
Pogo, a Middleware for Mobile Phone Sensing

Niels Brouwers and Koen Langendoen

Delft University of Technology
{n.brouwers,k.g.langendoen}@tudelft.nl

Abstract. The smartphone revolution has brought ubiquitous, power-
ful, and connected sensing hardware to the masses. This holds great
promise for a wide range of research fields. However, deployment of
experiments onto a large set of mobile devices places technological, or-
ganizational, and sometimes financial burdens on researchers, making
real-world experimental research cumbersome and difficult. We argue
that a research infrastructure in the form of a large-scale mobile phone
testbed is required to unlock the potential of this new technology.

We aim to facilitate experimentation with mobile phone sensing by
providing a pragmatic middleware framework that is easy to use and fea-
tures fine-grained user-level control to guard the privacy of the volunteer
smart-phone users. In this paper we describe the challenges and require-
ments for such a middleware, outline an architecture featuring a flexible,
scriptable publish/subscribe framework, and report on our experience
with an implementation running on top of the Android platform.

Keywords: Mobile Middleware, Mobile Phone Sensing, Mobile Test
Beds.

1 Introduction

Modern smartphones are rapidly becoming ubiquitous and are even supplanting
the desktop PC as the dominant mode for accessing the Internet [7]. They are
equipped with a powerful processor and a wide range of sensors that can be used
to infer information about the environment and context of a user. These capabil-
ities and the rapidly growing number of smartphones offer unique opportunities
for a great number of research fields including context-aware computing [25],
reality mining [11], and community sensing [5,20]. Basically, the smartphone
revolution will enable experimentation at scale in real-world settings; an excit-
ing prospect.

To date most efforts have focused on building monolithic mobile applica-
tions that are tested in small-scale lab environments. Real-world deployment
is a labor-intensive process, which involves recruiting participants, acquiring de-
vices, deploying software updates, and so on. Because the barrier for deployment
onto a large number of devices is high, many applications and experiments are
never able to leave the desk of the researcher. This is a serious drawback that
needs to be addressed as history has shown that small-scale systems often show
quite different behavior when put to the test in the real world [21].

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 21–40, 2012.
c© IFIP International Federation for Information Processing 2012



22 N. Brouwers and K. Langendoen

The challenge for running large-scale experiments is no longer the hardware,
as affordable smart phones equipped with various sensors are ubiquitously avail-
able, but the software engineering involved in creating and installing the applica-
tion code to read, process, and collect the desired information. Indiscriminately
gathering all possible sensor data on the device and sending it back to a central
server is infeasible due to bandwidth, power consumption, and privacy concerns.
Hence, on-line analysis and filtering is required [6]. Since researchers rarely get
their algorithms right on the first try, quick (re-)deployment of mobile sensing
applications is essential for the experimental process, but typical application
stores are not suitable for this. Finally, there is a large administrative overhead
involved with managing large groups of test subjects, especially when multiple
experiments need to be carried out, which is something which ideally should be
hidden from scientists and end-users.

We strongly believe that providing an easy to use, large-scale testbed of mobile
phones carried by ordinary people will be a game changer for many types of
experimental research. Overall our aim is to unlock the true potential of mobile
phone sensing by developing a research infrastructure that can be used by a
broad range of researchers to easily and quickly deploy experiments. In this
paper we introduce Pogo, a middleware infrastructure for mobile phones that
provides easy access to sensor data for the research community. By installing
the Pogo middleware, which is as simple as downloading an application from
the application store, a phone is added to a shared pool of devices. Researchers
can request a subset of those devices, and remotely deploy their own executable
code onto them. We make the following contributions in this work:

1. We present the design rationale behind Pogo, motivate our choices, and
compare them against related work.

2. We describe the implementation of our middleware and demonstrate its fea-
sibility it using a real-world Wi-Fi localization experiment.

3. We propose and evaluate a novel scheme for automatically synchronizing
data transmissions with that of other applications, dramatically reducing
energy consumption.

The rest of this paper is structured as follows. We introduce related work in
Section 2, and present our design choices in Section 3. Section 4 describes the
implementation of Pogo. We evaluate our middleware in Section 5, and finally
conclusions and future work are presented in Section 6.

2 Related Work

In this section we introduce several sensor processing and collection frameworks
that have been proposed in the fields of context-aware computing and mobile
phone sensing, as well as some systems that have been developed for tracking
smartphone usage. We will make a detailed comparison between these works and
Pogo when we present its design in Section 3.



Pogo, a Middleware for Mobile Phone Sensing 23

Context-aware computing is a field that uses sensor data to infer infor-
mation about the context of a user. Examples of contexts are user location,
emotional state, and transportation mode. Middleware built for this purpose
aids developers by providing sensor abstractions and off-the shelf classifiers, and
help reduce energy consumption by scheduling sensors intelligently.

Jigsaw [23] is a framework for continuous mobile sensing applications. It uses
a pipeline architecture, with different pipes for each sensor, and has the ability to
turn individual stages on or off depending on need and resource availability. It has
classifiers for accelerometer and audio data built-in, and reduces power consump-
tion by scheduling GPS sampling in a smart way. The Interdroid platform [19]
aims to provide a toolkit for the development of ’really smart’ applications, and
focuses on integrating mobile phones and cloud computing. Applications contain
a client and server part, the latter of which can be uploaded to a remote server
in the cloud where it can run to support the client. Mobicon [22] proposes a
Context Monitoring Query language (CMQ), which can be used by applications
to specify the type of context information they require. The middleware then
intelligently plans sensor usage in order to reduce power consumption. However,
the data processing in context-aware systems is geared towards assisting the
user, and therefore do not include functionality for collecting data at a central
server or for remotely deploying sensing tasks.

