

Lecture Notes in Computer Science 7662
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Priya Narasimhan
Peter Triantafillou (Eds.)

Middleware 2012
ACM/IFIP/USENIX
13th International Middleware Conference
Montreal, QC, Canada, December 3-7, 2012
Proceedings

13

Volume Editors

Priya Narasimhan
Carnegie Mellon University
Electrical and Computer Engineering Department
4720 Forbes Avenue
Pittsburgh, PA 15213, USA
E-mail: priya@cs.cmu.edu

Peter Triantafillou
University of Patras
Department of Computer Engineering and Informatics
University Campus
26504 Rio, Greece
E-mail: peter@ceid.upatras.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35169-3 e-ISBN 978-3-642-35170-9
DOI 10.1007/978-3-642-35170-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012952143

CR Subject Classification (1998): C.2, H.4, D.2, H.3, K.6.5, D.4.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This edition marks the 13th ACM/IFIP/USENIX Middleware Conference. The
first conference was held in the Lake District of England in 1998, and its origins
reflected the growing importance of middleware and the realization that middle-
ware represented an active, rigorous, growing and evolving research discipline in
its own right. The definition of the term “middleware” has also evolved in the
past decade, but retains, at its core, the notion of different levels/layers of ab-
stractions in distributed-computing systems. Since its inception, the Middleware
Conference has remained a premier forum for the discussion of innovations and
recent advances in the design, implementation, experimentation, deployment,
and usage of middleware systems.

The 2012 Middleware Conference included a variety of papers spanning the
design, implementation, deployment, and evaluation of middleware for next-
generation platforms such as cloud computing, mobile services, peer-to-peer
systems, pub/sub middleware, Internet of Things, etc., along with middleware
support to enable attributes such as availability, scalability, diagnosis, security,
privacy, etc.

The Research Track of the conference this year reflected a very strong tech-
nical program, with 24 papers accepted out of 125 submissions. The Industrial
Track of the conference accepted 6 papers out of 22 additional submissions.
The papers were judged based on originality, contribution, presentation quality,
relevance to the conference, and potential impact on the field. This year, two
innovations were introduced. First, the reviewing process included an author-
feedback phase; this proved to be successful in bringing the authors and the
Program Committee members closer and helped to increase fairness, reducing
chance variability and improving the quality of the program. Second, a new paper
submission category, namely that of Systems and Experiences, was introduced
with great success; there were more than 20 submissions to this category and 4
of them were selected for inclusion into the program.

The program also included workshops on topics such as adaptive/reflective
middleware, embedded middleware, multi-device middleware, and middleware
for cloud management and Internet computing. Other important pillars of the
conference were a poster and a demo session, as well as tutorials. To highlight and
mentor the next-generation of middleware researchers, the conference program
also included a doctoral symposium.

It is our privilege to have had the opportunity to serve as the Program Chairs
of the 2012 Middleware Conference and we would like to thank everyone who
made the conference so successful. The Organizing Committee, particularly Gen-
eral Chair Bettina Kemme, provided continuous support, guidance, and leader-
ship. The Program Committee did a thorough and timely job of evaluating
submissions. The Steering Committee provided advice, insights from previous

VI Preface

conferences, as well as a sense of continuity. Last but not least, we would like
to thank the authors – the outstanding quality of the papers is a testament
to the dedication and the efforts of our authors to this field and their lasting,
impactful research contributions to the 2012 ACM/IFIP/USENIX Middleware
Conference.

December 2012 Priya Narasimhan
Peter Triantafillou

Organization

Middleware 2012 was organized under the joint sponsorship of the Association
for Computing Machinery (ACM), the International Federation for Information
Processing (IFIP), and USENIX.

Organizing Committee

General Chair

Bettina Kemme McGill University, Canada

Program Committee Chairs

Priya Narasimhan Carnegie Mellon University, USA
Peter Triantafillou University of Patras, Greece

Industrial Track Chairs
Michael Spreitzer IBM, USA
Jan de Meer SmartSpaceLab, Germany

Workshop Chair

Marta Patiño-Martinez Technical University Madrid, Spain

Posters and Demo Chair

Eric Wohlstadter University of British Columbia, Canada

Sponsorship Chair

Fred Douglis EMC Backup Recovery Systems, USA

Local Arrangements Chair

Wenbo He McGill University, Canada

Web Chair

Muthucumaru Maheswaran McGill University, Canada

Proceedings Chair

Kévin Huguenin EPFL, Switzerland

VIII Organization

Registration Chair

Kamal Zellag McGill University, Canada

Publicity Chairs

Soila Kavulya Carnegie Mellon University, USA
Jiaqi Tan DSO National Labs, Singapore;

Carnegie Mellon University, USA
Rolando Martins University of Porto, Portugal

Steering Committee

Gordon Blair Lancaster University, UK (Chair)
Jan De Meer SmartSpaceLab, Germany
Fred Douglis EMC Backup Recovery Systems, USA
Hans-Arno Jacobsen University of Toronto, Canada
Roy Campbell University of Illinois at Urbana-Champaign, USA
Brian F. Cooper Google, USA
Jean Bacon University of Cambridge, UK
Cecilia Mascolo University of Cambridge, UK
Indranil Gupta University of Illinois at Urbana-Champaign, USA
Guruduth Banavar IBM, USA
Anne-Marie Kermarrec INRIA, France
Fabio Kon University of São Paulo, Brazil
Paulo Ferreira INESC, Portugal
Lúıs Veiga INESC, Portugal
Rui Oliveira Universidade do Minho, Portugal

Program Committee

Jean Bacon University of Cambridge, UK
Ken Birman Cornell University, USA
Gordon Blair Lancaster University, UK
Rajkumar Buyya University of Melbourne, Australia
Roy Campbell University of Illinois Urbana-Champaign, USA
Antonio Casimiro University of Lisbon, Portugal
Antonio Carzaniga University of Lugano, Switzerland
Lucy Cherkasova HP Labs, USA
Brian Cooper Google, USA
Dilma da Silva IBM Research, USA
Xavier Defago JAIST School of Information Science, Japan
Tudor A. Dumitras Symantec Research, USA
Amr El-Abbadi University of California, Santa Barbara, USA

Organization IX

Patrick Eugster Purdue University, USA
Frank Eliassen University of Oslo, Norway
David Eyers University of Cambridge, UK
Paulo Ferreira INESC, Portugal
Rodrigo Fonseca Brown University, USA
Pascal Felber University of Neuchatel, Switzerland
Davide Frey INRIA, France
Phil Gibbons Intel Labs, USA
Xiaohui Gu North Carolina State University, USA
Rachid Guerraoui EPFL, Switzerland
Matti Hiltunen AT&T Labs, USA
Gang Huang Peking University, China
Kévin Huguenin EPFL, Switzerland
Valerie Issarny INRIA, France
Arun Iyengar IBM Research, USA
Hans-Arno Jacobsen University of Toronto, Canada
Anthony Joseph University of California, Berkeley, USA
Wouter Joosen KU Leuven, Belgium
Vana Kalogeraki AUEB, Greece
Anne-Marie Kermarrec INRIA, France
Fabio Kon University of São Paulo, Brazil
Harry C. Li Facebook, USA
Bruce Maggs Duke University, USA
Keith Marzullo University of California, San Diego, USA
Sebastian Michel University of Saarland, Germany
Louise E. Moser University of California, Santa Barbara, USA
Elie Najm ENST, France
Nikos Ntarmos University of Patras, Greece
Adam Oliner University of California, Berkeley, USA
Esther Pacitti University of Montpellier 2, France
Dina Papagiannaki Telefonica, Spain
Peter Pietzuch Imperial College, UK
Krithi Ramamritham I.I.T. Mumbai, India
Erik Riedel EMC Backup Recovery Systems, USA
Rick Schantz BBN Technologies, USA
Rick Schlichting AT&T Labs, USA
Doug C. Schmidt Vanderbilt University, USA
Karsten Schwan Georgia Institute of Technology, USA
Daniel P. Siewiorek Carnegie Mellon University, USA
Swami Sivasubramanian Amazon, USA
Peter Triantafillou University of Patras, Greece
Maarten Van Steen VU University, The Netherlands
Nalini Venkatasubramanian University of California, Irvine, USA
Stratis Viglas University of Edinburgh, UK
Spyros Voulgaris VU University, The Netherlands
Paul Ward University of Waterloo, Canada

X Organization

Referees

Manoj Agarwal
Srikanta Bedathur
Kyle Benson
Norman Bobroff
Ioannis Boutsis
Jeff Cleveland
Kashif Sana Dar
Mamadou Diallo
Ngoc Do
Aaron Elmore
Gerhard Fohler
Sylvain Frey
Alfredo Goldman
Danny Hughes
Manos Kapritsos
Nicolas Le Scouarnec
Vincent Leroy
Huan Li
Miguel Liroz
Dionysis Logothetis
P. Michael Melliar-Smith
Shicong Meng
Jonathan Michaux
Iris Miliaraki
Hatem Mohamed

Faisal Nawab
Yanik Ngoko
Emanuel Onica
Partha Pal
Navneet Kumar Pandey
Yannis Patlakas
Aaron Paulos
Padmanabhan Pillai
Lucas Provensi
Zhijing Qin
Reza Rahimi
Jerry Rolia
Georgios Siganos
Abhishek Singh
Julian Stephen
Vinaitheerthan Sundaram
Yuzhe Tang
Patrick Valduriez
Jose Valerio
Narasimha Raghavan Veeraragavan
Lúıs Veiga
Ming Xiong
Apostolos Zarras
Ye Zhao

Sponsoring Institutions

International Federation for Information Processing
http://www.ifip.org

Association for Computing Machinery
http://www.acm.org

Advanced Computing Systems Association
http://www.usenix.org

McGill University
http://www.mcgill.ca

Organization XI

Corporate Sponsors

EMC Corporation
http://www.emc.com

IBM
http://www.ibm.com

Hewlett-Packard Company
www.hp.com

BBN Technologies
http://www.bbn.com

Table of Contents

Mobile Middleware

CrowdMAC: A Crowdsourcing System for Mobile Access 1
Ngoc Do, Cheng-Hsin Hsu, and Nalini Venkatasubramanian

Pogo, a Middleware for Mobile Phone Sensing . 21
Niels Brouwers and Koen Langendoen

m.Site: Efficient Content Adaptation for Mobile Devices 41
Aaron Koehl and Haining Wang

MORENA: A Middleware for Programming NFC-Enabled Android
Applications as Distributed Object-Oriented Programs 61

Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

Tracing and Diagnosis

Fmeter: Extracting Indexable Low-Level System Signatures
by Counting Kernel Function Calls . 81

Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and
Abhishek Sagar

SPADE: Support for Provenance Auditing in Distributed
Environments . 101

Ashish Gehani and Dawood Tariq

VScope: Middleware for Troubleshooting Time-Sensitive Data Center
Applications . 121

Chengwei Wang, Infantdani Abel Rayan, Greg Eisenhauer,
Karsten Schwan, Vanish Talwar, Matthew Wolf, and Chad Huneycutt

Architecture and Performance

SOFTScale: Stealing Opportunistically for Transient Scaling 142
Anshul Gandhi, Timothy Zhu, Mor Harchol-Balter, and
Michael A. Kozuch

Taking Garbage Collection Overheads Off the Critical Path in SSDs 164
Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir

Unifying Thread-Level Speculation and Transactional Memory 187
João Barreto, Aleksandar Dragojevic, Paulo Ferreira,
Ricardo Filipe, and Rachid Guerraoui

XIV Table of Contents

Message-Passing Concurrency for Scalable, Stateful, Reconfigurable
Middleware . 208

Cosmin Arad, Jim Dowling, and Seif Haridi

OverStar: An Open Approach to End-to-End Middleware Services
in Systems of Systems . 229

Paul Grace, Yérom-David Bromberg, Laurent Réveillère, and
Gordon Blair

Publish/Subscribe Middleware

Opportunistic Multipath Forwarding in Content-Based
Publish/Subscribe Overlays . 249

Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen

PolderCast: Fast, Robust, and Scalable Architecture for P2P
Topic-Based Pub/Sub . 271

Vinay Setty, Maarten van Steen, Roman Vitenberg, and
Spyros Voulgaris

Unification of Publish/Subscribe Systems and Stream Databases:
The Impact on Complex Event Processing . 292

Joseph Sventek and Alexandros Koliousis

High-Performance Location-Aware Publish-Subscribe on GPUs 312
Gianpaolo Cugola and Alessandro Margara

Big-Data and Cloud Computing

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 332
Ioana Giurgiu, Claris Castillo, Asser Tantawi, and
Malgorzata Steinder

A Scalable Inline Cluster Deduplication Framework for Big Data
Protection . 354

Yinjin Fu, Hong Jiang, and Nong Xiao

CloudPack: Exploiting Workload Flexibility through Rational Pricing . . . 374
Vatche Ishakian, Raymond Sweha, Azer Bestavros, and
Jonathan Appavoo

Dynamic Software Deployment from Clouds to Mobile Devices 394
Ioana Giurgiu, Oriana Riva, and Gustavo Alonso

Table of Contents XV

Availability, Security and Privacy

Enhancing the OS against Security Threats in System
Administration . 415

Nuno Santos, Rodrigo Rodrigues, and Bryan Ford

On the Practicality of Practical Byzantine Fault Tolerance 436
Nikos Chondros, Konstantinos Kokordelis, and Mema Roussopoulos

SCORe: A Scalable One-Copy Serializable Partial Replication
Protocol . 456

Sebastiano Peluso, Paolo Romano, and Francesco Quaglia

P3S: A Privacy Preserving Publish-Subscribe Middleware 476
Partha Pal, Greg Lauer, Joud Khoury, Nick Hoff, and Joe Loyall

Author Index . 497

CrowdMAC: A Crowdsourcing System

for Mobile Access

Ngoc Do1,�, Cheng-Hsin Hsu2,��, and Nalini Venkatasubramanian1

1 Dept. of Information and Computer Science, University of California, Irvine, USA
2 Dept. of Computer Science, National Tsing Hua University, Hsin-Chu, Taiwan

Abstract. Staggering growth levels in the number of mobile devices and
amount of mobile Internet usage has caused network providers to move
away from unlimited data plans to less flexible charging models. As a
result, users are being required to pay more for short accesses or under-
utilize a longer-term data plan. In this paper, we propose CrowdMAC, a
crowdsourcing approach in which mobile users create a marketplace for
mobile Internet access. Mobile users with residue capacity in their data
plans share their access with other nearby mobile users for a small fee.
CrowdMAC is implemented as a middleware framework with incentive-
based mechanisms for admission control, service selection, and mobility
management. CrowdMAC is implemented and evaluated on a testbed of
Android phones and in the well known Qualnet simulator. Our evaluation
results show that CrowdMAC: (i) effectively exercises the trade-off be-
tween revenue and transfer delay, (ii) adequately satisfies user-specified
(delay) quality levels, and (iii) properly adapts to device mobility and
achieves performance very close to the ideal case (upper bound).

Keywords: Crowdsourcing, wireless networks, resource allocation
optimization.

1 Introduction

Recent years have witnessed a dramatic increase in the number of mobile Inter-
net users due to the tremendous popularity of smartphones and tablets; mar-
ket forecasts point out that although only 13.3% worldwide cellular users have
smartphones in 2011, the ratio is expected to reach 31.0% by 2016 [4]. In some
regions, the number of smartphone users actually has exceeded that of feature
phone users at the time of writing. For example, more than 46% of U.S. adults
own smartphones in early 2012 [6], in Japan the smartphone penetration rate
exceeds 95%. A key use of smartphones is to gain access to the Internet. Market
reports place the number of mobile Internet users at 1.2 billion worldwide; the
National Communications Commission of Taiwan reports that 68% of cellphone

� N. Do and N. Venkatasubramanian are partially supported by National Science
Foundation, grants #1059436 and #1057928.

�� C. Hsu is partially supported by the National Science Council (NSC) of Taiwan,
grant #100-2218-E-007-015-MY2.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 1–20, 2012.
c© IFIP International Federation for Information Processing 2012

2 N. Do, C.-H. Hsu, and N. Venkatasubramanian

users opt for data plans [3]. The staggering number of data plan users forces
cellular service providers to deploy costly infrastructure and purchase expensive
spectrum, so as to maintain quality-of-service. The resultant traffic surge has
also backfired at the mobile users, as the cellular service providers have moved
away from unlimited data plans to tiered services [5], and may consider time-
dependent pricing [18], which in turn may increase user’s monthly bill.

Existing data plans often require 1- to 3-year contracts, and may not have
too many options in terms of monthly traffic quotas. This results in low quota
utilization, e.g., the worldwide average unused data quota is as high as 61% [4].
Studies indicate that 48.6% of AT&T data plan users incur very low monthly
traffic (lower than the least expensive 300-MB data plan), and 81% of these users
have a residue quota of more than 100 MBs every month [8]. The aforementioned
statistics reveal that: (i) light mobile Internet users may find the contracts and
relatively high data plan quotas less appealing, and (ii) other mobile Internet
users may have residue data plan quotas. We argue that these two types of
users could form a virtual community or marketplace, similar to My Virtual
Neighbor [7], and share the resources with each other.

In this paper, we present CrowdMAC, a crowdsourcing solution for providing
on-demand mobile Internet access. Crowdsourcing refers to open platforms, that
enable “loose sharing of resources between undefined publics” that may be hu-
man or online. Crowdsourcing platforms often incorporate human participation
[15] allowing entities to outsource tasks to individuals and gain information from
the collective processing. In CrowdMAC, mobile users in need of Internet access
(or network connectivity in general) leverage the ability of other nearby users to
provide access to the resource – i.e., mobile Internet. In particular, light mobile
Internet users may completely avoid data plans, and hire other mobile Internet
users with residue resources (e.g., data plan quotas, battery) to transfer data
to/from the Internet for them. The hired mobile Internet users are referred to
as mobile Access Points (mobile APs), and the hiring mobile Internet users are
referred to as mobile devices throughout this paper. The mobile devices and mo-
bile APs communicate with each other via short-range wireless networks, such as
WiFi ad hoc, WiFi Direct [2] and Bluetooth, and hence do not incur significant
traffic overhead over the cellular networks. This kind of sharing is called tether-
ing, and is widely used among mobile devices belonging to the same user. Some
cellular service providers, including Verizon Wireless, Clearwire, and Sprint sell
dedicated mobile gateways [23], which essentially are mobile APs. Cooperative
use of multiple access networks (Cellular, WiFi, Bluetooth, and etc.) is becoming
increasingly feasible; enabling rich mobile applications using such hybrid access
networks is a current topic of research [11, 13, 14, 16, 19, 21].

Matching mobile devices with nearby mobile APs is not an easy task – the
following challenges arise in creating a meaningful incentive-based design that
ensures robust data transfer despite dynamics of mobile users and connectivities.

1. How does a mobile AP make an admit/reject decision upon receiving a re-
quest from a mobile device? Admitting a larger number of requests brings

CrowdMAC: A Crowdsourcing System for Mobile Access 3

higher revenues, but causes buffer overflow and a longer end-to-end delay for
file transfer. Higher delays may turn users away from the system.

2. How does a mobile device select a mobile AP and a corresponding service
(Cellular or WiFi network)? Services charge different fees and provide dif-
ferent qualities of service.

3. How do mobile devices and mobile APs deal with uncertain channel con-
ditions caused by mobility? The system has to solve the situation where a
mobile device is moving out of its range before its file is completely trans-
ferred to the mobile AP. Similarly, a mobile AP’s direct Internet access link
may be disconnected due to mobility.

4. How does the system handle the associated security issues and legal implica-
tions of sharing mobile access? How does this scheme fit into the ISP/network
provider ecosystem?

In this paper, we focus on the mechanisms to enable crowdsourced mobile access
to the Internet where mobile APs with direct access are able to offer connec-
tivity to mobile devices without easy direct access (i.e., challenges 1, 2 and 3).
In particular, CrowdMAC implements incentive-based mechanisms for admis-
sion control, service selection and mobility handling in a distributed middleware
framework described in Section 2. The proposed mechanisms are implemented
directly on off-the-shelf Android devices and require no changes to the underly-
ing network boxes such as cellular base stations and WiFi Hotspots. Challenge
4 (i.e., security and integration with ISPs/providers) is a topic of future work;
we discuss our views on this in Section 7.

2 CrowdMAC: Architecture and Approach

In this section, we describe the design principles and architecture of the Crowd-
MAC crowdsourcing system that enables mobile devices to hire mobile APs to
upload and download data.

2.1 Hardware and Network Architecture

Fig. 1 illustrates the hardware components in the proposed system architecture
that include the following parties.

– Mobile Device: A device wishes to upload/download a file, but currently
does not have a last connection to the Internet.

– Mobile AP: A mobile AP is also a mobile device which possesses a last
connection(s) to the Internet via cellular base stations or WiFi Hotspots. We
assume that mobile APs possess data plans with network service providers,
and are thus able to send/receive control messages to/from the Internet. In
our proposed system, a mobile AP is willing to transfer data for a mobile
device for fees. In Fig. 1, A, C, and D are mobile APs willing to transfer
data for mobile device B.
A mobile AP may have one or more last connections over either cellular
base stations or WiFi Hotspots. The last connections correspond to different

4 N. Do, C.-H. Hsu, and N. Venkatasubramanian

Fig. 1. Network architecture of the proposed system

service providers, which charge the mobile AP at various prices. Moreover,
transferring data over different wireless networks consumes diverse local re-
sources, including battery levels and CPU cycles. Hence, each mobile AP
may set a different price for transferring data over each last connection.
Because a mobile AP may simultaneously transfer data over multiple last
connections, it can concurrently offer multiple transfer services. Hence, by
service, we refer to a specific last connection of a mobile AP.

– Proxy/Broker:1 The system consists of a proxy/broker located behind
last connections that keeps records of data amount transferred by mobile
APs for mobile devices and the corresponding payments. It ensures that
data is transferred from/to the Internet through mobile APs in totality and
correctly.

Note that although C in Fig. 1 has a last connection, it may access the Internet
through mobile AP D at times of poor connectivity. Nonetheless, we assume
that a smartphone can be either a mobile device or a mobile AP, but not both
simultaneously in this paper.

2.2 Software Architecture

CrowdMAC is envisioned as a distributed middleware system that resides on
mobile devices, mobile APs, and the network proxy/broker. A mobile AP may
provide concurrently multiple services, each for a last connection. Fig. 2 depicts
the key software components/modules in CrowdMAC: (i) AAA Module, (ii)
Control Plane Module, (iii) Data Plane Module, and (iv) Connection Manager.
Fig. 2 also illustrates the operational workflow of a CrowdMAC session. Without
loss of generality, we illustrate the system workflow using a data upload scenario,
and minor modifications required for a download session.

1 Multiple proxies/brokers can be used to scale the system. Proxies/brokers can be
offered by: (i) a service provider, (ii) an alliance of multiple providers, or (iii) a
third-party company.

CrowdMAC: A Crowdsourcing System for Mobile Access 5

Control
Plane

AAA

Data Plane

C
on

ne
ct

io
n

M
an

ag
er

Queue

Mobile OS

Control
Plane

AAA

Data Plane

C
on

ne
ct

io
n

M
an

ag
er

Mobile OS

Applications
4. Check identity
and balance

5. Reply with
information

9. Send data

10. Charge
fees Users

Control
Plane

AAA

Data Plane

Data Plane

Billing

AAA
C

on
ne

ct
io

n
M

an
ag

er

Mobile OS

Control
Plane

AAA

Data Plane

C
on

ne
ct

io
n

M
an

ag
er

Applications

Queue

Mobile OS

Mobile Devices Services

Proxy & Billing

1. Upload file F, scan services
2. Reply with cost, quality...

3. Select a service in the list
and send request

7. Accept or reject request
8a. If rejected, send request
to another service in the list

6. Run MAPA algorithm
if balance is enough

8b. If accepted, send data

11. Send data
to the Internet

Fig. 2. Components and workflow (upload case) in the middleware system

AAA Module. This module maintains information about users in the system
and their mobile access sessions via databases at the proxy/broker. Mobile de-
vices and mobile APs register themselves with the proxy/broker and provide
identity information stored in database User. During operation, logs are main-
tained about the amount of data transferred by mobile APs for mobile devices
and the corresponding monetary fees in database Billing. Our initial implemen-
tation uses a prepaid option. Mobile devices (i.e., users) make a monetary deposit
to their account before they can use services provided by mobile APs. Prior to
transferring data for a mobile device, the mobile AP accesses the proxy/broker
to verify if the mobile device is able to cover the fees for the transfer.

Control Plane Module. The control plane modules at different nodes cooper-
ate to establish and maintain connectivity between a mobile device that requests
access and the mobile APs that enable this access for a fee. When a mobile device
wishes to use a service provided by a mobile AP, it first establishes a connec-
tion to the mobile AP through a discovery process in the Control Plane. Mobile
devices and mobile APs discover one another as follows. When a user has a file
to upload, the Control Plane at the mobile device executes a service scan by
broadcasting a one-hop message with the size of the file. The Control Plane at
the surrounding mobile APs respond to the scan message with the corresponding
fees to transfer the file to the Internet. The price of each service is a function of
the last connection cost and the local resource consumption dependent on the
data amount transferred. It can be manually set by the mobile AP owner. Once
the mobile device finds a list of services, it will select a service in the list and
send a request containing its identity stored in its AAA to the corresponding
mobile AP to use the service. If there is no service found, the mobile device will
wait for some time before repeating the scan process. Upon receiving a request
from the mobile device, the Control Plane communicates with the proxy/broker
through the AAA component to authenticate the user. The identity information

6 N. Do, C.-H. Hsu, and N. Venkatasubramanian

provided in the user request is used to verify the mobile device’s balance at the
billing server. If the balance cannot cover the fees, the request is rejected. Oth-
erwise, the Control Plane goes further one more step. It makes a decision if it
should admit or reject the request by running an admission control algorithm,
MAPA, and then replies the decision to the requesting mobile device.

Data Plane Module. If the mobile device requesting service receives an admit
response, its Control Plane triggers its Data Plane to start transferring data.
Otherwise, it will remove the service out of the list, and choose another service
to send the request. In the case of an admitted upload request, the mobile device
reads the file and begins transmitting data packets to the Data Plane at the mo-
bile AP. The Data Plane at the mobile AP maintains a FIFO Queue to buffer
the receiving packets and transmits the buffered packets to the proxy/broker
over its last connection. The proxy/broker then transmits the packets to the
Internet. Once the whole file is successfully uploaded, the Data Plane at the
mobile AP sends a confirmation back to the mobile device.

Connection Manager. This component manages network interfaces available
on the device. It notifies the Control Plane and the Data Plane the availability
of surround mobile devices and APs and the breakage of connections.

3 CrowdMAC Admission Control

We next present an admission control algorithm, called MAPA (Mobile AP
Admission control) that allows a service to admit or reject requests from mobile
devices based on the characteristics of the incoming requests, their potential to
generate increased revenue for the service and the current set of ongoing commit-
ments made by the service. Key design criteria of the admission control algorithm
include: (a) maximizing long term revenue (measured as average revenue over
time); (b) ensuring overall stability of the system (implying no buffer overflows
at the service); and (c) providing a distributed and practical implementation.

We characterize the problem and develop an algorithm to enable admission
control decision using a Lyapunov optimization framework. The Lyapunov ap-
proach is well suited to creating an operational framework for the mobile access
crowdsourcing problem in this paper since it provides: (a) a meaningful theo-
retical underpinning for stability analysis of the dynamic execution environment
and (b) the inherent queuing theoretic based modeling that is well suited to the
network transmission problem. Using Lyapunov framework for designing admis-
sion control algorithms has been studied in [17,20] for cellular base stations and
WiFi Hotspots where resources are not an issue. Our problem considered here is
much more challenging because mobile APs are resource constrained, and thus
ensuring stability of CrowdMAC must consider this fact.

3.1 Basic Models and Problem Formulation

Consider a network consisting of a set of mobile APs M , a set of mobile devices
D, and a set of wireless links L. Let us also assume that time is divided into slots

CrowdMAC: A Crowdsourcing System for Mobile Access 7

of t units and requests are made by mobile devices to mobile APs for wireless
services in a specific time slot. The following terminologies are used in developing
the problem.

Services. Eachmobile APm provides a set of services Sm – which in our case rep-
resents disparate last hop connections. Let S be a set of all services in the network.
When mobile device dwishes to upload a file to the Internet, it selects a service sm
provided by mobile AP m and waits for an accept or reject decision from sm.

Monetary Costs. Mobile device d, who wishes to upload/download a file with
size fd through a service, must pay a price or cost, which is a function of fd.
In this paper, this is the revenue earned by the service and we consider this as
monetary cost. If d selects service sm provided by mobile APm, d will be charged
a cost denoted by C(sm, fd). Typically, C(sm, fd) incorporates two subcosts: (a)
a local resource consumption cost, Cr(sm, fd), that captures the cost incurred
due to use of resources at m , and (b) a provider cost, Cp(sm, fd), paid by the
mobile AP to the network provider (e.g., telco) for covering the data plan cost
of sm’s last connection2. Hence, C(sm, fd) = Cr(sm, fd) + Cp(sm, fd).

The exact choice of the cost function is immaterial to our admission control
technique. Our system works well with any non-decreasing concave function
C(sm, fd). For example, energy consumption, a dominating portion of the local
resource cost for mobile devices, Cr(sm, fd), can be modeled as a non-decreasing
concave function of the amount of transmitted data [12]. Similarly, a mobile
AP m with a 200 MB, $10 data plan may employ a linear function such as
Cp(sm, fd) =

10fd
200(̇1024)2

to represent the provider cost.

Workload Arrival and Departure. A mobile AP m may have many mobile
devices requesting to use its services for file upload/download. We assume that
each mobile device has only one file to upload/download at a time, and the
maximum file size is Fmax. A mobile device approaches m when it wants to use
m’s services, and departs when it completes the transmission or moves out of m’s
range. Let Rsm(t) denote the set of mobile devices requesting to use service sm
provided by m in time slot t, and Asm(t) denote the total workload requested
from service sm in time slot t. That is, Asm(t) =

∑
d∈Rsm (t) fd. Assume that

Asm(t) ≤ Amax ∀sm, t, where Amax is the maximum possible workload at any
mobile AP. We assume that mobile device arrival rate to m is i.i.d over time
slot. Every time slot, sm admits a set of mobile devices rsm(t) ∈ Rsm(t) with an
admitted workload of asm(t) ≤ Asm(t). The time average data amount admitted

to sm is defined: āsm � lim
t→∞

1
t

∑t−1
τ=0 E{asm(τ)}.

If a mobile device moves out of m’s range and has not completed transmission
of the file, it finds another mobile AP to upload the remaining file. We let gsm(t)
be the residual data that was not sent via sm due to disconnections between the
mobile AP and mobile devices. Assume that gsm(t) ≤ gmax ∀sm, t. The time

average residual data not sent via sm is: ḡsm � lim
t→∞

1
t

∑t−1
τ=0 E{gsm(τ)}.

2 For simplicity, we consider the provider cost also includes cost paid for the
proxy/broker provider.

8 N. Do, C.-H. Hsu, and N. Venkatasubramanian

Network Capacity. For each link l in L, let μl(t) and θl(t) denote the amount
of data transferred through link l and the maximum capacity of link l at time
slot t. Thus, μl(t) ≤ θl(t). Value θl(t) depends on channel quality while μl(t)
depends on the available data for transfer and θl(t). We assume that channel
quality is i.i.d over time slots. We denote θmax as the maximum channel capacity
under any quality channel, i.e., θl(t) ≤ θmax ∀l, t.

We denote μout
sm (t) as the amount of data transmitted out of service sm in

time slot t. μout
sm (t) = μl(t) if l is sm’s last connection for the upload case, or

μout
sm (t) =

∑
d∈Γsm (t) μm−d(t) for the download case where Γsm(t) denote a set of

mobile devices that sm is serving. The time average outgoing data amount from
sm is defined as: μ̄out

sm � lim
t→∞

1
t

∑t−1
τ=0 E{μout

sm (τ)}.
We define the total incoming data amount to sm at time slot t as μin

sm(t) =∑
d∈Γsm(t) μd−m(t) for the upload case, or μin

sm(t) = μl(t) where l is the last
connection for the download case. We denote ϑmax as the maximum incom-
ing data amount to any service at any time slot, i.e., μin

sm(t) ≤ ϑmax ∀sm, t.

The time average incoming data amount at sm is defined as: μ̄in
sm(t) �

lim
t→∞

1
t

∑t−1
τ=0 E{μin

sm(τ)}.

Problem Formulation. Given a set of mobile devices Rsm(t) arriving at service
sm and requesting to use service sm with workload Asm(t), sm determines a set
of mobile devices rsm(t) to be admitted for using the service such that:

max: C̄sm = lim
t→∞

1

t

t−1∑
τ=0

∑
d∈rsm(τ)

E{C(sm, fd)}; (1a)

st: μ̄in
sm ≤ μ̄out

sm ; (1b)

āsm ≤ ḡsm + μ̄in
sm . (1c)

Objective function (1a) indicates that sm attempts to maximize the time average
revenue while maintaining its system’s stability over time as shown in constraint
(1b). Constraint (1c) is to ensure that admitted data will be transmitted to sm
unless the mobile device leaves the range of the mobile AP.

3.2 Our Proposed Admission Control Algorithm - MAPA

To solve the problem (1a)-(1c), we design an admission control algorithm us-
ing the Lyapunov framework. To ensure the two constraints (1b) and (1c), we
maintain a real queue and a virtual queue for each service sm in S presented
below.

Real Queue and the System Stability - Constraint (1b). Data transmit-
ted to/from mobile devices from/to sm is stored at a queue before it can be
transmitted further. Each service has one real queue to store request data; let
Qsm(t) denote the queue backlog, which is the number of bytes in that queue,
at the beginning of time slot t for service sm. The queue backlog’s evolution is
expressed as:

Qsm(t+ 1) � max(Qsm(t)− μout
sm (t) + μin

sm(t), 0). (2)

CrowdMAC: A Crowdsourcing System for Mobile Access 9

We define stability of our system as finite average queue backlog:

Q̄sm � lim
t→∞ sup

1

t

t−1∑
τ=0

E{Qsm(τ)} < ∞. (3)

Notice that if (3) is maintained then constraint (1b) is satisfied. In real imple-
mentations, the real queue at mobile devices can be ignored, as a mobile device
may read files on-demand rather than prefetching them into memory.

Virtual Queue and the Admitted Data - Constraint (1c): To satisfy con-
straint (1c) without breaking the Lyapunov framework, we employ the concept
of a virtual queue that captures the projected load over time based on requests
admitted by the service. Each service sm maintains a virtual queue Usm(t) that
is just a software counter, i.e. does not hold actual data packets. Usm(0) is set
to 0 and Usm(t) evolves over time as follows:

Usm(t+ 1) � max(Usm(t)− gsm(t)− μin
sm(t) + asm(t), 0). (4)

Lemma 1. If the virtual queue is stable, i.e.,

Ūsm � lim
t→∞ sup

1

t

t−1∑
τ=0

E{Usm(τ)} < ∞. (5)

then constraint (1c) is satisfied.3

We define a revenue weight V that works as a control parameter providing a
trade-off between revenue and stability. By employing the Lyapunov framework
with the real queue, the virtual queue, and parameter V , we translate the original
problem (1a)-(1c) to another optimization problem that can be solved by 3 tasks
presented in the following algorithm.

The MAPA algorithm, summarized in Algorithm 1, solves the problem in a
distributed manner, and can be directly deployed on off-the-shelf devices without
requiring modifications of the existing softwares at cellular base stations and
WiFi Hotspots. It works as follows. Every time slot, every service sm performs
three tasks: (1) determining which mobile devices requesting to use sm will be
admitted; (2) determining if mobile devices that sm is serving should transmit
data to sm’s real queue or not; and (3) transmitting data out of the real queue
Qsm(t) whenever the queue is not empty.

To do task (1), service sm needs to solve the problem (6a)–(6b). It does
that by going through every mobile device d in Rsm(t), and calculates ed =
V C(sm, fd) − Usm(t)fd. If ed ≥ 0, then d is admitted. Otherwise, d is rejected.
Therefore, the procedure’s complexity is O(n).

Service sm performs task (2) to control congestion. In the case of admitted
upload requests, every time slot, if sm observes that the real queue backlog

3 The proofs of our lemmas and theorems throughout this paper are omitted without
breaking the flow, due to the space limitations.

10 N. Do, C.-H. Hsu, and N. Venkatasubramanian

is larger than the virtual queue backlog, sm broadcasts a STOP message to
request mobile devices not to transmit data in the current time slot. In the
case of admitted download requests, the service generates threads to download
data packets from the Internet and put the packets into the real queue. At the
beginning of a time slot, if there is congestion at the real queue, the service stops
the threads from downloading during the time slot.

Algorithm 1. Admission Control and Transmission Schedule

1. Admission Control Procedure : Every time slot t, service sm selects a set of
mobile devices rsm (t) from Rsm (t) such that the following maximization condition
is satisfied:

max:
∑

d∈rsm(t)

(V C(sm, fd)− Usm (t)fd); (6a)

st: rsm(t) ∈ Rsm (t). (6b)

2. Transmission Schedule for Incoming Data: Every time slot t, sm schedules
transmission for incoming data such that if Qsm(t)−Usm(t) > 0, it does not allow
mobile devices to transmit data to the service as well as download data from the
Internet.

3. Transmission Schedule for Outgoing Data: Every time slot t, sm always
transmits data out of the service if its real queue has data to send.

3.3 Performance Analysis for the MAPA Algorithm

Let’s denote C∗
sm as the maximum time average revenue of the problem (1a)–(1c)

achieved by some stationary randomized algorithm. We first show that MAPA
achieves a time average revenue C̄ arbitrarily close to C∗

sm .

Theorem 1 (Revenue Lower Bound). Our MAPA algorithm achieves a
lower bound of the time average revenue:

C̄sm = lim
T→∞

1

T

T−1∑
τ=0

∑
d∈rsm(τ)

E{C(sm, fd)} ≥ C∗
sm − β

V
, where (7)

β =
1

2
[max(θmax, ϑmax)

2 +max(gmax + ϑmax, Amax)
2]. (8)

Next, we show there is a trade-off O(1/V, V) between the achieved revenue and
the quality-of-services in the MAPA algorithm.

Theorem 2 (Worst Case Bounds on Real and Virtual Queues). MAPA
provides worst case bounds of the service’s real and virtual queue size:

Usm(t) ≤ V y∗sm + Amax = U∗
sm ; Qsm(t) ≤ V y∗sm +Amax + ϑmax = Q∗

sm , (9)

where ysm is a service based function with respect to fd (fd ≤ Fmax) defined as

ysm = C(sm,fd)
fd

and y∗sm is the maximum value of ysm , Q∗
sm and U∗

sm indicate
the maximum queue backlog of sm’s real queue and virtual queue.

CrowdMAC: A Crowdsourcing System for Mobile Access 11

The above two theorems illustrate the trade-off between the time average rev-
enue and the worst case queue bounds. If service sm increases its time average
revenue O(1/V), then the size of both real and virtual queues increases O(V). For
example, when queue sizes reach infinity, sm achieves the time average revenue
arbitrarily close to the optimal value.

However, note that a large queue size may lead to high end-to-end delay. The
following lemma shows that MAPA leads to a linear relationship between the
end-to-end delay and the backlogs of the real and virtual queues.

Lemma 2 (Relating Queue Size and Delay). Let’s denote the current back-
logs of the real and virtual queues as Qo

sm and Uo
sm , respectively. Assume that

the incoming and outgoing data rates μin
sm and μout

sm of service sm are unchanged
over time slots. The MAPA algorithm achieves the worst case delay T to send
all data in the real and virtual queues to the Internet:

T = t̂+ T̂ slots, where (10)

t̂ = max(0, �
Qo

sm − Uo
sm

μout
sm

�); Q̂o
sm = max(0, Qo

sm − t̂μout
sm); (11)

T̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� Q̂o
sm

+Uo
sm

μout
sm

� if μin
sm ≥ μout

sm ;

� Q̂o
sm

μout
sm

+
Uo

sm

μin
sm

�+ 2 if 2μin
sm > μout

sm > μin
sm ;

�Uo
sm

μin
sm

� if μout
sm ≥ Cμin

sm(C ≥ 2).

(12)

Selection of Parameter V . We have shown that V controls the trade-off
between time average revenue and the delay. Two heuristics to select V are:

– Bounding memory consumption: Let M∗ be memory bound at a service. Per
Theorem 2, we have Q∗

sm = V y∗sm + Amax + ϑmax ≤ M∗, which enables us
to pick a V value satisfying the memory bound.

– Delay quality: The delay quality is a quality-of-service metric for a service to
deliver all data currently admitted in the virtual queue and buffered in the
real queue to the Internet. Let Tsm be the bounded delay quality, service sm
wishes to offer. If Tsm is small, the amount of data admitted and buffered
is small. That leads to a short transfer delay to deliver data to the Internet
and a low revenue for the service. According to Lemma 2, Tsm is the upper
bound of T . In the worst case, we have Qo

sm = Q∗
sm and Uo

sm = U∗
sm . We

set the minimum data rate incoming to sm to be μin
sm and the minimum

outgoing data rate from the service to be μout
sm . Plugging Q∗

sm , U∗
sm , μout

sm and
μin
sm into Lemma 2, we estimate V by (9) such that T is bounded by Tsm .

4 Handling Mobile Device and Mobile AP Mobility

Due to mobility, connections between mobile devices and services as well as last
connection may be lost. Fundamental to our approach is the ability to monitor

12 N. Do, C.-H. Hsu, and N. Venkatasubramanian

the liveness of a link. For a service provided by the mobile AP, once it detects
the disconnection, it removes the mobile device from the list of the devices it
is serving, updates the virtual queue, and drops the mobile device’s packets out
of the real queue. For the mobile device, it stops using that service, and scans
for another service. Advanced technologies such as WiFi Direct [2] on Android
OS 4.0.4 support APIs to detect the disconnection quickly. For other network
technologies, we broadcast HELLO messages to detect the breakage. In addi-
tion to liveness monitoring, CrowdMAC incorporates the following techniques
to support continuity of upload/download under mobility conditions.

Technique 1 - File Segmentation for easy management and recovery: We
divide each large file into smaller sized chunks and transmit each chunk inde-
pendently. This is to reduce the transfer time and consequently enable successful
delivery of chunks, despite connectivity changes. Once chunks have been sent,
missing packets and chunks are retransmitted.

Technique 2 - Service Selection and Mobility Awareness: When multiple
mobile APs are available, a mobile device can choose one from them using one
of the following strategies:

1. Cost Based Service Selection: The mobile device simply chooses the service
with the lowest cost.

2. Delay Quality Based Service Selection: The mobile device picks the service
with the best delay quality (as defined in Section 3.3).

3. Mobility Based Service Selection: The mobile device chooses a service based
on reliability of the link from itself to the service. We assume that mobile
devices and APs travel using a well known Random Waypoint model. Link
reliability is determined by estimating link duration that indicates how long
a link is likely to last. The mobile device picks the service with the longest
link duration. The duration of link l denoted as δl(t) can be estimated using
existing efforts, such as Qin and Zimmermann [22] using an analytical model
to estimate the link duration based on GPS readings.

Technique 3 - Incentives to Constrain Mobility during file transfer: We
employ charging schemes to motivate mobile devices and mobile APs to constrain
mobility during file transfer. In file download scenarios, consider a situation in
which a mobile device d requests to download a file fd. The file has been down-
loaded in the real queue, but just part of that has been sent to the mobile device
because the mobile device moves out of the service’s range. This is unfairness to
the mobile AP because it had to pay for the Internet access cost Cp(sm, fd) to
download the file. To address this issue, the mobile AP divides the file into mul-
tiple smaller chunks. Each time when the service starts downloading a chunk cd,
the mobile device will be charged a fee Cp(sm, cd). Once the mobile device fully
receives the whole chunk from the service, it pays the remaining fee Cr(sm, cd).
If the service fails to download the chunk, it returns Cp(sm, cd) to the mobile
device. Note that if the service does not receive a confirmation of receiving a
chunk from the mobile device, it will not download the next chunk. With this
mechanism, both sides, the mobile device and the service, have motivation to

CrowdMAC: A Crowdsourcing System for Mobile Access 13

(a) (b)

Fig. 3. Our Android based testbed: (a) a screenshot of our system on a mobile device
and (b) an experiment with 5 different types of mobile phones

maintain the link stability until the whole chunk is successfully downloaded. In
file upload scenarios, incentive provision is simpler. Fees are charged on what the
service uploads through the broker/proxy. While the mobile device is motivated
to keep the link stable to complete the transfer, the mobile AP is incentivized
to keep the last connection stable to earn the revenue.

5 Testbed Implementation: A Proof-of-Concept

Our Testbed and Settings. We implement our middleware on an Android
based testbed which consists of a Linux server and multiple Android smart-
phones located in the University of California, Irvine. An interesting thing is our
implementation does not depend on synchronized timers among mobile devices
and mobile APs. The admission control procedure in Algorithm 1 runs once for
each request, rather than in every single time slot. That is, whenever a mobile
device has a file to transfer, it sends a request to a mobile AP. That mobile
AP then invokes the MAPA algorithm right away, and immediately sends back
the accept/reject decision. Also, the transmission scheduling procedure in Algo-
rithm 1 keeps track of the backlogs of virtual and real queues on mobile APs.
Once a mobile AP sends a STOP message, the corresponding mobile device stops
transmitting data to that mobile AP. Since MAPA does not require synchronized
timers, it can be readily implemented in the CrowdMAC system.

We deploy our system on multiple types of Android phones: a Samsung Galaxy
SII as a mobile AP connecting to the T-Mobile network, and four mobile devices
including Google Nexus, Nexus S, HTC Nexus One and Motorola Atrix. The
phones run Android OS versions from 2.3.6 to 4.0.4. They are placed in a labroom

14 N. Do, C.-H. Hsu, and N. Venkatasubramanian

with no mobility and connect to each other over a WiFi peer-to-peer network
using WiFi Tether [1]. The mobile AP is equipped with a data plan of $30 for
5 GB, and it charges $5 per GB for local resource consumption. The T-Mobile
network is measured to have bandwidth between 311 and 748 Kbps throughout
our experiments. In each experiment, each mobile device uploads 50 equal-sized
files. For each file, a mobile device sends a request to the mobile AP and waits
for its decision. If the request is rejected, the mobile device waits for 2 secs before
it resends the request. The mobile device skips the current file if the its request
is rejected for 5 times. Fig. 3 presents our system’s GUI and the phones in an
experiment.

Experimental Results. We consider two metrics (i) Revenue, which is the
total revenue generated by the service in each experiment, and (ii) Transfer
delay, which is the average per-file transfer time, from the instant a request is
admitted to the instant when the last packet is transferred.

Reliable transfer. We repeat the experiments with various parameter V ∈
[0, 1500], and we consider two file sizes: 512 KB and 1 MB. Across all experi-
ments, we find that all the admitted requests lead to successful file uploads. This
confirms that the proposed CrowdMAC system and MAPA algorithm do work.

Trade-off between revenue and transfer delay. Fig. 4 presents the revenue and
transfer delay under different V . This figure shows that smaller V leads to fewer
admitted requests, and thus lower revenue. Furthermore, fewer admitted requests
means lighter-loaded networks, and thus shorter transfer delay. For example,
with V = 10, the mobile AP only admits half of the 512 KB files at the end;
while with V = 1000, the mobile AP admits all the requests. Fig. 4 shows the
effectiveness of V : the MAPA algorithm supports wide ranges of revenues and
transfer delays.

User-specified delay quality level. We next evaluate the V selection heuristic
proposed in Sec. 3.3. We consider the heuristic that maps a delay quality level,
between 45 and 135, to a suitable V value. Fig. 5 presents the revenue and
transfer delay achieved by various delay quality levels. We make two observa-
tions. First, higher delay quality level leads to more admitted requests, which
in turn results in high revenue and transfer delay. Second, Fig. 5(b) reveals that
the average transfer delay is always smaller than the delay quality level specified
by the user throughout our experiments.

6 Simulation Based Evaluation

6.1 Settings

We implement our middleware system in Qualnet 5.02 [9]. In simulations, we
use WiMAX to simulate last connections from mobile APs to the Internet and
use IEEE 802.11 in ad hoc mode to simulate links among mobile devices and
mobile APs. We configure the WiMAX range to cover all mobile APs, and we
set the 802.11 range to be 120 m. Two-Ray model is used as the propagation
model and UDP is used as the transport protocol in our simulations. Simulation
time is set long enough such that all files can be completely transferred.

CrowdMAC: A Crowdsourcing System for Mobile Access 15

 0

 50

 100

 150

 200

 250

 300

 0 300 600 900 1200 1500

R
ev

en
ue

 (
ce

nt
s)

Parameter V

File Size = 512 KB
File Size = 1024 KB

(a)

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200 1500

T
ra

ns
fe

r
D

el
ay

 (
se

cs
)

Parameter V

File Size = 512 KB
File Size = 1024 KB

(b)

Fig. 4. Diverse Parameter
V : (a) revenue and (b)
transfer delay

 0

 50

 100

 150

 200

 250

 45 60 75 90 105 120 135

R
ev

en
ue

 (
ce

nt
s)

Delay Quality Level (secs)

File Size = 512 KB
File Size = 1024 KB

(a)

 0

 20

 40

 60

 80

 100

 45 60 75 90 105 120 135

T
ra

ns
fe

r
D

el
ay

 (
se

cs
)

Delay Quality Level (secs)

File Size = 512 KB
File Size = 1024 KB

(b)

Fig. 5. Diverse user-
specified delay quality level:
(a) revenue and (b) transfer
delay

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

R
ev

en
ue

 a
nd

 P
ro

fit
 (

ce
nt

s)

Parameter V

Revenue Srv A
Revenue Srv B

Profit Srv A
Profit Srv B

(a)

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000

T
ra

ns
fe

r
D

el
ay

 (
se

cs
)

Parameter V

Srv A
Srv B

(b)

Fig. 6. Trade-off between:
(a) revenue and profit, and
(b) transfer delay

We follow the current data plan prices of T-Mobile [10] to design the cost
functions. We define three cost functions: (1) S1 = 10×100x

2×(1024) cent/KB ($10 for

200 MB), (2) S2 = 30×100x
5×(1024)2 cent/KB ($30 for 5 GB), and (3) S3 = 5×100x

(1024)2

cent/KB ($5 for 1 GB) where x is the amount of transferred data in KB. S1 and
S2 cover the Internet access cost, and S3 covers the local resource consumption
cost. Each mobile AP may decide to employ one of the cost functions, or adapt
a linear combination of two of them.

In Section 5, we examine our system with networks with a single service. In
this section, we investigate our system’s performance with more than one service,
so as to exercise two different service selection strategies. In addition to the two
metrics described earlier, we consider metrics: (i) Profit : the total monetary cost
(Cr) charged by a service for its local resource consumption after each simulation,
(ii) Cost : the total cost paid by a mobile device on average for each file, (iii) End-
to-end delay: the average delay per file from the instant a mobile device scans
services to the instant when the last packet reaches destination; (iv) Number
of interruptions : the average number of disconnections during each file transfer,
and (v) Overhead : the ratio between the total traffic amount and the total file
size. We ran each simulation five times with different random seeds, and plotted
the averages of the results obtained in all runs. If not otherwise specified, we
consider all mobile devices to select the service based on the cost. By default,
we use the same V value for all mobile APs. In the following two sections, we
consider the static and mobile scenarios, respectively.

16 N. Do, C.-H. Hsu, and N. Venkatasubramanian

6.2 Evaluation Under Static Scenarios

We configure a network with a WiMAX base station, two mobile APs, and seven
mobile devices. Each mobile AP offers a service, and we call them service A and
B, respectively. Service A employs a more expensive cost function of S1 + S3,
and B employs a cheaper cost function of S2 + S3. All mobile devices are in the
range of both mobile APs. In each simulation, every mobile device sequentially
transfers 50 equal-sized files. We conduct each simulation with two file sizes: 512
KB and 1 MB. Due to the space limitations, we present the results with 512 KB
files if not otherwise specified.

Generality of the MAPA Algorithm. We compare MAPA against two base-
line algorithms: ALL and ONE. In ALL, a service always accepts request from
mobile devices no matter how much workload it is carrying on. Hence, it aims to
maximize its revenue. In ONE, a service always rejects request unless it is serv-
ing no request. Thus, ONE is designed for service to provide best service quality
to one request. Different from ALL and ONE, MAPA employs a parameter V .
We vary V ∈ [0, 2000], and repeat the simulations with MAPA. We find that
ALL and ONE achieve similar revenue, profit, and end-to-end delay as MAPA
with V = 10 and V = 2000, respectively. Hence, MAPA is a general algorithm
for diverse quality-of-service needs.

Trade-off between Revenue and Transfer Delay. We plot the resulting
profit and transfer delay in Fig. 6. Fig. 6(a) shows that, with a small V , service
A achieves higher revenue due to its higher Internet access cost. This in turn leads
to higher workload and longer transfer delay as illustrated in Fig. 6(b). With a
larger V , service B achieves higher revenue because its maximum workload is
raised. With V > 1000, service B accepts all requests and achieves the highest
possible revenue, at the expense of long transfer delay. Fig. 6 reveals the trade-off
between revenue and transfer delay.

V ’s Implication on Profit. Fig. 6(a) reveals that service B makes higher
profit than A when V ∈ [100, 2000]. This can be attributed to B’s lower Internet
access cost. In fact, with V ∈ [100, 600], service B makes higher profit even
when A achieves high revenue. With V ∈ [0, 100], service A makes higher profit,
because B has saturated its maximum workload. Service A has a larger maximum
workload due to its higher cost.

User-Specified Delay Quality Level. We consider the heuristic, presented
in Sec. 3.3, which maps a delay quality level to a suitable V value. We vary the
delay quality level of B from 45 to 172 secs. Service A sets its delay quality level
to be half of B’s. Fig. 7 presents the simulation results, in which x-axis is the
delay quality level of service B. This figure shows that when the delay quality
level of B ≤ 60 secs, mobile devices completely avoid service A. This is because
the delay quality level for A is too short for 512 KB files. Once the delay quality
is large enough, service A starts to receive requests, and its revenue and profit
increase. At the delay quality of 75 secs (i.e., 150 secs on the x-axis), service
A accepts all requests. That leads to the saturated revenue and transfer delay
at service A as shown in Figs. 7. We make another observation: the transfer

CrowdMAC: A Crowdsourcing System for Mobile Access 17

 0

 200

 400

 600

 800

 1000

 60 90 120 150 180

R
ev

en
ue

 a
nd

 P
ro

fit
 (

ce
nt

s)

Delay Quality Level (secs)

Revenue Srv A
Revenue Srv B

Profit Srv A
Profit Srv B

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 60 90 120 150 180

T
ra

ns
fe

r
D

el
ay

 (
se

cs
)

Delay Quality Level (secs)

Srv A
Srv B

(b)

Fig. 7. Diverse delay qual-
ity level: (a) revenue and
profit, and (b) transfer de-
lay

 28

 32

 36

 40

 2 4 6 8 10 12 14 16 18

C
os

t (
ce

nt
s)

Mobility Speed (m/s)

Ideal
No Segmentation

Segmentation
Seg. + Prediction

Incentive

Fig. 8. Per-device total
cost under different speeds

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18

E
nd

-t
o-

en
d

D
el

ay
 (

se
cs

)

Mobility Speed (m/s)

No Segmentation
Segmentation

Seg. + Prediction
Incentive

Fig. 9. End-to-end delay
per file under different
speeds.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2 4 6 8 10 12 14 16 18

N
o.

 In
te

rr
up

tio
ns

Mobility Speed (m/s)

No Segmentation
Segmentation

Seg. + Prediction
Incentive

Fig. 10. Number of in-
terruptions under different
speeds

 0

 0.4

 0.8

 1.2

 1.6

 2

 2 4 6 8 10 12 14 16 18
O

ve
rh

ea
d

Mobility Speed (m/s)

No Segmentation
Segmentation

Seg. + Prediction
Incentive

Fig. 11. Traffic overhead of
our system

delay is always lower than the delay quality level specified by the users in our
simulations. This reveals the effectiveness of our heuristic.

6.3 Evaluation under Mobility Scenarios

Mobile users may move around when they are participating in CrowdMAC. To
evaluate the performance of our system under user mobility, we set up a 700×700
m2 network with 40 devices. Among these devices, there are 8 stationary mobile
APs connecting to a WiMAX base station and offering Internet access services.
The other mobile devices travel with Random Waypoint model unless otherwise
specified and download 50 files with a size of 512 KB. A mobile device downloads
only one file each time, and starts the next download 30 secs after it finishes the
previous one. Mobile APs are randomly placed in the network such that they
cover about 65% of the network area. Some mobile APs are placed overlapped
such that a mobile device can have a chance to discover more than one mobile
AP. We configure all mobile APs to use the same cost functions S2 and S3. Unless
otherwise specified, mobile devices select service using cost based strategy.

Impact of Techniques Handling Mobility. We repeat the simulations with
different mobility handling techniques, and plot the results in Figs. 8–11. The
considered techniques are:

18 N. Do, C.-H. Hsu, and N. Venkatasubramanian

1. Ideal : The expected cost under no exceptions, such as link breakages. This
is the minimum cost a mobile device could possibly pay.

2. No Segmentation: No specific technique is applied. Each file is transferred in
its entirety.

3. Segmentation: The performance achieved by using technique File Segmenta-
tion for handling mobility.

4. Segmentation + Prediction: The performance of the combination of two tech-
niques: File Segmentation and Mobility based Service Selection.

Fig. 8 shows that No Segmentation pays the highest cost up to 42 cents to
download the files, i.e., 16 cents higher than Ideal, at the speed of 18 m/s. It is
because the increase of the speed leads to a higher link breakage frequency and
a higher amount of data which is downloaded to the real queue yet transferred
to the mobile device. The Segmentation technique significantly improves the
performance. Segmentation leads to the cost close to Ideal, only 1 cent higher to
download 25 MB at the high speed of 18 m/s. Segmentation + Prediction even
reduces the cost more, approximately equal to Ideal at that speed.

Fig. 9 shows that the end-to-end delay of No Segmentation is approximately
twice higher than that of Segmentation. Segmentation + Prediction further re-
duces the end-to-end delay to 2 secs shorter than that of Segmentation. The
higher end-to-end delay can be attributed to more link breakages due to the mo-
bility. We plot the number of interruptions in Fig. 10, which confirms our conjec-
ture. Last, Fig. 11 reports the relative overhead achieved by different techniques.
This figure clearly shows that CrowdMAC produces negligible traffic overhead.
It also reveals the effectiveness of File Segmentation.

Impact of the Incentive Mobility.Wehave shown thatCrowdMACworkswell
evenwhenmobile devices followa randommobilitymodel.Nextwe consider amore
realistic mobility model, denoted as Incentive Mobility Model. In this model, the
mobile devices, after selecting services, try to keep the links between themselves
and the services stable, rather than moving fast and causing link breakage. This
is done in order to ensure continuity for ongoing services that have already been
charged.Mobile devices that are not transferring files follow theRandomWaypoint
model.

We plot the system performance under the Incentive Mobility Model in
Figs. 8–11, labelled by Incentive. CrowdMAC achieves much better performance
under this realistic mobility model. In particular, Incentive: (i) achieves the same
minimum cost as Ideal, (ii) more than 10 secs shorter end-to-end delay than Seg-
mentation + Prediction, and (iii) never suffers from interruptions.

7 Related Work and Concluding Remarks

Modern mobile phones have been extended to incorporate multiple networking
interfaces beyond traditional cellular and WLAN capabilities; this enables them
to form opportunistic networks using technologies such as WiFi Direct [2], WiFi
Tether [1] and Bluetooth. Opportunistic networks complement infrastructure
networks with new capabilities to support throughput enhancement [13,21] and

CrowdMAC: A Crowdsourcing System for Mobile Access 19

peer-to-peer cellular traffic offloading [14,16,19]. Efforts have explored techniques
to enhance throughput for mobile devices that suffer from low cellular data rates
by selecting proxies that are in fact mobile devices with high cellular link rates
[13,21]. Recent research has also proposed solutions [14,16,19] for mobile devices
to cooperatively disseminate data. For example, in [14,19], nearby mobile devices
cooperate to stream live videos; in these schemes, selected mobile devices are
scheduled to receive part of videos over cellular networks and relay the received
data to other mobile phones over WiFi peer-to-peer networks.

To our best knowledge, CrowdMAC is the first effort to developing a crowd-
sourcing system to motivate mobile users for sharing Internet access. We showed
how to design and implement a middleware framework that incorporates a Lya-
punov based admission control algorithm for mobile APs to serve multiple re-
questing mobile devices optimally and stably, strategies for mobile devices to
select mobile APs appropriately, and techniques for handling device and AP mo-
bility. CrowdMAC has been implemented and evaluated on a testbed of diverse
Android phones with varying capabilities indicating feasibility of the approach.
Our experimental and simulation results show that CrowdMAC: (i) effectively
exercises the trade-off between revenue and transfer delay, (ii) adequately satis-
fies user-specified (delay) quality level, and (iii) properly adapts to device mo-
bility and achieves performance very close to the ideal case (upper bound).

Future Work. The Lyapunov based approach in this paper lends itself well to
a practical implementation. One can also consider an alternate game theoretic
formulation that models the interaction between mobile devices and mobile APs
as a multiparty game. The ability to embed the game theoretic approach into a
real system in a dynamic setting is challenging – this is our future work.

To realize a broader and wide-scale deployment of our crowdsourcing scheme,
our future work will also address two key concerns. The first concern is that of
security. Mechanisms are required to protect a users’ file as it passes through ar-
bitrary (and potentially untrusted) nodes, networks and middle-boxes; this in-
cludes protection from DOS attacks and from malicious services. How to leverage
cryptographic techniques to provide such end-to-end security is our current aim.
The second concern is the need for a tighter integration of the proposed scheme
into the ISP/provider ecosystem so as to mesh with the business objectives of tel-
cos and service providers. Creating localized networks to support data exchange
is becoming a commodity technology. We believe that the ability to crowd-
source/share local wireless access can offer a new perspective that may change
the scale and scope of mobile data delivery just as VoIP has changed the land-
scape of telephony today.

References

1. Android WiFi tether (2009), http://code.google.com/p/android-wifi-tether/

2. Wi-Fi certified Wi-Fi Direct: Personal, portable Wi-Fi that goes with you any-
where, any time (2010), http://www.wi-fi.org/Wi-Fi_Direct.php

3. National communications commission (2011), http://www.ncc.gov.tw/

http://code.google.com/p/android-wifi-tether/
http://www.wi-fi.org/Wi-Fi_Direct.php
http://www.ncc.gov.tw/

20 N. Do, C.-H. Hsu, and N. Venkatasubramanian

4. Traffic and market data report (2011),
http://hugin.info/1061/R/1561267/483187.pdf

5. Why Verizon dropped its unlimited data plan (and what you can do about it)
(2011), http://moneyland.time.com/2011/06/23/why-verizon-
dropped-its-unlimited-data-plan/

6. 46% of American adults are smartphone owners (2012),
http://pewinternet.org/ /media//Files/Reports/2012/Smartphone

%20ownership%202012.pdf
7. My virtual neighbor (2012), http://www.myvirtualneighbor.com/
8. Nearly half of AT&T subscribers would pay less by switching to a metered plan

(2012), http://tinyurl.com/86kcgyj
9. Qualnet network simulator (2012),

http://code.google.com/p/android-wifi-tether/
10. T-Mobile data plan (2012),

http://www.t-mobile.com/shop/plans/mobile-broadband-plans.aspx
11. Balasubramanian, A., Mahajan, R., Venkataramani, A.: Augmenting mobile 3G

using WiFi. In: Proc. of MobiSys, San Francisco, USA, pp. 209–222 (2010)
12. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-

tion in mobile phones: A measurement study and implications for network appli-
cations. In: Proc. of IMC, Chicago, IL, pp. 280–293 (2009)

13. Bhatia, R., Li, L., Luo, H., Ramjee, R.: ICAM: Integrated cellular and ad hoc
multicast. IEEE Transactions on Mobile Computing 5(8), 1004–1015 (2006)

14. Do, N., Hsu, C., Jatinder, S., Venkatasubramanian, N.: Massive live video distri-
bution over hybrid cellular and ad hoc networks. In: Proc. of IEEE WoWMoM,
Lucia, Italy, pp. 1–9 (2011)

15. Franklin, M., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: Answering
queries with crowdsourcing. In: Proc. of ACM SIGMOD, Athens, Greece, pp. 61–72
(2011)

16. Han, B., Hui, P., Kumar, V., Marathe, M., Shao, J., Srinivasan, A.: Mobile
data offloading through opportunistic communications and social participation.
IEEE/ACM Transactions on Mobile Computing 11(5), 821–834 (2012)

17. Huang, L., Neely, M.: The optimality of two prices: Maximizing revenue in a
stochastic communication system. IEEE/ACM Transactions on Networking 18(2),
406–419 (2010)

18. Joe-Wong, C., Ha, S., Chiang, M.: Time-dependent broadband pricing: Feasibility
and benefits. In: Proc. of IEEE ICDCS, Minneapolis, MN, pp. 288–298 (2011)

19. Keller, L., Le, A., Cici, B., Seferoglu, H., Fragouli, C., Markopoulou, A.: MicroCast:
cooperative video streaming on smartphones. In: Proc. of ACM MobiSys, Lake
District, United Kingdom (2012)

20. Lotfinezhad, M., Liang, B., Sousa, E.: Optimal control of constrained cognitive
radio networks with dynamic population size. In: Proc. of IEEE INFOCOM, San
Diego, CA, pp. 1–9 (2010)

21. Luo, H., Meng, X., Ramjee, R., Sinha, P., Li, L.: The design and evaluation of uni-
fied cellular and ad-hoc networks. IEEE Transactions on Mobile Computing 6(9),
1060–1074 (2007)

22. Qin, M., Zimmermann, R.: Improving mobile ad-hoc streaming performance
through adaptive layer selection with scalable video coding. In: Proc. of ACM
Multimedia, Augsburg, Germany, pp. 717–726 (2007)

23. Yeh, S., Talwar, S., Wu, G., Himayat, N., Johnsson, K.: Capacity and coverage
enhancement in heterogeneous networks. IEEE Wireless Communications 18(3),
32–38 (2011)

http://hugin.info/1061/R/1561267/483187.pdf
http://moneyland.time.com/2011/06/23/why-verizon-dropped-its-unlimited-data-plan/
http://moneyland.time.com/2011/06/23/why-verizon-dropped-its-unlimited-data-plan/
http://pewinternet.org/~/media//Files/Reports/2012/Smartphone%20ownership%202012.pdf
http://pewinternet.org/~/media//Files/Reports/2012/Smartphone%20ownership%202012.pdf
http://www.myvirtualneighbor.com/
http://tinyurl.com/86kcgyj
http://code.google.com/p/android-wifi-tether/
http://www.t-mobile.com/shop/plans/mobile-broadband-plans.aspx

Pogo, a Middleware for Mobile Phone Sensing

Niels Brouwers and Koen Langendoen

Delft University of Technology
{n.brouwers,k.g.langendoen}@tudelft.nl

Abstract. The smartphone revolution has brought ubiquitous, power-
ful, and connected sensing hardware to the masses. This holds great
promise for a wide range of research fields. However, deployment of
experiments onto a large set of mobile devices places technological, or-
ganizational, and sometimes financial burdens on researchers, making
real-world experimental research cumbersome and difficult. We argue
that a research infrastructure in the form of a large-scale mobile phone
testbed is required to unlock the potential of this new technology.

We aim to facilitate experimentation with mobile phone sensing by
providing a pragmatic middleware framework that is easy to use and fea-
tures fine-grained user-level control to guard the privacy of the volunteer
smart-phone users. In this paper we describe the challenges and require-
ments for such a middleware, outline an architecture featuring a flexible,
scriptable publish/subscribe framework, and report on our experience
with an implementation running on top of the Android platform.

Keywords: Mobile Middleware, Mobile Phone Sensing, Mobile Test
Beds.

1 Introduction

Modern smartphones are rapidly becoming ubiquitous and are even supplanting
the desktop PC as the dominant mode for accessing the Internet [7]. They are
equipped with a powerful processor and a wide range of sensors that can be used
to infer information about the environment and context of a user. These capabil-
ities and the rapidly growing number of smartphones offer unique opportunities
for a great number of research fields including context-aware computing [25],
reality mining [11], and community sensing [5,20]. Basically, the smartphone
revolution will enable experimentation at scale in real-world settings; an excit-
ing prospect.

To date most efforts have focused on building monolithic mobile applica-
tions that are tested in small-scale lab environments. Real-world deployment
is a labor-intensive process, which involves recruiting participants, acquiring de-
vices, deploying software updates, and so on. Because the barrier for deployment
onto a large number of devices is high, many applications and experiments are
never able to leave the desk of the researcher. This is a serious drawback that
needs to be addressed as history has shown that small-scale systems often show
quite different behavior when put to the test in the real world [21].

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 21–40, 2012.
c© IFIP International Federation for Information Processing 2012

22 N. Brouwers and K. Langendoen

The challenge for running large-scale experiments is no longer the hardware,
as affordable smart phones equipped with various sensors are ubiquitously avail-
able, but the software engineering involved in creating and installing the applica-
tion code to read, process, and collect the desired information. Indiscriminately
gathering all possible sensor data on the device and sending it back to a central
server is infeasible due to bandwidth, power consumption, and privacy concerns.
Hence, on-line analysis and filtering is required [6]. Since researchers rarely get
their algorithms right on the first try, quick (re-)deployment of mobile sensing
applications is essential for the experimental process, but typical application
stores are not suitable for this. Finally, there is a large administrative overhead
involved with managing large groups of test subjects, especially when multiple
experiments need to be carried out, which is something which ideally should be
hidden from scientists and end-users.

We strongly believe that providing an easy to use, large-scale testbed of mobile
phones carried by ordinary people will be a game changer for many types of
experimental research. Overall our aim is to unlock the true potential of mobile
phone sensing by developing a research infrastructure that can be used by a
broad range of researchers to easily and quickly deploy experiments. In this
paper we introduce Pogo, a middleware infrastructure for mobile phones that
provides easy access to sensor data for the research community. By installing
the Pogo middleware, which is as simple as downloading an application from
the application store, a phone is added to a shared pool of devices. Researchers
can request a subset of those devices, and remotely deploy their own executable
code onto them. We make the following contributions in this work:

1. We present the design rationale behind Pogo, motivate our choices, and
compare them against related work.

2. We describe the implementation of our middleware and demonstrate its fea-
sibility it using a real-world Wi-Fi localization experiment.

3. We propose and evaluate a novel scheme for automatically synchronizing
data transmissions with that of other applications, dramatically reducing
energy consumption.

The rest of this paper is structured as follows. We introduce related work in
Section 2, and present our design choices in Section 3. Section 4 describes the
implementation of Pogo. We evaluate our middleware in Section 5, and finally
conclusions and future work are presented in Section 6.

