongly
dependent on the properties of the data, i. e., on specific linguistic variation in conjunc-
tion with redundant mention of facts [23]. In contrast, distant supervision approaches
[10, 16, 27, 28, 32] rely on a large amount of trustworthy facts and their performance
does not hinge on corpus data properties such as redundancy, since multiple occurrences
of the same instance in different sentences are not required.

Closely related to our distant supervision approach is the work described by [15], who
train a linear-regression classifier on examples derived from mentions of Freebase rela-
tion instances in a large Wikipedia corpus. They focus on the 109 most populated relations
of Freebase. The trained classifier works on shallow features such as word sequences and
POS tags and on dependency relations between words. To our knowledge, neither [15],
nor other existing distant supervision approaches can handle n-ary relations.

Parallel to the above approaches, a new paradigm has emerged under the name of
open IE. A pioneering example is the TextRunner system [3, 35]. In contrast to tradi-
tional RE systems, they do not target fixed relations, thus being very useful for appli-
cations continuously faced with new relation or event types, e. g., online social media
monitoring. However, the results of these systems cannot be directly taken for filling
knowledge databases, because the semantics of the new relations including the roles of
the entities remains unknown.

All ML systems for RE are faced with the problem of estimating the confidence of the
automatically acquired information. Some approaches utilize the confidence value of
the extracted instances or the seed examples as feedback for evaluation of the rules (e. g.,
[1, 5, 34]). Many others employ negative examples for detecting wrong rules [7, 33],
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so-called counter training. In [30], negative examples are implicitly generated by utiliz-
ing a given set of positive relation instances, which form a closed world. [6] introduces
coupled learning, which learns a coupled collection of classifiers for various relations
by taking their logical relationships as constraints for estimating the correctness of
newly extracted facts. Our current rule filtering method works directly on rules without
making use of any confidence information associated with extracted instances.

3 Target Relations and Essential Type

We decide to conduct our experiments in three domains: Award, Business and People.
All three domains contain n-ary relations with n = 2 and n > 2.

Let t be a named-entity type and let NE t be the set containing all named entities of
type t. Let T be a bag of named-entity types and let n = |T |. Then any of our n-ary
target relations is a set R for some T with

R ⊆
∏

t∈T
NE t . (1)

Table 1. Some of the target relations of the Award, Business and People domains

ARGUMENT NAMES & Entity Types

Relation Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

award
nomination

AWARD
award concept R©

NOMINEE
organization

person
R© DATE

date
WORK

creative work

award honor AWARD
award concept R©

WINNER
organization

person
R© DATE

date
WORK

creative work

hall of fame
induction

HALL OF FAME
award concept R©

INDUCTEE
organization

person
R© DATE

date -

organization
relationship

PARENT
organization R© CHILD

organization R© FROM
date

TO
date -

acquisition BUYER
organization R© ACQUIRED

organization R© DATE
date - -

company
name
change

NEW
organization R© OLD

organization R© FROM
date

TO
date -

spin off PARENT
organization R© CHILD

organization R© DATE
date - -

marriage PERSON A
person R© PERSON B

person R© CEREMONY
location

FROM
date

TO
date

sibling
relationship

PERSON A
person R© PERSON B

person R© - - -

romantic
relationship

PERSON A
person R© PERSON B

person R© FROM
date

TO
date -

person parent PERSON
person R© PARENT A

person R© PARENT B
person - -
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Derived from the modeling in Freebase, the marriage relation can formally be described
by:

Rmarriage ⊆ NEperson ×NEperson ×NE location ×NEdate ×NEdate . (2)

Often the first k (k ≥ 2) arguments of an relation are essential arguments, since con-
ceptually the relation holds between these entities.2 Then we require these arguments in
every text mention of an instance. For example, we require both persons in a marriage
relation to be mentioned, whereas date and location of the wedding are considered op-
tional, as well as a supplementary divorce date. All relations which share the NE types
of their essential arguments are of the same essential type.

Table 1 shows some of the targeted relations from the three domains Award, Business
and People. Due to space restrictions, we only present a subset of the 39 used relations
here. Required (essential) arguments are marked by R©. Relations of the same essential
type are grouped by solid horizontal lines. For example, all three relations from the
Award domain (i. e., award nomination, award honor and hall of fame induction) belong
to the same essential type since their first two arguments are of the same NE types:
award concept and person/organization. All relation definitions used in this paper were
taken from Freebase.

4 Architecture

Figure 1 displays the general workflow of our system. First, a local database of relation
instances (so-called seeds) is generated. The seeds are used as queries for a web search
engine, which returns hits potentially containing mentions of the seeds. The web pages
are downloaded and transformed into plain texts. After NER, sentences containing at
least the essential seed arguments are collected, which are then processed by the de-
pendency parser. We regard a sentence containing at least the essential arguments as a

Fact 
database 

Seeds 

Search-engine 
queries 

Mention 
identification 

Dependency 
parsing 

Web-page 
loader 

Rule 
validation 

Texts 

Extraction rules Trusted 
extraction rules 

NER 

Fig. 1. Data flow of implemented system

2 Assuming that relations are defined with their most important arguments preceding the others
as they actually are in Freebase and most ontologies.
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potential mention of a target relation. The parses serve as input for rule learning, which
works only on individual sentences. The rule-validation component utilizes information
from parallel learning of multiple relations of the same essential types to filter out low-
quality rules.

An important design choice is the utilization of the dependency-relation formalism
for our rule model. We assume that any given mention of a target-relation instance can
be identified by a somehow characteristic pattern in the sentence’s underlying depen-
dency graph. This approach has limitations, e. g., it does not cover mentions requiring
some kind of semantic understanding (see Section 7), or simply mentions with argu-
ments spread across several sentences. Nevertheless, this methodology is intuitively
expressive enough for many mentions. To our knowledge, there exists no systematic
investigation of how quantitatively limiting a dependency-formalism based, sentence-
restricted approach to RE is.

4.1 Linguistic Annotation

NER in our system is performed by a combination of two components: (a) the Stan-
ford Named Entity Recognizer3 [8] for detection of persons, organizations and locations
(extended with our own date recognition), and (b) a simple string fuzzy match via a
gazetteer created from the name variations of the seeds’ entities as provided by Free-
base. In the current system, neither complex entity linking nor coreference resolution
are applied in the training phase.

After identification of sentences containing seed mentions, each sentence is pro-
cessed by the dependency-relation parser MDParser (Multilingual Dependency Parser)4

[24]. We choose this parser because it is very fast, while maintaining competitive pars-
ing quality when used in an application, as shown by [25] for the textual entailment
task. The parsing results also contain information about part-of-speech tags and word
lemmas.

4.2 Rule Learning

We re-use the rule-learning component of the existing DARE system [29, 31]. DARE is
a minimally-supervised machine-learning system for RE on free texts, consisting of 1)
rule learning (RL) and 2) relation extraction (RE). Starting from a semantic seed (a set
of relation instances), RL and RE feed each other in a bootstrapping framework. In our
system, we use the RL component for the training phase (Section 5) and the RE part
in the evaluation (Section 6). DARE is able to directly handle n-ary relations through
its extraction-rule formalism, which models the links between relation arguments using
dependency relations.

Consider for example the marriage relation from Table 1, which has the arguments
PERSONA, PERSONB, CEREMONY, FROM, and TO. Given the seed tuple 〈Brad Pitt,
Jennifer Aniston, Malibu, 2000, 2005〉, the following sentence can be used for rule
learning:

3 Stanford CoreNLP (version 1.1.0) from
http://nlp.stanford.edu/software/corenlp.shtml

4 See http://mdparser.sb.dfki.de/

http://nlp.stanford.edu/software/corenlp.shtml
http://mdparser.sb.dfki.de/
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“marry”,V
nsubj
�� dobj �� prep ��

prep

��
person person “in”, IN

pobj
��

“on”,IN
pobj

��
“ceremony”,N

prep
��

date

“in”,IN
pobj

��
location

Fig. 2. Dependency parse of Example 2

Rule name :: PersonA_PersonB_Ceremony_From
Rule body ::⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

head (“marry”, V)

dobj
[
head 0 person

]

prep

⎡⎢⎢⎢⎢⎢⎢⎢⎣

head (“in”, IN)

pobj

⎡⎢⎢⎢⎢⎣
head (“ceremony”, N)

prep

⎡⎣head (“in”, IN)

pobj
[
head 1 location

]⎤⎦
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
prep

⎡⎣head (“on”, IN)

pobj
[
head 2 date

]⎤⎦
nsubj

[
head 3 person

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Output ::

〈
0 PERSON A, 3 PERSON B, 1 CEREMONY, 2 FROM, —

〉
Fig. 3. Example rule for the marriage relation

Example 2. Brad Pitt married Jennifer Aniston in a private wedding ceremony in
Malibu on July 29, 2000.

This sentence is processed by the dependency parser, which outputs a structure like in
Figure 2, where the surface strings of the named entities have already been replaced by
their respective types in this tree via the NER.

From this dependency tree, DARE learns the rule in Figure 3, which contains four
arguments: two married persons plus the wedding location and the starting date of the
marriage. DARE additionally learns projections of this rule, namely, rules containing a
subset of the arguments, e. g., only connecting the person arguments. This way, a single
sentence might lead to the learning of several rules.
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5 Web-Scale Rule Learning

Our rule learning consists of two phases: candidate-rule learning and rule filtering. As
assumed in distant supervision, when there is a sentence containing the arguments of a
relation instance, this sentence is a potential mention of the target relation. Therefore,
rules learned from such sentences are also potential rules of the target relation. Because
this assumption is not true for all sentences with relation arguments, the resulting rules
may be wrong. Hence, they are only candidate rules and need further filtering.

5.1 Learning Candidate Rules

Table 2. Number of seeds from Freebase and search hits; statistics about downloaded web pages
and documents and sentences containing seed mentions; statistics for rule learning

Relation #See
ds

# See
ds use

d

# Sea
rc

h hits

#Doc
um

en
ts

w/ a
m

en
tio

n

# Sen
ten

ce
s

w/ a
m

en
tio

n

#Rules

award nomination 86,087 12,969 1,000,141 14,245 15,499 7,800
award honor 48,917 11,013 1,000,021 50,680 56,198 40,578
hall of fame induction 2,208 2,208 443,416 29,687 34,718 17,450

organization relationship 219,583 70,946 1,000,009 37,475 51,498 28,903
acquisition 1,768 1,768 308,650 40,541 71,124 50,544
company name change 1,051 1,051 124,612 8,690 10,516 6,910
spin off 222 222 32,613 3,608 5,840 4,798

marriage 16,616 6,294 1,000,174 211,186 381,043 176,949
sibling relationship 8,246 8,246 914,582 130,448 186,228 69,596
romantic relationship 544 544 280,508 82,100 172,640 74,895
person parent 23,879 3,447 1,000,023 148,598 213,869 119,238

avg. of 39 relations 72,576 6,095 635,927 60,584 73,938 41,620

In the following, we describe the experimental results of our training phase. Table 2
provides statistics for this phase. For the 39 target relations, 2.8M relation instances
were extracted from Freebase (column “# Seeds”). For each relation, we tried to find
1M web documents using the search engine Bing5 (column “# Search hits”), resulting
in more than 20M downloaded documents in total for all relations. Note that for some
relations, finding 1M web documents required only a subset of the relation instances re-
trieved from Freebase, while for other relations even utilizing all relation instances was
not sufficient for getting 1M web documents. This explains the difference in numbers
between columns “# Seeds” and “# Seeds used”.

The downloaded web documents were subsequently processed by NER and sentence
segmentation. Given sentences with their NE annotations, the sentences with mentions
of seeds are identified. The mentions of seeds occur in a relatively small fraction of the
downloaded web documents (around 10 %), as shown in column “# Documents w/ a

5 http://www.bing.com

http://www.bing.com
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mention”. Reasons for that are 1) seed arguments being spread across sentence borders,
2) NER errors or 3) a wrong (non-English) language of the web document.

The final training corpus contains for each relation on average 74k sentences with
mentions of seed instances, i. e., a total of around 3M sentences (column “# Sentences
w/ a mention”). All of these mentions include at least the respective relation’s essential
arguments. On average, around 40k distinct rules were learned per relation (column
“# Rules”).

The total system runtime per relation was on average around 19 hours, with the pro-
cessing being distributed on three server machines (16 cores with 2.4 GHz each; 64 GB
RAM). The parallelization was accomplished naively by chunking the data according to
the respective source seed. Of the pipeline’s main processing phases, the search-engine
querying and the document download with subsequent text extraction were the most
time-consuming ones, with on average 6 hours 17 minutes per relation and 8 hours 40
minutes per relation, respectively. The mention-finding step (including NER) took 3
hours 11 minutes for each relation, the final dependency parsing and rule learning on
average only 40 minutes per relation.

5.2 Rule Filtering

Whenever two relations are of the same essential type, they may share some same re-
lation instances, in particular, for the required arguments, for example, the same two
persons might be involved in various relations such as marriage and romantic relations.
This can be for good reasons, if the relations overlap or if the relevant expressions of
the language are ambiguous. Most rules learned for two or more relations, however, are
not appropriate for one or both relations. Rules might be learned for wrong relations
because of erroneous NER & dependency parsing, false seed facts and false mentions.
Especially when a rule is learned for two disjoint relations, something must be wrong.
Either the rule exhibits a much higher frequency for one of the two relations, then it
can be safely deleted from the other, or the rule is wrong for both relations. Figure 4

rules of 
marriage 

rules of 
person parent 

rules of 
romantic relationship 

rules of 
sibling relationship 

160,853 107,381 3,358 

2,708 6,153 

798 996 

61,176 64,515 483 

866 109 

1,450 

Fig. 4. Euler diagram showing numbers of rules learned for four People relations. Missing zones:
person parent /romantic relationship (408); marriage /sibling relationship (1,808).
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shows intersections of the sets of learned rules for four relations of the same essen-
tial type in the People domain: marriage, romantic relationship, person parent, and sib-
ling relationship. Rules in the intersections either express one of the displayed relations
or a non-displayed relation or no specific semantic relation at all.

We propose a general and parametrizable filtering strategy using information about
the applicability of a rule w. r. t. other relations of the same essential type. If a rule
occurs significantly more often in a relation R than in another relation R′, this rule
most probably belongs to R. Let fr,R be the frequency of rule r in relation R (i. e., the
number of sentences for R from which r has been learned) and let RR be the set of
learned rules for R. Then the relative frequency of r in R is defined as:

rf r,R =
fr,R∑

r′∈RR

fr′,R
(3)

Next, we define the first component of our filter. Let R be a set of relations of the same
essential type. The rule r is valid for the relationR ∈ R if the relative frequency of r in
R is higher than its relative frequencies for all other relations in R:

validR
inter (r) =

{
true if ∀R′ ∈ R\{R} : rf r,R > rf r,R′

false otherwise
(4)

The second component is a heuristic which only filters on the frequency of a rule w. r. t.
a single relation:

validR
freq(r) =

{
true if fr,R ≥ x,where x ≥ 1

false otherwise
(5)

With this filter, we ensure that in addition to the relative frequency, there is also enough
evidence that r belongs to R from an absolute point of view. We merge the two com-
ponents into our final filter, later referred to as the combined filter:

validR
c (r) = validR

freq(r) ∧ validR
inter (r) (6)

Note that all rules that do not contain any content words such as verbs, nouns or ad-
jectives will be deleted before the actual rule filtering takes place. In addition to the
frequency heuristic, we also experimented with other features, such as the arity of rules
and the length of rules’ source sentences. However, their general performance was not
superior to the frequency of a rule.

6 Testing and Evaluation

Since we are in particular interested in the recall and coverage performance of our learned
rules, we are more dependent on the gold-standard data than precision-driven evaluations
as presented in [15], where they evaluate manually the top 100 or 1000 extracted instances
of the most popular relations. The ACE 2005 corpus [26] is too sparse for our evaluation
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goal, for example, there are only 14 mentions containing the essential person arguments
for the marriage relation. The annotation of the MUC-6 corpus [9] is document-driven
and does not provide direct links between relation arguments and sentences. Therefore,
we had to prepare a new gold-standard test corpus annotated with relations and their
arguments sentence-wise. Because of high annotation costs, we decided to focus on one
relation, namely, the marriage relation. On this new gold-standard corpus, we compare
our system’s web rules against rules learned with the basic DARE system.

In order to know the impact of training corpus size on the coverage of the learned
rules in the distant supervision approach, we also compare the recall performance of the
rules learned from the Web with rules learned from local corpora of two different sizes.
All learned rules are tested against the New York Times part of the English Gigaword 5
corpus [18].

6.1 Learned Marriage Relation Rules

The marriage relation has five arguments: PERSONA, PERSONB, CEREMONY, FROM,
and TO. A candidate rule must extract at least the two person arguments. The distribu-
tion of the rules with respect to their arities is depicted in Table 3. Although many rules
are binary, there are more than 20 % of the total rules with arities > 2 (more than 30k).
It demonstrates that it is important to learn n-ary rules for the coverage.

Table 3. Distribution of marriage rules across arities. “Avg.” – Average, “Med.” – Median.

Arit
y

#Rules

M
in

.F
re

q.

Avg
. F

re
q.

M
ed

.F
re

q.

M
ax

. F
re

q.

2 145,598 1 3.21 1 64,015
3 26,294 1 2.90 1 2,655
4 4,350 1 3.07 1 603
5 40 1 1.40 1 10

6.2 Evaluation on Gold-Standard Corpus

Our gold-standard corpus, dubbed Celebrity-Gold, contains crawled news articles from
the People magazine.6 This corpus consists of 25,806 sentences with 259 annotated men-
tions of marriage. Out of curiosity, we compare the web-based learning to the bootstrap-
ping approach using the same system components and the same seed (6,294 relation
instances). The learning corpus for bootstrapping, dubbed Celebrity-Training, is of the
same kind and size as Celebrity-Gold. Compared to the 176,949 candidate rules from the
Web, the bootstrapping system learned only 3,013 candidate rules.

The learned rules are then applied to Celebrity-Gold for evaluation. It tuns out that our
web-based system achieves much higher recall than the bootstrapping system: 49.42 %
vs. 30.5 %. As we know, the learned web rules are in fact only candidates for RE rules.
Therefore, the baseline precision is relatively low, namely, 3.05 %. Further processing
is needed to filter out the wrong rules. Nevertheless, investigating the recall at this stage

6 http://www.people.com/

http://www.people.com/
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Fig. 5. Performance of web rules after filtering. X-axis: frequency thresholds

is very important because even an excellent rule filtering might produce below-average
results if there were not enough correct rules to separate from wrong ones during the
filtering phase.

Figure 5 depicts the extraction performance after the combined filter validR
c (r) is ap-

plied to the learned marriage rules. The precision improves considerably, in particular,
grows with high frequency. The best f-measure can be obtained by setting the frequency
to 15 with a precision of around 50% and a recall of around 28%.

6.3 Evaluation with Different Corpus Sizes

After the encouraging results on the small-sized Celebrity-Gold corpus, we evaluated
our rules by applying them to a larger corpus, the NYT subset of the English Gigaword
5 corpus (abbr. NYT). Because there is no gold-standard annotation of the marriage
relation available for this corpus, we use two alternative validation methods: (a) manual
checking of all mentions detected by our rules in a random partition of NYT (100,000
sentences) and (b) automatic matching of extracted instances against the Freebase facts
about marriages. Note that before RE was performed, we removed all web training
sentences from NYT, to avoid an overlap of training and test data.

The performance of the web rules is compared to rules learned on two local corpora
in a distant-supervision fashion. The first corpus is the Los Angeles Times/Washington
Post part of the Gigaword corpus (abbr. LTW). The second local corpus for rule learning

Table 4. Statistics about corpus sizes and rule learning

# Docs # Sentences # Seeds w/ # Generated trai- # Rules
Corpus match ning sentences learned

Web (train.) 873,468 81,507,603 5,993 342,895 176,949
LTW (train.) 411,032 13,812,110 1,382 2,826 1,508
Celebrity-Training (train.) 150 17,100 76 204 302

NYT (test) 1,962,178 77,589,138 – – –
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is the corpus used for bootstrapping in Section 6.2: Celebrity-Training. Here, only the
rules learned in the first bootstrapping iteration were employed for relation extraction
to allow for better comparison. For both local training corpora, the same seed set as
for the web learning was used (i. e., 6,294 instances). Table 4 shows statistics about the
corpora and provides information about the learned rules.

Table 5 shows the extraction results of the different rule sets on NYT. The web can-
didate rules without rule filtering find the highest number of positive marriage mentions
of Freebase instances in the corpus, namely, 1,003. This experiment confirms the hy-
pothesis that the extraction coverage of the learned rules increases with the size of the
training corpus. After the rule filtering, the web system has improved the precision ef-
fectively without hurting recall too much. Note that different kinds of rule filtering may
be applied also to the rules learned from Celebrity-Training and LTW. Because the fo-
cus of this research is web learning, we only show the results for the web system here.

Table 5. Extraction results on NYT corpus for rules from distant-supervision learning on different
corpus sizes. “# Freebase” is short for “# Extracted instances confirmed as correct by Freebase”.

Mentions in sample

Source of rules Filter applied # Freebase # correct # wrong Precision

Web – 1,003 76 1,747 4.17 %
LTW – 721 47 414 10.20 %
Celebrity-Training – 186 7 65 9.72 %

Web validR
inter (r) 884 69 869 7,36 %

Web validR
c (r), with x = 15 627 52 65 44.44 %

Web validR
c (r), with x = 30 599 51 18 73.91 %

7 Error Analysis

Section 6.2 states that the learned rules covered 49.42 % of the gold-standard mentions
in Celebrity-Gold. In this section, we analyze why the system missed the other half of
mentions. Table 6 shows the results of a manual investigation of the false negatives of
our system on Celebrity-Gold.

Because our system operates on top of NER and parsing results, it heavily depends
on correct output of these preprocessing tools. On 41.22 % of false negatives, flawed
NER rendered annotated mentions undetectable for extraction rules, even if we had
learned all possible rules in the training phase. Example errors include unrecognized
person entities and broken coreference resolution. Even worse, the parser returned for
59.54 % of the false negatives dependency graphs with errors on the paths between
mention arguments, again stopping extraction rules from finding the mentions.

To approximate the system’s recall in a setting with perfect linguistic preprocessing,
we removed the mistakenly annotated mentions and fixed the errors in NER and parsing.
We then reassessed whether a matching extraction rule had been learned in the training
phase. Surprisingly, for about half of the remaining false negatives an extraction rule had
actually been learned, i. e., the system’s main problem is the unreliability of linguistic
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Table 6. Analysis of false negatives (abbr.: “fn.”) on Celebrity-Gold

% of fn. # of fn.

Total 100.00 131

Annotation error 4.58 6
Linguistic preprocessing error7 84.73 111
• NER error 41.22 54
• Parsing error 59.54 78

Total 100.00 125

Matching rule actually learned 50.40 63
No matching rule learned 27.20 34
Semantic understanding required 22.40 28

7Note: A fn. might suffer from errors in both NER and parsing.

preprocessing, not a lack of coverage in its rules. In other words, the recall value stated
in Section 6.2 would have been about 25 percentage points higher, if NER and parsing
had worked perfectly.

An error class that cannot be attributed to accuracy deficits of linguistic processing
contains sentences that require semantic understanding. These sentences mention an in-
stance of the marriage relation, but in an ambiguous way or in a form were the relation
is understood by a human, although it is not directly represented in the sentence’s struc-
ture. The following sentence from the gold-standard corpus is a typical example for this
class since the syntactic dependencies do not link “husband” directly to “Ruiz.”
Example 3. “... that sounded good to a tired mom like me,” says Ruiz, 34, who has two
children, James, 8, and Justine, 6, with husband Donald, 42, ...

For a human reader, it is obvious that the phrase “with husband Donald” belongs to the
person Ruiz, because of her mentioning of mother role in the family context. However,
attaching the phrase to Justine might very well be a reasonable decision for a parser.
This becomes clearer when the sentence is slightly changed:

Example 4. “... that sounded good to a tired mom like me,” says Ruiz, 34, who awaits
her guests, James, 33, and Justine, 35, with husband Donald, 42.

Here, even a human reader cannot decide whose husband Donald is. Another example
is the following sentence:

Example 5. Like countless mothers of brides, Ellen Mariani smiled until her cheeks
ached as she posed for wedding pictures with her daughter Gina, 25, and newly minted
son-in-law Christopher Bronley, 22, on Saturday, Sept. 15.

Here it is not clear from the structure that Christopher Bronley and Gina are spouses.
Inference is needed to entail that Gina is married to Christopher Bronley because she is
the daughter of Ellen Mariani, who in turn is the mother-in-law of Christopher Bronley.

8 Conclusion and Future Work

Our system for the extraction of n-ary relations exploits the Web for training. After
achieving an improvement of recall, precision was raised by a rule-filtering scheme that
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exploits negative evidence obtained from the applicability of a rule to other relations
of the same essential type. The parallel learning of several relations hence proved to be
beneficial. We demonstrate that web-scale distant-supervision based rule learning can
achieve better recall and coverage than working with local large corpora or bootstrap-
ping on small local corpora. Furthermore, rules with arities > 2 are useful resources for
RE.

The error analysis clearly indicates that recall could be much higher if named entity
recognition (NER) and parsing worked more accurately. As a consequence of this insight,
we will concentrate on the improvement of NER using the rapidly growing resources on
the Web and on the adaptation of parsers to the needs of RE, by experimenting with
specialized training and parse re-ranking. Another direction of future research will be
dedicated to the incorporation of more sophisticated methods for rule filtering. A first
step is to exploit additional information on the relationships among the target relations
for estimating the validity of rules, another strategy is to re-estimate the confidence of
rules during the application phase utilizing constraints derived from the domain model.
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Abstract. The lightweight ontology language OWL RL is used for rea-
soning with large amounts of data. To this end, the W3C standard pro-
vides a simple system of deduction rules, which operate directly on the
RDF syntax of OWL. Several similar systems have been studied. How-
ever, these approaches are usually complete for instance retrieval only.
This paper asks if and how such methods could also be used for com-
puting entailed subclass relationships. Checking entailment for arbitrary
OWL RL class subsumptions is co-NP-hard, but tractable rule-based
reasoning is possible when restricting to subsumptions between atomic
classes. Surprisingly, however, this cannot be achieved in any RDF-based
rule system, i.e., the W3C calculus cannot be extended to compute all
atomic class subsumptions. We identify syntactic restrictions to mitigate
this problem, and propose a rule system that is sound and complete for
many OWL RL ontologies.

1 Introduction

The lightweight ontology language OWL RL [16] is widely used for reasoning
with large amounts of data, and many systems support query answering over
OWL RL ontologies. Commercial implementations of (parts of) OWL RL include
Oracle 11g [12], OWLIM [2], Virtuoso [4], and AllegroGraph [5].

What makes OWL RL so appealing to users and implementers alike are
its favourable computational properties. As for all three lightweight profiles of
OWL 2, typical reasoning tasks for OWL RL can be solved in polynomial time.
Possibly even more important, however, is the fact that this low complexity
can be achieved by relatively straightforward algorithms that perform bottom-
up, rule-base materialisation of logical consequences until saturation. While it
is also possible to use similar algorithms for OWL EL [14], a simple rule-based
algorithm for OWL RL is already given in the W3C specification [16]. Various
similar rule sets have been published for fragments of OWL RL (e.g., [9,7,20]).

Another advantage of these rule systems is that they operate directly on the
RDF serialisation of OWL. OWL RL reasoning thus can easily be implemented
on top of existing RDF databases that support some form of production rules to
infer additional information. Basic rule-matching capabilities are found in most
RDF stores, since they are similar to query matching. Indeed, SPARQL rules
have been proposed as a natural rule extension of the SPARQL query language
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that can fully express the OWL RL rule system [19]. It is important that neither
value invention (blank node creation) nor non-monotonic negation are needed in
OWL RL, as both features complicate rule evaluation significantly [19].

A common strategy for evaluating larger amounts of OWL RL data is to
separate terminological information (schema-level axioms) from assertional in-
formation (facts), since the latter are typically significantly larger [13,8,20]. To
further reduce the rules that need to be applied to the data, it would be useful
to pre-compute terminological inferences, especially all subclass relationships.

Unfortunately, it is not known how to do this. To the best of our knowledge, no
polynomial time algorithm has been published for computing schema entailments
in OWL RL. As shown in Section 2, the W3C rule system is not complete for
computing class subsumptions, and, more problematically, it is not possible to
compute all class subsumptions without taking assertions into account.

However, it is still possible to obtain RDF-based rule systems that can discover
more entailments than the W3C rules. Using various abbreviations introduced in
Section 3, we present one such algorithm in Section 4. We identify ObjectHasValue
as the main obstacle – if it does not occur in superclasses, our algorithm can
compute all class subsumptions. In Section 5, we take a look at RDF-based rules
and show how our results transfer to this setting.

In Section 6, we discuss the problem of computing class subsumptions in un-
restricted OWL RL ontologies, where ObjectHasValue is allowed in superclasses.
It is still possible to use polynomial time rule systems for this case, but it turns
out that there is no RDF-based rule system for this task. This surprising result
shows an inherent limitation of the expressive power of RDF-based rules.

Most of our presentation is based on the Functional-Style Syntax of OWL
[17]. This yields a more concise presentation (compared to the RDF serialisa-
tion) and still is close to the actual language. We assume basic familiarity with
the syntax and semantics of OWL on the level of the OWL Primer [6]. If not
stated otherwise, we generally consider the Direct Semantics of OWL, but we
also mention some results about the RDF-based Semantics. When writing OWL
entities in axioms, we tacitly use prefixes for suggesting abbreviated IRIs. Some
proofs are omitted for reasons of space; they are found in a technical report [15].

2 Challenges of Schema Reasoning in OWL RL

Before we focus on the task of computing class subsumptions for OWL RL, it is
worth pointing out some limitations and challenges that do not seem to be well
known, even among practitioners and implementers.

Checking Entailment of OWL RL Axioms is Not Tractable. The W3C speci-
fication mentions that Class Expression Subsumption in OWL RL is PTime-
complete w.r.t. the size of the ontology [16, Section 5]. This might evoke the
impression that one could check in polynomial time whether an OWL RL class
inclusion axiom is entailed by an OWL RL ontology. This is not the case.1

1 The 2012 update of the OWL 2 specification will correct this; see Section 7.
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Proposition 1. Given an OWL RL ontology O and an OWL RL SubClassOf
axiom A, checking whether O entails A is co-NP-hard.

Proof. We show this by reducing 3SAT unsatisfiability to OWL RL entailment
checking. An instance of the 3SAT problem is a set of propositional clauses
{(L11∨L12∨L13), . . . , (Ln1∨Ln2∨Ln3)}, where each Lij is a propositional vari-
able or a negated propositional variable. The question whether the conjunction
of these clauses is satisfiable is NP-complete. For each propositional variable
p, we introduce two new class names Tp and Fp. To each literal Lij , we as-
sign a class name c(Lij) as follows: if Lij = p, then c(Lij) := Tp; if Lij = ¬p,
then c(Lij) := Fp. For every clause (Li1 ∨ Li2 ∨ Li3), we define a class ex-
pression Ci as ObjectUnionOf( c(L11) c(L12) c(L13) ). Now let A be the axiom
SubClassOf( ObjectIntersectionOf( C1 . . .Cn ) owl:Nothing ), and let O be the ontol-
ogy that consists of the axioms DisjointClasses( Tp Fp ) for every propositional
variable p. Clearly, A is an OWL RL axiom and O is an OWL RL ontology.
However, O entails A if and only if the given instance of 3SAT has no solution.
Indeed, if A is not entailed, then O has a model where an individual e is an
instance of each of the class expression Ci. We can construct a propositional
truth assignment as follows: if e is an instance of Tp, then p is mapped to true;
otherwise p is mapped to false. It is easy to see that this is a solution to the
3SAT instance, since e cannot be an instance of Tp and Fp for any p. ��

Another way to find hardness proofs is to use DataSomeValuesFrom in the sub-
class, together with datatypes such as XML Schema boolean, which is admissible
in OWL RL subclasses. Moreover, similar problems can be found for other axiom
types; e.g., checking entailment of hasKey axioms is also intractable.

These problems are hardly surprising from a logical perspective, since checking
the entailment of A from O is equivalent to checking the consistency of O∪{¬A},
where ¬A is the negation of the axiom A (as a logical formula). For the latter
to be in OWL RL, one needs to impose different syntactic restrictions on A.
The check is then possible in PTime. A particularly relevant case where this is
possible is that A is a subclass relationship between two class names. This is the
task that we will focus on in the remainder of this work.

The W3C Rule System is Not Complete for Class Subsumption Checking. The
W3C specification states a completeness theorem for its rule system, which as-
serts completeness only for entailment of assertional axioms. However, the rule
system contains a number of rules that would not be necessary to achieve this
especially in Table 9, entitled The Semantics of Schema Vocabulary. This might
lead to the wrong impression that the rules can infer all schema axioms, or at
least all class subsumptions. The following example illustrates that this is wrong.

Example 1. We consider an ontology of three axioms:

SubClassOf( :A :B ) (1)
SubClassOf( :A :C ) (2)
SubClassOf( ObjectIntersectionOf( :B :C ) :D ) (3)
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This ontology clearly entails SubClassOf( :A :D ). However, this is not entailed by
the W3C rule system. The only entailment rules that refer to ObjectIntersectionOf
are rules cls-int1, cls-int2, and scm-int in [16]. The former two rules are only
applicable to individual instances. Rule scm-int can be used to infer SubClassOf(
ObjectIntersectionOf( :B :C ) :B ) and SubClassOf( ObjectIntersectionOf( :B :C ) :C ) –
the rule can be viewed as a schema-level version of cls-int2. However, there is
no rule that corresponds to cls-int1 on the schema level, so one can not infer
SubClassOf( :A ObjectIntersectionOf( :B :C ) ).

This example extends to many other types of axioms. For example, one cannot
infer all entailed property domains or ranges if some class subsumptions have
been missed.

Assertions Can Not be Ignored when Checking Class Subsumptions. Since many
OWL RL ontologies are dominated by assertional axioms (i.e., data), it would be
useful if this part of the ontology would not be relevant if one is only interested
in computing class subsumptions. This cannot work in general, since assertions
can cause the ontology to become inconsistent, which in turn leads to the entail-
ment of arbitrary class subsumptions. However, even for consistent ontologies,
assertions cannot be ignored when computing class subsumptions, as shown in
the next example.

Example 2. We consider an ontology of three axioms:

InstanceOf( :B :b ) (4)
SubClassOf( :A ObjectHasValue( :P :b ) ) (5)
SubClassOf( ObjectSomeValuesFrom( :P :B ) :C ) (6)

This ontology entails SubClassOf( :A :D ): every instance of :A has a :P successor
:b (5), that is an instance of :B (4); thus the subclass in (6) is a superclass of :A.
Without (4) this entailment would be missed.

The relevant assertional information in this example was directly given, but it is
clear that it could also be the result of more complicated reasoning. Therefore, it
is not possible in general to compute all class subsumptions of an ontology with-
out also computing a significant amount of fact entailments as well. Theorem 3
in Section 4 below identifies a case where assertions can be ignored.

3 A Simpler OWL RL

OWL is a very rich language that provides many redundant syntactic constructs
for the convenience of ontology engineers. When specifying a rule system for
OWL RL, this abundance of syntax precludes a concise presentation – the W3C
calculus already counts 78 rules. To avoid this problem, we introduce various
simplification rules that allow us to restrict to a much smaller number of features.

Syntactic simplifications can affect the semantics of an ontology. On the one
hand, they may introduce auxiliary vocabulary symbols that had not been de-
fined by the original ontology. On the other hand, any syntactic transformation



The Not-So-Easy Task of Computing Class Subsumptions in OWL RL 283

Rca1
ClassAssertion( C a )

SubClassOf( ObjectOneOf(a) C )
Rca2

SubClassOf( ObjectOneOf(a) C )

ClassAssertion( C a )

Rpc1
ObjectPropertyAssertion( P a b )

SubClassOf( ObjectOneOf(a) ObjectSomeValuesFrom( P ObjectOneOf(b) ) )

Rpc2
SubClassOf( ObjectOneOf(a) ObjectSomeValuesFrom( P ObjectOneOf(b) ) )

ObjectPropertyAssertion( P a b )

Fig. 1. Rules for expressing assertions as class subsumptions

of expressions has an impact on the RDF-based Semantics of OWL, which en-
tails only axioms about expressions that are syntactically present in the ontology.
Adding a new expression, even if tautological, thus changes entailments. How-
ever, we expect applications that rely on the RDF-based Semantics to tolerate
this effect. Alternatively, it is possible to view our syntactic simplifications as a
mere abbreviation scheme for a much larger number of rules.

Lists in Axioms. We generally assume that all lists of classes or properties in
OWL axioms have been binarised, that is, broken down into lists of length two.
This is always possible by introducing additional axioms; we omit the details
of this frequently used technique. We point out that this simplification is least
essential for our rules. It is easy to generalise all rules we state for binary lists
to lists of arbitrary length.

Datatypes and Data Properties. We omit all features related to datatypes from
our presentation. It is not hard to add them. In essence, datatypes in OWL RL
behave like classes for which certain subsumptions are given upfront (e.g., dec-
imal is a superclass of integer), and for which some disjointness axioms are
known (e.g., rational is disjoint from string). Likewise, datatype literals behave
like individual names for which the membership in some class (i.e., datatype)
is known. This auxiliary information can be added when loading an ontology.
Thereafter, datatypes can be treated like classes, using the same rule system.

Assertions as Class Inclusions. Class and property assertions can be expressed as
class inclusion axioms, and indeed many rules for assertions are just special forms
of the rules needed for terminological axioms. To avoid unnecessary repetition,
we generally use the respective forms interchangeably. This is formalised by
the rules in Fig. 1. The rules are applied top to bottom: whenever the axioms
above the line are found, the axioms below the line are added. C denotes a class
expression (not necessarily a class name), and P denotes an object property
expression. We use a and b for individual names (IRIs).

We will make use of the shorter syntactic form of assertions whenever possible.
Note that the class subsumptions in rules Rpc1 and Rpc2 are not in OWL RL,
which does not allow ObjectOneOf in superclasses. Allowing this does not in-
crease reasoning complexity as long as one restricts to exactly one individual in
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Table 1. Syntactic simplifications for OWL RL constructs

ObjectMaxCardinality( 0 P ) ObjectAllValuesFrom( P owl:Nothing )
ObjectMaxCardinality( 0 P C ) ObjectAllValuesFrom( P ObjectComplementOf(C) )
ObjectHasValue( P d ) ObjectSomeValuesFrom( P ObjectOneOf(c) )
ObjectOneOf( a1 . . . an ) ObjectUnionOn( ObjectOneOf(a1) . . . ObjectOneOf(an) )
EquivalentClasses( C1 . . . Cn ) SubClassOf( C1 C2 ), . . . , SubClassOf( Cn C1 )
DisjointClasses( C1 . . . Cn ) SubClassOf( ObjectIntersectionOf( Ci Cj ) owl:Nothing )

for all 1 ≤ i < j ≤ n
ObjectPropertyDomain( P C ) SubClassOf( ObjectSomeValuesFrom( P owl:Thing ) C )
ObjectPropertyRange( P C ) SubClassOf( owl:Thing ObjectAllValuesFrom( P C ) )
EquivalentObjectProperties( P1 . . . Pn ) SubObjectPropertyOf( P1 P2 ), . . . , SubObjectPropertyOf( Pn P1 )
InverseObjectProperties( P Q ) SubObjectPropertyOf( P ObjectInverseOf(Q) ),

SubObjectPropertyOf( Q ObjectInverseOf(P ) )
SymmetricObjectProperty( P ) SubObjectPropertyOf( P ObjectInverseOf(P ) )
TransitiveObjectProperty( P ) SubObjectPropertyOf( ObjectPropertyChain( P P ) P )
FunctionalObjectProperty( P ) SubClassOf( owl:Thing ObjectMaxCardinality( 1 P ) )
InverseFunctionalObjectProperty( P ) SubClassOf( owl:Thing ObjectMaxCardinality( 1 ObjectInverseOf(P ) ) )
AsymmetricObjectProperty( P ) DisjointObjectProperties( P ObjectInverseOf(P ) )
SameIndividual( a1 . . . an ) SubClassOf( ObjectOneOf(a1) ObjectOneOf(a2) ), . . . ,

SubClassOf( ObjectOneOf(an) ObjectOneOf(a1) )
NegativeObjectPropertyAssertion( P a b ) SubClassOf( ObjectOneOf(a) ObjectComplementOf(

ObjectSomeValuesFrom( P ObjectOneOf(b) ) )
DifferentIndividuals( a1 . . . an ) SubClassOf( ObjectOneOf(ai)

ObjectComplementOf( ObjectOneOf(aj ) ) ) for all 1 ≤ i < j ≤ n

Table 2. Subclasses (CL) and superclasses (CR) in syntactically simplified OWL RL

CL ::= Class | ObjectIntersectionOf( CL CL ) | ObjectUnionOf( CL CL ) |
ObjectOneOf(Individual) | ObjectSomeValuesFrom( Property CL )

CR ::= Class | ObjectIntersectionOf( CR CR ) | ObjectComplementOf(CL) |
ObjectAllValuesFrom( Property CR ) | ObjectMaxCardinality( 1 Property CL ) |
ObjectSomeValuesFrom( Property ObjectOneOf(Individual) ) |ObjectOneOf(Individual)

ObjectOneOf (indeed, this is also done in the tractable OWL EL profile). We will
therefore introduce such expressions whenever this simplifies presentation.

Syntactic Sugar. Many OWL features are directly expressible in terms of others.
Table 1 lists straightforward syntactic transformations. C, D, E denote class
expressions, P , Q object property expressions, and all lower-case letters denote
individuals. Below, we can therefore disregard all features on the left of this
table. As before, some of the expressions that we use here are not in OWL RL.
Besides ObjectOneOf superclasses as discussed above, OWL RL also disallows
owl:Thing to be used as a subclass. Again, introducing this does not complicate
reasoning. The main motivation for leaving out owl:Thing in the standard is that
it may lead to a big number of “uninteresting” entailments, since every individual
is an instance of owl:Thing.

In summary, we therefore consider only OWL class inclusion axioms of the
form SubClassOf( CL CR ), where CL and CR are defined as in Table 2.
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Csco
SubClassOf( C D ) SubClassOf( D E )

SubClassOf( C E )

Cinit
C a class expression in the ontology

SubClassOf( C C ) SubClassOf( C owl:Thing )

Cint−
SubClassOf( C ObjectIntersectionOf( D1 D2 ) )

SubClassOf( C D1 ) SubClassOf( C D2 )

Cint+
SubClassOf( C D1 ) SubClassOf( C D2 )

SubClassOf( C ObjectIntersectionOf( D1 D2 ) )

Ccom−
SubClassOf( C D ) SubClassOf( C ObjectComplementOf(D) )

SubClassOf( C owl:Nothing )

Cuni+
SubClassOf( C D ) where D = D1 or D = D2

SubClassOf( C ObjectUnionOf( D1 D2 ) )

Csa
SubClassOf( ObjectOneOf(c) ObjectOneOf(d) )

SubClassOf( ObjectOneOf(d) ObjectOneOf(c) )

Fig. 2. OWL RL inference rules for class subsumptions

4 A Rule-Based Classification Calculus for OWL RL

In this section, we specify a class subsumption algorithm for OWL RL, and we
introduce conditions under which it is complete. Using the simplifications of the
previous section, the only OWL axioms that we need to consider are SubClassOf,
SubObjectPropertyOf, DisjointObjectProperties, IrreflexiveObjectProperty, and HasKey.
Remaining expressive features are those given in Table 2 (for class expressions)
and ObjectPropertyChain (for property inclusions).

Figures 2 and 3 specify a rule system for deriving class subsumptions, where
we use the same notation for rules as above. The rules in Fig. 2 apply to class
subsumptions and, using the correspondences of Fig. 1, also to assertions. In
contrast, the rules in Fig. 3 are only applicable to specific assertions and are not
generalised to other subsumptions. For example, rule Pinv− is sound, but the
following generalisation to class inclusions would of course be wrong:

SubClassOf( C ObjectSomeValuesFrom( ObjectInverseOf(P ) D ) )

SubClassOf( D ObjectSomeValuesFrom(P C ) )

As an additional condition for applying rules, we require that all class and prop-
erty expressions in the conclusion also occur in the ontology. This is a restriction
only for the rules Cint+, Cuni+, Psvf+, and Pinv+, since they are the only rules
that derive expressions that are not mentioned in their premise.

For an OWL ontology O, we say that a class subsumption SubClassOf( C D )
is inferred by the rule system if one of the following axioms is derived by applying
the rules exhaustively to O:

– SubClassOf( C D ),
– SubClassOf( C owl:Nothing ), or
– ClassAssertion( owl:Nothing c ) for some individual c.
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Pavf−
ObjectPropertyAssertion( P c d ) ClassAssertion( ObjectAllValuesFrom( P E ) c )

ClassAssertion( E d )

Psvf+
ObjectPropertyAssertion( P c d ) ClassAssertion( E d )

ClassAssertion( ObjectSomeValuesFrom( P E ) c )

Pinv−
ObjectPropertyAssertion( ObjectInverseOf(P ) c d )

ObjectPropertyAssertion( P d c )

Pinv+
ObjectPropertyAssertion( P d c )

ObjectPropertyAssertion( ObjectInverseOf(P ) c d )

Pspo
ObjectPropertyAssertion( P c d ) SubObjectPropertyOf( P Q )

ObjectPropertyAssertion( Q c d )

Pspc

SubObjectPropertyOf( ObjectPropertyChain( P Q ) R )
ObjectPropertyAssertion( P c d ) ObjectPropertyAssertion( Q d e )

ObjectPropertyAssertion( R c e )

Pdp

DisjointObjectProperties( P Q )
ObjectPropertyAssertion( P c d ) ObjectPropertyAssertion( Q c d )

ClassAssertion( owl:Nothing c )

Pip
ObjectPropertyAssertion( P c c ) IrreflexiveObjectProperty(P )

ClassAssertion( owl:Nothing c )

Pkey

HasKey( E (P1 . . . Pn) () )
ClassAssertion( E c ) ClassAssertion( E d )

ObjectPropertyAssertion( P1 c e1 ) . . . ObjectPropertyAssertion( Pn c en )
ObjectPropertyAssertion( P1 d e1 ) . . . ObjectPropertyAssertion( Pn d en )

SubClassOf( ObjectOneOf(c) ObjectOneOf(d) )

Pfun

ClassAssertion( ObjectMaxCardinality( 1 P D ) c )
ObjectPropertyAssertion( P c e1 ) ObjectPropertyAssertion( P c e2 )

ClassAssertion( D e1 ) ClassAssertion( D e2 )

SubClassOf( ObjectOneOf(e1) ObjectOneOf(e2) )

Fig. 3. OWL RL inference rules that are specific to property assertions

The first condition corresponds to a direct derivation, the second captures the
case that C is inconsistent (necessarily empty), and the third case occurs when-
ever O is inconsistent. The inference rules in [16] use a special conclusion false
to encode ontology inconsistency, but this just a minor difference.

Theorem 1. The rule system is sound, that is, if a class subsumption A is
inferred from O, then O entails A under the Direct Semantics and under the
RDF-based Semantics of OWL.

However, the rule system is not complete. The following examples illustrate two
interesting cases that are not covered.
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Example 3. We consider an ontology of four axioms:

InstanceOf( :D :d ) (7)
SubClassOf( :D :C ) (8)
SubClassOf( :C ObjectHasValue( :P :a ) ) (9)
InstanceOf( ObjectMaxCardinality( 1 ObjectInverseOf(:P) owl:Thing ) :a ) (10)

From this, the axiom SubClassOf( :C :D ) follows. Indeed, (9) and (10) together
imply that :C can have at most one instance; by (7) and (8), this instance is
:d and thus contained in :D. However, this is not entailed by our rule system.
Axioms (9) and (10) can be represented as follows:

SubClassOf( :C ObjectSomeValuesFrom( :P ObjectOneOf(:a) ) ) (11)
InstanceOf( ObjectAllValuesFrom( ObjectInverseOf(:P) ObjectOneOf(:e) ) :a ) (12)

where :e is an auxiliary individual. Using Csco and the rules of Fig. 1, we can
derive ObjectPropertyAssertion( :P :d :a ) from (7), (8), and (11). By applying rule
Pinv+, we obtain ObjectPropertyAssertion( ObjectInverseOf(:P) :a :d ). Together
with (12), Pavf− implies ClassAssertion( ObjectOneOf(:e) :d ). The same could
be derived for any other instance :d’ of :C, showing that all such instances must
be equal, and instances of :D. However, we cannot derive SubClassOf( :C :D ).

Example 4. Consider the ontology of the following axioms:

SubClassOf( :C ObjectHasValue( :Q :b ) ) (13)
ObjectPropertyRange( :Q :D ) (14)

ObjectPropertyDomain( :Q :D ) (15)
SubClassOf( :D ObjectHasValue( :P :a ) ) (16)

SubObjectPropertyOf( ObjectPropertyChain( :P ObjectInverseOf(:P) ) :R ) (17)
SubClassOf( ObjectSomeValuesFrom( :R owl:Thing ) :E ) (18)

These axioms imply SubClassOf( :C :E ). Indeed, axioms (16) and (17) together
imply that every pair of instances of :D is connected by property :R. Axioms
(14) and (15) in turn imply that :Q only connects instances that are in :D. Thus,
we find that :Q is a subproperty of :P, which is an interesting inference in its
own right. Combining this with (13) and (18), we obtain the claimed entailment
SubClassOf( :C :E ). Again, this is not inferred by our inference rules.

Examples 3 and 4 illustrate two very different forms of semantic interactions
that lead to entailments not inferred by our rule system. It is interesting to note,
however, that ObjectHasValue plays a crucial role in both cases. Indeed, we find
that this feature is involved in every situation where an entailment is missed:

Theorem 2. If O is an OWL RL ontology that does not contain ObjectHasValue
in superclasses, then the rule system is complete for O. More precisely, let O′ be
the syntactic simplification of O as discussed above. If :A and :B are class names
and O entails SubClassOf( :A :B ) under Direct Semantics, then SubClassOf(
:A :B ) is inferred from O′ by the rule system.
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Even in this case, we need to take assertions into account during reasoning, since
they might make the ontology inconsistent. For consistent ontologies, however,
the rule system can be simplified further.

Theorem 3. For a consistent OWL RL ontology O that does not contain Object-
HasValue in superclasses, all entailed subsumptions between class names can be
computed using the rules of Fig. 2 only, without taking assertions into account.

More precisely, let Ot ⊆ O be the set of all axioms in O that do not use Class-
Assertion, ObjectPropertyAssertion, SameIndividual, DifferentIndividuals, or Nega-
tiveObjectPropertyAssertion. Let O′

t be the syntactic simplification of Ot. If O
entails SubClassOf( :A :B ) under Direct Semantics, and :A and :B are class
names, then SubClassOf( :A :B ) or SubClassOf( :A owl:Nothing ) is derived from
O′

t by the rules of Fig. 2.

This tells us that the computation of class subsumptions in OWL RL is in-
deed very simple for consistent ontologies without ObjectHasValue in superclasses.
Provided that this situation can be assumed, it would therefore be feasible to
pre-compute class subsumptions without taking assertions into account. In data-
centric ontologies, this can lead to a much smaller set of axioms. In addition, the
set of rules that need to be applied becomes relatively small as well.

5 RDF-Based Rule Systems

We have formulated rules above using the Functional-Style Syntax of OWL. In
this section, we explain how these results transfer to RDF-based rules in the
style of the W3C specification [16], which act on the RDF serialisation of OWL
[18]. This also prepares the ground for discussing the limitations of such rules in
the next section.

Definition 1. An RDF-based rule is a first-order implication of the form

T (s1, t1, u1) ∧ . . . ∧ T (sn, tn, un)→ T (s, t, u)

where s(i), t(i), and u(i) are RDF terms (i.e., IRIs, literals, or blank nodes) or
first-order logic variables. All variables are assumed to be universally quantified.

An (RDF-based) rule system is a finite set R of RDF-based rules. R is ap-
plied to an RDF graph by considering RDF triples 〈s p o〉 as facts T (s, p, o).
A rule system R is applied to an OWL ontology O by applying it to the RDF
serialisation of O [18].

A rule system R is a sound and complete classification system for a class C
of ontologies if, for every ontology O in C and all class names :A and :B:

SubClassOf( :A :B ) is entailed by O
if and only if

R infers T (:A, rdfs:subClassOf, :B) from O.
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The main features of RDF-based rule systems are thus as follows:

– Finiteness: the set of rules is finite
– Monotonicity: the larger the set of (derived) facts, the larger the number of

rules that can be applied
– No value invention: applying rules does not introduce new terms
– Uniformity: the applicability of rules does not depend on the IRIs of the

entities it is applied to, but only on the statements that these IRIs occur in
– Triple-based: the only relation symbol used in inferences is the ternary T

The W3C OWL RL inference rules do not constitute a rule system in the sense
of Definition 1, since they are not finite in number. The reason is that the
rules support list-based OWL features for lists of arbitrary length, leading to an
infinite number of possible patterns. A rule system that is not restricted to be
finite can trivially solve all reasoning tasks: for every ontology O for which we
require an inference T (s, p, o), we can add a rule TO → T (s, p, o), where TO is
the triple pattern that corresponds to the RDF serialisation of O. It is also clear,
however, that the infinite W3C rule system does not use this potential power.

Theorem 4. The rules of Section 4 give rise to an RDF-based sound and com-
plete classification system for (the syntactic simplification of) OWL RL ontolo-
gies without ObjectHasValue in superclasses.

This result is based on the rule system from Section 4, which we already know
to be sound and complete. These rules can be easily expressed in the RDF
serialisation of OWL based on the T predicate. For example, Cint+ can be written
as follows, where question marks denote variables as in [16]:

T (?x, rdfs:subClassOf, ?y1) ∧ T (?x, rdfs:subClassOf, ?y2) ∧
T (?c, owl:intersectionOf, ?l) ∧ T (?l, rdf:first, ?y1) ∧ T (?l, rdf:rest, ?l′) ∧

T (?l′, rdf:first, ?y2) ∧ T (?l′, rdf:rest, rdf:nil)

→ T (?x, rdfs:subClassOf, ?c)

This is the rule that is mainly missing from [16]. Note how the check for the exis-
tence of the expression ObjectIntersectionOf( D1 D2 ) that is required for applying
Cint+ is performed naturally as part of the rule application. This does not work
for the rules in Fig. 1, which do not require existence of all class expressions in
the consequence. Either they are created as part of the syntactic simplification
stage, or the remaining rules need to be extended to allow for multiple alternative
forms of each premise. The latter approach is taken in the W3C specification.

6 Rule-Based Classification of Unrestricted OWL RL

So far, we have seen that the (RDF-based) rule systems for OWL RL can be
extended to obtain a sound and complete approach for computing class sub-
sumptions, as long as we disallow ObjectHasValue in superclasses. The natural
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question is whether this can be extended to arbitrary OWL RL ontologies. The
answer is no, as we will show in this section.

This negative result is caused by the use of RDF as a basis for deduction
rules. Without this restriction, it is not hard to find rule-based classification
systems that are sound and complete, though not necessarily efficient. Namely,
one can always check SubClassOf( C D ) by adding an axiom InstanceOf( C e ) for
a new individual e, and checking whether InstanceOf(D e ) using the existing rule-
based approaches for instance retrieval. The problem is that this executes a single
check, based on a modification of the ontology, rather than computing all class
subsumptions at once. Tests for different classes may lead to different inferences.
To address this, we can augment each inferred axiom with the test class C for
which we have assumed InstanceOf( C e ) (the IRI of e is immaterial and does not
need to be recorded). The rules are restricted to the case that all premises can be
derived under the same assumption, and computation can proceed concurrently
without interactions between independent assumptions. Similar solutions and
various optimisations have been suggested and implemented for OWL EL [14,10].
Unfortunately, however, it is not obvious how to represent such an extended form
of inferences in RDF without introducing new entities or blank nodes.

The main result of this section is that this problem is not just due to an
overly naive approach for extending the rules, but rather an inherent limitation
of RDF-based rules:

Theorem 5. There is no RDF-based sound and complete classification system
for OWL RL.

This is a very general result, since it makes a statement about every conceivable
RDF-based rule system. A technique for proving such results has been developed
in the context of rule-based reasoning for OWL EL [14]. Recalling this in full
detail is beyond the scope of this paper. Instead, we extract the main insights
on the level of ontological reasoning (Lemma 1), and present the crucial steps
for applying this approach to our scenario.

The argumentation is based on the analysis of derivations in rule systems,
which can be represented as proof trees. The key observation is that every proof
tree of a rule system can be used to construct further proof trees by selectively
renaming constants (i.e., IRIs). This renaming leads to proof trees that derive the
same conclusion, applying rules in the same order, but based on a renamed input
ontology. The renaming may not be uniform, that is, multiple occurrences of the
same constant might be renamed differently. The proof uses the fact that such
renaming may destroy entailments. Ontologies that are particularly sensitive in
this respect are called critical :

Definition 2. A renaming of an ontology O is an ontology O′ that is obtained
from O by replacing occurrences of entity names by fresh entity names, where
neither the old nor the new entities have a special semantics in OWL. A renam-
ing is uniform if all occurrences of one entity have been replaced in the same
way; otherwise it is non-uniform.
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An ontology O is critical for an axiom A if A is entailed by O, and A is not
entailed by any non-uniform renaming of O.

Roughly speaking, an ontology is critical if all of its axioms are really needed
for obtaining the desired conclusion. The next result explains the significance of
critical ontologies O. It states that, given a sound and complete classification
system, it must be possible to decompose O into sets Osplit and O \ Osplit. The
requirement is that both sets “touch” in at most 3 axioms, which reflects the
arity of RDF triples. By finding a critical ontology for which this is not possible,
we can show that there is no sound and complete classification system.

Lemma 1. Suppose that R is a sound and complete classification system with
at most � atoms T (s, t, u) in the premise of any rule, and consider an ontology
O that is critical for an axiom SubClassOf( C D ) with class names C and D.

For every O′ ⊆ O with |O′| > 3(�+ 1), there is Osplit ⊆ O such that:

– |O′ ∩ Osplit| ≥ 4,
– |O′ ∩ (O \ Osplit)| ≥ 4,
– at most 3 axioms in Osplit share any vocabulary symbols with O \ Osplit.

This result is obtained as a summary of various insights from [14]. Lemma 1
requires critical ontologies to contain at least 3(�+1) axioms. Since � depends on
the rule system we consider, we require critical OWL RL ontologies of arbitrary
size. The following definition provides this crucial ingredient.

Definition 3. For every natural number k ≥ 0, we define an ontology Ok as
follows. We consider class names A, B, Di (i = 0, . . . , k + 1), property names
V , W , Pi (i = 0, . . . , k), Qi (i = 0, . . . , k + 1), and individual names a, b, c, di
(i = 1, . . . , k + 1). The ontology Ok consists of the following axioms:

SubClassOf( Di ObjectHasValue( Pi di+1 ) 0 ≤ i ≤ k (19)
SubClassOf( Di ObjectAllValuesFrom( Pi Di+1 ) 0 ≤ i ≤ k (20)
SubClassOf( D0 ObjectHasValue( W a ) ) (21)
SubClassOf( D0 ObjectAllValuesFrom(W A ) ) (22)
SubClassOf( A C ) (23)
SubClassOf( C ObjectHasValue( Qk+1 b ) ) (24)
SubClassOf( A ObjectHasValue( V c ) ) (25)
SubClassOf( Dk+1 ObjectHasValue( V c ) ) (26)

InverseFunctionalObjectProperty( V ) (27)
SubObjectPropertyOf( ObjectPropertyChain( Pi Qi+1 ) Qi ) 0 ≤ i ≤ k (28)

SubClassOf( ObjectHasValue( Q0 b ) B ) (29)

Lemma 2. For every k ≥ 0, Ok entails SubClassOf( D0 B ).

This can be seen as follows: If D0 does not contain any instances, then the
statement clearly holds. If D0 contains some instance o, then it is the start of a
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Fig. 4. Illustration of syntactic dependencies in Ok

property chain P0, . . . , Pk (through individuals d1, . . . , dk+1) due to (19) and
(20). In particular, dk is an instance of Dk+1, hence, by (26), dk has a V successor
c. Similarly, by (21) and (22), a is an instance of A. By (23), (24), and (25), a
thus has a Qk+1 successor b and a V successor c. Since V is inverse functional
(27), a must therefore be equal to dk, so dk has a Qk+1 successor b. Applying
axioms (28) to the chain of di elements, we find that di has the Qi successor b
for all 1 ≤ i ≤ k. Accordingly, the instance o of D0 has Q0 successor b. By (29),
o thus is an instance of B. Since this reasoning applies to every instance o of D0,
we find that SubClassOf( D0 B ) as claimed.

It is not hard to see that this entailment is no longer valid if any two occur-
rences of symbols within Ok are renamed in a non-uniform way:

Lemma 3. For every k ≥ 0, Ok is critical for SubClassOf( D0 B ).

To complete the proof of Theorem 5 we thus need to argue that there are critical
ontologies that cannot be split as in Lemma 1.

Lemma 4. Consider Ok and let O′ be the subset of all axioms (20). For every
Osplit ⊆ O such that |Osplit ∩ O′| ≥ 4 and |O′ \ Osplit| ≥ 4, there are at least 4
axioms in Osplit that share vocabulary symbols with O \ Osplit.

Proof. We can illustrate the syntactic dependencies in an ontology by means of
a (hyper)graph where each axiom is an edge between all entities that it refers to.
Figure 4 shows part of the according graph for Ok, showing only axioms (20),
(22)–(26), (28), and (29). A subset of these axioms thus corresponds to a subset
of edges, and the shared vocabulary symbols are shared nodes.

The assumptions on Osplit require that Osplit contains at least 4 of the axioms
(20) (upper row in Fig. 4), and also misses at least 4 of the axioms (20). Using
the illustration in Fig. 4, it is not hard to see that this requires Osplit to share
signature symbols with at least 4 axioms not in Osplit. ��

Thus, for any rule system R with at most � atoms in rule premises, the ontology
Ok for k = 3(� + 1) is critical but does not satisfy the conditions of Lemma 1.
Thus, R cannot be a sound and complete classification system.
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7 Conclusion

From a practical perspective, the main contribution of this work is to clarify the
problems of OWL RL classification, and to propose rule systems for solving this
task in relevant cases. The rules that we proposed produce sound conclusions
on arbitrary OWL ontologies, under either of the two semantics of OWL. If the
input is an OWL RL ontology where ObjectHasValue is not used in superclasses,
the rule system is also guaranteed to be complete.

Our findings have also been brought to the attention of the OWL Working
Group, which is preparing an editorial update of the OWL 2 specification at the
time of this writing. This new version will correct the complexity claims about
OWL RL. Extending the inference rules to be complete for computing class
subsumptions in ontologies without ObjectHasValue, however, is beyond the scope
of this editorial update. OWL RL tools can achieve completeness in this sense
by adding, in essence, the one additional rule given after Theorem 4 (generalised
to conjunctions of arbitrary arity). This does not affect official conformance.

Interestingly, ObjectHasValue in superclasses is the one OWL RL feature that
complicates schema reasoning the most. This contrasts with OWL EL, where
such expressions are as easy to handle as assertions [10]. The reason is that in-
verse properties, ObjectAllValuesFrom, and ObjectMaxCardinality, all of which allow
for some complicated interactions with ObjectHasValue, are not in OWL EL.

Another interesting insight of this work is that there are practical problems
in OWL RL reasoning that RDF-based rules are too inexpressive to solve. This
limitation is due to the triple-based representation of RDF, which could be
overcome by allowing predicates of higher arities as in Datalog [1] or RIF [11].
For keeping closer to features supported in RDF databases, it might be possible
to use quads or named graphs for expressing 4-ary predicates, but it is doubtful
if this would be an adequate use of these features. On the other hand, 4-ary
relations are only needed as intermediate results during reasoning, so individual
systems can implement solutions without referring to any language standard.

Another approach is to allow rules with value creation (blank nodes in rule
heads) to encode n-ary relationships by introducing auxiliary entities. Value
invention is problematic in general, as it can lead to non-termination and un-
decidability. Many works have studied conditions that ensure termination of
bottom-up reasoning in the presence of value creation – see [3] for a recent
overview – but it is unclear if any of these conditions would apply in our case.
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Abstract. We present Strabon, a new RDF store that supports the
state of the art semantic geospatial query languages stSPARQL and
GeoSPARQL. To illustrate the expressive power offered by these query
languages and their implementation in Strabon, we concentrate on the
new version of the data model stRDF and the query language stSPARQL
that we have developed ourselves. Like GeoSPARQL, these new versions
use OGC standards to represent geometries where the original versions
used linear constraints. We study the performance of Strabon experimen-
tally and show that it scales to very large data volumes and performs,
most of the times, better than all other geospatial RDF stores it has
been compared with.

1 Introduction

The Web of data has recently started being populated with geospatial data.
A representative example of this trend is project LinkedGeoData where Open-
StreetMap data is made available as RDF and queried using the declarative
query language SPARQL. Using the same technologies, Ordnance Survey makes
available various geospatial datasets from the United Kingdom.

The availability of geospatial data in the linked data “cloud” has motivated re-
search on geospatial extensions of SPARQL [7,9,13]. These works have formed the
basis for GeoSPARQL, a proposal for an Open Geospatial Consortium (OGC)
standard which is currently at the “candidate standard” stage [1]. In addition, a
number of papers have explored implementation issues for such languages [2,3].
In this paper we present our recent achievements in both of these research di-
rections and make the following technical contributions.

We describe a new version of the data model stRDF and the query lan-
guage stSPARQL, originally presented in [9], for representing and querying
geospatial data that change over time. In the new version of stRDF, we use
the widely adopted OGC standards Well Known Text (WKT) and Geography
Markup Language (GML) to represent geospatial data as literals of datatype
strdf:geometry (Section 2). The new version of stSPARQL is an extension of
SPARQL 1.1 which, among other features, offers functions from the OGC stan-
dard “OpenGIS Simple Feature Access for SQL” for the manipulation of spatial

� This work was supported in part by the European Commission project TELEIOS
(http://www.earthobservatory.eu/)
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literals and support for multiple coordinate reference systems (Section 3). The
new version of stSPARQL and GeoSPARQL have been developed independently
at about the same time. We discuss in detail their many similarities and few
differences and compare their expressive power.

We present the system Strabon1, an open-source semantic geospatial DBMS
that can be used to store linked geospatial data expressed in stRDF and query
them using stSPARQL. Strabon can also store data expressed in RDF using
the vocabularies and encodings proposed by GeoSPARQL and query this data
using the subset of GeoSPARQL that is closer to stSPARQL (the union of the
GeoSPARQL core, the geometry extension and the geometry topology extension
[1]). Strabon extends the RDF store Sesame, allowing it to manage both thematic
and spatial RDF data stored in PostGIS. In this way, Strabon exposes a variety
of features similar to those offered by geospatial DBMS that make it one of the
richest RDF store with geospatial support available today.

Finally, we perform an extensive evaluation of Strabon using large data vol-
umes. We use a real-world workload based on available geospatial linked datasets
and a workload based on a synthetic dataset. Strabon can scale up to 500 million
triples and answer complex stSPARQL queries involving the whole range of con-
structs offered by the language. We present our findings in Section 5, including
a comparison between Strabon on top of PostgreSQL and a proprietary DBMS,
the implementation presented in [3], the system Parliament [2], and a baseline
implementation. Thus, we are the first to provide a systematic evaluation of RDF
stores supporting languages like stSPARQL and GeoSPARQL and pointing out
directions for future research in this area.

2 A New Version of stRDF

In this section we present a new version of the data model stRDF that
was initially presented in [9]. The presentation of the new versions of
stRDF and stSPARQL (Section 3) is brief since the new versions are based
on the initial ones published in [9]. In [9] we followed the ideas of con-
straint databases [12] and chose to represent spatial and temporal data as
quantifier-free formulas in the first-order logic of linear constraints. These for-
mulas define subsets of Qk called semi-linear point sets in the constraint
database literature. In the original version of stRDF, we introduced the
data type strdf:SemiLinearPointSet for modeling geometries. The values
of this datatype are typed literals (called spatial literals) that encode geome-
tries using Boolean combinations of linear constraints in Q2. For example,

(x ≥ 0 ∧ y ≥ 0 ∧ x+ y ≤ 1) ∨ (x ≤ 0 ∧ y ≤ 0 ∧ x+ y ≥ −1)
is such a literal encoding the union of two polygons in Q2. In [9] we also allow
the representation of valid times of triples using the proposal of [6]. Valid times
are again represented using order constraints over the time structure Q. In the
rest of this paper we omit the temporal dimension of stRDF from our discussion
and concentrate on the geospatial dimension only.

1 http://www.strabon.di.uoa.gr

http://www.strabon.di.uoa.gr
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Although our original approach in [9] results in a theoretically elegant frame-
work, none of the application domains we worked with had geospatial data rep-
resented using constraints. Today’s GIS practitioners represent geospatial data
using OGC standards such as WKT and GML. Thus, in the new version of
stRDF and stSPARQL, which has been used in EU projects SemsorGrid4Env
and TELEIOS, the linear constraint representation of spatial data was dropped
in favour of OGC standards. As we demonstrate below, introducing OGC stan-
dards in stRDF and stSPARQL has been achieved easily without changing any-
thing from the basic design choices of the data model and the query language.

In the new version of stRDF, the datatypes strdf:WKT and strdf:GML are
introduced to represent geometries serialized using the OGC standards WKT
and GML. WKT is a widely accepted OGC standard2 and can be used for rep-
resenting geometries, coordinate reference systems and transformations between
coordinate reference systems. A coordinate system is a set of mathematical rules
for specifying how coordinates are to be assigned to points. A coordinate ref-
erence system (CRS) is a coordinate system that is related to an object (e.g.,
the Earth, a planar projection of the Earth) through a so-called datum which
specifies its origin, scale, and orientation. Geometries in WKT are restricted
to 0-, 1- and 2-dimensional geometries that exist in R2, R3 or R4. Geometries
that exist in R2 consist of points with coordinates x and y, e.g., POINT(1,2).
Geometries that exist in R3 consist of points with coordinates x, y and z or
x, y and m where m is a measurement. Geometries that exist in R4 consist of
points with coordinates x, y, z and m. The WKT specification defines syntax for
representing the following classes of geometries: points, line segments, polygons,
triangles, triangulated irregular networks and collections of points, line segments
and polygons. The interpretation of the coordinates of a geometry depends on
the CRS that is associated with it.

GML is an OGC standard3 that defines an XML grammar for modeling,
exchanging and storing geographic information such as coordinate reference sys-
tems, geometries and units of measurement. The GML Simple Features specifi-
cation (GML-SF) is a profile of GML that deals only with a subset of GML and
describes geometries similar to the one defined by WKT.

Given the OGC specification for WKT, the datatype strdf:WKT4 is defined
as follows. The lexical space of this datatype includes finite-length sequences of
characters that can be produced from the WKT grammar defined in the WKT
specification, optionally followed by a semicolon and a URI that identifies the
corresponding CRS. The default case is considered to be the WGS84 coordinate
reference system. The value space is the set of geometry values defined in the
WKT specification. These values are a subset of the union of the powersets of
R2 and R3. The lexical and value space for strdf:GML are defined similarly.
The datatype strdf:geometry is also introduced to represent the serialization
of a geometry independently of the serialization standard used. The datatype

2 http://portal.opengeospatial.org/files/?artifact_id=25355
3 http://portal.opengeospatial.org/files/?artifact_id=39853
4 http://strdf.di.uoa.gr/ontology

http://portal.opengeospatial.org/files/?artifact_id=25355
http://portal.opengeospatial.org/files/?artifact_id=39853
http://strdf.di.uoa.gr/ontology
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strdf:geometry is the union of the datatypes strdf:WKT and strdf:GML, and
appropriate relationships hold for its lexical and value spaces.

Both the original [9] and the new version of stRDF presented in this paper
impose minimal new requirements to Semantic Web developers that want to
represent spatial objects with stRDF; all they have to do is utilize a new literal
datatype. These datatypes (strdf:WKT, strdf:GML and strdf:geometry) can
be used in the definition of geospatial ontologies needed in applications, e.g.,
ontologies similar to the ones defined in [13].

In the examples of this paper we present stRDF triples that come from a
fire monitoring and burnt area mapping application of project TELEIOS. The
prefix noa used refers to the namespace of relevant vocabulary5 defined by the
National Observatory of Athens (NOA) for this application.

Example 1. stRDF triples derived from GeoNames that represent information
about the Greek town Olympia including an approximation of its geometry. Also,
stRDF triples that represent burnt areas.

geonames:26 rdf:type dbpedia:Town. geonames:26 geonames:name "Olympia".

geonames:26 strdf:hasGeometry "POLYGON((21 18,23 18,23 21,21 21,21 18));

<http://www.opengis.net/def/crs/EPSG/0/4326>"^^strdf:WKT.

noa:BA1 rdf:type noa:BurntArea;

strdf:hasGeometry "POLYGON((0 0,0 2,2 2,2 0,0 0))"^^strdf:WKT.

noa:BA2 rdf:type noa:BurntArea;

strdf:hasGeometry "POLYGON((3 8,4 9,3 9,3 8))"^^strdf:WKT.

Features can, in general, have many geometries (e.g., for representing the fea-
ture at different scales). Domain modelers are responsible for their appropriate
utilization in their graphs and queries.

3 A New Version of stSPARQL

In this section we present a new version of the query language stSPARQL that
we originally introduced in [9]. The new version is an extension of SPARQL
1.1 with functions that take as arguments spatial terms and can be used in the
SELECT, FILTER, and HAVING clause of a SPARQL 1.1 query. A spatial term is
either a spatial literal (i.e., a typed literal with datatype strdf:geometry or
its subtypes), a query variable that can be bound to a spatial literal, the result
of a set operation on spatial literals (e.g., union), or the result of a geometric
operation on spatial terms (e.g., buffer).

In stSPARQL we use functions from the “OpenGIS Simple Feature Access
- Part 2: SQL Option” standard (OGC-SFA)6 for querying stRDF data. This
standard defines relational schemata that support the storage, retrieval, query
and update of sets of simple features using SQL.

A feature is a domain entity that can have various attributes that describe
spatial and non-spatial (thematic) characteristics. The spatial characteristics of

5 http://www.earthobservatory.eu/ontologies/noaOntology.owl
6 http://portal.opengeospatial.org/files/?artifact_id=25354

http://www.earthobservatory.eu/ontologies/noaOntology.owl
http://portal.opengeospatial.org/files/?artifact_id=25354
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a feature are represented using geometries such as points, lines, polygons, etc.
Each geometry is associated with a CRS. A simple feature is a feature with all
spatial attributes described piecewise by a straight line or a planar interpolation
between sets of points. The OGC-SFA standard defines functions for requesting
a specific representation of a geometry (e.g., the function ST_AsText returns
the WKT representation of a geometry), functions for checking whether some
condition holds for a geometry (e.g., the function ST_IsEmpty returns true if a
geometry is empty) and functions for returning some properties of the geometry
(e.g., the function ST_Dimension returns its inherent dimension). In addition,
the standard defines functions for testing named spatial relationships between
two geometries (e.g., the function ST_Overlaps) and functions for constructing
new geometries from existing geometries (e.g., the function ST_Envelope that
returns the minimum bounding box of a geometry).

The new version of stSPARQL extends SPARQL 1.1 with the ma-
chinery of the OGC-SFA standard. We achieve this by defining a URI
for each of the SQL functions defined in the standard and use them in
SPARQL queries. For example, for the function ST IsEmpty defined in
the OGC-SFA standard, we introduce the SPARQL extension function

xsd:boolean strdf:isEmpty(strdf:geometry g)

which takes as argument a spatial term g, and returns true if g is the empty
geometry. Similarly, we have defined a Boolean SPARQL extension function
for each topological relation defined in OGC-SFA (topological relations for
simple features), [5] (Egenhofer relations) and [4] (RCC-8 relations). In this
way stSPARQL supports multiple families of topological relations our users
might be familiar with. Using these functions stSPARQL can express spatial
selections, i.e., queries with a FILTER function with arguments a variable and
a constant (e.g., strdf:contains(?geo, "POINT(1 2)"^^strdf:WKT)), and
spatial joins, i.e., queries with a FILTER function with arguments two variables
(e.g., strdf:contains(?geoA, ?geoB)).

The stSPARQL extension functions can also be used in the SELECT clause of a
SPARQL query. As a result, new spatial literals can be generated on the fly dur-
ing query time based on pre-existing spatial literals. For example, to obtain the
buffer of a spatial literal that is bound to the variable ?geo, we would use the ex-
pression SELECT (strdf:buffer(?geo,0.01) AS ?geobuffer). In stSPARQL
we have also the following three spatial aggregate functions :

– strdf:geometry strdf:union(set of strdf:geometry a), returns a ge-
ometry that is the union of the set of input geometries.

– strdf:geometry strdf:intersection(set of strdf:geometry a),
returns a geometry that is the intersection of the set of input geometries.

– strdf:geometry strdf:extent(set of strdf:geometry a), returns a
geometry that is the minimum bounding box of the set of input geometries.

stSPARQL also supports update operations (insertion, deletion, and update of
stRDF triples) conforming to the declarative update language for SPARQL,
SPARQL Update 1.1, which is a current proposal of W3C.

The following examples demonstrate the functionality of stSPARQL.
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Example 2. Return the names of towns that have been affected by fires.

SELECT ?name

WHERE { ?t a dbpedia:Town; geonames:name ?name; strdf:hasGeometry ?tGeo.

?ba a noa:BurntArea; strdf:hasGeometry ?baGeo.

FILTER(strdf:intersects(?tGeo,?baGeo))}

The query above demonstrates how to use a topological function in a query. The
results of this query are the names of the towns whose geometries “spatially
overlap” the geometries corresponding to areas that have been burnt.

Example 3. Isolate the parts of the burnt areas that lie in coniferous forests.

SELECT ?ba (strdf:intersection(?baGeom,strdf:union(?fGeom)) AS ?burnt)

WHERE { ?ba a noa:BurntArea. ?ba strdf:hasGeometry ?baGeom.

?f a noa:Area. ?f noa:hasLandCover noa:ConiferousForest.

?f strdf:hasGeometry ?fGeom.

FILTER(strdf:intersects(?baGeom,?fGeom)) }

GROUP BY ?ba ?baGeom

The query above tests whether a burnt area intersects with a coniferous for-
est. If this is the case, groupings are made depending on the burnt area. The
geometries of the forests corresponding to each burnt area are unioned, and
their intersection with the burnt area is calculated and returned to the user.
Note that only strdf:union is an aggregate function in the SELECT clause;
strdf:intersection performs a computation involving the result of the aggre-
gation and the value of ?baGeom which is one of the variables determining the
grouping according to which the aggregate computation is performed.

More details of stRDF and stSPARQL are given in [11].

4 Implementation

Strabon 3.0 is a fully-implemented, open-source, storage and query evaluation
system for stRDF/stSPARQL and the corresponding subset of GeoSPARQL. We
concentrate on stSPARQL only, but given the similarities with GeoSPARQL to
be discussed in Section 6, the applicability to GeoSPARQL is immediate. Strabon
has been implemented by extending the widely-known RDF store Sesame. We
chose Sesame because of its open-source nature, layered architecture, wide range
of functionalities and the ability to have PostGIS, a ‘spatially enabled’ DBMS,
as a backend to exploit its variety of spatial functions and operators. Strabon
is implemented by creating a layer that is included in Sesame’s software stack
in a transparent way so that it does not affect its range of functionalities, while
benefitting from new versions of Sesame. Strabon 3.0 uses Sesame 2.6.3 and
comprises three modules: the storage manager, the query engine and PostGIS.

The storage manager utilizes a bulk loader to store stRDF triples using the
“one table per predicate” scheme of Sesame and dictionary encoding. For each
predicate table, two B+ tree two-column indices are created. For each dictio-
nary table a B+ tree index on the id column is created. All spatial literals are
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also stored in a table with schema geo values(id int, value geometry, srid int).
Each tuple in the geo values table has an id that is the unique encoding of the
spatial literal based on the mapping dictionary. The attribute value is a spatial
column whose data type is the PostGIS type geometry and is used to store the
geometry that is described by the spatial literal. The geometry is transformed
to a uniform, user-defined CRS and the original CRS is stored in the attribute
srid. Additionally, a B+ tree index on the id column and an R-tree-over-GiST
spatial index on the value column are created.

Query processing in Strabon is performed by the query engine which consists
of a parser, an optimizer, an evaluator and a transaction manager. The parser
and the transaction manager are identical to the ones in Sesame. The optimizer
and the evaluator have been implemented by modifying the corresponding com-
ponents of Sesame as we describe below.

The query engine works as follows. First, the parser generates an abstract
syntax tree. Then, this tree is mapped to the internal algebra of Sesame, re-
sulting in a query tree. The query tree is then processed by the optimizer that
progressively modifies it, implementing the various optimization techniques of
Strabon. Afterwards, the query tree is passed to the evaluator to produce the
corresponding SQL query that will be evaluated by PostgreSQL. After the SQL
query has been posed, the evaluator receives the results and performs any post-
processing actions needed. The final step involves formatting the results. Besides
the standard formats offered by RDF stores, Strabon offers KML and GeoJSON
encodings, which are widely used in the mapping industry.

We now discuss how the optimizer works. First, it applies all the Sesame op-
timizations that deal with the standard SPARQL part of an stSPARQL query
(e.g., it pushes down FILTERs to minimize intermediate results etc.). Then, two
optimizations specific to stSPARQL are applied. The first optimization has to
do with the extension functions of stSPARQL. By default, Sesame evaluates
these after all bindings for the variables present in the query are retrieved. In
Strabon, we modify the behaviour of the Sesame optimizer to incorporate all
extension functions present in the SELECT and FILTER clause of an stSPARQL
query into the query tree prior to its transformation to SQL. In this way, these
extension functions will be evaluated using PostGIS spatial functions instead of
relying on external libraries that would add an unneeded post-processing cost.
The second optimization makes the underlying DBMS aware of the existence of
spatial joins in stSPARQL queries so that they would be evaluated efficiently.
Let us consider the query of Example 2. The first three triple patterns of the
query are related to the rest via the topological function strdf:intersects.
The query tree that is produced by the Sesame optimizer, fails to deal with
this spatial join appropriately. It will generate a Cartesian product for the third
and the fifth triple pattern of the query, and the evaluation of the spatial predi-
cate strdf:intersects will be wrongly postponed after the calculation of this
Cartesian product. Using a query graph as an intermediate representation of the
query, we identify such spatial joins and modify the query tree with appropriate
nodes so that Cartesian products are avoided. For the query of Example 2, the
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modified query tree will result in a SQL query that contains a θ-join where θ is
the spatial function ST Intersects.

More details of the query engine including examples of query trees and the
SQL queries produced are given in the long version of this paper7.

To quantify the gains of the optimization techniques used in Strabon, we also
developed a naive, baseline implementation of stSPARQL which has none of the
optimization enhancements to Sesame discussed above. The naive implemen-
tation uses the native store of Sesame as a backend instead of PostGIS (since
the native store outperforms all other Sesame implementations using a DBMS).
Data is stored on disk using atomic operations and indexed using B-Trees.

5 Experimental Evaluation

This section presents a detailed evaluation of the system Strabon using two dif-
ferent workloads: a workload based on linked data and a synthetic workload. For
both workloads, we compare the response time of Strabon on top of PostgreSQL
(called Strabon PG from now on) with our closest competitor implementation
in [3], the naive, baseline implementation described in Section 4, and the RDF
store Parliament. To identify potential benefits from using a different DBMS as
a relational backend for Strabon, we also executed the SQL queries produced by
Strabon in a proprietary spatially-enabled DBMS (which we will call System X,
and Strabon X the resulting combination).

[3] presents an implementation which enhances the RDF-3X triple store with
the ability to perform spatial selections using an R-tree index. The implemen-
tation of [3] is not a complete system like Strabon and does not support a
full-fledged query language such as stSPARQL. In addition, the only way to
load data in the system is the use of a generator which has been especially de-
signed for the experiments of [3] thus it cannot be used to load other datasets
in the implementation. Moreover, the geospatial indexing support of this imple-
mentation is limited to spatial selections. Spatial selections are pushed down in
the query tree (i.e., they are evaluated before other operators). Parliament is an
RDF storage engine recently enhanced with GeoSPARQL processing capabilities
[2], which is coupled with Jena to provide a complete RDF system.

Our experiments were carried out on an Ubuntu 11.04 installation on an Intel
Xeon E5620 with 12MB L2 cache running at 2.4 GHz. The system has 16GB of
RAM and 2 disks of striped RAID (level 0). We measured the response time for
each query posed by measuring the elapsed time from query submission till a
complete iteration over the results had been completed. We ran all queries five
times on cold and warm caches. For warm caches, we ran each query once before
measuring the response time, in order to warm up the caches.

5.1 Evaluation using Linked Data

This section describes the experiments we did to evaluate Strabon using a work-
load based on linked data. We combined multiple popular datasets that include

7 http://www.strabon.di.uoa.gr/files/Strabon-ISWC-2012-long-version.pdf

http://www.strabon.di.uoa.gr/files/Strabon-ISWC-2012-long-ve rsion.pdf
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Dataset Size Triples Spatial
terms

Distinct
spatial
terms

Points Linestrings
(min/ max/
avg # of
points/
linestring)

Polygons
(min/max/avg
# of points/
polygon)

DBpedia 7.1 GB 58,727,893 386,205 375,087 375,087 - -

GeoNames 2.1GB 17,688,602 1,262,356 1,099,964 1,099,964 - -

LGD 6.6GB 46,296,978 5,414,032 5,035,981 3,205,015 353,714 (4/20/9) 1,704,650
(4/20/9)

Pachube 828KB 6,333 101 70 70 - -

SwissEx 33MB 277,919 687 623 623 - -

CLC 14GB 19,711,926 2,190,214 2,190,214 - - 2,190,214
(4/1,255,917/129)

GADM 146MB 255 51 51 - - 51 (96/ 510,018/
79,831)

Fig. 1. Summary of unified linked datasets

geospatial information: DBpedia, GeoNames, LinkedGeoData, Pachube, Swiss
Experiment. We also used the datasets Corine Land Use/Land Cover and Global
Administrative Areas that were published in RDF by us in the context of the EU
projects TELEIOS and SemsorGrid4Env. The size of the unified dataset is 30GB
and consists of 137 million triples that include 176 million distinct RDF terms,
of which 9 million are spatial literals. As we can see in Table 1, the complexity
of the spatial literals varies significantly. More information on the datasets men-
tioned and the process followed can be found in the long version of the paper. It
should be noted that we could not use the implementation of [3] to execute this
workload since it is not a complete system like Strabon as we explained above.

Storing stRDF Documents. For our experimental evaluation, we used the
bulk loader mentioned in Section 4 emulating the “per-predicate” scheme since
preliminary experiments indicated that the query response times in PostgreSQL
were significantly faster when using this scheme compared to the “monolithic”
scheme. This decision led to the creation of 48,405 predicate tables. Figure 2(a)
presents the time required by each system to store the unified dataset.

The difference in times between Strabon and the naive implementation is
natural given the very large number of predicate tables that had to be produced,
processed and indexed. In this dataset, 80% of the total triples used only 17
distinct predicates. The overhead imposed to process the rest 48,388 predicates
cancels the benefits of the bulk loader. A hybrid solution storing triples with
popular predicates in separate tables while storing the rest triples in a single
table, would have been more appropriate for balancing the tradeoff between
storage time and query response time but we have not experimented with this
option. In Section 5.2 we show that the loader scales much better when fewer
distinct predicates are present in our dataset, regardless its size.

In the case of Strabon X, we followed the same process with Strabon PG.
System X required double the amount of time that it took PostgreSQL to store
and index the data. In the case of Parliament we modified the dataset to conform
to GeoSPARQL and measured the time required for storing the resulting file.
After incorporating the additional triples required by GeoSPARQL, the resulting
dataset had approximately 15% more triples than the original RDF file.
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Evaluating stSPARQL Queries. In this experiment we chose to evaluate
Strabon using eight real-world queries. Our intention was to have enough queries
to demonstrate Strabon’s performance and functionality based on the following
criteria: query patterns should be frequently used in Semantic Web applications
or demonstrate the spatial extensions of Strabon. The first criterion was ful-
filled by taking into account the results of [14] when designing the queries. [14]
presents statistics on real-world SPARQL queries based on the logs of DBpe-
dia. We also studied the query logs of the LinkedGeoData endpoint (which were
kindly provided to us) to determine what kind of spatial queries are popular.
According to this criterion, we composed the queries Q1, Q2 and Q7. According
to [14] queries like Q1 and Q2 that consist of a few triple patterns are very
common. Query Q7 consists of few triple patterns and a topological FILTER
function, a structure similar to the queries most frequently posed to the LGD
endpoint. The second criterion was fulfilled by incorporating spatial selections
(Q4 and Q5) and spatial joins (Q3,Q6,Q7 and Q8) in the queries. In addition,
we used non-topological functions that create new geometries from existing ones
(Q4 and Q8) since these functions are frequently used in geospatial relational
databases. In Table 2(b) we report the response time results. In queries Q1
and Q2, the baseline implementation outperforms all other systems as these
queries do not include any spatial function. As mentioned earlier, the native
store of Sesame outperforms Sesame implementations on top of a DBMS. All
other systems produce comparable result times for these non-spatial queries. In
all other queries the DBMS-based implementations outperform Parliament and
the naive implementation. Strabon PG outperforms the naive implementation
since it incorporates the two stSPARQL-specific optimizations discussed in Sec-
tion 4. Thus, spatial operations are evaluated by PostGIS using a spatial index,
instead of being evaluated after all the results have been retrieved. The naive
implementation and Parliament fail to execute Q3 as this query involves a spa-
tial join that is very expensive for systems using a naive approach. The only
exception in the behavior of the naive implementation is Q4 in the case of warm
caches, where the non-spatial part of the query produces very few results and
the file blocks needed for query evaluation are cached in main memory. In this
case, the non-spatial part of the query is executed rapidly while the evaluation
of the spatial function over the results thus far is not significant. All queries
except Q8 are executed significantly faster when run using Strabon on warm
caches. Q8 involves many triple patterns and spatial functions which result in
the production of a large number of intermediate results. As these do not fit
in the system’s cache, the response time is unaffected by the cache contents.
System X decides to ignore the spatial index in queries Q3, Q6-Q8 and evaluate
any spatial predicate exhaustively over the results of a thematic join. In queries
Q6-Q8, it also uses Cartesian products in the query plan as it considers their
evaluation more profitable. These decisions are correct in the case of Q8 where
it outperforms all other systems significantly, but very costly in the cases of Q3,
Q6 and Q7.
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Total time (sec)
System Linked

Data
10mil 100mil 500mil

Naive 9,480 1,053 12,305 72,433

Strabon PG 19,543 458 3,241 21,155

Strabon X 28,146 818 7,274 40,378

RDF-3X * 780 8,040 43,201

Parliament 81,378 734 6,415 >36h

(a)

Caches System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Cold Naive 0.08 1.65 >8h 28.88 89 170 844 1.699
(sec.) Strabon-PG 2.01 6.79 41.39 10.11 78.69 60.25 9.23 702.55

Strabon-X 1.74 3.05 1623.57 46.52 12.57 2409.98 >8h 57.83
Parliament 2.12 6.46 >8h 229.72 1130.98 872.48 3627.62 3786.36

Warm Naive 0.01 0.03 >8h 0.79 43.07 88 708 1712
(sec.) Strabon-PG 0.01 0.81 0.96 1.66 38.74 1.22 2.92 648.1

Strabon-X 0.01 0.26 1604.9 35.59 0.18 3196.78 >8h 44.72
Parliament 0.01 0.04 >8h 10.91 358.92 483.29 2771 3502.53

(b)

Fig. 2. (a) Storage time for each dataset (b) Response time for real-world queries

5.2 Evaluation Using a Synthetic Dataset

Although we had tested Strabon with datasets up to 137 million triples (Sec-
tion 5.1), we wanted better control over the size and the characteristics of the
spatial dataset being used for evaluation. By using a generator to produce a syn-
thetic dataset, we could alter the thematic and spatial selectivities of our queries
and closely monitor the performance of our system, based on both spatial and
thematic criteria. Since we could produce a dataset of arbitrary size, we were
able to stress our system by producing datasets of size up to 500 million triples.

Storing stRDF Documents. The generator we used to produce our datasets
is a modified version of the generator used by the authors of [3], which was kindly
provided to us. The data produced follows a general version of the schema of Open
Street Map depicted in Figure 3. Each node has a spatial extent (the location of
the node) and is placed uniformly on a grid. By modifying the step of the grid,
we produce datasets of arbitrary size. In addition, each node is assigned a number
of tags each of which consists of a key-value pair of strings. Every node is tagged
with key 1, every second node with key 2, every fourth node with key 4, etc. up
to key 1024. We generated three datasets consisting of 10 million, 100 million and
500 million triples and stored them in Strabon using the per-predicate scheme.
Figure 2(a) shows the time required to store these datasets. In the case of [3], the
generator produces directly a binary file using the internal format of RDF-3X and
computes exhaustively all indices, resulting in higher storage times. On the con-
trary, Strabon, Parliament and the naive implementation store an RDF file for
each dataset. We observed that Strabon’s bulk loader is very efficient when deal-
ing with any dataset not including an excessive amount of scarcely used distinct
predicates, and regardless of the underlying DBMS. In the case of Parliament,
the dataset resulting from the conversion to GeoSPARQL was 27% bigger than
the original 100 million triples dataset. Its storage time was shorter than that of
all other systems but Strabon PG. However, Parliament failed to store the 500
million triples dataset after 36 hours.

Evaluating stSPARQL Queries. In this experiment we used the fol-
lowing query template that is identical to the query template used in [3]:
SELECT * WHERE {?node geordf:hasTag ?tag. ?node strdf:hasGeography ?geo.

?tag geordf:key PARAM A. FILTER (strdf:inside(?geo, PARAM B))}
In this query template, PARAM A is one of the values used when tagging a
node and PARAM B is the WKT representation of a polygon. We define the
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osm:Node23

osm:Tag1osm:Tag

osm:Node

osm:key osm:value

osm:hasTag

rdf:type

rdf:type

osm:id
geordf:

hasGeometry1

“1” “1”

“14”“POINT(37.9 23.1)”

Fig. 3. LGD schema Fig. 4. Plan A Fig. 5. Plan B

thematic selectivity of an instantiation of the query template as the fraction of
the total nodes that are tagged with a key equal to PARAM A. For example, by
altering the value of PARAM A from 2 to 4, we reduce the thematic selectivity of
the query by selecting half the nodes we previously did. We define the spatial
selectivity of an instantiation of the query template as the fraction of the total
nodes that are inside the polygon defined by PARAM B. We modify the size of
the polygon in order to select from 10 up to 106 nodes.

We will now discuss representative experiments with the 100 and 500 mil-
lion triples datasets. For each dataset we present graphs depicting results based
on various combinations of parameters PARAM A and PARAM B in the case of
cold or warm caches. These graphs are presented in Figure 6. In the case of
Strabon, the stSPARQL query template is mapped to a SQL query, which is
subsequently executed by PostgreSQL or System X. This query involves the pred-
icate tables key(subj,obj), hasTag(subj,obj) and hasGeography(subj,obj)

and the spatial table geo values(id,value,srid). We created two B+ tree
two-column indices for each predicate table and an R-tree index on the value

column of the spatial table. The main point of interest in this SQL query is the
order of join execution in the following sub-query: σobj=T (key) �� hastag ��

σvalue inside S(hasgeography) where T and S are values of the parameters
PARAM A and PARAM B respectively. Different orders give significant differences
in query execution time. After consulting the query logs of PostgreSQL, we no-
ticed that the vast majority of the SQL queries that were posed and derived
from the query template adhered to one of the query plans of Figures 4,5. Ac-
cording to plan A, query evaluation starts by evaluating the thematic selection
over table key using the appropriate index. The results are retrieved and joined
with the hasTag and hasGeography predicate tables using appropriate indices.
Finally, the spatial selection is evaluated by scanning the spatial index and the
results are joined with the intermediate results of the previous operations. On
the contrary, plan B starts with the evaluation of the spatial selection, leaving
the application of the thematic selection for the end.

Unfortunately, in the current version of PostGIS spatial selectivities are not
computed properly. The functions that estimate the selectivity of a spatial se-
lection/join return a constant number regardless of the actual selectivity of the
operator. Thus, only the thematic selectivity affects the choice of a query plan.
To state it in terms of our query template, altering the value PARAM A between
1 and 1024 was the only factor influencing the selection of a query plan.



Strabon: A Semantic Geospatial DBMS 307

100

101

102

103

104

102 103 104 105 106

re
sp

on
se

 ti
m

e 
[s

ec
]

Naive
RDF3X-*

Strabon PG
Strabon X

Parliament

(a) 100 mil.,tag 1
(cold)

100

101

102

103

104

102 103 104 105 106

Naive
RDF3X-*

Strabon PG
Strabon X

Parliament

(b) 100 mil.,tag 1024
(cold)

10-2

10-1

100

101

102

103

104

102 103 104 105 106

Naive
RDF3X-*

Strabon PG
Strabon X

Parliament

(c) 100 mil.,tag 1
(warm)

10-1

100

101

102

103

104

102 103 104 105 106

Naive
RDF3X-*

Strabon PG
Strabon X

Parliament

(d) 100 mil.,tag
1024(warm)

100

101

102

103

104

103 104 105 106

re
sp

on
se

 ti
m

e 
[s

ec
]

number of Nodes in query region

Strabon PG2

(e) 500 mil.,tag 1
(cold)

100

101

102

103

103 104 105 106

number of Nodes in query region

(f) 500 mil.,tag
1024(cold)

100

101

102

103

103 104 105 106

number of Nodes in query region

key=1
key=2
key=4

key=16
key=32
key=64

key=128
key=256
key=512

key=1024

(g) 500 mil. (cold)

10-2

10-1

100

101

102

103 104 105 106

number of Nodes in query region

(h) 500 mil.,tag
1024(warm)

Fig. 6. Response times

A representative example is shown in Figure 6(g), where we present the re-
sponse times for all values of PARAM A and observe two patterns. When thematic
selectivity is high (values 1-2), the response time is low when the spatial selec-
tivity (captured by the x-axis) is low, while it increases along with the spatial
selectivity. This happens because for these values PostgreSQL chooses plan B,
which is good only when the spatial selectivity is low. In cases of lower thematic
selectivity (values 4-1024), the response time is initially high but only increases
slightly as spatial selectivity increases. In this case, PostgreSQL chooses plan A,
which is good only when the spatial selectivity is high. The absence of dynamic
estimation of spatial selectivity is affecting the system performance since it does
not necessarily begin with a good plan and fails to switch between plans when
the spatial selectivity passes the turning point observed in the graph.

Similar findings were observed for System X. The decision of which query
plan to select was influenced by PARAM A. In most cases, a plan similar to plan
B is selected, with the only variation that in the case of the 500 million triples
dataset the access methods defined in plan B are full table scans instead of index
scans. The only case in which System X selected another plan was when posing
a query with very low thematic selectivity (PARAM A = 1024) on the 500 million
triples dataset, in which case System X switched to a plan similar to plan A.
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In Figures 6(a)-6(d) we present the results for the 100 million dataset for
the extreme values 1 and 1024 of PARAM A. Strabon PG outperforms the other
systems in the case of warm caches, while the implementation of [3] and Strabon
X outperform Strabon PG for value 1024 in the case of cold caches (Figure 6(b)).
In this case, as previously discussed, PostgreSQL does not select a good plan
and the response times are even higher than the times where PARAM A is equal
to 1 (Figure 6(a)), despite producing significantly more intermediate results.

In Figures 6(e), 6(f) and 6(h) we present the respective graphs for the 500
million dataset and observe similar behavior as before, with a small deviation
in Figure 6(e), where the implementation of [3] outperforms Strabon. In this
scenario, Strabon X also gradually outperforms Strabon PG as spatial selectivity
increases, although PostgreSQL had chosen the correct query plan. Taking this
into account, we tuned PostgreSQL to make better use of the system resources.
We allowed the usage of more shared buffers and the allocation of larger amounts
of memory for internal sort operations and hash tables. As observed in Figure
6(e), the result of these modifications (labeled Strabon PG2) led to significant
performance improvement. This is quite typical with relational DBMS; the more
you know about their internals and the more able you are to tune them for queries
of interest, the better performance you will get.

In general, Strabon X performs well in cases of high spatial selectivity. In
Figure 6(f), the response time of Strabon X is almost constant. In this case
a plan similar to plan A is selected, with the variation that the spatial index
is not utilized for the evaluation of the spatial predicate. This decision would
be correct only for queries with high spatial selectivity. The effect of this plan
is more visible in Figure 6(h), where the large number of intermediate results
prevent the system to utilize its caches, resulting in constant, yet high response
times.

Regarding Parliament, although the results returned by each query posed were
correct, the fact that the response time was very high did not allow us to execute
queries using all instantiations of the query template. We instantiated the query
template using the extreme values of PARAM A and PARAM B and executed them
to have an indication of the system’s performance.

In all datasets used, we observe that the naive implementation has constant
performance regardless of the spatial selectivity of a query since the spatial
operator is evaluated against all bindings retrieved thus far. The baseline imple-
mentation also outperforms System X and the implementation of [3] in queries
with low thematic selectivity (value 1024) over warm caches.

In summary, Strabon PG outperforms the other implementations when caches
are warmed up. Results over cold caches are mixed, but we showed that aggres-
sive tuning of PostgreSQL can increase the performance of Strabon resulting
to response times slightly better than the implementation of [3]. Nevertheless,
modifications to the optimizer of PostgreSQL are needed in order to estimate
accurately the spatial selectivity of a query to produce better plans by combining
this estimation with the thematic selectivity of the query. Given the significantly
better performance of RDF-3X over Sesame for standard SPARQL queries,
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another open question in our work is how to go beyond [3] and modify the
optimizer of RDF-3X so that it can deal with the full stSPARQL query
language.

6 Related Work

Geospatial extensions of RDF and SPARQL have been presented recently
in [7,9,13]. An important addition to this line of research is the recent
OGC candidate standard GeoSPARQL discussed in [1] and the new ver-
sion of stRDF/stSPARQL presented in this paper. Like stRDF/stSPARQL,
GeoSPARQL aims at providing a basic framework for the representation and
querying of geospatial data on the Semantic Web. The two approaches have been
developed independently at around the same time, and have concluded with very
similar representational and querying constructs. Both approaches represent ge-
ometries as literals of an appropriate datatype. These literals may be encoded
in various formats like GML, WKT etc. Both approaches map spatial predicates
and functions that support spatial analysis to SPARQL extension functions.
GeoSPARQL goes beyond stSPARQL in that it allows binary topological re-
lations to be used as RDF properties anticipating their possible utilization by
spatial reasoners (this is the topological extension and the related query rewrite
extension of GeoSPARQL). In our group, such geospatial reasoning function-
ality is being studied in the more general context of “incomplete information
in RDF” of which a preliminary overview is given in [10]. Since stSPARQL has
been defined as an extension of SPARQL 1.1, it goes beyond GeoSPARQL by of-
fering geospatial aggregate functions and update statements that have not been
considered at all by GeoSPARQL. Another difference between the two frame-
works is that GeoSPARQL imposes an RDFS ontology for the representation
of features and geometries. On the contrary, stRDF only asks that a specific
literal datatype is used and leaves the responsibility of developing any ontology
to the users. In the future, we expect user communities to develop more special-
ized ontologies that extend the basic ontologies of GeoSPARQL with relevant
geospatial concepts from their own application domain. In summary, strictly
speaking, stSPARQL and GeoSPARQL are incomparable in terms of represen-
tational power. If we omit aggregate functions and updates from stSPARQL, its
features are a subset of the features offered by the GeoSPARQL core, geometry
extension and geometry topology extension components. Thus, it was easy to
offer full support in Strabon for these three parts of GeoSPARQL.

Recent work has also considered implementation issues for geospatial exten-
sions of RDF and SPARQL. [3] presents an implementation based on RDF-3X,
which we already discussed in detail. Virtuoso provides support for the represen-
tation and querying of two-dimensional point geometries expressed in multiple
reference systems. Virtuoso models geometries by typed literals like stSPARQL
and GeoSPARQL. Vocabulary is offered for a subset of the SQL/MM standard
to perform geospatial queries using SPARQL. The open-source edition does not
incorporate these geospatial extensions. [2] introduces GeoSPARQL and the im-
plementation of a part of it in the RDF store Parliament. [2] discusses interesting
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ideas regarding query processing in Parliament but does not give implementa-
tion details or a performance evaluation. A more detailed discussion of current
proposals for adding geospatial features to RDF stores is given in our recent sur-
vey [8]. None of these proposals goes beyond the expressive power of stSPARQL
or GeoSPARQL discussed in detail above.

7 Conclusions and Future Work

We presented the new version of the data model stRDF and the query language
stSPARQL, the system Strabon which implements the complete functionality
of stSPARQL (and, therefore, a big subset of GeoSPARQL) and an experimen-
tal evaluation of Strabon. Future work concentrates on experiments with even
larger datasets, comparison of Strabon with other systems such as Virtuoso, and
stSPARQL query processing in the column store MonetDB.
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Abstract. One of the main tasks when creating and maintaining knowl-
edge bases is to validate facts and provide sources for them in order to
ensure correctness and traceability of the provided knowledge. So far, this
task is often addressed by human curators in a three-step process: issuing
appropriate keyword queries for the statement to check using standard
search engines, retrieving potentially relevant documents and screening
those documents for relevant content. The drawbacks of this process are
manifold. Most importantly, it is very time-consuming as the experts
have to carry out several search processes and must often read several
documents. In this article, we present DeFacto (Deep Fact Validation) –
an algorithm for validating facts by finding trustworthy sources for it on
the Web. DeFacto aims to provide an effective way of validating facts by
supplying the user with relevant excerpts of webpages as well as useful
additional information including a score for the confidence DeFacto has
in the correctness of the input fact.

1 Introduction

The past decades have been marked by a change from an industrial society to
an information and knowledge society. This change is particularly due to the
uptake of the World Wide Web. Creating and managing knowledge successfully
has been a key to success in various communities worldwide. Therefore, the
quality of knowledge is of high importance. One aspect of knowledge quality
is provenance. In particular, the sources for facts should be well documented,
since this provides several benefits such as a better detection of errors, decisions
based on the trustworthiness of sources etc. While provenance is an important
aspect of data quality [8], to date only few knowledge bases actually provide
provenance information. For instance, less than 3% of the more than 607.7 million
RDF documents indexed by Sindice1 contain metadata such such as creator,
created, source, modified, contributor, or provenance.2 This lack of provenance
� This work was partially supported by a grant from the European Union’s 7th Frame-

work Programme provided for the project LOD2 (GA no. 257943) and Eurostars
E!4604 SCMS.

1 http://www.sindice.com
2 Data retrieved on June 6, 2012.
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information makes the validation of the facts in such knowledge bases utterly
tedious. In addition, it hinders the adoption of such data in business applications
as the data is not trusted [8]. The main contribution of this paper is the provision
of a fact validation approach and tool which can make use of one of the largest
sources of information: the Web.

More specifically, our system DeFacto (Deep Fact Validation) implements al-
gorithms for validating RDF triples by finding confirming sources for it on the
web. It takes a statement as input (e.g., that shown in Listing 1) and then tries
to find evidence for the validity of that statement by searching for textual infor-
mation in the web. In contrast to typical search engines, it does not just search
for textual occurrences of parts of the statement, but tries to find webpages
which contain the actual statement phrased in natural language. It presents the
user with a confidence score for the input statement as well as a set of excerpts
of relevant webpages, which allows the user to manually judge the presented
evidence.

DeFacto has two major use cases: (1) Given an existing true statement, it
can be used to find provenance information for it. For instance, the WikiData
project3 aims to create a collection of facts, in which sources should be pro-
vided for each fact. DeFacto could be used to achieve this task. (2) It can check
whether a statement is likely to be true, provide the user with a confidence score
in whether the statement is true and evidence for the score assigned to the state-
ment. Our main contributions are thus as follows: (1) An approach that allows
checking whether a webpage confirms a fact, i.e., an RDF triple, (2) an adap-
tation of existing approaches for determining indicators for trustworthiness of a
webpage, (3) an automated approach to enhancing knowledge bases with RDF
provenance data at triple level as well as (4) a running prototype of DeFacto,
the first system able to provide useful confidence values for an input RDF triple
given the Web as background text corpus.

The rest of this paper is structured as follows: Section 2 describes our gen-
eral approach and the system infrastructure. The next section describes how
we extended the BOA framework to enable it to detect facts contained in tex-
tual descriptions on webpages. In Section 4, we describe how we include the
trustworthiness of webpages into the DeFacto analysis. Section 5 combines the
results from the previous chapters and describes the mathematical features we
use to compute the confidence for a particular input fact. We use those features
to train different classifiers in Section 6 and describe our evaluation results.
Section 7 summarizes related work. Finally, we conclude in Section 8 and give
pointers to future work.

2 Approach

Input and Output: The DeFacto system consists of the components depicted in
Figure 1. The system takes an RDF triple as input and returns a confidence value
for this triple as well as possible evidence for the fact. The evidence consists of a
3 http://meta.wikimedia.org/wiki/Wikidata

http://meta.wikimedia.org/wiki/Wikidata
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Fig. 1. Overview of Deep Fact Validation

set of webpages, textual excerpts from those pages and meta-information on the
pages. The text excerpts and the associated meta information allow the user to
quickly get an overview over possible credible sources for the input statement: In-
stead of having to use search engines, browsing several webpages and looking for
relevant pieces of information, the user can more efficiently review the presented
information. Moreover, the system uses techniques which are adapted specifically
for fact validation instead of only having to rely on generic information retrieval
techniques of search engines.