Mobile phone sensing middleware aims to turn smartphones into mobile
sensors. The aim is to collect data about user behavior or the environment in
which a user moves around, and send it to a central point for further analysis.
One such project is AnonySense [8]. Tasks are written in a domain-specific lan-
guage called AnonyTL, which has a Lisp-like syntax. These tasks are matched
to devices using predicates based on the context of the device, such as its loca-
tion. Another relevant project is Cartel [4], which is a software and hardware
infrastructure comprising mobile sensing nodes on cars. Remote task deploy-
ment, although limited in nature, is supported through runtime configuration of
parameters like the type and rate of sensor information reported by the mobile
devices; continuous queries written in SQL submitted to a central server further
process and filter this data, providing additional adaptability. A much more flex-
ible approach is offered by PRISM [10], which allows deployment of executable
binaries at the mobile devices themselves. Method call interposition is used to
sandbox running applications for security and privacy reasons. Crowdlab [9] pro-
poses an architecture for mobile volunteer testbeds that allows low-level access
to system resources, and employs virtualization technologies to run sandboxed
applications concurrently with the host operating system.

Phone Usage Traces SystemSens [14] and LiveLab [26] are end-to-end log-
ging tools for measuring smart phone useage, and can be useful for diagnosing
other running applications. They collect data about wireless connectivity, bat-
tery status, cpu usage, screen status, and so on. Both offload the collected traces
to a central server only when the phone is charging in order to save energy. My-
Experience [15] is a more flexible system that can also capture sensor data and
user context, and is even able to ask the user for feedback through an on-screen



24 N. Brouwers and K. Langendoen

survey. MyExperience can be configured using XML files with support for script-
ing, and behavior can be updated in the field by sending scripts through SMS
or e-mail. Output is stored in a local database that is synchronized periodically
with a central one.

3 Design

In this section we look at several design aspects of Pogo, compare alternative
options and discuss how they fit in with the related work, and finally motivate our
choices. Note that many of these considerations have architectural consequences,
as is reflected in Section 4.

3.1 Testbed Organization

The most straightforward way to structure a testbed is to have a central server
and a set of mobile devices in a master-slave setup. The phones collect and
process data locally, and send it to the server where it is stored, possibly af-
ter further processing. This model is followed by most middleware, including
PRISM [10] and AnonySense [8]. However, such a strongly centralized server
component must also have a front-end where scientists can upload scripts, down-
load data, and manage their device pool, which introduces a considerable im-
plementation overhead. Moreover, since researchers share devices between them
and multiple sensing applications run concurrently on each device there is an
inherent many-to-many relationship between researchers and end-users.

We have therefore opted for a design where both parties, the researchers and
the test subjects, run the Pogo middleware, with a central server acting only as
a communications switchboard between them. This way researchers can interact
directly with end-user devices without having to go through a web interface or
logging into a server. There are three types of stake holders in a Pogo testbed.
First, the device owners contribute computational and sensing resources to the
system by running Pogo on their phones. The researchers run Pogo on their
computers and consume these resources by deploying experiments. The admin-
istrator of the testbed decides which devices are assigned to which researchers.
In a way the administrator acts as a broker who brings together people who offer
and consume resources. The connections between researchers and device owners
are double blind, with the administrator having only personal information about
the researchers who use the system.

3.2 Deployment

An important consideration is how experiments are delivered to the mobile de-
vices. Remote deployment is a basic functionality of any testbed and supports
the development of new algorithms and techniques by enabling researchers to
test hypotheses and benchmark solutions. It is, however, also a vital requirement
for running long-term sensing studies, which may need to deal with changing re-
quirements, new hardware developments, and new insights, or simply require
maintenance to correct programming errors.



Pogo, a Middleware for Mobile Phone Sensing 25

Broadly speaking there are two methods of deployment found in literature.
Pull-based systems present the user with a list of applications that can be down-
loaded. Common examples are the iPhoneApp Store1 and Android’s Play Store2.
The choice for which application runs on which device lies solely with the user.
In contrast, push-based systems allow researchers to send their applications to
remote devices without interaction from the user. This can be manual, like in
Prism [10] or Boinc [1], or automatic based on device capabilities or context, as
is the case with AnonySense [8].

Note that pull-based systems often have a push component, in the form of
application updates that are installed automatically. The Play Store has an up-
dating mechanism where new versions can be pushed to Google’s servers by
developers. End-users that have the application installed will be notified of such
updates and can choose to either update manually, or let Android manage this
automatically. Depending on the updating method, it may take anywhere from a
few hours to several days for a device to get the latest version. In our experience,
these long update times are not suitable for quick redeployment and experimen-
tation. What is more, the update process on the phone stops the application if
it is running and it has to be restarted by the user. This means that automated
updates result in regular downtime even with the most committed users due to
the time it takes for them to notice that the application has been killed.

For Pogo we have chosen a push-based system because we believe it is most
suitable for rapid deployment and experimentation. Of course, this means that
users are not able to choose what kind of applications are running on their
phones. We therefore allow users to select the types of information their wish to
share, so that they retain full control over their own privacy.

3.3 Participation

Participation by the general public is an important aspect of our approach and
we employ several strategies and incentives to attract users to our testbed. First
of all the barrier for participation is kept as low as possible. The goal is to have
volunteers just click once on the Pogo icon in their application store, which will
automatically start the download, installation, and execution of the middleware
on their phone. There is no registration process after the application has been
installed. This implies an opportunistic approach in which the middleware runs
silently in the background; only if a user wants to change the default settings
(e.g., about privacy) or remove the middleware completely does he need to take
action. We guarantee complete anonymity and give the user full control over
what information he wishes to share, and these settings can be changed at any
time from the application interface.

We expect that research institutions will recruit nodes among employees and
students, possibly rewarding the latter group with study credit. We are also
investigating monetary incentives such as Amazon’s Mechanical Turk3. We have

1 http://www.apple.com/itunes
2 http://play.google.com/
3 https://www.mturk.com/mturk/welcome

http://www.apple.com/itunes
http://play.google.com/
https://www.mturk.com/mturk/welcome


26 N. Brouwers and K. Langendoen

a central server that can keep track of when devices are online and what data
they are sharing, which would be the basis for assigning rewards. A third option
is to distribute smart phones for free with the understanding that the recipients
run the middleware and share their data [17].