2 Related Work

In this section we introduce several sensor processing and collection frameworks
that have been proposed in the fields of context-aware computing and mobile
phone sensing, as well as some systems that have been developed for tracking
smartphone usage. We will make a detailed comparison between these works and
Pogo when we present its design in Section 3.

Pogo, a Middleware for Mobile Phone Sensing 23

Context-aware computing is a field that uses sensor data to infer infor-
mation about the context of a user. Examples of contexts are user location,
emotional state, and transportation mode. Middleware built for this purpose
aids developers by providing sensor abstractions and off-the shelf classifiers, and
help reduce energy consumption by scheduling sensors intelligently.

Jigsaw [23] is a framework for continuous mobile sensing applications. It uses
a pipeline architecture, with different pipes for each sensor, and has the ability to
turn individual stages on or off depending on need and resource availability. It has
classifiers for accelerometer and audio data built-in, and reduces power consump-
tion by scheduling GPS sampling in a smart way. The Interdroid platform [19]
aims to provide a toolkit for the development of ’really smart’ applications, and
focuses on integrating mobile phones and cloud computing. Applications contain
a client and server part, the latter of which can be uploaded to a remote server
in the cloud where it can run to support the client. Mobicon [22] proposes a
Context Monitoring Query language (CMQ), which can be used by applications
to specify the type of context information they require. The middleware then
intelligently plans sensor usage in order to reduce power consumption. However,
the data processing in context-aware systems is geared towards assisting the
user, and therefore do not include functionality for collecting data at a central
server or for remotely deploying sensing tasks.

Mobile phone sensing middleware aims to turn smartphones into mobile
sensors. The aim is to collect data about user behavior or the environment in
which a user moves around, and send it to a central point for further analysis.
One such project is AnonySense [8]. Tasks are written in a domain-specific lan-
guage called AnonyTL, which has a Lisp-like syntax. These tasks are matched
to devices using predicates based on the context of the device, such as its loca-
tion. Another relevant project is Cartel [4], which is a software and hardware
infrastructure comprising mobile sensing nodes on cars. Remote task deploy-
ment, although limited in nature, is supported through runtime configuration of
parameters like the type and rate of sensor information reported by the mobile
devices; continuous queries written in SQL submitted to a central server further
process and filter this data, providing additional adaptability. A much more flex-
ible approach is offered by PRISM [10], which allows deployment of executable
binaries at the mobile devices themselves. Method call interposition is used to
sandbox running applications for security and privacy reasons. Crowdlab [9] pro-
poses an architecture for mobile volunteer testbeds that allows low-level access
to system resources, and employs virtualization technologies to run sandboxed
applications concurrently with the host operating system.

Phone Usage Traces SystemSens [14] and LiveLab [26] are end-to-end log-
ging tools for measuring smart phone useage, and can be useful for diagnosing
other running applications. They collect data about wireless connectivity, bat-
tery status, cpu usage, screen status, and so on. Both offload the collected traces
to a central server only when the phone is charging in order to save energy. My-
Experience [15] is a more flexible system that can also capture sensor data and
user context, and is even able to ask the user for feedback through an on-screen

24 N. Brouwers and K. Langendoen

survey. MyExperience can be configured using XML files with support for script-
ing, and behavior can be updated in the field by sending scripts through SMS
or e-mail. Output is stored in a local database that is synchronized periodically
with a central one.

3 Design

In this section we look at several design aspects of Pogo, compare alternative
options and discuss how they fit in with the related work, and finally motivate our
choices. Note that many of these considerations have architectural consequences,
as is reflected in Section 4.

3.1 Testbed Organization

The most straightforward way to structure a testbed is to have a central server
and a set of mobile devices in a master-slave setup. The phones collect and
process data locally, and send it to the server where it is stored, possibly af-
ter further processing. This model is followed by most middleware, including
PRISM [10] and AnonySense [8]. However, such a strongly centralized server
component must also have a front-end where scientists can upload scripts, down-
load data, and manage their device pool, which introduces a considerable im-
plementation overhead. Moreover, since researchers share devices between them
and multiple sensing applications run concurrently on each device there is an
inherent many-to-many relationship between researchers and end-users.

We have therefore opted for a design where both parties, the researchers and
the test subjects, run the Pogo middleware, with a central server acting only as
a communications switchboard between them. This way researchers can interact
directly with end-user devices without having to go through a web interface or
logging into a server. There are three types of stake holders in a Pogo testbed.
First, the device owners contribute computational and sensing resources to the
system by running Pogo on their phones. The researchers run Pogo on their
computers and consume these resources by deploying experiments. The admin-
istrator of the testbed decides which devices are assigned to which researchers.
In a way the administrator acts as a broker who brings together people who offer
and consume resources. The connections between researchers and device owners
are double blind, with the administrator having only personal information about
the researchers who use the system.

3.2 Deployment

An important consideration is how experiments are delivered to the mobile de-
vices. Remote deployment is a basic functionality of any testbed and supports
the development of new algorithms and techniques by enabling researchers to
test hypotheses and benchmark solutions. It is, however, also a vital requirement
for running long-term sensing studies, which may need to deal with changing re-
quirements, new hardware developments, and new insights, or simply require
maintenance to correct programming errors.

Pogo, a Middleware for Mobile Phone Sensing 25

Broadly speaking there are two methods of deployment found in literature.
Pull-based systems present the user with a list of applications that can be down-
loaded. Common examples are the iPhoneApp Store1 and Android’s Play Store2.
The choice for which application runs on which device lies solely with the user.
In contrast, push-based systems allow researchers to send their applications to
remote devices without interaction from the user. This can be manual, like in
Prism [10] or Boinc [1], or automatic based on device capabilities or context, as
is the case with AnonySense [8].

Note that pull-based systems often have a push component, in the form of
application updates that are installed automatically. The Play Store has an up-
dating mechanism where new versions can be pushed to Google’s servers by
developers. End-users that have the application installed will be notified of such
updates and can choose to either update manually, or let Android manage this
automatically. Depending on the updating method, it may take anywhere from a
few hours to several days for a device to get the latest version. In our experience,
these long update times are not suitable for quick redeployment and experimen-
tation. What is more, the update process on the phone stops the application if
it is running and it has to be restarted by the user. This means that automated
updates result in regular downtime even with the most committed users due to
the time it takes for them to notice that the application has been killed.

For Pogo we have chosen a push-based system because we believe it is most
suitable for rapid deployment and experimentation. Of course, this means that
users are not able to choose what kind of applications are running on their
phones. We therefore allow users to select the types of information their wish to
share, so that they retain full control over their own privacy.

3.3 Participation

Participation by the general public is an important aspect of our approach and
we employ several strategies and incentives to attract users to our testbed. First
of all the barrier for participation is kept as low as possible. The goal is to have
volunteers just click once on the Pogo icon in their application store, which will
automatically start the download, installation, and execution of the middleware
on their phone. There is no registration process after the application has been
installed. This implies an opportunistic approach in which the middleware runs
silently in the background; only if a user wants to change the default settings
(e.g., about privacy) or remove the middleware completely does he need to take
action. We guarantee complete anonymity and give the user full control over
what information he wishes to share, and these settings can be changed at any
time from the application interface.

We expect that research institutions will recruit nodes among employees and
students, possibly rewarding the latter group with study credit. We are also
investigating monetary incentives such as Amazon’s Mechanical Turk3. We have

1 http://www.apple.com/itunes
2 http://play.google.com/
3 https://www.mturk.com/mturk/welcome

http://www.apple.com/itunes
http://play.google.com/
https://www.mturk.com/mturk/welcome

26 N. Brouwers and K. Langendoen

a central server that can keep track of when devices are online and what data
they are sharing, which would be the basis for assigning rewards. A third option
is to distribute smart phones for free with the understanding that the recipients
run the middleware and share their data [17].

3.4 Experiment Description

There are several approaches to writing mobile sensing experiments. Runtime-
configurable systems such as Cartel [4], and domain-specific languages like
CMQ [22] and AnonyTL [8], are easy to execute and sandbox. Moreover, no-
tation is generally short and concise, and accessible to researchers and program-
mers with little domain experience. On the other hand, deployment systems like
PRISM [10] and CrowdLab [9] allow native applications to be deployed on remote
nodes, giving total flexibility, but at the cost of requiring complex sandboxing
techniques, like method call interposition or hardware virtualization, to keep
malicious or malfunctioning code from degrading user experience or breaking
privacy.

We feel that the expressiveness of general programming languages is neccesary
if Pogo is to support the wide range of applications that we envision. The example
application that we describe in Section 4.1 implements a clustering algorithm
that could not be expressed in a simple DSL or query language. While it is
true that middleware can be extended with new functionality if desired, doing
so would require updating the application for the entire installed base, which is
exactly the kind of deployment overhead we wish to avoid.

We argue that simplicity and flexibility do not have to be competing con-
straints. Pogo applications are written in JavaScript, a popular and accessible
programming language. We expose a small, yet powerful programming API of
only 11 methods that abstracts away the flow of information between sensors
and scripts, and between phones and data collecting PCs. In this way, develop-
ers do not need to know anything about smartphones or Android in order to be
able to write Pogo experiments. Sandboxing is straightforward as the scripting
runtime can be used to control what functionality the application is allowed to
use.

3.5 Programming Abstractions

The choice of a generic programming language over a DSL means that we must
provide an application programming interface (API) to developers that exposes
the kind of functionality required for mobile sensing applications. We identified
the following requirements. First, applications need to be able to access sensor
data, either by reading them directly or by listening for updates. Second, there
should be a facility for periodically executing code. Third, a means of communi-
cating with a central point (the researcher) is required so that findings can be
reported. Finally, some means of breaking up large experiments into smaller com-
ponents is not a functional requirement per se, but makes complex applications
such as the one described in Section 4.1 more manageable.

Pogo, a Middleware for Mobile Phone Sensing 27

Starting from the simplest option, we have considered exposing a rich API to
the scripting runtime. This approach is taken by PhoneGap4, a popular toolkit
for developing portable mobile applications with HTML5 and JavaScript. For ex-
ample, the accelerometer can be read by calling the navigator.accelerometer.
getCurrentAccelerationmethod. However, such an API grows quickly as more
sensors are added, and a lot of ‘glue’ code is required to interface between the na-
tive platform API and JavaScript. Moreover, consider the case where two scripts
are running on the same device, and both are requesting a Wi-Fi access point
scan at regular intervals. It would be sufficient to scan at the highest of the two
frequencies to serve both scripts, but this energy-saving optimization cannot be
made without some form of coordination.

The API requirements essentialy boil down to an exchange of data and events
between loosely coupled entities; sensors, scripts, and devices. Two popular
abstractions for this type of communication are tuple spaces [16] and publish-
subscribe [13]. A tuple space is a shared data space where components interact
by inserting and retrieving data. In a publish-subscribe system, components
publish information to a central authority, the so-called message broker. Other
components can then subscribe to this information and are notified when new
data become available. In terms of capabilities, the two techniques are roughly
equivalent [3]. We have chosen publish-subscribe for Pogo mostly because of
implementation advantages. First, in a publish-subscribe system a sensor com-
ponent can easily query whether there are other components interested in its
output. If not, the sensor can be turned off to save energy. Second, subscriptions
in Pogo optionally carry parameters that can be used to add details such as a
requested sampling rate. Finally, the model is event-based, which fits our choice
for JavaScript.

4 Implementation

In this section we describe our implementation of Pogo, which is written in Java
and runs on Android smartphones as well as on desktop PCs and servers. The
Android platform was chosen because of its ubiquity (at the time of writing An-
droid had 50.9% market share5), and because it supports the type of background
processing required for mobile phone sensing tasks. Pogo runs on Android 2.1
and up, and currently stands at 10,666 source lines of Java code, of which 5,170
lines are common, 2,948 are Android-specific, and 2,548 belong to the PC ver-
sion.

4.1 Example Application

Before we describe our implementation in detail, we believe it is helpful to present
an application to both give a concrete example of the type of experiments we
envision, as well as to provide a running example with which to illustrate the

4 http://www.phonegap.com
5 http://www.gartner.com/it/page.jsp?id=1924314

http://www.phonegap.com
http://www.gartner.com/it/page.jsp?id=1924314

28 N. Brouwers and K. Langendoen

Device Node (Smartphone) Collector Node (PC/Server)

Wi-Fi
Scanning
Sensor

scan.jsscan.js clustering.jsclustering.js collect.jscollect.js

raw scan
results

sanitized
results clusters

database

annotated
clusters

Fig. 1. Data-flow of the localization application. The scan.js script requests Wi-
Fi access points scans from the Wi-Fi sensor, sanitizes them, and sends them to
clustering.js. This script clusters the scans and sends cluster characterizations to
the collect.js script running on the collector node, which in turn pushes them into
a database.

various implementation details. We chose a meaningful, real-world localization
application for this purpose. The goal of the application is to find locations where
the user spends a considerable amount of time, such as the home, the office, and
so on. We do this by periodically sampling Wi-Fi access points, and clustering
these scan results based on similarity. The clusters found in this way characterize
a ‘place’ where the user dwelled.

Figure 1 shows the data flow of the application. The scan.js script obtains
scan results from the Wi-Fi scanning sensor. It sanitizes the raw results by remov-
ing locally administered access points, and normalizes received signal strength
(RSSI) values so that 0 and 1 correspond to -100 dBM and -55 dBM respec-
tively. These values are then picked up by the clustering.js script that ex-
tracts clusters (locations) using a modified version of the DBSCAN clustering
algorithm [12]. The modification in this case is that we use a sliding window of
60 samples from which we extract core objects. Clusters are ‘closed’ whenever a
user moves away from the place it represents (when a sample is found that is not
reachable from the cluster). The distance metric used is the cosine coefficient.
When a cluster is closed, a sample is selected that best characterizes the cluster6

and sent to the server along with entry and exit timestamps. The collect.js

script running on the collector node collects these cluster characterizations and
uses Google’s geolocation service [18] to convert them into a longitude, latitude
pair. The annotated places are then pushed into a database.

This example illustrates a number of key features of Pogo. The location clus-
tering is performed on the device so as to avoid sending raw access point scans to
the collector and hence minimize communication cost, which shows the advan-
tages of on-line processing. The flexibility of our scripting environment allows us
to write complex sensing applications and even run custom clustering algorithms
when desired. Applications can easily be broken down into a set of cooperating
scripts, and communication between them flows seamlessly across the wireless
networking boundary.

6 The nearest neighbour to the mean of all scan results is selected.

Pogo, a Middleware for Mobile Phone Sensing 29

Device Node

Context (Localization)

scan.js clustering.js

Message Broker

Collector Node

Context (Localization)

collect.js

Message
Broker

Sensor Manager

Wi-Fi
scanning
sensor

XMPP

Multi Broker

Co
nt

ex
t (

ex
pe

rim
en

t 2
)

Co
nt

ex
t (

ex
pe

rim
en

t 1
)

Co
nt

ex
t (

ex
pe

rim
en

t 2
)

Co
nt

ex
t (

ex
pe

rim
en

t 3
)

Fig. 2. A device- and collector node running the localization application

4.2 Node Architecture

In Pogo both the researchers and device owners are running the same middle-
ware; the only functional difference between them is that researcher nodes are
operating in collector mode, which gives them the ability to deploy scripts. We
therefore do not have to write an extensive server application. Instead, we use
an off-the-shelf open source instant messaging server to manage communication
between device- and collector nodes.

Figure 2 shows the anatomy of two Pogo node instances, a device and collector
node running the example application presented in Section 4.1. Scripts belonging
to a certain experiment run inside a so-called context, which acts as a sandbox;
scripts can only communicate within the same experiment. Each context has a
counterpart on a remote node, and communication between them flows over the
XMPP protocol, as we will describe Section 4.6.

Each context has a message broker associated with it where scripts can sub-
scribe to- and publish data. Since contexts have counterparts on remote devices,
so do message brokers. The brokers on either end synchronize with each other
so that the publish-subscribe mechanism works seamlessly across the network
boundary. Since contexts on collector nodes can have more than one remote con-
text associated with them, a multi broker is used to make the communication
fan out over the different devices. Note that message exchange can only happen
between a device- and collector node, device nodes can never communicate with
each other directly.

Finally, sensors live inside a sensor manager. They are able to publish data
to, or query subscriptions from, all contexts. All a script needs to do in order
to obtain sensor data is to subscribe to it. This also works across the network;
a script running on a collector node that subscribes to battery information will
automatically receive voltage measurements from all devices in the experiment.

4.3 Publish-Subscribe Framework

Communication between sensors, scripts, and devices uses a topic-based publish-
subscribe paradigm [13], where messages (events) are published on channels.

30 N. Brouwers and K. Langendoen

For example, the Wi-Fi scanning sensor publishes its output on the wifi-scan
channel, and scripts that wish to consume this data simply subscribe to this
channel. Messages are represented as a tree of key/value pairs, which map di-
rectly onto JavaScript objects so that they can be passed between Java and
JavaScript code seamlessly. Messages are serialized to JSON7 notation when
they are to be delivered to a remote node.

A subscription in Pogo can have a parameter object associated with it. Scripts
can use this to be more specific about the information they are interested in. For
example, a script may request location updates, but only from the GPS sensor. It
can do this by subscribing to the locations channel using the provider:‘GPS’
parameter. Another example is the scan.js script in our running example, which
requests access point scans every minute. The scanning interval in this case is
also passed using the parameters (interval:60000).

Given the battery constraints of mobile devices it would be wasteful to have
sensors draw power when their output is not being consumed. The framework
therefore allows sensors to listen for changes in subscriptions to the channels they
publish on. Sensors can enable or disable scanning based on this information,
and change their behavior depending on the subscription parameters.

4.4 Scripting

Scripts are executed using Rhino8, a JavaScript runtime for Java, which allows
for seamless integration of the two languages. In the interest of security however,
we hide the Java standard library and of course all of the Android API from the
application programmer. Instead, we expose only a small programming interface,
shown in Table 1.

The setDescription() and setAutostart() functions can be placed in the
script body to set script parameters. If automatic starting of a script is turned off,
it will not run until the user explicitly starts it through the UI. The description
of the script will be shown in the UI as well. The print() function prints a
debug message that can be viewed on the phone, while the log and logTo

functions can be used to write lines of text to permanent storage. The publish

and subscribe function expose the message passing framework to a script. The
parameters argument to subscribe is optional and is used to add parameters
to a subscription. For example, the following line:

1 subscribe(’wifi -scan’, handleScan , { interval : 60 * 1000 });

requests a wifi scan result once per minute. The returned Subscription object
can be used to control whether a subscription is active or not. The release

method deactives a subscription, while renew can be used to reactivate it at
a later time. Note that these methods have no effect when the subscription is
inactive or active respectively.

An object can be ‘frozen’ with the freeze function, which means it will be
serialized to permanent storage. Each script can have only one such object at any

7 http://www.json.org/
8 http://www.mozilla.org/rhino/

http://www.json.org/
http://www.mozilla.org/rhino/

Pogo, a Middleware for Mobile Phone Sensing 31

Table 1. Pogo JavaScript framework API

setDescription(description)

setAutoStart(start)

print(message1[, ...[, messageN]])

log(message1[, ...[, messageN]])

logTo(logName, message1[, ...[, messageN]])

publish(channel, message)

Subscription subscribe(channel, function[, parameters])

freeze(object)

object thaw()

String json(object)

setTimeout(function, delay)

given time, and freeze will always overwrite any preexisting data. This stored
object can be retrieved using thaw. These two methods make it possible to have
data persist through script stop/start cycles and updates. The json function
serializes an object to a string using JSON notation. The setTimeout method
works in much the same way as it does in a browser, allowing a function to be
scheduled for execution at some point in the future.

4.5 Event Scheduling

Handling (timed) events requires some special attention on mobile devices be-
cause power management has to be taken into account. When the screen is
turned off and there are no ongoing activities such as a phone call being made,
Android will put the CPU to sleep to conserve energy. Applications can prevent
the CPU from going to sleep by acquiring a wake lock, and this is essential for
many asynchronous sensing tasks. Consider the example where an application
requests a Wi-Fi access point scan. If the CPU is not kept awake during the 1-2
seconds the process generally requires, the application will not be notified upon
scan completion. When the CPU is in deep sleep, it can be awoken only by events
such as incoming calls, or the user pressing a hardware button. Alternatively, an
application may want to schedule a wake-up call periodically, which it can do
by setting a so-called alarm.

The Pogo framework abstracts away the complexities of setting alarms and
managing wake locks through a scheduler component that executes submitted
tasks in a thread pool, and supports delayed execution. Using a thread pool
has the advantage that components that execute code periodically do not have
to maintain their own threads and are therefore more light-weight. A typical
example is a sensor component that samples at a given interval. When there are
no tasks to execute, the CPU can safely go to sleep.

The scheduler is also used when calling JavaScript subscription handlers and
functions that have been scheduled for execution using the setTimeoutmethod.
A script can have multiple subscriptions, so in theory multiple Java threads
could execute code belonging to the same script. However, since JavaScript does

32 N. Brouwers and K. Langendoen

not have facilities to handle concurrency, the threads are synchronized so that
only a single thread will run code from a given script at any time.

To keep incorrect or malicious code from locking up the system and draining
the battery, all calls to JavaScript functions by the framework must complete
within a certain timeframe. If the JavaScript function does not return in time, it
is interrupted and an exception is thrown. The default timeout is set to 100ms.

4.6 Communication

Pogo relies on the XMPP protocol9, which was originally designed for instant
messaging. Using an instant messaging protocol is helpful because associations
between devices and researchers can be captured as buddy lists, or rosters in
XMPP parlance. These are stored at the central server and can therefore be easily
managed by the testbed administrator. The XMPP server we use, Openfire10,
has an easy-to-use web interface for this purpose.

Mobile phones frequently switch between wireless interfaces as the user moves
in- or out of range of access points and cell towers. Unfortunately there is no
transparent TCP handover between these interfaces, causing stale TCP sessions
and even dropped messages. This message loss problem is recognized in the
XMPP community and although several extensions have been proposed11, these
have yet to be implemented in popular server and client libraries. Pogo detects,
using the Android API, when the active network interface changes and automat-
ically reconnects on the new interface. We have implemented our own end-to-end
acknowledgements on top of XMPP to recover from message loss.

Messages that are to be transferred over the XMPP connection are not sent
out immediately for two reasons. First, when there is no wireless connectivity,
messages should be stored and sent out at a later time when connectivity has
been restored. Second, sending small amounts of data over a 2G/3G connection
has been shown to be extremely energy inefficient due to the overhead associ-
ated with switching between the different energy states of a modem, as we will
elaborate upon in the next section. We exploit the fact that data gathering ap-
plications generally allow for long latencies in message delivery. Messages are
therefore buffered at the device and sent out in batches. Buffered messages are
stored in an embedded SQL database to ensure that no messages are lost should
a device reboot or run out of battery.

4.7 Tail Detection

Data transmission over a 2G/3G internet connection is costly due to the tail
energy overhead involved [2,24]. In a nutshell, data transmission triggers the
modem to go into a high-power state, where it stays for a considerable amount
of time after the transmission itself has ended. Figure 3 shows an energy trace

9 http://xmpp.org/
10 http://www.igniterealtime.org/projects/openfire/
11 i.e. XEP184, XEP198.

http://xmpp.org/
http://www.igniterealtime.org/projects/openfire/

Pogo, a Middleware for Mobile Phone Sensing 33

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

14 20 26.5 80

a b c d
P

ow
er

 (
W

)

Time (s)

Fig. 3. Tail energy due to 3G transmissions. The 3G ramp-up starts at a. After data
transmission has ended (point b), the modem stays in high-energy mode (DCH) for
approximately six seconds until c. Finally, there is a long tail where the modem stays
in medium-energy mode (FACH) for another 53.5 seconds between c and d. The small
spikes before a and after d are due to the duty cycling of the modem. The trace was
obtained under the same conditions as described in Section 5.2 on the KPN network.

taken from a Samsung Galaxy Nexus smartphone. The event marked a shows
the modem being triggered by a transmission (in this case the phone checking for
new e-mail). It takes several seconds for the actual transmission to begin as the
modem negotiates a private channel with the cell tower, leading to the so-called
ramp-up time. After the transmission has ended at event b, the modem waits
in high energy mode to see if there is further data until point c, after which
it goes into a medium-energy mode, where it stays for a further 56 seconds.
The time from b to d, 60 seconds in this example, is commonly referred to
as the tail-energy of a transmission, and periodically transfering small packets
of information could easily cause this overhead to dominate the overall energy
consumption of the application.

To avoid generating many tails it is possible to either flush the transmit buffer
at long intervals (i.e. once per hour), or simply delay transfer until the phone is
plugged into the charger. However, there are typically many applications already
present on a mobile phone that periodically trigger a 3G tail. Examples are
background processes that check for e-mail, instant messaging applications, and
turn-based multi-player games. Pogo detects when other applications activate
the modem, and if it has data to send, takes advantage of this opportunity
to push it out before the modem has moved to a lower power state. In this
way Pogo is able to avoid generating tail energy of its own by synchronizing
its transmissions with that of other applications. Since most users typically set
their phones to check for new e-mail every so many minutes, Pogo almost never
generates its own tail.

The implementation of this scheme requires some special consideration. The
general idea is to periodically read the number of bytes received and transmitted
on the 2G/3G network interface using the Android API, and fire a transmission
event when these numbers change. The exact length of the tail we are trying

34 N. Brouwers and K. Langendoen

CPU

E-Mail App

Pogo
alarm

sleep sleep sleep

a b

Time

Fig. 4. Pogo running alongside an e-mail application that periodically checks for new
mail. The horizontal blocks show when the CPU, e-mail app, and Pogo are active.

to detect depends on the mobile carrier, but we typically wish to catch the
high-power tail which is measured in seconds.

Periodic sampling at such intervals becomes problematic due to energy over-
head incurred when waking up the CPU. As explained in the previous section,
Android will put the CPU to sleep when there are no wake locks held by any
applications, and can only be woken up explicitly by setting an alarm. When the
alarm fires, the CPU will be woken up and start executing pending tasks. The
processor will stay awake for typically more than a second before going back to
sleep, even if there is nothing for it to do. With a sampling interval measured in
seconds the overhead from keeping the CPU awake would be considerable.

We therefore use a side-effect of how Java’s Thread.sleep method is imple-
mented on Android. When the processor is in sleep mode, the timers that govern
the sleeping behavior are also frozen, which means that the thread will only con-
tinue to execute after the CPU has been woken up by some other process. We
use this to detect when the CPU is woken up by another application, possibly a
background service that wants to engage in data transmission.

Figure 4 shows a situation where an e-mail application periodically checks for
new mail. The e-mail app uses the alarm functionality of Android to ensure that
the CPU is woken up. Pogo checks for network activity every second, but uses
Thread.sleep instead of alarms. At event (a), the CPU goes to sleep because
there are no wake locks preventing it from doing so. With the CPU sleeping, the
Pogo thread is no longer running. At event (b), the alarm set by the e-mail app
fires and the CPU is brought out of sleep mode. The Pogo thread continues and
is eventually unblocked when its timer runs out. It can then detect the network
traffic and push out its own data.

5 Evaluation

In this section we evaluate Pogo in three ways. We first validate the suitabil-
ity of our programming model for mobile sensing applications in Section 5.1.
In Section 5.2 we show, using power traces obtained from a modern Android
smartphone, that our mechanism for avoiding tail-energy significantly reduces

Pogo, a Middleware for Mobile Phone Sensing 35

Table 2. Code complexity for Pogo applications. Size is given in bytes.

Application File SLOC Size

Localization example scan.js 41 1,414

clustering.js 155 4,096

collect.js 18 469

total 214 5,979

RogueFinder roguefinder.js 28 799

collect.js 5 100

total 32 899

the energy overhead of Pogo. Finally, we present our experience with a real-world
experiment in Section 5.3.

5.1 Program Complexity

We implemented the example application described in Section 4.1. Table 2 shows
the source lines of code count12 for the application. The clustering.js script
is by far the largest, mainly due to the modified DBSCAN clustering algorithm,
as well as functionality for calculating the cosine coefficient. Still, the entire
application takes up only 214 lines of code.

We also wanted to compare our programming model against related work.
Listing 1 shows the RogueFinder application written in AnonyTL, as it appears
in [8]. This program sends Wi-Fi access point scans to the server once per minute,
but only if the device is within a given geographical location (represented by a
polygon). We implemented an equivalent program for Pogo, a fragment of which
is shown in Listing 2. First, a subscription is created to scan for access points on
line 5. This subscription is then immediately released because scanning should
only be activated within the designated area (line 9). On line 11, the application
subscribes to location updates, and toggles the Wi-Fi subscription based on
the device location. Note that the locationInPolygonmethod was omitted for
brevity. The total size for this application can be found in Table 2.

The RogueFinder application illustrates the trade-off between DSLs and our
JavaScript-based approach. First, we had to implement the locationInPolygon
function to simulate AnonyTL’s In construct, as this was not a part of our
API. Second, toggling the Wi-Fi scanning sensor depending on the user location
required extra work (lines 11-16). Third, a second script running on the collector
node (collect.js) is required to get the data off the device. Still, we would argue
that this increase in complexity is an acceptable price to pay for the flexibility
that Pogo offers over application-specific solutions such as AnonyTL.

5.2 Power Consumption

We validate the tail detection mechanism described in Section 4.7 by taking
detailed power measurements from a Samsung Galaxy Nexus phone. We set up

12 Empty lines and comments are not counted.

36 N. Brouwers and K. Langendoen

Listing 1. The RogueFinder application in AnonyTL.

1 (Task 25043) (Expires 1196728453)

2 (Accept (= @carrier ’professor ’))

3 (Report (location SSIDs) (Every 1 Minute)
4 (In location

5 (Polygon (Point 1 1) (Point 2 2)

6 (Point 3 0))))

Listing 2. The RogueFinder application for Pogo (fragment).

1 function start ()

2 {

3 var polygon = [{ x:1, y:1}, { x:2, y:2 }, { x:3, y:0 }];

4
5 var subscription = subscribe(’wifi -scan’, function(msg) {

6 publish(msg , ’filtered -scans’);

7 }, { interval : 60 * 1000 });

8
9 subscription.release ();

10
11 subscribe(’location ’, function(msg) {

12 i f (locationInPolygon(msg , polygon))

13 subscription.renew ();

14 else
15 subscription.release ();

16 });

17 }

a single e-mail account and configured it to be checked at 5 minute intervals. We
and ran experiments both with- and without Pogo running alongside it. In the
experiments where Pogo was running it was sampling the battery sensor every
minute. Because of the synchronization mechanism these values were reported in
batches of five whenever the e-mail application checked for updates. We inserted
a 0.33Ω shunt between the battery voltage line and sampled the voltage drop
over the shunt using a National Instruments NI USB-6009 14-bit ADC. The
phone was running stock firmware, Android 4.0 (Ice Cream Sandwitch), with all
background processes such as location services disabled.

We obtained one-hour traces with- and without Pogo running and compared
the energy consumption. Because the length of the 3G tail depends on carrier
settings we repeated this experiment with each of the three major mobile carriers
in The Netherlands. With each comparison we took the trace without Pogo
running as the base line and calculated the increase in power consumption as a
percentage of that value. The results are shown in Table 3.

Pogo, a Middleware for Mobile Phone Sensing 37

Table 3. Power consumption with- and without Pogo running on a Samsung Galaxy
Nexus with e-mail being checked every five minutes. When Pogo is running, it reports
battery voltage sampled once per minute.

Carrier Without Pogo With Pogo Increase

KPN 277.59 J 288.76 J 4.09%

T-Mobile 182.05 J 194.3 J 6.73%

Vodafone 205.47 J 218.98 J 6.57%

Table 4. Results of the localization experiment. The size columns show the size in
bytes of the raw data set.

User Scans Size Locations Size Match Partial

User 1 25,562 6,278,929 230 89,514 95% 96%

User 2a 11,474 3,082,356 121 48,048 86% 90%

User 2b 6,745 2,139,525 93 44,154 97% 100%

User 3 33,224 9,064,727 1282 437,527 80% 83%

User 4 32,092 12,664,291 274 139,572 92% 97%

User 5 33,549 11,836,962 333 197,433 95% 98%

User 6 34,230 14,426,142 158 77,251 89% 96%

User 7 35,637 9,305,313 703 181,389 96% 98%

User 8 34,395 11,618,974 329 141,634 95% 97%

The differences between the different carriers are substantial. We observed
very long tails on the KPN network (Figure 3 shows such a tail), resulting in a
higher total energy consumption than on the other two networks. On the other
hand we found the differences in energy consumption on the same network due
to Pogo to be marginal, with a maximum of 6.57% increase in total consumption
on the Vodafone network. This shows that Pogo can report data regularly with
minimal energy overhead by automatically synchronizing its tranmission with
other background processes.

5.3 Experimental Results

We tested Pogo by deploying the localization application described in Section 4.1
and let it run for 24 days. Of the 8 participants, 6 were given a Samsung Galaxy
Nexus to use as their primary phone. The other two preferred to use their own
phone, a Sony Ericsson Xperia X10 mini and a Samsung Nexus S. The latter
participant experienced some issues with his phone however and later switched to
a Galaxy Nexus, and we denote this user’s two sessions as 2a and 2b respectively.
One of the participants did not have mobile Internet and had to rely on Wi-Fi
to offload his data periodically (user 7). The application additionally logged all
Wi-Fi scan results to SD card, and these raw traces were collected after the
experiment as ground truth.

38 N. Brouwers and K. Langendoen

Table 4 shows an overview of the results. In total we collected 246,908 access
point scans for a total of 76,7MB of raw data, and found 3,525 user locations13

for a total of 1.3MB of raw data. In other words, we reduced the total amount
of data transferred by 98.3% by making use of on-line clustering as opposed to
sending all data back to the collector node. To see what the quality of the data
was like, we ran our clustering algorithm over the raw traces and compared the
output with what was received at the collector node. We found that there were
inconsistencies between the two data sets. First, some clusters were missing at the
collector node, or had a later start time. This was due to the clustering algorithm
being interrupted half-way through building a cluster, losing its program state.
When Pogo resumed it would only report the latter half of the dwelling session,
hence the difference in cluster start times. This would happen if a phone was
rebooted, ran of out battery, or when we uploaded a new version of the script.

Furthermore, we found that for two users we were missing large numbers of
clusters, specifically in certain time periods. This was because we had configured
Pogo to drop messages older than 24 hours if there was no Internet connectivity.
We had not anticipated that this would become an issue since all participants
had regular Internet access. However, user 2a made a trip abroad and turned off
data roaming for cost reasons, resulting in messages being purged after a day.
User 3 experienced problems with his 3G Internet access resulting in two days
of missing data.

The ‘match’ column in Table 4 shows the percentage of clusters found in the
post-processed data set that exactly matched the ones gathered by the collector
node. The ‘partial’ column shows the percentage of nodes that were matched
only partially due to the problems described. We have since added the freeze

and thaw methods to preserve application state across clean application restarts
which will help reduce the problem of Pogo scripts being interrupted, and im-
prove data quality.

6 Conclusions

The smart phone revolution is rapidly changing the field of mobile data gather-
ing. Modern phones have very capable processing hardware, ubiquitous Internet
connectivity, and a range of interesting sensor modalities, which makes them –
in principle – an ideal platform for all kinds of information collection tasks. In
reality though, experiments with large collections of mobile devices are rare, and
only carried out by a handful of experts, due to a string of complicating factors.

In this paper we presented Pogo, our proposed middleware for building large-
scale mobile phone sensing test beds. Pogo takes a pragmatic approach and
gives researchers a subset of the available mobile devices for them to deploy
experiments on. These experiments are written in JavaScript, and use a publish-
subscribe framework that abstracts away the details of communication between

13 Note that these are not unique locations, but rather sessions of a user staying at
some place.

Pogo, a Middleware for Mobile Phone Sensing 39

mobile devices and researchers’ computers. Users are given fine-grained control
over what sensor information they wish to share to protect their privacy

We have demonstrated the feasibility of our implementation with a real-world
use case involving eight users and running for 24 days. We argue that the pro-
gramming model we developed for Pogo is easy to use, yet flexible enough to
build complex applications. Finally, we have shown, through detailed power mea-
surements, that Pogo is capable of offloading its sensor data at a very low energy
overhead – as little as 4% – by synchronizing its transmissions with other back-
ground processes present on the device.

Pogo is a work in progress. In the future we would like to implement power
modelling to estimate the resource consumption of individual scripts. We would
also like to automate the assignment process between devices and researchers
based on information such as device capabilities and geographical location. Fi-
nally, we are planning on contributing Pogo to the mobile phone sensing com-
munity as an open-source project in the near future.

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID 2004, pp. 4–10. IEEE Computer Society, Washington, DC (2004)

2. Balasubramanian, N., Balasubramanian, A., Venkataramani, A.: Energy consump-
tion in mobile phones: a measurement study and implications for network applica-
tions. In: IMC 2009, pp. 280–293 (November 2009)

3. Busi, N., Zavattaro, G.: Publish/subscribe vs. shared dataspace coordination in-
frastructures. is it just a matter of taste? In: WETICE 2001 Proceedings of the
10th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 328–333 (2001)

4. Bychkovsky, V., Chen, K., Goraczko, M., Hu, H., Hull, B., Miu, A., Shih, E., Zhang,
Y., Balakrishnan, H., Madden, S.: The CarTel mobile sensor computing system.
In: 4th int. conf. on Embedded Networked Sensor Systems, SenSys 2006, Boulder,
Colorado, USA, pp. 383–384 (November 2006)

5. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A.: People-
centric urban sensing. In: 2nd Int. Conference on Wireless Internet, WiCon 2006,
Boston, MA (August 2006)

6. Chu, D., Kansal, A., Liu, J., Zhai, F.: Mobile apps: It’s time to move up to CondOS.
In: 13th Workshop on Hot Topics in Operating Systems, HotOS XIII, Napa, CA,
pp. 1–5 (May 2011)

7. Cisco: Cisco visual networking index: Global mobile data traffic forecast update
(2010-2015), http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white paper c11-520862.html (Febraury 2011)

8. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.:
Anonysense: privacy-aware people-centric sensing. In: 6th Int. Conf. on Mobile
Systems, Applications, and Services, MobiSys 2008, pp. 211–224 (June 2008)

9. Cuervo, E., Gilbert, P., Wu, B., Cox, L.: Crowdlab: An architecture for volunteer
mobile testbeds. In: Communication Systems and Networks, COMSNETS, Banga-
lore, India, pp. 1–10 (Janaury 2011)

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

40 N. Brouwers and K. Langendoen

10. Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R., Sharma, A.: PRISM: plat-
form for remote sensing using smartphones. In: 8th int. conf. on Mobile Sys-
tems, Applications, and Services, MobiSys 2010, San Francisco, CA, pp. 63–76
(June 2010)

11. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. Personal
Ubiquitous Computing 10, 255–268 (2006)

12. Ester, M., Peter Kriegel, H.S.J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

13. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35, 114–131 (2003)

14. Falaki, H., Mahajan, R., Estrin, D.: Systemsens: a tool for monitoring usage in
smartphone research deployments. In: Proceedings of the Sixth International Work-
shop on MobiArch, MobiArch 2011, pp. 25–30. ACM, New York (2011)

15. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: Myexperience:
a system for in situ tracing and capturing of user feedback on mobile phones. In:
MobiSys 2007, pp. 57–70. ACM, New York (2007)

16. Gelernter, D.: Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems 7, 80–112 (1985)

17. Glater, J.D.: Welcome, freshmen. have an ipod (2008), http://www.nytimes.com/
2008/08/21/technology/21iphone.html?ref=education

18. Google geolocation API. (November 2009),
http://code.google.com/p/gears/wiki/GeolocationAPI

19. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: The smartphone and the cloud:
Power to the user. In: MobiCloud 2010, Santa Clara, CA, pp. 1–6 (October 2010)

20. Krause, A., Horvitz, E., Kansal, A., Zhao, F.: Toward community sensing. In: 7th
Int. Conf. on Information Processing in Sensor Networks, IPSN 2008, St. Louis,
Missouri, USA, pp. 481–492 (April 2008)

21. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: Experiences from a
pilot sensor network deployment in precision agriculture. In: 14th Int. Workshop on
Parallel and Distributed Real-Time Systems (WPDRTS), Rhodes, Greece (April
2006)

22. Lee, Y., Iyengar, S.S., Min, C., Ju, Y., Kang, S., Park, T., Lee, J., Rhee, Y., Song,
J.: Mobicon: a mobile context-monitoring platform. Commun. ACM 55(3), 54–65
(2012)

23. Lu, H., Yang, J., Liu, Z., Lane, N.D., Choudhury, T., Campbell, A.T.: The jigsaw
continuous sensing engine for mobile phone applications. In: 8th ACM Conference
on Embedded Networked Sensor Systems, SenSys 2010, Zürich, Switzerland, pp.
71–84 (November 2010)

24. Qian, F., Wang, Z., Gerber, A., Mao, Z.M., Sen, S., Spatscheck, O.: Characteriz-
ing radio resource allocation for 3g networks. In: Proceedings of the 10th Annual
Conference on Internet Measurement, IMC 2010, pp. 137–150. ACM, New York
(2010)

25. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA,
pp. 85–90 (December1994)

26. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., Kortum, P.: Livelab: measuring
wireless networks and smartphone users in the field. SIGMETRICS Perform. Eval.
Rev. 38(3), 15–20 (2011)

http://www.nytimes.com/2008/08/21/technology/21iphone.html?ref=education
http://www.nytimes.com/2008/08/21/technology/21iphone.html?ref=education
http://code.google.com/p/gears/wiki/GeolocationAPI

m.Site: Efficient Content

Adaptation for Mobile Devices

Aaron Koehl and Haining Wang

Department of Computer Science
College of William and Mary

Williamsburg, VA, USA

Abstract. Building a mobile user interface can be a time consuming
process for web site administrators. We present a novel approach for
adapting existing websites to the mobile paradigm. In contrast to ex-
isting technologies, our approach aims to provide a trio of functionality,
ease of use, and scalability for large web communities. A site administra-
tor visually selects objects within a web page, and assigns one or more
attributes to page objects from a rich collection of pre-defined page mod-
ifications. Our proposed system then generates code for a multi-session,
php-based proxy server to provide dynamic mobile content adaptations
based on the attributes selected. The modifications encapsulate com-
plex page interactions and provide a simplified interface to mobile users.
The proxy server is augmented with a highly efficient and standards-
compliant browser residing on the server to interpose on behalf of a
resource-constrained mobile client. Adaptations such as pre-rendering of
content can be cached and shared across users to amortize load. We
build a prototype and evaluate its efficacy on a complex web application
driving a busy online community with nearly 66,000 members.

Keywords: mobile content adaptation, web application proxy.

1 Introduction

Web site administrators and content providers continually aim to accommodate
an ever-increasing user base, yet doing so requires supporting a diverse set of
browsing platforms. As a consequence, site administrators are forced to bal-
ance site accessibility and dependability against the costs of supporting multiple
platforms. For instance, due to varying DOM (document object model) imple-
mentations within popular web browsers, object accesses in JavaScript are often
written in such a way that if one function fails because of browser incompatibil-
ity, another function must be written to take over, with the idea that eventu-
ally a compatible function will be invoked. Such support issues are not limited
to scripting. Differences in supported image formats, support for transparency,
variation in supported fonts, subtle discrepancies in CSS rendering, incompati-
bilities caused by user-installed plugins, availability of media extensions such as
Flash and SilverLight, and browser quirks modes [6] between versions must all

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 41–60, 2012.
c© IFIP International Federation for Information Processing 2012

42 A. Koehl and H. Wang

be taken into consideration to guarantee support for a large audience. Although
there are productivity tools that help in this regard, correctly supporting a di-
verse set of clients is still a time consuming process. Ultimately, it is the content
administrators and site owners who suffer revenue loss when a user’s browsing
experience is compromised.

Support for mobile browsing introduces considerable complexity to the equa-
tion, as mobile browsers are limited in their capabilities, and even the extents
of those limitations vary greatly between devices. In addition to diverse client
software environments, the device’s screen size, network bandwidth, and com-
putational ability can compromise the user’s browsing experience if disregarded
by the site’s administrator. Whereas great strides have been made in providing
capable mobile architectures, there is a considerable gap between mobile brows-
ing and the richness provided on even low-end desktop platforms. Supporting
higher computational power is at odds with the small form factor, heat out-
put, and battery life expected of today’s smart phones, such as the BlackBerry,
iPhone, and Android.

Currently, site administrators of large and dynamic template-based websites
such as online communities often do not have the time, skill, or capability to
deploy specialized templates for mobile users, although these websites must con-
sider the demands and needs of the growing mobile market. To tackle the prob-
lem faced by site administrators, we propose a cross-cutting approach to content
adaptation for mobile browsing. Content adaptation (screen scraping) is an ef-
fective way to alter the presentation for resource constrained clients, without
involving changes to logic at the database or scripting layer. It is important to
emphasize that (1) content adaptation employs a multitude of techniques, and
(2) content adaptation techniques do not portend a single correct method, in-
stead we recognize a design space in which content adaptation systems make
various tradeoffs.

We therefore develop m.Site, a productivity framework that enables site ad-
ministrators to dynamically adapt content for the mobile web with minimal
effort, yet still allows for advanced, programmed customizations. m.Site does
not rely on special browsers or remote third party services, is uninvasive with
respect to code modification, preserves the platform-independence of the web
by not requiring device-specific API’s, and provides the site administrator with
an efficient and cost-effective way to customize very complicated dynamic web
sites.

Our design goal is to make the use of m.Site as simple as possible. We accom-
plish this by introducing an attribute paradigm, where page objects are identified
in a visual tool, and attributes are selected and applied from a menu. These at-
tributes embody well-known techniques such as image fidelity transformation,
to complex subpage interactions. The visual tool generates php shell code for a
server-side proxy, which is responsible for downloading page content, applying
page transformations and attributes, managing cookie jars and multiple users,
and marshaling interactions between the mobile client and the originating web
page. Figure 1 shows the architecture of m.Site at-a-glance. Available to the

m.Site: Efficient Content Adaptation for Mobile Devices 43

Fig. 1. High-level overview of the m.Site architecture

server side proxy is an arsenal of web scraping and DOM-manipulation tools, as
well as an embedded WebKit [5] browser, which can be used as one of several pre-
rendering engines or to execute code. By simplifying the interface and reducing
or eliminating the need to write transformation code, we expect administrators
will more readily adapt existing web sites for the mobile web.

Our work is motivated by scalability issues found with previous research in
this area. The Highlight [21] system employs a remote control metaphor, in which
server-side web browser instances are used to maintain state for each client. The
resource consumption makes this approach infeasible for large web communities
with thousands of concurrent users.

While providing similar high-level features, we instead generate code for a
lightweight proxy that can handle the majority of the content adaptation: page
slicing, state management, and DOM manipulation, calling on the web browser
only when needed as a graphical rendering engine, or for browser-specific func-
tionality. In this way, we also expose the opportunity for the proxy to cache and
amortize rendering costs and general content adaptations across multiple users.
Cookie security, session management, manipulation via jQuery, and AJAX re-
quests can all be satisifed independently of a heavyweight browser, providing
much of the browser’s functionality without the associated scalability issues.

We build a prototype of our system and evaluate its efficacy on a complex
web application driving a busy online community with nearly 66,000 members.
Summarily, this paper makes the following contributions:

– A code generator that produces a low-overhead, multi-session proxy server to
support adapted pages. This proxy server manages sessions, keeping brows-
ing sessions open in a stateful manner, without the overhead of a browser
running on the server for each user [21];

44 A. Koehl and H. Wang

– Aphp-based proxy capable of using a highly efficient and standards-compliant
browser running on the server in a disconnected state;

– Server-side caching to amortize rendering costs across many client sessions;
– A visual admin interface that uses a simple attribute paradigm to provide

site administrators with the ability to perform many complex modifications
for both visible and hidden document objects;

– A pluggable content adaptation system that can be extended with multiple
rendering engines to produce HTML, static images, PDF, plain text, or Flash
content at any point in the rendering process;

– Support for producing thumbnail snapshots of richmedia content for resource-
constrained devices.

The remainder of this paper is structured as follows. Section 2 surveys related
work and existing techniques for adapting mobile content. Section 3 describes
the m.Site framework as well as the benefits provided by the attribute system.
Section 4 evaluates the efficacy of the framework on a live site, and finally Section
5 concludes.

2 Related Work

m.Site is a productivity framework aimed at allowing site content adaptation
post-hoc, for mobile devices. Architecturally, systems that allow content adap-
tation exist either on the client or as a middleware proxy on the server.

Both client and proxy solutions for content adaptation have been proposed
over the years, influenced by varying needs of the user and site administrator, as
well as evolving technology in resource-constrained devices. Fudzee and Abawajy
[17] provide a high level classification for content adaptation systems, and further
argue for their viability as an attractive solution. m.Site is a dynamic, proxy-
based content adaptation system colocated on the web server, as our motivation
is on the site administrator’s need to support as diverse and broad of a user base
as possible.

Remote display protocols (e.g. thin clients) are not new [23]. However, several
systems have been proposed specifically for mobile devices [16,14], which of-
fload computation from a mobile device to a more capable server, while sending
graphical updates and metadata to the device. While thin clients are a rele-
vant technology, they require the installation of client-side software to manage
the interaction. Also similar are specialized accelerated mobile browsers such
as Opera [9] and Skyfire [10]. m.Site ascribes to the offloading approach, but
proposes lightweight graphical updates to be disseminated using an ordinary,
default mobile browser.

Client-side browser plugins [1,3] can provide the user with many tools to
customize a site’s layout. A plugin injects Javascript into the downloaded page
and manipulates the layout using DOM functions. These systems have trouble
with dynamic page changes, as they often use static XPaths and basic heuristics
to locate objects on the page. However, there has been research into making

m.Site: Efficient Content Adaptation for Mobile Devices 45

client content adaptation systems more robust [12], allowing customizations to
be reused in spite of content changes. Still, Javascript is limited to modifying
objects in the DOM tree. m.Site allows for more sophisticated content adaptation
techniques in addition to Javascript manipulation.

Systems such as [18,19] allow content adaptations to persist based on the
inputs of a corpus of users. Sharing of scripts within GreaseMonkey communities
[2] provides a static analog to this. Unfortunately, client side software solutions
all suffer from the same problem when aiming to serve a large user base. Users
are reluctant to install or use new browsers and plugins other than the default,
and thus site administrators cannot rely upon these techniques for layout and
content adaptation, especially of mobile visitors.

Proxy based systems allow more sophisticated content adaptation techniques,
extending even to rich multimedia types [26]. FlashProxy [20] allows Flash con-
tent to execute remotely on the server yet be displayed on a mobile device.
Employing a binary rewriting technique to interpose on behalf of the browser,
events trapped on the proxy are sent to the client’s browser via a Javascript RPC
system, maintaining interactivity. m.Site addresses rich media concerns by allow-
ing snapshots of rich media content to be generated, but leaves the interactivity
of Flash, movies, and Silverlight to their respective plugin developers.

A number of proxy-based content adaptation systems have been proposed,
which aid in navigating pages on mobile devices [21,25]. Bickmore and Schilit
devise a system [11] to analyze and modify a web page based on heuristics and
rules, for instance to adapt all images to a lower fidelity.

Automated techniques for page adaptation are promising but not always
widely applicable [24]. Chen et al. propose a system to automatically analyze
and split a page into subpages to reduce horizontal scrolling [13]. Xiao et al.
extend this approach to allow a page to be split into a hierarchical structure
[25]. Tools such as Apple’s DashCode [4] can be used to simultaneously author
a mobile and web application, avoiding a dual-maintenance scenario, but sites
must be rewritten to use such a tool. Automated techniques provide a good
starting point for adapting page content, and could be used in conjunction with
a framework such as m.Site.

A hybrid approach for enhancing mobile navigation is to use a proxy to gener-
ate thumbnail overviews of site content. Annotated thumbnails and page splitting
enhance navigation by reducing the input effort of browsing a site [25]. m.Site
allows the creation of annotated thumbnails as well as multiple levels of page
splitting. Note that a page of low-fidelity thumbnail links can load an order of
magnitude faster than rendering complicated site content on a mobile device, by
reducing both bandwidth and computational effort.

The Highlight system [21] employs a modified Firefox browser located on a
proxy server. A user interacts with modified content sent to the mobile browser,
which in turn remotely controls the browser session maintained on the server.
While this keeps sessions separate and allows for dynamic content, it does not
scale well. In contrast, the m.Site framework uses Apple’s WebKit [5] library
for server side rendering, but only when absolutely necessary. Most of the DOM

46 A. Koehl and H. Wang

Fig. 2. m.Site organization

manipulation and content adaptation can occur outside of the context of the web
browser, while keeping the ability for the proxy to maintain state and sessions
for multiple users, and exposing additional cross-session optimizations such as
caching of pre-rendered objects.

3 System Architecture

m.Site consists of two major components: a visual tool that the site adminis-
trator uses to reshape the site content, and a proxy server that dynamically
applies attributes and generates the reauthored pages. Figure 1 provides a high-
level overview of the m.Site architecture, while Figure 2 presents how m.Site is
organized on the server.

3.1 Site Administrator Tools

In order to be as productive as possible, we develop a visual tool for providing
site administrators a live view of the site. Once a page is loaded, the administra-
tor is able to highlight page objects using a point and click approach, to select
DOM objects on the page. A separate dock exists for non-visual objects, such as
CSS, Javascript functions, head-section content, doctype tags, and cookies. The
selected objects can be subsequently assigned any number of special attributes
that ultimately affect their display on the client. Once a page is downloaded, the
proxy system dynamically identifies these objects, applies any defined adapta-
tions, applies any default rules for unidentified objects, generates the appropriate
subpages and content, and redirects the user to a newly generated entry page.

It is possible that graphical objects split from the main page cannot be ren-
dered without JavaScript and associated CSS, that is, objects may have intra-
page dependencies. These dependencies can be identified in the visual tool.

m.Site: Efficient Content Adaptation for Mobile Devices 47

Fig. 3. Role of the Rendering Proxy

If a dependent object is to be rendered on the client, the appropriate CSS and
JavaScript dependencies can be satisfied by assigning an attribute, which pro-
vides the object to the browser.

The typical work flow to mobilize a site is to load a site’s page into the tool,
visually select relevant objects, and choose attributes to apply (if any). A more
advanced work flow delivers more control, and may include matching objects
and content with regular expressions, image fidelity manipulation, defining of
cacheable objects, and more sophisticated adaptation techniques, such as pre-
rendering CSS on the server but rendering text on the client. As with most
authoring tools, such techniques will be heavily dependent on the site being
adapted.

3.2 Proxy Server

Upon completion, the visual tool generates a php file from shell template code.
This shell code becomes a proxy for the originating page, and handles user
session authentication, cookie jars, and high-level session administration, such as
deletion of cookies. The proxy also handles downloading of the originating page
on demand, http authentication on behalf of the client, and any error handling
should the page be unavailable. Figure 3 highlights the main tasks performed by
the proxy.

After a page is downloaded by the proxy, the attribute system and filters are
invoked to apply any attributes defined by the site administrator. This includes
locating any objects that need to be modified within the page, and performing
any DOM manipulation. The proxy then creates a subdirectory for the user,
generates one or more static subpages, and creates any supporting images and
files as needed—the contents of which are controlled by the attribute system as
shown in Figure 2.

48 A. Koehl and H. Wang

The mobile client begins its interaction with a php file, which contains code
responsible for handling authentication and management specific to m.Site ses-
sions, as well as for providing a mobile-friendly entry point (snapshot and menu)
into the site. Upon starting a mobile session for the first time, the mobile browser
is issued a session cookie for maintaining state on the server. All of the files gen-
erated during a user’s session are stored in the file system under a (protected)
subdirectory created specifically for that user.

If the snapshot does not yet exist, it must be generated. The proxy first
loads the user’s cookie jar (as determined by the session cookie), and issues
a page fetch on behalf of the mobile client for the desired page, which includes
downloading any images to be rendered. The cookie jar is necessary as the proxy
itself must be authenticated on behalf of the user to view content privy to that
user. For publicly accessible forums, this would not be an issue, but typical online
communities provide access to private forums and user setting pages that require
authentication.

Once the page is fully downloaded, the HTML rendering engine can be em-
ployed to generate a snapshot of the page, save a low-fidelity version of that
snapshot to an image file, and generate an appropriate HTML/Javascript over-
lay to use the snapshot as a menu to other subpages. At the end of this phase,
the snapshot image and HTML can be sent to the client browser while the rest
of the subpages are generated. The user should be satisfied with seeing a familiar
screen shot and branding from the desired site.

For subpages, any attributes that need to be applied at the raw source level
can be applied at this point, which we refer to as the filter phase. This can
include extremely simple filters such as changing the doctype and title, or
blanketly removing css and script tags. Slightly more complex filters would
include rewriting all images to reference a low-fidelity image cache or different
server. The page could be completely adapted after just a few simple filters,
avoiding a DOM parse altogether, and assuming the snapshot is served from the
cache, the work of the proxy could be done at this point.

For more complex modifications, a DOM parse is necessary. The m.Site frame-
work has the capabilities of the popular source formatting tool HTML Tidy [22]
compiled in. This library is applied at the filter phase, and is used to convertHTML
to XHTML, which enables parsing by the wide array of XML/DOMmanipulation
tools available, asmost of theXML-based toolswon’t handlemalformedXML.The
m.Site framework is modular enough to allow different libraries to be employed for
DOMparsing (and subsequent filters based on the DOM tree), though for the next
phase it is tightly integrated with the DOM parse provided by WebKit.

At the end of the attribute phase, all newly-allocated subpages are written to
the file system in the client’s session directory (see Figure 1). Any pre-rendered
images are written to the client’s image subdirectory, and any newly-generated
shared images are written to the public cache. Some of the more powerful at-
tributes call for m.Site to generate the server side php code to manage any
interactions required as a result of the custom attributes, for instance, to satisfy
AJAX requests.

m.Site: Efficient Content Adaptation for Mobile Devices 49

Mobile Client Detection. Detection of a mobile device can be accomplished
in a number of ways, but common practice is to use a set of heuristics that are
kept up-to-date with new browsers and devices1. For our purposes, it is assumed
that the client is already identified, and has either been automatically redirected
to the proxy, or has explicitly chosen to use the proxy service for a particular
page. Note that not all pages require a proxy to be mobile-friendly.

Object Identification. As a page is loaded for the first time, the proxy server
must have a way to identify objects on the page, so that attributes and content
adaptations can be applied.

The m.Site framework supports multiple object identification techniques, in-
cluding source-level rules and heuristics. As in other systems [12,1], a DOM-
based approach is supported using XPath. Similarly, objects can be identified
using new CSS 3 selector support, since the framework integrates a server-side
port of the popular jQuery [8] DOM manipulation library. Page modifications
can be made directly to a parsed DOM. Likewise, modifications can also be
made at the source level, rather than by manipulating the DOM tree, which can
expose some optimizations.

3.3 Attribute System

The power of the m.Site framework originates from the very rich attribute sys-
tem, which makes it possible to customize a site’s layout and adapt its content for
mobile browsers. The attributes provide a site administrator with fine-grained
control over the rendering of pages, and also provides new adaptation techniques
not available in other systems, such as partial pre-rendering, a subset of which
is described below.

Pre-rendering. For complex pages, considerable time is spent in a mobile browser
downloading content, parsing, rendering CSS and HTML, and fetching addi-
tional images. A page, subpage, object, or object group can be marked to be
completely rendered on the server side into a single graphic, saving much com-
putational effort on the mobile device. Additional attributes allow the rendered
image’s fidelity to be lowered, reducing network bandwidth. In the index page
of our test site, this technique can reduce wall-clock load time by a factor of 5.
Pre-rendered objects can be dynamically linked to subpages, creating a mobile-
friendly menu.

Page Splitting. Any object, object group, or page can be split and set to render
in its own separate HTML file, thus creating a subpage. If the subpage is com-
bined with the pre-rendering attribute, it will be made up of simple pre-rendered
images. Otherwise, the HTML making up that object will still be intact, and
will be delivered to and rendered on the client’s browser. For instance, a long
column of links may be identified and moved to its own page.

1 See [7] for more information about the detection of a mobile device.

50 A. Koehl and H. Wang

Sub-subpages. Subpages can also be further split into more subpages. When
a subpage is split, it allows for a hierarchical navigation reminiscent of that
provided by [25].

Object Dependencies. When a subpage is set to be rendered in its entirety on
the client side (HTML and CSS rather than a pre-rendered graphic), certain
objects such as scripts that are needed to render the subpage may only exist
in the master document or other subpages. By identifying these dependencies
in the visual tool, we allow Javascript, CSS, and other objects to be pulled
into the subpage as needed. This allows both non-visual and visual contents to
be repeated in multiple subpages. The approach taken in other systems is to
repeat head content on all subpages [25]. Unfortunately, this approach misses
cases, where Javascript and other functionality are located in the body of pages.
m.Site allows scripts and other content to be pulled from any portion of the
page, and duplicated on as many subpages as is desired. Similarly, content such
as ads, and navigational aids such as jump-menus can be made to appear on
every subpage. Since any object can be duplicated on any subpage, this provides
superior control over regular page-splitting approaches.

Javascript Insertion / Removal. Javascript functions can be dynamically inserted
into the HTML source before rendering on the server, as well as after rendering.
For instance, to modify how the server renders, one script can be used to ma-
nipulate the DOM tree to control certain layout elements, akin to [1]. For the
client, a second script can be inserted to create a mobile-friendly navigational
menu from the rendered elements. This is sort of modification cannot be realized
by using Javascript-based content adaptation systems alone, such as [1,12].

Object Insertion, Removal, Relocation, and Replacement. When adapting a mo-
bile layout, we allow HTML, CSS, and Javascript to be manipulated by the
proxy. Objects can be inserted, for instance, to support adding an ad to the bot-
tom or a breadcrumb navigational element at the top of each subpage. Objects
can be hidden (via CSS style properties) when it arrives on the client, or stripped
out of the source completely. Objects can also be relocated or duplicated into
disparate subpages. Lastly, objects can be replaced entirely. For instance, if a
mobile-friendly version of a client Javascript API exists, the desktop-based li-
brary can be replaced outright. Another example is the replacement of a logout
button with a get parameter, which allows cookies to be cleared on the proxy.

Partial CSS Rendering. A complicated CSS design can take much time to render
on a mobile device. Sometimes, it is desirable to take a portion of CSS code,
replace the text with stretched one-pixel placeholders (to allow the layout engine
to properly size the object), and take a snapshot of the rendered object. We
call this partial pre-rendering. The proxy takes responsibility for rendering the
graphical component, but uses Javascript to render the text on the device. Thus,
the rendered object can then be used as a background in a static subpage, while
the device only needs to draw text in the proper location.

m.Site: Efficient Content Adaptation for Mobile Devices 51

Image Fidelity. As one would expect of content adaptation systems, objects can
be passed to a post-processor before being made available to the client, allowing
for manipulations in image fidelity and cropping. The attribute system is used
to supply parameters to the post processor. For instance, when a full page is
rendered into a high-fidelity png, it can consume upwards of 600K. This would
take considerable time and bandwidth to send to the device. A post-processor can
produce a reduced-fidelity jpg at 25-50k.When displaying a zoomed-out overview
page on a small device screen, the lowered image fidelity is not noticeable, and
only results in a faster load and rendering time.

Search. Search functionality is inherently lost when a web page is rendered on the
server side. Although restructuring the mobile layout into subpages reduces the
need to search, sometimes searchability is desired even on subpages, despite
the associated costs. Thus, we allow an attribute to be defined as “searchable”.
At rendering time, a sorted word index is built on the server from the textual
content read from the web page. The rendered location of each word is stored
in a Javascript array along with the word list, and the ordered search index is
then inserted into the subpage along with a Javascript binary search function. In
order for the client to make use of the search functionality, the site administrator
must define an HTML element (button or link) to make the initial Javascript call.
Thus, the search attribute effectively allows pre-rendered images to be searched.

Object Caching. Certain areas of a site may be defined as cachable across sessions,
amortizing the initial pre-rendering cost across many users. Once a cacheable
object is rendered, it is placed into a pre-render cache on the server and can
be used by the attribute system as needed. Using the properties of the cache
attribute, for instance, a cached snapshot of the main page of a site can be set
to expire after an hour.

Sometimes it is necessary to be able to maintain interactivity for portions of
a site. For instance, some areas of the site may be protected with HTTP authen-
tication. If the proxy comes across a page that requires user input, the client
is redirected to a lightweight HTTP authentication page. Once authenticated,
the proxy stores this information and uses it on behalf of the client. Authen-
tication information is stored and maintained separately across users. HTTP
authentication can be set with the application of a single attribute.

Overall, the m.Site framework leverages these rich attributes to provide site
administrators with as much control over the mobilization of the site as possible.

4 Evaluation

In this section, we describe how the m.Site framework can be applied in a real-
world setting—a complex, template-driven dynamic web site. We present the
modification of the various content elements on the site’s main page as well as
those attributes that we ultimately select for deployment on the site. Finally, we
show our experimental results.

52 A. Koehl and H. Wang

4.1 Anticipated Load

The site used for testing runs the popular vBulletin [15] forum software for
online communities. As of 2012, the site receives an average 2.2 million hits
per day with as many as 1200 users online at a time, and with a historical
doubling of traffic every 18 months. Like many catering to a growing and diverse
community of users understand, the site’s membership has grown large enough to
expect streamlined mobile access. Hence, this load drives the need for a scalable
and cost-effective mobilization solution. As vBulletin encompasses an active and
broad community of site administrators with varying skills and capabilities, it is
essential to provide a framework that is both accessible and useful, yet to be so
it must be scalable, cost-effective, and have minimal deployment requirements.

4.2 Target Usage

Figure 4 shows the main page of the test site rendered from a desktop machine
at its native resolution. The site starts with a logo and leader board banner
advertisement, followed by a box of navigational links and a login form. Below
this is a transient box used for announcements, followed by a long list of about
30 forum descriptions (clipped for space) and links to each forum’s most recent
post. Underneath the forum listing is a display showing which members are
logged in, with links to each online member’s public profile. Toward the bottom
is a box of site statistics, a list of birthdays, public calendar entries, and finally
some additional navigational links. This layout is a nearly unmodified default
template reminiscent of thousands of online forums, and as such serves as a
suitable test candidate.

The entry page of the test site requires a total of 224,477 bytes to be received
from the network, inclusive of all images, external Javascripts (of which there
are about 12), and CSS files. On the BlackBerry Tour smart phone (528 MHz
processor), wall clock rendering time for this forum listing page is 20 seconds. For
a grounded comparison, a modern desktop browser renders the page in about 1.5
seconds. Over WiFi, a 3rd-generation iPod Touch (600 MHz) using the WebKit-
based Safari renders the page in 4.5 seconds, and 9 seconds over 3G.

Over time, the page has grown more complex to suit the desktop user. For
what is tantamount to a magazine’s table of contents, 20 seconds can be a
burdensome wait. Table 1 draws a comparison. By using m.Site to render a
snapshot of the page on the server side, the user perceives a significant reduction
in latency, and unlike text-based content adaptation, the site administrator still
delivers a branded look. The snapshot is overlayed using an image map with
links to content areas defined with the subpage attribute.

Though page load performance will be less of an issue as more modern,
standards-compliant mobile browsers become the norm, the site administrator
can still take advantage of content adaptation to mitigate the small form factor,
and facilitate quick access to information on-the-go. Even with the incredibly re-
sponsive zoom capability of the iPod Touch, for many core site requests, only a
small amount of information is needed from the web page. For instance, looking

m.Site: Efficient Content Adaptation for Mobile Devices 53

Fig. 4. SawmillCreek.org Test site rendered at full resolution

up flight cancellations in an airport usually only requires a small subset of the
functionality provided by most airlines on their web pages.

Fully zoomed in its native resolution, the BlackBerry Tour (480x325 browser
area) displays only a small window into the normal site, as shown by the upper
left box drawn in Figure 4. Such a small viewing window requires considerable
scrolling to read, both vertically and horizontally. Indeed, this is not even wide
enough to display a common leader board banner ad of 728 pixels wide, and
obviates the need to adapt this banner by replacing it with a mobile-specific
version. Ideally, this is done by selecting the ad and applying an attribute that
directs its replacement at the source level.

Just as an HTML page can take many forms, m.Site attributes can be applied
in many different ways, depending on the needs of the site administrator. A
mobile visit to an online weather site or movie theater should probably focus

54 A. Koehl and H. Wang

Table 1. Comparison of wall-clock time from initial request to browsable page

Device Wall-clock Time

BlackBerry Tour browser page load 20 sec.
Snapshot page generation 2 sec.
Cached snapshot page to Blackberry 5 sec.
iPhone 4 via 3G 20 sec.
iPhone 4 via WiFi 4.5 sec.
Desktop browser page load 1.5 sec.

on providing local weather or show times as quickly as possible, then perhaps
national forecasts or box office descriptions. Recognizing that a mobile visit to an
online woodworking community is akin to reading a magazine, the focus of our
content adaptation on the entry page is to connect the reader with interesting
threads as efficiently as possible, while maintaining the site’s branding. Such a
decision is an important factor in determining which content to display more
prominently, while it should not cause functionality to be hidden on that basis
alone. Thus, even though we will employ attributes to emphasize the forum
listing, other functionality on the page will still be accessible to the user via
subpages (rather than removed altogether).

4.3 Applying Attributes to the Test Site

A user will typically perform one of two actions when visiting the main page:
either logging in to access the site’s private areas, or browsing the forum listing
for interesting topics. Whereas the structure remains the same, the links on
the forum listing page continually change content as new discussion threads are
added. We detail how both of these areas are adapted for a mobile user as follows.

Upon visiting the site, the mobile user is presented with a quick-loading,
cached snapshot of the entire site. Application of this attribute gives the user
the satisfaction of an immediate response upon visiting the site. The snapshot is
pre-rendered, saved at low fidelity, and stored in a public cache for 60 minutes.
The image itself is also scaled down to prevent the user from having to zoom
in before clicking. The main idea is to present the user with the site’s overall
branding and an efficient means of diving into the desired site content.

The subpage attribute allows document fragments to be moved into subpages,
along with dependent CSS and Javascript snippets. As shown in Fig. 5, we have
applied the subpage attribute to the login form. Clicking the snapshot, where
the login form would have been, links the user to the login form subpage. The
login form elements have multiple dependencies in the original HTML source,
including CSS and Javascript, which are satisfied by inserting the dependent
scripts underneath the head tag in the subpage using a copy attribute.

The logo box (table and image) is also copied (rather than moved) to the top
of the login subpage, but the src attribute of the image is set to a mobile-specific

m.Site: Efficient Content Adaptation for Mobile Devices 55

Fig. 5. SawmillCreek.org login form subpage rendered as a result of applying page-
splitting, image replacement, and css injection attributes

version of the logo. Figure 5 shows a screen shot of the adapted login subpage
rendered on a BlackBerry Storm.