Retrieving Webpages: The first task of the DeFacto system is to retrieve web-
pages which are relevant for the given task. The retrieval is carried out by is-
suing several queries to a regular search engine. These queries are computed
by verbalizing the RDF triple using natural-language patterns extracted by the
BOA framework4 [5,4]. Section 3.2 describes how the search engine queries are
constructed. As a next step, the highest ranked webpages for each query are
retrieved. Those webpages are candidates for being sources for the input fact.
Both the search engine queries as well as the retrieval of webpages are executed
in parallel to keep the response time for users within a reasonable limit. Note
that usually this does not put a high load on particular web servers as webpages
are usually derived from several domains.

Evaluating Webpages: Once all webpages have been retrieved, they undergo sev-
eral further processing steps. First, plain text is extracted from each webpage
by removing most HTML markup. We can then apply our fact confirmation ap-
proach on this text, which is described in detail in Section 3. In essence, the algo-
rithm decides whether the web page contains a natural language formulation of
the input fact. This step distinguishes DeFacto from information retrieval meth-
ods. If no webpage confirms a fact according to DeFacto, then the system falls
back on lightweight NLP techniques and computes whether the webpage does at

4 http://boa.aksw.org

http://boa.aksw.org
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least provide useful evidence. In addition to fact confirmation, the system com-
putes different indicators for the trustworthiness of a webpage (see Section 4).
These indicators are of central importance because a single trustworthy webpage
confirming a fact may be a more useful source than several webpages with low
trustworthiness. The fact confirmation and the trustworthiness indicators of the
most relevant webpages are presented to the user.

Confidence Measurement: In addition to finding and displaying useful sources,
DeFacto also outputs a general confidence value for the input fact. This confi-
dence value ranges between 0% and 100% and serves as an indicator for the user:
Higher values indicate that the found sources appear to confirm the fact and can
be trusted. Low values mean that not much evidence for the fact could be found
on the Web and that the websites that do confirm the fact (if such exist) only
display low trustworthiness. The confidence measurement is based on machine
learning techniques and explained in detail in Sections 5 and 6. Naturally, De-
Facto is a (semi-)automatic approach: We do assume that users will not blindly
trust the system, but additionally analyze the provided evidence.

Using the LOD Cloud as Background Knowledge: As described above, DeFacto
relies primarily on natural language from several webpages as input. However,
in some cases, confirming facts for an input statement can be found in openly
available knowledge bases. Due to the fast growth of the LOD cloud, we expect
this source to become increasingly important in the future. In order to use this
additional evidence, DeFacto provides a preliminary component which searches
for similar statements in the LOD cloud. To achieve this goal, the system first
finds similar resources to the subject and object of the input triple, which is
currently done via the http://sameas.org service. In a second step, it retrieves
all triples which use the detected similar subject and object resources by deref-
erencing the corresponding Linked Data URIs. Finally, the labels of subject,
predicate and object of all triples are retrieved. Those are then compared via
string similarity techniques to the input triple. Currently, the average trigram
similarity of subject, predicate and object of the triple is used. In this article,
we focus on re-using textual evidence and plan to carry out a more detailed
evaluation of the LOD as background knowledge in future work.
1 dbpedia -res:Jamaica_Inn_%28 film %29 dbpedia -owl:director
2 dbpedia -res: Alfred_Hitchcock .

Listing 1. Input data for Defacto

A prototype implementing the above steps is available at http://defacto.aksw.
org. It shows relevant webpages, text excerpts and five different rankings per
page. The generated provenance output can also be saved directly as RDF. For
representing the provenance output, we use the W3C provenance group5 vocab-
ularies. The source code of both, the DeFacto algorithms and user interface, are
openly available6.
5 http://www.w3.org/2011/prov/
6 https://github.com/AKSW/DeFacto

http://sameas.org
http://defacto.aksw.org
http://defacto.aksw.org
http://www.w3.org/2011/prov/
https://github.com/AKSW/DeFacto
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It should be noted that we decided not to check for negative evidence of facts
in DeFacto, since a) we considered this to be too error-prone and b) negative
statements are much less frequent on the web. It is also noteworthy that DeFacto
is a self training system on two levels: For each fact, the user can confirm after
reviewing the possible sources whether he believes it is true. This is then added
to the training set and helps to improve the performance of DeFacto. The same
can be done for text excerpts of web pages: Users can confirm or reject whether
a given text excerpt actually does confirm a fact. Both machine learning parts
are explained in Sections 3 and 6.

3 BOA

The idea behind BOA is two-fold: first, it aims to be a framework that al-
lows extracting structured data from the Human Web by using Linked Data
as background knowledge. In addition, it provides a library of natural-language
patterns that allows to bridge the gap between structured and unstructured
data. The input for the BOA framework consists of a set of knowledge bases,
a text corpus (mostly extracted from the Web) and (optionally) a Wikipedia
dump7. When provided by a Wikipedia dump, the framework begins by gen-
erating surface forms for all entities in the source knowledge base. The surface
forms used by BOA are generated by using an extension of the method proposed
in [12]. For each predicate p found in the input knowledge sources, BOA carries
out a sentence-level statistical analysis of the co-occurrence of pairs of labels of
resources that are linked via p. BOA then uses a supervised machine-learning
approach to compute a score and rank patterns for each combination of cor-
pus and knowledge bases. These patterns allow generating a natural-language
representation of the RDF triple that is to be checked.

3.1 Training BOA for DeFacto

In order to provide a high quality fact confirmation component, we trained BOA
specifically for this task. We began by selecting the top 60 most frequently
used object properties from the DBpedia [13,10] ontology using the DBpedia
Live endpoint8. This query retrieves 7,750,362 triples and covers 78% of the
9,993,333 triples in DBpedia with owl:ObjectPropertys from the DBpedia names-
pace.9 Currently, we focus on object properties. Adequate support of datatype
properties requires an extension of the presented methods, which is planned in
future work. For each of those properties, we selected the top 10 BOA patterns
(if available) sorted according to the number of triples this pattern has been
learned from. This resulted in a list of 488 patterns which were evaluated by
all four authors. During this process, each pattern was labeled by two persons
7 http://dumps.wikimedia.org/
8 http://live.dbpedia.org/sparql
9 Properties like wikiPageExternalLink, wikiPageRedirects, wikiPageDisambiguates

and thumbnail have been excluded.

http://dumps.wikimedia.org/
http://live.dbpedia.org/sparql
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independently. We judged a pattern as positive if it was not generic (e.g., “?D?
‘s " ?R?” ) or specific enough (e.g., “?D? in the Italian region ?R?” ) and could
be used to express the relation in natural text. The first group achieved a mod-
erate Cohen’s-Kappa value of 0.477 and the second group scored a good value
of 0.626. Every conflict was resolved by having the annotators agree on a single
annotation. The resulting annotations were used for a 10-fold cross-validation
training of BOA’s neural network. We achieved the maximum F-score of 0.732
with an error threshold of 0.01 and a hidden layer size of 51 neurons.

3.2 Automatic Generation of Search Queries

The found BOA patterns are used for issuing queries to the search engine (see
Figure 1). Each search query contains the quoted label of the subject of the input
triple, a quoted and cleaned BOA pattern (we remove punctuation characters
which are not indexed by the search engine) and the quoted label of the object of
the input triple. We use a fixed number of the best-scored BOA patterns whose
score was beyond a score threshold and retrieve the first n websites from a
web search engine. For our example from Listing 1, an examplary query sent to
the search engine is “Jamaican Inn” AND “written and directed by” AND
“Alfred Hitchcock”. We then crawl each website and try to extract possible
proofs for the input triple, i.e., excerpts of these webpages which may confirm
it. For the sake of brevity, we use proof and possible proof interchangeably.

3.3 BOA and NLP Techniques for Fact Confirmation

To find proofs for a given input triple we make use of the surface forms intro-
duced in [12]. We select all surface forms for the subject and object of the input
triple and search for all occurrences of each combination of those labels in a
website w. If we find an occurrence with a token distance d(l(s), l(o)) (where
l(x) is the label of x) smaller then a given threshold we call this occurrence a
proof for the input triple. To remove noise from the found proofs we apply a
set of normalizations by using regular expression filters which for example re-
move characters between brackets and non alpha-numeric characters. Note that
this normalization improves the grouping of proofs by their occurrence. After
extracting all proofs pi ∈ P(w) of a website w, we score each proof using a linear
regression classifier. We trained a classifier with the following input features for
scoring a proof:

BOA Pattern: This is a Boolean feature which is 1 if a BOA pattern is con-
tained in the normalized proof phrase.

BOA Score: If BOA patterns are found in the normalized proof phrase, then
the score of the highest score across the set of found patterns is written in
this feature. Else, this feature is set to 0.

Token Distance: This is the distance d(l(s), l(o)) between the two entity labels
which found the proof. We limit this distance to a maximum of 20 tokens.
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Table 1. Performance measures for several classifiers on the fact confirmation task
(AUC = area under the ROC curve, RMSE = root mean squared error)

P R F1 AUC RMSE

Logistic Regression 0.769 0.769 0.769 0.811 0.4653
Naïve Bayes 0.655 0.624 0.564 0.763 0.5665
SVM 0.824 0.822 0.822 0.823 0.4223
RBFNetwork 0.735 0.717 0.718 0.718 0.485

Wordnet Expansion: We expand both the tokens of the normalized proof
phrase as well as all of the tokens of the BOA pattern with synsets from
Wordnet. Subsequently we apply the Jaccard-Similarity on the generated
expansions. This is basically a fuzzy match between the BOA pattern and
the proof phrase.

Total Occurrence: This feature contains the total number of occurrences of
each normalized proof phrase over the set of all normalized proof phrases.

Page Title: We apply the maximum of the trigram similarity measure between
the page title and the subject and object labels. This feature is useful,
because the title indicates the topic of the entire web page. When a title
matches, then higher token distances may still indicate a high probability
that a fact is confirmed.

End of Sentence: A boolean value if the potential proof contains a “.”, “!” or
a “?”. When subject and object are in different sentences, their relation is
more likely to be weaker.

Phrase: The words between the subject and object, which are encoded as binary
values, i.e. a feature is created for each word and its value is set to 1 if the
word occurs and 0 otherwise.

Property: The property as a word vector.

To train our classifiers, we randomly sampled 527 proofs and annotated them
manually. Those proofs were extracted with DeFacto from applying it on the
training set described in Section 6.1. The results are shown in Table 1. We
ran popular classifiers, which are able to work with numeric data and create
confidence values. The ability to generate confidence values for proofs is useful
as feedback for users and it also serves as input for the core classifiers described
in Section 6. Based on the obtained results, we selected support vector machines
as classifier. We also performed preliminary work on fine-tuning the parameters
of the above algorithms, which, however, did not lead to significantly different
results. The reported measurements were, therefore, done with default values of
the mentioned algorithms in the Weka machine learning toolkit10 version 3.6.6.

4 Trustworthiness Analysis of Webpages

To determine the trustworthiness of a website we first need to determine its
similarity to the input triple. This is determined by how many topics belonging
10 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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to the query are contained in a search result retrieved by the web search. We
extended the approach introduced in [14] by querying Wikipedia with the subject
and object label of the triple in question separately to find the topic terms for
the triple. A frequency analysis is applied on all returned documents and all
terms above a certain threshold that are not contained in a self-compiled stop
word list are considered to be topic terms for a triple. Let s and o be the URIs
for the subject and object of the triple in question and t be a potential topic
term extracted from a Wikipedia page. In addition, let X = (s, p, o).We compare
the values of the following two formulas:

p(t|X) =
|topic(t, d(X))|

|d(X)| ,

p(t|intitle(d(X), s ∨ o)) =
|topic(t, intitle(d(X), s) ∪ intitle(d(X), o))|

|intitle(d(X), s) ∪ intitle(d(X), o)| .

where d(X) is the set all web documents retrieved for X (see Section 3.2),
intitle(d(X), x) the set of web documents which have the label of the URI
x in their page title. topic(t, d(X)) is the set of documents which contain t
in the page body. We consider t to be a topic term for the input triple if
p(t|t(d(X), s) ∨ t(d(X), o)) > p(t|X). Let TX = {t1, t2, . . . , tn} be the set of
all topic terms extracted for a input triple. Defacto then calculates the trustwor-
thiness of a webpage as follows:

Topic Majority in the Web represents the number of webpages that have similar
topics to the webpage in question. Let P be the set of topic terms appearing on
the current webpage. The Topic Majority in the Web for a webpage w is then
calculated as:

tmweb(w) =

∣∣∣∣∣
n⋃

i=1

topic(ti, d(X))

∣∣∣∣∣− 1.

where t1 is the most occurring topic term in the webpage w. Note that we
subtract 1 to prevent counting w.

Topic Majority in Search Results calculates the similarity of a given webpage
for all webpages found for a given triple. Let wk be the webpage to be evaluated,
v(wk) be the feature vector of webpage wk where v(wk)i is 1 if ti is a topic
term of webpage wk and 0 otherwise, ‖v‖ be the norm of v and θ a similarity
threshold. We calculate the Topic Majority for the search results as follows:

tmsearch(w) =

∣∣∣∣{wi|wi ∈ d(X),
v(wk)× v(wi)

‖v(wk)‖ ‖v(wi)‖
> θ

}∣∣∣∣ .
Topic Coverage measures the ratio between all topic terms for X and all topic
terms occurring in w:

tc(w) =
|TX ∩ P|
|TX |

.



320 J. Lehmann et al.

Pagerank: The Pagerank11 of a webpage is a measure for the relative impor-
tance of a webpage compared to all others, i.e. higher pageranks means that a
webpage is more popular. There is a positive correlation between popularity of
a webpage and its trustworthiness as those pages are more likely to be reviewed
by more people or may have gone under stricter quality assurance before their
publication.While a high pagerank alone is certainly not a sufficient indicator
for trustworthiness, we use it in combination with the above criteria in DeFacto.

5 Features for Deep Fact Validation

In order to obtain an estimate of the confidence that there is sufficient evidence
to consider the input triple to be true, we decided to train a supervised machine
learning algorithm. Similar to the above presented classifier for fact confirmation,
this classifier also requires computing a set of relevant features for the given task.
In the following, we describe those features and why we selected them.

First, we extend the score of single proofs to a score of web pages as follows:
When interpreting the score of a proof as the probability that a proof actually
confirms the input fact, then we can compute the probability that at least one
of the proofs confirms the fact. This leads to the following stochastic formula12,
which allows us to obtain an overall score for proofs scw on a webpage w:

scw(w) = 1−
∏

pr∈prw(w)

(1− fc(pr)) .

In this formula, fc (fact confirmation) is the classifier trained in Section 3.3,
which takes a proof pr as input and returns a value between 0 and 1. prw is a
function taking a webpage as input and returning all possible proofs contained
in it.

Combination of Trustworthiness and Textual Evidence In general, the trust-
worthiness of a webpage and the textual evidence we find in it, are orthogonal
features. Naturally, webpages with high trustworthiness and a high score for its
proofs should increase our confidence in the input fact. Therefore, it makes sense
to combine trustworthiness and textual evidence as features for the underlying
machine learning algorithm. We do this by multiplying both criteria and then
using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)

(f(w) · scw(w)) Ffmax(t) = max
w∈s(t)

(f(w) · scw(w))

In this formula f can be instantiated by all four trustworthiness measures: topic
majority on the the web (tmweb), topic majority in search results (tmsearch),

11 http://en.wikipedia.org/wiki/Pagerank
12 To be exact, it is the complementary even to the case that none of the proofs do

actually confirm a fact.

http://en.wikipedia.org/wiki/Pagerank


DeFacto - Deep Fact Validation 321

topic coverage (tc) and pagerank (pr). s is a function taking a triple t as argu-
ment, executing the search queries explained in Section 3.2 and returning a set
of webpages. Using the formula, we obtain 8 different features for our classifier,
which combine textual evidence and different trustworthiness measures.

Other Features. In addition to the above described combinations of trustworthi-
ness and fact confirmation, we also defined other features:

1. The total number of proofs found.
2. The total number of proofs found above a relevance threshold of 0.5. In some

cases, a high number of proofs with low scores is generated, so the number
of high scoring proofs may be a relevant feature for learning algorithms.

3. The total evidence score: This is the probability that at least one of the
proofs is correct, which is defined analogously to scw above:

1−
∏

pr∈prt(t)

(1− sc(pr)) .

4. The total evidence score above a relevance threshold of 0.5. This is an adap-
tion of the above formula, which considers only proofs with a confidence
higher than 0.5.

5. Total hit count: Search engines usually estimate the number of search results
for an input query. The total hit count is the sum of the estimated number
of search results for each query send by DeFacto for a given input triple.

6. A domain and range verification: If the subject of the input triple is not
an instance of the domain of the property of the input triple, this violates
the underlying schema, which should result in a lower confidence in the
correctness of the triple. This feature is 0 if both domain and range are
violated, 0.5 if exactly one of them is violated and 1 if there is no domain or
range violation.

6 Evaluation

Our main objective in the evaluation was to find out whether DeFacto can effec-
tively distinguish between true and false input facts. In the following, we describe
how we trained DeFacto using DBpedia, which experiments we used and discuss
the results of our experiments.

6.1 Training DeFacto

As mentioned in Section 3, we focus our experiments on the top 60 most fre-
quently used properties in DBpedia. The system can easily be extended to cover
more properties by extending the training set of BOA to those properties. Note
that DeFacto itself is also not limited to DBpedia, i.e., while all of its compo-
nents are trained on DBpedia, the algorithms can be applied to arbitrary URIs.
A performance evaluation on other knowledge bases is subject to future work,
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but it should be noted that most parts of DeFacto – except the LOD background
feature described in Section 2 and the schema checking feature in Section 5 work
only with the retrieved labels of URIs and, therefore, do not depend on DBpedia.

For training a supervised machine learning approach, positive and negative
examples are required. Those were generated as follows:

Positive Examples: In general, we use facts contained in DBpedia as positive
examples. For each of the properties we consider (see Section 3), we generated
positive examples by randomly selecting triples containing the property. We
collected 600 statements in this manner and verified them by checking manually
whether it was indeed a true fact. It turned out that some of the obtained triples
were modeled incorrectly, e.g. obviously violated domain and range restrictions
or could not be confirmed by an intensive search on the web within ten minutes.
Overall, 473 out of 600 checked triples were facts could be used as positive
examples.

Negative Examples: The generation of negative examples is more involved than
the generation of positive examples. In order to effectively train DeFacto, we
considered it essential that many of the negative examples are similar to true
statements. In particular, most statements should be meaningful triples. For
this reason, we derived the negative examples from positive examples by modi-
fying them while still following domain and range restrictions. Assume the input
triple (s, p, o) in a knowledge base K is given and let dom and ran be functions
returning the domain and range of a property13. We used the following meth-
ods to generate the negative example sets dubbed subject, object, subject-object,
property, random, 20%mix (in that order):

1. A triple (s′, p, o) is generated where s′ is an instance of dom(p), the triple
(s′, p, o) is not contained in K and s′ is randomly selected from all resources
which satisfy the previous requirements.

2. A triple (s, p, o′) is generated analogously by taking ran(p) into account.
3. A triple (s′, p, o′) is generated analogously by taking both dom(p) and ran(p)

into account.
4. A triple (s, p′, o) is generated in which p′ is randomly selected from our

previously defined list of 60 properties and (s, p′, o) is not contained in K.
5. A triple (s′, p′, o′) is generated where s′ and o′ are randomly selected re-

sources, p′ is a randomly selected property from our defined list of 60 prop-
erties and (s′, p′, o′) is not contained in K.

6. 20% of each of the above created negative training sets were randomly se-
lected to create a heterogenous test set.

Note that all parts of the example generation procedure can also take implicit
knowledge into account, e.g., by simply extending our approach to use SPARQL
1.1 entailment14. In case of DBpedia Live we did not use any entailment this for
13 Technically, we used the most specific class, which was explicitly stated to be domain

and range of a property, respectively.
14 http://www.w3.org/TR/sparql11-entailment/

http://www.w3.org/TR/sparql11-entailment/
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performance reasons and because it would not alter the results in that specific
case.

Obviously, it is possible that our procedure for generating negative examples
also generates true statements which just happen not to be contained in DB-
pedia. Similar to the analysis of the positive examples, we checked a sample of
the negative examples on whether they are indeed false statements. This was
the case for all examples in the sample. Overall, we obtained an automatically
created and manually cleaned training set, which we made publicly available15.

6.2 Experimental Setup

In a first step, we computed all feature vectors, described in Section 5 for the
training set. DeFacto relies heavily on web requests, which are not deterministic
(i.e. the same search engine query does not always return the same result). To
achieve deterministic behavior and to increase the performance as well as reduce
load on the servers, all web requests are cached. The DeFacto runtime for an
input triple was on average slightly below 5 seconds per input triple16 when
using caches.

We stored the features in the arff file format and employed the Weka ma-
chine learning toolkit17 for training different classifiers. In particular, we were
interested in classifiers which can handle numeric values and output confidence
values. Naturally, confidence values for facts such as, e.g. 95%, are more useful
for end users than just a binary response on whether DeFacto considers the in-
put triple to be true, since they allow a more fine-grained assessment. Again, we
selected popular machine-learning algorithms satisfying those requirements.

We performed 10-fold cross-validations for our experiments. In each experi-
ment, we used our created positive examples, but varied the negative example
sets described above to see how changes influence the overall behavior of De-
Facto.

Table 2. Classification results for trainings sets subject and object

Subject Object
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.799 0.753 0.743 0.83 0.4151 0.881 0.86 0.859 0.844 0.3454
Naïve Bayes 0.739 0.606 0.542 0.64 0.6255 0.795 0.662 0.619 0.741 0.5815
SVM 0.811 0.788 0.784 0.788 0.4609 0.884 0.867 0.865 0.866 0.3409
J48 0.835 0.827 0.826 0.819 0.3719 0.869 0.862 0.861 0.908 0.3194
RBF Network 0.743 0.631 0.583 0.652 0.469 0.784 0.683 0.652 0.75 0.4421

15 http://aksw.org/projects/DeFacto
16 The performance is roughly equal on server machines and notebooks, since the web

requests dominate.
17 http://www.cs.waikato.ac.nz/ml/weka/

http://aksw.org/projects/DeFacto
http://www.cs.waikato.ac.nz/ml/weka/
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Table 3. Classification results for trainings sets subject-object and property

Subject-Object Property
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.871 0.85 0.848 0.86 0.3495 0.822 0.818 0.818 0.838 0.3792
Naïve Bayes 0.813 0.735 0.717 0.785 0.5151 0.697 0.582 0.511 0.76 0.6431
SVM 0.88 0.863 0.861 0.855 0.3434 0.819 0.816 0.816 0.825 0.3813
J48 0.884 0.871 0.87 0.901 0.3197 0.834 0.832 0.832 0.828 0.3753
RBF Network 0.745 0.687 0.667 0.728 0.4401 0.72 0.697 0.688 0.731 0.4545

Table 4. Classification results for trainings sets random and 20%mix

Random 20% Mix
P R F1 AUC RMSE P R F1 AUC RMSE

Logistic Regression 0.855 0.854 0.854 0.908 0.3417 0.665 0.645 0.634 0.785 0.4516
Naïve Bayes 0.735 0.606 0.544 0.853 0.5565 0.719 0.6 0.538 0.658 0.6267
SVM 0.855 0.854 0.854 0.906 0.3462 0.734 0.729 0.728 0.768 0.4524
J48 0.876 0.876 0.876 0.904 0.3226 0.8 0.79 0.788 0.782 0.405
RBF Network 0.746 0.743 0.742 0.819 0.4156 0.698 0.61 0.561 0.652 0.4788

6.3 Results and Discussion

The results of our experiments are shown in Tables 2-4. Three algorithms – J48,
logistic regression and support vector machines – show promising results. Given
the challenging tasks, F-measures up to 78.8% for the combined negative example
set appear to be very positive indicators that DeFacto can be used to effectively
distinguish between true and false statements, which was our primary evaluation
objective. In general, DeFacto also appears to be stable against the various
negative example sets. In particular, the algorithms with overall positive results
also seem less affected by the different variations. When observing single runs of
DeFacto manually, it turned out that our method of generating positive examples
is particularly challenging for DeFacto: For many of the facts in DBpedia only
few sources exist in the Web. While it is widely acknowledged that the amount
of unstructured textual information in the Web by far surpasses the available
structured data, we found out that a significant amount of statements in DBpedia
is difficult to track back to reliable external sources on the Web even with an
exhaustive manual search. There are many reasons for this, for instance many
facts are particular relevant for a specific country, such as “Person x studied at
University y.”, where x is a son of a local politician and y is a country with
only limited internet access compared to first world countries. For this reason,
BOA patterns could be only be detected directly in 29 of the 527 proofs of
positive examples. This number increased to 195 out of 527 when we employed
the WordNet expansion described in Section 3.3. In general, DeFacto performs
better when the subject and object of the input triple are popular on the web,
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i.e. there are several webpages describing them. In this aspect, we believe our
training set is indeed challenging upon manual observation.

7 Related Work

While we are not aware of existing work in which sources for RDF statements
were detected automatically from the Web, there are three main areas related
to DeFacto research: The representation of provenance information in the Web
of Data as well as work on trustworthiness and relation extraction. The problem
of data provenance is a crucial issue in the Web of Data. While data extracted
by the means of tools such as Hazy18 and KnowItAll19 can be easily mapped
to primary provenance information, most knowledge sources were extracted by
non-textual source and are more difficult to link with provenance information.
In the work described in [9], Olaf Hartig and Jun Zhao developed a framework
for provenance tracking. This framework provides the vocabulary required for
representing and accessing provenance information on the web. It keeps track of
who created a web entity, e.g. a webpage, when it was last modified etc. Recently,
a W3C working group has been formed and released a set of specifications on
sharing and representing provenance information20. Dividino et al. [3] introduced
an approach for managing several provenance dimensions, e.g. source, and times-
tamp. In their approach, they describe an extension to the RDF called RDF+

which can work efficiently with provenance data. They provided a method to ex-
tend SPARQL query processing in a manner such that a specific SPARQL query
can request meta knowledge without modifying the query itself. Theoharis et
al. [18] argued how the implicit provenance data contained in a SPARQL query
results can be used to acquire annotations for several dimensions of data quality.
They detailed the abstract provenance models and how they are used in rela-
tional data, and how they can be used in semantic data as well. Their model
requires the existence of provenance data in the underlying semantic data source.
DeFacto uses the W3C provenance group standard for representing provenance
information. Yet, unlike previous work, it directly tries to find provenance infor-
mation by searching for confirming facts in trustworthy webpages.

The second related research area is trustworthiness. Nakamura et al. [14] devel-
oped an efficient prototype for enhancing the search results provided by a search
engine based on trustworthiness analysis for those results. They conducted a
survey in order to determine the frequency at which the users accesses search
engines and how much they trust the content and ranking of search results. They
defined several criteria for trustworthiness calculation of search results returned
by the search engine, such as topic majority. We adapted their approach for De-
Facto and included it as one of the features for our machine learning techniques.
[16,17] present an approach for computing the trustworthiness of web pages. To
achieve this goal, the authors rely on a model based on hubs and authorities.
18 http://hazy.cs.wisc.edu/hazy/
19 http://www.cs.washington.edu/research/knowitall/
20 http://www.w3.org/2011/prov/wiki/

http://hazy.cs.wisc.edu/hazy/
http://www.cs.washington.edu/research/knowitall/
http://www.w3.org/2011/prov/wiki/
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This model allows to compute the trustworthiness of facts and websites by gen-
erating a k-partite network of pages and facts and propagating trustworthiness
information across it. The approach returns a score for the trustworthiness of
each fact. An older yet similar approach is that presented in [20]. Here, the idea
is to create a 3-partite network of webpages, facts and objects and apply a prop-
agation algorithm to compute weights for facts as well as webpages. The use of
trustworthiness and uncertainty information on RDF data has been the subject
of recent research (see e.g., [7,11]). Our approach differs from these approaches
as it does not aim to evaluate the trustworthiness of facts expressed in natural
language. In addition, it can deal with the broad spectrum of relations found on
the Data Web.

Most tools that address this task rely on pattern-based approaches. Some
early work on pattern extraction relied on supervised machine learning [6]. Our
approach is also related to relation extraction. Yet, such approaches demanded
large amounts of training data, making them difficult to adapt to new relations.
The subsequent generation of approaches to RE aimed at bootstrapping pat-
terns based on a small number of input patterns and instances. For example, [2]
presents the Dual Iterative Pattern Relation Expansion (DIPRE) and applies it
to the detection of relations between authors and titles of books. This approach
relies on a small set of seed patterns to maximize the precision of the patterns for
a given relation while minimizing their error rate of the same patterns. Snow-
ball [1] extends DIPRE by a new approach to the generation of seed tuples.
Newer approaches aim to either collect redundancy information (see e.g., [19])
in an unsupervised manner or to use linguistic analysis [15] to harvest generic
patterns for relations.

8 Conclusion and Future Work

In this paper, we presented DeFacto, an approach for checking the validity of
RDF triples using the Web as corpus. We showed that our approach achieves an
average F1 measure (J48 for all 6 datasets) of 0.843 on DBpedia. Our approach
can be extended in manifold ways. First, BOA is able to detect natural-language
representations of predicates in several languages. Thus, we could have the user
choose the languages he understands and provide facts in several languages,
therewith also increasing the portion of the Web that we search through. Fur-
thermore, we could extend our approach to support data type properties. In
addition to extending our approach by these two means, we will also focus on
searching for negative evidence for facts, therewith allowing users to have an
unbiased view of the data on the Web through DeFacto. On a grander scale, we
aim to provide even lay users of knowledge bases with the means to check the
quality of their data by using natural language input.
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Abstract. Web APIs have gained increasing popularity in recent Web
service technology development owing to its simplicity of technology
stack and the proliferation of mashups. However, efficiently discovering
Web APIs and the relevant documentations on the Web is still a chal-
lenging task even with the best resources available on the Web. In this
paper we cast the problem of detecting the Web API documentations as
a text classification problem of classifying a given Web page as Web API
associated or not. We propose a supervised generative topic model called
feature latent Dirichlet allocation (feaLDA) which offers a generic prob-
abilistic framework for automatic detection of Web APIs. feaLDA not
only captures the correspondence between data and the associated class
labels, but also provides a mechanism for incorporating side information
such as labelled features automatically learned from data that can effec-
tively help improving classification performance. Extensive experiments
on our Web APIs documentation dataset shows that the feaLDA model
outperforms three strong supervised baselines including naive Bayes, sup-
port vector machines, and the maximum entropy model, by over 3% in
classification accuracy. In addition, feaLDA also gives superior perfor-
mance when compared against other existing supervised topic models.

1 Introduction

On the Web, service technologies are currently marked by the proliferation of
Web APIs, also called RESTful services when they conform to REST principles.
Major Web sites such as Facebook, Flickr, Salesforce or Amazon provide access
to their data and functionality through Web APIs. To a large extent this trend
is impelled by the simplicity of the technology stack, compared to WSDL and
SOAP based Web services, as well as by the simplicity with which such APIs
can be offered over preexisting Web site infrastructures [15].

When building a new service-oriented application, a fundamental step is discov-
ering existing services orAPIs.Mainmeans used nowadaysby developers for locat-
ing Web APIs are searching through dedicated registries like ProgrammableWeb1

1 http://www.programmableweb.com/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 328–343, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.programmableweb.com/


feaLDA 329

(a) True API documentation. (b) False API documentation.

Fig. 1. Examples of Web pages documenting and not documenting Web APIs

which are manually populated or to use traditional search engines like Google.
While public API registries provide highly valuable information, there are also
some noticeable issues. First, more often than not, these registries contain out of
date information (e.g. closed APIs are still listed) or even provide incorrect links to
APIs documentation pages (e.g. the home page of the company is given instead).
Indeed, the manual nature of the data acquisition in APIs registries aggravates
these problems as new APIs appear, disappear or change. Automatically detect-
ing the incorrect information will help registry operator better maintain their reg-
istry quality and provide better services to developers. Second, partly due to the
manual submission mechanism, APIs listed in the public registries are still lim-
ited where a large number of valuable third partyWeb APIs may not be included.
In this case, the alternative approach is to resort to Web search engine. However,
general purpose search engines are not optimised for this type of activity and often
mix relevant pages documenting Web APIs with general pages e.g., blogs and ad-
vertisement. Figure 1 shows both a Web pages documenting an API and one that
is not that relevant but would still be presented in the results returned by search
engines.

Motivated by the above observations, in our ongoing work on iServe (a public
platform for service publication and discovery), we are building an automatic
Web APIs search engine for detecting third party Web APIs on the Web scale.
Particularly, we assume that Web pages documenting APIs are good identifiers
for the detection as whenever we use an API the first referring point is likely to be
the related documentation. While identifying WSDL services are relatively easy
by detecting the WSDL documentation which has a standard format, detecting
Web APIs documentation raises more challenges. This is due to the fact that
Web APIs are generally described in plain and unstructured HTML which are
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only readable by human being; and to make it worse, the format of documenting
a Web API is highly heterogeneous, so as its content and level of details [11].
Therefore, a prerequisite to the success of our Web APIs search engine is to
construct a classifier which can offer high performance in identifying Web pages
documenting Web APIs.

In this paper, we propose a novel supervised topic model called feature latent
Dirichlet allocation (feaLDA) for text classification by formulating the generative
process that topics are draw dependent on document class labels and words
are draw conditioned on the document label-topic pairs. Particularly, feaLDA
is distinguished from other related supervised topic models in its capability of
accommodating different types of supervision. In particular, while supervised
topic models such as labeled LDA and partial labeled LDA (pLDA) [19,20] can
only model the correspondence between class labels and documents, feaLDA is
able to incorporate supervision from both document labels and labelled features
for effectively improving classification performance, where the labelled features
can be learned automatically from training data.

We tested feaLDA on a Web APIs dataset consisting of 622 Web pages docu-
menting Web APIs and 925 normal Web pages crawled from ProgrammingWeb.
Results from extensive experiments show that the proposed feaLDA model can
achieve a very high precision of 85.2%, and it significantly outperforms three
strong supervised baselines (i.e. naive Bayes, maximum entropy and SVM) as
well as two closed related supervised topic models (i.e. labeled LDA and pLDA)
by over 3% in accuracy. Aside from text classification, feaLDA can also extract
meaningful topics with clear class label associations as illustrated by some topic
examples extracted from the Web APIs dataset.

The rest of the paper is organised as follows. Section 2 reviews the previous
work on Web APIs detection and the supervised topic models that are closely
related to feaLDA. Section 3 presents the feaLDA model and the model infer-
ence procedure. Experimental setup and results on the Web APIs dataset are
discussed in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper
and outlines the future work.

2 Related Work

Web Service Discovery. Service discovery has been the subject of much re-
search and development. The most renown work is perhaps Universal Description
Discovery and Integration (UDDI) [3], while nowadays Seekda2 provides the
largest public index with about 29,000 WSDL Web services. The adoption of
these registries has, however, been limited [3,18]. Centred around WSDL, UDDI
and related service technologies, research on semantic Web services has gener-
ated a number of ontologies, semantic discovery engines, and further supporting
infrastructure aiming at improving the level of automation and accuracy that
can be obtained throughout the life-cycle of service-oriented application, see [17]
for an extensive survey. Despite these advances, the majority of these initiatives

2 http://webservices.seekda.com/

 http://webservices.seekda.com/
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are predicated upon the use of WSDL Web services, which have turned out not
to be prevalent on the Web where Web APIs are increasingly favoured [15].

A fundamental characteristic of Web APIs is the fact that, despite a number
of proposals [6, 7], there is no widely adopted means for publishing these ser-
vices nor for describing their functionality in a way such that machines could
automatically locate these APIs and understand the functionality and data they
offer. Instead, Web APIs are solely accompanied by highly heterogeneous HTML
pages providing documentation for developers. As a consequence, there has not
been much progress on supporting the automated discovery of Web APIs. Per-
haps the most popular directory of Web APIs is ProgrammableWeb which, as of
June 2012, lists about 6,200 APIs and provides rather simple search mechanisms
based on keywords, tags, or a simple prefixed categorisation. Based on the data
provided by ProgrammableWeb, APIHut [5] increases the accuracy of keyword-
based search of APIs compared to ProgrammableWeb or plain Google search.
A fundamental drawback of ProgrammableWeb and by extension of APIHut is
that they rely on the manual registration of APIs by users. This data tends to be
out of date (e.g., discontinued APIs are still listed) and often provide pointers
to generic Web pages (e.g., the home page of the company offering the API)
which are not particularly useful for supporting the discovery and use of the
related APIs. Finally, iServe [15] enables the application of advanced (semantic)
discovery algorithms for Web API discovery but, thus far, it is limited by the
fact that it relies on the presence of hRESTS annotations in Web pages which
are still seldom available.

Therefore, despite the increasing relevance of Web APIs, there is hardly any
system available nowadays that is able to adequately support their discovery.
The first and main obstacle in this regard concerns the automated location of
Web APIs, which is the main focus of this paper. In this regard, to the best of our
knowledge, we are only aware of two previous initiatives. One was carried out by
Steinmetz et al. [22], whose initial experiments are, according to the authors, not
sufficiently performant and require further refinement. The second approach [16]
is our initial work in this area which we herein expand and enhance.

Topic Models. As shown in previous work [4, 12, 21, 25], topic models con-
structed for purpose-specific applications often involve incorporating side infor-
mation or supervised information as prior knowledge for model learning, which
in general can be categorised into two types depending on how the side informa-
tion are incorporated [13]. One type is the so called downstream topic models,
where both words and document metadata such as author, publication date,
publication venue, etc. are generated simultaneously conditioned on the topic
assignment of the document. Examples of this type include the mixed member-
ship model [4] and the Group Topic (GT) model [25]. The upstream topic mod-
els, by contrast, start the generative process with the observed side information,
and represent the topic distributions as a mixture of distributions conditioned
on the side information elements. Examples of this type are the Author-Topic
(AT) model [21] and the joint sentiment-topic (JST) model [9, 10]. Although
JST can detect sentiment and topic simultaneously from text by incorporating
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prior information to modify the Dirichlet priors of the topic-word distribution,
it is still a weakly-supervised model as no mechanism is provided to incorporate
document class label for model inference.

For both downstream and upstream models, most of the models are cus-
tomised for a special type of side information, lacking the capability to ac-
commodate data type beyond their original intention. This limitation has thus
motivated work on developing a generalised framework for incorporating side
information into topic models [2, 13]. The supervised latent Dirichlet alloca-
tion (sLDA) model [2] addresses the prediction problem of review ratings by
inferring the most predictive latent topics of document labels. Mimno and Mc-
Callum [13] proposed the Dirichlet-multinomial regression (DMR) topic model
which includes a log-linear prior on the document-topic distributions, where the
prior is a function of the observed document features. The intrinsic difference
between DMR and its complement model sLDA lies in that, while sLDA treats
observed features as generated variables, DMR considers the observed features
as a set of conditioned variables. Therefore, while incorporating complex features
may result in increasingly intractable inference in sLDA, the inference in DMR
can remain relatively simple by accounting for all the observed side information
in the document-specific Dirichlet parameters.

Closely related to our work are the supervised topic models incorporating
document class labels. DiscLDA [8] and labeled LDA [19] apply a transforma-
tion matrix on document class labels to modify Dirichlet priors of the LDA-like
models. While labeled LDA simply defines a one-to-one correspondence between
LDA’s latent topics and observed document labels and hence does not support
latent topics within a give document label, Partially Labeled LDA (pLDA) ex-
tends labeled LDA to incorporate per-label latent topics [20]. Different from the
previous work where only document labels are incorporated as prior knowledge
into model learning, we propose a novel feature LDA (feaLDA) model which
is capable of incorporating supervised information derive from both the docu-
ment labels and the labelled features learned from data to constrain the model
learning process.

3 The Feature LDA (feaLDA) Model

The feaLDA model is a supervised generative topic model for text classifica-
tion by extending latent Dirichlet allocation (LDA) [1] as shown in Figure 2a.
feaLDA accounts for document labels during the generative process, where each
document can associate with a single class label or multiple class labels. In con-
trast to most of the existing supervised topic models [8,19,20], feaLDA not only
accounts for the correspondence between class labels and data, but can also in-
corporate side information from labelled features to constrain the Dirichlet prior
of topic-word distributions for effectively improving classification performance.
Here the labelled features can be learned automatically from training data using
any feature selection method such as information gain.

The graphical model of feaLDA is shown in Figure 2b. Assume that we have
a corpus with a document collection D = {d1, d2, ..., dD}; each document in the
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Fig. 2. (a) LDA model; (b) feaLDA model.

corpus is a sequence of Nd words denoted by d = (w1, w2, ..., wNd
), and each

word in the document is an item from a vocabulary index with V distinct terms.
Also, letting K be the number of class labels, and T be the total number of
topics, the complete procedure for generating a word wi in feaLDA is as follows:

– For each class label k ∈ {1, ...,K}
• For each topic j ∈ {1, ..., T }, draw ϕkj ∼ Dir(βkj)

– For each document d ∈ {1, ..., D},
• draw πd ∼ Dir(γ × εd)
• For each class label k, draw θd,k ∼ Dir(αk)

– For each word wi in document d
• Draw a class label ci ∼ Mult(πd)
• Draw a topic zi ∼ Mult(θd,ci)
• Draw a word wi ∼Mult(ϕci,zi)

First, one draws a class label c from the per-document class label proportion
πd. Following that, one draws a topic z from the per-document topic proportion
θd,c conditioned on the sampled class label c. Finally, one draws a word from the
per-corpus word distribution ϕz,c conditioned on both topic z and class label c.

It is worth noting that if we assume that the class distribution π of the train-
ing data is observed and the number of topics is set to 1, then our feaLDA model
is reduced to labeled LDA [19] where during training, words can only be assigned
to the observed class labels in the document. If we allow multiple topics to be
modelled under each class label, but don’t incorporate the labelled feature con-
straints, then our feaLDA model is reduced to pLDA [20]. Both labelled LDA
and pLDA actually imply a different generative process where class distribution
for each document is observed, whereas our feaLDA model incorporates super-
vised information in a more principled way by introducing the transformation
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matrices λ and ε for encoding the prior knowledge derived from both document
labels and labelled features to modify the Dirichlet priors of document specific
class distributions and topic-word distributions. A detailed discussion on how
this can be done is presented subsequently.

3.1 Incorporating Supervised Information

Incorporating Document Class Labels: feaLDA incorporates the supervised
information from document class labels by constraining that a training document
can only be generated from the topic set with class labels correspond to the
document’s observed label set. This is achieved by introducing a dependency
link from the document label matrix ε to the Dirichlet prior γ. Suppose a corpus
has 2 unique labels denoted by C = {c1, c2} and for each label ck there are
5 topics denoted by θck = {z1,ck , ...z5,ck}. Given document d’s observed label
vector εd = {1, 0} which indicates that d is associated with class label c1, we
can encode the label information into feaLDA as

γd = εTd × γ. (1)

where γ = {γ1, γ2} is the Dirichlet prior for the per-document class proportion
πd and γd = {γ1, 0} is the modified Dirichlet prior for document d after encoding
the class label information. This ensures that d can only be generated from topics
associated with class label c1 restricted by γ1.

Incorporating Labelled Features: The second type of supervision that
feaLDA accommodates is the labelled features automatically learned from the
training data. This is motivated by the observation that LDA and existing su-
pervised topic models usually set the Dirichlet prior of topic word distribution
β to a symmetric value, which assumes each term in the corpus vocabulary is
equally important before having observed any actual data. However, from a clas-
sification point of view, this is clearly not the case. For instance, words such as
“endpoint”, “delete” and “post” are more likely to appear in Web API docu-
mentations, whereas words like “money”, “shop” and “chart” are more related
to a document describing shopping. Hence, some words are more important to
discriminate one class from the others. Therefore, we hypothesise that the word-
class association probabilities or labelled features could be incorporated into
model learning and potentially improve the model classification performance.

We encode the labelled features into feaLDA by adding an additional depen-
dency link of ϕ (i.e., the topic-word distribution) on the word-class association
probability matrix λ with dimension C ×V ′, where V ′ denotes the labelled fea-
ture size and V ′ <= V . For word wi, its class association probability vector
is λwi = (λc1,wi , ..., λcK ,wi), where

∑K
ck=1 λck,wi = 1. For example, the word

“delete” in the API dataset with index wt in the vocabulary has a correspond-
ing class association probability vector λwt = (0.3, 0.7), indicating that “delete”
has a probability of 0.3 associating with the non-API class and a probability
of 0.7 with the API class. For each w ∈ V , if w ∈ V ′, we can then incorporate
labelled features into feaLDA by setting βcw = λcw, otherwise the corresponding
component of β is kept unchanged. In this way, feaLDA can ensure that labelled
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features such as “delete” have higher probability of being drawn from topics
associated with the API class.

3.2 Model Inference

From the feaLDA graphical model depicted in Figure 2b, we can write the joint
distribution of all observed and hidden variables which can be factored into three
terms:

P (w,z, c) = P (w|z, c)P (z, c) = P (w|z, c)P (z|c)P (c) (2)

=

∫
P (w|z, c,Φ)P (Φ|β) dΦ ·

∫
P (z|c,Θ)P (Θ|α) dΘ ·

∫
P (c|Π)P (Π|γ) dΠ. (3)

By integrating outΦ, θ andΠ in the first, second and third term of Equation 3
respectively, we can obtain

P (w|z, c) =
(
Γ (

∑V
i=1 βk,j,i)∏V

i=1 Γ (βk,j,i)

)C×T ∏
k

∏
j

∏
i Γ (Nk,j,i + βk,j,i)

Γ (Nk,j +
∑

i βk,j,i)
(4)

P (z|c) =
(
Γ (

∑T
j=1 αk,j)∏T

j=1 Γ (αk,j)

)D×C ∏
d

∏
k

∏
j Γ (Nd,k,j + αk,j)

Γ (Nd,k +
∑

j αk,j)
(5)

P (c) =

(
Γ (

∑C
k=1 γk)∏C

k=1 Γ (γk)

)D ∏
d

∏
k Γ (Nd,k + γk)

Γ (Nd +
∑

k γk)
, (6)

where Nk,j,i is the number of times word i appeared in topic j with class label
k, Nk,j is the number of times words are assigned to topic j and class label k,
Nd,k,j is the number of times a word from document d is associated with topic
j and class label k, Nd,k is the number of times class label k is assigned to some
word tokens in document d, Nd is the total number of words in document d and
Γ is the gamma function.

The main objective of inference in feaLDA is then to find a set of model
parameters that can best explain the observed data, namely, the per-document
class proportion π, the per-document class label specific topic proportion θ,
and the per-corpus word distribution ϕ. To compute these target distributions,
we need to know the posterior distribution P (z, c|w), i.e., the assignments of
topic and class labels to the word tokens. However, exact inference in feaLDA is
intractable, so we appeal to Gibbs sampler to approximate the posterior based
on the full conditional distribution for a word token.

For a word token at position t, its full conditional distribution can be written
as P (zt = j, ct = k|w, z−t, c−t,α,β,γ), where z−t and c−t are vectors of assign-
ments of topics and class labels for all the words in the collection except for the
word at position t in document d. By evaluating the model joint distribution in
Equation 3, we can yield the full conditional distribution as follows

P (zt=j, ct=k|w, z−t, c−t,α,β, γ) ∝
N−t

k,j,wt
+ βk,j,t

N−t
k,j +

∑
i βk,j,i

·
N−t

d,k,j + αk,j

N−t
d,k +

∑
j αk,j

·
N−t

d,k + γk

N−t
d +

∑
k γk

.

(7)
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Table 1. Web APIs dataset statistics

Num. of Documents Corpus size Vocab. size Avg. doc. length

1,547 1,096,245 35,427 708

Using Equation 7, the Gibbs sampling procedure can be run until a stationary
state of the Markov chain has been reached. Samples obtained from the Markov
chain are then used to estimate the model parameters according to the expecta-
tion of Dirichlet distribution, yielding the approximated per-corpus topic word
distribution ϕk,j,i =

Nk,j,i+βk,j,i

Nk,j+
∑

i βk,j,i
, the approximated per-document class label

specific topic proportion θd,k,j =
Nd,k,j+αk,j

Nd,k+
∑

j αk,j
, and finally the approximated

per-document class label distribution πd,k =
Nd,k+γk

Nd+
∑

k γk
.

3.3 Hyperparameter Settings

For the feaLDA model hyperparameters, we estimate α from data using
maximum-likelihood estimation and fix the values of β and γ.

Setting. α A common practice for topic model implementation is to use symmet-
ric Dirichlet hyperparameters. However, it was reported that using an asymmetric
Dirichlet prior over the per-document topic proportions has substantial advantages
over a symmetric prior [24]. We initialise the asymmetricα = (0.1×L)/(K × T ),
where L is the average document length and the value of 0.1 on average allocates
10% of probability mass for mixing. Afterwards for every 25 Gibbs sampling itera-
tions,α is learned directly from data usingmaximum-likelihood estimation [14,24]

Ψ(αc,z) = Ψ(

T∑
z=1

αold
c,z ) + log θ̄c,z, (8)

where log θ̄c,z = 1
D

∑D
d=1 log θd,c,z and Ψ is the digamma function.

Setting. β The Dirichlet prior β is first initialised with a symmetric value of
0.01 [23], and then modified by a transformation matrix λ which encodes the
supervised information from the labelled feature learned from the training data.

Setting. γ We initialise the Dirichlet prior γ = (0.1×L)/K, and then modify
it by the document label matrix ε.

4 Experimental Setup

The Web APIs Dataset. We evaluate the feaLDA model on the Web APIs
dataset by crawling the Web pages from the API Home URLs of 1,553 Web
APIs registered in ProgrammableWeb. After discarding the URLs which are out
of date, we end up with 1,547 Web pages, out of which 622 Web pages are
Web API documentations and the remaining 925 Web pages are not Web API
documentations.



feaLDA 337

Preprocessing. The original dataset is in the HTML format. In the prepro-
cessing, we first clean up the HTML pages using the HTML Tidy Library3 to
fix any mistakes in the Web page source. An HTML parser is subsequently used
to extract contents from the HTML pages by discarding tags and the contents
associating with the <\script> tag as these scripts are not relevant to clas-
sification. In the second step, we further remove wildcards, word tokens with
non-alphanumeric characters and lower-case all word tokens in the dataset, fol-
lowed by stop word removal and Porter stemming. The dataset statistics are
summarised in Table 1.

Classifying a Document. In the feaLDA model, the class label of a test doc-
ument is determined based on P (c|d), i.e., the probability of a class label given
a document as specified in the per-document class label proportion πd. So given
a learned model, we classify a document d by ĉk = argmaxckP (ck|d).

5 Experimental Results

In this section, we present the classification results of feaLDA on classifying
a Web page as positive class (API documentation) or negative class (not API
documentation) and compare against three supervised baselines, naive Bayes
(NB), maximum entropy (MaxEnt), and Support Vector Machines (SVMs). We
also evaluate the impact of incorporating labelled features on the classification
performance by varying the proportion of labelled features used. Finally we
compare feaLDA with some of the existing supervised topic models. All the
results reported here are averaged over 5 trials where for each trial the dataset
was randomly split into 80-20 for training and testing. We train feaLDA with a
total number of 1000 Gibbs sampling iterations.

5.1 feaLDA Classification Results without Labelled Features

As the Web APIs dataset only contains two classes, positive or negative, we set
the class number K = 2 in feaLDA. In this section, we only incorporate super-
vised information from the document class labels of the training set. In order
to explore how feaLDA behaves with different topic settings, we experimented
with topic number T ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20}. It is worth noting that
in feaLDA there are T topics associated with each class label. So for a setting
of 2 class labels and 5 topics, feaLDA essentially models a total number of 10
topic mixtures.

Figure 3 shows the classification accuracy of feaLDA and three supervised
baselines, namely, NB, MaxEnt and SVM. As can be seen from the figure, all
the three supervised baselines achieve around 79% accuracy, with maxEnt giv-
ing a slightly higher accuracy of 79.3%. By incorporating the same supervision
from document class labels, feaLDA outperforms all the three strong supervised
baselines, giving the best accuracy of 80.5% at T = 2.

3 http://tidy.sourceforge.net/

<\ script>
http://tidy.sourceforge.net/
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Fig. 3. feaLDA classification accuracy vs. different number of topics by incorporating
supervision from class labels only

In terms of the impact of topic number on the model performance, it is ob-
served that feaLDA performed the best around the topic setting T = {2, 3}.
The classification accuracy drops and slightly fluctuates as the topic number
increases. When the topic number is set to 1, feaLDA essentially becomes the la-
belled LDA model with two labelled topics being modelled corresponding to the
two class labels. We see that the single topic setting actually yields worse result
(i.e., 79.6% accuracy) than multiple topic settings, which shows the effectiveness
of feaLDA over labelled LDA.

5.2 feaLDA Classification Results Incorporating Labelled Features

While feaLDA can achieve competitive performance by incorporating super-
vision from document labels alone, we additionally incorporated supervision
from labelled features to evaluate whether a further gain in performance can
be achieved. We extracted labelled features from the training data using infor-
mation gain and discarded the features which have equal probability of both
classes, resulting in a total of 29,000 features. In this experiment, we ran the
feaLDA model with T ∈ {1, 2, 3, 4, 5} as previous results show that large topic
numbers do not yield good performance.

As observed in Figure 4, after incorporating both the document labels and la-
belled features, feaDLA has an substantial improvement over the model incorpo-
rating document labels only, regardless of the topic number setting. Particularly,
feaLDA gives the best accuracy of 81.8% at T = 3, a clear 2.5% improvement
over the best supervised baseline. It is also noted that when topic number is
relatively large (i.e. T = {4, 5}), a significant performance drop is observed for
feaLDA which only incorporates document labels; whereas feaLDA is less sensi-
tive to topic number setting and can give fairly stable performance.
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Fig. 4. feaLDA classification accuracy vs. different number of topics by incorporating
supervision from both document class labels and labelled features.

5.3 feaLDA Performance vs. Different Feature Selection Strategies

In the previous section, we directly incorporated all the labelled features into the
feaLDA model. We hypothesise that using appropriate feature selection strate-
gies to incorporate the most informative feature subset may further boost the
model performance. In this section, we explore two feature selection strategies:
(1) incorporate the top M features based on their information gain values; and
(2) incorporate feature f if its highest class association probability is greater
than a predefined threshold τ , i.e, argmaxckP (ck|f) > τ .

Figure 5a shows the classification accuracy of feaLDA by incorporating dif-
ferent number of most informative labelled features ranked by the information
gain values. With topic setting T = {1, 2}, classification accuracy is fairly stable
regardless of the number of features selected. However, with larger number of
topics, incorporating more labelled features generally yields better classification
accuracy. feaLDA with 3 topics achieves the best accuracy of 82.3% by incorpo-
rating the top 25,000 features, slightly outperforming the model with all features
incorporated by 0.5%.

On the other hand, incorporating labelled features filtered by some predefined
threshold could also result in the improvement of classification performance. As
can be seen from Figure 5b, similar accuracy curves are observed for feaLDA
with topic setting T = {1, 2, 3}, where they all achieved the best performance
when τ = 0.85. Setting higher threshold value, i.e. beyond 0.85, results in per-
formance drop for most of the models as the number of filtered features becomes
relatively small. In consistent with the previous results, feaLDA with 3 topics
still outperforms the other topic settings giving the best accuracy of 82.7%,
about 1% higher than the result incorporating all the features and 3.4% higher
than the best supervised baseline model MaxEnt. From the above observations,
we conclude that 3 topics and a feature-class association threshold τ = 0.85 are
the optimal model settings for feaLDA in our experiments.



340 C. Lin et al.

0.82

0.83

Topic1 Topic2 Topic3 Topic4 Topic5

0.78

0.79

0.8

0.81

0.82

0.83

Ac
cu

ra
cy

0.75

0.76

0.77

0.78

0.79

2500 7500 10000 12500 15000 17500 20000 22500 25000 27500 29000

Ac
cu

Number of labelled features

2500 7500 10000 12500 15000 17500 20000 22500 25000 27500 29000

Number of labelled features

(a) feaLDA classification accuracy vs. different number of features.

0 82

0.825

0.83

Topic1 Topic2 Topic3 Topic4 Topic5

0.8

0.805

0.81

0.815

0.82

0.825

Ac
cu

ra
cy

0.79

0.795

0.8

0.805

0.51 0.52 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

A

 value

0.51 0.52 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

 value

(b) feaLDA classification accuracy vs. different feature class probabil-
ity threshold τ .

Fig. 5. feaLDA performance vs. different feature selection strategies

5.4 Comparing feaLDA with Existing Supervised Topic Models

In this section, we compare the overall performance of feaLDA with two super-
vised topic models (i.e. labelled LDA and pLDA) as well as three supervised
baseline models on the APIs dataset. Apart from classification accuracy, we also
report the recall, precision and F1 score for the positive class (true API label),
which are summarised in Table 2.

It can be seen from Table 2 that although both feaLDA and labeled LDA
give similar precision values, feaLDA outperforms labeled LDA in recall by al-
most 10%. Overall, feaLDA significantly outperforms labeled LDA by 6% in F1
score and 3% in accuracy. While labeled LDA simply defines a one-to-one cor-
respondence between LDA’s latent topics and document labels, pLDA extended
labelled LDA by allowing multiple topics being modelled under each class label.
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Table 2. Comparing feaLDA with existing supervised approaches. (Unit in %, numbers
in bold face denote the best result in their respective row.)

Naive Bayes SVM maxEnt
labeled

pLDA feaLDA
LDA

Recall 79.2 70.8 69.3 59.8 65.9 68.8
Precision 71.0 75.4 77.4 85.1 82.1 85.2
F1 74.8 73.1 73 70.2 73.1 76
Accuracy 78.6 79 79.3 79.8 80.5 82.7

Table 3. Topics extracted by feaLDA with K = 2, T = 3

P
o
si
ti
v
e T1: nbsp quot gt lt http api amp type code format valu json statu paramet element

T2: lt gt id type http px com true url xml integ string fond color titl date
T3: api http user get request url return string id data servic kei list page paramet

N
eg
a
ti
v
e T1: px color font background pad margin left imag size border width height text div thread

T2: servic api site develop data web user applic http get amp email contact support custom
T3: obj park flight min type citi air fizbber airlin stream school die content airport garag

Although pLDA (with the optimal topic setting T = 2) improves upon labeled
LDA, it is still worse than feaLDA with its F-measure nearly 3% lower and ac-
curacy over 2% lower compared to feaLDA. This demonstrates the effectiveness
of feaLDA in incorporating labelled features learned from the training data into
model learning.

When compared to the supervised baseline models, feaLDA outperforms the
supervised baselines in all types of performance measure except recall. Here we
would like to emphasise that one of our goals is to develop a Web APIs discovery
engine on the Web scale. So considering the fact that the majority of the Web
pages are not related to Web API documentation, applying a classifier such
as feaLDA that can offer high precision while maintaining reasonable recall is
crucial to our application.

5.5 Topic Extraction

Finally, we show some topic examples extracted by feaLDA with 2 class label
and 3 topics. As listed in Table 3, the 3 topics in the top half of the table were
generated from the positive API class and the remaining topics were generated
from the negative class, with each topic represented by the top 15 topic words.

By inspecting the topics extracted by feaLDA, it is revealed that, most of the
words appear in the topics with true API label (positive class) are fairly technical
such as json, statu, paramet, element, valu, request and string, etc. In contrast,
topics under the negative class contain many words that are not likely to appear
in an API documentation, such as contact, support, custom, flight, school, etc.
This illustrates the effectiveness of feaLDA in extracting class-associated topics
from text, which can potentially be used for Web service annotation in the future
extension of our search engine.
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6 Conclusions

In this paper, we presented a supervised topic model called feature LDA (feaLDA)
which offers a generic framework for text classification. While most of the super-
vised topic models [2, 19, 20] can only encode supervision from document labels
for model learning, feaLDA is capable to incorporate two different types of super-
vision from both document label and labelled features for effectively improving
classification performance. Specifically, the labelled features can be learned auto-
matically from training data and are used to constrain the asymmetric Dirichlet
prior of topic distributions. Results from extensive experiments show that, the
proposed feaLDA model significantly outperforms three strong supervised base-
lines (i.e. NB, SVM and MaxEnt) as well as two closely related supervised topic
models (i.e. labeled LDA and pLDA) for more than 3% in accuracy. More impor-
tantly, feaLDA offers very high precision performance (more than 85%), which
is crucial to our Web APIs search engine to maintain a low false positive rate as
majority pages on the Web are not related to APIs documentation.

In the future, we plan to develop a self-training framework where unseen
data labelled with high confidence by feaLDA are added to the training pool for
iteratively retraining the feaLDA model with potentially further performance
improvement. Another direction we would like to pursue is to extend feaLDA for
multiple class classification and evaluate it on datasets from different domains.

Acknowledgements. This work was partly funded by the EU project VPH-
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Abstract. Top-k queries, i.e. queries returning the top k results ordered
by a user-defined scoring function, are an important category of queries.
Order is an important property of data that can be exploited to speed up
query processing. State-of-the-art SPARQL engines underuse order, and
top-k queries are mostly managed with amaterialize-then-sort processing
scheme that computes all the matching solutions (e.g. thousands) even if
only a limited number k (e.g. ten) are requested. The SPARQL-RANK
algebra is an extended SPARQL algebra that treats order as a first class
citizen, enabling efficient split-and-interleave processing schemes that can
be adopted to improve the performance of top-k SPARQL queries. In this
paper we propose an incremental execution model for SPARQL-RANK
queries, we compare the performance of alternative physical operators,
and we propose a rank-aware join algorithm optimized for native RDF
stores. Experiments conducted with an open source implementation of a
SPARQL-RANK query engine based on ARQ show that the evaluation
of top-k queries can be sped up by orders of magnitude.

1 Introduction

As the adoption of SPARQL as a query language for Web data increases, practi-
tioners are showing a growing interest in top-k queries [5,6], i.e. queries returning
the top k results ordered by a specified scoring function. Simple top-k queries
can be expressed in SPARQL 1.0 by including the ORDER BY and LIMIT
clauses, which impose an order on the result set and limit the number of results.
SPARQL 1.1 additionally enables the specification of complex scoring functions
through the use of projection expressions that can define a variable to be used
in the ORDER BY clause. Listing 1.1 provides an example SPARQL 1.1 top-k
query that will be used as a running example.

1 SELECT ?product ?offer (g1(?avgRat1) + g2(?avgRat2) + g3(?price1) AS ?score)
2 WHERE { ?product hasAvgRating1 ?avgRat1 .
3 ?product hasAvgRating2 ?avgRat2 .
4 ?product hasName ?name .
5 ?product hasOffers ?offer .
6 ?offer hasPrice ?price1 }
7 ORDER BY DESC(?score) LIMIT 10

Listing 1.1. A top-k SPARQL query that retrieves the best ten offers of products
ordered by a function of user ratings and offer price; gi are normalization functions
and the bold letters represent the abbreviations used in the following examples

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 344–360, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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In most of the algebraic representation of SPARQL, the algebraic operators
that evaluate the ORDER BY and LIMIT clauses are result modifiers, i.e. oper-
ators that alter the sequence of solution mappings after the full evaluation of the
graph pattern in the WHERE clause. For instance, the query in Listing 1.1 is ex-
ecuted according to the plan in Fig. 1.a: solutions matching the WHERE clause
are drawn from the storage until the whole result set is materialized; then, the
project expression ?score is evaluated by the EXTEND operator on each solution
and used to order the result set; finally the top 10 results are returned.

This materialize-then-sort scheme can hinder the performance of SPARQL
top-k queries, as a SPARQL engine might process thousands of matching so-
lutions, compute the score for each of them and order the result set, even if
only a limited number (e.g. ten) were requested. Moreover, the ranking crite-
ria can be expensive to compute and, therefore, should be evaluated only when
needed and on the minimum possible number of mappings. It has been shown
[9] that query plans where the scoring function is evaluated in an incremental,
non-blocking manner, access a lower number of mappings, thus yielding better
performance. SPARQL-RANK [1] is a rank-aware algebra for SPARQL that has
been designed to address such a need, as it enables the definition of query plans
as shown in Fig. 1.b, where the evaluation of the scoring function is split and
delegated to rank-aware operators (the ranking operator ρ and the rank-join � )
that are interleaved with other operators and incrementally order the mappings
extracted from the data store.

?pr, ?of, ?score

[0,10]SLICE

?pr hasA1 ?a1. 
?pr hasA2 ?a2 . 
?pr hasN ?n . 
?pr hasO ?of .
?of hasP ?p1.

[?score]
ORDER

[?score =g1(?a1)+g2(?a2)+g3(?p1)]
EXTEND

(a)

?pr = ?pr

?pr, ?of, ?score

[0,10]SLICE
Join

g3(?p1) g1(?a1)

?pr hasO ?of .
?of hasP ?p1 . ?pr hasA1 ?a1 . 

?pr = ?pr
RankJoin

?pr = ?pr

?pr hasN ?n .

RankJoin

g2(?a2)

?pr hasA2 ?a2 . 

(b)

Fig. 1. The (a) standard and (b) SPARQL-RANK algebraic query plan for the top-k
SPARQL query in Listing 1.1

Contribution. In this paper, we propose an incremental execution model for
top-k queries based on the SPARQL-RANK algebra. We show how existing work
on rank-aware physical operators can be adapted to enable the incremental exe-
cution of top-k SPARQL queries over RDF data stores. The focus of our work is
on top-k SPARQL query evaluation at the query engine level, thus abstracting
from the underlying data storage layer. Nonetheless, we show how the availabil-
ity of dedicated storage data structures for sorted (retrieving mappings sorted
by their score) or random access (retrieving mappings matching a join attribute
value) can speed-up the execution of top-k queries. While random access is avail-
able in both in RDBMS and native RDF storage systems (although with better
performance in the latter), sorted access is typically unavailable in RDF stores.
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However, we show how the presence of sorted access can boost the performance
of top-k SPARQL queries, and we elaborate on strategies to obtain it. Based on
the results of a comparative analysis of state-of-the-art physical operators, we
propose a rank-aware join algorithm (namely RSEQ) optimized for native RDF
stores. We also describe our implementation experience based on ARQ 2.8.91

(namely ARQ-RANK). We provide experimental evidence that the incremental
execution model described in the paper speeds up the execution of top-k queries
in ARQ-RANK by orders of magnitude w.r.t. the original ARQ implementation.

Organization of the Paper. In Section 2, we discuss the related work. Sec-
tion 3 reviews the SPARQL-RANK algebra proposed in [1]. Section 4 introduces
a set of incremental rank-aware physical operators, proposes a rank-join algo-
rithm optimized for native RDF stores, discusses sorted access in RDF stores,
and presents three rank-aware optimization techniques. Section 5 focuses on the
evaluation based on an extended version of BSBM [3] and reports on the exper-
iments with ARQ-RANK. Section 6 presents conclusions and future work.

2 Related Work

SPARQL query optimization is a consolidated field of research. Existing ap-
proaches focus on algebraic [11,13] or selectivity-based optimizations [14]. De-
spite an increasing need from practitioners [5,6], few works address top-k query
optimization in SPARQL. In state-of-the-art query engines, a basic top-k op-
timization was introduced in ARQ 2.8.9 [5], but the ORDER BY and LIMIT
clauses are still evaluated after the completion of the other operations and on
the complete set of solutions. OWLIM and Virtuoso2 have some basic ranking
features that precompute the rank of most popular nodes in the RDF graph
based on the graph link density. These ranks are used to order query results by
popularity, not based on a user-specified scoring function. Moreover, the query
execution is not incremental, even if Virtuoso uses an anytime algorithm.

Our work builds on the results of several well-established techniques for the
efficient evaluation of top-k queries in relational databases such as [9,7,8,18,15]
where efficient rank-aware operators are investigated, and [4] where a rank-aware
relational algebra and the RankSQL DBMS are described. In particular, we con-
sidered the algorithms described in [7,8], while building on the discussions about
data access types described in [15]. The application of such results to SPARQL
is not straightforward, as SPARQL and relational algebra have equivalent ex-
pressive power, while just a subset of relational optimizations can be ported to
SPARQL [13]. Moreover, relational rank-aware operators require dedicated data
structures for sorted access, while they often do not assume to have data struc-
tures for random access. In contrast, sorted access is usually not available in
native triplestores (as it is rare to have application-specific indexes), while ran-
dom access is common, as required for the efficient evaluation of schema-free data

1 Among many alternatives, we chose Jena ARQ, because of its neat design and the
fact that it recently tackled the problem of top-k optimization [5].

2 OWLIM: http://bit.ly/N9ZRG3Virtuoso:http://bit.ly/SfRWKm

http://bit.ly/N9ZRG3 Virtuoso: http://bit.ly/SfRWKm
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such as RDF. In a previous work [1], we presented the SPARQL-RANK algebra,
and applied it to the execution of top-k SPARQL queries on top of virtual RDF
stores through query rewriting over a rank-aware RDBMS. In this paper, we
discuss and evaluate the execution of top-k SPARQL queries also in native RDF
stores, offering an extensive discussion on rank-aware operators, optimization
techniques, and their application to different data access configurations.

Several works extend the standard SPARQL algebra to allow the definition
of ranking predicates [10,20]. AnQL [17] is an extension of the SPARQL lan-
guage and algebra able to address a wide variety of queries (including top-k
ones) over annotated RDF graphs; our approach, on the other hand, requires no
annotations, and can be applied to any state-of-the-art SPARQL engine.

Straccia [19] describes an ontology mediated top-k information retrieval sys-
tem over relational databases, where user queries are rewritten into a set of
conjunctive queries, which are translated in SQL queries and executed on a
rank-aware RDBMS [4]; the obtained results are merged into the final top-k
answers. Another rank-join algorithm, the Horizon based Ranked Join, is intro-
duced [21] and aims at optimizing twig queries on weighted data graphs. In this
case, results are ranked based on the underlying cost model, not based on an
ad-hoc scoring function as in our work. The SemRank system [12] uses a rank-
join algorithm to calculate the top-k most relevant paths from all the paths that
connect two resources specified in the query. However, the application context
of this algorithm is different from the one we present, because it targets paths
and ranks them by relevance using IR metrics, and the focus is not on query
performance optimization.

Wagner et al. [2] introduce PBRJ, a top-k join algorithm for federated queries
over Linked Data. The proposed processing model is push-based, i.e. operators
push mappings to subsequent operators, and, given a set or pre-defined rank-
ing criteria, assumes a-priori knowledge of the upper-bounds and lower-bounds
for the scores contained in each data source. By leveraging these bounds it is
possible to decide at execution-time which data source to query. The complete
content of the involved sources is materialized locally and, if sorted access is
not available, it is fully ordered. Due to domain-specific assumptions, PBRJ is
able to define a better estimation of unseen join results than standard rank-join
algorithms. This work is complementary to our approach, as our work bases
on the traditional pull-based processing model, in which operators pull map-
pings from their input operators; we consider RDF data stored locally either
in native or virtual RDF stores, and we make no assumption (e.g., upper- or
lower-bound for scores and data access types) on the evaluated data sources.
Data can be queried by user-defined ranking criteria, and efficient data ac-
cess methods like random access (an important optimization factor in rank-join
algorithms) can be exploited to further improve the query performance. We
are currently investigating a hybrid processing model to address the federated
query scenario, combining the strengths of both push and pull-based processing
models.
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3 Background

To support the following discussion, we review the existing formalization of
SPARQL in [11] and our SPARQL-RANK [1] algebra.

3.1 Basic SPARQL Definitions

In SPARQL, the WHERE clause contains a graph pattern that can be con-
structed using the OPTIONAL, UNION, FILTER and JOIN operators. Given
three sets I, L and V (IRIs, literals and variables), a tuple from (I ∪ L ∪ V ) ×
(I ∪ V )× (I ∪ L ∪ V ) is a triple pattern. A Basic Graph Pattern (BGP) is a
set of triple patterns connected by the JOIN operator.

The semantics of SPARQL is based on the notion of mapping, defined in
[11] as a partial function μ : V → (I ∪L∪B), where B is the set of blank nodes.
The domain of μ, denoted by dom(μ), is the subset of V where μ is defined. Let
P be a graph pattern, var(P) denotes the set of variables occurring in P. Given
a triple pattern t and a mapping μ such that var(t) ⊆ dom(μ), μ(t) is the triple
obtained by replacing the variables in t according to μ.

Using these definitions, it is possible [11][13] to define the semantics of SPARQL
queries with an algebra having a set of operators – Selection (σ), Join (�), Union
(∪), Difference(\) and Left Join ( )– operating on sets of mappings denoted
with Ω. The evaluation of a SPARQL query is based on its translation into an
algebraic tree composed of those algebraic operators.

3.2 The SPARQL-RANK Algebra

SPARQL-RANK is a rank-aware framework for top-k queries in SPARQL, based
on the SPARQL-RANK algebra, an extension of the SPARQL algebra that
supports ranking as a first-class construct. The central concept of the SPARQL-
RANK algebra is the ranked set of mappings, an extension of the standard
SPARQL definition of a set of mappings that embeds the notion of ranking.
SPARQL-RANK supports top-k queries in SPARQL with an ORDER BY

clause that can be formulated as a scoring function combining several ranking
criteria. Given a graph pattern P , a ranking criterion b(?x1, . . . , ?xm) is a
function defined over a set of m variables ?xj ∈ var(P ). The evaluation of a
ranking criterion on a mapping μ, indicated by b[μ], is the substitution of all of
the variables ?xj with the corresponding values from the mapping. A criterion b
can be the result of the evaluation of any built-in function of query variables that
ensures that b[μ] is a numerical value. We define as maxb the application-specific
maximal possible value for the ranking criterion b.

A scoring function on P is an expression F(b1, . . . , bn) defined over the set
B of n ranking criteria. The evaluation of a scoring function F on a mapping
μ, indicated by F [μ], is the value of the function when all of the bi[μ], where
∀i = 1, . . . , n, are evaluated. As typical in ranking queries, the scoring function
F is assumed to be monotonic, i.e., a F for which holds F(b1[μ1], . . . , bn[μ1]) ≥
F(b1[μ2], . . . , bn[μ2]) when ∀i : bi[μ1] ≥ bi[μ2].
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In order to evaluate the scoring function, all the variables in var(P ) that
contribute in the evaluation of F must be bound. Since OPTIONAL and UNION
clauses can introduce unbound variables, we assume all the variables in var(P )
to be certain variables, as defined in [13]3, i.e. variables that are certainly bound
for every mapping produced by P. An extension of SPARQL-RANK towards the
relaxation of the certain variables constraint is part of the future work. Listing
1.1 provides an example of the scoring function F calculated over the ranking
criteria g1(?avgRat1), g2(?avgRat2), and g3(?price1).

A key property of SPARQL-RANK is the ability to retrieve the first k results
of a top-k query before scanning the complete set of mappings resulting from
the evaluation of the graph pattern. To enable such a property, the mappings
progressively produced by each operator should flow in an order consistent with
the final order, i.e., the order imposed by F . When the evaluation of a SPARQL
top-k query starts on the graph pattern the resulting mappings are unordered.
As soon as a subset B ⊆ B, s.t. B = {b1, . . . , bj} (with j ≤ |B|) of the ranking
criteria can be computed (i.e., when var(bk) ⊆ dom(μ) ∀k = 1, . . . , j), an order
can be imposed to a set of mappings Ω by evaluating for each μ ∈ Ω the upper-
bound of F [μ] as:

FB(b1, . . . , bn)[μ] = F
(

bi = bi[μ] if bi ∈ B
bi = maxbi otherwise

∀i
)

Note that if B = B, then FB[μ] = FB[μ]. Therefore, it is clear that for any
subset of ranking criteria B, the value of FB[μ] is the upper-bound of the score
that μ can obtain, when FB[μ] is completely evaluated, by assuming that all the
ranking criteria still to evaluate will return their maximal possible value.

A ranked set of mappings ΩB w.r.t. a scoring function F and a set B
of ranking criteria, is the set of mappings Ω augmented with an order relation
<ΩB defined over Ω, which orders mappings by their upper-bound scores, i.e.,
∀ μ1, μ2 ∈ Ω : μ1 <ΩB μ2 ⇐⇒ FB[μ1] < FB[μ2]. A set of mappings on which
no ranking criteria is evaluated (B = ∅) is consistently denoted as Ω∅ or Ω.

The monotonicity of F implies that FB is always an upper-bound of F , i.e.
FB[μ] ≥ F [μ] for any mapping μ ∈ ΩB, thus guaranteeing that the order imposed
by FB is consistent with the order imposed by F .

Algebraic Operators. The SPARQL-RANK algebra introduces a new rank
operator ρ, representing the evaluation of a single ranking criterion, and redefines
the Selection (σ), Join (�), Union (∪), Difference(\) and Left Join ( ) operators,
enabling them to process and output ranked sets of mappings. For the sake of
brevity, we present ρ and �, referring the reader to [1] for further details.

The rank operator ρb evaluates the ranking criterion b ∈ B upon a ranked set
of mappings ΩB and returns ΩB∪{b}, i.e. the same set ordered by FB∪{b}. Thus,
by definition ρb(ΩB) = ΩB∪{b}.

The extended � operator has a standard semantics for the membership prop-
erty [11], while it defines an order relation on its output mappings: given two

ranked sets of mappings Ω
′

B1
and Ω

′′

B2
ordered with respect to two sets of

3 This can be ensured by an efficiently verifiable syntactical condition.
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ranking criteria B1 and B2, the join Ω
′

B1
� Ω

′′

B2
produces a ranked set of map-

pings ordered by FB1∪B2 . Formally Ω
′

B1
� Ω

′′

B2
≡ (Ω

′
� Ω

′′
)B1∪B2 .

Algebraic Equivalences. Query optimization relies on algebraic equivalences
to produce several equivalent formulations of a query. The SPARQL-RANK
algebra defines a set of algebraic equivalences that take into account the order
property. The rank operator ρ can be pushed-down to impose an order to a set
of mappings; such order can be then exploited to limit the number of mappings
flowing through the physical execution plan, while allowing the production of
the k results. In the following, we focus on the equivalences that apply to the ρ
and � operators (see [1] for the complete set of equivalences):

1. Rank splitting [Ω{b1,b2,...,bn} ≡ ρb1(ρb2(...(ρbn(Ω))...))]: allows splitting the
criteria of a scoring function into a series of rank operations (ρb1 , ..., ρbn), thus
enabling the individual processing of the ranking criteria.

2. Rank commutative law [ρb1(ρb2(ΩB)) ≡ ρb2(ρb1(ΩB))]: allows the com-
mutativity of the ρ operand with itself, thus enabling query planning strate-
gies that exploit optimal ordering of rank operators.

3. Pushing ρ over � [if Ω
′′

does not contain any variable of the ranking

criterion b, then ρb(Ω
′

B1
� Ω

′′

B2
) ≡ ρb(Ω

′

B1
) � Ω

′′

B2
; if both Ω

′
and Ω

′′

contain all variables of b, then ρb(Ω
′

B1
� Ω

′′

B2
) ≡ ρb(Ω

′

B1
) � ρb(Ω

′′

B2
)]: this

law handles swapping � with ρ, thus allowing to push the rank operator only
on the operands whose variables also appear in b.

The new algebraic laws lay the foundation for query optimization, as discussed
in the following section.

4 Execution of Top-K SPARQL Queries

In common SPARQL query engines (e.g. Jena ARQ), a query execution plan is a
tree of physical operators designed according to a pull-based processing model.
During execution, mappings are extracted iteratively from the root operator,
which, in turn, will draw from the child operators only the intermediate map-
pings needed to produce the output. The same applies for the child operators,
recursively up to the evaluation of Basic Graph Patterns (BGPs) in the storage
layer. The execution is incremental unless some blocking operator appears in
the execution plan (e.g. the ORDER BY operator, which materializes all the
intermediate results to order them).

The SPARQL-RANK algebra briefly presented in Section 3.2 enables an ex-
ecution model in which the blocking ordering operator can be split in several
non-blocking rank operators. Using the algebraic equivalences, it becomes possi-
ble to push these rank operators inside the execution tree and evaluate the order
for each ranking criterion incrementally. The final order of the results, i.e. the
order of the scoring function, is ensured by the other rank-aware operators.

In this section, we describe the SPARQL-RANK incremental execution model
and the related physical operators; then, we report on our investigations on a
rank-aware optimizer that leverages the algebraic equivalences of Section 3.2.
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4.1 Incremental Rank-Aware Physical Operators

The SPARQL-RANK execution model creates rank-aware query plans, i.e. trees
of physical operators that incrementally output ranked sets of mappings accord-
ing to their upper-bounds. The execution stops as soon as the requested number
of mappings has been drawn from the root operator. A rank-aware execution
model calls for rank-aware physical operators. Some of them are of trivial na-
ture; for instance, the selection operator only filters solutions that do not satisfy
the FILTER clause, thus guaranteeing the preservation of mappings order. Other
operators, e.g. ρ, �, and ∪, require more complex algorithms.

Rank. The rank operator ρ can exploit rank aggregation algorithms. This class
of algorithms orders, in an incremental manner, lists of objects by combining
several partial scores (e.g. the score for each ranking criterion) into one final
score (e.g.the scoring function). MPro [7] is a state-of-the-art rank aggregation
algorithm, which requires sorted access on one of the ranking criteria to be fully
effective. To fit the SPARQL-RANK execution model we adopted MPro as a
ρb operator that maintains a priority queue containing all the mappings drawn
from its input. Within the queue these mappings are ordered by FB∪{b}, where
B is the set of already evaluated criteria on the input set of mappings, while
b is the ranking criteria to be evaluated by ρb. The operator ρb cannot output
immediately each drawn mapping, since one of the next mappings could obtain
a higher score after evaluation. Instead, it outputs the top ranked mapping of
the priority queue μ only when it draws from its input a mapping μ′ such that
FB∪{b}[μ] ≥ FB[μ

′].

(a)

RankJoin

sortedAccesssortedAccess

(b)

RankSequence

randomAccesssortedAccess

(c)

RA-RankJoin

sortedAccess
randomAccess

sortedAccess
randomAccess

Fig. 2. Rank-join algo-
rithms

Join. Depending on the ordering and access patterns
of its inputs, a rank-aware � operator can be imple-
mented with several physical operators. In the sim-
plest case when only the left input is a ranked set
of mapping, a standard index join algorithm can be
adopted, which maintains the order of the output
mappings according to the one of the left operand.
The presence of several indexes in native triplestores
(e.g. s, p, o, spo, pos, osp) guarantees fast random ac-
cess to triples, thus enabling an optimized n − way
joining strategy called streaming index join4, which
performs lookups on the indexes by substituting al-
ready bound variables from previous inputs.

Other input configurations require a rank-join algo-
rithm. The idea of rank-join algorithms is to combine
ranking and joining, by ordering progressively the re-
sults during the join operation. This can be achieved by taking advantage of the
individual orders of its inputs to update, after each extraction from the inputs,
an upper-bound of the scores of all join combinations not yet seen. A join result
is returned only if it has a combined score greater than or equal to the upper-
bound, thus ensuring that no other combination could possibly achieve a better

4 The strategy is named Sequence in Jena ARQ, see http://bit.ly/O8e3Rm

http://bit.ly/O8e3Rm
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score. In this work we consider three algorithms for rank-join (in Fig. 2(a-c)),
each one characterized by a different configuration of access patterns on their
left and right inputs.

HRJN [8] (and its variant HRJN*) is an example of rank-aware symmetrical
hash join that has been shown to provide good performance. The basic HRJN
and HRJN* operators assume sorted access (retrieving mappings sorted by their
score) on both inputs. If the inputs offer random access (retrieving mappings
matching a join attribute value), then some optimizations can be achieved. We
will refer to the generalized version of HRJN endowed with both sorted and
random access on both inputs as “RA-HRJN”.

Fig. 3. getNext method for RSEQ

Given that efficient sorted access in not
commonly available in native triple stores
(Section 4.2 provides a detailed discussion on
the topic), to exploit available random ac-
cess mechanisms we propose RankSequence
(RSEQ), a characterization of the HRJN
rank-join template that requires minimum
sorted access and leverages random access to
improve performances. RSEQ is designed for
supporting a configuration where one input
provides only sorted access (S), and the other
one supports only random access (R). To the
best of our knowledge, no previous work on
rank-join algorithms addresses these assump-
tions on data access5. The RSEQ algorithm
supports a pull-based query model, for which
the getNext method is presented in Figure 3. The algorithm requires the main-
tenance of a priority queue Q, which contains all the seen join combinations
ordered by a scoring function f . In a rank-aware query plan, f is FB1∪B2 , where
B1 and B2 are the sets of ranking criteria on the input ranked sets of mappings.

The algorithm extracts a mapping μS from S and it probes R in order to
get all corresponding join combinations, inserting them into the priority queue.
Then it updates a threshold, which is the upper-bound of the scores for the not
yet seen combinations. The mapping with the highest score in the priority queue
is output only if it has a score greater or equal to the threshold.

LeftJoin. As all the variables in a SPARQL-RANK query are assumed to be
certain variables, all operators can have a ranked set of mapping only as left
input. Thus, standard index left-join algorithms can be adopted, as they will
output mappings in the same order of evaluation.

4.2 Sorted Access in Triplestores

The selection of the most suited rank-join operator is conditioned by the avail-
ability of sorted access or random access for its inputs. While random access on

5 Similar assumptions are made by Upper [16], which is a rank aggregation algorithm,
i.e. it is designed for the ρ operator.
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triples is the basic operation in native triplestores, sorted access is not typically
available at storage level. The ρ operators could be adopted to provide an ini-
tial order (according to one ranking criterion) to mappings extracted from the
storage layer; however, such a solution is inherently inefficient, as it requires to
process all the matching mappings. In the following, we show two cases in which
we exploit or extend the design of the native triplestores to provide an efficient
sorted access on triples and BGPs.

Exploiting Existing Indexes. Given a triple pattern of the form (?s p ?o),
in which p is a given predicate, if a ranking criterion is defined as the vari-
able ?o that assumes literal values, then the triplestore native indexes can be
exploited. Since triplestores usually provide POS B+ trees, where objects are or-
dered lexicographically, triples are already stored ordered by the variable value
and, therefore, are extracted in the right order. Note that lexicographical order
for numerical values means they will be retrieved in ascending order. The same
effect can be obtained by reordering the set of triple patterns that compose a
BGP so to position the triple pattern involved in the ranking criterion as first.

Creating Custom Indexes. If a ranking criterion involves the evaluation of
an arbitrary function of variable values, or if the literal values should be ordered
in descending order, then the native POS index cannot be exploited. Therefore,
sorted access can be provided at storage level only by creating custom indexes,
which store the evaluations of triples and/or BGPs in the order enforced by one
or more ranking criterion. POS indexes can be still exploited by materializing
the values of the arbitrary ranking criterion as attributes in the dataset.

4.3 Rank-aware Optimization Techniques

The goal of query optimization is the selection of an efficient execution plan for a
given query. Many optimization techniques exist for SPARQL6, but the addition
of the ranking logical property brings novel optimization dimensions.

Several works on top-k query processing in RDBMSs propose optimization
techniques that attempt to provide a (sub) optimal scheduling of rank [7] or
rank-join operators [8] via dataset sampling or ranking selectivity estimation.
An optimizer using both operators is presented in [4], where the cost of the
generated plans is estimated by executing the plan on a sample of the dataset.

Unfortunately, previous works on top-k query planning in RDBMS cannot be
directly ported to SPARQL engines, as data in an RDF storage can be “schema-
free”; moreover, in some systems, it is possible to push the evaluations of BGPs
down to the storage system, which can be optimized w.r.t. to a standard join by
several techniques, like selectivity estimation optimization in native triplestores
or SQL rewriting in the case of virtual RDF stores.

The design of a query planner for top-k queries demands for a detailed evalu-
ation of the possible rank-aware configurations that might arise, a topic that we
leave to future work. In this paper, we focus on the rank and rank-join operators
and we discuss their application according to several optimization dimensions.

6 Refer to [13] for a comprehensive review.
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(a) (b) (c)

g1(?a1)

g3(?p1)

?pr, ?of, ?score

[0,10]SLICE

seqScan

?pr hasA1 ?a1 . ?pr hasN ?n . 
?pr hasO ?of .  ?of hasP1 ?p1 

g3(?p1)

?pr, ?of, ?score

[0,10]SLICE

orderScan_a1

?pr hasA1 ?a1 . ?pr hasN ?n . 
?pr hasO ?of .  ?of hasP1 ?p1 

?pr = ?pr

?pr, ?of, ?score

[0,10]SLICE

g1(?a1)

g3(?p1)

seqScan
?pr hasN ?n  

Sequence

seqScan

?pr hasA1 ?a1 . 
?pr hasO ?of . ?of hasP1 ?p1 

Fig. 4. Three examples of plans for the query in Listing 1.1: (a) ROB strategy with
sequential access, (b) ROB strategy with sorted access on a1 (c) INTER strategy

Although simple, all of the proposed strategies proved effective in creating plans
that considerably reduce the execution time of top-k queries and, therefore, could
be easily adopted for heuristic-based query plan selection.

Ranking of BGP Strategy. The Ranking of BGP (ROB) strategy is a näıve
planning technique that only uses rank operators. The evaluation of the BGP is
pushed to the storage system, from which the mappings are fetched incremen-
tally through several pipelined rank operators, one per each ranking criterion.
The strategy requires little planning overhead, as it exploits only the algebraic
transformations on rank operators.

Let P be the graph pattern of a query with a scoring function composed by
n ranking criteria, the initial query plan is in the form: ρ{b1,b2,...,bn}(Ω

P
∅ ), where

ΩP
∅ is the unordered set of mapping resulting from evaluation of P . The rank-

aware query plan, produced by the ROB strategy applying the splitting law for
ρ, is in the form: ρb1(ρb2(. . . (ρbn(Ω

P
∅ )))).

Fig. 4 depicts two example plans for the case study query, where the BGP
evaluation is respectively performed with sequential access (Fig. 4.a) and sorted
access on the variable a1 (Fig. 4.b). If the data source already provides sorted
access according to one ranking criterion bi, then the planner can reorder the ρ
operators using the rank commutative law to have bi evaluated first. Since the
retrieved set of mappings is not ΩP

∅ , but ΩP
bi
, it can remove the corresponding

ρbi operator from the plan.

Interleaved Strategy. The ROB strategy can be extended to include an ad-
ditional planning phase that splits the triple patterns containing variables of
the ranking criteria (“ranked triple patterns”) from the others. This approach
is called Interleaved strategy (INTER), because it interleaves rank-aware with
non-rank-aware operators.

By splitting a set of mappings ΩP
∅ into two joined sets of mappings ΩP ′

∅ �

ΩP ′′

∅ , where P ′ is the graph pattern containing all the ranked triple patterns
and P ′′ is the pattern containing the rest, we can apply the algebraic law that
pushes ρ over �. Applying this law to a ROB plan of the form:

ρb1(ρb2(. . . (ρbn(Ω
P ′

∅ � ΩP ′′

∅ ))))

we obtain a plan of the form:

ρb1(ρb2(. . . (ρbn(Ω
P ′

∅ )))) � ΩP ′′

∅



Efficient Execution of Top-K SPARQL Queries 355

where the � operator needs to preserve only the order of the first operand. Thus
it is possible to use a streaming index join between the two sets of mappings.

The splitting strategy can be redefined to adopt the standard planning heuris-
tic of avoiding Cartesian joins: if there is no shared variable between two ranked
triple patterns, the strategy must include into the ranked BGP also the “bridge”
triple patterns that have a shared variable with each of them (or chains of triple
patterns). Fig. 4.c provides an example of application of the INTER strategy on
the running case. Since the ranked triple patterns (?pr hasA1 ?a1) and (?of
hasA1 ?p1) have no shared variable, we include (?of hasP1 ?pr) as a bridge
triple pattern inside the ranked sub-plan. The triple pattern (?pr hasN ?n) does
not influence the final order, so it can be safely put in the non-ranked sub-plan.

Rank-Join Strategy. The Rank-join strategy (RJ) involves the use of one or
more rank-join operators in a query plan. This strategy is a variant of the INTER
strategy, in which the n ranked triple patterns of the query graph pattern P are
split each into one BGP P i (plus the “bridge triple patterns” to avoid Cartesian
joins) for i = 1..n and there is a graph pattern Pn+1 containing the rest of P .

Following this rule, RJ first splits a given set of mappings ΩP
∅ into n+1 joined

sets of mappings ΩP 1

∅ � · · · � ΩPn+1

∅ , where n is the number of ranking criteria.
Then, RJ can apply the law pushing ρ over � to obtain a plan of the form:

(((ρb1 (Ω
P 1

∅ ) � ρb2(Ω
P 2

∅ )) � · · · � ρbn(Ω
Pn

∅ )) � ΩPn+1

∅ )

where all the � operators, except the rightmost, are rank-joins as they operate
on ranked sub-plans; the rightmost � operator needs to preserve only the order
of the first operand, thus an index join can be used. If the datastore already

provides a sorted access according to bi to ΩP i

∅ , then the retrieved set of map-

pings is already a ranked set of mappings ΩP
bi
, and the planner can remove the

corresponding ρbi operator from the plan. Fig. 1.b shows the plan generated by
RJ on the query in Listing 1.1.

RJ builds a left-linear tree of operators and selects each rank-join operator
using a simple heuristic based on the availability of sorted or random access to
ranked sets of mappings. This heuristic assumes that using more random access
leads to better performances; the assumption holds if random access has a low
cost (as in native triple stores), because random access allows tightening the
upper-bound of the score. RJ applies: 1) RA-HRJN, when the left input is a
ranked mapping ΩP

bi
, in which bi is a single ranking criterion and P is a triple

pattern or a BGP; 2) RSEQ, when the left input is ΩP
B , in which B is a set of

ranking criteria with |B| ≥ 2, e.g. if the input is another rank-join operator, or if
|B| = 1 and P is not a a triple pattern or BGP. A more complex strategy could
be devised by taking into account also the cost of the sorted access on the right
input, but this is left to future work.

The RJ strategy also exploits an optimization of the random access on a BGP
as, at run-time, it creates a reordered version of the original BGP as follows: first,
the triple pattern containing the joining attribute is evaluated; then a random
access on the other triples is performed iteratively.
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5 Evaluation

This section presents an evaluation of ARQ-RANK, a prototype implementation
of a SPARQL-RANK query engine that extends Jena ARQ 2.8.9. The ARQ-
RANK source code, the test datasets and the queries used in the experiments
are available for download at http://sparqlrank.search-computing.org/.

Our experiments are based on a modified version of the Berlin SPARQL
Benchmark (BSBM [3]). The BSBM dataset generator has been modified to
create additional attributes, generated as aggregates from the existing data (e.g.
the average of the ratings for a given product) or according to different prob-
ability distributions. We report on the performance of ARQ-RANK using the
SumDepth and wall clock execution time metrics. The SumDepth metric pro-
vides a system-independent measure of the I/O cost of a query, as it sums the
total number of processed mappings. The experiments were conducted on an
AMD 64bit processor with 2.66 GHz and 4 GB RAM, a Debian distribution
with kernel 2.6.26-2, and Sun Java 1.6.0 with 2 GB maximum heap size for the
JVM. The reported execution times are the average of 20 tests, measured after
5 warm ups, removing the outlier values according to the three sigma rule. The
experiments were executed using Jena TDB 0.8.11 as a native triple storage.

5.1 Rank-Aware Optimization Strategies Evaluation

In the following we evaluate the performance of the ROB, INTER and RJ strategies
w.r.t. to the non-optimized Jena ARQ 2.8.8 (ARQ) and the TopK optimization
[5] introduced in Jena ARQ 2.8.9 (ARQ-TOP) on a five million triples dataset.

Fig. 5 reports the results of experiments performed on the query in Listing
1.1, where ranking criteria follow a normal (μ = 0.5, σ = 0.15) score distri-
bution, at varying values of k (we consider also k = 1000, while in real world
applications k is typically less than 100). The reported numbers represent the
complete evaluation time of the query, without considering the planning time.

Fig. 5.a depicts the results obtained when no sorted access indexes are avail-
able in the data storage. This setting represents the worst-case scenario for the
usage of ARQ-RANK, as rank (e.g. MPro) and rank-join (e.g. HRJN) algo-
rithms are proven to be efficient when sorted access is available for at least one
operand. Despite the additional overhead required to provide an initial ordering
to the mappings fetched from the data storage, all the techniques show a per-
formance increase (from 0.2x to 10x), a result that is mainly accountable to the
reduced number of mappings that flow in the query engine, as shown in Fig. 6.

In Fig. 5.b we report the results of the query when sorted access indexes are
available. In this configuration, the number of mappings extracted from the data
storage significantly decreases (as shown in Fig. 6 SumDepth ranges from 10-1000
in RJ, as opposed to 105 in ARQ-TOP) as results are already ordered according to
one of the ranking criteria, thus exploiting at full potential the features of the
adopted rank and rank-join operators: all the proposed strategies consistently
outperform ARQ-TOP up to three orders of magnitude.

http://sparqlrank.search-computing.org/
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Fig. 5. Performance evaluation for the optimization techniques of Section 4.3.

In Fig. 5.c-d we report the results of a comparison analysis for the rank-join
operators HRJN*, RA-HRJN, and the proposed RSEQ algorithm. The natural
availability of efficient random access to the underlying triple store provides great
benefits in terms of accessed mappings and required execution time. Note that
the RSEQ and RA-HRJN operators get more effective as k increases. When no
sorted access indexes are available, as shown in Fig. 5.c, RSEQ is faster than RA-
HRJN, because it requires sorted access only on the left input, while RA-HRJN
needs sorted access on both inputs. Fig. 5.d presents the case in which sorted
access indexes are available. In this case, RSEQ is comparable to RA-HRJN.

Fig. 6. SumDepth with sorted access
indexes

Although the selected case study query
may account for the reported numbers,
the overall (and consistent) performance
increase w.r.t. ARQ-TOP provides strong
evidence about the general applicability
of the proposed approach, also when no
sorted access indexes are available. The
selection of the best configurations de-
pends on several factors, such as the costs
of random and sorted access (which differ
based on the storage system), distribution
of scores, and others. A detailed study on
SPARQL top-k query planning is left to
future work.
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Fig. 7. Performance Evaluation of ARQ-RANK on the benchmark query mix using
the a) ROB, b) INTER, and c) RJ optimization strategies

5.2 Query Benchmark Evaluation

As far as we know, currently there is no benchmark for top-k queries SPARQL.
Therefore, we created a small benchmark of 8 queries7 having 2 and 3 ranking
criteria. Although previous works [18] show that the cost associated with top-k
algorithms is mainly related to the selected k value, to provide asymptotic evi-
dence of the utility of ARQ-RANK, we performed the evaluation on five datasets
of increasing size (from 100K triples to 5M triples). Fig. 7 depicts the average
execution times (for each considered dataset) of the query mix in ARQ-TOP and
using the ROB, INTER, and the RJ strategies.

When 1 ≤ k ≤ 100, typical values in top-k queries, ARQ-RANK consistently
outperforms ARQ-TOP (up to two orders of magnitude), with a gain proportional
to the dataset size. The RJ optimization strategy yields considerably better per-
formance for 1 ≤ k ≤ 10, while the INTER strategy is the best for k = 100. Note
that the ROB strategy provides significant performance gain, while requiring a
negligible planning effort.

On the other hand, when k = 1000 and the dataset size is below 1M triples,
the two systems show comparable performance; nonetheless, the ROB and INTER

strategies show a performance gain w.r.t. ARQ-TOP for the biggest dataset in the
experiment, and the curves suggest an improvement also for bigger datasets.

6 Conclusion and Future Work

In this paper, we addressed the problem of efficiently executing top-k SPARQL
queries; we introduced an incremental execution model for the SPARQL-RANK
algebra and we presented ARQ-RANK, a rank-aware SPARQL query engine that
builds on the SPARQL-RANK algebra and exploits state-of-the-art rank-aware
query operators. We proposed RSEQ, a rank-join algorithm specifically designed
to exploit fast random access in native triple stores, and we analyzed the behavior
of the system under several configurations. Our results show that ARQ-RANK is

7 Queries are available at http://sparqlrank.search-computing.org/

http://sparqlrank.search-computing.org/
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consistently able to significantly improve the performance of top-k queries. Al-
though our evaluation did not include other SPARQL engine implementations,
the proposed execution model and planning strategies are applicable to other
pull-based SPARQL query engine implementations.

The results presented in this paper are part of a broader research work, where
we plan to study more advanced, cost-based, optimization techniques that es-
timate the cardinality of intermediate results in multiple pipelined rank-join
operator evaluations. Among our goals there is also a study on efficient materi-
alization of RDF views for sorted access, and the effects of the relaxation of the
certain variables constraint defined in Section 3, as the introduction of poten-
tially unbound variables brings uncertainty in the score evaluation. Finally, we
outlook extensions of SPARQL-RANK w.r.t. SPARQL 1.1 federation extension.
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Abstract. Tracking user interests over time is important for making
accurate recommendations. However, the widely-used time-decay-based
approach worsens the sparsity problem because it deemphasizes old item
transactions. We introduce two ideas to solve the sparsity problem. First,
we divide the users’ transactions into epochs i.e. time periods, and iden-
tify epochs that are dominated by interests similar to the current inter-
ests of the active user. Thus, it can eliminate dissimilar transactions while
making use of similar transactions that exist in prior epochs. Second, we
use a taxonomy of items to model user item transactions in each epoch.
This well captures the interests of users in each epoch even if there are
few transactions. It suits the situations in which the items transacted
by users dynamically change over time; the semantics behind classes do
not change so often while individual items often appear and disappear.
Fortunately, many taxonomies are now available on the web because of
the spread of the Linked Open Data vision. We can now use those to un-
derstand dynamic user interests semantically. We evaluate our method
using a dataset, a music listening history, extracted from users’ tweets
and one containing a restaurant visit history gathered from a gourmet
guide site. The results show that our method predicts user interests much
more accurately than the previous time-decay-based method.

1 Introduction

User interests can switch rapidly. For example, some one who listens to “avant
garde” music may switch to “relax” music according to his/her mood at that
time. The user’s transaction history may thus contain several dissimilar strings,
each of which is identified by the similarity of contiguous item selections. This
creates a significant problem in collaborative filtering.

Accurately identifying and handling changes in user interests over time is an
active research challenge in recommender systems, and is the target of many
studies [6, 8, 14, 15, 22, 24, 29, 31]. One major research approach is to use a time
decay function that decreases the item weight with the item’s age [6,14,15]. Time
decay methods assume that the recent item transactions of the active user, the

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 361–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Transaction timelines of users. T is the current epoch. Boxes indicate artists
(items) and the subscript identifies the artist; the dotted lines indicate music classes
according to the music taxonomy. For example, in the current epoch, user a listened
to songs of artist I2 and artist I3 (both in class “Relax”).

one who is to receive the recommendation, reflect his/her future interests more
than old transactions. Thus, they gradually decay the influence of old data.

Previous time-decay-based methods, however, worsen the sparsity problem
in collaborative filtering, which is well known to produce low recommendation
accuracy when the population of the dataset used to measure the similarity of
users is not sufficient [27]. The transaction timing of items is usually different
for each user and for each item as described in the diffusion of innovations [26].
We consider that the sparsity problem occurs due to such time offsets against
the item transactions of users in the real world. We illustrate the problem using
Figure 1. Previous time-decay-based methods compute the interests of user v as
being similar with those of active user a because they transact the same item, I3,
in the same current epoch T . Previous methods also indicate that the interests
of user u are dissimilar to those of user a because they share no items in recent
epochs. This implies that users are seen as similar only if they transact the same
items in recent epochs. However, there are few users who have transacted the
same items with user a in recent epochs (like user v), thus the time-decay-based
methods suffer badly from the sparsity problem.

This paper proposes a novel method that overcomes the sparsity problem;
it avoids the problems that occur when using temporal information of item
transactions to improve recommendation accuracy. Our method has two ideas.
First, it extracts, in a per epoch manner, transactions that are similar to the
transactions of the current epoch of the active user from all transactions of other
users regardless of age. This has the effect of eliminating dissimilar transactions
in epochs while it can make use of similar transactions regardless of age. For
example, in Figure 1, it can eliminate the transactions made by user u in epoch
T while it can make use of those made by u in epoch T−l because they transact
the same item, I2. Second, it models transactions of items based on a taxonomy
of items, which is sometimes called the “simple ontology” [17]; it is a collection
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of human-defined classes usually with hierarchical structure. Our method makes
use of the class structure in the taxonomy and thus can measure the similarity of
transactions in epochs from both transacted items and their classes. As described
in [18], this avoids the sparsity problem since more data is available for similarity
matching. Moreover, it suits the computation of recommendations under the
situation that the items transacted by users dynamically change over time. This
is because the semantic meaning behind classes does not change so often while
items transacted by users dynamically change over time. For example, active user
a recently transacted item I2 that was selected by user u who also selected item
I4 in the same epoch as I2 (that is, epoch T−l), and I4 shares the class of “Relax”
with I2. Thus, our method measures transactions by user a in epoch T and those
by user u in epoch T−l as similar because those transactions are dominated by
class “Relax” in addition to the fact that those transactions include item I2.
The semantic meaning behind class “Relax” does not change over time, so our
method can identify I4, which is missing in epoch T , as of potential interest to
user a. Those two ideas enable our method to overcome the sparsity problem
while suppressing noisy transactions, and thus achieve high accuracy.

Taxonomies provide another attractive effect. They enrich semantics behind
the recommendations. The users can understand the recommended items as be-
longing to the same classes as the items that the user has transacted recently.
Those taxonomies are becoming available on the Web due to the spread of the
Linked Open Data (LOD) vision [1]. For example, Freebase1 and DBPedia [2]
have detailed taxonomies against several domains such as music, movie, and
books. As an example, music genre “Electronic dance music” in FreeBase is
identified by the unique resource identifier (URI)2 and is available in RDF for-
mat. By referring to this URI, the computer can acquire the information that
“electronic dance music” has “electronic music” as parent genre, “house music”
as one of its subgenres, and “pizzicato five” as one of its artists as well as having
the owl:sameAs relationship with “Electronic Dance Music” in DBPedia. Why
don’t we use those taxonomies for semantically analyzing dynamic user interests
in the era of the “Web of Data”?

To the best of our knowledge, this is the first study that employs a taxonomy
of items and uses discrete time periods to isolate changes in interest over time.
We consider that analyzing dynamic user interests over taxonomies (or simple
ontologies) is very important since taxonomy is a core Semantic Web technology.
Our idea is simple but provides accurate recommendations. It provides a new
theoretical alternative to collaborative filtering techniques that use temporal
information in making recommendations.

We applied our ideas to the widely used service of neighborhood-based col-
laborative filtering. We evaluated our method using the following two datasets:
(1) a dataset of music listening history extracted from users’ tweets at twitter3

1 http://www.freebase.com
2 http://rdf.freebase.com/rdf/en/electronic_dance_music
3 http://twitter.com/

http://www.freebase.com
http://rdf.freebase.com/rdf/en/electronic_dance_music
http://twitter.com/
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with a taxonomy created from last.fm4 tags5 and (2) one containing restaurant
visit histories gleaned from a popular Japanese gourmet guide site, Tabelog6

with an expert created taxonomy. Those taxonomies have the same structures
as the LOD dataset in Freebase as explained above. The results show that our
method outperforms previous time-decay-based methods. They also indicate that
our taxonomy-based method is superior to the typical topic model, LDA (Latent
Dirichlet Allocation) method [3], which estimates user interests from data-driven
topics, and is also successful in overcoming the sparsity problem of collaborative
filtering. This is because topics estimated from users’ item transactions dramat-
ically change over time whereas the semantics behind human-defined classes do
not change so often.

The paper is organized as follows: we describe related works in the next section.
Section 3 describes the background of this paper. Section 4 explains our method
in detail; how to measure the similarity of current transactions of the active user
and the epoch-based transactions of another user by using a taxonomy of items.
Section 5 evaluates our method in detail. Finally, Section 6 concludes the paper.

2 Related Work

Recently, several works have attempted to integrate temporal dynamics into col-
laborative filtering methods [6,8,14,15,22,24,29,31]. One of the major research
approaches in this field uses a time decay function and computes the time weights
for different items by decreasing the weights according to data age [6,14,15]. Re-
cently, Liu et al. proposed an incremental algorithm for updating neighborhood
similarities given new data [15]. While our method is not a time-decay-based
method, it can be combined with those to catch the trends in item transactions.
To this end, it is necessary to apply time decay functions to item transactions ac-
cording to their transacted epochs, after extracting transactions similar to those
in the current epoch of the active user.

Other research studies use state-based models. Markov chain models have
been widely applied to the next-page prediction problem [24,31]. Topic Tracking
Model [8], which extends LDA [3], uses state space models on the natural param-
eters of the multinominal distributions that represent the topics. Recently, [24]
introduced a novel personalized Markov chain method that models a transi-
tion cube, where each slice is a user-specific transition matrix of an underly-
ing Markov chain on the users’ basket history. They introduce a factorization
model that gives a low-rank approximation of the transition cube. The quality
of the final transition graph, and thus the accuracy of item prediction, is much
improved since the influence of transitions of similar users, similar items, and
similar transitions is considered. However, those factorization models can not
provide semantics under the recommendation results such as the semantic rela-
tionships between recommended items and items that the user has transacted

4 http://www.last.fm/
5 The music taxonomy can be acquired, only for academic use, by mailing the authors.
6 http://tabelog.com/

http://www.last.fm/
http://tabelog.com/
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recently. [14] proposed a method that applies a time-decay method to a factor-
ization model with complicated parameter learning from explicit rating datasets.
It learns parameters for the biases of each user and each item, both of which
change over time. However, generalizing factorization models to handle implicit
feedback data only achieves a slight improvement [7]. Thus, it is not well suited
for the implicit ratings used in our evaluation.