3.4 Experiment Description

There are several approaches to writing mobile sensing experiments. Runtime-
configurable systems such as Cartel [4], and domain-specific languages like
CMQ [22] and AnonyTL [8], are easy to execute and sandbox. Moreover, no-
tation is generally short and concise, and accessible to researchers and program-
mers with little domain experience. On the other hand, deployment systems like
PRISM [10] and CrowdLab [9] allow native applications to be deployed on remote
nodes, giving total flexibility, but at the cost of requiring complex sandboxing
techniques, like method call interposition or hardware virtualization, to keep
malicious or malfunctioning code from degrading user experience or breaking
privacy.

We feel that the expressiveness of general programming languages is neccesary
if Pogo is to support the wide range of applications that we envision. The example
application that we describe in Section 4.1 implements a clustering algorithm
that could not be expressed in a simple DSL or query language. While it is
true that middleware can be extended with new functionality if desired, doing
so would require updating the application for the entire installed base, which is
exactly the kind of deployment overhead we wish to avoid.

We argue that simplicity and flexibility do not have to be competing con-
straints. Pogo applications are written in JavaScript, a popular and accessible
programming language. We expose a small, yet powerful programming API of
only 11 methods that abstracts away the flow of information between sensors
and scripts, and between phones and data collecting PCs. In this way, develop-
ers do not need to know anything about smartphones or Android in order to be
able to write Pogo experiments. Sandboxing is straightforward as the scripting
runtime can be used to control what functionality the application is allowed to
use.

3.5 Programming Abstractions

The choice of a generic programming language over a DSL means that we must
provide an application programming interface (API) to developers that exposes
the kind of functionality required for mobile sensing applications. We identified
the following requirements. First, applications need to be able to access sensor
data, either by reading them directly or by listening for updates. Second, there
should be a facility for periodically executing code. Third, a means of communi-
cating with a central point (the researcher) is required so that findings can be
reported. Finally, some means of breaking up large experiments into smaller com-
ponents is not a functional requirement per se, but makes complex applications
such as the one described in Section 4.1 more manageable.



Pogo, a Middleware for Mobile Phone Sensing 27

Starting from the simplest option, we have considered exposing a rich API to
the scripting runtime. This approach is taken by PhoneGap4, a popular toolkit
for developing portable mobile applications with HTML5 and JavaScript. For ex-
ample, the accelerometer can be read by calling the navigator.accelerometer.
getCurrentAccelerationmethod. However, such an API grows quickly as more
sensors are added, and a lot of ‘glue’ code is required to interface between the na-
tive platform API and JavaScript. Moreover, consider the case where two scripts
are running on the same device, and both are requesting a Wi-Fi access point
scan at regular intervals. It would be sufficient to scan at the highest of the two
frequencies to serve both scripts, but this energy-saving optimization cannot be
made without some form of coordination.

The API requirements essentialy boil down to an exchange of data and events
between loosely coupled entities; sensors, scripts, and devices. Two popular
abstractions for this type of communication are tuple spaces [16] and publish-
subscribe [13]. A tuple space is a shared data space where components interact
by inserting and retrieving data. In a publish-subscribe system, components
publish information to a central authority, the so-called message broker. Other
components can then subscribe to this information and are notified when new
data become available. In terms of capabilities, the two techniques are roughly
equivalent [3]. We have chosen publish-subscribe for Pogo mostly because of
implementation advantages. First, in a publish-subscribe system a sensor com-
ponent can easily query whether there are other components interested in its
output. If not, the sensor can be turned off to save energy. Second, subscriptions
in Pogo optionally carry parameters that can be used to add details such as a
requested sampling rate. Finally, the model is event-based, which fits our choice
for JavaScript.

4 Implementation

In this section we describe our implementation of Pogo, which is written in Java
and runs on Android smartphones as well as on desktop PCs and servers. The
Android platform was chosen because of its ubiquity (at the time of writing An-
droid had 50.9% market share5), and because it supports the type of background
processing required for mobile phone sensing tasks. Pogo runs on Android 2.1
and up, and currently stands at 10,666 source lines of Java code, of which 5,170
lines are common, 2,948 are Android-specific, and 2,548 belong to the PC ver-
sion.

4.1 Example Application

Before we describe our implementation in detail, we believe it is helpful to present
an application to both give a concrete example of the type of experiments we
envision, as well as to provide a running example with which to illustrate the

4 http://www.phonegap.com
5 http://www.gartner.com/it/page.jsp?id=1924314

http://www.phonegap.com
http://www.gartner.com/it/page.jsp?id=1924314


28 N. Brouwers and K. Langendoen

Device Node (Smartphone) Collector Node (PC/Server)

Wi-Fi 
Scanning
Sensor

scan.jsscan.js clustering.jsclustering.js collect.jscollect.js

raw scan
results

sanitized
results clusters

database

annotated
clusters

Fig. 1. Data-flow of the localization application. The scan.js script requests Wi-
Fi access points scans from the Wi-Fi sensor, sanitizes them, and sends them to
clustering.js. This script clusters the scans and sends cluster characterizations to
the collect.js script running on the collector node, which in turn pushes them into
a database.

various implementation details. We chose a meaningful, real-world localization
application for this purpose. The goal of the application is to find locations where
the user spends a considerable amount of time, such as the home, the office, and
so on. We do this by periodically sampling Wi-Fi access points, and clustering
these scan results based on similarity. The clusters found in this way characterize
a ‘place’ where the user dwelled.