All of the defined subpage attributes contribute to an image map overlay,
which is automatically generated for the main page snapshot. For each subpage
generated, the coordinates and extents of the original document elements must
be queried from the DOM, (in this case, the top left corner, height, and width),
and are used to draw clickable rectangular image map regions on the snapshot.
Each region links to its corresponding subpage. The queried coordinates map
to the original-size document, but since the snapshot is scaled down, the m.Site
framework implicitly translates the coordinates as well.

The site navigation links below the login box in the original site do not scale
down at all. When viewed on a small display, the result is a single horizontal
line of links (constructed as a table) that necessitates a horizontal scrollbar.
To mitigate, we apply an attribute to transform the DOM, stripping the links
from the segment and rewriting the HTML to list the links vertically, into two
columns.

Whereas the default action for a subpage attribute is to render into a separate
HTML file, setting one more attribute can allow the subpage to be loaded asyn-
chronously and on demand into a div element in the current page. That is, any
subpage can set to render into the current document using an asynchronous http
request (AJAX). The m.Site framework injects the needed Javascript functions
and creates appropriate div containers to enable this functionality on those pages
that require it. The container is hidden and empty by default. When displayed,
it can be centered in the viewport. Thus, it gives the appearance of being able
to “activate” otherwise static portions of the pre-rendered snapshot, all without
reloading the page. This has the added advantage of saving bandwidth and la-
tency by not having to reload and parse large amounts of CSS and Javascript.
The site’s navigation links are loaded asynchronously through this method.

56 A. Koehl and H. Wang

4.4 AJAX Support

Consider for a moment, the most typical use of asynchronous Javascript calls
on a given website: a user clicks on a link, causing data to be retrieved into a
DIV element, circumventing the cost of a full page load. At the low level, a user
clicks on a link, triggering a Javascript onClick event, which in turn instantiates
an asynchronous call to the server (usually a GET request), whose response is
then marshaled to another Javascript function serving as a handler to populate
a DIV element.

On mobile devices that support AJAX, such as Apple’s iPad, iPhone, and
Google Droid phones, no content adaptation is needed to maintain the original
interactivity of the website. That is, the original asynchronous calls can be em-
ployed on these mobile devices, saving full-page rendering costs as is the case on
desktop platforms. However, the next subsection shows how content adaptation
can be used for these devices.

For non-AJAX capable devices, like the Blackberry’s browser, content adapta-
tion can be employed to restore AJAX-like interactivity. Previous work highlights
a “remote browser in a proxy” metaphor [21] as a solution, but unfortunately,
this solution does not scale well. How then, can AJAX interactivity be main-
tained without a remote browser?

As it turns out, the solution is simple—rewrite the link that gets sent to the
device, and embed an additional function for the proxy to satisfy the request.
For example, the following onClick handler for a “Show Picture” thumbnail
loads a larger picture version when clicked:

$("#picframe").load(’site.php?do=showpic&id=1’)

The original site has a server-side AJAX request handler invoked when the action
showpic and an id are supplied to the script. Upon validation (proper session,
security, and accessible id), the desired image is displayed. This link would be
adapted, using server-side jQuery, with a static call to the proxy, as follows:

proxy.php?action=1&p=1

This illustration is invariably simple, but is easily extended. When a site is inte-
grated with the Google API and Yahoo (YUI) DOM API’s, the link translation
is more complex, but just as easily performed by the framework. Why not re-
place the link with a direct call to site.php? In more complex instances the
returned result is rarely a simple picture, and often contains XML or JSON and
must be massaged via Javascript. This can be handled easily and efficiently in the
php-based proxy augmented with server-side jQuery. Using a CSS3-style pattern
allows the content adaptation to be more robust to changes. The proxy’s action
is no more than a function, and the parameter p is its parameter representing
the id in the original call.

m.Site: Efficient Content Adaptation for Mobile Devices 57

4.5 AJAX Evaluation

Many popular “apps” for Apple’s iPad and iPhone platforms are site-specific
content-adaptation applications, which make navigation of data and page inten-
sive sites more convenient for mobile users, in spite of the fact that these devices
do already support AJAX, Javascript, and many HTML5 features.

To evaluate our approach, we choose to adapt a portion of the popular clas-
sified listing engine (CraigsList.com) using our proxy. Craigslist users browse
pages of classified listings organized by category and sorted by date; clicking on
a link brings the user to a new page with the contents of the selected ad. The
evaluation device is a 1st-generation iPad and we want to take advantage of its
extra screen real estate, to help the user locate desired information faster.

Craigslist does not ordinarily require any AJAX requests, which for a mobile
device means an overuse of the browser’s tiny back button, and continual reload-
ing of pages. Rather than designing a platform specific application through the
Apple developer network, we develop a browser-based content adaptation appli-
cation for Craigslist, which simplifies navigation by adding asynchronous data
loads.

Figure 6 shows the before-and-after results using our prototype. On the top
left is the original site rendered in Google Chrome containing a page of links to
classified ads. The second and third snapshots show the links and text identified
in the administrator tool, and the proxy code. The last illustration is the result
of content adaptation applied to the original page.

The adapted site is split into two DIV panes, with the left pane containing
the list of classified listings, and the right pane containing the detailed classified
listing. When an ad in the left pane is clicked, an AJAX call is dispatched to the
proxy in the manner previously described. The proxy checks the cache for the
downloaded page, and if it does not exist, fetches the page from CraigsList, per-
forms the content adaptation, and outputs it to the iPad as an AJAX response.
The result is a much more enjoyable browsing experience on the mobile device.

4.6 Limits to Scalability

As mentioned previously, our work is motivated by acknowledged scalability
issues with the approach used in [21]. In that system, a costly browser instance
is required for every client request. The core of our approach is to mitigate this
cost, by (1) amortizing rendering costs across multiple clients where possible,
and (2) only using a full-scale browser instance when absolutely necessary for
server-side graphical rendering. In most cases, the server-side browser metaphor
is maintained by our proxy as a lightweight and scalable substitute.

To illustrate the improvement offered by our approach, we conduct a series
of tests to measure the throughput (i.e., the number of satisfied requests) under
various load conditions. We simulate repeated client requests for a remote site,
while we vary the percentage of requests that require instantiation of a full
browser instance. Our tests are performed on commodity dual-core hardware
running Windows Vista, Qt, and WebKit, and do not make use of a thread

58 A. Koehl and H. Wang

Fig. 6. Adding AJAX calls to enhance Craig’s List for the iPad

pool of browser instances. Using a browser pool can potentially violate security
assumptions if shared by multiple clients.

Figure 7 shows our results. The tests are performed three times per data point,
each over a one minute measurement window. The interarrival times between
full-scale rendering requests are randomly distributed. A U[0,1] random number
is assigned to each request; if the number exceeds the percentage being tested,
the request is marked as not requiring a browser instance. As the figure depicts,
by limiting the number of requests requiring a graphical render, we are able
to increase the number of satisifed requests from 224 to 29038, two orders of
magnitude. We expect similar results on non-commodity server hardware as well.
For many sites like our test site, rendering the main snapshot is only required
once per hour and can be shared by multiple users. Caching and amortizing
rendering costs over thousands of clients makes the cost negligible.

m.Site: Efficient Content Adaptation for Mobile Devices 59

Fig. 7. Increased scalability with addition of lightweight proxy for majority of requests

5 Conclusion

As more and more users access the Web via mobile devices, it becomes essential
for site administrators to adapt content for mobile users. However, mobilizing
existing content through templates and custom redesign is a costly, tedious,
and time-consuming process. Thus, tools to streamline the process are in great
demand. In this paper, we have presented the m.Site framework, a powerful
set of tools that bolster productivity and provide site administrators with the
ability to adapt web content for their mobile users. With a visual tool, a familiar
attribute paradigm, and an extensible server-side framework, a site administrator
can quickly generate code for content adaptation proxies that streamline site
functionality. By building a pluggable framework and only calling on a browser
instance when absolutely necessary, we have improved the scalability issues from
previous work. We have built a prototype of m.Site and validated its effectiveness
as a content adaptation tool on real online community websites.

Acknowledgements. We are grateful to the anonymous referees for their in-
sightful feedback. This work was partially supported by NSF grant 0901537 and
ARO grant W911NF-11-1-0149.

References

1. Greasemonkey (2009), http://www.greasespot.net
2. Greasemonkey user scripts (2009), http://www.userscripts.org
3. Platypus firefox extension (2010), http://platypus.mozdev.org
4. Apple dashcode (2012), http://developer.apple.com/tools/dashcode/
5. Apple webkit html engine (2012), http://webkit.org

http://www.greasespot.net
http://www.userscripts.org
http://platypus.mozdev.org
http://developer.apple.com/tools/dashcode/
http://webkit.org

60 A. Koehl and H. Wang

6. Browser compatibility information (2012), http://www.quirksmode.org
7. Detect mobile browsers (2012), http://detectmobilebrowsers.mobi
8. jquery, the write less, do more, javascript library (2012), http://www.jquery.com
9. Opera-mini browser (2012), http://www.opera.com

10. Skyfire mobile browser (2012), http://www.skyfire.com
11. Bickmore, T., Schilit, B.: Digestor: Device-independent access to the world wide

web. In: Proc. WWW-6, Santa Clara, CA, pp. 655–663 (1997)
12. Bila, N., Ronda, T., Mohomed, I., Truong, K., de Lara, E.: Pagetailor: Reusable

end-user customization for the mobile web. In: ACM MobiSys 2007, San Juan,
Puerto Rico (June 2007)

13. Chen, Y., Ma, W.-Y., Zhang, H.-J.: Detecting web page structure for adaptive
viewing on small form factor devices. In: Proceedings of the 12th International
Conference on World Wide Web, New York, NY, USA (2003)

14. Deboosere, L., Vankeirsbilck, B., Simoens, P., De Turck, F., Dhoedt, B., Demeester,
P., Kind, M., Westphal, F., Taguengayte, A., Plantier, T.: Mobithin management
framework: design and evaluation. In: 3rd International Workshop on Adaptive
and Dependable Mobile Ubiquitous Systems, London, United Kingdom, (July 13-
17, 2009)

15. I. B. Inc. vbulletin forum software (2012), http://www.vbulletin.com
16. Kim, J., Baratto, R., Nieh, J.: Pthinc: a thin-client architecture for mobile wireless

web. In: 15th International Conference on World Wide Web (WWW), Edinburgh,
Scotland (2006)

17. Md. Fudzee, M., Abawajy, J.: A classification for content adaptation systems. In:
10th International Conference on Information Integration and Web-Based Appli-
cations & Services, Linz, Austria (2008)

18. Mohomed, I., Cai, J., de Lara, E.: Urica: Usage-aware interactive content adapta-
tion for mobile devices. In: 1st ACM European Conference on Computer Systems
(EuroSys 2006), Leuven, Belgium (2006)

19. Mohomed, I., Scannell, A., Bila, N., Zhang, J., de Lara, E.: Correlation-based con-
tent adaptation for mobile web browsing. In: ACM/IFIP/USENIX International
Conference on Middleware, Newport Beach, CA (2007)

20. Moshchuk, A., Gribble, S., Levy, H.: Flashproxy: transparently enabling rich web
content via remote execution. In: 6th International Conference on Mobile Systems,
Applications, and Services (Mobisys), Breckenridge, CO (2008)

21. Nichols, J., Hua, Z., Barton, J.: Highlight: a system for creating and deploying mo-
bile web applications. In: 21st Annual ACM Symposium on User Interface Software
and Technology (UIST 2008), Monterey, CA (2008)

22. Raggett, D.: Html tidy, http://tidy.sourceforge.net
23. Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.: Virtual network com-

puting. IEEE Internet Computing 2(1), 33–38 (1998)
24. Schilit, B., Trevor, J., Hilbert, D., Koh, T.: m-links: An infrastructure for very small

internet devices. In: 7th Annual International Conference on Mobile Computing
and Networking (Mobicom 2001), Rome, Italy (2001)

25. Xiao, X., Luo, Q., Hong, D., Fu, H., Xie, X., Ma, W.: Browsing on small displays
by transforming web pages into hierarchically structured subpages. ACM Trans.
Web 3(1), 1–36 (2009)

26. Zhang, Y., Guan, X., Huang, T., Cheng, X.: A heterogeneous auto-offloading frame-
work based on web browser for resource-constrained devices. In: International Con-
ference on Internet and Web Applications and Services, pp. 193–199 (2009)

http://www.quirksmode.org
http://detectmobilebrowsers.mobi
http://www.jquery.com
http://www.opera.com
http://www.skyfire.com
http://www.vbulletin.com
http://tidy.sourceforge.net

MORENA: A Middleware for Programming

NFC-Enabled Android Applications
as Distributed Object-Oriented Programs

Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{alombide,kpinte,wdmeuter}@vub.ac.be

Abstract. NFC is a wireless technology that allows software to interact
with RFID tags and that is increasingly integrated into smartphones and
other mobile devices. In this paper, we present MORENA: a middleware
that treats NFC-enabled programs as distributed object-oriented pro-
grams in which RFID tags are represented as intermittently connected
remote objects. We draw inspiration from the ambient-oriented program-
ming paradigm to represent these objects as first-class remote references
which only offer asynchronous communication with the tag to which they
refer. This allows the programmer to implement mobile applications that
read from or write to RFID tags without having to handle every single
fault manually and without blocking the entire application during read
or write operations. We built MORENA on top of the Android plat-
form and evaluated our abstractions by implementing a representative
application running on NFC-enabled Android phones using MORENA.

Keywords: RFID, mobile applications, Android, pervasive computing.

1 Introduction

The Internet of Things [1][2] research vision can now be implemented using
mainstream hardware. Smartphones and other mobile devices are increasingly
equipped with NFC (Near Field Communication) chips that allow to read and
write a wide range of RFID tags. The most prominent ones are high-end phones
running Google’s Android platform [3], such as Google’s Nexus S. One of the
reasons is that companies such as Google are interested in mobile payment appli-
cations, such as Google Wallet [4]. However, such applications are only a fraction
of what is possibly with an NFC-enabled smartphone. Unfortunately, current
APIs that allow the programmer to implement NFC-enabled applications are
designed for very specific scenarios (such as mobile payment) and hence exhibit
a number of drawbacks that make developing more complicated applications
hard and error-prone.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 61–80, 2012.
c© IFIP International Federation for Information Processing 2012

62 A. Lombide Carreton, K. Pinte, and W. De Meuter

1.1 Drawbacks of the Android NFC API

MORENA (MObile RFID-ENabled Android middleware) is designed around the
Google Android NFC API, currently to our knowledge the most advanced NFC
API for mobile devices that is available in the mainstream. This API is designed
to cover the bare essentials to allow the programmer to implement NFC-enabled
applications while not having to deal with every single hardware detail. Still, it
suffers from a number of drawbacks, which we describe below.

Synchronous Communication. Read and write operations on RFID tags
are blocking operations in the Android NFC API. This means that a program
performing such operations is suspended until these operations succeed or fail.
Since these operations are slow in comparison with the rest of the program, the
application becomes unresponsive when not carefully used. Therefore, the docu-
mentation of the API strongly recommends to run RFID operations in a separate
thread. This burdens the programmer with manual concurrency management,
which is hard and error-prone.

Coupling in Time. Reading or writing RFID tags frequently fails because
the tag in question is out of range. Especially with tiny NFC chips as the ones
found in mobile devices, failure is the rule instead of the exception. Manually
dealing with faults requires every single RFID operation to be protected with
exception handling code, further complicating the application code. In many
cases, operations will succeed shortly after their first failed attempt because of a
small change in the physical environment, such as an RFID tag that is positioned
differently with respect to the smartphone. This causes the programmer to write
looping code merely for retrying failed operations. We say that communication
is coupled in time.

Manual Data Conversion. The Android NFC API abstracts away the low-
level memory layout of RFID tags. Still, the programmer must manually convert
application-specific data that has been read from or that will be written to an
RFID tag. This means that when RFID operations are separately developed from
the application logic, the application programmer must have internal knowledge
of these operations to understand how he or she should convert application-
specific data to a suitable representation for storage on the RFID tags’ memory.
This is error-prone because the API does not enforce specific data conversions
to be associated with specific applications and RFID tags.

Tight Coupling with Activity-Based Architecture. Android applications
are always activities : special Java objects representing an Android GUI with
a thread of execution. It is via these activities that the application is notified
of I/O and user interface events (by means of intents) such as RFID events.
Although this event-driven API makes it straightforward to override a number of
callbacks that capture these events and directly undertake the necessary actions
in the activity code, it also introduces a tight coupling of the RFID operations

MORENA: A Middleware for NFC-Enabled Android Applications 63

with activities (i.e. the user interface). This makes it harder to perform RFID
operations outside of the context of such an activity.

1.2 Ambient-Oriented Programming

In this paper, we consider interaction with an RFID tag a distributed comput-
ing problem as opposed to traditional I/O. More specifically, we draw inspiration
from the ambient-oriented programming paradigm [5], which is a programming
paradigm targeting distributed systems consisting of mobile devices intercon-
nected via unreliable, ad hoc wireless networks. Indeed, NFC can be regarded as
an unreliable, ad hoc wireless communication technology while RFID tags can
be considered as simple remote devices.

We have previously integrated RFID into ambient-oriented programming [6]
by relying on non-mainstream RFID hardware and by building dedicated ab-
stractions into an ambient-oriented research language called AmbientTalk [7].
In this work, we crystallize the ideas behind this research into an implementa-
tion on top of mainstream hardware (namely Android smartphones) and using
mainstream programming technology (namely the Android platform in the Java
language). The concepts from ambient-oriented programming discussed below
are carried over as follows.

Tracking of Connectivity. Ambient-oriented programs must keep track of
which services become available and unavailable as devices roam. Similarly, an
RFID-enabled application must be able to keep track of which RFID tags are
currently in and out of range and be notified of changes in the connectivity with
the tags it is interacting with.

Asynchronous Communication. All distributed programming systems have
primitives for sending and receiving data across the network. Ambient-oriented
programming requires these primitives to be non-blocking: a process or thread
of control should not be suspended if the operation cannot be completed im-
mediately. This requirement is based on the fact that in an unreliable network,
communicating parties can often be unavailable, and making a communication
operation block until the communicating party is available may lead to un-
acceptable delays. Non-blocking communication is also known under the term
asynchronous communication, the style of communication now also popular in
rich web applications using AJAX that should not block the web interface. Simi-
larly, for RFID-enabled applications, communication with an intermittently con-
nected RIFD tag should not block the application when the tag is temporarily
out of communication range.

Decoupling in Time. Unreliable wireless connections require communication
models that can abstract from the network connectivity between communicating
processes. It should be possible for two processes to express communication
independently of their connectivity. This significantly reduces the case-analysis
for the programmer, which can reason in terms of a fully connected network

64 A. Lombide Carreton, K. Pinte, and W. De Meuter

by default, and can deal with border cases in an orthogonal way. Similarly,
exchanging data with an intermittently connected RFID tag is prone to many
failures. In many cases, multiple attempts at reading from or writing to an RFID
tag’s memory are needed before an operation succeeds. This should happen
without immediately signaling an error for every single fault to the programmer.
Instead, the implementation should retry these operations without blocking the
application or signaling an error.

First-Class References to Remote Objects. Decoupling in time is achieved
by storing sent messages in an intermediary data-structure. This makes it possi-
ble for communicating parties to interact across unreliable connections, because
the logical act of information sending is decoupled from the physical act of infor-
mation transmission, allowing for the information to be saved and transmitted
at a later point in time when the connection between both parties is restored.

In AmbientTalk, remote services and RFID tags are represented as remote
objects which are always referred to by a remote reference called a far refer-
ence. These far references (first proposed in the E language [8]) are first class,
encapsulate the identity of a remote object and store messages directed to-
wards the remote objects that could not be sent due to physical phenomena.
Additionally, far references encapsulate a thread of control that, in response
to connectivity changes with the object which it refers to, attempts to for-
ward its stored messages (in the correct order). Far referencers offer an asyn-
chronous interface such that the programmer can register observers on it to be
notified of connectivity changes and messages being successfully sent or timed
out.

1.3 Approach

It was our goal to integrate the concepts described above into mainstream tech-
nology such as the Android platform. This is achieved by providing a middleware
that readily integrates with the Android platform (version 4.0 and up). In short,
the Android NFC API models RFID operations as file I/O, while MORENA
treats RFID operations as network communication. Additionally, MORENA
tackles the remaining drawbacks in the Android NFC API, namely manual data
conversion and the tight coupling of the API with the activity-based architecture.

In the next section, we describe the abstractions offered by MORENA for in-
teracting with RFID-tagged objects as if they where remotely connected software
objects which are automatically converted to the correct data format for reading
from and writing to RFID tags. Thereafter in Section 3, we descend one level
deeper into the MORENA middleware which allows the programmer to deal
with references to RFID tags directly and allows to encode custom encoding
strategies for Java objects. Subsequently, in Section 4 we discuss the applica-
tion of MORENA in a representative application. Section 5 discusses related
work and finally, Section 6, details future work on MORENA and concludes this
paper.

MORENA: A Middleware for NFC-Enabled Android Applications 65

2 RFID-Enabled Android Applications as Distributed
Object-Oriented Programs

As mentioned in the introduction, the main idea is to no longer treat RFID
communication as a form of I/O, but to come up with a suitable representation
for RFID tags such that they can be treated as first-class remote objects. A
second objective is to loosen the coupling with activity-based architecture of the
Android API.

MORENA offers two layers of abstraction. On the highest level, the program-
mer uses special Java objects called things which are causally connected to a
specific RFID tag and which can be automatically converted to the correct data
format to be read from or written to RFID tags. The lower level requires the
programmer to interact through a reference with the bare RFID tag, but allows
to come up with custom data conversion strategies (a good example is storing
specific fields of an object directly on the RFID tag while other fields are stored
in some external database). This section is about the highest level where the
programmer uses things.

2.1 Things

Consider an application where facilities offer guests access via their smartphones
or tablets to their WiFi access points by swiping over an RFID tag that contains
the credentials for connecting to the WiFi network. Using the things abstraction,
an object that is read from and written to RFID tags must be a thing. Consider
the WifiConfig class that allows us to create such things defined below.

public class WifiConfig extends Thing {
public String ssid_;
public String key_;

public WifiConfig(
ThingActivity<WifiConfig> activity,
String ssid,
String key) {

super(activity);
ssid_ = ssid;
key_ = key;

}

public boolean connect(WifiManager wm) {
// Connect to ssid_ with password key_

};
}

WifiConfig things are simple objects containing two fields, the SSID and pass-
word of a WiFi network. All fields that are not declared transient are serialized
when the thing is stored on an RFID tag. In this case, both fields are stored.

66 A. Lombide Carreton, K. Pinte, and W. De Meuter

Serialization of things happens by converting Java objects to the JSON format
using Google’s own serialization library (GSON) built into the Android plat-
form. GSON performs deep serialization of all JSON-serializable fields, but does
not support cycles in the object graph to serialize.

Creating a thing requires passing the Android activity in its constructor, as
shown in the example.MORENAoffers a dedicated activity calledThingActivity
which is parametrized with the type of things the activity is interacting with. In
this case, this is the WifiConfig thing type. Internally, such a ThingActivity

captures all low level Android events (such as the ones typically signaled by means
of intents) and triggers the correct actions on the associated thing objects. This
frees the programmer from dealing with Android activities directly for every sin-
gle operation or event.

2.2 Initializing Things

In this section we discuss the initialization of empty RFID tags using things. On
the level of abstraction discussed in this section, the programmer can make use
of several callbacks that can be overridden on the ThingActivity. The one to
use for initializing things is the one overridden below.

@Override
public void whenDiscovered(EmptyRecord empty) {

empty.initialize(
myWifiThing,
new ThingSavedListener<WifiConfig>() {

@Override
public void signal(WifiConfig thing) {

toast("WiFi joiner created!");
}

},
new ThingSaveFailedListener() {

@Override
public void signal() {

toast("Creating WiFi joiner failed, try again.");
}

});
}

It is triggered each time an empty RFID tag is detected. It is triggered with
an EmptyRecord, which is a special thing object denoting an empty tag. Its
initialize method is used to initialize it with a thing object that at that mo-
ment in time is not bound yet to a particular RFID tag. Note that initializing a
thing involves writing data to the RFID tag to store the serialized thing in its
memory. Since this is an operation that may be long lasting (compared to other
computations) and since it may frequently fail, MORENA enforces that it hap-
pens asynchronously. For this, initialize takes in this case three arguments:
the thing to store on the empty tag, a listener object that will be invoked when
the thing is successfully initialized, and an object listener that will be invoked

MORENA: A Middleware for NFC-Enabled Android Applications 67

when the operation fails given a default timeout. Various overloaded versions of
initialize exist, such that for example the failure listener can be omitted or
the timeout value can be manually specified. We chose to expect two different
listener objects as opposed to a single listener object implementing two differ-
ent callbacks: one for success and one for failure. The reason is flexibility: these
tiny listener objects are usually created by directly implementing an interface,
while at the same time, in many cases different success listeners are needed while
only a single or handful failure listeners are required (or the other way around).
Separating them into separate first-class objects introduces more syntax, but
prevents code duplication in such situations.

2.3 Discovering and Reading Things

Just like the whenDiscovered callback for detecting empty RFID tags shown
above, there is an overloaded variant that can be used to detect things that are
already initialized. In our example application, it is overridden as follows:

@Override
public void whenDiscovered(WifiConfig wc) {

toast("Joining Wifi network " + wc.ssid_);
wc.connect();

}

This callback will be triggered every time an RFID is scanned which contains a
thing of type WifiConfig. Upon scanning, the data is deserialized and passed
as a WifiConfig argument to this callback.

For ease of programming, such a thing object like wc encapsulates a cached
version of this deserialized object which allows synchronous access to its fields
and methods. This is used in the example above to call the connect method
which connects the Android device to the WiFi network specified in the wc.

However, synchronous access is not without danger since other devices might
have concurrently updated the thing stored in the RFID tag’s memory. In this
case, no problem can occur because immediately after detecting the thing, the
connect method is called. For critical cases, the programmer must rely on the
asynchronous operations discussed in Section 3.

2.4 Saving Modified Things

The programmer is free to modify thing objects. However, this will render them
inconsistent with their serialized counterpart stored on the corresponding RFID
tag. To write through any changes performed on a thing to the tag memory, the
programmer must explicitly save the object. Since such a save operation involves
writing the serialized thing onto the tag, which is a long-lasting operation thatmay
frequently fail,MORENA enforces save operations to happen asynchronously.The
code snippet below shows how saving a modified thing happens.

Analogous to thing initialization discussed earlier in Section 2.2, a success
listener and a failure listener can be supplied to be notified of a successful or

68 A. Lombide Carreton, K. Pinte, and W. De Meuter

myWifiConfig.ssid_ = "MyNewWifiName";
myWifiConfig.key_ = "MyNewWifiPassword";

myWifiConfig.saveAsync(
new ThingSavedListener<WifiConfig>() {
@Override
public void signal(WifiConfig wc) {

toast("WiFi joiner saved!");
}},

new ThingSaveFailedListener() {
@Override
public void signal() {

toast("Saving WiFi joiner failed, try again.");
}});

failed save. Again, various overloaded versions of the saveAsync method exist,
depending on which callbacks must be specified and whether the timeout value
should be different from the default one. Since we are dealing with NFC technol-
ogy, which only has a range of a few centimeters, we assume that race conditions
are nigh impossible if no exuberantly large timeout values are chosen by the
programmer. One of the future features of MORENA that we are investigating
is providing alternative protection mechanisms against such race conditions.

2.5 Broadcasting Things

Other than using a phone’s built-in NFC chip for reading and writing RFID tags,
the Android NFC API allows to use this same wireless communication technology
to exchange data in an ad hoc fashion between two phones in NFC communica-
tion range. This technology is called Beam. The BeamAPI is largely similar to the
API for communication with RFID tags, which it means it suffers from the same
drawbacks, namely synchronous communication, coupling in time, manual data
conversion and a strong coupling with the activity-based architecture. MORENA
allows to easily exchange thing objects between phones over an NFC connection
using beam. In our example application, users can connect other users to theWiFi
network by bringing their phones close together and broadcasting a WifiConfig
thing. This happens as follows.

myWifiConfig.broadcast(
new ThingBroadcastSuccessListener<WifiConfig>() {
@Override
public void signal(WifiConfig wc) {

toast("WiFi joiner shared!");
}},

new ThingBroadcastFailedListener<WifiConfig>() {
@Override
public void signal(WifiConfig wc) {

toast("Failed to share WiFi joiner, try again.");
}});

MORENA: A Middleware for NFC-Enabled Android Applications 69

As one can see from the broadcast method used above, this is again an asyn-
chronous operation (as it may frequently fail), adhering to the interface used
before in this paper.

The reception of such a thing object using broadcast, causes the standard
whenDiscovered callback of the receiving ThingActivity to be invoked. Re-
member from our example application that upon reception it will connect the
Android device to the WiFi network stored on the tag. Things received via
broadcast will not be bound to a particular RFID tag (although they can later
be by initializing empty tags with them).

3 RFID-Tagged Objects by Reference

In this section, we descend a level of abstraction lower in the MORENA middle-
ware. It offers a reference abstraction to RFID-tagged objects instead of thing
objects to the programmer, which allows for asynchronous read and write oper-
ations with custom data conversion strategies. The thing abstractions are built
directly on top of this layer of abstraction. For the sake of brevity, we use a sim-
ple example application that allows to read and write strings onto RFID tags
supplied by the user.

3.1 Detecting RFID Tags

Detecting RFID tags already happens in an event-driven manner by activities in
the Android API. MORENA offers a TagDiscoverer class that captures these
events generated by a specific activity and uses them to generate tag reference
objects: the objects that represent remote references to RFID tags in MORENA.

Consider a simple Android application that simply shows plain text stored on
the last scanned RFID tag and allows the user to overwrite it with new content.
One could create a TagDiscoverer subclass as shown below.

private class MyTagDiscoverer extends TagDiscoverer {
@Override
public void onTagDetected(TagReference ref) {
readTagAndUpdateUI(reference);

}
@Override
public void onTagRedetected(TagReference ref) {
readTagAndUpdateUI(reference);

}
}

This subclass overrides two methods that can be used to track the connectivity of
an RFID tag: onTagDetected for a tag that has never been detected before, and
onTagRedetected for a tag that has already previously been detected. These
methods are called with a tag reference as sole argument, which can subsequently
be used to interact with the RFID tag (as explained below in Section 3.2).
In this simple application, the user interface showing the contents of the last

70 A. Lombide Carreton, K. Pinte, and W. De Meuter

scanned tag is updated with the contents of the tag (the implementation of
readTagAndUpdateUI is shown in Section 3.2).

TagDiscoverers are instantiated by passing them the activity (of type
NFCActivity) that generates the RFID events and a MIME type that identifies
the type of data that the tag contains such that the correct intent is triggered by
the activity. Tags containing other types of data are disregarded. Typically, this
data type is defined per application, as shown below for our example application.

new MyTagDiscoverer(
this,
TEXT_TYPE,
new NdefMessageToStringConverter(),
new StringToNdefMessageConverter());

Additionally, TagDiscoverers are associated with two converter objects that
are responsible for converting objects for storage on RFID tags and data read
from an RFID tag back into the correct object. These converter objects are
explained later in Section 3.2. The idea is to encapsulate data conversion within
TagDiscoverers and the TagReferences they generate. This way, an
NFCActivity can easily use multiple tag references without worrying about
data conversion. Once a TagDiscoverer is instantiated, the programmer must
no longer worry about activities.

3.2 The Tag Reference Abstraction

Once a tag reference is obtained (either through a TagDiscoverer or by pa-
rameter passing), it offers a non-blocking event-driven API in its own right for
asynchronously reading from and writing data from the tag. Additionally, it
keeps a queue of buffered read and write operations that are still waiting to be
processed (for example because the RFID tag to which it points is temporarily
unavailable). Tag references encapsulate a private event loop that uses its own
thread of control to sequentially check if the first message in the queue can be
processed. If it fails, it just remains in the queue. If it succeeds, the registered
event listener on this asynchronous operation is triggered and the operation is
removed from the queue, after which the tag reference attempts to execute the
next scheduled operation. It is guaranteed that a message is never processed
before previously scheduled messages are processed first. If an operation times
out, it is removed from the queue as well and the next operation is attempted,
but this time the failure listener associated with the operation is triggered (if
there is one).

Listeners associated with these non-blocking tag reference operations are al-
ways asynchronously scheduled for execution in the activity’s main thread, which
frees the programmer of manual concurrency management. It also means that
usually all statements after a tag reference operation in the code are executed
first before the listeners are executed. Synchronization of operations must hap-
pen by nesting these listeners.

MORENA: A Middleware for NFC-Enabled Android Applications 71

Fig. 1. The tag reference abstraction

The tag reference abstraction is depicted schematically in figure 1. In addition
to the bare Android tag object, it also encapsulates a cached version of the
contents of the RFID tag, which is updated after each read and write operation.
Although it provides synchronous access to these cached data, the programmer
must be aware that if a tag is not seen for some time, its contents might have
changed and an asynchronous read is a better option.

Within one Android activity, only a single unique tag reference can exist to
the same RFID tag. Behind the scenes, TagDiscoverer instances use a private
TagReferenceFactory that generates tag references for tags that are detected
for the very first time, and subsequently reuses these references when tags are
redetected and a reference to them is requested. It is however the programmer’s
responsibility to garbage collect unused tag references, as this is application
specific and usually driven by external events (as opposed to internal references).
For future versions of MORENA, we are investigating leasing strategies [9] that
allow the application to obtain a lease on an RFID tag for a limited amount of
time, after which it expires and the reference to the tag can be safely garbage
collected.

In the two subsequent sections, we describe the asynchronous interface offered
by the tag reference abstraction.

Reading RFID Tags. Below is the implementation of the private method that
is called by the TagDiscoverer class of our simple example application.

As we showed in Section 3.1, when a new tag is detected or a previously
detected tag is redetected, this method is called with the obtained tag reference.
The tag reference is used for asynchronously reading the tag. If this does not
succeed within a predefined timeout, an error is shown to the user. If it succeeds
within the predefined timeout, the user interface is updated with the cached
data of the tag reference.

72 A. Lombide Carreton, K. Pinte, and W. De Meuter

private void readTagAndUpdateUI(TagReference ref) {
tagReference_ = ref;
ref.read(
new TagReadListener() {

@Override
public void signal(TagReference ref) {

handleTagRead(ref);
}},

new TagReadFailedListener() {
@Override
public void signal(TagReference ref) {

handleTagReadFailed();
}});

}

Writing RFID Tags. Writing tags using a tag reference happens in a similar
fashion. The listener shown below is triggered by our simple example application
when the user clicks the button that causes new text being inputted by the user
to be written to the last seen RFID tag.

private OnClickListener saveButtonListener =
new OnClickListener() {
public void onClick(View button) {

String toWrite = // Get text from EditText field
tagReference_.write(

toWrite,
new TagWrittenListener() {
@Override
public void signal(TagReference ref) {

handleTagRead(ref);
}},

new TagWriteFailedListener() {
@Override
public void signal(TagReference ref) {

handleTagWriteFailed();
}});

}
};

It just gets the data from a text field, which is afterwards automatically converted
to the appropriate format by the tag reference. This way, data conversion is
defined per tag reference and given such a tag reference, the programmer must
no longer worry about it.

Just like for reading tags, we allow to register separate listener objects for
successful writes and failed writes. In the success listener, the user interface is
updated with the new cached data of the tag (which is the data that has been

MORENA: A Middleware for NFC-Enabled Android Applications 73

physically written on it, otherwise this listener would not have been triggered).
In the failure listener, an error message is shown to the user.

Converting Objects for Storage on RFID Tags. Converting objects for
storage on RFID tags and converting data read from RFID tags back to objects
happens on a per-tag reference and per-TagDiscoverer basis. This decouples
detection of tags and data conversion from the NFCActivity. Implementing
these converters requires some knowledge about the Android NFC API, namely
its implementation of the NDEF1 (NFC Data Exchange Format) standard [10].

The class shown below implements a converter for converting data read from
an RFID tag into a string for our example application.

private class NdefMessageToStringConverter
implements NdefMessageToObjectConverter {
@Override
public Object convert(NdefMessage ndefMessage) {

return new String(
(ndefMessage.getRecords()[0]).getPayload());

}
};

In our simple example application, tags contain just a single record containing
a string.

The class shown below implements the corresponding converter for converting
a string back to the NDEF format for storage on an RFID tag’s memory.

private class StringToNdefMessageConverter
implements ObjectToNdefMessageConverter {
@Override
public NdefMessage convert(Object o) {

String toConvert;
if (o == null) { toConvert = ""; }
else { toConvert = (String)o; }
NdefRecord r = new NdefRecord(

NdefRecord.TNF_MIME_MEDIA,
TEXT_TYPE,
new byte[0], // No id.
toConvert.getBytes(Charset.forName("UTF-8")));

return new NdefMessage(new NdefRecord[]{ r });
}

};

The details are not of great importance to this paper. It simply creates a byte
representation of the string in the correct charset and stores it in a single
NdefMessage object contained into a new NdefRecord. This record specifies
the type of tags on which TagDiscoverers filter.

1 NDEF messages are in essence lists of byte arrays (NDEF records) in which the data
must be stored.

74 A. Lombide Carreton, K. Pinte, and W. De Meuter

3.3 Interaction with Other Phones Using Beam

Similar to interaction with RFID tags, we built an asynchronous, event-driven
API for exchanging beamed messages. Being notified of an asynchronously re-
ceived beam message happens by registering a BeamReceivedListener, such as
shown below.

new MyBeamListener(
this,
TEXT_TYPE,
new NdefMessageToStringConverter());

Just like a TagDiscoverer, its constructor takes an NFCActivity as first
argument, the tag MIME type and a read converter. This allows that the
BeamReceivedListener autonomously converts received NDEF messages to ob-
jects without the programmer needing to worry about the activity which signals
the low-level events.

Below is the implementation of the subclass instantiated above.

private class MyBeamListener extends BeamReceivedListener {
@Override
public void onBeamReceived(Object o) {

// Set text of EditText field.
}

}

The programmer must override the onBeamReceived callback to react on
a received beam message. The data transported in the beam message is
automatically converted into an object using the read converter of the
BeamReceivedListener.

In contrast to the interaction with RFID tags, beaming does not happen by
means of a reference abstraction. The reason is that beaming is an undirected
operation that broadcasts a message to any device willing to accept the beamed
data. Instead, beaming messages to other phones happens using Beamer objects
that again encapsulate data conversion to decouple this from the activity. The
instantiation of the Beamer object used by our example application is shown
below. The first argument is the NFCActivity.

private Beamer beamer_ = new Beamer(
this,
new StringToNdefMessageConverter());

Just like for RFID operations, beaming messages must happen asynchronously,
using the beam method that is used below in the listener that is triggered when
the user clicks the beam button.

MORENA: A Middleware for NFC-Enabled Android Applications 75

private OnClickListener beamButtonListener =
new OnClickListener() {
public void onClick(View button) {

String toBeam = // Get text from EditText field
// Beaming is undirected.
beamer_.beam(

toBeam,
new BeamSuccessListener() {
@Override
public void signal() {

handleBeamSucceeded();
}},

new BeamFailedListener() {
@Override
public void signal() {

handleBeamFailed();
}});

}
};

When this button is clicked, the data to be beamed is retrieved from a text field
in the user interface and passed to the asynchronous beam operation. To detect
a successful beam operation, it takes a listener as second argument. To detect
if the beamed message times out, as a third argument it takes another listener.
These listeners are optional and are the only way to be notified of the state
of the asynchronous operation. It exhibits the same behavior as performing an
asynchronous write operation on an RFID tag.

Of particular importance is the fact that data conversions are now encapsu-
lated in TagDataConverter objects, which are associated with TagReference,
TagDiscoverer, Beamer and BeamReceivedListener objects. This means
that a single activity can use multiple TagDiscoverers generating different
TagReferences and different Beamers and BeamReceivedListeners all with
their separate data conversion strategies that are automatically applied when
exchanging data with RFID tags or using Beam.

3.4 Filtering Events

As discussed earlier in this section, the only way to distinguish between inter-
esting scanned tags or interesting received beam messages and non-interesting
ones, is to filter on the tag type (as is done by the TagDiscoverers and
BeamReceivedListeners). Since this is a rather coarse-grained way of filter-
ing, the programmer finds himself implementing filtering behavior manually
and scattered over the application code. This is why TagDiscoverers and
BeamReceivedListeners offer an additional method that can be optionally
overridden by the programmer.

76 A. Lombide Carreton, K. Pinte, and W. De Meuter

For TagDiscoverers, this checkCondition method is a predicate that will
be applied on the tag reference generated or retrieved by the TagDiscoverer,
as shown below.

private class MyTagDiscoverer extends TagDiscoverer {
// ... Same as before ...
@Override
public boolean checkCondition(TagReference ref) {
// ... condition ...

}
}

A typical pattern is that the cached data of the tag reference is used to filter on.
For BeamReceivedListeners, a similar predicate can be applied on the object

received in the beam message, as shown below.

private class MyBeamListener extends BeamReceivedListener {
// ... Same as before ...
@Override
public boolean checkCondition(Object o) {
// ... condition ...

}
}

Only when these predicates are satisfied, the listeners are triggered.

4 Evaluation

In this section, we compare two versions of the WiFi sharing application used
as an example throughout this paper. The first version is based on the stan-
dard NFC API of the Android platform. The second is almost exactly the same
application2, but built on top of the MORENA middleware3. The focus of our
work is reducing the effort that is needed to develop an RFID-enabled Android
application. As a metric we chose to count the lines of code needed for imple-
menting particular RFID subproblems in the application. These subproblems are
(1) event handling (e.g. to be notified of detected tags), (2) data conver-
sion, (3) failure handling, (4) read/write functionality, and finally (5)
concurrency management (to prevent blocking the application on tag I/O).

Figure 2 shows two graphs comparing both implementations. The graph on
the left-hand side shows a comparison of the number of lines of code dedicated to
each subproblem. The total number of RFID-related lines of code for the hand-
crafted implementation is 197 and for the implementation based on MORENA
36 (a reduction by a factor 5).

2 We will discuss the differences at the end of this section.
3 The source of these experiments and the MORENA middleware can be downloaded
at: http://soft.vub.ac.be/amop/research/rfid/morena/files

http://soft.vub.ac.be/amop/research/rfid/morena/files

MORENA: A Middleware for NFC-Enabled Android Applications 77

Fig. 2. Comparison of handcrafted RFID code and MORENA code

The right-hand side shows the percentages that the RFID subproblems con-
stitute to the total count. We observe that MORENA shifts the focus to event
handling and frees the programmer of any concurrency management. This is
to be expected because MORENA’s asynchronous communication abstractions
take care of concurrency automatically at the expense of more event-driven code.

This leads us to a final note on this comparison. MORENA not only simplifies
dealing with RFID technology, it also holds another bonus over the handcrafted
implementation. Thanks to its asynchronous communication abstractions, op-
erations that fail due to tag disconnections are automatically retried, which is
not incorporated in the handcrafted version, in which the user must manually
reattempt the operation. Furthermore, in the MORENA version, multiple write
operations can be batched until a tag comes in range, while in the handcrafted
solution the user can only attempt to write as soon as a tag is in range. Imple-
menting the same behavior in the handcrafted version will further complicate
the implementation. In short, MORENA not only significantly reduces the com-
plexity of implementing RFID-enabled Android applications, but in comparison
to naively using the Android NFC API offers a better user experience as well.

5 Related Work

Typical application domains for RFID technology are asset management, prod-
uct tracking and supply chain management. In these domains RFID technology
is usually deployed using traditional RFID middleware, such as Aspire RFID
[11] and Oracle’s Java System RFID Software [12]. RFID middleware applies

78 A. Lombide Carreton, K. Pinte, and W. De Meuter

filtering, formatting or logic to tag data captured by a reader such that the data
can be processed by a software application. Such traditional middleware uses a
setup where several RFID readers are embedded in the environment, controlled
by a single application agent. These systems rely on a backend database which
stores the information that can be indexed using the identifier stored on the
tags. They use this infrastructure to associate application-specific information
with the tags, although some of them allow to store information directly on the
tags, such as for example WinRFID.

WinRFID [13] is an RFID middleware that is entirely based on the .NET
Framework and Windows services, which are specified in XML. Services can read
from and write data onto RFID tags using an object-oriented abstraction. The
tag data is also specified in XML and is converted back and forth to a simplified
and compressed format when written onto tag memory. The main drawback
of WinRFID however is that the devices and/or services have to be explicitly
registered into a registry component, such that the services can contact this
registry to interact with for example RFID readers that were a-priori registered.

Fosstrak [14] (formerly named Accada) is an open source RFID middleware
platform that is based on the Electronic Product Code standards [15]. Fosstrak
offers a virtual tag memory service (VTMS) that similarly to our approach facil-
itates writing application-specific data to RFID tags asynchronously. However,
Fosstrak only supports writing key-value pairs.

In contrast to MORENA, the systems discussed above do not target mobile
applications running on for example smartphones. Still, in the literature one can
find interesting mobile applications making use of RFID, such as home care [16]
or the tracking of personal belongings [17]. This reinforces our idea that there is a
need for better programming abstractions in this domain. Conversely, MORENA
does not target industrial applications which have to deal with a massive amount
of RFID tags, and thus require greater scalability. We are currently investigating
how to carry over some of MORENA’s concepts into such a middleware.

An alternative distributed computing paradigm to the ambient-oriented pro-
gramming, on which MORENA is based, is distributed tuple spaces. In [18],
RFID tags are used to store application-specific data and form a distributed
tuple space that is dynamically constructed by all tuples stored on the tags that
are in reading range. Mobile applications interact by means of traditional tuple
space operations. However, there is no way to control on which specific tag tuples
will be stored.

6 Conclusion and Future Work

In this paper, we have presented MORENA, a middleware that aims at raising
the level of abstraction on which developers can build RFID-enabled Android
applications. We have evaluated the abstractions offered by MORENA by imple-
menting a mobile RFID-enabled application using the bare essentials provided
by the Android platform and comparing the implementation to an implementa-
tion based on MORENA. We observe that using MORENA significantly eases
the development of mobile RFID-enabled Android applications.

MORENA: A Middleware for NFC-Enabled Android Applications 79

The main feature that remains to be added in a future version of MORENA
is a leasing mechanism which has two goals. The first goal is to protect cached
thing objects from data races when other RFID-enabled devices are able to write
new data on their corresponding RFID tags. The second goal is to allow cached
objects to be garbage collected automatically. The mechanism that we envision is
to write a locking timestamp and a device ID on the RFID tag’s memory by the
device willing to interact with the tag. Only if this succeeds, the device is granted
exclusive access. The timestamp dictates for how long the device has exclusive
access to the memory of the tag. Beyond this timestamp, the lease expires and
the device looses its exclusive access, unlocking the tag for interaction with other
devices. The assumption made here is that the clock drift among Android devices
is small enough to exclude practically all race conditions.

To summarize, the abstractions offered by the MORENA middleware make
developing mobile RFID-enabled Android applications easier as follows:

Automatic Conversion of Thing Objects. MORENA’s thing objects can
be used as regular Java objects, but can in addition be seamlessly read
from or written to RFID tags.

Tracking of Connectivity. MORENA offers an event-driven interface such
that an application can be notified if a particular RFID tag is in or out
of communication range.

First-Class References to RFID Tags. In MORENA, RFID tags are
uniquely linked to tag references or thing objects.

Asynchronous Communication and Decoupling in Time. MORENA of-
fers asynchronous and fault-tolerant operations for reading or writing the
RFID tags’ memories, reducing the case analysis for the programmer and
freeing the programmer from manual concurrency management to keep the
application responsive.

Looser Coupling from the Activity-Based Architecture. MORENA en-
capsulates the low-level NFC API which is tightly coupled to Android ac-
tivities into thing objects, tag references or other higher level abstractions
such that applications become less coupled to the user interface.

Support for Beam. Just like reading and writing things to and from RFID
tags, using the same abstractions, things can be broadcasted to other phones
using NFC.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

2. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as building
blocks for the internet of things. IEEE Internet Computing 14, 44–51 (2010)

3. Komatineni, S., MacLean, D., Hashimi, S.Y.: Introducing the android computing
platform. In: Pro Android 3, pp. 1–20. Apress (2011)

80 A. Lombide Carreton, K. Pinte, and W. De Meuter

4. Handa, R., Maheshwari, K., Saraf, M.: Google Wallet - A Glimpse Into the Future
of Mobile Payments. GRIN Verlag GmbH (2011)

5. Dedecker, J., VanCutsem, T., Mostinckx, S., D’Hondt, T., DeMeuter,W.: Ambient-
Oriented Programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

6. Lombide Carreton, A., Pinte, K., De Meuter, W.: Software abstractions for mobile
rfid-enabled applications. In: Software: Practice and Experience (2011)

7. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
Ambienttalk: object-oriented event-driven programming in mobile ad hoc net-
works. In: XXVI International Conference of the Chilean Computer Science Society,
pp. 3–12. IEEE Computer Society (2007)

8. Miller, M.S., Tribble, E.D., Shapiro, J.S.: Concurrency Among Strangers: Program-
ming in E as Plan Coordination. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.
LNCS, vol. 3705, pp. 195–229. Springer, Heidelberg (2005)

9. Gray, C., Cheriton, D.: Leases: an efficient fault-tolerant mechanism for distributed
file cache consistency. In: SOSP 1989: Proceedings of the Twelfth ACM Symposium
on Operating Systems Principles, pp. 202–210. ACM Press, New York (1989)

10. Madlmayr, G., Ecker, J., Langer, J., Scharinger, J.: Near field communication:
State of standardization. In: Michahelles, F. (ed.) Proceedings of the International
Conference on the Internet of Things 2008, vol. 1, p. 6. ETH Zürich (March 2008)

11. Kefalakis, N., Leontiadis, N., Soldatos, J., Gama, K., Donsez, D.: Supply chain
management and NFC picking demonstrations using the AspireRfid middleware
platform. In: ACM/IFIP/USENIX Middleware 2008, pp. 66–69. ACM, New York
(2008)

12. Oracle (Sun Developer Network), Developing auto-id solutions using sun java sys-
tem rfid software

13. Prabhu, B.S., Su, X., Ramamurthy, H., Chu, C.-C., Gadh, R.: Winrfid – a mid-
dleware for the enablement of radio frequency identification (rfid) based applica-
tions. White paper, UCLA – Wireless Internet for the Mobile Internet Consortium
(January 2008)

14. Floerkemeier, C., Roduner, C., Lampe, M.: Rfid application development with
the accada middleware platform. IEEE Systems Journal, Special Issue on RFID
Technology 1, 82–94 (2007)

15. EPCGlobal Standards Overview (September 2010),
http://www.epcglobalinc.org/standards

16. Sidén, J., Skerved, V., Gao, J., Forsström, S., Nilsson, H.-E., Kanter, T., Gulliksson,
M.: Home care with nfc sensors and a smart phone. In: Proceedings of the 4th
International Symposium on Applied Sciences in Biomedical and Communication
Technologies, ISABEL 2011, p. 150:1–150:5. ACM, New York (2011)

17. Watfa, M.K., Kaur, M., Daruwala, R.F.: IPurse: An Innovative RFID Application.
In: Zhou, M. (ed.) ISAEBD 2011, Part IV. CCIS, vol. 211, pp. 531–538. Springer,
Heidelberg (2011)

18. Mamei, M., Quaglieri, R., Zambonelli, F.: Making tuple spaces physical with rfid
tags. In: Symposium on Applied computing, pp. 434–439. ACM, New York (2006)

http://www.epcglobalinc.org/standards

Fmeter: Extracting Indexable Low-Level System
Signatures by Counting Kernel Function Calls

Tudor Marian1, Hakim Weatherspoon2, Ki-Suh Lee2, and Abhishek Sagar3

1 Google
2 Cornell University

3 Microsoft Corp.

Abstract. System monitoring tools serve to provide operators and developers
with an insight into system execution and an understanding of system behavior
under a variety of scenarios. Many system abnormalities leave a significant im-
pact on the system execution which may arise out of performance issues, bugs,
or errors. Having the ability to quantify and search such behavior in the system
execution history can facilitate new ways of looking at problems. For example,
operators may use clustering to group and visualize similar system behaviors. We
propose a monitoring system that extracts formal, indexable, low-level system
signatures using the classical vector space model from the field of information
retrieval and text mining. We drive an analogy between the representation of ker-
nel function invocations with terms within text documents. This parallel allows
us to automatically index, store, and later retrieve and compare the system sig-
natures. As with information retrieval, the key insight is that we need not rely
on the semantic information in a document. Instead, we consider only the sta-
tistical properties of the terms belonging to the document (and to the corpus),
which enables us to provide both an efficient way to extract signatures at runtime
and to analyze the signatures using statistical formal methods. We have built a
prototype in Linux, Fmeter, which extracts such low-level system signatures by
recording all kernel function invocations. We show that the signatures are natu-
rally amenable to formal processing with statistical methods like clustering and
supervised machine learning.

Keywords: Information retrieval, term-frequency inverse document frequency,
indexable system signatures.

1 Introduction

System monitoring is key to understanding system behavior. Developers and operators
rely on system monitoring to provide information necessary to identify, isolate, and po-
tentially fix performance bottlenecks and hidden bugs. Unfortunately, as computer sys-
tems become increasingly complex, understanding their execution behavior to identify
such performance bottlenecks and hidden bugs has become more difficult. Furthermore,
large scale system deployments, like the present-day datacenters that power cloud ser-
vices, require increasingly complex automatic system monitoring infrastructures [1–3].

One issue is that existing monitoring solutions have not been designed to enable the
extraction of low-overhead, low-level, system signatures that are sufficiently expressive

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 81–100, 2012.
c© IFIP International Federation for Information Processing 2012

82 T. Marian et al.

to be used in automatic analysis by formal methods. For example, instruction level mon-
itoring in software and breakpoint debugging incur prohibitive overheads; system call
tracing is both expensive and not expressive enough; hardware counters by themselves
provide little amounts of specialized information while hardware counter assisted profil-
ing is not expressive enough since it relies on sampling. By contrast, high-level metrics,
like the number of completed transactions per second are overly general and application
specific, and are unable to capture with sufficient fidelity low-level system behavior.

Another issue is that few monitoring solutions provide a systematic and formal way
to leverage past diagnostics in future problem detection and resolution [4]. Instead, sys-
tem monitoring has traditionally been performed in an ad-hoc fashion, using anything
from printf/printk statements, debuggers, operating system process tracers, run-
time instrumentation [5], to logging libraries, kernel execution tracing [6], low-level
hardware counters [7,8], generalized runtime statistics [9,10], and system call monitor-
ing [11] to name a few.

In this paper we introduce Fmeter—a novel monitoring technique that efficiently
extracts indexable low-level system descriptions, or signatures, which accurately cap-
ture the state of a system at a point in time. Every low-level signature is essentially a
feature vector where each feature roughly corresponds to the number of times a par-
ticular operating system’s kernel function was invoked. Fmeter draws inspiration from
the field of information retrieval, which showed that counting words in a document is
sufficiently powerful to enable formal manipulations of document corpora. Likewise,
Fmeter does not rely on any additional contextual information, like call stack traces,
function parameters, memory location accesses, and so on.

By construction, embedding kernel function calls into the vector space model [12]
yields formally indexable signatures of low-level system behavior. Developers and
operators can automatically analyze system behavior using conventional statistical
techniques such as clustering, machine learning, and similarity based search against
a database of previously labeled signatures. For example, Fmeter enables operators to
instrument entire datacenters of production-ready machines with the flip of a switch,
and provides a way to automatically diagnose problems. At the very least, Fmeter en-
ables operators to prune out the space of potential problems. By contrast, expending
human expertise to perform forensic analysis in such an environment on a large number
of individual systems is intractable.

Fmeter occupies a new point in the design space of monitoring systems that yield
low-level system signatures. Unlike low level statistical profilers (e.g., Oprofile [7])
which only capture the most frequent events in their event space, Fmeter records ev-
ery single kernel function invocation, therefore there are no events that fly under the
radar—as long as they belong to Fmeter’s event space to begin with. This is an impor-
tant feature of Fmeter since bugs typically reside in cold code. (Section 2.1 formally
defines what is the precise contribution of each kernel function invocation count to
a signature.) Moreover, Fmeter signatures are insensitive to nondeterminism and are
machine independent.

Since Fmeter does not need to collect any detailed contextual information (like entire
stack traces), generating and retrieving signatures can be more efficient than general-
purpose function tracers. As we demonstrate in Section 4, we leverage this knowledge

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 83

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000

K
er

ne
l f

un
ct

io
n

ca
ll

co
un

t

Kernel function rank

Fig. 1. Kernel function call count during boot-up

of the problem domain to render the Fmeter prototype more efficient than the default
Ftrace [6] kernel function tracer. Like Ftrace, Fmeter has virtually zero runtime over-
head if it is not enabled. However, unlike the Ftrace function tracer, Fmeter does not
collect any additional semantic information with each function call. The Fmeter runtime
overhead introduced by signature generation is sufficiently low that signature genera-
tion can be turned on at production time for long continuous periods of time. Generating
and logging signatures over such long continuous time intervals increases the likelihood
of success of post-mortem analysis of crashed systems.

Our contributions are as follows:

– We provide a novel method for extracting indexable low-level system signatures
by embedding kernel function calls into the vector space model. The signatures are
naturally amenable for formal statistical manipulations, like clustering, machine
learning / classification, and similarity based search.

– We introduce Fmeter—an efficient prototype implementation of a monitoring sys-
tem capable of generating and retrieving the low-level system signatures continu-
ously over long periods of time, in real-time, and with little overhead.

– We show that the signatures are sufficiently powerful to capture meaningful low-
level system behaviors which can be accurately classified by conventional unsu-
pervised and supervised machine learning techniques. Furthermore, the signatures
are also sufficiently precise for automatic classifiers to unambiguously distinguish
even between system behaviors that differ in subtle ways.

The rest of the paper is structured as follows. Section 2 discusses our motivation, in-
sight, approach, and challenges for creating an indexable signature via embedding ker-
nel function calls into a classical vector space model. We describe our Fmeter design
and implementation in 3. In Section 4, we evaluate Fmeter and our proposed approach.
We discuss limitations to our approach and design in Section 5. Finally, we discuss
related work and conclude in Sections 7 and 8.

2 Methodology

To extract meaningful, low-level system signatures that are also formally indexable, we
turned to the discipline of information retrieval (IR) and text mining for inspiration.

84 T. Marian et al.

The information retrieval community has had a long and proven track record of devel-
oping successful statistical techniques for automatic document indexing and retrieval.
In particular, the IR discipline has shown that simple statistics computed over the doc-
ument’s terms are sufficiently powerful to yield information which can be formally an-
alyzed. For example, search engines typically throw away semantic information (e.g.,
they do not parse sentences and paragraphs) and use term frequencies mechanically for
scoring and ranking a document’s relevance given an input query.

Like the frequency of words in documents, function invocations appear to follow a
power-law like distribution. Figure 1 shows invocation counts of 3815 functions of the
Linux kernel version 2.6.28 invoked on a Dell Power Edge R710 four way quad core
x86 Nehalem platform from the late boot-up stage until the login prompt was spawned.
It shows that some functions are called more frequently than others. This behavior is
also consistent with the role of instruction-caches in exploiting temporal locality of
code. Such heavy-tailed distributions have been observed often in the real-world. A
classic example of such a power-law is the distribution of wealth in the world, the
distribution in rankings of U.S. cities by population, and the distribution of document
terms in a large corpus of natural language [13]. For example, the word frequency in
the whole of Wikipedia [14], reported on November 27, 2006, follows a shape similar
to that of Figure 1. Such distributions have been thoroughly analyzed by statisticians,
economists, computer scientists and mathematicians alike, and various analytical modes
have been proposed—e.g., power-laws can be mathematically modeled by preferential
attachment, also referred to as the “rich get richer” effect.

2.1 Low-Level System Signatures

Our key insight is that we extract low-level system signatures by mapping the concepts
of information retrieval and text mining to system behavior. In our model, the infor-
mation retrieval concept of a “term” corresponds to a kernel function call, while the
concept of a “document” corresponds to a period of low-level system activity, or func-
tion calls, over a predetermined period of time. (The kernel function calls should not
be confused with the system calls exported by the kernel through it’s application binary
interface.) The “corpus” then corresponds to a collection of low-level system activities.
Like in the classical vector space model [12], we disregard the semantic information
in a document and consider only the statistical properties of the terms belonging to the
document (and to the corpus). In our case, we disregard the sequence of kernel func-
tion calls (the “call stack” trace), the function parameters, memory location accesses,
or hardware device state manipulation. Instead, we rely solely on counting the kernel
function invocations, which is significantly cheaper and introduces less overhead.

We use the term frequency-inverse document frequency (tf-idf) model to repre-
sent documents, and thus system signatures, as weight vectors. The weight vector for
a document j is vj = [w1, j,w2, j , . . . ,wN, j]

T where N is the number of “terms,” i.e., the
total number of kernel functions. Each weight wi, j = t fi, j × id fi, or the product of the
term frequency, and the inverse document frequency. The term frequency is given by:
t fi, j =

ni, j

∑k nk, j
where ni, j is the number of times the term (function) i appears (was called)

in document (during the monitoring run) j. Essentially the term frequency counts the
number of times a term appears in a document, and normalizes it by the size of the

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 85

document. Normalization is required to prevent bias towards longer documents (or in
our case towards longer runs) which would implicitly have a higher term count by sheer
virtue of their length (duration of execution).

The inverse document frequency is used to diminish the weight of terms that occur
very frequently in the entire corpus, which is the case for example with prepositions in
text documents, or multiplexed functions like the ioctl, ipc and execve system
calls, or virtual memory management internal routines during the boot-up phase (the
top ranked kernel functions as seen in Figure 1). The inverse document frequency is
computed as: id fi = log |D|

1+|{d:i∈d}| where |D| is the size of the corpus, or in our case the
number of monitored low-level system activities, and the term |{d : i ∈ d}| represents
the number of documents containing the term i.

Fmeter collects low-level system signatures as weight vectors vj (for each signature
j), by counting the number of times each kernel function was called during a given
time-interval. More precisely, the set of distinct kernel functions induce the orthonormal
basis for the weight vectors vj. Each distinct kernel function corresponds to one of the
unit-vectors, i.e., versors, that together span the space in which every system signature
is defined to be a point.

Since each signature is represented as a vector belonging to the same vector space,
we can express signature similarities as the similarity between the vectors. One such
measure is the cosine similarity between two vectors—the cosine of the angle between
the two vectors: cosθ = x·y

||x|| ||y|| ; || · || is a vector norm and x ·y the dot product between
the two vectors. Alternatively, one may specify a distance metric, like the Minkowski

distance induced by the Lp norm: dp(x,y) = (∑i |xi − yi|p)
1
p . Unless specified other-

wise, throughout this paper we compare vectors using the Euclidean distance, i.e., the
distance metric induced by the L2 norm. Furthermore, certain formal methods require
we normalize the vectors, in which case we rely on the L2 norm as well.

Fmeter retrieves such formal, indexable, low-level system signatures by embedding
kernel function invocations into the classical vector space model [12]. Our approach was
inspired by the information retrieval and text mining literature. By broadly ignoring the
semantics of “documents,” we balance the delicate act of constructing effective low-
level signatures while incurring low signature retrieval overhead, and in the process we
gain the opportunity to manipulate the signatures using conventional statistical tools.

2.2 Statistical Data Analysis

The low-level system signatures collected by Fmeter are indexable, hence they can be
manipulated by formal data analysis methods like unsupervised and supervised machine
learning, similarity based search, and so on.

Clustering is a typical unsupervised learning technique that groups together vectors
(and therefore low-level system signatures) that are naturally close to each other, or sim-
ilar, based on a given distance metric. When used in conjunction with system signatures,
clustering can identify similar low-level behaviors. A typical clustering algorithm also
returns the centroid of each grouping assignment. The centroid of a cluster of signa-
tures can then be used as a syndrome which characterizes a manifestation of a common
behavior, e.g., an undesired behavior. Clustering can therefore be used to detect system

86 T. Marian et al.

behaviors which are similar to past pathological behaviors or previously encountered
problems. A key property of clustering is that it allows for unknown behaviors to be
classified as similar to some syndrome S, even though the unknown behaviors may be-
long to a distinct class of their own (i.e., clustered together, the unknown signatures
yield a centroid which is closest to S). Section 4.2 contains our evaluation of Fmeter
signature clustering.

Unlike unsupervised learning methods like clustering, supervised learning requires
labeled training data to construct a predictive model. The model is subsequently used
to make predictions about unlabeled data. For example, if an operator has access to
a labeled training data set containing both signatures of buggy / compromised device
driver behavior and signatures of normal behavior exercised by a correct device driver,
future unlabeled instances of buggy device driver behavior may be identified by a clas-
sifier. Section 4.2 contains a detailed evaluation of such machine learning using Fmeter
signatures as training, validation, and test data.

We envision an environment in which an operator has access to a database of la-
beled low-level system signatures describing many instances of normal and abnor-
mal behavior, and perhaps the necessary steps to remedy problems. The signatures
are retrieved and stored from systems whose behavior has been forensically identi-
fied and labeled. For example, signatures can be retrieved from systems that operate
within normal parameters, as well as from systems that have been identified to ex-
ert certain bugs, performance issues, and any unwanted behavior (like the system re-
acting to a denial of service attack or a system being compromised and acting as a
spam-bot and so on). Once the root cause of the problem is found for some abnor-
mal behavior, Fmeter can then be used to generate a large number of tf-idf sig-
natures with low overhead. These signatures are subsequently labeled appropriately,
and stored in the database for future training references by classifiers. Likewise, sig-
natures can be clustered to obtain syndrome centroids. By labeling similar vectors
and syndrome centroids with semantic meaning, an operator may later determine au-
tomatically whether a system has some property or is behaving in an undesired
fashion.

Interestingly, clustering may also be applied recursively. Applying meta-clustering
on the retrieved cluster centroids, we can determine which entire classes, not just in-
dividual signatures of behaviors, are similar to one another. If two classes of system
behaviors are similar with respect to their tf-idf signatures, it means they are similar
in the way they invoke the kernel’s functions. We can therefore schedule concurrently
executing tasks that rely on the same kernel code-paths (and implicitly the same in-
kernel data-structures) on cores that share a cache domain (e.g., the L3 cache for an
Intel Nehalem microarchitecture). For a monolithic kernel (the only kind we instrument
with Fmeter) such an assignment boosts performance due to improved cache locality
while executing in kernel-mode [15]. For example, Fmeter logging over large time in-
tervals would enable such a cache-aware task assignment feedback loop; as shown in
Section 4.1, Fmeter signature retrieval and logging is sufficiently cheap to render such
logging feasible (and can be switched on and off at runtime).

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 87

3 Extracting Signatures

Instrumenting every existing application to count all possible function calls is unre-
alistic. Instead, we only instrument the operating system kernel, since all applications
depend on it to varying degrees. User-mode applications typically request services from
the kernel through a well defined application binary interface (ABI). Fmeter reduces the
size of the possible feature-space by limiting its dimensionality to a subset that is both
manageable and contains significant low-level information. However, unlike statisti-
cal (kernel and otherwise) profilers, Fmeter triggers upon every kernel function call.
Fmeter keeps track of how many times each kernel function is called, and exports this
information to user-space through the debugfs [16] file system interface.

Since function names are not sufficient as unambiguous identifiers (e.g., a kernel
may have duplicate static functions), we identify kernel functions by their start address.
Absolute addresses work since unlike relocatable code, the kernel symbols are loaded at
the same address across reboots, however, using addresses means that the signatures are
not valid across different kernel versions. We consider this limitation to be minor given
the target Fmeter environment, namely that of compute clouds which run a small num-
ber of managed virtual machine / bare-metal kernels. Function symbols that reside in
runtime loadable modules introduce further complications since modules are relocated
at load time. Initially Fmeter identified functions in modules using a tuple comprising
of the module name, version, and function offset within the module. However, we ob-
served that different version drivers may contain mostly the same code (confirmed after
we compared disassembled modules one function at a time) but adding even the slight-
est modifications at some point in the module changes all subsequent offsets. Therefore
we decided that Fmeter does not instrument functions that live within runtime loadable
kernel modules, and signatures will only capture the behavior of modules by virtue of
the calls the modules make into the core-kernel. This means that Fmeter effectively
reduces the dimensionality of the feature space, a technique that is commonly used
throughout machine learning (e.g., to select only the most meaningful features based
on principal component analysis, and prune out the otherwise low-impact features).

The Linux kernel already provides several facilities to intercept and execute ad-hoc
handlers when kernel functions start or finish executing. For example, the Kernel Dy-
namic Probes (Kprobes) [5] subsystem may be used to graft breakpoint instructions at
runtime, and call into implanted handler routines (these routines may live in runtime
loadable modules as well, hence new ones can be coded as needed). Unlike Kprobes,
which incur the runtime overhead of inserting a breakpoint, executing the handler, and
single-stepping through the breakpointed instruction, the Ftrace [6] infrastructure shifts
most of the overhead at kernel compile time and during the kernel boot-up phase. In par-
ticular, when compiled with gcc’s -pg flag, all kernel functions are injected with a call
to a special mcount routine, a technique similar to the way in which the ATOM [17]
platform converted a program into its own profiler. The mcount routine must be imple-
mented in assembly because the call does not follow the conventional C–ABI. During
kernel boot-time, the mcount call sites are iterated over and recorded in a list, and
are subsequently converted into noops. The saved list can later be used at runtime to
dynamically and selectively convert any of the call-sites back into trace calls.

88 T. Marian et al.

Currently, Ftrace implements several tracers in this manner, e.g., a function call tracer
to trace all kernel functions, a function graph tracer that probes functions both upon en-
try and exit hence providing the ability to infer call-graphs, a tracer of context switches
and wake-ups between tasks, and so on. Since the Ftrace subsystem supports a large
variety of tracers, it encompasses a general purpose machinery that generically logs re-
trieved data to user-space through the debugfs interface. More precisely, Ftrace relies on
large fixed size circular buffers to store traced information, and individually recorded
information has variable size (e.g., function traces and call-graphs). Moreover, the cir-
cular buffer management is fairly complex since it has to be accessed in an SMP-safe
fashion to protect against concurrent updates since the kernel executes concurrently on
all available processors. Although the Ftrace circular buffer available in the kernel ver-
sion we started with (version 2.6.28) was deemed to be somewhat lock-heavy [18] with
impact on performance, there have since been various attempts to replace it with a wait-
free alternative [18, 19]. Wait-free FIFO buffers [20, 21] are difficult to prove correct
and are prone to subtle race-conditions and errors, which is why their adoption into the
mainline Linux kernel has been slow.