There are several alternatives that use temporal information in making rec-
ommendations. [22] proposed a preceding mining model that exploits the mined
precedence information to recommend the top-k choices that could follow the
past choices of a particular user. It models the user’s history as a set of items
that occurred in the past instead of a strict sequence of items, and predicts the set
of items most likely to follow in no particular order. [29] proposed a graph model
that captures users’ long-term and short-term interests over time. It balances the
impacts of long-term and short-term interests for accurate recommendations.

We note that taxonomies are becoming available on the Web in the format of
LOD such as those published by DBPedia [2] and Freebase. Though most of the
data published in the format of LOD is instance data, there are projects that link
and build taxonomies by merging the data in several domains by using already
published taxonomies like those in Wikipedia7 [9, 23]. Such merged taxonomies
enable us analyze user transactions distributed in multiple service domains com-
prehensively. Thus, recommendation methods that use taxonomies to understand
user interests semantically are becoming more important [4, 18–21, 28, 30]. For
example, [18] measures the similarity of users based on items rated by users as
well as the classes that include those items. Thus, it accurately predicts user in-
terests even when the rating dataset is sparse. They recently proposed a method
that analyzes user interests more in detail by linking multiple taxonomies [19].
However, they fail to handle temporal information against item transactions.

This paper differs from the methods that apply a time-decay function against
users’ item transactions, methods that use state-based models, and techniques
that focus on the sequence of item transactions. Our method employs the tax-
onomy of items and extracts transactions that are similar to the transactions of
the current epoch of the active user. Our ideas give a new vision of collaborative
filtering by better utilizing the temporal information of item transactions.

3 Background

Collaborative filtering methods can be classified into two approaches: memory-
based (or neighborhood-based) collaborative filtering [6, 15, 25] and model-based
collaborative filtering [8, 24, 31]. Previous time-weighted collaborative filtering
methods [6,15] are examples ofmemory-based collaborativefiltering. Ourmethod,
however, can also be applied to model-based collaborative filtering8.

7 http://en.wikipedia.org
8 For example, we can create an order-three tensor from transactions per epoch by users,
items, and their classes. By applying tensor decomposition [12], we can compute rec-
ommendations against the current transactions of the active user.

http://en.wikipedia.org
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Table 1. Definition of main symbols

Symbols Definitions

t An epoch
T A current epoch
C A class set in the taxonomy
Ij An item
Cj A class in the class set C
itu A vector of item transactions of user u in epoch t

ctu A vector of class transactions of user u in epoch t

Traditional memory-based collaborative filtering methods assume that each
user belongs to a larger group of users with similar behavior [25]. In computing
user similarity, they often use cosine similarity.

If I is the set of items transacted by users a and u, and iu,j is the transaction
frequency of user u for item Ij , the similarity between active user a and user u,
S(a, u), is determined as follows:

S(a, u) =

∑
Ij∈I(ia,j · iu,j)√∑

Ij∈I(i2a,j)
√∑

j∈I(i2u,j)
. (1)

If N is the set of users that are most similar to user u, the predicted value of
user a on item Ij , pa,j, is given by the following equation:

pa,j =

∑
u∈N (iu,j · S(a, u))∑

u∈N S(a, u)
. (2)

This equation implies that the methods recommend items based on user sim-
ilarities. Therefore, the effective assessment of user similarities is important in
improving recommendation accuracy. Our method, explained in the next section,
extracts transactions that are similar to the transactions of the current epoch of
the active user. Thus it can produce more accurate recommendations than the
ordinary cosine based method as shown in the evaluation section.

4 Method

We first explain our model of item transactions in an epoch according to a
taxonomy of items. Next, we show how to extract transactions that are similar
to the transactions in the current epoch of the active user. We then introduce
recommendation computation by analyzing extracted transactions.

4.1 Modeling Transactions of a User in an Epoch

We explain how to model transactions by a user in an epoch. Please refer to the
symbol definitions of Table 1.

We assume that epoch t is a discrete variable, a time period, and we can set
the time period for an epoch arbitrarily at, for example, one day or one week
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as [8] did. An epoch can overlap adjacent epochs by offsetting the starting time
of epochs. This is useful because we try to analyze the change in user interests
in detail. We also denote T as the current epoch.

Our model is based on two observations. First is that a user who transacts
an item within an epoch, tends to like items of the same class in that epoch. In
other words, users tend to be interested in the same types of items in the same
period of time. For example, users who are interested in Opera music item in a
certain epoch, tend to transact several Opera items in the same epoch. Second
is that the semantics behind the classes do not change so often while the items
transacted by users appear and disappear in each epoch as influenced by the
trends in the epoch. For example, the class “Metal Rock” is used with almost
the same meaning for a long period while particular artists in “Metal Rock” often
appear and disappear. Users who like “Metal Rock” tend to like items that were
classified into “Metal Rock” even if those items were transacted by other users in
different epochs. Taxonomy-based modeling is thus useful in analyzing temporal
user interests because it lets our method measure the similarity of transactions
in different epochs by using classes. Thus, we propose to use a taxonomy of items
to model a user’s temporal interests from his/her item transactions in epochs.
As a result, our method can identify similar transactions in epochs by using
both items and their classes as described in Section 4.2. Thus it can overcome
the sparsity problem that occurs when there are few item transactions in each
epoch even if the items transacted by users dynamically change over time.

Formally, our method models the temporal interests of a user by using two
vectors; a vector of item transactions of user u in epoch t, itu, and a vector of
class transactions of user u in epoch t, ctu. The j-th element of vector itu, i

t
u,j ,

represents the frequency of transactions of item Ij in epoch t. The k-th element
of vector ctu, c

t
u,k, represents the frequency of transactions of class Ck in epoch

t. ctu,k is computed by the following equation:

ctu,k =
∑

Ij∈f(k)

itu,j . (3)

Here, function f(k) returns an item set whose members belong to descendant
classes of class Ck and have unique names (no names are shared)9. Equation (3)
reflects the transaction frequencies of items in their ascendant classes. Thus, we
can measure the similarity of transactions of users in epochs from classes as well
as from items, which overcomes the sparsity problem.

4.2 Measuring Similarities of Transactions in Epochs

We explain here how to compute the similarity between the transactions in
current epoch T of active user a and those in epoch t of user u. To avoid the

9 Some items in the taxonomy may have the same name, however, they should be
identified by URIs. For example, some artists may be placed into several classes,
however, each artist in a different class should be identified by a URI, which is
assigned to that artist regardless of its name.
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Algorithm 1. Measuring transaction similarity in the current epoch of user a
and transactions in all epochs of user u.

Input: Transaction vectors of user a in epoch T , (iTa and cTa ) and transaction vectors in epoch t of

user u, (itu: 0 ≤ t ≤ T ) and (ctu: 0 ≤ t ≤ T )).
Output: Similarity score between transactions in the current epoch of user a and those in epoch t

of user u.
1: for each epoch (t : 0 ≤ t ≤ T ) do
2: for each user u do
3: for each class Cj in C do
4: for each sub-class Ck in {Cj,T (a) ∪ Cj,t(u)} do
5: compute S(a, u, Ck, t);
6: end for
7: for each item Ik in {Ij,T (a) ∪ Ij,t(u)} do
8: compute S(a, u, Ik, t);
9: end for
10: end for
11: Compute similarity score SC(a, u, t);
12: Compute similarity score SI(a, u, t);
13: end for
14: for each user u do
15: Normalize SC(a, u, t) and SI (a, u, t);

16: Compute S(a, u, t) as S
′
C(a, u, t) + S

′
I (a, u, t);

17: end for
18: end for

sparsity problem, we measure the similarity of transactions in epochs using both
transacted items and their classes. We also apply set theory [11] to analyze the
class structure, which is composed by class/sub-class relationships and class/item
relationships in the taxonomy, to assess user similarities in detail. We first give
the notations for the algorithm and then explain it in detail.

Notation. Our algorithm applies set theory to assess the similarity of users’
interests in epochs according to the class structure of the taxonomy, which is
composed by class/sub-class and class/item relationships in the taxonomy. Thus,
we introduce notations to represent those relationships. We denote Cj,t(u) as a
sub-class set whose members belong to class Cj and that have been transacted
by user u in epoch t. Thus, {Cj,T (a)∪Cj,t(u)} and {Cj,T (a)∩Cj,t(u)} are a union
set and an intersection set of sub-classes of class Cj transacted by user a in epoch
T and those by user u in epoch t, respectively. We also denote Ij,t(u) as an item
set whose items belong to class Cj and that have been transacted by user u in
epoch t. Thus, {Ij,T (a)∪ Ij,t(u)} and {Ij,T (a)∩ Ij,t(u)} are a union set and an
intersection set of items in class Cj transacted by user a in epoch T and those
by u in epoch t, respectively.

Algorithm. Our method measures the similarity of interests in epochs using
both transacted items and their classes. Please also see Algorithm 1. The algo-
rithm proceeds in the following steps:
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1. Our method measures the similarity between the transactions in the current
epoch of the active user and those in each epoch of the other users. Thus,
it repeats steps from 2 to 6 by changing time t from 0 to T (line 1) and by
setting target user u as all users (line 2).

2. It also picks up class Cj among the class set C in the taxonomy (line 3).
3. For each sub-class Ck in class Cj , our method computes the similarity be-

tween interests of user a in current epoch T and those of user u in epoch t.
We assume that if users transact the same amount of transactions against a
class in an epoch, they have similar interests to the class. Thus, the similarity
of users’ interests against sub-class Ck in epochs is not high if the transac-
tions of user u have too many or too few transactions against sub-class Ck in
epoch t compared with transactions against Ck by user a in epoch T . Thus,
we design this similarity, denoted as S(a, u, Ck, t), to filter such transaction
noise and take the smaller of the class transaction frequencies between users
in epochs as follows (line 4-6):

S(a, u, Ck, t) = min(cTa,k, c
t
u,k). (4)

4. As is the case with S(a, u, Ck, t), for each item Ik, our method computes
the similarity between the interests in epoch T of user a and the interests
in epoch t of user u. This similarity, denoted as S(a, u, Ik, t), is formally
computed as follows (line 7-9):

S(a, u, Ik, t) = min(iTa,k, i
t
u,k). (5)

5. Next, it computes the similarity between the class transactions in the current
epoch T of active user a and the class transactions in epoch t of user u. This
similarity, SC(a, u, t), is computed as follows (line 11):

SC(a,u,t)=
∑
Cj∈C

∑
Ck∈{Cj,T (a)∩Cj,t(u)}S(a, u,Ck,t)

|{Cj,T (a) ∪ Cj,t(u)}|
. (6)

The numerator sums the similarity of users’ interests in epochs against each
sub-class Ck in class Cj computed in step 3. The denominator, which rep-
resents the number of members of a set {Cj,T (a) ∪ Cj,t(u)}, lets our method
measure the similarity of users in epochs against class Cj considering the
overlap between the sub-classes of a class Cj transacted by user a and those
by user u. By picking up each class Cj in C and by investigating the similar-
ity of users’ interests in each epoch against each class/sub-class relationship,
we can make use of the structure of the class hierarchy for measuring the
similarity. We consider that the denominator should be added when the tax-
onomy of items is not so detailed, that is, each of the members of C has
many sub-classes, like our evaluation dataset of music listening history. This
is because our method can compute the similarity of users’ interests against
a class by investigating the overlap rate of its sub-classes owned by users.

6. As is the case with SC(a,u,t), it computes the similarity between the current
item transactions of active user a and the item transactions in epoch t of
user u. This similarity, SI(a, u, t), is computed as follows (line 12):
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SI(a,u,t)=
∑
Cj∈C

∑
Ik∈{Ij,T (a)∩Ij,t(u)} S(a, u,Ik,t)

|{Ij,T (a)∪Ij,t(u)}|
. (7)

We can also use cosine similarity, see Equation (1) in computing the simi-
larity between the current item transactions of active user a and the item
transactions in epoch t of user u. In our evaluation, we compared those
similarity measurements against item transactions.

7. Our method normalizes the similarity against classes and that against items.
Thus, the variance and the average of similarity scores among all epochs of
users equal one and zero, respectively. We denote those normalized similari-
ties as S

′

C(a, u, t) and S
′

I(a, u, t). Next, our method computes the similarity
between the transactions in current epoch T of user a and those in epoch t
of user u. This similarity, S(a, u, t), is computed as follows (line 14-17):

S(a, u, t) = S
′

C(a, u, t) + S
′

I(a, u, t). (8)

Note that our algorithm is fast even though it includes several loops because
typically there are few user transactions in each instance or each class in each
epoch.

4.3 Computing Recommendation

Our method uses the similarity values computed by Equation (8) to compute a
prediction value against item Ij for active user a. The predicted value of user a
on item Ij , pa,j , is obtained by the following equation:

pa,j =

∑
u,t∈N (itu,j · S(a, u, t))∑

u,t∈N S(a, u, t)
, (9)

where N is the set of transactions in epochs of users that are most similar to
the current transactions of user a.

This equation is similar to Equation (2) used in traditional memory-based
collaborative filtering. However, note that our method computes item prediction
from the most similar transactions in epochs not from the most similar users.
Similar users, computed by traditional memory-based collaborative filtering, may
transact different types of items at different times. Our method can filter out
such transaction noise for the active user, and so achieves high accuracy.

5 Evaluation

We conduct an evaluation to confirm the method’s accuracy.
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5.1 Datasets

Our evaluation used the following two datasets:

Music listening history. We crawled users’ tweets against music artists (items)
from Twitter from 6th July to 20th September, 2011. To extract users’ listening
history from tweets, we first extracted artist names from the tweets submitted
through last.fm twitter client10. Tweets submitted via the client have a fixed
format allowing us extract music artist name without error. We also extracted
tweets other than those submitted from the client to increase the number of music
tweets. For this, we pulled the time-line of tweets of crawled users and checked
if those tweets included both music artist name and hashtag “#nowlistening”.
Users’ listening history has been used for evaluating recommendations [13]. By
analyzing tweets, we can attach temporal information to the listening history.

The taxonomy of music artists was gathered from last.fm API according to the
following procedure: (1) We first crawled the top tags (descending popularity)
for each artist. We also crawled 26 genre tags as classes that were located at
the top of the “music page” of last.fm to categorize artists. (2) We next crawled
the top similar tags for each genre tag and classified those top similar tags as
sub-classes of the genre class11. (3) We then classified an artist as an instance
under sub-classes if their tags were the same as the tags crawled for the artist.
For example, if “Beatles” has a tag “Classical rock” and the genre class “Rock”
has a similar tag “Classical rock”, we create sub-class “Classical rock” under
class “Rock” and classify “Beatles” into “Classical rock” as an instance. (4) We
resolved the ambiguity caused by tags with the same name. We checked whether
an artist had ambiguous tags (i.e. were classified in several genres). If so, we
checked the most popular tag for the artist whose name was the same as the
genre tag. We also checked whether the ambiguous tag was one of the tags similar
to that genre tag. If so, we classified these ambiguous tags into that genre class as
sub-classes. The other ambiguous tags were eliminated. For example, if the artist
“Beatles” had a tag “classic” but the most popular tag of this artist whose name
was the same as the genre tag was “Rock” and “Rock” had “classic” as similar
tag, we classified “Beatles” into sub-class “classic” under class “Rock”. Finally,
we permitted an artist to be classified into not more than three sub-classes in
the taxonomy according to the tag popularity for the artist.

As a result, we could extract 62,527 tweets of 14,884 users against 6,886
artists (items) in creating the evaluation dataset. The taxonomy of artists has
1,223 classes and has three hierarchy levels; first hierarchy level is root class. The
classes (tags) in the lowest hierarchy in the taxonomy are themselves concrete,
however, the parent classes of those classes are not so detailed12. Thus, we need
the denominator of Equation (6) as explained in the method section.
10 http://tweetmlyast.fm/
11 Thus, the music taxonomy is really a taxonomy expanded with similar tags created

by statistical analysis against tagging activities of last.fm users.
12 The music taxonomy has 26 genre-classes. Each genre-class has, on average, about

46 sub-classes. We consider that each genre-class can be categorized in more detail.

http://tweetmlyast.fm/
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Restaurant visiting history We also used a restaurant visiting history gathered
from the popular Japanese gourmet guide site, Tabelog with its expert-created
taxonomy. This dataset was also used for the evaluation of recommendation
methods [18,19]. Users submit reviews against restaurants that they liked, along
with the date of dining.

We focused on restaurants in Tokyo, and extracted 63,885 reviews of 13,633
users against 44,321 restaurants (items) posted from 9th March to 20th June,
2010. The taxonomy of restaurants is quite deep; it has 318 genres as item
classes, and has four or five hierarchy levels. For example, the end classes of this
taxonomy have genres such as “Wine bar” and “Beer garden”.

5.2 Compared Methods

We compared our method to the following methods:

– Cosine: This is the most commonly used memory-based collaborative fil-
tering method; user similarity is based on cosine similarity. The prediction
values of items are computed by using Equation (2).

– Time: This is the time-weighted collaborative filtering method [6] that uses a
time decay function that computes the time weights for different items by de-
creasing the weights of old data. Time decay is determined by the exponential
function e−(λ·(T−t)). We selected this method because we consider that our
method, which is implemented to realize simple neighborhood-based collab-
orative filtering should be compared with the simplest and closest methods.

– Taxonomy: this taxonomy-based method was proposed by [18]. It computes
the similarity of users from the transactions of users against both items and
their classes; it does not use time information.

– LDA: this method is based on LDA [3], which is a representative topic model,
however, it does not use time information. Method LDA is model-based col-
laborative filtering. We selected this method for investigating the character-
istics of human-defined classes and those of data-driven topics when applying
the methods to the datasets that contain time information.

– Without classes: This is the proposed method with the taxonomy of items
omitted 13. This method was chosen for investigating the effect of using
taxonomy of items in measuring similarity between transactions in epochs.

5.3 Methodology and Parameter Setup

We divided each dataset into a training dataset and a prediction dataset. The
latter contains the data gathered over the last week and former contains the
remainder. We then used the training dataset to measure the similarity of trans-
actions in epochs. The starting time of epochs was shifted in units of one week
(this means each adjacent epoch has overlap of two weeks) and the length of
each epoch was varied from one week to three weeks. The results shown later are

13 This is equivalent to not summing the first term in Eq. (8) when computing S(a, u, t).
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those achieved with the length of epoch set to three weeks because our method
achieves the most accurate results at this setting. In concrete, the accuracy de-
grades if epoch length differs from 3 weeks. Basically, epochs < 3 weeks yield
sparse transactions and epochs > 3 weeks yield transactions that include sev-
eral different classes. We also confirmed that accuracy degrades if the overlap
between epochs equals zero because it is difficult to catch the dynamic change
of users’ interests in detail. We next computed the prediction values of items
for the active user by using Equation (9). We focused on users who had both
item transactions in the current (last) epoch in the training dataset and those
in the prediction dataset as active users. As a result, the music dataset and the
restaurant dataset have 1,555 and 2,034 users to be evaluated, respectively.

We used Average Precision (AP) [16] to evaluate our method. If we let the
number of ranked items be k, the number of correct answers among the top-j
ranked items be Nj , and the number of all correct answers be A (defined as

items the user is interested in), AP is defined as 1
A

∑
1≤j≤k

Nj

j .
We checked AP against the top-k ranked items. We set k to 5, 10, 20, 40,

and 60 in our evaluation, and the corresponding results are denoted as AP@5,
AP@10, AP@20, AP@40, and AP@60. The active user ordinarily checks the top
ranked items in the list, thus typical recommender systems only use those items.
We did not check the accuracy against lower ranked items because we consider
that the highly ranked items are more important as did a previous work [10].
Some readers may consider that top-40 or top-60 items are too many for the
active user. We, however, consider that, in some cases, the recommendation
diversity, and hence user satisfaction, is improved by randomly showing about 5
of the 40 or more top ranked items in the recommendation [30].

We set the number of N (number of most similar transactions per epoch used
in methods other than LDA) in both datasets to 20. We also set parameter λ
used in method Time to 0.2 for the music dataset and to 0.1 for the restaurant
dataset. The number of topics in method LDA was set to 20 for both datasets.
Those settings maximize the accuracy for each method.

5.4 Results

We evaluated the accuracy of our methods by changing the number of items
recommended to the active user. AP@k results against the music dataset are
shown in Table 2 and those against the restaurant dataset are shown in Table 3.
Our methods (Proposed or Without Classes) offer better AP@k than the other
methods in all cases other than AP@60 of LDA method against the restaurant
dataset. Bold typeset indicates statistical significance at p < 0.05 (t-test was
used) compared to Time and LDA. This indicates that Proposed well employs
the taxonomy of items and collects the most similar transactions in epochs with
the current transactions of the active user while eliminating noisy transactions.
We also applied cosine similarity to compute the similarity of item transactions
in Equation (5) and (7) in our methods and confirmed that it also has higher
accuracy than Time. Due to the space limitation, we omit the results of this.
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Table 2. Results (x10−2) against music dataset

AP@5 AP@10 AP@20 AP@40 AP@60
Cosine 1.10 1.35 1.59 1.85 2.00
Time 1.16 1.45 1.63 1.91 2.01

Taxonomy 0.92 1.10 1.52 1.74 1.87
LDA 0.31 0.39 0.48 0.54 0.58

Without classes 1.18 1.52 1.67 1.91 2.01
Proposed 1.14 1.48 1.66 1.99 2.13

Table 3. Results (x10−3) against restaurant dataset

AP@5 AP@10 AP@20 AP@40 AP@60
Cosine 1.32 1.44 1.53 1.69 1.77
Time 1.46 1.52 1.63 1.91 2.01

Taxonomy 1.06 1.19 1.27 1.38 1.46
LDA 1.60 1.69 1.82 2.03 2.14

Without classes 1.54 1.61 1.74 1.80 1.86
Proposed 1.63 1.78 1.90 2.08 2.12

Interestingly, Proposed improves the accuracy of higher ranked items more in
the restaurant dataset than in the music dataset since the restaurant taxonomy
is more detailed than the music one. We also investigated the effect of procedure
(4) in Section 5.1 on the recommendation accuracy. This procedure resolves the
ambiguity caused by tags with the same name and thus avoids the classification
mistakes when expanding the taxonomy with user-generated tags. As a result
(we omit the result due to space limitation), we found that the accuracy of the
method Proposed becomes much worse if we omit procedure (4). Thus, a detailed
taxonomy increases the recommendation accuracy of our method.

Our methods also offer higher accuracy than the Taxonomy method. This is
because Taxonomy simply reflects users’ transaction frequency against items to
their classes and does not consider the time-line of users’ transactions. Thus,
interests of a user are constructed by the many classes transacted over the entire
time-line of the user. This approach is useful when recommending highly novel
items that are located in classes that the active user has not yet transacted while
maintaining high recommendation accuracy (in terms of Mean Absolute Error)
as [18] described. On the other hand, Proposed focuses on epochs to improve
accuracy. The effect is to suppress the mixing of classes that are not applicable
to the current transactions of the active user, which improves accuracy.

Proposed also offers much higher accuracy than the LDA method against
the music dataset, and it offers higher accuracy than the LDA method against
the restaurant dataset method except for AP@60. Items transacted by users
in the music dataset appear and disappear over short time cycles according to
the trends in each epoch. On the other hand, restaurants visited by users do not
change so often 14. From those results, topics estimated by the LDA method are

14 The high accuracy of the LDA method for the restaurant dataset has another reason.
After investigation, we found that LDA could estimate topics based on restaurant
location. Users tend to go dining in the same area even in different epochs.
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not useful when the item transactions are more dynamic. On the other hand,
human-defined classes do not change so often, thus Proposed achieves higher
accuracy in this situation. Variants of the LDA method have appeared that
consider time information [8]. An LDA method that employs the taxonomy of
words (items) has been proposed [5]. Thus, we consider that the combination
of topics and taxonomies for estimating user interests is promising for future
recommendation methods in dynamic situations.

We then investigated the effect of using a taxonomy of items on measuring the
similarity between transactions in epochs. To this end, we compared Proposed
and Without classes. For the music dataset, Without classes achieves the high-
est accuracy against AP@5, AP@10, and AP@20 because the music taxonomy
is not so detailed, however, it can not achieve higher accuracy against AP@40
and AP@60 than Proposed due to the sparsity problem caused by lack of the
taxonomy. Another interesting finding is that Without classes can not achieve
higher accuracy against AP@40 and AP@60 than Time. This is because Without
classes uses only current transactions of the active user to compute recommen-
dations for the active user while Time uses all transactions of the active user.
Thus, Without classes suffers from the sparsity problem. On the other hand,
Proposed achieves higher accuracy than Time in all cases though it also uses
only current transactions of the active user. The above results confirm that our
method, Proposed, avoids the sparsity problem and improves recommendation
accuracy by using available taxonomies.

Note that our methods use only item transactions in the current epoch of
the active user for comparison purposes. Considering this fact, the above re-
sults confirm that our two ideas have great potential for future recommendation
techniques that use the temporal information of the users’ item transactions;
utilizing the transactions of the active user in older epochs can greatly enhance
the recommendation accuracy.

Finally, we show examples of recommendations made by only our method,
Proposed. It can recommend item “Sam Sparro” (in class “Electronic”/
“Electronic pop”) to the user who recently transacted items, “Gym Class Heroes”
(in class “Pop”/“Dance”) and “Blue Foundation” (in class “Electronic”/
“Dance”). The number of recent transactions against “Sam Sparro” is not so
many in the training dataset, however, our method can recommend it to the
active user. This is because there are several transactions that have classes
“Electronic” and “Pop”/“Dance”, and item “Sam Sparro”. On the other hand,
Time tends to recommend items that are frequently transacted in the current
epoch such as items “NE-YO” and “Blink 182”, which were new releases at that
time. Taxonomy tends to recommend items in the classes that are transacted
frequently such as item “Maroon” in class “Alternative rock” and item “Nicki
Minaj” in class “R&B”, even if they are not in the same classes that the active
user has transacted in current epoch. Those results decrease the accuracy of the
methods.
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6 Conclusion

This paper proposed a novel method that accurately predicts user interests by
dividing the historical data into discrete time periods, epochs, and identifying
those periods that best match the current transactions of the active user. More-
over, it uses the taxonomy-based approach to model transactions by users and
so well identifies the similarity of transactions even if there are few transactions
in each epoch. It computes recommendations for the active user by analyzing
the extracted transactions. We evaluated our method using a music listening his-
tory and a restaurant visit history, and confirmed that our method predicts user
interests much more accurately than the previous time-weighted collaborative
filtering approach. We also confirmed that our method is superior to the typical
topic model when applied to the situations in which items transacted by users
dynamically change over time. The basic ideas that underlie in our method are
quite simple but have great potential for future recommendation techniques that
use the temporal information of the users’ item transactions.

Acknowledgements. I dedicate this research study to my wife Kumiko Nakat-
suji. She gave me sincere support and encouragement throughout this study.
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4. Cantador, I., Castells, P., Belloǵın, A.: An Enhanced Semantic Layer for Hybrid
Recommender Systems: Application to News Recommendation. Int. J. Semantic
Web Inf. Syst. 7(1), 44–78 (2011)

5. Chemudugunta, C., Holloway, A., Smyth, P., Steyvers, M.: Modeling Documents by
Combining Semantic Concepts with Unsupervised Statistical Learning. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 229–244. Springer, Heidelberg (2008)

6. Ding, Y., Li, X.: Time weight collaborative filtering. In: Proc. CIKM 2005, pp.
485–492 (2005)

7. Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback
Datasets. In: Proc. ICDM 2008, pp. 263–272 (2008)

8. Iwata, T., Watanabe, S., Yamada, T., Ueda, N.: Topic tracking model for analyzing
consumer purchase behavior. In: Proc. IJCAI 2009, pp. 1427–1432 (2009)

9. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for
Linked Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 402–417. Springer, Heidelberg (2010)

10. Jamali, M., Ester, M.: Using a trust network to improve top-N recommendation.
In: Proc. RecSys 2009, pp. 181–188 (2009)



Collaborative Filtering by Analyzing Dynamic 377

11. Jech, T.: Set Theory: The Third Millennium Edition, Revised and Expanded.
Springer Monographs in Mathematics. Springer (2003)

12. Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM
Rev. 51(3), 455–500 (2009)

13. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative
recommendation. In: Proc. SIGIR 2009, pp. 195–202 (2009)

14. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proc. KDD 2009,
pp. 447–456 (2009)

15. Liu, N.N., Zhao, M., Xiang, E., Yang, Q.: Online evolutionary collaborative filter-
ing. In: Proc. RecSys 2010, pp. 95–102 (2010)

16. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

17. McGuinness, D.L.: Ontologies Come of Age. In: Spinning the Semantic Web, pp.
171–194. MIT Press (2003)

18. Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K., Ishida, T.:
Classical music for rock fans?: novel recommendations for expanding user interests.
In: Proc. CIKM 2010, pp. 949–958 (2010)

19. Nakatsuji, M., Fujiwara, Y., Uchiyama, T., Fujimura, K.: User Similarity from
Linked Taxonomies: Subjective Assessments of Items. In: Proc. IJCAI 2011,
pp. 2305–2311 (2011)

20. Nakatsuji, M., Miyoshi, Y., Otsuka, Y.: Innovation Detection Based on User-
Interest Ontology of Blog Community. In: Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 515–528. Springer, Heidelberg (2006)

21. Nakatsuji, M., Yoshida, M., Ishida, T.: Detecting innovative topics based on user-
interest ontology. Journal of Web Semantics 7(2), 107–120 (2009)

22. Parameswaran, A.G., Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Recsplorer:
recommendation algorithms based on precedence mining. In: Proc. SIGMOD 2010,
pp. 87–98 (2010)

23. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and Building Ontologies
of Linked Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 598–614. Springer, Heidelberg (2010)

24. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov
chains for next-basket recommendation. In: Proc. WWW 2010, pp. 811–820 (2010)

25. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An
Open Architecture for Collaborative Filtering of Netnews. In: Proc. CSCW 1994,
pp. 175–186 (1994)

26. Rogers, E.M.: Diffusion of innovations, 5th edn. Free Press (2003)
27. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Analysis of recommendation

algorithms for e–commerce. In: Proc. EC 2000, pp. 158–167 (2000)
28. Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.R.: Semantic Mod-

elling of User Interests Based on Cross-Folksonomy Analysis. In: Sheth, A.P., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 632–648. Springer, Heidelberg (2008)

29. Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., Sun, J.: Temporal
recommendation on graphs via long- and short-term preference fusion. In: Proc.
KDD 2010, pp. 723–732 (2010)

30. Ziegler, C.N., McNee, S.M.: Improving recommendation lists through topic diver-
sification. In: Proc. WWW 2005, pp. 22–32 (2005)

31. Zimdars, A., Chickering, D.M., Meek, C.: Using Temporal Data for Making Rec-
ommendations. In: Proc. UAI 2001, pp. 580–588 (2001)



Link Discovery with Guaranteed Reduction

Ratio in Affine Spaces with Minkowski Measures

Axel-Cyrille Ngonga Ngomo

Department of Computer Science
University of Leipzig

Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de

http://bis.uni-leipzig.de/AxelNgonga

Abstract. Time-efficient algorithms are essential to address the com-
plex linking tasks that arise when trying to discover links on the Web of
Data. Although several lossless approaches have been developed for this
exact purpose, they do not offer theoretical guarantees with respect to
their performance. In this paper, we address this drawback by presenting
the first Link Discovery approach with theoretical quality guarantees. In
particular, we prove that given an achievable reduction ratio r, our Link
Discovery approach HR3 can achieve a reduction ratio r′ ≤ r in a metric
space where distances are measured by the means of a Minkowski metric
of any order p ≥ 2. We compare HR3 and the HYPPO algorithm imple-
mented in LIMES 0.5 with respect to the number of comparisons they
carry out. In addition, we compare our approach with the algorithms im-
plemented in the state-of-the-art frameworks LIMES 0.5 and SILK 2.5
with respect to runtime. We show that HR3 outperforms these previ-
ous approaches with respect to runtime in each of our four experimental
setups.

1 Introduction

One of the key principles of the Linked Data paradigm is the inclusion of links
between data sets [1]. While this principle is central for tasks such as federated
querying [20], cross-ontology question answering [12], large-scale inferences [22]
and data integration [3], it is increasingly tedious to implement manually. One of
the main difficulty behind the discovery of links is its intrinsic time complexity.
Over the last five years, the Linked Data Web has evolved from 12 knowledge
bases (May 2007) to more than 295 knowledge bases in September 2011 which
contain more than 31 billion triples1. The combination of the mere size of these
knowledge bases and the quadratic a-priori time complexity of Link Discov-
ery leads to brute-force algorithms requiring weeks and even longer to compute
links between large knowledge bases such as DBpedia2 and LinkedGeoData3.

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2 http://dbpedia.org
3 http://linkedgeodata.org
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Addressing this challenge demands the development of time-efficient and loss-
less solutions for the computation of links. Link Discovery frameworks such as
LIMES [15,14] and SILK [9] have been designed to address this challenge. Yet,
none of the manifold approaches they implement provides theoretical guarantees
with respect to their performance. Thus, so far, it was impossible to predict how
Link Discovery frameworks would perform w.r.t. time or space requirements.
Consequently, the deployment of techniques such as customized memory man-
agement [5] or time-optimization strategies [23] (e.g., automated scaling for cloud
computing when provided with very complex linking tasks) was rendered very
demanding if not impossible.

In this paper, we introduce the novel approach HR3. Similar to the HYPPO
algorithm [14] (on whose formalism it is based), HR3 assumes that the property
values that are to be compared are expressed in an affine space with a Minkowski
distance. Consequently, it can be most naturally used to process the portion of
link specifications that compare numeric values (e.g., temperatures, elevations,
populations, etc.). HR3 goes beyond the state of the art by being able to carry
out Link Discovery tasks with any achievable reduction ratio [6]. This theoretical
guarantee is of practical importance, as it does not only allow our approach to
be more time-efficient than the state of the art but also lays the foundation for
the implementation of customized memory management and time-optimization
strategies for Link Discovery. The three main contributions of this paper are
thus as follows:

1. We present a novel indexing scheme for hypercubes in metric spaces with
Minkowski distances. This scheme builds the basis upon which HR3 discards
unnecessary comparisons.

2. We prove formally that HR3’s reduction ratio can be made arbitrarily close
to the optimal reduction ratio. For this purpose, we first define the relative
reduction ratio (RRR). We then show that HR3’s RRR converges towards
a lower bound and prove this bound to be exactly 1.

3. We show experimentally that in addition to providing theoretical guarantees,
our approach outperforms the state of the art. For this purpose, we compare
the number of comparisons carried out by HR3 and HYPPO. In addition, we
compare HR3’s runtime with that of HYPPO (as implemented in LIMES)
and SILK4.

The rest of this paper is structured as follows: In Section 2, we present prelimi-
naries and the notation used to formalize our approach HR3. We also introduce
the relative reduction ratio RRR. We then prove that our algorithm can achieve
any RRR score larger than 1 and that we can therewith achieve any possible
reduction ratio (Section 3). After a short presentation of the implementation of
our algorithm in Section 4, we evaluate our approach against SILK and HYPPO
in four experiments in Section 5. Subsequently, in Section 6, we give an overview
of previous approaches to Link Discovery. Finally, we discuss our findings and
conclude in Section 7.
4 The algorithm was implemented in the new verison of LIMES, of which a demo is
available at http://limes.aksw.org

http://limes.aksw.org
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2 Preliminaries

In this section, we present the preliminaries necessary to understand the subse-
quent parts of this work. In particular, we define the problem of Link Discovery,
the reduction ratio and the relative reduction ratio formally as well as give an
overview of space tiling for Link Discovery. The subsequent description of HR3

relies partly on the notation presented in this section.

2.1 Link Discovery

The goal of Link Discovery is to compute the set of pair of instances (s, t) ∈ S×T
that are related by a relation R, where S and T are two not necessarily distinct
sets of instances. One way to automate this discovery is to compare the s ∈ S
and t ∈ T based on their properties using a distance measure. Two entities are
then considered to be linked via R if their distance is less or equal to a threshold
θ [15].

Definition 1 (Link Discovery on Distances). Given two sets S and T of
instances, a distance measure δ over the properties of s ∈ S and t ∈ Tand a
distance threshold θ ∈ [0,∞[, the goal of Link Discovery is to compute the set
M = {(s, t, δ(s, t)) : s ∈ S ∧ t ∈ T ∧ δ(s, t) ≤ θ}.

Note that in this paper, we are only interested in lossless solutions, i.e., solutions
that are able to find all pairs that abide by the definition given above.

2.2 Reduction Ratio

A brute-force approach to Link Discovery would execute a Link Discovery task
on S and T by carrying out |S||T | comparisons. One of the key ideas behind time-
efficient Link Discovery algorithms A is to reduce the number of comparisons
that are effectively carried out to a number C(A) < |S||T | [21]. The reduction
ratio RR of an algorithm A is given by

RR(A) = 1− C(A)

|S||T | . (1)

RR(A) captures how much of the Cartesian product |S||T | was not explored
before the output of A was reached. It is obvious that even an optimal lossless
solution which performs only the necessary comparisons cannot achieve a RR of
1. Let Cmin be the minimal number of comparisons necessary to complete the
Link Discovery task without losing recall, i.e., Cmin = |M|. We define the relative
reduction ratioRRR(A) as the proportion of the minimal number of comparisons
that was carried out by the algorithm A before it terminated. Formally

RRR(A) =
1− Cmin

|S||T |

1− C(A)
|S||T |

=
|S||T | − Cmin

|S||T | − C(A)
. (2)



LIMES 381

RRR(A) indicates how close A is to the optimal solution with respect to the
number of candidates it tests. Given that C(A) ≥ Cmin, RRR(A) ≥ 1. Note
that the larger the value of RRR(A), the poorer the performance of A with
respect to the task at hand.

The main observation that led to this work is that while most algorithms
aim to optimize their RR (and consequently their RRR), current approaches to
Link Discovery do not provide any guarantee with respect to the RR (and con-
sequently the RRR) that they can achieve. In this work, we present an approach
to Link Discovery in metric spaces whose RRR is guaranteed to converge to 1.

2.3 Space Tiling for Link Discovery

Our approach, HR3, builds upon the same formalism on which the HYPPO
algorithm relies, i.e., space tiling. HYPPO addresses the problem of efficiently
mapping instance pairs (s, t) ∈ S × T described by using exclusively numeric
values in a n-dimensional metric space and has been shown to outperform the
state of the art in previous work [14]. The observation behind space tiling is
that in spaces (Ω, δ) with orthogonal, (i.e., uncorrelated) dimensions5, common
metrics for Link Discovery can be decomposed into the combination of func-
tions φi,i∈{1...n} which operate on exactly one dimension of Ω : δ = f(φ1, ..., φn).
For Minkowski distances of order p, φi(x, ω) = |xi − ωi| for all values of i and

δ(x, ω) = p

√
n∑

i=1

φp
i (x, ω)

p. A direct consequence of this observation is the inequal-

ity φi(x, ω) ≤ δ(x, ω). The basic insight that results this observation is that the
hypersphere H(ω, θ) = {x ∈ Ω : δ(x, ω) ≤ θ} is a subset of the hypercube V de-
fined as V (ω, θ) = {x ∈ Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ}. Consequently, one can
reduce the number of comparisons necessary to detect all elements of H(ω, θ) by
discarding all elements which are not in V (ω, θ) as non-matches. Let Δ = θ/α,
where α ∈ N is the granularity parameter that controls how fine-grained the
space tiling should be (see Figure 1 for an example). We first tile Ω into the
adjacent hypercubes (short: cubes) C that contain all the points ω such that

∀i ∈ {1...n}, ciΔ ≤ ωi < (ci + 1)Δ with (c1, ..., cn) ∈ Nn. (3)

We call the vector (c1, ..., cn) the coordinates of the cube C. Each point ω ∈
Ω lies in the cube C(ω) with coordinates ('ωi/Δ()i=1...n. Given such a space
tiling, it is obvious that V (ω, θ) consists of the union of the cubes such that
∀i ∈ {1...n} : |ci − c(ω)i| ≤ α.

Like most of the current algorithms for Link Discovery, space tiling does not
provide optimal performance guarantees. The main goal of this paper is to build
upon the tiling idea so as to develop an algorithm that can achieve any possible
RR. In the following, we present such an algorithm, HR3.

5 Note that in all cases, a space transformation exists that can map a space with
correlated dimensions to a space with uncorrelated dimensions.



382 A.-C. Ngonga Ngomo

(a) α = 1 (b) α = 2 (c) α = 4

Fig. 1. Space tiling for different values of α. The colored squares show the set of
elements that must be compared with the instance located at the black dot. The points
within the circle lie within the distance θ of the black dot. Note that higher values of
α lead to a better approximation of the hypersphere but also to more hypercubes.

3 Approach

The goal of the HR3 algorithm is to efficiently map instance pairs (s, t) ∈ S×T
that are described by using exclusively numeric values in a n-dimensional metric
space where the distances are measured by using any Minkowski distance of order
p ≥ 2. To achieve this goal, HR3 relies on a novel indexing scheme that allows
achieving any RRR greater than or equal to than 1. In the following, we first
present our new indexing scheme and show that we can discard more hypercubes
than simple space tiling for all granularities α such that n(α−1)p > αp. We then
prove that by these means, our approach can achieve any RRR greater than 1,
therewith proving the optimality of our indexing scheme with respect to RRR.

3.1 Indexing Scheme

Let ω ∈ Ω = S ∪ T be an arbitrary reference point. Furthermore, let δ be the
Minkowski distance of order p. We define the index function as follows:

index(C, ω) =

⎧⎨⎩0 if ∃i : |ci − c(ω)i| ≤ 1 with i ∈ {1, ..., n},
n∑

i=1

(|ci − c(ω)i| − 1)p else,
(4)

where C is a hypercube resulting from a space tiling and ω ∈ Ω. Figure 2 shows
an example of such indexes for p = 2 with α = 2 (Figure 2(a)) and α = 4
(Figure 2(b)).

Note that the blue square with index 0 contains the reference point ω. Also
note that our indexing scheme is symmetric with respect to C(ω). Thus, it is
sufficient to prove the subsequent lemmas for hypercubes C such that ci > c(ω)i.
In Figure 2, this is the upper right portion of the indexed space with the gray
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(b) α = 4

Fig. 2. Space tiling and resulting index for a two-dimensional example. Note that the
index in both subfigures was generated for exactly the same portion of space. The black
dot stands for the position of ω.

background. Finally, note that the maximal index that a hypercube can achieve
is n(α− 1)p as max |ci − ci(ω)| = α per construction of H(ω, θ).

The indexing scheme proposed above guarantees the following:

Lemma 1. index(C, ω) = x→ ∀s ∈ C(ω) ∀t ∈ C δp(s, t) > xΔp.

Proof. This lemma is a direct implication of the construction of the index.
index(C, ω) = x implies that

n∑
i=1

(ci − c(ω)i − 1)p = x.

Now given the definition of the coordinates of a cube (Eq. 3), the following holds:

∀s ∈ C(ω) ∀t ∈ C |si − ti| ≥ (|ci − c(ω)i| − 1)Δ.

Consequently,

∀s ∈ C(ω) ∀t ∈ C

n∑
i=1

|si − ti|p ≥
n∑

i=1

(|ci − c(ω)i| − 1)pΔp.

By applying the definition of the Minkowski distance of the index function, we
finally get ∀s ∈ C(ω) ∀t ∈ C δp(s, t) > xΔp. ��

Note that given that ω ∈ C(ω), the following also holds:

index(C, ω) = x→ ∀t ∈ C : δp(ω, t) > xΔp. (5)
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3.2 HR3

The main insight behind HR3 is that in spaces with Minkowski distances, the
indexing scheme proposed above allows to safely (i.e., without dismissing correct
matches) discard more hypercubes than when using simple space tiling. More
specifically,

Lemma 2. ∀s ∈ S : index(C, s) > αp implies that all t ∈ C are non-matches.

Proof. This lemma follows directly from Lemma 1 as

index(C, s) > αp → ∀t ∈ C, δp(s, t) > Δpαp = θp. (6)

For the purpose of illustration, let us consider the example of α = 4 and p = 2
in the two-dimensional case displayed in Figure 2(b). Lemma 2 implies that any
point contained in a hypercube C18 with index 18 cannot contain any element t
such that δ(s, t) ≤ θ. While space tiling would discard all black cubes in Figure
2(b) but include the elements of C18 as candidates, HR3 discards them and still
computes exactly the same results, yet with a better (i.e., smaller) RRR.

One of the direct consequences of Lemma 2 is that n(α − 1)p > αp is a
necessary and sufficient condition for HR3 to achieve a better RRR than simple
space tiling. This is simply due to the fact that the largest index that can be

assigned to a hypercube is
n∑

i=1

(α− 1)p = n(α− 1)p. Now, if n(α− 1)p > αp, then

this cube can be discarded. For p = 2 and n = 2 for example, this condition is
satisfied for α ≥ 4. Knowing this inequality is of great importance when deciding
on when to use HR3 as discussed in Section 5.

Let H(α, ω) = {C : index(C, ω) ≤ αp}. H(α, ω) is the approximation of the
hypersphere H(ω) = {ω′ : δ(ω, ω′) ≤ θ} generated by HR3. We define the
volume of H(α, ω) as

V (H(α, ω)) = |H(α, ω)|Δp. (7)

To show that given any r > 1, the approximation H(α, ω) can always achieve a
an RRR(HR3) ≤ r, we begin by showing that

Lemma 3. ∀α > 1 V (H(α, ω)) > V (H(2α, ω)).

Proof. Any cube C discarded by HR3(α) is split into 2n cubes C by HR3(2α),
each of which has the coordinates 2ci or 2ci + 1. In the worst case for HR3,
ω is assigned the coordinates 2ci(ω) + 1. Figure 3 exemplifies this property of
our indexing scheme. Figure 3(b) is an indexing of the same space with the the
twofold granularity.

When processed by HR3(2α), the minimal index of a hypercube C is then
given by

min index(C) =
n∑

i=1

(2ci − (2ci(ω) + 1)− 1)p =

n∑
i=1

2p(ci − c(ω)− 1)p.
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Fig. 3. Commparison of coordinates for granularities α and 2α

Given that C was discarded, we know that
n∑

i=1

(ci−ci(ω)−1) > αp. Consequently,

min index(C) > (2α)p.

This leads to all C that were discarded by HR3(α) also being discarded by
HR3(2α). Proving our lemma is consequently equivalent to showing that there
is a hypercube C′ ∈ H(α, ω) that is such that one of the 2n cubes Q it is split
into gets discarded by HR3(2α). An example of such a case for p = 2 and n = 2
is shown in Figures 4(a) and 4(b). For α = 4, the cubes that are adjacent to the
corner and do not lie on the diagonal of the square are not excluded. Yet, for
α = 8, 2 of the hypercubes in which they are split are discarded.

Let C = (c1, ..., cn) /∈ H(ω, α) while C′ = (c1 − 1, ..., cn) ∈ H(ω, α). In the
following, we show that the hypercube Q = (2c1 − 1, 2c2 + 1, ..., 2cn + 1), which
is one of the hypercubes that C′ gets split into by virtue of its coordinates,6 will
be discarded by HR3(2α), i.e., Q /∈ H(ω, 2α).

We know that C = (c1, ..., cn) gets discarded, i.e.,
n∑

i=1

(ci − ci(ω) − 1)p > αp.

Now, min index(Q) = (2c1− (2c1(ω)+ 1)− 1)p+
n∑

i=2

(2ci+1− (2ci(ω)+ 1)− 1)p.

Consequently, min index(Q) = 2p(c1 − c1(ω)− 1)p +
n∑

i=2

[2(ci − ci(ω)− 1) + 1]p.

This value is obviously larger than
n∑

i=1

[2(ci− ci(ω)− 1)]p. From the premise that

n∑
i=1

(ci − ci(ω)− 1)p > αp, we can finally infer that min index(Q) > (2α)p. Thus,

we can conclude that ∀α > 1 V (H(α, ω)) > V (H(2α, ω)). ��

One of the consequences of Lemma 2 w.r.t.RRR(HR3, α), i.e., the RRR achieved
by HR3 when the granularity is set to α, is

∀α > 1 : RRR(HR3, α) > RRR(HR3, 2α). (8)

6 Note that 2c1 − 1 = 2(c1 − 1) + 1.
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Note that this inequality is not sufficient to prove that we can achieve any RRR
greater than 1, as series can converge to any real number. Consequently, we still
need to show the following:

Lemma 4. lim
α→∞

RRR(HR3, α) = 1.

Proof. The cubes that are not discarded by HR3(α) are those for which (|ci −
ci(ω)| − 1)p ≤ αp. When α → ∞, Δ becomes infinitesimally small, leading to
the cubes being single points. Each cube C thus contains a single point x with
coordinates xi = ciΔ. Especially, ci(ω) = ω. Consequently,

n∑
i=1

(|ci − ci(ω)| − 1)p ≤ αp ↔
n∑

i=1

(
|xi − ωi| −Δ

Δ

)p

≤ αp. (9)

Given that θ = Δα, we get

n∑
i=1

(
|xi − ωi| −Δ

Δ

)p

≤ αp ↔
n∑

i=1

(|xi − ωi| −Δ)p ≤ θp. (10)

Finally, Δ→ 0 when α→∞ leads to

n∑
i=1

(|xi − ωi| −Δ)p ≤ θp ∧ α→∞→
n∑

i=1

|xi − ωi|p ≤ θp. (11)

This is exactly the condition for linking specified in Definition 1 applied to
Minkowski distances of order p. Consequently, H(ω,∞) is exactly H(ω, θ) for
any θ. Thus, the number of comparisons carried out by HR3(α) when α → ∞
is exactly Cmin, which leads to the conclusion lim

α→∞
RRR(HR3, α) = 1. ��

Our conclusion is illustrated by Figure 4, which shows the approximations com-
puted by HR3 for different values of α with p = 2 and n = 2. The higher α, the
closer the approximation is to a circle. Note that these results allow to conclude
that for any RRR-value r larger than 1, there is a setting of HR3 that can
compute links with a RRR smaller or equal to r.

4 Implementation

The HR3 algorithm was implemented as shown in Algorithm 1. It is important
to notice that the memory requirements of HR3 are smaller than those of most
other approaches and especially than those of simple space tiling for any α such
that n(α− 1)p > αp, as HR3 then generates less hypercubes. Yet, HR3 requires
one supplementary computational step as it has to compute the index of cubes
before discarding the unnecessary ones. Consequently, although we have shown
that HR3 can achieve any RRR > 1, the question that remains to elucidate
is whether this theoretical guarantee also offers a practically superior algorithm
w.r.t. its runtime. That is the goal of the subsequent evaluation.
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(a) α = 4 (b) α = 8 (c) α = 10

(d) α = 25 (e) α = 50 (f) α = 100

Fig. 4. Approximation generated by HR3 for different values of α. The white squares
are selected whilst the colored ones are discarded.

5 Evaluation

5.1 Experimental Setup

We carried out four experiments to compare HR3 with LIMES 0.5’s HYPPO
and SILK 2.5.1. In the first and second experiments, we aimed to deduplicate
DBpedia places by comparing their names (rdfs:label), minimum elevation,
elevation and maximum elevation. We retrieved 2988 entities that possessed
all four properties. We use the Euclidean metric on the last three values with
the thresholds 49 meters resp. 99 meters for the first resp. second experiment.
The third and fourth experiments aimed to discover links between Geonames
and LinkedGeoData. Here, we compared the labels (rdfs:label), longitude and
latitude of the instances. This experiment was of considerably larger scale than
the first one, as we compared 74458 entities in Geonames with 50031 entities
from LinkedGeoData. Again, we measured the runtime necessary to compare
the numeric values when comparing them by using the Euclidean metric. We
set the distance thresholds to 1 resp. 9◦ in experiment 3 resp. 4. We ran all
experiments on the same Windows 7 Enterprise 64-bit computer with a 2.8GHz
i7 processor with 8GB RAM. The JVM was allocated 7GB RAM to ensure that
the runtimes were not influenced by swapping. Only one of the kernels of the
processors was used. Furthermore, we ran each of the experiments three times
and report the best runtimes in the following.
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Algorithm 1. The HR3 algorithm

Require: Source knowledge base S, target knowledge base T , distance threshold θ,
Minkowski distance δ of order p, granularity factor α
Mapping M := ∅
Δ = θ/α
for ω ∈ S ∪ T do

C(�ω1/Δ�, ..., �ωn/Δ�) := C(�ω1/Δ�, ..., �ωn/Δ�) ∪ {ω}
end for
for s ∈ S do

for C ∈ H(s, α) do
for t ∈ C ∩ T do

if δ(s, t) ≤ θ then
M := M ∪ (s, t, δ(s, t))

end if
end for

end for
end for
return M

5.2 Results

We first measured the number of comparisons required by HYPPO and HR3

to complete the tasks at hand (see Figure 5). Note that we could not carry out
this section of the evaluation for SILK2.5.1 as it would have required altering
the code of the framework. In the experiments 1, 3 and 4, HR3 can reduce the
overhead in comparisons (i.e., the number of unnecessary comparisons divided by
the number of necessary comparisons) from approximately 24% for HYPPO to
approximately 6% (granularity = 32). In experiment 2, the overhead is reduced
from 4.1% to 2%. This difference in overhead reduction is mainly due to the
data clustering around certain values and the clusters having a radius between
49 meters and 99 meters. Thus, running the algorithms with a threshold of 99
meters led to only a small a-priori overhead and HYPPO performing remarkably
well. Still, even on such data distributions, HR3 was able to discard even more
data and to reduce the number of unnecessary computations by more than 50%
relative. In the best case (Exp. 4, α = 32, see Figure 5(d)), HR3 required
approximately 4.13 × 106 less comparisons than HYPPO for α = 32. Even for
the smallest setting (Exp. 1, see Figure 5(a)), HR3 still required 0.64× 106 less
comparisons.

We also measured the runtimes of SILK, HYPPO andHR3. The best runtimes
of the three algorithms for each of the tasks is reported in Figure 6. Note that
SILK’s runtimes were measured without the indexing time, as the data fetching
and indexing are merged to one process in SILK. Also note that in the second
experiment, SILK did not terminate due to higher memory requirements. We
approximated SILK’s runtime by extrapolating approximately 11 min it required
for 8.6% of the computation before the RAM was filled. Again, we did not
consider the indexing time.
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Fig. 5. Number of comparisons for HR3 and HYPPO

Fig. 6. Comparison of the runtimes of HR3, HYPPO and SILK2.5.1

Due to the considerable difference in runtime (approximately 2 orders of mag-
nitude) between HYPPO and SILK, we report solely HYPPO and HR3’s run-
times in the detailed runtimes figures 7(a) and 7(b). Overall, HR3 outperformed
the other two approaches in all experiments, especially for α = 4. It is important
to note that the improvement in runtime increases with the complexity of the
experiment. For example, while HR3 outperforms HYPPO by 3% in the second
experiment, the different grows to more than 7% in the fourth experiment. In
addition, the improvement in runtime augments with the threshold. This can
be seen in the third and fourth experiments. While HR3 is less than 2% faster
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in the third experiment, it is more than 7% faster when θ = 4 the fourth ex-
periment . As expected, HR3 is slower than HYPPO for α < 4 as it carries
out exactly the same comparisons but still has the overhead of computing the
index. Yet, given that we know that HR3 is only better when n(α − 1)p > αp,
our implementation only carries out the indexing when this inequality holds. By
these means, we can ensure that HR3 is only used when it is able to discard
hypercubes that HYPPO would not discard, therewith reaching superior run-
times both with small and large values α. Note that the difference between the
improvement of the number of comparisons necessitated by HR3 and the im-
provement in runtime over all experiments is due to the supplementary indexing
step required by HR3.

Finally, we measured the RRR of both HR3 and HYPPO (see Figures 7(c)
and 7(d)). In the two-dimensional experiments 3 and 4, HYPPO achieves a RRR
close to 1. Yet, it is still outperformed by HR3 as expected. A larger difference
between the RRR of HR3 and HYPPO can be seen in the three-dimensional
experiments, where the RRR of both algorithms diverge significantly. Note that
the RRR difference grows not only with the number of dimensions but also with
the size of the problem. The difference in RRR between HYPPO and HR3 does
not always reflect the difference in runtime due to the indexing overhead of
HR3. Still, for α = 4, HR3 generates a sufficient balance of indexing runtime
and comparison runtime (i.e., RRR) to outperform HYPPO in all experiments.

(a) Runtimes for experiments 1 and 2 (b) Runtimes for experiments 3 and 4

(c) RRR for experiments 1 and 2 (d) RRR for experiments 3 and 4

Fig. 7. Comparison of runtimes and RRR of HR3 and HYPPO
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6 Related Work

The growing size and number of knowledge bases available in the Linked Data
Cloud makes Link Discovery intrinsically complex with respect to its runtime.
To address this issue, manifold time-efficient frameworks have been developed.
LIMES [14] offers a complex grammar for link specifications that can be trans-
lated into a combination of time-efficient atomic mappers that are combined
via a hybrid approach. For example, LIMES implements a dedicated approach
for numeric values called HYPPO. SILK [9] implements a different Link Dis-
covery paradigm and aims to place all instances that are to be compared in a
multi-dimensional space. It then uses MultiBlock to discard unnecessary com-
parisons efficiently. In contrast to LIMES and SILK, which implement lossless
approaches, the approach presented in [21] uses a candidate selection approach
based on discriminative properties to compute links very efficiently but poten-
tially loses links while doing so. Other frameworks and approaches include those
described in [18,8,19].

Albeit Link Discovery is closely related with record linkage [7] and deduplica-
tion [4], it is important to notice that Link Discovery goes beyond these two tasks
as Link Discovery aims to provide themeans to link entities via arbitrary relations.
Different blocking techniques such as standard blocking, sorted-neighborhood, bi-
gram indexing, canopy clustering and adaptive blocking have been developed by
the database community to address the problem of the quadratic time complex-
ity of brute force comparison [11]. In addition, very time-efficient approaches have
been proposed to compute string similarities for record linkage, including All-
Pairs [2], PPJoin and PPJoin+ [24]. However, these approaches alone cannot deal
with the diversity of property values found on theWeb of Data as they cannot deal
with numeric values. In addition, most time-efficient string matching algorithms
can only deal with simple link specifications, which are mostly insufficient when
computing links between large knowledge bases.

In recent work, the discovery of adequate link specifications has been ad-
dressed mainly by using machine learning approaches. For example, [21] detect
discriminative properties by using string concatenations. RAVEN [16] combines
stable marriage algorithms and a perceptron-based learning algorithm with the
frame of active learning to compute boolean and linear classifiers. SILK [10] em-
ploys genetic programming to learn link configurations from positive and neg-
ative examples. [13] go a step further and combine genetic programming with
active learning to discover high-accuracy link specificity with a small number
of annotations. Another approach based on genetic programming is presented
in [17]. Here, the authors show how link specifications can be learned without
any input from the user. To the best of our knowledge, none of the approaches
presented previously provide formal guarantees w.r.t. their performance. HR3 is
the first matching approach that it guaranteed not to lose links while converging
to the small possible reduction ratio. Note that while HR3 was designed for nu-
meric values, it can be used in any space with Minkowski distances, for example
for comparing indexes in multi-dimensional spaces. Thus, it can be used for any
datatype mapped to a metric space.
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7 Conclusion and Future Work

In this paper, we presented HR3, a time-efficient approach for the discovery
of links in spaces with Minkowski distances. We proved that our approach can
achieve is optimal w.r.t its reduction ration by showing that its RRR converges
towards 1 when α converges towards∞. It is important to note that an optimal
RRR(A) does not necessarily mean thatA outperforms algorithms with a poorer
RRR with respect to runtime as achieving a good RRR score usually requires
better preprocessing (usually in form of indexing), which might be more time-
demanding than the combination of a rougher preprocessing and a run with a
poorer RRR. Thus, in addition to proving formally that we can guarantee a
RRR that converges towards 1, we implemented our approach and compared it
with the state-of-the-art algorithms HYPPO implemented in LIMES and SILK.
We showed that we outperform both frameworks w.r.t. to their runtime and
that we reach RRR close to 1 for α as small as 32. Our experiments also showed
that α = 4 is a good setup for HR3. Our approach aims to be the first of a
novel type of Link Discovery approaches, i.e., of approaches which can guarantee
theoretical optimality while also being empirically usable. In future work, we will
thus aim to develop more of such approaches and to make use of their theoretical
characteristics for memory and space management. With respect to HR3, we
will mainly improve the implementation of its indexing to ensure even better
runtimes.
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11. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution ap-
proaches with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)

12. Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on
the semantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New
York (2009)

13. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: Efficient Active Learning of Link Specifi-
cations Using Genetic Programming. In: Simperl, E., Cimiano, P., Polleres, A., Cor-
cho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer,
Heidelberg (2012)

14. Ngonga Ngomo, A.-C.: A Time-Efficient Hybrid Approach to Link Discovery. In:
Sixth International Ontology Matching Workshop (2011)

15. Ngonga Ngomo, A.-C., Auer, S.: LIMES - A Time-Efficient Approach for Large-
Scale Link Discovery on the Web of Data. In: Proceedings of IJCAI (2011)

16. Ngonga Ngomo, A.-C., Lehmann, J., Auer, S., Höffner, K.: RAVEN – Active Learn-
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Abstract. Three conflicting requirements arise in the context of knowledge base
(KB) extraction: the size of the extracted KB, the size of the corresponding sig-
nature and the syntactic similarity of the extracted KB with the original one.
Minimal module extraction and uniform interpolation assign an absolute priority
to one of these requirements, thereby limiting the possibilities to influence the
other two. We propose a novel technique for EL that does not require such an ex-
treme prioritization. We propose a tractable rewriting approach and empirically
compare the technique with existing approaches with encouraging results.

1 Introduction

In view of the practical deployment of the W3C-specified OWL Web Ontology Lan-
guage [9] and its specific tractable sublanguages (the so-called profiles [5]), non-stan-
dard reasoning services supporting different ontology engineering tasks for lightweight
logics have gained in importance. Amongst others, the task of semantics-preserving
knowledge base extraction for a particular subset of terms has been investigated by the
research community: given a knowledge base using a certain vocabulary (called a sig-
nature), and a subset of “relevant terms” of that vocabulary, find a knowledge base that
contains as little irrelevant information as possible, and, at the same time, contains all
information about the relevant terms.

Among the applications of knowledge base extraction is ontology reuse, which helps
reducing the expenses of knowledge intensive applications by exploiting the variety of
the existing large ontologies. Since the size of a knowledge base has a crucial impact
on the maintenance costs and often on the performance of reasoning, it is important
to keep the corresponding knowledge base as compact as possible. Knowledge base
extraction ideally reduces the amount of irrelevant information imported from external
sources, and, at the same time, preserves all relevant consequences. Another application
is supporting knowledge engineers in modeling a particular domain or in understanding
existing models by revealing dependencies between particular concepts and roles, as,
for instance, in the case of interactive ontology revision [8]. Due to its usefulness in
various contexts, the task of knowledge base extraction has been investigated by differ-
ent authors. The currently existing semantics-preserving approaches can be divided into
those that compute a subset of the original ontology entailing all relevant consequences
(module extraction), e.g., [3,1], and those rewriting the original ontology to contain
only relevant terms while preserving all relevant consequences (uniform interpolation),
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e.g., [2,4,7]. The complexity results for approaches computing a minimal solution are
not very promising: even for the lightweight logic EL, the task of minimal module
extraction is EXPTIME-hard and the task of uniform interpolation is even 3-EXPTIME-
hard with a tight triple-exponential bound on the size of uniform interpolants in case a
finite result exists [7]. Given that most applications of knowledge base extraction are of
particular interest for large ontologies and that there are scenarios, in which long com-
putation times are not feasible due to user interaction, tractable approaches computing
a small but not necessarily minimal solution would often be a reasonable alternative.
Moreover, both types of approaches are based on a specific prioritization of objectives
that might be necessary in particular scenarios, but is disadvantageous in many others
due to its negative impact on the size of the extracted knowledge bases.

In this paper, we consider three conflicting objectives for knowledge base extraction:
reducing the size of the extracted knowledge base, reducing the size of its signature
and preserving the syntactic similarity of the extracted knowledge base with the orig-
inally given one. We demonstrate that, both, minimal module extraction and uniform
interpolation, assign an absolute priority to one of these objectives, thereby limiting
the possibilities to achieve an improvement w.r.t. the other two. While minimal mod-
ule extraction only considers subsets of the original knowledge base, thereby requiring
a very strong notion of syntactic similarity, uniform interpolation fixes the signature
of the extracted knowledge base, possibly yielding triple-exponentially many double-
exponentially large axioms. To address scenarios, where the above uncompromising
prioritization is not required, we investigate alternative prioritization, allowing for a
more balanced relationship between the extents to which the objectives are achieved.

We consider the task of knowledge base extraction for the lightweight logic EL
based on two alternative, less restrictive notions of structural similarity, further assign-
ing the second-highest priority to the knowledge base size. First, we discuss the extrac-
tion of knowledge bases consisting only of sub-expressions occurring in the original
knowledge base. We give a polynomially-bounded rewriting making particular simple
consequences within the knowledge base explicit, such that minimal modules meeting
this similarity requirement can be obtained in EXPTIME by applying minimal module
extraction to the extended knowledge base.

Second, we consider the extraction of knowledge bases that consist of concepts struc-
turally equivalent to sub-expressions occurring in the original knowledge base, i.e., con-
cepts with the same structure but possibly a different set of atomic concepts. While the
extraction of such minimal knowledge bases by first extending the knowledge base and
then applying minimal module extraction requires in the worst-case double-exponential
time, we propose a tractable rewriting approach that aims at obtaining small but not
necessarily minimal knowledge bases. The approach is based on the same elementary
rewriting operation as uniform interpolation in [7], namely replacing atomic concepts
within expressions by their subsumees and subsumers. However, in order to obtain poly-
nomial bounds and preserve the required structural similarity, we impose additional re-
strictions on the rewriting, excluding elementary rewriting operations with a negative
effect on the module size or structure.

As we show in our evaluation using the Gene Ontology, knowledge bases obtained
by our approach on average contain half as many axioms as their minimal justifications
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within the original knowledge base. A comparison with the existing implementations
also yields promising results. In case of the minimal module extractor for DL-Litebool,
the extracted modules are 2 to 2.2 times larger than the knowledge bases obtained by
our approach. The locality-based module extractor, which is a tractable approach for
extracting small but not necessarily minimal subsets of an ontology, extracts modules
that are on average 12 times larger than the knowledge bases obtained by our approach.

The paper is organized as follows: In Section 2, we recall the necessary preliminar-
ies on EL. Section 3 formally introduces the task of knowledge base extraction and
discusses the conflicting objectives for this task. In Section 4, we show how minimal
modules meeting the corresponding requirements of syntactic similarity can be obtained
using minimal module extraction. In Sections 5 and 6, we propose a tractable alterna-
tive for minimal module extraction based on rewriting. After introducing rewriting in
Section 5, in Section 6 we discuss the necessary restrictions on rewriting operations in
order to obtain polynomial bounds and preserve the required structural similarity. Fi-
nally, we present the evaluation results in Section 7 before we conclude in Section 8.
Further details and proofs can be found in the extended version of this paper [6].

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept symbols
and role symbols. An EL concept C is defined as C ::= A|�|C � C|∃r.C, where A
and r range over NC and NR, respectively. In the following, we use symbols A,B
to denote atomic concepts and C,D to denote arbitrary concepts. A terminology or
TBox consists of concept inclusion axioms C � D and concept equivalence axioms
C ≡ D used as a shorthand for C � D and D � C. While knowledge bases in
general can also include a specification of individuals with the corresponding concept
and role assertions (ABox), in this paper we abstract from ABoxes and concentrate
on TBoxes. The signature of an EL concept C or an axiom α, denoted by sig(C) or
sig(α), respectively, is the set of concept and role symbols occurring in it. To distinguish
between the set of concept symbols and the set of role symbols, we use sigC(C) and
sigR(C), respectively. The signature of a TBox T , in symbols sig(T ) (correspondingly,
sigC(T ) and sigR(T )), is defined analogously. Next, we recall the semantics of the
above introduced DL constructs, which is defined by the means of interpretations. An
interpretation I is given by the domain ΔI and a function ·I assigning each concept
A ∈ NC a subset AI of ΔI and each role r ∈ NR a subset rI of ΔI × ΔI . The
interpretation of � is fixed to ΔI . The interpretation of an arbitrary EL concept is
defined inductively, i.e., (C �D)I = CI ∩DI and (∃r.C)I = {x | (x, y) ∈ rI , y ∈
CI}. An interpretation I satisfies an axiom C � D if CI ⊆ DI . I is a model of
a TBox, if it satisfies all of its axioms. We say that a TBox T entails an axiom α (in
symbols, T |= α), if α is satisfied by all models of T .

3 Knowledge Base Extraction Revisited

While, in principle, there exist many approaches without a logical background, in this
work we focus on logic-based approaches, i.e., approaches that guarantee a preservation
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of the semantics for the set of relevant entities. We say that the semantics is preserved, if
all logical consequences concerning only the relevant entities are preserved. The logical
foundation for such a preservation of relevant consequences is given by the established
notion of inseparability. Two knowledge bases, T1 and T2, are inseparable w.r.t. a sig-
nature Σ if they have the same Σ-consequences, i.e., consequences whose signature is
a subset of Σ. Depending on the particular application requirements, the expressivity
of those Σ-consequences can vary from subsumption queries and instance queries to
conjunctive queries. In the following, we consider concept inseparability of general EL
terminologies defined analogously to previous work [3,2,4,7], as follows:

Definition 1. Let T1 and T2 be two general EL knowledge bases and Σ a signature. T1
and T2 are concept-inseparable w.r.t. Σ, in symbols T1 ≡c

Σ T2, if for all EL concepts
C,D with sig(C) ∪ sig(D) ⊆ Σ holds T1 |= C � D, iff T2 |= C � D.

Given a signature Σ and a knowledge base T , the task of knowledge base extraction
in general is to compute a knowledge base T ′, which is entailed by T and is concept-
inseparable from it. We call the result T ′ a general module of T .

Definition 2. Let T be an EL knowledge base and Σ a signature. An EL knowledge
base T ′ is a general module of T w.r.t. Σ, written T ′ ∈ MOD(T , Σ), iff (1) T ≡c

Σ T ′

and (2) T |= T ′.

The above definition is very generic. It captures the preservation of the semantics, but
does not address the quality criteria important for general modules in order to be useful
in practice. We consider the following requirements for the task of knowledge base
extraction:

1. Syntactic Similarity: In scenarios, where the knowledge base is meant to be used
by human experts, the syntactic structure of the module determining its comprehen-
siveness or cognitive complexity has to be taken into account. The extent, to which
a general module has to be syntactically similar to the original knowledge base T
depends on the particular application requirements. For instance, modules can be
required to be a subset of T , to consist only of sub-expressions occurring in T or to
consist only of concepts structurally equivalent to sub-expressions occurring in T ,
but possibly referencing different atomic concepts.

2. Small Knowledge Base Size: Reducing the size of the knowledge base is a core
objective for the task of knowledge base extraction, since smaller knowledge bases
(assuming that the particular syntactic similarity requirement is fulfilled in both
cases) require less computational and manual effort in many different ontology
management activities.

3. Small Signature Size: Decreasing the size of the signature results in a decrease of
irrelevant entities occurring in the knowledge base, which is also one of the core
objectives of knowledge base extraction.

While uniform interpolation clearly prioritizes small signature size making no compro-
mises w.r.t. the other two requirements, minimal module extraction gives the highest
priority to syntactic similarity, thereby not allowing for rewriting and, therefore, limit-
ing the possibilities to reduce the size. While such uncompromising prioritization can
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be required in some particular scenarios, in other scenarios it leads to a disadvantage.
The following example demonstrates the drawbacks of minimal module extraction and
uniform interpolation in terms of knowledge base size caused by the extreme choice of
priorities.

Example 1. Consider the following knowledge base T :1

A13 � A9 A10 �A13 � A16 A9 � ∃r.A9 Ai+1 � Ai 1 ≤ i ≤ 14, i �= 13

For the signature Σ = {A1, A8, A12, A15, A16, r}, neither the uniform interpolation
nor minimal module extraction are effective in terms of reducing the size. While min-
imal module extraction would return the whole knowledge base, uniform interpola-
tion fails to extract a finite knowledge base due to the cyclic dependency given by
A9 � ∃r.A9. However, if we are not restricted to subsets of T , but are also inter-
ested in modules consisting of sub-expressions occurring in T , then there is a rep-
resentation of the relevant information about Σ, which uses half as many axioms as
the original TBox: {A12 � A10, A15 � A13, A10 � A13 � A16, A10 � A9,
A13 � A9, A9 � ∃r.A9, A9 � A8, A8 � A1}. If we are, additionally, allowed to
exchange atomic concepts within sub-expressions while leaving the structure of expres-
sions unchanged, then there is an even smaller representation consisting of 6 axioms:
{A12 � A15 � A16, A12 � A9, A15 � A9, A8 � A1, A9 � A8, A9 � ∃r.A9}.

In the following, we aim at establishing a balance between these requirements in or-
der to account for scenarios not requiring the above mentioned extreme prioritization.
The following example completes the picture roughly sketched above and demonstrates
mutual influences of the three requirements upon each other.

Example 2. The following TBox T models a “counter” with numbers X0, . . . , X10,
where the lowest number X0 has two subsumees:

A1 � X0 A2 � X0 ∃r.Xi � ∃s.Xi � Xi+1 0 ≤ i ≤ 9

Given this TBox, we could extract a knowledge base not referencing a particular atomic
concept by replacing its occurrence by its direct subsumees. For instance, if we want
to represent the information without using X1, we can omit ∃r.X0 � ∃s.X0 � X1 and
replaceX1 on the left-hand side of the remaining axioms by its direct subsumee ∃r.X0�
∃s.X0, leading to ∃r.(∃r.X0 � ∃s.X0) � ∃s.(∃r.X0 � ∃s.X0) � X2. Concerning the
extraction of knowledge bases from T , we can more generally observe the following:

– Assume that we are interested in the dependencies between X0, and X10 including
those using roles r, s. By replacing any of the concepts X1, ..., X9 by their direct
subsumees, we reduce both, the number of axioms and the number of referenced
concept names, but we increase the nesting depth of the resulting TBox. A complete
replacement of X1, ..., X9 would yield a subsumee of X10 with a nesting depth of
10 and exponentially many occurrences of X0. Even though the TBox contains
only three axioms and no irrelevant concept names, it is less comprehensive than
the original knowledge base.

1 The TBox is structurally similar to minimal modules obtained within our evaluation and can
be extended to a more typical TBox by adding more axioms to the subsumption hierarchy
without any effect on the obtained general modules.
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– Assume that we are interested in A1, A2 instead of X0. Eliminating X0 from T
would yield four different subsumees of X1, namely ∃r.A1�∃s.A1, ∃r.A1�∃s.A2,
∃r.A2 � ∃s.A1 and ∃r.A2 � ∃s.A2. Each of these subsumees is required in order
to preserve the relevant consequences, since none of the four concepts subsumes
another. Replacing X0 in the extracted knowledge base using only A1, A2, X0, X10

and r, s by its two subsumees, A1 and A2, would result in double exponentially
many (22

10

) different subsumees of X10. Therefore, the elimination of a single
concept name is, in most cases, not justified from the practical point of view.

While Example 1 focuses on the disadvantage in terms of knowledge base size caused
by an unnecessarily strong notion of syntactic similarity, the latter example demon-
strates more clearly the effect of unrestricted rewriting aiming at signature reduction
on the knowledge base size. In the following, we consider two particular, more bal-
anced requirement prioritizations. Analogously to minimal module extraction, we aim
at preserving syntactic similarity of the extracted knowledge base, however based on
the following, less restrictive similarity notions:

1. Identical Sub-Expressions:2 Modules fulfill this notion of similarity, if they con-
sist only of sub-expressions occurring in the original knowledge base.

2. Structurally Equivalent Sub-Expressions: Modules fulfill this notion of sim-
ilarity, if for all of their sub-expressions there is a structurally equivalent sub-
expression occurring in the original knowledge base, i.e. an expression with the
same syntactic structure, but possibly different atomic concepts. For instance, A �
∃r.A is structurally equivalent to B1 � ∃r.B2.

In the next sections, we investigate the task of knowledge base extraction based on
these two notions of syntactic similarity with the second-highest priority given to the
knowledge base size. We first show how we can extend the original knowledge base to
contain all minimal general modules such that minimal module extraction can identify
one of them. Subsequently, we add the computational complexity as a forth dimension.
We investigate how we can obtain a tractable alternative to minimal module extraction
by sacrificing the minimality guarantee, while fulfilling the requirement of syntactic
similarity and reaching a decent effectiveness in terms of module size. In our evaluation,
we show that, on average, the approach outperforms minimal module extraction applied
directly to the original knowledge base.

4 Computing Modules Using Minimal Module Extraction

In this section, we show how, by normalizing the original knowledge base T and ex-
tending it with a subset of its deductive closure, we can obtain a union of all general
modules fulfilling the syntactic similarity notions of identical sub-terms and structurally
equivalent sub-terms. Applying minimal module extraction to this extended knowledge
base would yield all minimal general modules, which can subsequently be ordered ac-
cording to the signature size.

2 Conjunctions containing a subset of conjuncts are not considered as sub-expressions.
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In order to obtain a union of all minimal general modules under the restriction to
identical sub-terms, we need to identify all subsumptions between sub-terms occurring
in T . We can structurally transform the knowledge base as follows: we assign a tempo-
rary concept name to each non-atomic sub-term occurring in T , such that the knowledge
base can be represented without nested expressions, i.e., using only axioms of the form
A � B, A ≡ B1 � . . . �Bn, and A ≡ ∃r.B, where A and B(i) are atomic concepts or
�. This can be realized in time linear in the size of T by recursively replacing complex
concepts C(i) in expressions C1 � ...�Cn and ∃r.C by fresh concept symbols with the
corresponding equivalence axioms. Note that the original form of the knowledge base
can easily be obtained by replacing the temporary concept names by their definitions.

By classifying the obtained knowledge base and extending it with the classifica-
tion results, all subsumptions between sub-terms occurring in T are explicitly present
in the resulting knowledge base T ′, which we call normalized T . Thus, we obtain a
polynomially-bounded, complete union of all possible general modules consisting of
sub-terms occurring in T by replacing the temporary concept names by their defini-
tions. Applying minimal module extraction to this knowledge base yields minimal gen-
eral modules fulfilling the corresponding syntactic similarity requirement. In this way,
we obtain a linear bound on the size of the general modules and, as demonstrated by
Example 1, in most cases outperform minimal module extraction applied to the original
knowledge base w.r.t. both, size of the signature and size of the general module.

If, in addition to identical sub-terms from T , we can also use structurally equiva-
lent sub-terms, we can introduce temporary concept names for all structurally equiva-
lent sub-terms and then apply classification to obtain the corresponding dependencies.
However, extending the knowledge base with all dependencies of the corresponding
form and then applying minimal module extraction would lead to an increase of the
overall complexity from exponential to double-exponential.

5 Computing Modules Using Rewriting

In the following, we propose a tractable approach to extracting general modules con-
sisting of concepts structurally equivalent to sub-expressions of the original knowledge
base. The approach is based on rewriting as it is used for uniform interpolation [7] and
the aim of this section is to show how general modules are obtained using this rewriting.

In order to simplify the tracking of subsumption dependencies during the rewriting,
we use the normalization introduced in the last section. Given a normalized EL knowl-
edge base, the elimination of roles can be done by omitting all axioms with subsumees
and subsumers containing irrelevant roles without loosing any relevant consequences.
In the following, we focus, therefore, on the elimination of irrelevant concept names
and assume w.l.o.g. that the sets of subsumees and subsumers do not contain any roles
not from Σ.

During the rewriting, we keep two relations that map each atomic concept in a TBox
to a set of concepts. These relations initially contain, for each atomic concept, the sub-
sumees and subsumers as given by the normalized TBox. Each rewriting step then re-
fines these relations in such a way that the union of all corresponding subsumption
axioms is still a general module.
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Definition 3. Let T be a normalized EL knowledge base and RT
�, R

T
� relations that

map each atomic concept B ∈ sigC(T ) to a set of subsumees and a set of subsumers of
B entailed by T . Any pair 〈RT

�, R
T
�〉 is called a subsumee/subsumer relation pair for

T and it is called the initial subsumee/subsumer relation pair for T if RT
� and RT

� are
as follows:

1. RT
�(B) = {C | C � B ∈ T or C ≡ B ∈ T },

2. RT
�(B) = {C | B � C ∈ T or B ≡ C ∈ T }.

If T is clear from the context, we simply write 〈R�, R�〉. Starting with the initial
subsumee/subsumer relation, our rewriting aims at obtaining another pair of relations
that allows for constructing a uniform interpolant as follows:

Definition 4. Let 〈R�, R�〉 be a subsumee/subsumer relation pair and Σ a signature.
We denote by Σext(R�, R�) the extension of Σ with atomic concepts occurring in the
range of R� and R�. We construct a knowledge base M(R�, R�, Σ) from 〈R�, R�〉
and Σ as:

M(R�, R�, Σ) = {C � A | A ∈ Σext(R�, R�), C ∈ R�(A)} ∪
{A � D | A ∈ Σext(R�, R�), D ∈ R�(A)} ∪
{C � D | there is A /∈ Σext(R�, R�), C ∈ R�(A), D ∈ R�(A)},

If M(R�, R�, Σ) ∈ MOD(T , Σ), we say that 〈R�, R�〉 is complete w.r.t. Σ.

The above definition avoids an unnecessary extension of the knowledge base signa-
ture with atomic concepts in case A /∈ Σext(R�, R�). Note that even in the initial
subsumee/subsumer relation pair this case can occur, namely when concepts not from
Σ do not have atomic subsumers or subsumees. We can show that the initial subsu-
mee/subsumer relation pair meets the completeness criterion:

Theorem 1. Let T be a normalized EL knowledge base, Σ ⊆ sig(T ) a signature,
and 〈R�, R�〉 the initial subsumee/subsumer relation pair for T , then 〈R�, R�〉 is
complete w.r.t. Σ.

Before defining the rewriting step that refines the initial subsumee/subsumer relation
pair into another subsumee/subsumer relation pair preserving completeness, we show
the initial subsumee/subsumer relation pair 〈R�, R�〉 and the according general mod-
ule TM = M(R�, R�, Σ

ext(R�, R�)) for the knowledge base T from Example 1.
We first normalize T by introducing two temporary concepts, B1 ≡ A10 � A13 and
B2 ≡ ∃r.A9, then we classify the normalized knowledge base and obtain the initial
subsumee/subsumer relation pair shown in Fig. 1.

The knowledge base TM contains, for each Ai with i ∈ {1, . . . , 16}, all axioms of
the form C � Ai with C ∈ R�(Ai) and Ai � C with C ∈ R�(Ai). This also holds
for B1 and B2. It is not difficult to check that, after replacing B1 by A10 � A13 and
B2 by ∃r.A9 in TM, each axiom of {A12 � A10, A15 � A13, A10 � A13 � A16,
A10 � A9, A13 � A9, A9 � ∃r.A9, A9 � A8, A8 � A1} is contained in it.
Thus, the result contains, among other axioms, the general module given in Section 3
consisting of sub-expressions of T , which shows completeness of 〈R�, R�〉.
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R� R�
A16 B1 ∅
A15 ∅ A1, . . . , A9, B2, A13, A14

A14 A15 A1, . . . , A9, B2, A13

A13 B1, A14, A15 A1, . . . , A9, B2

A12 ∅ A1, . . . , A11, B2,
A11 A12 A1, . . . , A10, B2

A10 B1, A11, A12, A15 A1, . . . , A9, B2

A9 B1, A10, . . . , A15 A1, . . . , A8, B2

A8 B1, A9, . . . , A15 A1, . . . , A7

A7 B1, A8, . . . , A15 A1, . . . , A6

A6 B1, A7, . . . , A15 A1, . . . , A5

A5 B1, A6, . . . , A15 A1, . . . , A4

A4 B1, A5, . . . , A15 A1, . . . , A3

A3 B1, A4, . . . , A15 A1, A2

A2 B1, A3, . . . , A15 A1

A1 B1, A2, . . . , A15 ∅
B2 ∃r.A9, A9, . . . , A15, B1 ∃r.A9

B1 A10 �A13 A10 � A13, A1, . . . , A10, A13, B2, A16

Fig. 1. The initial subsumee/subsumer relation pair 〈R�, R�〉 for Example 1

Since rewritings aiming at eliminating all irrelevant concept names yield smaller
modules for sparse relation pairs, we will only use a subset of the subsumee/subsumer
relations used as input for minimal module extraction. We compute a reduced sub-
sumee/subsumer relation pair that only uses the transitive reduction of the classification
results, i.e., we consider B1 � B2 only if there is no B3 such that B1 � B3 and
B3 � B2. Furthermore, we compute, in polynomial time, a reduced graph by recur-
sively eliminating subsumers and subsumees not from Σ that do not have any outgoing
edges. It is easy to check that the completeness of the initial subsumee/subsumer rela-
tion pair stated in Theorem 1 still holds. In the next section, we assume this reduced
form of initial subsumee/subsumer relation pair 〈R�, R�〉.

As demonstrated in Example 2, within the task of uniform interpolation, a single
rewriting step replaces occurrences of an atomic concept in all subsumees and sub-
sumers within a relation pair by its subsumees and subsumers, respectively. Since, in
general, an atomic concept can have infinitely many subsumees and subsumers, using
the whole set of subsumees and subsumers for rewriting is not feasible in practice. In-
terestingly, if the initial relation pair is complete, then a small subset of all subsumees
and subsumers of the replaced concept is sufficient to preserve the completeness of
the relation pair (in general, however, the sets of direct subsumees and subsumers are
not sufficient). Among other things, the relevant subset does not need to include sub-
sumees that can be obtained from other subsumees by adding arbitrary conjuncts to
arbitrary sub-expressions. For instance, if B is a subsumee of A, then we do not need
B �B′ for the replacement of A. Similarly, the minimal subset of subsumers required
for replacement does not include concepts that can be obtained from other subsumers
by omitting arbitrary conjuncts from arbitrary sub-expressions. While, in case of sub-
sumees, a conjunction is not required if at least one of the conjuncts is a subsumee, in
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case of subsumers, we need to introduce a conjunction in particular when replacing an
atomic concept within the scope of an existential restriction. Using the standard substi-
tution notation C[A/B] for denoting the concept obtained by replacing all occurrences
of B within C by A, we give the following definition of an elementary rewriting.

Definition 5. Let T be a normalized EL knowledge base, Σ ⊆ sig(T ) a signature,
and 〈R�, R�〉 a subsumee/subsumer relation pair for T . For atomic concepts A,B ∈
sigC(T ) and ��∈ {�,�}, an elementary rewriting RewR��(B,C,A) of a subsumee/sub-
sumer C ∈ R��(B) w.r.t. A is given by

1. RewR�(B,C,A) = {(B,C′) | A′ ∈ R�(A), C
′ = C[A′/A]}.

2. RewR�(B,C,A) =

{
{(B,C′) | D′ =

�
D∈R�(A) D,C′ = C[D′/A]}, (a)

{(B,C′) | A′ ∈ R�(A), C
′ = C[A′/A]}, (b)

where (a) is used when A is within the scope of an existential restriction and (b) is used
otherwise. Let SA = {(B,C) | C ∈ R��(B) and A occurs in C}. A rewriting w.r.t. A
is given by RewR��(A) =

⋃
(B,C)∈SA

RewR��(B,C,A) ∪R�� \ SA.

In order to keep the relations as small as possible, we further remove trivial subsumees
and subsumers obtained during the rewriting, namely atomic concepts themselves and,
in case of subsumee relations, conjunctions with the atomic concept itself as one of
the conjuncts. This check is inexpensive from the computational point of view, since
such trivial subsumees and subsumers can be identified independently from other sub-
sumees and subsumers. In what follows, we assume that such trivial subsumees and
subsumers are removed after each rewriting. We obtain the following result concerning
the completeness w.r.t. Σ:

Theorem 2. Let T be a normalized EL knowledge base, Σ ⊆ sig(T ) a signature,
〈R�, R�〉 a subsumee/subsumer relation pair for T that is complete w.r.t. Σ. Then, for
any B′ /∈ Σ holds 〈RewR�(B

′), R�〉 and 〈R�, RewR�(B
′)〉 are subsumee/subsumer

relation pairs for T , which are complete w.r.t. Σ.

Thus, starting with the initial subsumee/subsumer relation pair 〈R�, R�〉, after each
rewriting step we obtain a subsumee/subsumer relation pair over T that is complete
w.r.t. Σ. However, without further restrictions, the above rewritings would potentially
introduce many large nested concept expressions or might not even terminate. In the
next section, we show how these problems can be avoided by stating the corresponding
validity criteria for rewritings on subsumee/subsumer relation pairs.

6 Restricting Rewriting

In this section, we address the problems caused by unrestricted application of rewrit-
ing pointed out in Example 2. On the one hand, the example shows that rewriting can
significantly change the syntactic structure of a knowledge base. On the other hand, it
demonstrates that, while in some cases an elimination of a particular concept name can
lead to a smaller knowledge base, it can cause the knowledge base to grow by several
factors or even get infinite in other cases.
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(b) Rewriting w.r.t. A2 −A7, A11, A14

Fig. 2. Hypergraphs for the knowledge base in Example 1

In order to avoid the above negative effects of rewriting, after each rewriting step we
identify and exclude invalid rewritings, i.e., rewritings having a negative impact on the
structure of the resulting module or the size of the relation pair. In particular, we ex-
clude rewritings replacing atomic concepts by the conjunction of their direct subsumers
corresponding to case (a) in Definition 5, since such a replacement possibly introduces
concept expressions with a new structure not occurring in the original knowledge base.
Thus, the set of valid rewritings is restricted to replacements of atomic concepts by
their direct subsumees and subsumers. For the same reason, we additionally exclude
rewritings yielding nested concept expressions, i.e., replacements of an atomic concept
within a conjunction or existential restriction by one of its non-atomic subsumees or
subsumers. Since the initial subsumee/subsumer relation pair contains only concepts of
the form B, ∃r.B and B1 � ... �Bn, after each valid rewriting step, all subsumees and
subsumers have also this simple form. In this way, subsumee/subsumer relations can
be represented as hypergraphs with atomic concepts as nodes and three types of edges,
namely A → B representing atomic subsumees/subsumers, A

r−→ B representing ex-
istential restrictions, and multi-edges A

�−→ B1, ..., Bn representing conjunctions. The
corresponding hypergraphs for the initial subsumee/subsumer relation pair 〈R�, R�〉
for the knowledge base in Example 1 are shown in Fig. 2(a).

In the following, we give a set of excluding conditions for rewritings according to the
requirement of syntactic similarity and an inequation excluding rewritings negatively
affecting knowledge base size. Within the excluding conditions, we distinguish three
types of successors and predecessors according to the types of edges. For an atomic
concept A and a relation R�� with ��∈ {�,�}, we use

INA(A) := {B ∈ sigC(T ) | A ∈ R��(B)}
OUTA(A) := R��(A) ∩ sigC(T )

INRoles(A) := {B | ∃r.A ∈ R��(B)}
OUTRoles(A) := {B | ∃r.B ∈ R��(A)}

INCon(A) := {B | B′
1 � ... �B′

n ∈ R��(B) with A = B′
i for some i ∈ {1, ..., n}}

OUTCon(A) := {B′
1 � ... �B′

n | B′
1 � . . . �B′

n ∈ R��(A)}
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Further, let IN(A) = INA(A) ∪ INRoles(A) ∪ INCon(A) and OUT(A) = OUTA(A) ∪
OUTRoles(A) ∪ OUTCon(A).

In order to avoid an introduction of structurally new concept expressions during the
rewriting and ensure termination, we exclude a rewriting w.r.t. an atomic concept A if
one of the following conditions is true:

(INRoles(A) ∪ INCon(A) �= ∅) and OUTA(A) contains temporary concepts; (1)

(INRoles(A) ∪ INCon(A) �= ∅) and (OUTRoles(A) ∪ OUTCon(A) �= ∅); (2)

R�� is a subsumer relation and |INRoles(A)| ≥ 1 and |OUT(A)| ≥ 2; (3)

Some C ∈ R��(A) contains A; (4)

For instance, in Example 1 the rewriting w.r.t. A9 in R� is invalid due to Condition (3)
and rewriting w.r.t. A10, A13 in R� are invalid due to Condition (2).

In order to identify rewritings that would increase the size of a relation, we compare
the number of edges before and after the rewriting. While the number of edges poten-
tially affected by a rewriting w.r.t. a concept A can be given by |IN(A)| + |OUT(A)|,
the corresponding number of affected edges after the rewriting is in general bounded
by |OUT(A)| + |IN(A)| · |OUT(A)|. Interestingly, if a concept B is unreferenced, it is
usually possible to remove some elements from the corresponding sets R�(B) and
R�(B) without losing any Σ consequences, or even without losing any axioms in
M(R�, R�, Σ

ext(R�, R�)). We can remove subsumees and subsumers of unreferenced
concepts, if none of the corresponding axioms in M(R�, R�, Σ

ext(R�, R�)) that con-
tain these subsumees and subsumers, add any new Σ consequences to M(R�, R�,
Σext(R�, R�)). Thus, in order to determine if a subsumee C ∈ R�(B) of B �∈ Σ is
unnecessary, we check for each element D ∈ R�(B), if M(R�, R�, Σ

ext(R�, R�)) \
{C � D} |= C � D. Unnecessary subsumers can be determined in the same manner.
For instance, in case of A2 in Example 1, after the corresponding rewriting of both rela-
tions we can remove its subsumeeA3 and subsumerA1, if M(R�, R�, Σ

ext(R�, R�))\
{A1 � A3} |= A1 � A3. It is easy to check given the corresponding hypergraphs that
this is indeed the case. In fact, the corresponding sets of necessary subsumees and sub-
sumers after the rewriting are empty for A2, . . . , A7, A10, A11, A13, A14 and B1, B2.

Given the relation Rred
�� obtained by omitting such unnecessary elements from the

set R��(B), we can use a tighter bound on the number of edges after rewriting based on
nR�� = |Rred

�� (B)| instead of |R��(B)|. Thus, we obtain the following inequation that
holds for rewritings potentially increasing the size of relations:

|IN(A)|+ |OUT(A)| < nR�� + |IN(A)| · |OUT(A)| (5)

In Example 1, |INA(Ai)| = 1 and |OUTA(Ai)| = 1 holds for all i ∈ {2, ..., 7, 11, 14}.
Since both, nR� and nR� are 0 for all Ai, the number of edges decreases by one in case
of each rewriting. After each rewriting including the subsequent omitting of unneces-
sary successors of the replaced concept, the number of edges as well as nR� and nR�

remain the same for all remaining concepts. Thus, the conditions for the remaining con-
cepts Ai with i ∈ {2, ..., 7, 11, 14} do not change during any of the above rewritings.
After performing all of the above rewritings, we obtain the subsumee/subsumer relation
pair shown in Fig. 2(b).
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Fig. 3. Rewriting for the knowledge base in Example 1

In case of B1, in R� we have only outgoing edges. Since both, nR� and nR� are 0,
we can eliminate the concept from in R� by omitting its subsumers. In R�, we have
three incoming and one outgoing edge, i.e., Inequation (5) does not hold. The number
of edges decreases also in this case, since two of the conjunction edges obtained by
rewriting are trivial as specified in the last section and are removed directly after the
rewriting. In case of B2, we only need to consider R�, since in R� the concept is
already unreferenced. Since we again have one incoming and one outgoing edge and
nR� is 0, we can also perform the corresponding rewriting and eliminate B2, thereby
obtaining the relation pair shown in Fig. 3(a).

Now, we can also perform rewriting w.r.t. A10, A13 in R�, since Condition (2) does
not hold any more. Checking for unnecessary subsumees and subsumers reveals that
both, nR� and nR� are still 0 for both, A10 and A13. Since Inequation (5) does not
hold in any of the two graphs, we can perform the corresponding rewriting and eliminate
both, A10 and A13, thereby obtaining the relation pair shown in Fig. 3(b).

We recall that, in Example 1, Σ = {A1, A8, A12, A15, A16, r}. Thus, the only atomic
concept not from Σ still referenced within the subsumee/subsumer relations is A9,
which is not eligible for rewriting due to Condition (4). Therefore, the rewriting process
is finished. After computing M(R�, R�, Σext(R�, R�)), we obtain the smaller of the
two general modules given in Example 1.

Algorithm 1 shows the rewriting process starting with the initial subsumee/subsumer
relation pair 〈R0

�, R0
�〉. The computation terminates, when no further subsumees/sub-

sumers could be eliminated during one iteration. We obtain a rewritten subsumee/sub-
sumer relation pair 〈R�, R�〉 over T complete w.r.t. Σ, which is of a polynomial size
in the size of the original (not normalized) knowledge base To and does not contain
any nested concept expressions. Moreover, after replacing all temporary concept names
in M(R�, R�, Σ

ext(R�, R�)) by their definitions, we obtain a general module of To,
which does not contain any structurally new concept expressions not occurring in To.
We can summarize the results as follows.

Theorem 3. Let T be a normalization of an EL knowledge base To, Σ ⊆ sig(To) a
signature, 〈R�, R�〉 the output of Algorithm 1 for an initial subsumee/subsumer pair
〈R0

�, R
0
�〉 of T . For Tr the knowledge base obtained by replacing all temporary concept

names in M(R�, R�, Σ
ext(R�, R�)) by their definitions:
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Algorithm 1. Rewriting of Subsumee/Subsumer Relation Pairs

Data: 〈R0
�, R0

�〉 initial subsumee/subsumer relation pair for a normalized knowledge
base

Result: 〈R�, R�〉 rewritten subsumee/subsumer relation pair
1 〈R�, R�〉 ← 〈R0

�, R0
�〉;

2 while fixpoint is not reached do
3 for B ∈ sigC(T ) \Σ do
4 if Conditions (1)–(4) are false then
5 nR� ← |Rred

� (B)|;
6 nR� ← |Rred

� (B)|;
7 if Inequation (5) does not hold then
8 R� ← RewR�(B) \ (R�(B) \ Rred

� (B));
9 R� ← RewR�(B) \ (R�(B) \ Rred

� (B));

10 return 〈R�, R�〉;

– M(R�, R�, Σ
ext(R�, R�)) can be computed in polynomial time and is polynomial

in the size of To;
– for all sub-expressions C′ occurring in Tr there is a sub-expression C of To such

that C′ can be obtained from C by exchanging atomic concepts.

7 Evaluation

For our evaluation, we use the EL fragment of the Gene Ontology3 describing gene
product characteristics in terms of how gene products behave in a cellular context. The
OWL version of the ontology (April 2012) comprises 36,251 atomic classes, 8 object
properties and 316,580 logical axioms, out of which 66,117 axioms are terminological
(the EL fragment contains 66,101 terminological axioms).

We implemented our approach in Java based on the OWL-API. The aim of the eval-
uation is to compare the results of our approach in terms of module size and computa-
tion time to minimal module extraction and Locality-based extractor [1] – an existing
tractable approach to (not necessarily minimal) module extraction not based on rewrit-
ing. To the best of our knowledge, there are currently no existing implementations of
minimal module extraction for EL, but only for DL-Litebool [3]. Therefore, we com-
pare the two implementations on the DL-Litebool fragment of EL, obtained from an
EL knowledge base by replacing qualified existential restrictions by the corresponding
unqualified restrictions. In order to also estimate the difference in the module size for
EL, we implemented a module extractor based on minimal justifications, which, given a
general module obtained using our approach, computes a subset of the original ontology
entailing the general module.

For the evaluation, we use signatures with 10, 30 and 50 atomic concepts and
4 roles each. For each signature size, we randomly choose 10 signatures and let the

3 http://www.geneontology.org/

http://www.geneontology.org/
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Table 1. Evaluation results on the DL-Litebool fragment of EL

Signature size Rewriter Minimal module extractor Locality-based extractor
10 4.8 9.7 (2.0) 167 (34.8)
30 10.3 22.2 (2.2) 436 (41.1)
50 28.8 60.4 (2.1) 1245 (43.2)

Table 2. Evaluation results on EL

Signature size Rewriter Minimal justification extractor Locality-based extractor
10 21 43 (2.0) 259 (12.3)
30 45 104 (2.3) 659 (14.6)
50 151 306 (2.0) 1787 (11.8)

different extractors compute the corresponding general module. Subsequently, we com-
pute the average module size, shown in Tables 1 and 2 (the number in brackets is the
average module size measured in the corresponding average size of the modules com-
puted by the rewriter). The first table shows the results for the DL-Litebool fragment
of EL. Due to the lower expressivity, the obtained DL-Litebool modules are consid-
erably smaller than their EL correspondents in Table 2. We observe that the size of
the minimal DL-Litebool modules containing only axioms from the original knowledge
base T are between 2.0 and 2.2 times larger than the corresponding general modules
consisting of sub-expressions of T with possibly exchanged atomic concepts obtained
using rewriter. The corresponding DL-Litebool modules obtained by the locality-based
extractor are even between 34.8 and 43.2 times larger. In case of ELmodules, the mini-
mal justifications of the general modules computed by rewriter are between 2.0 and 2.3
times larger, while the modules obtained by the locality-based extractor are between
11.8 and 14.6 times larger.

We further analyzed whether different proportions of particular axiom types influ-
ence the effectiveness of rewriter, but did not find this to be the case. Our conjecture is
that this is a result of the simple structure of GO, which contains only axioms referenc-
ing exactly two atomic concepts, e.g., atomic subsumptions and existential restrictions.
In case of such axioms, exactly two substitutions of atomic concepts are possible, each
of which can potentially replace a justification consisting of several axioms, e.g., a chain
of subsumption axioms. Since the effect of each such replacement is not dependent on
the axiom type, but rather on the referenced concepts, this conjecture seems reasonable.

Concerning the computation time, we observe a significant difference between the
tractable approaches (rewriter and the locality-based extractor) and the minimal module
extractor. While, for the signatures with 50 atomic concepts, the first two approaches
require less than one minute, minimal module extractor required between two hours and
two days depending on the signature.

8 Summary

In this paper, we show that knowledge base extraction gains in effectiveness in terms
of knowledge base size, when modules are not required to be subsets of the original



Hitting the Sweetspot: Economic Rewriting of Knowledge Bases 409

knowledge base. We investigate the task of knowledge base extraction for EL based on
two alternative, less restrictive notions for syntactic similarity.

First, we discuss the extraction of knowledge bases consisting only of sub-expres-
sions occurring in the original knowledge base. We show how minimal modules fulfill-
ing this similarity requirement can be obtained in EXPTIME by introducing temporary
concept names for complex concepts, adding a subset of the deductive closure to the
knowledge base and subsequently applying minimal module extraction.

Second, we consider the extraction of modules that consist of concepts structurally
equivalent to sub-expressions occurring in the original knowledge base.We propose a
tractable approach that, in most cases, yields small knowledge bases, but does not guar-
antee the minimality of the result. As we show in our evaluation, modules extracted dur-
ing our evaluation using minimal module extractor for DL-Litebool are 2.0 to 2.2 times
larger than those obtained by our approach. In case of EL, knowledge bases obtained
by our rewriter on average contain half as many axioms as their minimal justifications
within the original knowledge base. In case of the locality-based module extractor, the
extracted ELmodules are on average 12 times larger than the general modules obtained
by our approach.

Acknowledgements. This work is supported by the German Federal Ministry of Edu-
cation and Research (BMBF) under grant 02PJ1002 (SyncTech).
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Abstract. For a number of years now we have seen the emergence of 
repositories of research data specified using OWL/RDF as representation 
languages, and conceptualized according to a variety of ontologies. This class 
of solutions promises both to facilitate the integration of research data with 
other relevant sources of information and also to support more intelligent forms 
of querying and exploration. However, an issue which has only been partially 
addressed is that of generating and characterizing semantically the relations that 
exist between research areas. This problem has been traditionally addressed by 
manually creating taxonomies, such as the ACM classification of research 
topics. However, this manual approach is inadequate for a number of reasons: 
these taxonomies are very coarse-grained and they do not cater for the fine-
grained research topics, which define the level at which typically researchers 
(and even more so, PhD students) operate. Moreover, they evolve slowly, and 
therefore they tend not to cover the most recent research trends. In addition, as 
we move towards a semantic characterization of these relations, there is 
arguably a need for a more sophisticated characterization than a homogeneous 
taxonomy, to reflect the different ways in which research areas can be related. 
In this paper we propose Klink, a new approach to i) automatically generating 
relations between research areas and ii) populating a bibliographic ontology, 
which combines both machine learning methods and external knowledge, which 
is drawn from a number of resources, including Google Scholar and Wikipedia. 
We have tested a number of alternative algorithms and our evaluation shows 
that a method relying on both external knowledge and the ability to detect 
temporal relations between research areas performs best with respect to a 
manually constructed standard.  

Keywords: Research Data, Ontology Population, Bibliographic Data, 
Empirical Evaluation, Scholarly Ontologies, Data Mining. 

1 Introduction 

Consistently with the general trend towards characterizing information using 
Semantic Web standards, for a number of years now we have seen the emergence of 
repositories of research outputs specified using OWL/RDF as representation 
languages – e.g., see [1], [2], [3], and conceptualized according to a variety of 
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ontologies, such as SWRC1, BIBO2, and AKT3.  This class of solutions promises both 
to facilitate the integration of research data with other relevant sources of information 
– e.g., data drawn from social media [4], and also to support more intelligent forms of 
querying and exploration. In particular, in order to make sense of the key trends and 
dynamics of a research area, it is essential to have tools which are able to support a 
seamless exploration of the various relations that exist between authors, publications, 
impact measures, publication venues, research areas, etc. Within this context, it is 
particularly important to associate correctly authors and publications to research 
areas, to ensure good precision and recall when exploring what goes on within a 
particular research area. 

The association between authors and publications on the one hand and research 
areas on the other is normally determined on the basis of the keywords that authors 
themselves associate with their publications. However, this purely syntactic approach 
is unsatisfactory for a number of reasons: authors do not necessarily use a consistent 
terminology to specify the relevant research areas and, even when they do, a syntactic 
approach fails to capture the relations that may exist between research areas – e.g., 
most researchers consider “ontology alignment” and “ontology matching” as 
essentially equivalent labels for the same research area, but searching for “ontology 
alignment” in most bibliographic servers does not return papers tagged as “ontology 
matching”. Hence, there is a need for methods which are able to generate the relations 
which exist between research areas, to enable more intelligent querying and 
exploration of research data.  

This problem has been traditionally addressed by manually creating taxonomies, 
such as the ACM classification4.  However, this manual approach suffers from a 
number of problems. These taxonomies are very coarse-grained and they do not cater 
for the fine-grained research topics, which define the level at which typically 
researchers (and even more so, PhD students) operate. Moreover, because these 
taxonomies are defined manually, they evolve slowly, and therefore they do not cover 
the most recent research trends. In addition, as we move towards semantically 
characterized repositories of research data, there is arguably a need for a more 
sophisticated representation of the relations between research areas, than a 
homogeneous and un-typed taxonomy, to reflect the different ways in which research 
areas can be related.  

In this paper we address this problem by proposing Klink, a new approach to 
automatically generating relations between research areas, which combines both 
machine learning methods and external knowledge, drawn from a number of 
resources, including Google Scholar and Wikipedia. In particular, we have tested a 
number of alternative algorithms and our evaluation shows that a method relying on 
both external knowledge and temporal relations between research areas performs best 
with respect to a manually constructed standard and indeed achieves a very good level 
of precision and recall.  

                                                           
1 http://ontoware.org/swrc/ 
2 http://bibliontology.com 
3 http://www.aktors.org/publications/ontology 
4 http://www.acm.org/about/class/ccs98-html 
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2 What’s in a Link: Characterizing Relations between 
Research Areas 

Taxonomies of research areas are not like taxonomies in other domains, in the sense 
that there is not necessarily an all-encompassing and ‘objective’ organization of 
research topics.  For example, one of the authors of this paper was involved in one of 
the very first attempts at building a semantic repository of research data, the KA2 
initiative [5], and participated in a workshop whose main goal was to generate a 
taxonomy of research topics. This turned out to be much harder than predicted, given 
that for a number of topics there were serious disagreements about their relationships 
with other topics.  Nevertheless, it is also the case that, given a research community, 
there are typical many relatively unproblematic cases where a broad consensus can be 
found about an area being equivalent to or being a sub-area of another area. For 
instance, we earlier made the example of the terms “ontology alignment” and 
“ontology matching” being used practically as synonyms in the research community. 
Another relatively uncontroversial example concerns the area of Semantic Web 
Services, which most people agree is a sub-area of both Web Services and Semantic 
Web.   

However there are also other situations that are rather less obvious. For instance, 
while there may be a certain degree of consensus that research in Ontology 
Engineering is relevant to the Semantic Web area, most people would disagree with 
the statement that Ontology Engineering is a sub-area of Semantic Web. Nevertheless, 
if I am looking for papers on the Semantic Web, it may actually be useful for me if 
my system for research data exploration were also able to flag papers in Ontology 
Engineering as potentially relevant. And indeed, the relevance of the latter area of 
research to the former can be easily ascertained by browsing the proceedings of the 
main Semantic Web conferences.  

In sum, the point here is that simply looking either for strict equivalence between 
research areas or strict subAreaOf relations is unsatisfactory, because it may fail to 
capture some other useful relations between research areas. For this reason, in our 
work so far we have also included relations such as that exemplified by Ontology 
Engineering and Semantic Web, where the results from the former contribute to 
research in the latter. Hence, our model at the moment considers the following three 
relations between research areas: 

• relatedEquivalent. This is defined as a sub-property of skos:related, which 
indicates that two particular ways of referring to research areas can be treated as 
equivalent for the purpose of exploring research data – e.g., “ontology 
alignment” and “ontology matching” can be considered as equivalent. 