Figure 1 shows the data flow of the application. The scan.js script obtains
scan results from the Wi-Fi scanning sensor. It sanitizes the raw results by remov-
ing locally administered access points, and normalizes received signal strength
(RSSI) values so that 0 and 1 correspond to -100 dBM and -55 dBM respec-
tively. These values are then picked up by the clustering.js script that ex-
tracts clusters (locations) using a modified version of the DBSCAN clustering
algorithm [12]. The modification in this case is that we use a sliding window of
60 samples from which we extract core objects. Clusters are ‘closed’ whenever a
user moves away from the place it represents (when a sample is found that is not
reachable from the cluster). The distance metric used is the cosine coefficient.
When a cluster is closed, a sample is selected that best characterizes the cluster6

and sent to the server along with entry and exit timestamps. The collect.js

script running on the collector node collects these cluster characterizations and
uses Google’s geolocation service [18] to convert them into a longitude, latitude
pair. The annotated places are then pushed into a database.

This example illustrates a number of key features of Pogo. The location clus-
tering is performed on the device so as to avoid sending raw access point scans to
the collector and hence minimize communication cost, which shows the advan-
tages of on-line processing. The flexibility of our scripting environment allows us
to write complex sensing applications and even run custom clustering algorithms
when desired. Applications can easily be broken down into a set of cooperating
scripts, and communication between them flows seamlessly across the wireless
networking boundary.

6 The nearest neighbour to the mean of all scan results is selected.



Pogo, a Middleware for Mobile Phone Sensing 29

Device Node

Context (Localization)

scan.js clustering.js

Message Broker

Collector Node

Context (Localization)

collect.js

Message 
Broker

Sensor Manager

Wi-Fi 
scanning 
sensor

XMPP

Multi Broker

Co
nt

ex
t (

ex
pe

rim
en

t 2
)

Co
nt

ex
t (

ex
pe

rim
en

t 1
)

Co
nt

ex
t (

ex
pe

rim
en

t 2
)

Co
nt

ex
t (

ex
pe

rim
en

t 3
)

Fig. 2. A device- and collector node running the localization application

4.2 Node Architecture

In Pogo both the researchers and device owners are running the same middle-
ware; the only functional difference between them is that researcher nodes are
operating in collector mode, which gives them the ability to deploy scripts. We
therefore do not have to write an extensive server application. Instead, we use
an off-the-shelf open source instant messaging server to manage communication
between device- and collector nodes.

Figure 2 shows the anatomy of two Pogo node instances, a device and collector
node running the example application presented in Section 4.1. Scripts belonging
to a certain experiment run inside a so-called context, which acts as a sandbox;
scripts can only communicate within the same experiment. Each context has a
counterpart on a remote node, and communication between them flows over the
XMPP protocol, as we will describe Section 4.6.

Each context has a message broker associated with it where scripts can sub-
scribe to- and publish data. Since contexts have counterparts on remote devices,
so do message brokers. The brokers on either end synchronize with each other
so that the publish-subscribe mechanism works seamlessly across the network
boundary. Since contexts on collector nodes can have more than one remote con-
text associated with them, a multi broker is used to make the communication
fan out over the different devices. Note that message exchange can only happen
between a device- and collector node, device nodes can never communicate with
each other directly.

Finally, sensors live inside a sensor manager. They are able to publish data
to, or query subscriptions from, all contexts. All a script needs to do in order
to obtain sensor data is to subscribe to it. This also works across the network;
a script running on a collector node that subscribes to battery information will
automatically receive voltage measurements from all devices in the experiment.

4.3 Publish-Subscribe Framework

Communication between sensors, scripts, and devices uses a topic-based publish-
subscribe paradigm [13], where messages (events) are published on channels.



30 N. Brouwers and K. Langendoen

For example, the Wi-Fi scanning sensor publishes its output on the wifi-scan
channel, and scripts that wish to consume this data simply subscribe to this
channel. Messages are represented as a tree of key/value pairs, which map di-
rectly onto JavaScript objects so that they can be passed between Java and
JavaScript code seamlessly. Messages are serialized to JSON7 notation when
they are to be delivered to a remote node.

A subscription in Pogo can have a parameter object associated with it. Scripts
can use this to be more specific about the information they are interested in. For
example, a script may request location updates, but only from the GPS sensor. It
can do this by subscribing to the locations channel using the provider:‘GPS’
parameter. Another example is the scan.js script in our running example, which
requests access point scans every minute. The scanning interval in this case is
also passed using the parameters (interval:60000).

Given the battery constraints of mobile devices it would be wasteful to have
sensors draw power when their output is not being consumed. The framework
therefore allows sensors to listen for changes in subscriptions to the channels they
publish on. Sensors can enable or disable scanning based on this information,
and change their behavior depending on the subscription parameters.

4.4 Scripting

Scripts are executed using Rhino8, a JavaScript runtime for Java, which allows
for seamless integration of the two languages. In the interest of security however,
we hide the Java standard library and of course all of the Android API from the
application programmer. Instead, we expose only a small programming interface,
shown in Table 1.

The setDescription() and setAutostart() functions can be placed in the
script body to set script parameters. If automatic starting of a script is turned off,
it will not run until the user explicitly starts it through the UI. The description
of the script will be shown in the UI as well. The print() function prints a
debug message that can be viewed on the phone, while the log and logTo

functions can be used to write lines of text to permanent storage. The publish

and subscribe function expose the message passing framework to a script. The
parameters argument to subscribe is optional and is used to add parameters
to a subscription. For example, the following line:

1 subscribe(’wifi -scan’, handleScan , { interval : 60 * 1000 });

requests a wifi scan result once per minute. The returned Subscription object
can be used to control whether a subscription is active or not. The release

method deactives a subscription, while renew can be used to reactivate it at
a later time. Note that these methods have no effect when the subscription is
inactive or active respectively.