Since Ftrace is not extensible, i.e., new tracers cannot be added in a non-invasive
way, we implemented the Fmeter tracing to rely only on the mcount kernel function-
ality and did not make use of the conventional ring-buffers. Instead, we constructed an
efficient data structure which takes advantage of the structure of the monitored data to
further reduce overheads. Conceptually, Fmeter requires only a small, fixed size array
that maps kernel function address to an integer value denoting invocation count. Fmeter
creates this mapping at boot-time, right after the kernel introspects itself and records the
mcount sites for all traced kernel functions. To access and update the mapping during
normal operation, we provide a specialized mcount routine.

The function-to-invocation map is slightly more involved. Fmeter actually maintains
a set of per-CPU indices, each index mapping a kernel function to a cache aligned 8 byte
integer value. The integer value is incremented each time the corresponding function is
invoked while running on the current CPU. Each per-CPU index is allocated as a series
of free pages, and each page contains an array of “slots.” Before a kernel function
executes for the first time, the mcount routine is invoked. Our specialized mcount
routine replaces the call site that triggered its call with a call to a custom-built stub for
the original kernel function whose preamble invoked mcount in the first place. There
will be one such stub dynamically created by the specialized mcount routine for every
instrumented function. All subsequent calls to the instrumented kernel function will
execute the custom, personalized stub from then on.

The custom stub for each kernel function is generated by embedding two indices
into the stub code itself. The first index identifies the page in the page list which con-
stitutes the per-CPU data buffer. The second index identifies the corresponding slot on
the selected page corresponding to the invoked function. The indices are generated at
boot-time, when the mappings between function addresses and invocation counts are al-
located. When invoked, each individual stub disables preemption to prevent the current
task from being scheduled out and potentially moved on a different CPU, follows the
mapping by way of the two embedded indices, increments the corresponding invocation
count, and re-enables preemption before returning.

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 89

Enabling and disabling preemption is a cheap operation that amounts to integer arith-
metic on a value in the current task’s process control block. It is cheaper than atomic
operations like the lock;inc instructions used by the Linux kernel spinlocks and
cheaper than compare-and-swap instructions used, for example, by wait-free circular
buffers. Note that lock-free constructs do not absolve such atomic operations from gen-
erating expensive cache-coherency traffic over the cross-core interconnect.

A user-space daemon periodically reads the function invocation counts from debugfs
and logs them to disk. The normalizing step during the tf-idf score computation
ensures that the collection period does not have a major influence on the signatures;
though it can be configured. The logging daemon reads all kernel function invocation
counts twice (before and after the time interval) and computes the difference which is
later transformed into tf-idf scores, once an entire corpus is generated.

4 Evaluation

We begin our evaluation by measuring the overhead introduced by Fmeter. To quantify
the overhead, we perform a set of micro- and macro-benchmarks. We then proceed to
show the efficacy of statistical data analysis methods. We employ unsupervised (cluster-
ing) and supervised (classification) machine learning techniques to retrieve information
and to monitor system behavior.

Throughout our experiments we use a Dell PowerEdge R710 server equipped with a
dual socket 2.93GHz Xeon X5570 (Nehalem) CPU. Each CPU has four cores and 8MB
of shared L3 cache, and is connected through its private on-chip memory controller to
6GB of RAM, for a total of 12 GB of cache-coherent NUMA system memory. The
Nehalem CPUs support hardware threads, or hyperthreads, hence the operating system
manages a total of 16 processors. The R710 machine is equipped with a Serial Attached
SCSI disk and two Myri-10G NICs, one CX4 10G-PCIE-8B-C+E NIC and one 10G-
PCIE-8B-S+E NIC with a 10G-SFP-LR transceiver; the server is connected back to
back to an identical twin R710 server (the twin server is only used during experiments
involving network traffic). The R710 server runs a vanilla Linux kernel version 2.6.28
in three configurations: with the Ftrace subsystem disabled, with the Ftrace function
tracer turned on, and patched with Fmeter instead of Ftrace respectively.

4.1 Micro- and Macro-Benchmarks

This section demonstrates the overhead of using Fmeter while deployed to monitor sys-
tems in-production. We compare against a vanilla kernel with Linux Ftrace function
tracer turned both on and off. When Ftrace is turned off the overhead is zero, whereas
if it is turned on, recording every kernel function call incurs additional overhead. Ker-
nel functions are behind all system calls which applications use, they are responsible
for handling events, like interrupts, and they are also directly called by kernel threads.
Fmeter implements its own technique of utilizing the mcount call to record data in
dedicated per-CPU data slots while incurring low overhead. By contrast, the Ftrace col-
lection mechanism is more involved, since more information is recorded, e.g. function
call-traces, and passed to user-space.

90 T. Marian et al.

Table 1. LMbench: Linux kernel in vanilla configuration, with Ftrace function tracer on, and with
Fmeter on

Test Baseline Ftrace Fmeter Slowdown
μs μs μs Ftrace Fmeter Ratio

AF UNIX sock stream latency 4.828±0.585 27.749±2.649 7.393±0.867 5.748 1.531 3.753
Fcntl lock latency 1.219±0.209 6.639±0.039 3.024±0.649 5.446 2.481 2.195
Memory map linux.tar.bz2 206.750±0.590 1800.520±4.486 317.125±1.368 8.709 1.534 5.678
Pagefaults on linux.tar.bz2 0.677±0.008 3.678±0.008 0.866±0.009 5.433 1.279 4.249
Pipe latency 2.492±0.010 12.421±0.042 3.201±0.081 4.985 1.285 3.881
Process fork+/bin/sh -c 1446.800±18.678 6421.000±11.124 1831.590±7.546 4.438 1.266 3.506
Process fork+execve 672.266±6.663 3094.380±14.093 847.289±3.227 4.603 1.260 3.652
Process fork+exit 208.914±6.951 1116.800±10.880 268.275±1.910 5.346 1.284 4.163
Protection fault 0.185±0.009 0.607±0.011 0.286±0.006 3.280 1.544 2.125
Select on 10 fd’s 0.231±0.001 1.410±0.001 0.277±0.001 6.110 1.199 5.096
Select on 10 tcp fd’s 0.261±0.001 1.798±0.004 0.326±0.001 6.897 1.251 5.512
Select on 100 fd’s 0.897±0.002 9.809±0.001 1.321±0.008 10.941 1.474 7.424
Select on 100 tcp fd’s 2.189±0.002 26.616±0.242 3.308±0.023 12.160 1.511 8.046
Semaphore latency 2.890±0.072 6.117±0.236 2.084±0.062 2.117 0.721 2.936
Signal handler installation 0.113±0.000 0.280±0.000 0.127±0.001 2.473 1.119 2.209
Signal handler overhead 0.909±0.010 3.124±0.009 1.072±0.005 3.435 1.179 2.914
Simple fstat 0.100±0.001 0.852±0.006 0.145±0.002 8.550 1.458 5.864
Simple open/close 1.193±0.004 11.222±0.019 1.873±0.014 9.410 1.571 5.991
Simple read 0.101±0.000 1.196±0.007 0.171±0.000 11.893 1.701 6.990
Simple stat 0.721±0.002 7.008±0.021 1.067±0.012 9.720 1.480 6.567
Simple syscall 0.041±0.000 0.210±0.000 0.053±0.000 5.156 1.303 3.958
Simple write 0.086±0.000 1.012±0.004 0.130±0.001 11.723 1.511 7.759
UNIX connection cost 15.328±0.057 81.380±0.260 21.919±1.339 5.309 1.430 3.713

Table 1 shows the overhead incurred by Ftrace and Fmeter with respect to a vanilla
un-instrumented kernel during the lmbench [22] micro-benchmark (the results represent
average latencies in μs along with standard error of the mean). Overall, Fmeter incurs
significantly less overhead than Ftrace. At best, Ftrace is as little as 2.125 times slower
than Fmeter, whereas in the worst case Ftrace it is as high as 8.046 times slower than
Fmeter. On average, Fmeter is 1.4 times slower than a vanilla kernel, whereas Ftrace
is about 6.69 times slower than the un-instrumented kernel. It is important to note that
lmbench tests exert unusual stress on very specific kernel operations by executing them
in a busy-loop which is uncommon and typically considered an anomaly in real-world
production-ready environments.

Table 2. (a) apachebench scores, vanilla (un-instrumented) kernel, Ftrace kernel function
tracer on, and with Fmeter on; (b) Linux kernel compile time

Configuration Requests per second Slowdown

vanilla 14215.2±69.6931 0.00 %
fmeter 10793.3±77.7275 24.07 %
ftrace 5524.93±33.4601 61.13 %

Unmodified Ftrace Fmeter
real 57m8.961s 89m56.821s 56m43.264s
user 47m50.175s 49m5.492s 46m24.890s
sys 7m59.642s 41m31.300s 9m45.817s

(a) (b)

Table 2(a) displays the results of a HTTP server macro-benchmark. We used the
standard apachebench tool, which was configured to send 512 concurrent connec-
tions (1000 times in closed-loop for a total of 512000 requests) and we used a single
1400 byte HTML file as the target served by the apache httpd web server. The apache
HTTP server and the apachebench client ran both on the same machine to eliminate
any network-induced artifacts. All tests were conducted 16 times for each configura-
tion, and we report the average along with the standard error of the mean. The Table

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 91

shows a 24% slowdown in the number of requests completed per second for Fmeter and
a 61% slowdown for Ftrace. As with lmbench, the test stresses the system to magnify
overheads by issuing a large number of concurrent connections.

Finally, Table 2(b) depicts the time elapsed while compiling the Linux kernel, as re-
ported by the time utility (not the bash time command), atop various configurations.
As expected, the time spent in user-mode (under the row labeled user) is roughly the
same irrespective if a vanilla kernel is used, or whether one of the Ftrace function tracer
or the Fmeter subsystems are enabled instead. However, unlike user-mode code which
is not instrumented, the kernel code is, and the numbers shown in the Table (under the
row labeled sys) reveal that while Fmeter slows down the kernel compilation by about
22%, Ftrace slows it down by no less than 420%, i.e. it is 5.2 times slower. The numbers
are consistent with the Fmeter and Ftrace design which only rely on the instrumenta-
tion of the kernel code-paths. In general, applications that rely little on the operating
system’s kernel functionality, e.g., those applications that issue few system calls (like
the scientific programs that crunch numbers), would show a lower overhead. However
it also implies that there are less opportunities for meaningful system signatures to be
collected by Fmeter when such applications are running, thereby reducing the efficacy
of our system profiling methodology altogether.

4.2 Clustering and Supervised Machine Learning

Next we show the amenability of signatures retrieved with Fmeter towards statistical
data analysis techniques. We extract the signatures while performing workloads in a
controlled environment. First, we show that supervised machine learning can be applied
to distinguish with high accuracy amongst the signatures extracted while performing
three different workloads. Second, we evaluate the efficacy of the same machine learn-
ing classifiers in distinguishing between highly similar behaviors, as induced by subtle
modifications in the code of a network interface device driver. The device driver resides
in an un-instrumented kernel module, hence the signatures retrieved only account for
the core-kernel functions the driver calls into (i.e., none of the functions of either driver
are instrumented). Our assumption is that such subtle device driver modifications are
characteristic of compromised or buggy systems which are otherwise exceedingly hard
to forensically analyze.

And third, we show that signatures retrieved during the same workloads can be auto-
matically clustered together and accurately distinguished from signatures belonging to
different workloads. We employ the same set of signatures used to previously evaluate
the supervised machine learning. Since clustering is an unsupervised learning method,
system operators may rely on it to identify specific behaviors without having access to
labeled signatures. Operators may categorize whether a particular behavior of interest
is similar to a previously observed syndrome by comparing the behavior’s signatures
with syndrome signatures.

Throughout the evaluation we employ conventional, though state-of-the-art, machine
learning algorithms and information retrieval measurement techniques.

Supervised Machine Learning. First we show how supervised machine learning can
distinguish with high accuracy between Fmeter signatures corresponding to different

92 T. Marian et al.

system behaviors. We then proceed to evaluate the efficacy of machine learning classi-
fiers in distinguishing between highly similar system behaviors—as induced by subtle
modifications in the code of a network interface controller’s device driver which resides
in an un-instrumented kernel module. For the former experiment, we collected a set of
signatures from three different tasks in a controlled fashion. The tasks in question were:

– kernel compile (kcompile)
– secure copy of files over the network (scp)
– dbench disk throughput benchmark (dbench)

All three tasks ran on the same system—our Dell PowerEdge R710 server—without
interference from each-other. The Fmeter logging daemon collected the signatures ev-
ery 10 seconds. For every workload type we retrieved roughly 250 distinct signatures,
which we subjected to our machine learning methods.

There are many available types of supervised classifiers one can use, e.g. decision
trees, Neural Networks, Support Vector Machines (SVMs), Gaussian mixture models,
and naı̈ve Bayes, not to mention ensemble techniques that combine one or more classi-
fiers of the same (e.g., bagging and boosting of decision trees) or different type to per-
form classification. Based on our previous experience, we chose to use the SVMlight [23,
24] classifier, which is an implementation of Vapnik’s Support Vector Machine [25]. We
are considering experimenting with a hand-crafted C4.5 decision tree package that sup-
ports high dimension vectors and is capable of performing boosting and bagging.

In a nutshell, SVMs construct a hyperplane that separates the vectors in the training
set such that the separation margin is maximized (i.e., the hyperplane is chosen such
that it has the largest distance to the nearest training data points of any class). Since
the vectors in the training example may not be linearly separable by a hyperplane in
the vector-space defined by the features, SVMs rely on kernel-functions (not to be con-
fused with the operating system’s in-kernel functions traced by Fmeter) to construct
the hyperplane in a higher dimensional space. Classifying is performed in a straight-
forward manner, simply by determining on which “side” of the hyperplane an example
point/vector resides.

A common practice for evaluating the performance of a machine learning algorithm
when one does not have a large data set is to use a technique called K-fold cross valida-
tion. As we only collected signatures for 30 or 60 minutes every 10 seconds, we did not
create a very large data set, therefore we performed K-fold cross validation. We split
the positive and negative signatures into K sets of equal sizes (modulo K). We merge
the positive signatures of set i with the negative signatures of set i, ∀i ∈ {0,K − 1},
thus creating K folds. For each fold i, we set it aside and mark it as the test data. Fold
((i+ 1) mod K) is marked as the validation data, and the remaining folds are concate-
nated together and marked as the training data. Then we proceed to repeatedly train the
SVMlight classifier on the training data while using the validation data to incrementally
tune the parameters of the classifier, if any. Once the classifier parameters are chosen
based on the performance on the validation data (e.g., choosing the parameters that
maximize accuracy), the classifier is evaluated a single time on the test data. (Note that
to ensure correctness, the test set should be used only once, to assess the performance
of a fully trained classifier.) We report the average metrics obtained by evaluating the
classifier on the test data for each of the K folds—without further training the model.

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 93

Table 3. Clustering: SV Mlight averaged accuracy, precision, and recall over all 10-folds

Signature grouping Baseline Test set (average± std. dev., over all folds)
Accuracy (%) Accuracy (%) Precision (%) Recall (%)

dbench(+1), kcompile(−1) 51.797 100.00±0.00 100.00±0.00 100.00±0.00
scp(+1), kcompile(−1) 51.177 99.39±0.99 99.28±1.54 99.56±1.38
scp(+1), dbench(−1) 50.619 100.00±0.00 100.00±0.00 100.00±0.00
dbench(+1), kcompile ∪ scp (−1) 65.589 100.00±0.00 100.00±0.00 100.00±0.00
scp (+1), kcompile ∪ dbench (−1) 66.432 99.57±0.69 99.17±1.76 99.56±1.38
kcompile (+1), scp ∪ dbench (−1) 67.977 99.57±0.69 99.56±1.38 99.09±1.92

Table 4. Myri10ge: SV Mlight averaged accuracy, precision, and recall over all 8-folds

Signature comparison Baseline Test set (average± std. dev., over all folds)
Accuracy (%) Accuracy (%) Precision (%) Recall (%)

myri10ge 1.4.3 (+1), 1.5.1(−1) 50.765 100.00±0.00 100.00±0.00 100.00±0.00
myri10ge 1.5.1 (+1), 1.5.1 LRO off(−1) 50.25 100.00±0.00 100.00±0.00 100.00±0.00
myri10ge 1.4.3 (+1), 1.5.1 LRO off(−1) 51.015 100.00±0.00 100.00±0.00 100.00±0.00

We did not spend significant time searching the parameter space for either of the ex-
periments. Instead, we simply set the SVM’s kernel parameter to the default polynomial
function, and we searched the parameter space of the trade-off between training error
and margin, also known as the C parameter. Note that the signature vectors were scaled
into the unit-ball using the L2 norm—a common SVM classification practice.

We begin by evaluating the performance of the SVM classifier while distinguish-
ing between the same three distinct workloads. Our classifier expects only two dis-
tinct classes labeled +1 and −1 respectively, therefore, since we have a total of three
workloads we perform the following experiments. First, we apply the SVM classifier
to datasets containing signatures from all possible combinations of two distinct classes,
which yields the following groupings: scp (+1) vs. kcompile (−1), scp (+1) vs.
dbench (−1), and kcompile (+1) vs. dbench (−1). Next, we apply the SVM clas-
sifier to groupings in which we label the signatures from one of the workloads to be of
class +1 and the remaining signatures from the other two workloads to be of class −1.
We repeat the groupings for every workload, yielding three possible combinations (e.g.,
the first one being scp of class +1 and kcompile ∪ dbench of class −1).

Table 3 depicts the SVM performance in terms of accuracy, precision, and recall on
the test set, averaged over all 10-folds. The SVM has been previously calibrated on the
validation set. We also report the accuracy baseline, which is computed by reporting
on the accuracy of a pseudo-classifier that always chooses the class with the label of
the majority signatures. For example, if a dataset contains 100 data points of class +1
and 150 data points of class −1, then the baseline accuracy would be 150

250 = 0.6 (or
60%). Table 3 shows the SVM classifier to perform remarkably well. In particular,
it is able to perfectly distinguish the workloads in three of the signature groupings,
and performs almost as good for the remaining groupings. (To get a better intuition of
the classifier’s performance it is important to compare the reported accuracy with the
baseline accuracy.)

Next, we evaluate how well can machine learning tell apart signatures generated by
systems that only differ in subtle ways. For this experiment, the core kernel remains the
same, and we only alter the myri10ge device driver for the Myri10G NIC. Further, the

94 T. Marian et al.

device driver resides in a runtime loadable module, which Fmeter does not instrument,
therefore the possible set of kernel functions that are being counted by Fmeter does
not change. Instead, Fmeter records the signatures that contain the driver’s behavior by
virtue of the core-kernel symbols (i.e., functions) the driver calls into.

We chose the following three scenarios for the monitored system: (i) running with
the myri10ge driver version 1.5.1 and default load-time parameters, (ii) running with
the myri10ge driver version 1.4.3 and default load-time parameters, and (iii) running
with the myri10ge driver version 1.5.1 but with the load-time parameter set to disable
the large receive offload (LRO) capability. The first scenario provides a baseline for
“normal” mode of operation, while the second and third scenarios provide various de-
grees of diverging modes of operation. For example, the scenario in which the LRO
is disabled may correspond to a compromised system that maliciously loaded a run-
time module/extension which increases the propensity of the machine to DDOS attacks.
Likewise, the scenario in which we use an older version of the driver may be indicative
of a buggy or a compromised vital subsystem. As a matter of fact, we disassembled the
two driver versions (with objdump) and compared the un-relocated binary representa-
tion of the functions code. With respect to the older version of the driver, 24 functions
were altered in the newer version, one function (myri10ge get frag header) was
removed, and 11 new functions were added. Of the newly added functions, only one was
ever called during our workloads, namely myri10ge select queue. (Recall that
none of these functions, or any other functions defined within the loadable drivers for
that matter, belong to the Fmeter vector space.)

We ran Netperf [26] TCP stream tests between the two twin servers with the receiver
machine running the Fmeter instrumented kernel and the three myri10ge driver variants.
During the Netperf runs, we were able to achieve 10Gbps line rate. By contrast, if
the conventional Ftrace kernel function tracer is on, we were able to only achieve a
throughput of little more than half the line rate, which indicates that the overall overhead
introduced by Fmeter was acceptable. Table 4 shows the results of the SVM classifier
on all folds of the test set (we used eight-fold cross validation), after the C parameter
was calibrated on the validation set. Our classifier achieves perfect accuracy, prediction,
and recall in all cases. (The case in which we compared the version 1.4.3 of the driver
against version 1.5.1 with LRO disabled was supposed to be a baseline indicator that is
easier to classify than the other two.)

Signature Clustering. Next we subject the Fmeter signatures to an unsupervised learn-
ing method such as clustering. We use the same three workloads we already evaluated
our supervised machine learning against in Section 4.2, namely scp, kcompile and
dbench. This choice of workload also allows us to directly compare how the unsuper-
vised clustering stacks against the supervised machine learning.

We implemented two standard well-known clustering algorithms, namely agglomer-
ative hierarchical clustering, and K-means respectively. Both clustering algorithms use
the Euclidean distance (as induced by the L2 norm), while the agglomerative hierarchi-
cal clustering is of the complete-, single-, and average-linkage flavors. We only report
on the single-linkage variant throughout the paper since the results for complete- and
average-linkage are similar.

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20 60 100 140 180 220

C
lu

st
er

 p
ur

ity
 (

pr
ob

ab
ili

ty
)

of sampled vectors

scp, kcompile, dbench
scp, kcompile

scp, dbench
kcompile, dbench

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
lu

st
er

 p
ur

ity
 (

pr
ob

ab
ili

ty
)

of target clusters (2 actual clusters)

220 samples
140 sampled vectors

60 sampled vectors

(a) (b)

Fig. 2. (a) K-means cluster purity (probability) given the number of (equally) sampled vectors
from each class; (b) K-means cluster purity for scp and dbench signatures with respect to
different number of target clusters (the K parameter).

Although the hierarchical clustering algorithm is more precise than the K-means al-
gorithm, it is computationally more expensive, and it requires a notoriously hard to
choose “height-cut” for automatic evaluation given more than two distinct classes. By
contrast, the K-means algorithm converges significantly faster, and since the target num-
ber of resulting/expected clusters (i.e., the K parameter) is already given as an input
parameter, it is straightforward to automatically evaluate the quality of the clustering
result. We chose to use the K-means algorithm as our primary clustering unsupervised
learning mechanism.

There are various metrics for evaluating the quality of clustering, like purity, normal-
ized mutual information, Rand index, or the F-measure. We chose to use purity, since it
is both simple and transparent. In particular, to compute the purity of a clustering, each
resulting cluster is assigned to its most frequent class, and the accuracy of the assign-
ment is measured by counting the number of correctly assigned signatures divided by
the total number of signatures.

Figure 2(a) shows the cluster purity between all four permutations of the three work-
loads on the y-axis. We used the K-means algorithm, with the K parameter set for
the actual number of clusters, i.e., K = 3 for the clustering of scp, kcompile, and
dbench, and K = 2 otherwise. On the x-axis, the Figure depicts the number of sig-
natures randomly selected, without replacement, from each workload class (the same
number of signatures were selected from the kcompile workload as were selected
from the scp, and dbench workloads). The results are averaged over 12 runs, with
the error bars denoting standard error of the mean. There are three observations. First,
the purity scores are high, denoting good clustering. Second, the clustering performance
increases only slightly as the number of signatures increases, hence a small number of
signatures are sufficient to properly determine each cluster’s centroid. And third, the
quality of the clusters for K = 3 and vectors sampled from each of the workloads avail-
able is lower than the quality of clusters yielded by K-means with K = 2 and vectors
sampled only from two separate workloads, irrespective of which two workloads were
sampled. This means that clustering effectiveness appears to decrease as more classes
(corresponding to different workloads) are considered.

96 T. Marian et al.

At this point it is important to note that high purity is easy to achieve by simply
increasing the number of expected clusters; in the case of K-means by increasing the
value of the parameter K. In particular, if there are as many clusters as there are vectors
(signatures), then the purity evaluates to 1.0. We proceed to leverage this property to
show the quality of the clustering results. Figure 2(b) shows the purity of clustering
signatures from the scp and dbench workloads, by increasing the number of target /
expected clusters (we simply varied the parameter K of the K-means algorithm). As the
Figure shows, the purity scores converge rapidly to the maximum value of 1.0 while
the standard error of the mean decreases at the same time. The intuition is that there are
very few (1, 2, or 3) additional clusters that capture the clustering “mistakes” made by
the ideal clustering (where K is set to the actual number of classes, K = 2 in this case).
The additional separate clusters group together these incorrectly classified signatures.

Compared to supervised machine learning, clustering on the same sets of signatures
performs worse. Nevertheless, clustering is still a useful statistical analysis method,
since it can naturally group signatures belonging to many classes. Furthermore, we can
apply meta-clustering on the retrieved cluster centroids to determine which classes of
behaviors, and hence not just individual signatures which are instances of behaviors,
are closer to one another. Determining which system behaviors are similar in the way
they use the operating system kernel functions can then be leveraged for low-level op-
timizations (e.g., improve cache locality).

5 Limitations

Fmeter uses the Ftrace infrastructure, as such, it only traces kernel function calls. We
recognize that the kernel makes extensive use of function inlining and pre-processor
macros (e.g., common list, hash-table, and even page table traversals) which we are
unable to capture with our current methodology. Likewise, processes that require very
little kernel intervention, like scientific applications, are likely to be all assigned sim-
ilar signatures that are very close to the null/zero vector, which makes them harder to
distinguish from one another, irrespective of the learning machinery.

Moreover, we recognize that the process of performing a measurement introduces
uncertainty itself by interfering with the collected data. For example, the user-space
daemon that logs signatures to disk interferes with the monitored system by virtue of
using the kernel’s pseudo file system and the kernel’s proper file and storage subsystem
(buffer cache, VFS, ext3, block layer, and so on). However, all retrieved signatures are
perturbed uniformly by the logging.

6 Future Work

Currently, the overhead introduced by Fmeter is much higher than the overhead of sta-
tistical profiling tools like oprofile. Nevertheless, the Fmeter overhead is also sig-
nificantly lower than that of the precise profiling tools like the ones relying on the
conventional Ftrace kernel function tracer. Since the kernel function invocations follow
a power-law distribution (see Figure 1), a straightforward optimization to the Fmeter
counting infrastructure would be to maintain a fast cache that holds the call counts for

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 97

the top N hottest functions. Using a sufficiently small cache to account for the most
popular kernel functions could lower the overheads, e.g., by decreasing the cache pol-
lution incurred while following the Fmeter stubs. The value of N can be experimentally
chosen based on the size of the processor caches.

We also plan to explore using Fmeter signatures to perform meta-clustering on al-
ready retrieved cluster centroids. Being able to apply clustering methods in such a re-
cursive fashion would allow us to determine which entire classes, not just instances
of behavior, are similar in the way they invoke the kernel functionality. We can thus
leverage this information to better schedule concurrently executing tasks that rely on
the same kernel code-paths (and implicitly the same in-kernel data-structures) on pro-
cessor cores that share a cache domain (e.g., the L3 cache for an Intel Nehalem mi-
croarchitecture). Such assignments have the potential to boost the overall performance
of monolithic kernels due to improved cache locality while executing in kernel-mode.

7 Related Work

System Monitoring Based on Indexable Signatures. There have been several prior ap-
proaches that monitored system calls [11, 27, 28] to build some model which can be
used to detect deviations from normal behavior. Furthermore, recent work [4, 29] has
shown how indexable signatures can be used to capture essential system characteris-
tics in a form that facilitates automated clustering and similarity based retrieval. Formal
methods, like K-means clustering and the L2 norm are then used to compare similarities
among system states. Our work uses the statistical vector space model [12] to represent
the system execution in a given time frame. Fmeter demonstrates how indexable sig-
natures in low-level system monitoring (based on all kernel function calls, as opposed
to just the system calls) can be generated with low overhead and used in a running
high performance system. Like prior work, we too use existing information retrieval
techniques to facilitate formal manipulation of Fmeter’s signatures.

System Monitoring Using Performance Counters. The most commonly used monitor-
ing tools record system variables for performance tuning and failure diagnostics. Opro-
file [7] and DCPI [30] use hardware performance counters, and ProfileMe [31] uses
instruction-level counters to periodically collect long-term system usage information.
Such powerful post-processing utilities aid in visualizing and identifying potential per-
formance bottlenecks. With such statistics, it is possible, for example, to understand and
analyze the behavior of Java applications [32]. Since these tools focus on a small and
limited set of predefined performance counters, it becomes impossible to look up arbi-
trary system behavior of interest in the logs. Fmeter differs from these tools by allowing
execution sequences (low-level system signatures) to be indexed and later retrieved.

Chopstix [8] expands the use of individual counters by monitoring a diverse set of
system information. These “vital signs” provide a wider picture of system execution at
a given point in time. Along the same lines are tools such as CyDAT, Ganglia, CoMoN
and Artemis [9, 10, 33, 34] which focus on monitoring distributed systems and cater to
the fast growing cloud computing environments. The visualization methods for such
tools are important for understanding interactions amongst the nodes in a cluster due to
the large volumes of logs and heterogeneity in platforms.

98 T. Marian et al.

System Monitoring Based on Logging. System logging is used in another area of sys-
tem monitoring. System operators, developers and automatic trainers can extract error
conditions in the logs and use machine learning techniques to predict indicated er-
rors [35–38]. Alternatively, system state signatures can be recorded and searched for
automatic diagnosis [39]. There is also a dedicated set of tracers which allows isolat-
ing non-deterministic system behavior and heisenbugs [40, 41] and replaying execu-
tion from the logs [42] to reproduce error conditions or perform fault correction on
the fly [43, 44]. In addition, statistical induction techniques exist for automated perfor-
mance diagnosis and management at the server application level [45]. Fmeter differs
from these tools since it is able to generate indexable low-level signatures in a running
system with low overhead (see Section 4.2).

System Monitoring Based on Indexing Logs. Signature based system monitoring has
also inspired methodologies which focus on post-processing of logs to generate useful
inferences. This class of methods attempts to generate inferences based either on iden-
tifying some signatures in the log data or finding anomaly-based aberrations [46, 47].
Our method is a generalization of such analysis which can be used for both signature-
based retrieval and anomaly detection. Alternatively, use of fine-grained control flow
graphs as signatures has also been proposed as a useful malware detection strategy [48].
Moreover, similarity based measures working at the application level on a diverse set
of system attributes have shown to be successful [49]. Latest work shows a novel path
of combining source code analysis and runtime feature creation into console log min-
ing for anomaly detection [50, 51]. Our approach explores a similar way of applying
machine learning and information retrieval techniques, yet using a different class of
low-level signatures (and an efficient, specific signature extraction method).

8 Conclusion

We present Fmeter, a monitoring infrastructure that extracts formal, indexable, low-
level system signatures by embedding kernel function calls into the classical vector
space model. Fmeter represents system signatures as tf-idf weight vectors by disre-
garding the semantic information in a document and consider only the statistical prop-
erties of the terms belonging to the document (and to the corpus). In our case, we
disregard the sequence of kernel function calls (the “call stack” trace), the function
parameters, memory location accesses, hardware device state manipulation and so on.
Instead, we rely on as little information as possible, namely counting the kernel function
calls. This approach is sufficient to provide meaningful and effective system signatures,
while incurring low system overhead. Further, the signatures are naturally amenable for
statistical information retrieval manipulations, like clustering, machine learning, and
information retrieval. We demonstrate the efficacy of Fmeter by yielding near-perfect
results during clustering and supervised classification of various system behaviors.

Availability

The Fmeter source code is published under BSD license and is freely available at
http://fireless.cs.cornell.edu/fmeter.

http://fireless.cs.cornell.edu/fmeter

Fmeter: Extracting Indexable Signatures by Counting Kernel Function Calls 99

References

1. Hellerstein, J.L.: Engineering autonomic systems. In: ICAC 2009 (2009)
2. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale field study.

In: SIGMETRICS 2009 (2009)
3. Dean, J.: Designs, Lessons and Advice from Building Large Distributed Systems. Keynote

Talk: LADIS 2009 (2009)
4. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing, indexing,

clustering, and retrieving system history. In: SOSP 2005 (2005)
5. Mavinakayanahalli, A., Panchamukhi, P., Keniston, J., Keshavamurthy, A., Hiramatsu, M.:

Probing the guts of kprobes. In: Linux Symposium 2006 (2006)
6. Ftrace - Function Tracer, http://lwn.net/Articles/322666/
7. Oprofile, http://oprofile.sourceforge.net
8. Bhatia, S., Kumar, A., Fiuczynski, M.E., Peterson, L.: Lightweight, high-resolution monitor-

ing for troubleshooting production systems. In: OSDI 2008 (2008)
9. Cretu-Ciocarlie, G.F., Budiu, M., Goldszmidt, M.: Hunting for problems with artemis. In:

Proceedings of WASL (2008)
10. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: De-

sign, Implementation, and Experience. In: Proceedings of Parallel Computing (2004)
11. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for detect-

ing anomalous program behaviors. In: Proceedings of the 2001 IEEE Symposium on Security
and Privacy (SP), pp. 144–155 (2001)

12. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-
cations of the ACM 18(11), 613–620 (1975)

13. Booth, A.D.: A “law” of occurrences for words of low frequency. Information and Con-
trol 10(4), 386–393 (1967)

14. Grishchenko: http://wikipedia.org/wiki/File:Wikipedia-n-zipf.png
15. Boyd-Wickizer, S., Morris, R., Kaashoek, M.F.: Reinventing scheduling for multicore sys-

tems. In: HotOS 2009 (2009)
16. Debugfs, http://lwn.net/Articles/115405/
17. Srivastava, A., Eustace, A.: ATOM - A System for Building Customized Program Analysis

Tools. In: PLDI 1994 (1994)
18. Edge, J.: A lockless ring-buffer, http://lwn.net/Articles/340400/
19. Edge, J.: One ring buffer to rule them all? http://lwn.net/Articles/388978/
20. Brandenburg, B.B., Anderson, J.H.: Feather-trace: A light-weight event tracing toolkit. In:

OSPERT 2007 (2007)
21. Krieger, O., Auslander, M., Rosenburg, B., Wisniewski, R.W., Xenidis, J., Da Silva, D., Os-

trowski, M., Appavoo, J., Butrico, M., Mergen, M., Waterland, A., Uhlig, V.: K42: building
a complete operating system. In: EuroSys (2006)

22. Staelin, C.: lmbench: Portable Tools for Performance Analysis. In: USENIX ATC 1996
(1996)

23. Joachims, T.: Svmlight, http://svmlight.joachims.org/
24. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Dissertation.

Springer (2002)
25. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (1995)
26. Netperf, http://netperf.org/
27. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix processes.

In: IEEE Symposium on Security and Privacy (1996)
28. Li, P., Gao, D., Reiter, M.K.: Automatically Adapting a Trained Anomaly Detector to Soft-

ware Patches. In: Balzarotti, D. (ed.) RAID 2009. LNCS, vol. 5758, pp. 142–160. Springer,
Heidelberg (2009)

http://lwn.net/Articles/322666/
http://oprofile.sourceforge.net
http://wikipedia.org/wiki/File:Wikipedia-n-zipf.png
http://lwn.net/Articles/115405/
http://lwn.net/Articles/340400/
http://lwn.net/Articles/388978/
http://svmlight.joachims.org/
http://netperf.org/

100 T. Marian et al.

29. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting the data-
center: automated classification of performance crises. In: EuroSys 2010 (2010)

30. Anderson, J.M., Berc, L.M., Dean, J., Ghemawat, S., Henzinger, M.R., Leung, S.T.A., Sites,
R.L., Vandevoorde, M.T., Waldspurger, C.A., Weihl, W.E.: Continuous profiling: where have
all the cycles gone? In: SOSP 1997 (1997)

31. Dean, J., Hicks, J.E., Waldspurger, C.A., Weihl, W.E., Chrysos, G.: Profileme: hardware
support for instruction-level profiling on out-of-order processors. In: MICRO 1997 (1997)

32. Sweeney, P.F., Hauswirth, M., Cahoon, B., Cheng, P., Diwan, A., Grove, D., Hind, M.: Using
hardware performance monitors to understand the behavior of java applications. In: Proceed-
ings of the 3rd Virtual Machine Research and Technology Symposium, VM (2004)

33. DiFatta, C., Klein, D.V., Poepping, M.: Carnegie mellon’s cydat: Harnessing a wide array of
telemetry data to enhance distributed system diagnostics. In: Proceedings of WASL (2008)

34. Park, K., Pai, V.S.: Comon: a mostly-scalable monitoring system for planetlab. SIGOPS
Oper. Syst. Rev. 40(1), 65–74 (2006)

35. Salfner, F., Tschirpke, S.: Error log processing for accurate failure prediction. In: WASL
2008 (2008)

36. Sandeep, S.R., Swapna, M., Niranjan, T., Susarla, S., Nandi, S.: Cluebox: A performance log
analyzer for automated troubleshooting. In: WASL 2008 (2008)

37. Fulp, E.W., Fink, G.A., Haack, J.N.: Predicting computer system failures using support vec-
tor machines. In: Proceedings of WASL (2008)

38. Hauswirth, M., Sweeney, P.F., Diwan, A., Hind, M.: Vertical profiling: understanding the
behavior of object-priented applications. In: OOPSLA 2004 (2004)

39. Redstone, J., Swift, M.M., Bershad, B.N.: Using computers to diagnose computer problems.
In: Proceedings of HotOS, pp. 91–86 (2003)

40. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and repro-
ducing heisenbugs in concurrent programs. In: OSDI 2008 (2008)

41. Ronsse, M., Christiaens, M., Bosschere, K.D.: Cyclic debugging using execution replay. In:
Proceedings of the International Conference on Computational Science-Part II 2001 (2001)

42. Guo, Z., Wang, X., Tang, J., Liu, X., Xu, Z., Wu, M., Kaashoek, M.F., Zhang, Z.: R2: An
application-level kernel for record and replay. In: OSDI 2008 (2008)

43. Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y.: Triage: diagnosing production run failures
at the user’s site. In: SOSP 2007 (2007)

44. Qin, F., Tucek, J., Zhou, Y., Sundaresan, J.: Rx: Treating bugs as allergies - a safe method to
survive software failures. ACM Trans. Comput. Syst. 25, 7 (2007)

45. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.S.: Correlating instrumentation
data to system states: a building block for automated diagnosis and control. In: OSDI 2004
(2004)

46. Sequeira, K., Zaki, M.: Admit: anomaly-based data mining for intrusions. In: KDD 2002
(2002)

47. Ghosh, A.K., Schwartzbard, A.: A study in using neural networks for anomaly and mis-
use detection. In: Proceedings of the 8th conference on USENIX Security Symposium 1999
(1999)

48. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Control flow graphs as malware signatures. In:
Proceedings of the International Workshop on the Theory of Computer Viruses (2007)

49. Lane, T., Brodley, C.E.: Temporal sequence learning and data reduction for anomaly detec-
tion. ACM Trans. Inf. Syst. Secur. 2(3), 295–331 (1999)

50. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system prob-
lems by mining console logs. In: SOSP 2009 (2009)

51. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system
problem detection. In: USENIX ATC 2010 (2010)

SPADE: Support for Provenance
Auditing in Distributed Environments

Ashish Gehani and Dawood Tariq

SRI International

Abstract. SPADE is an open source software infrastructure for data provenance
collection and management. The underlying data model used throughout the sys-
tem is graph-based, consisting of vertices and directed edges that are modeled
after the node and relationship types described in the Open Provenance Model.
The system has been designed to decouple the collection, storage, and querying
of provenance metadata. At its core is a novel provenance kernel that mediates
between the producers and consumers of provenance information, and handles
the persistent storage of records. It operates as a service, peering with remote in-
stances to enable distributed provenance queries. The provenance kernel on each
host handles the buffering, filtering, and multiplexing of incoming metadata from
multiple sources, including the operating system, applications, and manual cura-
tion. Provenance elements can be located locally with queries that use wildcard,
fuzzy, proximity, range, and Boolean operators. Ancestor and descendant queries
are transparently propagated across hosts until a terminating expression is satis-
fied, while distributed path queries are accelerated with provenance sketches.

1 Introduction

The origin of SPADE [59] can be traced to a discussion in 2006 with a member of the
BaBar [5] project at SLAC [58]. BaBar consists of more than 500 physicists and engi-
neers, maintains petabytes of information in databases, and processes large volumes of
data using computational Grids that consist of computer clusters in multiple adminis-
trative domains. One conclusion from the discussion was that despite the long history
of research in distributed computing, the issue of how to ascertain the security of data in
Grid environments (with hundreds of users from scores of independent organizations)
was still open to debate.

Extant filesystems reported minimal information about the history of stored data,
leaving the task of maintaining such records to individual applications. While knowl-
edge of lineage would allow the trustworthiness of data to be ascertained, support to
answer such queries was limited (typically to determining the time and user involved
in the original creation and last modification of a file). The gap provided the impetus to
create SPADE in 2008 as a distributed service for collecting, certifying, and querying
the provenance of Grid data [56].

The first version (SPADEv1) tackled a combination of fundamental challenges, in-
cluding provenance growth and verification latency, as well as practical concerns, such
as the need to support legacy environments. SPADEv1 used selective provenance repli-
cation to increase distributed availability while limiting the storage overhead [15].

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 101–120, 2012.
c© IFIP International Federation for Information Processing 2012

102 A. Gehani and D. Tariq

It aggregated, reordered, and query-specifically pruned provenance elements to improve
latency and reliability when verifying responses [18], and embedded provenance wit-
nesses (precursors of sketches [17,39]) as hints to reduce extraneous remote connections
in distributed provenance queries [18].

To collect provenance without modifying applications or the operating system, events
from a user space filesystem [50] were fused with process-related information from
/proc (on Linux). Unmodified applications could ensure that a file’s provenance was
transparently transferred across network connections. This was accomplished by ap-
pending the provenance to the content if the filename was suitably augmented when
the file was opened for reading, and analogously extracting and recording the appended
provenance at the other end if the file was saved with an augmented filename [16].

In late 2009, the NIGHTINGALE project [45] began experimental use of SPADEv1.
NIGHTINGALE involved experts from 15 universities and corporations concurrently
developing parts of a speech technology toolchain that processed terabytes of data
on hundreds of computers. We expected that the provenance of intermediate outputs
would be used to optimize the subsequent steps in workflows. In practice, application-
generated metadata was maintained for this. Instead, SPADEv1 was used to locate
bottlenecks in distributed workflows by adding support to capture input and output
attributes and recording them in the provenance. It was also actively used to identify
code and data dependencies when releasing new versions of the toolchain.

Given the number of institutions involved, we anticipated that provenance certifi-
cation would be widely employed, but it was not. We learned that SPADEv1’s de-
sign meant certification was finer-grained than warranted in many situations. Similarly,
the architecture imposed a high overhead for incorporating additional provenance at-
tributes, experimenting with novel storage and indexing models, and handling prove-
nance from diverse sources. This motivated a redesign in 2010.

Fig. 1. SPADEv2 has a cross-platform kernel that decouples the collection, storage, and querying
of provenance metadata derived from applications, operating systems, and network activity

SPADE: Support for Provenance Auditing in Distributed Environments 103

SPADEv2 is the second generation of our data provenance collection, management,
and analysis software infrastructure. The underlying data model used throughout the
system is graph-based, consisting of vertices and directed edges, each of which can be
labeled with an arbitrary number of annotations (in the form of key-value pairs). These
annotations can be used to embed the domain-specific semantics of the provenance.

The system has been completely re-architected to decouple the production, storage,
and utilization of provenance metadata, as illustrated in Figure 1. At its core is a novel
provenance kernel that mediates between the producers and consumers of provenance
information, and handles the persistent storage of records. The kernel handles buffer-
ing, filtering, and multiplexing incoming metadata from multiple provenance sources.
It can be configured to commit the elements to multiple databases, and responds to con-
current queries from local and remote clients. The kernel also supports modules that
operate on the stream of provenance graph elements, allowing the aggregation, fusion,
and composition of provenance elements to be customized by a series of filters.

SPADEv2 supports the Open Provenance Model [42,47] and includes controlling
Agent, executing Process, and data Artifact node types, as well as dependency types
that relate which process wasControlledBy which agent, which artifact wasGenerat-
edBy which process, which process used which artifact, which process wasTriggeredBy
which other process, and which artifact wasDerivedFrom which other artifact. Table 1
illustrates how each of these nodes and dependencies represented.

Table 1. SPADE can emit provenance graphs in Graphviz [21] syntax with Open Provenance
Model (OPM) semantics. The encoding of the provenance elements is summarized here. Prove-
nance domain semantics are added to the vertices and edges as annotations.

OPM Node Node Encoding Graph Representation

Agent vertex Red octagon

Process vertex Blue rectangle

Artifact vertex Yellow ellipse

OPM Dependency Dependency Encoding Graph Representation

WasControlledBy edge Purple arrow (from Process to Agent)

WasGeneratedBy edge Red arrow (from Artifact to Process)

Used edge Green arrow (from Process to Artifact)

WasTriggeredBy edge Blue arrow (from Process to Process)

WasDerivedFrom edge Yellow arrow (from Artifact to Artifact)

104 A. Gehani and D. Tariq

2 Provenance Kernel

The kernel is designed to be extensible in four ways. A reporter can be added to collect
provenance activity about a new domain of interest. A filter can be inserted to perform
a new transformation on provenance events in the kernel. A storage system can be
introduced to record provenance in a new format. A sketch can be used to optimize
the distributed querying. The kernel is written in Java and uses a combination of the
runtime’s dynamic classloading and abstract classes to facilitate the concurrent addition
and removal of reporters, filters, sketches, and storage through the control client. A
different abstract class defines the framework for each type of extension and how it
interfaces with the kernel.

The control client maintains a history of commands, and allows a combination of ex-
tensions to be saved to or loaded from a configuration file. When the control client shuts
the kernel down, callbacks are invoked in all extensions to shut them down gracefully
(flushing buffered data as necessary) and the kernel’s configuration is saved so it can be
automatically loaded the next time it runs.

When SPADEv2 is activated on a computer, the provenance kernel is launched as a
daemon that runs in the background. Its functionality can be invoked on demand with
low latency and imposes low overhead when not in active use. Initially, the kernel is
blind to provenance reporting, deaf to control and query clients, and mute about events
it has learned of. It uses saved configuration information, if available, to spawn threads
for each of the tasks described in Table 2.

Table 2. The SPADE kernel is multi-threaded to allow provenance reporting, local and remote
querying, and reconfiguration of the kernel to operate concurrently

Thread Service Provided

Provenance
Collection

Reporters queue events programmatically in buffers that must then be emptied by
a thread in the kernel. The thread extracts the events, filters them, and commits
them to local storage.

Remote
Queries

Each kernel is implicitly part of a peer-to-peer provenance overlay, with a thread
handling provenance queries from remote kernels.

Sketches
A kernel on another computer may need a provenance sketch to optimize its dis-
tributed queries. Such requests are processed through a separate port and thread.

Local
Queries

Interactive use with query clients requires extra information, including user
prompts and error reporting, to be multiplexed with the responses to queries, and
is therefore handled by a thread that is distinct from the one for remote queries.

Kernel
Control

Since the kernel operates as a background system service, it uses a thread to
listen for connections on a control port that then processes commands received
from the control client.

SPADE: Support for Provenance Auditing in Distributed Environments 105

When a provenance event occurs, SPADEv1 blocked until the activity had been com-
pletely recorded. This had the advantage that the provenance records were always syn-
chronized with the state of the system (from which provenance events were derived).
However, it had the disadvantage that application performance was adversely impacted
by the latency introduced during input and output operations. The design choice had
been made to support workflows that used the provenance of intermediate data to de-
cide subsequent steps. In practice, the tight coupling was seldom necessary.

The SPADEv2 kernel provides a non-blocking interface for reporting provenance
events. While this ensures that the monitoring overhead for provenance collection is
minimal, it introduces a new concern. In scenarios where the rate at which provenance
is being reported varies significantly, there are periods when the kernel cannot process
events at the rate that they are arriving. In this situation, some events are lost. To mitigate
this, SPADEv2 creates separate buffers for each provenance reporter to enqueue events
into. A thread in the kernel then dequeues events when the load permits, processes the
events through any configured filters, and sends the results to persistent storage.

3 Generating Metadata putVertex(Agent a);
putVertex(Process p);
putVertex(Artifact a);

putEdge(Used u);
putEdge(WasControlledBy wcb);
putEdge(WasDerivedFrom wdf);
putEdge(WasGeneratedBy wgb);
putEdge(WasTriggeredBy wtb);

Fig. 2. A reporter emits a provenance element by
calling the appropriate function, which queues it in
a buffer. The kernel multiplexes elements from the
buffers of all reporters.

Although users do maintain prove-
nance records manually (in the form
of scientific laboratory notebooks, for
example), automating the generation
and collection of provenance metadata
substantially reduces their burden, im-
proves reproducibility, aids in debug-
ging, and increases the utility of their
data to other researchers. To facilitate
this, SPADEv2 includes a number of
reporters that transparently transform
computational activity into provenance
events that are sent to the kernel.

Each reporter utilizes the same interface to the kernel, abstracted in Figure 2. This
holds regardless of whether the provenance elements are manually curated, application
emitted, logged by a workflow engine, or from the operating system’s audit trail. The
domain semantics are captured as annotations on the vertices and edges.

3.1 Operating System Provenance

The advantages of collecting data provenance at the operating system level are that it
provides a broad view of activity across the computer and that it does not require ap-
plications to be modified. The approach has a number of limitations, including the fact
that this may provide too much extraneous information and not enough detail about par-
ticular applications that are of interest. A significant consideration for software main-
tainability is how the system activity is obtained. Implementing a kernel module or
modifying system libraries requires a substantial investment in adapting the collection
mechanism to each currently available and future version of the operating system.

106 A. Gehani and D. Tariq

An alternative approach relies on utilizing the auditing mechanisms of each operat-
ing system, which typically have stable programming interfaces across operating system
versions. The disadvantage of the technique is that it is limited to the information ex-
posed in the audit trail, which does not include records of interprocess communication
through shared memory, graphical user interface events, or keyboard input. Neverthe-
less, the provenance collected suffices for characterizing the batch computing work-
loads that are the staple of scientific computing workflows. In particular, this includes
the process’s name, owner, group, parent, host, creation time, command line, environ-
ment variables, and a file’s name, path, host, size, and modification time. The types of
provenance collected at the operating system level are summarized in Table 3.

Linux (System-wide): An audit trail is needed for the Common Criteria certifica-
tion of systems used by U.S. Government agencies. Linux vendors interested in sales
to this market contributed kernel changes to monitor activity across the entire host
and generate corresponding audit events. These are accessible through a Unix socket
(/var/run/audispd events) after activating a system service (audispd) with an appropri-
ate plug-in. SPADEv2’s Linux reporter configures the audit system to generate records
for exec(), fork(), clone(), exit(), open(), close(), read(), write(), clone(), truncate(), and
rename() system calls.

Since Java does not support reading from Unix sockets, a utility written in C serves
as a bridge. The audit records are then parsed in the Java component of the reporter.
Reporting read() and write() events poses two challenges. First, the Linux audit records
contain only a file descriptor, so a mapping between descriptors and filenames has to be
built using information from open() calls. Second, reporting read() and write() events
would provide enough provenance metadata that system responsiveness would notice-
ably degrade. Consequently, these two calls are not reported. Instead, the flags of open()
calls are used to infer whether a process is reading or writing a file. If detailed input
and output records are needed, the alternative Linux reporter that focuses on selected
filesystem activity can be utilized.

Process-related information is obtained from two sources. When a system call
occurs, the kernel generates an audit record. The reporter extracts the process iden-
tifier from this record. This identifier is then used to obtain further details about the
process from the Linux /proc filesystem, if available. Since the audit record is created
in the kernel but used in user space, it may be reporting the action of a process that
has already terminated, with no corresponding information available under /proc. In
this case, other elements of the audit record (such as the name, owner, and group of
the process) are used. On the surface, the approach employed appears to introduce a
time-of-check-to-time-of-use race condition. However, this is not the case since process
identifiers are allocated serially. A problem would manifest only if the process identifier
value wrapped through the entire possible range within the time window between the
check and use.

We found that network-related system calls (such as connect() and accept()) report
only the remote IP address and port information. The source IP address and port are not
recorded, preventing connections from being completely disambiguated. This weakness
is partially addressed by the Network reporter.

SPADE: Support for Provenance Auditing in Distributed Environments 107

Linux (Selected activity): The hooks and module needed to support FUSE [14] user
space filesystems are present in all Linux kernels, starting with version 2.6.14. In par-
ticular, interposition can be limited to file activity in a specific directory, eliminating
the monitoring of calls to files outside the subtree. This allows detailed provenance to
be recorded with low overhead for workloads that are localized to a single subtree (as
is the case with many scientific and engineering applications), including annotations on
used and wasGeneratedBy edges for the time spent in read() and write() calls.

The reporter includes C code that is linked against the FUSE shared library that
handles communication with the kernel. This code is invoked when read(), write(),
rename(), truncate(), link(), symlink(), readlink(), and unlink() filesystem calls occur,
and the arguments to each call are passed via the Java Native Interface (JNI) [31] to Java
code that transforms the filesystem event into appropriate provenance elements. The
identifier of the process that made the filesystem call is used to extract more information
about the process from the Linux /proc filesystem. Since the system call is blocked
during this step, the process record will always be present and the information extracted
will be current and accurate.

If a process does not interact with the filesystem, it will not trigger a FUSE event.
In this situation, no information would be collected about the process. To mitigate this
limitation, information about all ancestor processes is also extracted and added to the
provenance record. In this context, it is worth noting that when a process exits, the Linux
kernel changes the parent of all child processes to the parent of the exiting process. This
can result in multiple (consistent) accounts of the lineage of a single process.

Android (System-wide): Google’s mobile device platform, Android, uses a Linux ker-
nel. We therefore assumed that the audit-based Linux reporter would be usable for
collecting data provenance. However, a number of challenges arose, including the ab-
sence of audit code in the Linux kernel for ARM processors, and the audit daemon
auditd’s dependence on glibc functions not present in Android’s replacement bionic
library. Using our patch (that is now part of Linux kernel 3.3) and modified audit utili-
ties, SPADEv2 can collect Android provenance. It is worth noting that this is lower-level
activity than would be generated by a reporter that instrumented Android’s Dalvik vir-
tual machine. Interactions between applications are captured using the transaction log
(in /proc) of the Binder inter-process communication mechanism.

Mac OS X (System-wide): The Basic Security Module (BSM) system was designed by
Sun Microsystems. It includes a framework for generating, accessing, and parsing audit
records in a documented format. Apple had it ported to Mac OS X to obtain Common
Criteria certification. The open source version is maintained as OpenBSM [46]. The
Mac OS X kernel reports system events in real time. A process with sufficient privilege
can access the resulting records by reading the named pipe /dev/auditpipe. Using
an ioctl() system call, the pipe can be configured to specify which system events are of
interest. The system-wide Mac OS X reporter consists of C code that runs with setuid,
configures the pipe, and then forwards the output to unprivileged Java code where it
is parsed and used to generate appropriate provenance events. The set of system calls
monitored includes fork(), exit(), kill(), read(), write(), create(), and rename().

Each audit record includes the identifier of the process responsible for the action.
Since OpenBSM can be configured to record the command line arguments and

108 A. Gehani and D. Tariq

environment variables when a process is invoked, in principle the audit records should
have sufficient process-related information. However, the OpenBSM subsystem on OS
X Snow Leopard does not audit the spawn() system call, which is used by the Finder to
launch applications. Therefore, even though fork() and exec() calls are audited, a signif-
icant amount of process-related provenance is lost (since processes started with spawn()
are not observed). To address this limitation, the reporter extracts the process identifier
and obtains further information about the process with the ps utility. This approach can-
not collect information about a short-lived process that may have terminated before ps
was invoked. It is worth noting that the serial allocation of process identifiers ensures
that information about the wrong process is never collected.

Since system-wide activity is monitored, only the first read from and write to a file by
a process are recorded to minimize the performance overhead. The alternative Mac OS
X reporter (that focuses on selected filesystem activity) can record details about reads
and writes, should that level of detail be needed. Further, when network connections
occur, the BSM records generated have invalid IP addresses on OS X Snow Leopard
and OS X Lion, preventing the construction of provenance artifacts to represent the
connections. The Network reporter attempts to address this weakness.

Mac OS X (Selected activity): An alternative reporter for Mac OS X that leverages
the MacFUSE [37] user space filesystem was developed to limit provenance collection
to a subtree in the filesystem. This facilitates managing the overhead associated with
recording read() and write() calls. The reporter contains C code that is called when
read(), write(), rename(), link(), symlink(), readlink(), and unlink() calls occur. Each
invocation results in a call through JNI to Java code that converts the filesystem event
into a corresponding provenance event.

Information about the process that made a filesystem call is obtained with the ps
utility. In contrast to the system-wide reporter, where the invocation of ps is not syn-
chronized with the system call being audited, here the filesystem call blocks during the
invocation of ps, ensuring that metadata is collected even for short-lived processes.

As with the Linux FUSE-based reporter, a process that does not interact with the
filesystem does not trigger the collection of its provenance. This prevents descendant
processes from being linked to ancestor processes, and creates a problem in practice
with gaps in provenance chains. To mitigate this issue, when information is collected
about a process, records are constructed for all known ancestor processes as well.

Though MacFUSE requires administrator privileges to be installed (since it uses a
Mac OS X kernel extension), it is used by numerous other software packages and may
already be installed and available on the user’s system. This is of particular utility in
situations where the user does not have permission to install a setuid program (as is
needed for the system-wide Mac OS X reporter).

Windows (System-wide): Microsoft’s Event Tracing for Windows (ETW) [10] frame-
work allows application developers to use system-level information for debugging and
performance analysis. Since ETW provides a documented interface for collecting in-
formation about operating system activity, we used it to generate provenance records.
However, ETW provides process identifiers only in event descriptions, necessitating
the use of Microsoft’s Windows Management Instrumentation (WMI) [66] framework

SPADE: Support for Provenance Auditing in Distributed Environments 109

to obtain details such as a process’s name, binary location, creation time, and command
line.

When ETW generates file events, it records the associated filenames internally but
does not make them available until the end of the tracing session. This prevents the
online generation of provenance artifacts. Microsoft’s Windows Driver Kit (WDK) [63]
includes the Installable File System (IFS) Kit [28], which can be used to write filters
that intercede on filesystem calls. We developed an IFS filter to monitor file creation,
reads, and writes.

Consequently, our initial Windows reporter consisted of C++ code that interfaced
with the ETW, WMI, and IFS subsystems. The C++ code has been replaced by an invo-
cation of the Process Monitor tool [49], which interfaces with the Windows subsystems
and emits a log. The Windows reporter now parses the events in the log and transforms
them into provenance elements that are sent to the SPADEv2 kernel.

The approach of relying on an external tool to collect system activity resolved three
issues. First, it allows the reporter to run on all versions of Windows released after 2000.
In contrast, the initial reporter supported only a single version of the operating system
since the programming interfaces of ETW and WMI differ across releases of Windows.
Second, it eliminates the need for IFS driver signing since Process Monitor has a signed
kernel driver. Third, it eliminates a dependency on Microsoft source code that could not
be redistributed with SPADEv2 due to an incompatible license.

Table 3. In this summary of operating system provenance reporting, a check mark in a cell indi-
cates that the operation listed in the column is recorded by the reporter listed in the row. The last
row depicts the Open Provenance Model semantics of the operation.

O
pe

n
F

il
e

fo
r

R
ea

di
ng

O
pe

n
F

il
e

fo
r

W
ri

ti
ng

R
ea

d
F

il
e

W
ri

te
F

il
e

R
en

am
e

Fi
le

C
re

at
e

L
in

k

T
ra

ns
m

it
D

at
a

R
ec

ei
ve

D
at

a

C
re

at
e

P
ro

ce
ss

Linux � � �
Mac � � � �
Windows � � � � �
Selected � � � �
Network � �

Provenance
Semantics

Network: SPADE aims to support provenance queries about distributed computations.
Whereas SPADEv1 was limited to noting the relationship between a source and

110 A. Gehani and D. Tariq

destination file when a remote copy occurred, SPADEv2 explicitly models a network
connection as a pair of network artifacts connected by used and wasGeneratedBy edges.

Network artifacts (depicted by green diamonds in Table 3) are distinguished by the
property that each endpoint can independently construct the same artifact without ex-
plicit coordination. This allows the complete decentralization of provenance collection
in distributed systems while still ensuring that subgraphs from different hosts can be
reassembled into a coherent reconstruction of distributed data provenance. SPADEv2
implements network artifacts with this property combining the time the connection was
initiated with the IP addresses and TCP or UDP ports of the two endpoints.

None of the Linux or Mac OS X reporters have access to correct source and desti-
nation IP address and TCP or UDP port information. Consequently, a separate reporter
uses the lsof [35] utility in repeat mode to poll the operating system and periodically
retrieve a list of recent connections. These are transformed into provenance semantics
and then sent to the SPADEv2 kernel. While the reporter is not asynchronously notified
of new connections, it is able to report network provenance metadata within a second
of the connection’s occurrence. The synchronous inspection of network activity means
that short-lived connections are unlikely to be reported.

3.2 Application Provenance

An advantage of collecting data provenance from the operating system, as described
in Section 3.1, is that applications can be monitored without any provenance-specific
modifications. However, instrumentation at this level of abstraction results in an op-
erating system process being modeled as a monolithic entity. Since intra-process data
flow (such as memory reads and writes) is not recorded, internal application-level de-
pendencies cannot be differentiated. Further, the provenance semantics of interest in
an application may manifest at a higher level of abstraction than operating system in-
terfaces. SPADEv2 includes two types of support for collecting application-level data
provenance on both Linux and Mac OS X.

Domain-Specific Language: In late 2010, scientists at SRI were managing large vol-
umes of mass spectroscope data. They were interested in using SPADEv2 to track the
computational manipulation of the records. Since the steps were performed in MAT-
LAB [40], we needed a mechanism to communicate provenance information from an
external application to the SPADEv2 kernel.

One possible approach would have been to create a dynamically linked library with
functions for reporting provenance metadata, similar to Harvard’s Core Provenance Li-
brary [38]. We adopted an alternative approach for a number of reasons. First, the target
application’s source would have to be available, which is not the case for commer-
cial applications such as MATLAB. Second, determining where to insert the calls to the
provenance reporting functions would require extensive study of the target application’s
codebase. Third, the library would reside in the address space of the target application,
leaving the issue of communicating the metadata to the SPADEv2 kernel unresolved.

Instead, we developed a reporter that creates a named pipe, continuously reads from
it, parses any information it retrieves, and constructs appropriate provenance elements
that are then sent to the SPADEv2 kernel. Provenance metadata can be sent to the re-
porter by any source that can write to a named pipe, including external applications

SPADE: Support for Provenance Auditing in Distributed Environments 111

and users interested in manually adding provenance records. The provenance metadata
must be stated in a simple OPM-inspired domain-specific language. The corresponding
context-free grammar is shown in Backus-Naur Form in Figure 3.

<provenance> ::= <provenance> <element> | <element>
<element> ::= <node> | <dependency>

<node> ::= <node-type> <node-id> <annotation-list>
<node-type> ::= type: <vertex-type>

<vertex-type> ::= Agent | Process | Artifact
<node-id> ::= id: <vertex-id>

<vertex-id> ::= <unique-identifier>
<annotation-list> ::= <annotation-list> <annotation> | <annotation>

<annotation> ::= <key> : <value>
<dependency> ::= <dependency-type> <start-node> <end-node>

<annotation-list>
<dependency-type> ::= type: <edge-type>

<edge-type> ::= WasControlledBy | WasGeneratedBy | Used |
WasTriggeredBy | WasDerivedFrom

<start-node> ::= from: <vertex-id>
<end-node> ::= to: <vertex-id>

Fig. 3. The grammar for the domain-specific language that can be used by external applications
to report Open Provenance Model metadata to the SPADEv2 kernel

Compiler-Based Instrumentation: Manually instrumenting an application to emit
provenance metadata requires a substantial effort. This becomes decreasingly tenable as
the scale of the software system increases. To address this, we developed LLVM-based
[34] compiler support to automate the process of instrumenting an application to emit
intra-process provenance information at function call granularity [61].

In many instances, the function call level of abstraction corresponds to what the user
is interested in. However, this may still result in reporting far more information than the
user is interested in since every function call will be reported. To avoid overwhelming
the user with extraneous information, we allow only the functions that are of interest to
be specified. The program sources are statically analyzed to obtain the application’s call
graph, which is then traversed in a reverse reachability analysis to identify which func-
tions should be reported. Provenance metadata about all other functions is discarded.

An advantage of recording provenance at the finer application function call level
is that it reduces the process-level dependency aliasing that results when collecting
provenance using system calls. For example, the provenance of data transmitted over a
network connection includes all the files read until that point by the server, if provenance
is collected at the operating system level. If individual threads read different files and
sent them to distinct network connections, well-structured code would allow function
call level provenance to distinguish the dependencies.

In practice, users are interested in the values of arguments to function calls. How-
ever, providing meaningful information about the arguments requires knowledge of
their types, which is often lost in the process of compiling from the source language

112 A. Gehani and D. Tariq

to LLVM’s intermediate representation, bitcode. Since provenance instrumentation is
inserted in the bitcode, only pointers to such values can be reported.

4 Persistent Storage

SPADEv1 used a relational database to store the provenance metadata as it was being
collected. This meant that provenance collection could proceed only at the rate that
transactions could be committed to the database. Graph queries were constructed as
SQL queries, with repeated self-joins to compute the transitive closures necessary to
answer path queries. The addition of new attributes resulted in changes to the relational
schema. Each of these contributed to performance degrading as the provenance graphs
grew in size. For users collecting large volumes of provenance metadata and primarily
initiating graph queries, a graph database seemed to be a better option.

Despite the limitations of storing provenance in SQL databases, it remained an at-
tractive option for some users. This is the case if the quantity of provenance is smaller
(as is the case when provenance is collected from a source reporting it at a higher level
of abstraction or over a shorter span of time), the query workload is well supported
by relational operators, or the user has SQL infrastructure and experience that can be
leveraged.

SPADEv2 allows arbitrary types of persistent storage to be used as a back end. It does
this by defining an abstract storage interface. An adapter for a back end implements
the subset of the storage interface that the repository can support. The query interface
forwards requests without interpreting them. This allows the SPADEv2 kernel to utilize
the native query capabilities of each type of storage.

Neo4j: Neo4j [44] is a high-performance cross-platform graph database with support
for transactions. It allows vertices and edges to be typed and annotated, provides a rich
set of graph querying functionality, and incorporates Apache Lucene [36] indexing of
the graph data. Lucene provides Boolean, wildcard, fuzzy, proximity, range, boosting,
and grouping operators for flexible querying. Neo4j is the default database used by
SPADEv2.

SQL: To facilitate storing provenance in SQL databases, SPADEv2 includes a
JDBC-based [30] storage adapter. By default, the SQL adapter uses the cross-platform
embedded relational database, H2 [27]. However, it can also use an alternative JDBC-
compliant database, such as MySQL [43], by specifying the driver at activation. The
adapter supports recording provenance elements in vertex and edge tables, and SQL
queries over these tables, but does not implement graph functionality in the storage
interface, such as path queries.

After the SQL storage has been loaded, every provenance node is added as a new
row in the table of vertices. When an annotation has a key that has not previously been
observed, the table’s schema is extended with a new column for the key. The value in
an annotation is stored in the cell corresponding to the row of the vertex and the column
of the key. Incoming dependencies are similarly added to the table of edges, with the
schema continuously evolved to handle new keys in annotations on edges.

SPADE: Support for Provenance Auditing in Distributed Environments 113

Graphviz: Graphviz [21] was created in 1988 by AT&T Research to facilitate graph
visualization. Over the years, visualization and analysis tools have adopted the Graphviz
DOT language for storing and manipulating graph data. Once the SPADEv2 Graphviz
storage is loaded, every provenance element and dependency is output in DOT syntax
to a file. This file can then be used with Graphviz tools that employ a variety of graph
layout algorithms, as well as a wide range of other graph visualization applications.
Querying is not supported by the Graphviz storage.

5 Filtering

Automated provenance collection can result in large volumes of metadata. As more
information is generated and stored, both the precision and performance of queries start
to degrade. One strategy to address this is to abstract the information and filter out el-
ements if possible. In addition, when provenance is collected from multiple sources,
normalizing and reconciling the streams before they are committed to persistent stor-
age can improve subsequent query precision and performance. Therefore, the SPADEv2
kernel supports aggregation, fusion, and composition filters that can be used to normal-
ize and reconcile provenance elements [19].

Temporal Aggregation: In environments where numerous low-level events are gen-
erated, aggregation can mitigate information overload. For example, the provenance
elements of a group of readings that are close in value and from a network of sensors
can be combined into one provenance element that describes the set of sensors and the
value range. An analogous incentive is present for the provenance of data from cyber-
physical systems such as SCADA process controllers, but with aggregation occurring
over the time variable instead of the spatial one of sensor networks. When the read-
ings do not change, the provenance elements can be aggregated into one that includes
the interval of invariance. SPADEv2 includes a filter with the same motif for operating
system provenance, where the provenance of a non-interleaved sequence of reads or
writes can be replaced with a single provenance element that has an annotation added
to describe the start and end points of the sequence.

Multi-source Fusion: When two or more reporters report provenance about the same
phenomena, the semantics of the reported events may overlap. If the reporters operate
at similar levels of abstraction, fusion allows distinct provenance elements (generated
by different reporters) to be combined to provide a more complete representation of the
same underlying phenomenon. As an example, reporters that capture events across the
whole operating system typically report with coarse temporal granularity. A reporter
that focuses on selected filesystem activity can track and add annotations about the
exact quantity of time spent for each read() or write() operation for application
profiling. SPADEv2 includes a filter to reconcile the two perspectives through fusion
keyed on a common key (such as the process identifier), allowing a single view of
operating system activity with the input and output times added to the appropriate used
and wasGeneratedBy edges.

Cross-Layer Composition: When reporters operate at different levels of abstraction,
composition can relate the activity with an isAbstractedBy edge. For example, the Pro-
cess vertex for a function call can have an isAbstractedBy edge to the operating system

114 A. Gehani and D. Tariq

Process vertex of the application in which the call occurred. Such edges can be used
to connect provenance from the LLVM-based intra-process level provenance reporter
described in Section 3.2 and an operating system-level provenance reporter described
in Section 3.1.

6 Evaluation

To evaluate the performance of SPADEv2, we measured the overhead of collecting
provenance while building and running the Apache Web server [4] and running the
BLAST genome sequence alignment tool. SPADEv2 was run in the background on
Mac OS X 10.6.8, Linux Fedora 17, and Windows 7 with system-wide reporters. All
experiments were performed on a 2.4 GHz Intel Core i5 machine with 4 GB of memory.

Fig. 4. Number of provenance elements generated over time during the build process of the
Apache Web server on Linux is reported

To provide insight into the rate at which provenance elements are generated, Figure
4 shows the count of different types of provenance elements as they are emitted while
the Apache Web server is being built. The Linux reporter for selected activity was used
to collect the provenance metadata.