• skos:broaderGeneric. We reuse this property from the SKOS5 model, to indicate 
that a research area – e.g., Web Services, is broader than Semantic Web 
Services. Transitivity is important here, because this property is used to 
characterize the intuitive notion that an area is a sub-area of another one.  

                                                           
5 http://www.w3.org/2004/02/skos/ 



 Mining Semantic Relations between Research Areas 413 

 

• contributesTo. This is defined as a sub-property of skos:related and indicates 
that while an area, R1, is not a sub-area of another one, R2, its research outputs 
are so relevant to R2 that it may be useful for the purposes of querying and 
exploration to assert this relationship, to provide better support to users.  

However, it is important to emphasize that, while our epistemology distinguishes 
between the aforementioned three relations, the current version of our algorithm, 
which will be presented in the next section, is only able to differentiate automatically 
between hierarchical and equivalent relations. In other words, while the algorithm is 
able to differentiate relatedEquivalent relations from the others, and it is also able to 
mine both contributesTo and skos:broaderGeneric relations, it treats these two 
relations as generic hierarchical relations and cannot differentiate them further. 
Hence, this final step – i.e., separating contributesTo from skos:broaderGeneric 
relations, needs at the moment to be carried out manually.  

Our model6 builds on the BIBO ontology, which in turn builds on SKOS7, FOAF8, 
and other standards. Our goal here was not to produce yet another ontology, so our 
extensions to BIBO are very conservative and comprise only the relatedEquivalent 
and contributesTo object properties described earlier, and the class Topic, which is 
used to refer to research topics.  

3 The Klink Algorithm: Automatically Detecting Relations 
between Research Areas 

3.1 Preliminaries 

We propose a novel approach, named Klink, for cleaning and inferring hierarchical 
and equivalence relationships from a set of keywords associated with a collection of 
documents.  

Klink detect links between keywords by using heuristic rules, statistical methods 
and external knowledge. Moreover it allows a human user to define some aspects of 
the hierarchy, such as the maximum permitted number of parent nodes for each node.  

                                                           
6  http://kmi.open.ac.uk/technologies/rexplore/ontologies/ 
  BiboExtension.owl 
7 The most recent specification of the SKOS model, which can be found at 

http://www.w3.org/TR/2009/REC-skos-reference-20090818/, makes a number of 
modifications to the modeling of these relations and in particular proposes a new property, 
skos:broaderTransitive, to support the representation of transitive hierarchical relations.  
Here we stick to the older SKOS specification, primarily because our conceptual model 
builds on the BIBO ontology, which in turn builds on the 2004 SKOS model. While there 
are interesting semantic differences between the different versions of the SKOS model, in 
the context of this paper these are not so important, as we are only concerned with extracting 
the three kinds of relations between research areas, which have been presented above. 

8   http://xmlns.com/foaf/spec/ 
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An important aspect of Klink is that it is able to discard keywords which are not 
research areas but can be used as keywords for a paper. Typical examples include 
names of software tools as well as ‘orthogonal’ keywords, e.g., “Case Study”, which 
do not denote a research area but a particular aspect of the paper in question – i.e., 
that a case study is presented.  

Since we use a statistical approach it is imperative to have an unbiased and large 
enough collection of documents. To do any kind of inference on a keyword that has a 
low number of occurrences may be risky; it is better to discard it, at the cost of losing 
some useful piece of information. We should also be careful not to introduce biases 
when extracting subsets from a larger population. For example if we were to analyze a 
sample composed only by papers from the five best Semantic Web conferences, the 
importance of Semantic Web with respect to other areas would be necessarily 
overestimated. In that sample we may in fact discover that 80% of the papers about 
Machine Learning are associated with Semantic Web, and thus erroneously conclude 
that Machine Learning is a sub-area of Semantic Web. For this reason, while our 
experiments zoom on the Semantic Web as the ‘focus topic’, the corpus we use is 
very large and includes more than one million and half papers downloaded from 
Microsoft Academic Search9 (MAS), which by and large are situated in the Computer 
Science area. 

3.2 Overview of the Approach 

The input to Klink is a collection of keywords associated with a set of documents and 
the result is a graph structure containing both hierarchical and equivalence links. The 
outline of the algorithm is as follows: 

1) Each keyword in input is compared to the other keywords with which it shares at 
least n co-occurrences and two kinds of hierarchical links are inferred: the 
‘standard’ one and the ‘temporal’ one; 

2) Each keyword is checked for possible deletion if it does not meet the 
requirements for being a research area; 

3) The links are cleaned by deleting triangular and circular hierarchical 
relationships and the eventual user’s requirements on the structure are enforced; 

4) Each keyword is compared to the other keywords with which it shares at least n 
co-occurrences; the relatedEquivalent relationships are inferred and the relative 
keywords are merged; 

5) Step 1, 3 and 4 are repeated with the new keywords obtained by merging the 
keywords with inferred equivalence relationships until no new relatedEquivalent 
relationships emerge. 

It should be noticed that step 2 will be run only once and, as a choice, can be applied 
after step 5, giving the keywords that should be deleted the possibility of entering into 
a relatedEquivalent relationship.  

                                                           
9 http://academic.research.microsoft.com 
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3.3 Step 1 – Inferring Hierarchical Relationships 

In the classical definition of subsumption [6], term x is said to subsume term y if two 
conditions hold: P(x|y) = 1 and P(y|x) < 1, e.g. if y is associated to documents that are 
a subset of the documents x is associated to. Usually the first condition is relaxed in 
P(x|y) > α , since it is quite improbable to find a perfect relationship. The usual value 
of α is 0.8, although other values are possible according to the kind of documents 
examined. For the inference of a hierarchical relationship between keywords we use a 
variation of this idea, combined with other heuristic metrics. We consider two 
different kinds of links, the standard one and the temporal one.  

3.3.1 Inferring Standard Hierarchical Links  
We define as a hierarchical link of x with respect to y the relationship in which the 
difference between P(y|x) and P(x|y) leans decidedly toward y and the two terms co-
occur with a similar set of keywords. 

We compute the strength of the hierarchical relationship as: 

L(x,y) = (P(y|x) - P(x|y) ) * c(x,y)* (1+ N(x,y) ) 

where c(x, y) is the cosine similarity between keywords and N(x,y) is a metric that 
weighs the similarity of the keyword names. This similarity is computed as the ratio 
between the number of identical words between two keywords and their average 
number of words.  

A hierarchical link is inferred when L(x,y) > t, and thus x is considered a sub-area 
of y. We suggest a value of 0.2 for t, and in the evaluation we will show how recall 
and precision change for different values of t. It is also possible to use other additional 
filters, chosen carefully according to the set of documents. We actually experimented 
with some of them on the sample of metadata downloaded from MAS, obtaining 
interesting results. Specifically we used the condition that a keyword had to be at least 
two years older than another as a necessary (but not sufficient) condition for being 
considered as its super-area. We then experimented with a filter based on dimensions, 
accepting as sub-areas only areas n times smaller then the super-area. However this 
technique can bring more problems than advantages, since an area can outgrow its 
super-area. Our conclusion was that this filtering technique might be useful but it is 
strongly dependent on the characteristics of the selected collection of documents. 

3.3.2 Inferring Temporal Hierarchical Links 
Some relationships among areas may escape the mechanism previously described. 
Usually, when an area is mature enough, references to its super-area become implicit 
and no longer appear as co-occurring keywords. For example many disciplines fall 
under the Artificial Intelligence area, but today it is hard to find explicit references to 
it in the keywords associated with a publication. For a human it is not very 
informative to annotate that Machine Learning is a form of Artificial Intelligence, 
since it is already a huge and independent research area by itself. The information 
about the origins of a research area is however necessary when building a complete 
taxonomy. 
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As an area grows, the co-occurrences with its super-area become fewer and fewer, 
making harder to infer the origins of a topic by looking only at the total co-
occurrences. Taking into consideration also the temporal dimension aims to solve this 
drawback. The idea is that the initial co-occurrences of two keywords are the most 
informative about stating that a parent area somehow spawned a sub-area.  

We use the term temporal link to refer to the relationship behind this intuition. It 
should be noted that, although temporal links can be used together with the standard 
links to build a taxonomy, they have a different meaning. A standard link between x 
and y implies that y was a vital keyword for x along the total life of x. The temporal 
link instead implies that the set of keywords with which x co-occurred in its first years 
are privileged. Therefore a temporal link between x and y means that y was a very 
important keyword for x in the initial years of x’s life. As time goes by, the 
relationship with the topic inferred by means of the temporal link may persist, or 
become implicit or even vanish.  

The temporal weighted co-occurrence COt(x,y) is obtained by adding over the 
years the number of co-occurrences weighted by a factor w(year,x) given by: 

w(year,x)=  (debut(x) – year)-γ 

where debut(x) is the year of the debut of keyword x, year is the year in which a co-
occurrence occurs, and γ is a constant > 0 that modules the importance of co-
occurring in a given year.  We empirically set this value to 2.  It is advisable not to use 
as debut the first year in which a keyword appeared, but rather the first year in which 
it appeared in at least a minimum number of papers. We use as limit 30 papers, but 
according to our tests any number between 10 and 50 gives reasonable results. To 
reduce the noise it is also possible to take in consideration only the first n years.  

The temporal subsumption metrics Lt(x,y) is computed as for the standard link, 
using the temporal conditional probability Pt(x|y)= COt(y,x)/ COt(y,y): 

Lt(x,y) = (Pt(y|x) - Pt(x|y)) * c(x,y) * (1+N(x,y)) 

As before, a temporal link is inferred if Lt(x,y)>tt. As for the standard link, we suggest 
a threshold value of 0.2, and in the evaluation we will show the outcome for different 
values of tt.  

3.3.3 Integrating External Knowledge 
Using external knowledge to integrate the examined corpus of documents is not 
always necessary but it can be very useful. 

We often want to build a general taxonomy that reflects more the common use of a 
keyword in a certain domain rather than its interpretation in a particular set of 
documents. The examined set may in fact use keywords with a non-common meaning 
or be biased in some way. In this case it is advisable to rely on a neutral source of 
information [7]. Moreover, as it will be shown in section 3.4, external knowledge is 
vital to discover and discard keywords that do not belong to a certain domain.  

We focused on the knowledge of the dimension of a keyword and of the co-
occurrences of keyword pairs in different online sources. By choosing the right 
sources we can be sure to obtain this knowledge within a given domain – e.g., the 
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academic one. We used parsers to collect this kind of knowledge from Google10, 
Google Scholar11, Wikipedia12, and Eventseer13. 

Google and Wikipedia give a good approximation of keyword presence in general. 
On the contrary, Google Scholar focuses on the academic domain and in particular on 
the title and abstract of papers. Eventseer is a site that collects calls for papers, and as 
a result is very useful for understanding the dynamics among keywords as 
conferences topics. We used Google to search in both Wikipedia and Eventseer.net 
since the internal search of these services do not support the AND conjunction. We 
then exploited the “About […] results” text for estimating the occurrence of a 
keyword. For the co-occurrence we used the same technique, using the AND between 
them in the query. We also experimented with the OR conjunction, but the 
combination of AND with OR seemed to yield inconsistent results.  

We computed the external probability as the weighted average of the probability of 
a co-occurrence for each different source: Pex(x|y) = ΣiwiPi(x|y). In the evaluation we 
considered Wikipedia (w=0.2), GoogleScholar (w=0.4) and Eventseer (w=0.4) and we 
computed the hybrid probability as 

Ph(x|y)= whP(x|y) + (1-wh)Pex(x|y) 

where 0<wh<1 is the constant that reflects the importance of the external probability. 
We set this value to 0.5 to balance the contributions of the two components. When the 
set of document is not very large it may instead make sense to rely more heavily on 
external knowledge. We can then compute the hybrid version of L(x,y) by simply 
using the hybrid probability Ph(x|y) instead of the standard one.  

It is important to mention that it is not possible to use external knowledge from the 
aforementioned sources to deduce temporal links, given that these sources do not 
provide the distribution of the co-occurrences over the years. 

3.4 Step 2 – Cleaning the Keywords 

When creating a taxonomy it is important to identify the keywords that are part of a 
certain domain, in this case the domain of ‘research areas’, and those that are not. 

Text mining techniques may lead to noisy keywords that do not add any 
information and actually risk spoiling the inference process. For example in the MAS 
dataset we can find different keywords that are related to the academic world but is 
difficult to consider as research areas – e.g., “Web Pages”, “Case Study”, “Java 
Applet”, and others. Hence it is important to detect and discard them from the final 
taxonomy. Our approach implements three techniques to filter this kind of irrelevant 
keywords.  

The first and simplest procedure is the elimination of any keyword without inferred 
relationships with other keywords.  

                                                           
10 www.google.com 
11 scholar.google.com 
12 www.wikipedia.org 
13 eventseer.net 
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The second technique uses the distribution of the keyword co-occurrences. An 
acceptable keyword should have a limited set of main keywords with which it has a 
relatively high number of co-occurrences and then a long tail of less important one. 
Some keywords show instead a flatter distribution of co-occurrences over a large 
range of keywords. This is the case of many general words used in the academic 
world, such as “Case Study”, which can occur in many papers on completely different 
topics. We identify these spurious keywords by fixing the number of main keywords 
and the minimum percentage of co-occurrences they should cover. If the main 
keyword covers too small a part of the total co-occurrences, then the keyword is 
discarded as being too general. In the evaluation we used as thresholds 20 and 15%, 
respectively.  

The third technique uses external knowledge and it is basically a check on the 
estimated dimension of a keyword in a certain domain. To do so we compute the 
weighted sum of the ratios between the dimension of a given keyword and the 
average dimension of the keywords in the various sources: 

Dex(x)= Σi wi (Di(x) / Ai) 

where Ai and wi are respectively the average dimension and the relative importance of 
the keyword in the i-th dataset of the specific source.  

Google and Wikipedia are less useful sources to consider when we want to know 
the dimension of a keyword in the academic world. Hence, we give more importance 
to conference calls (Eventseer) than to the occurrences in the title or in the abstract of 
a paper (GoogleScholar), by setting wev=0.6 and wgs=0.4. If Dex(x) is below a given 
threshold, which we set empirically at 0.2, the keyword is dropped.  

There may be keywords that have a small dimension but are nevertheless real 
research areas. Thus before deleting a keyword we run a check on its links: if either a 
normal or temporal link has a strength that is at least the double of the correspondent 
threshold, then the keyword is kept.  

3.5 Step 3 – Cleaning the Links 

After step 2 we have a large number of cases in which two super-areas of a keyword 
are also in a hierarchical relationship. For example Word Wide Web and Semantic 
Web may both be super nodes of OWL whereas Word Wide Web may be also a super 
node of Semantic Web. Since such a taxonomy might be confusing the redundant 
links like the one between Word Wide Web and OWL are deleted. 

In this stage, it is possible to cut away the links with lower L(x,y,) or Lt(x,y) to 
satisfy the user’s requirements on the maximum number of super and sub nodes. 

3.6 Step 4 and 5 – Detection of relatedEquivalent Relationships and Merging 
of the Keywords 

The search for relatedEquivalent relationships between keywords offers many 
advantages. For example we can learn that “P2P” and “Peer to Peer” are actually the 
same topic and thus a query for any of the two will return a set of documents 
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associated with both these keywords. Any statistical inference on the Peer to Peer area 
can then use a larger number of papers, and thus be more valid. relatedEquivalent 
relationships can be very important also when focusing only on building a taxonomy 
since they simplify the structure, making the subsumption inference easier.  

A standard metric like the cosine similarity may work well in some cases but it 
raises two problems. The first is due to the fact that the eventual subsumption 
relationship between the keywords is not considered. If one of the keyword subsumes 
in some sense the other, a hierarchical link is preferable to a relatedEquivalent 
relationship. The second problem is that it is important to take in account the reasons 
why two keywords have a high cosine distance. In a taxonomy it is normal for sibling 
elements in the lower levels to have a high cosine similarity since they are different 
declinations of the same theme. Thus we need to take in consideration also the cosine 
similarity of the common super-areas of these keywords, namely the keywords that 
subsume both of them. If the cosine similarities of the two keywords with the 
common super-areas are comparable with their reciprocal similarity, then probably 
they are siblings, and are similar because they derive from the same area or areas. On 
the contrary, if their reciprocal similarity is higher than the one with the predecessors 
a relatedEquivalent relationship is more probable. 

The metric S(x,y) we propose as a measure of the similarity between two keywords 
in a corpus of document is designed to reward the non-trivial similarities that cannot 
be derived from the taxonomy: 

S(x,y)= c(x,y) – wsacsa (x,y) - wsub |P(x|y) - P(y|x)| 

where c(x,y) is the cosine similarity between x and y, csa (x,y) is the average cosine 
similarity with the common super-areas. 0<wsa< 1 weighs the effects of the common 
super-areas on the similarity and in the evaluation will be set at 0.2; 0<wsub<1 weighs 
the importance of not having a subsumption relationship. In the evaluation wsub=0.2.  

The last part of the formula reduces the risk of inferring a relatedEquivalent 
relationship when there is actually a hierarchical one, by introducing a malus 
correlated with the difference of the subsumption probabilities |P(x|y) - P(y|x)|. 

We infer a relatedEquivalent candidate when S(x,y)>tre, where tre is the threshold 
chosen by a human user. In the evaluation we used tre= 0.75.  

In those rare occasions in which for two keywords both a relatedEquivalent and a 
standard or temporal link can be inferred, it is up to the user to decide the priority. We 
decided to prefer the inference of the standard link rather than the relatedEquivalent 
one, and the relatedEquivalent rather than the temporal link.  

The keywords which are found as suitable relatedEquivalent candidates are 
processed by a bottom-up single-linkage hierarchical clustering algorithm which uses 
the inverse of S(x,y) as the distance between the elements.  

The keywords in any resulting cluster are finally merged together in an aggregated 
keyword whose set of documents is the union of the sets of documents of all merged 
keywords. Since this new keyword should be inserted in the taxonomy, the process 
goes back to step one to start over again. The taxonomy will be considered complete 
and will be returned when no new relatedEquivalent relationships are inferred.  
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4 Evaluation 

We used Klink to analyze a very large corpus of papers about the Semantic Web and 
related research areas. We needed a very big dataset that would offer challenges such 
as the presence of synonymous keywords to be merged after detecting a 
relatedEquivalent relationship among them and fuzzy keywords that might not be 
research areas. The collection of metadata available on MAS meets these 
requirements: moreover MAS offers useful APIs to provide access to their data.  

As stated before, a rigorous analysis of a research area requires an unbiased sample 
of papers. Thus it would be inappropriate to take in consideration only the papers 
associated with the keyword “Semantic Web” or published in Semantic Web 
conferences. For this reason we constructed our corpus as follows: we first 
downloaded from MAS the metadata of 11,998 papers associated with the keyword 
“Semantic Web”; we then used this set to find the 120 research areas with which the 
“Semantic Web” has the highest number of co-occurrences and downloaded all the 
associated papers. The end results were 1,510,871 papers that we can consider to 
constitute an unbiased sample. 

We tested different approaches to build a taxomomy, studying the impact of the 
different techniques presented in this paper on the final results. In particular we 
compared14: 

1) The classic subsumption method [6] described in section 3.3 (labelled S); 
2) The Klink approach to finding hierarchical standard links explained in section 

3.3.1 (labelled L); 
3) The Klink approach to finding hierarchical standard links with the integration of 

external knowledge described in section 3.3.3 (labelled L+EXT); 
4) The full Klink algorithm, using both standard and temporal links (see section 

3.3.2) with the integration of external knowledge (labelled L+EXT+TL). 

The hypothesis was that Klink could be used to build taxonomies that are very 
similar, although not necessarily identical, to the ones created by a human user. 
Consistently with the discussion in section 2, the relationships inferred by our 
approach are instances of three kinds of semantic relationships: broaderGeneric, 
contributesTo and relatedEquivalent. However, as stated before, Klink is not able to 
distinguish between the first two relationships, characterizing both of them as 
hierarchical links. Hence, right now it is up to a human user to distinguish between 
these two types of hierarchical links, although we plan in future work to examine 
automatic ways to do so. 

To evaluate the automatically built taxonomies we created a gold standard15, which 
was passed on to three external experts for validation/revision. We started with a 
collection of the 120 keywords with the most numerous co-occurrences within the 

                                                           
14 Because of space limitations, the only two parameters that we will analyze in this evaluation 

are the standard and temporal thresholds. 
15 The gold standard and the data generated by the algorithm are available at  
    http://kmi.open.ac.uk/technologies/rexplore/data/ 
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Semantic Web according to the MAS data. We then removed the less developed parts 
of the structure, e.g., the structure associated with the keyword "User Model", 
obtaining a final sample of 58 keywords: a reasonable size to be handled by the 
experts in their manual evaluation. About 15% of the relationships had to be changed 
to follow the directives of the experts. In about 7% of the cases the three experts 
disagreed on a relationship and we used the one suggested by two out of three. We 
chose to use a gold standard since it allowed to test not only the final version of the 
algorithm but also to study the different contributions offered by its parts as a function 
of the thresholds.  

We selected two taxonomies with different degrees of focus on the Semantic Web. 
The first one (labeled Set1) covers “Semantic Web” together with “Formal Ontology” 
and “Knowledge Representation”. The second one (labeled Set 2) includes also the 
other areas and is expected to yield inferior results since the sample does not cover 
entirely those areas. 

We ran the algorithms and compared the generated taxonomy with the gold 
standard by computing the recall and the precision of the inferred relationships and 
their harmonic mean (F-measure). To reduce complexity, we set the standard and the 
temporal link threshold at the same value. 

Figure 1 shows the relation between precision and recall obtained with the four 
algorithms S, L, (L+EXT) and (L+EXT+LT) for the two sets.  

Using the proposed metric for inferring hierarchical relationship described in 
section 3.3.1, L yields a recall of 53% for Set1 and 38% for Set2 for a precision 
higher than 80%. The basic subsumption method S found in the literature yields for 
the same level of precision a recall of 30% in Set1 and 8% in the Set2.  

The integration of the external knowledge (L+EXT) appears to be effective 
allowing, with t=0.15, a precision of 93% and a recall of 90% for Set1 and precision 
64% with recall 84% for Set2. With t=0.2, precision and recall go respectively to 95% 
and 69% in Set1 (78% and 64% for Set2).  

The temporal links are able to improve the results even more, especially for Set2, 
where more difficulties are posed by the chore of inferring subtrees in areas for which 
we do not have the complete structure. With threshold 0.2, (L+EXT+LT) boosts the 
recall to 92% with a precision 94% for Set1 (86% and 78% for Set2). By raising the 
threshold to 0.25, precision reaches 98% with recall 73% (88% and 73% for Set2). 
Figure 2 shows the F-measure for the two sets as a function of the threshold. 

All results agree in indicating L+EXT+TL as the best approach, followed by 
L+EXT and farther away by L. To statistically evaluate the differences among the 
curves in Figures 1 and 2, we employed the chi-square test. The comparison of 
precision between L+EXT+TL and L yields p=2x10-3 for Set1 and p=2x10-5 for Set2; 
both statistically significant. The comparison between L+EXT+TL and L+EXT 
yields no statistically significant differences for Set1, whereas p=9x10-3 for Set2. 
Similar results are obtained for recall. The fact that a statistically significant 
difference between L+EXT+ST and L+EXT exists only for Set2 indicates that the 
insertion of the temporal link was determinant for inferring relationships in a context 
where the set of keywords related to some research area is not complete.  
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“and other…” to discover relationships between terms. A similar procedure is also 
reported in [16] where a clustering-based sense disambiguation heuristics is proposed 
for pruning the resulting taxonomy. The same technique can be used also to infer 
ontological relationships like subClassOf, as in [17].  

The work of Sanderson and Croft [6] proposes an approach that allows generating 
automatically concept hierarchies without the use of training data or clustering 
techniques. Namely they use the probability that a keyword is associated with another 
to infer subsumptions, as discussed in section 3.3. The same idea is extended in the 
GrowBag algorithm [18], which exploits the second order co-occurrence made 
explicit by a biased PageRank algorithm. 

The basic idea that we have used to infer the subsumption relationship between 
keywords is similar to the one found in [6]. However we extended this approach i) by 
introducing a set of very different metrics, which exploit cosine similarities and 
temporal dimensions and ii) by integrating external knowledge into the process.  

Other authors have proposed the use of external knowledge from web pages for 
finding hierarchical relationships. In [7] three heuristic techniques are suggested for 
mining topic-specific knowledge, however such methods need specific patterns that 
may not be very common in all domains. 

The approach proposed in this paper can find practical applications in the growing 
areas of academic repositories (see for example [3], [19]), to support users in the 
exploration and use of such repositories. In particular, it can be seen as a 
complementary approach to techniques employed for managing, cleaning and 
organizing folksonomies of tags attached to research papers, as notably applied in the 
Bibsonomy system [20]. The semantic GrowBag algorithm already mentioned was 
similarly employed to derive automatically facets to be used in the faceted browsing 
of large publication collections (in Faceted DBLP, see [18]). Our approach however 
focuses on finding relationships between keywords with a high level of accuracy, 
which are verified as corresponding to research areas. As a result we can provide a 
robust navigational structure for collections of research publications, while reducing 
the need for manually curating the structure of the collection.  

Other related works concern complementary approaches, which investigate the 
connections between authors of papers (the network of researchers), in order to 
establish relationships in their areas of interest (see for example [21]). The results 
obtained naturally differ in their views of the types of relationships shared between 
research areas/communities. 

6 Conclusions 

We have presented Klink, a novel algorithm to infer relationships between keywords 
from a collection of terms associated with documents. Klink was tested on a large 
corpus of data from MAS to analyze the relationships between the Semantic Web 
research area and other related areas.  

The results of the evaluation shows a statistically significant improvement of the 
performance by using Klink over the classic subsumption method: the values of recall 
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and precision obtained in regard to the gold standard are highly satisfactory. The 
keyword-centered perspective of the algorithm also offers interesting opportunities for 
analyzing situations in which the experts do not agree on the kinds of relationships 
between two research areas. 

The next steps include three main avenues of work. Firstly, we are currently 
developing a novel system, called Rexplore, whose aim is to improve the support 
available to users to explore and make sense of research data, by integrating a wide 
range of novel visualization methods.  The method presented in this paper will be 
integrated with Rexplore, to support a more powerful and flexible way to map 
research areas to authors and publications. The second avenue of work focuses on 
developing new methods to automatically distinguish between broaderGeneric and 
contributesTo relationships, to avoid the need for humans to perform this final 
semantic step. Finally we want to improve our algorithm by allowing it to recognize 
sets of keywords of similar meaning that fall under a common area, even when this is 
not explicitly present in the keyword collection. For example, both RDF and OWL 
can be seen as sub-areas of a more generic area, which could be called “Web 
Knowledge Representation”, however such area is rarely used as a keyword by 
authors. Again, by using a combination of machine learning techniques and external 
knowledge, we are confident that a method can be developed, which will be able to 
handle these situations correctly.  
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Abstract. Despite the increase in the number of linked instances in the
Linked Data Cloud in recent times, the absence of links at the concept
level has resulted in heterogenous schemas, challenging the interoperabil-
ity goal of the Semantic Web. In this paper, we address this problem by
finding alignments between concepts from multiple Linked Data sources.
Instead of only considering the existing concepts present in each ontol-
ogy, we hypothesize new composite concepts defined as disjunctions of
conjunctions of (RDF) types and value restrictions, which we call restric-
tion classes, and generate alignments between these composite concepts.
This extended concept language enables us to find more complete defi-
nitions and to even align sources that have rudimentary ontologies, such
as those that are simple renderings of relational databases. Our concept
alignment approach is based on analyzing the extensions of these concepts
and their linked instances. Having explored the alignment of conjunctive
concepts in our previous work, in this paper, we focus on concept cover-
ings (disjunctions of restriction classes). We present an evaluation of this
new algorithm to Geospatial, Biological Classification, and Genetics do-
mains. The resulting alignments are useful for refining existing ontologies
and determining the alignments between concepts in the ontologies, thus
increasing the interoperability in the Linked Open Data Cloud.

1 Introduction

The Web of Linked Data has grown significantly in the past few years – 31.6
billion triples as of September 2011. This includes a wide range of data sources
from the government (42%), geographic (19.4%), life sciences (9.6%) and other
domains.1 A common way that the instances in these sources are linked to oth-
ers is through the owl:sameAs property. Though the size of Linked Data Cloud
is increasing steadily (10% over the 28.5 billion triples in 2010), inspection of
the sources at the ontology level reveals that only a few of them (15 out of the
190 sources) include mappings between their ontologies. Since interoperability
is crucial to the success of the Semantic Web, it is essential that these heteroge-
nous schemas, the result of a de-centralized approach to the generation of data

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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and ontologies, also be linked. The problem of schema linking, such as schema
matching in databases and ontology alignment in the Semantic Web, has been
well researched [5,1,4]. As in Instance-based Matching [4,3,7], we follow an ex-
tensional approach to generating the alignments. The novelty of our approach
consists of generating new concept hypotheses beyond the concepts originally
present in the ontologies, and aligning these extended concepts by exploiting the
linked instances in the Linked Data Cloud.

The problem of finding alignments in ontologies of Linked Data sources is
non-trivial, since there might not be one-to-one concept equivalences. In some
sources the ontology is extremely rudimentary, for example GeoNames has only
one class - geonames:Feature, and the alignment of such an ontology with a well
defined one, such as DBpedia, is not particularly useful. In order to be successful
in linking ontologies, we need to generate more expressive concepts. The neces-
sary information to do this is often present in the properties and values of the
instances in the sources. For example, in GeoNames the values of the feature-
Code and featureClass properties provide useful concept constructors, which can
be aligned with existing concepts in DBpedia, so that we have that the concept
geonames:featureCode=P.PPL (populated place) aligns to dbpedia:City. There-
fore, our approach explores the space of concepts defined by value restrictions,
which we will call restriction classes in the reminder of the paper. A value re-
striction is a concept constructor present in expressive description logics, such as
OWL-DL (SHOIN (D)) [6]. We consider class assertions (rdf:type) and value re-
strictions on both object and data properties, which we will represent uniformly
as {p = v}, where either p is an object property and v is a resource (including
rdf:type=Class), or p is a data property and v is a literal. We consider two re-
striction classes equal if their respective instance sets can be identified as equal
after following the owl:sameAs links.

In our previous work [10], we explored conjunctive restriction classes. In this
paper, we explore disjunctive restriction classes. Specifically, we focus on con-
cept coverings where a larger concept from one source can be explained by (i.e.,
is extensionally equivalent to) the union of multiple smaller classes in the other
source. Our approach finds alignments based on the extensions of the concepts,
that is, the sets of instances satisfying the definitions of the restriction classes.
We believe that this is an important feature of our approach in that it allows
one to understand the relationships in the actual linked data and their corre-
sponding ontologies. The alignments generated can readily be used for modeling
and understanding the sources since we are modeling what the sources actually
contain as opposed as to what an ontology disassociated from the data appears
to contain based on the class name or description.

This paper is organized as follows. First, we describe the Linked Open Data
sources that we align. Second, we present the alignment algorithm that consists of
two steps: finding initial equivalence and subset relations, and then discovering
concept coverings using disjunctions of restriction classes. Third, we describe
representative alignments discovered by our approach and present an evalua-
tion of the results. An interesting outcome of our algorithm is that it identifies
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inconsistencies and possible errors in the linked data, and provides a method
for automatically curating the Linked Data Cloud. Finally, we compare against
related work, and discuss our contributions and future work.2

2 Sources Used for Alignments

In the Linked Open Data Cloud, sources often conform to different, but related,
ontologies that can also be meaningfully linked [2,9,10]. In this section we de-
scribe some of these sources from different domains that we align, instances in
which are linked using an equivalence property like owl:sameAs.

Linking GeoNames with Places in DBpedia: DBpedia (dbpedia.org) is a
knowledge base that covers multiple domains including around 526,000 places
and other geographical features from the Geospatial domain. We align concepts
in DBpedia with GeoNames (geonames.org), which is a geographic source with
about 7.8 million geographical features. GeoNames uses a rudimentary flat-file
like ontology, where all instances belong to a single concept of Feature, with the
type data (e.g. mountains, lakes, etc.) encoded in the featureClass and feature-
Code properties.

Linking LinkedGeoData with Places in DBpedia: We also find alignments
between the ontologies behind LinkedGeoData (linkedgeodata.org) and DBpe-
dia. LinkedGeoData is derived from the Open Street Map initiative with around
101,000 instances linked to DBpedia using the owl:sameAs property.

Linking Species from Geospecies with DBpedia: The Geospecies knowl-
edge base (lod.geospecies.org) contains a taxonomic classification of living or-
ganisms linked to species in DBpedia using the skos:closeMatch property. Since
these sources have many species in common, they are ideal for finding alignments
between the vocabularies.

Linking Genes from GeneID withMGI : The Bio2RDF (bio2rdf.org) project
contains inter-linked life sciences data extracted from multiple data-sets that
cover genes, chemicals, enzymes, etc. We consider two sources from the Ge-
netics domain from Bio2RDF, GeneID (extracted from the National Center
for Biotechnology Information database) and MGI (extracted from the Mouse
Genome Informatics project), where the genes are marked equivalent.

In Section 4 we provide results for the four alignment experiments described
above. In the rest of this paper we explain our methodology, which is source
independent, by using the alignment of GeoNames with DBpedia as an example.

3 Finding Concept Coverings across Ontologies

We use a two step approach to find concept coverings. First, we extract atomic
equivalent and subset alignments from the two sources where the restriction

2 This paper is an extended version of our workshop paper [11]. We have added more
formal descriptions, explanations of the algorithms and detailed evaluation.
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class on each side contains a single property-value pair and no conjunction or
disjunctions. These are the simplest alignments that can be defined. We then
use these to find concept coverings by describing a larger concept with a union
of smaller ones using set containment.

We also discuss how our alignment approach detects outliers, which often
indicate missing or incorrect links, and provides a powerful tool to curate the
Linked Data cloud.

3.1 Finding Alignments with Atomic Restriction Classes

As a precursor to finding concept coverings between the two sources, our al-
gorithm first finds alignments where the restriction classes on each side of the
alignment are atomic - i.e. have one property-value pair each. In our previous
work [10], we used a similar approach to find alignments between the ontologies
where a conjunction of restriction classes was aligned with its equivalent concept
in the other source. In this paper we focus on atomic restriction classes. Since
we do not need to find alignments of conjunctive restriction classes, the search
space is polynomial rather than combinatorial.

The sources are first prepared for exploration by performing an inner join on
the equivalence property (e.g., owl:sameAs) and optimized by removing inverse-
functional properties. Then, the following algorithm is used to find the align-
ments between atomic restriction classes.

for all p1 in Source1 and distinct v1 associated with p1 do
r1 ← restriction class {p1 = v1} containing all instances where p1 = v1
Img(r1)← Find all corresponding instances from Source2 to those in r1,

linked by owl:sameAs
for all p2 in Source2 and distinct v2 associated with p2 do

r2 ← restriction class {p2 = v2} containing all instances where p2 = v2
P ← |Img(r1)∩r2|

|r2| , R← |Img(r1)∩r2|
|r1|

if P ≥ θ then alignment(r1, r2)← r1 ⊂ r2
end if
if R ≥ θ then alignment(r1, r2)← r2 ⊂ r1
end if
if P ≥ θ and R ≥ θ then alignment(r1, r2)← r1 ≡ r2
end if

end for
end for

Fig. 1 illustrates the set comparison operations of our algorithm. In order to
allow a certain margin of error induced by the data set, we use P ≥ θ and R ≥ θ
(instead of P = 1 and R = 1, which would hold if there were no error or missing
links) in our score function. In our experiments we used a threshold θ = 0.9,
which was determined empirically, but can be changed as desired. For example,
consider the alignment between restriction classes {geonames:countryCode=ES}
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from GeoNames and {dbpedia:country = dbpedia:Spain} from DBpedia. Based on
the extension sets, our algorithm finds |Img(r1)| = 3198, |r2| = 4143, |Img(r1)∩
r2|= 3917,R′ = 0.9997 and P ′ = 0.9454. Thus, the algorithm considers the align-
ment as equivalent in an extensional sense. Some alignments that do not qualify
as equivalent, but with the smaller concept contained in the larger concept, qual-
ify as subset relations. For example, we find that each of {geonames:featureCode
= S.SCH }, {geonames:featureCode = S.SCHC} and {geonames:featureCode =
S.UNIV } (i.e. Schools, Colleges and Universities from GeoNames) are subsets
of {dbpedia:EducationalInstitution}.

Fig. 1. Comparing the linked instances from two ontologies

Similar to our previous work [10], we also use certain optimization strategies
for faster computation. For example, if we explore the properties lexicograph-
ically, the search space is reduced to half because of symmetry. To qualify as
a concept, the intersection of the restriction classes needs to have a minimum
support, which we set experimentally to ten instances.

3.2 Identifying Concept Coverings

In step two, we use the subclasses and equivalent alignments generated by the
previous step to try and align a larger concept from one ontology with a union
of smaller subsumed concepts in the other ontology. To define a larger concept,
we group its subclasses from the other source that have a common property and
check whether they are able to cover the larger concept. By keeping the larger
restriction class atomic and by grouping the smaller restriction classes with
a common property, we are able to find intuitive definitions while keeping the
problem tractable. The disjunction operator that groups the smaller restriction
classes is defined such that i) the concept formed by the disjunction of the
classes represents the union of their set of instances, ii) the property for all the
property-value pairs of the smaller aggregated classes is the same. We then try to
detect the alignment between the larger concept and the union restriction class
by using an extensional approach similar to the previous step. The algorithm for
generating the hypotheses and the alignments is as follows:
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for all alignments found in the previous step, with larger concepts from one
source with multiple subclasses from the other source do

UL ← larger restriction class{pL = vL}, and corresponding instances.
for all smaller concepts grouped by a common property (pS) do

US ← the union restriction class, and the corresponding instances of
all the smaller restriction classes{pS = {v1, v2, ...}}

UA ← Img(UL) ∩ US, PU ← |UA|
|US | , RU ← |UA|

|UL|
if RU ≥ θ then alignment(r1, r2)← UL ≡ US

end if
end for

end for

Since all smaller classes are subsets of the larger restriction class, PU ≥ θ
by construction. We used θ = 0.9 in our experiments. The smaller restriction
classes that were omitted in the first step because of insufficient support size of
their intersections, were included in constructing US for completeness.

Figure 2 provides an example of the approach. The first step is able
to detect that alignments such as {geonames:featureCode = S.SCH},
{geonames:featureCode = S.SCHC}, {geonames:featureCode = S.UNIV}
are subsets of {rdf:type = dbpedia:EducationalInstitution}. As can be
seen in the Venn diagram in Figure 2, UL is Img({rdf:type = dbpe-
dia:EducationalInstitution}), US is {geonames:featureCode = S.SCH} ∪
{geonames:featureCode = S.SCHC} ∪ {geonames:featureCode = S.UNIV}, and
UA is the intersection of the two. Upon calculation we find that R′

U for the align-
ment of dbpedia:EducationalInstitution to {geonames:featureCode= {S.SCH,
S.SCHC, S.UNIV}} is 0.98. We can thus confirm the hypothesis and consider UL

& US equivalent. Section 4 describes these calculations and additional examples
of concept coverings.

Fig. 2. Concept covering of Educational Institutions from DBpedia
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3.3 Curating the Linked Data Cloud

It turns out that the outliers, the instances of the restriction classes that do not
satisfy subset relations despite the error margins, are often due to incorrect and
missing links or assertions. We are able to detect these, thus providing a novel
method to curate the Web of Linked Data.

In the alignment of {rdf:type = dbpedia:EducationalInstitution} to {geonames:
featureCode = {S.SCH, S.SCHC, S.UNIV}} we find 8 outliers (Table 6, row 1).
For {rdf:type = dbpedia:EducationalInstitution}, 396 instances out of the 404 Ed-
ucational Institutions were accounted for as having their geonames:featureCode
as one of S.SCH, S.SCHC or S.UNIV. From the 8 outliers, 1 does not have a
geonames:featureCode property asserted. The other 7 have their feature codes
as either S.BLDG (3 buildings), S.EST (1 establishment), S.HSP (1 hospital),
S.LIBR (1 library) or S.MUS (1 museum). This case requires more sophisticated
curation and the outliers may indicate a case for multiple inheritance. For ex-
ample, the hospital instance in geonames may be a medical college that could
be classified as a university.

In the {dbpedia:country = Spain} ≡ {geonames:countryCode = {ES}} align-
ment (Table 6, row 2), one outlier instance was identified as having the coun-
try code IT (Italy) in GeoNames, suggesting an incorrect link/assertion. The
algorithm was able to flag this situation as a possible error, since there is over-
whelming support for ‘ES’ being the country code of Spain. Our union alignment
algorithm is able to detect similar other outliers and provides a powerful tool to
quickly focus on links that require human curation, or that could be automati-
cally flagged as problematic, and provides evidence for the error.

4 Experimental Results

The results of our concept covering algorithm over the four pairs of sources we
consider appear in Table 1. The first step of our algorithm was able to gener-
ate about 180k equivalence and subset alignments. After running the covering
algorithm, 77966 subset alignments were explained by 7069 coverings, for a com-
pression ratio of about 11:1.

Table 1. Concept Coverings Found in the 4 Source Pairs

Source1 Source2 O1-O2: Coverings O2-O1 Coverings Total
(Subset Alignments) (Subset Alignments) Coverings

GeoNames DBpedia 434 (2197) 318 (7942) 752
LinkedGeoData DBpedia 2746 (12572) 3097 (48345) 5843

Geospecies DBpedia 191 (1226) 255 (2569) 446
GeneID MGI 6 (29) 22 (3086) 28
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4.1 Representative Examples of the Concept Coverings Found

Some representative examples of the concept coverings found are shown in Ta-
bles 6, 7 and 8. In the tables, for each concept covering, column 2 describes
the large restriction class from ontology1 and column 3 describes the union of the
(smaller) classes on ontology2 with the corresponding property and value set. The

score of the union is noted in column 4 (RU = |UA|
|UL| ) followed by |UA| and |UL| in

columns 5 and 6. Column 7 describes the outliers, i.e. values v2 of property p2 that
form restriction classes that are not direct subsets of the larger restriction class.
Each of these outliers also has a fraction with the number of instances that be-
long to the intersection over the the number of instances of the smaller restriction

class (or |Img(r1)∩r2|
|r2| ). One can see that the fraction is less than our relaxed subset

score. If the value of this fraction was greater than the relaxed subset score (i.e.
θ = 0.9), the set would have been included in column 3 instead. The last column
mentions how many of the total UL instances were we able to explain using UA

and the outliers. For example, the concept covering #1 of Table 6 is the Educa-
tional Institution example described before. It shows how educational institutions
fromDBpedia can be explained by schools, colleges and universities inGeoNames.
Column 4, 5 and 6 explain the alignment score RU (0.98), the size UA (396) and
the size of UL (404). Outliers (S.BLDG, S.EST, S.LIBR, S.MUS, S.HSP) along
with their P ′ fractions appear in column 7. Thus, 403 of the total 404 instances
were identified as either part of the covering or the outliers (see column 8). The
remaining instance did not have a geonames:featureCode property asserted.

In some of the concept coverings discovered, the alignments found were intu-
itive because of an underlying hierarchical nature of the concepts involved, espe-
cially in case of alignments of administrative divisions in geospatial sources and
alignments in the biological classification taxonomy. For example, #3 highlights
alignments that reflect the containment properties of administrative divisions.
Other interesting types of alignment were also found. For example #7 tries to
map two non-similar concepts. It explains the license plate codes found in the
state (bundesland) of Saarland. For space, we explain the other concept cover-
ings inside Tables 6, 7 and 8. The complete set of alignments discovered by our
algorithm is available online.3

Outliers. In alignments, we also found inconsistencies, identified by three main
reasons: (i)Incorrect instance alignments - outliers arising out of possible er-
roneous equivalence link between instances (e.g., in #4, a hill is linked to an
airport, etc.), (ii) Incorrect values for properties - outliers arising out of possi-
ble erroneous assertion for a property (e.g. #5, #6, Flags of countries appear
as values for the country property). In the tables, we also mention the classes
that these inconsistencies belong to along with their support. We are unable to
detect correct alignments if there is insufficient support for coverage due to miss-
ing links between instances or missing instances (e.g. in #9 we find a complete
coverage with all instances, but it is incomplete – the state of New Jersey has
21 counties).

3 http://www.isi.edu/integration/data/UnionAlignments

http://www.isi.edu/integration/data/UnionAlignments
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4.2 Evaluation

We present an evaluation of a random set of 642 discovered alignments across
the tested source pairs to describe the precision of our approach. We checked the
correctness of each of the 642 alignments manually, after verifying the complete-
ness of concept coverings on websites with the relevant information. Precision
was calculated as the ratio of alignments marked correct to the size of the ran-
dom set. Establishing recall is difficult as finding the ground truth of all possible
concept coverings is infeasible due to the large size of the sources and the com-
binatorial nature of the disjuntions. We do, however, provide an evaluation of
the country alignments found in terms of precision and recall as an example.

Linking GeoNames with places in DBpedia: As shown in Table 2, out of
the 752 (i.e. 434 + 328) alignments found between GeoNames and DBpedia, we
evaluated 236 (i.e. 185 + 51) alignments. 152 (i.e. 127 + 25) of them were found
to be correct after resolving redirects (synonyms in DBpedia), giving a precision
of 64.40%, while 84 alignments were found to be incorrect. These 84 alignments
were found to suffer common patterns of error. There are 40 alignments that
had incorrect assertions of their properties. For example, in many instances in
DBpedia, the county property assertion was misspelled as country (especially
for places in UK & Ukraine), or the ”.svg” file of the flag of a country appeared
dbpedia:country value. The corresponding alignments, which we counted as in-
correct, could have been properly detected if the data was cleaner. We detected
only partial alignments for 14 others, where the smaller concepts left out were
incorrectly classified as outliers due to insufficient support (R < 0.9). There
were 7 partial alignments that were incorrectly detected as complete (R > 0.9),
similar to the New Jersey example mentioned earlier. Another 14 alignments
suffered from a mismatch to a parent, because of insufficient links/instances.
The remaining 9 alignments had an assortment of problems in the values of
properties. For example, regions inside a country (Andean Region of Colombia)
appeared as value for the country property (Colombia).

Precision, recall and f-measure of Country Alignments: Since manually estab-
lishing ground truth for all possible concept coverings in the four sources is infea-
sible, we decided to find the precision and recall of only the country alignments
we found, as an illustration. These are alignments having a common pattern,
aligning a restriction class with a dbpedia:country property with other restric-
tion classes featuring geonames:countryCode property or vice-versa. A ground
truth was established by manually checking what possible country alignments
were present in the two sources. Even then, establishing the ground truth needed
some insight. For example, Scotland, England, Wales, Northern Ireland & the
United Kingdom are all marked as countries in DBpedia, while in GeoNames,
the only corresponding country is the United Kingdom. In cases like these, we
decided to relax the evaluation constraint of having and alignment with a coun-
try from either of these, as correct. Another similar difficulty was in cases where
militarily occupied territories were marked as countries (e.g. Golan Heights oc-
cupied by Israel is marked as dbpedia:country).
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Table 2. Linking GeoNames with places in DBpedia

Description of Pattern Observed Alignments w/ larger Alignments w/ larger
class from GeoNames class from DBpedia

Total # Alignments 434 328
# Alignments Evaluated 185 51

Correct 127 25
(after resolving redirects)

Unidentified due to mislabelling 5
the Country property as County
Unidentified due to ‘.svg’ file 35

of the flag as value for the country
Partially found with remaining as outliers 3 11

Partially found without outliers 7
Misaligned with a parent concept 8 6

Other problems 7 2

Out of the 63 country alignments detected, 26 were correct. 27 other alignments
had a ‘.svg’ file appearing as value of the country property in DBpedia. We would
have detected such concept coverings, had such assertions for the country prop-
erty been correct. Since this is a problem with the data and not our algorithm, we
consider these 27 as correct for this particular evaluation. We thus get a precision
of 84.13% ((26+27) out of 63). The two sources contained around 169 possible
country alignments between them, including countries with a ‘.svg’ value for the
country property. There were many alignments in the ground truth that were not
found because the system did not have enough support (R < 0.9) to pass our
threshold. Accordingly, the recall was 31.36% and the F-measure was 45.69%.

Linking LinkedGeoData with places in DBpedia: We evaluated 200 align-
ments found between LinkedGeoData and DBpedia, out of which 157 were found
to be correct, giving a precision of 78.2%. Common patterns of alignments in-
clude alignments of an area identified by its OpenGeoDb location id with its
name or license plate codes from DBpedia. We were not able to detect 14 align-
ments correctly, where there were multiple spellings for the same entity (e.g.
LinkedGeoData uses both “Hof Oberfranken” and “Landkreis Hof Oberfranken”
in its values for its linkedgeodata:is in property). Another 20 alignments evalu-
ated were partial (e.g. out of the 88 counties in Ohio, the algorithm produced
a covering including only 54). There were some other errors as well (e.g. Places
with license plate code GR in DBpedia were aligned with instances having license
code GR, NOL & ZI in LinkedGeoData).

Linking Species from Geospecies with DBpedia: In aligning Geospecies
with DBpedia, out of the 178 alignments that we evaluated, we found 109 correct
alignments for a precision of 61.24%. For 25 of the results, due to the presence of
multiple names/lexical values for the same item (e.g. both“Decapoda”@en and
dbpedia:Decapoda values exist for dbpedia:ordo property). In 28 of the evaluated
alignments, we were only able to find partial concept coverings, mostly because of
insufficient instances and property assertions. For 16 other alignments, however,
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Table 3. Linking LinkedGeoData with DBpedia

Description of Pattern Observed Alignments w/ larger Alignments w/ larger
class from LinkedGeoData class from DBpedia

Total # Alignments 2746 3097
# Alignments Evaluated 100 100

Correct 78 79
Unidentified due to multiple spellings 5 9

Partially found 13 7
Other 4 5

Table 4. Linking Geospecies with DBpedia

Description of Pattern Observed Alignments w/ larger Alignments w/ larger
class from Geospecies class from DBpedia

Total # Alignments 191 255
# Alignments Evaluated 93 85

Correct 49 60
Unidentified due to multiple spellings 25 0

Partially found 4 24
Other 15 1

there were some interesting reasons. In some cases, the biological classes were no
longer in use (Urticales, Homoptera, etc.). There were some alignments that we
were not able to guess correctly because the species were marked as belonging
to different classification systems. There were also a few mismatches to a class
at a different level in the hierarchy.

Linking Genes from GeneID with MGI : In the 28 alignments found be-
tween GeneID and MGI, 24 were found to be correct for a precision of 85.71%.
Most (20) of these were alignments linking a gene start position from MGI with
possible locations from GeneID. In theory, these are numeric distances in cen-
timorgans and can actually be an infinite set. In the data however we find all
possible distances occurring as text. The other 4 alignments were partial because
of insufficient data.

Table 5. Linking GeneID with MGI

Description of Pattern Observed Alignments w/ larger Alignments w/ larger
class from GeneID class from MGI

Total # Alignments 6 22
# Alignments Evaluated 6 22

Correct 4 20
Partially found 2 2
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5 Related Work

Ontology alignment and schema matching have been a well explored area of re-
search since the early days of ontologies [5,1] and received renewed interest in
recent years with the rise of the Semantic Web and Linked Data. In the Web of
Linked Data, even though most work done is on linking instances across different
sources, an increasing number of authors have looked into aligning the source
ontologies in the past couple of years. Jain et al. [8] describe the BLOOMS ap-
proach, which uses a central forest of concepts derived from topics in Wikipedia.
An update to this is the BLOOMS+ approach [9] that aligns Linked Open Data
ontologies with an upper-level ontology called Proton. BLOOMS is unable to
find alignments because of the single Feature class in GeoNames. BLOOMS+,
which uses contextual information, finds some alignments between GeoNames &
Proton (precision of 0.5%) and DBpedia & Proton (90%). Cruz et al. [2] describe
a dynamic ontology mapping approach called AgreementMaker that uses simi-
larity measures along with a mediator ontology to find mappings using the labels
of the classes. From the subset and equivalent alignment between GeoNames (10
concepts) and DBpedia (257 concepts), AgreementMaker achieves a precision of
26% and a recall of 68%. In comparison, for GeoNames and DBpedia, we achieve
a precision of 64.4%. But this comparison does not reflect that we find concept
coverings in addition to one-to-one alignments, while the other systems only find
one-to-one alignments. The advantage of our approach over these is that our use
of restriction classes is able to find a large set of alignments in cases like aligning
GeoNames with DBpedia even in the presence of a rudimentary ontology. We
believe that since other approaches do not consider concept descriptions beyond
those in the original ontology (like concept coverings), they would not have been
able to find alignments like the Educational Institutions example (#1) by using
only the labels and the structure of the ontology.

Extensional techniques and concept coverings have also been studied in the
past [7]. Völker et al. [13] describe an approach, similar to our work, that uses
statistical methods for finding alignments. This work induces schemas for RDF
data sources by generating OWL-2 axioms using an intermediate associativity
table of instances and concepts (called transaction datasets) and mining as-
sociativity rules from it. The GLUE [3] system is a instance-based matching
algorithm, which first predicts the concept in the other source that instances
belong to using machine learning. GLUE then hypothesizes alignments based on
the probability distributions obtained from the classifications. Our approach, in
contrast, depends on the existing links (in Linked Open Data Cloud), and hence
reflects the nature of the source alignments in practice. CSR [12] is a similar
work to ours that tries to align a concept from one ontology to a union of con-
cepts from the other ontology using the similarity of properties as features in
predicting the subsumption relationships. It differs from our approach in that it
uses a statistical machine learning approach for detection of subsets rather than
the extensional approach.
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6 Conclusions and Future Work

We described an approach to identifying concept coverings in Linked Data sources
from the Geospatial, Biological Classification and Genetics domains. By intro-
ducing the definition of restriction classes with the disjunction operator, we are
able to find alignments of union concepts from one source to larger concepts
from the other source. Our approach produces coverings where concepts at dif-
ferent levels in the ontologies of two sources can be mapped even when there
is no direct equivalence or only rudimentary ontologies exist. Our algorithm is
also able to find outliers that help identify erroneous links or inconsistencies in
the linked instances. Our results provide a deeper insight into the nature of the
alignments of Linked Data.

In future work we want to find more complete descriptions for the sources.
Our preliminary findings show that the results of this paper can be used to find
patterns in the properties. For example, the countryCode property in GeoNames
is closely associated with the country property in DBpedia, though their ranges
are not exactly equal. By mining rules from the generated alignments, we will
be closer to the interoperability vision of the Semantic Web. A second direction
of future work is to use the outliers to feed the corrections back to the sources,
particularly DBpedia, and to the RDF data quality watchdog group pedantic-
web.org. To achieve this satisfactorily, we not only need to point out the instances
that have errors, but suggest why those errors occurred, that is, whether it was
due to incorrect assertions or missing links.

Acknowledgements. This research is based upon work supported in part by
the National Science Foundation under award number IIS-1117913. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of NSF or any person connected with them.

References

1. Bernstein, P., Madhavan, J., Rahm, E.: Generic schema matching, ten years later.
Proceedings of the VLDB Endowment 4(11) (2011)

2. Cruz, I., Palmonari, M., Caimi, F., Stroe, C.: Towards on the go matching of linked
open data ontologies. In: Workshop on Discovering Meaning on the Go in Large
Heterogeneous Data, p. 37 (2011)

3. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine
learning approach. In: Handbook on Ontologies, pp. 385–404 (2004)

4. Duckham, M., Worboys, M.: An algebraic approach to automated geospatial in-
formation fusion. International Journal of Geographical Information Science 19(5),
537–558 (2005)

5. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
6. Horrocks, I., Patel-Schneider, P., Van Harmelen, F.: From shiq and rdf to owl: The

making of a web ontology language. Web Semantics: Science, Services and Agents
on the World Wide Web 1(1), 7–26 (2003)



Discovering Concept Coverings in Ontologies of Linked Data Sources 443

7. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An Empirical Study of Instance-
Based Ontology Matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
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Abstract. Ontology and other logical languages are built around the
idea that axioms enable the inference of new facts about the available
data. In some circumstances, however, the data is meant to be complete
in certain ways, and deducing new facts may be undesirable. Previous
approaches to this issue have relied on syntactically specifying certain
axioms as constraints or adding in new constructs for constraints, and
providing a different or extended meaning for constraints that reduces or
eliminates their ability to infer new facts without requiring the data to be
complete. We propose to instead directly state that the extension of cer-
tain concepts and roles are complete by making them DBox predicates,
which eliminates the distinction between regular axioms and constraints
for these concepts and roles. This proposal eliminates the need for special
semantics and avoids problems of previous proposals.

1 Introduction

A complaint against ontology languages like the W3C OWL Web Ontology Lan-
guage is that axioms in such ontology languages sometimes have too many con-
sequences. For example,1 the axiom MarriedPerson � ∀hasSpouse.Person along
withMarriedPerson(Peter) and hasSpouse(Peter, Susan) produces the consequence
Person(Susan). Similarly, the axiom MarriedPerson ≡ Person � (= 1 hasSpouse)
along with MarriedPerson(Peter) implies that there is some spouse for Peter.
However, the data generation methodology may be such that all persons and/or
all spouse relationships should be explicitly given, and not inferred. For exam-
ple, the data for these concepts or roles may come from an ostensibly complete
database. If this is the case, then problems arise when using ontology axioms in
the usual way. In the first example Susan is inferred to be a person even if there
may be no explicit fact to this effect (and thus Susan is not a person) and in
the second example some (unknown) spouse is inferred for Peter, which is not
an explicit fact at all.

This particular complaint against standard ontology languages has spawned
a number of proposals attempting to overcome the problem. Some proposals
[10,15] change certain axioms into integrity constraints (roughly statements that

1 Throughout this paper a standard concise syntax [1] for OWL and other ontology
languages and description logics will be used in examples to improve readability.

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 444–459, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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check the integrity of the data in the knowledge base (KB) instead of enabling
consequences) that are interpreted in minimal or modal ways. Other proposals [6]
suggest that the ontology language be extended with autoepistemic constructs
that can be used to write integrity constraints.

We disagree with the general approach taken in all of these proposals. Our be-
lief is that the problem here is not a deficiency in ontology languages at all. In
particular, we do not find any problems with the ontology axioms above, nor with
their consequences. To the contrary, these axioms are unexceptional and should
infer consequences just like any other axiom. Instead we claim that the complaints
against the power of axioms in ontology languages have to do with a mismatch
between the general open-world assumption in ontology languages and in many
other logics, on one hand, and a desire to have complete and maybe even explicit
information about the extension of certain concepts and roles, on the other.

So, for example, if we have complete data about some concepts or roles, e.g.,
a set of the distinct instances of Person or the distinct pairs in hasSpouse, then it
should be the case that inferences do not augment this data. But, again, this is
not a problem with the axioms, e.g., the ones above, which are simply a reflection
of the way we believe the domain is, but is instead a problem with our data,
which is incomplete when it was stated to be complete. A consequence that adds
more information to these concepts or roles then is contradicting this supposed
completeness, causing an inconsistency in the KB.

Our basic approach to modeling, then, is to build the ontology without con-
sidering anything like the desired completeness of data or integrity constraints.
Only then do we determine which concepts and roles are to have complete data.
So, for example, we might build the ontology of people and spouses

Person � �
MarriedPerson ≡ Person � (= 1 hasSpouse)

MarriedPerson � ∀hasSpouse.Person

We might, then, perhaps because we are using an explicit data source of all
spousal relationships, require that the hasSpouse role be completely and explic-
itly provided.

Suppose that data in the hasSpouse role is provided as the four distinct entries

hasSpouse
Peter Susan
Susan Peter
Mary Paul
Paul Mary

(1)

Our ontology axioms will make inferences from this data, including Person(Susan)
and MarriedPerson(Peter) which is all as it should be. Suppose, however, that our
KB also includes MarriedPerson(Alex) Then our ontology axioms would, in effect,
add another entry to the hasSpouse role, one with first entry Alex. As we stated
that the given data for hasSpouse is complete, this would be an inconsistent
situation indicating that the constraint has been violated.
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This treatment of complete concepts and roles is just the DBox treatment
[14,7]. Our approach has all the benefits of DBoxes, including easy query answer-
ing when all concepts and roles are DBox concepts and roles, and exact answers
to queries controlled by DBox concepts and roles, i.e., if we query for married
people and their spouses above we get precisely every spousal relationship. These
exact answers can be used in applications without worrying that there might be
missing information, i.e., as might happen when there is a married person whose
spouse is not known. Applications can treat such query answers in the same way
that they can treat query answers in databases.

2 Autoepistemic and Minimal Model Approaches

Autoepistemic extensions to description logics or ontology languages, such as the
work by Donini et al on description logics of minimal knowledge and negation
as failure (MKNF-DL) [6], can be used to express constraints, either directly, or
as rules [12]. Negation as failure by itself has been used to express constraints
in OWL Flight [5,4].

The MKNF-DL axiom

KMarriedPerson � ∃AhasSpouse (2)

expresses the constraint that every known married person has a known spouse
so that a KB containing only

KMarriedPerson � ∃AhasSpouse (2.1)

MarriedPerson(Joe)

is unsatisfiable because Joe does not have a known spouse. Knowledge in MKNF-
DL requires knowing what, not just knowing that, so

KMarriedPerson � ∃AhasSpouse (2.2)

MarriedPerson(Joe) (∃hasSpouse)(Joe)

is also unsatisfiable because, although Joe does have some spouse, the identity
of that spouse is not known. Only information about the identity of Joe’s spouse
is adequate to satisfy the constraint, as in

KMarriedPerson � ∃AhasSpouse (2.3)

MarriedPerson(Joe) hasSpouse(Joe, Susan)

Adding autoepistemic constructs into description logics augments their expres-
sive power considerably. Although the result is decidable, we are unaware of any
high-performance systems that implement reasoning in MKNF-DL.

The constraint axioms in the MKNF-DL approach involve autoepistemic op-
erators in negative contexts, such as KMarriedPerson above, indicating that lack
of knowledge can allow a constraint to be satisfied. Constraint axioms thus do
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not necessarily imply their non-constraint version, so one often needs to provide
two versions of constraint axioms, such as by adding

MarriedPerson � =1 hasSpouse

Without such an axiom, as in KB 2.1, it will not be the case that all married-
Persons have a spouse, only the known ones.

For similar reasons, the MKNF-DL approach does not require that existential
individuals be considered in constraints. For example, in

KMarriedPerson � ∃AhasSpouse (2.4)

(∃hasChild.MarriedPerson)(Mary)

the constraint is satisfied even though nothing is known about Mary’s married
child. We feel that constraints should be active on all participating individuals,
independently of whether they are known, and consider that the example above
points out a major problem with MKNF-DL and similar modal approaches.

Also similarly, the MKNF-DL approach does not require that disjunctive in-
formation be considered by constraints. So

Student ≡ UGStudent � GStudent

KUGStudent � ∃Amajor (3)

KGStudent � ∃Afaculty

Student(Mary)

is satisfiable even though Mary must be either an undergraduate, in which case
the constraint about majors is not satisfied, or a graduate, in which the constraint
about faculties is not satisfied. We feel that constraints should take into account
such disjunctive information and consider that this example points out another
major problem with this kind of approach.

Motik et al [10] have proposed a very different approach to integrity con-
straints. Instead of extending the language itself, they divide up axioms into
three categories. As is usual, facts are segregated into the ABox (A). Other ax-
ioms, however, are divided between regular axioms (the standard TBox or S)
and constraints (C). Next, minimal Herbrand models are defined. In this ap-
proach a minimal Herbrand model is a Herbrand model where the extension of
all predicates, even equivalence (the predicate standing in for equality), is min-
imized. A constraint is then satisfied by a standard TBox and an ABox if all
minimal Herbrand models of the standard TBox plus the ABox are also models
of the constraint. Because each minimal model of the standard TBox plus the
ABox is a model of the standard TBox, it is obvious that in this approach any
constraint entailed by the standard TBox is satisfied in the KB.

In the KB

C : MarriedPerson � ∃hasSpouse (2.1m)

A : MarriedPerson(Joe)
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the first axiom is considered as a constraint and the second as a fact in the ABox.
The constraint is not satisfied in this KB because in the (only) minimal model
of A Joe has no spouse.

The minimal model approach differs considerably from the MKNF-DL ap-
proach. For example in

S : MarriedPerson � ∃hasSpouse
C : MarriedPerson � ∃hasSpouse (2.2m)

A : MarriedPerson(Joe)

the constraint is satisfied, even though there is no known spouse for Joe, because
in each minimal model, Joe has a spouse. We consider this ability to utilize
“unknown”, or existential, fillers to fulfill constraints as a problem with this
approach.

The particular problem with existentials in the previous example can be al-
leviated by introducing an extra predicate (O) that is asserted true of every
identifier in the KB, as in

S : MarriedPerson � ∃hasSpouse
C : MarriedPerson � ∃hasSpouse �O (2.2’m)

A : MarriedPerson(Joe) O(Joe)

Here Joe’s spouse is not in O so the constraint is not satisfied. One can think of
O as holding the requirement of having a name.

However, other problems with this minimal model approach cannot be over-
come. If a filler can be one of two possibilities (both named) then a constraint
requiring a filler will be satisfied, even though the identity of the filler is not
known. For example, in

S : JoeClass � ∃hasSpouse.{Mary, Susan}
C : MarriedPerson � ∃hasSpouse (2.5m)

A : MarriedPerson(Joe) JoeClass(Joe)

the constraint is satisfied even though Joe’s spouse is not known. We consider
this to be a major problem with this approach, as we view the goal of integrity
constraints to be checking data, not checking possibilities.

Another problem with the minimal models approach is that all concepts and
roles are minimized. This means that the presence of axioms that cause one
concept or role to grow when something else shrinks disturbs the minimization
in unusual ways. For example, the constraint in

C : RParent � � 2 hasChild (4)

A : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is satisfied, as expected, because the minimal model minimizes away the possible
equality between Mary and Susan. However, extending the KB by adding a
definition, as in
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S : DParent ≡ � 2 hasChild

C : RParent � � 2 hasChild (4.1)

A : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

can make the constraint not be satisfied. The reason for this unexpected result
is that DParent grows when equality shrinks. This results in a minimal model
where Mary and Susan are the same and Joe is not in DParent. In this minimal
model Joe has only one child and this violates the constraint. We view this as
a very serious problem with the approach, particularly as facts and queries in
the approach have to use atomic concepts and roles, and thus may require the
introduction of extra predicates.

A major reason for the difference between the MKNF-DL approach and the
minimal model approach has to do with the modal (or non-modal) nature of
the approaches. The modal parts of constraints in MKNF-DL consider what is
known to be true in all models, so KUGStudent picks out named individuals
who are known to be graduate students in all models. In the minimal model
approach constraints are directly evaluated in each minimal model, so there is
no consideration of the situation in other models.

A third approach [15] to integrity constraints combines axiom segregation
and equality minimization, somewhat as in the minimal model approach, with a
portion of the autoepistemic nature of the MKNF-DL approach. In this hybrid
approach, there is a two-way division in extended KBs between K, the regular
KB (T and A of the previous approach), and S, the constraints, both of which
can contain both axioms and facts. The minimal equality models of a KB are
defined as the regular models of the KB that are minimal with respect to equal-
ity between individuals names, with all else remaining fixed. Constraints are
interpreted in a modal setting where atomic concepts and roles are interpreted,
roughly, as names (pairs of names) belonging to the concept (role) in all minimal
models of the KB.

One might think that only minimizing equality avoids the problems in the
previous approach with respect to additional predicates. Unfortunately, this is
not the case. For example, the extended KB

C : RParent � � 2 hasChild (4h)

T : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is valid, as expected, but the extended extended KB

C : RParent � � 2 hasChild

T : DParent ≡ � 2 hasChild (4.1h)

RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is not. Here the presence of DParent prevents minimizing away the possible equal-
ity between Mary and Susan, because making Mary and Susan the same causes
a change in the extension of DParent. As is the case for the previous approach,
we view this fragility of minimization as a very serious problem.
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This combination approach also suffers from variants of many of the problems
of the MKNF-DB approach, including both extended KBs

C : Child � ⊥ (5.1)

T : (∃hasSpouse.Spouse)(Joe)

and

C : Child � ⊥ (5.2)

T : (∀hasSpouse.Child)(Joe) (∃hasSpouse.{Mary, Susan})(Joe)

being valid. However, the situation is even worse here, as one might argue that
the MKNF-DB construct analogous to the constraint, Child � ⊥, should not
be considered to be a constraint, but such arguments cannot be made when
constraints are explicitly given.

Local closed world semantics has a relationship to integrity constraints, as
can be seen from the fact that all of the above approaches employ some form of
minimization. A proposal to add local closed world semantics to OWL [13] uses
grounded circumscription to avoid undecidability problems with circumscription.
Grounded circumscription is just regular circumscription, except that minimized
concepts (roles) can only contain named individuals (pairs of named individuals).

Grounded circumscription can capture some common aspects of integrity con-
straints. The basic idea is to evaluate the constraints after grounded circumscrip-
tion has been applied. The advantage of circumscription over other minimization
methods is that only certain predicates are minimized, while other are fixed or
allowed to vary. In this way it might be possible to alleviate (but probably not
completely overcome) the problems of simpler minimization methods.

A major problem with this approach, however, is the difficulty of performing
even grounded circumscription. When circumscribing, one has to guess which
named individuals (pairs of named individuals) are in each minimized concept
(role), and only then determine whether the guess is acceptable. Then the min-
imal acceptable guesses become the actual minimizations. When the KB is even
of only a moderate size, this can take an extremely long time.

3 Constraints with Complete Information

Our proposal does not depend on any of these modal or minimal model tech-
niques to prevent constraints from enabling inferences. Instead, as stated earlier,
we specify that certain concepts and roles have complete information. Then for
these concepts and roles no information can be added, turning axioms into con-
straints for them. In effect, axioms can only check that information is already in
the complete concept or role, precisely as is wanted for integrity constraints.

If an axiom plus some data produces a consequence that adds information
to a complete concept or role, then an inconsistency results. What happens
after an inconsistency is detected is outside the scope of the logic. Generally,
some modification would be needed to the assertions in the KB, which might
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involve removing an assertion that enabled the attempt to add the offending
information. The modification might, on the other hand, actually be to change
the information in the complete concept or role, but this would occur as a step
outside of the logic.

3.1 OWL and SROIQ(D)

As much of our proposal is related to the W3C OWL Web Ontology Language
[11] and related ontology languages, we introduce OWL, via SROIQ(D) [9], the
description logic underlying OWL.

Let C be a set of concept names, D be a set of datatype names, R be a set of
abstract role names, T be a set of concrete role names, I be a set of individual
names, and V be a set of data values, with C∩D = φ, R∩T = φ, and I∩V = φ.
SROIQ(D) concepts (C), datatypes (D), and abstract roles (R) are con-

structed via

C ::= � | A | {a} | ¬C | C1 � C2 | C1 �C2 | ∃R.C | ∀R.D | ∃R.Self |
�nR.C | �nR.C | ∃T.D | ∀T.D | �nT.D | �nT.D

D ::= B | {v} | ¬D | D1 �D2 | B ≤ v | B < v | B > v | B ≥ v

R ::= � | P | P−

where A ∈ C, B ∈ D, P ∈ R, T ∈ T, a ∈ I, v ∈ V, and n is a non-negative
integer.

A general concept inclusion axiom (GCI) is C1 � C2, for C1, C2 both concepts.
A role inclusion axiom (RIA) is R1 ◦ . . . ◦Rn � R, for R, Ri all roles or T1 � T ,
for T, T1 ∈ T.

A role assertion is Sym(R), Tra(R), Ref (R), Irr(R), or Dis(R1, R2), for
R,R1, R2 any role except �; or Dis(T1, T2), for T1, T2 ∈ T. An individual as-
sertion is C(a), R(a1, a2), (¬R)(a1, a2), T (a, v), a1 = a2, or a1 �= a2, for C a
concept, R a role, T ∈ T, a, a1, a2 ∈ I, and v ∈ V.

A SROIQ(D) KB is a pair 〈T ,A〉. T (the TBox) is a finite set of GCIs and
RIAs and role assertions such that the RIAs in T form a regular role hierarchy
(see [9]), the role assertions in T are simple in T , and each role in an �RC.
or ∃R.Self or Irr(R) or Dis(R1, R2) is simple in T (see [9]). A (the ABox) is a
finite set of individual assertions such that each role, R, in a (¬R)(a, b) is simple
in T . The names and values of the KB form its signature, S.

The semantics of SROIQ(D) are as for SROIQ [9] and as for the W3C
OWL 2 Web Ontology Language [11]. Here we present only the general notions
of their semantics. Much of our proposal works for any ontology language or
description logic or even any fragment of first-order logic, so we will provide a a
general semantic framework that is suitable for any of these languages.

Semantics are based on interpretations, I, that map, ·I , constants (individual
names and data values) into elements of a domain, ΔI , concept and datatype
names into subsets of the domain, and abstract and concrete role names into sets
of pairs over the domain. Data values and datatype names have fixed mapping.
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This mapping is extended to all syntactic constructs in the language, mapping
closed formulae (axioms and assertions) into either true or false (satisfying or not
satisfying them, respectively). An interpretation is a model of a KB consisting
of a finite set of closed formulae (axioms and assertions), written I |= KB, iff it
satisfies all the formulae the KB.

3.2 DBoxes

Given a SROIQ(D) (or other description logic) KB, a DBox [14], DB, is a finite
set of atomic individual assertions of the form A(a) or P (a1, a2) or T (a, v) for
A ∈ C, P ∈ R, T ∈ T, a, a1, a2 ∈ I, and v ∈ V. The signature of a DBox
DB, called S(DB), contains all the concept, abstract or concrete role names
occurring in DB. A SROIQ(D) (or other description logic) KB plus DBox is a
triple 〈T ,A,DB〉 where T and A are as before and DB is a DBox. The active
domain of a DBox DB, IDB ⊆ I, is the set of all individuals appearing in the
DBox. An interpretation, I, of 〈T ,A,DB〉 is just an interpretation of 〈T ,A〉 plus

– for each individual name a ∈ IDB: a
I = a, (i.e., the standard name assump-

tion for DBox individuals);
– for each pair of distinct individual names a1 ∈ IDB and a2 ∈ I: aI1 �= aI2 ,

(i.e., the unique name conditions for DBox individuals);
– for each concept name A ∈ S(DB), x ∈ AI iff ∃A(a) ∈ DB : aI = x;
– for each abstract role name, P ∈ S(DB),
〈x, y〉 ∈ P I iff ∃P (a1, a2) ∈ DB : aI1 = x ∧ aI2 = y; and

– for each concrete role name, T ∈ S(DB),
〈x, y〉 ∈ T I iff ∃T (a, v) ∈ DB : aI = x ∧ vI = y.

The essence of a DBox is that the extension of each concept or role that shows
up in the DBox is completely determined by the DBox, much as it would be
by a database table. This requires the standard name assumption in the DBox.
To emphasize the relationship between database tables and DBox concept and
roles, we will often write the assertions for the concept or role in tabular form,
as in the case of the hasSpouse role in the KB (1) above.

It can been shown (see [8]) that it is harmless to drop the standard name as-
sumption for DBox individuals, in presence of the unique name conditions for
DBox individuals: the spurious models in the weaker KB are indistinguishable
from the good ones. It is also possible to fully encode a KB with a DBox into an
equivalent KB in an expressive description logic such as SROIQ(D) or OWL (see
[7]). The unique name conditions for DBox individuals can be easily written as a
finite set of individual inequality assertions. To rewrite a DBox concept, C, with
C(i1), . . . , C(in) in the DBox, simply add the DBox assertions for C to the ABox
and add C � {i1, . . . , in} to the TBox. To rewrite a DBox abstract or concrete
role,R, withR(i1, v1), . . . ,R(in, vn) in the DBox, simply add the DBox assertions
forR to the ABox, add ∃R � {i1, . . . , in} to the TBox, and, for each ij , 1 ≤ j ≤ n,
add (∀R.{vj1 , . . . , vjmk

})(ij) to the ABox, where {vj1 , . . . , vjmk
} is the set of R-

fillers for ij in the DBox. As a consequence of this easy polynomial embedding, we
can conclude that reasoning with DBoxes in such expressive ontology languages
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is not harder than classical reasoning without DBoxes, and it can be implemented
without changing anything with respect to the classical case.

3.3 Completely Specified Concepts and Roles

We introduce in this section the definition of concepts and roles completely spec-
ified from DBox predicates, a notion strictly related to determinacy and implicit
definability [2,8].

Definition (Completely Specified Concept or Role). Let I and J be any
two models of a KB plus DBox 〈T ,A,DB〉. A concept (resp. role) C (resp. R) is
completely specified (or determined) by the DBox predicates S(DB) in the KB
if and only if whenever I and J agree on the interpretation given to each concept
and role in S(DB) then CI = CJ (resp. RI = RJ).

This definition states that a concept C (resp., a role R) is completely specified by
the DBox predicates in a KB if and only if all models of the KB that interpret
the symbols in SDB the same way also keep the interpretation for C (resp., R)
fixed. In other words, once a DBox is fixed (and therefore the interpretation of
all the DBox predicates is always the same in any interpretation) then also the
interpretation of the completely specified predicates (concepts and/or roles) is
fixed. It is as if the concept or role augments the original DBox with its own
extension.

It is obvious that a DBox concept or role is completely specified by the DBox
predicates, given the close correspondence between the definition of DBoxes and
complete specification. It is also possible to completely specify a concept or role
in other ways. For example, a concept or role might be defined to be equivalent
to a DBox concept or role. Other, more complex, definitions can also completely
specify a concept or role in terms of DBox concepts or roles. For example, from
KBs of the following form it is possible to derive that GStudent is a completely
specified concept, given that the concepts Student and UGStudent are DBox
concepts:

T : Student � UGStudent � GStudent

UGStudent � ¬GStudent � Student (6)

GStudent � Student

S(DB) : {Student,UGStudent}

Since the above KB induces a partition of the concept Student between the
concept UGStudent and the concept GStudent, whenever two of these concepts
are completely specified (e.g., they are DBox concepts) then also the third is
necessarily completely specified.

It is possible to determine whether a concept or role is completely specified by
a set of DBox predicates in a KB using only standard description logic inferences
[14,8].
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3.4 Constraints

As our proposal is quite different from the previous proposals for integrity con-
straints, we will provide examples covering the major use cases for integrity
constraints and several variants of their variants.

The entire extension of completely specified concepts and roles is known by
name. This makes it quite obvious that completely specified concepts and roles
naturally enforce constraints concerning knowing the identity and type of role
fillers. For example, if hasSpouse is a completely specified role, then any fillers
of hasSpouse will be known by name. If this is the case, the axiom

MarriedPerson � =1 hasSpouse (7)

will be true in a KB only if each married person has precisely one known spouse.
So, the KB

T : MarriedPerson � =1 hasSpouse.Person

A : MarriedPerson(Joe)

MarriedPerson(Jack) (8)

DB : hasSpouse
Jack Elizabeth
Jack Liz

is unsatisfiable because Joe has no spouse (because he is distinct from Jack)
and Jack has both Elizabeth and Liz as spouses (and they are distinct from
each other). The situation would be completely different if hasSpouse was not
a DBox role, in which case Joe would have been inferred to have some spouse,
and Elizabeth and Liz would have been inferred to be the same.

Let’s see now an example of an entailed constraint. Consider the KB

T : MarriedPerson � � 1 hasSpouse.Person (9)

DB : hasSpouse
Jack Elizabeth

From the above, we can entail the statement

MarriedPerson � =1 hasSpouse.Person

which couldn’t be derived if hasSpouse were not a completely specified role.
All entries in completely specified concepts and roles have to have a name,

i.e., not be some unknown filler, eliminating one problem with minimal models
approaches (KB 2.2m). Nor is it possible for disjunctive information to be ade-
quate, eliminating another problem with minimal models approaches. (KB 2.5m).
Here our approach has the desirable behavior of autoepistemic approaches, re-
quiring known certain fillers. Similarly, there is no issue with whether unknown
objects are considered by constraints, which causes problems for autoepistemic
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approaches (KB 2.4). Here our approach has the desirable behavior of autoepis-
temic approaches, with constraints effectively taking into account all possible
interpretations, because there is only one.

In the previous example, it was not necessary that the spouse be known to
be a person, because Person was not a completely specified concept. If however,
all people are known, then Person would be a completely specified concept, and
spouses of married people would need to be known as people. It may be the
case, however, that not all people are known, only those that are spouses. In this
situation, MarriedPerson would be a completely specified concept,

T : MarriedPerson � =1 hasSpouse.Person

MarriedPerson � =1 hasSpouse.MarriedPerson

Sym(hasSpouse) (10)

DB : hasSpouse
Jack Elizabeth
Elizabeth Jack

MarriedPerson
Jack
Elizabeth

Here any married person has to have precisely one spouse that is also a married
person, as well as precisely one spouse that is a person. The extension of the
concepts spouse and MarriedPerson provide precisely one known spouse that is
known to be a married person as well as precisely one spouse overall for both
Jack and Elizabeth, satisfying the constraint portions of these axioms. Because
Jack and Elizabeth are each other’s only spouse, they are both are inferred to
belong to Person as well.

The situation where only a portion of a concept or role is completely specified
and thus causes constraint-like behavior, is quite natural. For example, neither
all people nor their SSN’s may be known, but all taxpayers and their SSN’s are.
The following KB captures this situation:

T : Person � (� 1 hasSSN) � (∀hasSSN.integer)
TaxPayer � (Person) � (= 1 hasSSNTP.integer)

hasSSNTP � hasSSN (11)

A : Person(Jill)

Person(Susan)

hasSSN(Jill, 987654321)

DB : TaxPayer
Jack
. . .

hasSSNTP
Jack 123456789
. . . . . .

Here it does not matter that Susan’s SSN is not known, but Jack’s must be, and
so must that of all the other taxpayers.

Because there is no minimization involved in our approach, there is no problem
with extra axioms modifying the satisfaction of constraints. As occurs in the
minimal models approaches (KB 4 and variants). In
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T : MDPerson ≡ Person �� 2 hasDependent.Child

FDPerson ≡ Person �� 2 hasDependent

A : MDPerson(Joe)

FDPerson(Jack)

DB : hasDependent
Joe Mary
Joe Susan
Jack Bill
Jack John
Jack Thomas

Child
Mary
Susan
Bill
John
Thomas

(12)

Mary and Susan are distinct, and no axioms can affect this situation, so Joe has
two suitable dependents and the constraint axiom for MDPerson is satisfied on
Joe regardless of anything else in the KB. Similarly, Bill, John, and Thomas are
distinct so the constraint axiom for FDPerson is violated on Jack.

No disjunctive information can infect completely specified concepts or roles.
In KB (3) about students, it is most likely that all of UGStudent, GStudent,
major, and faculty are desired to be completely specified. If no other information
is added, as in

T : Student ≡ UGStudent � GStudent

UGStudent � ∃major

GStudent � ∃faculty (13)

A : Student(Mary)

DB : UGStudent GStudent major faculty

then the KB is inconsistent, as Mary is neither an undergraduate nor a graduate,
violating the first axiom.

The KB cannot be consistent without having Mary’s situation as an under-
graduate or graduate be provided, and then the required information about
either her major or faculty, as in

T : Student ≡ UGStudent � GStudent

UGStudent � ∃major

GStudent � ∃faculty (14)

A : Student(Mary)

DB : UGStudent
Mary

GStudent major
Mary Psychology

faculty

Our approach can naturally handle disjunctive information that interacts with
completely specified concepts and roles. For example, if KB (13) is modified so
that major and faculty are completely specified (admittedly not a very normal
setup) as follows:
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T : Student ≡ UGStudent � GStudent

UGStudent � ∃major

GStudent � ∃faculty (15)

A : Student(Mary)

DB : major faculty

then the KB is still inconsistent. Mary does not have to be either known to be
an undergraduate or known to be a graduate, but because of the disjunctive
definition of Student she does have to be either an undergraduate, in which case
she has no major, or a graduate, in which case she has no faculty. Both cases
lead to an inconsistency.

4 RDF(S) and DBoxes

Our development of constraints using DBoxes and completely specified concepts
and roles has used OWL (or SROIQ(D)) as the ontology language. We used
OWL for two reasons. First, previous work on constraints in ontology languages
has concentrated on OWL or other expressive ontology languages, so using OWL
here allows us to make better comparisons with previous work. Second, DBoxes
can be rewritten as other OWL constructs, showing that DBoxes do add not any
expressive power to OWL.

It is possible to use RDF or RDFS [3] as the ontology language for DBoxes.
The basic idea is that for any URI D declared to be a DBox predicate in
S(DB), the set of the URIs Ci stated explicitly in the graph as having D as
their rdf:type – namely the set of all Ci appearing in triples of the form
(Ci rdf:type D) – has to be considered as the complete set of instances of
D. DBoxes extend the expressive power of RDF and RDFS because in DBoxes
is it possible to infer that facts are false, e.g., any non-stated fact for a DBox
concept or role. This addition of expressive power makes reasoning in RDF(S)
plus DBoxes harder than reasoning in just RDF(S); as a matter of fact, we can
prove the following theorem.

Theorem (Complexity of RDF(S) with DBoxes). SPARQL query answer-
ing with basic graph patterns (BGPs) under the RDF simple entailment regime,
and the RDFS entailment regime, augmented with DBoxes is coNP-hard for data
complexity.

The proof is based on a reduction to the 3-colorability problem, a reduction
similar to the one employed in [7].

The use of DBoxes permits RDFS to represent the full meaning of database
information that is imported into RDFS, adding an important aspect to RDFS.
Even with the expressive weakness of RDFS, it is possible to make the kind
of inferences that have been argued to be problematic, for example by using
role domains or ranges to infer concept membership. The use of DBoxes turn
role domain and range axioms into constraints, allowing the elimination of these
inferences in cases where they might be problematic.
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5 Conclusion

There is no perfect approach to integrity constraints in an ontology setting. One
would like to have the situation in databases, where the behavior of integrity
constraints is precisely a check against data, while still retaining the open nature
of ontology languages. This is not possible because the open nature of ontology
languages means that axioms make inferences and do not simply check the data.
One would also like to be able to check integrity constraints quickly, but this is
also not possible. In an open setting checking an integrity constraint is at least
as costly as determining the consistency of the KB.

Previous approaches to integrity constraints involving autoepistemic constructs
use the autoepistemic constructs to determine what is known (in effect, closing off
the current knowledge) and utilize this closed version to ensure that the integrity
constraints do not add new information.However, autoepistemic approachesmake
the constraints operate on too few individuals, e.g., only on known instances of a
concept, which limits their ability to truly check that the constraints hold.

Approaches involving minimal models have different problems. Instead of hav-
ing the constraints active on too few individuals, the constraints are too easy
to satisfy. Without the use of a special predicate, existential, or unknown, fillers
are acceptable in constraints. Even with the solution to the previous problem,
disjunctive information is adequate to satisfy a constraint. Further, the mini-
mization needed in the approach is sensitive to the presence of extra concepts in
the KB, and axioms that should be irrelevant can change whether a constraint
is satisfied or not.

Approaches that involve both minimization (for example of just equality)
and modal notions fall prey to versions of the two different approaches. Modal
evaluation of constraints means that the constraints often are active on too few
individuals. Even minimization of just equality is sensitive to irrelevant axioms.

Our approach to constraints is to completely specify certain concepts and
roles, making them into the analogue of database tables. On these concepts and
roles, axioms act just like integrity constraints. Although this approach may
appear to be without computation cost, the extensive use of nominals in the
translation of DBoxes to regular ontology languages can easily stress current
ontology reasoners. As well, because DBoxes are closed, adding new information
to a DBox concept or role is a modification of the KB, not just an addition.

We hope that future work on ontology reasoners will provide optimizations
for both extensive use of nominals and modifications to the KB. Both of these
situations occur commonly, and are not specific to DBoxes.

On the other hand, querying DBox concepts and roles is easy, as it is just
database querying. Further, answers returned by such queries are complete (as
opposed to the situation with other concepts and roles, where the information
returned might not be complete) and can be used in applications just like answers
to database queries can.

Even with the computational issue, we believe that the DBox approach is
the correct approach to providing integrity constraints for ontology languages.
The DBox approach provides precisely the same effect for integrity constraints
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as is the case in databases, which provide the model for integrity constraints. It
thus avoids the problems with the other approaches, and thus appears to us to be
preferable.
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Abstract. The Linking Open Data (LOD) project is an ongoing effort
to construct a global data space, i.e. the Web of Data. One important
part of this project is to establish owl:sameAs links among structured
data sources. Such links indicate equivalent instances that refer to the
same real-world object. The problem of discovering owl:sameAs links
between pairwise data sources is called instance matching. Most of the
existing approaches addressing this problem rely on the quality of prior
schema matching, which is not always good enough in the LOD scenario.
In this paper, we propose a schema-independent instance-pair similarity
metric based on several general descriptive features. We transform the
instance matching problem to the binary classification problem and solve
it by machine learning algorithms. Furthermore, we employ some transfer
learning methods to utilize the existing owl:sameAs links in LOD to
reduce the demand for labeled data. We carry out experiments on some
datasets of OAEI2010. The results show that our method performs well
on real-world LOD data and outperforms the participants of OAEI2010.

Keywords: Linking Open Data, instance matching, similarity matric,
machine learning, transfer learning.

1 Introduction

Linked Data[4] is a way to construct a global data space, the Web of Data, by
interconnecting many structured data sources within the Linking Open Data1

(LOD) project. These data sources are published under the Resource Description
Framework2(RDF). Each of them may contain millions of RDF triples.

The main idea of Linked Data is to construct typed links between different
data sources. Such links describe the relationships between things so that users
can browse data among sources by navigating along the links and agents can
provide expressive query capabilities over the data on the web just like a local

1 http://linkeddata.org/
2 http://www.w3.org/RDF/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 460–475, 2012.
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database. An important link is owl:sameAs3 which indicates that the two in-
stances it links refer to the same real-world object. Different data sources may
have different emphases in describing things. Various descriptions can be aggre-
gated according to the owl:sameAs links.

Currently, there are more than 300 data sources in LOD while there were only
twelve of them in 2007 when the project started. As more and more data sources
emerge, there is an urgent demand to provide owl:sameAs links from the new
data sources to the existing ones. At the same time, the existing links in LOD
are not as extensive as one would hope[17]. Instance matching is a practical idea
for constructing such links. In general, the existing approaches for matching in-
stances in LOD can be divided into two types. One is based on rules and the
other is based on the similarity metric of instance pairs. Most of these methods
do not always work well in the LOD scenario since they depend on the result
of property matchings. Property matching links the properties from different
data sources which have similar semantics such as foaf:name and dc:title.
Property matching is not trivial since the data sources usually design their own
ontologies to describe things. Furthermore, we noticed that although some prop-
erties in heterogeneous ontologies can not match, they have some connotative
relationships. Their values may be worth considering for instance matching. For
example, Freebase4 says that the fb:profession of Steve Jobs is “Chief Execu-
tive Officer”and his fb:place of death is “Palo Alto”, whereas DBpedia5 says
his dbp:residence is “Palo Alto California”and the information about “Chief
Executive Officer”is in the text of the dbp:abstract. Such information will be
ignored in property matching based methods, although it could be significant
for human beings to judge whether the two Jobses match. We are inspired to ex-
plore the “common-sense ”used for matching instances. The goal of this paper is
to develop an automated instance matching method that is “common”and pro-
vides high accuracy. Such method should be independent of property matching
to achieve “commonality”.

In this paper, we employ machine learning models for instance matching based
on some similarity metrics of instances. The matching instance pairs may have
some common features in the similarity metrics of each pair. For example, two
matching instances may share some significant words such as “Palo Alto”and
“Chief Executive Officer”which we mentioned above, while the non-matching
ones may not. Sharing some significant words is a common feature of the match-
ing instance pairs here. We design a similarity vector independent of property
matching to represent such features. Based on this vector, we train a learning
model to classify the instance pairs as matching or non-matching. To minimize
the demand for training data and promote the performance, we try to use exist-
ing instance matching information in LOD for help. A transfer learning method
is applied to implement this idea.

3 http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_sameAs/
4 http://www.freebase.com/
5 http://www.dbpedia.org/

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_sameAs/
http://www.freebase.com/
http://www.dbpedia.org/
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We tried our approach on real LOD data sources which were chosen for
IM@OAEI20106. Our performance is better than the participating teams’. An-
other comparative experiment shows that the existing matching information can
really help matching instances from the new data source pairs.

The following technical contributions are made:

– We utilize the values of non-matching properties for instance matching. Such
values can be useful but are usually ignored by the existing instance matching
approaches.

– We propose a novel approach for instance matching which is independent of
property matching with high accuracy.

– We use existing owl:sameAs links to help match instances. Due to the het-
erogeneous ontologies constructed by various data sources, such information
is hardly utilized in the existing instance matching approaches.

The remainder of this paper is structured as follows. Section 2 gives some defini-
tions about instance matching and an overview of our proposed approach. Sec-
tion 3 describes the feature extraction process. The selection of machine learning
models is discussed in Section 4. Experimental results on the LOD datasets from
LOD are reported in Section 5. Some related work is discussed in Section 6. Fi-
nally, Section 7 concludes this paper and discusses future work.

2 Definition and Framework

2.1 Problem Definition

An instance consists of some property-value descriptions about a real-world ob-
ject. A pair of distinct instances a and b match if they refer to the same object,
denoted by (a, b) ∈ R. In LOD, owl:sameAs links are established between match-
ing instances. When establishing such links, we usually consider a pair of data
sources each time.

Definition 1 (Instance Matching). Given two data sources A and B as in-
put, the goal of instance matching is to compute the set M = {(a, b)|(a, b) ∈
A×B, (a, b) ∈ R}.

According to the definition of instance matching, the problem of finding matching
instance pairs can be formalized as a binary classification problem.

Definition 2 (Instance Matching as Binary Classification). Given two
data sources A and B, the goal of instance matching is to find a classifier C :
(a, b)→ {−1, 1} for (a, b) ∈ A×B such that C maps the non-matching instance
pairs to class −1 and the matching ones to the class 1.

The binary classification problem can be solved by traditional machine learning
algorithms, which require multidimensional features as the input. In the problem
of instance matching, we extract a feature vector from each instance pair (a, b).

6 http://oaei.ontologymatching.org/2010/im/index.html

http://oaei.ontologymatching.org/2010/im/index.html
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Fig. 1. Overview of the framework

Definition 3 (Similarity Vector of Instance Pairs). The n-dimensional
feature vector v of an instance pair (a, b) consists of n various similarities of
instance a and b. Dimension vi = di(a, b), where di is the ith similarity metric
function for (a, b).

The feature vector of an instance pair indicates the similarities of the two in-
stances, which are computed by several metric functions. Some existing instance
matching (record linkage[11]) approaches also extract such a feature vector for
classification, while each di computes the similarity of two values, one from
each instance, that belong to a pair of matching properties (fields). Unlike
these approaches, our similarity metric functions are based on the property-
independent literal information extracted from each instance. The literal infor-
mation l = {l1, l2, . . . , ln} is similar to a virtual document generated from an
instance. For an instance pair (a, b), a similarity metric function di maps the
extracted literal information pair (lai , l

b
i ) to a real number in the range of [0, 1].

2.2 Framework

The framework of our approach is shown in Figure 1. We extract literal infor-
mation for each instance from the property-value descriptions. To get sufficient
literal information for the similarity metrics, we conduct the following prepro-
cessing for each property-value pair:

– A real-world object may be represented by an instance or a piece of text.
For consistency, if the value is a URI which represents another instance, we
will replace it by the label of that instance. Most of the instances have a
label value which usually belongs to the property rdfs:label or some other
common properties[10]. If the label of an instance is unavailable, we can
replace it by its text description.

– We will also replace each property by its label. If the label is unavailable, we
will use the last token (normalized) of the URI instead, e.g., “place of death
”for fb:place of death.
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For data sources A and B which contain |A| and |B| instances respectively, there
are |A|× |B| possible instance pairs. This is unacceptable since both |A| and |B|
can be one million or even larger. We use a simple pre-match method to sift
the possible matching pairs. An inverted index is built for instances of some key
words in their descriptions. The instances sharing the same keys in the index
are considered to be candidate matching instances. Our preliminary experiments
show that this sifting method can greatly reduce the number of pairs to test for
a match, without losing much recall (the recall is over 0.9).

After preprocessing and literal information extraction, we compute the simi-
larity vectors for the candidates. To train a binary classifier based on the similar-
ity vectors, we need to label some of them into class -1 (non-matching) or class 1
(matching). Thus the problem of instance matching can be solved by classifying
the unlabeled instance pairs. The existing matching instance pairs in LOD can
be considered as labeled data which may help to train the classifier. We employ
a transfer learning algorithm to improve the effect of the helping.

3 Feature Extraction

We extract some property-independent information from each instance and then
compute the similarity vectors for instance pairs based on this information. Since
the performance of a machine learning algorithm depends a lot on the quality
of feature extraction, the work in this section is vital for the next step.

3.1 Literal Information Extraction

We extract several sets of literal information from each instance. The first is
the text information set llabel, that is the label of an instance. The label is the
human-readable name for an instance, such that it can help people to identify
the real-world object. So labels are discriminative for instance matching. Next,
we extract the remaining text information from the instance. These sets are
divided into two parts. One is lproperty which consists of the text information
from properties. The other is the text information from the values. The number
of words in a value has a certain meaning. If the value only contains one word,
this word can be a specific symbol such as the ISBN for a book. If the number
of words is small, these words are likely to be the name of something, e.g. ”Palo
Alto”. If there are a lot of words in the value, they may be a text description.
These three kinds of values may play different roles in the problem of instance
matching. So we extract them as lsingle, lshort and llong respectively.

Besides the large amount of text information, there are also other types of
literal information in the instance descriptions. The common ones we used are
dates, numbers and links. In contrast to the text information, these types of
literal information are more useful for instance matching. If two instances share
some dates, numbers or links, they are likely to match. So we additionally extract
them as ldate, lnumber and llink. Note that:
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Table 1. Overall Statistics on Extraction Results

Dimension Num Metric Function Combination of Literal Information

1 IdfSim lsingle

2 TopIdfSim lsingle

3 IdfSim lsingle ∪ lshort ∪ llabel
4 TopIdfSim lsingle ∪ lshort ∪ llabel
5 CosSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

6 IdfSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

7 TopIdfSim lsingle ∪ lshort ∪ llabel ∪ lproperty ∪ llong

8 EditSim llabel
9 CountSim llabel
10 CountSim ldate
11 CountSim lnumber

12 CountSim llink

– There are many forms of dates. For convenience, we only extract the year
part of each date and the other parts are treated as text.

– Some dates and numbers may be included in the texts. We use meticulous
string processing to find them.

3.2 Similarity Metrics

Different similarity metric functions are used for different types of literal infor-
mation. As shown in Table 1, a 12-dimensional similarity vector is generated for
each instance pair.

For the text information, we use three functions, CosSim, IdfSim and
TopIdfSim. CosSim is a common similarity metric for texts. It computes the
TF · IDF[7] weights for the words from two word sets and then computes their
cosine similarity. Furthermore, in the particular problem of instance matching,
the IDF weights are more important. Some common words or common words for
the domain may appear frequently in the descriptions of many instances. These
words with high TF weights but low IDF weights do not much help match
instances. While if a word only appears once in each data source, the two in-
stances that contain it are likely to match. According to this idea, IdfSim and
TopIdfSim are designed based on the IDF weights of words. IdfSim is similar to
CosSim which just removes the TF weights. For word sets T1 and T2, TopIdfSim
computes the similarity of W1 and W2, where Wi is a subset of Ti which consists
of the words with highest IDF weights in Ti. It is computed by:

TopIdfSim(T1, T2) =

∑
w∈W1∩T2

IDF(w) +
∑

w∈W2∩T1
IDF(w)∑

w∈W1
IDF(w) +

∑
w∈W2

IDF(w)
(1)

These three similarity metric functions act on the combinations of the extracted
word sets of text information. The combining strategy is based on the relaxed
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inclusion relation of these word sets from different instances, that is lsingle may
be included in lshort or llabel, and llong main contains all the other word sets.

Among the sets of text information, llabel is different from the others in two
ways as follows:

1. We only extract one label for each instance; so it can be treated as a set of
words or a string.

2. Since each word in a label can be significant for recognizing the entity, to
match two instances, the matching words of their labels are more important
than the non-matching ones.

So we design another two similarity metrics for llabel, which are EditSim and
CountSim.

EditSim(lalabel, l
b
label) = 1− EditDistance(Sa, Sb)

Max(|Sa|, |Sb|)
(2)

Where Sa stands for the string form of lalabel and EditDistance(Sa, Sb) is a clas-
sical string-distance measure, which represents the minimum number of editing
operations needed to make Sa and Sb the same. Each operation can be deleting
a character, inserting a character or changing a character in either Sa or Sb.

CountSim(lalabel, l
b
label) =

1− 2−|{w|w∈lalabel∩lblabel}|

1− 2−�(|lalabel|+|lblabel|)/2�
(3)

The literal information sets of dates, numbers and links also have the second
characteristic of the labels. So we use CountSim on them to generate similarities.
Note that two numbers are considered to be the same one if their difference is
lower than a threshold.

4 Learning Algorithms

After extracting the feature vectors, we can train the classifier for instance
matching. There are many machine learning algorithms for the binary classi-
fication problem. We need to carefully choose the appropriate ones according to
the characteristic of the input data.

4.1 Basic Learning Model

In our problem, the input data may contain millions instance pairs. So some
methods with high time cost such as Neural Networks and SVM with a com-
plex kernel are eliminated. After observing the feature space via a preliminary
experiment, we found that the data of the two classes are not linearly separa-
ble. A typical example is shown in Figure 2. x and y are two dimensions of the
similarity vector. The positive and negative regions represent the two classes.
Figure 2 indicates that for a similarity vector, if x is greater than a threshold,
it belongs to the class of matching instance pairs when y is large, but if x is less
than the threshold, it belongs to the matching class when y is small. From the
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Fig. 2. A typical example of the feature space

perspective of each single dimension, this situation does not meet our intuition.
The value of each dimension describes the similarity of two instances based on
a certain metric. The higher the value is, the more likely they will match. But
from the perspective of the correlation between the dimensions, such a situation
is reasonable. We will give an example to explain it.

On one hand, given two instance pairs (p1, p2) and (q1, q2), their similarity
vectors are u and v. We assume that u6 = v6 = 0.3, u5 = 0.1 and v5 = 0.3
where ui(vi) stands for the ith dimension of the similarity vector u(v). Probably,
instance p1 consists of long texts and instance p2 consists of short texts or single
words, so that u5 = 0.1. While q1 and q2 both consist of long texts which share
some common (for the domain) words, so v5 = 0.3. Furthermore, p1 and p2 may
share some important words such that u6 = 0.3. While the value 0.3 of v6 may
be obtained by the common words. According to the inference above, (p1, p2) is
likely to match while (q1, q2) is not. On the other hand, an instance pair with
large values of both dimensions 5 and 6 is likely to match.

Since the feature space is so complex, some linear classifiers are inapplicable
here, e.g. linear regression and SVM. Actually, the dimensions of our similarity
vector have some implicit associations, especially the ones generated from the
same combination of text sets. So the model we needed should properly handle
such associations for classification.

Consider the decision tree model: A decision tree is a binary tree. Each non-
leaf node t in the tree has a dimension-number kt and a threshold σt and each
leaf node has a label of one of the two classes. When a testing vector is sent to a
non-leaf node t, it will be sequentially sent to a child node according to whether
the value of ktth dimension of the vector is greater than σt. So a testing vector
will be sent to the root of the tree and finally get to a leaf node. The label of the
leaf node will be the class the vector belongs to. The vectors which arrive at node
t have passed the ancestors of t, i.e. At. In this way, the associations between
dimension of kt and the dimensions of {ka|a ∈ At} are taken into consideration
for classification.

4.2 AdaBoost with Random Forest

AdaBoost [12] is the predecessor of the transfer learning algorithm we will use. It
combines severalweak classifiers to get a powerful classifier via an iterative process.
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In each roundof iteration, it employs abasic learningmodel to trainaweak classifier
with the current weighted examples. Then it increases the weights of the examples
which are incorrectly classified by the weak classifier, so that these “difficult”ones
will be classified better in the following rounds. In this way,AdaBoost may improve
the performance of the basic learning model.

We found that some classical decision tree algorithms do not show good per-
formance working with AdaBoost. In the training phase, the decision tree will
continually grow to satisfy the training data. Since AdaBoost combines the ex-
amples from source and target domain for training, the trained tree-classifier
will achieve good performance on both source and target domain examples.
This leads to a situation where few incorrectly classified examples can be found
during the iterations and the weights are hardly changed.

To solve this problem, we choose a specific decision tree model, Random For-
est. A random forest contains several decision trees. Each of them is trained with
a newly constructed training set, which is chosen by randomly picking some ex-
amples with replacement from the whole training data. The classification result
of the random forest is a voting result of these trees. Due to the chosen strategy
of the training set, most trees will only be good at classifying the examples in the
dominating distribution. The remaining examples will be incorrectly classified so
that they will be reweighted. Our preliminary experiments show that as a basic
learning model of AdaBoost, Random Tree is superior to the other decision tree
models, e.g. J48Tree[20].

4.3 Transfer Learning

To train an efficient classifier, a number of training examples are needed and
should be labeled manually. To reduce the manual work, we want to utilize the
existing matching instance pairs in LOD for help. But most machine learning
methods work well only under the assumption that the training and testing data
are drawn from the same feature space and the same distribution[24]. Training
data which is generated from the existing matching instance pairs does not
meet this requirement. Transfer learning[24] can utilize the data from different
distributed domains (source domain) to help the target task, thus reducing the
need for training data in the target domain (the domain of testing data).

There are two main kinds of transfer learning methods: the instance-transfer
and the feature-representation-transfer. The former assumes that the feature
spaces of the source and target domain are the same while the distributions of
the data from the two domains are different. Such methods try to find examples
from the source domain which can be reused to help the target domain task.
The latter assumes that the feature spaces of the source and target domain
are different. Such methods focus on finding the “good”common features which
reduce the difference between the source and target domains and the error of
classification.

The property matching independent similarity vectors we generated natu-
rally compose a common feature space for all the data source pairs. So we em-
ploy TrAdaBoost [8] for help, which is a classical algorithm for instance-transfer
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learning. TrAdaBoost is an extension of the AdaBoost [12] algorithm. It assumes
that the feature spaces of source and target domain are the same while the
distributions of the data from the two domains are different. Due to the differ-
ent distributions, some of the source domain data may be helpful in training
the classifier for the target domain but some of it may not be and could even
be harmful. TrAdaBoost iteratively adjusts the weighting of the source domain
data to reduce the effect of the “bad”source data. In each round of iteration,
TrAdaBoost trains the basic classifier on the weighted source and target data.
The source domain examples which are classified incorrectly by the classifier are
considered to be the bad source data, so their weights are reduced. Meanwhile,
TrAdaBoost uses the same strategy as AdaBoost that is to increase the weights
of the incorrectly classified examples in the target domain.

Random Forest is a suitable basic learning model for TrAdaBoost, as well as
for AdaBoost. The interface of TrAdaBoost is generic. We can directly apply it
on the problem of instance matching by treating the instance pairs from a pair
of data sources, which are to be matched, as the target domain, and the existing
matching information between another pair of data sources as the source domain.
But not all the source domains can help to train the classifier on the target
domain via TrAdaBoost. A source domains can be harmful if its distribution is
quite different from that of the target domain.

The problem of how to automatically choose a helpful source domain has not
been theoretically solved yet[9]. Intuitively, the more similar the distributions
of the two domains are, the more likely the source domain can help. In the
problem of instance matching, the distribution of a domain is decided by the
heterogeneity between the ways of describing objects which are used by the data
sources (We call it describing heterogeneity for short). So when we want to match
the instances of a data source pair (A,B), we should use another pair (C,D) for
help, such that the describing heterogeneities of (A,B) and (C,D) are similar.

5 Experiments

First, we will show the experimental results of our proposed approach without
transfer learning. We use the dataset provided by the data interlinking track
of IM@OAEI2010 and compare our approach with the participants’. We chose
this dataset because many others are not from LOD. Then we will give some
comparative experiments to show whether a source domain we chose from LOD
is helpful to instance matching via transfer learning.

5.1 Without Transfer Learning

The goal of the data interlinking track of IM@OAEI2010 is to find all the
owl:sameAs links from four data sources to the ones in LOD. These four data
sources are also in LOD; they are:
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– Sider7, about some drugs and their effects.
– DrugBank8, about drugs and their chemical, pharmaceutical and pharma-

cological information.
– DiseaSome9, about disorders and genes.
– DailyMed10, about marketed drugs and chemical structure, mechanism of

action, indication, usage, contraindications and adverse reactions for the
drugs.

These data sources are already linked to LOD and the existing links will be
treated as the standard answers. The well-knownRecall, Precision and F-Measure
are used for evaluation.

Two teams, ObjectCoref and RiMOM took part in this track. Their reports of
results can be found in [32] and [16]. ObjectCoref[17] uses a self-learning frame-
work to iteratively extend a kernel of matching instances. In each round of itera-
tion, the most discriminative property-value pair is learned from the kernel for the
further matching. RiMOM[19] is a multi-strategy ontology matching framework.
It combines three strategies when facing an instance matching problem.

1. Edit distance between labels of two instances.
2. Cosine of the TF · IDF vectors for the text description of the instances to

match.
3. Cosine of the TF·IDF vectors for the text description of the instances related

to the ones to match.

In Table 2, we give the results of matching instances for each data source pair.
RiMOM also gave their results on some other data source pairs which are not
shown here, since we can not find the dumps of those data sources. For each
testing data source pair, we randomly labeled 5% of the similarity vectors as
training data (no more than 2000 for these datasets). Obviously, our proposed
approach works better than ObjectCoref and RiMOM on these datasets.