An object can be ‘frozen’ with the freeze function, which means it will be
serialized to permanent storage. Each script can have only one such object at any

7 http://www.json.org/
8 http://www.mozilla.org/rhino/

http://www.json.org/
http://www.mozilla.org/rhino/


Pogo, a Middleware for Mobile Phone Sensing 31

Table 1. Pogo JavaScript framework API

setDescription(description)

setAutoStart(start)

print(message1[, ...[, messageN]])

log(message1[, ...[, messageN]])

logTo(logName, message1[, ...[, messageN]])

publish(channel, message)

Subscription subscribe(channel, function[, parameters])

freeze(object)

object thaw()

String json(object)

setTimeout(function, delay)

given time, and freeze will always overwrite any preexisting data. This stored
object can be retrieved using thaw. These two methods make it possible to have
data persist through script stop/start cycles and updates. The json function
serializes an object to a string using JSON notation. The setTimeout method
works in much the same way as it does in a browser, allowing a function to be
scheduled for execution at some point in the future.

4.5 Event Scheduling

Handling (timed) events requires some special attention on mobile devices be-
cause power management has to be taken into account. When the screen is
turned off and there are no ongoing activities such as a phone call being made,
Android will put the CPU to sleep to conserve energy. Applications can prevent
the CPU from going to sleep by acquiring a wake lock, and this is essential for
many asynchronous sensing tasks. Consider the example where an application
requests a Wi-Fi access point scan. If the CPU is not kept awake during the 1-2
seconds the process generally requires, the application will not be notified upon
scan completion. When the CPU is in deep sleep, it can be awoken only by events
such as incoming calls, or the user pressing a hardware button. Alternatively, an
application may want to schedule a wake-up call periodically, which it can do
by setting a so-called alarm.

The Pogo framework abstracts away the complexities of setting alarms and
managing wake locks through a scheduler component that executes submitted
tasks in a thread pool, and supports delayed execution. Using a thread pool
has the advantage that components that execute code periodically do not have
to maintain their own threads and are therefore more light-weight. A typical
example is a sensor component that samples at a given interval. When there are
no tasks to execute, the CPU can safely go to sleep.

The scheduler is also used when calling JavaScript subscription handlers and
functions that have been scheduled for execution using the setTimeoutmethod.
A script can have multiple subscriptions, so in theory multiple Java threads
could execute code belonging to the same script. However, since JavaScript does



32 N. Brouwers and K. Langendoen

not have facilities to handle concurrency, the threads are synchronized so that
only a single thread will run code from a given script at any time.

To keep incorrect or malicious code from locking up the system and draining
the battery, all calls to JavaScript functions by the framework must complete
within a certain timeframe. If the JavaScript function does not return in time, it
is interrupted and an exception is thrown. The default timeout is set to 100ms.

4.6 Communication

Pogo relies on the XMPP protocol9, which was originally designed for instant
messaging. Using an instant messaging protocol is helpful because associations
between devices and researchers can be captured as buddy lists, or rosters in
XMPP parlance. These are stored at the central server and can therefore be easily
managed by the testbed administrator. The XMPP server we use, Openfire10,
has an easy-to-use web interface for this purpose.

Mobile phones frequently switch between wireless interfaces as the user moves
in- or out of range of access points and cell towers. Unfortunately there is no
transparent TCP handover between these interfaces, causing stale TCP sessions
and even dropped messages. This message loss problem is recognized in the
XMPP community and although several extensions have been proposed11, these
have yet to be implemented in popular server and client libraries. Pogo detects,
using the Android API, when the active network interface changes and automat-
ically reconnects on the new interface. We have implemented our own end-to-end
acknowledgements on top of XMPP to recover from message loss.

Messages that are to be transferred over the XMPP connection are not sent
out immediately for two reasons. First, when there is no wireless connectivity,
messages should be stored and sent out at a later time when connectivity has
been restored. Second, sending small amounts of data over a 2G/3G connection
has been shown to be extremely energy inefficient due to the overhead associ-
ated with switching between the different energy states of a modem, as we will
elaborate upon in the next section. We exploit the fact that data gathering ap-
plications generally allow for long latencies in message delivery. Messages are
therefore buffered at the device and sent out in batches. Buffered messages are
stored in an embedded SQL database to ensure that no messages are lost should
a device reboot or run out of battery.

4.7 Tail Detection

Data transmission over a 2G/3G internet connection is costly due to the tail
energy overhead involved [2,24]. In a nutshell, data transmission triggers the
modem to go into a high-power state, where it stays for a considerable amount
of time after the transmission itself has ended. Figure 3 shows an energy trace

9 http://xmpp.org/
10 http://www.igniterealtime.org/projects/openfire/
11 i.e. XEP184, XEP198.

http://xmpp.org/
http://www.igniterealtime.org/projects/openfire/


Pogo, a Middleware for Mobile Phone Sensing 33

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

14 20 26.5 80

a b c d
P

ow
er

 (
W

)

Time (s)

Fig. 3. Tail energy due to 3G transmissions. The 3G ramp-up starts at a. After data
transmission has ended (point b), the modem stays in high-energy mode (DCH) for
approximately six seconds until c. Finally, there is a long tail where the modem stays
in medium-energy mode (FACH) for another 53.5 seconds between c and d. The small
spikes before a and after d are due to the duty cycling of the modem. The trace was
obtained under the same conditions as described in Section 5.2 on the KPN network.

taken from a Samsung Galaxy Nexus smartphone. The event marked a shows
the modem being triggered by a transmission (in this case the phone checking for
new e-mail). It takes several seconds for the actual transmission to begin as the
modem negotiates a private channel with the cell tower, leading to the so-called
ramp-up time. After the transmission has ended at event b, the modem waits
in high energy mode to see if there is further data until point c, after which
it goes into a medium-energy mode, where it stays for a further 56 seconds.
The time from b to d, 60 seconds in this example, is commonly referred to
as the tail-energy of a transmission, and periodically transfering small packets
of information could easily cause this overhead to dominate the overall energy
consumption of the application.