Figure 5 reports the time to build the Apache Web server on Windows, Mac OS X,
and Linux. This time is reported for an unmodified system as well as one that has been
augmented with SPADEv2 to collect provenance with a system-wide reporter. The com-
parison is intended to provide an understanding of the overhead incurred by collecting
provenance during a compute-intensive task. The Windows reporter imposes a 53% over-
head during the Apache build, presumably because a wide range of system calls are in-
voked and audited. On Mac OS X and Linux, the overhead was less than 10% and 5%,
respectively.

SPADE: Support for Provenance Auditing in Distributed Environments 115

Fig. 5. Time to build the Apache Web server on multiple operating systems is measured here

Fig. 6. Number of requests that can be handled by the Apache Web server on Windows, Mac OS
X, and Linux is measured to understand the overhead of collecting provenance during normal
opertation

Fig. 7. The time to run the BLAST genome sequence alignment tool on multiple operating sys-
tems is measured to understand the overhead of collecting provenance during a heavy workload

116 A. Gehani and D. Tariq

To understand the overhead of collecting provenance when a service is running, the
Apache Web server was run on Windows, Mac OS X, and Linux. In each case, the rate
at which the Web server is able to handle requests is reported in Figure 6. This is done
for both an unmodified system as well as one where SPADEv2 is running and collect-
ing provenance with a system-wide reporter. When provenance is being collected, the
performance of Apache drops by 9% on Windows and 12% on Mac OS X and Linux.

To estimate the overhead of collecting provenance when using a scientific applica-
tion, we ran the BLAST [3] genome sequence alignment tool with the influenza data
set [29] from the National Institutes of Health. Figure 7 shows that when provenance
is being collected, the overhead imposed on Windows, Mac OS X, and Linux is 9%,
6%, and 12%, respectively. Since the tool invokes a limited number of system calls, the
difference in overheads is likely an artifact of the set of calls being utilized.

7 Related Work

Data provenance has a range of applications. HP SRC’s Vesta [24] uses it to make soft-
ware builds incremental and repeatable. Lineage File System [55] records the input files,
command line options, and output files when a program is executed. Its records are stored
in a database that can be queried to reconstruct the lineage of a file. Provenance-Aware
Storage System [51] augments this with details of the software and hardware environ-
ment. The provenance of Datalog programs has been tracked with semi-rings [22].

Several Grid environments account for data provenance in their design. myGrid [67]
with Taverna [2] allows biologists to add application-level annotations of the data’s
provenance. This is then stored in the user’s repository, although it does not enable
other users of the data to determine its provenance. The Provenance Aware Service
Oriented Architecture (PASOA) project [41] arranges for data transformations to be re-
ported to a central provenance service [60], which can be queried by other users as well.
The more recent ES3 model [13] extracts provenance information automatically from
arbitrary applications by monitoring their interactions with their execution environment
and logs them to a customized database. While ES3 logs events at a more abstract level
than PASS, it follows the same centralized model of metadata logging. The approach
ensures that the provenance does not have to be replicated. However, in the event that
the metadata is heavily accessed, the latency of performing remote lookups can degrade
application performance.

A number of distributed systems have been built to help scientists track their data.
Chimera [11] allows a user to define a workflow, consisting of data sets and transforma-
tion scripts. The system then tracks invocations, annotating the output with information
about the runtime environment. CMCS [48] is a toolkit for chemists to manage experi-
mental data derived from fields like combustion research. It is built atop WebDAV [64],
a Web server extension that allows clients to modify data on the server. ESSW [12] is a
data storage system for earth scientists. If a script writer uses its libraries and templates,
the system will track lineage so that errors can be tracked back to maintain the quality
of data sets. A number of systems track the provenance of database elements, including
Trio [65], DBNotes [6], and Perm [20]. Trio also allows the source of uncertainty to
be traced. VisTrails [57] tracks the provenance of visualization workflows. Bose and

SPADE: Support for Provenance Auditing in Distributed Environments 117

Frew’s survey [7] identifies a number of other projects that aid in retrieving the lineage
of scientific data.

PASS describes global naming, indexing, and querying in the context of sensor
data [53]. PA-NFS [52] enhances NFS to record provenance in local area networks.
Harvard’s PQL [26] describes a new language for querying provenance and leverages
the query optimization principles of semi-structured databases. However, it does not
consider distributed naming explicitly. SPADEv2 addresses the issue by using storage
identifiers for provenance vertices that are unique to a host and requiring distributed
provenance queries to disambiguate vertices by referring to them by the host on which
the vertex was generated as well as the identifier local to that host.

ExSPAN [68] allows the exploration of provenance in networked systems and ex-
tends traditional relational models for storing and querying provenance metadata, while
SPADEv2 supports both graph and relational database storage and querying. PASS has
explored the use of clouds [53,54]. Provbase [1] uses Hbase, an open-source implemen-
tation of Google’s BigTable [9], to store and query scientific workflow provenance. IBM
researchers have proposed a provenance index that improves the execution of forward
and backward provenance queries [32]. A number of efforts, including SPADEv2, have
recently considered how to compress provenance [68,39]. Query optimization tech-
niques on compressed provenance data has also been examined [25].

The Open Provenance Model (OPM) [42,47] facilitates interoperability between sys-
tems by providing a common model for describing provenance. Several projects provide
OPM-compliant provenance, including SPADEv2 [59], PASS [52], VisTrails [8], and
Tupelo [62]. An OPM profile [23] provides conventions for modeling distributed as-
pects of provenance, such as transactions. However, query interoperability and global
naming are not addressed.

8 Conclusion

SPADEv2 provides a cross-platform distributed data provenance collection, filtration,
storage, and querying service. It defines reporters that can be inserted between an ap-
plication and the operating system, between functions of an application, or at arbi-
trary user-defined interfaces. Once inserted, the infrastructure operates as middleware,
monitoring the targeted applications and enabling provenance analysis for a variety of
purposes, including facilitating experiment reproducibility, distributed debugging, and
determining dependencies when sharing data and code. We empirically compared and
reported the cost of running applications with and without the middleware.

Acknowledgments. We thank Maisem Ali, Basim Baig, Nathaniel Husted, Minyoung
Kim, Florent Kirchner, Hasnain Lakhani, Tanu Malik, Ian Mason, Ligia Nistor, Shar-
jeel Qureshi, Aditya Rajgarhia, Hassen Saı̈di, Fareed Zaffar, and Jian Zhang for their
contributions.

This material is based upon work supported by the National Science Foundation un-
der Grants OCI-0722068 and IIS-1116414. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

118 A. Gehani and D. Tariq

References

1. Abraham, J., Brazier, P., Chebotko, A., Navarro, J., Piazza, A.: Distributed storage and query-
ing techniques for a semantic Web of scientific workflow provenance. In: IEEE International
Conference on Services Computing (2010)

2. Nedim Alpdemir, M., Mukherjee, A., Paton, N.W., Fernandes, A.A.A., Watson, P., Glover,
K., Greenhalgh, C., Oinn, T., Tipney, H.: Contextualised Workflow Execution in MyGrid. In:
Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 444–453. Springer, Heidelberg (2005)

3. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.:
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Research 25 (1997)

4. Apache Web Server (Version 2.2.22), http://httpd.apache.org/
5. BaBar, http://www-public.slac.stanford.edu/babar/
6. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system

for relational databases. In: 30th ACM International Conference on Very Large Data Bases
(2004)

7. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM Computing
Surveys 37(1) (2005)

8. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: VisTrails: Visualization
meets data management. In: ACM SIGMOD International Conference on Management of
Data (2006)

9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes,
A., Gruber, R.: BigTable: A distributed storage system for structured data. 7th USENIX
Symposium on Operating Systems Design and Implementation (2006)

10. Event Tracing for Windows,
http://msdn.microsoft.com/en-us/library/bb968803.aspx

11. Foster, I.T., Vckler, J.-S., Wilde, M., Zhao, Y.: A virtual data system for representing, query-
ing, and automating data derivation. In: Scientific and Statistical Database Management Con-
ference (2002)

12. Frew, J., Bose, R.: Earth System Science Workbench: A data management infrastructure
for earth science products. In: Scientific and Statistical Database Management Conference
(2001)

13. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of computational
provenance. Concurrency and Computation 20(5) (2008)

14. Filesystem in Userspace, http://fuse.sourceforge.net
15. Gehani, A., Lindqvist, U.: Bonsai: Balanced lineage authentication. In: 23rd Annual Com-

puter Security Applications Conference. IEEE Computer Society (2007)
16. Gehani, A., Kim, M., Zhang, J.: Steps toward managing lineage metadata in Grid clusters.

In: 1st Workshop on the Theory and Practice of Provenance (2009)
17. Gehani, A., Kim, M., Malik, T.: Efficient querying of distributed provenance stores. In:

8th ACM Workshop on the Challenges of Large Applications in Distributed Environments
(2010)

18. Gehani, A., Kim, M.: Mendel: Efficiently verifying the lineage of data modified in multiple
trust domains. In: 19th ACM International Symposium on High Performance Distributed
Computing (2010)

19. Gehani, A., Tariq, D., Baig, B., Malik, T.: Policy-based integration of provenance metadata.
In: 12th IEEE International Symposium on Policies for Distributed Systems and Networks
(2011)

http://httpd.apache.org/
http://www-public.slac.stanford.edu/babar/
http://msdn.microsoft.com/en-us/library/bb968803.aspx
http://fuse.sourceforge.net

SPADE: Support for Provenance Auditing in Distributed Environments 119

20. Glavic, B., Alonso, G.: Perm: Processing provenance and data on the same data model
through query rewriting. In: 25th International Conference on Data Engineering (2009)

21. Graphviz, http://www.graphviz.org/
22. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: 26th ACM Symposium

on Principles of Database Systems (2007)
23. Groth, P., Moreau, L.: Representing distributed systems using the Open Provenance Model.

Future Generation Computer Systems 27(6) (2011)
24. Heydon, A., Levin, R., Mann, T., Yu, Y.: The Vesta Approach to Software Configuration

Management. Technical Report 168, Compaq Systems Research Center (2001)
25. Heinis, T., Alonso, G.: Efficient lineage tracking for scientific workflows. In: ACM SIGMOD

International Conference on Management of Data (2008)
26. Holland, D.A., Braun, U., Maclean, D., Muniswamy-Reddy, K., Seltzer, M.: Choosing a data

model and query language for provenance. In: 2nd International Provenance and Annotation
Workshop (2008)

27. H2, http://www.h2database.com
28. Installable File System,

http://msdn.microsoft.com/en-us/windows/hardware/gg463062.aspx
29. Influenza Data, National Institutes of Health,

ftp://ftp.ncbi.nlm.nih.gov/genomes/INFLUENZA/influenza.faa
30. Java Data Base Connectivity,

http://www.oracle.com/technetwork/java/overview-141217.html
31. Java Native Interface, http://java.sun.com/docs/books/jni/
32. Kementsietsidis, A., Wang, M.: On the efficiency of provenance queries. In: 25th Interna-

tional Conference on Data Engineering (2009)
33. Linux Audit, http://people.redhat.com/sgrubb/audit/
34. LLVM, http://llvm.org
35. lsof, ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof
36. Apache Lucene, http://lucene.apache.org/core/old versioned docs/

versions/3 0 1/queryparsersyntax.html
37. MacFUSE, http://code.google.com/p/macfuse/
38. Macko, P., Seltzer, M.: A general-purpose provenance library. In: 4th USENIX Workshop on

the Theory and Practice of Provenance (2012)
39. Malik, T., Gehani, A., Tariq, D., Zaffar, F.: Sketching Distributed Data Provenance. In

: Liu, Q., Bai, Q., Giugni, S., Williamson, D., Taylor, J. (eds.) Data Provenance and Data
Management in eScience. SCI, vol. 426, pp. 85–108. Springer, Heidelberg (2013)

40. MATLAB, http://www.mathworks.com/products/matlab/
41. Miles, S., Deelman, E., Groth, P., Vahi, K., Mehta, G., Moreau, L.: Connecting scientific

data to scientific experiments with provenance. In: 3rd IEEE International Conference on
e-Science and Grid Computing (2007)

42. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van den Bussche, J.: The Open
Provenance Model core specification (v1.1). Future Generation Computer Systems (2010)

43. MySQL, http://www.mysql.com/
44. Neo4j, http://neo4j.org/
45. Novel Information Gathering and Harvesting Techniques for Intelligence in Global

Autonomous Language Exploitation,
http://www.speech.sri.com/projects/GALE/

46. OpenBSM, http://www.trustedbsd.org/openbsm.html
47. Open Provenance Model, http://openprovenance.org/

http://www.graphviz.org/
http://www.h2database.com
http://msdn.microsoft.com/en-us/windows/hardware/gg463062.aspx
ftp://ftp.ncbi.nlm.nih.gov/genomes/INFLUENZA/influenza.faa
http://www.oracle.com/technetwork/java/overview-141217.html
http://java.sun.com/docs/books/jni/
http://people.redhat.com/sgrubb/audit/
http://llvm.org
ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof
http://lucene.apache.org/core/old_versioned_docs/versions/3_0_1/queryparsersyntax.html
http://lucene.apache.org/core/old_versioned_docs/versions/3_0_1/queryparsersyntax.html
http://code.google.com/p/macfuse/
http://www.mathworks.com/products/matlab/
http://www.mysql.com/
http://neo4j.org/
http://www.speech.sri.com/projects/GALE/
http://www.trustedbsd.org/openbsm.html
http://openprovenance.org/

120 A. Gehani and D. Tariq

48. Pancerella, C., Hewson, J., Koegler, W., Leahy, D., Lee, M., Rahn, L., Yang, C., Myers,
J.D., Didier, B., McCoy, R., Schuchardt, K., Stephan, E., Windus, T., Amin, K., Bittner, S.,
Lansing, C., Minkoff, M., Nijsure, S., van. Laszewski, G., Pinzon, R., Ruscic, B., Wagner,
A., Wang, B., Pitz, W., Ho, Y.L., Montoya, D., Xu, L., Allison, T.C., Green Jr., W.H., Fren-
klach, M.: Metadata in the collaboratory for multi-scale chemical science. In: Dublin Core
Conference (2003)

49. Process Monitor, Windows Sysinternals,
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

50. Rajgarhia, A., Gehani, A.: Performance and extension of user space file systems. In: 25th
ACM Symposium on Applied Computing (2010)

51. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware storage
systems. In: USENIX Annual Technical Conference (2006)

52. Muniswamy-Reddy, K.-K, Braun, U., Holland, D.A., Macko, P., Maclean, D., Margo, D.,
Seltzer, M., Smogor, R.: Layering in provenance systems. In: USENIX Annual Technical
Conference (2009)

53. Muniswamy-Reddy, K.-K., Macko, P., Seltzer, M.: Making a Cloud provenance-aware. In:
1st USENIX Workshop on the Theory and Practice of Provenance (2009)

54. Muniswamy-Reddy, K.-K., Macko, P., Seltzer, M.: Provenance for the Cloud. In: 8th
USENIX Conference on File and Storage Technologies (2010)

55. Lineage File System, http://crypto.stanford.edu/˜cao/lineage.html
56. Scalable Authentication of Grid Data Provenance,

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0722068
57. Silva, C.T., Freire, J., Callahan, S.: Provenance for visualizations: Reproducibility and be-

yond. Computing in Science and Engineering 9(5) (2007)
58. SLAC National Accelerator Laboratory, http://www.slac.stanford.edu/
59. Support for Provenance Auditing in Distributed Environments,

http://spade.csl.sri.com/
60. Szomszor, M., Moreau, L.: Recording and Reasoning over Data Provenance in Web and

Grid Services. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS/DOA/ODBASE 2003. LNCS,
vol. 2888, pp. 603–620. Springer, Heidelberg (2003)

61. Tariq, D., Ali, M., Gehani, A.: Towards Automated Collection of Application-Level Data
Provenance. In: 4th USENIX Workshop on the Theory and Practice of Provenance (2012)

62. Tupelo project, NCSA, http://tupeloproject.ncsa.uiuc.edu/node/2
63. Windows Driver Kit,

http://msdn.microsoft.com/en-us/windows/hardware/gg487428.aspx
64. WebDAV, http://www.webdav.org/
65. Widom, J.: Trio: A system for integrated management of data, accuracy and lineage. In: 2nd

Conference on Innovative Data Systems Research (2005)
66. Windows Management Instrumentation, http://msdn.microsoft.com/en-us/

library/aa394582(v=VS.85).aspx
67. Zhao, J., Goble, C.A., Stevens, R., Bechhofer, S.: Semantically Linking and Browsing Prove-

nance Logs for E-science. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S.
(eds.) ICSNW 2004. LNCS, vol. 3226, pp. 158–176. Springer, Heidelberg (2004)

68. Zhou, W., Sherr, M., Tao, T., Li, X., Loo, B., Mao, Y.: Efficient querying and maintenance
of network provenance at Internet-scale. In: ACM SIGMOD International Conference on
Management of Data (2010)

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://crypto.stanford.edu/~cao/lineage.html
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0722068
http://www.slac.stanford.edu/
http://spade.csl.sri.com/
http://tupeloproject.ncsa.uiuc.edu/node/2
http://msdn.microsoft.com/en-us/windows/hardware/gg487428.aspx
http://www.webdav.org/
http://msdn.microsoft.com/en-us/library/aa394582(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa394582(v=VS.85).aspx

VScope: Middleware for Troubleshooting

Time-Sensitive Data Center Applications

Chengwei Wang1, Infantdani Abel Rayan3, Greg Eisenhauer1,
Karsten Schwan1, Vanish Talwar2, Matthew Wolf1, and Chad Huneycutt1

1 Georgia Institute of Technology
2 HP Labs.

3 Riot Games

Abstract. Data-Intensive infrastructures are increasingly used for on-
line processing of live data to guide operations and decision making.
VScope is a flexible monitoring and analysis middleware for troubleshoot-
ing such large-scale, time-sensitive, multi-tier applications. With VScope,
lightweight anomaly detection and interaction tracking methods can be
run continuously throughout an application’s execution. The runtime
events generated by these methods can then initiate more detailed and
heavier weight analyses which are dynamically deployed in the places
where they may be most likely fruitful for root cause diagnosis and mit-
igation. We comprehensively evaluate VScope prototype in a virtualized
data center environment with over 1000 virtual machines (VMs), and
apply VScope to a representative on-line log processing application. Ex-
perimental results show that VScope can deploy and operate a variety of
on-line analytics functions and metrics with a few seconds at large scale.
Compared to traditional logging approaches, VScope based troubleshoot-
ing has substantially lower perturbation and generates much smaller log
data volumes. It can also resolve complex cross-tier or cross-software-level
issues unsolvable solely by application-level or per-tier mechanisms.

Keywords: Cloud, Data Center, Management, Troubleshooting.

1 Introduction

In the ‘big data’ era, live data analysis applications are becoming easy to scale, as
well as being lucrative for or even critical to a company’s operation. For instance,
by continuously analyzing the live number of page views on its products, an e-
commerce website can run a dynamic micro-promotion strategy in which when
over 3000 customers are looking at a product for over 10 seconds, an extra
20% discount appears on the web page to increase sales. Other mission-critical
examples for e-commerce sites are click fraud and spam detection.

The importance of live data analysis is underscored by the recent creation
of real-time or ‘streaming’ big data infrastructures1, which include Flume, S4,
Storm, Chukwa, and others [5,28,25,29,11,23,15]. Conceptually, these are based

1 In this paper we use the term ‘real-time’ to refer a latency restriction within seconds
or hundreds of milliseconds.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 121–141, 2012.
c© IFIP International Federation for Information Processing 2012

122 C. Wang et al.

Fig. 1. A typical real-time web log analysis application composed from Flume, HBase,
HDFS, and Hadoop. In Flume, agents reside in web or application servers, collecting
logs and converting them into key-value pairs. Collectors receive and aggregate the local
results and insert them into HBase, a distributed, scalable key-value store by which
users can query the analysis results on-the-fly. HBase consists of region servers that are
equipped with a memory cache, termed MemStore, and a Write Ahead Log (WAL).
The data are first written to the WAL and MemStore before being asynchronously
persisted to the back-end distributed file system, HDFS, which is typically shared by
other data-intensive batch systems, such as Hadoop-based MapReduce codes used for
off-line, long-term analyses. Each tier can scale to 1000s of servers or virtual machines.

on the well-established paradigm of stream- or event-based processing [16,2,1],
but their attractiveness stems from the fact that they can be easily integrated
with other elements of ‘big data’ infrastructures, such as scalable key-value stores
and MapReduce systems, to construct multi-tier platforms spanning thousands
of servers or consolidated virtual servers in data centers. A sample platform
integrating Flume and other data-intensive systems is depicted in Figure 1.

Crucial to maintaining high availability and performance for these multi-tier
applications, particularly in light of their stringent end-to-end timing require-
ments, is responsive troubleshooting – a process involving the timely detection
and diagnosis of performance issues. Such troubleshooting is notoriously difficult,
however, for the following reasons:

– Holistic vs. tier-specific troubleshooting. As illustrated in Figure 1, each tier
is typically a complex distributed system with its own management compo-
nent, e.g. HBase or Flume masters. Developed by different vendors and/or
managed by different operation teams, tier-specific management can improve
the availability of individual tiers, but is not sufficient for maintaining an en-
tire application’s end-to-end performance, a simple reason being that issues
visible in one tier may actually be caused by problems located in another.
Needed are holistic systems to efficiently track problems across tiers.

VScope: Middleware for Troubleshooting Data Center Applications 123

– Dynamic, per-problem functionality. Problems in complex, large-scale sys-
tems arise dynamically, and for each class of problems, there may be differ-
ent detection, analysis, and resolution methods. Troubleshooting, therefore,
is an inherently dynamic activity, involving on-line capabilities to capture
differing metrics and to diagnose/analyze them with potentially problem-
and situation-specific methods[36].

– Scalable, responsive problem resolution. In latency-sensitive applications like
the one in Figure 1, to maintain desired timing, troubleshooting must be
conducted both with low perturbation and with high responsiveness: issues
must be detected, diagnosed, and repaired without missing too many events
and while maintaining availability for other ongoing actions.

– System-level effects. Holistic troubleshooting must extend beyond a single
application, to also identify the system-level bottlenecks that can arise in
today’s consolidated data center or cloud computing systems.

Previous troubleshooting systems have not addressed all of these challenges.
Solutions that monitor ‘everything all the time’ [26,39,27], including both appli-

 10

 100

 1000

HDFS
(16/122)

Flume
(95/122)

HBase
(5/122)

All
(122/122)

S
lo

w
do

w
n%

(lo
gs

ca
le

 b
as

e
10

)

Tier Name(# of nodes per tier/total # of nodes)

Fig. 2. E2E performance slowdown (i.e. latency
increase) % caused by debug-level logging at dif-
ferent tiers of the architecture shown in Figure 1

cation and system-level events,
do not scale for detailed diag-
nostics via say, debug-level log-
ging or tracing with consequent
high levels of perturbation. This
is shown in Figure 2, where con-
tinuously logging application-
level debugging events on all of
its nodes slows down an appli-
cation’s performance by more
than 10 times over the base-
line. Sampling [30,31,14,7] for
some of the components and/or
for some period of time may
not only miss important events,
affecting troubleshooting effec-
tiveness, but will also bring
about serious performance issues when using a homogeneous and/or random
sampling strategy across all nodes, e.g., with Dapper [31]’s use of a uniform,
low (1/1000) sampling rate. In Figure 2, debug-level logging in the Flume ap-
plication’s HBase tier, the smallest portion of the system (5/122 VMs), results
in over 10 times slowdown, which is more than an order of magnitude of the
perturbation imposed by debug-level logging in the Flume tier, which has the
majority of nodes (95/122). Thus, it is inadvisable to use a high sampling rate
for the HBase tier, whereas such a strategy for the Flume tier will likely lead to
only modest additional perturbation. An alternative troubleshooting approach
chosen by GWP [30] is to randomly pick some set of machines. This may work
well if that set is in the HDFS tier, but will be prohibitively costly if the HBase
tier is picked. Other approaches, like those taken by Fay [14] and Chopstix [7]

124 C. Wang et al.

to set sampling rates based on the event population, still remain unaware of
application level perturbation, resulting in the same issue as the one faced by
GWP. We, therefore, conclude that a more flexible system is needed for efficient
troubleshooting, where methods can differ for each behavior, tier, and type of
analysis being performed.

The VScope middleware presented in this paper makes it possible (1) to ad-
just and tune troubleshooting dynamically – at runtime – for individual tiers and
across tiers, (2) to dynamically deploy any analysis action(s) needed to under-
stand the metric data being captured in the ways required by such troubleshoot-
ing, and (3) to do so in ways that meet the perturbation/overhead requirements
of target applications. To achieve those ends, VScope, as a flexible monitoring
and analysis system, offers the following novel abstractions and mechanisms for
troubleshooting latency-sensitive, multi-tier data center applications:

1. Dynamic Watch, Scope, and Query. VScope abstracts troubleshooting as
a process involving repeated Watch, Scope, and Query operations. Respec-
tively, these (i) detect performance anomalies, (ii) ‘zoom-in’ to candidate
problematic groups of components or nodes, and (iii) answer detailed ques-
tions about those components or nodes using dynamically deployed monitor-
ing or analysis functions. VScope can operate on any set of nodes or software
components and thus, can be applied within a tier, across multiple tiers, and
across different software levels.

2. Guidance. Replacing the current manual ‘problem ticket’ mechanisms used
in industry, VScope based troubleshooting is directed by on-line ‘guidance’,
realized by theWatch and Scope operations that first detect abnormal behav-
ior, followed by exploring candidate sources for such behavior, and only then
initiate more detailed queries on select entities. The current implementations
of Watch and Scope support both ‘horizontal guidance’, to track potential
problems across different tiers of a multi-tier application, and ‘vertical guid-
ance’, to understand whether problems are caused by how applications are
mapped to underlying machines.

3. Distributed Processing Graphs (DPGs). All VScope operations are realized
by DPGs, which are overlay networks capable of being dynamically deployed
and reconfigured on any set of machines or processes, supporting various
types of topologies and analysis functionalities. First introduced in our pre-
vious work [36], where we proposed the basic architecture of DPGs and inves-
tigated an impact model of metric number/size and various DPG topologies,
along with other factors, this paper presents DPG implementation, APIs, and
commands, based on which we build VScope’s troubleshooting functionality.

VScope’s capabilities and performance are evaluated on a testbed with over 1000
virtual machines (VMs). Experimental results show the VScope runtime negligi-
bly perturbs system and application performance, and requires mere seconds to
deploy 1000 node DPGs of varying topologies. This results in fast operation for
on-line queries able to use a comprehensive set of application to system/platform
level metrics and a variety of representative analytics functions. When support-
ing algorithms with high computation complexity, VScope serves as a ‘thin layer’

VScope: Middleware for Troubleshooting Data Center Applications 125

that occupies no more than 5% of their total latency. Further, by using guidance
that correlates system- and application-level metrics, VScope can locate prob-
lematic VMs that cannot be found via solely application-level monitoring, and
in one of the use cases explored in the paper, it operates with levels of perturba-
tion of over 400% less than what is seen for brute-force and most sampling-based
approaches.

2 System Design and Implementation

2.1 Goals and Non-goals

The design of VScope is driven by the following goals: (1) flexibility: to initi-
ate, change, and stop monitoring and analysis on any set of nodes at any time,
supported by operators for dynamically building and controlling user-defined
actions for runtime troubleshooting; (2) guided operation: programmable meth-
ods for detecting potential problems and then tracking interactions that may
contribute to them, between tiers and across software levels, thereby focusing
troubleshooting in ways that can reduce overheads and improve effectiveness;
and (3) responsiveness and scalability: to deploy troubleshooting methods with
low delay at scales of 1000+ nodes.

VScope is designed to be a general platform rather than a set of ad hoc analy-
sis algorithms/solutions. VScope does not replace operator involvement, but aims
to facilitate their troubleshooting efforts. Further, while VScope may be used to
seek the root causes of failures, its current implementation lacks functionality like
an off-line diagnostic database and a rich infrastructure for determining and using
decision trees or similar diagnostic techniques. Also, the methods presently imple-
mented inVScope focus on persistent performance problems that will likely render
an application inoperable after some time, i.e., when there are frequent or repeated
violations of certain performance indicators that persist if they are not addressed.
Having determined potential sources of such problems, VScope can then trigger
certain actions for mitigation or recovery, but it assumes such functionality to be
supported by other subsystems (e.g., inherent to specific applications/tiers or soft-
ware levels) or housed in some external system for problem resolution [9].

2.2 VScope Overview

The system architecture of VScope is depicted in Figure 3(a). The machines
(VMs or physical machines) in the target application are managed by a server
called VMaster. Operators use VScope operations, DPG commands, or scripts
with the DPG API, in a console called VShell provided by VMaster. VMaster
executes those commands by deploying DPGs on requested machines to process
their monitoring metrics, and it returns results to operators. In detail, it starts
a DPGManager to create a new DPG, which essentially, is an overlay network
consisting of processing entities named VNodes residing on application machines.
The DPGManager dynamically deploys VNodes equipped with assigned func-
tions on specified machines, and connects them with a specified topology. VNodes

126 C. Wang et al.

(a) VScope Architecture (b) VScope Software Stack

Fig. 3. VScope System Design

collect and process monitoring metrics, transmit metrics or analysis results to
other VNodes or the DPGManager, which in turn relays results to VMaster.
DPGManager can initiate, change, or terminate its DPG on-the-fly.

In VMaster, the metric library defines monitoring metric types and associated
collection functions. The function library defines the user-defined and default
metric analysis functions, including those used in guidance (see Section 2.5).
The above metrics and functions can be dynamically deployed into DPGs for
various troubleshooting purposes.

The VScope software stack, described in Figure 3(b), has three layers. The
troubleshooting layer exposes basic operations in VShell : Watch, Scope, and
Query, which will be described in Section 2.3. The Watch and Scope operations
constitute the guidance mechanism, where Watch notifies the operator when
and where end-to-end anomalies happen, and Scope provides the potential can-
didate nodes contributing to the anomalies. Operators (or automated decision
engines) can then use Query for in-depth analysis on those candidates yielded
by guidance. These operations are built upon the DPG layer. In particular, the
guidance mechanism (Watch and Scope) relies on an anomaly detection DPG
and on interaction tracking DPGs. The DPG layer also exposes API and man-
agement commands to offer finer grain controls and customization. The lowest
layer, the VScope runtime, is comprised of a set of daemon processes running on
all nodes participating in the VScope system (i.e., the machines hosting the ap-
plication and additional management machines running VScope). This runtime
maintains the connections between machines and implements dynamic DPG cre-
ation and management. In virtualized data centers, the VScope runtime can be
installed in hypervisors (e.g., Dom0 in Xen), in the virtual machines hosting
the application(s) being monitored, in both, and/or in specialized management
engines [21,24]. Our testbed uses a VScope installation in the Xen hypervisor as
well as in the VMs hosting the Flume application.

VScope: Middleware for Troubleshooting Data Center Applications 127

2.3 Troubleshooting Operations

Watch. The Watch operation monitors a list of metrics on a set of nodes2, and
its current implementation applies to them an anomaly detection function in

Table 1. Arguments of Watch(*Optional)

Argument Description

nodeList∗ a list of nodes to monitor
metricList a list of metric types
detectFunc∗ detection function or code
duration∗ duration
frequency∗ frequency

order to detect and report anoma-
lous behaviors for any specified
metrics. The parameters of the
Watch operation described in Ta-
ble 1 show its ability to monitor
metrics on any VScope node, using
detection function specified with
detectFunc. Sample functions used
in our work include thresholding
key performance indicators (KPI), such as request latency and statistics like
those based on entropy described in [37]. The frequency and duration of the
Watch operation are also configurable. In our Flume application, the Watch op-
eration continuously executes on all the Flume agent nodes, monitoring their
end-to-end message latencies and detecting the nodes with latency outliers. In-
ternally, Watch is implemented using an anomaly detection DPG explained in
Section 2.5.

Scope. The Scope operation (described in Table 2) discovers a set of nodes in-
teracting with a particular node specified by argument source, at a time specified

Table 2. Arguments of Scope(*Optional)

Argument Description

nodeList∗ a list of nodes to explore
graph name of interaction graph
source node in interest

timestamp∗ interaction at a specific time
distance number of edges
direction∗ backward, forward or both

by argument timestamp. This op-
eration guides troubleshooting by
informing operators which nodes
are related to the problematic node
when the anomaly happens. Based
on this guidance, operators can de-
ploy a DPG on those nodes (or
some subset of them) for further di-
agnosis, using the Query operation.
For instance, for the Flume appli-
cation, ‘horizontal guidance’ identi-
fies the HBase region servers with which some specified Flume agent is interact-
ing via a Flume collector, and ‘vertical guidance’ tracks the mappings between a
physical machine and the VMs it hosts. By default, the output of Scope is a list
of nodes directly interacting with the source. distance and direction are optional
arguments, where the former specifies indirect interactions by setting the value
> 1, and the latter specifies the ‘direction’ of interaction, for instance, ‘receiving
requests from’ or ‘sending requests to’.

In a nutshell, Scope works by searching an in-memory, global graph abstrac-
tion that describes interactions between every pair of nodes. Multiple types of
interaction graphs are supported, covering a range of interactions from event
level to network and system levels. These are shown in Table 7 and are specified

2 A node is a physical or a VM running the VScope runtime in example application.

128 C. Wang et al.

with the argument graph. The creation and continuous update of the global graph
is implemented using an interaction tracking DPG explained in Section 2.5.

Query. The Query function collects and analyzes metrics from a specified list of

Table 3. Arguments of Query(*Optional)

Argument Description

nodeList∗ a list of nodes to query
metricList∗ a list of metric types
queryFunc analytics function or code
mode∗ continuous or one-shot

nodes, and provides results to query
initiators. Query has two modes –
continuous mode and one-shot – the
latter being helpful when running
monitoring or analysis actions that
have high overheads. Query (includ-
ing query with ’continuous’ mode) is
designed with the ‘pull’ model, i.e.,
the VMaster requests (pulls) met-
rics/results from VNodes. Conversely, watch is designed with the ‘push’ model,
i.e., VNodes periodically report basic metrics or anomaly detection results to
the VMaster.

2.4 Flexible DPGs

DPG as the Building Block. All VScope operations described in Section 2.3
are implemented via DPGs. A DPG consists of a set of processing points (VNodes)
to collect and analyze monitoring data. It can be configured in multiple topolo-
gies to meet varying scale and analysis requirements. For example, it can be
configured as a hierarchical tree or as a peer-to-peer overlay or, when operat-
ing at smaller scales, as a centralized structure. Managed by a DPGManager, a
DPG can be dynamically started on a specified set of nodes, where each VNode
runs locally on a designated node and executes functions specified in VScope
operations. These functions are stored as binaries in the function library, and
they can be dynamically linked. As a result, DPGs are flexible in terms of topol-
ogy, functions executed, and metric types. Further, DPG outputs can be (i)
presented immediately to the VScope user in VShell, (ii) written into rotating
logs, or (iii) stored as off-line records in a database or key-value store. The last
two configurations are particularly important when historical data is needed for
troubleshooting. The use case in Section 4.2 uses rotating logs to store past
metric measurements.

DPG API and Management Commands. Figure 4 describes the DPG core

��� �����	��	
������� �������������� ������������

�����

���

������

������ ��������
������

������

����

������

������

	�����

��
�

�����

�����

Fig. 4. DPG API and Topologies

API and sample topologies, with de-
tails shown in Table 4. The create()
method automatically creates any size
topology of type point-to-point (P),
centralized (C), or hierarchy (H) for
some specified list of nodes. Topology
specifics are configurable, e.g., besides
the number of nodes, one can specify
the branching factor of a hierarchical

VScope: Middleware for Troubleshooting Data Center Applications 129

Table 4. Pseudo Functions for DPG API

DPG create (list, topology, spec) Create a DPG with a specified topology
int add (src, dst, DPG) Add a link from VNode src to VNode dst
int assign (func, spec, list, DPG) Assign function to a list of VNodes
int start (DPG) Start a DPG
int stop (DPG) Stop an operating DPG
int insert (new, src, dst, DPG) Insert a new VNode between existing VNodes
int delete (src, dst, DPG) Delete a link from VNode src to VNode dst

topology. Create() returns a unique DPG ID for reference in subsequent opera-
tions, and in the assign() method, the parameter func is a registered function
ID. When a DPG is running, one can call the assign() to change the functional-
ity on any VNode or use the insert() and delete() methods to change the DPG.
The DPG API is exposed as commands in VShell, as well, and there are addi-
tional auxiliary management commands like list (listing metric types, functions,
or DPGs) and collect (returns the metric collection function).

Though operators can just use VScope operations without knowing the under-
lying DPG logic, new topologies, new operations and customization of existing
functionality can be added easily through direct use of DPG APIs, which is not
described in detail here because of space constraints.

2.5 Implementation

VScope Runtime. The VScope runtime is implemented with EVPath [1], a
C library for building active overlay networks. Metric collection uses standard
C libraries, system calls, and JMX (at application level). Metrics are encoded
in an efficient binary data format [1], and a standard format template is used
to define new metric types. Built-in metrics and functions are listed in Table 5
and Table 6. As shown in the tables, VScope has a comprehensive set of metrics
across application, system and platform levels, and a variety of representative
analytics functions that are implemented with standard C libraries and other
open source codes [13]. The DPGs associated with these functions have different
topologies. For instance, Pathmap, PCA (Principle Component Analysis) and
K-Clustering are implemented as centralized DPGs, as they require global data.

Table 5. Basic Metrics

Level Basic Metrics

Appli- E2E Latency, JMX/JVM Metrics
cation Flume/HBase/HDFS INFO Logs

Virtual VCPU, Memory, I/O Metrics
Machine Network Traffic, Connections

Dom0 & CPU, I/O and Memory Metrics
System Paging, Context Switch Metrics

Table 6. Built-in Functions

DPG Algorithms

Watch Hierarchy
MAX/MIN/AVE,
Entropy, Top-K

Scope Centralized Pathmap[3]

Query Centralized
K-Clustering,

PCA

130 C. Wang et al.

Algorithm 1. Parallel Graph Aggregation

1. On each leaf node, generate an adjacency list (where each record is
[vertex ID, connected vertices]) sorted by vertex IDs, and send it to parent

2. On each parent or root node, merge n sorted
adjacency lists as follows:

i. Create an array P with size of n storing current vertex ID in each adjacency list.
ii. If multiple IDs in P are the same and they are the smallest, merge their records

into a new record, else take the record with the smallest vertex ID in P as the
new record. (essentially an n-way sorting of n vertex ID arrays)

iii. Place the new record into the merged adjacency list.
iv. Update P to reflect the next record in each adjacency list.
v. Repeat ii to iv until all the records in n adjacency lists are visited.

End-to-End Anomaly Detection. The Watch operation is implemented us-
ing a DPG with a hierarchical topology in which the leaves are all of the nodes
of the web log analysis application. This DPG collects the end-to-end latency
on each Flume agent, which is defined as the duration between the time when
a new log entry is added and the time it (or its associated result) appears in
HBase. This is measured by creating a test log entry on each agent, querying
the entry in HBase, and computing the difference. The latencies are then aggre-
gated through the tree using Entropy-based Anomaly Testing (EbAT) [37,35], a
lightweight anomaly detection algorithm, to output the agents that are outliers.
Other algorithms for anomaly detection and ranking are investigated in [38,34].

Interaction Tracking. Table 7 shows the built-in global graphs supported by

Table 7. VScope Interaction Graphs

Interaction DPG

Causality Event Flow Centralized
Graph between Nodes Using Pathmap

Connection Network Distributed
Graph Connection Using Netstat
Virtual Dom0-DomU Distributed
Graph Mapping Using Libvirt
Tier Dependency Distributed
Graph between Tiers Static Config.

Scope, covering a range of in-
teractions from event level to
network and system levels. For
each graph type, in our imple-
mentation, a DPG is deployed
and continuously run on all the
nodes to construct and update
the corresponding graph struc-
ture in VMaster. There are two
ways to track the global interac-
tions, centralized or distributed.
For interactions like the causal-
ity graph implemented using Pathmap [3], a DPG collects metrics from leaves,
compresses them at intermediate nodes, and then constructs the graph at the
DPG root. An alternate distributed implementation of graph construction uses
parallel analysis in which the leaves analyze metrics to generate a local graph
(e.g., in the connection graph, it is the ingress and egress connections on a node),
the local graphs are aggregated at parent nodes to create partial graphs which
are finally aggregated at the root to produce the global graph. The current proto-
type uses adjacency lists to represent graphs and employs the parallel algorithm
shown in Algorithm 1 to merge adjacency lists.

VScope: Middleware for Troubleshooting Data Center Applications 131

3 Experimental Evaluation

Experiments are conducted on a testbed running 1200 Xen VMs hosted by 60
physical server blades using Ubuntu Linux (20 VMs per server). Every server
has a 1TB SATA disk, 48GB Memory, and 16 CPUs (2.40GHz). Each VM has
2GB memory and at least 10G disk space.

3.1 VScope Base Overheads

We install VScope on every VM in a host and vary the number of VNodes on

Table 8. VScope Runtime Overheads

DPG# VNode# CPU Usage Memory Usage
in Host in VM Increase Increase

20 1 < 0.01% 0.02%
100 5 < 0.01% 0.02%
1000 50 < 0.01% 0.03%

each VM. Each VNode collects
the metrics shown in Table 5,
and sends them to a separate
DPG. As shown in Table 8,
CPU and Memory overheads
to the VM are negligible even
when there are 50 VNodes (1000
concurrent DPGs in the host).
With continuous anomaly de-
tection and via interaction tracking, VScope imposes only 0.4% overhead on
the end-to-end latency of application described in Section 4. In contrast and
as shown in Section 4, heavyweight VScope operations, like those performing
tracing or logging may incur considerable overheads, due to the innately high
costs of those data collection methods. These facts demonstrate the utility of
continuously using the ‘thin’ VScope layer, which does not add notable costs,
and then, only using heavier weight data collection and analysis methods when
needed. Further, by having the ’thin’ layer point out ’where’ and ’when’ such
heavier weight methods are to be used, the inevitably high overheads of using
those methods can be reduced.

3.2 DPG Deployment

Fast deployment of DPGs is critical for timely troubleshooting. We evaluate this
by measuring the latency for deploying a hierarchical DPG on more than 1000
VMs, each of which has one VNode. The topology has a height of 2, and the
total number of leaf VMs varies from 125 to 1000.

As expected, Figure 5(a) shows increased deployment times (presented as la-
tency on the Y-Axis) with increased DPG sizes. However, latency remains within
5 seconds even at the scale of 1000 VMs. This would be considered sufficient for
current troubleshooting delay requirements stated in [8] (typically 1 hour), but
it also suggests the utility of future work on DPG reuse – to use and reconfigure
an existing DPG, when possible, rather than creating a new one, or to pre-deploy
DPGs where they might be needed. Deploying moderate scale DPGs with hun-
dreds of nodes, however, usually happens within 1 second, suggesting that such
optimizations are not needed at smaller scale. Also note that deployment latency
varies with different branching factors (bf). At scales less than 750, deploying

132 C. Wang et al.

 0

 1

 2

 3

 4

 5

1,000750500250125

L
at

en
cy

(S
ec

on
ds

)

Scale

bf=5
bf=25
bf=125

(a) DPG Deployment Time

 0

 1

 2

 3

 4

 5

1,000800600400200100

G
lo

ba
l A

gg
re

ga
tio

n
L

at
en

cy
(S

ec
on

ds
)

Scale

(b) Global Tracking Time

 0

 50

 100

 150

 200

 250

1,000800600400200100

L
oc

al
 A

gg
re

ga
tio

n
L

at
en

cy
(U

Se
co

nd
s)

Scale

(c) Local Merge Time

Fig. 5. Efficient DPG Deployment and Guidance Mechanism

the DPG with bf 125 has larger latency than those with smaller bf values; this
is because parent nodes construct their subtrees in parallel and the parents in
the DPG with bf 125 have the biggest subtrees.

3.3 Interaction Tracking

The Scope operation relies on efficient methods for interaction tracking. We
evaluate a distributed DPG (used for connection graph) by creating a two-level,
hierarchical DPG with bf 25. We vary its number of leaves from 125 to 1000,
and for this test, each VM has a randomly generated local interaction graph
represented by an adjacency list with 1000 vertex entries with each vertex con-
nected to 1000 randomly generated vertices. We measure the total latency from
the time the first local graph is generated by leaf VMs to the time when the
respective merged graph is created at the root. We also measure the average
time of local processing incurred during the per-node aggregation of connection
graph information in order to study the dominant factor in total latency.

As shown in Figure 5(b), the total latency for generating a global graph in-
creases as the system scales, but it remains within 4 seconds for 1000 VMs, where
each VM has a 1000×1000 local connection graph. This means that the system
can generate such a global graph at a resolution of every 4 seconds. Total latency
is mainly due to the queuing and dequeuing time on VNodes plus network com-
munication time. This is shown by the small measured local aggregation latency
in Figure 5(c). At the same time, since these latencies increase linearly with the
total number of inputs, parallel aggregation is a useful attribute to maintain for
large scale systems. We also note that the local graphs occupy a fair amount of
memory, which suggests opportunities for additional optimizations through use
of more efficient internal data structures. Finally, the analytics actions taken by
Scope utilize the Pathmap for centralized interaction tracking. In Section 3.4,
Figure 6 shows that it can generate a 1000 VM graph within 8 seconds.

In summary, the Scope operation’s current implementation is efficient for the
long running enterprise codes targeted in our work, but it may not meet the
requirements of real-time codes such as those performing on-line sensing and
actuation in highly interactive settings like immersive games.

VScope: Middleware for Troubleshooting Data Center Applications 133

 0

 2

 4

 6

 8

 10

Pa
th

m
ap

PC
A

K
M

ea
ns

T
op

10
E

nt
ro

py
M

M
A

Pa
th

m
ap

PC
A

K
M

ea
ns

T
op

10
E

nt
ro

py
M

M
A

Pa
th

m
ap

PC
A

K
M

ea
ns

T
op

10
E

nt
ro

py
M

M
A

Pa
th

m
ap

PC
A

K
M

ea
ns

T
op

10
E

nt
ro

py
M

M
A

Pa
th

m
ap

PC
A

K
M

ea
ns

T
op

10
E

nt
ro

py
M

M
A

L
at

en
cy

(S
ec

on
ds

)

Scale

19.5
 (VS 10.2%)

49.0
 (VS 7.1%)

93.0
 (VS 4.5%)

125 250 500 750 1,000

Function Code
VScope(VS)

Fig. 6. Analytics Microbenchmark Performance

3.4 Supporting Diverse Analytics

We use the algorithms in Table 6 as micro-benchmarks to measure the base
performance of VScope operations. Tests randomly generate a 1000×1000matrix
of float numbers on each VM, and vary the size of the hierarchical DPG (bf=25)
from 125 to 1000 leaf VMs. We measure the latency for analyzing the data on
all leaf VMs at each scale. For centralized algorithms, the parent VNodes only
relay the data. For the Top-K algorithm, we calculate the top 10 numbers. We
conduct K-Means clustering with 5 passes.

Figure 6 shows latency breakdowns as well as the total latency of each func-
tion. In general, most of the algorithms operate within seconds, with increasing
latencies for rising scales. Algorithms with high computational complexity are
more costly, of course, but for such ‘heavyweight’ algorithms, especially for PCA,
although the total latencies are over 1.5 minutes at the scale of 1000 VMs, the
base VScope implementation contributes only about 4.5% to these delays, and
this contribution decreases as the system scales.

4 Experiences with Using VScope

This section illustrates the utility of VScope for troubleshooting, using the appli-
cation described in Figure 1 (VScope’s DPG architecture was also investigated
in other use cases in [36,19].) The application’s Flume tier has 10 collectors,
each of which is linked with 20 agents. The HBase tier has 20 region servers, and
the HDFS tier has 40 datanodes3. Experiments use web request traces from the
World Cup website [18] to build a log generator that replays the Apache access
logs on each of 200 agent VMs. Each agent reads the new entries of the log and
sends them to its collector. The collector combines the ClientID and ObjectID as
the keyword and the log content as the value, then places the record into HBase.

3 Each tier has one master node, and in HBase, 5 region servers serve as the ZooKeeper
quorum. For simplicity, we do not ‘count’ masters when discussing scale.

134 C. Wang et al.

The log generator generates 200 entries per second. The worst case end-to-end
latency in the problem-free scenario is within 300 milliseconds.

The VScope runtime is installed on all of the VMs and in addition, on all
physical machines (i.e., Xen’s Dom0s). In accordance with standard practice
for management infrastructures [21,36], one additional dedicated VM serves as
VMaster, and 5 dedicated VMs serve as parent VNodes in the two-level hierarchy
DPGs used for troubleshooting. Two use cases presented below validate VScope’s
utility for efficient troubleshooting.

4.1 Finding Culprit Region Servers

The first VScope use case crosses multiple tiers of the Flume application. The
objective is to find some ‘culprit’ region server exhibiting prolonged execution
times. Those are difficult to detect with standard HBase instrumentation be-
cause debug-level logging in region servers to trace their request processing
times [6] generates voluminous logs and high levels of perturbation to the run-
ning server(s). Hence troubleshooting using brute force methods might quickly
find a culprit by turning on all of the region servers’ debug-level logging and then
analyzing these logs (in some central place), but this would severely perturb the
running application. Alternative methods that successively sample some random
set of servers until a culprit is found would reduce perturbation but would likely
experience large delays in finding the culprit server. More generally, for multi-tier
web applications, while bottleneck problems like the ‘culprit’ region server de-
scribed above commonly occur, they are also hard to detect, for several reasons.
(1) Dynamic connectivity – the connections between the Flume and HBase tiers
can change, since the region server to which a collector connects is determined by
the keyword region of the collector’s current log entry. (2) Data-Driven concur-
rency – HBase splits the regions on overloaded region servers, causing additional
dynamic behavior. (3) Redundancy – a region server is typically connected by
multiple collectors. As a result, one ‘culprit’ region server exhibiting prolonged
processing times may affect the end-to-end latencies observed on many agents.

We synthetically induce server slowdown, by starting garbage collection (GC)

Flume
Agents

further analysis

�����

E2E Latency
Entropy Detection

���	

Using Connection
Graph

Analyzing Timing in
RPC-level logs

��
�

Abnormal Flume
Agents

SLA Violation
on Latency

Related Collectors&
Region Servers

Shared
RegionServers

Dynamically Turn
on Debugging

Processing Time
in RegionServers

Flume
Agents

further analysisfurther analysis

�����

E2E Latency
Entropy Detection

E2E Latency
Entropy Detection

���	

Using Connection
Graph

Using Connection
Graph

Analyzing Timing in
RPC-level logs

Analyzing Timing in
RPC-level logs

��
�

Abnormal Flume
Agents

SLA Violation
on Latency

SLA Violation
on Latency

Related Collectors&
Region Servers

Related Collectors&
Region Servers

Shared
RegionServers

Dynamically Turn
on Debugging

Dynamically Turn
on Debugging

Processing Time
in RegionServers

Fig. 7. Steps using VScope operations

in the Java Virtual Machine (JVM)
on one of the region servers.
This prolonged disturbance eventu-
ally slows down the Flume agents
connected to the region server
via their collectors. Experimen-
tal evaluations compare VScope,
the brute-force, and the sampling-
based approaches for finding the
culprit region server. The VScope
approach follows the 3 steps illus-
trated in Figure 7. (1) A user at a VShell console issues a Watch operation to
find which agents have prolonged end-to-end latencies.

VScope: Middleware for Troubleshooting Data Center Applications 135

(2) Use the connection graph (chosen from Table 7) and the Scope operation
to find the connected collectors and the region servers to which they connect.
In these guidance actions, the connection graph is the graph parameter, the
problematic agent node is the source, and ’2’ is used as the distance parameter.
The output will be the collector and associated region servers. By iteratively
‘Scoping’ all anomalous agents, we find that they share 5 collectors. Furthermore,
the Scope operation returns the set of region servers in use by these collectors,
and we can determine that they have 4 region servers in common. Therefore,
we select those four as candidate culprits. Under the assumption of only one
culprit region server, this operation will succeed because the culprit affects all
of these collectors. While it will be rare to have multiple culprit region servers
in a short period of time, in that case, more candidates may be chosen, but they
still constitute only a small set of all region servers.
(3) Here, VScope has narrowed down the search for the problematic region server,
and we can now use the Query operation to turn on debug-level logging for the
candidates. We note that the region servers yielded by the Scope operation will
always include the culprit, because VScope tracks all connections. The user will
still have to carefully examine the region server logs to find the problem, but

 0

 100

 200

 300

 400

 500

 600

20/2016/2012/208/204/201/20

Sl
ow

do
w

n(
%

)

Sampling Rate

VScope

Brute−Force

Fig. 8. E2E Performance Slowdown
(i.e. E2E latency increase) % w.r.t
Sampling Rate (# of sampled region
servers / total # of region servers)

instead of having 20 candidates (the
brute-force approach), there are just 4. If
the examination is done sequentially (by
gathering and examining logs one server
at a time) to minimize perturbation, the
user can expect to examine 2 logs on the
average (requiring 20 minutes of logging
and .45GB of data) with VScope, as op-
posed to 10 logs (requiring 100 minutes of
logging and 2GB of data) with the brute-
force approach. If log gathering is per-
formed in parallel to save time, the in-
formation provided by VScope allows the
retrieval of just 4 logs (0.9GB) vs. 20 logs
(4.1GB) by the brute-force approach. Note that, as shown in Figure 8, simulta-
neously logging on multiple region servers has a non-linear effect upon system
performance. Simultaneous logging on only 4 servers (with VScope) slows the
overall system down by 99.3%, but logging on all servers (brute-force) slows it
by 538.9%. Compromise approaches like random sampling might log on more
than one, but fewer than the total number of candidate region servers, hoping
to trade off perturbation with ‘time-to-problem-discovery’. However, the inher-
ent randomness makes their performance nondeterministic. In contrast, VScope
rationally narrows the set of possible bad region servers, thus improving the ex-
pected perturbation, log data sizes, and time to resolution in both average and
worst cases.

These results validate the importance of VScope’s ‘guided’ operation that
explicitly identifies the nodes on which troubleshooting should focus, in contrast

136 C. Wang et al.

to methods that use sampling without application knowledge or that employ
non-scalable exhaustive solutions. They also demonstrate VScope’s ability to
assist with cross-tier troubleshooting. We note that, for sake of simplicity, this
use case assumes the root cause to be within the region servers. This assumption
can be removed, of course, and in that case, operators can apply further analysis
as shown in Figure 7 by iteratively using VScope operations.

4.2 Finding a ‘Naughty’ VM

Previous research has shown the potential for running real-time application in
virtualized settings [22]. However, VMs’ resource contention on I/O devices can
degrade the end-to-end performance of the application. A typical scenario is
that some ‘naughty’ VM excessively uses a physical NIC shared by other VMs
on the same physical host, thereby affecting the performance of the real-time
VMs. Potential ‘naughty’ VMs could be those that run MapReduce reducers and
exchange voluminous data with a number of other nodes (e.g. mappers), or those
running HDFS datanodes and replicating large files. Contention could also stem
from management operations like VM migration and patch maintenance [32].

There are remedies for contention issues like those above. They include mi-
grating the ‘naughty’ VMs and/or changing network scheduling. VM migration
can involve long delays, and changes to VMs’ network scheduling may involve
kernel reboots that are unsuitable for responsive management. The solution with
which we experiment performs traffic shaping for the ‘naughty’ VM on-the-fly, in

0.01

0.1

1

10

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

0.1

1

10

100

1000

10000

100000

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

1

10

100

1000

10000

100000

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

1

10

100

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Anomaly Injected
HDFS Write

Remedy using Traffic
Shaping in Dom0

Time

Trace 1

Trace 2

Trace 3

Trace 4

E2E
Performance

Good VM

Hypervisor

Naughty VM

0.01

0.1

1

10

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

�
�
�
�
�
�
�
	

�
�
�

�
�
�
�

0.1

1

10

100

1000

10000

100000

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

1

10

100

1000

10000

100000

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

1

10

100

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Anomaly Injected
HDFS Write

Remedy using Traffic
Shaping in Dom0

Time

Trace 1

Trace 2

Trace 3

Trace 4

E2E
Performance

Good VM

Hypervisor

Naughty VM

Fig. 9. Using VScope to Find a ‘Naughty’ VM

the hypervisor, without involv-
ing guest VMs. To do so, how-
ever, support is needed to first
locate the troublesome VM.
VScope running in the Dom0s
of our virtualized infrastructure
provides such support. Specif-
ically, VScope deploys VNodes
in each host’s Dom0, using the
virtualization graph in Table 7
to track mappings between VMs
and hypervisors.

We emulate the ‘naughty’
VM issue by deploying a VM
with a Hadoop datanode and
tasktracker, on the host where a
‘good’ VM is running one of the
200 Flume agents. This scenario
is chosen to emulate co-running
a real-time web log analysis
application with a batch sys-
tem using Hadoop for long term
analysis on the data generated

VScope: Middleware for Troubleshooting Data Center Applications 137

by the real-time application. In this case, a problem is created by starting a
HDFS benchmarking job called ‘TestDFSIO write’, which generates 120 2GB
files with 4 replicas for each file in HDFS. This ‘naughty VM’ generates 3 files
(we have 40 slaves in the Hadoop configuration. Every slave carries out 3 map
tasks, each of which writes a 2G file to HDFS, and replicates them via the net-
work. VScope is used to find that naughty VM, so that its communications can
be regularized via Dom0 traffic shaping.

The monitoring traces in Figure 9 demonstrate VScope’s troubleshooting pro-
cess. Trace 1 presents the latency data generated by the Watch operation. La-
tency rises after the anomaly is injected. Using 1 second as the threshold for
an end-to-end performance violation, after 20 violations are observed within
5 minutes, the Watch operation reports an anomaly and its location, i.e., the
‘good’ VM. After the anomaly is reported, troubleshooting starts for the VM by
querying basic VM level metrics, including the number of packages per second
represented by Trace 24, where we find that metrics in the VM do not show ab-
normal behavior. In response, we use the Scope operation to find which physical
machine is hosting the VM and then Query its aggregate packet rate. With these
guided actions, Trace 3 shows that the shared NIC is exchanging a large number
of packets, in contradiction to the low packet rate in the ‘good’ VM. The next
step is to further Scope the virtualization graph to find the other VMs running
on the same physical host and then Query the network metrics of their VIFs5.
The ‘naughty’ VM is easily found, because its respective VIF consumes the ma-
jority of the packets for the physical NIC, as shown in Figure 9:Trace 4. The
correctness of the diagnosis obtained via VScope is demonstrated by applying
traffic shaping in Dom0, which involves using TC to throttle the bandwidth of
the ‘naughty’ VM. It is apparent that this action causes the end-to-end latency
of the good VM to return to normal (see Trace 1). In Trace 3, the hypervisor
packet rate goes down, and in Trace 4 the network consumption of the ‘naughty’
VM also sinks, as expected, but it still has its share of network bandwidth.

5 Related Work

Aggregation systems like SDIMS[39] and Moara[20] are most related to VScope
in terms of flexibility. SDIMS provides a flexible API to control the propaga-
tion of reads and writes to accommodate different applications and their data
attributes. Moara queries sub-groups of machines rather than the entire sys-
tem. In both systems, flexibility is based on dynamic aggregation trees using
DHTs (Distributed Hash Tables). VScope’s approach differs in several ways.
First, VScope can control which nodes and what metrics to analyze; neither
SDIMs nor Moara provides this level of granularity. SDIMS only controls the
level of propagation along the tree, and Moara chooses groups based on attributes
in the query (e.g., CPU utilization). Second, the analysis functions in SDIMS

4 We only show NIC-related metrics for succinctness.
5 A VIF is the logical network interface in Dom0 accepting the packets for one VM
and in our configuration, each VM has a unique VIF.

138 C. Wang et al.

and Moara are limited to aggregation functions, while arbitrary functions can be
used with VScope, including those performing ‘in transit’ analysis. Third, like
other monitoring or aggregation systems, including Ganglia[26], Astrolabe[33],
and Nagios[27], SDIMS and Moara focus on monitoring the summary of system
state, while VScope’s can also be used for in-depth troubleshooting, including de-
bugging and tracing, supported by basic metric aggregation like that performed
in the Watch operation.

GWP[30], Dapper[31], Fay[14], Chopstix[7] are distributed tracing systems
for large scale data centers. VScope is similar in that it can monitor and an-
alyze in-depth system or application behaviors, but it differs as follows. First,
instead of using statistical (Fay and Chopstix leverage sketch, a probabilistic
data structure for metric collection) or random/aggressive sampling (as used in
GWP and Dapper), VScope can look at any set of nodes, making it possible to
implement a wide range of tracing strategies (including sampling) through its
guidance mechanism. Second, those tracing systems use off-line analysis, while
VScope can analyze data on-line and in memory, to meet the latency restriction
for troubleshooting real-time applications.

HiTune[12] and G2[17] share similarity with VScope in that they are general
systems for troubleshooting ‘big-data’ applications. HiTune extracts the data-
flows of applications, using Chukwa for data collection and Hadoop for dataflow
analysis. G2 is a graph processing system that uses code instrumentation to ex-
tract runtime information as a graph and a distributed batch processing engine
for processing the queries on the graph. VScope differs in its focus on on-line
troubleshooting, whereas HiTune and G2 are mainly for off-line problem diagno-
sis and profiling. Further, HiTune and G2 are concerned with analyzing within
a single application tier, while VScope troubleshoots across multiple applica-
tion tiers. Other troubleshooting algorithms and systems, such as Pinpoint[10],
Project5[4], and E2EProf[3], target traditional web applications while VScope
focuses on real-time data-intensive applications.

6 Conclusions

VScope is a flexible, agile monitoring and analysis system for troubleshooting
real-time multi-tier applications. Its dynamically created DPG processing over-
lays combine the capture of monitoring metrics with their on-line processing, (i)
for responsive, low overhead problem detection and tracking, and (ii) to guide
heavier weight diagnosis entailing detailed querying of potential problem sources.
With ‘guidance’ reducing the costs of diagnosis, VScope can operate efficiently
at the scales of typical data center applications and at the speeds commensurate
with those applications’ timescales of problem development. The paper provides
evidence of this fact with a real-time, multi-tier web log analysis application.

Our ongoing work is further developing VScope’s notion of guided operation,
one idea being to automatically generate certain sequences of guidance actions
from the previous manual actions taken by operators. We will also investigate
other guidance options. To extend scalability to the 10,000+ machines of to-
day’s large scale data center applications run by web companies like Google or

VScope: Middleware for Troubleshooting Data Center Applications 139

Amazon, it may also be useful to pre-position DPGs into potentially critical sub-
systems and/or reconfigure existing DPGs, instead of deploying new ones when
investigating problems via detailed queries.

References

1. The evpath library, http://www.cc.gatech.edu/systems/projects/EVPath
2. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-

braker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data
stream management. The VLDB Journal 12(2), 120–139 (2003)

3. Agarwala, S., Alegre, F., Schwan, K., Mehalingham, J.: E2eprof: Automated end-
to-end performance management for enterprise systems. In: Proceedings of the
37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2007, pp. 749–758. IEEE, Washington, DC (2007)

4. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. In: Proceedings of the
19th ACM symposium on Operating systems principles, SOSP 2003 (2003)

5. Apache. Cloudera flume, http://archive.cloudera.com/cdh/3/flume/
6. Apache. Hbase log, http://hbase.apache.org/book/trouble.log.html
7. Bhatia, S., Kumar, A., Fiuczynski, M.E., Peterson, L.: Lightweight, high-resolution

monitoring for troubleshooting production systems. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 103–116. USENIX Association, Berkeley (2008)

8. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting
the datacenter: automated classification of performance crises. In: Proceedings of
the 5th European Conference on Computer Systems, EuroSys 2010, pp. 111–124.
ACM, New York (2010)

9. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot - a
technique for cheap recovery. In: Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation, OSDI 2004 (2004)

10. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: Problem de-
termination in large, dynamic internet services. In: Proceedings of the 2002 Interna-
tional Conference on Dependable Systems and Networks, DSN 2002, pp. 595–604.
IEEE Computer Society Press, Washington, DC (2002)

11. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.:
Mapreduce online. In: Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI 2010 (2010)

12. Dai, J., Huang, J., Huang, S., Huang, B., Liu, Y.: Hitune: dataflow-based perfor-
mance analysis for big data cloud. In: Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC 2011 (2011)

13. De Hoon, M., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software.
Bioinformatics 20(9), 1453–1454 (2004)

14. Erlingsson, U., Peinado, M., Peter, S., Budiu, M.: Fay: extensible distributed trac-
ing from kernels to clusters. In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP 2011, pp. 311–326 (2011)

15. Facebook. Scribe, https://github.com/facebook/scribe/wiki
16. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.: Spade: the system s declar-

ative stream processing engine. In: Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2008, pp. 1123–1134
(2008)

http://www.cc.gatech.edu/systems/projects/EVPath
http://archive.cloudera.com/cdh/3/flume/
http://hbase.apache.org/book/trouble.log.html
https://github.com/facebook/scribe/wiki

140 C. Wang et al.

17. Guo, Z., Zhou, D., Lin, H., Yang, M., Long, F., Deng, C., Liu, C., Zhou, L.: g2:
a graph processing system for diagnosing distributed systems. In: Proceedings of
the 2011 USENIX Annual Technical Conference, USENIXATC 2011 (2011)

18. Hewlett-Packard. Worldcup98 logs, http://ita.ee.lbl.gov/
19. Hu, L., Schwan, K., Gulati, A., Zhang, J., Wang, C.: Net-cohort: Detecting and

managing vm ensembles in virtualized data centers. In: Proceedings of the 9th
ACM International Conference on Autonomic Computing, ICAC 2012 (2012)

20. Ko, S.Y., Yalagandula, P., Gupta, I., Talwar, V., Milojicic, D., Iyer, S.: Moara:
Flexible and scalable group-based querying system. In: Issarny, V., Schantz, R.
(eds.) Middleware 2008. LNCS, vol. 5346, pp. 408–428. Springer, Heidelberg (2008)

21. Kumar, S., Talwar, V., Kumar, V., Ranganathan, P., Schwan, K.: vmanage: loosely
coupled platform and virtualization management in data centers. In: Proceedings
of the 6th International Conference on Autonomic Computing, ICAC 2009, pp.
127–136. ACM, New York (2009)

22. Lee, M., Krishnakumar, A.S., Krishnan, P., Singh, N., Yajnik, S.: Supporting
soft real-time tasks in the xen hypervisor. In: Proceedings of the 6th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE 2010, pp. 97–108. ACM, New York (2010)

23. LinkedIn. Kafka, http://sna-projects.com/kafka/design.php
24. Mansour, M.S., Schwan, K.: I-RMI: Performance Isolation in Information Flow

Applications. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 375–389.
Springer, Heidelberg (2005)

25. Marz, N.: Twitter’s storm, https://github.com/nathanmarz/storm
26. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system:

Design, implementation and experience. Parallel Computing (2003)
27. L. Nagios Enterprises. Nagios, http://www.nagios.org/documentation.
28. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: Distributed stream computing

platform. In: IEEE International Conference on Data Mining Workshops, ICDMW
2010, pp. 170–177 (December 2010)

29. Rabkin, A., Katz, R.: Chukwa: a system for reliable large-scale log collection. In:
Proceedings of the 24th International Conference on Large Installation System
Administration, LISA 2010, Berkeley, CA, USA, pp. 1–15 (2010)

30. Ren, G., Tune, E., Moseley, T., Shi, Y., Rus, S., Hundt, R.: Google-wide profiling:
A continuous profiling infrastructure for data centers. In: Micro. IEEE (2010)

31. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Technical Report dapper-2010-1, Google (April 2010)

32. Soundararajan, V., Anderson, J.M.: The impact of management operations on the
virtualized datacenter. In: Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture, ISCA 2010, pp. 326–337 (2010)

33. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21, 164–206 (2003)

34. Viswanathan, K., Choudur, L., Talwar, V., Wang, C., MacDonald, G., Satterfield,
W.: Ranking anomalies in data centers. In: The 13th IEEE/IFIP Network Opera-
tions and Management Symposium, NOMS 2012, pp. 79–87 (2012)

35. Wang, C.: Ebat: online methods for detecting utility cloud anomalies. In: Proceed-
ings of the 6th Middleware Doctoral Symposium, MDS 2009 (2009)

http://ita.ee.lbl.gov/
http://sna-projects.com/kafka/design.php
https://github.com/nathanmarz/storm
http://www.nagios.org/documentation

VScope: Middleware for Troubleshooting Data Center Applications 141

36. Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L., Wolf, M.: A flexible
architecture integrating monitoring and analytics for managing large-scale data
centers. In: Proceedings of the 8th ACM International Conference on Autonomic
Computing, ICAC 2011, pp. 141–150. ACM, New York (2011)

37. Wang, C., Talwar, V., Schwan, K., Ranganathan, P.: Online detection of utility
cloud anomalies using metric distributions. In: The 12th IEEE/IFIP Network Op-
erations and Management Symposium, NOMS 2010, pp. 96–103 (2010)

38. Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., Schwan,
K.: Statistical techniques for online anomaly detection in data centers. In: The
12th IFIP/IEEE International Symposium on Integrated Network Management,
IM 2011, pp. 385–392 (2011)

39. Yalagandula, P., Dahlin, M.: A scalable distributed information management
system. In: Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM 2004,
pp. 379–390. ACM, New York (2004)

SOFTScale: Stealing Opportunistically

for Transient Scaling

Anshul Gandhi1, Timothy Zhu1, Mor Harchol-Balter1, and Michael A. Kozuch2

1 Carnegie Mellon University
2 Intel Labs

Abstract. Dynamic capacity provisioning is a well studied approach to
handling gradual changes in data center load. However, abrupt spikes
in load are still problematic in that the work in the system rises very
quickly during the setup time needed to turn on additional capacity.
Performance can be severely affected even if it takes only 5 seconds to
bring additional capacity online.

In this paper, we propose SOFTScale, an approach to handling load
spikes inmulti-tier data centers without having to over-provision resources.
SOFTScale works by opportunistically stealing resources from other tiers
to alleviate the bottleneck tier, even when the tiers are carefully provi-
sioned at capacity. SOFTScale is especially useful during the transient
overload periods when additional capacity is being brought online.

Via implementation on a 28-server multi-tier testbed, we investigate a
range of possible load spikes, including an artificial doubling or tripling of
load, as well as large spikes in real traces. We find that SOFTScale can
meet our stringent 95th percentile response time Service Level Agree-
ment goal of 500ms without using any additional resources even under
some extreme load spikes that would normally cause the system (without
SOFTScale) to exhibit response times as high as 96 seconds.