For ObjectCoref, the process of learning discriminative property-value pairs
depends on the lax matches of properties from different data sources. From the
report of ObjectCoref[16], we can see that the matching properties found for
these datasets are mainly about names and aliases. By analyzing the data, we
find that Sider, DrugBank and DayliMed contain a lot of aliases for each instance,
while DiseaSome does not. Furthermore, some non-matching instances have sim-
ilar aliases. So ObjectCoref got high recall and low precision on Sider-DrugBank
and Sider-DailyMed, but low recall and high precision on Sider-DiseaSome. In
general, ObjectCoref did not get good performance since the properties of names
and aliases do not match well. In contrast, RiMOM is a property matching inde-
pendent approach. But the similarity metric that combines the three strategies
is not accurate enough for instance matching.

7 http://sideeffects.embl.de/
8 http://www.drugbank.ca/
9 http://http://diseasome.kobic.re.kr/

10 http://dailymed.nlm.nih.gov/

http://sideeffects.embl.de/
http://www.drugbank.ca/
http://http://diseasome.kobic.re.kr/
http://dailymed.nlm.nih.gov/
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Table 2. Compare with the Participants of IM@OAEI2010

Data Set Approach Recall Precision F-Measure

Sider-DrugBank ObjectCoref 0.996 0.302 0.464
RiMOM 0.342 0.961 0.504
AdaBoost 0.859 0.952 0.903

Sider-DiseaSome ObjectCoref 0.668 0.837 0.743
RiMOM 0.315 0.837 0.458
AdaBoost 0.726 0.875 0.794

Sider-DailyMed ObjectCoref 0.999 0.548 0.708
RiMOM 0.567 0.706 0.629
AdaBoost 0.672 0.805 0.733

Sider-DBpedia RiMOM 0.482 0.717 0.576
AdaBoost 0.643 0.639 0.641

DailyMed-DBpedia RiMOM 0.246 0.293 0.267
AdaBoost 0.373 0.377 0.375

Table 3. Transfer GeoNames-DBpedia to LinkedGeoData-DBpedia

Training Examples AdaBoost AdaBoost(Source) TrAdaboost

900 0.284 0.372 0.378
1500 0.383 0.396 0.432
3000 0.444 0.416 0.458
6000 0.524 0.450 0.516
15000 0.544 0.491 0.536

We noticed that our proposed approach has an enormous advantage on the
data set Sider-DrugBank. The probable reason is that we can make use of the
names and aliases for instance matching. Our approach eliminates the ill effects
of the duplicate names by giving them low IDF weights.

5.2 With Transfer Learning

We choose GeoNames11, LinkedGeoData12 and DBpedia as the datasets for
the experiments on transfer learning. GeoNames and LinkedGeoData are data
sources in LOD. Both of them are about geographic information and have
owl:sameAs links to DBpedia. GeoNames and LinkedGeoData have similar be-
haviors in describing real-world objects. So the the describing heterogeneities of
GeoNames-DBpedia and LinkedGeoData-DBpedia are similar. We try to use the

11 http://www.geonames.org/
12 http://linkedgeodata.org/

http://www.geonames.org/
http://linkedgeodata.org/
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information on the existing matching instances between GeoNames and DBpedia
to help matching LinkedGeoData and DBpedia.

The result is shown in Table 3. AdaBoost denotes the AdaBoost model
applied only on the training data from the target domain (LinkedGeoData-
DBpedia). AdaBoost(Source) and TrAdaBoost respectively denote the Ad-
aBoost and TrAdaBoost model applied on the training data from both domains.
Training Examples denotes the number of training instance pairs we labeled
in the target domain. 900 examples are about 0.01% of all the pre-matching in-
stance pairs between LinkedGeoData and DBpedia. We can see that the source
domain we chose is really helpful via TrAdaBoost. But directly using the source
domain for training can be harmful. Furthermore, the less training data there is
in the target domain, the more the source domain can help. If there is efficient
training data in the target domain, the source domain is entirely useless. These
experimental results match our intuition about transfer learning.

6 Related Work

Although the problem of instance matching has emerged along with the devel-
opment of LOD in recent years, a similar problem, Record linkage, was examined
much earlier. Thus a lot of relevant approaches have been proposed.

6.1 Record Linkage

Record linkage, also known as duplicate detection or object identification, is a
classical problem in the area of databases. The goal of record linkage is to deter-
mine the pairs of records that are associated with the same entity across various
data sets. It is similar to the instance matching problem. For more than five
decades, the traditional database community has discussed this problem a lot.
Some surveys can be found in [33], [34] and [11].

The early approaches focus on similarity metrics for single field (column)
matching. Many of them are even widely used today, such as edit distance, Q -
gram distance, etc. The similarity vector in our work is based on TF · IDF[7] and
its variants.

The approaches for multi-field matching are mainly based on probabilistic
models, developed by the machine learning community. The learning methods
were applied on record linkage by extracting the feature vector of similarities
from the comparable fields. Such approaches classify the record pairs as matching
or not, employing CART[6], SVM[3] and so on. Semi-supervised, active and
unsupervised learning algorithms have been proposed to reduce the demand
for training data. Unlike the properties of linked data sources, the number of
fields in a record linkage problem is usually quite small. Thus the comparable
fields can be easily found manually. So the data base community doesn’t pay
attention to the problem known as Structural heterogeneity. A simple schema-
independent method has also been proposed which treats the whole record as
one large field. But experiments in [3] show that SVM based on the similarity
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metric of multiple comparable fields usually outperforms it. It’s easy to see that
such an elaborate similarity metric benefits record linkage when the fields can
well match. Some distance-based methods which have also been proposed for for
multi-field matching do not employ machine learning algorithms[13][1], but the
distance measures are also based on schema matching.

Some other work focuses on postprocessing. The main idea is that the match-
ing relations between records or fields should be consistent[2][25]. Such methods
based on graph model can play an important role in instance matching problems
as the linked data settings are more structured. They are complementary to our
proposed work which uses only the literal information.

6.2 Instance Matching

Some of the existing links in LOD are discovered manually with some tools. One
well-known instance matching tool is the Silk Link Discovery Framework[31]
which allows setting link specifications for given data sources. Domain related
knowledge is required to design such specifications.

The automatic instance matching approaches are often domain specific or
property matching dependent. The approach proposed in [29] matches the FOAF
instances using SVM. Since all of the instances are described with FOAF, the
features for classification are easily determined according to the limited number
of properties. More domain-specific approaches can be found in [27] and [28].
Among the domain-independent approaches, [14] matches instances according
to their inverse functional properties (IFP). Such properties are not sufficient in
LOD, so [15] tries to find more IFPs with a statistical method. ObjectCoref[17]
employs a self-learning framework to iteratively find the discriminative property-
value pairs for instance matching, which are lax IFPs. RAVEN[22] applies active
learning techniques for instance matching. Both ObjectCoref and RAVEN match
the properties from different data sources by measuring value similarities. Similar
ideas are proposed in the domain of schema matching[26].

Finally, some papers focus on improving the efficiency of instance matching.
[21] limits the number of candidate instance pairs to match based on the triangle
equation. [30], [23] and [18] generate candidates by indexing some key words of
instances. This kind of method can be applied to optimize ours.

7 Conclusion and Feature Work

In this paper, we presented a property matching independent approach for in-
stance matching. We transformed the problem of instance matching to a clas-
sification problem, by designing a novel feature vector of high-level similarity
metrics. Suitable learning models were selected according to the feature space.
Our experimental results on the datasets of IM@OAEI2010 shown that such a
feature vector is reasonable for instance matching, and our approach performed
much better than the contest participants. Furthermore, we tried to utilize the
information of existing matches in LOD to help match new data sources via a
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transfer learning algorithm. The experiments also show that such information is
really helpful.

In future work, we will try to explore the following issues:

– The information on property matching and the relationships between in-
stances can be taken into consideration in the similarity metrics. It may
enrich the features for instance matching.

– Random Forest and Adaboost are similar in the result of classification[5].
Cooperation of Random Forest and TrAdaboost can be explored.

– The number of dimensions of the current similarity feature space is too
low for machine learning with so many matching instances in LOD. More
property matching independent similarity metrics need to be designed to
make the best use of the information in the existing matches.

– We hope to find a powerful way to automatically choose a helpful source
domain for the problem of instance matching.
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and an Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS,
vol. 904, pp. 23–37. Springer, Heidelberg (1995)

13. Guha, S., Koudas, N., Marathe, A., Srivastava, D.: Merging the results of approx-
imate match operations. In: Proceedings of the Thirtieth International Conference
on Very Large Data Bases, vol. 30, pp. 636–647. VLDB Endowment (2004)



A Machine Learning Approach for Instance Matching 475

14. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic
web data graph (2007)

15. Hogan, A., Polleres, A., Umbrich, J., Zimmermann, A.: Some entities are more
equal than others: statistical methods to consolidate linked data. In: 4th Interna-
tional Workshop on New Forms of Reasoning for the Semantic Web: Scalable and
Dynamic, NeFoRS 2010 (2010)

16. Hu, W., Chen, J., Cheng, G., Qu, Y.: Objectcoref & falcon-ao: results for oaei
2010. In: Ontology Matching, p. 158 (2010)

17. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: Proceedings of the 20th International Conference on World
Wide Web, pp. 87–96. ACM (2011)

18. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link dis-
covery without losing recall (2011)

19. Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology align-
ment framework. IEEE Transactions on Knowledge and Data Engineering 21(8),
1218–1232 (2009)

20. Loh, W.: Classification and regression tree methods. In: Encyclopedia of Statistics
in Quality and Reliability (2008)

21. Ngomo, A., Auer, S.: Limes-a time-efficient approach for large-scale link discovery
on the web of data. In: Proceedings of IJCAI (2011)
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Abstract. Existing approaches for link prediction, in the domain of
network science, exploit a network’s topology to predict future connec-
tions by assessing existing edges and connections, and inducing links
given the presence of mutual nodes. Despite the rise in popularity of
Attention-Information Networks (i.e. microblogging platforms) and the
production of content within such platforms, no existing work has at-
tempted to exploit the semantics of published content when predicting
network links. In this paper we present an approach that fills this gap by
a) predicting follower edges within a directed social network by exploit-
ing concept graphs and thereby significantly outperforming a random
baseline and models that rely solely on network topology information,
and b) assessing the different behaviour that users exhibit when making
followee-addition decisions. This latter contribution exposes latent fac-
tors within social networks and the existence of a clear need for topical
affinity between users for a follow link to be created.

1 Introduction

Attention-Information Networks, or ‘Hybrid Networks ’ [10], lie at the intersection
of social and information networks, users can follow other users and subscribe
to the content they publish. Romero and Kleinberg [8] describe such directed
interpolating networks as enabling users to become information hubs, in essence
such users act as real-time sensors by disseminating information about real-world
events and publishing information as it becomes available. Given the large uptake
of platforms, such as Twitter (31.9 % increase in users in 20111), that are com-
posed of attention-information networks and the increased number of users to
choose from, platform users must carefully select the individuals that they wish
to listen to. Understanding who will follow whom and how users base their deci-
sions - i.e. uncovering follower-decision behaviour patterns - has two key benefits:
firstly, the dynamics of network growth in attention-information networks could

1 http://www.emarketer.com/Article.aspx?R=1008879

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 476–491, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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be understood and therefore the social capital of the networks be predicted; and
secondly, understanding how users behave in terms of their follower-decisions
would facilitate audience building, a key interest for online marketing and brand
managers who are keen to increase their broadcast spectrum.

Constrained attention capability means that users must decide on who they
should follow. One would assume that a followee’s content must be of interest to
the follower, and this has indeed been identified in prior work by Schifanella et
al. [9]. We therefore hypothesise that Following a user is performed when there
is a topical affinity between the follower and the followee. However, to date no
work has attempted to explore the differing behaviour that users may exhibit
when making follower-decisions. We hypothesise that Users who do not focus on
specific topics do not base their follower decisions on topical information but on
social factors, as so-called unfocussed users who publish content about diverse
subjects are not interested in subscribing to other users given a particular subject
affinity. Further, we also hypothesise that Users who are more socially connected
are driven by social rather than topical factors, given that users who build up a
large followee network are more driven by connecting to people.

To explore these hypotheses we present an approach to predict links between a
follower and recommended followees that exploits the semantics of user content,
using tags and the concepts they refer to in order to measure the semantic
relatedness of users. Our contributions are as follows:

– An approach to predict links in attention-information networks that explores
social, topical and visibility factors, based on behavioural differences with
regards to user types (alluded to in our hypotheses).

– Evaluation using the KDD Cup 2012 dataset from Tencent Weibo2 that: a)
shows significantly better performance than a random baseline and network
topology models, and b) identifies a general pattern for follower-behaviour
that is driven by topical affinity.

We have structured the paper as follows: Section 2 formulates our link prediction
problem and describes recent work within this area. Section 3 describes the
dataset used for our experiments. Section 4 details the prediction approach and
the features engineered to capture social, topical and visibility dynamics, and
Section 5 describes the method for concept disambiguation. Section 6 presents
our experiments to identify follower-decision behaviour patterns and observe how
users differ, and Section 7 discusses the findings in comparison with recent work.
Section 8 finishes the paper with conclusions and plans for future work.

2 Background and Related Work

2.1 Problem Formulation

A social network can be modelled as a graph G = 〈V,E〉 where V denotes the
set of users (nodes) in the social network and E is the set of edges (〈u, v〉 ∈ E)

2 http://t.qq.com/

http://t.qq.com/
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between nodes. Link prediction is the task of predicting which nodes u, v ∈ V
will form an edge between one another at a future time step. Leden-Nowell and
Kleinberg [7] formulated this problem as detecting the changes in a graph be-
tween consecutive time steps (t0 < t′0 < t1 < t′1), by using information in G[t0, t

′
0]

to predict the edges in G[t1, t
′
1]. However, on attention-information networks the

mechanisms through which edges, and therefore social links, are created requires
that the link prediction problem is altered to account for recommendations -
where a constrained set of possible nodes to connect to is considered. The in-
troduction of recommendation features, such as the ‘Who to follow ’ feature on
Twitter, has shifted the problem to a user-centric task such that a user u is pro-
vided with a set of recommendations R(u) to connect to where R(u)∩Γ (u) = ∅
and Γ (u) denotes the ego-centric network of u. Therefore the problem we are
addressing is the induction of a link function between users given previously pro-
vided recommendations: f : V ×R→ {0, 1}, where the set of possible mappings
is constrained to the recommendation set of each user (R(u)).

2.2 Related Work

Recent work within the domain of link prediction is divisible into two strands:
approaches that use network topologies and approaches that use local metadata.
Starting with network topology driven methods, Golder et al. [5] modelled di-
rected paths through networks to assess their effect on follower decisions on Twit-
ter and found that increased transitivity (i.e. directed transitive connections) and
common followers was correlated with follower addition. Also experimenting with
Twitter, Yin et al. [10] found that 90% of created links are to users within 2 hops
of a given user in the social network. Yin et al. assessed path structures through
intermediate nodes and derived probabilities based on intermediary connections
to predict links. Romero and and Kleinberg [8] examined ‘directed closure’ (i.e.
directed form of triadic closure) in attention-information networks and found
that different link formation behaviour exists between sub-networks. Backstrom
and Leskovec [1] proposed a supervised random walks method with restarts that
combines node features with edge features to predict future links on Facebook.
Edges are equivalent to the affinity between u and v in the context of our work
and include features such as common friends. Zhou et al. [12] performed link
prediction experiments over a range of network datasets ranging from a protein-
protein interaction network through to a co-authorship network, where each
network was undirected. The authors found common neighbours between nodes
to achieve the best performance.

Focussing now on metadata-driven approaches, Schifanella et al. [9] assessed
the correlation between tag affinity (overlap in tag vocabularies) and social
neighbours for both Flickr3 and Last.fm4 users, finding that users who are close
socially have common tags. Similar work by Leroy et al. [6] performed link pre-
diction of Flickr users but with no a priori graph information, only using group

3 http://www.flickr.com
4 http://www.last.fm

http://www.flickr.com
http://www.last.fm
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Fig. 1. Distributions in the dataset. Figure 1(a) shows that the distribution of cate-
gories per tag and Figure 1(b) shows the distribution of recommendations per user.

membership information to indicate common interests. The authors’ approach
computed a probabilistic graph in a first bootstrap phase before using this infor-
mation with existing topology-based measures from [7] to boost recall, finding
that performance is favourable for common neighbours. Brzozowski and Romero
[2] explored the effect of ‘homophily’ on user recommendations, measuring this
using the Dice coefficient of two users’ sets of tags. However, contrary to find-
ings in [9], Brzozowski and Romero [2] found that using similar tags was not
useful information for predicting links and instead found mutual followers to
be a good predictor. Yin et al. [11] predicted links using random walks with
restarts by forming an augmented graph space of person nodes and attribute
nodes, where attributes correspond to title keywords in an example DBLP co-
authorship dataset, better performance was achieved when using local attributes
(i.e. keyword information) rather than existing social connections.

Although existing approaches [9,6,2,11] consider metadata when predicting
edges between people the information is constrained to tag sets or group member-
ships and does not consider concept information. Furthermore, although several
works indicate the benefit of using topical information [9,6], there has been no
examination of the follower-decision behaviour patterns. In this paper we present
an approach that exploits semantics to gauge the topical affinity between a user
and potential followee using concept graphs, and examine the decision patterns
within our induced models.

3 Dataset Description

The dataset that we used for the experiments described later in this paper was
the KDD Cup 2012 dataset from the follower prediction task. Participants were
given a rich collection of data that included: a) a training set of users with their
recommendations, and whether they followed the items or not; b) the following
graph of users; c) a set of keywords (tags) found within each user’s content,
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and; d) item-categorisation data. This latter information is what we used for
our concept hierarchy as a given item (i.e. a user) is placed within a hierarchical
concept graph - e.g. v is placed in 0.1.4.3 where the dot represents the branch-
ing of the concept hierarchy - and is also assigned several tags. This data has
been manually labelled by the providers of the dataset. Both concept labels and
keywords (tags) are anonymised and are replaced by numeric identifiers, so we
do not see the underlying data. While the described concept hierarchy is used
in our experiments, there is no obstacle to using some other concept hierarchy
or structure (e.g. DBPedia) with our approach.

Figure 1(a) shows that many tags appear in a low number of categories, (μ =
2.275, σ = 5.903), however certain tags (in the long tail) are extremely ambiguous
and appear in many different categories, thus demonstrating the need for concept
disambiguation. Figure 1(b) shows the distribution of recommendations per user
(μ = 29.540, σ = 47.492), with a skew towards lower recommendation counts and
only a few users having a large number of recommendations.

4 Predicting Follower-Decisions

In this paper we tackle the problem of predicting links between a user and
recommended followee users. We formulate the problem as one of inducing a
function between the set of users and their recommendations: f : V ×R→ {0, 1}.
Our goal is to explore various features and: a) identify the best performing
general model over all users; and b) explore the decision behaviour of users and
the extent to which this differs between them. In order to facilitate accurate
predictions and explore the different factors that drive link creation we explore
the use of three feature sets: social, topical and visibility. The features contained
within these sets are each derived in a pairwise fashion such that if we are
provided with a set of recommendations for u denoted by R(u), we measure
each feature based on the common information shared over u and v ∈ R(u).5

4.1 Social

The decision of which recommendations to accept may differ between users, for
instance it might be the case that one user may only follow another with whom
they share a mutual friend. In order to assess such dynamics we measure four
social features that account for the topology of the network and the existence of
edges present within the network prior to predictions.

Mutual Followers Count. Measures the overlap of the follower sets (i.e. the
set of users connecting into a given user) between u and v. Let Γ−(u) denote
the set of followers connected to u and Γ−(v) denote the set of users following
v, then we define the mutual follower count as:

MFR(u, v) = |Γ−(u) ∩ Γ−(v)| (1)

5 We use the symbols u and v hereafter to denote the user and a recommended user
respectively.
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Mutual Followees Count. Measures the overlap of the followee sets (i.e. the
set of users to whom a given user is connected) between u and v. Let Γ+(u)
denote the set of followers connected to u and Γ+(v)6 denote the set of users
following v, then we define the mutual follower count as:

MFE(u, v) = |Γ+(u) ∩ Γ+(v)| (2)

Mutual Friends Count. Measures the overlap of the friends sets (i.e. the
set of users with whom a user is friends, where friendship is denoted by a bi-
directional edge between nodes) between u and v. The friend set is derived by
taking the intersection of the followee and follower set of a given user. Using
this set definition we can then calculate the mutual friends count as the overlap
between friend sets between two users, or formally as:

MF (u, v) = |(Γ−(u) ∩ Γ+(u)) ∩ (Γ−(v) ∩ Γ+(v))| (3)

Mutual Neighbours. Measures the overlap of the ego-centric networks of u
and v whilst ignoring the directions of the links in the networks - this measure
is taken from [12,10,1]. This feature is included to assess the impact, or lack of,
that direction has on link creation - i.e. following or followed. We define this
measure formally as:

MN(u, v) = |(Γ−(u) ∪ Γ+(u)) ∩ (Γ−(v) ∪ Γ+(v))| (4)

4.2 Topical

For certain users the decision to follow a user may be based on the content
that the other user shares and produces. This effect is symptomatic of attention-
information networks [5] in which the level of attention that a user can pay to
content published by their network members is limited. To explore the effects of
topical information on follower decisions we explore the overlap between users
in terms of keywords (tags) and concepts. In the following section we describe
a method to align a keyword to a concept given a user’s context. Given such
concepts we can explore the relation between users in terms of their seman-
tic distance from one another within a concept graph, the intuition being that
the further away two users are, then the less similar they are in terms of their
interests, allowing the effect of homophily to be explored. We define several con-
ventions as follows: let Tu be the set of keywords (or tags) found within the
content of user u and CTu be the bag of concepts attributed to the tags from Tu.

Tag Vectors - Cosine Similarity. Our first feature is similar to the cosine
similarity between user tag vocabularies described in [9]. We define the tag vector
tu = {t1, t2, ..., tn} of a user u as being derived from the user’s tag set Tu using a
binary index of the appearance of a tag within a user’s content - i.e. t. = {0, 1} in
6 We use the symbols − and + in the superscripts of the ego-centric networks to denote
the direction of the edges, the former denoting incoming and the latter denoting
outgoing.
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tu. To compute the similarity between the tag vectors of u and v denoted by tu
and tv respectively we take the cosine of the angle between these vectors.

Concept Bags. The concept bag CTu of a given user u is derived by returning
the set of concepts that each tag in Tu has been associated with. As we have a
collection of tags it is likely that duplicate concepts will be returned for differ-
ent tags, we maintain these duplicates in the concept bag of a user and form a
concept bag vector : cu = {c1, c2, ..., cn} using the frequency of the concepts in
the bag as the weights - i.e. c. = {0} ∪N+ in cu.

Cosine Similarity. Given two concept bag vectors cu and cv for two different
users u and v respectively, we measure the cosine of the angle between those
vectors as the first measure between concept bags.

Jensen-Shannon Divergence. Given two concept bag vectors cu and cv for two
different users we model each vector as a probability distribution over the total
set of concepts denoted as Pu and Pv respectively - using frequency counts for
keyword usages to derive the probability distributions. Using these distributions
over the total set of concepts we then measure the Jensen-Shannon Divergence
between the concept bags, thereby gauging the level of dissimilarity between the
concepts attributed to the content of u and v:

DJS =
1

2

∑
i

Pu(i) log
Pu(i)

Pv(i)
+

1

2

∑
i

Pv(i) log
Pv(i)

Pu(i)
(5)

Concept Graphs. By using concept graphs we can explore the semantic relat-
edness of users using graph-based distance metrics. To enable this comparison
we require a one-to-one mapping between a tag and a concept given a user. This
produces a set of concepts for each user that can be used for comparison with
other users. In the following section we explain how we perform concept disam-
biguation using a user’s context to overcome the polysemy problem - i.e. where
a single tag can have multiple concepts. We define 〈t, c〉 ∈ Mu as an injective
map between the tags from the tag set Tu of user u and the set of concepts from
the concept bag CTu of user u where a concept aligned to a tag given a user
is returned by Mu[t] = c. Through this we can perform a pairwise comparison
of the distances between concepts attributed to the tags of u and v using the
function: d(ci, cj). We define three distance measures over concept graphs - these
distance measures are explained shortly - each of which have two varieties:

1. Tag Intersection. The first variety uses the intersection of the tag sets of u
and v for comparison: Tu∩Tv = Tuv. For each tag in t ∈ Tuv we produce the
tag-concept maps given each user such that |Mu| ≡ |Mv|. The distances be-
tween the concepts from equivalent tags in Tuv are measured using a distance
metric and the average taken. We define this formally as:

INT (Tuv) =
1

|Tuv|

|Tuv |∑
i

d(Mu[ti],Mv[ti]) (6)
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2. All Tags. The second variety performs a pairwise distance comparison be-
tween the tag sets of u and v through the concepts that each tag within
those sets has been mapped to. For each tag in a given user’s tag set Tu we
produce an injective map: Mu. However, unlike the tag intersection the car-
dinality of the map for one user will differ from another if the cardinality of
their tag sets differs. Using the maps we then measure the distance between
every mapped concept in the different sets. We define this formally as:

ALL(Tu, Tv) =
1

|Tu|
1

|Tv|

|Tu∑
i

|Tv |∑
j

d(Mu[ti],Mv[tj ]) (7)

Based on these two varieties we explore three distance metrics for measuring
d(ci, cj) in the concept graph:

Shortest Path. The first metric derives the shortest path between ci and cj using
the Bellman-Ford algorithm. This method performs a breadth first search of a
graph-space until a desired node is found.

Hitting Time. The second and third metrics utilise the Markov-chain random
walks model in which the probability of a random walker moving from one node
to another in one time step is only dependent on their current position in a
graph. The graph over which the random walker will traverse is the concept graph
Gconc which is composed of nodes (concepts) Vconc and edges that connect those
concepts 〈i, j〉 ∈ Econc - where edges are undirected and therefore hypernym
and hyponym relations are ignored for now. We define the random walks model
using the Laplacian matrix of the concept graph: L = D − A and define the
adjacency matrix A for entry aij to be 1 if 〈i, j〉 ∈ Econc and 0 otherwise.

The diagonal degree matrix is defined as the row sum of the adjacency matrix:
dii =

∑
j aij . We then take the Moore-Penrose pseudoinverse of the laplacian

matrix which we denote as L+. This provides, based on work by Fouss et al. [4],
the necessary information to efficiently derive the hitting timem(j|i) of a random
walker as it traverses the concept graph Gconc, this is computed as follows:

m(j|i) =
|Vconc|∑

k

(l+ij − l+ik − l+jk + l+kk)dii (8)

Commute Time Distance. The third distance metric computes the average num-
ber of steps the walker takes to leave a given node i reach another node j and
then return back to i. The closer that two nodes are in the concept graph Gconc

then the shorter the commute time. As the hitting time distances are not sym-
metric - i.e. m(j|i) �= m(i|j) - we define the commute time distance from i to j
as: n(j|i) = m(j|i) +m(i|j).

4.3 Visibility

The presence and access to information published by a prospective followee could
influence users in deciding whether to follow the individual or not. However,
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limitations imposed on attention-information networks means that the domi-
nant, but not solitary, method through which posts by individuals outside of a
user’s followee network are seen is if they are retweeted or if a followee mentions
a user. To explore these effects we devised the following six features:

Retweet Count. The total number of times a given user (v) has been retweeted
by members of the followee network belonging to u (w ∈ Γ+(u)), we define this
as follows, using the retweet(w, v) function to return the number of times w
retweeted v:

RC(u, v) =
∑

w∈Γ+(u)

retweet(w, v) (9)

Mention Count. The total number of times a given user (v) has been mentioned
by members of the followee network belonging to u (w ∈ Γ+(u)), we define this
as follows, using the mention(w, v) function to return the number of times w
mentioned v:

MC(u, v) =
∑

w∈Γ+(u)

mention(w, v) (10)

Comment Count. The total number of times a given user (v) has had his/her
content commented on by members of the followee network belonging to u (w ∈
Γ+(u)), we define this as follows, using the comment(w, v) function to return
the number of times w commented on content published by v:

CC(u, v) =
∑

w∈Γ+(u)

comment(w, v) (11)

WeightedRetweetCount.The retweet count gauges the number of times a user
v has been retweeted bymembers of the followee networkΓ+(u) of u. The influence
that members of this followee network exhibit may differ depending on the atten-
tion that u pays to each person. To assess this effect we set δw to be the number of
times u has replied to w ∈ Γ+(u). We then derive a normalised influence weight
λw for w ∈ Γ+(u) such that

∑
w∈Γ+(u) λw = 1, where λw = δw/

∑
w.∈Γ+(u) δw. .

Given this influence weighting schemewe thenmeasure the weighted retweet count
such that the neighbours of u assert different effects on the count:

WRC(u, v) =
∑

w∈Γ+(u)

λw.retweet(w, v) (12)

Weighted Mention Count. As above, with the weighted retweet count, we
also adjust the mention count of v by members of the followee network of u
based on attention:

WMC(u, v) =
∑

w∈Γ+(u)

λw.mention(w, v) (13)

Weighted Comment Count. The comment count is also adjusted based on
the attention paid by u to his followee network members:

WCC(u, v) =
∑

w∈Γ+(u)

λw.comment(w, v) (14)
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5 Concept Disambiguation with User Contexts

Measuring the distances between concepts within a graph space provides a no-
tion of semantic relatedness that can, in turn, be used to cumulatively gauge
the topical similarity between two users. As we mentioned above, distances are
measured using three different metrics, however each metric requires an injective
map between a set of tags and the concepts that they refer to. In this context
we encounter the problem of concept ambiguity, also known as polysemy, where
a single tag can have multiples concepts mapped to it.7 Our earlier assessment
of the distribution of categories per tags, as shown in Figure 1(a), demonstrates
the large extent to which polysemy is evident within the dataset.

Cantador et al. [3] proposed ‘distributional aggregation’ as a method for choos-
ing the most representative tag for a web resource based on usage frequency
amongst a collection of users. Our approach performs concept disambiguation by
leveraging the context of the user, thereby swapping the collection of users for the
concept bag of a given user and exploiting that as a voting mechanism. To illus-
trate this better consider a scenario in which the tag sets Tu and Tv and concept
bagsCTu and CTv are returned for for u and v. For each tag in the tag set we derive
the list of candidates Ccand,t for that tag (t) from the concept graph. For instance
for a tag t1 we may have two candidates in the candidate set: {c1, c2} ∈ Ccand,t1.
We count how many times each candidate appears in the concept bag of the user
CTu and choose the most frequent, this then forms the mapping for the tag: e.g.
Mu[t1] = c1. We define this process using the following function:

CD(Ccand,t, CTu) = argmax
c
|{c : c ∈ Ccand,t; c ∈ CTu}| (15)

6 Experiments

In the introduction of this paper we stated three hypotheses that describe the
follower-decision behaviour of members of attention-information networks. The
aforementioned features are engineered to capture the social, topical and visi-
bility factors that could lead to follower decisions. In this section we describe
experiments to verify our hypotheses tested over the KDD Cup 2012 dataset.

6.1 Experimental Setup

Our task, given that we are inducing a link function (f : V × R → {0, 1}), is a
binary classification one. In essence we are asking will user u follow user v? To
test our hypotheses we performed two experiments: General Follower Prediction
and Binned Follower Prediction. For each experiment we first performed model
selection by inducing a logistic regression model using only social, topical or
visibility features and then all features combined together, we then selected the
best model by the one that maximised the Area Under the ROC Curve (AUC).

7 This is analogous to a word having multiple senses on Wordnet or the same tag
appearing in multiple fixed taxonomical categories.
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Second we assessed the coefficients in the logistic regression model trained on all
features to identify patterns between an increase in a feature and the log-odds
of the classifier increasing, and therefore the likelihood of a follower decision also
increasing. The experiments were setup as follows:

General Follower Prediction. Our first experiment sought a general follower
prediction model in order to observe differences, at a general level, in follower be-
haviour. We randomly selected 10% of users from the dataset and generated a
machine learning dataset for each user by building feature vectors xv that con-
tained the social, topical and visibility features (19 features in total) computed in
a pairwise fashion between u and each recommended user v ∈ R(u), setting the
class label to pos if u followed v or neg otherwise. We combined the user-specific
datasets together into one large dataset and balanced the data such that there
were an equal number of positive and negative examples. The dataset, following
balancing and a further randomisation process to ensure mixing, was then divided
into an 80:20% split for training and testing, containing 457,722 instances in total.

Binned Follower Prediction. We performed two experiments in this context.
To begin with we measured two metrics for each user:

1. Concept-bag Entropy: We took the concept bag of each user derived from
their tag set and measured the entropy of that concept bag, thereby captur-
ing the dispersion of concepts that the user could be talking about. In this
context low entropy denotes a focussed user while high entropy denotes
an unfocussed user who is more random in the subjects that he publishes.
We define this measure as follows, where p(cj) is the conditional probability
of the concept (cj) within the user’s concept bag (CTu ):

HCTu
= −

|CTu |∑
j=1

p(cj) log p(cj) (16)

2. Degree Distribution: We measure this as the proportion of users on the plat-
form the user follows, thereby gauging how connected a user is. To derive
this measure we took the out-degree of each user (|Γ+(v)|) and divided this
by the total number of users (|V |).

For each measure we divided the users up into 10 equal-frequency bins such
that the same number of users were placed within each bin and selected all the
users from the low and high bins. By choosing 10 bins and then selecting the
low and high users for each of the above measures we are provided with users
who will differ greatly in these properties. Following this binning process we
built the datasets for each binned user using the same process as above (i.e.
building pairwise feature vectors for each user u and each of his recommended
users v ∈ R(u)) and then combined the user-specific datasets together, thereby
producing four datasets for the experiment: two for the Concept-bag Entropy
(low with 268,818 and high with 325,508 instances) and two for the Degree
Distribution (low with 400,866 and high with 610,098 instances). We balanced
each dataset such that there were the same number of positive and negative
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instances and then divided each dataset up into a training/testing sets using an
80:20 split.

Evaluation Measures. To assess the accuracy of the trained logistic regression
models we measured the area under the Receiver Operator Characteristic Curve
(AUC).8 We use this measure to choose a model that predicts links accurately
and minimises the number of false predictions. We also computed the Matthews
correlation coefficient (MCC) to compare our models against a random predictor
baseline: a coefficient of +1 is a perfect prediction, 0 is equal to random and −1
is total disagreement between prediction and observation.

6.2 Results: Prediction Accuracy

We begin our analysis of the prediction models by assessing the accuracy levels
achieved in each experiment, as shown in Figure 2. Starting with the full model
and assessing the feature sets used in isolation the results indicate that topical
factors achieve the best performance and provide the most useful information
for predicting links between users - performing significantly better (t-test with
α < 0.001) than social and visibility features. Within the introduction of this
paper we hypothesised that ‘Following a user is performed when there is a topical
affinity between the follower and the followee’, the findings from our assessments
of feature sets used in isolation confirms this hypothesis, however combining all
the features together achieves the best performance. To provide an indication
of the difference between the performance of the model and the baseline we ran
the sign test of the MCC values and found each feature set combination to
significantly outperform the random model.

Inspecting the AUC values produced for the Concept-bag Entropy models we
find different patterns. For the low entropy users the topical factors perform
best of the isolated feature sets, in a similar manner to the full model, while for
the high entropy users the social features achieve the best performance of the
isolated sets - significantly better than the other models (t-test with α < 0.001).
This finding confirms our earlier hypothesis that ‘Users who do not focus on
specific topics do not base their follower decisions on topical information but
on social factors ’. Our intuition was that the more random a user is in his
discussions then the less likely it would be for that user to base his follower-
decisions on topical information. Instead, the driver in making such a decision
is more likely to be social, as the user is more inclined to spread the topics and
subjects he discusses in order to engage with more people.

Turning now to the Degree Distribution models we also find similar results
to the full model by achieving the highest AUC values when using the topical
features. Interestingly, we hypothesised earlier that ‘Users who are more socially
connected are driven by social rather than topical factors ’, yet Figure 2 indicates
that topical features outperform social features, thereby rejecting our earlier
hypothesis - the former features were found to be significantly better (t-test with
α < 0.01). It could be the case that users who have a high out-degree form topic

8 This accuracy measure is used throughout link prediction literature [12,9,6].
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(a) AUC (b) MCC

Fig. 2. Follower Prediction Model Results using the Full model and the Binned models.
We report the Area under the ROC curve (AUC) and the Matthews Correlation Co-
efficient in parentheses, significantly outperforming the random baseline for all models
bar visibility features.

specific communities, assessing the coefficients of the logistic regression model
for these high degree users should confirm this. We find that for all the models
visibility features have little effect on predictions as only a small minority are
non-zero - i.e. Retweet Count: μ = 13× 10−5.

6.3 Results: Follower-Decision Patterns

We now study the patterns of the logistic regression models in greater detail
to compare the effects of various features on the log-odds ratio of the classifier
and the probability of a user creating a link in their followee network. Starting
again with the full model, and assessing the coefficients in Table 1,9 we find that
connections are formed between two users when there are fewer mutual followers,
but more mutual neighbours - so they share some social affinity through their
neighbours. Topically, users follow other users who are closer to them in terms of
the subjects they discuss characterised by the reduced JS-divergence and greater
cosine similarity across the tags and concepts, and also the reduced shortest path
and hitting between all concepts of the users.

In terms of the binned models: low entropy users follow other users with
whom they share less mutual followers but more mutual neighbours. These users
should also have a greater topical affinity, given the negative coefficients for JS-
divergence and the shortest path and hitting time across all concepts, and the
positive coefficients for the tag vector and concept bag cosines. While high en-
tropy users (who cover a lot of different topics in their discussions) follow other
users with whom they share more mutual followers but less mutual friends. We
also observe an interesting behaviour pattern for these user types as the tag
vector cosine between a user and his followee should be minimised - indicating
the requirement for a reduced overlap in the keywords that both users publish
- however the concept vector cosine should be increased and the JS-divergence
and hitting time should be reduced. As these latter features cover concept infor-
mation, abstracted from tags published by either user, this suggests the presence
of topical affinity between users without either user talking about the same tags.

9 We only comment on features whose inclusion in the model is significant.
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Table 1. Follower Prediction Model Coefficients for the General model (full) and the
Binned models (Concept-bag Entropy and Degree Distribution)

Full Concept-bag Entropy Degree Distribution
Set Feature Low High Low High
Social Mutual Followers Count -0.0275*** -0.0497*** 0.2985*** 8.6776 -0.0062**

Mutual Followees Count 0.0001 -0.0064 0.1440*** - 0.0066***
Mutual Friends Count -0.0236 -0.1357 -0.2786*** - 0.0041
Mutual Neighbours Count 0.0289*** 0.0462*** -0.3033*** - 0.0023.

Topical Tag Vectors - Cosine 0.7887*** 0.5793** -0.5125*** 0.8628*** 0.4840**
Conc Bags - Cosine 0.6277*** 0.9587*** 1.6519*** 0.5624*** 0.5779***
Conc Bags - JS-Divergence -0.0410*** -0.0421** -0.6369*** -0.0425*** -0.0059
Conc Graphs - Int - Short Path 0.0329. 0.0811*** 0.1324*** 0.0556* 0.0795***
Conc Graphs - All - Short Path -0.0659*** -0.0444*** 0.1515*** -0.0516*** -0.1230***
Conc Graphs - Int - Hit Time 0.0009*** -0.0001 -0.0003** -0.0002 -0.0002
Conc Graphs - All - Hit Time -0.0007*** -0.0006*** -0.0001. -0.0005*** -0.0004***
Conc Graphs - Int - Com Time -0.0005*** 0 0.0001 0.0001 0
Conc Graphs - All - Com Time 0.0004*** 0.0003*** 0 0.0003*** 0.0003***

Visibility Retweet Count 4.3102 8.2279 6.9181 - 0.4570
Mention Count -12.5017 - - - -2.4563
Comment Count -8.4571 - - - -2.1373
Weighted Retweet Count - - - - -
Weighted Mention Count - - - - -
Weighted Comment Count -20.2386 -381.3810 -1401.6106 - -1.1584

Signif. codes: p-value < 0.001 *** 0.01 ** 0.05 * 0.1 . 1

For low degree users we find that largely topical features appear within the
model - as these users are not connected to many people and therefore the
appearance of social factors is diminished. For these users the coefficients indicate
a similar pattern for low entropy users where a user follows a recommended user if
they share topical affinity - i.e. high cosine similarity based on tags and concepts,
and lower hitting time and JS-divergence. High degree users follow other users
with whom they share fewer mutual followers but more mutual followees - i.e.
both users need to follow many of the same people. For topical features the
high degree users follow other users with whom they share a topical affinity,
indicating that although these users subscribe to many users they are based on
common subjects and interest. We also find similar topical effects to both the full
model and the low entropy/degree models: high similarity between the follower
and followee based on tag vector/concept bag cosine, and low JS-divergence and
hitting times.

7 Discussion

Analysing the follower-decision behaviour of users in an example microblogging
platform proved two of our three earlier stated hypotheses. We also uncovered
a general behaviour pattern based on the topical affinity between a follower and
followee where the concept distance between the users should be lowered - mea-
sured using the random walks hitting time and tag similarity. Such findings are
consistent with work by Schifanella et al. [9] where users who were socially close
to one another were found to have a high topical affinity (cosine of tag vocabu-
laries). Our work attempts to advance such findings by exploring novel metrics
for assessing topical affinity, using concept graphs, and inspecting the coefficients
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in induced logistic regression models to unearth the latent behavioural pattern.
Such an examination has never been undertaken before.

In comparison with existing work we found different follower-decision be-
haviours. For instance, Golder et al. [5] found that on Twitter common followers,
when increased in number, boosted the likelihood of a link being formed. This
was also reported in Brzozowski and Romero [2] where sharing a mutual audi-
ence was correlated with better link prediction. However we do not see this effect
in our general model and only see the increase in mutual followers as increasing
the likelihood of a user following another in the high entropy model. In fact for
the remaining models, the number of mutual followers should actually be re-
duced, thereby conflicting with both Golder et al. and Brzozowski and Romero’s
findings. Leroy et al. [6] found that an increase in mutual neighbours between
a follower and followee was correlated with edge creation. We also observe a
similar effect in our models where for all models, aside from the high entropy
users, an increase in the number of mutual neighbours was associated with an
increase in link creation likelihood. This divergent behaviour for high entropy
users is common across many of the implemented features and suggests the need
for model adaptation when considering these user types. Despite such divergent
behaviour we note that a consistent topical affinity effect exists, as conceptually
- i.e. considering concepts abstracted from published keywords - we find topical
affinity between such random users and their followees.

8 Conclusions and Future Work

In this paper we have presented an approach to predict links on attention-
information networks and in doing so: a) significantly out-performed a random
model baseline when using all implemented features in a logistic regression model
and existing topological models when using topical information; b) learnt a gen-
eral pattern that captures the follower-behaviour of users of an example mi-
croblogging platform; and c) uncovered latent factors that lead to link creation
including clear topical affinity between followers and followees. These findings
allow followee recommendations to be improved based on the behaviour of the
recipient, and therefore grow the network on the platform and increase social
capital. A necessary next step for this work is to apply our models over data
from other attention-information networks such as Twitter and YouTube in or-
der examine the behaviour of their users and whether the findings from this
work corroborate with those from disparate platforms. Assuming that concepts
resolvable to Linked Data URIs can be extracted from textual content available
in those networks, this would allow our concept-based affinity measures to be
applied over Linked Data.

Future work will also involve assessing the correlation between social network
distances between users and their topical affinity. Schifanella et al. [9] found
when one compares users who are more than 2 steps away in a social network
then the topical affinity between users declines rapidly. We plan to combine this
examination with applying our approach over Twitter and YouTube. We are
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also exploring the use of Conditional Random Fields on link prediction, thereby
allowing follower-decisions to be conditioned on recent user behaviour - i.e. a
user’s recent propensity to follow other users. We conjecture that performance
is conditioned on time-sensitive behaviour of each user. We do not capture this
at present.

Acknowledgments. This work was supported by EU-FP7 project ROBUST
(grant no. 257859).

References

1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: Proc. of the International Conference onWeb Search
and Data Mining, WSDM 2011. ACM, New York (2011)

2. Brzozowski, M.J., Romero, D.M.: Who Should I Follow? Recommending People
in Directed Social Networks. In: International AAAI Conference on Weblogs and
Social Media (2011)
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Abstract. An increasing amount of data is published and consumed
on the Web according to the Linked Data paradigm. In consideration
of both publishers and consumers, the temporal dimension of data is
important. In this paper we investigate the characterisation and avail-
ability of temporal information in Linked Data at large scale. Based on
an abstract definition of temporal information we conduct experiments
to evaluate the availability of such information using the data from the
2011 Billion Triple Challenge (BTC) dataset. Focusing in particular on
the representation of temporal meta-information, i.e., temporal infor-
mation associated with RDF statements and graphs, we investigate the
approaches proposed in the literature, performing both a quantitative
and a qualitative analysis and proposing guidelines for data consumers
and publishers. Our experiments show that the amount of temporal in-
formation available in the LOD cloud is still very small; several different
models have been used on different datasets, with a prevalence of ap-
proaches based on the annotation of RDF documents.

Keywords: temporal information, temporal annotation, linked data.

1 Introduction

The problem of managing temporal information has been deeply studied in the
field of temporal databases [18] and has been more recently addressed in the
World Wide Web domain [9,1]. In fact, most data-driven and Web applications
need to manage temporal information in order to capture, model, explore, re-
trieve, and summarize information changing over time. Moreover, the amount
of rapidly changing data is likely to grow in the next future with the increasing
publication of sensor data, which explicitly represents real-time data of evolving
phenomenon over time [19,25,27]. As the information on the Web can change
rapidly [4], also Linked Data on the Web1 cannot be assumed to be static, with
RDF statements frequently added to and removed from published datasets [29].

1 http://lod-cloud.net/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 492–507, 2012.
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As a consequence, change management and temporal information are receiving
an increasing attention in the Linked Data domain. In particular, a number of
significant issues have been investigated: a resource versioning mechanism for
Linked Data, which allows for publishing time-series of descriptions changing
over time [7]; a method to monitor the published datasets, successfully applied
to several sources [17]; the maintenance of links over evolving datasets [24].

The capability of managing temporal information plays also a crucial role in
several applications and research areas. In Semantic Data Integration, temporal
information can be used to favor the most up-to-date information when fusing
data [22,23]. The analysis of temporal information can also support entity reso-
lution in some complex scenarios where the values of the attributes considered
in the matching process change over time [21]. In Temporal Query Answering
and Search, temporal information can be used to filter out the data of interest
given some temporal constraint, or to rank the results of a search engine on a
temporal basis. Timelines associated with data can improve the User Experience
by presenting information in a time-dependent order [30,1].

The capability of designing effective solutions depends on the availability of
temporal information and the possibility to collect and process this information
across heterogeneous datasets. For example, the modification date associated
with RDF documents and extracted via HTTP protocol analysis has been used to
fuse data coming from different DBpedia datasets [22]; however, this information
is not available in many datasets. Understanding the current status of temporal
information published as Linked Data is fundamental for the development of
applications able to deal with the dynamism in the data.

In this paper we investigate temporal information published in Linked Data on
the Web by analysing its availability and characterisation both from a quanti-
tative and qualitative perspective. To the best of our knowledge, despite the
proposal of several approaches to model and query temporal information in
RDF [11,5,30,19], support versioning for Linked Data [24], and monitor changes
[29,17], a systematic and large scale analysis in this field is still missing. Based
on a more precise definition of the concept of temporal information, we iden-
tify a specific kind of temporal information, called temporal meta-information
in the paper. Temporal meta-information is particularly relevant to several ap-
plication domains because it associates RDF statements and graphs with infor-
mation about their creation, modification and validity. Since the analysis of the
whole LOD cloud is unfeasible, we use the large Billion Triple Challenge2 (BTC)
dataset for our investigation. In particular, we focus on the characterization and
availability of temporal meta-information, reviewing the proposed models in the
literature for modelling such information and analysing their usage in the BTC.

The analysis of the BTC corpus suggests that the availability of temporal
information is still scarce, with negative consequences on the design of effective
solutions leveraging temporal information at large scale. Moreover, we found
that none of the models proposed to manage temporal information has been
widely adopted, although temporal annotations of documents seem to prevail so

2 http://km.aifb.kit.edu/projects/btc-2011/

http://km.aifb.kit.edu/projects/btc-2011/
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far. Based on the results of our empirical analysis, we provide some guidelines to
data publishers and consumers in order to take advantage of the representation
approaches proposed so far.

The paper is organized as follows: Section 2 introduces the preliminary defi-
nitions we adopt in this paper; in Section 3 we introduce the notion of temporal
information and we investigate their availability in the BTC, analysing the more
frequent temporal properties and the pay-level-domain they occur in. In Section
4, we review the approaches proposed in the literature for the representation of
temporal meta-information and discuss their adoption in well-known datasets.
In Section 5 we conduct experiments to quantitatively investigate the adoption
of these models in the LOD cloud using the BTC dataset and we discuss our
findings. In section 6, we draw the conclusions.

2 Preliminaries

RDF triples and RDF graphs.Given an infinite set U of URIs (resource identifiers),
an infinite set B of blank nodes, and an infinite set L of literals, a triple 〈s, p, o〉 ∈
(U ∪B)×U×(U∪B∪L) is called anRDF triple; s, p, o are called, respectively, the
subject, the predicate and the object of the triple. AnRDF graph G is a set of RDF
triples. A named graph is a pair 〈G, u〉, where G is a graph and u ∈ U . RDF data
are often stored using the N-quad format; a quad is a quadruple 〈s, p, o, c〉 where c
defines the context of an RDF triple 〈s, p, o〉; the context describes the provenance
of a triple, often represented by - but not limited to - anRDF graph.AnRDF triple
(or simply triple in the following) is also called statement. We call statements and
graphs also truth-valuable RDF elements, as they can be associated with a truth
value, under an interpretation function [10].

Temporal entities. We distinguish two types of temporal entities used for repre-
senting temporal information in RDF data: time points, represented by a single
variable tp, and time intervals, represented by the standard notation [tb; te],
where tb and te represent the time points respectively beginning and ending the
interval and tb ≤ te (in this paper we do not consider representations of time
where intervals are not bound by time points).

Concrete Representation of Time Points on the Web. According to well-accepted
best practices, time points are represented on the Web by means of date formats.
RFC 2616 defines three different date formats that are used in the HTTP pro-
tocol3. The first datetime format, e.g., Sun, 07 Sep 2007 08:49:37 GMT,
is defined by the standard RFC 822 [6] and is the most preferred. The sec-
ond datetime format, e.g., Sunday, 07-Sep-07 08:49:37 GMT, is defined
by the standard RFC 850 [15]. The third datetime format, e.g., Sun Sep 7
08:49:37 2007, is defined by ANSI C’s asctime format. ISO 8601 defines
a numerical date format [16]; an example of date according to this format is
2007-09-07T08:49:37.sZ. Based on this standard, dates can be also modelled as
primitive datatypes in XML Schema [8]. The primitive types, date, dateTime,

3 http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt
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gYearMonth, gYear, gMonthDay, gDay and gMonth defined by these spec-
ifications are usually used in RDF data. An alternative representation of time
for Linked Data, which denotes temporal entities with URIs and makes use of
the OWL Time ontology [12] has also been proposed [5].

RDF statements and documents. Some URIs occurring in RDF statements de-
note resources that are, in fact, documents (e.g., XML documents, PDF docu-
ments, or HTML pages). For the purpose of this paper it is relevant to distinguish
between generic documents and documents publishing RDF data, called RDF
documents in the following; like other generic documents, RDF documents can
be described by RDF descriptions, but differently from other documents, they
also contain truth-valuable RDF elements (statements and graphs). In other
words, a description about an RDF document can provide a meta-description
about the content of the RDF document4.

3 Temporal Information and Temporal Properties

In this section, we first propose an abstract definition of temporal information
by introducing the concept of temporal meta-information. Then we analyse the
availability of temporal information in Linked Data and the properties that are
used more often to represent such information.

– Temporal information. At the abstract level a temporal information can
be described as a ternary relation T (x, a, t), where x is a resource, a state-
ment, or a graph, a is a property symbol, and t is a temporal entity. We
call temporal property any property symbol used in a temporal information.
Since a temporal information T (x, a, t) can be also interpreted as a temporal
annotation associated with the element x, the terms temporal information
and temporal annotation will be used interchangeably, depending on the
context.

– Temporal meta-information. We observe that, according to the above
definition, truth valuable and non truth valuable RDF entities can be associ-
ated with temporal information. Therefore, we introduce a new concept that
specifically refers to temporal information associated with truth-valuable el-
ements: a temporal information T (x, a, t) is a temporal meta-information
if and only if x is a truth-valuable RDF element. The concept of tempo-
ral meta-information, which is defined according to semantic criteria, allows
distinguishing between temporal information associated with objects in a do-
main of interest (e.g. the birth date of a person, but also the creation date of
a PDF document) and temporal information associated with truth-valuable
RDF elements (e.g, the temporal validity of statement, or the last update of
an RDF document).

4 An increasing number of RDF descriptions are also available in the RDFa syntax
from plain HTML and XHTML documents; however, in this paper we focus only
descriptions available in RDF/XML documents because the crawled data of the BTC
corpus, which we use in our analysis, do not include data extracted from RDFa
sources.
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3.1 Dataset and Experimental Setup

To give more insights about the usage of temporal information in Linked Data
cloud, we analyse the latest release of the BTC dataset which was crawled from
the Web in May/June 2011 using a random sample of URIs from the BTC 2010
dataset as seed URIs. The BTC corpus which represents only a part of all available
LinkedData on theWeb, contains over 2.1 bn statements in N-Quads5 formatwith
over 47 K unique predicates, collected from 7.4 M RDF documents. However, our
corpus constitutes a large collection of documents sampled from a wide variety of
Linked Data publishers. A crawling-based approach is per design biased towards
datasets that are well-interlinked, while more isolated datasets are less likely to be
found. We also observe that the corpus is static, and it samples only RDF/XML,
not covering data in other syntaxes like RDFa.We expect these aspects not to have
any negative effects on the findings of our analysis, which still targets specifically
prominent and well interlinked part of the LOD cloud.

Considering the size of the corpus, we use Apache Hadoop6 to analyse the
data. Hadoop allows for the parallel and distributed processing of large datasets
across clusters of computers. We run the analysis on the KIT OpenCirrus7

Hadoop cluster. For our analysis we used 54 work nodes, each with a 2.27 GHz
4-Core CPU and 100GB RAM, a setup which completes a scan over the entire
corpus in about 15 minutes.

3.2 General Analysis

To gather a broad selection of temporal information in BTC, we employ a string-
based search method which implements a class named SimpleDateFormat8 in
Java. We are confident about the correctness of the collected data because the
time parser is well-known and used by a large community.

We assume that if temporal information is present, it is contained in the
object position of quads. Thus, we use regular expressions to identify temporal
information in the object of every quad in the BTC. However, it has been recently
shown that the best practices used to publish data on the Web [3] are not always
followed by publishers [13].

We notice that often RDF publishers do not use the date formats defined
by standards such as RFC 822, ISO 8601 or XML Schema. In order to collect
all temporal information that is represented in the BTC but is not fully com-
pliant to standard date formats, we consider variations of the standards. The
variations of the standard date formats are expressed by regular expressions
based on the following patterns: (EEE), dd MMM yy (HH:mm:(ss) (Z|z))
and yyyy-MM-(dd(’T’HH:mm:(ss).(s)(Z|z))) respectively9. We extract

5 http://sw.deri.org/2008/07/n-quads/
6 http://hadoop.apache.org/
7 https://opencirrus.org/
8 http://docs.oracle.com/javase/6/docs/api/java/text/
SimpleDateFormat.html

9 The value in the parentheses is optional.

http://sw.deri.org/2008/07/n-quads/
http://hadoop.apache.org/
https://opencirrus.org/
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
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Table 1. Top twenty PLDs with respect to
temporal quads

PLD quad. Tquad doc Tdoc
(M) (K) (K) (K)

scinets.org 56.2 3,391 51.9 44.3
legislation.gov.uk 33.1 1,249 246.4 246.4
ontologycentral.com 55.3 1,029 4.6 4.4
bibsonomy.org 34.5 881 234.7 177.3
loc.gov 7.8 854 345.3 302.9
bbc.co.uk 6.3 679 173.5 83.6
livejournal.com 169.8 530 239.2 238.9
rdfize.com 37.6 495 204.7 204.6
data.gov.uk 13.8 479 178.8 91.9
dbpedia.org 28.4 423 596.6 124.1
musicbrainz.org 2.5 359 0.3 0.3
tfri.gov.tw 153.3 272 154.4 78.2
archiplanet.org 16.3 186 79.2 53.5
freebase.com 27.8 173 572.9 109.1
vu.nl 6.8 156 294.2 26.7
fu-berlin.de 5.7 139 291.6 37.4
bio2rdf.org 20.2 129 744.7 71.6
blogspace.com 0.9 124 0.2 0.2
opera.com 24.1 124 160.3 124.1
myexperiment.org 1.5 114 26.1 13.7

Table 2. Top twenty temporal proper-
ties wrt. temporal quads

Temporal Property quad doc
(M) (K)

dcterms:#modified 3.4 44
dcterms:modified 2.3 842
dcterms:date 1.5 247
dc:date 1.4 188
dcterms:created 0.6 450
dcterms:issued 0.2 222
lj:dateCreated 0.2 238
swivt:#creationDate 0.2 197
lj:dateLastUpdated 0.22 225
wiki:Attribute3ANRHP
certification date 0.18 53
tl:timeline.owl#start 0.17 31
tl:timeline.owl#end 0.15 24
bio:date 0.14 143
po:schedule date 0.14 15
swrc:ontology#value 0.096 37
cordis:endDate 0.078 0.002
nl:currentLocationDateStart 0.076 26
po:start of media availability 0.074 10
foaf:dateOfBirth 0.068 68
liteco:dateTime 0.062 62

12,863,547 temporal quads, i.e., quads containing a temporal entity, and 1,670
unique temporal properties from the corpus.

Furthermore, to provide a deeper analysis of the distribution of temporal in-
formation within the dataset, we extract all the pay-level domains (PLDs) occur-
ring in the context of the quads. Herein, we use PLDs to distinguish individual
data providers [20]. Table 1 lists the top 20 PLDs publishing the largest number
of temporal quads. For each PLD we report: the total number of quads (quad.
in Table 1), the number of temporal quads (Tquad.), the number of documents
(doc) and the number of temporal documents (Tdoc).

We can notice that although scinets.org is listed on top of the list, it does
not provide the highest ratio of temporal quads over the total number of quads
compared to other datasets. With respect to the temporal quads, we can notice
that musicbrainz.org and blogspace.com represent the largest number
of temporal quads as a proportion of all quads. Similarly for the documents,
we notice that legislation.gov.uk, rdfize.com and blogspace.com
represent the three PLDs with the largest number of temporal documents as a
proportion of all documents.

Table 2 lists the top 20 temporal properties that occur more frequently in
the BTC, reporting the number of quads and documents they occur in. We also
provide an analysis of the distribution of the top-10 most frequent temporal
properties within the most significant PLDs, which is plotted in Figure 1. It can
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Fig. 1. Distribution of top ten temporal properties with respect to main PLDs

be noticed that not only the properties of the Dublin Core (DC) vocabulary10

do occur much more frequently than other properties, but they are also used
more often across different datasets. Remarkably, the temporal property that
occurs more often in the BTC dataset, i.e., dcterms:#modified, has a wrong
spelling (the correct spelling denotes in fact the second most frequent temporal
property in the corpus). As shown in Figure 1, this is also the only temporal
property published in the scinets.org context, and the spelling is wrong in
all the quads having the same context.

4 Temporal Meta-information Description Models

In this section we focus on temporal meta-information, that is temporal informa-
tion defined as T(x,a,t) where x can be either a statement or a graph. Because
of the tight constraints given by the triple-based structure of RDF descriptions,
the concrete RDF-based representation of an even simple temporal annotation
like T (x, a, t), with x being a document and t a temporal entity, requires some
sophisticated mechanisms. Several approaches for providing a concrete repre-
sentation of a temporal annotation have been proposed. We identify three core
perspectives that have been adopted for the concrete representation of temporal
meta-information in RDF:

– Document-centric Perspective, where time points are associated with RDF
documents.

– Fact-centric Perspective, where time points or intervals (usually intervals)
are associated with facts; since facts can be represented by one or more
statements - we further separate the Fact-centric Perspective into:

10 http://www.dublincore.org/documents/dces/

http://www.dublincore.org/documents/dces/
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• Sentence-centric Perspective, which explicitly define the temporal va-
lidity of one or more statements annotating them with time points or
intervals.

• Relationship-centric Perspective, which encapsulates time points or in-
tervals into objects representing n-ary relations.

In the following we explain in detail the approaches proposed according to the
aforementioned perspectives.

4.1 Document-Centric Perspective

Graphs, i.e. RDF documents, can be associated with temporal meta-information
following two approaches: the first one uses HTTP-metadata, and in particular
the Last-modified field of the HTTP response header; the second one
expresses temporal meta-information using RDF statements with temporal prop-
erties taken from available vocabularies such as Dublin Core. Temporal meta-
information following these approaches, and in particular, Last-modified and
ETage properties of HTTP headers have been used for the detection of changes
in Web documents publishing RDF data [29].

Protocol-based representation. A Protocol-based representation adopts point-
based time modelling; the temporal meta-information is not persistently asso-
ciated with a Web document, but can be extracted from the HTTP header
returned in response to an HTTP GET request for the document. The temporal
meta-information associates a time point, represented by a date, with a Web
document G using a predicate a defined in the HTTP protocol according to the
schema defined as follows:

HTTP Response Header
Status: HTTP/1.1 200 OK
a : tp

Metadata-based representation. Let 〈s, p, o〉 be a statement, uG a named graph,
aG a temporal property, tp a time point; the Metadata-based representation
associates a temporal meta-information with an RDF document as follows:

〈s, p, o, uG〉
〈uG, aG, t

p, uG〉

Examples of datasets providing temporal meta-information to the documents
are: Protein knowledge base (UNIPROT) and legislation.gov.uk.

4.2 Fact-Centric Perspective

In the Fact-centric Perspective facts are associated with temporal meta-
information that constrain their temporal validity. The first RDF model proposed
to formally capture this idea is Temporal RDF [11]. In this model, RDF state-
ments are annotated with time intervals constraining their temporal validity; the
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intervals are interpreted over a point-based, discrete and linearly ordered tempo-
ral domain.

Temporal RDF-based representation. Let 〈s, p, o〉 be an RDF statement and
[tb; te] a time interval with a starting point tb and an ending point te, a Temporal
RDF-based representation is a temporal annotated statement having the form
〈s, p, o〉[tb:te].

The encoding of the above definition into the triple-based RDF data model
is not straightforward because RDF can “natively” represents only binary re-
lations. In order to solve this problem, several approaches for encoding the
temporal validity of facts into the standard RDF syntax have been proposed.
These approaches follow two perspectives that present significant differences: the
Sentence-centric Perspective and the Relationship-centric Perspective.

Sentence-Centric Perspective

Two strategies are adopted to represent the temporal validity of fact adopting
the Sentence-centric Perspective.

Reification-based representation. Let 〈s, p, o〉 be a statement, sst an identifier of
a statement, abS and aeS two temporal properties, and [tb:te] a time interval; a
Reification-based representation is defined as follows:

〈sst,rdf:type,rdf:Statement〉
〈sst,rdf:subject,s〉
〈sst,rdf:predicate,p〉
〈sst,rdf:object,o〉
〈sst, abS , tb〉
〈sst, aeS , te〉

The first four sentences encode the reification of the statement representing
the fact using the RDF vocabulary. The temporal properties abS and aeS link the
statements respectively to the beginning and the ending point of the time interval
[tb:te] associated with the statement. Notice that a property aS can have a time
point or a time interval as property value. As an example of datasets adopting
such approach we mention Timely Yago [30].

In the above approach, every sentence associated with a temporal annotation
has to be reified. An alternative approach allows grouping together statements
that have the same temporal validity by introducing the concept of temporal graph
[28]. Temporal graphs are named graphs annotated with timeintervals; each time
interval is represented by exactly one temporal graph, where all triples belong-
ing to this graph share the same validity period. Temporal meta-information are
collected in a default graph which occur as context in the quads.

Applied Temporal RDF-based representation. Let uTG and uG be the names re-
spectively of a temporal graph and of the default graph, abS and aeS two temporal
properties, [tb:te] a time interval and 〈s, p, o〉 a statement; the Applied temporal
RDF-based representation is defined as follows:
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〈uTG, a
b
S , t

b, uG〉
〈uTG, a

e
S , t

e, uG〉
〈s, p, o, uTG〉

The temporal properties abS and aeS link the temporal graph respectively to the
beginning and the ending point of the time interval [tb:te]. More statements can
be associated with the same temporal graph. As an example of dataset that uses
such approach is EvOnt [28].

Relationship-Centric Perspective

N-ary Relationship design patterns11 are introduced to represent RDF relations
with arity greater than two. These patterns model an n-ary relation with a set
of RDF statements by (i) introducing a specific resource to identify the relation,
and (ii) creating links between this resource and the constituents of the relation
(resources and literals). These patterns can be used to associate temporal anno-
tations with facts represented by RDF statements to constrain their temporal
validity. For example, the fact “Alessandro Del Piero (ADP) plays for Juven-
tus”, which is valid within the time interval [1993,2012], can be modelled as a
quintuple 〈ADP, playsFor,Juventus,1993,2012〉 and represented following the N-
ary Relationship pattern. A resource r is introduced to identify the relation and
the temporally annotated fact can be represented by the set of RDF statements
〈ADP,playsFor,r〉, 〈r,team,Juventus〉, 〈r,from,1993〉, 〈r,to,2012〉. The direction
of the links and the strategies adopted for naming the properties can change
according to different variants of the pattern [19,25]. However, the temporal an-
notations are linked to the resources that identify a relation in all the proposed
variants. In this paper we define the N-ary Relationship-based representation
adopting the variant described in the second use case of the W3C document, the
one that occurs more frequently in the BTC corpus.

N-ary-relationship-based representation. Let 〈s, p, o〉 be an RDF statement, r a
new resource, p1 and p2 two properties, abR and aeR two temporal properties, and
[tb:te] a time interval; the N-ary-relationship-based representation is defined as
follows:

〈s, p1, r〉
〈r, p2, o〉
〈r, abR, tb〉
〈r, aeR, te〉

Although p1 and p2 can be two new properties, one of the two is usually equal
to p as in the example discussed above. As an example of dataset we mention
Freebase12.

A second approach to model temporal meta-information according to the Fact-
centric perspective is based on the concepts of fluent and timeslice [31]. Fluents

11 http://www.w3.org/TR/swbp-n-aryRelations/
12 http://www.freebase.com/

http://www.w3.org/TR/swbp-n-aryRelations/
http://www.freebase.com/
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are properties that hold at a specific moment in time, i.e., object properties that
change over time. The properties representing fluents link two timeslices, i.e.,
entities that are extended through temporal dimensions.

4D-fluents-based representation. Let 〈s, p, o〉 be an RDF statement, abR and aeR
two temporal properties, [tb:te] a time interval, and st and ot two timeslices asso-
ciated respectively with s and o; the 4D-fluents-based representation is defined
as follows:

〈st,rdf:type,:TimeSlice〉
〈s,:hasTimeslice,st〉
〈st, abR, tb〉
〈st, aeR, te〉
〈ot,rdf:type,:TimeSlice〉
〈o,:hasTimeslice,ot〉
〈ot, abR, tb〉
〈ot, aeR, te〉
〈st, p, ot〉

Although we could not find any dataset adopting this approach, well-known
ontologies like PROTON13 and DOLCE14 adopt it.

5 Quantitative and Qualitative Analysis

In this section we analyse and evaluate the adoption of the approaches for repre-
senting temporal meta-information. Our quantitative analysis is augmented by a
qualitative discussion in Section 5.3, based on both experiments and literature,
to highlight the advantages and disadvantages of each approach.

Please observe that some approaches cannot be detected automatically in the
data. Therefore, for certain constructs we select a random sample and manually
identify the constructs in the sample. We then scale the resulting measure to the
entire dataset, which consists of 2.1bn quads in 7.4M documents. Of those, 12.8M
were temporal quads (containing a date literal) occurring in 2.5M documents.

Analysing larger samples is infeasible due to the high manual effort involved in
checking for constructs in the entire dataset; please note that random sampling
is an established method for estimating properties of large populations (e.g., the
prediction of election outcomes use small samples and achieve sufficient accuracy
[2]). For instance, the error bound for Protocol-based representation is +/- 1.9%.
The samples used in the experiments are available online15.

Not all surveyed approaches are adopted on the web. We did not find any uses
of the Applied temporal RDF-based representation and the 4D-fluents-based
representation in the data. Table 3 gives an overview of our findings.

13 http://proton.semanticweb.org/
14 http://www.loa.istc.cnr.it/DOLCE.html
15 http://people.aifb.kit.edu/sts/data/

http://proton.semanticweb.org/
http://www.loa.istc.cnr.it/DOLCE.html
http://people.aifb.kit.edu/sts/data/
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Table 3. Temporal meta-information representation approaches and the respective
occurrence compared to i) quads having temporal information; ii) overall quads in the
BTC; iii) overall documents in the BTC (n/a = not applicable, - = no occurrence).

Perspective Approach Occurrence Occurrence Occurrence

temp. quads overall quads overall docs

Document Protocol n/a n/a 9.5%

Metadata 5.1% 0.00019% 0.56%

Fact Reification 0.02% 0.0000008% 0.006%

Applied temporal RDF - - -

N-ary relationship 12.24% 0.0005% 0.6%

4D-fluents - - -

5.1 Document-Centric Perspective

To identify the use of the Protocol-based representation we ascertain how many
of the URIs that identified documents in the BTC return date information in
the HTTP header. We generate a random sample of 1000 documents (from the
context of the quads), and for each document URI in the sample we perform
an HTTP lookup to check the last-modified header in the HTTP response. We
found that only 95 out of 1000 URIs returned last-modified headers.

To identify the use of the Metadata-based representation, we select a sample
of 1000 URIs that appear in the subject position of quads with temporal in-
formation. We need to ensure that those subject URIs are in fact documents
(information resources), as the Metadata-based representation pattern is con-
cerned with documents. Thus, from the sample we exclude URIs containing the
# symbol (as URIs with a # per definition do not refer to a document).

For the remaining URIs we send an HTTP request and analyse the response
code to determine whether the URI identified a document. We found that 432
(43.2%) identified documents (i.e., directly returned a 200 OK status code).
These information resources are not limited to RDF but they also include re-
sources in other formats such as HTML, MP3, XML or PDF. We manually check
for RDF documents with only the temporal meta-information such as modified
and updated, which resulted in 51 documents.

Of the 51 RDF documents with temporal meta-information in HTTP headers,
43 are also associated with metadata-based dates. Thus, for each of the 43 iden-
tified documents we compared protocol-based last-modified and metadata-based
last-modified dates. We found that protocol-based last-modified dates are more
up-to-date compared to metadata-based dates with an average of almost a year
(364 days).

5.2 Fact-Centric Perspective

We analyse the Reification-based representation in the BTC by looking for how
often reified statements contain temporal information. The pattern first iden-
tifies the quads containing predicates that are defined in the RDF reification
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vocabulary (i.e., rdf:subject, rdf:predicate, and rdf:object). From
the identified cases we extract only those reified statement that have temporal
meta-information associated with their subjects. In the entire BTC dataset we
found 2,637 reified statements containing temporal meta-information.

To account for N-ary-relationship-based representation we again use a com-
bination of sampling of the results of a query over the dataset with manual
verification since n-ary relations are impossible to identify just by analysing the
graph structure. Hence, we sample and manually identify occurrences.

The following pattern identifies for each document triples of the form 〈s, p, o〉
and 〈o, p∗, o∗〉 and furthermore identifies whether o is also associated with a
temporal entity. Notice that the possibility to join two triples x and y where
x.object = y.subject is a necessary, but not sufficient condition, to identify n-ary
relations. All results are contained in a set that we name scoped set consisting of
7M temporal quads. Hence, from the scoped set, we select three different random
samples of 100 triples and we manually verify if respective documents identify
an n-ary relation. Results of such manual analysis show that 10, 10 and 12 out
of 100 triples in the samples are used with an n-ary relation.

5.3 Discussion and Recommendations

In the following we discuss the results and provide recommendations for data
publishers and consumers.

The approaches that are part of the Document-centric Perspective are more
extensively adopted than the approaches of the Fact-centric Perspective. As we
hypothesised, the number of temporal meta-information associated with doc-
uments is greater than those associated with facts. Still, the use of temporal
meta-information for documents (about 10% overall) are not sufficiently high
enough to support our outlined use case.

We identify two approaches used for annotating documents with temporal
meta-information: the Protocol-based representation and the Metadata-
based representation. We notice that the number of temporal meta-
information are much more available in the Protocol-based rather than the
Metadata-based representation. The temporal meta-information in the HTTP
header, when available, are more up-to-date than the ones in the RDF document
itself. Consumers: The applications that consume temporal meta-information
should first check for temporal meta-information in the Protocol-based represen-
tation because they are more up-to-date; in case this information is not available
the applications should be able to check in the Metadata-based representation.
Publishers: Publishers should carefully update the temporal meta-information
whenever the data in the document is changed; temporal meta-information in
both Protocol- and Metadata-based representation should be consistent.

We identify four approaches used for annotating facts with temporal meta-
information, grouped into the Sentence-centric Perspective and the Relationship-
centric Perspective. These approaches associate validity expressed as temporal
entities to facts.
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The use of the Reification-based representation show a high complexity
w.r.t. query processing [14]. The approach appears only in a very small number
of quads. Consumers: Consumers should be able to evaluate based on the appli-
cation scenario (e.g., the expected types of queries) if it is possible to either build
their applications over such representation or to choose a different, and more ef-
ficient approach (e.g. Applied temporal RDF-based representation). Publishers:
Publishers should be aware that best practices discourage the use of Reification-
based representations, as they are cumbersome to use in SPARQL queries [3],
even though they may be useful for representing temporal meta-information.

The performance of Applied temporal RDF-based representation has
been reported to have still some efficiency issues [28], especially in the worst
case, when the number of graphs (which are associated with temporal annota-
tions) is almost equivalent to the number of triples. Consumers: Although we
found no usage of the Applied temporal RDF-based representation in the BTC,
the approach should deserve more attention because it supports expressive tem-
poral queries based on τ -SPARQL, and can be applied to datasets that provide
temporal information according to a Reification-based representation. Publish-
ers: Publishers should take into consideration the worst case when using the
Applied temporal RDF-based representation. Therefore, they should use it only
when it is possible to group a considerable number of triples into a single graph.

The N-ary-relationship-based representation embeds time in an object
that represents a relation. In the BTC, 0.6% of documents contain at least
one case of N-ary-relationship-based representation, which is greater than the
Reification-based representation but still represents only a small fraction of the
overall number of documents. Consumers: Consumer applications can evaluate
the temporal validity of facts from representations based on this approach. The
lack of a clear distinction between plain temporal information and temporal
meta-information provides high flexibility, but at the same makes difficult to
predict the kind of temporal information that can be leveraged and interpret its
meaning. Collecting these temporal meta-information with automatic methods
is not straightforward, as shown by the manual efforts required in our anal-
ysis to identify this information. Publishers: Many situations require temporal
meta-information associated with relations that can be modelled only as complex
objects. Therefore, we recommend to publishers to use N-ary-relationship-based
representation for complex modelling tasks because it allows flexibility on rep-
resenting temporal meta-information associated with relation.

The 4D-fluents-based representation supports advanced reasoning func-
tionalities, but, probably also because of its complexity, has not been adopted
on the Web.

6 Conclusion

The key contribution of this paper is the investigation of temporal information in
Linked Data on the Web, which is important for several research and application
domains. As time introduces a further dimension to the data it cannot be eas-
ily represented in RDF, a language based on binary relations; as a result, several
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approaches for representing temporal information have been proposed. Based on
the qualitative and quantitative analysis using the Billion Triple Challenge 2011
dataset, we came to the conclusion that the availability of temporal information
describing the history and the temporal validity of statements and graphs is still
very limited. If the representation of temporal validity of RDF data is somewhat
more complex and can be expected to be considered in specific contexts, infor-
mation about the creation and modification of data can be published with quite
simple mechanisms. Yet, this information would have great value, e.g., when data
coming from different sources need to be integrated and fused.

As future work, we plan to develop automatic techniques for the assessment
of temporal data qualities in Linked Data, such as data currency and timeliness.
With the deeper understanding of temporal information gained through our
present analysis, we aim to capture and process a large amount of temporal
information, overcoming several limitations of preliminary work [26].
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17. Käfer, T., Umbrich, J., Hogan, A., Polleres, A.: Towards a Dynamic Linked Data
Observatory. In: 5th Linked Data on the Web Workshop at WWW (2012)

18. Kline, N.: An Update of the Temporal Database Bibliography. SIGMOD Record,
66–80 (1993)

19. Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic
Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo,
L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tu-
dorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer,
Heidelberg (2010)

20. Lee, H.T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 Billion Pages
and Beyond. In: The 17th WWW, pp. 427–436 (2008)

21. Li, P., Dong, X.L., Maurino, A., Srivastava, D.: Linking temporal records. The
VLDB Endowment (2011)

22. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: Linked Data Quality Assessment
and Fusion. In: 2nd International Workshop on Linked Web Data Management at
EDBT (2012)

23. Panziera, L., Comerio, M., Palmonari, M., De Paoli, F., Batini, C.: Quality-Driven
Extraction, Fusion and Matchmaking of Semantic Web API Descriptions. J. Web
Eng. 11(3), 247–268 (2012)

24. Popitsch, N., Haslhofer, B.: DSNotify - A Solution for Event Detection and Link
Maintenance in Dynamic Datasets. Web Semantics, 266–283 (2011)

25. Rodrıguez, A., McGrath, R., Liu, Y., Myers, J.: Semantic Management of Stream-
ing Data. In: 2nd International Workshop on Semantic Sensor Networks at ISWC
(2009)

26. Rula, A., Palmonari, M., Maurino, A.: Capturing the Age of Linked Open Data:
Towards a Dataset-independent Framework. In: 1st International Workshop on
Data Quality Management and Semantic Technologies at IEEE ICSC (2012)

27. Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Comput-
ing 12(4), 78–83 (2008)

28. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying
of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

29. Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards Dataset
Dynamics: Change Frequency of Linked Open Data Sources. In: 3rd Linked Data
on the Web Workshop at WWW (2010)

30. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: Harvesting,
Querying, and Visualizing Temporal Knowledge from Wikipedia. In: The 13th
EDBT, pp. 697–700 (2010)

31. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. In:
Frontiers in Artificial Intelligence and Applications, p. 226 (2006)



Semantic Sentiment Analysis of Twitter

Hassan Saif, Yulan He, and Harith Alani

Knowledge Media Institute, The Open University, United Kingdom
{h.saif,y.he,h.alani}@open.ac.uk

Abstract. Sentiment analysis over Twitter offer organisations a fast and effec-
tive way to monitor the publics’ feelings towards their brand, business, directors,
etc. A wide range of features and methods for training sentiment classifiers for
Twitter datasets have been researched in recent years with varying results. In
this paper, we introduce a novel approach of adding semantics as additional fea-
tures into the training set for sentiment analysis. For each extracted entity (e.g.
iPhone) from tweets, we add its semantic concept (e.g. “Apple product”) as an
additional feature, and measure the correlation of the representative concept with
negative/positive sentiment. We apply this approach to predict sentiment for three
different Twitter datasets. Our results show an average increase of F harmonic ac-
curacy score for identifying both negative and positive sentiment of around 6.5%
and 4.8% over the baselines of unigrams and part-of-speech features respectively.
We also compare against an approach based on sentiment-bearing topic analysis,
and find that semantic features produce better Recall and F score when classi-
fying negative sentiment, and better Precision with lower Recall and F score in
positive sentiment classification.

Keywords: Sentiment analysis, semantic concepts, feature interpolation.

1 Introduction

The emergence of social media has given web users a venue for expressing and sharing
their thoughts and opinions on all kinds of topics and events. Twitter, with nearly 600
million users1 and over 250 million messages per day,2 has quickly become a gold mine
for organisations to monitor their reputation and brands by extracting and analysing the
sentiment of the Tweets posted by the public about them, their markets, and competitors.

Sentiment analysis over Twitter data and other similar microblogs faces several new
challenges due to the typical short length and irregular structure of such content. Two
main research directions can be identified in the literature of sentiment analysis on
microblogs. First direction is concerned with finding new methods to run such analysis,
such as performing sentiment label propagation on Twitter follower graphs [14], and
employing social relations for user-level sentiment analysis [15,5]. The second direction
is focused on identifying new sets of features to add to the trained model for sentiment
identification, such as microblogging features including hashtags, emoticons [2], the
presence of intensifiers such as all-caps and character repetitions [6] etc., and sentiment-
topic features [12].

1 twopcharts.com/twitter500million.php
2 www.geekosystem.com/twitter-250-million-tweets-per-day

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 508–524, 2012.
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The work in this paper falls into the second direction, by investigating a novel set of
features derived from the semantic conceptual representation of the entities that appear
in tweets. The semantic features consist of the semantic concepts (e.g. “person”, “com-
pany”, “city”) that represent the entities (e.g. “Steve Jobs”, “Vodafone”, “London”) ex-
tracted from tweets. The rational behind introducing these features is that certain entities
and concepts tend to have a more consistent correlation with positive or negative sen-
timent. Knowing these correlations can help determining the sentiment of semantically
relevant or similar entities, and thus increasing accuracy of sentiment analysis. To the
best of our knowledge, using these semantic features in the model training for sentiment
analysis has not been explored before. We evaluated three popular tools for entity extrac-
tion and concept identification; AlchemyAPI,3 Zemanta,4 and OpenCalais,5 and used the
one that performed best in terms of quantity and accuracy of the identified concepts.

While previous work on feature engineering for sentiment classification on tweets
[1,6] simply incorporate features through augmentation, our experimental results show
that it is more effective to incorporate semantic features through interpolation. Hence
we incorporate the semantic features into Naı̈ve Bayes (NB) model training using an
interpolation approach.

We experiment and evaluate our proposed approach with three datasets collected from
Twitter; a general Stanford Twitter Sentiment (STS) dataset, a dataset on the Obama-
McCain Debate (OMD), and one on Health Care Reform (HCR). Our results show that
combining our semantic features with word unigrams outperforms the baseline model
trained from unigrams only across all three datasets by an average accuracy of 6.47%. It
also outperforms the accuracy of sentiment analysis using the common part-of-speech
(POS) features often used in the literature [9,1] by an average of 4.78%. Although these
improvements may appear modest, they are very notable in comparison to the scale
of improvements reported in similar literatures. Our results show that the advantage of
using semantic features in microblog sentiment analysis over other techniques is mostly
restricted to negative sentiment identification, in large topically-diverse datasets.

The main contributions of this paper can be summarised as follows:

– Introduce and implement a new set of semantic features for training a model for
sentiment analysis of tweets.

– Investigate three approaches for adding such features into the training model; by
replacement, by argumentation, and by interpolation, and show the superiority of
the latter approach.

– Test accuracy of sentiment identification when using semantic features with uni-
grams on three Twitter datasets, and produce an average harmonic mean (F score)
accuracy of 75.95%, with 77.18% Precision and 75.33% Recall.

– Demonstrate the value of not removing stowords in increasing sentiment identifi-
cation accuracy.

– Show an average of 6.47% increase in the F score against a baseline approach based
on unigrams only.

3 www.alchemyapi.com
4 www.zemanta.com
5 www.opencalais.com

www.alchemyapi.com
www.zemanta.com
www.opencalais.com
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– Show an average of 4.78% increase in F score in comparison to using the common
POS features alongside unigrams.

– Compare results with sentiment-bearing topic features [12] and show that semantic
features improve F by 1.22% when identifying negative sentiment, but worsens F
by 2.21% when identifying positive sentiment.

The rest of the paper is organised as follows. Section 2 outlines existing work on sen-
timent analysis with focus on twitter sentiment analysis. Section 3 describes the three
Twitter datasets used in our experiments. Section 4 presents our proposed approach of
using semantic features for sentiment analysis, and describes three methods for incorpo-
rating these features into the sentiment classifier. In Section 5 we describe the baselines
we use for evaluating and comparing our results. Experimental results are fully detailed
and discussed in Section 6. Discussion and future work are covered in Section 7. Finally,
we conclude our work in Section 8.

2 Related Work

Sentiment analysis of tweets data is considered as a much harder problem than that
of conventional text such as review documents. This is partly due to the short length
of tweets, the frequent use of informal and irregular words, and the rapid evolution of
language in Twitter. A large amount of work has been conducted in Twitter sentiment
analysis following the feature-based approaches. Go et al. [4] explored augmenting
different n-gram features in conjunction with POS tags into the training of supervised
classifiers including Naive Bayes (NB), Maximum Entropy (MaxEnt) and Support Vec-
tor Machines (SVMs). They found that MaxEnt trained from a combination of unigrams
and bigrams outperforms other models trained from a combination of POS tags and un-
igrams by almost 3%. However, a contrary finding was reported in [9] that adding POS
tag features into n-grams improves the sentiment classification accuracy on tweets.

Barbosa and Feng [2] argued that using n-grams on tweet data may hinder the clas-
sification performance because of the large number of infrequent words in Twitter. In-
stead, they proposed using microblogging features such as re-tweets, hashtags, replies,
punctuations, and emoticons. They found that using these features to train the SVMs en-
hances the sentiment classification accuracy by 2.2% compared to SVMs trained from
unigrams only. A similar finding was reported by Kouloumpis et al. [6]. They explored
the microblogging features including emoticons, abbreviations and the presence of in-
tensifiers such as all-caps and character repetitions for Twitter sentiment classification.
Their results show that the best performance comes from using the n-grams together
with the microblogging features and the lexicon features where words tagged with their
prior polarity. However, including the POS features produced a drop in performance.

Agarwal et al. [1] also explored the POS features, the lexicon features and the mi-
croblogging features. Apart from simply combining various features, they also designed
a tree representation of tweets to combine many categories of features in one succinct
representation. A partial tree kernel [8] was used to calculate the similarity between two
trees. They found that the most important features are those that combine prior polarity
of words with their POS tags. All other features only play a marginal role. Furthermore,
they also showed that combining unigrams with the best set of features outperforms the
tree kernel-based model and gives about 4% absolute gain over a unigram baseline.
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Rather than directly incorporating the microblogging features into sentiment classi-
fier training, Speriosu et al. [14] constructed a graph that has some of the microblogging
features such as hashtags and emoticons together with users, tweets, word unigrams and
bigrams as its nodes which are connected based on the link existence among them (e.g.,
users are connected to tweets they created; tweets are connected to word unigrams that
they contain etc.). They then applied a label propagation method where sentiment labels
were propagated from a small set of nodes seeded with some initial label information
throughout the graph. They claimed that their label propagation method outperforms
MaxEnt trained from noisy labels and obtained an accuracy of 84.7% on the subset of
the Twitter sentiment test set from [4].

Existing work mainly concentrates on the use of three types of features; lexicon fea-
tures, POS features, and microblogging features for sentiment analysis. Mixed findings
have been reported. Some [9,1] argued the importance of POS tags with or without
word prior polarity involved, while others emphasised the use of microblogging fea-
tures [2,6]. In this paper, we propose a new type of features for sentiment analysis,
called semantic features, where for each entity in a tweet (e.g. iPhone, iPad, MacBook),
the abstract concept that represents it will be added as a new feature (e.g. Apple prod-
uct). We compare the accuracy of sentiment analysis against other types of features;
unigrams, POS features, and the sentiment-topic features. To the best of our knowl-
edge, using such semantic features is novel in the context of sentiment analysis.

3 Datasets

For the work and experiments described in this paper, we used three different Twitter
datasets as detailed below. The statistics of the datasets are shown in Table 1.

Table 1. Statistics of the three Twitter datasets used in this paper

Dataset Type No. of Tweets Positive Negative

Stanford Twitter Sentiment Corpus (STS)
Train 60K 30K 30K
Test 1,000 470 530

Health Care Reform (HCR)
Train 839 234 421
Test 839 163 536

Obama-McCain Debate (OMD) n-fold cross validation 1,081 393 688

Stanford Twitter Sentiment Corpus (STS)

This dataset consists of 60,000 tweets randomly selected from the Stanford Twitter Sen-
timent corpus (STS) [4]. Half of the tweets in this dataset contains positive emoticons,
such as :), :-), : ), :D, and =), and the other half contains negative emoticons such as :(,
:-(, or : (. The original dataset from [4] contained 1.6 million general tweets, and its test
set of manually annotated tweets consisted of 177 negative and 182 positive tweets. In
contrast to the training set which was collected based on specific emoticons, the test set
was collected by searching Twitter API with specific queries including product names,
companies and people. To extend the testing set, we added 641 tweets randomly se-
lected from the original dataset, and annotated manually by 12 users (researchers in our
lab), where each tweet was annotated by one user. Our final STS dataset consists of
60K general tweets, with a test set of 1,000 tweets of 527 negatively, and 473 positively
annotated ones.
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Health Care Reform (HCR)

The Health Care Reform (HCR) dataset was built by crawling tweets containing the
hashtag “#hcr” (health care reform) in March 2010 [14]. A subset of this corpus was
manually annotated with three polarity labels (positive, negative, neutral) and split into
training and test sets. In this paper, we focus on identifying positive and negative tweets,
and therefore we exclude neutral tweets from this dataset. Identifying neutral tweets is
part of our future work plan. The final HCR dataset for training contains 839 tweets,
and another 839 tweets were used for testing.

Obama-McCain Debate (OMD)

The Obama-McCain Debate (OMD) dataset was constructed from 3,238 tweets crawled
during the first U.S. presidential TV debate in September 2008 [13]. Sentiment ratings
of these tweets were acquired using Amazon Mechanical Turk, where each tweet was
rated by one or more voter as either positive, negative, mixed, or other. ‘Other” tweets
are those that couldn’t be rated. We only keep those tweet rated by at least three voters
with half of the votes being either positive or negative to ensure their sentiment polarity.
This resulted in a set of 1,081 tweets with 393 positive and 688 negative ones. Due to
the relative small size of this dataset, and the lack of a test set, we opted for a 5-fold
cross validation approach instead.

4 Semantic Features for Sentiment Analysis

This section describes our semantic features and their incorporation into our sentiment
analysis method. As mentioned earlier, the semantic concepts of entities extracted from
tweets can be used to measure the overall correlation of a group of entities (e.g. all
Apple products) with a given sentiment polarity. Hence adding such features to the
analysis could help identifying the sentiment of tweets that contain any of the entities
that such concepts represent, even if those entities never appeared in the training set
(e.g. a new gadget from Apple).6

Semantic features refer to those semantically hidden concepts extracted from tweets
[11,12]. An example for using semantic features for sentiment classifier training is
shown in Figure 1 where the left box lists entities appeared in the training set together
with their occurrence probabilities in positive and negative tweets. For example, the
entities “iPad”, “iPod” and “Mac Book Pro” appeared more often in tweets of positive
polarity and they are all mapped to the semantic concept PRODUCT/APPLE. As a result,
the tweet from the test set “Finally, I got my iPhone. What a product!” is more likely to
have a positive polarity because it contains the entity “iPhone” which is also mapped to
the concept PRODUCT/APPLE.

4.1 Extracting Semantic Entities and Concepts

There are several open APIs that provide entity extraction services for online textual
data. Rizzo and Troncy [10] evaluated the use of five popular entity extraction tools

6 Assuming of course that the entity extractor successfully identify the new entities as sub-types
of concepts already correlated with negative or positive sentiment.
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Fig. 1. Measuring correlation of semantic concepts with negative/positive sentiment. These se-
mantic concepts are then incorporated in sentiment classification.

Table 2. Evaluation results of AlchemyAPI, Zemanta and OpenCalais

No. of Concepts Entity-Concept Mapping Accuracy (%)
Extraction Tool Extracted Evaluator 1 Evaluator 2 Evaluator 3
AlchemyAPI 108 73.97 73.8 72.8
Zemanta 70 71 71.8 70.4
OpenCalais 65 68 69.1 68.7

on a dataset of news articles, including AlchemyAPI, DBPedia Spotlight,7 Extractiv,8

OpenCalais and Zemanta. Their experimental results showed that AlchemyAPI per-
forms best for entity extraction and semantic concept mapping. Our datasets consist of
informal tweets, and hence are intrinsically different from those used in [10]. There-
fore we conducted our own evaluation, and randomly selected 500 tweets from the STS
corpus and asked 3 evaluators to evaluate the semantic concept extraction outputs gen-
erated from AlchemyAPI, OpenCalais and Zemanta.

Table 3. Entity/concept extraction statistics of STS, OMD and HCR using AlchemyAPI

STS HCR OMD
No. of Entities 15139 723 1194
No. of Concepts 29 17 14

The assessment of the outputs was based on (1) the correctness of the extracted
entities; and (2) the correctness of the entity-concept mappings. The evaluation results
presented in Table 2 show that AlchemyAPI extracted the most number of concepts
and it also has the highest entity-concept mapping accuracy compared to OpenCalais
and Zematna. As such, we chose AlchemyAPI to extract the semantic concepts from
our three datasets. Table 3 lists the total number of entities extracted and the number of
semantic concepts mapped against them for each dataset.

7 http://dbpedia.org/spotlight/
8 http://wiki.extractiv.com/w/page/29179775/Entity-Extraction

http://dbpedia.org/spotlight/
http://wiki.extractiv.com/w/page/29179775/Entity-Extraction
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(a) STS.

(b) HCR.

(c) OMD.

Fig. 2. Top 10 frequent concepts extracted with the number of entities associated with them
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Figure 2 shows the top ten high-level extracted concepts from the three datasets with
the number of entities associated with each of concept. It can be observed that the most
frequent semantic concept is PERSON across all the three corpora. The next two most
frequent concepts are COMPANY and CITY for STS, ORGANISATION and COUNTRY

for HCR, and COUNTRY and COMPANY for OMD. The level of specificity of these
concepts is determined by AlchemyAPI.

4.2 Semantic Feature Incorporation

In this section, we propose three different methods to incorporate semantic features into
Naive Bayes (NB) classifier training. We start by an overview of the NB followed by
our proposed incorporation methods.

NB is a probabilistic classifier, where the assignment of a sentiment class c to a given
tweet w can be computed as:

ĉ = argmax
c∈C

P (c|w)

= argmax
c∈C

P (c)
∏

1≤i≤Nw

P (wi|c), (1)

where Nw is the total number of words in tweet w, P (c) is the prior probability of a
tweet appearing in class c, P (wi|c) is the conditional probability of word wi occurring
in a tweet of class c.

In multinomial NB, P (c) can be estimated by P (c) = Nc/N Where Nc is the num-
ber of tweets in class c and N is the total number of tweets. P (wi|c) can be estimated
using maximum likelihood with Laplace smoothing:

P (w|c) = N(w, c) + 1∑
w′∈V N(w′|c) + |V | , (2)

where N(w, c) is the occurrence frequency of word w in all training tweets of class c
and |V | is the number of words in the vocabulary.

To incorporate semantic concepts into NB learning, we propose three different meth-
ods as described below.

Semantic Replacement: In this method, we replace all entities in tweets with their
corresponding semantic concepts. This leads to the reduction of the vocabulary size,
where the new size is determined by:

|V ′| = |V | − |Wentity|+ |S|, (3)

where |V ′| is the new vocabulary size, |V | is the original vocabulary size, |Wentity|
is the total number of unique entity words that have been replaced by the semantic
concepts, and |S| is the the total number of semantic concepts.

Semantic Augmentation: This method augments the original feature space with the
semantic concepts as additional features for the classifier training. The size of the vo-
cabulary in this case is enlarged by the semantic concepts introduced:

|V ′| = |V |+ |S|. (4)



516 H. Saif, Y. He, and H. Alani

Semantic Interpolation: A more principal way to incorporate semantic concepts is
through interpolation where we interpolate the unigram language model in NB with
the generative model of words given semantic concepts. We propose a general inter-
polation method below which is able to interpolate arbitrary type of features such as
semantic concepts, POS sequences, sentiment-topics etc.

Thus, the new language model with interpolation has the following formula:

Pf (W |C) = α Pu(W |C) +
∑
i

βiP (W,Fi, C) (5)

Where Pf (W |C) is the new language model with interpolation, Pu(W |C) is the orig-
inal unigram class model and can be calculated using the maximum likelihood estima-
tion, P (W,Fi, C) is the interpolation component, and Fi is a feature vector of type i.
The coefficients α and βi are used to control the influence of the interpolated features
in the new language model where:

α+
∑
i

βi = 1

By setting α to 1 the class model becomes a unigram language model without any fea-
ture interpolation. On the other hand, setting α to 0 reduces the class model to a feature
mapping model. In this work, values of these coefficients have been set by conducting
a sensitivity test on the three corpora as will be discuss in Section 6.2.

The interpolation component in the equation 5 can be decomposed as follows:

P (W,Fi, C) =
∑
j

P (W |fij)P (fij |C) (6)

Where fij is the j-th feature of type i, P (fij |C) is the distribution of features fij
in the training data given the class C and P (W |fij) is the distribution of words in the
training data given the feature fij . Both distributions can be computed via the maximum
likelihood estimation.

5 Baselines

We compare the performance of our semantic sentiment analysis approach against the
baselines described below.

5.1 Unigrams Features

Word unigrams are the simplest features are being used for sentiment analysis of tweets
data. Models trained from word unigrams were shown to outperform random classifiers
by a decent margin of 20% [1]. In this work, we use NB classifiers trained from word
unigrams as our first baseline model. Table 4 lists, for each dataset, the total number of
the extracted unigram features that are used for the classification training.
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Table 4. Total number of unigram features extracted from each dataset

Dataset No. of Unigrams
STS 37054
HCR 2060
OMD 2364

5.2 Part-of-Speech Features

POS features are common features that have been widely used in the literature for the
task of Twitter sentiment analysis. In this work, we build various NB classifiers trained
using a combination of word unigrams and POS features and use them as baseline mod-
els. We extract the POS features using the TweetNLP POS tagger,9 which is trained
specifically from tweets. This differs from the previous work, which relies on POS tag-
gers trained from treebanks in the newswire domain for POS tagging. It was shown that
TweetNLP tagger outperforms the Stanford tagger10 with a relative error reduction of
25% when evaluated on 500 manually annotated tweets [3]. Moreover, the tagger offers
additional recognition capabilities for abbreviated phrases, emoticons and interjections
(e.g. “lol”, “omg”).

5.3 Sentiment-Topic Features

The sentiment-topic features are extracted from tweets using the weakly-supervised
joint sentiment-topic (JST) mode that we developed earlier [7]. We trained this model
on the training set with tweet sentiment labels discarded. The resulting model assigns
each word in tweets with a sentiment label and a topic label. Hence JST essentially
groups different words that share similar sentiment and topic.

We list some of the topic words extracted by this model from the STS and OMD
corpora in Table 5. Words in each cell are grouped under one topic and the upper half of
the table shows topic words bearing positive sentiment while the lower half shows topic
words bearing negative sentiment. For example, Topic 2 under positive sentiment is
about the movie “Twilight”, while Topic 5 under negative sentiment is about a complaint
of feeling sick possibly due to cold and headache. The rational behind this model is that
grouping words under the same topic and bearing similar sentiment could reduce data
sparseness in Twitter sentiment classification and improves accuracy.

6 Evaluation Results

In this section, we evaluate the use of the sentiment features discussed in 4 and present
the sentiment identification results on the STS, HCR and OMD datasets. We then com-
pare these results with those obtained from using the baseline features described in
Section 5.

9 http://www.ark.cs.cmu.edu/TweetNLP/
10 http://nlp.stanford.edu/software/tagger.shtml

http://www.ark.cs.cmu.edu/TweetNLP/
http://nlp.stanford.edu/software/tagger.shtml
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Table 5. Extracted sentiment-topic words by the sentiment-topic model

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

P
os

it
iv

e

win twilight make tomorrow today
final movie mccain weekend nice

watch award debate school Sunday
game moon good start enjoy
luck tonight point plan weather

today watch interest fun love
week mtv right yai walk
hope excited answer wait sunny

N
eg

at
iv

e

iphone dog obama miss feel
internet sad question far sick

download death understand travel bad
apple accident doesn’t mum hurt
store today answer away pain
slow car comment dad flu
issue awful back love sore
crash cry debate country horrible

We use NB trained from word unigrams as the starting-point baseline model. The
features are incorporated into NB by either the interpolation approach described in Sec-
tion 4.2 or by simply augmenting into the original bag-of-words feature space. For eval-
uation on STS and HCR, we use the training and testing sets shown in Table 1. For OMD,
we perform 5-fold cross validation and report the results averaged over 10 such runs.

The raw tweets data can be very noisy, and hence some pre-processing was neces-
sary, such as replacing all hyperlinks with “URL”, converting some words with apostro-
phe, such as “hate’n”, to their complete form “hating”, removing repeated letters (e.g.
“loovee” becomes “love”), etc.

6.1 Stopwords

It is a common practice to perform stopwords removal as a standard pre-processing step
by removing those common words which tend to have little meaning. Nevertheless, Bei
[16] argued that stopwords can be used as discriminative features for specific classifica-
tion tasks. We have conducted a set of experiments to evaluate the impact of stopwords
removal on sentiment classification on tweets. We compare the performance of a NB
classifier trained from word unigrams before and after removing the stopwords. It can
be observed from Table 6 that the classifiers learned with stopwords outperform those
learned with stopwords removed. Similar outcome was observed when using all out
sentiment analysis features. Hence, we chose to keep the stopwords in our subsequent
experiments.

6.2 Incorporating Semantic Features

Semantic features can be incorporated into NB training in three different ways, replace-
ment, augmentation, and interpolation (Section 4.2). Table 7 shows the F measures
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Table 6. Sentiment classification accuracy ((True Positives + True Negatives) / Total) with and
without stopwords using unigram features

Dataset With Stopwords Without Stopwords
Stanford Twitter Sentiment (STS) 80.7% 77.5%
Health Care Reform (HCR) 71.1% 68.5%
Obama-McCain Debate (OMD) 75.4% 73.7%

produced when using each of these feature incorporation methods. With semantic re-
placement, where all entities in tweets are replaced with their corresponding semantic
concepts, the feature space shrunk substantially by nearly 15-20%, and produced an
average F measure of 68.9%. However, this accuracy is 3.5% and 10.2% less than when
using semantic augmentation and interpolation respectively. The performance degrada-
tion is due to the information loss caused by this term replacement which subsequently
hurts NB performance.

Augmenting the original feature space with semantic concepts (semantic augmenta-
tion) performs slightly better than sentiment replacement, though it still performs 6.5%
worse than interpolation. With Semantic interpolation, semantic concepts are incorpo-
rated into NB training taking into account the generative probability of words given
concepts. This method produces the highest accuracy amongst all three incorporation
methods, with an average F of 75.95%.

Table 7. Average sentiment classification accuracy (%) using different methods for incorporating
the semantic features. Accuracy here is the average harmonic mean (F measure) obtained from
identifying positive and negative sentiment.

Method STS HCR OMD Average
Semantic replacement 74.10 61.35 71.25 68.90
Semantic augmentation 77.65 63.65 72.70 71.33
Semantic interpolation 83.90 66.10 77.85 75.95

The contribution of semantic features in the interpolation model is controlled by the
interpolation coefficients in Equation 5. We conducted a sensitivity test to evaluate the
impact of the interpolation coefficients on sentiment classification accuracy by varying
β between 0 and 1. Figure 3 shows that accuracy reaches its peak with β set between
0.3 and 0.5. In our evaluation, we used 0.4 for STS dataset, and 0.3 for the other two.

6.3 Comparison of Results

In this section we will compare the Precision, Recall, and F measure of our semantic
sentiment analysis against the baselines described in Section 5. We report the semantic
classification results for identifying positive and negative sentiment separately to allow
for deeper analysis of results. This is especially important given how some analysis
methods perform better in one sentiment polarity than in the other.
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Fig. 3. Sensitivity test of the interpolation coefficient for semantic interpolation

Table 8 shows the results of our sentiment classification using Unigrams, POS,
Sentiment-Topic, and Semantic features, applied over the STS, HCR, and OMD datasets
which are detailed in Section 3. The table reports three sets of P, R, and F1, one for pos-
itive sentiment identification, one for negative sentiment identification, and the third
shows the averages of the two.

Table 8. Cross comparison results of all the four features

Dataset Feature
Positive Sentiment Negative Sentiment Average

P R F1 P R F1 P R F1

STS

Unigrams 82.20 75.20 78.50 79.30 85.30 82.20 80.75 80.25 80.35
POS 83.70 75.00 79.10 79.50 86.90 83.00 81.60 80.95 81.05
Sentiment-Topic 80.70 82.20 81.40 83.70 82.30 83.00 82.20 82.25 82.20
Semantics 85.80 79.40 82.50 82.70 88.20 85.30 84.25 83.80 83.90

HCR

Unigrams 39.00 36.10 37.50 81.00 82.80 81.90 60.00 59.45 59.70
POS 56.20 22.00 31.70 80.00 94.70 86.70 68.10 58.35 59.20
Sentiment-Topic 53.80 47.20 50.30 84.50 87.60 86.00 69.15 67.40 68.15
Semantics 53.60 40.40 46.10 83.10 89.30 86.10 68.35 64.85 66.10

OMD

Unigrams 64.20 70.90 67.10 83.30 78.60 80.80 73.75 74.75 73.95
POS 69.50 68.30 68.70 83.10 83.90 83.40 76.30 76.10 76.05
Sentiment-Topic 68.20 75.60 71.70 87.10 82.40 84.70 77.65 79.00 78.20
Semantics 75.00 66.60 70.30 82.90 88.10 85.40 78.95 77.35 77.85

According to these results in Table 8, the Semantic approach outperforms the Uni-
grams and POS baselines in all categories and for all three datasets. However, for the
HCR and OMD datasets, the sentiment-topic analysis approach seem to outperform the
semantic approach by a small margin. For example, the semantic approach produced
higher P, R, and F1 for the STS dataset, with F1 4.4% higher than Unigrams, 3.5%
higher than POS, and 2.1% higher than the sentiment-topic features. In HCR, F1 from
the semantic features were 8.9% and 11.7% higher than Unigrams and POS, but 3%
lower than F1 from sentiment-topic features. For OMD, semantic features also outper-
formed the Unigrams and POS baselines, with 5.2% and 2.4% higher F1 respectively.
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However, in the OMD dataset, F1 from semantic features was 0.4% lower than from
the topic model, although Precision was actually higher by 1.7%.

As detailed in Section 3 and Table 1, the STS dataset consists of a large collection
of general tweets with no particular topic focus. Unlike STS, the other two datasets are
much smaller in size and their tweets discuss very specific topics; the US Health Care
Reform bill in the HCR dataset, and the Obama McCain debate in the OMD dataset.
Using semantic features seem to perform best in the large and general dataset, whereas
the sentiment-topic features seem to take the lead in small, topic-focused datasets. The
reason is likely to be that classifying with sentiment-topic features group words into a
number of topics. In our experiments, we found that for the STS dataset, increasing the
number of topics leads to the increase of classification accuracy with the peak value
of 82.2% reached at topic number 50. Further increasing topic numbers degrades the
classifier performance. However, for HCR and OMD, the best accuracy was obtained
with only one topic (68.15% for HCR and 78.20% for OMD). The classification per-
formance drops significantly by any further increment. This can be explained by the
nature of these three datasets. HCR was collected using the hashtag “#hcr” (health care
reform) while OMD consists of tweets about the Obama-McCain debate. Hence these
two datasets are topic-specific. On the contrary, STS was collected using more general
queries and thus it contains a potentially large number of topics.

Hence the benefits of using the sentiment-topic features seem to be reduced in com-
parison to semantic features when the training set is of general content as in the STS
tweets dataset.

The average results across all three datasets are shown in Table 9. Here we can see
that semantic features do better than sentiment-topic features and the other baselines
when identifying negative sentiment. However, sentiment-topic features seem to per-
form better for positive sentiment. For positive sentiment, using the semantic approach
produces Precision that is better than Unigrams, POS, and sentiment-topic by 15.6%,
2.4%, and 5.8% respectively. However, the Recall produced by the semantic approach
when identifying positive sentiment is 2.3% and 12.8% higher than in Unigrams and
POS, but 9% lower than Recall from the sentiment-topic approach. Overall, F for pos-
itive sentiment from semantic features is 2.2% lower than when using sentiment-topic
features. It is worth emphasising that the average Precision from identifying both pos-
itive and negative sentiment is the highest at 77.18% when using semantic features.
When analysing large amounts of continuously flowing data as with social media re-
sources, Precision could well be regarded as much more important than Recall.

Table 9. Averages of Precision, Recall, and F measures across all three datasets

Features
Positive Sentiment Negative Sentiment Average

P R F1 P R F1 P R F1
Unigrams 61.80 60.73 61.03 81.20 82.23 81.63 71.50 71.48 71.33
POS 69.80 55.10 59.83 80.87 88.50 84.37 75.53 72.23 72.48
Sentiment-Topic 67.57 68.33 67.80 85.10 84.10 84.57 77.02 76.73 76.75
Semantics 71.47 62.13 66.30 82.90 88.53 85.60 77.18 75.33 75.95
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7 Discussion and Future Work

In this paper we demonstrated the value of using semantic features for the classification
of positive and negative sentiment in Tweets. We tested several off-the-shelf semantic
entity extractors and decided on using AlchemyAPI due to its better performance in
terms of coverage and accuracy. One thing that impacts our results is the abstraction
level of the concepts retrieved from the entity extractor. In many cases, these concepts
were too abstract (e.g. Person) which were equally used for mentions of ordinary peo-
ple, as well as for famous musicians or politicians. For the tweet “i wish i could go
to france and meet president Obama haha”, AlchemyAPI provided the concept Per-
son to represent “president Obama”, whereas Zemanta identified him with the concept
/government/politician which is more specific. In future work we plan to devise an ap-
proach to increase the specificity of such concepts, perhaps with the aid of DBpedia or
using multiple entity extractors and comparing the specificity level of their proposed
concepts.