To avoid generating many tails it is possible to either flush the transmit buffer
at long intervals (i.e. once per hour), or simply delay transfer until the phone is
plugged into the charger. However, there are typically many applications already
present on a mobile phone that periodically trigger a 3G tail. Examples are
background processes that check for e-mail, instant messaging applications, and
turn-based multi-player games. Pogo detects when other applications activate
the modem, and if it has data to send, takes advantage of this opportunity
to push it out before the modem has moved to a lower power state. In this
way Pogo is able to avoid generating tail energy of its own by synchronizing
its transmissions with that of other applications. Since most users typically set
their phones to check for new e-mail every so many minutes, Pogo almost never
generates its own tail.

The implementation of this scheme requires some special consideration. The
general idea is to periodically read the number of bytes received and transmitted
on the 2G/3G network interface using the Android API, and fire a transmission
event when these numbers change. The exact length of the tail we are trying



34 N. Brouwers and K. Langendoen

CPU

E-Mail App

Pogo
alarm

sleep sleep sleep

a b

Time

Fig. 4. Pogo running alongside an e-mail application that periodically checks for new
mail. The horizontal blocks show when the CPU, e-mail app, and Pogo are active.

to detect depends on the mobile carrier, but we typically wish to catch the
high-power tail which is measured in seconds.

Periodic sampling at such intervals becomes problematic due to energy over-
head incurred when waking up the CPU. As explained in the previous section,
Android will put the CPU to sleep when there are no wake locks held by any
applications, and can only be woken up explicitly by setting an alarm. When the
alarm fires, the CPU will be woken up and start executing pending tasks. The
processor will stay awake for typically more than a second before going back to
sleep, even if there is nothing for it to do. With a sampling interval measured in
seconds the overhead from keeping the CPU awake would be considerable.

We therefore use a side-effect of how Java’s Thread.sleep method is imple-
mented on Android. When the processor is in sleep mode, the timers that govern
the sleeping behavior are also frozen, which means that the thread will only con-
tinue to execute after the CPU has been woken up by some other process. We
use this to detect when the CPU is woken up by another application, possibly a
background service that wants to engage in data transmission.

Figure 4 shows a situation where an e-mail application periodically checks for
new mail. The e-mail app uses the alarm functionality of Android to ensure that
the CPU is woken up. Pogo checks for network activity every second, but uses
Thread.sleep instead of alarms. At event (a), the CPU goes to sleep because
there are no wake locks preventing it from doing so. With the CPU sleeping, the
Pogo thread is no longer running. At event (b), the alarm set by the e-mail app
fires and the CPU is brought out of sleep mode. The Pogo thread continues and
is eventually unblocked when its timer runs out. It can then detect the network
traffic and push out its own data.

5 Evaluation

In this section we evaluate Pogo in three ways. We first validate the suitabil-
ity of our programming model for mobile sensing applications in Section 5.1.
In Section 5.2 we show, using power traces obtained from a modern Android
smartphone, that our mechanism for avoiding tail-energy significantly reduces



Pogo, a Middleware for Mobile Phone Sensing 35

Table 2. Code complexity for Pogo applications. Size is given in bytes.

Application File SLOC Size

Localization example scan.js 41 1,414

clustering.js 155 4,096

collect.js 18 469

total 214 5,979

RogueFinder roguefinder.js 28 799

collect.js 5 100

total 32 899

the energy overhead of Pogo. Finally, we present our experience with a real-world
experiment in Section 5.3.

5.1 Program Complexity

We implemented the example application described in Section 4.1. Table 2 shows
the source lines of code count12 for the application. The clustering.js script
is by far the largest, mainly due to the modified DBSCAN clustering algorithm,
as well as functionality for calculating the cosine coefficient. Still, the entire
application takes up only 214 lines of code.

We also wanted to compare our programming model against related work.
Listing 1 shows the RogueFinder application written in AnonyTL, as it appears
in [8]. This program sends Wi-Fi access point scans to the server once per minute,
but only if the device is within a given geographical location (represented by a
polygon). We implemented an equivalent program for Pogo, a fragment of which
is shown in Listing 2. First, a subscription is created to scan for access points on
line 5. This subscription is then immediately released because scanning should
only be activated within the designated area (line 9). On line 11, the application
subscribes to location updates, and toggles the Wi-Fi subscription based on
the device location. Note that the locationInPolygonmethod was omitted for
brevity. The total size for this application can be found in Table 2.

The RogueFinder application illustrates the trade-off between DSLs and our
JavaScript-based approach. First, we had to implement the locationInPolygon
function to simulate AnonyTL’s In construct, as this was not a part of our
API. Second, toggling the Wi-Fi scanning sensor depending on the user location
required extra work (lines 11-16). Third, a second script running on the collector
node (collect.js) is required to get the data off the device. Still, we would argue
that this increase in complexity is an acceptable price to pay for the flexibility
that Pogo offers over application-specific solutions such as AnonyTL.

5.2 Power Consumption

We validate the tail detection mechanism described in Section 4.7 by taking
detailed power measurements from a Samsung Galaxy Nexus phone. We set up

12 Empty lines and comments are not counted.



36 N. Brouwers and K. Langendoen

Listing 1. The RogueFinder application in AnonyTL.

1 (Task 25043) (Expires 1196728453)

2 (Accept (= @carrier ’professor ’))

3 (Report (location SSIDs) (Every 1 Minute)
4 (In location

5 (Polygon (Point 1 1) (Point 2 2)

6 (Point 3 0))))

Listing 2. The RogueFinder application for Pogo (fragment).

1 function start ()

2 {

3 var polygon = [{ x:1, y:1}, { x:2, y:2 }, { x:3, y:0 }];

4
5 var subscription = subscribe(’wifi -scan’, function(msg) {

6 publish(msg , ’filtered -scans’);

7 }, { interval : 60 * 1000 });

8
9 subscription.release ();

10
11 subscribe(’location ’, function(msg) {

12 i f (locationInPolygon(msg , polygon))

13 subscription.renew ();

14 else
15 subscription.release ();

16 });

17 }

a single e-mail account and configured it to be checked at 5 minute intervals. We
and ran experiments both with- and without Pogo running alongside it. In the
experiments where Pogo was running it was sampling the battery sensor every
minute. Because of the synchronization mechanism these values were reported in
batches of five whenever the e-mail application checked for updates. We inserted
a 0.33Ω shunt between the battery voltage line and sampled the voltage drop
over the shunt using a National Instruments NI USB-6009 14-bit ADC. The
phone was running stock firmware, Android 4.0 (Ice Cream Sandwitch), with all
background processes such as location services disabled.