1 Introduction

Data centers play an important role in today’s IT infrastructure. Government or-
ganizations, hospitals, financial trading firms, and major IT companies, such as
Google, Facebook and Amazon, all rely on data centers for their daily business ac-
tivities. A primary goal for data center operators is to provide good response times
to users; these response time targets typically translate to some response time Ser-
vice Level Agreements (SLAs). A secondary goal is to reduce operational costs by
exploiting the variability in user demand. By scaling capacity to match current de-
mand, operators can either: (i) reduce power consumption by turning off unneeded
servers, or (ii) save on rental costs by releasing unneeded virtual machines, or (iii)
get additional work done by repurposing unneeded servers for other tasks.

Data center services today are often organized as multiple tiers. Typically, one
of these tiers is an application tier that processes requests, and another tier is the
data tier that is responsible for efficiently delivering data back to the application
tier. While it is possible to physically collocate the application tier and the
data tier on the same servers, dividing the architecture into physically different

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 142–163, 2012.
c© IFIP International Federation for Information Processing 2012

SOFTScale: Stealing Opportunistically for Transient Scaling 143

tiers is preferable because it makes it easier to scale and manage the individual
tiers [1–3]. The data tier is stateful, and is almost never turned off [4, 5], even
if there is a significant drop in load [6]. The application tier, on the other hand,
is usually stateless and can be dynamically scaled using existing reactive [7–9],
predictive [10, 11] or mixed [3, 12, 13] approaches, provided that the load does
not change too abruptly.

Unfortunately, abrupt changes in load, or load spikes, are all too common in
today’s data centers. Important events, such as the September 11 attacks [14, 15],
earthquakes or other natural disasters [16], slashdot effects [17], Black Friday
shopping [18], or sporting events, such as the Super Bowl [19] or the Soccer
World Cup [20], are common causes of load spikes for website traffic. Service
outages [21] or server failures [22] can also result in abrupt changes in load caused
by a sharp drop in capacity. While some of the above events are predictable, most
of them cannot be predicted in advance.

Abrupt changes in load are especially problematic since adding capacity re-
quires some time, which we call setup time, denoted by tsetup. Even if we instan-
taneously detect a spike in load, it will still take the system at least the setup
time to add the required capacity. In our lab, the setup time for turning on an
additional server is approximately 5 minutes. Likewise, the setup time needed to
create virtual machines (VMs) can range anywhere from 30 seconds – 1 minute
if the VMs are locally created (based on our measurements using kvm [23]) or
5 – 10 minutes if the VMs are obtained from a cloud computing platform (see,
for example, [24]). All these numbers are extremely high, and can result in long
periods where the SLA is violated.

Throughout the paper, we focus on the performance of the system during the
setup time following a load spike. Since no additional capacity can be added
during the setup time, the system has a fixed number of servers online, and we
refer to such a system as the baseline. A typical SLA requires that the 95th
percentile of response time, denoted by T95, stay below 500ms1. In this paper,
we consider the more difficult goal of meeting the T95 requirements during the
setup time (i.e., after the onset of the spike, and before additional servers can be
brought online). This is equivalent to saying that no more than 5% of all requests
that arrive during the setup time are allowed to exceed the 500ms response time.
In addition to the T95 (which measures over the entire setup time), in some plots,
we also show the “instantaneous T95”, which is the 95th percentile of response
times collected every second.

Consider a system which has the appropriate number of application servers
turned on to ensure that the 95th percentile of response times stays below 500ms
at the current load of 15% of peak load. Here, peak load refers to the maximum
load that our system can handle (see Section 2 for details of our experimental
testbed). Now, imagine that the load suddenly increases to 30%. The time needed
to turn on the necessary additional servers is the setup time, say 5 minutes. We
say that our system can “handle” a load jump if T95 ≤ 500ms during the setup

1 Our choice of SLA is motivated by recent studies [3, 10, 25] which indicate that 95th
percentile guarantees of several hundred milliseconds are typical.

144 A. Gandhi et al.

Fig. 1. Using SOFTScale, we can meet response time SLAs even under a 15% to 30%
load jump. Note that the y-axis ranges from 0s to 50s.

time. As shown in Figure 1, our baseline system is not able to handle the 15% to
30% load jump. The black dots in Figure 1 show the increase in instantaneous
T95 during the first two minutes of the setup time under the baseline, where the
system is clearly under-provisioned during this time. The data for Figure 1 is
generated from experiments running on our implementation testbed using a key-
value based workload (see Section 2 for full details of our experimental testbed).
As shown in the figure, instantaneous T95 increases rapidly over time, reaching
50 seconds after only two minutes. Even if future hardware reduces this setup
time to 10 seconds, we see that instantaneous T95 can be well over 3 seconds.

In order to avoid setup times, data center operators typically over-provision
capacity at all times (since load spikes are often unpredictable). For example,
to handle a 15% to 30% load jump, one needs to over-provision resources by a
factor of 2. Clearly, such an approach is quite expensive.

We propose SOFTScale, an approach that allows data centers to handle load
spikes without having to over-provision resources and incur costs. SOFTScale
leverages the fact that the data tier in a multi-tier data center is always left
on [4–6]. Thus, during the setup time following a load spike, we can use these
“always on” data tier servers to do some of our application work. SOFTScale
involves running the application tier software on the data tier servers, where
this software is only used during the setup time. We refer to this notion as
“stealing” of the data tier capacity. SOFTScale requires no additional resources
and can even handle a doubling of load, so long as the final load is not too high.
Returning to our example where the load instantaneously doubles from 15% to
30%, we see that SOFTScale, denoted by the flat gray line in Figure 1, allows the
instantaneous T95 to stay within the 500ms SLA at all times. While stealing from
the data tier can increase the latency of data operations, the overall benefit of
being able to meet SLAs during setup times makes a compelling case for using
SOFTScale. Note that one could theoretically use SOFTScale even after the
setup time, however, the (non-zero) increase in latency of data operations as a
result of using SOFTScale suggests otherwise. The SOFTScale middleware is
depicted in Figure 2, and is described in detail in Section 3.4.

Almost all papers on dynamic capacity management (see, for example,
[7–11, 3, 12, 13]) deal with new approaches to scale capacity in response to

SOFTScale: Stealing Opportunistically for Transient Scaling 145

changes in load. However, such approaches can be ineffective during the setup
time, as shown in Figure 1. SOFTScale is a complementary solution that aims
to improve performance specifically during the setup time, and is meant to be
used in conjunction with any existing dynamic capacity management approach.

While the concept behind SOFTScale seems obvious, there are some practical
difficulties that may have led researchers to dismiss this idea as “unworkable”,
hence the lack of publications on this idea. First, there’s the question of when is
SOFTScale useful. Since the data tier is provisioned to handle peak load, invoking
SOFTScale when the data tier is already bottlenecked will lead to SLA violations.
Second, there’s the question of how much can we steal from the data tier. If we end
up stealing too much from the data tier, the overall system performance might de-
grade.Third, there’s the fear that running applicationwork on the data tier servers
will interfere with data delivery work, and can possibly lead to SLA violations. Fi-
nally, there’s the fear that implementing SOFTScale is too complicated.

In this paper, we demonstrate via implementation that the SOFTScale mid-
dleware is a practical solution that allows us to meet response time SLAs even
when load increases suddenly by a factor of 2, provided that the load is not too
high. In particular, this paper makes the following contributions:

– We determine load regimes for which SOFTScale can be successfully applied
to handle load spikes (see Section 3.1). This addresses the question of when
to invoke SOFTScale. Further, identifying load regimes where SOFTScale is
not beneficial avoids accidental overload of the data tier.

– We determine how much data tier capacity can be leveraged by SOFTScale
for a given load (see Section 3.2). This enables us to steal the right amount
of capacity from the data tier without hurting overall response time.

– We show that it is possible to avoid interference between the application
work and the data delivery work on the data servers by simply isolating
these processes to different CPU cores (see Section 3.3).

– We outline the steps needed to implement the SOFTScale middleware (see
Section 3.4). In our testbed, we implemented SOFTScale by adding less than
a thousand lines of code in the Apache load balancer.

– We present an analytical model that estimates the system performance under
SOFTScale (see Section 3.5), which allows us to predict the performance of
SOFTScale for a range of multi-tier systems.

We evaluate SOFTScale via implementation on a 28-server multi-tier testbed
hosting a key-value based application built along the lines of Facebook or Ama-
zon. Our implementation results show that SOFTScale can be used to handle
instantaneous load spikes (see Section 4.1), load spikes seen in real-world traces
(see Section 4.2) as well as load spikes caused by server failures (see Section 4.3).
To fully investigate the applicability of SOFTScale, we experiment with multiple
setup times ranging from 5 minutes (see Section 4) all the way down to 5 seconds
(see Section 5). Our results indicate that SOFTScale can provide huge benefits
across the entire spectrum of setup times. We also investigate the applicability
of SOFTScale in future server architectures which may have a larger number of

146 A. Gandhi et al.

Fig. 2. Our experimental testbed

CPU cores per server. Our results (see Section 6) indicate that SOFTScale will
be even more beneficial in such cases.

2 Our Experimental Testbed

Figure 2 illustrates our experimental testbed. The gray components make up
SOFTScale, and will be described in detail in Section 3.4. We employ one server
as the front-end load generator running httperf [26]. Another server is used as
a load balancer running the Apache HTTP Server, which distributes incoming
PHP requests to the application servers. Each application server communicates
with the data tier, which in our setup comprises memcached servers, to retrieve
data required to service the requests. Another server is used to store the entire
data set, a billion key-value pairs, on a database.

Throughout this paper we measure power consumption and use that as a
proxy for all operational (resource) costs. We monitor the power consumption
of individual servers by reading the power values from the power distribution
unit. The idle power consumption for our servers is about 140W (with C-states
enabled) and the average power consumption for our servers when they are busy
or in setup is about 200W. The setup time for our servers is about tsetup = 5
minutes. However, we also examine the effects of lower tsetup

2. We replicate this
effect by not routing requests to a server if it is marked for sleep. When the
server is marked for setup, we wait tsetup seconds before sending requests to it.

2.1 Workload

We design a key-value workload to model realistic multi-tier applications such as
the social networking site, Facebook, or e-commerce sites like Amazon [25]. Each
generated request (or job) is a PHP script that runs on the application server. A
request begins with the application server requesting a value for a random key
from the memcached servers. The memcached servers provide the value, which
itself is a collection of new keys. The application server then again requests
values for these new keys from the memcached servers. This process can continue

2 Lower setup times could either be a result of using sleep states (which are prevalent
in laptops and desktop machines, but are not well supported for server architectures
yet), or using virtualization to quickly bring up virtual machines.

SOFTScale: Stealing Opportunistically for Transient Scaling 147

(a) Single application server. (b) Application tier scaling.

Fig. 3. Figure (a) shows that a single application server can handle 37.5 req/s per
server. Figure (b) shows that once we have more than 20 application servers, they
can no longer handle 37.5 req/s per server because the memcached tier becomes the
bottleneck.

iteratively. In our experiments, we set the number of iterations to correspond
to an average of roughly 2,200 key-value requests per job, which translates to a
mean service time of approximately 200 ms, assuming no resource contention.
The job size distribution is highly variable, with the largest job requiring roughly
20 times as many key-value requests as the smallest job.

In this paper, we use the Zipf [27] distribution to model the popularity of the
initial random key request. To minimize the effects of misses in the memcached
layer (which could result in an unpredictable fraction of the requests violating
the response time SLA), we tune the parameters of the Zipf distribution so that
only a negligible fraction of requests miss in the memcached layer.

2.2 Provisioning

In order to demonstrate the effectiveness of SOFTScale, we tune our implemen-
tation testbed to have no spare capacity at the memcached tier at peak load.
Our memcached tier comprises 5 servers, each with a 6-core Intel Xeon X5650
processor and 48GB of memory. However, we offline two cores3 per server to be
consistent with the specifications that were published by Facebook [28], leaving
us with 4-core memcached servers. We now determine how many application
servers we need to fully saturate the memcached tier.

Each of our application servers is a powerful 8-core (dual-socket) Intel Xeon
E5520 processor-based server. We run an experiment where we have one appli-
cation server and all five memcached servers, and we flood the system. We find
that the application server can handle at most 37.5 req/s without violating the
SLA, as shown in Figure 3(a).

3 Observe that weakening the memcached servers greatly hurts SOFTScale in that
there is less capacity to steal, but we do this purposely to create a fully saturated
memcached tier.

148 A. Gandhi et al.

We now examine how well the system scales as we add more application
servers. Ideally, if we have x application servers, the system should be able to
handle a maximum request rate of at least 37.5× x req/s without violating the
500ms SLA. Figure 3(b) shows our scaling results, where we vary the number
application servers from 1 to 28, and use a request rate of 37.5 req/s times the
number of application servers. We see that the system scales perfectly up to 20
application servers. Once we have more than 20 application servers, we see that
they can no longer handle 37.5 req/s per server. This is because at this peak load,
which corresponds to 37.5×20 = 750 req/s, the memcached tier starts becoming
a bottleneck. We validate our claim by ensuring that the other components in
the system, namely the load generator, the load balancer, and the application
servers, are not a bottleneck. Further, by monitoring the network bandwidth,
we ensure that it is not a bottleneck. With this ratio of 20 application servers to
5 memcached servers, we ensure that the memcached tier is saturated. Thus, at
least 5 memcached servers are needed to handle peak load (using more than 5
memcached servers only improves the performance of SOFTScale). This 4:1 ratio
of application servers to memcached servers is consistent with Facebook [29].

Based on the above experiments, we conclude that the 5 memcached servers
can handle at most 750 job req/s before they become a bottleneck. Thus, in our
experiments, we limit our total request rate to 750 req/s, which we also refer to
as peak load or 100% load. At peak load, we do not have any spare capacity on
the memcached servers. Thus, we cannot “steal” any resources from memcached
servers at high load without violating the 500ms SLA.

When running the system, the 5 memcached servers are always kept on. By
contrast, the number of application servers needed at any time is � r

37.5�, where
r is the current request rate into the system. For example, if the current request
rate is 15% of the peak (or 112 req/s), we provision � 112

37.5� = 3 application
servers. Now, if the load suddenly doubles from 15% (112 req/s) to 30% (225
req/s), we need 6 application servers in total. Thus, the 3 application servers
that are currently on, become the bottleneck.

3 SOFTScale

The key idea behind SOFTScale is to leverage the computational power at the
always on data tier servers to do some of our application work during the setup
time while additional application tier capacity is being brought online. The mo-
tivation behind this idea is that, while our memcached servers are provisioned
to have exactly the right amount of resources at high load (for our system, peak
load is 750 req/s), there are extra resources available at low load. Thus, when the
system load is low, we should be able to “steal” resources from the memcached
servers to offset some of the workload at the bottlenecked application servers.

SOFTScale works by enhancing the Apache load balancer to route some of the
application requests to the memcached servers during load spikes. Note that the
software needed to process the application work will first have to be installed on
the data tier servers. For our experimental testbed, this only involved installing

SOFTScale: Stealing Opportunistically for Transient Scaling 149

(a) Application server. (b) Memcached server.

Fig. 4. Figure (a) shows that we should invoke SOFTScale whenever the number of
requests at the application server exceeds 13. Figure (b) shows n∗

mem, the optimal
number of application requests that can be simultaneously handled by a memcached
server without violating the 500ms SLA, as a function of the total system load.

the Apache web server with PHP support on the memcached servers. Further,
our application software does not consume a lot of memory.

While SOFTScale sounds like a promising idea, exploiting the full potential of
SOFTScale is challenging. We now describe SOFTScale by discussing the design
decisions behind the algorithm.

3.1 When to Invoke SOFTScale?

SOFTScale must be invoked as soon as there is a spike in load. A spike in load
could be caused either by an increase in request rate or by a loss in application
tier capacity (server failures or service outages).

If the spike in load is caused by a sudden increase in request rate, then the
obvious approach to detect this spike would be to monitor request rate peri-
odically. Unfortunately, request rate is a time-average value, and is thus not
instantaneous enough to detect load spikes. We propose monitoring the num-
ber of active requests at each application server, napp, to detect load spikes. If
the system is under-provisioned because the request rate is too high, then napp

will immediately increase. Monitoring napp is fairly straightforward, and many
modern systems, including the Apache load balancer, already track this value.

Spikes in load can also be caused by a sudden loss in application tier capacity
(server failures or service outages). In this case, request rate cannot be used to
detect the spike. Fortunately, napp is immediately responsive to server failures,
since it increases instantaneously when the application tier capacity drops.

We must invoke SOFTScale when napp becomes so high that the T95 SLA
is in danger of being violated. In particular, if n∗

app is the maximum number
of simultaneous requests that a single application server can handle without
violating the SLA, then we invoke SOFTScale as soon as napp exceeds n∗

app

for all application servers. Of course, one can also be conservative and invoke
SOFTScale even when napp is below n∗

app.

150 A. Gandhi et al.

An easy way to determine n∗
app is by profiling the application servers. We

run a closed-loop experiment with a single application server where we fix the
number of simultaneous requests in the system (napp), and monitor T95. Fig-
ure 4(a) shows our results. We see that, for our system, n∗

app = 13. This same
technique (profiling the application servers) can be used for determining n∗

app for
different systems as well. Note that n∗

app corresponds to the 37.5 req/s that each
application server can handle. Since we provision the application tier so as not
to exceed 37.5 req/s at each server, a reading of napp > 13 indicates overload.
Thus, we invoke SOFTScale as soon as the load balancer detects that napp has
exceeded 13 for all the application servers.

3.2 How Much Application Work Can Memcached Handle?

Now that we know when to invoke SOFTScale (and thus, when to attempt to
steal resources from the data tier), the next design question is: how much can we
steal? The memcached servers are primarily responsible for providing data to the
application work. Thus, we cannot overload memcached servers with too much
application work. Figure 4(b) shows n∗

mem, the maximum number of application
requests that a memcached server can handle simultaneously without violating
the SLA. We see that n∗

mem depends on the overall system load, as should be
expected. When the system load is low (< 20%), each memcached server can
handle almost half the work capacity of an application server, whereas when the
load is high (≥ 80%), memcached servers cannot handle any application work.
Details on how we determine n∗

mem in Figure 4(b) can be found in [30].

3.3 Need for Isolation

While we have successfully overloaded the functionality of the memcached servers,
we have not eliminated interference between the memcached work and the ap-
plication work at the memcached servers. One way of reducing interference is to
“isolate” these two processes at the memcached servers, by partitioning the four
cores at the memcached server between the memcached work and the application
work. We achieve this core isolation by using the taskset command in Linux.
A logical way of partitioning the cores is in a 2:2 ratio, with 2 cores dedicated to
memcached work and 2 cores dedicated to application work. However, we find
that the performance of SOFTScale improves greatly if we dynamically adjust
the partitioning based on total system load. For example, when the system load
is extremely low, we can get away with restricting memcached to only one core
at each memcached server and reserving the remaining three cores for applica-
tion work in case of a load spike (1:3 partitioning). On the other hand, when
the system load is very high, we need all four cores for memcached work (4:0
partitioning). Figure 5 shows n∗

mem for the memcached servers with dynamic
isolation and without any isolation (same as Figure 4(b)). Note the four dis-
crete horizontal levels for dynamic isolation. These refer to a 4-core partitioning
between the memcached work and application work in the ratio of 1:3, 2:2, 3:1

SOFTScale: Stealing Opportunistically for Transient Scaling 151

and 4:0 respectively. We see that dynamic isolation greatly enhances the capac-
ity of memcached servers to handle application work. Henceforth, when we use
SOFTScale, it will be implied that we are referring to SOFTScale with dynamic
isolation. Details on how we obtain Figure 5 can be found in [30].

3.4 The SOFTScale Algorithm

We are now ready to describe our SOFTScale algorithm, which is implemented
in the load balancer, and is depicted in gray in Figure 2. We send application
requests to the application servers, via Join-the-Shortest-Queue routing, as long
as any server has less than n∗

app simultaneous requests. If all of the application
servers have at least n∗

app requests, SOFTScale is invoked. SOFTScale sends
any additional requests above the n∗

app requests to the memcached servers. The
resource manager (see Figure 2) at each memcached server is responsible for
invoking the software that will serve the incoming application requests. In our
case, this software is the Apache web server with PHP support, which is in-
voked upon boot. The resource manager also isolates the application work from
the memcached work. We limit the number of requests that we send to each
memcached server to n∗

mem. Recall that n∗
mem, which is the optimal number of

simultaneous application requests that a memcached server can handle, is not a
constant, and in fact varies with load as specified in Section 3.3 and Figure 5.
Note that n∗

mem = 0 if load is greater than or equal to 80% of peak load. Thus,
SOFTScale will not send application requests to the memcached servers if load
is high. Once we have n∗

mem requests at all memcached servers, then we load
balance additional requests among the application servers.

3.5 An Analytical Model for Estimating SOFTScale’s Performance

We now present a simple analytical model that allows us to estimate the range
of load jumps that SOFTScale can handle for a given multi-tier system. Let
kapp and kmem denote the total number of application servers and memcached
servers in the system, respectively. If the current system load is x% of the peak
load, where 0 ≤ x ≤ 100, then the number of application servers on is roughly
kapp · x

100 , assuming the application tier is dynamically scaled. Suppose that each
memcached server can handle n∗

mem simultaneous application requests at load
x%. Then, the total number of application requests that the memcached tier can
handle is kmem · n∗

mem. Note that the number of simultaneous requests that the
system can handle without SOFTScale at load x% is kapp · x

100 ·n∗
app, where n

∗
app

is the number of simultaneous requests than an application server can handle.
Thus, at x% load, the fraction of additional load that the system can handle
with SOFTScale is:

Fraction of additional load that SOFTScale can handle ≈ kmem · n∗
mem

kapp · x
100 · n∗

app

(1)

Equation (1) suggests that the additional load that SOFTScale can handle goes
down as the system load (x%) increases, as expected (note that n∗

mem also drops

152 A. Gandhi et al.

with system load, as shown in Figure 5). As we will show in Sections 4.1 and
6, Equation (1) matches our experimental results for SOFTScale’s performance.
Thus, we can use Equation (1) to predict SOFTScale’s performance for systems
whose kapp, kmem, n∗

app or n∗
mem values are different from ours.

4 Results

We now evaluate the performance of SOFTScale for a variety of load spikes. We
start in Section 4.1, where we consider a range of instantaneous load jumps and
characterize the space of jumps that SOFTScale can handle. Then, in Section 4.2,
we examine the performance of SOFTScale under real-world load spikes. Finally,
in Section 4.3, we examine the performance of SOFTScale for load spikes that
are caused by service outages or server failures. For all the experiments in this
section, we consider tsetup = 5 minutes, which is the setup time for our servers.
Later, in Section 5, we examine SOFTScale under lower setup times.

4.1 Characterizing the Range of Load Jumps that SOFTScale Can
Handle

In this section, we consider instantaneous jumps in load, as shown in Figure 6,
and examine the system only during the setup time. We assume the system is
properly provisioned for the initial load, and thus, is under-provisioned after the
load jump, during the setup time. Under SOFTScale, although the application
tier is under-provisioned during the setup time, we can use the memcached tier
to compensate. By contrast, under the “baseline” architecture, we are limited to
the capacity of the under-provisioned application tier. We compare SOFTScale
with the “baseline” architecture by examining the following metrics: T95, the
95th percentile of response times during the 5 minute setup time, and Pavg, the
average power consumed by the application servers and the memcached servers
during the setup time. Note that Pavg is proportional to the amount of resources
being used, and can thus be thought of as a proxy for operational costs. For a
given load jump, if the system has T95 ≤ 500ms, we say that it can “handle”
the load jump.

Figure 7(a) shows the effect of SOFTScale on T95 for specific load jumps. We
choose these specific load jumps since they correspond to the maximum jump
that SOFTScale can handle at each of the initial loads. For example, if the ini-
tial load is 10% of the peak, then SOFTScale can handle a maximum jump of
10% → 29%, where the load changes instantaneously from an initial load of 10%
to a final load of 29%. We see that SOFTScale provides huge benefits in T95, as
long as the final load is less than 50%. In particular, the T95 under SOFTScale
is less than 500ms for the 10% → 29% jump, as compared with 96s under the
baseline. Likewise, SOFTScale lowers T95 from 64s to less than 500ms for the
20% → 35%, and from 38s to less than 500ms for the 30% → 45% load jump.
SOFTScale provides these performance improvements by opportunistically steal-
ing resources from the memcached servers to handle the critical application work.

SOFTScale: Stealing Opportunistically for Transient Scaling 153

Fig. 5. The figure illustrates enhancement
in SOFTScale using dynamic isolation

Fig. 6. The figure illustrates the
load jumps we use in our experi-
ments. Note that we only evaluate
the system during the setup time.

(a) T95 (b) Pavg

Fig. 7. SOFTScale meets T95 = 500ms SLA without consuming any extra resources
for a range of load jumps

When the load jumps from 40% → 55% and 50% → 61%, SOFTScale still pro-
vides improvement in T95, but these improvements are not as dramatic. This is
because the memcached tier is optimally provisioned (see Section 2.2), and thus
has very little spare capacity at high loads.

By contrast, the baseline architecture (no SOFTScale) would have to resort
to significant over-provisioning to handle the load jumps. For example, for the
10% → 29% jump, the baseline would have to over-provision the application tier
by about 190% to meet SLA goals during the setup time. Clearly, this is a huge
waste of resources.

Figure 7(b) plots Pavg, the average power consumed by the application servers
and the memcached servers, for SOFTScale and the baseline. We see that
SOFTScale does not consume any additional power as compared to baseline.
This is because the total amount of work done by all servers under SOFTScale
and under baseline is about the same, for a given load level. Thus, Pavg , which is a
proxy for operational costs, does not change significantly when using SOFTScale.

Figure 8 shows the full set of results for SOFTScale. In Figure 8(a), the
gray region shows the solution space, or regimes, of load jumps that SOFTScale
can handle without violating the 500ms SLA, while the black region shows the
load jumps that the baseline can handle without violating the SLA. Note that

154 A. Gandhi et al.

(a) Solution space for tsetup = 5 minutes. (b) Improvement for tsetup = 5 minutes.

Fig. 8. Full range of results for SOFTScale. The crosses in the figures refer to the
specific load jump cases shown in Figure 7. Note that SOFTScale’s solution space in
Figure (a) is a superset of the baseline’s solution space.

SOFTScale’s solution space is a superset of the baseline’s solution space. The
crosses in the figure refer to the specific load jump cases we showed in Figure 7,
namely the maximum load jumps that SOFTScale can handle for each of the
initial loads.

Since the system is optimally provisioned (see Section 2), the baseline cannot
handle any significant load jumps. In particular, when the initial load is either
too low or too high, the baseline cannot handle any load jumps. However, because
of the inherent elasticity in the system, the baseline can handle some small load
jumps when the initial load is moderate. For example, when the initial load is
20%, the black region indicates that baseline can handle a maximum jump of
20% → 24%.

By contrast, SOFTScale can handle a much larger range of load jumps as
compared to the baseline. For example, when the initial load is 20%, the gray
region indicates that SOFTScale can handle a maximum jump of 20% → 35%.

In Figure 8(b), we plot the maximum load jump (in %) that SOFTScale can
handle for each initial load using the solid gray line. Again, the crosses in the
figure refer to the specific load jump cases we showed in Figure 7. For example,
the first cross from the left corresponds to the 10% → 29% load jump, which
amounts to a 190% jump in load. The dashed line shows our estimates for the
maximum load jump that SOFTScale can handle, given by Equation (1) (with a
few extra % due to the elasticity in the system). We see that our estimates match
our implementation results. As expected, Figure 8(b) shows that SOFTScale can
handle huge jumps when the initial load is low, but can only handle moderate
load jumps when the initial load is high.

4.2 Spikes in Real-World Traces

In addition to evaluating SOFTScale under instantaneous load jumps (as in Sec-
tion 4.1), we also evaluate SOFTScale under the real-world traces, Pi Day [31],

SOFTScale: Stealing Opportunistically for Transient Scaling 155

(a) Baseline:
T95 = 115, 730ms.
SOFTScale:
T95 = 418ms.

(b) Baseline:
T95 = 1, 050ms.
SOFTScale:
T95 = 470ms.

(c) Baseline:
T95 = 3, 477ms.
SOFTScale:
T95 = 439ms.

(d) Baseline:
T95 = 620ms.
SOFTScale:
T95 = 474ms.

Fig. 9. Real-world trace snippets used for our experiments

Fig. 10. The plot illustrates the superiority of SOFTScale over the baseline for the Pi
Day [31] trace in Figure 9(b)

NLANR [32] and WC98 [20], shown in Figure 9. We re-scale each trace so that
the peak load corresponds to 750 req/s, and then consider five minute (tsetup)
snippets that highlight load spikes. The load numbers in Figure 9 correspond to
the post-scaled traces. We assume the system is well provisioned at time t = 0,
and then examine the system performance for the next five minutes, during
which additional capacity is being brought online.

Although the initial load ranges from 5% to 30% across the different traces,
SOFTScale achieves a T95 of less than 500ms for all cases (see Figures 9(a) to
9(d)). By contrast, the baseline results in a T95 of over 115s in Figure 9(a),
where the load quadruples from 5% to 20%. In Figure 9(b), where the load
roughly doubles from 25% to 46%, the T95 under the baseline is just over a
second, in contrast to SOFTScale’s 470ms. The superiority of SOFTScale over
the baseline for the trace in Figure 9(b) is further illustrated in Figure 10, which
depicts the instantaneous T95 (collected every second) over the trace.

4.3 Spikes Created by Server Faults

Thus far, we considered the case where load spikes are caused by a sudden
increase in request rate. However, load spikes can also result because of a sudden

156 A. Gandhi et al.

(a) 30% → 15% capacity drop. (b) 50% → 20% capacity drop.

Fig. 11. SOFTScale provides significant benefits even when load spikes are caused by
a sudden drop in capacity. In the figures above, we drop capacity at the 10s mark.

drop in capacity. Service outages [21] and server failures [22] are common causes
for a sudden (and unpredictable) drop in capacity. SOFTScale is useful regardless
of the cause of load spikes since SOFTScale is invoked when the number of jobs at
a server increases (see Section 3.1). We now illustrate the fault-tolerance benefits
of SOFTScale.

Consider a system that is well provisioned to handle 30% initial load. Suppose
a failure takes down half of the provisioned capacity, resulting in a system that
can now only handle 15% load. We refer to this as a 30% → 15% capacity drop.
Figure 11(a) shows our experimental results for instantaneous T95 (collected
every second) under a 30% → 15% capacity drop, which is triggered at the
10s mark. Apache’s load balancer is very quick to recognize that some of the
application servers are offline, and thus stops sending additional requests to
them. In Figure 11(a), while SOFTScale successfully handles the capacity drop,
the baseline completely falls apart. The power consumption for SOFTScale and
the baseline are about the same, and are thus omitted due to lack of space.

Figure 11(b) shows our experimental results for instantaneous T95 under a
very severe 50% → 20% capacity drop, which is produced by taking down 6 of
the 10 application servers at the 10s mark. This time, we see that instantaneous
T95 rises sharply for both SOFTScale and the baseline. However, the rate at
which instantaneous T95 increases under SOFTScale is significantly lower than
that under the baseline. Thus, we conclude that SOFTScale is useful even when
load spikes are caused by a sudden drop in capacity.

5 Lower Setup Times

While production servers today are only equipped with “off” states that ne-
cessitate a huge setup time (tsetup = 5 minutes for our servers), future servers
may support sleep states, which can lower setup times considerably. Further,
with virtualization, the setup time required to bring up additional capacity
(in the form of virtual machines) might also go down. In this section, we an-
alyze SOFTScale for the case of lower setup times by tweaking our experimental
testbed as discussed in Section 2. Intuitively, for low setup times, one might ex-

SOFTScale: Stealing Opportunistically for Transient Scaling 157

(a) tsetup = 50s. (b) tsetup = 20s. (c) tsetup = 5s.

Fig. 12. Effect of tsetup on instantaneous T95 for a 15% → 30% jump in load

(a) tsetup = 50s. (b) tsetup = 20s. (c) tsetup = 5s.

Fig. 13. Effect of tsetup on instantaneous T95 for a 20% → 50% jump in load

pect that SOFTScale is not needed since instantaneous T95 should not rise too
much during the setup time. This turns out to be false.

Figure 12 shows our experimental results for instantaneous T95 under the
15% → 30% load jump, for a range of tsetup values. We change the scale for Fig-
ure 12(a) to fully capture the effect of the 50s setup time. Recall from Figure 8(a)
that SOFTScale can handle the 15% → 30% load jump, even if tsetup = 5 min-
utes. Thus, it is not surprising that SOFTScale can handle the 15% → 30% load
jump for tsetup = 50s, 20s and 5s in Figure 12.

By contrast, the instantaneous T95 for the baseline quickly grows and exceeds
the 500ms SLA during the entire setup time duration, even for the tsetup = 5s
case. However, the instantaneous T95 values for the baseline are not too high
under lower setup times. This is because when the setup time is low, the overload
period is very short. Observe that instantaneous T95 does not drop immediately
after the setup time because of the backlog created during the setup time.

Figure 13 shows our experimental results for instantaneous T95 under the
20% → 50% load jump. Recall from Figure 8(a) that SOFTScale cannot handle
the 20% → 50% load jump when tsetup = 5 minutes. In Figure 13, we see
that instantaneous T95 rises sharply during the setup time for both SOFTScale
and the baseline. However, the rate at which instantaneous T95 increases under
SOFTScale is at most half that under the baseline.

Figure 14 shows the full set of results for SOFTScale for the case of tsetup =
20s. In Figure 14(a), we show the solution space of load jumps that SOFTScale
and the baseline can handle without violating the 500ms T95 SLA (over the 20s
setup time). The crosses in the figure refer to the specific load jump cases we
showed in Figures 12 and 13. We see that SOFTScale can handle a much larger

158 A. Gandhi et al.

(a) Solution space for tsetup = 20s. (b) Improvement for tsetup = 20s.

Fig. 14. Full range of results for SOFTScale under tsetup = 20s. The crosses in the
figures refer to the specific load jump cases shown in Figures 12 (15% → 30% load
jump) and 13 (20% → 50% load jump).

range of load jumps (gray region) as compared to the baseline (black region),
just as we observed in Figure 8(a) for tsetup = 5 minutes. In Figure 14(b), we
plot the maximum load jump (in %) that SOFTScale can handle for each initial
load. Again, as expected, SOFTScale can handle huge jumps when the initial
load is low, but can only handle moderate jumps when the initial load is high.

It is very interesting to note that the performance degradation caused by load
spikes for the baseline case does not go away even when the setup time is really
low. Thus, there is a need for SOFTScale even under low setup times. Comparing
Figures 8 and 14, we see that the range of load jumps that the baseline (and
SOFTScale) can handle increases only slightly under the much lower setup time
of 20s. The reason that this increase is so small is that most of the “damage” to
T95 has already occurred after only a few seconds.

6 Future Architectures

In our implementation testbed (see Section 2), we use 4-core servers for the
memcached tier. In the near future, it is likely that 4-core processors will be
replaced by 8 (or more) core processors, even though their memory capacity is
unlikely to increase significantly [33]. Thus, we would still need just as many
memcached servers. On the other hand, data replication needs may require ad-
ditional memcached servers. In either case, the memcached tier will now have
more spare compute capacity that can be exploited by the application tier via
SOFTScale. In this section, we investigate the performance of SOFTScale for
the case where we have 8-core memcached servers.

Figure 15 shows n∗
mem, the optimal number of application requests that a

memcached server can handle simultaneously without violating the 500ms SLA,
for 8-core and 4-core memcached servers. We see that using 8-cores allows us to
put a lot more application work on the memcached servers. Thus, SOFTScale
should be able to handle much higher load jumps with 8-core memcached servers.

SOFTScale: Stealing Opportunistically for Transient Scaling 159

Figure 16(a) shows the full set of results for SOFTScale and the baseline,
both with 8-core memcached servers, for the case of tsetup = 5 minutes. We
see that SOFTScale with 8-core memcached servers can handle a significantly
larger range of load jumps. For example, SOFTScale can handle a 10% → 50%
load jump as compared to the maximum jump of 10% → 29% using 4-core
memcached servers, as was shown in Figure 8(a). Further, SOFTScale can now
handle load jumps even when the load is as high as 80%, since the memcached
work requires at most 4 cores at peak load (see Section 2), still leaving 4 cores at
each memcached server for application work. We also estimated the maximum
load jump that SOFTScale can handle via Equation (1), and found that our
estimates match our implementation results. Figure 16(b) shows the full set of
results for SOFTScale for the case of tsetup = 20s. These results are very similar
to those in Figure 16(a). Thus, even though there is a cost (monetary cost
and increased power consumption) involved in switching to 8-core memcached
servers, it might make sense to deploy these servers for the memcached tier to
handle severe load spikes using SOFTScale.

7 Prior Work

There is a lot of prior work that deals with dynamic capacity management. These
works can be classified into reactive [7–9], predictive [10, 11] and mixed [3, 12,
13] approaches. While these approaches can handle gradual changes in load,
they cannot handle abrupt changes, especially load spikes that occur almost
instantaneously. This claim was also verified by other authors [34].

There has been some prior work specifically dealing with load spikes [34, 35].
Chandra et al. [34] show that existing dynamic capacity management algorithms
are not good at handling flash crowds in an internet data center. In order to han-
dle flash crowds, the authors advocate either having spare servers that are always
available (over-provisioning), or finding a way to lower setup times. However, as
our work shows (see Figures 12(c) and 13(c)), even a 5s setup time can result
in severe SLA violations. Further, by using SOFTScale, we do not have to pay
for any additional resources, which is not the case when over-provisioning via
spare servers. Lassettre et al. [35] propose a short-term forecasting approach to
handle load spikes for a multi-tier system with a setup time of 30s. While [35]
is very effective at handling load spikes that gradually build over time, it is not
well suited for the instantaneous load spikes we consider in this paper since the
forecasting in [35] itself requires at least 10s, and we have shown that even a 5s
setup time is detrimental. Observe that SOFTScale is actually complementary
to the above approaches, and can be used in conjunction with them.

There has also been recent work looking at data spikes, where a particular
web object becomes extremely popular. Data spikes can be handled by caching
or replication (see, for example [4]), and are not the focus of our paper.

To handle load spikes for small websites with only static content, a possible
solution is to host their content on a cloud computing platform. These platforms
are able to handle load spikes by over-provisioning more economically since they

160 A. Gandhi et al.

Fig. 15. Using 8-core memcached servers significantly enhances SOFTScale’s ability
to handle load jumps

(a) Solution space for tsetup = 5 minutes. (b) Solution space for tsetup = 20s.

Fig. 16. Full range of results for SOFTScale with 8-core memcached servers under (a)
tsetup = 5 minutes and (b) tsetup = 20s. We see that 8-core memcached servers provide
huge benefits for SOFTScale regardless of the setup time.

host multiple websites, and load spikes on individual websites are often not
correlated (statistical multiplexing) [36]. For multi-tiered cloud computing envi-
ronments, SOFTScale can be used in conjunction with statistical multiplexing.

Finally, there is also a lot of prior work [37–40] that deals with managing over-
load conditions by allowing for performance degradation. Some of the popular
techniques that have been used to regulate performance degradation include ad-
mission control and request prioritization. By contrast, SOFTScale handles load
spikes without any performance degradation, provided the load is not high. If
the load is high, SOFTScale can be coupled with techniques like those in [37–40]
to minimize the damage caused by load spikes.

8 Conclusion

In this paper, we consider load spikes, which are all too common in today’s data
centers [18, 19, 14, 15, 20–22]. Our results in Figures 12 and 13 show that ignoring

SOFTScale: Stealing Opportunistically for Transient Scaling 161

load spikes can result in severe SLA violations, even if it takes only 5 seconds
of setup time to bring capacity online. The obvious solution of over-provisioning
resources is quite expensive since load spikes are often unpredictable.

We propose SOFTScale, an approach to handling load spikes in multi-tier
data centers without consuming any extra resources. In multi-tier data centers,
the application tier is typically stateless, and can be dynamically provisioned,
whereas the data tier is stateful, and is always left on. SOFTScale works by
opportunistically stealing resources from the data tier to alleviate the overload at
the application tier during the setup time needed to bring additional application
tier capacity online. Since tiers in a data center are typically carefully provisioned
for peak load, SOFTScale must steal from the data tier without hurting overall
performance. SOFTScale does this by first determining how much spare capacity
can be stolen from the data tier without violating SLAs at different load levels,
and then dynamically isolating the application work and the data delivery work
at the data tier to avoid interference.

Our implementation results on a 28-server testbed demonstrate that SOFTScale
can handle various load spikes for a range of setup times (see Figures 8 and
14). Specifically, SOFTScale can handle instantaneous load jumps ranging from
5% → 25% to 50% → 61%, even when the setup time is 5 minutes. SOFTScale
works extremely well for real-world load spikes (see Figure 9), and significantly
improves performance (typically a 2X – 100X factor improvement) when com-
pared to the baseline. Even more benefits are possible for future many-core
servers (see Figure 16).

While our implementation testbed mimics a web site of the type seen in
Facebook or Amazon with an application tier and a memcached tier, we believe
SOFTScale will also be applicable when the memcached tier is replaced by any
other data tier. Since the data tier is stateful, there will always be a subset of
servers that will not be turned off. Thus, SOFTScale can leverage these servers
to alleviate the bottleneck at the application tier during load spikes.

References

1. Eckerson, W.W.: Three tier client/server architecture: Achieving scalability, per-
formance, and efficiency in client server applications. Open Information Systems 10
(January 1995)

2. Schussel, G.: Client/server: Past, present and future (September 2006),
http://www.dciexpo.com/geos/dbsejava.htm

3. Urgaonkar, B., Chandra, A.: Dynamic provisioning of multi-tier internet applica-
tions. In: ICAC 2005, Washington, DC (2005)

4. Trushkowsky, B., Bod́ık, P., Fox, A., Franklin, M.J., Jordan, M.I., Patterson, D.A.:
The SCADS director: scaling a distributed storage system under stringent perfor-
mance requirements. In: FAST 2011, San Jose, CA, USA (2011)

5. Bryant, R., Tumanov, A., Irzak, O., Scannell, A., Joshi, K., Hiltunen, M., Lagar-
Cavilla, A., de Lara, E.: Kaleidoscope: cloud micro-elasticity via VM state coloring.
In: EuroSys 2011, Salzburg, Austria (2011)

6. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. In: Sigmetrics 2012, London, UK (2012)

http://www.dciexpo.com/geos/dbsejava.htm

162 A. Gandhi et al.

7. Leite, J.C., Kusic, D.M., Mossé, D.: Stochastic approximation control of power
and tardiness in a three-tier web-hosting cluster. In: ICAC 2010, Washington, DC,
USA (2010)

8. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: Managing performance inter-
ference effects for QoS-aware clouds. In: EuroSys 2010, Paris, France (2010)

9. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,
Merchant, A.: Automated control of multiple virtualized resources. In: EuroSys
2009, Nuremberg, Germany (2009)

10. Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., Katz, R.: NapSAC:
Design and implementation of a power-proportional web cluster. In: Green Net-
working 2010, New Delhi, India (2010)

11. Horvath, T., Skadron, K.: Multi-mode energy management for multi-tier server
clusters. In: PACT 2008, Toronto, ON, Canada (2008)

12. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive quality
of service management for enterprise services. ACM Trans. Web 2(1), 1–46 (2008)

13. Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah, M.: Minimizing data cen-
ter SLA violations and power consumption via hybrid resource provisioning. In:
IGCC 2011, Orlando, FL, USA (2011)

14. LeFebvre, W.: CNN.com: Facing A World Crisis. Invited Talk, USENIX ATC
(2002)

15. Hu, J., Sandoval, G.: Web acts as hub for info on attacks. CNET news (Septemper
2001)

16. Wald, L.A., Schwarz, S.: The 1999 southern california seismic network bulletin.
Seismological Research Letters 71, 401–422 (2000)

17. Adler, S.: The Slashdot Effect: An Analysis of Three Internet Publications,
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html

18. Constine, J.: Walmart’s black friday disaster: Website crippled, violence in stores
(November 2011), http://techcrunch.com/2011/11/25/walmart-black-friday

19. Ohlson, K.: Victoria’s secret knows ads, not the web. Computer World (February
1999)

20. Arlitt, M., Jin, T.: Workload characterization of the 1998 world cup web site. IEEE
Network (1999)

21. Pachal, P.: Amazon apologizes for cloud outage, issues credit to customers. PCMag.
(April 2011)

22. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale
field study. In: SIGMETRICS 2009, Seattle, WA, USA (2009)

23. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual
machine monitor. In: Linux Symposium 2007, Ottawa, ON, Canada (2007)

24. Amazon Inc.: Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
25. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: SOSP 2007, Stevenson, WA, USA (2007)

26. Mosberger, D., Jin, T.: httperf—A Tool for Measuring Web Server Performance.
ACM Sigmetrics: Performance Evaluation Review 26, 31–37 (1998)

27. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics 46, 323–351 (2005)

28. LaPedus, M.: Facebook Wants New and Cheaper Memories (November 2011),
http://semimd.com/blog/2011/11/08/facebook-wants-new-and-cheaper-

memories

29. Personal communication with Facebook

http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html
http://techcrunch.com/2011/11/25/walmart-black-friday
http://aws.amazon.com/ec2/
http://semimd.com/blog/2011/11/08/facebook-wants-new-and-cheaper-memories
http://semimd.com/blog/2011/11/08/facebook-wants-new-and-cheaper-memories

SOFTScale: Stealing Opportunistically for Transient Scaling 163

30. Gandhi, A., Zhu, T., Harchol-Balter, M., Kozuch, M.: SOFTScale: Stealing Op-
portunistically For Transient Scaling. Technical Report CMU-CS-12-111. Carnegie
Mellon University (2012)

31. Andersen, D.G.: Trace of web site activity on Pi day (3/14/2011) from domains
hosted by angio.net. Personal Communication (December 2011)

32. National Laboratory for Applied Network Research. Anonymized access logs,
ftp://ftp.ircache.net/Traces/

33. Kim, Y., Seshadri, V., Lee, D., Liu, J., Mutlu, O.: A case for exploiting subarray-
level parallelism (SALP) in DRAM. In: ISCA 2012, Portland, OR, USA (2012)

34. Chandra, A., Shenoy, P.: Effectiveness of dynamic resource allocation for handling
internet flash crowds. Technical Report TR03-37, Department of Computer Sci-
ence, University of Massachusetts at Amherst (November 2003)

35. Lassettre, E., Coleman, D.W., Diao, Y., Froehlich, S., Hellerstein, J.L., Hsiung,
L.S., Mummert, T.W., Raghavachari, M., Parker, G., Russell, L., Surendra, M.,
Tseng, V., Wadia, N., Ye, P.: Dynamic Surge Protection: An Approach to Handling
Unexpected Workload Surges with Resource Actions that Have Lead Times. In:
Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 82–92. Springer,
Heidelberg (2003)

36. Elson, J., Howell, J.: Handling flash crowds from your garage. In: USENIX ATC
2008, Boston, MA, USA (2008)

37. Urgaonkar, B., Shenoy, P.: Cataclysm: Scalable overload policing for internet ap-
plications. Journal of Network and Computer Applications 31(4), 891–920 (2008)

38. Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J., Lorch, J.: Load
management in a large-scale decentralized file system. MSR-TR 2004-60 (2004)

39. Voigt, T., Tewari, R., Freimuth, D., Mehra, A.: Kernel mechanisms for service
differentiation in overloaded web servers. In: USENIX ATC 2001, Boston, MA,
USA (2001)

40. Cherkasova, L., Phaal, P.: Session-based admission control: A mechanism for peak
load management of commercial web sites. IEEE Trans. Comput. 51 (June 2002)

ftp://ftp.ircache.net/Traces/

Taking Garbage Collection Overheads

Off the Critical Path in SSDs

Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir

The Pennsylvania State University

Abstract. Solid state disks (SSDs) have the potential to revolutionize
the storage system landscape, mostly due to their good random access
performance, compared to hard disks. However, garbage collection (GC)
in SSD introduces significant latencies and large performance variations,
which renders widespread adoption of SSDs difficult. To address this
issue, we present a novel garbage collection strategy, consisting of two
components, called Advanced Garbage Collection (AGC) and Delayed
Garbage Collection (DGC), that operate collectively to migrate GC op-
erations from busy periods to idle periods. More specifically, AGC is
employed to defer GC operations to idle periods in advance, based on
the type of the idle periods and on-demand GC needs, whereas DGC
complements AGC by handling the collections that could not be han-
dled by AGC. Our comprehensive experimental analysis reveals that the
proposed strategies provide stable SSD performance by significantly re-
ducing GC overheads. Compared to the state-of-the-art GC strategies,
P-FTL, L-FTL and H-FTL, our AGC+DGC scheme reduces GC over-
heads, on average, by about 66.7%, 96.7% and 98.2%, respectively.

1 Introduction

Over the past decade, different computing domains, ranging from high perfor-
mance computing and enterprise server platforms to embedded systems, are
adopting SSDs [1] [2], due to their technical merits such as good random ac-
cess performance, low power consumption, higher robustness to vibrations and
temperature, and higher read/write bandwidth than hard disks [3]. NAND flash
capacity is increasing by two to four times every two years [4] and SSD prices
are expected to continue to fall to the extent of becoming cheaper than high-
speed hard disk [5], which can in turn enable widespread deployment in diverse
computing domains.

Modern SSDs internally employ a flash translation layer (FTL), managing two
intrinsic properties of NAND flash memory to emulate it as a block device: first,
no write is allowed before erasing a block, called the erase-before-write property.
Second, NAND flash makers adopt a write sequence in a block due to the page-
level program disturbance behavior [6] [7], which has a deep relationship with
modern NAND flash memory reliability and data integrity. In addition to the
erase-before-write property, this in-order-update property in a block necessitates
out-of-place updates for write operations. To enable such out-of-place updates

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 164–186, 2012.
c© IFIP International Federation for Information Processing 2012

Taking Garbage Collection Overheads Off the Critical Path in SSDs 165

in the SSD, FTL remaps the logical addresses that conventional block devices
provide to the physical addresses presented by the NAND flash memory. In ad-
dition, the FTL employs a garbage collector, which reclaims the invalid pages,
incurred during the out-of-place update process. At a high-level, the garbage
collector relocates valid pages in certain blocks to new blocks, which are pre-
pared in advance, and erases them in order to make rooms for new writes. This
operation is referred to as garbage collection (GC).

The biggest problem with existing garbage collectors is that their worst-case
latency can be as high as 64∼128 times than that of normal write operations [8]
[9]. Our own experiments show that GCs introduce numerous blocking I/Os, and
once a GC operation begins, the response time of write operations on SSD in-
creases substantially. Further, GC overheads significantly reduce available band-
width in most recent commercial SSDs. Unfortunately, this interaction between
the GC and writes introduces significant performance variations/degradations
during I/O, which may not be acceptable in many I/O-intensive computing en-
vironments.

Motivated by this, most current FTLs optimize mapping policies to minimize
the number of GC invocations and hide their undesired latency. For example,
existing buffer management schemes are specialized to reduce the number of
writes to NAND flash. Also, some SSDs employ partial block cleaning tech-
niques [10] [11] that attempt to provide stable GC performance by balancing
the number pages/blocks between production and consumption of them using
an extra non-volatile buffer. However, there is yet another dimension to avoiding
GC overheads. Specifically, the presence of idle I/O times in workloads can be
exploited by shifting garbage collections from busy periods to other periods where
they can be accommodated with minimum performance penalty.

In this paper, we propose a novel GC strategy, an approach that removes
GC overheads and provides stable I/O performance in SSDs during the I/O
congestion periods. Our proposed GC strategy consists of two components, called
Advanced Garbage Collection (AGC) and Delayed Garbage Collection (DGC).
More specifically, AGC tries to secure free blocks and remove on-demand GCs
from the critical path in advance, so that users do not experience GC-induced
latencies during the I/O-intensive periods, whereas DGC handles the collections
that AGC could not handle, by delaying them to future idle periods. Since our
approach mainly reschedules garbage collections, it can work with any existing
FTL.

Shifting GC operations however can increase program/erase (PE) cycles, which
makes the life time of SSDs shorter. For example, if a garbage collector heed-
lessly reclaim blocks, which have the potential to be further utilized or used
for new writes, it can introduce unnecessary PE cycles in relocating valid pages
within them. To prevent this problem, we propose two different implementations
for AGC, called look-ahead garbage collection and proactive block compaction,
based on the duration of the idle period under consideration and the style of
GC detection. Specifically, the look-ahead GC utilizes short idle periods and re-
claims block based on the online information extracted from a device-level queue,

166 M. Jung, R. Prabhakar, and M.T. Kandemir

Fig. 1. Overview and comparison of SSD latencies with/without our proposed GC
strategies (AGC and DGC), tested by random write pattern with 2048KB request size.
Note that AGC and DGC shift GC overheads to idle periods (as shown in the real
view), thereby providing stable I/O performance like a pristine state (as shown in the
user view).

whereas the proactive block compaction targets long idle periods and perform
GCs only related to fully utilized blocks.

As shown in Figure 1, the main goal behind our strategies is to perform as
many GCs as possible in the idle periods. Our contributions in this paper can
be summarized as follows:

• Eliminating GC Overheads: When using our garbage collection strategies,
applications do not experience GC overheads. This is because our strategies
successfully migrate on-demand GCs from busy periods to idle periods. Ex-
perimental results show that our proposed GC strategies result in stable I/O
performance under various types of workloads.

• Avoiding Additional GC Operations: The proposed schemes (AGC and
DGC), when applied together, do not increase the original number of GC oper-
ations. They only reschedule the GC operations that would be invoked soon by
speculating their GC activities and identifying appropriate idle periods based
on their durations (short or long). If the frequency with which idleness occurs is
not high enough, then the GC invocations are postponed to future idle periods
without affecting latency of I/O operations. As a result, we do not incur any
additional GC operations.

• Compatibility with Underlying FTL Schemes: Most optimized garbage col-
lectors proposed in the literature need additional non-volatile (NV) blocks on the
SSD and/or require customized FTLs for successful execution. In contrast, our
proposed schemes do not require any extra NV blocks or major modifications to
the existing data structures, and can therefore work with diverse FTLs.

Taking Garbage Collection Overheads Off the Critical Path in SSDs 167

To test the effectiveness of our GC schemes, we implemented them in a simula-
tor that models bus-level transactions and collected statistics using a variety of
workloads. Our experimental results show that the proposed schemes reduce GC
overheads (without causing additional write/erase operations) between 66.7%
and 98.2%, in terms of the worst-case response time. Further, our schemes pre-
pare free blocks in advance to help prevent the block thrashing problem. Conse-
quently, they reduce the number of block erase operations by 16.6%, compared
to a conventional FTL.

2 Background and Related Work

2.1 Flash Translation Layer

The NAND-based flash consists of physical blocks ; a physical block is the erase
unit and is composed of several pages, which are the read/write units in the
NAND flash. One of the drawbacks of the NAND flash is that a page needs to be
updated in-place within the block. In addition, writes to a formerly written page
are not allowed before erasing the entire block corresponding to it. Since a block
is much larger than a page and an erase operation is more expensive than a write
operation, the NAND flash alone is not sufficient to build an SSD. Therefore, a
Flash Translation Layer (FTL) is required within the SSD to prepare physical
blocks ahead of time. Whenever an SSD receives write requests, it forwards
them to a temporal block called an update block. The FTL then serves requests
by physically (in-place) writing them into a block. This allows logical out-of-
order update by mapping addresses between the in-place and out-of-place update
sequences.

The FTL also hides the latency of block erase and unnecessary read/write
operations in copying valid pages that are live in a block [8] [12]. Similarly, to
provide data consistency and coherence between the original block (also called
the data block) and the update block, the FTL internally maintains mapping
information and address translations. In this way, by internally managing the
flash specific characteristics, the FTL provides compatibility with commodity
storage systems. Typically, based on the number of the data block(s) and update
block(s) in a logical block, FTLs are classified into three types. Block-mapping
FTL manages a logical block by combining one data and one update block (1:1
mapping). Hybrid mapping FTLs manage a logical block by composing n data
block(s) and m update block(s) (n : m mapping). Finally, pure-page mapping
FTLs leverage only update blocks for serving I/Os, and can allocate them in any
physical page location.

2.2 Garbage Collection

If the FTL does not have enough free pages in its update block, it has to per-
form GC in an attempt to reclaim available blocks to which write request, can
be forwarded. This type of GC is referred to as update block reclaiming GC.

168 M. Jung, R. Prabhakar, and M.T. Kandemir

Similarly, in cases where the FTL has insufficient free blocks, it should secure
free blocks by evicting some other logical blocks, called free block reclaiming GC.
These processes require migrating all valid pages from the update and original
blocks to a new free block (called page migration) and erasing these two blocks.
Thus, the GC latencies are typically much larger than that of normal I/O op-
erations. In addition, the FTL carries out these GC operations during runtime
on a need-basis, meaning that the collections are postponed as long as the SSD
can accept new data and are only performed when required. The reason why
GCs are executed on demand is that a block erase operation, which is part of
the garbage collection activity, can significantly affect the SSD’s lifetime and re-
liability [8]. For example, if a garbage collector heedlessly reclaim blocks, which
have the potential to be further utilized or used for new writes, it can introduce
unnecessary program/erase (P/E) cycles for relocating valid pages within them.
Due to this property, GC latencies typically piggyback on ordinary I/O requests,
leading potentially to very high I/O latencies. Several FTL based studies [9] [8]
attempted to reduce GC overheads and hide their latencies. Other approaches
like the real-time GC [10] and the partial block cleaning [11] [13] aimed to pro-
vide stable GC performance by balancing the number pages/blocks between the
production and consumption of them using an extra non-volatile buffer.

3 Impact of Garbage Collection in Commercial SSDs

To measure the impact of GCs in state-of-the-art SSDs, we evaluated their la-
tencies and bandwidth with/without GCs.1

Latency Impact: Figures 2a and 2b plot normal latencies and extra latencies
due to GCs, respectively. In this empirical test, we used a 256GB MLC-based
SSD which employs two 128MB internal DRAM buffers and measure latencies of
individual I/O operations using ULINK’s DriveMaster [14]. The DriverMaster is
a commercial tool that captures detailed storage-level latencies and tests SSDs
in a physical level. We wrote data with 1MB transfer size into the SSD using
a random pattern. While a pristine SSD was used for the normal latency test,
we later filled the SSD completely and introduced a one hour period before
evaluating the GC latencies. As illustrated in Figure 2, GCs introduce numerous
blocking I/Os, and once a GC operation begins, the response time for write
operations increases substantially. Further, irrespective of the large amount of
idleness that we artificially introduced, high latencies of GC are observed from
the beginning of the GC latency test.

Bandwidth Impact: From a system designer viewpoint, throughput might be
a more important performance metric. In this test, we measured performance
with/without GCs of four commercial SSDs (three 64GB, 256GB and 160GB
MLC-based SSDs and one 120GB SLC-based SSD) using Intel Iometer [15].
Figures 3a and 3b plot bandwidth with the pristine state and bandwidth with

1 All SSDs we tested (e.g., 64GB, 256GB, 160GB MLC-based SSDs and 120GB SLC-
based SSD) were deployed in 2010 ∼ 12.

Taking Garbage Collection Overheads Off the Critical Path in SSDs 169

(a) Normal Latencies (b) Latencies with GCs

Fig. 2. Latency comparison for a random write access pattern with 1MB request size
using a real MLC-based SSD

(a) Normal Bandwidth (Pristine) (b) Bandwidth with GCs (Fragmented)

Fig. 3. System throughput for four state-of-the-art SSDs (different vendors and NAND
types). Note that all SSDs tested suffer from significant performance degradation once
garbage collections begin.

fragmented state, respectively. To make an SSD fragmented, we first wrote 4KB
data in random order and fully utilized its storage space. Similar to the latency
impact test, we artificially introduced a one hour idle time before evaluating this
bandwidth impact test. As shown in Figure 3, GC overheads significantly reduce
available bandwidth in all four commercial SSDs tested, regardless of the idle
time introduced.

4 High Level View of GC Scheduling

To avoid performance degradation and variations caused by GCs, we propose
novel garbage collection strategies. Unlike previous GC strategies that reduce
the number of GC invocations or GC overheads at runtime, our proposed GC

170 M. Jung, R. Prabhakar, and M.T. Kandemir

strategies fully utilize device-level idle times, which are invisible to the user, to
perform GC activities. To efficiently exploit such idle times, we classify them
into two groups based on their lengths. Using our idle period classification, we
then invoke different types of GCs to ensure that the user does not experience
long GC-induced latencies. Our approach allows the other components of FTL
to work without any modification, making our approach highly portable.

4.1 Idle Period Classification

Short Idle Periods: Several applications exhibit short idle intervals interleaved
with parallel I/O requests in a device-level command queue [16], which allows
a storage system to determine actual data transfer times and implement out-of-
order execution of I/O commands. To enable this, most host interface protocols
bring I/O commands, along with preinformation including request type, ad-
dresses and request size, to the storage system before the actual data transfer
begins.

To measure how many commands with their preinformation are available at a
given time and the duration of idle periods, we executed Intel Iometer workloads
[15] and employed a 265GB MLC-based SSD that used in Figure 2. The LeCroy
protocol analyzer [17] is used for analyzing the SATA protocol at the physical
layer. We observed that 3-17 commands are delivered to the device-level com-
mand queue in parallel before the actual data communication starts, and the
storage-level idle times experienced by the I/O requests vary between 1.8 μs and
15.2 ms, based on the operation type and transfer size.

This storage-level short idle periods that we measured can be detected by
looking through the I/O commands with their preinformation. Specifically, one
can preview I/O commands in the queue before they get executed, and identify
the short idle intervals between successive I/O commands. Even though this
interval is short, one benefit gained from utilizing these short idle intervals is
that it allows one to investigate a request through preinformation and accurately
predict what will happen to the request during the idle time. Each short idle
period can be expressed as follows:

Tshort−idle = tstarti+1 − (tstarti + texei ∗ li) (1)

: ∀i, 1 < i ≤ n,

where i+1 denotes the index of the I/O command following the ith I/O command
in the queue, tstarti denotes actual transfer start time, texei is the execution time
based on a page, and li is the page length of I/O command i. Clearly, short idle
periods exist only if Tshort−idle is larger than zero and there are I/O commands
sitting in the queue (i.e., at least two commands). Here, n depends on the queue
size accommodated by the host interface nuance. For example, NCQ [16] provides
32 entries, whereas TCQ [18] typically provides 256 entries. AGC exploits just
two entries for previewing the I/O commands.

Long Idle Periods: We also observed that many applications exhibit relatively
long idle periods with no enqueued I/O commands. We classify an idle period

Taking Garbage Collection Overheads Off the Critical Path in SSDs 171

as a long idle period if its length is larger than a certain threshold [19] [20]
[21]. The fraction of I/O instructions that experience these long idle periods
ranges between 38% and 83% under various workloads tested [22] [23] when
the threshold is set to 1 sec. Note that, to detect these idle periods, we cannot
take advantage of the device-level command queue and preinformation since it
is empty most of the time. Consequently, long idle periods should be handled
differently.

Depending on whether idle periods are short, long or none, our proposed
strategies schedule GC operations and secure free blocks differently.

AGC AGC

Wasted idle time

On-demand GC On-demand GC

Block compaction

DGC
Retroactive

AGC
Proactive

TIME

Wasted idle time

Preinformation arrival

(a) short idle utilization (b) long idle utilization

Fig. 4. A high-level view of our proposed GC strategy and idle time utilization

4.2 Shifting Garbage Collection Overheads to Idle Periods

We start by observing that scheduling a GC on an arbitrary idle period can in-
troduce extra block reclaimings (P/E cycles) and reduce opportunities for block
reuse. This can in turn potentially shorten SSD lifetime and affect its reliability.
Therefore, in our proposed schemes, we migrate the GC operations to carefully-
chosen idle periods without increasing the original number of GC operations. We
also minimize the overheads incurred by on-demand GC invocations by securing
the available free blocks as much as possible in advance during the idle periods.

We explore two different strategies for shifting GC overheads, depending on
the amount of idleness and on-demand GC needs, as shown in Figure 4. First,
short idle periods are mainly exploited by shifting on-demand GCs that will
be invoked during busy periods (Figure 4a). In this case, the garbage collector
monitors upcoming device-level I/O tasks to determine when a collection will be
needed and performs the necessary tasks proactively. If there is no on-demand
GC need, the garbage collector performs block compactions to reclaim fully-
occupied blocks thereby retrieving free blocks in advance (Figure 4b). We refer
to this strategy as the Advanced GC (AGC). Second, if the amount of short
idleness is not sufficient to avoid on-demand GC invocations at a certain point,
our proposed GC strategies prevent them from being invoked on the critical
path by delaying the GC execution (Figure 4b); we refer to this strategy as the
Delayed GC (DGC). In other words, AGC shifts GC activities to idle periods in
advance, whereas DGC handles the on-demand collections that AGC could not
handle, by delaying the GC invocations to future idle periods.

172 M. Jung, R. Prabhakar, and M.T. Kandemir

These different GC strategies based on the type of idle periods and GC needs
allow our strategies to shift GCs from busy periods to idle periods, as illustrated
in Figure 1. At the same time, they help us minimize the potential side effects
on SSD reliability and eliminate the extra storage space requirement in the SSD
for the operation of the proposed schemes.

5 Implementation of Our GC Strategies

Recall that we quantified the impact of garbage collection on commercial SSDs in
Section 3. To alleviate the overheads caused by garbage collections, we classified
the types of idle periods in Section 4 and presented a high-level view of our
proposed approach. We next describe the technical details of AGC and DGC
in Sections 5.1 and 5.2, respectively. Section 5.3 discusses how AGC and DGC
works together.

5.1 Details of Advanced GC Strategy (AGC)

AGC tries to remove the on-demand GCs from the critical path and secure free
blocks in advance so that users do not experience long GC-induced latencies
during the I/O congestion periods. Depending on the type of the idle period we
are dealing with, one can implement AGC in two different ways. The look-ahead
garbage collection (Section 5.1) is a type of AGC that targets on-demand col-
lections by utilizing short idle periods, whereas the proactive block compaction
(Section 5.1) secures free blocks by utilizing long idle periods.

Look-Ahead Garbage Collection. To shift GC invocations to earlier idle
periods, this scheme exploits the device-level command queue and short idle pe-
riods. It starts by calculating the number of GC operations that can be executed
in short idle periods. In this step, the look-ahead GC checks the queue entries
and extracts I/O request information such as the length of I/O request and the
Logical Sector Number (LSN) and associated Logical Block Number (LBN). It
then finds the Physical Block Numbers (PBNs) corresponding to the LBN by
looking up the mapping table of the underlying FTL. The look-ahead garbage
collector then checks whether the available space, especially the number of free
pages, is sufficient to service the I/O request of the specified size (length). If not,
an update block reclaiming GC is required.

Once the need for GC is identified, our scheme next calculates a GC latency
in order to accurately perform on-demand GC in advance. Let κ denote the
number of physical blocks per logical block (e.g., in a block mapping scheme,
the value of κ is one. On the other hand, if the system employs a 2:8 hybrid
mapping scheme, κ can be up to ten). Further, let tload, twrite, and terase denote
execution latencies for page load (read), page write and block erase operation,
respectively, and let t′write represent the time for writing metadata to confirm
the fact that a certain physical block was erased after GC (this helps to ensure
mapping consistency in the FTL). Since the look-ahead GC knows PBN(s) for

Taking Garbage Collection Overheads Off the Critical Path in SSDs 173

the logical block and has all the relevant mapping information, it can determine
the number of valid pages for the PBN(s); say, nvalid

page . In this way, for each I/O
command i that is involved in the GC, its GC latency (Tgci) can be calculated
using the following expression:

Tgci = (tload + twrite) ∗ nvalid
page︸ ︷︷ ︸

page migration

+

block cleaning︷ ︸︸ ︷
(terase + t′write) ∗ κ . (2)

This expression captures the page migration latency for each valid page from
the update/data block to a free block, as well as the block cleaning latency for
these blocks. Typically, t′write is approximately the same as the latency it takes to
write one page (twrite). This is because the metadata is designed to fit in a single
page to reduce the overhead of storing the metadata itself. The total amount of
time taken by the look-ahead GC to perform collections over n blocks is given
by (

∑n
i=1 Tgci). Using the GC latencies of individual blocks, we determine the

number of blocks (n) that can be reclaimed at runtime, under the constraint
that the total GC time for the determined number of blocks is less than or equal
to the short idle time given by Equation (1). Once AGC determines the number
of blocks, n, to be claimed, it performs look-ahead GCs for these n blocks in
advance.

Fig. 5. An example of the look-ahead GC with a hybrid mapping scheme. By inquiring
the mapping information, our AGC scheme figures out that the GC for LBN 1 will be
invoked soon.

For instance, in Figure 5, the look-ahead GC identifies the request with an
LSN of 32 and I/O size of eight sectors. Since the logical block corresponding to
that request has only one free page, our scheme executes the GC operation in the
short idle time. In addition to providing stable and better SSD performance, this
implementation performs GCs only when an on-demand GC is about to occur
and the short idle periods are suitable to perform GC. Therefore, it ensures a
similar level of reliability compared to a standard FTL.

Proactive Block Compaction. In order to exploit long idle times that could
not be exploited by the look-ahead GC, we propose a proactive block compaction

174 M. Jung, R. Prabhakar, and M.T. Kandemir

mechanism strategy. In this strategy, we detect the blocks (in a logical block)
that are fully occupied with valid/invalid pages, and compact them in advance
during the long idle periods. Compacting blocks involves enforcing all valid pages
from the fully-occupied physical block to a new, clean block, and removing the
invalid pages in the former by erasing them. Consider as an example Figure 6
where we have two fully-occupied blocks, namely, LBN 5 and LBN 32768. AGC
can compact these two blocks in advance during long idle periods. In order to
avoid the scanning penalty required to identify the fully-occupied blocks, we
add the LBN of the fully-occupied block to the AGC job list, while the FTL is
serving the I/O requests so that the blocks can be compacted proactively without
scanning the entire storage address space.

..

..

Fig. 6. Job lists for AGC and DGC

Even though proactive block compaction is relatively simple, it can be very
effective in practice as far as enhancing idle time utilization and securing free
blocks are concerned. It should be noted that the proactive block compaction
mechanism is executed only if the number of free blocks is less than the free
block threshold (i.e., an on-demand GC would be invoked very soon). There-
fore, similar to the look-ahead GC mechanism discussed earlier, this proactive
block compaction mechanism also minimizes the number of unnecessary erase
operations, which in turn helps to improve SSD endurance and reliability.