In our evaluation of AlchemyAPI, Zemanta, and OpenCalais, we observed that some
of them perform better than others for specific type of entities. For example, Zemanta
produced more accurate and specific concepts to describe entities related to music tracks
and bands. It might be possible to implement a more selective approach, where certain
semantic extractors and concept identifiers are used, or trusted more, for certain type of
entities.

When using semantic features, all identified concepts in a tweet are added to the
analysis. However, it might be the case that semantic features improve sentiment analy-
sis accuracy for some type of concepts (e.g. cities, music) but reduce accuracy in some
other concept types (e.g. people, companies). We will investigate the impact of each
group of concepts on our analysis accuracy, to determine their individual contribution
and impact on our sentiment analysis. We can also assign weights to each concept type
to represent its correlation with positive or negative sentiment.

We experimented with multiple datasets of varying sizes and topical-focus. Our re-
sults showed that the accuracy of classifying with some feature selections can be sen-
sitive to the size of the datasets and their topical-focus. For example, our evaluation
showed that the semantic approach excels when the dataset is large and of diverse topic
coverage. In future work we will apply these approaches on larger datasets to examine
the consistency of their performance patterns. Furthermore, we also intend to explore
various feature selection strategies to improve the sentiment classification performance.

Our sentiment analysis focused on positive and negative tweets. Neutral sentiment
tend to be much harder to identify as it requires the determination of the context of
the tweet message. For example, some words of a tweet may have both subjective and
objective senses. Handling such tweets will therefore require the introduction of another
classifier, to identify subjective/objective tweets.

8 Conclusions

We proposed the use of semantic features in Twitter sentiment classification and explored
three different approaches for incorporating them into the analysis; with replacement,
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augmentation, and interpolation. We found that best results are achieved when inter-
polating the generative model of words given semantic concepts into the unigram lan-
guage model of the NB classifier. We conducted extensive experiments on three Twitter
datasets and compared the semantic features with the the Unigrams and POS sequence
features as well as with the sentiment-topic features. Our results show that the semantic
feature model outperforms the Unigram and POS baseline for identifying both negative
and positive sentiment. We demonstrated that adding semantic features produces higher
Recall and F1 score, but lower Precision, than sentiment-topic features when classify-
ing negative sentiment. We also showed that using semantic features outperforms the
sentiment-topic features for positive sentiment classification in terms of Precision, but
not in terms of Recall and F1. One average, the semantic features appeared to be the
most precise amongst the four other feature selections we experimented with.

Our results indicates that the semantic approach is more appropriate when the datasets
being analysed are large and cover a wide range of topics, whereas the sentiment-topic
approach was most suitable for relatively small datasets with specific topical foci.

We believe that our findings demonstrated the high potential of the novel approach
of interpolating semantic features into the sentiment classifier. In our current implemen-
tation, we rely on Alchemy API which is only able to produce rather coarse semantic
concept mappings. However, our results indicate that further gains could be achieved
when entities are mapped into a more fine-grained semantic concept space.

Acknowledgment. The work of the authors was supported by the EU-FP7 project
ROBUST (grant no. 257859).

References

1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter
data. In: Proc. ACL 2011 Workshop on Languages in Social Media, pp. 30–38 (2011)

2. Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In:
Proceedings of COLING, pp. 36–44 (2010)

3. Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M.,
Yogatama, D., Flanigan, J., Smith, N.: Part-of-speech tagging for twitter: Annotation, fea-
tures, and experiments. Tech. rep., DTIC Document (2010)

4. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision.
CS224N Project Report, Stanford (2009)

5. Guerra, P., Veloso, A., Meira Jr., W., Almeida, V.: From bias to opinion: A transfer-learning
approach to real-time sentiment analysis. In: Proceedings of the 17th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, KDD (2011)

6. Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the
omg! In: Proceedings of the ICWSM (2011)

7. Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: Proceeding of the 18th
ACM Conference on Information and Knowledge Management, pp. 375–384. ACM (2009)

8. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic
Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

9. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In:
Proceedings of LREC 2010 (2010)



524 H. Saif, Y. He, and H. Alani

10. Rizzo, G., Troncy, R.: Nerd: Evaluating named entity recognition tools in the web of data.
In: Workshop on Web Scale Knowledge Extraction (WEKEX 2011), vol. 21 (2011)

11. Saif, H., He, Y., Alani, H.: Semantic Smoothing for Twitter Sentiment Analysis. In: Proceed-
ing of the 10th International Semantic Web Conference, ISWC (2011)

12. Saif, H., He, Y., Alani, H.: Alleviating Data Sparsity for Twitter Sentiment Analysis. In:
Proceedings, 2nd Workshop on Making Sense of Microposts (#MSM 2012): Big Things
Come in Small Packages: in Conjunction with WWW (2012)

13. Shamma, D., Kennedy, L., Churchill, E.: Tweet the debates: understanding community an-
notation of uncollected sources. In: Proceedings of the First SIGMM Workshop on Social
Media, pp. 3–10. ACM (2009)

14. Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification with
label propagation over lexical links and the follower graph. In: Proceedings of the EMNLP
First Workshop on Unsupervised Learning in NLP, pp. 53–63 (2011)

15. Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorporat-
ing social networks. In: Proceedings of the 17th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD (2011)

16. Yu, B.: An evaluation of text classification methods for literary study. Literary and Linguistic
Computing 23(3), 327–343 (2008)



CROWDMAP: Crowdsourcing Ontology Alignment
with Microtasks

Cristina Sarasua1, Elena Simperl1, and Natalya F. Noy2

1 Institute AIFB. Karlsruhe Institute of Technology
csarasuagar@gmail.com, elena.simperl@kit.edu

2 Stanford University
noy@stanford.edu

Abstract. The last decade of research in ontology alignment has brought a va-
riety of computational techniques to discover correspondences between ontolo-
gies. While the accuracy of automatic approaches has continuously improved,
human contributions remain a key ingredient of the process: this input serves as
a valuable source of domain knowledge that is used to train the algorithms and
to validate and augment automatically computed alignments. In this paper, we
introduce CROWDMAP, a model to acquire such human contributions via micro-
task crowdsourcing. For a given pair of ontologies, CROWDMAP translates the
alignment problem into microtasks that address individual alignment questions,
publishes the microtasks on an online labor market, and evaluates the quality of
the results obtained from the crowd. We evaluated the current implementation
of CROWDMAP in a series of experiments using ontologies and reference align-
ments from the Ontology Alignment Evaluation Initiative and the crowdsourcing
platform CrowdFlower. The experiments clearly demonstrated that the overall ap-
proach is feasible, and can improve the accuracy of existing ontology alignment
solutions in a fast, scalable, and cost-effective manner.

1 Introduction

The last decade of research on ontology alignment has brought a wide variety of au-
tomatic methods and techniques to discover correspondences between ontologies. Re-
searchers have studied extensively the strengths and weaknesses of existing solutions, as
well as their natural limitations and principled combinations, not least through commu-
nity projects such as the Ontology Alignment Evaluation Initiative (OAEI).1 Partly as
a result of these efforts the performance of the underlying algorithms has continuously
improved. However, most researchers believe that human assistance is nevertheless re-
quired, even if it is just for the validation of automatically computed mappings. In this
paper, we introduce CROWDMAP an approach to integrate human and computational
intelligence in ontology alignment tasks via microtask crowdsourcing.

The term “microtask crowdsourcing” refers to a problem-solving model in which a
problem is outsourced to a distributed group of people by splitting the problem space
into smaller sub-problems, or tasks, that multiple workers address independently in

1 http://oaei.ontologymatching.org/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 525–541, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://oaei.ontologymatching.org/


526 C. Sarasua, E. Simperl, and N.F. Noy

return for a (financial) reward. Probably the most popular online instantiation of this
model is Amazon’s Mechanical Turk (MTurk) platform (https://www.mturk.com/)
which offers a virtual labor marketplace for microtasks as well as basic services for
task design and publication, work assignment, and payment. Typical problems that are
amenable to microtask crowdsourcing are those problems that we can easily distribute
into a (high) number of simple tasks, which workers can complete in parallel, in a rel-
atively short period of time (in the range of seconds to minutes), and without specific
skills or expertise. Examples of such problems include finding a specific piece of infor-
mation on the Web, labeling or classifying content, and ranking a list of objects. Re-
cently, researchers have demonstrated the effectiveness of microtask crowdsourcing for
far more complex problems by using sophisticated workflow management techniques
on top of the basic services of existing platforms, and optimizing quality assurance and
work assignment [1,2,3]. As a result, microtask crowdsourcing has been successfully
applied to a broad range of diverse problems: completing surveys, translating text from
one language to another, creating comprehensive product descriptions, matching pic-
tures of people, summarizing text [4] and many others.

Ontology alignment is a good fit for microtask crowdsourcing for several reasons.
First, verifying whether or not a mapping is a correct one is naturally a microtask,
and workers do not need much context to figure out the right answer. Second, we can
easily decompose the overall problem of verification of a set of candidate mappings
into atomic tasks corresponding to the individual mappings. These tasks are largely
independent of one another. Third, while ontologies can be quite large (with tens of
thousands of classes), their scale is often considerably smaller than the scale of the data
itself. Thus, crowdsourcing becomes a tractable way to verify all candidate alignments
between two ontologies. Finally, ontology alignment is still one of those problems that
we cannot automate completely, and having a human in the loop might increase the
quality of the results of machine-driven approaches.

There are two different ends of the spectrum in which we envision applying crowd-
sourcing to ontology alignment. On the one hand, we can generate all possible pairs of
alignments between two ontologies, and ask the crowd to evaluate each of the candi-
dates. However, this option will clearly not scale well, as we will be asking the users
to inspect an extremely large number of pairs—equivalent to the cartesian product of
the size of the two ontologies—and we know that the number of valid correspondences
are usually at most comparable to the number of terms in the smaller of the two ontolo-
gies. On the other hand, we can start by running an automatic algorithm that generates
potential alignments, and subsequently have the crowd assess the results. This second
option will likely be much more scalable in terms of the number of tasks and answers
needed from the crowd (and thus the duration and cost of the alignment exercise). While
this scenario is likely to lead to improvements in the precision of the original algorithm,
with this approach we will be able to have similar effects also on the recall if we present
the crowd with the very low confidence mappings.

CROWDMAP is a new model for ontology alignment which uses microtask crowd-
sourcing to improve the accuracy of existing automatic solutions. In evaluating this
approach, we explore the following research questions:

https://www.mturk.com/
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R1 Is ontology alignment amenable to microtask crowdsourcing?
R2 How does such a human-driven approach compare with automatic (or semi-

automatic) methods and techniques, and can it improve their results?
R3 What types of alignment problems can workers feasibly solve? What correspon-

dences between elements of different ontologies (e.g., similar, more general, more
specific) can be reliably identified via crowdsourcing?

We introduce CROWDMAP and its implementation using CrowdFlower
(http://crowdflower.com/) a crowdsourcing platform which acts as an inter-
mediary to a number of online labor marketplaces, including MTurk. For a given pair of
ontologies, CROWDMAP translates the alignment problem into microtasks that address
individual alignment questions, publishes the microtasks on an online labor market, and
evaluates the quality of the results obtained from the crowd. We tested the current im-
plementation in multiple settings in order to determine how we can optimize the quality
of the crowdsourced results through specific task-design and work-assignment features.
For this purpose we ran a series of different experiments: an exhaustive alignment be-
tween two (smaller) ontologies; a broader set of ontologies assessing the outcomes
produced by a simulated automatic algorithm; and validating the mappings computed
by one of the algorithms that participated in Ontology Alignment Evaluation Initiative.
The experiments provided evidence that the overall idea to apply microtask crowdsourc-
ing to ontology alignment is not only feasible, but can also significantly improve the
precision of existing ontology alignment solutions in a fast, scalable, and cost-effective
manner. The findings of the experiments allowed us to define a number of best practices
for designing purposeful ontology alignment projects, in which human and computa-
tional intelligence are smoothly interwoven and yield better results in terms of costs and
quality compared to state-of-the-art automatic or semi-automatic approaches.

2 Related Work

While the ontology alignment community acknowledges the importance of human con-
tributions, the question of how to optimally collect and harvest these contributions
leaves room for further research [5]. Falconer and colleagues described the results of
an observational study of the problems users experience when aligning ontologies [6].
They emphasized the difficulties experienced by laymen in understanding and follow-
ing the individual steps of an alignment algorithm. In our work, we provide further
evidence for the extent to which contributions from non-technical users can provide
valuable input in the alignment process, and investigate alternative means to describe
and document alignment tasks in order to make them accessible to laymen.

Another approach employs Web 2.0 technologies and principles to engage a commu-
nity of practice in defining alignments, thus increasing the acceptance of the results, and
reducing or distributing the associated labor costs [7,8,9,10]. An early proposal on col-
laborative ontology alignment by Zhdanova and Shvaiko [10] developed a community-
driven service that allowed users to share alignments in a publicly available repository.
BioPortal [11] offers a comprehensive solution in the biomedical domain. It enables
users to create alignments between individual elements of an ontology [9]. However, in

http://crowdflower.com/
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these approaches, the solicitation for the mappings is “passive”: the users must come to
the site, find the terms of interest, and create the mappings. There is no expected reward,
other than community recognition. By contrast, our CROWDMAP model is essentially
“mapping for hire” where we do not expect users to have a specific interest in the task
that they perform other than the monetary reward that they get. Our experience shows
that there is no comparison in the quantity of the work that can be obtained via vol-
unteering and microtask crowdsourcing: putting aside the different knowledge domains
that the two approaches address, we were able to get orders of magnitude more align-
ments in a day in the experiments with the current CROWDMAP implementation than
BioPortal received in a year. In this paper, we evaluate the quality of these mappings to
determine how useful the microtask-based alternative is beyond the actual number of
mappings generated.

McCann and colleagues studied motivators and incentives in ontology alignment
[7]. They investigated a combination of volunteer and paid user involvement to validate
automatically generated alignments formulated as natural-language questions. While
this proposal shares many commonalities with CROWDMAP, the evaluation of their
solution is based on a much more constrained experiment that did not rely on a real-
world labor marketplace and associated work force.

Games with a purpose, which capitalize on entertainment, intellectual challenge,
competition, and reputation, offer another mechanism to engage with a broad user base.
In the field of semantic technologies, the OntoGame series proposes several games that
deal with the task of data interlinking, be that in its ontology alignment instance (Spot-
TheLink [12]) or multimedia interlinking (SeaFish [13]). Similar ideas are implemented
in GuessWhat?!, a selection-agreement game which uses URIs from DBpedia, Freebase
and OpenCyc as input to the interlinking process [14]. While OntoGame looks into
game mechanics and game narratives and their applicability to finding similar entities
and other types of correspondences, our research studies an alternative crowdsourcing
strategy that is based on financial rewards in a microtask platform.

More recently, researchers in the Semantic Web community have begun to explore
the feasibility of crowdsourcing for assigning URIs to entities that are discovered in
textual Web pages. ZenCrowd, for example, combines the results of automatically and
human-generated answers to link entities recognized in a text with entities in the Linked
Open Data cloud [15]. ZenCrowd developers proposed a variety of techniques to reduce
the scope of the crowdsourcing task, such as excluding candidates for which an algo-
rithm already has a high confidence score from the set to be validated. Our approaches
are similar in spirit (using the crowd to improve the performance of automatic algo-
rithm in alignment). However, ontology alignment (rather than data alignment) has a
more tractable scope. The motivation of our work is also different: our goal is not to
identify which of the two approaches (machine vs human-driven) are likely to be more
reliable, but to enhance the results produced by an automatic algorithm.

3 The CROWDMAP Definition and Implementation

CROWDMAP takes as input a set of candidate mappings between two ontologies and
uses a microtask platform to improve their accuracy. The model is not bound to a
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specific instantiation of microtask platform. It can be applied to any virtual labor mar-
ketplace that enables requesters to post a problem as a set of independent microtasks,
which are performed in parallel by workers in return for a (usually monetary) reward.
In fact, we can apply the same model to other approaches to human computation, such
as games with a purpose, which, though operating on different motivational factors,
address similar types of problems: decomposable, verifiable, and not requiring domain-
specific knowledge or skills.

3.1 Fundamentals of Microtask Crowdsourcing

In order to use a microtask platform, a requester packages the work into microtasks
and publishes them in batches or groups. Amazon Mechanical Turk (MTurk), one of
the most popular crowdsourcing platforms, refers to microtasks as Human Intelligence
Tasks (HITs), a term that we will use interchangeably with microtask.

A requester specifies a number of configuration parameters such as the number of
answers that she needs for each HIT, the time to complete a HIT, and restrictions on
the profile of the workers (e.g., geographical location, knowledge of a specific natural
language). As most HITs can be solved quickly (within seconds or minutes at most),
similar HITs are typically organized into groups or batches which share the same con-
figuration parameters; workers prefer to be assigned to such larger chunks of work
instead of dealing with atomic questions in separate processes. Upon completion of the
tasks by workers, the requester collects and assesses the responses and rewards the ac-
cepted ones according to the pre-defined remuneration scheme. For most platforms, the
requester can automate the interaction with the system via an API, while the workers
undertake their tasks using a Web-based interface generated by the requester. The over-
all effectiveness of crowdsourcing can be influenced dramatically by the way that the
requester packages a given problem as a series of microtasks [16,17]. This packaging
includes, in particular, the design of the interface (including clear instructions for the
completion of the task, minimal quality criteria for the work to be accepted, and pur-
poseful layout), and the procedures that the requester uses in order to evaluate the results
and to measure the performance of workers. Because multiple workers can perform the
same microtask, the requester can implement different types of quality assurance [1].
For example, one can use majority voting (take the solution on which the majority of
workers agree), or more sophisticated techniques that take into account, for instance,
the (estimated) expertise of specific workers, or the probabilistic distribution of accu-
racy of the answers of a given worker. In addition, the requester needs to implement
mechanisms to avoid and detect spam in order to reduce the overhead associated with
the evaluation of the crowd-produced results. Other factors that are proven to influence
the success of crowdsourcing (in particular in terms of the duration of the execution
of the tasks, and the ability to find appropriate work resources in due time) are the
number of HITs per batch, and the frequency of publication of similar HITs groups,
and the novelty of the tasks. Studies showed that whereas grouping HITs into batches
leads to economies of scale, batches of several hundreds of HITs are more difficult to
assign than the ones with a size up to 100 questions [17]. An analogously motivated
behavior of workers tending to focus their resources on similarly scoped tasks makes
finding assignments for larger problems divided into several batches and HITs more
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challenging, as finding different eligible workers in due time to address the entire body
of work becomes more difficult. Researchers have studied ways to expand the original
application scope of MTurk and alike to more complex workflows [3], problems with an
open, unknown set of solutions [4], or those characterized by tight time-to-completion
constraints [18].

CROWDMAP uses CrowdFlower, one of the leading crowdsourcing platforms as a
basis for its implementation. CrowdFlower is an intermediary: it is not itself an online
labor market, but it publishes microtasks to different crowds simultaneously (includ-
ing MTurk, Crowd Guru, getpaid, Snapvertise, and others). It implements advanced
quality assurance methods based on golden standards in addition to the basic function-
ality of the crowdsourcing platforms that it accesses. Specifically, CrowdFlower uses
“golden units” to denote those types of alignment questions, for which the answer is
trivial or known in advance. CROWDMAP evaluates whether or not a worker can be
trusted by extrapolating from the accuracy of the answers she gave to these particular
questions. These methods help determine the reliability and performance of workers,
and to filter spammers at run time [19]. The terminology used by CrowdFlower to de-
nominate the core concepts of microtask crowdsourcing is slightly different than the
one adopted by MTurk. HITs or microtasks are termed “jobs”, and answers (or “as-
signments” in MTurk) to these questions are “judgements”. HITs become “job assign-
ments” in CrowdFlower when they are built using job templates and particular data
“units”. MTurk organizes CrowdFlower tasks in “batches”, when they share the title. In
the remainder of the paper we will use these terms interchangeably.

3.2 The CROWDMAP Workflow

The CROWDMAP task is to find a set of mappings between two ontologies, O1 and O2.
First, an automatic mapping algorithmA produces a set of candidate mappings between
O1 and O2. Each candidate mapping m represents a potential correspondence between
a concept in O1 and a concept in O2. The concepts can be classes, properties, or axioms
in the ontologies. Correspondences are typically an equivalence or a similarity relation
(=), but can be a subsumption relation (<=, >=), or any other (domain-specific) rela-
tion. In the current implementation of CROWDMAP, we consider only =, <=, and >=.
The algorithm A may also produce a confidence measure conf . If A does not produce
confidence measures, then we assume that conf = 1 for all mappings returned by A.

We generate microtasks as follows.

– There is a microtask to verify each candidate mapping m. Tasks can either ask
workers either to validate a given mapping relationship between the source and
target (such as similarity), or to choose between different types of relationships
between the source and the target (such as subsumption, similarity, or meronymy).

– If the algorithm A produces only equivalence (similarity) mappings, then
CROWDMAP requests 3 workers to verify the same mapping.

– If the algorithm A produces equivalence and subsumption mappings, then
CROWDMAP asks for up to 7 workers to complete the task of selecting a relation-
ship between the source and target, until at least two of them agree on a choice of
relationship between the two terms.
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Fig. 1. CROWDMAP architecture. CROWDMAP generates microtasks using a set of pairs of onto-
logical elements and the relationships between them, publishes the microtasks to CrowdFlower,
retrieves the answers of the crowd, and compiles the final alignment results by deciding which of
these answers are valid.

– The final set of mappings is the set of mappings Mc where at least 2 workers agreed
on the type of the mapping.

The number of workers that we assign for each microtask is a configuration parameter.
The values that we used in the current version of CROWDMAP follow common practice
in using microtask platforms for similar types of tasks. We assume that a higher number
of answers are required to validate the second type of task (asking for equivalence and
subsumption), which is significantly more complex from an alignment point of view
and has more options for workers to choose from. Our pilot studies helped us determine
others, such as the choice of words and methods to avoid spam (Section 5).

3.3 The CROWDMAP Architecture

Figure 1 shows the CROWDMAP architecture. The dashed line separates the modules
that prepare and publish microtasks from the modules that process the responses of the
crowd. CROWDMAP executes the former set of modules first (see the specific order
in the numbers). Once CROWDMAP creates the microtasks in CrowdFlower and they
are published to the actual labor platforms such as MTurk, the crowd interacts with
the MTurk interface and provides responses to the microtasks. When CrowdFlower
receives the full set of answers for these microtasks, CROWDMAP executes the second
set of modules and calculate the resulting alignment.

Mappings Generator. The current CROWDMAP prototype focuses of pairs of classes
as elements to be compared through crowdsourced alignment. We do not yet support
mappings between properties, but many of the main findings of our experiments are
likely to apply to these types of ontological primitives as well. The Mappings Generator
processes the alignment from an automatic tool or uses one of its benchmark-generation
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mechanisms to generate a set of mappings to test. Section 4 discusses the different sets
of candidate mappings that we generated for the experiments.

Microtasks Generator. This module generates the microtasks associated with the pairs
of classes computed by the Mappings Generator. We can further parameterize the pro-
cess by configuring such aspects as interface and layout, number of answers for each
alignment question, number of questions within one microtask, and restrictions on the
workforce (e.g., a certain level of performance achieved so far, geo-location, language
skills). The result is the actual interface that the workers will use in order to submit their
answers.

Microtasks Publisher. The publisher module posts the microtasks to the crowdsourc-
ing platform. In the current implementation we support the publication to CrowdFlower
using the API that it provides. The publisher module creates the corresponding micro-
tasks on CrowdFlower, uploads the data about the normal and the golden units, and
publishes the microtasks on MTurk.

Results Reader. Once the microtasks are completed, CrowdFlower calculates an ag-
gregated response for each pair of terms to align, as well as the confidence of such
aggregated responses. The confidence combines the accuracy that workers obtained in
the microtask with the agreement of the responses for the alignment question at hand.
Access to this information is provided through the CrowdFlower API.

Results Processor. This module generates a file with the crowd alignment, serialized
in the Alignment API format [20]. The usage of this standard format facilitates the
comparison between different approaches (crowdsourced vs. automatic, reference data
vs. manually or automatically generated), as well as the reuse of the results in new
scenarios involving both human-oriented and algorithmic processing.

Results Evaluator. The evaluator module relies on the Alignment API to assess the
crowd alignment. Via the API we access information about specific alignments (the
ones computed by the crowd, and reference alignments) and compute precision and
recall values.

The functionality offered by CROWDMAP could be easily integrated into existing
environments for ontology alignment, such as the PROMPT Protégé plug-in [21] or
even used to complement tools that perform data interlinking, such as Silk [22] and
Google Refine with curated information about schema-level alignments.

3.4 Microtask User Interface Design

In CrowdFlower, the user interface that a worker sees has three main parts: (i) the title
and instructions explaining the purpose of the microtask; (ii) the problem statement,
which in our case is the information about the elements (e.g.,classes) to be compared;
and (iii) the form that workers must fill out to submit their responses. CROWDMAP de-
fines two types of microtasks for which we generate different interfaces: (i) validation
microtasks and (ii) identification microtasks. A validation microtask presents workers
with a complete mapping (e.g., two classes and the relationship that connects them)
and asks them to specify whether they agree with the relationship that they see.
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Fig. 2. User interface of a validation microtask. CROWDMAP shows the worker two elements to
be aligned and asks whether they are related to each other with a particular relationship.

Fig. 3. User interface of an identification microtask where CROWDMAP shows the worker two
elements to be aligned and asks to identify the relationship between them. The relationship in
this case can be that both are the same, one is more specific than the other, or the two are not the
same.

An identification microtask asks for workers to identify a particular relationship be-
tween the source and the target classes. Figure 2 shows an example of a validation mi-
crotask. The first part is the problem statement; the second part is the form. The micro-
task includes all contextual information available for both classes (labels, definitions,
superclass, siblings, subclasses and instances). The first element in the form asks the
user whether or not the concepts are similar. The form also includes two more elements
as verification questions that help in filtering spam, similarly to the approach by Kittur
and colleagues [16]. We use a different input form for identification microtasks. Fig-
ure 3 shows the first field of three sample questions within an identification microtask.
CROWDMAP can create identification microtasks showing either a complete version
of the form (relationships =, <=, >=, none), or a short version (=, not =). Anti-spam
mechanisms are the same as for validation microtasks, illustrated in Figure 2.

In order to reduce response bias, CROWDMAP creates only half of the HITs using
the interface in Figures 2 and 3. In the other half, CROWDMAP presents the possible
answers in the opposite order, and focus the verification question on the other class in
the pair to be matched. This technique, which we apply independently from the type of
microtask, makes the evaluation of workers stricter, allowing us to identify and block
spam more efficiently. The verification questions that we used to identify and avoid
spam play a special role in these checkpoint-like questions; the response of a worker
to a golden unit is evaluated positively only if all three fields of the input form have a
correct response.
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4 Evaluation

In order to perform our analysis, we conducted several studies to test both the feasi-
bility of overall approach and specific characteristics of the design of crowdsourced
ontology alignment that improve its effectiveness. We used the ontologies and the ref-
erence alignments from the Ontology Alignment Evaluation Initiative (OAEI) as golden
standard to assess the accuracy of the crowd-computed results.

4.1 Ontologies and Alignment Data

We have conducted three sets of experiments in order to address the research questions
from Section 1 (Table 4.1).

In our first experiment, CARTP, candidate mappings included all possible pairs of
mappings between two input ontologies (a Cartesian product of the sets of classes).
While such an approach does not scale in practice, it provides the baseline on the best
possible performance (recall in particular) of crowdsourced alignment. The OAEI on-
tologies that we use for the CARTP experiment are two ontologies that cover the BibTex
data, one from MIT and one from INRIA (ontologies 301 and 304 from the OAEI set).
For each pair of classes we provide the user with contextual information that is relevant
to the corresponding elements and compare the results against the reference alignments
provided by the OAEI.

The second type of microtasks, which we call IMP, uses only those class pairs that
were created by a given ontology alignment tool as a set of candidate mappings. This
experiment simulates a typical CROWDMAP workflow (Figure 1). We used the output
of the AROMA tool as our input alignment. AROMA is one of the algorithms from
OAEI that presented a good performance in 2011. Again, we ran the experiment using
ontologies 301 to 304 just as in the CARTP and included full context-specific descrip-
tions of the two elements to be matched. Note that we obtained the results for the IMP

setup by using the CARTP data since we already had the judgements for all the pairs of
terms from the two ontologies that we used in both experiments.

The third set of microtasks, which we call 100R50P, includes several ontology pairs
and allows us to compare the CROWDMAP performance in different settings. The sets
of candidate mappings in the 100R50P experiments simulate input originating from
a tool with 100% recall and 50% precision. We create the set of class pairs where
50% of the mappings are correct and 50% are incorrect. We take the correct mappings
from ontology alignment reference data. Incorrect mappings consist of false negatives
(generated by an algorithm), as well as randomly generated mappings. If there is no
algorithm to generate candidate alignments, we generate all the incorrect mappings by
selecting pairs of classes randomly.

We use the Conference ontologies from the OAEI set. The ontologies in this set
represent knowledge about conferences and were produced by different organizations.
Some of the selected ontologies are based on actual tools for conferences (Cmt and
ConfOf), and others are based on either personal experiences (Ekaw) or Web pages of
conferences (Sigkdd). We took a pair of ontologies from this set, choosing the Argmaker
algorithm results as the alignments performed by the automatic tool.
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Table 1. Summary of the experiments

CARTP IMP 100R50P

Ontologies 301-304 301-304 Edas-Iasted, Ekaw-Iasted, Cmt-Ekaw, ConfOf-Ekaw
Input alignment Cartesian

product
Output of the
AROMA algo-
rithm

50% correct mappings (all mappings from the reference alignment),
50% incorrect mappings, output of AgrMaker

Research question R1 R2 R2, R3

The ontologies in the OAEI Oriented matching set cover the domain of academia and
the reference alignment includes complex relationships, such as broader than and nar-
rower than. We took the same pair from this set that we used in the CARTP experiment
(301 to 304).

Table 4.1 summarizes the three experiments.

4.2 CrowdFlower and MTurk Setup

Both CrowdFlower and MTurk allow requesters to configure their microtask projects
according to a number of different parameters. In our experiments, we clustered 7 dif-
ferent alignment questions (or units in CrowdFlower parlance) into one HIT. This step
facilitates worker assignment and resource optimization (see Section 3.1). One of these
questions was a golden unit (see Section 3) where we knew the answer in advance.
We could use it to assess the performance of workers, to deal with spammers, and to
validate the final results. For each experiment we selected golden units from a set of
50. Each HIT includes two verification questions, which apply to both golden and real
units, as a means to reduce spam (see Section 3.4).

Redundant answers to the same question are a useful way to evaluate the feasibility of
the overall approach—can users actually agree on the answer?— and to (automatically)
identify correct answers. We requested 3 workers for those questions that asked them
whether a given correspondence holds or not. These values are based on best practices
in crowdsourcing literature [1].

It is common for microtask platforms to organize HITs in batches. In our case, each
batch contained at most 50 HITs, each with 7 mapping units. This value is an empirical
one used in similar experiments on MTurk [16], which balances resource pooling and
the time required to complete a full batch. Several workers verified each alignment, not
only to receive the minimal number of answers required for majority voting, but also be-
cause we wanted to change the order of the allowed answer choices to avoid spammers.
We calculated the number of golden units as the number of HITs in each group, and
adjusted the number of mappings to show in each set of alignment questions, in cases
where it was needed by the CrowdFlower internal restrictions. CrowdFlower requires
that a worker answers 4 golden units correctly before she becomes a trusted workers.
We reduced this number to 2 since we observed that workers were submitting fewer
than 4 correct answers to golden units, even with correct mapping results.

For most experiments we paid $0.01 for each HIT; for the CARTP scenario we raised
the reward to $0.04 to compensate for the larger scale of the experiment and to study
the trade-offs between time to completion and costs. CrowdFlower publishes jobs on



536 C. Sarasua, E. Simperl, and N.F. Noy

Table 2. Precision and recall for the crowdsourcing results

CARTP 100R50P 100R50P 100R50P 100R50P IMP

301-304 Edas-Iasted Ekaw-Iasted Cmt-Ekaw ConfOf-Ekaw 301-304

Precision 0.53 0.8 1.0 1.0 0.93 0.73
Recall 1.0 0.42 0.8 0.75 0.65 1.0

Fig. 4. The average precision, recall, and F-measure of CROWDMAP

and the top performers on the conference set for OAEI 2011
(http://oaei.ontologymatching.org/2011/results/conference/index.html)

the platform for 7 days by default and the deadline is extended until jobs are completed.
For most of the experiments we needed between 7 and 10 days, which is possibly also a
consequence of the fact that we published several similar jobs within a relatively short
period of time. The higher-rewarded experiments required less than a day to finalize,
which was significantly faster than other trials we ran on the same data and $0.01 per
HIT.

4.3 Results

Table 2 shows the precision and recall in our experiments. We use the PRecEvaluator
available in the Alignment API to calculate these values.

The results show very high precision for the conference alignments. Figure 4 com-
pares the performance of CROWDMAP on the conference set with the 4 top performers
in OAEI 2011. The chart shows the average precision, recall, and F-measure. Note
that CROWDMAP significantly outperforms the other algorithms, with the F-measure
of 0.77. It is important to note, however, that for the conference set, CROWDMAP does
not start with a cartesian product of all possible pairs. It needs to filter only a set of
mappings that have 50% correct mappings and 50% wrong mappings. However, the
crowd improved the precision considerably from that 50%.

For the CARTP alignment, the workers have found all the mappings from the refer-
ence alignment, achieving a remarkable 1.0 recall. The precision, however, has suffered.
We address this issue in our discussion in Section 5.
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5 Analysis and Lessons Learned

The results of the experiments lead to the following conclusions

R1 From the result achieved in the CARTP experiment we can conclude that our ap-
proach is feasible. Given the full set of potential correspondences between pairs of
classes, the crowd was able to provide meaningful answers that could be used in
the alignment process.

R2 If we compare the results of 100R50P with the performance of the AgrMaker
algorithm which we used as a baseline on the conference alignments (precision:
0.65 and recall: 0.59), we notice that CROWDMAP can improve both the precision
and the recall of the original algorithm. This finding is supported by the outcomes
of the IMP experiment, by comparison with performance of the AROMA tool on
the same alignment (precision: 0.62 and recall: 1.0).

R3 Workers were capable of submitting correct responses with both validation and
identification microtasks.

One unexpected observation from Table 2 is the effect of the number of mappings that
we present on precision. The precision is very high for all the tasks in the 100R50P
set, where we showed only a limited number of pairs of mappings. In the CARTP ex-
periments, the workers had access to the cartesian products of all the class pairs, and
the precision dropped significantly. Because we used the CARTP results to simulate the
IMP experiment, the precision there suffered as well. Our hypothesis for this low pre-
cision is that the large task might attract more spammers or more workers just try to
get through the task quickly. However, in future work, we plan to design experiments
to test this hypothesis.

However, if we look at results from the different experiments together, we can see a
potential for a two-step process that might be very efficient. The workers can achieve
perfect (or close to perfect) recall when given a large set of candidate pairs, many of
which are not mappings. They achieve high precision on a set that has fewer wrong
mappings but all correct ones. Thus, we can use a setting such as CARTP (extremely
low precision, perfect recall) to get a set that is close to 100R50P ( 50% precision,
100% recall). Indeed, CARTP produced a mapping set that was extremely close to an
100R50P set. This approach would create a two-step CROWDMAP algorithm: first
stage uses CARTP (or its approximation, by taking all the very low confidence mappings
from an automatic tool). Then we can use the results of this first stage as an input to
another run of CROWDMAP which will improve the precision. Note that this approach
is similar to the Find-Fix-Verify crowd programming pattern in Soylent [4].

We carried out the experiments over a period of five weeks, whereas half of this
time was dedicated to the tuning of the configuration parameters of the crowdsourc-
ing platform and the testing of different variants of the interfaces (see Section 3.4). In
its current, optimized version, we estimate that CROWDMAP could produce accurate
alignments between pairs of ontologies within a relatively short period of time (around
one week for several hundreds of HITs and corresponding alignments). The total costs
of the experiments were around $50, which is not comparable to alternative approaches
oriented at knowledge engineers or domain experts, with or without the involvement of
automatic algorithms.
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Before running the experiments that we reported, we tested the prototype with small
pilots. The pilots allowed us to fine-tune the user interface and to develop methods to
minimize spam. When we initially did not use golden units or verification questions,
we received a huge amount of spam. While we collected the required responses in a
few hours, most of them appeared to be very low quality ones. Over several iterations,
each of which reduced the number of spam, we came to the following strategies. First,
we use golden units to block invalid answers. Second, we use verification questions that
force the user to type a name of the concept. Finally, CrowdFlower allows requester to
exclude specific countries that have workers who tend produce the majority of spam
answers. Including developing countries such as India was another strategy that helped
reduce spam significantly.

The wording and structure in the user interface also influenced the results. We exper-
imented with different types of verification questions and phrasings thereof. We wanted
to define additional questions that were trivial to answer, yet, required the user to pro-
cess cognitively the information on the form. We also needed verification questions that
would get different answers from one pair of terms to the next, so that workers could
not cut and paste. In the experiments that we report here, we used both the names of the
classes to be compared, as well as other features such as the number of words in the class
names as basis for such verification questions. For one type of verification question ask-
ing for the name of one the classes to be matched, we eventually decided in favor of a
radio button rather than a free-text field, as in the latter case many workers simply typed
in the default name ’Concept A’ mentioned in the question. References to the “first” or
“second” class in the matching pair also turned out to confuse users. In the case of a
second verification question, which asks about the number of distinct words displayed,
a simple validator encouraged workers using positive integers (e.g., “1”) instead of text
(e.g. “one”), and thus avoiding correct responses to be evaluated negatively. Changing the
wording of equivalence-alignment questions from “Concept A is similar to Concept B”
to “Concept A is the same as Concept B” lead to a better understanding of the task by the
workers and to better results. Finally, we verified how important ontology documentation
is, since CROWDMAP relies on the quality of labels and definitions.

Another observation that we made is related to the number of related microtasks (or
groups of questions) published at the same time; in this case the time to completion
increased, probably due to the fact that the same workers typically take the opportunity
to solve a series of similar tasks. The results that we have obtained largely depend
on the data set used for the evaluation. It is worthwhile mentioning that, there have
been cases in which the crowd identified mappings that were correct in our opinion
(such as Person − Person), but were not present in the reference alignment. This
means that these mappings did not count for the recall and precision values. We also
analyzed the mappings that the crowd missed from the reference alignment, and we
must say that there were cases that were not clear for us either. For example, mappings
such as WelcomeTalk−Welcome address, or SocialEvent−Social program, or
Attendee−Delegate (from test Edas− Iasted) are ambiguous.

Most work on using crowdsourcing for computational tasks rely on MTurk as a plat-
form. Our experiences with CrowdFlower showed that this platform represents a real
alternative to directly accessing the MTurk crowd, in particular due to the additional fea-
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tures they offer with respect to quality assurance. However, it is worthwhile mentioning
that while it is possible to use MTurk via CrowdFlower, the latter does not support the
full range of services of the former; for instance, it is not possible to update the number
of answers required for a question during the execution of a task.

6 Conclusions and Future Work

This paper makes several contributions to the state of the art in ontology alignment.
First, we present a workflow model for crowdsourcing ontology mappings and describe
the implemented solution that uses CrowdFlower. Second, we perform a feasibility
study for the use of crowdsourcing to perform ontology mapping. Third, we provide
an analysis of the characteristics of crowdsourced ontology mappings for different on-
tologies, mapping relationships, and settings. Our first prototype of CROWDMAP has
proven that the crowdsourcing approach to ontology alignment is feasible, and can aug-
ment automatic tools in a cost-efficient, fast, and scalable manner.

Future work will focus on executing new experiments to analyze further research
questions. For example, we would like to discover which contextual aspects are the
most useful to improve accuracy, and whether we could use agreement among workers
to determine the certainty of mappings. We expect to create a set of instances for each
ontology used in the experiments, so that workers can see up to 5 instances as part
as the context of the elements to be aligned. We will perform more experiments to
test whether accuracy is reduced in cases where the domain of the ontologies requires
specific knowledge (e.g., biomedical ontologies). Finally, after completing the extensive
set of experiments, we believe that we can improve the worker performance by fine-
tuning the question wording even better (e.g., substituting the class names directly into
the options for selection in the mapping questions).

We plan an extension of the implemented prototype of CROWDMAP to enable crowd-
sourced mappings between ontology properties and axioms. With respect to the actual
workflow, we will look into more sophisticated means to combine the results of human
and algorithmic computations, by following, for instance, a Bayes analysis approach
(cf. [15]). Along the same lines, we also intend to apply filtering techniques to optimize
the number of questions that are issued to the crowd to improve scalability and costs.
Such filtering is an essential pre-requisite for the application of CROWDMAP to related
fields such as data interlinking, which has orders or magnitude more data and possible
a larger degree of noisy data than the scenario that we studied in this paper.
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Abstract. The inherent heterogeneity of datasets on the Semantic Web has cre-
ated a need to interlink them, and several tools have emerged that automate this
task. In this paper we are interested in what happens if we enrich these matching
tools with knowledge of the domain of the ontologies. We explore how to express
the notion of a domain in terms usable for an ontology matching tool, and we ex-
amine various methods to decide what constitutes the domain of a given dataset.
We show how we can use this in a matching tool, and study the effect of domain
knowledge on the quality of the alignment.

We perform evaluations for two scenarios: Last.fm artists and UMLS medi-
cal terms. To quantify the added value of domain knowledge, we compare our
domain-aware matching approach to a standard approach based on a manually
created reference alignment. The results indicate that the proposed domain-aware
approach indeed outperforms the standard approach, with a large effect on am-
biguous concepts but a much smaller effect on unambiguous concepts.

1 Introduction

The rise of the Semantic Web and Linked Open Data has led to a large number of hetero-
geneous datasets and ontologies published on the Web [2]. This kind of heterogeneity
has created a need to interlink these datasets, i.e. to make explicit that two resources
of different datasets represent the same concept. However, the discovery of such cor-
respondences between entities of different ontologies or datasets is not trivial – it is in
fact one of the major challenges of the Semantic Web [1].

A large number of ontology matching tools and methods have emerged in recent
years [4]. In this paper we are interested in what happens if we take these existing tools
and enrich them with knowledge of the domain of a given domain-specific ontology.
This is especially relevant in situations where we want to match such an ontology to
a more general ontology; a scenario that is often seen on the Linked Data Web. If our
source dataset is, for example, a medical vocabulary, it would help us a lot to know
which concepts in the target dataset are within the relevant domain of medicine, as
disambiguation of concepts is not trivial. In this paper we examine various methods to
decide what constitutes the domain of a given dataset. We explore how to express the
notion of a domain in terms usable for an ontology matching tool and we study the
effect of domain knowledge on the quality of the alignment. The main contribution is
the development and evaluation of a domain-aware ontology matching approach geared
at interlinking domain-specific ontologies with cross-domain ontologies.

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 542–558, 2012.
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We present an approach that, in a fully unsupervised way, discovers the domain of
a domain-specific source ontology expressed in terms of the schema information of
the (cross-domain) target ontology. This ensures that matching can be performed by
restricting matches to entities within this domain. The approach consists of five phases:
(1) a high-confidence matching phase in which we determine a small set of mappings
between source and target ontology for which we are almost sure they are correct;
(2) a class/category collection phase in which we collect the schema information of
the mapped instances of the target ontology; (3) a domain pruning phase in which we
translate the domain knowledge into a filter; (4) a domain optimization phase in which
we optimize this filter; and finally (5) a domain-aware matching phase where the actual
matching is performed – the domain filter is used in an ontology matching tool to ensure
that concepts are only matched if they are within the relevant domain.

We evaluate our approach in two scenarios: we match (1) artists mined from Last.fm
in the EventMedia dataset of cultural events1 and (2) a part of the medical vocabulary
UMLS to DBpedia. We have chosen DBpedia because this is the de facto cross-domain
centerpiece of the Linked Open Data cloud. This makes it an attractive choice as it con-
tains many concepts (over 3.64 million on September 2011) across various domains,
presenting us with the real problems of ambiguous concepts and thus irrelevant candi-
date matches. By focusing on a single target ontology, we aim to achieve a matching
approach that yields high accuracy for the generated links. In addition, it allows us to
optimally make use of the schema information that is specific to the target ontology.

In both scenarios, we experiment with different methods to decide what constitutes
the domain of a dataset. We use each method in combination with DBpedia Spotlight,
a dedicated DBpedia matching tool, to create an alignment. To quantify the effect of
domain knowledge in general, and each of the domain-derivation methods specifically,
we compare each alignment to a manually created reference alignment. An early ver-
sion of our approach, with a more limited domain representation and without a domain
optimization phase, was evaluated on one of these scenarios and has been published
previously [20].

The remainder of this paper is organized as follows. We start by giving a description
of the task we are going to perform in section 2. Next, we explain the domain-aware ap-
proach, in section 3. Section 4 contains the evaluation of the approach and a discussion
of the results. In section 5 we present a discussion of related work, expanding on works
dealing with similar approaches to ontology matching. The final section concludes the
paper and describes possible future work.

2 Task Description

Domain Representation in DBpedia. As mentioned, we have chosen DBpedia as the
target ontology of our approach, which allows us to use the schema information of DB-
pedia in the representation of a domain filter. This goes further than built in schema
constructs in standard Semantic Web languages: to represent a domain we use DBpe-
dia classes, Wikipedia categories, YAGO classes and Freebase classes. The first three
types are already available in DBpedia; Freebase classes are derived through Freebase

1 http://thedatahub.org/dataset/event-media

http://thedatahub.org/dataset/event-media
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interlinks. Therefore, what we essentially want to find out is how the domain of the
source ontology can be mapped effectively to a set of of classes and categories in DB-
pedia.

Given the full union set of all classes and categories C, a domain D can be defined as
a subset of C, i.e. D⊆C. Once we have derived a target domain, we can use it as a filter
for the traditional matching process done by (complex) string comparison. The reason
we derive a set of classes/categories rather than a single class is that there is usually
no perfect mapping to a single target class. Also, the classes contained in DBpedia are
either user-generated, or derived from a user-generated base. Therefore, since not all
resources have proper classes or categories assigned to them, some redundancy in the
domain encapsulation helps to deal with this messiness of data (figure 1).

Fig. 1. Mapping from source to target domain

Source Datasets and Quality Measures. We evaluate the approach with two domain-
specific ontologies: Last.fm artists and UMLS medical concepts. The Last.fm Artist
dataset consists of roughly 50,000 entities. For the UMLS concepts we consider two
separate classes of terms: pathologic terms and physiologic terms, which consist of
roughly 70,000 resp. 55,000 terms. To illustrate the approach more clearly, we take the
Last.fm Artist dataset as running example. Note that these source datasets are used for
evaluation purposes only; our approach is independent of the source dataset.

Manual reference alignments R are created for all three datasets. For Last.fm Artists
we manually determine links for 1000 randomly selected artists; for each type of UMLS
terms we create links for 500 random entities. The links are determined by one person
(the first author) – we feel that this suffices, as the reference alignments are used to
compare variations of our method (and a baseline), not to give an authoritative perfor-
mance score to an alignment method. We measure the quality of alignments in terms of
F-measure, which is the harmonic mean of recall and precision. Our task is to produce
alignments with a high F-score.

Baseline Matching Tool: DBpedia Spotlight. As a starting point for the actual match-
ing task we take DBpedia Spotlight [14], a powerful, off-the-shelf tool for matching
textual resources to DBpedia. DBpedia Spotlight has been shown to be able to compete
with established annotation systems while remaining largely configurable [14]. Its con-
figurability allows us to include various forms of domain knowledge, and test the effect
on the resulting matches.
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Spotlight works by first finding surface forms in the text that could be mentions of
DBpedia resources (the “spotting” function), then disambiguating these surface forms
to link to the right DBpedia resources based on context similarity measures (the “disam-
biguation” function). Its results can be directed towards high precision or high recall by
setting two parameters: a “support” threshold for minimum popularity of the associated
Wikipedia page (i.e. the number of inlinks to this page from other Wikipedia pages)
and a “confidence” threshold for minimum similarity between source text and context
associated with DBpedia surface forms.

For our work we do not employ the full range of Spotlight’s features – the tool mostly
specializes in the annotation of free text, while we deal with a very specific case of text
annotation, namely that of entity labels. In the majority of cases it suffices to simply try
to disambiguate this full label to find a corresponding DBpedia resource.

3 The Domain-Aware Matching Approach

Figure 2 shows a high-level schematic of the pipeline employed. As input we take an
ontology or dataset, and the label(s) and context of each entity. Given the example of
the Last.fm dataset, we want to match artists, so we give as input the foaf:Agent class
of the EventMedia RDF dataset, and as label and context properties rdfs:label and
dc:description respectively.

The approach is then divided into five phases. In the high-confidence matching phase,
we collect an initial sample of links of which we can be fairly sure they are correct. For
each DBpedia resource in this sample of links, classes and categories are collected in
the class/category collection phase. This collection is pruned to a processable size in
the domain pruning phase, then optimized to form an adequate domain filter in the
domain optimization phase. Lastly, the domain-restricted matching is performed in the
domain-aware matching phase. Each step will be explained in detail in the following
sections.

3.1 High-Confidence Matching Phase

Initially, we assume to have no knowledge about our input dataset. The selection of the
domain filter is bootstrapped by first attempting to match instances of the source dataset
to DBpedia resources without any knowledge of the domain, to obtain an initial linkset
from which we want to derive domain information. Ideally, we want to maximize preci-
sion for these links while still obtaining a sufficiently large sample to make meaningful
generalizations for the full dataset. This is accomplished by applying DBpedia Spotlight

Fig. 2. High-level pipeline view for the domain-aware approach
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without any domain restriction and with parameters set towards high precision, thereby
relying solely on the lexicographical similarity of contexts between source and target
entities for disambiguation (entity labels and descriptions are compared to the textual
content of candidate DBpedia resources). Entities to match are selected at random from
the source dataset. In this way, we can generate an initial set of high-confidence links
from our data to DBpedia resources. This set of links is used for two separate purposes:
(1) the collection of classes and categories for the derivation of a domain; and (2) the
optimization of the target domain filter (as discussed in section 3.4).

For the first goal, we want a linkset that is large enough to make accurate predictions
about the domain. For the second goal, we want a set of links that resembles a reference
alignment, consisting of positive matches and negative matches. We call the set of high-
confidence matches the high-confidence linkset.

Definition 1 (Positive match). A mapping from a source entity to a target DBpedia re-
source. A single source entity may have multiple positive matches to (distinct) DBpedia
resources.

Definition 2 (Negative match). A null-mapping for a source entity, i.e. this entity is
determined to have no corresponding DBpedia resource.

Definition 3 (High-confidence linkset). A high-confidence linkset R′ is the set of pos-
itive and negative matches obtained by bootstrapping the source dataset.

For the purposes of this experiment, the high-confidence linkset was made to be disjoint
with the reference alignment R. The variable name R′ was chosen as such because
the high-confidence linkset can be regarded as a virtual version of a real reference
alignment R. For evaluation purposes, we fix the number of matches in R′ to 1000.
We have experimented with high-confidence linksets containing only positive matches,
and linksets containing both positive and negative matches in various ratios. We found
that the best results were obtained with a high-confidence linkset containing positive
and negative matches in a 500/500 ratio (R′500/500). For the sake of brevity, we omit

these experiments from this paper and take R′500/500 as high-confidence linkset type.
The best value to choose for “confidence,” the threshold parameter for context sim-

ilarity in Spotlight, is somewhat dependent on the dataset. The positive and negative
matches are gathered with two separate confidence thresholds: to be maximally con-
fident in positive matches, the threshold should be high, i.e. high context similarity
and/or low ambiguity are demanded; to be maximally confident in negative matches,
the threshold should be low, i.e. low context similarity and/or high ambiguity are de-
manded. We aim for the strictest thresholds where enough matches are still obtained.

The resulting high-confidence linkset allows us to derive and optimize a domain filter
without the use of a manually created reference alignment.

3.2 Class/category Collection Phase

From the resulting DBpedia resources in the high-confidence linkset we gather the asso-
ciated classes and categories so that we can later use these as a domain knowledge filter
for a matching tool. We gather DBpedia classes, Wikipedia categories, YAGO classes
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and Freebase classes. The first three types are already available in DBpedia; Freebase
classes are derived through Freebase links in DBpedia. We use the following collection
of classes/categories as a basis for the derivation of an effective domain filter:

1. DBpedia classes. These are derived from the manually assigned infobox types on
Wikipedia pages. The DBpedia classes are ordered in a shallow, strict hierarchy
(i.e. each class has no more than one super-class), so we use the transitivity of the
subclass hierarchy and include not only classes directly associated to the resource,
but also all super-classes up to the root of the hierarchy.

2. Wikipedia categories. These are the categories manually assigned to Wikipedia
pages. They are ordered in a broad and non-strict hierarchy (i.e. categories can have
multiple super-categories). Therefore we gather only up to 4 ancestors of each, as
due to the size and messy structure of the category hierarchy the set would quickly
become too large and broad to be useful.

3. YAGO classes. These are automatically derived from the Wikipedia category sys-
tem using WordNet [15][23]. YAGO classes are ordered in a deep, near-strict hierar-
chy (a select few classes have multiple super-classes), so we gather all super-classes
up to the root of the hierarchy.

4. Freebase classes. These are taken from the Freebase concept associated with a
DBpedia resource (if available). Freebase classes are ordered in a shallow, strict
hierarchy of only two levels with no single root node, so all we gather for each
concept is the class and its super-class.

3.3 Domain Pruning Phase

We prune the collection of classes and categories in order to get a tighter encapsulation
for the domain. Classes that only occur once or twice over the entire class/category set
are typically better left out, as these are likely to be outliers to the domain of interest.
Even if not, they tend to be too narrow to play any role. In addition, we need to discard
classes that are too broad and cover far more entities than what we want it to do. This
is especially necessary as we collect DBpedia and YAGO classes up to the root of the
hierarchy, thus including the root classes Thing and Entity.

We develop two pruning strategies that can be applied to somewhat limit the initial
domain, all the while taking care not to discard potentially relevant domain information.

Low-occurrence domain pruning (LDP). We can get rid of classes/categories that occur
too little as follows. We filter out all DBpedia and YAGO classes that occur less than
rd% resp. less than ry% of the total number of classes found. A percentage is required
since we do not know beforehand exactly how many of the top t most occurring classes
are too generic, as this depends on the domain of the source dataset. For categories, we
do not necessarily need to filter by a percentage since we do not gather super-categories
up to the root. Since we only collect them within a specified semantic distance, the very
categories with the most occurrences should be a relatively accurate representation of
our domain. Therefore we simply select the top tc categories that occur the most. For
Freebase classes, there are only two levels in the hierarchy, hence this effect does not
occur here either: we select simply the top t f classes.
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Fig. 3. Top part of the YAGO hierarchy after
pruning with ry = 1% and p = 80%

High-generality domain pruning (HDP).
A second strategy is needed to elimi-
nate excessive redundancy in the list of
classes and categories, i.e. to avoid in-
cluding a super-class plus all of its sub-
classes. We address this by filtering out
all super-classes where the sum of the
numbers of occurrence of their direct
sub-classes is greater than p% of the
number of occurrence of the super-class.
In other words, for every class (or cate-
gory) Super, if

n

∑
i=1

occs(Subi)>
p

100
occs(Super), (1)

where n is the number of direct sub-
classes Subi of Super, then Super is
removed from the collection. This proce-
dure is dependent on the values chosen
for rd , ry, tc and t f in the LDP step.

See figure 3 for an illustrated example
of pruning Last.fm artists with ry = 1%
(cutoff of 14 occurrences in this case) and
p = 80% for the YAGO hierarchy. Class
occurrence numbers are shown in parentheses. The percentages are the proportions of
direct sub-class occurrences to this class’ occurrences. Classes grayed out were dis-
carded in the LDP step; classes marked red are discarded in the HDP step. Classes
marked green represent the final domain. As can be seen, most generic and unrelated
classes are successfully filtered out. However, some broad classes, such as “LivingPeo-
ple,” still remain, which suggests that we need extra measures in order to further refine
the domain encapsulation.

3.4 Domain Optimization Phase

After pruning classes/categories that are too general or too specific, we further opti-
mize the set of classes/categories in the domain filter by testing which set gives the
highest alignment performance. We apply and compare three methods. The first is a
metaheuristic-based approach [13], i.e. a generic optimization method that is known
to be able to discover (near-)optimal solutions independent of the nature of the opti-
mization problem itself. For this we will apply a genetic algorithm to our problem.
The second and third are problem-specific heuristic-based approaches that exploit the
structure of our specific problem domain.

Each optimization approach needs a way to evaluate the candidate solutions. As said,
we aim to be independent of a manually created reference alignment and instead use



Domain-Aware Ontology Matching 549

the automatically created high-confidence linkset. This approach is only sensible, how-
ever, under the assumption that there exists a correlation between performance on the
automatically generated high-confidence linkset R′ and performance on the manually
constructed reference alignment R. Before we go into the details of the three optimiza-
tion approaches, we first show that this assumption is valid.

Testing the Validity of the Bootstrap Linkset. We test various configurations of a
domain-aware matcher by comparing the alignments that it creates to the manually
created reference alignment and to the high-confidence linkset. Performance on the
reference alignment is measured with the F-score. Performance on the high-confidence
linkset is measured in the same way, but we call this measure the “virtual” F ′-score to
distinguish it from the “real” F-score.

We evaluate by comparing F ′-scores obtained using R′ and F-scores obtained using
R. We generate 36 different domain filters by first applying the high-confidence match-
ing and domain pruning phases of sections 3.1 and 3.3 with varying settings, and then
randomly excluding half of the classes/categories. Each of these 36 domain filters is
used in combination with DBpedia Spotlight to produce two alignments: one on the
concepts in R′ and one on those in R. F- or F ′-scores of each alignment are calculated
by comparison to R and R′ respectively. Figure 4 shows the performance of the 36 do-
main filters on R and R′. We observe that our assumption seems valid: there is a high
correlation between performance on R and R′. To quantify this observation, we repeat
the process 15 times. Table 1 shows the mean and standard deviation of the correlations
between performance on R′ and R, for the Last.fm and UMLS datasets.

Fig. 4. Correlation between R′ and R for
an example run (Artists). Values have been
sorted by F ′i in ascending order.

Table 1. Mean and standard deviation of
the Pearson correlation r̄ between perfor-
mance on R′ and R

Last.fm UMLS
r̄ 0.978 0.980
sd 0.009 0.007

Metaheuristic: Genetic Algorithm. We adapt our problem to a format that can be
processed by a genetic algorithm. First, low-occurrence pruning (LDP) is applied to
limit the search space to a processable size. The resulting domain D is then encoded
as a chromosome, i.e. a bit array, where each bit represents whether the corresponding
class/category is included or not. As fitness function to check the quality of a chro-
mosome (domain filter) D, we generate a domain-restricted alignment for the source
entities contained in high-confidence linkset R′ and calculate F ′ with regard to R′.



550 K. Slabbekoorn, L. Hollink, and G.-J. Houben

Since discovering the best starting values is known to be very hard [3], we decide to
stick with a starting population of 100 chromosomes, and the default values for selec-
tion, crossover and mutation that came with the out-of-the-box genetic algorithm im-
plementation employed for this experiment2. The algorithm is run for a relatively high
number of 50 generations, so as to provide the algorithm ample time to converge to an
optimum (we are not concerned with running times considering our type of matching is
a one-time process). The fittest remaining solution is chosen as the result.

Problem-Specific Heuristic: Broadness-Based Domain Optimization (BDO). After
applying both LDP and HDP on the initial domain selection as described in section 3.3,
we can try to optimize what remains of the domain selection D by selectively removing
those classes that have a high probability of being too broad. One by one, a class or cate-
gory is removed from D, and each time the performance F ′ is calculated. If performance
improves, this class/category is left out. Else, it is included in D again. To maximize the
effectiveness of this strategy, the order in which we remove classes/categories should
be from broad to narrow. Hence D is first sorted by broadness in descending order.
The size of a class, i.e. the number of instances that belong to this class (including its
descendants), is taken as a measure of its broadness.

We repeat this algorithm for different settings for rd , ry, tc and t f of the HDP step,
keeping track of the domain selection corresponding to the highest F ′-score seen so far.
The resulting D giving the highest F ′-score according to R′ is chosen.

Problem-Specific Heuristic: Precision-Based Domain Optimization (PDO). For
this approach, we do not apply HDP, but take the resulting D from the LDP step as
input. The next step is to test for each individual class/category in D how many entities
are contained. This is done by generating alignment instances for the source entities of
R′ restricted to single-class domain filters, i.e. |Dsingle| = 1. Each class/category in D
is tested, and for each the precision score is stored. Generally, the higher the precision
score, the less false positive matches we find and the more relevant the class/category
is to our domain of interest. In other words, the higher a precision score, the higher the
probability that the class under test is specific to our domain of interest (e.g. restrict-
ing to a class “British2000sMusicalGroups” may give a high precision score when the
domain of interest is “musical artists”), and vice versa. Therefore we can optimize the
domain selection by applying an F ′-based hillclimbing on the list of classes sorted by
precision score in descending order. First, we put the class with the highest precision
in domain filter Dtest and calculate F ′-score according to R′. Then we add the second
class down the list to Dtest . We check F ′ again, keeping track of F ′

max, i.e. the maximum
F ′-score seen, and its associated domain filter Dmax. F ′

max and Dmax are updated every
time that F ′

current ≥ F ′
max: even if F ′

max remains the same, we prefer the largest domain
filter. Once we have gone through the entire list, ending with Dtest =D, the current Dmax

is our final domain filter that we take to the matching phase.

2 http://jgap.sourceforge.net/

http://jgap.sourceforge.net/
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3.5 Domain-Aware Matching Phase

Once we have derived a suitable domain filter, the actual matching is performed. We
make use of the functionality provided by DBpedia Spotlight. With the assumption
that there is now a filter that tightly encapsulates the domain of the source entities to a
domain in DBpedia, the context similarity and ambiguity requirements can be loosened,
since disambiguation is now largely performed by this filter. We attempt to match the
full source entity label(s) to a candidate in DBpedia that fits the domain filter.

4 Evaluation

Evaluation of ontology matching approaches is typically done by comparison to a base-
line approach or to other matching systems that perform the same task. Since we are in-
terested in the added value of using domain knowledge, the evaluation will primarily be
done with regard to a baseline approach. We compare all domain optimization methods
to each other and to two baselines that do not use domain information. Performance is
evaluated by comparison to manually created reference alignments to obtain precision,
recall and F-scores. All experiments are performed three-fold – once on the Last.fm
dataset, and once for the Pathologic and Physiologic Function classes in UMLS.

4.1 Evaluation Strategy

In this section we list all approaches we test. We divide the approaches into three cate-
gories: baselines, basic strategies and the heuristic approaches described in section 3.4.

Baselines. As a baseline, we use DBpedia Spotlight without considering a domain fil-
ter at all. Such a baseline is essential in showing the added value of a domain-aware
matching approach. However, depending on the dataset, the optimal settings of Spot-
light might vary. For the purpose of this evaluation, aside from a true baseline, we will
also artificially derive an optimized baseline. For the true baseline, Spotlight’s settings
are kept consistent with those of the the domain-aware approaches, meaning we do
not rely on similarity thresholds. For the optimized baseline, Spotlight’s matching pa-
rameters are optimized based on F-score according to R. This provides a theoretical
upper-bound on performance for matching with Spotlight without a domain filter.

Basic Strategies. Two light-weight, basic strategies are discussed that may obtain a
good result for relatively little computation time. We introduce an optimized random
selection strategy, and an optimized pruning strategy – the latter applies the pruning
strategies of section 3.3 in a way that we can optimize the result.

Optimized random selection. A very basic optimization approach is to take the best
result from a random sample. The low-occurrence domain pruning (LDP) strategy is
executed to obtain an initial domain selection. From this domain, we generate 100 sub-
selections randomly by including/excluding each class/category with a probability of 1

2 .
We calculate the F ′-score of each and choose the best performer as the domain filter.
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Optimized pruning. We apply both the LDP and high-generality domain pruning (HDP)
strategies with different parameter settings, and choose as domain filter the result that
provides the highest F ′-score. This relatively cheap approach effectively deals with the
high number of parameters of the pruning strategies.

Heuristics-Based Approaches. In section 3.4, we introduced one metaheuristic, the
genetic algorithm, and two problem-specific heuristics, broadness-based domain opti-
mization (BDO) and precision-based domain optimization (PDO), that we can apply
to the derivation of a domain filter. The genetic algorithm and PDO are applied just
as described in that section. The BDO approach is applied as an additional step to the
optimized pruning basic strategy described before.

4.2 Experimental Results

The main results for all methods and scenarios are summarized and listed in this section.
F ′ results are included because they provide insight into how each optimization method
works. As explained before, while the correlation between F ′ and F has been shown
to be very high, it is not a perfect correlation, so an increase in F ′ does not necessarily
translate to an increase in F . Aside from the matching scores, we also list computation
complexity in terms of the (estimated) number of alignments for the (1000) entities in
R′ we need to generate on average for each approach.

Table 2. Results for each approach on the Last.fm artist dataset, sorted by F-score

Last.fm Artist
Approach F ′ Precision Recall F Complexity
PDO 0.884 0.964 0.889 0.925 ∼ 70
Genetic algorithm 0.889 0.960 0.868 0.912 8600
Optimized pruning 0.864 0.935 0.879 0.906 108
BDO 0.890 0.965 0.837 0.897 ∼ 1080
Optimized baseline n/a 0.798 0.798 0.798 n/a
Random selection 0.768 0.722 0.865 0.787 100
True baseline n/a 0.673 0.857 0.754 n/a

The resulting virtual F-score F ′ and actual precision Precision, recall Recall and F-
scores F for each approach on the Last.fm dataset are displayed in table 2. Note that
for complexity, there may be some variability depending on the chosen parameters, in
which case an estimation is given, denoted by “∼”. The value for the genetic algorithm
is based on the selection, crossover and mutation rate per generation, for 50 generations.

For Last.fm, a clear improvement can be seen over the baseline for any of the domain
filter-based approaches barring a random selection. The best performing approach is
the precision-based optimization, giving an F-score of 0.925, which is 0.925−0.798=
0.127 (12.7%) higher than the optimized baseline and 0.925− 0.754= 0.171 (17.1%)
higher than the true baseline in terms of absolute F-score. For reference, the domain
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filter that yielded this best score consists of the following classes/categories: DBpe-
dia classes: Band. YAGO classes: MusicalOrganization, 2000sMusicGroups. Cat-
egories: Musicians, Musicians by nationality, Musicians by genre. Freebase
classes: music/musical group, music/group member, music/artist.

Differences amongst the optimization approaches are relatively small – the most
significant difference exists between PDO and BDO (0.925− 0.897 = 0.025 (2.8%)).
Additionally, it shows that a higher F ′ does not always lead to a higher F when dif-
ferences between F ′ are small, which suggests that optimization on an automatically
created set of links works, but not perfectly.

Table 3. Summarized results for the UMLS datasets

UMLS Pathologic Function
Approach F ′ Precision Recall F Complexity
Genetic algorithm 0.686 0.974 0.931 0.952 8600
PDO 0.674 0.964 0.936 0.950 ∼ 70
Optimized baseline n/a 0.960 0.941 0.950 n/a
True baseline n/a 0.950 0.941 0.946 n/a
Random selection 0.670 0.955 0.931 0.943 100
Optimized pruning 0.672 0.994 0.877 0.932 108
BDO 0.679 1.000 0.852 0.920 ∼ 1080
UMLS Physiologic Function
Approach F ′ Precision Recall F Complexity
PDO 0.741 0.965 0.925 0.945 ∼ 70
Genetic algorithm 0.758 0.979 0.891 0.933 8600
BDO 0.758 0.979 0.891 0.933 ∼ 1080
Optimized pruning 0.753 0.981 0.883 0.930 108
Random selection 0.719 0.902 0.928 0.915 100
Optimized baseline n/a 0.852 0.975 0.909 n/a
True baseline n/a 0.837 0.975 0.901 n/a

The summarized results for the UMLS datasets “Pathologic Function” and “Phys-
iologic Function” are displayed in table 3. For Pathologic Function, there is no clear
difference between any of the approaches. This can be attributed to the fact that the en-
tities in this class are highly specific terms (e.g. medical terminology for diseases) that
are very unambiguous, so that correct matches to DBpedia resources are easily found.
Here, we see that a domain filter can potentially even harm performance compared to
the baseline. This is because entities that do not have very specific class information in
DBpedia still yield a correct match in the baseline approaches due to the unambiguity
of the concept name, but may get excluded from a class based domain filter.

For Physiologic Function, there is a clear improvement over the baselines again, al-
though it is less significant than in the Artist case. This dataset contains more ambiguity
than the Pathologic Function dataset (e.g. common mental processes such as “Recogni-
tion,” and genes with abbreviations that are commonly used to refer to other things), but
is still quite specialized, therefore the impact of a domain restriction is not as obvious
as for very ambiguous entity labels such as artist and band names.
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The overall results show that relying solely on the F ′-scores, choosing whichever
method provided the highest value, may not always be the best option – the type of
approach used seems to play a role as well. The precision-based optimization approach
performs quite well, being the best performer on the Artist and Physiologic Function
datasets and the second best performer on the Pathologic Function dataset. This despite
the fact that it never attains the highest F ′ compared to the other approaches. It is also
the fastest approach, requiring roughly 70 alignment generations.

Statistical Significance of the Results. The precision and recall scores above are based
on only a sample of all matches that our approach could produce. To extrapolate sample
evaluations to statements about general performance, [6] shows that if p is the true
proportion of matches that is correct (which is unknown), n the size of the sample used
to approximate p (i.e. the size of the reference alignment) and P̂ the approximation of
p based on the reference alignment, then this approximation lies in the interval

P̂ ∈ [p− δ, p+ δ] where δ =
1√
n

(2)

with 95% confidence. δ is thus the 95% confidence margin of error for the result. If
one result falls within this range of another result, then they do not differ sufficiently
from each other to state with certainty that one is better than the other. We apply this
calculation on the F-scores for each approach to verify their statistical significance.

For the Last.fm dataset, we have n= 1000, so the margin of error δ becomes 1√
1000

=

0.032. We can therefore conclude that all optimization approaches aside from the ran-
dom selection yield a significant improvement over the baselines – the smallest dif-
ference is between the optimized baseline and the broadness-based approach, which is
0.897− 0.798 = 0.099. Differences among optimization approaches are at most 0.028
(between precision-based and broadness-based), so we cannot state that one optimiza-
tion approach is better than the other with 95% confidence.

For the UMLS classes, we are dealing with reference alignments of size 500 for both,
so here the 95% confidence margin of error for both is 1√

500
= 0.045. For Pathologic

Function, none of the optimization approaches are significantly better than the base-
lines. For Physiologic Function, the largest difference is between the true baseline and
precision-based optimization, which is a difference of 0.044. This would be borderline
insignificant if we considered this as an individual occurrence, but we can see that each
optimization approach in fact outperforms the baseline by at least 0.029. Since the op-
timization approaches consistently perform better, this suggests that the improvements
over the baseline are significant.

5 Related Work

There has been a great amount of research done into the topic of ontology matching
from the perspective of a variety of fields, such as linguistics, AI and knowledge man-
agement. As a result, a large number of ontology matching tools and methods have
emerged in recent years. Surveys on the current state-of-the-art and future challenges
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of ontology matching have been described in [4][16]. A great majority of these systems
focus on the use of string similarity mechanisms in order to determine correspondences
between entities of two different ontologies or datasets – the labels of both entities
might be compared in a strict or fuzzy way [22], or additional properties such as aliases
or synonyms might be inferred from a background ontology such as WordNet [15][5],
or translations of labels could be considered [21]. Other than property comparison, one
might turn to look at the schema in which entities in both ontologies are ordered, such
as semantic classes and super-classes, or relations with other entities within the same
ontology [19]. In other words, this type of approach to ontology matching exploits the
hierarchy of the ontology in order to determine links between entities. However, it is of-
ten tricky to derive these types of correspondences, as there is usually a string similarity
matching step involved – in this case between the names of classes.

In this paper, we derived the domain of entities by bootstrapping the matching pro-
cess – we generated a sample of high-confidence matches to DBpedia, then derived
and optimized a domain filter from this sample. We focus on discussing related work
that involves either (1) the matching of entities to DBpedia, or the use of DBpedia or
other Linked Data sets as auxiliary knowledge base, (2) the incorporation of domain
knowledge into the linking process, or (3) the (parameter) optimization of matchers.

The work in [12] matches entities from a database of the BBC to DBpedia by finding
candidates in DBpedia based on string-similarity and wiki inlink metrics, then com-
paring classifications of their own entities to the classes and categories of the DBpedia
candidate resources. In our case, we do not make use of classification of our source
data, as this is information not always available (this is the case for Last.fm artists).

Several methods have been proposed that leverage knowledge from DBpedia or other
Semantic Web sources to derive links between arbitrary Linked Data sets. BLOOMS+
[9][10] is an ontology matching system that uses the Wikipedia category hierarchy to
bootstrap the process of finding schema-level links between Linked Data sets. We ex-
ploit the Wikipedia category hierarchy in a similar fashion; not to find matches directly
but to find categories (and classes) that effectively describe our domain of interest. In
[18], a paradigm is proposed for harvesting the Semantic Web to find related back-
ground knowledge to assist in matching two ontologies. Rather than relying on a single,
high-quality knowledge source, this approach aims to automatically combine multiple
heterogeneous sources. Drawbacks of the approach are its use of string comparison to
find related ontologies and its disregard of the quality of the ontology selected. While
results are promising given the generality of the approach, it does not match up to
more focused systems such as ours. However, it can be used to complement existing
techniques.

In [24], English Wikipedia pages are matched to their Chinese-language counter-
parts in the Baidu Baike knowledge base. The authors predict correspondences by three
language-independent features: in- and outlink homophily, category homophily and au-
thor interest. In essence, a “domain” is determined for each individual page, and the
page that best matches this from the target dataset is selected for linking. This method
requires a large set of existing links in order to train a model, however, and is there-
fore quite different from our scenario. Kalyanpur et. al. [11] describe a type coercion
framework for use in a question answering scenario; in this case for IBM’s Watson
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[7]. Their system makes extensive use of DBpedia and domain knowledge extracted
from DBpedia. For our approach, we obtain candidate DBpedia resources in much the
same way, and similarly leverage the class/category hierarchies to improve the quality
of matching. The main difference is that the Watson system attempts to find the correct
candidate class by string comparison and hierarchy-based alignment with the source
(question) type, while we do not assume to have source type information available.

The authors of [8] present an approach to automatically generate linkage rules from
a set of reference links. A genetic algorithm is applied to learn which rules and pa-
rameters work best on a dataset, based on performance according to a partial reference
alignment. They show that the automatically learned rules achieve similar accuracy
to those manually created by humans. In [17], ECOMatch is proposed. ECOMatch is
a generic parameterization system designed for use on top of any ontology matching
system. It automatically determines a suitable parameter configuration based on user-
provided example mappings. The authors show that a correlation exists between scores
of a configuration according to a portion of a reference alignment and a full reference
alignment. Some aspects of our approach are similar to these two works. Like the first
work, we also use a genetic algorithm for optimization, but rather than learning linkage
rules to find correspondences, we learn a domain filter to restrict correspondences to.
ECOMatch is also different to our work in that we do not try to find an optimal configu-
ration for a matcher. Most importantly, unlike both described works, we do not require
a human-constructed set of reference links to find the most suitable domain filter.

6 Conclusion

This paper presented work on the development and evaluation of a domain-aware on-
tology matching approach. We showed that we can improve the quality of generated
links over traditional approaches by bootstrapping the matching process – we derive a
filter in a fully unsupervised way that describes and delimits the domain of the source
dataset in terms of classes and categories collected from DBpedia.

We showed that when the dataset we want to match to DBpedia is particularly am-
biguous, such as is the case for Last.fm artists, a significant gain in matching quality can
be obtained by first bootstrapping these matches and deriving a domain filter to restrict
them. With the best-performing approach, a 17.1% improvement in F-score was gained
over a baseline, domain-unaware approach. For the UMLS “Physiologic Function” sub-
domain, which is a much more specialized dataset but still contains some ambiguous
terms, we still saw an improvement of 4.4%. On the other hand, given an extremely
specialized and unambiguous dataset such as the “Pathologic Function” subdomain of
the UMLS, matching with a domain filter does not provide a significant improvement,
and can potentially even hurt quality.

Future Work. Our method is currently fixed to DBpedia as target ontology, and DB-
pedia Spotlight as matcher, but could theoretically work in a generic ontology matching
system as well. Future work would be to generalize the current system to also support
different target ontologies, or to integrate our approach as a separate step into already
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existing ontology matching systems. This would also allow for evaluation of our method
with regard to existing systems.

Secondly, due to this reliance on DBpedia Spotlight – a tool catered to the annotation
of free text – certain valid surface forms are not recognized due to being too common.
We expect that creating a custom parser for Spotlight that is specialized towards ontol-
ogy matching could significantly improve the absolute matching scores.

Acknowledgements. This work is partly funded by the FP7 projects EURECA under
grant nr. 288048 and ImREAL under grant nr. 257831.
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Abstract. The amount of data available in the Linked Data cloud con-
tinues to grow. Yet, few services consume and produce linked data. There
is recent work that allows a user to define a linked service from an online
service, which includes the specifications for consuming and producing
linked data, but building such models is time consuming and requires
specialized knowledge of RDF and SPARQL. This paper presents a new
approach that allows domain experts to rapidly create semantic models
of services by demonstration in an interactive web-based interface. First,
the user provides examples of the service request URLs. Then, the system
automatically proposes a service model the user can refine interactively.
Finally, the system saves a service specification using a new expressive
vocabulary that includes lowering and lifting rules. This approach em-
powers end users to rapidly model existing services and immediately use
them to consume and produce linked data.

Keywords: linked data, linked API, service modeling.

1 Introduction

Today’s Linked Open Data (LOD) cloud consists primarily of databases that
have been translated into RDF and linked to other datasets (e.g., DBpedia,
Freebase, Linked GeoData, PubMed). Often, information is not current (e.g.,
Steve Jobs was listed as CEO of Apple Computer in DBpedia for months after
his passing), and timely information is not available at all (e.g., the LOD cloud
has no information about the current weather or events for any city).

Web APIs provide the opportunity to remedy this problem as there are thou-
sands of Web APIs that provide access to a wealth of up-to-date data. For
example, the programmableweb1 lists over 6,000 APIs that provide data on an
immense variety of topics. The problem is that most of these APIs provide data
in JSON and XML and are not in any way connected to the LOD cloud. For
example, in the programmableweb only 65 APIs (about 1%) provide informa-
tion in RDF, and the rest provide information in XML and JSON. Our goal is
to make it easy to connect the remaining thousands of XML and JSON-based

1 http://www.programmableweb.com/apis
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Web APIs to the LOD cloud. To do so we need to make it easy to represent
the semantics of Web APIs in terms of well known vocabularies, and we need
to wrap these APIs so that they can consume RDF from the LOD cloud and
produce RDF that links back to the LOD cloud.

Several approaches have been developed to integrate Web APIs with the
Linked Data cloud. One approach is to annotate the service attributes using
concepts of known ontologies and publish the service descriptions into the cloud
[10,11]. This allows users to easily discover relevant services. A second approach
is to wrap the APIs to enable them to communicate at the semantic level so that
they can consume and produce linked data [9,5]. A third approach is to create
a uniquely identifiable resource for each instance of an API invocation and then
link that resource to other data sets [13,12]. Using this approach it is possible
to invoke the API by dereferencing the corresponding resource URI.

The main obstacle preventing these approaches from gaining wide acceptance
is that building the required models is difficult and time-consuming. In these
approaches, a developer needs to create a model that defines the mapping from
the information consumed and produced by Web APIs to Semantic Web vo-
cabularies. In addition, the developer must also write the lowering and lifting
specifications that lower data from RDF into the format expected by the Web
APIs and then lift the results of the Web API invocations to RDF. Writing
these models and the required lowering and lifting specifications often requires
in-depth knowledge of RDF, SPARQL, and languages such as XPath or XSLT2.

The key contribution of our work is a method to semi-automatically build se-
mantic models of Web APIs, including the lowering and lifting specifications. In
our approach, users provide sample URLs to invoke a service and the vocabular-
ies they want to use to model the service. The system automatically invokes the
service and builds a model to capture the semantics of the inputs, outputs and
relationships between inputs and outputs. The system also provides an easy-to-
use web-based graphical interface through which users can visualize and adjust
the automatically constructed model. The resulting models, represented in RDF
using standard vocabularies, enable service discovery using SPARQL queries. In
addition, our system can automatically generate the lowering and lifting specifi-
cations from these models so that the Web APIs become immediately executable
and able to consume and produce linked data.

2 Overview

The objective of our approach is to create linked APIs by combining traditional
Web APIs and the Linked Data cloud in two aspects. We want to publish se-
mantic service descriptions into the cloud that can be used by the linked data
community in service discovery and composition. We also want to deploy APIs
that interact at the semantic level, directly consuming Linked Data and gener-
ating RDF data that is linked to the input data. Since most Web APIs use the

2 Extensible Stylesheet Language Transformations.
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Fig. 1. The overview of our approach to create linked APIs

HTTP GET method, in this paper, we focus on these APIs and assume that all
inputs for service invocation are embedded in the invocation URL. The approach
presented in this paper builds upon and extends Karma [3,14,15], our modeling
and integration framework.3

Figure 1 shows the three main steps of our approach. The first step [14], the
foundation of the rest of the process, is to semi-automatically build a service
model that represents the semantics of the API functionality (Section 3). Users
first provide examples of service request URLs. Karma then invokes the services
and constructs a worksheet that contains both the inputs and the outputs pro-
duced. In this step we leverage our prior work on modeling sources, using it to
construct a model of the input/output worksheet. The process is fast because
users only need to provide a few examples of service request URLs and then ad-
just the automatically generated model. The process is also easy because users
interact with the system through a graphical user interface and are not required
to know Semantic Web technologies such as RDF, SPARQL, and XSLT.

The second step is to formally represent the semantic models built in the
previous step (Section 4). Once the user models the API, Karma automatically
generates the service descriptions and stores them in a repository. The linked
API repository provides a SPARQL interface that service integrators can use for
service discovery. For example, a service integrator can issue a query to retrieve
all the APIs that return neighborhood information given latitude and longitude.
A service integrator can also employ reasoning algorithms to generate a plan to
achieve a specific goal.

The final part of our method is to deploy linked APIs on a Web server where
they can be directly invoked, consuming and producing RDF (Section 5). The
Web server provides a REST interface that Linked Data users can use to retrieve
RDF data. It uses the service descriptions in the repository to automatically
lower the input RDF, to invoke the actual Web API, and to lift the output to
return linked (RDF) data.

3 This paper is a significantly extended version of a workshop paper [14].
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3 Semi-automatically Modeling Web APIs

Our approach to model Web APIs using Karma consists of two parts. In the
first part, users provide Karma a collection of sample invocation URLs. Karma
uses these URLs to invoke the APIs and construct a worksheet that contains the
inputs and corresponding outputs for each service invocation. In the second part,
we use our prior Karma work to construct a model of the resulting worksheet.
In this section we describe our prior Karma work, describe the procedure to
construct the inputs/outputs worksheet from the invocation URLs, and illustrate
the whole process using an example.

3.1 Previous Work on Source Modeling

To provide a better understanding of our new work on service modeling, in this
section we briefly review our previous work on source modeling [3]. The process
of modeling sources in Karma is a semi-automatic process that is initiated when
users load a data source. Karma supports importing data from various structured
sources including relational databases, spreadsheets, JSON, and XML. Then,
users specify the vocabularies to which they want to map the source, and Karma
automatically constructs a model that users can adjust. The output is a formal
model that specifies the mapping between the source and the target ontology.
Specifically, Karma generates a GLAV source description [3,7].

The modeling process consists of two steps. The first step is to characterize
the type of data by assigning a semantic type to each column. In our approach, a
semantic type can be either an OWL class or the range of a data property (which
we represent by the pair consisting of a data property and its domain). We use
a conditional random field (CRF) [6] model to learn the assignment of semantic
types to columns of data [2]. Karma uses this model to automatically suggest
semantic types for data columns. If the correct semantic type is not among the
suggested types, users can browse the ontology through a user friendly interface
to find the appropriate type. Karma automatically re-trains the CRF model after
these manual assignments.

The second part of the modeling process is to identify the relationships be-
tween the inferred semantic types in the ontology. Given the domain ontology
and the assigned semantic types, Karma creates a graph that defines the space
of all possible mappings between the source and the ontology [3]. The nodes in
this graph represent classes in the ontology, and the links represent properties.
The mapping is not one to one, because there might be several instances of the
same class present in the source.

Once Karma constructs the graph, it computes the source model as the min-
imal tree that connects all the semantic types. The minimal tree corresponds to
the most concise model that relates all the columns in a source, and this is a
good starting point for refining the model. We use a Steiner tree algorithm to
compute the minimal tree. Given an edge-weighted graph and a subset of the
vertices, called Steiner nodes, the goal is to find the minimum-weight tree in the
graph that spans all the Steiner nodes. The Steiner tree problem is NP-complete,
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but we use a heuristic algorithm [4] with an approximation ratio bounded by
2(1− 1/l), where l is the number of leaves in the optimal Steiner tree.

It is possible that multiple minimal trees exist, or that the correct interpre-
tation of the data is captured by a non-minimal tree. In these cases, Karma
allows the user to interactively impose constraints on the algorithm to build the
correct model. Karma provides an easy-to-use GUI in which the user can adjust
the relationships between the source columns [3].

3.2 Service Invocation

To enable Karma to model services in the same way that it models structured
sources, we need to generate a table of example inputs and outputs. To this end,
Karma asks the user to provide samples of the Web API requests. Karma parses
the URLs and extracts the individual input parameters along with their values.
For each request example, Karma invokes the service and extracts the output
attributes and their values from the XML or JSON response. At the end, Karma
joins the inputs and the outputs and shows them in a table.

Once this table is constructed, we apply our prior Karma work on source
modeling to construct a model of the table. As described above, our source
modeling technique captures the relationships among all columns of a source.
Consequently, when we apply it to the table constructed from the API invocation
URLs, the resulting model will capture the relationships between the inputs and
outputs of the API.

An alternative method to collect examples of the API inputs and outputs
is to extract such information from the documentation pages of the APIs. Ac-
cording to a comprehensive study on Web APIs by Maleshkova et al. [8], 83.8%
of the APIs indexed in programmableweb provide a sample request and 75.2%
of them also provide a sample response. In future work we plan to mine these
documentation pages to extract examples of inputs and outputs.

3.3 Example

We illustrate our service modeling approach with an example from the GeoN-
ames APIs4. We model the neighbourhood API,5 which takes the latitude and
longitude of a geographic feature as input and returns information about the
neighborhood of that feature. To keep the example concise, we only consider
the region name, the nearby city, the country code, and the country name. An
example of the API invocation URL and the API response are shown in Fig-
ure 2(a) and (b). Figure 2(c) shows the table of inputs and outputs that Karma
constructs using the invocation URLs listed in the first column of the table.

In the next step, Karma treats the service table as a data source and maps
it to the ontologies given by the user (in our example GeoNames6 and WGS847

4 http://www.geonames.org/export/ws-overview.html
5 http://www.geonames.org/export/web-services.html#neighbourhood
6 http://www.geonames.org/ontology/ontology_v3.01.rdf
7 www.w3.org/2003/01/geo/wgs84_pos

programmableweb
http://www.geonames.org/export/ws-overview.html
http://www.geonames.org/export/web-services.html#neighbourhood
http://www.geonames.org/ontology/ontology_v3.01.rdf
www.w3.org/2003/01/geo/wgs84_pos
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http://api.geonames.org/neighbourhood?lat=40.78343&lng=-73.96625&username=karma

(a) Service Invocation URL.

<geonames><neighbourhood>

<countryCode>US</countryCode>

<countryName>United States</countryName>

<city>New York City-Manhattan</city>

<name>Central Park</name>

...

</neighbourhood></geonames>
(b) Service response (XML).

(c) The user provides examples of the service requests. Karma extracts the input pa-
rameters, invokes the API, extracts the output attributes from the invocation response,
and joins the outputs with the input data in one table.

(d) Screenshot showing the service model in Karma.

neighbourhood($lat, $long, @countryCode, @countryName, @city, @name) →
gn:Feature(v1) ∧ wgs84:lat(v1, $lat) ∧ wgs84:long(v1, $long) ∧ gn:neighbourhood(v1, v2) ∧
gn:Feature(v2) ∧ gn:name(v2, @name) ∧ gn:nearby(v2, v3) ∧
gn:Feature(v3) ∧ gn:name(v3, @city) ∧ gn:parentCountry(v3, v4) ∧
gn:Feature(v4) ∧ gn:countryCode(v4, @countryCode) ∧ gn:name(v4, @countryName)

(e) Logical LAV rule representing the semantics of the neighbourhood API. Input and
output attributes are marked with $ and @ respectively. The API is described with
terms from two ontologies: GeoNames (gn:) and WGS84.

Fig. 2. Karma service modeling process: (a) Web API invocation URL, (b) XML re-
sponse, (c) Web API inputs and outputs in Karma’s interface, (d) Semantic model in
Karma’s interface, and (e) formal model as a LAV rule
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ontologies). Karma automatically recommends the top four most likely semantic
types (a class or a data-property/domain pair) for each column and the user as-
signs the semantic type by either selecting one of the suggested types or choosing
another type from the ontology. After each assignment, Karma uses its Steiner
Tree algorithm to recompute the tree that relates the semantic types.

The final model is shown in Figure 2(d). The service inputs (lat and lng)
are mapped to the lat and long properties of a Feature. This feature is related
via the neighbor object property to another Feature, which in turn is related to
other geographical features that describe the remaining outputs (the nearby city
and the parent country). Users can change the semantic types by clicking on the
black circles above the column names. They can also adjust the other elements
of the model by clicking on the property names (labels on the arrows) to select
alternative properties or to choose alternative domains for those properties.

Figure 2(e) shows the LAV rule that captures the formal semantics of the ser-
vice model that was shown in graphical form in Figure 2(d). In this rule, Feature
is a class and neighbourhood, nearby, name, and parentCountry are properties in
the GeoNames ontology, and lat and long are properties in WGS84 ontology.

4 Building a Linked API Repository

To integrate Web APIs to the Linked Data Cloud we publish an RDF representa-
tion of the API models in the Linked API Repository. In this section, we describe
how we represent the linked APIs in the repository and how these declarative
representations provide support for service discovery and composition.

4.1 Representing Linked APIs

Our models of Web APIs represent both the syntax and the semantics of the
API. The syntactic part provides the information needed to invoke the service,
including address URL, HTTPmethod, access credentials, and input parameters.
The semantic part represents the types of the inputs and the outputs and the
relationship among them in terms of a target vocabulary (ontology).

There are several vocabularies to represent linked services. WSMO-Lite8 and
Minimal Service Model9 (MSM) are RDF vocabularies that can represent the
syntax of Web APIs, but can only partially represent the semantics. They can
represent the types of the inputs and outputs using terms in ontologies, but
they cannot represent the relationships among them. Other approaches [5,12]
use SPARQL graph patterns to define the inputs and outputs. They can model
relationships among inputs and outputs, but discovery is difficult as there are
no standard facilities to query graph patterns.

We introduce an expressive ontology that extends and combines the strengths
of the existing vocabularies in one model. It can represent the semantics of

8 http://www.w3.org/Submission/WSMO-Lite/
9 http://cms-wg.sti2.org/minimal-service-model/

http://www.w3.org/Submission/WSMO-Lite/
http://cms-wg.sti2.org/minimal-service-model/
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Fig. 3. The ontology that we use to formally describe Web APIs

services including relationships among inputs and outputs, and it uses RDF(S)
so that models can be queried using SPARQL.

Figure 3 shows our ontology for modeling Web APIs. We re-use the SWRL10

vocabulary to define the input and output model. In this ontology, both in-
put and output have a Model which includes one or more Atom instances. A
ClassAtom shows the membership of an instance to a class and an Individual-
PropertyAtom describes an instance of a property.

We map the service semantic model (Figure 2(d)) to the introduced vocab-
ulary by adding a ClassAtom for each class instance (rounded rectangles) and
an IndividualPropertyAtom for each property (arrows). For example, to express
the part of the semantic model where the top Feature box is connected to
the the lat column, we first create a ClassAtom whose classPredicate has the
value gn:Feature and its argument1 is a new Variable. Then, we add an Individ-
ualPropertyAtom in which the propertyPredicate is wgs84:lat, argument1 is the
same variable in the ClassAtom, and argument2 is the URI of the lat input at-
tribute. Figure 4 includes both graphical and N3 notation of a snippet of the
neighbourhood API model. The input and output model is interpreted as a
conjunctive formula, which is the RDF rendering of the LAV rule generated by
Karma that captures the semantics of the Web API (cf. Figure 2(e))

4.2 Querying the Repository

Karma stores the API descriptions in a triple store. This linked API repository
offers a SPARQL interface that can be used to discover desired APIs. Our rich

10 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/
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km:Service 
http://<karma server>/services/ 
5C5CB6AB-1689-4A96-0B70-
96C6A54F3D70# 

lat 

p1 

.../neighbourhood?lat={p1}&... GET neighbourhood 

hasName hasAddress hasMethod 

name 

km:Attribute 
in_lat 

km:Input 
input 

km:Output 
output 

swrl:Variable 
feature1 

swrl:Variable 
feature2 

swrl:CAtom 
atom2 

swrl:PAtom 
atom1 

km:Model 
inputModel 

km:Model 
outputModel 

km:Attribute 
out_name 

hasAttribute 

hasAttribute 

hasModel 

hasModel 

arg1 

arg1 

arg2 
swrl:CAtom 
atom4 

swrl:PAtom 
atom5 

swrl:PAtom 
atom3 

arg2 

arg1 

arg2 

arg1 wgs84:lat 

gn:Feature 

gn:name 

gn:neighbour 

gn:Feature 

arg1 

hasAtom 

class 

class 
property 

property 

property 

hasAtom 

at
om

1 

at
om

3 
at

om
5 

feature1 
atom2 

feature2 
atom4 

links the output to the input by 
neighbour relationship 

@prefix : <http://<karma server>/services/5C5CB6AB-1689-4A96-0B70-96C6A54F3D70#> .

@prefix gn: <http://www.geonames.org/ontology#> .

@prefix wgs84: <http://www.w3.org/2003/01/geo/wgs84 pos#> .

...

: a km:Service;

km:hasName "neighbourhood" ;

hrests:hasAddress "http://api.geonames.org/neighbourhood?

lat={p1}&lng={p2}&username={p3}" ^^

hrests:URITemplate ;

hrests:hasMethod "GET"; km:hasInput :input; km:hasOutput :output.

:input a km:Input; :output a km:Output;

km:hasAttribute :in lat, ... ; km:hasAttribute :out name, ... ;

km:hasModel :inputModel . km:hasModel :outputModel .

:in lat a km:Attribute; :out name a km:Attribute;

km:hasName "lat" ; km:hasName "name" .

hrests:isGroundedIn ...

"p1"^^rdf:PlainLiteral .

...

:feature1 a swrl:Variable . :feature2 a swrl:Variable .

:inputModel a km:Model; :outputModel a km:Model;

km:hasAtom km:hasAtom

[ a swrl:ClassAtom ; [ a swrl:ClassAtom ;

swrl:classPredicate gn:Feature; swrl:classPredicate gn:Feature;
swrl:argument1 :feature1 ]; swrl:argument1 :feature2] ;

km:hasAtom km:hasAtom

[ a swrl:IndividualPropertyAtom; [ a swrl:IndividualPropertyAtom ;

swrl:propertyPredicate wgs84:lat; swrl:propertyPredicate gn:neighbour;
swrl:argument1 :feature1; swrl:argument1 :feature1 ;

swrl:argument2 :in lat]; swrl:argument2 :feature2];

... km:hasAtom

[ a swrl:IndividualPropertyAtom ;

swrl:propertyPredicate gn:name ;

swrl:argument1 :feature2 ;

swrl:argument2 :out name];

...

Fig. 4. A snippet of the neighbourhood API model represented both graphically and
formally (N3 notation)



568 M. Taheriyan et al.

models support a variety of interesting queries. The following SPARQL query
finds all services that take latitude and longitude as inputs. It is difficult to
support this type of query in models that use SPARQL graph patterns because
the patterns are represented as strings and it is difficult to reason over them.

SELECT ?service WHERE {
?service km:hasInput [km:hasAttribute ?i1, ?i2].

?service km:hasInput [km:hasModel [km:hasAtom

[swrl:propertyPredicate wgs84:lat; swrl:argument2 ?i1],

[swrl:propertyPredicate wgs84:long; swrl:argument2 ?i2]]]}

In the WSMO-Lite and MSM specifications, which are in RDF, inputs and out-
puts of a service are linked to concepts and properties in ontologies, so they
support the previous example query. However, they do not support answering
more complex questions that take into account the relationships between the
attributes. For example, suppose a user wants to find services that return the
neighborhood regions given a latitude and longitude. These models cannot be
used to answer this question because they cannot represent the relationship
(neighbour) between the inputs (lat, lng) and the output regions. In our
model, we can write the following SPARQL query:

SELECT ?service WHERE {
?service km:hasInput [km:hasAttribute ?i1, ?i2].

?service km:hasOutput [km:hasAttribute ?o1].

?service km:hasInput [km:hasModel [km:hasAtom

[swrl:classPredicate gn:Feature; swrl:argument1 ?f1],

[swrl:propertyPredicate wgs84:lat; swrl:argument1 ?f1; swrl:argument2 ?i1],

[swrl:propertyPredicate wgs84:long; swrl:argument1 ?f1; swrl:argument2 ?i2]]].

?service km:hasOutput [km:hasModel [km:hasAtom

[swrl:classPredicate gn:Feature; swrl:argument1 ?f2],

[swrl:propertyPredicate gn:name; swrl:argument1 ?f2; swrl:argument2 ?o1],

[swrl:propertyPredicate gn:neighbour; swrl:argument1 ?f1; swrl:argument2 ?f2]]]}

5 Deploying Linked APIs

Publishing service descriptions into the Linked Data cloud is the first step in
creating linked APIs. The next step is to deploy APIs that are able to consume
data directly from the cloud and also to produce linked data. One of the benefits
of our service models is that they include lowering and lifting instructions that
our system can directly execute. This allows the user to easily wrap existing Web
APIs without writing separate lowering and lifting specifications. In this section,
we describe how we set up linked APIs and how we enable them to communicate
at the semantic level (RDF).

5.1 Invoking a Linked API

As shown in Figure 1, the KarmaWeb server is the component that enables users
to invoke the linked APIs. Users communicate with this server through a REST
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interface to send the RDF as input and get linked data as output. If the user
sends a GET request to this endpoint,11 he will receive the service specification
in RDF. Calling the linked API with a POST request is the method to feed
linked data to a service. Karma performs the following steps to execute these
POST requests, which include the input RDF in its body:

– The Karma Web server extracts the service identifier from the request and
uses it to retrieve the model from the repository.

– The server verifies that the input RDF satisfies the input semantic model
and rejects requests that are incompatible with the input model. To do this
it creates a SPARQL query according to the API input model and executes
it on the input data.

– The server uses the model to do lowering, creating the appropriate URL for
the original Web API (section 5.2).

– The server invokes the Web API and gets the results.
– The server uses the output model to convert the output from XML/JSON

to RDF and link it to the input (section 5.2).
– The server returns the linked data to the caller in RDF.

To enable callers to determine the appropriate RDF graph that can be used as
the input, the KarmaWeb server offers an interface12 to get the SPARQL pattern
that corresponds to the service input. The caller can execute this SPARQL query
on its RDF store to obtain the appropriate input graph to call the linked API.

5.2 Lowering and Lifting

One of the advantages of our approach is that our models contain all the informa-
tion needed to automatically execute the required lowering and lifting, obviating
the need to manually write their specification. We describe the lowering and lift-
ing processes using an example. Suppose that the server receives a POST request
for the neighborhood API. The body of the request has RDF triples from the
GeoNames data source with the coordinates of geographical features.

Figure 5 illustrates the lowering process. When the Karma Web server re-
ceives the HTTP POST request, it extracts the RDF triples from the body and
retrieves the model from the repository. The swrl:classPredicate of the ClassAtom
and the swrl:propertyPredicate of the IndividualPropertyAtom are URIs of the cor-
responding classes and properties in the input RDF (e.g., wgs84:lat), enabling
the server to retrieve the corresponding values (e.g., 40.74538). Every input at-
tribute (e.g., :in-lat) has a isGroundedIn property which indicates its position in
the service address. This enables the server to build the invocation URL directly
from the service specification without writing an explicit lowering schema. For
the input parameters such as authentication key that are not part of the se-
mantic model, the user would provide separate statements in the input graph.

11 The address of the REST API is http://<karma server>/services/{id} in which
id is the service identifier created automatically by Karma when it generates the
API description.

12 http://<karma server>/services/{id}/input?format=SPARQL
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Attribute Value 
in_lat 40.74538 
in_lng -73.90541 
in_username demo 

API Description (RDF) 

1 

http://api.geonames.org/neighbourhood? 
lat40.74538&lng=-73.90541&username=demo 
 
 Invocation URL 

Attribute Value Grounded 
in_lat 40.74538 p1 
in_lng -73.90541 p2 
in_username demo p3 

2 

3 

<http://sws.geonames.org/5145067/>  
a gn:Feature ; 
wgs84:lat "40.74538" ; 
wgs84:long "-73.90541" . 

<http://.../services/...D70#in_username>  
km:hasValue “demo” . 

Input R
D

F 

Authentication 

 
:inputModel a km:Model; 

km:hasAtom 
[ a swrl:ClassAtom ; 
swrl:argument1 :v1 ; 
swrl:classPredicate gn:Feature ] ; 

km:hasAtom 
[ a swrl:IndividualPropertyAtom ; 
swrl:argument1 :v1 ; 
swrl:argument2 :in_lat ; 
swrl:propertyPredicate wgs84:lat ] ; 

... 
 

:in_lat a km:Attribute; 
km:hasName "lat" ; 
hrests:isGroundedIn "p1“ 

... 
 

hrests:hasAddress 
“http://api.geonames.org/neighbourhood? 
lat={p1} &lng={p2}&username={p3}” 

 

Fig. 5. Lowering the RDF data to create the invocation URL of the Web API

For instance, in the example in Figure 5, the user would add a triple, such as
<serviceURI:username km:hasValue "demo">, to the input data.

In the next step, the Karma Web server links the outputs to the input RDF
in order to return additional information about the inputs to the user. The
service returns the outputs in XML or JSON, and these need to be converted
to RDF. Figure 6 illustrates the lifting process. First, for each output attribute
(e.g., :out countryCode), Karma uses km:hasName property to get its name (e.g.,
countryCode). This name is compared to the XML tags to identify the corre-
sponding value (e.g., US). Then, Karma exploits the output model of the API
to create a RDF graph of the output values. If there is a variable in the output
model that is also part of the input model (e.g., :v1), that means Karma already
knows its value from the input RDF. For the other variables in the output model
(e.g., :v2), Karma creates blank nodes according to their type (e.g., gn:Featue),
denoted by swrl:classPredicate property. A video demonstrating how to model
the neighbourhood API in Karma and wrap it as a linked API is available on
the Karma web site13.

6 Related Work

Three recent approaches address the integration of services and the Linked Data
cloud. The first approach, called Linked Services [10,11], focuses on annotating
services and publishing those annotations as Linked Data. The second approach
creates services, called Linked Open Services (LOS) [9,5], that consume and
produce Linked Data. Finally, Linked Data Services (LIDS) [12,13] integrates
data services with Linked Data by assigning a URI to each service invocation.

13 http:/isi.edu/integration/karma

http:/isi.edu/integration/karma
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API Description (RDF) 

<geonames> 
    <neighbourhood> 
          <countryCode>US</countryCode> 
          <countryName>United States</countryName> 
          <city>New York City-Queens</city> 
          <name>Woodside</name> 

... 
    </neighbourhood> 
</geonames> 

A
P

I R
esp

o
n

se X
M

L
 

<http://sws.geonames.org/5145067/> 
     gn:neighbour [ 

  a gn:Feature ; gn:name "Woodside"; 
   gn:nearby [ 
       a gn:Feature ; gn:name “…-Queens"; 
       gn:parentCountry [ ... 
 
 

1

Linked Output (RDF) 

2

 
:out_countryCode a km:Attribute; 

km:hasName “countryCode" ; 
.... 
 
 
 
:outputModel a km:Model; 

km:hasAtom 
[ a swrl:IndividualPropertyAtom ; 
swrl:argument1 :v1 ; 
swrl:argument2 :v2; 
swrl:propertyPredicate gn:neighbour ] ; 

km:hasAtom 
[ a swrl:ClassAtom ; 
swrl:argument1 :v2 ; 
swrl:classPredicate gn:Feature ] ; 

km:hasAtom 
[ a swrl:IndividualPropertyAtom ; 
swrl:argument1 :v2 ; 
swrl:argument2 :out_name; 
swrl:propertyPredicate gn:name ] ; 

... 
 
 
 
 
 

Attribute Value URI 

countryCode US :out_countryCode 

countryName United States :out_countryName 

city ...-Queens :out_city 

name Woodside :out_name 

Fig. 6. Lifting the XML response to create linked data

The service URI is linked to resources in the Linked Data cloud and dereferencing
the URI provides RDF information about the linked resources.

Linked Services uses a simple RDF ontology, called Minimal Service Model
(MSM), to annotate the service and publish it as Linked Data. MSM uses the
modelReference property of the SAWSDL vocabulary [1] to map service inputs
and outputs to the concepts in ontologies. In Karma, rather than just anno-
tating the service attributes, we also model the relationships between them in
order to support more sophisticated service discovery and composition. More-
over, when it comes to consuming and producing RDF for existing Web APIs,
MSM required modelers to provide explicit lowering and lifting schema using the
sawsdl:loweringSchemaand sawsdl:liftingSchema relations. In contrast, our
modeling approach includes enough information to automatically derive the low-
ering and lifting instructions, avoiding the need to use additional languages, such
as XSLT, to express the lowering and lifting scripts.

LOS and LIDS use SPARQL graph patterns to model inputs and outputs,
thus providing a conjunctive logical description similar to our models. Therefore,
all three approaches can model the relationships between inputs and outputs.
However in LOS and LIDS, the graph patterns are represented as strings in the
service description, limiting the power of automatic discovery and composition.
In contrast, Karma uses RDF graphs to model the inputs and outputs, making
it possible to discover services using SPARQL queries.

One clever feature of the LIDS approach is that each service invocation has a
URI that embeds the input values and this URI is linked to the input resource.
Sending a GET request to the invocation URI returns the linked output. This
enables the user to get the RDF output on the fly while traversing the input
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resource on the Linked Data cloud without the requirement to send the input
data in a separate phase. Although we have not implemented this capability,
generating these kinds of URIs can be done in our approach without difficulty.
We can use our service descriptions to find the appropriate input values in a
triple store, create the invocation URIs, and link them to the input resources.

Verborgh et al. [16] introduce a new approach, called RESTdesc, to capture
the functionality of hypermedia links in order to integrate Web APIs, REST
infrastructure, and the Linked Data. The idea is to enable intelligent agents to
get additional resources at runtime from the functional description of the invoked
API. RESTdesc uses N3 notation to express the service description. Therefore,
like LIDS, LOS, and our RDF vocabulary, it can model the relationships between
the input and output attributes. However, the main point that differentiates our
approach from RESTdesc is that in Karma, the user interactively builds API
models. After modeling, Karma automatically generates API specifications and
the API modeler does not need to write the descriptions manually.

7 Evaluation

To evaluate our approach, we modeled 11 Web APIs from the GeoNames Web
services as linked APIs. The purpose of the evaluation was to measure the effort
required in our approach to create linked APIs. We measured this effort in terms
of the average time to build the linked API model and the number of action that
the user had to perform to build the correct model. We used an extended version
of the GeoNames ontology, with additional classes and properties to enable us
to build richer semantic models.14

Table 1 shows the results of our experiment. The #URLs column indicates the
number of sample invocation requests given to Karma by the user as the input of
the modeling process. The #Cols column counts the number of columns in the
Karma worksheet that were assigned a semantic type. The Choose Type column
shows the number of times that the correct semantic type was not in Karma’s top
four suggestions and we had to browse the ontology to select the correct type. We
started this evaluation with no training data. The Change Link column shows
the number of times we had to select alternative relationships using a menu.
The Time column records the time that it took us to build the model, from the
moment the user enters the examples until the time that Karma publishes the
service description into the repository.