We obtained one-hour traces with- and without Pogo running and compared
the energy consumption. Because the length of the 3G tail depends on carrier
settings we repeated this experiment with each of the three major mobile carriers
in The Netherlands. With each comparison we took the trace without Pogo
running as the base line and calculated the increase in power consumption as a
percentage of that value. The results are shown in Table 3.



Pogo, a Middleware for Mobile Phone Sensing 37

Table 3. Power consumption with- and without Pogo running on a Samsung Galaxy
Nexus with e-mail being checked every five minutes. When Pogo is running, it reports
battery voltage sampled once per minute.

Carrier Without Pogo With Pogo Increase

KPN 277.59 J 288.76 J 4.09%

T-Mobile 182.05 J 194.3 J 6.73%

Vodafone 205.47 J 218.98 J 6.57%

Table 4. Results of the localization experiment. The size columns show the size in
bytes of the raw data set.

User Scans Size Locations Size Match Partial

User 1 25,562 6,278,929 230 89,514 95% 96%

User 2a 11,474 3,082,356 121 48,048 86% 90%

User 2b 6,745 2,139,525 93 44,154 97% 100%

User 3 33,224 9,064,727 1282 437,527 80% 83%

User 4 32,092 12,664,291 274 139,572 92% 97%

User 5 33,549 11,836,962 333 197,433 95% 98%

User 6 34,230 14,426,142 158 77,251 89% 96%

User 7 35,637 9,305,313 703 181,389 96% 98%

User 8 34,395 11,618,974 329 141,634 95% 97%

The differences between the different carriers are substantial. We observed
very long tails on the KPN network (Figure 3 shows such a tail), resulting in a
higher total energy consumption than on the other two networks. On the other
hand we found the differences in energy consumption on the same network due
to Pogo to be marginal, with a maximum of 6.57% increase in total consumption
on the Vodafone network. This shows that Pogo can report data regularly with
minimal energy overhead by automatically synchronizing its tranmission with
other background processes.

5.3 Experimental Results

We tested Pogo by deploying the localization application described in Section 4.1
and let it run for 24 days. Of the 8 participants, 6 were given a Samsung Galaxy
Nexus to use as their primary phone. The other two preferred to use their own
phone, a Sony Ericsson Xperia X10 mini and a Samsung Nexus S. The latter
participant experienced some issues with his phone however and later switched to
a Galaxy Nexus, and we denote this user’s two sessions as 2a and 2b respectively.
One of the participants did not have mobile Internet and had to rely on Wi-Fi
to offload his data periodically (user 7). The application additionally logged all
Wi-Fi scan results to SD card, and these raw traces were collected after the
experiment as ground truth.



38 N. Brouwers and K. Langendoen

Table 4 shows an overview of the results. In total we collected 246,908 access
point scans for a total of 76,7MB of raw data, and found 3,525 user locations13

for a total of 1.3MB of raw data. In other words, we reduced the total amount
of data transferred by 98.3% by making use of on-line clustering as opposed to
sending all data back to the collector node. To see what the quality of the data
was like, we ran our clustering algorithm over the raw traces and compared the
output with what was received at the collector node. We found that there were
inconsistencies between the two data sets. First, some clusters were missing at the
collector node, or had a later start time. This was due to the clustering algorithm
being interrupted half-way through building a cluster, losing its program state.
When Pogo resumed it would only report the latter half of the dwelling session,
hence the difference in cluster start times. This would happen if a phone was
rebooted, ran of out battery, or when we uploaded a new version of the script.

Furthermore, we found that for two users we were missing large numbers of
clusters, specifically in certain time periods. This was because we had configured
Pogo to drop messages older than 24 hours if there was no Internet connectivity.
We had not anticipated that this would become an issue since all participants
had regular Internet access. However, user 2a made a trip abroad and turned off
data roaming for cost reasons, resulting in messages being purged after a day.
User 3 experienced problems with his 3G Internet access resulting in two days
of missing data.

The ‘match’ column in Table 4 shows the percentage of clusters found in the
post-processed data set that exactly matched the ones gathered by the collector
node. The ‘partial’ column shows the percentage of nodes that were matched
only partially due to the problems described. We have since added the freeze

and thaw methods to preserve application state across clean application restarts
which will help reduce the problem of Pogo scripts being interrupted, and im-
prove data quality.

6 Conclusions

The smart phone revolution is rapidly changing the field of mobile data gather-
ing. Modern phones have very capable processing hardware, ubiquitous Internet
connectivity, and a range of interesting sensor modalities, which makes them –
in principle – an ideal platform for all kinds of information collection tasks. In
reality though, experiments with large collections of mobile devices are rare, and
only carried out by a handful of experts, due to a string of complicating factors.

In this paper we presented Pogo, our proposed middleware for building large-
scale mobile phone sensing test beds. Pogo takes a pragmatic approach and
gives researchers a subset of the available mobile devices for them to deploy
experiments on. These experiments are written in JavaScript, and use a publish-
subscribe framework that abstracts away the details of communication between

13 Note that these are not unique locations, but rather sessions of a user staying at
some place.



Pogo, a Middleware for Mobile Phone Sensing 39

mobile devices and researchers’ computers. Users are given fine-grained control
over what sensor information they wish to share to protect their privacy

We have demonstrated the feasibility of our implementation with a real-world
use case involving eight users and running for 24 days. We argue that the pro-
gramming model we developed for Pogo is easy to use, yet flexible enough to
build complex applications. Finally, we have shown, through detailed power mea-
surements, that Pogo is capable of offloading its sensor data at a very low energy
overhead – as little as 4% – by synchronizing its transmissions with other back-
ground processes present on the device.