Incremental Garbage Collection. One concern regarding AGC is that it
could lead to undesired performance degradations and prevent the GC laten-
cies from being hidden, if idle periods are too short or do not occur frequently
enough. To avoid this, our implementation of AGC splits GC activities into
smaller ones delimited by checkpoints, and performs the GCs step-by-step based
on the checkpoints. As illustrated in Figure 7, the checkpoints are inserted at the
end of every NAND I/O completion point and constitute the boundaries across
the neighboring GC steps. Inspired by the checkpointing strategy described by
[24], AGC incrementally performs a given GC operation one step at a time; this
is referred to as the Incremental Garbage Collection (Incremental GC) in the
remainder of this paper.

Whenever AGC reaches a checkpoint, the incremental GC determines whether
further collections can be performed or not by checking the device-level queue. If
there are no I/O requests until the next checkpoint, it goes ahead and executes

Taking Garbage Collection Overheads Off the Critical Path in SSDs 175

..

Fig. 7. Checkpointing for incremental GC. At each checkpoint, by checking the device-
level queue, the garbage collector can decide whether it can perform further collections
or not.

the next step of the GC operation. The same procedure is repeated as long as
there are no I/O requests. If on the other hand AGC detects an I/O request at
a particular checkpoint, it postpones the remaining GC steps to the next idle
period. To do this, it marks the current GC job status and inserts this marked
status information into another job list that is managed by DGC (this will be
revisited in Section 5.2). This incremental GC operation allows AGC to avoid
the potential drawbacks of very short idle periods, and smoothly pass the control
of GC operations to DGC. As a result, the SSD is able to serve the bursty I/O
requests that can potentially create very short idle periods.

5.2 Details of Delayed GC Strategy (DGC)

Even though idle periods are typically long enough [20] [22] [25] for AGC to
prepare available free blocks ahead of time and execute GC in advance, in cases
where idleness does not occur frequently, AGC may not be very successful. The
main goal behind our Delayed Garbage Collection Strategy (DGC) is to address
this situation by delaying GC invocations. Its operation can be divided into two
steps as explained below.

Update Block Replacement. As stated earlier, the main reason why GCs
degrade system performance is page migrations. To avoid this degradation, DGC
defers the page migration activity to future idle periods. Whenever an on-demand
GC occurs in a busy period, DGC allocates free block(s) as update block(s).
Normally, commodity FTLs migrate valid pages from the update and data blocks
to an allocated free block. In contrast, DGC skips this process and serves the
urgent I/O requests. Rather than migrating pages, DGC adds the LBN and
PBN(s) corresponding to the migration into a job list it maintains (called the
DGC job list). This delayed page migration activity is later resumed in a future
idle period by the DGC’s retroactive block compaction (see Section 5.2).

The free block allocation carried out by DGC is similar to what a standard FTL
would do during GC. The only difference is that DGC allocates the block as an
update block (not a free block). Since the FTL already has an update block (but it
is garbage), DGC intercepts the update block information and replaces the PBN
of the update block with the allocated free block’s PBN in the FTLmapping table.
In this way, the FTL treats the allocated free block (called the delay block) as an
update block, and is not required to manage the block mapping information. It
explicitly manages replacing/updating a block for preserving consistency during

176 M. Jung, R. Prabhakar, and M.T. Kandemir

information mapping. Further, DGC maintains this information using the DGC
job list and hides this information from the FTL until the page migration process
completes. In themeantime, if there is an I/O request, the FTL serves that request
based on the available mapping information. This replacement and interception
procedure is called the Update Block Replacement.

The main advantage of the update block replacement is that, as soon as
the SSD receives an I/O request, it can serve the request without migrating
the valid pages, even when AGC could not handle on-demand GCs in advance.
Another benefit is that DGC does not require any additional NV memory space
for delaying on-demand GCs, which is essential resources of prior works [11] [13].
This is because it replaces the update block with free blocks that belong to the
FTL address space. Note that the mappings employed by the FTL and DGC do
not interfere with each other, and this allows DGC to work with various other
mapping schemes used in current FTLs.

if irp.command != empty then
if ftl.checkOnDemandGc(irp)
then

/* delay the on-demand GC */
UpdateBlockReplacement(irp)
insertEntry(DgcJobList,
irp.getLbn())

/* call the FTL service */
ftl.ServeIo(irp.command, irp.lsn,
irp.sectors)

else
targetLbn := getDgcLbn(DgcJobList)

/* DGC */
if targetLbn != nullblock then

consumed = RetroactiveBlock-
Compaction(targetLbn)

/* AGC */
idleType :=
checkIdleType(CommandQueue,
consumed)
if idleType = short then

/* Calculate GC latency using
Equation 1 & 2 */

idletimes :=
getIdleTime(CommandQueue,
consumed) requiredTimes :=
speculateExecutionTime()
while idletimes ≥
requiredTimes do

LookaheadGc(irp)

else if idleType = long then
ProactiveBlockCompaction(irp)

Algorithm 1:
IssueCommands(IoRequestPacket
irp) of our proposed AGC+DGC
algorithm. Note that the SSD just
forwards I/O requests to the un-
derlying FTL without performing
any GC during the busy periods.

Retroactive Block Compaction. When
there is no I/O congestion, DGC per-
forms page migrations and returns the
relevant delay block and update/replace
block to the free block space. The blocks
returned DGC can be recycled as nor-
mal free blocks. To return a block, DGC
first extracts the LBN and PBN for a
replace/update block from the DGC job
list. It then queries the PBN for the data
and delay blocks by using FTL’s block-
level mapping table. That is, it looks up
the mapping table entry for the LBN ex-
tracted from the DGC job list and gets
the corresponding PBN from the table.

Once DGC collects all PBN(s) for the
blocks related to the delayed logical block,
it retroactively compacts the blocks and
returns them to the original state (i.e., as
free blocks). While compacting, DGC mi-
grates valid pages deferred from all PBNs
for each delay, replace/update, and data
block. This page migration is simply ex-
ecuted by reading and writing pages in
an ascending order. We want to point
out that the number of pages requiring
migration is less than or equal to the num-
ber of pages in a logical block, indepen-
dent of the number of delay and data
blocks involved. Thus, the migration cost
of DGC is the same as that of original GC.

Taking Garbage Collection Overheads Off the Critical Path in SSDs 177

During busy periods, DGC preferentially reads and writes pages to the delay
block rather than the replace/update block to guarantee data consistency. The
reason behind this order is that the delay block contains the latest data when
compared to the data in the replace/update block(s). This also helps DGC to
improve block utilization and reduce the amount of I/O activity while perform-
ing the collections since the replace/update block(s) can be erased without any
read or write operation in the ideal case.

5.3 Putting the Two Schemes Together

When our two schemes, AGC and DGC, are applied together we expect that most
GCs are invoked by AGC; DGC will be invoked only if the idleness at hand is
insufficient or the number of free blocks secured by AGC is not enough. In fact, we
observed during our experiments that the fraction of idle periods DGC handles
accounts for at most 20%, and AGC manages the rest. Algorithm 1 describes the
steps involved in integrating DGC and AGC (called the AGC+DGC scheme).
In summary, if an I/O request triggers an on-demand GC, DGC delays page
migration to future idle periods using the update block replacement mechanism.
During idle periods, DGC first performs retroactive block compaction only if a
delayed GC block exists. And, AGC is invoked based on the type of idle period
at hand. Specifically, if the idle period is short (just enough to perform the
required GC), look-ahead garbage collection is invoked. Finally, proactive block
compaction is invoked when the idle period is long. In each implementation, GC
is performed incrementally, as explained in Section 5.1.

6 Experimental Evaluation

To evaluate the effectiveness of our AGC and DGC, we introduced them in
a event simulation platform whose a typical SSD storage stack is fully imple-
mented, including flash drivers, translation layers, and host interface controllers.
Our simulator also models multiple channels and ways with a bus transaction-
level clock accuracy such that different types of idleness can be accurately sim-
ulated with diverse workloads we tested.

SSD Configuration. We implemented two different SSD-based disk arrays;

• 6SSDs-RAID: The first disk array was setup based on the original MSN file
server storage configuration [22], which consists of 6 disks (Disk0 ∼ Disk5). In
this default array, we introduced six of 64GB SSDs and each SSD, which replaces
each disk of MSN storage server, has 4 channels and 4 ways architecture. Further,
we categorize this SSD array based on each disk of write-intensity.

– 6SSDs-RAID-LO is the group of SSD0, 1, 2, and 3 with low I/O intensive
workloads of which the fraction of write amount is under 20% of total I/Os.

– 6SSDs-RAID-HI is another SSD group, consisting SSD4 and 5 with high
I/O intensive workloads of which the write fraction of total I/Os is 80%.

178 M. Jung, R. Prabhakar, and M.T. Kandemir

• 3SSDs-RAID: Another disk array leverages three SSDs, in which each indi-
vidual SSD composes of 8 channels and 8 ways (128GB). This disk array was
configured to measure performance impacts on a different SSD configuration. In
this 3SSDs-RAID, disk0 and disk1 (of the MSN server) are replaced by SSD0,
disk2 and disk5 are replaced by SSD1, and disk3 and disk4 are replaced by SSD2.

Both SSD arrays in RAID-0 configuration are viewed by the OS as a single
device. Even though we model a Samsung K9KGA0B0MMLC NAND flash2 [26]
in our simulations, our proposed GC strategies can be applied to other NAND
flash device models as well. Due to limitations of space, we are not able to show
our evaluation on other devices, but the performance behaviors with the most
current version of NAND flash packages (two planes and dual dies architecture)
are very similar to the results shown in this section.

FTL Implementation. We implemented a log-structured FTL (L-FTL) and a
2:8 hybrid mapped FTL (H-FTL) on the SSD-based disk array models [12] [8].
We also implemented a partial GC scheme based FTL (P-FTL) [11] [13] [10].
After some initial experiments, the percentage of free blocks and GC threshold
are set to 3% and 1%, respectively, of the total SSD address space3. We also
introduced a 14 GB extra space to P-FTL for each SSD in the 6SSDs-RAID
and 28GB extra spaces to it for each SSD in the 3SSDs-RAID based on the
results from the write buffer analysis [11]; these extra spaces are used as the
non-volatile write buffer in an attempt to serve urgent I/Os and provide real-
time support, and managed through the page-level mapping scheme in P-FTL,
instead of employing a block-level mapping scheme.

Workloads. Enterprise traces tested are collected from the MSN file storage server
over 5 days [22] [23]. The total I/O traffic studied was up to 1.8TB. Important
characteristics of our traces are given in Table 1. In the traces used, 34.6% of
idle intervals were long (larger than 1 sec) and less than 29.5% were short, and
35.9% of the requests were back-to-back with no idle time in between.

It should be mentioned that each I/O request of any trace we simulate has
a time stamp associated with it, and all the different approaches we tested (for
reducing GC overheads) take advantage of scheduling the I/O requests based
on the corresponding time stamps (using NCQ). Our bus-transaction level sim-
ulator extracts access time information from the I/O commands, using which
we synchronize the global timer of the simulator and check the I/O latencies at
the end of every I/O completion. This enables us to accurately record idle/busy
periods on the SSDs.

2 This has 128 pages per a block. Based on a 4 KB page size, read, write and block
erase latencies are 183.2 us, 860.36 us, and 2 ms, respectively.

3 Some industries employ even higher GC thresholds with more free blocks, which
renders SSDs expensive. Since there is a variety of configurations for GC threshold,
we choose a lower bound value for our evaluation. We believe that alleviating GC
overheads in our configuration (more complex) can be reduced the GC problem in
such expensive SSDs configuration based on write amplification analysis with over-
provisioning and spare factors [27].

Taking Garbage Collection Overheads Off the Critical Path in SSDs 179

Table 1. Important characteristics of our traces. The last column gives % of I/O
requests containing sufficiently long idle (> 1 sec) periods.

The number of
I/O requests

Total amount of
requests (KB)

Total amount of
writes (KB)

Idle Peri-
ods (%)

Disk0 1,509,397 32,490,240 3,051,918 38.6
Disk1 2,221,728 35,383,340 17,722,159 81.3
Disk2 500 1,958 1,958 56.6
Disk3 4,352 2,392,445 2,387,767 83.0
Disk4 12,627,396 117,607,983 24,835,283 42.4
Disk5 12,981,710 130,033,924 31,777,436 41.3
Total 29,345,083 317,909,889 79,776,520 64.1

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(b) AGC only

Fig. 8. Performance of AGC with relatively low I/O intensive workloads (SSD 0 of
6SSDs-RAID)

6.1 Performance Comparison

We first evaluate the performance of our two GC strategies (AGC and DGC)
using 6SSDs-RAID in isolation. Figures 8 and 9 plot the response times of SSD0
of 6SSDs-RAID-LO and SSD5 of 6SSDs-RAID-HI, respectively. As illustrated
in Figure 8, AGC alone successfully hides almost all on-demand GCs in SSD0,
leaving nothing for DGC. We see from Figure 9b, however, that AGC alone
is not very successful with the high I/O intensive workloads. During the high
write-intensive periods, a few on-demand GCs are invoked due to the very small
amount of short idle periods in SSD5. Even though the number of these on-
demand GC invocations is small, the FTL uses up available free blocks for new
requests, which introduces more on-demand GC invocation. In a worst-case sce-
nario, AGC suffers from both increased amount of GC invocations and short idle
periods as the execution progresses. This is the reason why AGC requires DGC
to handle such on-demand GCs. One can see from Figure 9c that DGC alone
successfully hides the GC latencies until four million write requests are served.
However, as soon as the available free blocks run out, DGC starts performing
on-demand GCs. One can also see from this result that DGC needs AGC, which
supplies free blocks, enabling the former to defer on-demand GCs. Both AGC
and DGC, when applied individually, increase the number of GCs compared
to the baseline GC, which is used to perform on-demand GC of L-FTL (see
Figure 9a). However, when they are applied together, they successfully hide GC

180 M. Jung, R. Prabhakar, and M.T. Kandemir

latencies, as illustrated in Figure 9d, and the total number of GCs does not ex-
ceed the baseline case (Section 6.5). In the rest of our experiments, we focus on
this integrated AGC+DGC scheme.

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(b) AGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(c) DGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(d) AGC+DGC

Fig. 9. Performance comparison of different garbage collection strategies (SSD5 of
6SSDs-RAID with high I/O intensive workloads)

6.2 Worst Case Response Time

Figure 10 plot the worst-case response times (WCRTs) 6SSDs-RAID. We see
from these graphs that, WCRT ranges from 131 ms to 311 ms in 6SSDs-RAID-
LO, under both the L-FTL and H-FTL schemes. However, in both P-FTL and
AGC+DGC we observe negligible WCRTs, which results in completely hiding
the GC latencies from the I/O operations. We further observe that AGC+DGC
reduces the WCRT by 65.2%, 98.6% and 96.4%, on average, over P-FTL, L-FTL
and H-FTL, respectively. This is because AGC+DGC performs on-demand GCs
only during the idle periods, and consequently, users experience no GC overheads
during their I/O services.

However, in 6SSDs-RAID-HI, P-FTL’s WCRT behavior fluctuates due to the
write buffer block thrashing problem.4 This causes P-FTL to perform out of
order writes for a while and, as a result, WCRTs become ten times worse as

4 This problem arises when the free pages in the write buffer (NV buffer) to which
P-FTL writes urgent data are no longer available.

Taking Garbage Collection Overheads Off the Critical Path in SSDs 181

(a) 6SSDs-RAID-LO (b) 6SSDs-RAID-HI

Fig. 10. Worst-case response time (WCRT) analysis for 6SSDs-RAID. (a) With low
I/O intensive workloads, P-FTL and AGC+DGC show deterministic behaviors while
the performances of L-FTL and H-FTL fluctuate over time. (b) With high I/O intensive
workloads, P-FTL experiences very high WCRT, whereas AGC+DGC continues to
provide stable I/O performance.

compared to the L-FTL case. In contrast, AGC+DGC still serves I/O requests
within the predefined latencies, and achieves about 53 ms latency, including the
theoretic minimum for I/O processing, while the other approaches suffer from the
performance fluctuations and experience long WCRT under heavy I/O requests.
Further, SSDs supported by our AGC+DGC do not incur any GC latencies
during busy periods, even in execution phases with very low idle times (≤ 10%).
This is because AGC eliminates on-demand GCs using idle times, and DGC
postpones the GC latencies by shifting them to future idle periods, as plotted in
Figure 11c. Figure 11 also explains how our proposed GC strategies collectively
take GC overheads off the critical path. While L-FTL and H-FTL (see Figures
11a and 11b) incur GC latencies during the busy periods, AGC+DGC incurs (see

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05Re
sp

.T
im

e
(m

s)

Write Request Sequence
(a) L-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05Re
sp

.T
im

e
(m

s)

Write Request Sequence
(b) H-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05Re
sp

.T
im

e
(m

s)

Write Request Sequence
(c) AGC+DGC Visible

0

600

900

0 2e+05 3e+05 4e+05Re
sp

.T
im

e
(m

s)

Detecting Idle Periods Sequence

Invisible Latency

(d) AGC+DGC Invisible

Fig. 11. Response times for a write intensive section (where the fraction of I/O execu-
tions with no idle time is account for about 90%). While H-FTL removes about 40%
of the GC related overheads, AGC+DGC hides all on-demand GC latencies.

182 M. Jung, R. Prabhakar, and M.T. Kandemir

Figure 11d) GC latencies only during the idle periods, which are not perceived
by applications. This clearly shows that AGC+DGC provides stable and better
SSD performance with no on-demand GCs taking place during the busy periods.

6.3 Excess Waiting Time

Figure 12 plots the amount of excess waiting time (EWT)5 in 6SSDs-RAID.
One can observe from Figure 12a that H-FTL significantly cuts down the GCs
by maximizing the block-level locality. It also dramatically reduces the number
of page migrations introduced by GCs. However, it can also be seen that, as the
execution progresses (from day 1 to day 5), occurrences of EWTs increase, due
to the shortage of available free blocks. To secure free blocks, H-FTL had to
merge up to ten blocks into two logical blocks, and merge approximately fifteen
thousand times a day, generating significant overheads. In contrast, P-FTL and
AGC+DGC successfully hide GC overheads at runtime (and thereby All EWT
of them is zero). However, the frequency of EWTs in H-FTL is less than that in
P-FTL with high write intensive workloads (see Figure 12b). In this case, P-FTL
could not fully hide GC latencies when the NV buffer was completely used by
the large amount of I/O requests. This is because P-FTL incurs much longer
latencies than H-FTL, due to the write buffer thrashing problem, which is the
same as the one causing high WCRT.

(a) 6SSDs-RAID-LO (b) 6SSDs-RAID-HI

Fig. 12. Excess waiting time (EWT). The x-axis represents the upper bound on EWT.
(a) L-FTL and H-FTL experience I/O blocking problem stemming from GCs while P-
FTL and AGC+DGC have no such problem. (b) With heavy writes, even though
P-FTL results in fewer GC invocations, its GC latencies are much longer than others

On the other hand, our scheme successfully hides GC latencies because AGC
can ahead secure available blocks (delay blocks) to DGC even under high write
intensive workloads. Further, because of update block replacement scheme, the
delay blocks are the same as the free blocks, thereby not requiring any extra
blocks to manage different mapping schemes. Our proposed strategy essentially
eliminates on-demand GCs by exploiting different types of idle periods and thus
leads to stable GC latencies.
5 EWT is defined as the difference between the actual wait time and the marginal
response time (in this paper, it is assumed to be 30 ms).

Taking Garbage Collection Overheads Off the Critical Path in SSDs 183

Fig. 13. Worst-case response time (WCRT) analysis for the 3SSDs-RAID

Fig. 14. Excess waiting time (EWT) analysis for the 3SSDs-RAID

6.4 Performance Compariosn of 3SSDs-RAID

Figure 13 and Figure 14 illustrate, respectively, WCRTs and EWTs for 3SSDs-
RAID. In both WCRT and EWT analyses, performance of the 3SSDs-RAID is
similar to 6SSDs-RAID except for P-FTL. Specifically, in day 1, P-FTL guar-
antees deterministic performance with the zero EWT value on even high write-
intensive workloads (SSD1 and SSD2 of 3SSDs-RAID) because each SSD of
3SSDs-RAID has a larger storage capacity than an SSD in the 6SSDs-RAID
configuration. In other words, P-FTL is more tolerant to update block reclaim-
ing GC overheads as its NV buffer has more physical pages. However, as the
amount of writes increases, the available physical pages also run out. As a re-
sult, P-FTL could not satisfy the deadline requirements again. 3SSDs-RAID
with P-FTL has about 50% less impact on the write block thrashing problem
compared to 6SSDs-RAID, mainly because, in addition to the larger physical
pages on the NV buffer, P-FTL itself can secure abundant free block resource
as well, thereby reducing potential GC overheads during free block reclaiming.
However, due to reasons similar to the case of 6SSDs-RAID, over the time, P-
FTL makes 3SSDs-RAID performance worse than L-FTL and H-FTL. While the
performance of P-FTL depends mainly on the size of NV buffer and are not able
to essentially take GC overheads off the critical path of SSDs, AGC+DGC sat-
isfies the performance requirements irrespective of different SSD configuration
chosen and the I/O traffics tested.

184 M. Jung, R. Prabhakar, and M.T. Kandemir

6.5 Side-Effects of AGC and DGC

Pe
rc

en
ta

ge
 o

f t
ot

al
 G

C
s

Proactive Block Compactoin
Retroactive Block Compaction
Look-ahead GC

(a)

Av
er

ag
e E

ra
se

 C
ou

nt

Free Block Thresholds

(b)

Fig. 15. (a) Garbage col-
lection type breakdown of
total collection. (b) Block
erase impact by free block
threshold.

Figure 15a plots the breakdown of GCs across dif-
ferent collection schemes. Since AGC is responsible
for preparing the free blocks, it is desired that the
contribution of the AGC be larger than that of the
DGC. We see that, as expected, AGC executes for
at least 80% of the total number of GCs. As a re-
sult, DGC is able to secure enough free blocks when
it performs update block replacement to delay GCs.
We want to point out that the proactive block com-
paction is applied in a majority of the AGC opera-
tions. The proactive block compaction does not ex-
ecute until the number of free blocks is less than the
free block threshold (even though it is under the un-
derlying FTL’s GC threshold (3%)). Therefore, our
scheme does not introduce any unnecessary erases,
and thus reduces the potential side-effects of GC.

Figure 15b presents the average block erase counts
under different free block thresholds when executing
AGC. In this figure, the dotted vertical line indi-
cates L-FTL’s average erase count per block, which
is twenty one. Since AGC is performed only if the
target GC block is fully occupied or if an on-demand
GC is to be invoked very soon, it only migrates
necessary GC activities from busy period, thereby minimizing side effect in terms
of SSD reliability.

We observed that the free block threshold should be less than 71% for the
average erase count of the proactive block compaction in AGC to be comparable
to L-FTL. If the proactive block compaction shifts on-demand GCs beyond this
threshold, it makes wear-leveling characteristics worse than L-FTL. Interestingly,
the erase counts with low free block thresholds are better than L-FTL. This
is because preparing free blocks using fully-occupied blocks in advance helps
to prevent the log block thrashing problem (in L-FTL), which can introduce
improper erase operations. In our experiments, the best free block threshold for
satisfying the wear-leveling requirement was found to be less than 43% of the
original GC threshold.

7 Conclusions

We proposed novel a garbage collection strategy consisting of two main compo-
nents, called Advanced Garbage Collection (AGC) and Delayed Garbage Collec-
tion (DGC), that cooperate in hiding GC overheads in SSDs. AGC tries to secure
free blocks in advance and remove on-demand GCs from the critical path so that
users do not experience GC latencies during I/O congestion. In comparison, DGC
handles GC invocations that could not be handled by AGC by differing them to

Taking Garbage Collection Overheads Off the Critical Path in SSDs 185

future idle periods. Our experimental analysis using both enterprise workloads
and high performance I/O workloads indicate that the proposed strategies (AGC
and DGC) provide stable I/O performance. Compared to three state-of-the-art
GC strategies, P-FTL, L-FTL and H-FTL, our integrated scheme (AGC+DGC)
reduces GC overheads dramatically.

Acknowledgment. We would like to thank anonymous reviewers for their con-
structive feedback. This work is supported in part by NSF grants 1017882,
0937949, and 0833126 and DOE grant DESC0002156.

References

1. Caulfield, A.M., et al.: Understanding the impact of emerging non-volatile memo-
ries on high-performance, IO-intensive computing. In: SC (2010)

2. Kgil, T., Roberts, D., Mudge, T.: Improving NAND flash based disk caches. In:
ISCA (2008)

3. Caulfield, A.M., Grupp, L.M., Swanson, S.: Gordon: Using flash memory to build
fast, power-efficient clusters for data-intensive applications. In: ASPLOS (2009)

4. Lee, S.W., et al.: A case for flash memory SSD in enterprise database applications.
In: FAST (2011)

5. EMC: Raw drive capacity cost trends,
http://wikibon.org/w/images/a/a4/emcrawdrivecapacitycosttrends.jpg

6. Micheloni, R., et al.: Inside NAND Flash Memories. Springer (2010)
7. Caulfield, A.M., et al.: Characterizing flash memory: Anomalies, observations,and

applications. In: SC (2009)
8. Kang, J.U., et al.: A superblock-based flash translation layer for NAND flash mem-

ory. In: EMSOFT (2006)

9. Lee, S.W., et al.: FAST: An efficient flash translation layer for flash memory. In:
EUC Workshops (2006)

10. Chang, L.P., Kuo, T.W.: Real-time garbage collection for flash-memory storage
systems of real-time embedded systems. TECS (2004)

11. Choudhuri, S., Givargis, T.: Deterministic service guarantees for NAND flash using
partial block cleaning. In: CODESS+ISSS (2008)

12. Kim, J., et al.: A space-efficient flash translation layer for Compact Flash systems.
In: TCE (2002)

13. Jung, M., Yoo, J.: Scheduling garbage collection opportunistically to reduce worst-
case I/O performance in SSDs. In: IWSSPS (2009)

14. ULINK technology, http://www.ulinktech.com/
15. Intel, http://www.iometer.org/

16. Intel, Seagate: Serial ATA Native Command Queuing: An Exciting New Perfor-
mance Feature for Serial ATA. Intel and Seagate (July 2003)

17. LeCroy, http://www.lecroy.com/

18. T10: Technical Committee T10 (2009), http://www.t10.org/
19. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for storage archives. In:

SC (2002)
20. Mi, N., et al.: Efficient management of idleness in storage systems. The ACM

Transactions on Storage Journal (2009)

21. Golding, R., et al.: Idleness is not sloth. In: USENIX ATC (1995)

 http://wikibon.org/w/images/a/a4/emcrawdrivecapacitycosttrends.jpg
http://www.ulinktech.com/
http://www.iometer.org/
http://www.lecroy.com/
http://www.t10.org/

186 M. Jung, R. Prabhakar, and M.T. Kandemir

22. Narayanan, D., et al.: Migrating server storage to SSDs: Analysis of tradeoffs. In:
EuroSys (2009)

23. SNIA: IOTTA Repository (2006), http://iotta.snia.org/
24. Kim, J.H., et al.: Incremental Merge Methods and Memory Systems Using the

Same. U.S. Patent #2006004971A1 (January 5, 2006)
25. Narayanan, D., et al.: Everest: Scaling down peak loads through I/O off-loading.

In: EuroSys (2008)
26. Samsung Electorincs: K9GAG0B0M. In: Data Sheet (2008)
27. Hu, X.Y.: et al.: Write amplification analysis in flash-based solid state drives. In:

SYSTOR (2009)

http://iotta.snia.org/

Unifying Thread-Level Speculation

and Transactional Memory�

João Barreto1, Aleksandar Dragojevic2, Paulo Ferreira1,
Ricardo Filipe1,��, and Rachid Guerraoui2

1 INESC-ID/Technical University Lisbon, Portugal
{joao.barreto,paulo.ferreira}@inesc-id.pt, rfilipe@gsd.inesc-id.pt

2 EPFL, Switzerland
{aleksandar.dragojevic,rachid.guerraoui}@epfl.ch

Abstract. The motivation of this work is to ask whether Transactional
Memory (TM) and Thread-Level Speculation (TLS), two prominent con-
currency paradigms usually considered separately, can be combined into
a hybrid approach that extracts untapped parallelism and speed-up from
common programs.

We show that the answer is positive by describing an algorithm, called
TLSTM, that leverages an existing TM with TLS capabilities. We also
show that our approach is able to achieve up to a 48% increase in
throughput over the base TM, on read dominated workloads of long
transactions in a multi-threaded application, among other results.

1 Introduction

Multicore architectures are already the norm for most commodity computing
devices. This trend calls for concurrent programs that expose enough parallelism
to maximize the utilization of such increasing computational resources. Yet,
concurrent programs are significantly more difficult to code than sequential ones.

In recent years we have witnessed increasing efforts from the research com-
munity to develop new emerging paradigms that ease the challenge of extracting
parallelism from non-trivial programs. Thread-Level Speculation (TLS) [1, 2]
and Transactional Memory (TM) [3] are perhaps the most prominent exam-
ples of such efforts. State-of-the-art solutions from both paradigms have already
proved to extract considerable parallelism from a wide range of programs, while
hiding complex concurrency issues away from the programmer [4, 5].

However, more than easily coding concurrent programs that yield some par-
allelism, we want concurrent programs that expose as much parallelism as the
ever increasing hardware thread count. This goal becomes dramatically more
challenging as affordable multicore machines include more and more cores each

� This work was partially supported by FCT (INESC-ID multi-annual funding)
through the PIDDAC Program funds and by FCT project specSTM (PTDC/EIA-
EIA/122785/2010).

�� Contact author.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 187–207, 2012.
c© IFIP International Federation for Information Processing 2012

188 J. Barreto et al.

year. While 4-core processors supporting up to eight simultaneous hardware
threads are already regarded as commodity hardware, 8-core, 16-core and even
chips with tens or hundreds of cores promise to be an affordable reality soon [6].

Unfortunately, when examined individually, both TLS and TM have crucial
limitations that hinder one’s ability to extract high parallelism from most se-
quential programs.

On the one hand, TLS departs from a sequential program, breaks it into fine-
grained tasks, and tries to automatically parallelize such tasks in a speculative
fashion. For the sake of correctness, TLS ensures that any data dependencies
stemming from the original sequential program order are respected in the spec-
ulatively parallelized execution. However, experience from the TLS systems pro-
posed so far suggests that, for most programs, such data dependencies severely
restrict the number of tasks that any TLS can parallelize effectively (i.e., with-
out incurring in expensive rollbacks) [7]. Recent results show that even the most
successful TLS systems rarely go beyond a relatively modest horizon of paral-
lelization depth without rollback (e.g. less than 6 parallel tasks with SpLIP TLS
[4]).

On the other hand, TM involves the programmer in the parallelization ef-
fort, by requiring him to explicitly fork the program into multiple threads. By
carefully reasoning about the semantics of the application being parallelized, the
programmer can thereby eliminate many data dependencies that were originally
implicit across the original sequential program. Hence, in theory, higher levels
parallelism are now attainable.

However, hand-parallelizing a program into many fine-grained threads is far
from trivial. It requires a careful reasoning about the semantics of the application
being parallelized, since the programmer must assert if the work performed by
the parallelized tasks is actually commutative. Furthermore, it demands a thrifty
understanding of the actual overheads of thread creation and management, so
that the programmer can determine whether fine-grained tasks will actually
introduce speed-up if parallelized. Hence, the programmer will typically choose
a monolithic organization of coarse-grained threads. This is evident in the most
representative TM benchmarks [8–10] and applications [11, 12]. In other words,
the programmer is dissuaded from exposing the full fine-grained parallelism that
the underlying application effectively contains.

Therefore, when facing the challenge of parallelizing a sequential program to
run on a next-generation multicore machine, the programmer will most likely
get disappointing results with either approach separately, TLS or TM.

While the research community places its efforts in exclusively improving one
approach alone, we advocate that the time has come to question a hybrid direc-
tion: Can TLS and TM be combined into a unified solution that would extract
untapped parallelism (and speed-up) from our common applications? If this hy-
brid approach proves to be feasible, programmers would first be asked to hand-
parallelize their programs into coarse-grained threads using the TM paradigm.
Each thread in the multi-threaded program would then be further parallelized
into finer-grained parallel tasks, in a TLS fashion.

Unifying Thread-Level Speculation and Transactional Memory 189

To the best of our knowledge, this paper is the first to give a positive an-
swer to the above question, proving that TM and TLS do add up. We take a
middleware approach, focusing on Software Transactional Memory (STM) and
Software Thread-Level Speculation (STLS). Our main contribution is a unified
STM+STLS middleware called TLSTM. TLSTM relies on standard techniques,
such as compile time code inspection, to speculatively break each transaction
in a multi-threaded STM program into multiple tasks that will run in parallel.
If no conflicts arise among the multiple tasks, then the transaction can commit
earlier. TLSTM can even be more optimistic and speculatively execute future
transactions of a thread, even when the current transaction in that thread is still
active. If the speculation proves to be successful and every transaction commits,
then further parallelism is accomplished.

TLSTM extends an existing STM, SwissTM [13]. The key insight is that a
SwissTM transaction is used as speculative execution unit that supports two
concepts: STM transactions (defined by the user) and TLS speculative tasks
(automatically created at compile or run-time). An STM transaction is seen as
a sequence of one or more TLS speculative tasks, which can run out-of-order in
a speculative fashion, until they commit sequentially.

Our implementation of TLSTM1 achieves up to a 48% speedup over SwissTM,
when running on a multi-threaded benchmark of long transactions, with three
speculative tasks inside each transactional memory thread. Furthermore, we also
study several scenarios and applications where STLS does not provide any help
to the STM runtime.

The remainder of the paper is organized as follows. Section 2 defines the
STM+TLS model we wish to support. Section 3 then describes the TLSTM
algorithm. We evaluate TLSTM on Section 4. Section 5 surveys related work on
STM and STLS. Finally, Section 6 draws conclusions and discusses future work.

2 A Unified TM+TLS Model

We start by defining the novel model we want to support. Programmers can
manually fork and join user-threads in their programs. Since critical sections
might exist due to shared memory locations, programmers are also responsible
for hand delimiting such critical sections as user-transactions. Together, the
user-threads and their user-transactions comprise the hand-parallelized program.
For presentation simplicity, we assume that user-transactions are flat (i.e., non-
nested); however, the model can easily be extended to consider user-transaction
nesting.

When executed, each user-thread’s program will be further decomposed into
speculative tasks, which will run in parallel in a speculative fashion. A task’s
boundaries lie either outside of a user-transaction’s code, or inside a user-tran-
saction’s code. In case the task’s boundaries lie inside of a user-transaction’s
code, they can either be the same as the user-transaction’s boundaries or they
can represent just a fraction of that user-transaction.

1 Open source available at http://www.gsd.inesc-id.pt/project-pages/specSTM

http://www.gsd.inesc-id.pt/project-pages/specSTM

190 J. Barreto et al.

The life cycle of a successful task goes through a number of states: initially,
the task is running; once the task has executed its last instruction, it is said to be
completed; finally, it becomes committed when the task’s effects become visible
to all other tasks and cannot be undone. We say that a task is active if it is either
running or completed. If the speculative execution of some task tsk is found to
be inconsistent with the expected outcome of the sequential execution of tsk’s
user-thread (causing an intra-thread conflict), or tsk’s execution is inconsistent
with the execution of other user-threads (inter-thread conflict), then tsk must
rollback, and is said to have aborted.

Hereafter, when a task tsk1 runs code that precedes (in program order) the
code executed by task tsk2, we say that tsk1 is from the past of tsk2 (whereas tsk2
is from the future of tsk1). Within the collection of active tasks of a user-thread,
we distinguish one current task, which corresponds to the earliest running task
of the user-thread. This corresponds to the task that is running the code that
the user-thread would be running if executing with no thread level parallelism.
All the active tasks in the future of the current task are called out-of-order tasks.
As soon as the current task completes, the next task in program order becomes
the new current task.

The accesses performed by tasks belonging to the same user-thread must
behave as if they ran sequentially. More precisely, our model ensures that any
read from a task tsk1 observes all the writes that tasks from tsk1’s past should
perform and does not observe values written by future tasks.

Our model ensures that user-transactional correctness (more concretely, the
opacity criteria [14]) is preserved across user-transactions, even when user-tran-
sactions are actually executed by multiple tasks running out of order. Only after
every task belonging to the same user-transaction has completed its execution
can the user-transaction commit.

3 TLSTM, A First Unified STM+TLS Middleware

A first naive solution to the STM+TLS problem that one might consider would
be to simply run TLS on top of each thread of an existing multi-threaded STM
application (either software-based or hardware-based), with no modifications on
any of the two components. However, the correctness of conventional TLS algo-
rithms relies on the assumption that the underlying (single-threaded) program
exclusively accesses thread-local variables. Clearly, this no longer holds in the
STM+TLS model.

Hence, we must look towards an integrated approach, i.e. a single runtime
that fully supports the unified TM+TLS model that Section 2 introduced. TL-
STM is a hybrid runtime that extends an existing STM, SwissTM [13], with
TLS capabilities in order to support the unified STM+TLS model we described.
SwissTM is a state-of-the-art STM system that supports optimistic read-write
conflict detection and pessimistic write/write conflict detection, which has been
shown to outperform other relevant STMs.

Therefore, before presenting TLSTM, Section 3.1 starts by describing the
baseline SwissTM algorithm. Section 3.2 then discusses the hard challenges that

Unifying Thread-Level Speculation and Transactional Memory 191

we needed to tackle when leveraging SwissTM with support for TLS. Section 3.3
finally introduces the TLSTM algorithm.

3.1 The Baseline STM: SwissTM

In SwissTM, a global commit counter, called commit-ts, is used as a wall clock
that is incremented by every non-read-only user-transaction on commit. Swis-
sTM maintains a global lock table. Each location is mapped to a pair of locks,
r-lock (read) and w-lock (write) from the global table. r-lock can either hold a
version number or the locked value. w-lock can either hold a write-log entry or
the unlocked value. Any user-transaction wishing to write must first obtain the
location’s w-lock. This eagerly prevents write/write conflicts between user-tran-
sactions.

Writes are performed in temporary copies, and only applied on the actual
location once the associated user-transaction commits. During commit, the user-
transaction acquires the r-lock of each location that the user-transaction wrote
to. This prevents other user-transactions from reading the written locations and,
as a result, observing inconsistent states. Upon successful commit, the r-lock is
unlocked and contains the new commit-ts value, hence denoting the instant where
the new value of the location was made visible to every other user-transaction.

SwissTM uses lazy counter-based validation [15, 16] to detect read/write con-
flicts. Each user-transaction maintains a version timestamp, valid-ts, denoting a
point in the logical commit time for which all the values that the user-transaction
has observed so far are guaranteed to be valid. Whenever the user-transaction
reads some location that has a higher version than its valid-ts, the user-tran-
saction needs to extend its valid-ts to the version being read. This requires
traversing the user-transaction’s read-log to validate that each version read so
far remains valid at the new valid-ts, i.e. it has not been overwritten in the
meantime.

3.2 Leveraging SwissTM with Thread-Level Speculation: Main
Challenges

The key insight is that what used to be a SwissTM transaction is now used as
a task in TLSTM. A user-transaction will now consist of a sequence of one or
more tasks, which are automatically/manually created at compile or runtime,
and can run out-of-order in a speculative fashion.

However, extending an STM (such as SwissTM) with TLS support is far from
trivial. In the following, we discuss all the main challenges and give an intuitive
overview of how TLSTM tackles each of them.

Ensure Low Overhead. A major part of the unified runtime’s overhead comes
from conflict detection. Besides the inter-thread conflicts of SwissTM, TLSTM
must also detect and resolve the intra-thread conflicts resulting from TLS. There
are several TLS techniques we can employ, but bluntly doing so would incur un-
acceptable overheads in conflict detection. Thus we must ensure that the over-
head of the unified runtime is much smaller than the overhead of the sum of its

192 J. Barreto et al.

parts. This requires that TLSTM reuses most of SwissTM’s data structures and
procedures, and adds minimal complexity to conflict detection.

Conceptually, two types of intra-user-thread conflicts may arise: write-after-
read (WAR), where a task writes to a location that a future task already read
from; and write-after-write (WAW), where a task wants to write to a location
already written by a future task.

WAR conflicts are discovered through a new task validation procedure that
starts by validating the read-log inherited from SwissTM, which records the
reads performed from committed state. Then this procedure validates a new
task-read-log, similar to SwissTM’s read-log, which records the reads performed
from writer tasks of the task’s past. First, this validation checks if any of the
values read from committed state were speculatively written by running tasks
from the task’s past. Second, this validation must ensure that each value the
task has read from a past writer task has not been updated by a task from the
writer task’s future. If any of these situations has occurred, we abort the task
performing validation. We check the need for this validation at read, write and
commit time.

In the case of WAW conflicts we cannot rely on SwissTM’s write-write conflict
handling alone. If we did so, we could easily have intra-thread deadlocks when
a future task wrote to a location and waited for its past tasks to complete in
order to commit. This task might be stuck waiting forever if a past task wishes
to write to that same location, which in turn would be indefinitely waiting for
the location’s write-lock to be released.

This problem requires a very small addition to SwissTM’s write-write conflict
handling. If a task wishes to acquire a write-lock that is held by a past task from
the same user-thread, the task wishing to acquire the lock aborts. If, otherwise, it
was a future task that write-locked the location, that future task will be signaled
to abort. By following this task contention management approach we have only
one running task writing on a certain location at a time.

Before committing a task, TLSTM must also ensure that all past tasks have
completed and cannot be aborted because of intra-thread conflicts. TLSTM
achieves this by serializing commits of tasks belonging to the same user-thread,
along with the previously explained intra-thread conflict detection.

We ensure this by associating each task with a monotonically increasing serial
number in the scope of the task’s user-thread, and once the commit step of some
task starts, the task waits for tasks from the same user-thread with lower serial
numbers to complete before committing.

Transaction Commit. The transaction commit procedure in TLSTM needs
to take into account the reads and writes performed by every single task of
the user-transaction, in order to preserve atomicity. Thus, transaction commit
differs substantially from SwissTM’s, since it is performed by the last task of the
user-transaction in program order, which we call the commit-task.

When committing a user-transaction, the commit-task validates the reads of
all tasks of the user-transaction. When committing to memory the values of a
write user-transaction, the commit-task needs to update all values written by all

Unifying Thread-Level Speculation and Transactional Memory 193

tasks of the user-transaction. Intermediate tasks take no part in validating reads
or updating writes of the user-transaction, while waiting for the commit-task to
commit the user-transaction.

Transaction Abort. As in commits, transaction abort in TLSTM involves a
coordinated effort from the multiple parallel tasks that comprise the user-tran-
saction. This challenge is especially difficult as some of such tasks might still be
running when the abort decision is taken.

When a task receives the abort transaction signal it waits until all tasks from
its user-transaction have received that signal. Then, the last task of the aborting
user-transaction clears every write-lock of all tasks in its user-transaction and
resets the tasks’ state to their last known correct values. Finally, the last task
signals every past task of its user-transaction to restart, before restarting itself.

Preventing Inter-thread Deadlocks. Since TLSTM supports multiple
threads, TLSTM must ensure that there are no deadlocks between tasks of dif-
ferent user-threads writing to several locations.

Imagine the scenario of an application with two user-threads running two tasks
each (TA,1 represents task 1 from thread A and so on): TA,1, TA,2, TB,1, TB,2. TA,2

holds the write-lock to location X and TB,2 holds the write-lock to location Y. As-
sume that TA,1 wants to write to Y and TB,1 wants to write to X and that TLSTM
inherits the inter-thread contention manager from SwissTM. Hence, when a task
holds the write-lock of a location and tasks from other user-threads want to write
to that location, they have to wait for the current writer to commit.

Both tasks TA,1 and TB,1 will be blocked waiting for the lock owners to abort
or commit, but the contention manager will not signal the lock owners to abort
and the lock owner tasks will not commit because they are waiting for their past
tasks to complete (as a consequence of serializing commits).

In order to solve this problem, the inter-thread contention manager must be
task-aware, so that it makes decisions according to the user-thread’s set of tasks
and not for each task individually.

Whenever an inter-thread conflict is detected between two tasks, the contention
manager aborts the more speculative one, i.e. the one that has fewer tasks from
its past that are still running. Not only does this strategy favor tasks with higher
probability of completing successfully, but it also prevents starvation. If contend-
ing user-transactions have the same number of completed tasks, then TLSTM
employs traditional STM contentionmanagement algorithms. Currently, TLSTM
implements the two phase greedy contention manager for this case.

Inconsistent Reads. TLS and STM can induce out of order reads that may
trigger undesirable effects. For example, picture TA,1 writing NULL to location
X and then allocating a new object to X. If TA,2 reads the intermediate value of
X it will crash because of a NULL pointer exception.

While in STM these are prevented through atomicity, as read operations only
read values from the user-transaction itself or from committed state. In TLS
values can be read from running tasks, which may result in reading intermediate
and inaccurate values [4].

194 J. Barreto et al.

Therefore, in a unified runtime it is not possible to prevent all inconsistent
reads, so TLSTM needs to detect and take care of those coming from TLS. In
TLSTM, when a task reads a location the task needs to check if the location it is
reading from is valid. Unfortunately, this validation also takes a toll on correct
read operations.

3.3 Algorithm

We now describe in detail how TLSTM overcomes the challenges discussed in
the previous section, thereby leveraging SwissTM with TLS support. Algorithms
1 to 3 present the pseudo-code of TLSTM. The following sections explain each
aspect of the algorithm in detail.

For each user-thread, the runtime supports up to a fixed number of simultane-
ously active tasks, called speculative depth (SPECDEPTH). Each task is assigned
a unique user-thread identifier and a unique serial number which represents the
task’s position in program order.

Any technique for decomposing each user-thread into tasks can be employed,
which is orthogonal to our model and out of the scope of this paper, as long
as it ensures that a task does not span across the boundaries we presented
earlier. Several standard techniques can be used for user-thread decomposition,
from loop iteration speculation (e.g. spec-DOALL and spec-DOACROSS [17]), to
procedure fall-through speculation [18], at either compile-time and/or execution-
time.

Task, User-Transaction and User-Thread State. Each task maintains the
following state inherited from SwissTM:

– valid-ts, a timestamp denoting the instant where the read accesses performed
by this task are guaranteed to be valid;

– read-log and write-log tables, each one used to store location entries that
were read (resp. written) by the task;

Furthermore, each task also maintains the following new state:

– tid, the task’s user-thread identifier;
– serial, the program order of this task within its user-thread;
– tx-start-serial and tx-commit-serial, which denote the first and last task,

respectively, from the task’s user-transaction in program order;
– try-commit, a flag that indicates whether this is the last task in the user-

transaction;
– last-writer, which holds the serial of the last known writer task of the user-

thread. Used to check if task validation is required;

Each user-thread maintains the following state, shared by every task running on
behalf of this user-thread:

– completed-task and completed-writer, denoting the serial identifiers of the
last completed task and last completed writer task of the user-thread;

Unifying Thread-Level Speculation and Transactional Memory 195

– owners[SPECDEPTH], an array of pointers to the state of each task in
the user-thread.

For a given task tsk of user-thread thr, its state can be obtained at index
[tsk.serial mod SPECDEPTH] of the thr.owners array.

Starting a Task. By definition, a task can only start when the number of
active tasks in the given user-thread is lower than the SPECDEPTH limit.
Once that condition is satisfied, the task is assigned the next serial number in
its user-thread and its initial state is saved in the corresponding position of the
owners array (line 2 alg. 1). If the task belongs to an user-transaction, its start
and commit-serial are assigned. The last-writer of the new task is assigned the
value of the last completed writer of that task’s user-thread (line 3 alg. 1). The
valid-ts of the new task is initialized with the current value of the global counter
commit-ts (line 4 alg. 1).

Reading. Before reading, the task consults the location’s write-lock. In TLSTM,
a location’s write-lock is either unlocked or points to the location’s redo-log.
In sum, the location’s redo-log has the last speculative write-log entry for that
location. TLSTM’s write-log entry complements that of SwissTM with the serial
number and user-thread identifier of the task that owns the write-log entry, as
well as links to entries from past tasks which also wrote to that entry’s location.

There are two possible branches for a read operation on a location, depending
on whether the location is write-locked by the task’s own user-thread or not.
If the location is not write-locked by the task’s user-thread, i.e. the location
is either write-locked by another user-thread or unlocked, TLSTM follows the
same procedure as SwissTM: the task reads the location’s committed value from
memory (line 16 alg. 1).

If, otherwise, the location has been write-locked by the task’s user-thread, the
task needs to read from the most recent speculative value. This value was either
written by the task itself or a past task. The task traverses the redo-log until it
finds the entry the task itself wrote to, or a past task wrote to (line 8 alg. 1).
If it was the task itself to write to that location, the task can simply return the
written value (line 10 alg. 1), since the task’s reads from its own writes do not
need to be validated.

If, instead, the last speculative value was written by a past task, the task
first checks if that past task has already completed. If the past writer task has
not completed yet, the task waits until the past task has completed in order
to proceed (line 11 alg. 1). TLSTM implements this restriction to simplify the
WAR conflict validation procedure. This procedure would have to additionally
check the number of writes a past task had performed on the location, in order
to validate intra-thread reads done from running tasks.

Afterwards, the task performs validation looking for WAR conflicts, which
may have occurred between the current task and the past task that just com-
pleted (line 13 alg. 1). If all went well, the task creates a new entry in the
task-read-log and adds the location and the validation information (task’s serial
number) to that log (line 14 alg. 1).

196 J. Barreto et al.

In order to detect dangerous inconsistent reads that could crash the applica-
tion TLSTM uses several known techniques from previous STLSs [4].

Writing. The task starts by checking if the location has been write-locked by
the task itself (line 36 alg. 2). If it has, it just needs to update the logged value,
like SwissTM does.

If this is not the case, three situations may occur, depending on whether the
lock is:

Write-locked by Another Task from the Same User-Thread. If the lo-
cation is write-locked by a future task, the future task is signaled to abort, since
the task is from the past of the location’s current writer in program order (line
47 alg. 2).

If the location is write-locked by a past task, TLSTM needs to check if that
past task has already completed (line 45 alg. 2). If the past task is still running,
the task will rollback since it is from the future of the location’s current writer
in program order. If the past task has completed, TLSTM locks the location
for writing and adds a new entry to the redo-log which previously owned the
write-lock (line 51 alg. 2).

Write-locked by a Task from Another User-Thread. In this case (line 41
alg. 2), the task calls the contention manager in order to decide whether the
writer task or the current owner of the write-lock must abort. If the contention
manager decides the owner of the write-lock must abort, the writer task waits
until the write-lock is eventually unlocked.

Unlocked. This means the present task is the only active task writing to that
location. Here the task atomically locks the location’s write-lock by compare−
and− swap, creates a new redo-log that owns the location, assigns the redo-log
to the write-lock and continues. Finally, the task performs inter-thread valida-
tion, just like SwissTM. Additionally, the task performs intra-thread validation
looking for WAR conflicts that may have occurred in the meantime.

Commit. The commit of a user-transaction is carried out by its last task (in
program order), called the commit-task , once the commit-task and all preced-
ing tasks have completed (line 66 alg. 3). The commit step is very similar to
SwissTM, with a few modifications. The commit-task must now consider the
read-logs and write-logs of every task of the user-transaction (and not just its
own logs) when validating read-logs or committing writes.

Every user-transaction now needs to check for possible validation at commit
time, whereas on SwissTM only write user-transactions needed to (line 78 alg. 3).
The reason why read user-transactions can no longer proceed without checking
for validation is because each task of the user-transaction may have completed
at different points in time. This means some tasks of the same user-transaction
may have different valid-ts values, thus TLSTM cannot rely on the commit-task’s
valid-ts alone. If all tasks of a user-transaction have the same valid-ts, then the
commit-task can skip this validation.

Unifying Thread-Level Speculation and Transactional Memory 197

Algorithm 1. Pseudo-code representation of TLSTM

1 function start(serial, program-thread-id, try-commit, start-serial, commit-serial)
2 task-init(serial, ptid, try-commit, start-serial, commit-serial);
3 last-writer ← uthread[tsk.ptid].completed-writer;
4 tsk.valid-ts ← commit-ts;

5 function read-word(tsk, addr)
6 (r-lock,w-lock) ← map-addr-to-locks(addr);
7 if is-locked-by-my-thread(w-lock, tsk) then
8 while w-lock and w-lock.serial > tsk.serial do
9 w-lock = w-lock.previous-entry;

10 if w-lock.serial = tsk.serial then return read(addr);
11 while uthread[tsk.ptid].completed-task < w-lock.serial − 1 do
12 if abort-transaction then rollback(tsk);

13 if uthread[tsk.ptid].completed-writer > last-writer and not
validate-task(tsk) then rollback(tsk);

14 add-to-task-read-log(tsk,w-lock,w-lock.serial);
15 return read(addr);

16 return SwissTM-read-commited-value(addr);

17 function validate-task(tsk)
18 for log-entry in tsk.task-read-log do
19 if is-locked-by-my-thread(log-entry.w-lock) then
20 w-lock = log-entry.w-lock;
21 if w-lock.serial = tsk.serial then
22 w-lock = w-lock.previous-entry;

23 if w-lock = NULL or log-entry.serial �= w-lock.serial then
24 return false;

25 else return false;

26 for log-entry in tsk.read-log do
27 if is-locked-by-my-thread(log-entry.w-lock) then

w-lock = log-entry.w-lock;
28 while w-lock do
29 if w-lock.serial >= serial then
30 w-lock = w-lock.previous-entry;

31 else return false;

32 return true;

198 J. Barreto et al.

Algorithm 2. Pseudo-code representation of TLSTM

33 function write-word(tsk, addr, value)
34 if aborted-internally then rollback(tsk);
35 (r-lock,w-lock) ← map-addr-to-locks(addr);
36 if is-locked-by-my-task(w-lock, tsk) then
37 update-log-entry(w-lock, addr, value);
38 return;

39 while true do
40 if abort-transaction then rollback(tsk);
41 if is-locked-by-other-thread(w-lock) then
42 if cm-should-abort(tsk, w-lock) then rollback(tsk);
43 else continue;

44 if w-lock.serial < tsk.serial then
45 if uthread[tsk.ptid].completed-task < w-lock.serial then rollback(tsk);

46 else
47 owners[w-lock.serial].aborted-internally = true;
48 continue;

49 previous-entry = w-lock;
50 log-entry ← add-to-write-log(tsk, w-lock, addr, value , ptid, serial,

previous-entry);
51 if compare&swap(w-lock, w-lock, log-entry) then break;

52 if read(r-lock) > tsk.valid-ts and not extend(tsk) then rollback(tsk);
53 if uthread[tsk.ptid].completed-writer > last-writer and not validate-task(tsk)

then rollback(tsk);

54 function cm-should-abort(tsk, w-lock)
55 task-progress = uthread[tsk.ptid].completed-task - tsk.start-serial;
56 owner-progress = uthread[w-lock.ptid].completed-task −

w-lock.owner.start-serial;
57 if task-progress > owner-progress then
58 w-lock.owner.abort-transaction = true;
59 return false;

60 if task-progress < owner-progress then return true;
61 if cm-task-stronger-than-owner(tsk, w-lock.owner) then
62 w-lock.owner.abort-transaction = true;
63 return false;

64 return true;

Unifying Thread-Level Speculation and Transactional Memory 199

Algorithm 3. Pseudo-code representation of TLSTM

65 function commit(tsk)
66 while uthread[tsk.ptid].completed-task < tsk.serial - 1 do
67 if aborted-internally then rollback(tsk);

68 if abort-transaction then rollback-transaction(start-serial);
69 if uthread[tsk.ptid].completed-writer �= last-writer then
70 if validate-task(tsk) = false then rollback(tsk);

71 if not tsk.try-commit then
72 if not is-read-only(tsk) then
73 uthread[tsk.ptid].completed-writer = serial;

74 uthread[tsk.ptid].completed-task = serial;
75 while uthread[tsk.ptid].completed-task < tsk.commit-serial do
76 if abort-transaction then rollback(tsk);

77 return;

78 if (abort-serial = validate(tx)) > 0 then
79 rollback-transaction(abort-serial);

80 if not is-read-only(tx) then
81 for write-log in tx do
82 for log-entry in write-log do
83 write(log-entry.r-lock, locked);

84 ts ← increment&get(commit-ts);
85 if (abort-serial = validate(tx)) > 0 then
86 rollback-transaction(abort-serial);

87 for write-log in tx do
88 for log-entry in write-log do
89 write(log-entry.addr, log-entry.value);
90 if log-entry.w-lock = log-entry then
91 write(log-entry.r-lock, ts);
92 write(log-entry.w-lock, unlocked);

93 uthread[tsk.ptid].completed-writer = serial;

94 uthread[tsk.ptid].completed-task = serial;

95 function rollback-transaction(start-serial)
96 for write-log in tx do
97 for log-entry in write-log do
98 write(log-entry.w-lock, log-entry.previous-entry);

99 write-log.clear();

100 uthread[tsk.ptid].completed-writer = start-serial-1;
101 uthread[tsk.ptid].completed-task = start-serial-1;
102 abort-transaction =false;
103 for i=start-serial TO serial-1 do
104 owners[i].abort-transaction = true;

105 rollback(tsk);

200 J. Barreto et al.

The commit of the user-transaction then proceeds as in SwissTM, locking the
write-logs’ read-locks (line 83 alg. 3), incrementing the commit timestamp and
validating the user-transaction (line 85 alg. 3). Then, the commit-task updates
the values in main memory with the new values from the write-logs of all the
user-transaction’s tasks (line 89 alg. 3). At the end, the commit-task releases the
read and write locks associated with the updated values (line 92 alg. 3).

Finally, the commit-task updates the completed-writer counter if it belongs
to a write user-transactions, and updates the completed-task counter to signal
the completion of the task and user-transaction (line 93 alg. 3).

Intermediate tasks of a user-transaction just have to update the completed-
writer counter, if they have written anything, and the completed-task counter
(line 74 alg. 3). Then, they start waiting until all future tasks of the user-tran-
saction have completed, and thus the user-transaction has committed, so that
the task can exit safely.

Aborts. Aborting a single task follows the same procedure of SwissTM’s user-
transaction abort. TLSTM needs to abort a single task when an intra-thread
WAR or WAW conflict is detected. Intra-thread WAW conflicts are checked
for in two distinct places. First, WAW conflict verification is performed when
a task wishes to write to a location (line 34 alg. 2). TLSTM could perform
this verification on read operations too, but that would incur in more overhead
for the most common read operation. Second, TLSTM checks for intra-thread
WAW conflicts at commit time, while waiting for all past tasks to complete.
When all past tasks have completed and the task has not aborted due to a
WAW conflict, the task needs to be validated for previously undetected WAR
conflicts (as explained in Section 3.2). If WAR conflict validation fails, the task
must be individually aborted.

There are also situations where a task may need to abort its entire user-tran-
saction (every single task of the user-transaction to which the aborting task
belongs to) because of an inter-thread write-write conflict. The first situation
occurs at commit time, if the task passed WAR conflict validation (line 68 alg.
3). The second situation occurs also at commit time, while an intermediate task
waits for the future tasks of its user-transaction to commit (line 76 alg. 3).

We chose to abort every single task of the aborting user-transaction because
of the simplicity of this approach. The alternative would be to abort only the
user-transaction’s tasks that wrote to the location that triggered the write-write
conflict, and the user-transaction’s tasks that read those speculative values. Dis-
covering all these tasks would be very complex, since TLSTM would need to
traverse the write-log of each task in the user-transaction in search of the lo-
cation that triggered the abort and mark those tasks for abort. Then TLSTM
would need to traverse the task-read-log of each task of the user-transaction in
search for the locations written by the tasks marked to abort and also mark the
tasks where TLSTM finds those locations.

Unifying Thread-Level Speculation and Transactional Memory 201

a) b)

1,0

1,5

2,0

2,5

3,0

3,5

2 4 8 16 32 64

Speedup

Number of operations per thread

TLSTM-2 TLSTM-4

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
Number of clients

(user-threads)

TLSTM-2-low
TLSTM-1-low
SwissTM-low
TLSTM-2-high
TLSTM-1-high
SwissTM-high

Throughput ops/ms

Fig. 1. a) Speedup in the red-black tree’s throughput for TLSTM with 2 and 4 tasks
and 1 thread vs SwissTM with 1 thread; b) Throughput of TLSTM with 1 and 2 tasks
per thread vs SwissTM, with an increasing number of threads on STAMP’s Vacation

4 Evaluation

This section evaluates a TLSTM prototype, which was implemented in C++,
based on the C++ implementation of the SwissTM STM, using POSIX threads.
The measurements discussed next were obtained using a quad AMD Opteron
6272 with 64 cores total for the STAMP Vacation application and a SPARC
Enterprise T5120 server with up to 64 hardware threads for the remainder of
the benchmarks. Each result measures the throughput of the respective runtime
in operations per second and is the average of three repeated experiments.

We want to determine answers to two main questions: 1) can our unified
TLS+STM approach effectively achieve speed-up from simple STM programs? ;
and 2) in which kind of applications is TLSTM more advantageous, and in which
applications is it not a good approach?

We started by looking at a modified version of the traditional Red-black Tree
micro-benchmark in order to figure out if task size had any impact on the unified
runtime’s performance. In this modified version each thread runs a transaction
that performs a number of lookup operations, which are read-only, to the Red-
Black Tree. We can easily split those transactions into several tasks that execute
fewer operations each, e.g. if a transaction runs four operations in total, we can
split it into two tasks that run two operations each.

From this experiment we can see that task size does indeed have an impact on
the runtime’s performance (Figure 1.a). For larger task sizes we obtain a better
throughput ratio, for both two and four tasks per user-thread, from which we
can deduce that our approach has better performance in applications with large
transactions which can be split into large tasks.

Therefore, we started looking at the STAMP application suite [9] in search of
applications with large transactions that could be easily split into several parallel
tasks. However, most of STAMP’s applications had either very small transac-
tions or no further parallelization potential. One application stood out though,
the Vacation application which implements an online transaction processing sys-
tem for travel reservations. A client can issue several operations to the system,

202 J. Barreto et al.

a) b)

0

5

10

15

20

% read-only transactions

SwissTM 3 TLSTM 1-3 SwissTM 1Throughput
ops/s

0
2
4
6
8

10
12
14
16

write read-write read

SwissTM 1
TLSTM 1-3
TLSTM 1-9
SwissTM 2
TLSTM 2-3
TLSTM 2-9
SwissTM 3
TLSTM 3-3
TLSTM 3-9

Throughput ops/s

Fig. 2. a) Throughput of TLSTM with 1 thread and 3 tasks vs SwissTM with 1 thread
and 3 threads; b) Throughput of SwissTM vs TLSTM with 3 and 9 tasks per thread,
with up to 3 threads; Both on STMBench7 long traversals only

e.g. reserve a plane ticket, reserve an hotel or rent a car, and each operation is
encapsulated in a transaction.

Since these operations are quite small, similar in size to the red-black tree
micro-benchmark operations, we modified the Vacation benchmark taking into
account the red-black tree results. We picture each client issuing eight operations
at a time, which now incorporate an application server transaction and can be
easily split into two tasks, executing four operations each. We still mimic the
low and high contention scenarios of the original Vacation application.

The results of this experiment (Figure 1.b) show us that a unified TLS+STM
runtime using two task per user-thread improves the throughput of applications
with a self-imposed limit to the number of spawned user-threads, in this case
the number of concurrent clients being served. Interestingly, both low and high
contention scenarios of this application show the same behavior, which we assume
to occur because of the very low contention between operations, even in the
higher contention scenario. We can also see that TLSTM with one task per user-
thread has a very similar throughput to SwissTM, with both lines overlapping
most of the time, on both scenarios. This suggests that there are applications
where TLSTM can be used as a replacement to SwissTM.

Another interesting reference benchmark for STMs that includes large trans-
actions is STMBench7 [8], which has a wide range of operations on a very large
shared data structure. From these operations we targeted those which could be
automatically split into tasks by a compiler or runtime, in which the set of ”Long
Traversals” operations stood out. It was also the most computationally intensive
set of operations, which made it a perfect candidate to parallelize even further.
Most of the remainder operations were either non-divisible or very short, so they
would not benefit from parallelization too much. The shared data structure of
STMBench7 is built as a tree of objects, with three branches departing from
the root, each with arbitrary depth. Therefore, it made sense to split the ”Long
Traversals” which traverse the whole tree in multiples of three tasks.

The experiment on figure 2.a compares the performance of running one and
three user-threads in SwissTM to one user-thread in TLSTM with three tasks.

Unifying Thread-Level Speculation and Transactional Memory 203

By comparing TLSTM with three tasks and one user-thread to SwissTM with
three user-threads we can see how much does the programmer gain if he is
capable of hand-parallelizing more code into transactions, instead of relying on
automated code division and a unified TLS+STM runtime. But if he does rely
on such a runtime, we can see that TLSTM is most beneficial for read-dominated
workloads. In fact, for 100% read-only transactions TLSTM achieves practically
full speedup. In contrast, TLSTM already performs worse than the base STM
for write-dominated workloads.

The problem lies within STMBench7’s write ”Long Traversals”. These write-
transactions have a high intra-thread conflict rate (several tasks writing to the
same location). Such conflicts translate into the observed decrease in perfor-
mance, since these transactions will execute almost serially. This is the worst
case scenario for TLSTM. In write-transactions with a low conflict rate, such as
those of the STAMP’s Vacation application, we see that TLSTM performs close
to the observed behavior on read-only transactions.

For the last of our experiments, we consider the default settings that STM-
Bench7 originally defines [8]: write-dominated workload (10% read operations);
read-write workload (60% read operations); and read-dominated workload (90%
read operations).

This last experiment aims at studying how TLSTM behaves as the number of
user-threads grows, and how such performance compares to SwissTM running
the same number of user-threads. We can see in figure 2.b that TLSTM with
three tasks decreases its performance when going from two to three user-threads,
whereas SwissTM scales quite acceptably on read-write and read-dominated
workloads. This is an effect of the increased contention in the workload. The
inter-thread abort procedure is substantially more complex in TLSTM than in
SwissTM, thus hindering its performance in scenarios where contention is higher
(more conflicts and rollbacks).

However, we can see that for read-dominated workloads TLSTM with three
tasks outperforms SwissTM by 80% on one user-thread and 48% on two user-
threads. By increasing the number of user-threads we increase the level of con-
tention even further, thus providing diminishing returns. When executing an
inter-thread abort, all of the user-thread’s tasks must be aborted. Thus, the
inter-thread abort procedure’s performance is directly influenced by the number
of tasks in the user-thread. In order to measure this influence, we experimented
on TLSTM with nine tasks and up to three user-threads (Figure 2.b).

In the case of one user-thread in the read-dominated workload, we can achieve
even more speedup with nine TLSTM tasks than with three. But as soon as we
get to use two user-threads, the inter-thread contention becomes high enough to
harm TLSTM’s performance. We can see this is a trend for increasing numbers
of user-threads, on any type of workload. This fact suggests that the inter-
thread abort procedure is one of the major bottlenecks in the unified approach
of TLSTM.

204 J. Barreto et al.

We conclude that each application using TLSTM will have to find a sweet
spot between the number of user-threads and tasks in use. Too many user-
threads may prevent scalability of the application, while too many tasks may
dramatically hinder the performance of the hybrid runtime. For STMBench7’s
”Long Traversals” this spot seems to be two user-threads with three tasks each,
in order to achieve maximum performance.

5 Related Work

Originally introduced in the seminal paper from Herlihy and Moss [3], the interest
and advancement in the STM area has grown dramatically in recent years, incited
by the advent of affordable multicore processors. Still, most STM programs are
still organized as a monolithic collection of a relatively small number of coarse-
grained threads. Evidence of this is found in most benchmarks (e.g. [8, 9, 19, 20])
and representative applications of STM.

A distinct research direction that has similar goals as STM is automatic par-
allelization of sequential programs. Classically, this approach focused on auto-
matically identifying tasks that have no data dependencies (e.g. independent
loop iterations) and executing them in parallel. On the other hand, the ap-
proach of Thread-Level Speculation (TLS) developed over the last decade has
a more aggressive technique for extracting parallelism from sequential programs
[1, 2, 21–23]. Rather than parallelizing only provable independent tasks, TLS
executes tasks in parallel speculatively and relies on the runtime detection of
violations to the sequential semantics of the original program to discard the
changes to the program state and restart the affected tasks.

While the first proposed TLS solutions relied on hardware support, recently
there has been a growing focus on software approaches. Solutions such as [17, 24–
27, 4] are examples of successful efforts towards Software TLS that can yield
substantial speed-ups from sequential programs. Still, the conservative nature of
TLS constitutes a key limitation to the level of parallelism that it can extract.
While proposed TLS systems have been shown to achieve considerable speed-ups
(e.g. 77% on average according to Oancea et. al. [4]), most non-trivial programs
that do not fit in the category of embarrassingly parallel problems have relatively
low bounds on the level of conflict-free speculation.

Most of the run-time support of Software TLS has close resemblance with
an STM run-time. For instance, writes are speculative, as they may need to be
undone; accesses must be validated for conflicts; tasks have a commit stage; and
tasks can be aborted, and restarted. Departing naturally from such an observa-
tion, a number of recent Software TLS solutions rely on an underlying simplified
STM run-time to offer TLS to single-threaded programs [28]. These solutions are
radically different than our proposal: while TLSTM combines STM and TLS,
allowing each thread in a transactional multi-threaded programs to be auto-
matically parallelized, TLS solutions relying on STM only address the case of
single-threaded programs.

To the best of our knowledge, the only work that addresses TLS support on
multi-threaded programs is due to Martinez and Torrelas [29]. However, their

Unifying Thread-Level Speculation and Transactional Memory 205

approach is fundamentally different from ours, as it only tries to speculatively
execute and synchronize threads that would otherwise be blocked waiting on
a barrier, lock or flag. Unifying STM and TLS in a common run-time implies
solving a number of fundamentally different problems.

In the context of replicated STMs there are some recent examples of systems
that employ automatic speculative parallelization to hide the expensive latency
of distributed transaction commit [30, 31]. In contract to our contribution, these
solutions are proposed in a distinct context (distributed STMs) and limit spec-
ulation to one transaction that runs in parallel while the preceding transaction
is awaiting commitment.

6 Concluding Remarks

The rapidly increasing core count of commodity machines is demanding highly
parallel programs. We claim that the time has come to question a hybrid di-
rection that unifies two prominent research directions of parallel programming
that, up to now, have been working (almost) separately with very similar goals.

This paper shows that, although unifying TLS and TM in a hybrid middle-
ware introduces hard challenges, they can be overcome and untapped parallelism
potential can be discovered. We describe our experience with a first proof of con-
cept, the TLSTM algorithm. Our results obtained with trivial and non-trivial
benchmarks confirm that STM and STLS do add up successfully for some work-
loads. Our results also show that there is still a considerable amount of improve-
ment to be made towards devising a unified STM+STLS solution that scales
gracefully with both the number of hand-parallelized threads and the number of
automatically spawned speculative tasks.