As the results show, using Karma it took us only 42 minutes to build the
models and deploy the linked APIs for the 11 Web APIs. In addition, we did not
have to write any RDF, SPARQL, XPath or any other code. The whole process is
done in a visual user interface, requiring 76 user actions, about 7 per Web API.
Equivalent LIDS or LOS models are about one page of RDF/SPARQL/XSL
code written by hand. We designed Karma to enable users to build these models
quickly and easily enabling them to use the ontologies that make sense for their

14 The datasets are available at: http://isi.edu/integration/karma/data/iswc2012

http://isi.edu/integration/karma/data/iswc2012
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Table 1. Evaluation results for building linked APIs from the GeoNames APIs

GeoNames API #URLs #Cols
#User Actions

Time(min)
Choose Type Change Link Total

neighbourhood 3 10 10 6 16 6

neighbours 2 9 5 5 10 5

children 2 10 0 5 5 3

sibling 1 9 0 5 5 3

ocean 2 3 0 2 2 1

findNearby 3 11 0 5 5 3

findNearbyPostalCodes 3 11 1 5 6 7

findNearbyPOIsOSM 3 7 5 1 6 3

findNearestAddress 3 14 4 6 10 6

findNearestIntersectionOSM 3 8 5 3 8 3

postalCodeCountryInfo 1 5 3 0 3 2

Total 26 97 76 42

scenarios. Karma is available as open source15 and we plan to collect usage
statistics and feedback to improve the system and measure its benefits.

8 Discussion

This paper presented our approach to rapidly integrate the traditional Web APIs
into the Linked Data cloud. An API modeler uses Karma to interactively build
semantic models for the APIs. The system semi-automatically generates these
models from example API invocation URLs and provides an easy-to-use interface
to adjust the generated models. Our models are expressed in an RDF vocabulary
that captures both the syntax and the semantics of the API. They can be stored
in a model repository and accessed through a SPARQL interface. We deploy the
linked APIs on a Web server that enables clients to invoke the APIs with RDF
input and to get back the linked RDF data.

We are working to apply our modeling approach to a large number of available
Web APIs. We plan to reduce the role of the user in modeling by mining the Web
for examples of service invocations in documentation pages, blogs and forums
to automatically construct datasets of sample data to invoke services. We are
also working on extending our approach to model RESTful APIs. Extracting
the input parameters from a RESTful API is not as straightforward as a Web
API because there is not a standard pattern to embed the input values in the
URL. However, collecting more samples of the API requests and analyzing the
variable parts of the URLs will enable us to automatically extract the inputs of
RESTful APIs.

Acknowledgements. This research is based upon work supported in part by
the National Science Foundation under award number IIS-1117913. The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of NSF or any person connected with them.

15 https://github.com/InformationIntegrationGroup/Web-Karma-Public

https://github.com/InformationIntegrationGroup/Web-Karma-Public
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Abstract. This paper presents an approach to automatically extract
entities and relationships from textual documents. The main goal is to
populate a knowledge base that hosts this structured information about
domain entities. The extracted entities and their expected relationships
are verified using two evidence based techniques: classification and link-
ing. This last process also enables the linking of our knowledge base to
other sources which are part of the Linked Open Data cloud. We demon-
strate the benefit of our approach through series of experiments with
real-world datasets.

Keywords: Linked Data, Knowledge Extraction, Machine Learning.

1 Introduction

The Web, which includes databases, catalogs and all textual documents, is a
wealthy and a primary source of information. Thus, there is a need for exploit-
ing this tremendous growth of the amount of online information as a source
of structured knowledge [22]. Unfortunately, computers are not able to inter-
pret this information due to a lack of semantics. However, the emergence of
knowledge bases such as DBpedia and Freebase1 in the Linked Open Data cloud
(LOD), nowadays contain billions of facts expressed as RDF triples represent-
ing instances of relations between entities [4]. Researchers from various domains
are increasingly interested in making their data available as part of the LOD,
because a proper semantic integration of this data enables advanced semantic
services. Examples of such services include exploratory search, supporting so-
phisticated and semantically rich queries, interoperability, question answering,
etc. Converting the unstructured information, mainly the textual documents, to
semantic models is therefore crucial to reach the expected Web of Data [15]. For
instance, one of the most widely spread data representation used in the cultural
heritage domain is MARC and its alternative forms. However, the Functional

1 The complete list of interconnected bases can be found at http://linkeddata.org/

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 575–590, 2012.
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Requirements for Bibliographic Records (FRBR) model has gained much atten-
tion during the last decade as an underlying and much needed semantic data
model for the cultural heritage data [20]. In this context, one of the most signifi-
cant challenges deals with the extraction of semantic information hidden in
plain documents [6,8,14]. Indeed, the textual documents are interesting because
they may contain information that is otherwise missing or incomplete in the
existing knowledge bases in the LOD cloud. Sentences in the documents include
named entities which are connected with a specific type of relationship, e.g. Mar-
tin Scorsese directed the movie The Departed. Besides, the interconnection of
the LOD data sources brings benefit for sharing and inferring knowledge [12].
Thus, extracting related entities from documents is not sufficient, and they need
to be connected to the LOD cloud.

In this paper, we propose to tackle these two challenges. Our approach, KIEV2

first extracts examples for a given relationship from textual documents. Indeed,
some relationships are rarely encompassed in the structured data sources, but
they can be found in textual documents (such as the Web). Mining these rela-
tionships with a pattern-based technique involves the discovery of a large amount
of examples. Thus, a verification of these examples is performed at two levels:
(i) the type of relationship is checked with a machine learning approach and (ii)
the extracted entities are matched to LOD for both verification and integration
purposes. In addition to these challenges, our approach KIEV should perform
reasonably well in terms of efficiency at the Web scale since every page is a po-
tential source of examples and good patterns. As a summary, the contributions
of this paper are the following:

– We designed a generic approach for extracting semantic relationships from
a large text corpora which integrates a verification process;

– These relationships are filtered and verified with a classification technique
and an entity matching process. In addition, the link from our generated
entity to its corresponding LOD entity enables the connection and possible
reasoning over all interconnected knowledges bases;

– Finally, we have conducted experiments with real-world datasets (about
movies and sports) to evaluate the quality and the robustness of our ap-
proach.

The rest of this paper is organized as follows. Section 2 introduces the formal-
ization of our problem and provides an overview of KIEV. Section 3 covers the
first part of our approach, the discovery of examples by using patterns, while
Section 4 and 5 focus on the evidence-based verification of these examples. The
related work is described in Section 6. Our experiments are detailed in Section 7.
Finally, we conclude in Section 8.

2 Overview of our Approach

Our goal can be seen as the creation of a knowledge base of entities
and relationships. Simply assuming the existence of a repository of domain
2 KIEV – Knowledge and Information Extraction with Verification.
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Fig. 1. Overview of our Approach

entities would limit our approach. Rather, we extract entities from the textual
documents, and as a consequence, our approach should also work with entities
which have been previously identified (i.e., from a repository). A relationship
is defined as a triple <entity1, type-of-relationship, entity2>. As an example,
considering the 2006 “The Departed” movie directed by Martin Scorsese as a
remake of the Andrew Lau’s “Infernal Affairs” from 2002, the example would be
represented as <“Infernal Affairs”, hasImitation, “The Departed”>.

Figure 1 depicts the global overview of KIEV. Given a type of relationship,
KIEV requires a collection of documents and a few training examples (verifying
the types of relationship) to bootstrap a possible infinite loop. The first step
consists of discovering examples from the textual collection (see Section 3).
It is based on semantic tagging which combines Named Entity Recognition and
Part of Speech tagging, and it generates many examples for the concepts con-
tained in a sentence. Thus, a verification of the relevance for these examples is
performed with two other processes. The former checks if the extracted entities
are effectively related with the type of relationship using a machine learning
classifier (see Section 4). The latter process links both extracted entities
of an example to their corresponding entities on the LOD cloud (see Section 5).
Once an example is verified, it can be used as a training example to improve
the classifier, but also to reinforce the confidence score of a pattern during the
discovery process.

3 Discovering Examples

The core idea of our approach is to process the input as a stream of documents
and to iteratively update our semantic knowledge base of entities. In this section,
we describe the first part of our approach – discovering examples. An example for
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Fig. 2. Workflow of Processes for Discovering Examples

a given type of relationship is composed of two entities (e.g., for imitation type
of relationship, an example is <“Infernal Affairs”, “The Departed”>). Figure 2
provides the big picture of the example discovery workflow, whose goal is to
generate a set of examples. Each process in the workflow of discovering examples
is presented below.

3.1 Stream Processing

Stream processor (SP) accepts as an input documents in textual form. The first
task the SP performs is to pre-process the input. For example, this task may
involve cleaning the html documents for tags, removing headers from emails,
etc . At this point, we are interested in only obtaining text regardless of the
quality. Each document d ∈ D is segmented into a list of sentences such that
d = {Si | i = 1 . . .N} where N is the number of sentences. A sentence Si is
discarded if Si−1 and Si+1 contain no entities. This is because Si may contain
a personal pronoun referring to the previous sentence, e.g. “Martin Scorsese
is an American film director. He is the creator of Taxi Driver.”. Additionally,
the sentences are filtered out to eliminate those that were likely to be noisy
(broken and invalid sentences) and not useful for example discovery (e.g., non-
English sentences, sentences missing verb, sentences with only uppercase letters
or only with lowercase letters, sentences without capital letters, etc.). The next
step deals with the semantic tagging of the selected sentences with named entity
recognition (NER) and part-of-speech (POS) tags.

3.2 Tagging

For each sentence s ∈ Si, named entity recognition is performed to detect the set
of entities E (person, location, organization, dates, etc.). Consider a document
containing the following sentence: Infernal Affairs was followed by a 2006 Amer-
ican remake by Martin Scorsese entitled The Departed. From this sentence, two
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concepts are detected and one person. Traditionally, NER is focused around the
detection of common entities such as people, organization or geographic location.
However, the recognition of domain specific entities poses a particular challenge
because the NER tools usually require training examples for the types of entities
to recognize. In our context of textual documents from the Web, providing such
examples is not possible.

To avoid missing entities, a POStagger is first applied on all sentences. Our
assumption is that entities are POStagged as “noun”. Thus, we consider that all
nouns in the sentences are entities. A NER tool can confirm some of these
entities. Although this assumption implies the identification of many incorrect
entities, the next steps are in charge of discarding those irrelevant entities. The
output of the semantic tagger is a set of semantically and structurally tagged
sentences, from which we can extract frequent terms.

3.3 Frequent Terms Collection

Terms that appear frequently in the same sentence with a pair of entities are
likely to be highly relevant to the pair of entities. For example, in the
sentence “Martin Scorsese’s movie The Departed is based on Internal Affairs”,
frequent terms are movie and based on because they appear frequently together
with the entities in the sentence.

In order to collect these frequent terms, all possible word n-grams are first
identified in the sentence s. The top thousand most common words on the Web3

are excluded and cannot be part of frequent terms. Then, the sentence s is
splitted into a set of words. A list of n-grams is constructed out of this list. After
the list of n-grams has been obtained, we look up Wordnet lexical database to
obtain the list Φ of semantically related words. These words are grouped into
unordered sets (synsets). Stopwords (e.g., “the”, “a”, “but” etc.) are removed and
stemming is performed. The following Wordnet relations are used:

– synonymy (e.g., “writer” and “novelist”), words that denote the same concept
and are interchangeable in many contexts.

– hyponym, a word whose semantics are included within that of another word4,
e.g., “The Departed is a movie”.

Since the synsets obtained from Wordnet have a shared information content, i.e.,
hierarchy of is-a concepts, this list of semantically similar words can be larger
than desired. Thus, to control the level of granularity of this list of concepts, we
employ the Resnik similarity to prune those that are below a given threshold [16].
This similarity measure is applied between the segmented n-grams and each of
the synsets in Φ. For example, the distance between “novel” and “book” is 0.29.

These frequent terms are generated for different objectives such as the clas-
sification of examples through features, but also to generate the examples as
explained in the next part.

3 This list is available from Microsoft Web N-gram Service: http://bit.ly/bFKSxz
4 This is similar to is-a relationship.

http://bit.ly/bFKSxz
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3.4 Example and Pattern Generator

Having obtained the lists of named entities and frequent terms, a set of can-
didate examples is built. One of our goals is to populate a knowledge base
that can serve as a repository of distinct entities. First, a set of unique pair of
entities Θ is constructed such that Θ = {(ei, ej)|ei �= ej, ei ∈ E , ej ∈ E}. At first
glance, it appears that we generate overly many examples and this most likely
leads to a fair number of false positives. But we will show in section 4 that our
classification approach effectively discards these irrelevant examples. Our basic
assumption with generating so many examples is to reduce the likelihood of low
recall.

At this time, we can generate patterns based on the information from the
frequent terms collector. That is, we mask the named entities (e.g. “Infernal
Affairs” ⇒ e1, “The Departed” ⇒ e2). The idea is to obtain entity and word
independent patterns, as shown in the Figure 2. At the end of each iteration,
a list of patterns is generated from the candidate examples. If the pattern had
been generated before, its statistics are updated from the current iteration. For
patterns {p1, . . . , pn}, we compute the pattern similarity using the Levenshtein
distance and those above a given threshold are merged into a set of patterns Pp.
By now, we know the amount of patterns generated in this iteration (Pi). We
note the list Xp of examples that support this pattern. The patterns generated
at iteration i are ranked according to the following scoring function:

score(p) =
α occ(p)

i + β
|Pp|
|Pi| + γ

|Xp|
|X|

α+ β + γ

where occ(p) is the number of iterations this pattern has been discovered out
of total number of iterations i. X denotes the number of total examples in the
system. The scores are normalized in the range [0, 1]. The patterns generated
during this iteration will be used to discover new examples in the next iteration.
These patterns will also be used as features during the classification process.

As previously explained, all of the examples discovered so far may not be
correct. In the next section, we will show how a classifier effectively discards
false positives.

4 Classification

The first part of the verification is to check that the candidate entities (repre-
sented with a label) are related with a type of relationship. Indeed, a sentence
may contain different entities and the discovery process generates in that case
incorrect examples, mainly because of the pattern-based matching. The clas-
sification aims at discarding these incorrect examples without prior knowledge
about the two entities. To fulfill this goal, the verification process can be seen as
a classification problem [13]. Given a set of features (properties), the idea is
to find the correct class for a given example (extracted from a sentence). Each
class represents a type of relationship (e.g., imitation, adaptation). For instance,



An Evidence-Based Verification Approach to Extract Entities and Relations 581

the example (James Cameron, Avatar) should be classified in the class creato-
rOf. A specific class named unknown relationship is added as a garbage class to
collect all incorrect examples or those that cannot be classified in another class.
To select the correct class for an example, a classifier is trained using training
examples, i.e., examples for which the correct class is already known. Although
the training process depends on the type of classifier (e.g., decision tree, Bayes
network), it mainly consists of minimizing the misclassification rate when clas-
sifying the training examples according to the values of their features [13]. To
compute these values, each training example is used as a query over the docu-
ment collection and all sentences containing the two entities of the example are
analyzed given the following features: the frequency and the presence of any fre-
quent terms (e.g., parody), the length and structure of the best-ranked pattern
which generated the example (see Section 3.4), the average spamscore of the
documents from which the pattern is extracted [7]. Note that this paper does
not aim at designing a new classifier, but we rather use existing ones from the
Weka environment [9]. More formally, an example x ∈ X is defined by a set of
features F . We note the set of training examples T , with T ⊆ X . Each example
can be assigned a class c ∈ C. Given a (type of) classifier Γ , we formulate the
training as a process to obtain an instance γ of this classifier as follows:

Γ (T ,F , C)→ γ

The advantage of building a generic classifier rather than many binary classifiers
(for each type of relationship) is that the former enables the verification of dif-
ferent types of relationships. Consider a query for “imitation”, we could obtain
the pair of entities <“Infernal Affairs”, “The Departed”> and <“The Departed”,
Martin Scorsese”>. With a binary classifier for “imitation”, we would only keep
the first example. With a generic classifier, we would store both examples (clas-
sified in different classes). When an instance of a classifier which best minimizes
the misclassification rate is trained, we can use this instance γ for assigning
classes to the unclassified examples:

γ(X ,F , C)→ <(x1, c1), (x2, c1), (x3, c4), . . . , (xk, cn)>

In our context, we cannot assume that the user provides many initial training data.
A set of 5 to 10 examples for each class is realistic. However, some classifiers are
robust with a few training examples while other classifiers achieve better results
with more training data. Two problems arise from these remarks: the former is
about selecting which examples should be added as training data while the latter
dealswith the choice of the classifier for each iteration. Let us discuss the choice of
the trainingdatafirst.To improve the robustness of the classifier, one has to train
it with more data. To add new examples as training data, we have to select them
among the sets of discovered examples from the previous iterations. We propose
two strategies to achieve this goal.The first one (linking based) consists in selecting
all examples that have been verified (with the classification step and the linking
process) during any previous iterations. The second strategy (frequency based) is
based on a frequency constraint: all examples which have been discovered in half
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of the previous iterations are added as training data during the current iteration.
We believe that this selection of training data could be investigated further, e.g.,
when combining the two described strategies.

As for the selection of the classifier, the idea is the following: with the
selected training examples, we generate instances of different types of classifiers
(decision trees such as J48 or NBTree, instance-based such as KStar or IBk,
rule-based such as NNge or JRip, etc.). We perform cross-validation against the
set of training examples for each instance of a classifier, and we compute the
misclassification rate for each of them. The instance of classifier which achieves
the minimal misclassification rate is selected to classify the examples discovered
at this iteration. Such a strategy enables us to ensure that the best classifier is
used for each iteration, but it also brings more flexibility to our approach.

We will show the impact of the training data and the type of classifiers in
Section 7. The result of the classifier is a set of pairs, each of them composed of
an example and its verified relationship class. The next step is to check whether
the two extracted entities have a corresponding LOD entity.

5 Entity Linking

Entity Linking is the task of discovering local entity’s correspondence in another
data source [19].The interest in linking entities is increasing rapidly due to theLOD
movement. Note that linking does not imply coreference resolution is performed,
but linking partially solves the coreference resolution problem. For example, the
local entities “Martin Scorcese” and “Scorcese” are both linked to the same DB-
pedia entity Martin_Scorsese. The kind of linking we are performing here differs
from structure-based linking as we only have labels at our disposal. The core of
the idea is to match the entity against existing general purpose semantic
knowledgebases such asDBpedia orFreebase to obtain correspondingLODenti-
ties.Namely,we build various queries by decomposing the initial label andwequery
in the descriptive text attributes of knowledge bases (i.e., common.topic.article for
Freebase, dbpedia-owl:abstract for DBpedia, etc.). In most cases, several candidate
entities are returned and the task deals with automatically selecting the correct
one. To fulfill this goal, the intuition is based on the hypothesis that the document
about entity e and the descriptive text of LOD entity l should be fairly similar.
Linking is performed for each entity of each document. That means that each doc-
ument where e is mentioned serves as a context for disambiguation and matching
againstLODknowledge bases. We note ξ the vector of terms in e’s document, while
Λ represents the vector of terms of l. Terms in both documents are treated using
bag-of-words method and both the context of e and the descriptive text of l are
represented as a point in an n-dimensional term space. The cosine similarity score
between the vectors ξ and Λ is calculated as follows:

sim(ξ,Λ) =

n∑
i=1

ξi ×Λi√
n∑

i=1

(ξi)2 ×
√

n∑
i=1

(Λi)2
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where n is the size of the vocabulary. The terms in both vectors are based on
classical tf/idf scores while the vocabulary is created out of the whole document
collection. The top ranked entities are chosen as candidates for further com-
parison. This last comparison is performed on labels (and optionally “redirects”
property) of the two entities to ensure a reasonable similarity in the label of e
and one of the labels of l (e.g. “rdfs:label” and “dbpedia-owl:wikiPageRedirects”
for DBpedia). This comparison is necessary because even though the similar-
ity function returns a sufficiently high cosine similarity score, the labels should
also be lexically similar. At this stage, the three well-known similarity measures
are applied (Jaro Winkler, Monge Elkan and Scaled Levenshtein) as described
in [19]. The top linked LOD entity is stored and is considered as a candidate
until the end of the iteration. At the end of an iteration, all verified relationships
(both by the classification and the linking) are converted into triples: for each
entity, some triples express the link to LOD, the different labels and other pos-
sible attributes. One triple represents the relationship between the two entities
and the type of relationship. Thus, the knowledge base is populated iteratively
and can run continuously.

6 Related Work

In the field of knowledge extraction, various works have been proposed to dis-
cover relationships for specific domains [22]. For instance, Snowball associates
companies to the cities where their headquarter is located [1] while DIPRE
focuses on books and authors [5]. To increase the quality and the consistency
of generated facts, systems may either be based on general ontologies such as
Yago [14] or on logical rules associated with a SAT solver [18]. The last trend
in this domain deals with Open Information Extraction, in which the large
scale aspect of the Web is taken into account [8]. However, none of these works
clearly aim at building a semantic knowledge base, thus there is no linking with
the LOD cloud.

DBpedia is one of the first initiative to automatically extract structured
content from Wikipedia [4]. It relies on the infoboxes provided by the knowledge-
sharing community. Since, many companies and organizations have added their
own knowledge base to the LOD cloud, from generic ontologies such as Yago and
Freebase to specialized bases such as MusicBrainz or LinkedMDB [10]. The
process for converting unstructured or semi-structured data sources into facts
is called Triplification5 . For instance, Triplify has been designed to extract
triples from Relational databases and expose them on LOD [2] while Catriple
builds a store of triples from Wikipedia categories [11]. Similarly to most of these
approaches, we generate triples and store them in our knowledge base.

In the Information Retrieval domain, researchers have studied the discovery
of the corresponding LOD entities for a given task, such as in the TREC chal-
lenge [3]. Due to the large scale application and the uncertainty of the results,
a ranking of the most probable entities which correspond to the query (usually
5 http://triplify.org/Challenge/

http://triplify.org/Challenge/
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with target categories) is computed [21,17]. The linking to LOD for disambigua-
tion and enrichment has also been studied for any bag of words [12] as well as
for FRBR entities [19]. In our context, the entities are extracted from textual
documents and usually represented with a label. The surrounding context of
the label in the sentence is the main information available for discovering the
corresponding LOD entity.

7 Experimental Evaluation

To assess the effectiveness of our approach, we have conducted a number of
experiments which are presented below.

7.1 Experimental settings

Our document collection is the English subset of the ClueWeb09 dataset6
which consists of 500 million documents. This dataset is used by several tracks
of the TREC conference [3]. For semantic tagging, several text processing tools
have been used, including OpenNLP7 (for tokenization and sentence splitting),
the StanfordNLP8(for POS tagging). For classification, six classifiers of differ-
ent types were applied, namely the classic Naïve Bayes, the rule-based (NNge,
DecisionTable), tree-based (J48, RandomForest) and lazy (KStar). These clas-
sifiers are included in the Weka software [9]. As for linking, we have used the
DBpedia9 dataset version 3.7 which contains 3,550,567 triples. Apache Lucene
was employed for the backend indexing. Running KIEV for one type of rela-
tion on a subset of the collection took roughly 20 minutes.

7.2 Quality of Discovery Process

In this experiment, we focus on the movie dataset (remakes). Examples of rela-
tionships of interest include imitation, adaptation and creator. The ground truth
for this dataset was obtained from the IMDb10 movie database. This ground
truth contained 545 entries out of the total 1052 remake pairs. For the remain-
ing 507 we could not find suitable documents in our collection. The reason for
this is twofold. First, a number of movies were in non-English language. Sec-
ond, a significant number of movies were created before the Information Age,
i.e., those produced earlier than 1970s. Additionally, some examples were only
mentioned in a few documents.

Figure 3 demonstrates the results of our experiments with or without the
evidence-based verifications. The quality is presented in terms of well-known

6 http://lemurproject.org/clueweb09/
7 http://opennlp.apache.org/
8 http://nlp.stanford.edu/
9 http://wiki.dbpedia.org/Downloads37

10 http://imdb.com

http://lemurproject.org/clueweb09/
http://opennlp.apache.org/
http://nlp.stanford.edu/
http://wiki.dbpedia.org/Downloads37
http://imdb.com
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(b) With Classification and Linking
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Fig. 3. Quality Results for the Remakes Dataset

information retrieval measures - recall, precision and F-measure. Extracted ex-
amples are ranked and thus presented by top-k. In our context, the recall (at
top-k) is the fraction of extracted correct examples (at top-k) out of the total
number of correct examples (at top-k), while the precision (at top-k) is the num-
ber of extracted correct examples (at top-k) out of the total number of extracted
examples (at top-k). F-measure is the harmonic mean of precision and recall.

We first notice that before the verification process, the precision score is quite
low (≈39%) at top-1. This is because the discovery process extracts quite a lot
of incorrect examples (false positives). As we increase the top-k, the recall also
increases and eventually peaks at 87% at top-10. This trend illustrates that our
approach achieves fairly high recall value but at the expense of precision. We
tackle this issue with our verification techniques, i.e., classification and linking.
To show the benefit of both verification steps, the individual results of these
steps are depicted in Figure 3(c) and 3(d). The recall value for both classifica-
tion only and linking only is very similar to the values before verification, thus
confirming that the individual verification do not discard many correct relation-
ships. And the precision values for both steps, which are lower than the precision
score after verification at any iteration, indicate that classification and linking
do not discard the same incorrect examples. Thus, they enable a higher precision
when they are combined.
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Fig. 4. Impact of Training Examples with Frequency based Strategy

Figure 3(b) illustrates that the verification process is effective to discard
incorrect examples (precision score reaching ≈85% at top-1). However, a few
correct relations were also discarded (a ≈6% decrease of recall at top-1), mainly
due to the missing of a link to LOD of one of the entities. Furthermore, this
phenomenon involves changes in the ranking of the extracted examples. Correct
relationships can be promoted to a higher top, thus increasing the recall value
of the highest top (e.g., at top-5). Finally, the benefit of the verification process
clearly appears at top-10, since the plots have a close recall value (≈87%) but
the verification discarded half of the incorrect examples (50% precision).

7.3 Impact of the Training Data

The example discovery process feeds the classifier with new training data for
the subsequent iteration. In this experiment, we have studied the impact of
the selection of this training data by comparing the two strategies described in
Section 4.

Frequency Based Strategy. The frequency based strategy accounts for the
frequency of a given example being discovered in all iterations. Initially, the user
provides a set of 20 training examples (5 per relation type). If a given example is
discovered repeatedly on each iteration, the intuition behind this strategy is that
this example is most likely valuable and is promoted as a training example in
the next iteration. Figure 4 illustrates the impact of the training data at the i-th
iteration. On the y axis, we have the number of training examples that is used
by our classifiers. On the right y2 axis, we have the harmonic mean F-measure
obtained by the best performing classifier at the i-th iteration. The best perform-
ing classifier is the one with the highest F-measure during the classification with
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Fig. 5. Impact of Training Examples with Linking based Strategy

10-fold cross-validation against the training data. Note that from one iteration
to the other, the best performing classifier may be different because the set of
training data evolves. For example, KStar was selected as the best classifier for
the first iteration, but J48 performed better in the second iteration.

On the plot, 85 examples discovered during the first iteration are selected
for training for the second iteration. However, 20 of them are incorrect, i.e.
false positives (shown as a black bar). Both the number of correct and incorrect
examples increases as we move towards the 5-th iteration, eventually reaching
312 and 165 examples respectively for correct and incorrect examples. The high
number of examples can be explained as follows. The frequency based strategy
promotes as training data examples which appear at least 50% of the time in
the previous iterations. Thus the number of added examples can potentially
grow high. Yet, the F-measure obtained on the remakes dataset does not suffer
much from the presence of incorrect examples (stable around 89% after the 3-rd
iteration).

Linking Based Strategy. The linking based strategy provides a harder con-
straint than the frequency based strategy when selecting the training data. In-
deed, the candidate examples have to be verified both by the classification and
by the linking process. Let us study the impact of this strategy over the quality
of results by analyzing Figure 5. It presents the F-measure value achieved by the
best generated classifier and the evolution of the number of training examples
for five iterations.

The first remark about this plot deals with the F-measure scores, which are
higher than those of the frequency based strategy from iterations 1 to 5. An-
other interesting phenomenon with this strategy is that the number of examples
selected as training data (y axis) is lower than the one of the frequency based
strategy. Indeed, the linking based strategy requires that both entities of an ex-
ample are linked to LOD. Thus, this number is dramatically reduced, i.e., 200
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in linking based strategy versus 312 in the frequency-based strategy at the fifth
iteration. Finally, the number of incorrect examples is much lower in the linking
based strategy too.

These remarks about the total number of correct examples together with the
higher F-measure value are clear indicators that the linking based strategy is
quality oriented while the frequency based strategy is performance oriented (sim-
ple and fast computation). The latter strategy is more appropriate for quickly
generating training examples.

7.4 Comparative Evaluation

Finally, the evaluation of KIEV would not be complete without a comparison
with similar knowledge extraction systems. Two systems, Prospera and
NELL, are publicly available along with their dataset about sports. The results
of these systems over the sport dataset are reported in [6,14]. To be fair in this
evaluation, we have used the same set of training examples, and we also validated
1000 random types of relationship, as explained in the experiments reported
in [6,14]. This means that similarly to Prospera and NELL, our precision is an
estimation, due to the amount of relationships to be validated.

Figure 6 summarizes the comparison between the three systems in terms of
estimated precision. We notice that the average precision of the three systems
is the same (around 0.91). However, the total number of facts discovered by
KIEV (71, 921) is 36 times higher than NELL (2, 112) and 1.3 times higher
than Prospera (57, 070). As a consequence, KIEV outperforms both baselines.
Prospera provides slightly better quality results than our approach on the Ath-
letePlaysForTeam relationship. However, several factors have an influence on the
precision results between Prospera, NELL and KIEV. First, Prospera is able to
use seeds and counter seeds while we only rely on positive examples. On the
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other side, Prospera includes a rule-based reasoner combined with the YAGO
ontology and KIEV mainly uses the LOD cloud for verification purposes. Yet,
the combination of POS-tagged patterns and NER techniques supported by the
two verification steps achieves outstanding precision values.

8 Conclusion

We have presented our novel approach KIEV for populating a knowledge
base with entities and relationships. Our approach enables the analysis of a
large amount of documents to extract examples (of entities) with their expected
type of relationships after each iteration. A verification step ensures an accept-
able quality for these extracted relationships by discarding irrelevant examples
(classification) and by discovering the corresponding LOD entities (entity link-
ing). Experiments performed on different datasets confirm the significant benefit
of the verification step, thus enabling our approach to run continuously and to
use new examples as training data to strengthen both the produced classifier
and consequently the verification process.

The outcome of this work provides several interesting perspectives. First, we
plan to run more experiments to analyze the impact of parameters (e.g.,
selection of the training data, number of iterations on the long term). We could
associate a confidence score (based on provenance, number of patterns, num-
ber of occurrences, etc.) to each discovered relationship to rank them and help
discarding the incorrect ones. Another objective is to study the architecture
and implementation of the knowledge base in terms of infrastructure and
support for RESTful and SPARQL queries. When our knowledge base will be
publicly available, we plan to integrate user feedback to address the poten-
tially contradictory cases between the two verification steps (classification and
linking). Then, an extension could be proposed to discover any type of rela-
tionship, from an ontology for instance, by automatically defining the features
and the training examples.
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Abstract. In RDF, a blank node (or anonymous resource or bnode)
is a node in an RDF graph which is not identified by a URI and is
not a literal. Several RDF/S Knowledge Bases (KBs) rely heavily on
blank nodes as they are convenient for representing complex attributes
or resources whose identity is unknown but their attributes (either lit-
erals or associations with other resources) are known. In this paper
we show how we can exploit blank nodes anonymity in order to re-
duce the delta (diff) size when comparing such KBs. The main idea
of the proposed method is to build a mapping between the bnodes of the
compared KBs for reducing the delta size. We prove that finding
the optimal mapping is NP-Hard in the general case, and polynomial in
case there are not directly connected bnodes. Subsequently we present
various polynomial algorithms returning approximate solutions for the
general case.

For making the application of our method feasible also to large KBs we
present a signature-based mapping algorithm with n log n complexity. Fi-
nally, we report experimental results over real and synthetic datasets that
demonstrate significant reductions in the sizes of the computed deltas.
For the proposed algorithms we also provide comparative results regard-
ing delta reduction, equivalence detection and time efficiency.

1 Introduction

The ability to compute the differences that exist between two RDF/S Knowledge
Bases (KBs) is an important step to cope with the evolving nature of the Se-
mantic Web (SW). In particular, RDF/S Deltas can be employed to aid humans
understand the evolution of knowledge, and to reduce the amount of data that
need to be exchanged and managed over the network in order to build SW syn-
chronization [19,1], versioning [7,8,1,4,21] and replication [17] services. A rather
peculiar but quite flexible feature of RDF is that it allows the representation of
unnamed nodes, else called blank nodes (for short bnodes), a feature that is con-
venient for representing complex attributes (e.g. an attribute address as shown
in Figure 1) without having to name explicitly the auxiliary node that is used

� Current affiliation: Information Systems Lab,University of Macedonia, Thessaloniki,
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c© Springer-Verlag Berlin Heidelberg 2012



592 Y. Tzitzikas, C. Lantzaki, and D. Zeginis

Fig. 1. Examples of blank nodes

for connecting together the values that constitute the complex value (i.e. the
particular street, number and postal code values). A recent paper [10] that
surveys the treatment of bnodes in RDF data, proves that blank nodes is an in-
evitable reality. Just indicatively, and according to their results, the data fetched
from the “hi5.com” domain consist of 87.5% of blank nodes, while those from
the “opencalais.com” domain, which is part of LOD (Linked Open Data) cloud,
has 44.9% bnodes. The authors also state that the inability to match bnodes
increases the delta size and does not assist in detecting the changes between
subsequent versions of a KB.

Previous works on comparing RDF KBs have not elaborated on this issue
thoroughly. There are works (e.g. [21,22]) proposing differential functions that
yield reduced in size deltas (in certain cases) but treat bnodes as named nodes.
Other works and systems (specifically Jena [3]) focus only on deciding whether
two KBs that contain bnodes are equivalent or not, and do not offer any delta
size saving for the case where the involved KBs are not equivalent. In brief, and
to the best of our knowledge, there is not any work that attempts to establish
a bnode mapping for reducing the delta size for the case of non equivalent KBs.
Note that finding such a mapping can be considered as a preprocessing step,
a task that is carried out before a differential function (like those described in
[17,20,16,15,8,21]) is applied.

We prove that finding the optimal mapping is NP-Hard in the general case and
polynomial if there are not directly connected bnodes. Subsequently we present
various polynomial algorithms returning approximate solutions for the general
case. For making the application of this method feasible also to large KBs one
of these algorithms has n logn complexity.

The experimental results over real and synthetic datasets showed that our
method significantly reduces the sizes of the computed deltas, while the time re-
quired is affordable (just indicatively the n logn algorithm requires a few seconds
for KBs with up to 150,000 bnodes). For the proposed algorithms we also pro-
vide comparative results regarding time efficiency and their potential for delta
reduction and equivalence detection.

The rest of this paper is organized as follows. Section 2 discusses RDF KBs
with bnodes and the equivalence of such KBs. Section 3 elaborates on the
problem of finding the optimal mapping. Section 4 proposes bnode matching
algorithms and Section 5 reports experimental results. Section 6 discusses the
applicability of the method at the presence of inference rules and various
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semantics, Section 7 discusses related work, and finally, Section 8 concludes the
paper and identifies issues for further research.

Software and datasets are available to download and use from
http://www.ics.forth.gr/isl/BNodeDelta.

2 RDF KBs with Blank Nodes

Consider there is an infinite set U (RDF URI references), an infinite set B (blank
nodes) and an infinite set L (literals). A triple (s, p, o) ∈ (U∪B)×U×(U∪B∪L)
is called an RDF triple (s is called the subject, p the predicate and o the object).
An RDF Knowledge Base (KB) K, or equivalently an RDF graph G, is a set of
RDF triples.

For an RDF Graph G1 we shall use U1, B1, L1 to denote the URIs, bnodes
and literals that appear in the triples of G1 respectively. The nodes of G1 are
the values that appear as subjects or objects in the triples of G1.

The equivalence of RDF graphs that contain blank nodes is defined in [9] as:

Def. 1 (Equivalence of RDF Graphs that contain Bnodes)
Two RDF graphs G1 and G2 are equivalent if there is a bijection1 M between
the sets of nodes of the two graphs (N1 and N2), such that:

– M(uri) = uri for each uri ∈ U1 ∩N1

– M(lit) = lit for each lit ∈ L1

– M maps bnodes to bnodes (i.e. for each b ∈ B1 it holds M(b) ∈ B2)
– The triple (s, p, o) is in G1 if and only if the triple (M(s), p,M(o)) is

in G2. -

It follows that if two graphs are equivalent then it certainly holds U1 = U2,
L1 = L2 and |B1| = |B2|.

Let us now relate the problem of equivalence with edit distances.

Def. 2 (Edit Distance over Nodes given a Bijection)
Let o1 and o2 be two nodes of G1 and G2, and suppose a bijection between the
nodes of these graphs, i.e. a function h : N1 → N2 (obviously |N1| = |N2|). We
define the edit distance between o1 and o2 over h, denoted by disth(o1, o2), as
the number of additions or deletions of triples which are required for making the
“direct neighborhoods” of o1 and o2 the same (considering h-mapped nodes the
same). Formally, disth(o1, o2) =
|{(o1, p, a) ∈ G1 | (o2, p, h(a)) �∈ G2}|+ |{(a, p, o1) ∈ G1 | (h(a), p, o2) �∈ G2}|+
|{(o2, p, a) ∈ G2 | (o1, p, h−1(a)) �∈ G1}|+ |{(a, p, o2) ∈ G2 | (h−1(a), p, o1) �∈ G1}| !

Now recall that if G1 is equivalent to G2 then there exists a bijection h such
that (a, p, b) ∈ G1 ⇔ (h(a), p, h(b)) ∈ G2. We will denote this by G1 ≡h G2. It
follows that:

Theorem 1 (RDF Graph Equivalence and Edit Distance)
G1 ≡h G2 ⇔ disth(o, h(o)) = 0 for each o ∈ N1.

1 A function that is both one-to-one (injective) and onto (surjective).
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Obviously the above theorem is useful for the case where the bijection h respects
the constraints of Def. 1 (i.e. maps named elements to named elements, and
anonymous elements to anonymous).

3 On Finding the Optimal Bnode Mapping

Let us now focus on the case where two KBs, K1 and K2, are not necessarily
equivalent and do contain bnodes. We would like to find a mapping over their
bnodes that reduces the size (i.e. the number of change operations) of their delta
and allows detecting whether K1 is equivalent to K2. Furthermore we want an
efficient (tractable at least) method for finding such a mapping.

3.1 RDF/S Differential Functions

[21,22] described and analyzed various differential functions for comparingRDF/S
knowledge bases. Each differential function returns a set of primitive change opera-
tions, i.e.Add(t) andDel(t) where t is an RDF triple. For the needs of this paper, it
is enough to use the differential functionΔewhich is defined as follows (“−” denotes
set difference): Δe(K1 → K2) = {Add(t) | t ∈ K2−K1}∪{Del(t) | t ∈ K1−K2}.
We call its output delta.

3.2 Bnode Name Tuning and Delta Reduction Size

The basic idea for reducing the delta is the following: if we match a bnode b1
(of B1) to a bnode b2 (of B2), through a bijection M , then these bnodes can
be considered as equal at the computation of delta. For example, if K1 contains
a triple (b1, name, Joe) and K2 contains a triple (b2, name, Joe) and we match
b1 to b2, then these two triples will be considered equal and thus no difference
will be reported. However we should note that in the context of versioning or
synchronization services the change operations derived by a differential function
should not be used as they are. For example, consider K1 = {(b1, name, Joe)}
and K2 = {(b2, name, Joe), (b2, lives, UK)} and suppose that we match again
b1 to b2. In this case a mapping-aware comparison function will return the delta
{Add((b2, lives, UK))}. If we want to apply it on K1 then we have to replace b2
by b1, i.e we should apply on K1 the operation Add((b1, lives, UK)), and in this
way, we will obtain K ′

1 = {(b1, name, Joe), (b1, lives, UK)} which is equivalent
to K2. We call this step Bnode Name Tuning, and it actually replaces (renames)
in the delta the local names of the bnodes ofB2 by the local names of the matched
bnodes in B1. In this way the delta does not need any rename operation (i.e.
rename(b1, b2)) and hence not any particular execution order.

Delta Reduction Size. Bnode matching cannot increase delta size. Without
bnode matching any pair of bnodes from different KBs is considered different,
and thus all triples to which they participate will be different and reported as
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change operations in the delta. On the other hand, if two bnodes are matched
then the delta size is reduced if they participate to triples with the same predicate
and the same other node (i.e. the same subject or object). In the case where all
predicates/nodes of these triples are different, the delta size that will be reported
is what will be reported without bnode matching.

3.3 Bnode Matching as an Optimization Problem

Here we formulate the problem of finding a mapping between the bnodes of two
KBs as an optimization problem. Let n1 = |B1|, n2 = |B2| and n = min(n1, n2).
We have to match n elements of B1 with n elements of B2, i.e. our objective is
to find the unknown part of the bijection M . To be more precise, M a priori
contains the mappings of all the URIs and literals of the KBs (URIs and literals
are mapped as an identity function as in Def. 1), and its unknown part concerns
B1 and B2. Suppose that n = n1 < n2. Let J denote the set of all possible
bijections between B1 and a subset of B2 that comprises n elements. The number
of all possible bijections (i.e. |J |) is n2 ∗ (n2− 1) ∗ ... ∗ (n2−n1+1), i.e. the first
element of B1 can be matched with n2 elements of B2, the second with n2 − 1
elements, and so on. Consequently, the set of candidate solutions is exponential
in size. Since our objective is to find a bijection M ∈ J that reduces the delta
size (as regards the “unamed” parts of the KBs), we define the cost of a bijection
M as follows:

Cost(M) =
∑

b1∈B1

distM (b1,M(b1)) (1)

Def. 3 (The bijection yielding the less delta size) The best solution (or
solutions) is defined as the bijection with the minimum cost, i.e. we define:

Msol = argM min
M∈J

(Cost(M)) -

The notation argM returns the M in J that gives the minimum cost.

Theorem 2 (Equivalence and Mapping Cost)
If G1 ≡Msol

G2 (according to Def. 1) then Cost(Msol) = 0.

The proof follows easily from the definitions. It is also clear that the inverse of
Th. 2 does not hold (i.e. Cost(Msol) = 0 �⇒ G1 ≡Msol

G2) because the cost is
based on the distance between the direct neighborhoods of the blank nodes only,
and not between the named parts of the graphs.

From the algorithmic perspective, one naive approach for finding the best
solution (i.e. Msol) would be to examine the set of all possible bijections. That
would require at least n! examinations (true if n1 = n2 = n, while if n1 < n2

then their number is higher than n!). However, the problem is intractable in
general:

Theorem 3. Finding the optimal bijection (according to Def. 3) is NP-Hard.
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Proof:
We will show that subgraph-isomorphism (which is NP-complete problem) can be re-
duced to the problem of finding the optimal bijection (meaning that our problem is at
least as hard as subgraph-isomorphism). Let us make the hypothesis that we can find
the optimal bijection in polynomial time. We will prove that if that hypothesis were
true, then we would be able to solve the subgraph isomorphism in polynomial time.
The subgraph isomorphism decision problem is stated as: given two plain graphs G1

and G2 decide whether G1 is isomorphic to a subgraph of G2. Let G1 = (N1, R1) and
G2 = (N2, R2). We can consider these graphs as two RDF graphs such that: all of their
nodes are bnodes and all property edges have the same label. Assume that |N1| ≤ |N2|
and let n = min(|N1|, |N2|). If we can find in polynomial time whether there is a bi-
jection between the n nodes of G1 and n nodes of G2 such that Cost(Msol) = 0, then
this means that we have found whether G1 is isomorphic to a subgraph of G2. Specifi-
cally, to decide whether there is a subgraph isomorphism, (a) we compute the optimal
bijection, say Msol, and (b) we compute its cost. If the cost returned by step (b) is 0
then we return YES, i.e. that there is a subgraph isomorphism. Otherwise we return
NO (i.e. there is no subgraph isomorphism). Note that step (a) is polynomial by hy-
pothesis, while step (b) relies on Def. 2 and its cost is again polynomial. Regarding the
latter, note that Msol contains n pairs, and to compute distM (b1, b2) for each (b1, b2)
pair of M , we consider only the direct neighborhoods of the two nodes in the two graphs
(for G2 we have to consider only those that connect nodes that participate in Msol)

2.
It follows that its computational cost is analogous to the number of edges of the graphs,
and thus polynomial. Therefore given a bijection Msol, to compute Cost(Msol) requires
polynomial time. Also note that Th. 1 holds also for plain graphs assuming a distance
function over not labeled edges. We conclude that if our hypothesis were true, then we
would be able to decide subgraph isomorphism in polynomial time.

We conclude that finding the optimal bijection is NP-Hard. !

Below we will show that there are algorithms of polynomial complexity for a
frequently occurring case. For the general case, we will propose algorithms of
polynomial complexity that return an approximate solution.

3.4 Polynomially-Solved (and Frequently Occurring) Cases

Consider the KBs in Figure 2 and suppose that we want to compute disth( :
1, : 6) (according to Def. 2). It is not hard to see that this distance depends
on the mappings (by h) of the bnodes that are connected to : 1 and : 6, i.e.
on the mappings of : 3, : 4, : 8 and : 9. However several datasets do not
have directly connected bnodes. For this reason, here we study a variation of
the problem that is appropriate for this case. The key point is that the distance
between two bnodes does not depend on how the rest bnodes are mapped.

This is very important because in this case we can solve the optimization
problem (as defined in Definition 3) using the Hungarian algorithm [12] (for
short AlgHung , an algorithm for solving the assignment problem. Here the ele-
ments (bnodes) of B1 play the role of workers, the elements (bnodes) of B2 play

2 Alternatively, if Cost(Msol) �= 0 (using the distance as defined in the main paper),
we return YES only if Δe(G1 → G2) as defined in section 3.1, after bnode name
tuning, contains only triples each containing one bnode in B1 and one not in B1.
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Fig. 2. Two KBs with directly connected bnodes

the role of jobs, and the edit distances of the pairs in B1 × B2 play the role of
the costs. Consider for the moment that |B1| = |B2|. If we compute the edit
distances between all possible n2 pairs, then AlgHung can find the optimal as-
signment at the cost of O(n3) time. This means that finding the optimal solution
costs polynomial time. An extension of AlgHung giving the ability to assign the
problem in rectangular matrices (i.e. when |B1| �= |B2|) is already provided in
[2]. We conclude that if there are not directly connected bnodes then the optimal
mapping can be found in polynomial time.

Theorem 4. Finding the optimal bijection (according to Def. 3) is a polynomial
task if there are no directly connected bnodes. -

4 Bnode Matching Algorithms

At section 4.1 we present a variation of AlgHung for getting an approximate
solution for the general case, then at Section 4.2 we present a signature-based
algorithm appropriate for larger datasets.

4.1 Hungarian BNode Matching Algorithm

We have already stated that AlgHung can find the optimal mapping in polynomial
time if no directly connected bnodes exist in the compared KBs. For the cases
where there are directly connected bnodes, AlgHung enriched with an assumption
regarding how to treat the connected bnodes at the computation of disth, could
be used for producing an approximate solution. Also in this case the algorithm
will make n1 × n2 distance computations (where n1 = |B1| and n2 = |B2|), and
the complexity of the algorithm will be again O(n3).

Regarding connected bnodes, at the computation of disth, one could either
assume that all of the connected bnodes are different, or all of them are the
same. The first assumption does not require any bijection (h contains only the
identity functions of the URIs and literals). According to Definition 2, the fact
that all the bnodes are different means by extension that the triples in the direct
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neighborhoods connecting blank nodes are different too, even in the case where
these triples have the same properties. For instance, applying the Definition
2 between bnodes ( : 1, : 6) and ( : 1, : 7) of Figure 2, we get that
disth( : 1, : 6) = 4 and disth( : 1, : 7) = 3 respectively. However, bnodes
: 1, : 6 have two outgoing triples with exactly the same properties, while

bnodes : 1, : 7 have only one. We observe that this assumption is not very
good because we would prefer : 1 to be “closer” to : 6 than to : 7.

According to the alternative assumption, when comparing bnodes ( : 1, : 6)
in Figure 2, bnode : 3 can be matched either with bnode : 8 or with bnode
: 9, depending on the existence of a common property between them. This

yields disth( : 1, : 6) = 0 since both bnodes have two outgoing triples with
common properties (i.e. ( : 1, brother, : 3) is matched with ( : 6, brother, : 8)
and ( : 1, friend, : 4) is matched with ( : 6, friend, : 9)). Regarding : 1 and
: 7, we get disth( : 1, : 7) = 1 because of the deleted triple ( : 1, brother, : 3).

It follows that the results of this assumption are better over this example, as
: 1 is “closer” to : 6 than to : 7. In general it is better because it exploits

common properties, and therefore we adopt this assumption in our experiments.

4.2 A Fast (O(n logN)) Signature-Based Algorithm

The objective here is to devise a faster mapping algorithm that could be applied
to large KBs, at the cost of probably bigger deltas. We propose a signature-
based mapping algorithm, for short AlgSign, which consists of two phases: the
signature construction and the mapping construction phase. For each bnode b
we produce a string based on the direct neighborhood of b. This string is called
the signature of bnode b. This phase gives us two lists of signatures, one for the
bnodes of each KB. These lists should be considered as bags rather than sets,
as there is a probability that two or more bnodes get the same signature. The
probability depends on the way the signature is built (we discuss this later).

The mapping phase takes these two bags of strings and compares the elements
of the first bag with those of the second. To make binary search possible, both

Alg. SignatureMapping
Input: two sets of bnodes B1 and B2,

where |B1| < |B2|
Out: a bij. M between B1 and B2

(1) M = ∅
(2) BS1 = BS2 = emptybag
(3) for each b1 ∈ B1

(4) BS1 = BS1 ∪ {Signature(b1)}
(5) for each b2 ∈ B2

(6) BS2 = BS2 ∪ {Signature(b2)}
(7) sort(BS1)
(8) sort(BS2)

(9) for each bs1 ∈ BS1

(10) bs2 = Lookup(BS2, bs1)
(11) if (bs2 == bs1) // exact match

(12) M = M ∪ {(bn1[bs1], bn2[bs2])}
// bn1[str] returns the b ∈ B1 corresponding to str

(13) BS2.remove(bs2)
(14) BS1.remove(bs1)
(15) for each bs1 ∈ BS1

(16) bs2 = Lookup(BS2, bs1) // closest match

(17) M = M ∪ {(bn1[bs1]), bn2[bs2])}
(18) BS2.remove(bs2)
(19)return M

Fig. 3. Alg. The Signature-based bnode matching algorithm
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Fig. 4. Two versions of an address Knowledge Base

bags are sorted lexicographically. In particular, we start from the smaller list,
say BS1, and for each string bs1 in that list we perform a lookup in the second
list BS2 using binary search. If an exact match exists (i.e. we found the string bs1
also in BS2) we produce a mapping, i.e. the pair (bn1[bs1], bn2[bs1]). Since more
than one bnodes may have the same signature we select one. We prefer the order
as provided by the managing software, which in many cases reflects the order
by which bnodes appear in files. As there is a high probability for subsequent
versions to keep the same serialization, using the original order increases the
probability of matches in case of same signatures3. We continue in this way for
all strings of BS1. For each element bs1 of BS1 for which no exact match was
found in BS2 we perform a second lookup over the remainder part of BS2, say
BS′

2, which will produce a mapping based on the closest element of BS′
2 to the

bs1 element. Specifically, we will match bs1 to the element of BS′
2 to which binary

search stopped, i.e. to the lexicographically closer element. Note that we perform
the closest matches after finishing with the exact matches in order to avoid the
situation where an approximate match deters an exact match at a later step.

The complexity of this algorithm is O(n logN) where N = max(n1, n2) and
n = min(n1, n2), assuming that the average graph degree of bnodes (and thus
signature size) does not depend on N . The algorithm is shown in Figure 3 and
relies on an algorithm Signature for producing signatures, and on a algorithm
Lookup as described earlier. As regards the signature construction method we
would like to derive strings that allow matches that will yield small deltas even
if the bnodes do not match exactly. To this end, we should give priority (i.e.
bring to the front part of the string) to the items of the bnode that have lower
probability to be changed from one version to the other.

Table 1. Signatures on bnodes of K1 and K2 of Fig. 4 according to the given option

Local
Name

Signature

: 1 ChristinahasAddress♦typeAddress♦cityLondon ∗ No14 ∗ streetOxfordStreet
: 3 ChristinahasAddress♦typeAddress♦cityLondon ∗ No14 ∗ streetOxfordStreet
: 2 Y annishasAddress♦typeAddress♦cityNewY ork ∗ No445 ∗ streetBroadway
: 4 Y annishasAddress♦typeAddress♦cityChicago ∗ No132 ∗ streetMichiganAvenue

3 We do the same in AlgHung in case of ties in costs.
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Consider bnode : 1 of Figure 4 which is involved in the following triples:
Incoming: {(Christina, hasAddress, : 1)}, Outgoing: {( : 1, street,OxfordStreet),

( : 1, No, 14), ( : 1, city, London)}, Class Type: {( : 1, type, Address)}. Each of
these triples will be mapped to a substring (e.g. ”ChristinahasAddress” for the
triple (Christina, hasAddress, : 1)). The set Class Type contains the triples
with the rdf:type (“type” in the figure) property of the respective bnode. For
the three different sets of triples (Incoming, Outgoing, Class Type) we are going
to construct three sets of substrings respectively. The substrings inside each set
are sorted lexicographically and separated by a special character, here denoted
by ∗ . The concatenation of these sets of substrings will yield the signature.
A key point is the order by which the sets are concatenated. One option is to
give a first priority to the set of the incoming triples, a second priority to the
set with type information (i.e. ”typeAddress”), and the last priority to the set
of the outgoing triples. We should also mention that inside the signature the
sets are separated by a special character, here denoted by ♦. Table 1 shows the
signatures of all the bnodes of Figure 4 according to this option. The proposed
ordering of the substrings inside the signature stems from the assumption that
the probability for the outgoing statements to change is higher than the incoming
(e.g. in Figure 4 updating the address of a person is more probable than changing
his/her name). Under this assumption the incoming statements should precede
the outgoing inside the signature. Similarly for the class type of the bnode, it is
not usual to be changed from one version to the other.

We represent the blank nodes which are subjects of incoming statements or
objects of the outgoing statements, by a special character ♣ (i.e. we treat them
as equal, as we did in the 2nd assumption of approximation version of AlgHung).

5 Experimental Evaluation

Real Datasets. We performed experiments for evaluating the potential for
delta reduction, equivalence detection and time efficiency. In our experiments4,
we used two real datasets available in the LOD cloud: the Swedish open cultural
heritage dataset5, and the Italian Museums dataset6, published from LKDI7.
From each one we downloaded two versions with a time difference of one week
or month. A preprocessing was necessary for corrections (e.g. missing URIs for
some classes) and for merging the files. The features of these two datasets are
given in Table 2. In both datasets there are no directly connected bnodes.

Experiments were conducted with and without bnode mapping. Regarding
mapping we tested: (a) the random, (b) the Hungarian, and (c) the Signature-
based mapping methods. The results are shown in Table 3. The first rows show

4 Using Sesame RDF/S Repository (main memory), using a PC with Intel Core i3 at
2.2 Ghz, 3.8 GB Ram, running Ubuntu 11.10.

5 http://thedatahub.org/dataset/swedish-open-cultural-heritage used from
http://kringla.nu/kringla/ for providing information on cultural data of Sweden.

6 http://thedatahub.org/dataset/museums-in-italy
7 http://www.linkedopendata.it/

http://thedatahub.org/dataset/swedish-open-cultural-heritage
http://kringla.nu/kringla/
http://thedatahub.org/dataset/museums-in-italy
http://www.linkedopendata.it/


Blank Node Matching and RDF/S Comparison Functions 601

Table 2. Features of two real LOD datasets

Swedish Italian

File 1 File 2 File 1 File 2

Date 15/10/11 22/10/11 2/11/11 4/12/11
|Triples| 3,750 3,589 49,897 49,897
|BNodes| 535 509 6,390 6,390
|Triples with bnodes| 77.7% 77.2% 43.85% 43.85%
Total Size 378 KB 365 KB 5.49 MB 5.46 MB

Table 3. Experimental results over real datasets

Swedish Italian

without BM with BM (bnode matching) without BM with BM (bnode matching)
Random AlgHungAlgSign Random AlgHungAlgSign

|Added| 2,805 2,726 75 127 21,885 19,762 3 3
|Deleted| 2,966 2,887 236 288 21,885 19,762 3 3
|Δe| 5,771 5,613 311 419 43,770 39,524 6 6

BLoad Time(ms) - 631 630 634 - 428 423 421
SC Time(ms) - - - 210 - - - 840
BM Time(ms) - 1.3 5,391 130 - 4.9 576,592 82.5
Diff Time(ms) 55 64 30 47 145 166 169 163
Tuning Time(ms) - 15 0.2 0.5 - 3,332 9.4 9.5
Total Time(ms) 57 715 5,931 1,024 147 3,935 577,197 1,521

the size of the yielded deltas and the last rows the time required for loading
the bnodes (BLoad), constructing signatures (SC), bnode maping (BM), delta
computation (Diff), bnode name tuning (Tuning Time), and the total time. We
observe that the algorithms provide a delta of 12.7 to 7, 294 times smaller than
without bnode mapping. AlgHung yields an equal (for the Italian) or smaller
(0.34 times smaller for the Swedish) delta than AlgSign, but it requires more
time (from 15 to 624 times).

Synthetic Datasets. Although semantic data generators already exist in the
bibliography, none of them deals with the blank node connectivity issues. There-
fore we designed and developed a synthetic generator over the UBA (Univ-Bench
Artificial data generator) [5] that can generate datasets with the desired bnode
structures. Each dataset corresponds to an RDF graph G. Let Nodes be the set
of all nodes in the graph, B be the set of bnodes (B ⊆ Nodes), and conn(o)
be the nodes of G that are directly connected with a node o ∈ Nodes. We de-

fine bdensity as bdensity = avgb∈B
|conn(b)∩B|
|conn(b)| . Note that if there are no directly

connected bnodes then bdensity = 0. The extended generator can create datasets
with the desired bdensity and the desired maximum length of paths that consist
of edges that connect bnodes (we denote by blen their average). Using the syn-
thetic generator, we created a sequence of 9 pairs of KBs (each pair has two
subsequent versions of a KB). For instance, the first KB is K0 and its pair is
K ′

0. Each time we compare the subsequent versions of a pair with respect to
mapping time and yielded delta size. From now on we express the delta size as a

percentage of the number of triples of the KB, i.e. as |Δe(K,K′)|
|K|+|K′|

2

. Table 4 shows

the blank node properties of each pair of KBs, its optimal delta size over its
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Table 4. Blank node Features of the synthetic dataset

K |triples| |B| Da bdensity blen Optimal
delta
size

Variation

K0a 5,846 240 13.4 0 0 1% No connected blank nodes
K1a 5,025 240 10.5 0.1 1 0.5% b Neighborhoods of 2 bnodes, reduced b named

triples
K2a 2,381 240 7 0.15 1 1.5% Reduced b named triples
K3a 1,628 240 5 0.2 1 1.5% Reduced b named triples
K4a 1,636 240 5 0.2 1.15 1% b Neighborhoods of up to 8 bnodes
K5a 1,399 240 4 0.25 1.15 1.7% Reduced b named triples
K6a 919 240 3 0.32 1.15 3.2% b Neighborhoods of up to 15 bnodes, reduced

b named triples
K7a 909 240 3.25 0.4 1.35 2.7% Connect b Neighborhoods, reduced b named triples
K8a 1,001 240 3.94 0.5 21.5 2.5% Connect b Neighborhoods

subsequent version (known by construction) and its variation over the next pair
of KBs (we call b Neighborhood every subgraph having as nodes only bnodes,
and we call b named triple every triple that contains one bnode). With Da we
denote the average number of direct edges of the bnodes (i.e. average number of
triples to which a bnode participates).

Figure 5(left) gives the delta reduction potential of each algorithm in loga-
rithmic scale. Without bnode mapping the delta size ranges from 95% (for the
second pair of KBs) to 143% (for the ninth pair of KBs). Instead for AlgHung it
ranges from 0.47% to 10.67% and for AlgSign it ranges from 1% to 11.5%. Notice
that AlgSign does not reduce the delta to the optimal for any pair of datasets,
while AlgHung achieves the optimal delta for most of the pairs.

Figure 5 (right) shows the delta reduction potential for the same pairs with
the difference that the two bnode lists are not scanned in the original order (as
in the left figure), but the second list is reversed. We notice that as the areas of
directly connected bnodes become bigger (after the sixth pair of datasets), we
get different (here higher) deltas. In such areas the direct neighborhoods lose
their discrimination ability and thus the delta reduction potential becomes more
unstable, increasing the probability to get a bigger delta.

If we use the optimal delta as baseline, and compute the percentage
|Δx|−|Δopt|

|Δopt| ,

in the first diagram this percentage for AlgHung falls in [0, 2.88], while the
AlgSign’s percentage falls in [0.4,3.2] (in the second diagram they fall in [0,8]
and [0.4,8] resp.).

Fig. 5. Delta Reduction over the synthetic datasets
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Fig. 6. Mapping times over the synthetic datasets

Figure 6 (left) shows the mapping times of each algorithm in logarithmic scale.
AlgSign gives two orders of magnitude lower mapping times.

Equivalences. Regarding equivalent KBs, if there are no directly connected
bnodes then AlgHung detects them at polynomial time (recall Th. 4). To investi-
gate what happens if there are directly connected bnodes we compared the pairs
(Kia,Kia) for i=0 to 8 of the synthetic KBs. In case of similarly ordered bnode
lists both AlgHung and AlgSign detected equivalences for all the KBs, while for
reverse scanned bnodes lists they detected 5 of the 9 equivalences. They did not
detect equivalences for the KBs with bdensity ≥ 0.25.

Bigger Datasets. To investigate the efficiency of AlgSign in bigger datasets, we
created 7 pairs of KBs: the first pair contains 23,827 triples and 2,400 bnodes,
the second pair has the double number of triples and bnodes, and so on, until
reaching the last pair containing 153,600 bnodes. From Fig. 6 (right) we can see
that the mapping time for AlgSign was only 10.5 seconds for the seventh pair of
KBs (153,600 bnodes). AlgHung could not be applied even to the third pair of
KBs due to its high (quadratic) requirements in main memory space.

The results are summarized in the concluding section.

Measuring the Approximation. The upper bound of the reduction of the
delta size that can be achieved with bnode matching is the min number of bnodes
of the two KBs multiplied by their average degree. Experimentally we have
investigated whether bdensity (which is zero if there are no directly connected
bnodes, and equal to 1 if all nodes are bnodes as in the proof of Th. 3), is

related with the deviation from the optimal delta dx =
|Δx|−|Δopt|
|Δopt|+1 . Results over

equivalent and non-equivalent KBs are shown at Figure 7. Both algorithms give
a much smaller deviation from optimal than without bnode matching (its dx
ranges [47,114]). We also observe that keeping the original order of the bnodes
is beneficial for both algorithms. For the non equivalent KBs the AlgHung gives
always equal or (mostly) smaller delta than the AlgSign, while for the equivalent
both algorithms give exactly the same deviation.
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Fig. 7. dx over non equivalent (left) and equivalent (right) KBs

6 Discussing Semantics and Inference Rules

Apart from the explicitly specified triples of a KB, other triples can be inferred
based on the RDF/S semantics [6], or other custom inference rules. In some
cases one may want to decide whether two KBs are equivalent or to compute
their delta with respect to a particular set of rules. In such scenarios, equivalence
can be based again on the Def. 1 and the edit distance over nodes on the Def
2 with the only difference that the graphs should be completed according to the
inferred triples. It follows that if the semantics is based on a set of inference
rules yielding a finite closure, then the graph is finite and thus our method
can be applied. Some semantics offering finite closures are RDF/S semantics,
Minimal RDFS semantics [11], ter Horst’s pD* semantics and OWL 2 RL, or
even application-specific like [18].

It is worth mentioning, that the optimal bnode mapping over the complete
graphs may be different from the optimal mapping when considering the explicit
graphs. In the example of Figure 8, where fat arrows denote rdfs:subClassOf

relationships and dotted arrows rdf:type relationships, the bijection with the
minimum cost over the explicit graphs (left) is {( :1, :4),( :2, :3)}, while at the
completed graphs (right) the bijection with theminimum cost is {( :1, :3),( :2, :4)}

Furthermore, for checking equivalence (at the presence of bnodes) or comput-
ing deltas, one could use the reduced graphs in case they are unique (note that
the reduction of a Ka, is the smallest in size Kb that is equivalent to Ka, i.e. Ka

and Kb have the same closure).

Fig. 8. Comparing the explicit versus the complete graphs of two KBs
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7 Related Work

Jena [3] provides a method for deciding whether two KBs that contain bnodes
are equivalent (assuming Def. 1) and the adopted algorithm is GI-Complete.
PromptDiff [16] and Ontoview [8] employ heuristic matchers to decide whether
two bnodes from different KBs match or not, while CWM [1] is able to match two
blank nodes only if they have functional term labels. Semversion [20] creates and
assigns unique identifiers to bnodes so that to be able to identify the matching
bnodes across versions. However, this is possible only if all versions have been
derived from the same system. RDFSync [19] aims at fast synchronization, i.e.
at reducing the parts of the KBs that have to be compared, and no effort is
dedicated for finding a bnode mapping for reducing the delta size. [13] introduced
a blank node mapping with O(n2) complexity aiming at merging sets of RDF
triples (RDF molecules). However, this mapping presupposes that bnodes are
parts of uniquely identified triples. This mapping method is not applicable in
the general case and cannot be used for delta reduction. To the best of our
knowledge our work is the first one that attempts to find a bnode mapping that
reduces the size of deltas between KBs (that are not equivalent). Although there
are several works for constructing RDF/S mappings (e.g. see [14]), they are not
directly related since they map the named entities of the two KBs, and thus they
take into account lexical similarities, something that is not possible with bnodes.

8 Concluding Remarks

In this paper we showed how we can exploit bnode anonymity to reduce the
delta size when comparing RDF/S KBs. We proved that finding the optimal
mapping between the bnodes of two KBs, i.e. the one that returns the smallest
in size delta regarding the unnamed part of these KBs, is NP-Hard in the general
case, and polynomial in case there are not directly connected bnodes. To cope
with the general case we presented polynomial algorithms returning approximate
solutions.

In real datasets with no directly connected bnodes AlgSign was two orders
of magnitude faster than AlgHung (less than one second for KBs with 6,390
bnodes), but yielded up to 0.34 times (or 34%) bigger deltas than AlgHung , i.e.
than the optimal mapping. AlgHung also identified all equivalent KBs.
For checking the behavior of the algorithms in KBs with directly connected
bnodes, we created synthetic datasets, over which we compared AlgSign and the
AlgHung approximation algorithm. AlgHung yielded from 0 to 3 times smaller
deltas than AlgSign, but the latter was from 18 to 57 times faster.AlgSign requires
only 10.5 seconds to match 153,600 bnodes.

This is the first work on this topic. Several issues are interesting for further
research. For instance, it is worth investigating other special cases where the
optimal mapping can be found polynomially (e.g. directly connected bnodes
that form graphs of bounded tree width). Another direction is to comparatively
evaluate various (probabilistic) signature construction methods and greedy ap-
proximation algorithms.
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Software and datasets are available to download and use from:
http://www.ics.forth.gr/isl/BNodeDelta.
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Abstract. For Linked Data query engines, there are inherent trade-offs
between centralised approaches that can efficiently answer queries over
data cached from parts of the Web, and live decentralised approaches
that can provide fresher results over the entire Web at the cost of slower
response times. Herein, we propose a hybrid query execution approach
that returns fresher results from a broader range of sources vs. the cen-
tralised scenario, while speeding up results vs. the live scenario. We first
compare results from two public SPARQL stores against current versions
of the Linked Data sources they cache; results are often missing or out-
of-date. We thus propose using coherence estimates to split a query into
a sub-query for which the cached data have good fresh coverage, and a
sub-query that should instead be run live. Finally, we evaluate different
hybrid query plans and split positions in a real-world setup. Our results
show that hybrid query execution can improve freshness vs. fully cached
results while reducing the time taken vs. fully live execution.

1 Introduction

As of today, there are an estimated 30 billion facts published on the Web as
Linked Data [3]. Traditional approaches for querying Linked Data rely on op-
timised, centralised RDF stores that cache remote content [2,17,4]. However,
maintaining comprehensive and up-to-date cached data is an impossible task.
First, the coverage of centralised stores is limited by the amount of data that
can be located, retrieved and indexed by local servers. Second, result freshness
is determined by the last time the relevant Web documents were cached, which
can often be measured in days or even months, leading to stale query answers.

Conversely, various authors have proposed techniques to process queries live
and directly over Linked Data [6,20,8,10], bypassing the need for maintaining a
replicated (full) store. In live-querying scenarios, coverage spans the Web, and
the freshness of results depends on live-query latency, which can generally be
measured in terms of minutes or even seconds. However, in live approaches,
retrieving remote content from diverse sources at query-time naturally implies
much slower response times compared to querying centralised stores.

Thus, as shown in Figure 1, there is an inherent trade-off between query
approaches that give fresh results versus approaches that give fast results, rep-
resented at two ends by centralised SPARQL stores and live-query techniques
respectively. Aside from performance, the recall of answers is also crucial to con-
sider. Figure 2 shows how results from a live query approach (L) and results

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 608–624, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Query Trade-off

L S

Δ∩ΔL ΔS

Fig. 2. Result set (Venn) diagram

from a store of cached Web data (S) may diverge. Some of the results remain
the same (Δ∩); when this happens we say that the SPARQL store returned
coherent results. However, the store may return results that live querying does
not (ΔS), which may be stale results from sources that have changed, or may be
accurate results from sources that live querying did not consider. Conversely, the
live approach may find answers that the store did not (ΔL), either from updates
in remote sources, or from sources not cached/indexed by the store.

Evidently, both centralised and live query engines have their inherent strengths
and weaknesses. We thus propose a hybrid approach that combines the two. Our
hybrid engine can be thought of as a “live-wrapper” for centralised SPARQL
endpoints that splits a query into two, where one part is executed over the cen-
tralised store and the other part is executed using existing live-querying tech-
niques. By getting the store to quickly service query-patterns for which it has
good up-to-date coverage, and by running the rest of the query live, our hybrid
approach aims to strike a balance between fresh and fast results.

Deciding which parts of the query to run live and which to run centrally
requires knowledge of the coherence of the replicated store wrt. remote data,
which depends on the dynamicity of remote data and coverage of the store.
Consider the hypothetical query What are the current temperatures in

European capital cities? Data about current temperatures are dynamic and
appropriate for live-query techniques (the store would return stale results). Also,
the store may not have indexed data about which continent each city is on; this
part should also be fetched live. Conversely, information about capital cities is
static and well-covered by the store. In our hybrid approach, up-to-date results
about capital cities are quickly retrieved from the store and enriched with results
from the Web about continents and temperatures. Stale results are avoided by
not asking the centralised store about current temperatures.

We continue this paper with background on Linked Data querying (Section 2).
We then introduce our hybrid query architecture (Section 3). Next, we propose
probing RDF stores to collect coherence estimates, and present experiments
for two public SPARQL engines (Section 4). We then detail our hybrid query-
planning component (Section 5). For the two public stores, we evaluate different
hybrid query plans and the extent to which they speed up live querying while
freshening up centralised results (Section 6). We then conclude (Section 7).



610 J. Umbrich et al.

2 Background

Centralised Linked Data stores execute SPARQL queries over a local copy of
Web documents. Some endpoints, like FactForge [2], index selected subsets of
Linked Data. Other systems, like OpenLink’s LOD cache1 and the Sindice [17]
SPARQL endpoint2 (both powered by Virtuoso [4]) aim to have broad coverage
of Linked Data. However, as we show in Section 4, constantly maintaining a
broad, fresh coverage of remote data is unfeasible in such setups.

Recently, various authors have proposed methods for performing live query-
ing, accessing remote data in situ and at runtime. Ladwig and Tran [8] cate-
gorise these approaches as: (i) top-down, (ii) bottom-up, and (iii) mixed strategy.
Top-down evaluation determines remote, query-relevant sources using a source-
selection index : a local repository summarising information about sources that
can vary from inverted-index structures [17,10], to query-routing indexes [16],
schema-level indexes [15], or hash-based summaries [20]. The bottom-up query
evaluation strategy discovers relevant sources on-the-fly during the evaluation of
queries by selectively and recursively following links starting from a “seed set” of
URIs taken from the query [6]. The third strategy uses (in a top-down fashion)
some knowledge about sources to generate the seed list, then discovering addi-
tional relevant sources using a bottom-up approach [8]. These three approaches
rely on time-consuming remote lookups, but conversely offer fresh results.

In this paper, we use the bottom-up approach proposed by Hartig et al. [6],
called link-traversal based query execution (LTBQE), to provide live results. LT-
BQE uses dereferenceable URIs in a query to find remote documents relevant
to that query. During query execution, dereferenceable links that match query
patterns are followed to discover further relevant data. We choose LTBQE for
live querying as it requires no local knowledge and thus, in the hybrid scenario,
can find sources that the store may not even be aware of. An inherent weakness
of LTBQE is its dependence on the availability of dereferenceable URIs. How-
ever, as the uptake of Linked Data principles continues, we expect the ratio of
dereferenceable data on the Web to increase. We refer the reader to our previous
work which analyses the prevalence of dereferenceable URIs and the ratio of
information about RDF resources that is dereferenceable on the Web [19].

While the above approaches access data directly, an orthogonal approach to
live querying is that of federated SPARQL, where queries are executed over a
group of possibly remote endpoints [12,13,1]. Given the recent proliferation of
SPARQL endpoints on the Web of Data [3], federation is a timely topic that
enjoys increasing attention [5]. Our approach could also use live federated tech-
niques, though we would need to ascertain the freshness of remote endpoints.

Like us, various authors have discussed the combination of local (central) and
remote (live) querying techniques on a theoretical, optimisation, engineering and
social level (e.g., [9,22]). However, to the best of our knowledge, no-one has tack-
led the question of deciding which parts of a query are suitable for local/remote
execution; here, we propose making such a split based on dynamicity estimates.

1 http://lod.openlinksw.com/sparql
2 http://sparql.sindice.com/

http://lod.openlinksw.com/sparql
http://sparql.sindice.com/
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In this light, our approach relates to the broad field of research on (Web) caching
and the problem of guaranteeing cache coherence [11], as well as semantic caching
in, e.g., mediator systems [7]. However, instead of splitting queries, such systems
often apply an all-or-nothing approach, either relying solely on locally cached
data or going entirely live. More recently, various authors have discussed inval-
idation of SPARQL caches [23] but rely on monitoring inserts within the local
system, and are not concerned with the dynamics of remote data.

The work in hand is based on the idea of hybrid SPARQL queries originally
proposed by us in [22]. In [21], we discussed a wide range of general strategies
to implement the proposed hybrid query planning and processing approach. The
current paper is based on the conclusions drawn therein and proposes a first
concrete instantiation of an according query engine including a comprehensive
experimental evaluation over real datasets.

3 Architecture of a Hybrid Query Engine

Our proposed hybrid query engine has the following targets: T1 fast response
times close to those of centralised queries; T2 coherence of results close to
those of live query processing such that we retrieve fresh answers; T3 system
independence, i.e., being compatible with any SPARQL-enabled store or live-
query processor; and T4 lightweight implementation with low resource re-
quirements, particularly regarding main memory.

As previously discussed, T1 and T2 are antagonist targets: thus, the main
component in the architecture is the query planner which tries to find an
overall “optimal” trade-off for a given request, deciding what parts of the query
to delegate to the live engine and to the store. With regards to T3 , we can ini-
tialise our architecture with an index query interface and a live query

interface as black-box components; both consume SPARQL queries and pro-
duce SPARQL results, but the former interfaces with a central store, whereas
the latter interfaces with the Web. Finally, to help find that trade-off, the co-

herence monitor collects high-level empirical statistics (see Section 4) about
the store’s coverage of data for different query patterns compared with the Web.
These compact estimates have (relatively) low maintenance costs (as per T4).
The resulting architecture is illustrated in Figure 3.

The index query interface can be a (possibly remote) public SPARQL
store or any data warehousing approach that offers the SPARQL protocol (e.g.,
an intranet database). The live query interface also accepts SPARQL queries
and could be based on, for instance, a bottom-up link-traversal engine [6] or a
top-down source selection index [20], or some combination thereof. Here we in-
stantiate the live query processor with a bottom-up, link-traversal based query
execution approach (LTBQE) as originally proposed by Hartig et al. [6].

The coherence monitor collects information about the coverage and fresh-
ness of different triple patterns and sources. The coherence estimates of individ-
ual patterns is used by the query planner component to split a given query
into two sub-queries—a central and a live sub-query. Eventually, the query pro-
cessor forwards the central part to the index query interface and the live part
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Fig. 3. Architecture of a hybrid query-engine

is processed over the relevant Web sources in situ. We see this conceptually
straightforward architecture as a first step towards freshening up centralised
results: topics such as adaptive coherence estimates and more fine-grained in-
teraction between the central and remote query processors are left to future
work.

Note that since the central SPARQL store is treated as a black-box (as per
T3), we cannot influence the design of the physical plan for the static sub-query:
we delegate generating the final sub-query plan to the engine, which we assume
implements, e.g., local selectivity estimates to organise optimal execution. In the
general case, a similar situation exists for the live query processor.

In the following sections, we elaborate further on the coherence monitor

component (Section 4) and the query planner component (Section 5).

4 Coherence Estimation

Given the scope [3] and dynamicity [18] of Linked Data, results returned by a
centralised endpoint are inherently limited by its coverage of the Web and by
the freshness of its local index. The coherence monitor computes and stores
the coherence estimates of query patterns for a centralised endpoint in contrast
to the fresh results given by live query execution.

For a given endpoint, we issue the same set of queries against both the store
and the live engine and compare the results, identifying data predicate–source
combinations that are likely to be stale. For testing, we chose the two aforemen-
tioned SPARQL stores covering a broad range of Linked Data: “the Semantic
Web Index” hosted by Sindice, and the “LOD Cache” hosted by OpenLink. We
randomly sampled 12,000 URIs from the 2011 Billion Triple Challenge dataset3,
which covers around 8 million RDF Web documents.4 For each URI, we gener-
ated the following query.

3 http://challenge.semanticweb.org/
4 We considered using the SPARQL 1.1 SAMPLE keyword, but Virtuoso does not sup-
port SPARQL 1.1 (though it does support similar custom syntax). Further, SAMPLE
makes no guarantees about the randomness of results.

http://challenge.semanticweb.org/
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SELECT ?sIn, ?pIn, ?oOut, ?pOut

WHERE { ?sIn ?pIn <entityURI> . <entityURI> ?pOut ?oOut . }

This query returns all values of RDF triples in which the given entity URI
appears in either the subject or object position. We then compare the set of
store results (S) to the set of live results (L). We view results as consisting of
sets of sets of variable bindings (i.e., S, L, Δ∗ ⊂ 2V×UL reusing common notation
for the set of all query variables, URIs and literals resp.); we exclude answers
that involve blank nodes to avoid issues of scoping and inconsistent labelling.

We reuse notation outlined in Figure 2. Δ∩ := L∩S refers to the set of results
in both L and S, i.e., results for which the store is up-to-date. ΔL := L \ S refers
to the set of results returned by the Web that are not returned by the store.
ΔS := S \ L indicates results returned only by the store. We add subscripts to
indicate results for a certain query, e.g., ΔL

q . We denote results for a predicate p

as, e.g., ΔL
q(p) := {r ∈ ΔL

q : (?pIn, p) ∈ r ∨ (?pOut, p) ∈ r}, and say p ∈ ΔL
q iff

ΔL
q(p) �= ∅.
To ensure lightweight statistics with broad applicability, our notion of coher-

ence for query patterns centres around predicates. This restricts our approach
to triple patterns with a constant in the predicate position; other patterns are
assigned a default estimate. We ran our experiments in early March 2012 and
gathered coherence information for 2,550 predicates for OpenLink and 1,627
predicates for Sindice.5 To quantify the coherence of individual predicates based
on the results, we define the result-based coherence measure, which computes
the ratio of missing results for a predicate p. For the full set of queries Q, let
Mr(p) denote the count of all live results involving the predicate p that were
missed by the store, summated across all queries (Mr(p) =

∑
q∈Q |ΔL

q(p)|). Let
Lr(p) denote the count of all results involving p retrieved from the live engine
(Lr(p) =

∑
q∈Q |Lq(p)|). Result-based coherence is then:

cohr(p) = 1− Mr(p)

Lr(p)
.

There are other alternatives to measure coherence for a store [21]. Since we
could not empirically observe significant differences among the different measures
discussed in [21], we use the result-based coherence measure in this paper.

For the two stores under analysis, Figure 4(a) illustrates the number of pred-
icates that fall into different intervals of coherence values; the y-axis is in loga-
rithmic scale, and the linear x-axis intervals represent the coherence measures as
percentages (the right of the graph indicates increasingly coherent predicates).
The figure shows that the OpenLink endpoint is more in sync with current
Web data than Sindice; we believe that OpenLink was extensively updated in
Feb. 2012. We measured that 67% of the tested predicates in the OpenLink in-
dex are entirely up-to-date (cohr(p) = 1), versus 30% of the predicates for the

5 The statistics took over a week to collect politely (5 s delay). Maintaining coherence
statistics is non-trivial, but out of scope. Discussion can rather be found in [21, § 4].
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Fig. 4. Distribution of predicate coherence values and variation across PLDs

Sindice endpoint. In contrast, information for 14% of the tested predicates in the
OpenLink index are entirely missing or out-of-date (cohr(p) = 0), versus 40%
for Sindice; these high percentages are due to partial coverage of Web sources,
outdated data-dumps in the index, and predicates with dynamic values.

In more detail, Table 1 shows the top 5 predicates where cohr(p) = 0 for both
stores, ordered by the number of queries in which they featured as a result. First,
we see a mix of dynamic time-stamp predicates that change for every access or
modification of a document (swivt:creationDate, swivt:wikiPageModifica-
tionDate and aims:hasDateCreated). Second, we see predicates not covered by
the index. For Sindice, the incoherent *:doi predicates are due to a lack of cov-
erage of the dx.doi.org domain and the high incoherency of skos: predicates
is due to bulk changes in the esd-toolkit.eu, esd.org.uk and bio2rdf.org

domains; for OpenLink, the incoherency of vitro:mostSpecificType relates to
data on the cornell.edu domain.

We further analysed the correlation for coherence estimates of the same pred-
icates across the two stores. We used Kendall’s τ , which measures the agreement
in ordering for two measures in a range of [−1, 1], where −1 indicates perfectly
inverted ordering and 1 indicates the exact same ordering. The τ -score across the
two stores was 0.16, with a negligible p-value, indicating a weak, significant and
positive correlation between the coherence of predicates for the two stores. The
low correlation highlights the store-specific nature of these measures, which are
as much about index coverage than about the dynamicity of values. As such, our
approach tackles both the global problem of dynamicity and the central problem
of store coverage.

Finally, we looked at the correlation between the selectivity of predicates
(i.e., how often they occur) and their coherence, which may have potential con-
sequences for query planning. Specifically, for each store, we compared the num-
ber of (Web) results generated for each predicate across all queries and their
cohr(p) value. The τ -value for OpenLink was 0.1, indicating that less selective
patterns tend to have slightly lower coherence; the analogous τ -value for Sindice
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Table 1. Most dynamic and prevalent predicates

№
OpenLink Sindice

pred. queries pred. queries

1 swivt:creationDate 510 swivt:creationDate 118
2 vitro:mostSpecificType 104 skos:narrower 48
3 swivt:wikiPageModificationDate 45 skos:historyNote 43
4 aims:hasDateCreated 42 bibo:doi 34
5 madsrdf:hasCloseExternalAuthority 31 prism21:doi 34

was −0.03, indicating a very slight correlation in the opposite direction. Though
limited, we take this as anecdotal evidence to suggest that correlation between
the selectivity and coherence of predicates is weak, if any.

Above, we näıvely assume a single coherence value for predicates in all cases,
ignoring subject or object URIs: keeping information for each subject/object
would have a high overhead. However, we can generalise subject/object values
into pay-level-domains (PLD)6 and then track coherence for predicate–domain
pairs. Thus, we mapped the entity URIs of the queries to their PLDs (581 PLDs
with a maximum of 74 queries per domain) and resolved the coherence of pred-
icates for individual PLDs. Focussing on the coherence measure, we divided the
scores into eleven intervals as per the x-axis of Figure 4(b), and for each predi-
cate, count how many intervals it falls into for different PLDs. We observe that
the subject and object URIs can be ignored for roughly 40% of the OpenLink
and roughly 15% for the Sindice predicates. However, we see the importance of
tracking coherence for predicate–domain pairs for the remaining predicates. The
plurality of predicates (∼40%) show two intervals of coherence values.

5 Query Planner

Our hybrid engine combines centralised and decentralised/live query execution
to obtain a balance between fresh and fast results. The query planner is
responsible for splitting the query into a part for execution against the centralised
store and a part for live execution. We focus on evaluating conjunctive queries
(i.e., SPARQL BGPs). Other SPARQL features—except OPTIONAL (and MINUS

& [NOT] EXISTS in SPARQL 1.1) for which LTBQE is ill-suited since it (typically)
does not operate over a pre-defined dataset—can be layered on top.

As indicated before, we argue for a single split of the query plan into one
“central” (executed by the store) and one live part. While in theory it would
also be possible to use multiple splits, the resulting intertwined dependencies
between the central and live parts would lead to very complex query planning,
and would require shipping bindings back and forth between the two engines.
Thus, advanced splitting approaches are better suited to controlled environments
(i.e., not public endpoints). We discuss this issue in more detail in [21].

6 A pay-level-domain is the domain name one has to register and pay for.
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Given the focus on a split into (at most) two parts, the results of the first
part serve as input bindings for the second part. We must then decide whether
the central part is processed first (i.e., at the bottom of the query plan) or
last (i.e., at the top of the plan). As previously discussed in [21], there are
constraints inherent to live SPARQL query execution methods, such as the need
for dereferenceable URIs in some of the query patterns. By running the central
part first, we do not only obtain the store’s results more quickly, but also provide
additional dereferenceable URI bindings for the live querying phase (passed to
the live engine using the VALUES [previously BINDINGS] clause in SPARQL 1.1).

As per traditional database query-planning approaches, we must then decide
the execution order of (commutative) join patterns. However, instead of only
optimising for speed, we now also wish to optimise for freshness. An intuitive
approach, which we call coherence-based ordering, is to build a query plan
with the most coherent patterns at the bottom for central execution, and the
most incoherent patterns at the top for live execution. This increases the likeli-
hood that the final result set is fresh and it limits the number of patterns executed
live. However, the most coherent patterns may also be the least selective (i.e.,
return the most bindings) thus inflating the number of intermediate results to
process. Consequently, this can increase the number of bindings for the patterns
executed live, potentially hurting the performance. Because of this and backed
by the absence of correlation between coherence and selectivity, we also consider
another approach following traditional selectivity-based reordering, where
the most restrictive patterns are executed first reducing intermediate results.

After selecting an ordering, we must also select a split pattern. The split pat-
tern is the position in the query plan in which the query is divided into the two
parts. Everything below the split is executed centrally, and everything above
and including the split pattern is executed live. Following the same intuition of
executing low-coherence patterns live, one option is to choose the most inco-
herent triple pattern as the split. However, the central store may still receive
highly incoherent patterns (below the max) for which it will return incoherent
results. Another approach is to define a constant value indicating a threshold
of incoherence, where the lowest pattern breaching the threshold becomes the
split pattern; this ensures that the store does not receive patterns that are highly
incoherent. A further option is to split by a fixed position n, whereby the n
bottom patterns are executed by the store and the rest are run live. Choosing be-
tween the different split options affects the core trade-off of fresh vs. fast results,
and thus could be parameterised for individual user needs.

Figure 5 depicts examples of hybrid query plans, including our two different
choices of ordering, as well as some possible split choices. In the selectivity-based
ordering, we see that different types of coherence thresholds may lead to more
patterns being run live than when explicitly ordered by coherence. Conversely, at
the base of the plan for the coherence-based ordering, we see that tp4 will return
a lot of intermediate bindings (since it has a low selectivity) and does not share
a join variable with tp1 on the right-hand side of the join. In general, one may
expect that the selectivity-based operator order would provide low answer times
by minimising intermediate bindings, but would return less fresh results since
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Fig. 5. Example hybrid query plans for different orderings and splits

low coherence patterns can appear below the split. However, this ordering also
ends up pushing more patterns live since patterns with low selectivity and high
coherence are often above the split. Conversely, a coherence-based ordering will
lead to more intermediate results, but will run more patterns centrally. Thus, a
general conclusion about which ordering is preferable is not possible; we instead
compare combinations of orderings and splits on an empirical basis in Section 6.

In practice, for selectivity ordering, we create our hybrid SPARQL query plan
using ARQ based on a “variable counting” technique [14], which estimates the
selectivity of different triple patterns based on rules involving the number and
position of variables it contains. This could be replaced with cost-based planning
using empirical selectivity estimates, but we would need statistics about the un-
derlying data. Thus, following a rule-based approach is more in line with targets
T3 system independence, and T4 lightweight implementation (cf. Section 3). A
coherence-based operator order is supported by reordering the triple patterns in
the query plan produced by ARQ based on their coherence values.

In fact, since we consider the store and the live-query component as black
boxes, both sub-queries will be reordered by the respective engines, thus miti-
gating some of the performance penalty associated with the possibly näıve or-
dering used to decide the split in the hybrid query plan. For example, referring
back to the coherence-ordered plan of Figure 5, if the lowest coherence split rule
is applied, the store may internally decide to run tp1, tp2 and then tp4 in that
order, avoiding the (huge) expense of running tp4 first.

6 Evaluation

We now evaluate our proposed hybrid query execution. Our concrete goals are
as follows: (i) to prove concept in a realistic setting and show that with the
correct plan, hybrid query execution can extend and freshen up central results
while speeding up live results; (ii) to evaluate different query plan strategies by
comparing (iia) selectivity- and coherence-based ordering and (iib) different split
strategies for the query planning. In parallel, we are interested to see how useful
our coherence estimates are for the hybrid-query planning phase.

To do so, our evaluation is run against the two selected public endpoints:
Sindice and OpenLink. For this, we require a set of evaluation queries that
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are answerable by a Linked Data query engine. We would like these queries to
have broad coverage of diverse Web sources in order to properly test coherence
estimates and hybrid splits. Hence, we generate queries from the Billion Triple
Challenge 2011 dataset, which covers a broad range of Web documents. We
apply a random walk technique on the dataset, selecting random paths between
dereferenceable URIs in the data to produce queries that will give non-empty
results if executed with the LTBQE live query interface (see [19] for more
details). Using this method, we produce 200 SPARQL SELECT queries of different
shapes (star, path, mixed), with varying numbers of patterns (2–6), randomly
assigned distinguished variables, and at least one pattern above and below a
coherence threshold of 0.5 (i.e., suitable for hybrid execution). After filtering
out queries that produce empty results (e.g., due to offline sources) or result
in endpoint errors (like timeouts), we obtained a set of 98 stable queries for
the OpenLink store and 91 stable queries for the Sindice store. We reran all
experiments four times over a period of eight days to verify repeatability.

To evaluate different orders and different cut-off positions, we created hybrid
query plans for each query using both the selectivity- and coherence-based re-
ordering strategies. Each query plan is then run entirely live, entirely by the
store, and also run for every possible split position in both orders where part
goes live and part goes to the store. We execute all split positions for simple
convenience: we can then later compare different a priori strategies for picking a
single split by looking up the corresponding results (and not rerunning queries).

In terms of the repeatability of results, for each configuration, we measured
deviations for recall of results and query time across the four runs vs. the best
approach (highest recall, lowest time). We then calculated the mean of these
absolute deviations across all queries. For the live (LTBQE) execution, we mea-
sured a recall deviation of 3% and a time deviation of 2.7%. For the various other
configurations, the recall deviation varied between 0–5% for OpenLink and be-
tween 0–2% for Sindice. Although the recall of the stores was very stable, we
observed average time deviations of up to 36% for OpenLink and 17% for Sindice,
indicating variable query response times. Acknowledging that public endpoints
and remote data sources can be unstable, we wish to factor out this instability to
derive comparable results across different hybrid strategies (we wish to compare
different hybrid query plans, not the performance of public SPARQL endpoints).
Thus, to avoid outliers, for each query and each configuration, we only select the
best run in terms of recall, and in case two runs have the same recall, we select
the one with the lower query time.

We first focus on ordering. To initially prove concept, we want to show that, in
practice, hybrid query execution can potentially improve the freshness of results
vs. the store while reducing query time vs. live querying. Table 2 presents such
an analysis for both stores, where we see the potential percentage of queries that
can be improved using our hybrid approach for both orders assuming (for the
moment) that the best possible split position is picked (i.e., given the results, we
select the split position that gave the highest recall and if tied, the lowest time;
we evaluate split-selection strategies later). Recall is measured relative to the
live results, which we know to be fresh. For OpenLink, we see that the recall of
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Table 2. For both stores, the percentage of queries that can potentially be improved
for each order assuming the best split position is picked

improvement
OpenLink Sindice
sel coh sel coh

Better Than Centralised Recall: 43% 53% 87% 91%
Better Than or Equal Centralised Recall: 97% 100% 99% 97%

Better Than Live Time: 92% 45% 16% 3%
Better Than Centralised Recall & Live Time 39% 13% 8% 1%

Better Than Or Equal Centralised Recall & Live Time: 92% 45% 16% 3%

the store can only be improved for roughly half of the queries; however, the recall
of the store is already 1 in many cases and cannot be improved, only equalled.
Equal ties in time are much more rare. In terms of improving the time for live
results, the sel ordering seems much more beneficial for OpenLink than coh,
likely due to fewer intermediate results being generated in the former ordering:
sel improves or equals the store’s recall while improving the live time in 92%
of the queries. For Sindice, we found that the store often returned no query
results: 84% of the queries ran entirely live as a fallback. Thus, the recall of
many queries can be improved outright, but few queries are faster than the live
approach. Since only 16% of the queries for Sindice are run in a truly hybrid
fashion, we henceforth focus on OpenLink—all hybrid query results for Sindice
were very close to the live approach. Table 2 shows that, in an ideal case, the
hybrid approach can indeed improve result freshness while reducing the time
required to process queries. Furthermore, the chosen ordering strategy seems to
have a clear impact on freshness and query time.

We now compare concrete split strategies that a priori select a split based
on the query and coherence/selectivity estimates (i.e., as would be required for
hybrid query planning in reality, where an ordering and a split strategy are
sufficient to generate a plan). We also look at the degree to which central recall
is improved and live querying is sped up. To compare different splits and ordering
combinations, we first filter out queries that, across the four runs, did not provide
results for all possible split positions and orderings for one or more of the setups.
We also removed queries with only two patterns, for which the choice of split is
trivial. This results in a final set of 43 queries.7

For each ordering and for a variety of different split strategies, Figure 6 plots
the aggregate speed up and recall ratio versus live querying. Specifically, to
calculate speed up, the total time taken by the live approach to run all queries
is divided by the total time taken for each individual approach; e.g., a speed up
of 6 indicates that the approach in question was 6× faster than live querying.
Conversely, recall is measured by taking live querying as the gold standard. Live
querying is thus placed at (1, 1). Orderings are intuitively represented by sel-*

and coh-*. The best split approaches are represented by *-best; these splits
cannot be determined before query execution, but rather represent the ideal
case. Splitting at the most incoherent pattern is indicated by *-incoh. Using a

7 Queries are available online at the following address:
http://code.google.com/p/lidaq/source/browse/queries/iswc-2012.tar.gz

http://code.google.com/p/lidaq/source/browse/queries/iswc-2012.tar.gz
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coherence threshold of 0.5 to perform the split is indicated by *-thr. A random
split (i.e., a guess) is indicated by *-rnd. Fixed split positions are indicated by
*-1 and *-2 for n = 1, 2. Note that the threshold strategies *-incoh/*-thr
can go fully live or fully central depending on the coherence values found for the
query, whereas *-best, *-rnd, *-1 and *-2 must split the query. Figure 7 shows
the same analysis, but for varying coherence threshold values.

In fact, both plots offer an empirical version of the trade-off introduced in
Figure 1, where our hybrid strategies sit between live querying and the store.
For both graphs, we see that the store is the fastest, and about 12× faster than
the live approach; however, recall is poor. Perhaps the best hybrid approach is
coh-thr=0.75 in Figure 7, which maintains an almost perfect recall but offers a
speed up of more than 6× live querying, slightly beating the ideal of coh-best
(which must split the query). Interestingly, some fixed-position split strategies—
particularly coh-2 in Figure 6, which is ∼ 5× faster than live, but maintains an
almost perfect recall—can approach the ideal of coh-best quite closely.

While such an aggregated view presents high-level insights into the overall
performance of the different strategies, we cannot identify the distribution over
the queries in terms of achieved freshness and time. This is supported by Figure 8
and Figure 9, which show the recall for each query and the query time for each
query respectively. We plot the number of queries on the x-axis that achieve
a certain recall or time ratio shown on the y-axis. All 43 queries are sorted
for each approach separately, providing a global view on each performance, but
not supporting a per-query comparison of the strategies. While querying the
store results in the fewest queries with a recall of 1, it also results in the most
queries with a recall between 0 and 1. On the contrary, coh-best and coh-2

are tied for keeping 100% recall across 42 queries and provide 0% only for the
last query. Interestingly, most queries run with any hybrid strategy result in a
recall of either 1 or 0. As expected, Figure 9 shows that query times for the
centralised store are far below all other approaches in most cases. However, it is
in fact slower for 2 anomalous queries that OpenLink struggles with.8 Though
all hybrid strategies were as fast or faster than live querying (y = 1) in all cases,

8 One such example at the time of writing was http://bit.ly/IPRec9

http://bit.ly/IPRec9
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we see that sel-incoh and sel-thres did not show a time improvement for
around 13 queries, where they were likely run completely live.

Eventually, we are interested in how recall and query times compare for differ-
ent approaches on the same queries. Thus, in Figure 10 and Figure 11 we ordered
the queries for each approach identically (using the results of the store for order-
ing). This means that in these figures each point on the x-axis presents the same
query for each approach. In this case, plotting the absolute values would not
allow any meaningful insights due to the ups and downs that each plot would
show. Instead, we plot an “evolving average”, whereby the result for query n
indicates the average value for all queries up to and including n. This allows
to compare the degree of increase or decrease in recall and time at each point,
i.e., for each query. Interestingly, we see that the store can sometimes return
better recall than the hybrid approaches, as happens for query 27, where the
interim bindings returned by OpenLink cannot be dereferenced. However, the
recall is improved by the hybrid approaches for the subsequent queries. It is fur-
ther interesting to observe that the hybrid approaches seem to be “grouped”, i.e.,
coh-best, coh-2 and sel-best show very similar performance over all queries,
while coh-incoh first “follows” sel-thr and others, but performs similar to
sel-2 for later queries. The evolving average of the query times in Figure 11
basically confirm the results from Figure 9.

In summary, we found that sending more patterns live with fewer bindings
(as with the selectivity-based ordering) is in parts faster than sending fewer
patterns live with more bindings (coherence-based ordering). Though selectivity
ordering does not consider coherence, a coherence-based split ensures that more
of the query is executed live to compensate. The lower query times suggested by
the coherence-based orderings are often compensated by the low selectivities of
operators in the lower levels of query plans. Still, as a guideline, if the objective
is to maximise recall, one should choose coherence-based ordering, which is still
faster than the live approach. If one is willing to sacrifice some recall for even
faster results, then selectivity-based ordering is a good choice. However, the
performance of the selectivity-based approaches seems to heavily depend on
the actually chosen split strategy. Generally, the question of how to pick the
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split position cannot be ultimately answered without taking the actual query
and other characteristics into account. While the actual value of the coherence
threshold did not have an impact as high as expected, we could show that the
coherence estimates themselves are of great benefit, especially for ordering.

7 Conclusion

Based on an empirical study showing that popular public SPARQL stores strug-
gle to maintain coherent cached indexes of Linked Data, we propose a hybrid
query architecture that aims to combine the best from centralised indexes and
novel live querying approaches.We discussed extracting coherence measures from
centralised endpoints based on probing queries, and showed that they can be
combined with reordering and hybrid-split strategies to design an effective hy-
brid query plan that speeds up live results while freshening up centralised results.

Still, some open questions remain. We have looked at a wide variety of config-
urations, which hint at the potential complexity of hybrid query planning. More
complex cost models—including, e.g., the potential for multiple splits—may re-
veal novel optimisations that we have not considered herein, further pushing
the boundaries of fresh vs. fast results. Furthermore, we can only estimate the
accuracy of store results using coherence estimates; other mechanisms that cross-
check the sources of data (i.e., the named graphs from which the store computes
answers) against their current versions could yield yet more accurate statistics.
Also, we consider the live and centralised query components to be strongly de-
coupled. However, the store may serve as a source selection index to enhance the
live results given by a zero-knowledge approach such as LTBQE.

Given the potential scope and dynamicity of Linked Data, query engines will
need to employ a range of techniques to efficiently offer fresh results with broad
coverage. We believe that our hybrid query approach makes a significant step
in this direction by combining results from centralised and decentralised query
engines. Still, we may only have scratched the surface of what is possible.
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Abstract. Determining trust of data available in the Semantic Web
is fundamental for applications and users, in particular for linked open
data obtained from SPARQL endpoints. There exist several proposals in
the literature to annotate SPARQL query results with values from ab-
stract models, adapting the seminal works on provenance for annotated
relational databases. We provide an approach capable of providing prove-
nance information for a large and significant fragment of SPARQL 1.1,
including for the first time the major non-monotonic constructs under
multiset semantics. The approach is based on the translation of SPARQL
into relational queries over annotated relations with values of the most
general m-semiring, and in this way also refuting a claim in the literature
that the OPTIONAL construct of SPARQL cannot be captured appropri-
ately with the known abstract models.

Keywords: How-provenance, SPARQL queries, m-semirings, difference.

1 Introduction

A general data model for annotated relations has been introduced in [9], for posi-
tive relational algebra (i.e. excluding the difference operator). These annotations
can be used to check derivability of a tuple, lineage, and provenance, perform
query evaluation of incomplete database, etc. The main concept is the notion
of K-relations where tuples are annotated with values (tags) of a commutative
semiring K, while positive relational algebra operators semantics are extended
and captured by corresponding compositional operations over K. The obtained
algebra on K-relations is expressive enough to capture different kinds of anno-
tations with set or bag semantics, and the authors show that the semiring of
polynomials with integer coefficients is the most general semiring. This means
that to evaluate queries for any positive algebra query on an arbitrary semiring,
one can evaluate the query in the semiring of polynomials (factorization property
of [9]). This work has been extended to the case of full relational algebra in [8]
by considering the notion of semirings with a monus operation (m-semirings [2])

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 625–640, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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and constant annotations, and the factorization property is proved for the special
m-semiring that we denote by Kdprovd.

The use of these abstract models based on K-relations to express provenance
in the Semantic Web has been advocated in [12]. However, the authors claim that
the existing m-semirings are not capable to capture the appropriate provenance
information for SPARQL queries. This claim is supported by the authors using
a simple example, which we have adapted to motivate our work:

Example 1. Consider the following RDF graph expressing information about
users’ accounts and homepages, resorting to the FOAF vocabulary:

@prefix people: <http://people/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
people:david foaf:account <http://bank> .
people:felix foaf:account <http://games> .
<http://bank> foaf:accountServiceHomepage <http://bank/yourmoney>.

The SPARQL query

PREFIX foaf <http://xmlns.com/foaf/0.1/>
SELECT *
WHERE { ?who foaf:account ?acc .

OPTIONAL { ?acc foaf:accountServiceHomepage ?home }
}

returns the solutions (mappings of variables):
?who ?acc ?home
<http://people/david> <http://bank> <http://bank/yourmoney>
<http://people/felix> <http://games>

However, if the last triple is absent from the graph then the solutions are instead:

?who ?acc ?home
<http://people/david> <http://bank>
<http://people/felix> <http://games>

In order to track provenance of data, each tuple of data can be tagged with
an annotation of a semiring. This annotation can be a boolean, e.g. to annotate
that the tuple is trusted or not, a set of identifiers of tuples returning lineage of
the tuple, or more complex annotations like the polynomials semiring to track
full how-provenance [9,8], i.e. how a tuple is generated in the result under bag
semantics.

Returning to the introductory example, assume that we represent the 3 triples
in the input RDF graph as the ternary Kdprovd-relation (with the obvious ab-
breviations), where the last column contains the triple identifier (annotation):

Triples

sub pred obj

<david> <account> <bank> t1
<felix> <account> <games> t2
<bank> <accountServiceHomepage> <bank/yourmoney> t3
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The expected annotation of the first solution of the SPARQL query is t1 × t3,
meaning that the solution was obtained by joining triples identified by t1 and t3,
while for the second solution the corresponding annotation is simply t2. How-
ever, if we remove the last tuple we obtain a different solution for david with
annotation just t1. The authors in [12] explain why the existing approaches to
provenance for the Semantic Web cannot handle the situation of Example 1,
basically because there are different bindings of variables depending on the ab-
sence/presence of triples, and it is claimed that the m-semiring Kdprovd also
cannot handle it. The rest of our paper shows that this last claim is wrong,
but that requires some hard work and long definitions since the method pro-
posed relies on the translation of SPARQL queries into relational algebra. The
result is the first approach that provides adequate provenance information for
OPTIONAL, MINUS and NOT EXISTS constructs under the multiset (bag) semantics
of SPARQL.

The organization of the paper is the following. We review briefly in the next
section the basics of K-relations. The SPARQL semantics is introduced in Sec-
tion 3, and its translation into relational algebra is the core of the paper and can
be found in Section 4. Using the relational algebra translation of SPARQL, we
use Kdprovd to annotate SPARQL queries and show in Section 5 that Example 1
is properly handled. We finish with some comparisons and conclusions.

2 Provenance for K-Relations

A commutative semiring is an algebraic structure K = (K,⊕,⊗, 0, 1) where
(K,⊕, 0) is a commutative monoid (⊕ is associative and commutative) with
identity element 0, (K,⊗, 1) is a commutative monoid with identity element 1,
the operation ⊗ distributes over ⊕, and 0 is the annihilating element of ⊗. In
general, a tuple is a function t : U → D where U is a finite set of attributes
and D is the domain of values, which is assumed to be fixed. The set of all such
tuples is U -Tup and usual relations are subsets of U -Tup. A K-relation over U is
a function R : U -Tup→ K, and its support is supp(R) = {t | R(t) �= 0}.

In order to cover the full relational operators, the authors in [8] assume that
the K semiring is naturally ordered (i.e. binary relation x 2 y is a partial order,
where x 2 y iff there exists z ∈ K such that x⊕z = y ), and require additionally
that for every pair x and y there is a least z such that x 2 y ⊕ z, defining in
this way x3 y to be such smallest z. A K semiring with such a monus operator
is designated by m-semiring. Moreover, in order to capture duplicate elimina-
tion, the authors assume that the m-semiring is finitely generated. The query
language1 RA+

K(−, δ) has the following operators [8]:

empty relation: For any set of attributes U , we have ∅ : U -Tup→ K such that
∅(t) = 0 for any t.

union: If R1, R2 : U -Tup→ K then R1 ∪R2 : U -Tup→ K is defined by:
(R1 ∪R2)(t) = R1(t)⊕R2(t).

1 The authors use instead the notation RA+
K(\, δ).
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projection: If R : U -Tup→ K and V ⊆ U then ΠV (R) : V -Tup→ K is defined
by (ΠV (R)) (t) =

⊕
t=t′ on V and R(t′) �=0 R(t′).

selection: If R : U -Tup→ K and the selection predicate P maps each U -tuple
to either 0 or 1 depending on the (in-)equality of attribute values, then
σP (R) : U -Tup→ K is defined by (σP (R)) (t) = R(t)⊗ P (t).

natural join: If Ri : Ui-Tup→ K, for i = 1, 2, then R1 �� R2 is the K-relation
over U1 ∪ U2 defined by (R1 �� R2)(t) = R1(t)⊗R2(t).

renaming: If R : U -Tup→ K and β : U → U ′ is a bijection then ρβ(R) is the
K-relation over U ′ defined by (ρβ(R))(t) = R(t ◦ β−1).

difference: If R1, R2 : U -Tup→ K then R1 −R2 : U -Tup→ K is defined by:
(R1 −R2)(t) = R1(t)3R2(t).

constant annotation: If R : U -Tup → K and ki is a generator of K then
δki : U -Tup → K is defined by (δki(R))(t) = ki for each t ∈ supp(R) and
(δki(R))(t) = 0 otherwise.

One major result of [8] is that the factorization property can be obtained for
RA+

K(−, δ) by using a special m-semiring with constant annotations that we
designate by Kdprovd. Kdprovd is the free m-semiring over the set of source tuple
ids X , which is a free algebra generated by the set of (tuple) identifiers in the
equational variety of m-semirings. Elements of Kdprovd are therefore terms de-
fined inductively as: identifiers in X , 0, and 1 are terms; if s and t are terms then
(s+ t), (s× t), (s− t), and δki(t) are terms, and nothing else is a term. In fact
annotations of Kdprovd are elements of the quotient structure of the free terms
with respect to the congruence relation induced by the axiomatization of the
m-semirings, in order to guarantee the factorization property (see [8] for more
details). In our approach, X will be the set of graph and tuple identifiers.

We slightly extend the projection operator, by introducing new attributes
whose value can be computed from the other attributes. In our approach, this is
simply syntactic sugar since the functions we use are either constants or return
one of the values in the arguments.