Pogo is a work in progress. In the future we would like to implement power
modelling to estimate the resource consumption of individual scripts. We would
also like to automate the assignment process between devices and researchers
based on information such as device capabilities and geographical location. Fi-
nally, we are planning on contributing Pogo to the mobile phone sensing com-
munity as an open-source project in the near future.

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID 2004, pp. 4–10. IEEE Computer Society, Washington, DC (2004)

2. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-
tion in mobile phones: a measurement study and implications for network applica-
tions. In: IMC 2009, pp. 280–293 (November 2009)

3. Busi, N., Zavattaro, G.: Publish/subscribe vs. shared dataspace coordination in-
frastructures. is it just a matter of taste? In: WETICE 2001 Proceedings of the
10th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 328–333 (2001)

4. Bychkovsky, V., Chen, K., Goraczko, M., Hu, H., Hull, B., Miu, A., Shih, E., Zhang,
Y., Balakrishnan, H., Madden, S.: The CarTel mobile sensor computing system.
In: 4th int. conf. on Embedded Networked Sensor Systems, SenSys 2006, Boulder,
Colorado, USA, pp. 383–384 (November 2006)

5. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A.: People-
centric urban sensing. In: 2nd Int. Conference on Wireless Internet, WiCon 2006,
Boston, MA (August 2006)

6. Chu, D., Kansal, A., Liu, J., Zhai, F.: Mobile apps: It’s time to move up to CondOS.
In: 13th Workshop on Hot Topics in Operating Systems, HotOS XIII, Napa, CA,
pp. 1–5 (May 2011)

7. Cisco: Cisco visual networking index: Global mobile data traffic forecast update
(2010-2015), http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white paper c11-520862.html (Febraury 2011)

8. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.:
Anonysense: privacy-aware people-centric sensing. In: 6th Int. Conf. on Mobile
Systems, Applications, and Services, MobiSys 2008, pp. 211–224 (June 2008)

9. Cuervo, E., Gilbert, P., Wu, B., Cox, L.: Crowdlab: An architecture for volunteer
mobile testbeds. In: Communication Systems and Networks, COMSNETS, Banga-
lore, India, pp. 1–10 (Janaury 2011)

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html


40 N. Brouwers and K. Langendoen

10. Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R., Sharma, A.: PRISM: plat-
form for remote sensing using smartphones. In: 8th int. conf. on Mobile Sys-
tems, Applications, and Services, MobiSys 2010, San Francisco, CA, pp. 63–76
(June 2010)

11. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal
Ubiquitous Computing 10, 255–268 (2006)

12. Ester, M., Peter Kriegel, H.S.J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

13. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35, 114–131 (2003)

14. Falaki, H., Mahajan, R., Estrin, D.: Systemsens: a tool for monitoring usage in
smartphone research deployments. In: Proceedings of the Sixth International Work-
shop on MobiArch, MobiArch 2011, pp. 25–30. ACM, New York (2011)

15. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: Myexperience:
a system for in situ tracing and capturing of user feedback on mobile phones. In:
MobiSys 2007, pp. 57–70. ACM, New York (2007)

16. Gelernter, D.: Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems 7, 80–112 (1985)

17. Glater, J.D.: Welcome, freshmen. have an ipod (2008), http://www.nytimes.com/
2008/08/21/technology/21iphone.html?ref=education

18. Google geolocation API. (November 2009),
http://code.google.com/p/gears/wiki/GeolocationAPI

19. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: The smartphone and the cloud:
Power to the user. In: MobiCloud 2010, Santa Clara, CA, pp. 1–6 (October 2010)

20. Krause, A., Horvitz, E., Kansal, A., Zhao, F.: Toward community sensing. In: 7th
Int. Conf. on Information Processing in Sensor Networks, IPSN 2008, St. Louis,
Missouri, USA, pp. 481–492 (April 2008)

21. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: Experiences from a
pilot sensor network deployment in precision agriculture. In: 14th Int. Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS), Rhodes, Greece (April
2006)

22. Lee, Y., Iyengar, S.S., Min, C., Ju, Y., Kang, S., Park, T., Lee, J., Rhee, Y., Song,
J.: Mobicon: a mobile context-monitoring platform. Commun. ACM 55(3), 54–65
(2012)

23. Lu, H., Yang, J., Liu, Z., Lane, N.D., Choudhury, T., Campbell, A.T.: The jigsaw
continuous sensing engine for mobile phone applications. In: 8th ACM Conference
on Embedded Networked Sensor Systems, SenSys 2010, Zürich, Switzerland, pp.
71–84 (November 2010)

24. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: Characteriz-
ing radio resource allocation for 3g networks. In: Proceedings of the 10th Annual
Conference on Internet Measurement, IMC 2010, pp. 137–150. ACM, New York
(2010)

25. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA,
pp. 85–90 (December1994)

26. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., Kortum, P.: Livelab: measuring
wireless networks and smartphone users in the field. SIGMETRICS Perform. Eval.
Rev. 38(3), 15–20 (2011)

http://www.nytimes.com/2008/08/21/technology/21iphone.html?ref=education
http://www.nytimes.com/2008/08/21/technology/21iphone.html?ref=education
http://code.google.com/p/gears/wiki/GeolocationAPI

	Pogo, a Middleware for Mobile Phone Sensing
	Introduction
	Related Work
	Design
	Testbed Organization
	Deployment
	Participation
	Experiment Description
	Programming Abstractions

	Implementation
	Example Application
	Node Architecture
	Publish-Subscribe Framework
	Scripting
	Event Scheduling
	Communication
	Tail Detection

	Evaluation
	Program Complexity
	Power Consumption
	Experimental Results

	Conclusions
	References