3 SPARQL Semantics

The current draft of SPARQL 1.1 [1] defines the semantics of SPARQL queries
via a translation into SPARQL algebra operators, which are then evaluated with
respect to a given RDF dataset. In this section, we overview an important frag-
ment corresponding to an extension of the work in [10] that presents the formal
semantics of the first version of SPARQL. The aim of our paper is on the treat-
ment of non-monotonic constructs of SPARQL, namely OPTIONAL, MINUS
and NOT EXISTS, and thus we focus in the SELECT query form, ignoring
property paths, GROUP graph patterns and aggregations, as well as solution
modifiers. The extension of our work to consider all the graph patterns is direct
from the results presented. Regarding FILTER expressions, we analyse with de-
tail the EXISTS and NOT EXISTS constructs, requiring special treatment. We
assume the reader has basic knowledge of RDF and we follow closely the pre-
sentation of [1]. For more details the reader is referred to sections 17 and 18 of
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the current SPARQL 1.1 W3C working draft. We also make some simplifying
assumptions that do not affect the results of our paper.

3.1 Basics

Consider disjoint sets of IRI (absolute) references I, blank nodes B, and literals L
including plain literals and typed literals, and an infinite set of variables V. The
set of RDF terms is T = IBL = I∪B∪L. A triple2 τ = (s, p, o) is an element of
IBL×I×IBL and a graph is a set of triples. Queries are evaluated with respect
to a given RDF Dataset D = {G, (< u1 >,G1), (< u2 >,G2), . . . , (< un >,Gn)},
where G is the default graph, and each pair (<ui>,Gi) is called a named graph,
with each IRI ui distinct in the RDF dataset, and Gi being a graph.

3.2 Graph Patterns

SPARQL queries are defined by graph patterns, which are obtained by combining
triple patterns with operators. SPARQL graph patterns are defined recursively
as follows:

– The empty graph pattern ().
– A tuple (IL∪V)×(I∪V)×(IL∪V) is a graph pattern called triple pattern3;
– If P1 and P2 are graph patterns then (P1 AND P2), (P1 UNION P2), as well as

(P1 MINUS P2), and (P1 OPTIONAL P2) are graph patterns;
– If P1 is a graph pattern and R is a filter SPARQL expression4 then the

construction (P1 FILTER R) is a graph pattern;
– If P1 is a graph pattern and term is a variable or an IRI then (GRAPH term P1)

is a graph pattern.

The SPARQL 1.1 Working Draft also defines Basic Graph Patterns (BGPs),
which correspond to sets of triple patterns. A Basic Graph Pattern P1, . . . , Pn is
encoded as the graph pattern (() AND (P1 AND (P2 . . . AND Pn)) . . .). We ignore
in this presentation the semantics of FILTER expressions, whose syntax is rather
complex. For the purposes of this paper it is enough to consider that these
expressions after evaluation return a boolean value, and therefore we also ignore
errors. However, we show how to treat the EXISTS and NOT EXISTS patterns
in FILTER expressions since these require querying graph data, and therefore
provenance information should be associated to these patterns.

3.3 SPARQL Algebra

Evaluation of SPARQL patterns return multisets (bags) of solution mappings.
A solution mapping, abbreviated solution, is a partial function μ : V→ T. The
2 Literals in the subject of triples are allowed, since this generalization is expected to

be adopted in the near future.
3 For simplicity, we do not allow blank nodes in triple patterns.
4 For the full syntax of filter expressions, see the W3C Working Draft [1].
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domain of μ is the subset of variables of V where μ is defined. Two mappings
μ1 and μ2 are compatible if for every variable v in dom(μ1) ∩ dom(μ2) it is
the case that μ1(v) = μ2(v). It is important to understand that any mappings
with disjoint domain are compatible, and in particular the solution mapping
μ0 with empty domain is compatible with every solution. If two solutions μ1

and μ2 are compatible then their union μ1 ∪ μ2 is also a solution mapping. We
represent extensionally a solution mapping as a set of pairs of the form (v, t); in
the case of a solution mapping with a singleton domain we use the abbreviation
v → t. Additionally, if P is an arbitrary pattern we denote by μ(P ) the result of
substituting the variables in P defined in μ by their assigned values.

We denote that solution mapping μ satisfies the filter expression R with re-
spect to the active graph G of dataset D by μ |=D(G) R. Including the parame-
ter D(G) in the evaluation of filter expressions is necessary in order to evaluate
EXISTS(P ) and NOT EXISTS(P ) filter expressions, where P is an arbitrary graph
pattern. If these constructs are removed from the language, then one only needs
to consider the current solution mapping to evaluate expressions (as done in [10]).

Definition 1 (SPARQL algebra operators [1]). Let Ω1 and Ω2 be multisets
of solution mappings, and R a filter expression. Define:

Join: Ω1 �� Ω2 = {|μ1 ∪ μ2 | μ1 ∈ Ω1 and μ2 ∈ Ω2 such that μ1 and μ2

are compatible |}
Union: Ω1 ∪Ω2 = {|μ | μ ∈ Ω1 or μ ∈ Ω2|}
Minus: Ω1 − Ω2 = {|μ1 | μ1 ∈ Ω1 such that ∀μ2∈Ω2 either μ1 and μ2 are not

compatible or dom(μ1) ∩ dom(μ2) = ∅|}
Diff: Ω1 \D(G)

R Ω2 = {|μ1 | μ1 ∈ Ω1 such that ∀μ2∈Ω2 either μ1 and μ2 are not
compatible, or μ1 and μ2 are compatible and μ1 ∪ μ2 �|=D(G) R|}

LeftJoin: Ω1 ���D(G)
R Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \D(G)

R Ω2)

The Diff operator is auxiliary to the definition of LeftJoin. The SPARQL 1.1
Working Draft also introduces the notion of sequence to provide semantics to
modifiers like ORDER BY. The semantics of the extra syntax is formalized by sev-
eral more operators, namely aggregates and sequence modifiers (e.g. ordering),
as well as property path expressions; we briefly discuss their treatment later on.
Since lists can be seen as multisets with order and, without loss of generality
regarding provenance information, we just consider multisets.

Definition 2 (SPARQL graph pattern evaluation). Let D(G) be an RDF
dataset with active graph G, initially the default graph in D(G). Let P , P1 and
P2 be arbitrary graph patterns, and t a triple pattern. The evaluation of a graph
pattern over D(G), denoted by [[.]]D(G) is defined recursively as follows:

1. [[()]]D(G) = {|μ0|};
2. [[t]]D(G) = {| μ | dom(μ) = var(t) and μ(t) ∈ G|}, where var(t) is the set of

variables occurring in the triple pattern t;
3. [[(P1 AND P2)]]D(G) = [[P1]]D(G) �� [[P2]]D(G);
4. [[(P1 UNION P2)]]D(G) = [[P1]]D(G) ∪ [[P2]]D(G);
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5. [[(P1 MINUS P2)]]D(G) = [[P1]]D(G) − [[P2]]D(G);

6. [[(P1 OPTIONAL P2)]]D(G) = [[P1]]D(G) ���D(G)
true [[P2]]D(G), where P2 is not a

FILTER pattern;
7. [[(P1 OPTIONAL (P2 FILTER R))]]D(G) = [[P1]]D(G) ���

D(G)
R [[P2]]D(G);

8. [[(P1 FILTER R)]]D(G) = {| μ ∈ [[P1]]D(G) | μ |=D(G) R |};
9. Evaluation of [[(GRAPH term P1)]]D(G) depends on the form of term:

– If term is an IRI corresponding to a graph name ui in D(G) then
[[(GRAPH term P1)]]D(G) = [[P1]]D(Gi)

;
– If term is an IRI that does not correspond to any graph in D(G) then

[[(GRAPH term P1)]]D(G) = {||};
– If term is a variable v then [[(GRAPH term P1)]]D(G) =

= ([[P1]]D(G1)
�� {|v →<u1> |}) ∪ . . . ∪ ([[P1]]D(Gn)

�� {|v →<un> |})

The evaluation of EXISTS and NOT EXISTS is performed in the satisfies relation
of filter expressions.

Definition 3. Given a solution mapping μ and a graph pattern P over an RDF
dataset D(G) then μ |=D(G) EXISTS(P ) (resp. μ |=D(G) NOT EXISTS(P )) iff
[[μ(P )]]D(G) is a non-empty (resp. empty) multiset.

Example 2. The SPARQL query of Example 1 corresponds to the following
graph pattern :

Q = ( (?who,<foaf : account>, ?acc) OPTIONAL
(?acc,<foaf : accountServiceHomepage>, ?home)

)

The evaluation of the query result with respect to the RDF dataset D = {G},
just containing the default graph G, specified in the example is:

[[Q]]D(G) =

[[(?who,<foaf : account>, ?acc)]]D(G) ���
D(G)
true

[[(?acc,<foaf : accountServiceHomepage>, ?home)]]D(G)

= {|{(?who, <http : //people/david>), (?acc, <http : //bank>)},
{(?who,<http : //people/felix>), (?acc, <http : //games>)}|} ���D(G)

true

{|{(?acc, <http : //bank>), (?home,<http : //bank/yourmoney>)} |}
= {|{(?who, <http : //people/david>), (?acc, <http : //bank>),

(?home,<http : //bank/yourmoney>)},
{(?who,<http : //people/felix>), (?acc, <http : //games>)}
|}

The evaluation of query Q returns, as expected, two solution mappings.

4 Translating SPARQL Algebra into Relational Algebra

The rationale for obtaining how-provenance for SPARQL is to represent each
solution mapping as a tuple of a relational algebra query constructed from the
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original SPARQL graph pattern. The construction is intricate and fully speci-
fied, and is inspired from the translation of full SPARQL 1.0 queries into SQL,
as detailed in [6], and into Datalog in [11]. Here, we follow a similar strat-
egy but for simplicity of presentation we assume that a given RDF dataset
D = {G0, (<u1>,G1), (<u2>,G2), . . . , (<un>,Gn)} is represented by the two
relations: Graphs(gid,IRI) and Quads(gid,sub,pred,obj). The former stores
information about the graphs in the dataset D where gid is a numeric graph
identifier, and IRI an IRI reference. The relation Quads stores the triples of every
graph in the RDF dataset. Different implementations may immediately adapt
the translation provided here in this section to their own schema.

Relation Graphs(gid,IRI) contains a tuple (i, <ui>) for each named graph
(< ui >,Gi), and the tuple (0, < >) for the default graph, while relation
Quads(gid,sub,pred,obj) stores a tuple of the form (i, s, p, o) for each triple
(s, p, o) ∈ Gi

5. With this encoding, the default graph always has identifier 0, and
all the graph identifiers are consecutive integers.

It is also assumed the existence of a special value unb, distinct from the en-
coding of any RDF term, to represent that a particular variable is unbound in
the solution mapping. This is required in order to be able to represent solution
mappings as tuples with fixed and known arity. Moreover, we assume that the
variables are totally ordered (e.g. lexicographically). The translation requires the
full power of relational algebra, and notice that bag semantics is assumed (du-
plicates are allowed) in order to obey to the cardinality restrictions of SPARQL
algebra operators [1].

Definition 4 (Translation of triple patterns). Let t = (s, p, o) be a triple
pattern and G an attribute. Its translation [(s, p, o)]

G
R into relational algebra is

constructed from relation Quads as follows:

1. Select the tuples with the conjunction obtained from the triple pattern by
letting Quads.sub = s (resp. Quads.pred = p, Quads.obj = o) if s (resp. p,
o) are RDF terms; if a variable occurs more than once in t, then add an
equality condition among the corresponding columns of Quads;

2. Rename Quads.gid as G; rename as many as Quads columns as distinct
variables that exist in t, such that there is exactly one renamed column per
variable;

3. Project in G and variables occurring in t;

The empty graph pattern is translated as [()]
G
R = ΠG

[
ρG←gid(Graphs)

]
.

Example 3. Consider the following triple patterns:

t1 = (?who,<http : //xmlns.com/foaf/0.1/account>, ?acc)
t2 = (?who,<http : //xmlns.com/foaf/0.1/knows>, ?who)
t3 = (<http : //cd>,<http : //xmlns.com/foaf/0.1/name>, "Carlos"@pt)

5 For simplicity sub, pred, and obj are text attributes storing lexical forms of the
triples’ components. We assume that datatype literals have been normalized, and
blank nodes are distinct in each graph. The only constraint is that different RDF
terms must be represented by different strings; this can be easily guaranteed.
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The corresponding translations into relational algebra are:

[t1]
G
R = ΠG,acc,who

⎡⎢⎣ρG ← gid
acc ← obj
who ← sub

(
σpred=<http://xmlns.com/foaf/0.1/account>(Quads)

)⎤⎥⎦
[t2]

G
R = ΠG,who

⎡⎢⎣ρG ← gid
who ← sub

⎛⎜⎝σ pred =<http : //xmlns.com/foaf/0.1/knows>
∧

sub = obj

(Quads)

⎞⎟⎠
⎤⎥⎦

[t3]
G
R = ΠG

⎡⎢⎣ρG ← gid

⎛⎜⎝σ sub =<http : //cd> ∧
pred =<http : //xmlns.com/foaf/0.1/name> ∧

obj = "Carlos"@pt

(Quads)

⎞⎟⎠
⎤⎥⎦

The remaining pattern that requires querying base relations is GRAPH:

Definition 5 (Translation of GRAPH pattern). Consider the graph pattern
(GRAPH term P1) and let G′ be a new attribute name.

– If term is an IRI then [(GRAPH term P1)]
G
R is

[()]GR �� Πvar(P1)

[
ΠG′

(
ρG′←gid (σterm=IRI(Graphs))

)
�� [P1]

G′

R

]
– If term is a variable v then [(GRAPH term P1)]

G
R is

[()]GR �� Π{v}∪var(P1)

[
ρG′←gid,v←IRI

(
σgid>0(Graphs)

)
�� [P1]

G′

R

]
Notice that the relational algebra query resulting from the translation of the
pattern graph P1 renames and hides the graph attribute. The join of the empty
pattern is included in order to guarantee that each query returns the graph
identifier in the first “column”.

Definition 6 (Translation of the UNION pattern). Consider the graph pat-
tern (P1 UNION P2). The relation algebra expression [(P1 UNION P2)]

G
R is:

ΠG,var(P1)∪{v←unb|v∈var(P2)\var(P1)}

(
[P1]

G
R

)⋃
ΠG,var(P2)∪{v←unb|v∈var(P1)\var(P2)}

(
[P2]

G
R

)
The union operator requires the use of an extended projection in order to make
unbound variables which are present in one pattern but not in the other. The
ordering of the variables in the projection must respect the total order imposed
in the variables. This guarantees that the attributes are the same and by the
same order in the resulting argument expressions of the union operator.
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Definition 7 (Translation of the AND pattern). Consider the graph pattern
(P1 AND P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be empty).
The relational algebra expression [(P1 AND P2)]

G
R is

ΠG,
var(P1) − var(P2),
var(P2) − var(P1),
v1 ← first(v′

1, v
′′
1 ), . . . ,

vn ← first(v′
n, v

′′
n)

⎡⎢⎢⎢⎢⎢⎣σcomp

⎛⎜⎜⎜⎜⎜⎝ρ v′
1 ← v1

...
v′
n ← vn

(
[P1]

G
R

)
�� ρ v′′

1 ← v1
...

v′′
n ← vn

(
[P2]

G
R

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
where comp is a conjunction of conditions v′i = unb ∨ v′′i = unb ∨ v′i = v′′i for
each variable vi(1 ≤ i ≤ n). The function first returns the first argument which
is not unb, or unb if both arguments are unb. Note that if the set of common
variables is empty then the relational algebra expression simplifies to:

ΠG,var(P1)∪var(P2)

[
[P1]

G
R �� [P2]

G
R

]
We need to rename common variables in both arguments, since an unbound
variable is compatible with any bound or unbound value in order to be able to
check compatibility using a selection (it is well-known that the semantics of unb
is different from semantics of NULLs in relational algebra). The use of the first
function in the extended projection is used to obtain in the solution the bound
value of the variable, whenever it exists. This technique is the same with that
used in [6,11]. The use of the extended projection is not essential, since it can
be translated into a more complex relational algebra query by using an auxiliary
relation containing a tuple for each pair of compatible pairs of variables.

Definition 8 (Translation of the MINUS pattern). Consider the graph pat-
tern (P1 MINUS P2) and let var(P1) ∩ var(P2) = {v1, . . . , vn} (which may be
empty). The relational algebra expression [(P1 MINUS P2)]

G
R is

[P1]
G
R ��

⎡⎢⎢⎢⎢⎢⎣δ
(
[P1]

G
R

)
−ΠG,var(P1)

⎡⎢⎢⎢⎢⎢⎣σcomp∧¬disj

⎛⎜⎜⎜⎜⎜⎝[P1]
G
R �� ρ v′

1 ← v1
...

v′
n ← vn

(
[P2]

G
R

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
where comp is a conjunction of conditions vi = unb∨ v′i = unb∨ vi = v′i for each
variable vi(1 ≤ i ≤ n), and disj is the conjunction of conditions vi = unb∨ v′i =
unb for each variable vi(1 ≤ i ≤ n). Note that if the set of common variables is
empty then the above expression reduces to [P1]

G
R since disj = true.

This is the first of the non-monotonic SPARQL patterns, and deserves some
extra explanation. We need to check dynamically if the domains of variables
are disjoint since we do not know at translation time what are the unbound
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variables in the solution mappings, except when trivially the arguments of MINUS
do not share any variable. The expression on the right hand side of the difference
operator returns a tuple corresponding to a solution mapping μ1 of P1 whenever
it is possible to find a solution mapping μ2 of P2 that it is compatible with
μ1 (condition comp) and the mappings do not have disjoint domains (condition
¬disj). By deleting these tuples (solutions) from solutions of P1 we negate the
condition, and capture the semantics of the MINUS operator. The use of the
duplicate elimination δ ensures that only one tuple is obtained for each solution
mapping, in order to guarantee that the cardinality of the result is as what is
specified by SPARQL semantics: each tuple in [P1]

G
R joins with at most one tuple

(itself) resulting from the difference operation.

Definition 9 (Translation of FILTER pattern). Consider the graph pattern
(P FILTER R), and let [NOT] EXISTS(P1), . . . , [NOT] EXISTS(Pm) the EXISTS or
NOT EXISTS filter expressions occurring in R (which might not occur). The re-
lational algebra expression [(P FILTER R)]

G
R is

ΠG,var(P )

[
σfilter

(
[P ]

G
R �� E1 �� . . . �� Em

)]
where filter is a condition obtained from R where each occurrence of EXISTS(Pi)
(resp. NOT EXISTS(Pi)) is substituted by condition exi <> 0 (resp. exi = 0),
where exi is a new attribute name. Expression Ei(1 ≤ i ≤ m) is:

ΠG,var(P ),exi←0

⎡⎢⎢⎢⎢⎢⎢⎣δ(P
′)−ΠG,var(P )

⎛⎜⎜⎜⎜⎜⎜⎝σsubst

⎛⎜⎜⎜⎜⎜⎜⎝P ′
�� ρ v′

1 ← v1
...

v′
n ← vn

(P ′
i )

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦
⋃

ΠG,var(P ),exi←1

⎡⎢⎢⎢⎢⎢⎢⎣δ(P
′)−

⎡⎢⎢⎢⎢⎢⎢⎣δ(P
′)−ΠG,var(P )

⎛⎜⎜⎜⎜⎜⎜⎝σsubst

⎛⎜⎜⎜⎜⎜⎜⎝P ′
�� ρ v′

1 ← v1
...

v′
n ← vn

(P ′
i )

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
where P ′ = [P ]GR, P ′

i = [Pi]
G
R, and subst is the conjunction of conditions vi =

v′i ∨ vi = unb for each variable vi in var(P ) ∩ var(Pi) = {v1, . . . , vn}. Note
that if there are no occurrences of EXISTS patterns, then [(P FILTER R)]

G
R is

σR

(
[P ]

G
R

)
.

The translation of FILTER expressions turns out to be very complex due to
the EXISTS patterns. For each exists expression we need to introduce an aux-
iliary expression returning a unique tuple for each solution mapping of P , the
top expression when the pattern Pi does not return any solution, and the bottom
expression when it does. We need the double negation in order to not affect the



636 C.V. Damásio, A. Analyti, and G. Antoniou

cardinality of the results of the filter operation when pattern P returns more
than one solution. Obviously, our translation depends on the capability of ex-
pressing arbitrary SPARQL conditions as relational algebra conditions; this is
not immediate but assumed possible due to the translation provided in [6].

We can now conclude our translation by taking care of the OPTIONAL graph
pattern, since it depends on the translation of filter patterns:

Definition 10 (Translation of OPTIONAL pattern). Consider the graph pat-
tern (P1 OPTIONAL (P2 FILTER R)).
The relational algebra expression [(P1 OPTIONAL (P2 FILTER R))]

G
R is

[(P1 AND P2)]
G
R⋃

ΠG,var(P1)∪{v←unb|v∈var(P2)\var(P1)}⎡⎢⎢⎣[P1]
G
R ��

⎛⎜⎜⎝
δ
(
[P1]

G
R

)
−

ΠG,var(P1)

(
[(P1 AND P2) FILTER R]

G
R

)
⎞⎟⎟⎠
⎤⎥⎥⎦

The translation of (P1 OPTIONAL P2) is obtained from the translation of the graph
pattern (P1 OPTIONAL (P2 FILTER true)).

The translation of the OPTIONAL pattern has two parts, one corresponding to the
JOIN operator (top expression) and one corresponding to the Diff operator. The
translation of the Diff operator uses the same technique as the MINUS operator
but now we remove from solutions of P1 those solution mappings of P1 that are
compatible with a mapping of P2 and that satisfy the filter expression.

Theorem 1 (Correctness of translation). Given a graph pattern P and a
RDF dataset D(G) the process of evaluating the query is performed as follows:

1. Construct the base relations Graphs and Quads from D(G);
2. Evaluate [SPARQL(P,D(G), V )]R = ΠV

[
σG′=0

(
[()]

G′

R �� [P ]
G′

R

)]
with re-

spect to the base relations Graphs and Quads, where G′ is a new attribute
name and V ⊆ var(P ).

Moreover, the tuples of relational algebra query (2) are in one-to-one correspon-
dence with the solution mappings of [[P ]]D(G) when V = var(P ), and where an
attribute mapped to unb represents that the corresponding variable does not be-
long to the domain of the solution mapping.

Proof. The proof is by by structural induction on the graph patterns
and can be found in the extended version of this paper available
at http://arxiv.org/abs/1209.0378.

The constructed translation will be used to extract how-provenance information
for SPARQL queries, addressing the problems identified in [12].

http://arxiv.org/abs/1209.0378
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5 Provenance for SPARQL Queries

The crux of the method has been specified in the previous section, and relies
on the properties of the extended provenance m-semiring Kdprovd for language
RA+

K(−, δ). We just need a definition before we illustrate the approach.

Definition 11 (Provenance for SPARQL). Given a graph pattern P and a
RDF dataset D(G) the provenance for P is obtained as follows:

– Construct the base Kdprovd-relations by annotating each tuple in Graphs and
Quads with a new identifier;

– Construct an annotated query SPARQL(P,D(G), V )Kdprovd
from relational

algebra [SPARQL(P,D(G), V )]R expression by substituting the duplicate
elimination operator by δ1 where 1 is the identity element of Kdprovd.

The provenance information for P is the annotated relation obtained from eval-
uating SPARQL(P,D(G), V )Kdprovd

with respect to the annotated translation of
the dataset D(G).

By the factorization property of Kdprovd we know that this is the most general
m-semiring, and thus the provenance obtained according to Definition 11 is the
most informative one. We just need to illustrate the approach with Example 1
in order to completely justify its appropriateness.

Example 4. First, we represent the RDF dataset by Kdprovd-relations where the
annotation tags are shown in the last column. The IRIs have been abbreviated:

Graphs

gid IRI

0 <> g0

Quads

gid sub pred obj

0 <david> <account> <bank> t1
0 <felix> <account> <games> t2
0 <bank> <accountServiceHomepage> <bank/yourmoney> t3

Returning to query Q = (Q1 OPTIONAL Q2) of Example 2 with (sub)patterns
Q1 = (?w,< account>, ?a) and Q2 = (?a,< accountServiceHomepage>, ?h),
we obtain the following expressions for Q1 and Q2:

[Q1]
G
R = ΠG,w,a

⎡⎢⎢⎣ρG ← gid
w ← sub
a ← obj

(σpred=<account>(Quads))

⎤⎥⎥⎦
[Q2]

G
R = ΠG,a,h

⎡⎢⎢⎣ρG ← gid
a ← sub
h ← obj

(σpred=<accountServiceHomepage>(Quads))

⎤⎥⎥⎦
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returning the annotated relations:

[Q1]
G
R =

G w a

0 <david> <bank> t1
0 <felix> <games> t2

[Q2]
G
R =

G a h

0 <bank> <bank/yourmoney> t3

The expression [(Q1 AND Q2)]
G
R used in the construction of the expression for

the OPTIONAL pattern is:

ΠG,w,a←first(a′,a′′),h

[
σa′=a′′∨a′=unb∨a′′=unb

(
ρa′′←a

(
[Q1]

G
R

)
�� ρa′←a

(
[Q2]

G
R

))]
obtaining the annotated relation:

[(Q1 AND Q2)]
G
R =

G w a h

0 <david> <bank> <bank/yourmoney> t1 × t3

We also need to determine the value of δ1([Q1]
G
R) which is simply:

δ1([Q1)]
G
R) =

G w a

0 <david> <bank> 1
0 <felix> <games> 1

We can now construct the expression corresponding to the Diff operator of
SPARQL algebra, namely:

ΠG,w,a,h←unb

⎡⎢⎢⎣[Q1]
G
R ��

⎛⎜⎜⎝
δ1

(
[Q1]

G
R
)

−
ΠG,w,a

(
[(Q1 AND Q2)]

G
R
)
⎞⎟⎟⎠
⎤⎥⎥⎦

returning the annotated tuples:

G w a h

0 <david> <bank> unb t1 × (1− (t1 × t3))
0 <felix> <games> unb t2 × (1− 0) = t2

This is the important step, since K-relations assign an annotation to every pos-
sible tuple in the domain. If it is not in the support of the relation, then it is
tagged with 0. Therefore, the solutions for ([(Q1 AND Q2)]

G
R are:

G w a h

0 <david> <bank> <bank/yourmoney> t1 × t3
0 <david> <bank> unb t1 × (1− (t1 × t3))
0 <felix> <games> unb t2

and for our query, finally we get

w a h

<david> <bank> <bank/yourmoney> g0 × t1 × t3
<david> <bank> unb g0 × t1 × (1− (t1 × t3))
<felix> <games> unb g0 × t2
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The interpretation of the results is the expected and intuitive one. Suppose that
(i) we use the boolean m-semiring, with just the two values t and f, meaning
that we trust or not trust a triple, (ii) product corresponds to conjunction, (iii)
sum corresponds to disjunction, and (iv) difference is defined as x− y = x∧¬y.
So, if we trust g0 and t1, t2 and t3 we are able to conclude that we trust the
first and third solutions (substitute 1 and the identifiers of trusted triples by
t in the annotations, and then evaluate the resulting boolean expression). If
we do not trust t3 but trust the other triples then we trust the second and
third solutions. Also mark how the graph provenance is also annotated in our
solutions. Accordingly, if we don’t trust the default graph then we will not trust
any of the solutions. Therefore, our method was capable of keeping in the same
annotated Kdprovd-relation the several possible alternative solutions, one in each
distinct tuple. This was claimed to not be possible in [12].

6 Discussion and Conclusions

The literature describes several approaches to extract data provenance/annotated
information from RDF(S) data [7,5,4,12,3]. A first major distinction is that we ex-
tract how-provenance instead of only why-provenance6 of [7,5,4,3]. Both [7,4] ad-
dress the problem of extracting data provenance for RDF(S) entailed triples, but
do not support SPARQL. The theory developed in [5] implements the difference
operator using a negation, but it does not handle duplicate solutions according to
the semantics of SPARQL because of idempotence of sum; additionally, the pro-
posed difference operator to handle why-provenance discards the information in
the right hand argument. The most complete work is [3] which develops a frame-
work for annotated Semantic Web data, supporting RDFS entailment and provid-
ing a query language extending many of the SPARQL features in order to deal with
annotated data, exposing annotations at query level via annotation variables, and
including aggregates and subqueries (but not property path patterns). However,
the sum operator is idempotent in order to support RDFS entailment, and by de-
sign the UNION operator is not interpreted in the annotation domain. Moreover, the
OPTIONAL graph pattern discards in some situations the information in the second
argument, and thus cannot extract full provenance information.

The capability of extracting full data how-provenance for SPARQL semantics
as prescribed in [12] has been shown possible with our work, refuting their claim
that existing algebras could not be used for SPARQL. Our approach, like [12],
rests on a translation of SPARQL into annotated relational algebra contrasting
with the abstract approach of [7,5,4,3]. The authors in [12] argue that this trans-
lation process does not affect the output provenance information for the case of
(positive) SPARQL. In this way, the major constructs of SPARQL 1.1 are taken
care respecting their bag semantics. However, contrary to the works of [7,3] we
do not address the RDF schema entailment rules, and therefore our work is only
applicable to simple entailment.

6 We use the terminology “how-” and “why-provenance” in the sense of [9].
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We plan to address the complete semantics of SPARQL. In particular, ag-
gregates can be handled by summing (⊕) tuples for each group, while property
path patterns can generate annotation corresponding to products (⊗) of the
involved triples in each solution. This extension is enough to be able to cap-
ture data provenance for RDFS entailment. We also want to explore additional
applications in order to assess fully the potential of the proposed method.
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Abstract. We introduce SRBench, a general-purpose benchmark primarily de-
signed for streaming RDF/SPARQL engines, completely based on real-world data
sets from the Linked Open Data cloud. With the increasing problem of too much
streaming data but not enough tools to gain knowledge from them, researchers
have set out for solutions in which Semantic Web technologies are adapted and
extended for publishing, sharing, analysing and understanding streaming data. To
help researchers and users comparing streaming RDF/SPARQL (strRS) engines
in a standardised application scenario, we have designed SRBench, with which
one can assess the abilities of a strRS engine to cope with a broad range of use
cases typically encountered in real-world scenarios. The data sets used in the
benchmark have been carefully chosen, such that they represent a realistic and
relevant usage of streaming data. The benchmark defines a concise, yet compre-
hensive set of queries that cover the major aspects of strRS processing. Finally,
our work is complemented with a functional evaluation on three representative
strRS engines: SPARQLStream, C-SPARQL and CQELS. The presented results
are meant to give a first baseline and illustrate the state-of-the-art.

1 Introduction

Unlike the static data, which are known a priori and rarely change, streaming data ar-
rive as continuous streams typically at high rates, e.g., once per second or even higher.
For data streams, the most recent data are usually most relevant, and the queries mainly
focus on the continuous changes of the observed properties over time. The amount of
streaming data has been growing extremely fast in the past years and is expected to
grow even faster in the coming decades. However, existing Data Stream Management
Systems (DSMSs) are not able to capture all information from the available stream-
ing data, letting alone interlinking those data with other data sets to derive implicit
information [5,16]. In the meantime, Semantic Web techniques have focused on how
to publish and interlink data on the World Wide Web, and how to perform complex
reasoning tasks on the data. However, these techniques have generally not taken into
account rapidly changing streaming data. The lack of integration and communication
between different streaming data resources often isolates important data streams and
intensifies the existing problem of “too much (streaming) data but not enough (tools to
gain and derive) knowledge” [32]. To tackle this problem, researchers have set out for
solutions in which Semantic Web techniques are adapted and extended for publishing,
sharing, analysing and understanding of streaming data.

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 641–657, 2012.
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Sheth et al. [32] first envisioned a Semantic Sensor Web (SSW), in which sensor data
are annotated with semantic metadata to increase interoperability and provide contex-
tual information essential for situational knowledge1. Subsequently, Corcho et al. [14]
identified the five most relevant challenges of the current SSW. Della Valle et al. [16]
proposed a novel approach, called stream reasoning, to provide the abstractions, foun-
dations, methods and tools required to integrate data streams, the Semantic Web and
reasoning systems. Sequeda et al. [31] introduced the concept of Linked Stream Data
(LSD) which applies the Linked Data principles to streaming data, so that data streams
can be published as part of the Web of Linked Data. So far, these visions have been
answered by various proposals to address the topic of streaming data processing using
Semantic Web technologies from different angles. For instance, how to apply reasoning
on streaming data [1,16,32,35,36]; how to publish raw streaming data and connect them
to the existing data sets on the Semantic Web [10,14,26,31,32]; and how to extend the
SPARQL query language to process streaming data [6,9,11,20,24,25]. The increasing
interest in streaming RDF/SPARQL (strRS) engines calls for a standard way to compare
the functionality and performance of different systems.

So far, little work has been done on benchmarking DSMSs. The Linear Road bench-
mark [3] is the only publicly available DSMSs benchmark. However, it is not ideal when
used to assess strRS engines. As originally designed to evaluate traditional DSMSs,
the benchmark is based on the relational data model, so it does not capture the prop-
erties of RDF graph data. Moreover, Linear Road does not consider interlinking the
benchmark data set with other data sets; neither does it address reasoning. In Semantic
Web, existing RDF/SPARQL benchmarks, e.g., [8,21,30], have been focused on static
data, so they do not capture the aforementioned dynamic properties of streaming data.
In [24,25], some microbenchmark queries are used for preliminary evaluations of the
proposed strRS systems. However, the queries were created with a particular system in
mind and they only cover a small subset of the features of SPARQL. Hence, they cannot
serve as general-purpose benchmarks.

In this paper, we present SRBench, a streaming RDF/SPARQL benchmark that aims
at assessing the abilities of strRS engines in dealing with important features from both
DSMSs and Semantic Web research areas combined in one real-world application sce-
nario. That is, how well can a system cope with a broad range of different query types
in which Semantic Web technologies, including querying, interlinking, sharing and rea-
soning, are applied on highly dynamic streaming RDF data. The benchmark can help
both researchers and users to compare strRS engines in a pervasive application sce-
nario in our daily life, i.e., querying and deriving information from weather stations.
To the best of our knowledge, SRBench is the first general-purpose benchmark that is
primarily designed to compare strRS engines.

Given the importance of interlinked data sets in Semantic Web, and the study of
Duan et al. [17], which points out that the synthetic data used by the existing RDF
benchmarks generally do not accurately predict the behaviour of RDF stores in realistic
scenarios, we decided to use a real-world sensor data set, i.e., LinkedSensorData [27],
from the Linked Open Data (LOD) cloud [34] as the basic data set of SRBench. To

1 Situational knowledge is the knowledge specific to a particular situation.
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assess a system’s ability of dealing with interlinked data, we additionally use the LOD
data sets GeoNames [18] and DBpedia [15], which are linked to the LinkedSensorData.

SRBench defines a concise, yet comprehensive set of queries which covers the major
aspects of strRS query processing, ranging from simple graph pattern matching queries
only on streaming data to queries requiring reasoning over multiple interlinked data sets.
Each query is intended to challenge a particular aspect of the query processor. The main
advantages of applying Semantic Web technologies on streaming data include providing
better search facilities by adding semantics to the data, reasoning through ontologies,
and integration with other data sets. The ability of a strRS engine to process these
distinctive features is accessed by the benchmark with queries that apply reasoning not
only over the streaming sensor data, but also over the sensor metadata and the two
aforementioned LOD data sets.

Given that existing strRS engines are still in their infancy, we deem it important
to first conduct a functional evaluation. Do they provide a sufficient set of functions
that are required by the streaming applications? Do they miss any crucial functionali-
ties? Do they provide any additional functionalities that can be beneficial for streaming
applications, which thus distinguish themselves from similar systems? Therefore, we
complement our work on SRBench by a functional evaluation on three strRS engines,
SPARQLStream [11], C-SPARQL [6] and CQELS [25]. Each of these systems also
proposes its own SPARQL extension for streaming data processing. The evaluation is
not meant to be an exhaustive examination of all existing strRS systems. The testing
systems are chosen, because they represent different approaches in strRS processing.
SPARQLStream aims at enabling ontology-based access to streaming data. C-SPARQL
attempts to facilitate reasoning upon rapidly changing information. CQELS is the only
native strRS system built from scratch. The evaluation results are intended to give a first
baseline and illustrate the state-of-the-art.

The target audience of this paper can be divided into three groups. First, the frame-
work presented here can help strRS engine implementers to verify and refine their query
processors by comparing them to other implementations. Second, users can be assisted
in choosing between products by using SRBench as a simple case study or pilot project
that yet provides essential ingredients of the targeted system. For researchers, lastly,
we provide a framework for helping to tailor existing technologies for use in streaming
settings and for refinement or design of algorithms.

This paper is further organised as follows. Section 2 discusses design challenges
of the benchmark. Section 3 describes the benchmark data sets. Section 4 defines the
benchmark queries. Section 5 presents the results of the functional evaluation. Finally,
we discuss related work in Section 6 and conclude in Section 7.

2 Design Challenges

In this section, we discuss the unique challenges that streaming RDF/SPARQL process-
ing imposes on the design of a benchmark and how they are met by SRBench.

Proper Benchmark Data Set. First of all, the design of a streaming RDF/SPARQL
benchmark requires a cautiously chosen data set that is relevant [19], realistic [17],
semantically valid [3] and interlinkable [31]. Additionally, the data set should allow the
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formulation of queries that both feel natural and present a concise but complete set of
challenges that strRS engines should meet.

In SRBench, this challenge is met by choosing the LinkedSensorData [27] data set
from the LOD cloud as the basic data set. Among different kinds of streaming data2,
sensor data is a major class of streaming data with the longest history. Weather infor-
mation applications have long become pervasive in our daily life, in addition, they are
gaining increasing social and financial values in more accurate prediction of extreme
weather conditions. The LinkedSensorData is a real-world data set containing the US
weather data published by Kno.e.sis3 according to the LSD principles [13], which ap-
plies the well-established Linked Data principles [7] to streaming data. The Linked-
SensorData is the first and, so far, largest LSD data set in the LOD cloud [34] and
CKAN [12] containing ∼1.7 billion triples.

To assess a system’s ability of dealing with interlinked data, we additionally use
other data sets from the LOD cloud. Currently, this includes the GeoNames [18] and
DBpedia [15] data sets. Our choice for the GeoNames data set is determined by the
fact that the LinkedSensorData data set links the sensor locations to nearby geographic
places defined by the GeoNames data set. The choice for the DBpedia data set is a mat-
ter of course, since DBpedia is the largest and most popularly used data set in the LOD
cloud. By using the LOD data sets, it is easy to extend the benchmark with more data
sets in the future. This enables adding more semantics to the benchmark’s application
scenario, which subsequently allows more use cases.

A Concise Set of Features. The main advantages of applying Semantic Web technolo-
gies on streaming data include providing better search and sharing facilities by adding
semantics to the data, reasoning through ontologies, and integration with other data sets.
The benchmark should provide a comprehensive set of queries that assess a system’s
ability of processing these distinctive features on highly dynamic (in terms of arriving
rate and amount) streaming data, possibly in combination with static data. The queries
should have different levels of complexity, so that the benchmark can be used to evaluate
not only general purpose systems supporting a broad spectrum of features, but also spe-
cialised systems aiming at providing a limited number of features with high efficiency.
Nonetheless, as stated by the “20 queries” principles [23], the number of queries should
be compact. Thus, the number and types of queries should exhibit a good balance be-
tween conciseness and detail making it possible to run the benchmark in an acceptable
time, while still acquiring interesting characteristics of the system(s) tested.

In SRBench, this challenge is met by a set of seventeen queries that have been care-
fully chosen such that they provide valuable insights that can be generally applied to
strRS systems and are useful in many domains, e.g., notion of time bounded queries
(e.g., data in the latest X units-of-time); notion of continuous queries (i.e., queries
evaluated periodically); data summarisation in the queries (e.g., aggregates); provid-
ing high-level information from raw-data (e.g., ask for hurricanes, while the raw-data
are simply temperature, wind measurements); and combining streams with contextual
static data. Before designing the queries, we first identified the set of important features
in the SPARQL 1.1 language [22] and streaming data processing. Then, use cases are

2 Next to sensor data streams, there are text streams and video streams.
3 http://knoesis.wright.edu

http://knoesis.wright.edu
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Fig. 1. An overview of the data sets used in SRBench and their relationships

carefully chosen such that they reflect how the weather information is used in the real
world, while each of them challenges the query processor, with focus on one or two of
the important features (but not limited to).

No Standard Query Language. A standard query language for streaming data pro-
cessing has never come into existence. Therefore, the queries of a streaming benchmark
should be specified in a language agnostic way, yet have a clear semantics.

In SRBench, this challenge is met by first giving a descriptive definition of the
benchmark queries, in a similar way as how the Berlin SPARQL Benchmark describes
its queries4. Then, we provide implementations of the benchmark queries using the
three major SPARQL extensions for streaming data processing (for short: streaming
SPARQL), i.e., SPARQLStream, C-SPARQL and CQELS. Thus, these three sets of im-
plementing queries are not only used by the functional evaluation in Section 5, but also
for the purpose of clarifying the benchmark query definitions.

3 Data Sets

In this section, we briefly describe the three LOD data sets used by SRBench. An
overview of the data sets and their ontologies, and how they are linked to each other
is shown in Figure 1. More information of the data sets can be found in [37].

The LinkedSensorData Data Set. Work on producing Linked Data from data emitted
by sensors was initiated in 2009, pioneered by [31,26]. The LinkedSensorData con-
tains the US weather data collected since 2002 by MesoWest5, and were transformed
into LSD by Kno.e.sis. LinkedSensorData contains two sub-datasets. The LinkedSen-
sorMetadata contains expressive descriptions of ∼20,000 weather stations in the US.
On average, there are five sensors per weather station, so there are in total ∼100,000
sensors in the data set. The sensors measure phenomena such as temperature, visibil-
ity, precipitation, pressure, wind speed and humidity. In addition to location attributes,
e.g., latitude, longitude, and elevation, there are also links to locations in GeoNames
that are near the weather stations. The LinkedObservationData contains expressive de-
scriptions of hurricane and blizzard observations in the US. The observations collected
include values of all phenomena measured by the sensors. The data set includes ob-
servations within the entire US during the time periods that several major storms were

4 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
5 http://mesowest.utah.edu/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
http://mesowest.utah.edu/
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Table 1. Statistics of the LinkedObservationData data sets used by SRBench

Name Storm Type Date #Triples #Observations Data size

ALL 1,730,284,735 159,460,500 ∼111 GB

Bill Hurricane Aug. 17 – 22, 2009 231,021,108 21,272,790 ∼15 GB

Ike Hurricane Sep. 01 – 13, 2008 374,094,660 34,430,964 ∼34 GB

Gustav Hurricane Aug. 25 – 31, 2008 258,378,511 23,792,818 ∼17 GB

Bertha Hurricane Jul. 06 – 17, 2008 278,235,734 25,762,568 ∼13 GB

Wilma Hurricane Oct. 17 – 23, 2005 171,854,686 15,797,852 ∼10 GB

Katrina Hurricane Aug. 23 – 30, 2005 203,386,049 18,832,041 ∼12 GB

Charley Hurricane Aug. 09 – 15, 2004 101,956,760 9,333,676 ∼7 GB

Blizzard Apr. 01 – 06, 2003 111,357,227 10,237,791 ∼2 GB

active, including Hurricane Katrina, Ike, Bill, Bertha, Wilma, Charley, Gustav, and a
major blizzard in Nevada in 2003. These observations are generated by weather sta-
tions described in the LinkedSensorMetadata data set introduced above. Currently, this
data set contains almost two billion RDF triples, which together describe more than
159 million observations. For SRBench, we have obtained all linked sensor observation
data sets from the original Kno.e.sis site for LinkedSensorData [27]. Table 1 shows the
statistics of the LinkedObservationData data sets as presented on the original website,
to which we have added the sizes of the data sets after they have been unpacked.

All data are described according to the sensor-observation ontology [27]. The on-
tology class System describes a weather sensor station, e.g., its ID and location of the
station, a geographical location to which the station is located nearby and the weather
properties observed by this station. The class Observation describes an observation
made by a weather sensor station, e.g., the ID of the weather station that has made
the observation, the type of the observed weather property and the value and time of
the observation. The class MeasureData describes the numerical value of an observa-
tion, while the class TruthData describes the truth-value of an observation. The class
LocatedNearRel describes a geographic location to which a weather sensor station is
located nearby, e.g., the distance between the nearby location and the sensor station.
The class Point describes a geographic point location, in terms of latitude, longitude
and altitude. The class Instant describes a date/time object.

The GeoNames Data Set is a free geographical database that covers all countries and
contains >8 million place names [18]. For SRBench, we use version 3.01 of the GeoN-
ames ontology [18]. Its main class is Feature, which describes a geographical location,
e.g., its names, its latitude and longitude, the country to which this location belong and
other locations that are close to this location. We have obtained the dump of the com-
plete GeoNames RDF data set, which contains∼8 million geographic features with ∼46
million RDF triples. The dump has one RDF document per toponym. The complete data
set occupies ∼10GB on disk.

The DBpedia Data Set. The DBpedia ontology is highly complex but well docu-
mented, so we do not repeat its class definitions here, but refer the interested readers
to its official website [15] instead. For SRBench, we have obtained the data sets from
the English language collection, which consists of 44 RDF files in N-triple format with
∼181 million triples. The total data size is ∼27 Gigabytes. The DBpedia data set is di-
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Table 2. Addressed features per query. Operators are abbreviated in per row unique capital letters,
defined as: 1. And, Filter, Union, Optional; 2. Projection, Distinct; 3. Select, Construct, Ask;
4. Aggregate, Subquery, Negation, Expr in SELECT, assignMent, Functions&operators, Property
path; 5. subClassOf, subpRopertyOf, owl:sameAs; 6. Time-based window, Istream, Dstream,
Rstream; 7. LinkedObservationData, LinkedSensorMetadata, GeoNames, Dbpedia.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

1 graph pattern matching A A,F,O A A,F A A,F,U A A A A A,F A,F,U A,F A,F,U A,F A,F A,F

2 solution modifier P,D P,D P P P P P,D P P P,D P,D P P P,D P P P

3 query form S S A S C S S S S S S S S S S S S

4 SPARQL 1.1 F,P A A,E,M,F A,S N A,E,M A,E,M A,S,M,F A,S,E,M,F,P A,E,M,F,P F,P A,E,M,P P P

5 reasoning R C A C

6 streaming feature T T T T T T T, T T T T T T T T

7 data access O O O O O O O O, S O,S O,S O,S O,S,F O,S,G O,S,G O,S,D O,S,G,D S

rectly linked to the GeoNames data set through the owl:sameAs property. DBpedia has
in total 85,000 links to the GeoNames data set.

4 Benchmark Queries

In this section, we define the SRBench benchmark queries. An overview of the language
features addressed by each query is given in Table 2.

A SPARQL query can be divided into three parts. As SPARQL is essentially a graph-
matching query language, graph pattern matching is the fundamental and one of the
most complex parts of a SPARQL query. This part includes features such as the basic
graph pattern matching operators ‘.’ (representing a natural join AND) and FILTER, and
the most complicated operators UNION and OPTIONAL [28]. All graph pattern matching
operators are addressed in the SRBench queries.

The second part is called the solution modifiers, which are used to modify the re-
sults of the graph pattern matching operators. The solution modifiers contain six opera-
tors, i.e., projection, DISTINCT, ORDER BY, OFFSET, LIMIT and REDUCED. In the SRBench
queries, only the projection and DISTINCT solution modifiers are addressed, because the
additional values of the other four operators are negligible in streaming applications.
ORDER BY is ignored since streaming data are already sorted by their time stamps, and
sorting the results on another attribute will only produce partially sorted data (within
one window). The features of OFFSET and LIMIT are largely covered by sliding windows,
which are more appropriate for strRS queries. Finally, the nondeterministic property of
REDUCED highly complicates the verification of the query results.

The last part is called the query forms, which determine the form of the final output
of a SPARQL query. The output can be one of the four query forms: SELECT returns the
projected variables bound in a query pattern match; CONSTRUCT returns a new RDF graph
constructed by substituting variables in a set of triple templates; ASK returns a boolean
indicating whether a query pattern matches or not; and DESCRIBE returns an RDF graph
that describes the resources found. In the SRBench queries, the DESCRIBE form is not
used, because the result of a DESCRIBE query is highly implementation dependant, which
largely complicates the verification of the query results. Moreover, the functionality of
DESCRIBE can be approximated using explicit graph pattern matching and projections.
The first three rows of Table 2 respectively survey how the operators of the three parts
are distributed among the benchmark queries.
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Next to the features defined by SPARQL 1.0 [29], SPARQL 1.1 has introduced sev-
eral new features, including aggregates, subqueries, negation, expressions in the SELECT
clause, Property Paths, assignment, a short form for CONSTRUCT, and an expanded set of
functions and operators. Except the short form of CONSTRUCT, which is merely a syn-
tax sugar, we make extensive use of these new features in the benchmark queries, es-
pecially the Property Paths expressions, which we regard as a major contribution of
SPARQL 1.1 that provides great flexibility to navigate through the RDF graphs. Note
that, since SPARQL 1.1 is still a W3C working draft, changes to the syntax and/or se-
mantics of the new language features are possible. For instance, the semantics of the
Property Path expressions might be modified, due to recent analysis of the unfeasibil-
ity of their current semantics [4]. Possible changes in SPARQL 1.1 will not affect the
definition of the benchmark queries, since they are specified independent of any query
language. Row 4 of Table 2 surveys how the SPARQL 1.1 new features are distributed
among the benchmark queries.

A main added value of applying Semantic Web technologies on streaming data is the
possibility of reasoning over the data, so SRBench includes queries that allow exploit-
ing such facility if provided by the processing engine. Currently, the queries involve
reasoning over the rdfs:subClassOf, rdfs:subPropertyOf and owl:sameAs properties.
Note that, these queries can be implemented and executed by both systems with and
without inference mechanisms, but the differences might be noticeable in the query
results. That is, systems with inference mechanisms will most probably return more re-
sults than systems without such mechanisms. Also note that, although SPARQL is not a
reasoning language, it can be used to query ontologies if they are encoded in RDF. So,
on systems without reasoning, this shortcoming can be alleviated by explicitly express-
ing reasoning tasks using extra graph patterns with Property Path over the ontologies.
In our functional evaluation (Section 5), we actually use this workaround to implement
the benchmark queries using the three language extensions tested. Row 5 of Table 2
surveys how reasoning features are distributed among the benchmark queries.

Although there is no standard query language for streaming RDF data, existing
streaming SPARQL extensions generally introduce streaming data operators that are
inspired by the continuous query language CQL [2]. So, next to the classical SPARQL
1.0 and 1.1 operators, we add three important streaming SPARQL features. The time-
based sliding window operator is a basic operator in streaming data processing, which
allows users to control data access using time intervals. A slide size can be defined to
create overlapping or disjoint windows. The window-to-stream operators, Istream and
Dstream, return data items that have been inserted or deleted since the previous win-
dow, respectively. Although not frequently used, these operators help to detect changes
in the data streams, a feature particularly important for streaming data. Row 6 of Table 2
surveys how the streaming operators are distributed among the benchmark queries.

To conclude, the SRBench queries are designed based on a real use case in LSD.
They cover the most important SPARQL operators and the common streaming SPARQL
extensions. SRBench clearly shows the added values of the Semantic Web technologies
on gaining and even deriving knowledge from streaming data. The benchmark provides
a general framework to assess the ability of streaming RDF/SPARQL engines to sup-
port such applications. In the reminder of this section, the queries are grouped under
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section headings which indicate the features to be tested. Due to lack of space, we omit
presenting the query implementations, which are available at [33].

4.1 Basic Pattern Matching

Q1. Get the rainfall observed once in an hour.
This is a basic but important query. It tests an engines ability to handle basic graph

patterns, disjoint time windows (“once in an hour”) to gain knowledge about the mostly
spoken topic (“rainfall”), when talking about the weather.

4.2 Optional Pattern Matching

Q2. Get all precipitation observed once in an hour.
Although similar to Q1, this query is much more complex, because it requires return-

ing all types of precipitation. Since the triple patterns for different kinds of precipita-
tions maybe different, OPTIONAL patterns are needed to capture the possible differences.
Additionally, this query exploits an engine’s ability of reasoning over all instances of
the class PrecipitationObservation and its subclasses.

4.3 ASK Query Form

Q3. Detect if a hurricane is being observed.
A hurricane has a sustained wind (for >3 hours) of at least 74 miles per hour. This

query continuously monitors if the weather conditions observed in the current time
window (i.e., an hour) is extreme (“a hurricane”). It also tests the engines ability to
filter out the minimal amount of the streaming data to quickly compute the answer.

4.4 Overlapping Sliding Window and Historical Data

Q4. Get the average wind speed at the stations where the air temperature is >32 degrees
in the last hour, every 10 minutes.

Combine values observed for multiple weather properties. This query tests the en-
gines ability to deal with historical data that need to be (temporarily) stored. Moreover,
contrary to queries for which an incoming data item can be immediately consumed and
then discarded, this query tests how efficient an engine’s strategy is to decide how to
store historical data and for how long.

4.5 CONSTRUCT Derived Knowledge

Q5. Detect if a station is observing a blizzard.
A blizzard is a severe snow storm characterised by low temperatures, strong winds

and heavy snow lasting for at least three hours. This query detects extreme weather con-
ditions by combining multiple observed weather properties. It tests the engines ability
to produce new knowledge derived by combining existing data.
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4.6 Union

Q6. Get the stations that have observed extremely low visibility in the last hour.
Next to direct measurements of low visibility (<10 centimetres), heavy snowfall and

rainfall (> 30 centimetres) also cause low visibility. This is a more complex example
of detecting extreme weather conditions, which requires not only gaining knowledge
explicitly contained in the data (i.e., visibility), but also deriving implicit knowledge
from data sources (i.e., snowfall and rainfall).

4.7 Window-to-Stream Operation

Q7. Detect stations that are recently broken.
If a station suddenly stops producing (observation) data, it might be broken. Knowing

the stability of the stations is an important issue, which can be deduced from absent data.
This query tests the engines ability to cope with the dynamic properties that are specific
for streaming data.

4.8 Aggregates

Q8. Get the daily minimal and maximal air temperature observed by the sensor at a
given location.

Temperature is the most common weather condition queried. This query tests the
engines’ ability to aggregate data grouped by their geo-spatial properties.

4.9 Expression in SELECT Clause

Q9. Get the daily average wind force and direction observed by the sensor at a given
location.

Wind is the other most commonly queried weather condition. The Beaufort Wind
Force Scale6 is an international standard to express how strong the wind is. It attaches
some semantics to the bare wind speed numbers. Since this query requires wind speeds
to be converted into Beaufort scales, it tests the engines ability to post process the
qualified triple patterns.

4.10 Join with Static Data

Q10. Get the locations where a heavy snowfall has been observed in the last day.
This query finds places that are suitable for a ski holiday. It also tests the engines

ability to join the dynamic sensor streaming data with the static sensor metadata.

4.11 Subquery

Q11. Detecting if a station is producing significantly different observation values than
its neighbouring stations.

6 http://en.wikipedia.org/wiki/Beaufort_scale

http://en.wikipedia.org/wiki/Beaufort_scale
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Detecting malfunctioning sensors is an important issue in all sensor systems. If two
sensor stations are located close (denoted by hasLocatedNearRel) to the same location,
the sensors are neighbours of each other and they should observe similar weather condi-
tions, otherwise, a sensor might be malfunctioning. This query tests the engines ability
to compute complex subqueries.

4.12 Property Path Expressions

This group of queries tests the engines ability to derive knowledge from multiple in-
terlinked data sets using Property Path expressions. In particular, the queries require
computing paths with arbitrary lengths for the parentFeature relationship, and com-
puting alternatives for the name of the resulting places.

Q12. Get the hourly average air temperature and humidity of large cities.
To analyse air pollution in large cities, one might want to know if the temperature

is higher during the rush hours in such cities. This query requires using the GeoNames
data set to find large cities, i.e., population > 15000, and use the hasLocatedNearRel
property in the sensor ontology [27] to find sensors located in or near to these cities.

Q13. Get the shores in Florida, US where a strong wind, i.e., the wind force is between
6 and 9, has been observed in the last hour.

This query finds shores in Florida, US, where one can go windsurfing now. It re-
quires first reasoning over the parentADM{1,2,3,4} and parentFeature properties of the
GeoNames ontology to find the shores in Florida, US; and then using the
hasLocatedNearRel property in the sensor ontology to find sensors located near to these
shores.

Q14. Get the airport(s) located in the same city as the sensor that has observed ex-
tremely low visibility in the last hour.

This query triggers an alarm if a dangerous weather condition has been observed.
It requires using the GeoNames data set and the hasLocatedNearRel property in the
sensor ontology to find airport(s) and sensors located in the same city.

4.13 Ontology-Based Reasoning

This group of queries exploit the engines ability to apply reasoning, using the properties
rdfs:subClassOf and owl:sameAs, over the ontologies of the interlinked data sets.

Q15. Get the locations where the wind speed in the last hour is higher than a known
hurricane.

By comparing an observed value with historical values, we can detect extreme
weather conditions. This query requires reasoning over rdfs:subClassOf to find all
known hurricanes in the system.

Q16. Get the heritage sites that are threatened by a hurricane.
We want to trigger an alarm if a dangerous weather condition has been observed.

This query requires using a Property Path expression with an arbitrary length path to
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Table 3. Results of the functional evaluation. The ticks indicate queries supported by an engine.
Uppercase letters are abbreviations of features required by a query that are not supported by a
particular system. The abbreviations are defined as the following: Ask; Dstream; Group by and
aggregations; IF expression; Negation; Property Path; and Static Dataset. The ‘/’ symbol means
‘or’, i.e., the query would work if one of the listed features is available. The ‘,’ symbol means
‘and’, i.e., all listed features are needed by the query.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

SPARQLStream � PP A G G � � G G,IF SD SD PP,SD PP,SD PP,SD PP,SD PP,SD PP,SD

CQELS � PP A � � � D/N � IF � � PP PP PP PP PP PP

C-SPARQL � PP A � � � D � IF � � PP PP PP PP PP PP

find all heritages sites in the DBpedia data set; then reasoning using owl:sameAs to link
a heritage to a geographical instance described by the GeoNames data; and finally using
the GeoNames data set and the hasLocatedNearRel property in the sensor ontology to
find sensors located close to the monuments.

Q17. Estimate the damage where a hurricane has been observed.
A first thing we want to know after a natural disaster is the damage it brings. This can

be estimated by consulting the damage brought by similar disasters that have happened
before in the same/nearby area. This query requires using the DBpedia data set to find
the damages caused by earlier hurricanes in the same/nearby area as the sensor that has
observed a hurricane.

5 Implementation and Evaluation

As streaming RDF/SPARQL processing is a new topic with less than a decade of his-
tory, the proposed systems are mostly in a beginning stage of development. During
this phase, one of the most important issues is to assess the effectiveness of the pro-
posed systems. We have complemented our work on SRBench with a functional eval-
uation on three leading strRS systems, i.e., SPARQLStream [11], CQELS [25] and
C-SPARQL [6], that address strRS processing from different angles. In the evaluation,
we seek answers to the following questions: Do they provide an adequate set of func-
tionalities that are needed by the streaming applications? Do they sufficiently reveal the
additional value of RDF/SPARQL for streaming data processing? Furthermore, do they
provide any additional interesting functionalities, which help the users to distinguish
one system from the others? The results presented in this section are meant to give a
first insight into the state-of-the-art of the strRS engines and highlight several pros and
cons of different approaches.

All three systems come with a streaming SPARQL language proposal and a query pro-
cessing engine. The queries are implemented according to the syntax specified in [11],
[25] and [6] for SPARQLStream, CQELS and and C-SPARQL, respectively. To execute
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the queries, we downloaded the latest SPARQLStream
7, CQELS (Aug. 2011)8 and C-

SPARQL 0.7.49. All implementing queries can be found in the SRBench wiki page [33].
An overview of the evaluation results is shown in Table 3. A tick indicates that the en-
gine is able to process a particular query. For each query that cannot be processed by a
certain engine, we denote the main missing feature(s) that cause the query to fail. The
abbreviations are defined in the table caption.

The results of the evaluation are fairly close to our expectation. In general, all three
engines support basic SPARQL features (i.e., the graph pattern matching features, so-
lution modifiers and the SELECT and CONSTRUCT query forms discussed in Section 4)
over time-based windows of streaming data. The main issue we have identified from
the evaluation is that all three engines’ abilities of dealing with the new features in-
troduced by SPARQL 1.1 are rather limited. So, for instance, seven out of seventeen
queries cannot be executed, because the Property Path expressions are not supported
by any of the tested engines. We regard the Property Path expressions as one of the
most important features of SPARQL 1.1, because it provides flexible ways to navigate
through RDF graphs and facilitates reasoning over various graph patterns. This feature
does not exist in other query languages, e.g., SQL and XQuery, that are not primarily
designed to query graph data. The lacking of support for the SPARQL 1.1 features is
most probably due to the freshness of the SPARQL 1.1 language. However, we would
like to emphasise that the advanced SPARQL 1.1 features are the distinguishing factors
of the usefulness of one system from others for streaming RDF applications.

Several more remarks can be made from Table 3. The lack of support for the ASK
query form needed by Q3 is unexpected, since it is an easy to implement feature. This
might be caused by that it does not have research values, but in real-world scenario’s,
such as the one used by SRBench, the users often start with asking for basic information
that can be just as simple as “is it raining?”. Q3 can also be implemented using the IF
function of SPARQL 1.1, but it is available on none of the tested engines.

Q7 can be most easily implemented using the window-to-stream operator DSTREAM,
which can detect data items that have been deleted since the previous window, which
is exactly what this query asks. Although all three systems provide ways to produce
new data streams from the results of a continuous query, SPARQLStream is the only
streaming SPARQL extension that support DSTREAM. Q7 can also be implemented by
querying the same stream twice with different window definition and then using the
NOT EXISTS expression of SPARQL 1.1 to test the absence of a graph pattern from
the previous time interval in the current time interval. Since CQELS allows defining
different time windows for the same stream, this query can be expressed in the CQELS
language, but query execution failed because the CQELS engine does not support NOT
EXISTS yet. C-SPARQL does not allow query the same stream more than once, and
SPARQL 1.1 does not define arithmetic functions over the date/time data type, it is not
possible to express the query in C-SPARQL.

7 http://code.google.com/p/semanticstreams/source/checkout
8 http://code.google.com/p/cqels/
9 http://streamreasoning.org/download

http://code.google.com/p/semanticstreams/source/checkout
http://code.google.com/p/cqels/
http://streamreasoning.org/download
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The number of functionalities currently supported by SPARQLStream is somewhat
less than those supported by CQELS and C-SPARQL. As the GROUP BY and aggrega-
tions functions are still work in progress in SPARQLStream, it causes four more queries
(i.e., Q4, Q5, Q8 and Q9) to fail. Moreover, the development of the SPARQLStream en-
gine has so far concentrated on supporting streaming data, but not both streaming and
static data. This is one of the main reasons that the queries Q10 – 17 cannot be run on
SPARQLStream. Enabling queries on both streaming and static data sets is an ongoing
subproject of PlanetData10.

Little work has been done on enabling reasoning over streaming data. C-SPARQL
is the only testing system that supports reasoning based on simple RDF entailment.
SPARQLStream and CQELS currently do not tackle the problem of reasoning, because
SPARQLStream targets at enabling ontology based access to streaming data, while
CQELS concentrates on building a strRS engine from scratch. So, next to the Prop-
erty Path expressions, the ability to apply reasoning is another distinguishing factor.

The overall conclusion of our evaluation is that there is no single best system yet,
even thought the SPARQLStream engine supports fewer queries than CQELS and C-
SPARQL. Both the SPARQL 1.1 language and the streaming RDF/SPARQL engines
have been introduced only recently. As the time passes, we expect the strRS engines to
gradually provide a richer set of functionalities.

Although this work focuses on a functional evaluation, we propose a number of met-
rics that should be used for a performance evaluation using SRBench. Correctness: the
query results must be validated, taking into account possible variations in ordering, and
possibly multiple valid results per query. The validation results should be expressed in
terms of precision and recall. Throughput: the maximal number of incoming data items
a strRS engine is able to process per time unit. Scalability: how does the system re-
acts to increasing number of incoming streams and continuous queries to be processed.
Response time: the minimal elapsed time between a data item entering the system and
being returned as output of a query. Note that response time is mainly relevant for
queries allowing immediate query results upon receiving of a data item.

6 Related Work

The Linear Road Benchmark [3] is the only publicly available benchmark developed
for evaluating traditional data stream engines. The benchmark simulates a traffic man-
agement scenario where multiple cars are moving on multiple lanes and on multiple
different roads. The system to be tested is responsible to monitor the position of each
car, and continuously calculates and reports to each car the tolls it needs to pay and
whether there is an accident that might affect it. In addition, the system needs to contin-
uously maintain historical data, as it is accumulated, and report to each car the account
balance and the daily expenditure. Linear Road is a highly challenging and complicated
benchmark due to the complexity of the many requirements. It stresses the system and
tests various aspects of its functionality, e.g., window-based queries, aggregations, var-
ious kinds of complex join queries; theta joins, self-joins, etc. It also requires the ability
to evaluate not only continuous queries on the stream data, but also historical queries

10 http://planet-data-wiki.sti2.at/

http://planet-data-wiki.sti2.at/
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on past data. The system should be able to store and later query intermediate results.
All these features are also addressed in SRBench. Additionally, SRBench includes Se-
mantic Web specified features, such as inter liked heterogeneous data sets, exploration
of RDF graphs and reasoning.

With the growth and availability of many systems supporting RDF/SPARQL, in-
creasing efforts have been made in developing benchmarks for evaluating the per-
formance of RDF stores. The most representative and widely used RDF benchmarks
are the Lehigh University Benchmark (LUBM) [21], the Berlin SPARQL Benchmark
(BSBM) [8], and the SPARQL Performance Benchmark (SP2Bench) [30]. LUBM, one
of the first RDF benchmarks, is built over a university domain in order to mainly eval-
uate the reasoning capability and inference mechanism of OWL (Web Ontology Lan-
guage) Knowledge Base Systems. SP2 Bench uses DBLP 11 as its domain and generates
the synthetic data set mimicking the original DBLP data. Currently, BSBM is proba-
bly the most popular RDF/SPARQL benchmark that is built around an e-commerce use
case where products are offered by various vendors and get the reviews from various
customers in different review sites. However, these benchmarks are mostly relational-
like, lack heterogeneity or are limited in representing realistic skewed data distributions
and correlations. No new features of SPARQL 1.1, such as property path expression
have been addressed in these benchmarks. Besides, although one advantage of RDF is
the flexibility in sharing and integrating linked open knowledge bases, existing bench-
marks solely work with one generated data set without exploiting the knowledge from
other linked open data such as DBpedia [17]. Finally, none of the existing benchmarks
provides reasoning tasks, a distinguish feature of Semantic Web technology. SRBench
has advanced the state-of-the-art of RDF benchmarks by addressing all these features
that are hitherto absent.

7 Conclusion

We have introduced SRBench, the first general purpose streaming RDF/SPARQL bench-
mark, that has been primarily designed to assess the abilities of streaming RDF/SPARQL
processing engines in applying Semantic Web technologies on streaming data. The
benchmark has been designed based on an extensive study of the state-of-the-art tech-
niques in both the data stream management systems and the strRS processing engines.
This ensures that we capture all important aspects of strRS processing in the benchmark.

Motivated by the study of [17], we have carefully chosen three real-world data sets
from the LOD cloud to be used in the benchmark. The benchmark contains a concise,
yet comprehensive set of queries which covers the major aspects of streaming SPARQL
query processing, ranging from simple graph pattern matching queries to queries with
complex reasoning tasks. The main advantages of applying Semantic Web technologies
on streaming data include providing better search facilities by adding semantics to the
data, reasoning through ontologies, and integration with other data sets. The ability
of a strRS engine to process these distinctive features is accessed by the benchmark
with queries that apply reasoning not only over the streaming sensor data, but also
over the metadata and even other data sets in the LOD cloud. We have complemented

11 http://www.informatik.uni-trier.de/ley/db/

http://www.informatik.uni-trier.de/ley/db/


656 Y. Zhang et al.

our work on SRBench with a functional evaluation of the benchmark on three currently
leading streaming RDF/SPARQL engines. The evaluation shows that the functionalities
provided by the tested engines are generally limited to basic RDF/SPARQL features
over streaming data. There is no single best system yet. We believe that a streaming
RDF/SPARQL engine can significantly differentiate itself from other strRS engines by
providing more advanced SPARQL 1.1 features and reasoning over both streaming and
static data sets.

The natural next step is to run performance and scalability evaluations on the three
example strRS engines and probably even other engines. This is a ongoing work. A
practical challenge in doing performance evaluation is the verification of query results,
given the dynamicity of streaming data and the diversity of the implementing engines.
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Abstract. First order logic (FOL) rewritability is a desirable feature
for query answering over geo-thematic ontologies because in most geo-
processing scenarios one has to cope with large data volumes. Hence,
there is a need for combined geo-thematic logics that provide a suf-
ficiently expressive query language allowing for FOL rewritability. The
DL-Lite family of description logics is tailored towards FOL rewritability
of query answering for unions of conjunctive queries, hence it is a suit-
able candidate for the thematic component of a combined geo-thematic
logic. We show that a weak coupling of DL-Lite with the expressive
region connection calculus RCC8 allows for FOL rewritability under a
spatial completeness condition for the ABox. Stronger couplings allow-
ing for FOL rewritability are possible only for spatial calculi as weak
as the low-resolution calculus RCC2. Already a strong combination of
DL-Lite with the low-resolution calculus RCC3 does not allow for FOL
rewritability.

Keywords: FOL rewritability, description logics, region connection cal-
culus, qualitative spatial reasoning, GIS, combined logic.

1 Introduction

Query answering over a database becomes far more difficult if the extensional
knowledge in the database is extended by constraints in an ontology. The reason
is that a database plus an ontology may have many different models, hence
ontology based query answering has to compute the answers w.r.t. to all models
and build their intersection (certain answer semantics). But in some cases—when
using a lightweight logic like DL-Lite for the representation of the ontology and
a restricted query language like unions of conjunctive queries—query answering
w.r.t. an ontology can be reduced to model checking. This is formalized by the
notion of FOL (first order logic) rewritability : a given query can be rewritten
into a FOL query in which the intensional knowledge of the ontology is captured.
Though the rewritten queries may become exponentially bigger than the original
ones, there exist optimizations based on semantic indexes which encode entailed
knowledge of the terminological part of the ontology [15]. So, FOL rewritability
means a benefit.

P. Cudré-Mauroux et al. (Eds.): ISWC 2012, Part I, LNCS 7649, pp. 658–673, 2012.
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DL-Lite per se [3] is not sufficient for use in scenarios of geographic informa-
tion processing, as these demand, among others, the representation and deduc-
tion over spatial concepts. Though constraint-based spatial reasoning [14] offers
a well developed and well proven theory for spatial domains, it does not fill in the
need for a system that combines reasoning over a spatial and a non-spatial (the-
matic) domain. Though constraint databases [7] are good candidate frameworks
for reasoning over a mixed domain of geo-thematic objects, the investigations on
constraint databases so far did not incorporate terminological reasoning in the
OBDA (ontology based data access) paradigm. But even in case of related work
which equally considers spatial and thematic reasoning [5], [17], [8], it is not
aimed at FOL rewritability. Hence, there is still a need for investigating combi-
nations of logics that, on the one hand, are sufficiently expressive to match the
representation requirements in geographical information processing and that, on
the other hand, allow for computationally feasible (in particular FOL rewritable)
satisfiability checking and query answering.

We would like to illustrate the use of the logics of this paper by a simple
scenario in which an engineering bureau plans additional parks in a city [10].
Assume, the bureau has stored geographical data in some database (DB) and
declares relevant concepts in the terminological part of his knowledge base, the
TBox. The engineer gives necessary conditions for a concept Park+Lake which is
a park containing a lake that touches it from within, i.e., using the terminology of
the region connection calculus (RCC) [11], the lake is a tangential proper part of
the park. Similarly, a necessary condition for the concept Park4Playing is given
which is a park containing a playing ground (for children) that is a tangential
proper part.

We assume that the data are mapped to a logical pendant of the DB called
the ABox (assertional box). In particular the data should generate the fact that
there is an object a which is both a park with a lake and with a playing area,
that is Park+Lake(a) and Park4Playing(a) are contained in the ABox. But the
location of a is not known. Think of a as an object whose architectural design is
determined but the place where a is going to be localized is not determined yet.

Now, the engineering bureau asks for all parks with lakes and playing areas
such that the playing area is not contained as island in the lake. These kinds of
parks can be thought of as secure as the playing ground can be directly reached
from the park (without a bridge). All objects that fall into the answer set of
this query w.r.t. to the TBox and the data can have one of the configurations
A to C illustrated in Figure 1 (and many more) but are not allowed to have
the configuration D. The object a has to be in the answer set to the original
query as the TBox together with the ABox and some deduction on the spatial
configuration implies that a is an object which excludes the island configuration
D. Remember that a is “abstract” in so far as its geographical location is not
known. So in fact deduction is needed to see that a does not have configuration
D. Later on we will formalize this example in the logic DL-Lite�F ,R(RCC8) and

the query language GCQ+ and show that the deduction needed for the inclusion
of a into the answer set can be mimicked in a perfect rewriting algorithm.
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Fig. 1. (Dis-)Allowed spatial configurations for query in engineering bureau scenario

Continuing previous work [10], we investigate combinations of logics in the
DL-Lite family with different members of RCC family [11], a well-known family
of calculi for qualitative spatial reasoning. In previous work [10], we focussed
on the FOL rewritability aspects for weak combinations of DL-Lite with RCC8;
these combinations are weak in so far as they do not allow for the construction
of arbitrary RCC8 constraint networks in the intensional part (TBox) of the on-
tology. In this paper we extend these investigations by enlarging the expressivity
of DL-Lite to one that allows for concept conjunctions on the left-hand side of
general inclusion axioms [1], and we give a proof including a rewriting algorithm
for the main result stating that the weak combination of DL-Lite�F ,R with RCC8

allows for FOL rewriting w.r.t. to the query language GCQ+.
Moreover, in this paper, we consider strong combinations of DL-Lite with the

weaker RCC fragments RCC3 and RCC2, and prove that DL-Lite�F ,R(RCC3)
does not allow for FOL rewritability of satisfiability checking while the weaker
DL-Lite�F ,R(RCC2) does [9].

The paper is structured as follows. Section 2 collects technical details on the
region connection calculus and the DL-Lite family of description logics. Weak
combinations of DL-Lite with the region connection calculus are described in
Sect. 3. In Sect. 4, the last section before the conclusion, we consider strong
combinations of DL-Lite with weaker fragments of the region connection calculus.

Full proofs can be found in an extended version of this paper available under
the URL http://dl.dropbox.com/u/65078815/oezcepMoellerISWC2012Ext.pdf.

2 Logical Preliminaries

We recapitulate the main logical notation and concepts used in this paper; the
region connection calculus and DL-Lite.

2.1 The Region Connection Calculus

We will consider different fragments of the region connection calculus [11] as
potential candidates for the spatial logic to be combined with DL-Lite. Randell
and colleagues’ axiom system [11] is based on a primitive binary relation C in-
tended to denote a connectedness relation which is specified to be reflexive and
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symmetric. On the basis of C other binary relations between regions which are
called base relations are explained. One set of base relations is the set BRCC8,
which is the main component of the most expressive region connection calculus
RCC8. The base relations of BRCC8 and their intended meanings are given as
follows: BRCC8 = {DC (disconnected), EC (externally connected), EQ (equal),
PO (partially overlapping), NTPP (non-tangential proper part), TPP (tangen-
tial proper part), NTPPi (inverse of NTPP), TPPi (inverse of TPP)}. We skip
the concrete definitions of the base relations by the connectedness relation C
(see, e.g., [13, p. 45]), as we—in contrast to the axiom system of Randell and
colleagues—consider the following axiom system schema AxRCCi, which directly
specifies the properties of the base relations in BRCCi.

Definition 1 (Axiom system schema AxRCCi). For all i ∈ {2, 3, 5, 8} the
axiom set AxRCCi contains the following axioms:

{∀x, y.
∨

r∈BRCCi
r(x, y)} ∪ (joint exhaustivity)

{∀x, y.
∧

r1,r2∈BRCCi,r1 �=r2
r1(x, y)→ ¬r2(x, y)} ∪ (pairwise disjointness)

{∀x, y, z.r1(x, y) ∧ r2(y, z)→ r13(x, z) ∨ · · · ∨ rk3 (x, z) | r1; r2 = {r13, . . . , rk3}}
(weak composition axioms)

For i ∈ {3, 5, 8} additionally the axiom ∀xEQ(x, x) (reflexivity of EQ) is con-
tained. For i = 2 the axiom ∀xO(x, x) (reflexivity of O) is contained.

In particular, the axioms state the JEPD-property of the base relations (each
pair of regions x, y is related over exactly one base relation) and describe the
(weak) composition of two base relations (denoted by ;) according to the compo-
sition table for RCCi. With the composition of two base relations, in most cases,
only indefinite knowledge of spatial configurations follows. The spatial config-
uration r1(x, z) ∨ · · · ∨ rn(x, z) for base relations rj in BRCCi is also written
as {r1, . . . , rn}(x, z), and the set {r1, . . . , rn} is called a general RCCi relation.
Let RelRCCi be the set of all 2i general RCCi relations. An RCCi (constraint)
network consists of assertions of the form {r1, . . . , rn}(x, y).

We mention here the composition table for the low resolution logics RCC2
and RCC3. Their base relations are given by the sets BRCC3 = {DR,EQ,ONE}
and BRCC2 = {DR,O}, and their weak compositions are defined as shown in
Fig. 2. The discreteness relation DR is the same as {DC,EC}, the overlapping-
but-not-equal relation ONE is equal to {PO,NTPP,TPP,NTPPi,TPPi} and the
overlapping relation O is given by {ONE,EQ}.

; DR O

DR BRCC2 BRCC2

O BRCC2 BRCC2

; DR ONE EQ

DR BRCC3 {DR,ONE} DR
ONE {DR,ONE} BRCC3 ONE

EQ DR ONE EQ

Fig. 2. Composition tables for RCC2 and RCC3
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Fig. 3. Illustration for composition entry tpp; tppi

Note that in the definitions of the base relations (of RCC3 and RCC2) we
followed the author of [16] and not [4]. But the composition tables for both defi-
nitions are identical. For the composition tables of RCC5 and RCC8 confer [14,
p. 45]. As an example entry for RCC8, which is relevant for the engineering bu-
reau scenario, we mention the table entry for the pair (tpp, tppi): tpp; tppi =
{dc, ec, po, tpp, tppi, eq} which is described in AxRCC8 by ∀x, y, z.tpp(x, y) ∧
tppi(y, z)→ {dc, ec, po, tpp, tppi, eq}(x, z). In case of the engineering bureau sce-
nario from the introduction the constraint of this composition entry is demon-
strated for x being the lake, y being the park and z being the playing ground.

2.2 DL-Lite

The family of DL-Lite description logics [3] is an appropriate candidate for the
thematic component of the envisioned geo-thematic logic as it offers compu-
tationally feasible satisfiability checking and query answering over ontologies
and data stored in a relational database. More concretely, satisfiability check-
ing and query answering (for unions of conjunctive queries) are FOL rewritable.
In this paper, we mainly deal with a member of the extended DL-Lite fam-
ily DL-Lite�F ,R; it allows for functional roles, role hierarchies, role inverses and
conjunction of basic concepts on the left-hand side of GCIs (general concept
inclusions). The syntax is given in Def. 2. The semantics of this logic is defined
in the usual way—but imposing the unique name assumption (UNA).

Definition 2 (DL-Lite�F ,R). Let RN be the set of role symbols and P ∈ RN ,
CN be a set of concept symbols and A ∈ CN , Const be a set of individual
constants and a, b ∈ Const.

R −→ P | P− B −→ A | ∃R Cl −→ B | Cl �B Cr −→ B | ¬B
TBox∗): Cl � Cr, (funct R), R1 � R2

ABox: A(a), R(a, b)
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*) Restriction: If R occurs in a functionality axiom, then R and its inverse
do not occur on the right-hand side of a role inclusion axiom R1 � R2.

FOL rewritability also holds for the logic DL-Lite�F ,R which follows from the

corresponding FOL rewritability results for the Datalog extension Datalog± [2].
We recapitulate the technical notions needed for defining FOL rewritability. An
ontology O is a tuple (Sig, T ,A), with a signature Sig (i.e., a set of concept
symbols, role symbols and constants also denoted by Sig(O)), with a TBox T ,
and with an ABox A. An FOL query Q = ψ(x) is an FOL formula ψ(x) with
free variables x called distinguished variables. If x is empty, the query is called
boolean. Let a be a vector of constants from Sig(O). The set of answers w.r.t.
I is defined by QI = {d ∈ (ΔI)n | I[x �→d] |= ψ(x)}. (We use QI later on for a
specific model I, namely a Herbrand model.) The set of certain answers w.r.t.
to O is defined by cert(Q, T ∪A) = {a | T ∪A |= ψ[x/a]}. A conjunctive query
(CQ) is a FOL query in which ψ(x) is an existentially quantified conjunction
of atomic formulas at(·), ψ(x) = ∃y

∧
i ati(x,y). A union of conjunctive queries

(UCQ) is a disjunction of CQs, i.e., a formula of the form ∃y1

∧
i1
ati1(x,y1) ∨

· · · ∨ ∃yn

∧
in
atin(x,yn). We conceive a UCQ as a set of CQs. The existential

quantifiers in UCQs are interpreted in the same way as for FOL formulas (natural
domain semantics) and not w.r.t. a given set of constants mentioned in the
signature (active domain semantics).

Let DB(A) be the minimal Herbrand model of A. Checking the satisfiability
of ontologies is FOL rewritable iff for all TBoxes T there is a boolean FOL query
QT s.t. for all ABoxes A: the ontology T ∪ A is satisfiable iff DB(A) �|= QT .
Answering queries from a subclass C of FOL queries w.r.t. to ontologies is FOL
rewritable iff for all TBoxes T and queries Q = ψ(x) in C there is a FOL query

QT such that for all ABoxes A it is the case that cert(Q, T ∪A) = Q
DB(A)
T . For

DL-Lite, FOL-rewritability can be proved w.r.t. to satisfiability as well as w.r.t.
answering UCQs [3, Thm 4.14, Thm 5.15].

The rewritability results are proved with the so called chase construction
known from database theory. The idea of the chase construction is to repair the
ABox with respect to the constraints formulated in the TBox. If, e.g., the TBox
contains the axiom A1 � A2 and the ABox contains A1(a) but not A2(a), then
it is enriched by the atom A2(a). This procedure is applied stepwise to yield a
sequence of ABoxes Si starting with the original ABox as S0. The resulting set
of ABox axioms

⋃
Si may be infinite but induces a canonical model can(O) for

the ABox and the TBox axioms being used in the chasing process (see below).
We will summarize the chase construction for DL-Lite.

Let T be a DL-Lite TBox, let Tp be the subset of positive inclusion (PI)
axioms in T (no negation symbol allowed) and let A be an ABox and O = T ∪A.
Chasing will be carried out with respect to PIs only. Let S0 = A. Let Si be the
set of ABox axioms constructed so far and α be a PI axiom in Tp. Let α be of
the form A1 � A2 and let β ∈ Si (resp. β ⊆ Si) be an ABox axiom (resp. set
of ABox axioms). The PI axiom α is called applicable to β if β is of the form
A1(a) and A2(a) is not in Si. The applicability of other PI axioms of the form
B � C is defined similarly [3, Def. 4.1, p. 287]. If the left-hand side of the PI is
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a conjunction of base concepts, e.g., if the PI is of the form A1 � · · · �An � A0,
and if β is {A1(a), . . . , An(a)} and A0(a) is not in Si, then PI is applicable to β.

As there may be many possible applications of PI axioms to atoms and sets of
atoms, one has to impose an order on the TBox axioms and the (finite) subsets
of the ABox. So we assume that all strings over the signature Sig(O) of the
ontology and some countably infinite set of new constants Cch are well ordered.
Such a well ordering exists and has the order type of the natural numbers N.
This ordering is different from the one of [3]; but it can also be used also for
infinite ABoxes and it can handle concept conjunction. If there is a PI axiom α
applicable to an atom β in Si, one takes the minimal pair (α, β) with respect to
the ordering and produces the next level Si+1 = Si ∪ {βnew}; here βnew is the
atom that results from applying the chase rule for (α, β) as listed in Def. 3. The
primed constants are the chasing constants from Cch.

Definition 3 (Chasing rules for DL-Lite�F ,R)

If α = A1 � A2 and β = A1(a) then βnew = A2(a)
If α = A1 � ∃R and β = A1(a) then βnew = R(a, a′)
If α = ∃R � A and β = R(a, b) then βnew = A(a)
If α = ∃R1 � ∃R2 and β = R1(a, b) then βnew = R2(a, a

′)
If α = R1 � R2 and β = R1(a, b) then βnew = R2(a, b)
If α = A1 � · · · � An � A0 and β = {A1(a), . . . , An(a)} then βnew = A2(a)
(and similarly for other PIs of the form B1 � · · · �Bn � C)

The chase is defined by chase(O) = chase(Tp ∪ A) =
⋃

i∈N
Si. The canonical

model can(O) is the minimal Herbrand model of chase(O). The canonical model
can(O) is a universal model of Tp ∪ A with respect to homomorphisms. In par-
ticular this implies that answering a UCQ Q w.r.t. to Tp ∪A can be reduced to
answering Qcan(O) w.r.t. to DB(A). More concretely, (some finite closure cln(T )
of) the negative inclusions axioms and the functionality axioms are only relevant
for checking the satisfiability of the ontology which can be tested by a simple
FOL query. We leave out the details (see the extended version of this paper).

3 Weak Combinations of DL-Lite with RCC

In this section, we extend the results concerning a weak coupling of DL-Lite with
the most expressive region connection calculus fragment RCC8, which we intro-
duced in [10], and explain its use(fulness) with a formalization of the example
scenario from the introduction. This will give us the opportunity to introduce
further concepts that are necessary to understand the discussions on stronger
couplings of DL-Lite with the weaker region connection calculi RCC2 and RCC3.

The combination paradigm follows that of Lutz and Miličič [8] who combine
ALC with the RCC8 and, more generally, with ω-admissible concrete domains
[8, Def. 5, p. 7]. The combined logic ALC(RCC8) of [8] is well behaved in so far
as testing concept subsumption is decidable. As we aim at FOL rewritability we
have to be even more careful in choosing the right combination method.
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We use an axiom set Tω with corresponding properties of an ω-admissible do-
main for coupling with DL-Lite because axioms are more appropriate for rewrit-
ing investigations. The axiom sets AxRCCi will instantiate Tω.

We recapitulate the syntax and the semantics of the constructors of [8] that
are used for the coupling of the thematic and the spatial domain. A path U (of
length at most 2) is defined as l for a fixed attribute l (“has location”) or as
R ◦ l, the composition of the role symbol R with l. We abbreviate R ◦ l with
R̃ in this paper. The usual notion of an interpretation I in our combined logic
is slightly modified by using two separate domains ΔI and (Δ∗)I . All symbols
of the theory Tω are interpreted relative to (Δ∗)I . Let r be an RCC-relation of
some RCC-fragment. That is, let be given a set of base relations BRCCi and r =
{r1, . . . rn} ≡ r1∨· · ·∨rn for ri ∈ BRCCi. Then lI ⊆ ΔI×(Δ∗)I ; rI = rI1∪· · ·∪rIn ;
(R◦l)I ={(d, e∗) ∈ ΔI×(Δ∗)I | there is an e s.t. (d, e) ∈ RI and (e, e∗) ∈ lI};
(∃U1, U2.r)

I ={d ∈ ΔI | there exist e∗1, e
∗
2 s.t. (d, e∗1) ∈ UI

1 , (d, e
∗
2) ∈ UI

2 and
(e∗1, e

∗
2) ∈ rI}; (∀U1, U2.r)

I ={d ∈ ΔI | for all e∗1, e∗2 s.t. (d, e∗1) ∈ UI
1 , (d, e

∗
2) ∈

UI
2 it holds that (e∗1, e

∗
2) ∈ rI}.

Now we can define the following combined geo-thematic logic (where a∗, b∗

stand for constants intended to be interpreted by regions):

Definition 4 (DL-Lite�F ,R(RCC8)). Let r ∈ RelRCC8 and Tω = AxRCC8.

R −→ P | P− U −→ R | R̃ B −→ A | ∃R | ∃l
Cl −→ B | Cl �B Cr −→ B | ¬B | ∃U1, U2.r

TBox∗): Cl � Cr, (funct l), (funct R), R1 � R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)

*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-
hand side of a role inclusion axiom or in a concept of the form ∃U1, U2.r.

As satisfiability checking of RCC8 constraint networks is NP-complete, there
is only a chance to reach FOL rewritability if we assume within the ABox a
constraint network which is consistent and complete, i.e., it has a exactly one
solution and it is a clique with base relations as labels; in this case the ABox
is called spatially complete. For cadastral maps or maps containing areas of
administration one can assume pretty safely (almost) spatial completeness. The
coupling with RCC8 is so weak that FOL rewritability of satisfiability follows.

Proposition 1. Checking the satisfiability of DL− Lite�F ,R(RCC8) ontologies
that have a spatially complete ABox is FOL rewritable.

Testing whether FOL rewritability holds for satisfiability tests is necessary for
tests whether FOL rewritability is provable for query answering w.r.t. a suffi-
ciently expressive query language. The query language which we consider is de-
rived from grounded conjunctive queries and is denoted by GCQ+. This query
language is explicitly constructed for use with DL-Lite�F ,R(RCC8) and so pro-
vides only means for qualitative spatial queries. But it could be extended to
allow also for quantitative spatial queries.

Definition 5. A GCQ+ atom w.r.t. DL-Lite�F ,R(RCC8) is a formula of one of
the following forms:
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– C(x), where C is a DL-Lite�F ,R(RCC8) concept without the negation symbol
and x is a variable or a constant.

– (∃R1 . . . Rn.C)(x) for role symbols or their inverses Ri, a DL-Lite�F ,R(RCC8)
concept C without the negation symbol, and a variable or a constant x

– R(x, y) for a role symbol R or an inverse thereof
– l(x, y∗), where x is a variable or constant and y∗ is a variable or constant

intended to denote elements of AxRCC8

– r(x∗, y∗), where r ∈ RelRCC8 and x∗, y∗ are variables or constants intended
to denote elements of AxRCC8

A GCQ+ query w.r.t. DL-Lite�F ,R(RCC8) is a query ∃̃yz∗∧Ci(x,w
∗,y, z∗)

where all Ci(x,w
∗,y, z∗) are GCQ+ atoms and ∃̃yz∗ = ∃̃y1 . . . ∃̃yn∃̃z∗1 . . . ∃̃z∗m

is a sequence of ∃-quantifiers interpreted w.r.t. the active domain semantics.

Our perfect rewriting algorithm is an an adaptation of the algorithm PerfectRef
[3, Fig. 13] for reformulating UCQs w.r.t. DL-Lite ontologies to our setting in
which GCQ+-queries are asked to DL-Lite�F ,R(RCC8) ontologies. We give a
description of our adapted algorithm in the following.

Given a query GCQ+ Q, we transform it to a special form; τ1(Q) is the result
of the transformation to a UCQ and τ2(Q) is the result of transforming Q in
a hybrid UCQ whose conjuncts are either classical predicate logical atoms or
GCQ+-atoms which are not further transformed. We use the notation “g = F”
for “g is of the form F”.

The original algorithm PerfectRef operates on the PI axioms of a DL-Lite
ontology by using them as rewriting aids for the atomic formulas in the UCQ.
Lines 5–12 and 28–34 of our adapted algorithm (Algorithm 1) make up the orig-
inal PerfectRef. Roughly, the PerfectRef algorithm acts in the inverse direction
with respect to the chasing process. For example, if the TBox contains the PI
axiom A1 � A2 � A3, and the UCQ contains the atom A3(x) in a CQ, then
the new rewritten UCQ query contains a CQ in which A3(x) is substituted by
A1(x) ∧A2(x). The applicability of a PI axiom to an atom is restricted in those
cases where the variables of an atom are either distinguished variables or also ap-
pear in another atom of the CQ at hand. To handle these cases, PerfectRef—as
well as also our adapted version—uses anonymous variables to denote all non-
distinguished variables in an atom that do not occur in other atoms of the same
CQ. The function anon (line 31 in Algorithm 1) implements the anonymization.
The application conditions for PI axioms α and atoms are as follows: α is appli-
cable to A(x) if A occurs on the right-hand side; and α is applicable to R(x1, x2),
if x2 = and the right-hand side of α is ∃R; or x1 = and the right-hand side
of α is ∃R−; or α is a role inclusion assertion and its right-hand side is either
R or R−. The outcome gr(g, α) of applying an applicable PI α to an atom g
corresponds to the outcome of resolving α with g. For example, if α is A � ∃R
and g is R(x, ), the result of the application is gr(g, α) = A(x). We leave out
the details [3, Fig.12, p. 307]. In PerfectRef, atoms in a CQ are rewritten with
the PI axioms (lines 6–11) and if possible merged by the function reduce (line
31) which unifies the atoms with the most general unifier (lines 28–34).
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input : a hybrid query τ1(Q) ∪ τ2(Q), DL-Lite(RCC8) TBox T
output: a UCQ pr

1 pr := τ1(Q) ∪ τ2(Q);
2 repeat
3 pr′ := pr;
4 foreach query q′ ∈ pr′ do
5 foreach atom g in q′ do
6 if g is a FOL-atom then
7 foreach PI α in T do
8 if α is applicable to g then
9 pr := pr ∪ {q′[g/gr(g,α)]};

10 end

11 end

12 else

13 if g = ∃R̃1, R̃2.r3(x) and r1; r2 ⊆ r3 then

14 X := q′[g/(∃R̃1, l.r1(x) ∧ ∃l, R̃2.r2(x))];

15 pr := pr ∪ {X} ∪ {τ2
(
X, {∃R̃1, l.r1(x),∃l, R̃2.r2(x)}

)
}

16 end
17 if g = ∃U1, U2.r1(x) and B � ∃U1, U2.r2(x) ∈ T for r2 ⊆ r1

then
18 pr := pr ∪ {q′[g/B(x)]};
19 end

20 if g = ∃U1, U2.r1(x) and B � ∃U1, U2.r2(x) ∈ T for r−1
2 ⊆ r1

then
21 pr := pr ∪ {q′[g/B(x)]};
22 end

23 if g = ∃R̃1, U1.r(x) (resp. ∃U1, R̃1.r(x)) and (R2 � R1 ∈ T or

R−1
2 � R−1

1 ∈ T ) then
24 X := q′[g/(g[R1/R2])];
25 pr := pr ∪ {X} ∪ {τ2

(
X, {g[R1/R2]}

)
};

26 end

27 end

28 end
29 foreach pair of FOL-atoms g1, g2 in q′ do
30 if g1 and g2 unify then
31 pr := pr ∪ {anon(reduce(q′, g1, g2))};
32 end

33 end

34 end

35 until pr′ = pr;
36 return drop(pr)

Algorithm 1. Adapted PerfectRef
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The modification of PerfectRef concerns the handling of GCQ+-atoms of the
form ∃U1, U2.r(x). These atoms may have additional implications that are ac-
counted for with four cases (lines 12–26 of the algorithm). At the end of the
adapted algorithm PerfectRef (Algorithm 1, line 35) these atoms are deleted by
calling the function drop. The algorithm returns a classical UCQ, which can be
evaluated as a SQL query on the database DB(A).

Let us demonstrate the rewriting algorithm with a formalization of the simple
scenario from the beginning. The TBox of the engineering bureau contains the
following axioms of DL-Lite�F ,R(RCC8): Park+Lake � Park; Park4Playing �
Park; Park+Lake � ∃hasLake ◦ l, l.tpp; Park4Playing � ∃hasPlAr ◦ l, l.tpp. The
ABox A contains {Park+Lake(a),Park4Playing(a)} ⊆ A. The query of the engi-
neer, which asks for all parks with lakes and playing areas such that the playing
area is not a tangential proper part of the lake, can be formalized by the follow-
ing GCQ+: Q =Park(x) ∧ ∃hasLake ◦ l, hasPlAr ◦ l.(BRCC8 \ {ntpp})(x). Using
the composition tpp; tppi = {dc, ec, po, tpp, tppi, eq} ⊆ BRCC8 \{ntpp}, the refor-
mulation algorithm introduced above (lines 13–15) produces a UCQ that con-
tains the following CQ: Q′ = (∃hasLake ◦ l, l.tpp)(x) ∧ (∃l, hasPlAr ◦ l.tppi)(x).
Rewriting ∃l, hasPlAr ◦ l.tppi to ∃hasPlAr ◦ l, l.tpp (lines 20–21) in combina-
tion with the rewriting rule for A1 � A2 (Def. 3) we get another CQ Q′′ =
Park+Lake(x) ∧ Park4Playing(x). Now, Q′′ captures (as desired) the object a.

That the rewriting given in Algorithm 1 is indeed correct and complete follows
from Theorem 1.

Theorem 1. Answering GCQ+-queries w.r.t. DL− Lite�F ,R(RCC8) ontologies
that have a spatially complete ABox is FOL-rewritable.

We give a proof sketch. The proof follows the proof of Theorem 5.15 for pure
DL-Lite ontologies [3]. We adapt the chase construction to account for the RCC8
relations r ∈ RelRCC8. The main observation is that the disjunctions in r can
be nearly handled as if they were predicate symbols.

Because of Prop. 1 we may assume that O is satisfiable. Let pr be the UCQ
resulting from applying the algorithm to Q and O. We have to show that
cert(Q,O) = (pr)DB(A). These can be done in two main steps of which the first
will be sketched here as it contains the main chase-like construction chase∗(O).
After the construction, one has to describe what it means to answer Q with re-
spect to chase∗(O) is, resulting in the set ans(Q, chase∗(O)), and then show that
ans(Q, chase∗(O)) = cert(Q,O). In the second step, which we leave out here (see
the extended version of this paper) one has to show that ans(Q, chase∗(O)) =
(pr)DB(A).

For the construction of chase∗(O) one uses the chase rules of Def. 3 and the
special rule (R).

Chasing Rule (R)
If B(x) ∈ Si and there are no y, y∗, x∗ s.t. {R1(x, y), l(y, y

∗), l(x, x∗), r1(y
∗, x∗)}

is contained in Si, then let Si+1 = Si ∪ {R1(x, y), l(y, y
∗), l(x, x∗), r1(y

∗, x∗)}.
The constants y, y∗ are completely new constants not appearing in Si. The con-
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stant x∗ is the old x∗ if already in Si, otherwise it is also a completely new
constant symbol.

Every time (R) is applied to yield a new ABox Si, the resulting constraint
network in Si is saturated by calculating the minimal labels between the new
added region constants and the other region constants. The application of (R)
does not constrain the RCC8-relations between the old regions and even stronger:
Let (R) be applied to a TBox axiom of the form A � ∃R̃, l.r and A(a) ∈ Si

resulting in the addition of R(a, b), l(b, b∗) and r(b∗, a∗). Then it is enough to
consider all c∗ ∈ Si and all relations rc∗,a∗ such that rc∗,a∗(c∗, a∗) ∈ Si. The
composition table gives the outcome rc∗,a∗ ; r = r′c∗,b∗ and one adds r′c∗,b∗(c

∗, b∗)
to Si. After this step, which we call triangulation step, one closes the assertions
up with respect to the subset relation between RCC8-relations and with respect
to symmetry. I.e., if r1(x

∗, y∗) is added to Si, then one also adds r2(x
∗, y∗) for all

r2 such that r1 ⊆ r2 and r−1
2 (y∗, x∗). For different c∗1, c

∗
2, assertions of the form

rc∗1 ,b∗(c
∗
1, b

∗) and rc∗2 ,b∗(c
∗
2, b

∗) do not constrain each other (because of the patch
work property). The saturation leads to a finite set Si+k (for some k ∈ N) that is a
superset of Si. Let chase

∗(O) =
⋃

Si. The set chase
∗(O) does not induce a single

canonical model. But it is universal in the following sense: For every model I of
O define a model Ic out of chase∗(O) by taking a (consistent) configuration of
the contained RCC8-network and taking the minimal model of this configuration
and the thematic part of chase∗(O). Then Ic maps homomorphically to I. Now
one can define that answers of GCQ+-queries with respect to chase∗(O) are
given by homomorphic embeddings and show that these answers are exactly the
certain answers w.r.t. the ontology O.

4 Strong Combinations of DL-Lite with RCC

Another way of reaching FOL rewritability for combinations of DL-Lite with
RCC is weakening the expressivity of the spatial component. Hence, one may
ask whether a combination with the calculus RCC3 or RCC2 [17], both fragments
with weak expressibility, allows for weak FOL rewritability w.r.t. satisfiability
checks (and query answering). Their potential use as logics for approximating
[6] ontologies in more expressible combined logics like ALC(RCC8) makes the
investigation valuable. The logics DL-Lite�,+

F ,R(RCC2) and DL-Lite�,+
F ,R(RCC3)

are defined as follows (’+’ indicates the strong combination):

Definition 6 (DL-Lite�,+
F ,R(RCC2) and DL-Lite�,+

F ,R(RCC3)). Let Tω =
AxRCC2 resp. Tω = AxRCC3 and r ∈ BRCC2 resp. r ∈ BRCC3

R −→ P | P− U −→ l | R̃ B −→ A | ∃R
Cl −→ B | Cl �B Cr −→ B | ¬B | ∃U1, U2.r
TBox∗): Cl � Cr, (funct l, R), R1 � R2

ABox: A(a), R(a, b), l(a, a∗), r(a∗, b∗)
*) Restriction: If (functR) ∈ T , then R and R− do not occur on the right-

hand side of a role inclusion axiom.
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For RCC3 the strong combination with DL-Lite�F ,R leads to non-FOL rewrita-
bility. The reason lies in the fact that testing the satisfiability of RCC3 is not in
the complexity class AC0 as shown by the following lemma.

Lemma 1. Checking satisfiability of RCC3 networks is Logspace hard.

Proof. As is known, the reachability problem in symmetric (undirected) graphs is
logspace complete [12]—where graph reachability asks whether for nodes s, t inG
there is a path between s and t. By reducing this problem to the satisfiability test
for RCC3 networks we will have shown that the latter problem is Logspace hard
itself. So let be given a (symmetric) graph G = (V,E) and nodes s, t ∈ V . We
define the network N in the following way (see Figure 4): Let V = {v1, . . . , vn}
be an enumeration of the nodes of G; w.l.o.g. let s = v1 and t = vn and let
B = BRCC3. Nodes of N are given by V ∪ {a} where a /∈ V . Labelled edges of
N are given by: s{DR}a; t{ONE}a; vi{B}a for all i �= 1, n; vi{EQ}vj if E(vi, vj);
vi{B}vj if ¬E(vi, vj).

Now we show that the network N is satisfiable iff s and t are connected in
G. Assume that s and t are connected; then there is an EQ-path in N between
them, hence s{EQ}t follows. But this contradicts s{DR}a and t{ONE}a. Now
assume that s and t are not connected; then there is no path consisting only of
EQ-labels between s and t. The graph G consists of at least 2 components, and
s, t are in different components. We define a consistent configuration as follows:
For all nodes v, v′ in the component in which s is contained, let v{DR}a and
v{EQ}v′. For all nodes v, v′ in the component of t let v{ONE}a and v{EQ}v′.
For all nodes v, v′ in the other components let v{DR}a and v{EQ}v′. For all
nodes v, v′ which have not a label yet, let v{DR}v′. (Two remarks : 1) EQ-edges
for edges E(vi, vj) in G with j > i + 1 are not shown in Fig. 4. 2) We inserted
edges labelled B for better illustrations. But these are not needed.)

B 

B B B 

B B 

Fig. 4. Network N used in proof of Lemma 1

This lemma immediately entails the fact that satisfiability checking for on-
tologies over the logic DL-Lite�,+

F ,R(RCC3) is not FOL rewritable. This problem
does not vanish if we presuppose that the ABox A is spatially complete—as
shown by the following proposition.

Proposition 2. Satisfiability checking of ontologies in DL-Lite�,+
F ,R(RCC3) with

spatially complete ABoxes is not FOL rewritable.
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Proof. We construct a generic TBox Tg that allows one to encode any RCC3
constraint network so that checking the consistency of RCC3 constraint networks
is reducible to a satisfiability check of this TBox and a spatially complete ABox.
Let for every r ∈ RelRCC3 be given role symbols R1

r , R
2
r . The generic TBox Tg

has for every r ∈ RelRCC3 a concept symbol Ar and a corresponding axiom with
the content that all instances of Ar have paths over the abstract features R1

resp. R2 to regions that are r-related.

Tg = {Ar � ∃R̃1
r , R̃

2
r.r, (funct l, R1

r, R
2
r) | r ∈ RelRCC3} (1)

Now, let N be an arbitrary RCC3 constraint network which has to be tested for
relational consistency. Let AN be an ABox such that for every r(a, b) in N three
new constants are introduced: xab, xa, xb.

AN = {Ar(xab), R
1
r(xab, xa), R

2
r(xab, xb) | r(a, b) ∈ N} (2)

The construction entails: Tg ∪AN ∪AxRCC3 is satisfiable iff N ∪AxRCC3 is sat-
isfiable. If the data complexity of the satisfiability check for DL-Lite�,+

F ,R(RCC3)-

ontologies were in AC
0, then the consistency of constraint networks could be

tested in AC
0, too. (Note that Tg is a fixed TBox.) But checking the consistency

of RCC3 constraint networks is Logspace-hard and AC
0 � Logspace.

As a corollary to this proposition we get the assertion that strong combina-
tions of RCC5 and RCC8 into DL-Lite�,+

F ,R(RCC5) and DL-Lite�,+
F ,R(RCC8),

respectively—which are defined in the same manner as in Definition 6—do not
allow for FOL rewritability of satisfiability checking.

The low resolution calculus RCC2 is quite more inexpressive than RCC3 due
to the fact that the composition table does not allow for the propagation of
information: All compositions of DR,O result in the maximally unspecified re-
lation {DR,O}. Hence, FOL rewritability of satisfiability testing follows easily
considering the query Q = ∃x, y[O(x, y) ∧DR(x, y)] ∨ ∃x[DR(x, x)].

Proposition 3. Testing the satisfiability of RCC2 networks is FOL rewritable.

But in combination with functionality axioms of the TBox one could have the
problem that the ABox may lead to identifications of regions. The identified
regions are not allowed to have edges labelled O, DR resp. to the same region.
Though this can be tested, the problem arises when a chain of regions is identified
by the TBox and the ABox, because we do not know the length of the chain
in advance. More formally: In addition to RCC2 constraint-network assertions
we allow identity assertions v = w for regions v, w. As we can assume that all
nodes in a RCC2 network are connected by an edge labelled O, DR or BRCC2

we use a more intuitive formalism where, for every assertion v = w, the label of
the edge between v and w is marked with an =; e.g., an edge between v, w with
label DR= stands for DR(v, w) ∧ v = w. We call such a network an =-marked
RCC2 network (a RCC=2 network for short). Let B = BRCC2 in the following.
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Proposition 4. An RCC=2 constraint network N is unsatisfiable iff

1. N contains DR(v, v) or DR=(v, v) for some node v; or
2. N contains DR=(v, w); or
3. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w such that every label on the path is B= or O=; or
4. N contains a cycle in which there is DR(v, w) and in which there is a path

from v to w s.t. every label on the path is B= or O= except one which is O.

Proposition 4 shows that adding identity assertions to an RCC2 network may
require checking the existence of identity chains of arbitrary length. Hence, in
principle it is possible that the functional roles used in DL-Lite�,+

F ,R(RCC2) may
lead to identity chains. But as the following proposition show, this cannot be the
case: The identity paths induced by functionalities in DL-Lite�,+

F ,R(RCC2) can
have only a maximal length of one.

Proposition 5. Satisfiability checking of ontologies in DL-Lite�,+
F ,R(RCC2) is

FOL rewritable.

5 Conclusion

As proved in this paper, combining DL-Lite with expressive fragments of the re-
gion calculus like RCC8 into logics that preserve the property of FOL rewritabil-
ity is possible if the coupling is weak: Constraints of the RCC8 network contained
in the ABox are not transported over to the implicitly constructed constraint
network resulting from the constructors of the form ∃U1, U2.r. In this paper we
further dealt with strong combinations for weaker calculi like RCC2 or RCC3. As
we have shown by a reduction proof, a strong combination with RCC3 destroys
the FOL rewritability of satisfiability checking. The reason is that checking the
satisfiability of RCC3 networks needs to test for reachability along EQ paths,
which can be reproduced by the TBox. For the low resolution calculus RCC2,
FOL rewritability of satisfiability checking is provable—though checking the sat-
isfiability of RCC2 networks with additional identity assertions is at least as hard
as checking RCC3 networks. We plan to investigate whether DL-Lite�,+

F ,R(RCC2)
and DL-Lite�F ,R(RCC8) can be used for approximation—following the complete
but not necessarily correct approximation method of [6]. Moreover we want to
check whether DL-Lite�,+

F ,R(RCC2) allows for FOL rewritability of query answer-
ing w.r.t. unions of conjunctive queries.
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8. Lutz, C., Miličić, M.: A tableau algorithm for description logics with concrete
domains and general TBoxes. J. Autom. Reasoning 38(1-3), 227–259 (2007)
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Gonçalves, Rafael S. I-82, I-99
Görlitz, Olaf I-116
Grasso, Giovanni II-131
Graziosi, Mirko II-337
Grimm, Stephan II-66
Groza, Tudor II-82, II-164



676 Author Index

Harth, Andreas I-492
Hassanzadeh, Oktie I-49
Hausenblas, Michael II-1
He, Yulan I-328, I-508
Heese, Ralf I-165
Heino, Norman I-133
Henson, Cory I-149
Hinze, Annika I-165
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