Our preliminary work shows that issues such as transaction rollback and com-
mit are now much more complex (due to the multiple tasks that may comprise
each user-transaction), and future work should focus on their negative impact on
the overall throughput. The location redo-logs have also showed to add substan-
tial overhead. Hence, different approaches for handling speculative writes (e.g.
in-place writes [4]) should be studied.

References

1. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: 25 Years
of the International Symposia on Computer Architecture (selected papers),
ISCA 1998, pp. 521–532. ACM, New York (1998)

2. Hammond, L., Willey, M., Olukotun, K.: Data speculation support for a chip mul-
tiprocessor. In: SIGPLAN Not., vol. 33, pp. 58–69 (1998)

3. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture (1993)

4. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for
software thread-level speculation. In: Proceedings of the Twenty-First Annual Sym-
posium on Parallelism in Algorithms and Architectures, pp. 223–232 (2009)

206 J. Barreto et al.

5. Dragojević, A., Felber, P., Gramoli, V., Guerraoui, R.: Why stm can be more than
a research toy. Commun. ACM 54(4), 70–77 (2011)

6. Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D.,
Wilson, H., Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella,
S., Salihundam, P., Erraguntla, V., Konow, M., Riepen, M., Droege, G., Linde-
mann, J., Gries, M., Apel, T., Henriss, K., Lund-Larsen, T., Steibl, S., Borkar,
S., De, V., Van Der Wijngaart, R., Mattson, T.: A 48-core ia-32 message-passing
processor with dvfs in 45nm cmos. In: Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2010 IEEE International, pp. 108–109 (February 2010)

7. Oplinger, J.T., Heine, D.L., Lam, M.S.: In search of speculative thread-level par-
allelism. In: Proceedings of the 1999 International Conference on Parallel Archi-
tectures and Compilation Techniques. PACT 1999 (1999)

8. Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: a benchmark for software trans-
actional memory. SIGOPS Oper. Syst. Rev. 41, 315–324 (2007)

9. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: IISWC 2008: Proceedings of The IEEE
International Symposium on Workload Characterization (September 2008)

10. Ansari, M., Kotselidis, C., Watson, I., Kirkham, C.C., Luján, M., Jarvis, K.: Lee-
tm: A non-trivial benchmark suite for transactional memory. In: ICA3PP (2008)

11. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E., Harris, T.,
Valero, M.: Atomic quake: using transactional memory in an interactive multiplayer
game server. In: PPoPP 2009: Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 25–34 (2009)

12. Carvalho, N., Cachopo, J.: a., Rodrigues, L., Silva, A.R.: Versioned transactional
shared memory for the fénixedu web application. In: Proceedings of the 2nd Work-
shop on Dependable Distributed Data Management, pp. 15–18 (2008)

13. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transactional memory. In:
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 155–165. ACM (2009)

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (2008)

15. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

16. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 237–246 (2008)

17. Kim, H., Raman, A., Liu, F., Lee, J.W., August, D.I.: Scalable speculative par-
allelization on commodity clusters. In: Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 43 (2010)

18. Chen, M.K., Olukotun, K.: Exploiting method-level parallelism in single-threaded
java programs. Proceedings of the 1998 International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT 1998 (1998)

19. Gajinov, V., Zyulkyarov, F., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T.,
Valero, M.: Quaketm: parallelizing a complex sequential application using trans-
actional memory. In: Proceedings of the 23rd International Conference on Super-
computing, ICS 2009, pp. 126–135. ACM (2009)

20. Watson, I., Kirkham, C., Luján, M.: A study of a transactional parallel routing
algorithm. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 388–398.
Springer, Heidelberg (2007)

Unifying Thread-Level Speculation and Transactional Memory 207

21. Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to thread-
level speculation. In: Proceedings of the 27th Annual International Symposium on
Computer Architecture, ISCA 2000, pp. 1–12 (2000)

22. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The stampede approach to
thread-level speculation. ACM Trans. Comput. Syst. 23, 253–300 (2005)

23. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: Posh:
a tls compiler that exploits program structure. In: Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 158–167. ACM, New York (2006)

24. Oancea, C.E., Mycroft, A.: Software thread-level speculation: an optimistic library
implementation. Proceedings of the 1st International Workshop on Multicore Soft-
ware Engineering, IWMSE 2008, 23–32 (2008)

25. Devabhaktuni, S.: Softspec: Software-based speculative parallelism via stride pre-
diction. In: Master’s thesis, M.I.T (1999)

26. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative paral-
lelization on multiprocessors. In: Proceedings of the ninth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 13–24 (2003)

27. Rundberg, P., Stenström, P.: An all-software thread-level data dependence specu-
lation system for multiprocessors. Journal of Instruction-Level Parallelism (2001)

28. Mehrara, M., Hao, J., Hsu, P.C., Mahlke, S.: Parallelizing sequential applications on
commodity hardware using a low-cost software transactional memory. In: Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, pp. 166–176 (2009)

29. Mart́ınez, J.F., Torrellas, J.: Speculative synchronization: applying thread-level
speculation to explicitly parallel applications. In: Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-X, pp. 18–29. ACM, New York (2002)

30. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic
atomic broadcast in transaction processing systems. IEEE Trans. on Knowl. and
Data Eng. 15(4), 1018–1032 (2003)

31. Palmieri, R., Quaglia, F., Romano, P.: Osare: Opportunistic speculation in actively
replicated transactional systems. In: Proceedings of the 2011 IEEE 30th Interna-
tional Symposium on Reliable Distributed Systems, SRDS 2011, pp. 59–64. IEEE
Computer Society Press, Washington, DC (2011)

Message-Passing Concurrency
for Scalable, Stateful, Reconfigurable Middleware

Cosmin Arad1,2, Jim Dowling1,2, and Seif Haridi1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Swedish Institute of Computer Science, Kista, Sweden

{cosmin,jdowling,seif}@sics.se

Abstract. Message-passing concurrency (MPC) is increasingly being
used to build systems software that scales well on multi-core hardware.
Functional programming implementations of MPC, such as Erlang, have
also leveraged their stateless nature to build middleware that is not just
scalable, but also dynamically reconfigurable. However, many middle-
ware platforms lend themselves more naturally to a stateful program-
ming model, supporting session and application state. A limitation of
existing programming models and frameworks that support dynamic re-
configuration for stateful middleware, such as component frameworks, is
that they are not designed for MPC.

In this paper, we present Kompics, a component model and program-
ming framework, that supports the construction and composition of
dynamically reconfigurable middleware using stateful, concurrent,
message-passing components. An added benefit of our approach is that
by decoupling our component execution model, we can run the same code
in both simulation and production environments. We present the architec-
tural patterns and abstractions that Kompics facilitates and we evaluate
them using a case study of a non-trivial key-value store that we built us-
ing Kompics. We show how our model enables the systematic development
and testing of scalable, dynamically reconfigurable middleware.

Keywords: component model, message-passing, compositional concur-
rency, dynamic reconfiguration, multi-core execution, reproducible sim-
ulation, distributed systems architecture.

1 Introduction

In recent times, there has been a marked increase in the use of programming
languages and frameworks that support message-passing concurrency (MPC) to
build high performance servers [1, 2]. The main reasons for the renewed interest
in MPC are that it scales well on multi-core hardware architectures and that it
provides a simple and compositional concurrent programming model, free from
the quirks and idiosyncrasies of locks and threads. Another reason is that high
performance non-blocking sockets map easily to MPC applications. In addition
to this, functional programming implementations of MPC, such as Erlang [3]
and Scala actors [4], have the benefit of being suitable for building middleware
that is dynamically reconfigurable. Due to its stateless nature and support for

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 208–228, 2012.
c© IFIP International Federation for Information Processing 2012

MPC for Scalable, Stateful, Reconfigurable Middleware 209

message passing, Erlang supports the construction of software that can be safely
upgraded online. Message processing can be temporarily suspended in modules
marked for upgrade, and the problem of transferring state from the old module
to the new module is largely avoided.

The challenge we address in this paper is how to provide support for both
MPC and dynamic reconfiguration in a framework for building high-performance
middleware that lends itself more naturally to a stateful programming model,
supporting session and application state. Existing stateful programming mod-
els and frameworks that support dynamic reconfiguration, such as component
frameworks [5], are not designed for MPC support and they do not decouple
their execution model from component code. As a result, they cannot run the
same code in both simulation and production environments.

In previous work on dynamically reconfigurable middleware, component mod-
els, such as OpenCom [5] and Fractal [6], developed mechanisms such as explicit
dependency management, component quiescence, and reconfigurable connectors
for safely adapting systems online. However, the style of component interaction,
based on blocking interface invocation, precludes compositional concurrency in
these models making them unsuited to present day multi-core architectures.

Our work is also relevant within the context of popular non-blocking socket
frameworks that are used to build high performance event-driven server appli-
cations [7], such as Lift [1] and Twitter’s Finagle [8] for Scala, and Facebook’s
Tornado [9] for Python. Kompics’ asynchronous event programming framework
allows it to seamlessly integrate different non-blocking networking frameworks
(such as Netty, Apache Mina, and Grizzly)1 as pluggable components.

Kompics is a message-passing, concurrent, and hierarchical component model
with support for dynamic reconfiguration. The broad goal of Kompics is to raise
the level of abstraction in programming distributed systems. We provide con-
structs, mechanisms, architectural patterns, as well as programming, concur-
rency, and execution models that enable programmers to construct and compose
reusable and modular distributed abstractions. We believe this is an important
contribution because it lowers the cost and accelerates the development and
evaluation of more reliable distributed systems. The other main motivation for
our asynchronous event programming framework is performance, particularly for
high-concurrency networked applications.

Through a case-study of a scalable key-value store, we show that the per-
formance of traditional event-driven programming does not have to come at
the cost of more complex programs. Using encapsulation, components can hide
event-driven control flow and support component reuse. We leverage encapsula-
tion when testing Kompics systems, by enabling the same component code to
be run in both simulation and production systems. To support the easy specifi-
cation of simulation experiments, we introduce a domain-specific language that
provides constructs for generating simulation experiment scenarios containing
thousands of nodes.

1 http://www.jboss.org/netty;
http://mina.apache.org; http://grizzly.java.net

http://www.jboss.org/netty
http://mina.apache.org
http://grizzly.java.net

210 C. Arad, J. Dowling, and S. Haridi

A summary of our key principles in the design of Kompics are as follows. First,
we tackle the increasing complexity of modern distributed systems through hier-
archical abstraction. Second, we decouple components from each other to enable
dynamic system evolution and runtime dependency injection. Third, we decouple
component code from its executor to enable different execution environments.

2 Component Model

Kompics is a component model targeted at building distributed systems by com-
posing protocols programmed as event-driven components. Kompics components
are reactive state machines that execute concurrently and communicate by pass-
ing data-carrying typed events, through typed bidirectional ports, connected by
channels. This section introduces the conceptual entities of our component model
and its programming constructs, its execution model, as well as constructs en-
abling dynamic reconfiguration, component life-cycle and fault management.

2.1 Concepts in Kompics

The fundamental Kompics entities are events, ports, components, event han-
dlers, subscriptions, and channels. We introduce them here and show examples
of their definitions with snippets of Java code. The Kompics component model is
programming language independent, however, we use Java to illustrate a formal
definition of its concepts.

Events. Events are passive and immutable typed objects having any number
of typed attributes. The type of an attribute can be any valid type in the host
programming language. New event types can be defined by sub-classing old ones.

Here are two example event type definitions in Java2:

1 class Message extends Event {
2 Address source;
3 Address destination;
4 }

1 class DataMessage extends Message {
2 Data data;
3 int sequenceNumber;
4 }

In our Java implementation of Kompics, all event types are descendants of a
root type, Event. We write DataMessage⊆Message to denote that DataMessage
is a subtype of Message. In diagrams, we represent an event using the Event

graphical notation, where Event is the event’s type, e.g., Message.

Ports. Ports are bidirectional event-based component interfaces. A port is a
gate through which a component communicates with other components in its
environment by sending and receiving events. A port allows a specific set of
event types to pass in each direction. We label the two directions of a port as
positive (+) and negative (−). The type of a port specifies the set of event types
that can traverse the port in the positive direction and the set of event types that
can traverse the port in the negative direction. Concretely, a port type definition

2 We omit the constructors, getters, setters, access modifiers, and import statements.

MPC for Scalable, Stateful, Reconfigurable Middleware 211

consists of two sets of event types: a “positive” set and a “negative” set. There is
no sub-typing relationship for port types.

Here are two example port type definitions in Java3:

1 class Network extends PortType {{
2 positive(Message.class);
3 negative(Message.class);
4 }}

1 class Timer extends PortType {{
2 indication(Timeout.class); //positive
3 request(ScheduleTimeout.class);//negative
4 request(CancelTimeout.class); //negative
5 }}

In this example we define a Network port type which allows events of type
Message (or a subtype thereof) to pass in both (‘+’ and ‘−’) directions. The
Timer port type allows ScheduleTimeout and CancelTimeout events to pass in
the ‘−’ direction and Timeout events to pass in the ‘+’ direction.

FailureDetector

MyTimerMyNetwork
Network+ Timer+

Timer+
Network+

ScheduleTimeout
CancelTimeout

Timeout+

Message
Message+

Timer+

Network+

Fig. 1. The MyNetwork component has a provided Network port. MyTimer has a pro-
vided Timer port. The FailureDetector has a required Network port and a required
Timer port. In diagrams, a provided port is figured on the top border, and a required
port on the bottom border of a component.

Conceptually, a port type can be seen as a service or protocol abstraction
with an event-based interface. It accepts request events and delivers indication
or response events. By convention, we associate requests with the ‘−’ direction
and responses or indications with the ‘+’ direction. In our example, a Timer
abstraction accepts ScheduleTimeout requests and delivers Timeout indications.
A Network abstraction accepts Message events at a sending node (source) and
delivers Message events at a receiving node (destination) in a distributed system.

A component that implements a protocol or service will provide a port of
the type that represents the implemented abstraction. Through this provided
port, the component will receive the request events and trigger the indication
events specified by the port’s type. In other words, for a provided port, the ‘−’
direction is incoming to the component and the ‘+’ direction is outgoing from
the component.

In Figure 1, the MyNetwork component provides a Network port and the My-
Timer component provides a Timer port. In diagrams, we represent a port using
the Port+

− graphical notation, where Port is the type of the port, e.g., Network. We
represent components using the Component notation.

When a component uses a lower level abstraction in its implementation, it
will require a port of the type that represents the abstraction. Through a re-

3 The code block in the inner braces represents an “instance initializer”. The positive
and negative methods populate the respective sets of event types. In our implemen-
tation, a port type is a (singleton) object (for fast dynamic event filtering).

212 C. Arad, J. Dowling, and S. Haridi

FailureDetector

MyTimerMyNetwork
Network+ Timer+

Timer+
Network+

channel1 channel2

Fig. 2. channel1 connects the provided Network port of MyNetwork with the required
Network port of the FailureDetector. channel2 connects the provided Timer port of My-
Timer with the required Timer port of the FailureDetector.

quired port, a component sends out the request events and receives the indica-
tion/response events specified by the port’s type, i.e., for required ports, the ‘−’
direction is outgoing from the component and the ‘+’ direction is incoming to
the component.

Channels. Channels are first-class bindings between component ports. A chan-
nel connects two complementary ports of the same type. For example, in Fig-
ure 2, channel1 connects the provided Network port of MyNetwork with the re-
quired Network port of the FailureDetector. This allows, e.g., Message events sent
by the FailureDetector to be received by MyNetwork.

Channels forward events in both directions in FIFO order. In diagrams, we
represent channels using the channel graphical notation. We omit the channel name
when it is not relevant.

Handlers. An event handler is a first-class procedure of a component. A handler
accepts events of a particular type (and subtypes thereof) and it is executed
reactively when the component receives such events. During its execution, a
handler may trigger new events and mutate the component’s local state. The
handlers of one component instance are mutually exclusive, i.e., they are executed
sequentially. This alleviates the need for synchronization between different event
handlers of the same component accessing the component’s mutable state, which
greatly simplifies their programming.

Here is an example event handler definition in Java:

1 Handler<Message> handleMsg = new Handler<Message>() {
2 public void handle(Message message) {
3 messages++; // ← component-local state update
4 System.out.println("Received from " + message.source);
5 }};

In diagrams, we use the h Event graphical notation to represent an event han-
dler, where h is the handler’s name and Event is the type of events accepted by
the handler, e.g., Message.

Subscriptions. A subscription binds an event handler to one component port,
enabling the handler to handle events that arrive at the component on that port.
A subscription is allowed only if the handler’s accepted event type, E, is allowed
to pass by the port’s type definition. In other words, E must be one of (or a
subtype of one of) the event types allowed by the port’s type definition to pass
in the direction of the handler.

MPC for Scalable, Stateful, Reconfigurable Middleware 213

MyComponent

Network+

handleMsg
Message

Fig. 3. The handleMsg event handler is subscribed to the required Network port
of MyComponent. As a result, handleMsg will be executed whenever MyComponent
receives a Message event on this port, taking the event as an argument.

Figure 3 illustrates the handleMsg handler from our previous example being
subscribed to a port. In diagrams, we represent a subscription using the
graphical notation.

In this example, the subscription of handleMsg to the Network port is allowed
because Message is in the positive set of Network; handleMsg will handle all
events of type Message or a subtype of Message, received on this Network port.

Components. Components are event-driven state machines that execute con-
currently and communicate asynchronously by message-passing. In the host pro-
gramming language, components are objects consisting of any number of local
state variables and event handlers. Components are modules that export and im-
port event-based interfaces, i.e., provided and required ports. Each component
is instantiated from a component definition.

Here is an example component definition in Java:
1 class MyComponent extends ComponentDefinition {
2 Positive<Network> network = requires(Network.class); // ← required port
3 int messages; // ← local state
4 public MyComponent() { // ← component constructor
5 System.out.println("MyComponent created.");
6 messages = 0;
7 subscribe(handleMsg, network);
8 }
9 Handler<Message> handleMsg = new Handler<Message>() { ... };

10 }

In this example we see the component definition of MyComponent, illustrated
in Figure 3. Line 2 specifies that the component has a required Network port. The
requires method returns a reference to a required port, network, which is used in
the constructor to subscribe the handleMsg handler to this port (line 7). The type
of the required port is Positive〈Network〉 because, for required ports the positive
direction is incoming into the component. Both a component’s ports and event-
handlers are first-class entities which allows for their dynamic manipulation.

Components can encapsulate subcomponents to hide details, reuse function-
ality, and manage system complexity. Composite components enable the control
and dynamic reconfiguration of entire component ensembles as if they were sin-
gle components. Composite components form a containment hierarchy rooted at
a Main component (see Figure 4). Main is the first component created when the
runtime system starts and it recursively creates all other sub-components. Since
there exist no components outside of Main, Main has no ports.

214 C. Arad, J. Dowling, and S. Haridi

Main

FailureDetector

MyTimerMyNetwork
Network+ Timer+

Timer+
Network+

channel1 channel2

Fig. 4. The Main component encapsulates FailureDetector, MyNetwork, and MyTimer

Here is the Main component specification in Java:
1 class Main extends ComponentDefinition {
2 Component net, timer, fd; // ← subcomponents
3 Channel channel1, channel2; // ← channels
4 public Main() { // ↙ constructor
5 net = create(MyNetwork.class);
6 timer = create(MyTimer.class);
7 fd = create(FailureDetector.class);
8 channel1 = connect(net.provided(Network.class), fd.required(Network.class));
9 channel2 = connect(timer.provided(Timer.class), fd.required(Timer.class));

10 }
11 public static void main(String[] args) {
12 Kompics.bootstrap(Main.class);
13 }}

In our Java implementation, the Main component is also a Java main class
(lines 11-13 show the main method). When executed, this will invoke the Kom-
pics runtime system, instructing it to bootstrap, i.e., to instantiate the root
component using Main as a component specification (line 12).

In lines 5-7, Main creates its subcomponents and saves references to them. In
line 8, it connects MyNetwork’s provided Network port to the required Network
port of the FailureDetector. As a result, channel1 is created and saved. Unless
needed for dynamic reconfiguration (see Section 2.6), channel references need
not be saved.

Components are loosely coupled : a component does not know the type, avail-
ability, or identity of any components with which it communicates. Instead, a
component only “communicates” with its ports and it is up to the component’s
environment to wire up the communication.

Explicit component dependencies (required ports) enable dynamic reconfigu-
ration of the component architecture, a fundamental feature for evolving, long-
lived systems.

2.2 Kompics Operations

While presenting the Kompics concepts we have already introduced some of the
basic operations on these concepts: subscribe, create, and connect. These have
counterparts that undo their actions: unsubscribe, destroy, and disconnect, and
these have the expected semantics. Here is the code for destroy and disconnect
using our previous example:

MPC for Scalable, Stateful, Reconfigurable Middleware 215

Fig. 5. MyComponent handles one MyMessage event and triggers a MyMessage reply
on its required Network port

1 class Main extends ComponentDefinition {
2 Component net, timer, fd; // ← subcomponents
3 Channel channel1, channel2; // ← channels
4 public undo() { // ↙ some method
5 disconnect(net.provided(Network.class), fd.required(Network.class));
6 disconnect(timer.provided(Timer.class), fd.required(Timer.class));
7 destroy(net); destroy(timer); destroy(fd);
8 }}

A fundamental command in Kompics is trigger, which is used to (asyn-
chronously) send an event through a port. In the next example, MyComponent
handles a MyMessage event due to its subscription to its required Network port.
Upon handling the first message, MyComponent triggers a MyMessage reply on
its Network port and then it unsubscribes its handleMyMsg handler, thus han-
dling no further messages.

Figure 5 illustrates MyComponent. In diagrams, we denote that an event han-
dler may trigger an event on some port, using the Event graphical notation.

1 class MyComponent extends ComponentDefinition {
2 Positive<Network> network = requires(Network.class);
3 public MyComponent() { // ← component constructor
4 subscribe(handleMyMsg, network);
5 }
6 Handler<MyMessage> handleMyMsg = new Handler<MyMessage>(){
7 public void handle(MyMessage m) {
8 trigger(new MyMessage(m.destination, m.source), network);
9 unsubscribe(handleMyMsg, network); // ← reply only once

10 }};}

2.3 Publish-Subscribe Event Dissemination

Components are unaware of other components in their environment. A com-
ponent can communicate, i.e., handle received events and trigger events, only
through the ports visible within its scope. The ports visible in a component’s
scope are its own ports and the ports of its immediate sub-components. Ports
and channels forward triggered events toward other connected components, as
long as the types of events triggered are allowed to pass by the respective port
type specifications. Hence, component interaction is dictated by the connections
between components as configured by their enclosing parent component.

Component communication follows a message-passing publish-subscribe
model. An event triggered (published) on a port is forwarded to other com-
ponents by all channels connected to the other side of the port (Figure 6). As
an optimization, our runtime system avoids forwarding events on channels that

216 C. Arad, J. Dowling, and S. Haridi

Fig. 6. When MyNetwork triggers a MessageA on its provided Network port, this event is
forwarded by both channel1 and channel2 to the required Network ports of Component1
and Component2, respectively

Fig. 7. When MyNetwork triggers a MessageA event on its Network port, this event
is delivered to the Network port of MyComponent and handled by both handler1 and
handler2, sequentially (figured with yellow diamonds), in the order in which the two
handlers were subscribed to the Network port

would not lead to any compatible subscribed handlers. An event received on a
port is handled by all compatible handlers subscribed to that port (Figure 7).

2.4 Component Initialization and Life-Cycle

Every component provides a special Control port used for initialization, life-cyle,
and fault management. Figure 8 illustrates the Control port type and a com-
ponent that declares an Init, a Start, and a Stop handler. Typically, for each
component definition that requires state initialization one defines a specific ini-
tialization event (subtype of Init) which contains component-specific configura-
tion parameters.

An Init event is guaranteed to be the first event handled. When a compo-
nent subscribes an Init event handler to its Control port in its constructor, the
component will not handle any other event before a corresponding Init event.

MyComponent

Control+

startH
Start

stopH
Stop

initH
MyInit

Start
Stop
Init

Fault+Control+

MyInit Init

Fig. 8. Every Kompics component provides a Control port by default. To this Control
port, the component can subscribe Start, Stop, and Init handlers. In general, we do not
illustrate the control port in component diagrams.

MPC for Scalable, Stateful, Reconfigurable Middleware 217

1 class MyComponent extends ComponentDefinition {
2 int myParameter;
3 public MyComponent() { // ← component constructor
4 subscribe(handleStart, control); // ← similar for Stop
5 subscribe(handleInit, control);
6 }
7 Handler<MyInit> handleInit = new Handler<MyInit>() {
8 public void handle(MyInit init) {
9 myParameter = init.myParameter;

10 }};
11 Handler<Start> handleStart = new Handler<Start>() {
12 public void handle(Start event) {
13 System.out.println("started");
14 }};}

Start and Stop events allow a component (which handles them) to take some
actions when the component is activated or passivated. A component is created
passive. In the passive state, a component can receive events but it will not
execute them. (Received events are stored in a port queue.) When activated, a
component will enter the active state (executing any enqueued events). Handling
life-cycle events is optional for a component.

To activate a component, a Start event is triggered on its control port, and
to passivate it, a Stop event is triggered on its control port. Here is an example
snippet of code possibly executed by a parent of myComponent:

1 trigger(new MyInit(42), myComponent.control());
2 trigger(new Start(), myComponent.control());
3 trigger(new Stop(), myComponent.control());

When a composite component is activated (or passivated), its subcomponents
are recursively activated (or passivated). The bootstrap construct, introduced in
the Main component example, both creates and starts the Main component.

2.5 Fault Management

Kompics enforces a fault isolation and management mechanism inspired by Er-
lang [3]. A software fault or exception thrown and not caught within an event
handler is caught by the runtime system, wrapped into a Fault event and trig-
gered on the Control port, as shown in Figure 9.

A composite component may subscribe a Fault handler to the control port of
its subcomponents. The component can then replace the faulty subcomponent
with a new instance (through dynamic reconfiguration) or take other appropriate
actions. If a Fault is not handled in a parent component it is further propagated
to the parent’s parent and so on until it reaches the Main component. If not

Fig. 9. Uncaught exceptions thrown in event handlers are caught by the runtime,
wrapped in a Fault event and triggered on the control port

218 C. Arad, J. Dowling, and S. Haridi

handled anywhere, ultimately, a system fault handler is executed which dumps
the exception to standard error and halts the execution.

2.6 Dynamic Reconfiguration

Kompics enables the dynamic reconfiguration of the component architecture
without dropping any of the triggered events. In addition to the ability to dy-
namically create and destroy components, connect and disconnect ports, sub-
scribe and unsubscribe handlers, Kompics supports four channel commands to
enable safe dynamic reconfiguration: hold, resume, plug, and unplug. The hold
command puts the channel on hold. The channel stops forwarding events and
starts queuing them in both directions. The resume command has the opposite
effect, resuming the channel. When a channel resumes, it first forwards all en-
queued events, in both directions, and then keeps forwarding events as ususal.
The unplug command, unplugs one end of a channel from the port where it is
connected, and the plug command plugs back the unconnected end to a (possibly
different) port.

To replace a component c1 with a new component c2 (with similar ports), c1’s
parent, p, puts on hold and unplugs all channels connected to c1’s ports; then,
p passivates c1, creates c2 and plugs the unplugged channels into the respective
ports of c2 and resumes them; c2 is initialized with the state dumped by c1 and
activated. Finally, p destroys c1.

3 Implementation

We have implemented Kompics in Java. In this section we discuss some of the
implementation details related to the runtime system, component scheduling,
different modes of execution, and component dependency management. Kompics
is publicly released as an open-source project. The source code for the Java
implementation of the Kompics runtime, component library, and case studies
presented here, are all available online at http://kompics.sics.se.

Java Runtime and Network I/O. Our Java runtime system implements the
Kompics concepts and operations as well as the Kompics execution model. The
Kompics runtime system supports pluggable component schedulers, decoupling
component behaviour from component execution. In particular, this enables the
ability to use different component schedulers to execute the same (unchanged)
component-based system in different modes: parallel multi-core execution and
deterministic simulation. Next subsection highlights the default scheduler.

We implemented a rich library of components and ports that provide basic
distributed systems abstractions. For example, we have three different implemen-
tations for the Network abstraction using Apache MINA, Netty, and the Grizzly
network library, respectively. Each of these components implements automatic
connection management, message serialization, and Zlib compression. The choice
of implementations is configurable - for example, CATS in section 4 uses Grizzly
with Kyro for message serialization.

MPC for Scalable, Stateful, Reconfigurable Middleware 219

Multi-core Component Scheduling. The Kompics execution model admits
an implementation with one lightweight thread per component. However, as Java
has only heavyweight threads, we use a pool of worker threads for concurrently
executing components. Every component is marked as idle (if it has no events
awaiting execution), ready (if it has one or more events waiting in ports to
be executed in handlers), or busy (if an event is currently being executed in
a handler). Each worker has a dedicated queue of ready components. Workers
process one event in one component at a time and one component cannot be
processed by multiple workers at the same time. Thus, the Kompics execution
model guarantees that handlers of a single component instance execute mutually
exclusively.

Workers may run out of ready components to execute, in which case they
engage in work stealing [10]. Work stealing involves a thief, a worker with no
ready components contacting a victim, the worker with the highest number of
ready components, and stealing a batch of half of its ready components. Stolen
components are moved from the victim’s work queue to the thief’s work queue.
From our experiments, batching shows a considerable performance improvement
over stealing small numbers of ready components. To improve concurrency, the
work queues are implemented as lock-free queues, meaning that the victims and
thieves can concurrently consume ready components from their queues.

By designing components as reactive state machines and scheduling them
using a pool of worker threads, we provide a simple programming model that
leverages multi-core machines without any extra programming effort.

Deterministic Simulation Mode. We provide a special scheduler for repro-
ducible system simulation. The system code is executed in deterministic simu-
lation provided it does not attempt to create threads. In simulation mode, the
system’s bytecode (including any binary libraries) is instrumented to intercept
all calls for the current time and return the simulated time. Therefore, without
editing any of its source code, the system can be executed deterministically in
simulated time. Library code for secure random number generators is also in-
strumented to use the same seed and achieve determinism. Attempts to create
threads are also intercepted and the simulation halts since it would not be able
to guarantee deterministic execution.

Testing and Programming in the Large. Kompics supports test-driven de-
velopment through both unit-testing and integration-testing. Firstly, since com-
ponents are implemented in Java classes, a component can be mocked, so that
the individual handlers can be unit-tested. Secondly, integration tests (tests cov-
ering more than one component) can be implemented as Java unit tests running
the tested subsystem in simulation mode, enabling systems to be built and val-
idated using standard continuous integration platforms. To this end, we used
Apache Maven to organize the structure and manage the artifacts of the Kom-
pics component library. The complete framework counts more than 100 mod-
ules. We organize the various Kompics concepts into abstraction and component
packages. An abstraction package contains a port together with the request and

220 C. Arad, J. Dowling, and S. Haridi

indication events of that port. A component package contains the implementa-
tion of one component with some component-specific events (typically subtypes
of events defined in required ports). The source code for an abstraction or com-
ponent package is organized as a Maven module and the binary code is packaged
into a Maven artifact, a JAR archive annotated with meta-data about the pack-
age’s version, dependencies, and pointers to web repositories from where (binary)
package dependencies are automatically fetched by Maven.

In general, abstraction packages have no dependencies and component pack-
ages have dependencies on abstraction packages for both the required and pro-
vided ports. This is because a component implementation will use event types
defined in abstraction packages, irrespective of the fact that an abstraction is
required or provided. Maven enables the reusability of protocol abstractions and
component implementations. When we start a project for a new protocol imple-
mentation we just need to specify what existing abstractions our implementation
depends on. They are automatically fetched and made visible in the new project.
This approach also enables deploy-time composition.

4 Case Study: A Scalable, Consistent Key-Value Store
To put into perspective the Kompics concepts, patterns, and different execution
modes, we present a case study of a key-value store called CATS that provides a
simple API to get and put key-value pairs, while guaranteeing linearizable con-
sistency in partially synchronous, lossy, partitionable and dynamic networks [11].
Kompics was used to develop, deploy, stress-test, and simulate CATS. This is a
(non-trivial) large-scale, self-organizing distributed system with dynamic node
membership. Each node in the system handles a complex mix of protocols for
failure detection, topology maintenance, routing, replication, group membership,
agreement, and data consistency. In the next section we highlight the component
based software architecture of the system and later we show how the same system
implementation designated for deployment is executed in simulation mode for
debugging and testing under a wide array of concurrency and failure scenarios.

4.1 CATS Deployment Architecture

Firstly, we provide a general component framework with protocols reusable in
many large-scale distributed systems. Such systems typically need a bootstrap
procedure to assist newly arrived nodes in finding nodes already in the system
in order to execute any join protocols. To this end, we have a BootstrapServer
component which maintains a list of online nodes. Every node embeds a Boot-
strapClient component which provides a Bootstrap service to the node. When a
node starts, it issues a BootstrapRequest to the client which retrieves from the
server a list of alive nodes and delivers a BootstrapResponse to the node. The
node runs a join protocol against one or more of the returned nodes and after
joining, it sends a BootstrapDone event to the client, which, from now on, will
send periodic keep-alives to the server letting it know this node is still alive. The
BootstrapServer evicts nodes who stop sending keep-alives.

MPC for Scalable, Stateful, Reconfigurable Middleware 221

Another reusable service, is a monitoring and distributed tracing service. A
client component at each node periodically inspects the status of various local
components, and may also log network events for tracing. The client periodically
sends reports to a monitoring server that can aggregate the status of nodes and
present a global view of the system on a web page. The bootstrap and monitoring
servers are illustrated in Figure 10 (left), within executable main components.

BootstrapServerMain CATS MonitorServerMain

JavaTimer GrizzlyNet

Network
+

+
 Timer

BootstrapServer
Network

– Timer

–

JettyWebServer

Web

–

Web
+

JavaTimer GrizzlyNet

Network
+

+
 Timer

CATS MonitorServer
Network

– Timer

–

JettyWebServer

Web

–

Web
+

CATS
NodeMain

CATS Node

PutGet
+
– Web

+
–

Timer
+
– Network

+
–

JettyWebServer

JavaTimer GrizzlyNet

Network
+

+
 Timer

Web

–

CATS Client

PutGet

–

Fig. 10. Bootstrap and monitoring servers (left) exposing a user-friendly web inter-
face for troubleshooting. Component architecture for one CATS node (right). This
architecture is designated for system deployment where every CATS node executes on
a different machine and communicates with other nodes by sending messages using
Grizzly, a Java NIO non-blocking sockets framework.

We embed the Jetty web server library in the JettyWebServer component which
wraps every HTTP request into a WebRequest event and triggers it on a required
Web port. Both servers provide the Web abstraction, accepting WebRequests and
delivering WebResponses containing HTML pages with the node list and global
view, respectively.

In Figure 10 (right), we show the component architecture designated for sys-
tem deployment. Here we have the executable CATS NodeMain component that
embeds the CATS node, network, timer, web server, and client application com-
ponents. The embedded CATS Node exposes its status through a Web port. The
HTML page representing the node’s status will typically contain hyperlinks to
the neighbor nodes and to the bootstrap and monitoring server. This enables
users/developers to browse the set of nodes over the web, and inspect the state
of each remote node. The CATS Client component may embed a GUI or CLI user
interface and issue functional requests to the CATS Node over the PutGet port.

The CATS Node is detailed in Figure 11. By encapsulating many components
behind the PutGet port, clients are oblivious to the complexity and event-driven
control flow internal to the component. The components used to implement
CATS include a PingFailureDetector, a CATS Ring to maintain a distributed
hash table, and a One-Hop Router which provides efficient message routing. The
One-Hop Router, in turn, uses a service for uniform node sampling, provided by
Cyclon Overlay. The Consistent ABD component provides quorum-based read and
write operations, again using the One-Hop Router to find the responsible servers.

Every functional component provides a Stat port, accepting StatusRequests
and delivering StatusResponses to MonitorClient and JettyWebServer. JettyWeb-
Server enables users to monitor a node’s components and issue interactive com-
mands to the node through a web browser.

222 C. Arad, J. Dowling, and S. Haridi

CATS Node Main

CATS Node

Grizzly Network

PutGet

Jetty Web Server

Consistent ABD
Network Timer

One-Hop Router
Network Timer NodeSampling

Router

CATS Ring
Network Timer

Ping Failure Detector

Java Timer

Network

Bootstrap Client
Network Timer

Bootstrap

Network Timer

FailureDetector

Cyclon Overlay

NodeSampling

Network Timer

DHT

Monitor Client
Network Timer

CATS Web Application

Web

Status DHT Status

Web

Timer

Timer Network

Web

Status

Status

FailureDetector

Status

Status

Router

CATS Node

Fig. 11. The architecture of the CATS Node. We omit the channels for clarity. In this
scope, all provided ports are connected to all required ports of the same type.

We have deployed and tested CATS on the PlanetLab testbed, on our lo-
cal cluster, and on Rackspace. Using the web interface to interact with CATS
(configured with a replication degree of 5) on the local-area network, resulted in
sub-millisecond end-to-end latencies for get and put operations. This includes the
LAN latency (two message round-trips, so 4 one-way latencies), message serial-
ization (4x), encryption (4x), decryption (4x), deserialization (4x), and Kompics
runtime overheads for message dispatching and execution. In terms of scalability,
for read-intensive workloads, reading 1KB values, CATS scaled on Rackspace to
96 machines providing just over 100,000 reads/sec. We refer the reader to [11]
for more details on CATS performance.

4.2 CATS Simulation Architecture

We now show how we can reuse the CATS’ components, without modifying their
code, to execute the system in simulation mode for testing, stepped debugging,
or repeatable simulation studies. Figure 12 (left) shows the component archi-
tecture for simulation mode. Here, a generic NetworkEmulator/ExperimentDriver
interprets an experiment scenario and issues command events to the CATS Sim-
ulator component. A command (triggered through the CATS Experiment port)
may tell the CATS Simulator to create and start a new node, to stop and de-
stroy an existing node, or to instruct an existing node to execute a system-
specific operation (through its PutGet port). The ability to create and destroy
node subcomponents in CATS Simulator is clearly facilitated by Kompics’ sup-
port for dynamic reconfiguration and hierarchical composition. The NetworkEm-
ulator/ExperimentDriver also provides the Network and Timer abstractions and
implements a generic discrete-event simulator.

This whole architecture is executed in simulation mode, i.e., using a simu-
lation component scheduler which executes all components that have received

MPC for Scalable, Stateful, Reconfigurable Middleware 223

CatsSimulationMain

NetworkEmulator/Experiment Driver

CATS Simulator

CATS Experiment
+
–

CATS Experiment
+

Web
+
–

Network
+
– Timer +

–

Network
+
 Timer +

CATS MonitorServer

Network

– Timer

–

Web
+

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

CATS Node
Web

+
 PutGet

+

Network

– Timer

–

BootstrapServer

Network

– Timer

–

Web
+

CatsLocalExecutionMain

NIO Framework and Experiment Driver

CATS Simulator

CATS Experiment
+
–

CATS Experiment
+

Web
+
–

Network
+
– Timer +

–

Network
+
 Timer +

CATS MonitorServer

Network

– Timer

–

CATS WebServer

Web
+

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

ChordPeer

Web
+
– ChordPeerPort

+
–

Network
+
– Timer

+
–

CATS Node

Web
+
 PutGet

+

Network

– Timer

–

Web

–

BootstrapServer

Network

– Timer

–

Web
+

Fig. 12. Component architecture for whole-system simulation (left) / interactive stress-
test execution (right). All nodes and servers execute within a single OS process in
simulated time (left) / real time (right).

events and when it runs out of work it passes control to the NetworkEmula-
tor/ExperimentDriver to advance the simulation time.

4.3 Local, Interactive, Stress-Test Execution
Using the same experiment scenario used in simulation, the same system code
can be executed in an interactive stress-testing execution mode. Figure 12 (right)
shows the respective component architecture. This is similar to the simulation
architecture, however, our concurrent component scheduler is used and the sys-
tem executes in real-time.

During development it is recommended to incrementally make small changes
and quickly test their effects. The interactive execution mode helps with this
routine since it enables us to quickly run a small-scale distributed system (with-
out the need for remote deployment or launching of multiple processes) and we
can interact with it using a web browser.

4.4 CATS Experimentation

We designed a Java domain-specific language (DSL) for expressing experiment
scenarios for large-scale distributed systems. Such scenarios are interpreted by a
NetworkEmulator/ExperimentDriver or NIO Framework and ExperimentDriver com-
ponent. A scenario is a parallel and/or sequential composition of stochastic pro-
cesses. We start each stochastic process, a finite random sequence of events, with
a specified distribution of inter-arrival times.

Here is an example stochastic process:

1 StochasticProcess boot = new StochasticProcess() {{
2 eventInterArrivalTime(exponential(2000)); //exponentially distributed, μ = 2s
3 raise(1000, catsJoin, uniform(16)); //1000 joins with uniform IDs from 0..216

4 }};

This will generate a sequence of 1000 catsJoin operations, with an inter-
arrival time between two consecutive operations extracted from an exponential

224 C. Arad, J. Dowling, and S. Haridi

distribution with a mean of 2 seconds. The catsJoin operation is a system-specific
operation with 1 parameter. In this case, the parameter is the ring identifier of
the joining node, extracted from an uniform distribution of [0..216]. Here is how
the catsJoin operation is defined:

1 Operation1<Join, BigInteger> catsJoin = new Operation1<Join, BigInteger>() {
2 public Join generate(BigInteger nodeKey){
3 return new Join(new NumericRingKey(nodeKey));
4 }};

It takes one BigInteger argument (extracted from a distribution) and gener-
ates a Join event (triggered by the NetworkEmulator/ExperimentDriver on PutGet
port). Next, we define a churn process which will generate a sequence of 1000
churn events (500 joins randomly interleaved with 500 failures), with an expo-
nential inter-arrival time with a mean of 500 milliseconds.
1 StochasticProcess churn = new StochasticProcess() {{
2 eventInterArrivalTime(exponential(500));//exponentially distributed, μ = 500ms
3 raise(500, catsJoin, uniform(16)); //500 joins
4 raise(500, catsFail, uniform(16)); //500 failures
5 }};

Next, we define a process to issues some Lookup events.

1 StochasticProcess lookups = new StochasticProcess() {{
2 eventInterArrivalTime(normal(50, 10));//normally distributed,μ = 50ms, σ = 10ms
3 raise(5000, catsLookup, uniform(16), uniform(14));
4 }};

The catsLookup operation takes two BigInteger parameters, extracted from
a (here, uniform) distribution, and generates a Lookup event that tells CATS
Simulator to issue a lookup for key key at the node with identifier node. As you
can see above, a random node in 0..216 will issue a lookup for a random key in
0..214. 5000 lookups are issued in total, with an exponential inter-arrival time
with mean 50 milliseconds.
1 Operation2<Lookup, BigInteger, BigInteger> catsLookup
2 = new Operation2<Lookup, BigInteger, BigInteger>() {
3 public Lookup generate(BigInteger node,BigInteger key){
4 return new Lookup(new NumericRingKey(node), new NumericRingKey(key));
5 }};

We defined three stochastic processes: boot, churn, and lookups. The next code
snippet shows how we can compose them into a complete experiment scenario.
The scenario starts with the boot process. Two seconds (simulated time) after
boot terminates, the churn process starts. Three seconds after churn starts, the
lookups process starts, now working in parallel with churn. The experiment
terminates one second after all lookups are done. Putting it all together, here is
how one defines and executes an experiment scenario using our Java DSL:

MPC for Scalable, Stateful, Reconfigurable Middleware 225

1 class CatsSimulationExperiment {
2 static Scenario scenario1 = new Scenario() {
3 StochasticProcess boot = ... // see above
4 StochasticProcess churn = ...
5 StochasticProcess lookups = ...
6 boot.start(); // start
7 churn.startAfterTerminationOf(2000, boot); // sequential composition
8 lookups.startAfterStartOf(3000, churn); // parallel composition
9 terminateAfterTerminationOf(1000, lookups); // join synchronization

10 }
11 public static void main(String[] args) {
12 scenario1.setSeed(rngSeed);
13 scenario1.simulate(CatsSimulationMain.class); // simulation mode
14 // scenario1.execute(CatsLocalExecutionMain.class);// local, interactive
15 }}

Note that the above code is an executable Java main-class. It creates a sce-
nario1 object, sets an RNG seed, and calls the simulate method passing the
simulation architecture of your system as an argument (line 14). The simulate
method instruments the bytecode of the system and executes it in simulation
mode, driving the simulation from the given experiment scenario. This is useful
for debugging. If you want to run an interactive experiment, comment out line
14 and uncomment line 15. This will run your interactive execution architec-
ture and drive it from the same scenario. You will be able to interact with and
monitor the system over the web while the experiment is running.

Discussion and Simulation Performance. We have showed the component
based software architecture of a non-trivial distributed system and how the same
system implementation designated for deployment can be executed in simulation
mode or interactive whole-system execution. We showed how Kompics can be
used to build scalable, concurrent middleware using CATS as a case study.

We also ran simulations of CATS and we were able to simulate a system of
16384 nodes in a single 64-bit JVM with a heap size of 4GB. The ratio between
the real time taken to run the simulation and the simulated time was roughly 1.
For smaller system sizes we observe a much higher simulated time compression
effect, as shown in Table 1.

Table 1. Time compression effects observed when simulating the system for 4275
seconds of simulated time.

Peers Time compression
64 475x
128 237.5x
256 118.75x
512 59.38x
1024 28.31x
2048 11.74x
4096 4.96x
8192 2.01x

226 C. Arad, J. Dowling, and S. Haridi

5 Related Work

Kompics is related to work in several areas: concurrent programming models [12,
13, 14, 15], reconfigurable component models for distributed systems [5, 6, 16],
reconfigurable software architectures [17, 18, 19, 20], and event-based frameworks
for distributed systems [7, 21, 22].

Kompics’s message-passing concurrency model is similar to the actor model
[23], of which Erlang [12], the Unix filter and pipe model, Kilim [14] and Scala
[13] are, perhaps, the best known examples. Similar to the actor model, message
passing in Kompics involves buffering events before they are handled in a first-in
first-out (FIFO) order, thus, decoupling the thread that sends an event from
the thread that handles an event. In contrast to the actor model, event buffers
are associated with component ports, so each component can have more than
one event queue, and ports are connected using typed channels. Channels that
carry typed messages between processes are also found in other message-passing
systems, such as Singularity [24]. Connections between processes in the actor
models are unidirectional and based on process-ids, while channels between ports
in Kompics are bi-directional and components are oblivious to the destination
of their events.

The main features of the Kompics component model, such as the ability to
compose components, support for strongly-typed interfaces, and explicit depen-
dency management using ports, are found in many existing component mod-
els, such as ArchJava [20], OpenCOM [5], Fractal [6], LiveObjects [16], and
OMNnet++[25]. However, with the exception of LiveObjects, these component
models are inherently client-server models, with blocking RPC interfaces.

LiveObjects has the most similar goals to Kompics of supporting encapsula-
tion and composition of distributed protocols. Its endpoints are similar to our
ports, providing bi-directional message-passing, however, endpoints in LiveOb-
jects support only one-to-one connections. Other differences with Kompics in-
clude: the lack of a concurrency model beyond shared-state concurrency, the lack
of reconfigurability, and the lack of support for hierarchical components.

Although there is support for dynamic reconfiguration in some actor-based
systems, such as Erlang, Kompics’s reconfiguration model is based on reconfigur-
ing strongly typed connections between components. Component-based systems
that support similar runtime reconfiguration functionality use either reflective
techniques, such as OpenCOM [5], or dynamic software architecture models, such
as Fractal [6], Rapide [17], and ArchStudio4/C2 [19]. Kompics’s reconfiguration
model is most similar to the dynamic software architecture approaches, but a
major difference is that the software architecture in Kompics is not specified ex-
plicitly in an architecture definition language, rather it is implicitly constructed
at runtime.

Other work related to Kompics are non-blocking socket frameworks that sup-
port asynchronous event programming, such as Tornado for Python [9] and Lift
for Scala actors. Protocol composition frameworks, such as Horus [26], Appia [22]
and Mace [27], are also related, but they are specifically designed for build-
ing distributed systems by layering modular protocols. Although this approach

MPC for Scalable, Stateful, Reconfigurable Middleware 227

certainly simplifies the task of programming distributed systems, these frame-
works are often designed with a particular protocol domain in mind and this
limits their generality. Mace, however, also supports the execution of the same
code in both production and simulation. Finally, there are related tools for mon-
itoring distributed systems, such as Dapper [28] by Google, a distributed tracing
system that is built-in to a few key modules commonly linked by all applications.
In contrast, in Kompics, we have a monitoring client that execute concurrently
and can be easily adapted to handle events published by any component.

6 Conclusions and Future Work

In this paper we presented the Kompics component model and programming
framework. We showed how complex distributed systems can be built by com-
posing simple protocols. Protocol abstractions are programmed as event-driven,
message-passing concurrent components. Kompics contributes a unique combi-
nation of features well suited for the development and testing of large-scale,
long-lived distributed systems, including: hierarchical component composition,
dynamic reconfiguration, message-passing concurrency, publish-subscribe non-
blocking component interaction, seamless integration of NIO frameworks, and
the ability to run the same code in either production mode or reproducible sim-
ulation for testing and stepped debugging. For future work, we are investigating
a Kompics front-end in Scala. This would immediately leverage the existing Java
components and runtime system. Also, it has the potential for more expressive
code and a succint DSL for Kompics operations.

References

1. Chen-Becker, D., Weir, T., Danciu, M.: The Definitive Guide to Lift: A Scala-based
Web Framework. Apress, Berkely (2009)

2. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to
Relax, 1st edn. O’Reilly Media, Inc. (2010)

3. Armstrong, J.: Making reliable distributed systems in the presence of software
errors. PhD Dissertation, The Royal Institute of Technology, Sweden (2003)

4. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

5. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J.,
Sivaharan, T.: A generic component model for building systems software. ACM
Trans. Comput. Syst. 26(1), 1–42 (2008)

6. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
component model and its support in Java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

7. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. In: SOSP 2001, pp. 230–243. ACM, New York (2001)

8. Wampler, D.: Scala web frameworks: Looking beyond lift. IEEE Internet Comput-
ing 15, 87–94 (2011)

9. Dory, M., Parrish, A., Berg, B.: Introduction to Tornado. O’Reilly Media (2012)
10. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. J. ACM 46(5), 720–748 (1999)

228 C. Arad, J. Dowling, and S. Haridi

11. Arad, C., Shafaat, T.M., Haridi, S.: CATS: Linearizability and partition toler-
ance in scalable and self-organizing key-value stores. Technical Report T2012:04,
Swedish Institute of Computer Science (2012)

12. Armstrong, J.: Programming Erlang. In: Pragmatic Bookshelf (July 2007)
13. Odersky, M., Zenger, M.: Scalable component abstractions. In: OOPSLA 2005,

pp. 41–57. ACM, New York (2005)
14. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Dell’Acqua,

P. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)
15. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-Safe Eventful Ses-

sions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–353.
Springer, Heidelberg (2010)

16. Ostrowski, K., Birman, K., Dolev, D., Ahnn, J.H.: Programming with Live
Distributed Objects. In: Dell’Acqua, P. (ed.) ECOOP 2008. LNCS, vol. 5142,
pp. 463–489. Springer, Heidelberg (2008)

17. Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE
Trans. Softw. Eng. 21(9), 717–734 (1995)

18. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

19. Dashofy, E.M., Asuncion, H.U., Hendrickson, S.A., Suryanarayana, G., Georgas,
J.C., Taylor, R.N.: Archstudio 4: An architecture-based meta-modeling environ-
ment. In: ICSE Companion, pp. 67–68 (2007)

20. Aldrich, J., Notkin, D.: Architectural Reasoning in ArchJava. In: Deng, T. (ed.)
ECOOP 2002. LNCS, vol. 2374, pp. 334–367. Springer, Heidelberg (2002)

21. Krohn, M., Kohler, E., Kaashoek, M.F.: Events can make sense. In: USENIX ATC
2007, pp. 7:1–7:14. USENIX Association, Berkeley (2007)

22. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel supporting
multiple coordinated channels. In: Proceedings of the 21st International Conference
on Distributed Computing Systems, Phoenix, Arizona, pp. 707–710. IEEE (2001)

23. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge (1986)

24. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication
in Singularity OS. SIGOPS Oper. Syst. Rev. 40(4), 177–190 (2006)

25. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In:
Simutools 2008 (2008)

26. van Renesse, R., Birman, K.P., Maffeis, S.: Horus: a flexible group communication
system. Commun. ACM 39(4), 76–83 (1996)

27. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.M.: Mace: language
support for building distributed systems. SIGPLAN Not. 42(6), 179–188 (2007)

28. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google, Inc. (2010)

OverStar: An Open Approach to End-to-End

Middleware Services in Systems of Systems

Paul Grace1, Yérom-David Bromberg2, Laurent Réveillère2, and Gordon Blair1

1 School of Computing and Communications, Lancaster University, UK
p.grace@lancaster.ac.uk, gordon@comp.lancs.ac.uk

2 LaBRI, University of Bordeaux, France
{david.bromberg,laurent.reveillere}@labri.fr

Abstract. The increasing complexity of distributed systems, where het-
erogeneous systems are composed to form systems of systems, pose new
development challenges. How can core middleware services, e.g. event
communication, resource discovery, etc. be deployed and optimised in an
end-to-end manner? Further, how can important properties such as inter-
operability be managed? In this paper we propose OverStar a framework
that generates overlay network based solutions from high-level specifica-
tions in order to answer these questions. A middleware service is specified
as a self-managing overlay network across heterogeneous systems; timed
automata specify how the topology of the network is constructed and the
data is exchanged. The key contribution is the open access to individual
overlay nodes in order to specify additional flow logic, e.g. the transla-
tion of messages to support end-to-end interoperability or the filtering
of heterogeneous messages to optimise event dissemination. We evaluate
OverStar using service discovery and event communication case studies;
these demonstrate the ability to compose heterogeneous systems, achieve
end-to-end interoperability and simplify the developer’s task. Further, a
performance evaluation highlights optimisations that can be achieved.

1 Introduction

Overlay networks are increasingly important in underpinning key middleware
functions (e,g. service discovery, multicast, and P2P in various disguises). In-
deed they are becoming a pervasive feature of middleware technologies, and
their management and co-ordination will be a key requirement in future com-
plex systems. Many different types of overlay networks have been developed
to provide virtualised network services for particular environments and require-
ments, e.g, large-scale resource discovery [22] or multicast [23] in high-churn
networks. In addition, software frameworks for overlays: P2 [16], Macedon [21],
and OpenOverlays [9] provide tools to rapidly create a tailored overlay network,
or incorporate an overlay network as an explicit architectural element of mid-
dleware. This work is promising but it falls down in underpinning middleware
functions in complex distributed systems-of-systems where there are high levels
of heterogeneity and dynamic behaviour, especially in terms of the middleware

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 229–248, 2012.
c© IFIP International Federation for Information Processing 2012

230 P. Grace et al.

protocols used by end systems that need to be composed dynamically. These
end systems may utilise heterogeneous middleware services, i.e., different event
communication middleware (e.g. STOMP1 or OpenWire2) and different resource
discovery protocols (e.g. SLP or Bonjour). Hence, there is a need to manage this
heterogeneity, especially with respect to interoperability and optimisation.:

– End-to-End Interoperability. Heterogeneous local middleware services must
interoperate when composed together in order to realise the global function-
ality of a middleware service.

– End System Optimisations. It should be possible to apply service optimisa-
tions at the end systems despite the heterogeneous technologies, e.g. apply-
ing global message filters locally to reduce both network traffic and protocol
message translations.

In this paper, we look at an approach to address these heterogeneity challenges.
The OverStar software framework supports the generation of overlay-based mid-
dleware services from high-level declarative specifications; in particular it con-
centrates on supporting the specifications that achieve interoperability and op-
timisation of heterogeneous systems. For this purpose two separate model spec-
ifications are provided:

– Overlay Specification. Each heterogeneous middleware service is underpinned
by a tailored overlay network. Timed automata are used to specify two as-
pects of the overlay’s behaviour. First, how the overlay topology should best
be constructed to integrate the individual end systems (e.g. a tree, ring, etc.).
Second, timed automata are also used to model the communication of data
in the overlay network, e.g., multicast, anycast, etc.

– Node Behaviour Specification. Each overlay node acts as a gateway to the
behaviour of the heterogeneous protocols in the local end systems. Protocol
transparent middleware behaviour is then specified at each node to achieve
interoperability and/or optimise service functionality. Such behaviour is spec-
ified using a timed automaton and can contain operations including: message
translation, and message filtering.

We evaluate OverStar using a case study based method involving two middleware
services in given areas of application: resource discovery and an event service.
We show that these services can be specified and optimised in the face of hetero-
geneous protocols across the end-systems; interoperability can be achieved; and
node behaviour specification supports the optimisations of deployments despite
the encountered heterogeneity.

The paper is structured as follows. In section 2 we introduce the OverStar
approach and associated software framework. In section 3 we then define the
formal models that underpin the solution, and in 4 we describe the implemen-
tation of the OverStar framework. The evaluation results are given in section 5.
In section 6, we analyse the work with respect to the state of the art. Finally,
we draw conclusions in Section 7.
1 http://stomp.github.com/
2 http://activemq.apache.org/openwire.html

http://stomp.github.com/
http://activemq.apache.org/openwire.html

OverlayStar: Open End-to-End Middleware Services 231

2 The OverStar Approach

2.1 Motivation

We use a simple example to motivate the OverStar approach. Fig. 1 illustrates a
set of end-systems that employ heterogeneous protocols to provide middleware
services in their local domains. Multiple discovery protocols are shown in use:
SLP, Bonjour, UPnP and Ariadne [11]. Similarly multiple event communication
middleware: Active MQ brokers, XMPP XEP-00603 and a publish-subscribe
sensor middleware [24]. These can be viewed as isolated islands of interoperability
that must be carefully integrated to create resource discovery and event services
respectively. Further, in dynamic systems it is unrealistic to predict which end-
systems protocols will be employed.

Fig. 1. Heterogeneous middleware services in systems-of-systems

Building global, optimised middleware services across heterogeneous end sys-
tems requires a substantial understanding of: distributed algorithms, different
communication patterns, interoperability challenges and low-level network pro-
gramming. Furthermore, different strategies are required for different contexts
(e.g. the solution for resource discovery is different from an event service solu-
tion). The potential heterogeneity means that the solution space may rapidly
grow, such that a single middleware solution is not sufficient. Hence, we argue
that it should be possible to specify the middleware service optimised for the
given context and then use this to generate the deployable middleware software.

2.2 The OverStar Middleware Framework

OverStar is a software framework that composes middleware services across het-
erogeneous end systems as illustrated in Fig. 2. OverStar node instances are
deployed in multiple domains to communicate with heterogeneous end systems
in order to underpin higher-level middleware services. A node instance is made
up of two component types. First, the OverStar nodes must be globally con-
nected in order to facilitate the optimised communication between heteroge-
neous domains. Overlay networks offer a well established solution for building

3 http://xmpp.org/extensions/xep-0060.html

http://xmpp.org/extensions/xep-0060.html

232 P. Grace et al.

such virtualised services. However, a single overlay network is not sufficient; for
instance, the overlay behaviour required to underpin a resource discovery ser-
vice may differ from one to underpin publish-subscribe. Hence, the Overlay Node
component allows different implementations of self-managing overlay behaviour
to be created and deployed, e.g., a multicast tree or a DHT ring. Second, service
implementation behaviour must be layered atop this overlay; this should connect
the legacy systems in such a way that end-to-end interoperability is achieved.
Further the service behaviour should be tailored for optimisations, i.e., adding
specific service optimisation in spite of the heterogeneity, e.g. applying global
publish subscribe filters in the end-system domains. The Service Node compo-
nent allows different behaviours for specific middleware service implementations
to be deployed. Finally, each node performs network communication with legacy
middleware systems using data ports, and with the overlay via the overlay port.

Fig. 2. An overview of the OverStar approach

In order to support the development of services and promote software reuse,
the service and overlay node component’s behaviour is specified through the use
of timed automata (rather than hand-coded), which are finite state automata
with a set of clocks, clock constraints, abstract messages, message constraints,
queues and actions. We introduce the formal definition of these timed automata
in Section 3.1, which are then applied to Overlay Node specifications in 3.2 and
Service Node specifications in 3.3. We argue that the use of timed automata
fits well with the requirements of global middleware services due to time con-
strained behaviour, e.g. in the self management of both overlay topologies and
the middleware service logic.

The OverStar framework executes on each host and acts as an execution
environment for the OverStar node instances. The elements of this framework
(illustrated in Fig. 2) behave as follows:

– The Service Flow Interpreter interprets the internal model of a Service Node
component to achieve the middleware service behaviour, e.g. supporting in-
teroperability. Based upon the timed automata specification the interpreter:
i) communicates with end system nodes using their legacy protocols, ii) com-
municates with other OverStar nodes using an Overlay Node component, and
iii) performs middleware logic on the messages received from both.

OverlayStar: Open End-to-End Middleware Services 233

– The Overlay Interpreter interprets the behavior specification of the Overlay
Node component and performs the required local node behaviour to con-
struct and maintain the overlay topology, and provide data communication
services. That is, react to: join, leave, fail, and data events.

– The Network Engine performs two roles to support the two port types.
Firstly, it sends the overlay specific messages between nodes in the overlay,
i.e., these messages contain the overlay action messages, or forwarded data
messages. Secondly, it communicates directly with legacy systems, sending
and receiving messages using the required legacy protocol, e.g., it can send
and receive SLP messages on the IP multicast channel of SLP.

3 Definition of Models to Specify Component Behaviour

Here we first present the formal definition of the timed automata used in Over-
Star. We then present the timed automata models for the Overlay node compo-
nent specifications, followed by the Service node component specifications.

3.1 Timed Automata Specifications

Modeling time dependent behavior. Constraints on clock variables are used to
model time dependent behavior. Local clocks are initialized to zero when a node
starts and then increase synchronously with the same rate. Clocks associated
to transitions act as clock guards that restrict the behavior of the automaton.
Transitions from one state to another may not be taken according to time con-
straints, i.e. if a clock guard is not evaluated to true. Clocks may be reset to zero
when a transition is taken. Further, to enforce progress properties, i.e. to ensure
that nodes do not stay in a state forever, a state may be also associated with
a clock constraint, called thereafter, a local invariant. For instance, as depicted
in Fig. 3,❷, the local invariant (x < 20) associated to state s1 ensures that the
transition from state s1 to s5 is only taken if clock x has elapsed (i.e. is evaluated
to more than 20 time units). In other terms, a local invariant determines how
long an automaton can wait in a particular state for an event to be triggered. If
the time expires and there is no transition satisfying the guards, then a violation
of the constraints of the system occurs. More precisely, it means that there is a
fault in either the specification of guards or invariants in the model; this is what
is usually called a timelock. Such locks in OverStar specifications can be avoided
thanks to the use of a timelock checker provided by timed automaton analysis
tools. Additionally, a state is urgent when it has an invariant x < 0, with all its
incoming transitions resetting x to zero. Hence, in an urgent state, the outgoing
transition must be taken immediately (See Fig. 3,❸,❹,❺).

Abstract messages. Triggered events are messages received or sent from either
i) the global overlay network referred to as an overlay port, or ii) end systems
within a local domain, referred to as one or more data ports; these utilise legacy
protocols e.g. SLP, XMPP, etc. for communication. Syntactical description of
message data fields, including their data types are formalized through the use

234 P. Grace et al.

s0 x<=20;x:=0

>>m;

x=0;x:=0

1 2 3 4

5

:parents::m

6

s5

x<20

;∅ ∅;
#(ping,parents)
x>20;x:=0

>>m;

m type=ack;

x<5

x<=5;x:=0
nil

;∅ ∅;
#(join,parents)

x>5;x:=0

∅ ;
sizeof(siblings)>2

#(m,siblings)

∅
sizeof(siblings)<2

($root)

:siblings::m

s1 s2 s3

m type=ack-join

x<=20;x:=0

>>m;

m type=join

nil;

2
x<0x:=0

s4

x<0

x=0;x:=0

;∅ ∅;∅;

x=0;x:=0

∅ ;∅ ;

x<0

x=0;x:=0

>>m;

m type=multicast
#(m,siblings)

id

id

x<=20;x:=0

;∅ ∅;

�

<<

 id

(m

,ack-join);

Fig. 3. Timed automaton specifying the self-organizing behavior of an overlay

of abstract messages [4]. An abstract message consists of a set of fields, either
primitive or structured. The former is composed of: (i) a label naming the field,
(ii) a type describing the type of the data content, (iii) a length defining the
length in bits of the field, and (iv) the value, i.e., the content of the field. A
structured field is composed of multiple primitive fields. We note msg
field the
operation that selects the field from the abstract message msg. This abstract
representation supports the application of additional message logic (e.g. message
filtering) irrespective of the concrete packet format of a message.

Message guards. Transitions may also be labeled with a message guard that
specifies a set of conjunctions of constraints on triggered events that has the
following form: (msg
 field) ∼ rvalue with ∼∈ {<,≤,=,≥, >} to evaluate
adequately the message field field. As a result, a transition from one state to
another can be taken only if both its clock and message guards evaluate to true.

Global variables and queues. Message guards may be combined with con-
straints on either global variables and queues. Both of them are accessible what-
ever the current state of a timed automaton. Global variables are variables pre-
fixed with the ’$’ sign whereas queues are variables prefixed with the ’:’ sign.
The term global refers to the states on one node, variables are not global to
the distributed system. At any time, a timed automaton is able to store both
incoming or outgoing messages to further get them back later.

Actions. When a state is left, actions may be triggered according to the transi-
tion to be taken. Available actions are described in Fig. 4 and include forwarding,
multicasting, translating, filtering and queuing messages. We are providing a set
of key actions to build overlay-based middleware services and provide end-to-end
interoperability; however, the set of actions is extensible according to the needs
of additional middleware functionality.

Formally, a timed automaton is defined as follows.

Definition 1. A timed automaton T A is a tuple (Q,M, q0,A, Evt, C, Act,V ,
F ,→, I), where Q is a finite set of states, M is a finite set of abstract messages,
q0 ∈ Q is the starting state and A ⊂ Q is a set of accepting states. Evt is a set
of event types such that Evt = {?, !,�,�} where ? (resp. !) denotes a received

OverlayStar: Open End-to-End Middleware Services 235

Actions

δm Translate message m to f(m)

Filter(m, fr1...fr2) Filter message m according to the field content filters fr1...fr2
∝ m Multicast to the overlay network nodes m

� $root Bootstrap procedure

: q :: m Queue message m in queue q

#(m,id1...id2) Forward message m to overlay nodes id1...id2
λm Multicast message m to the local environment

Fig. 4. Available actions in the model

(resp. sent) event from a data port, whereas � (resp. �) denotes a received
(resp. sent) event from an overlay port. C is a finite set of non negative real
valued clocks and B(C) is the set of all clock constraints on C. Act is the set
of actions performed when a transition is taken. nil ∈ Act is an empty action.
The set of global variables and queues is respectively V and F . Additionally,
B(M,V ,F) is the set of constraint conjunctions on M , V and F . Further, →⊆
Q× Evt×M × B(M,V ,F)×Act× B(C)×Q is the set of transitions. Finally,
I : Q → B(C) assigns local invariants to states.

Concretely, transitions have the following form s1
L−→ s2 and changes the state

of timed automaton from s1 to s2 once the label L is evaluated to true. The
transition label L is defined such as L ⊆ Evt ×M × B(M,V ,F)× Act × B(C),
and has the following format:

L = Event|Msg|Data guard|Actions|Clock guards

Correspondingly, four different transitions can be triggered according to events
that can occur and are noted as follow (without considering guards and action

for the sake of clarity): (i) s1
?m−−→ s2 (resp. s1

!m−−→ s2) if a message m has

been received (resp. sent) from a local legacy system, (ii) s1
�m−−−→ s2 (resp.

s1
�(id,m)−−−−−→ s2) if a message m has been received (resp. sent to id node) from the

underlying overlay network. Further, our model also supports epsilon transitions.
However, to avoid non-deterministic timed automata, such transitions must be
combined with guards to avoid undeterminism (See for instance Fig. 3, ❸, ❹,
❺). It is important to note that epsilon transitions are only triggered when either
timeout occurs or the current state is an urgent state.

3.2 Overlay Specification: Timed Automata to Construct Overlays

The first step in building a middleware service that integrates multiple legacy
end systems is to construct the overlay topology and communication services
that join them in a manner that the middleware functionality can be layered
atop. Using the timed automaton definition, we are able to specify the algo-
rithm to create such an overlay. To ease its understanding, Fig. 3 illustrates the

236 P. Grace et al.

specification of a timed automaton T Atree deployed at each node to create a
self-managing tree overlay.

In particular, T Atree is an instance of a timed automaton with a global vari-
able $root, two queues named :parents and :siblings, a clock x and three pos-
sible actions: bootstrap, forward and queue (respectively noted �, # and ::).
An overlay node always starts with a bootstrap action that initializes both the
$root variable and the clock variable x. The former variable is used to know
if an overlay node is or is not the root of the tree based overlay whereas the
latter variable is used to control the time dependent behavior (Fig. 3, vertex
❶). Then, overlay nodes must wait at most 20 time units for receiving either: (i)
a multicasted data message, (ii) a join request, or (iii) a join acknowledgment
(vertex ❷). In the first case, multicasted messages are forwarded to siblings of
the overlay node. In the second case, according to size of the siblings queue, the
node that has sent the join request may be added or not to the siblings queues
of the current overlay node (vertex ❸). If it is added then an acknowledgment
is sent to the requester (vertex ❺), otherwise the join request is forwarded to
the siblings of the current overlay node (vertex ❹). Constraints on the size of
the siblings queue enables avoidance of an unbalanced tree. In the third case,
the node that receives a join acknowledgment adds the ack sender to its parents
queue. To ensure that the overlay being built remains connected, each node must
probe the liveness of its neighbours. Thus, beyond a delay of 20 time units, if no
messages have been received, overlay nodes must poll their parent nodes to check
if they are still alive (vertex ❻). If in less than 5 time units, no acknowledgment
is received, overlay nodes may have been disconnected from the overlay and thus
have to reforward a join request to their parents. Otherwise, if acknowledgments
are received, overlay nodes go back to the listening state s1 to receive messages.

The use of timed automata enables us to specify a fine grained overlay con-
struction algorithm. In particular, it becomes easy to express timed dependent
behaviors to perform overlay maintenance, to manage network errors, or to pe-
riodically check invariants of the overlay.

3.3 Sevice Specification: End-to-End Middleware Services

Overlay Nodes. At each node in the constructed overlay additional logic is
deployed to perform the required middleware functionality that achieves a par-
ticular service. Specifically, this logic performs actions on messages received from
either the local end systems, or from messages disseminated by the overlay net-
work. As depicted in Fig. 5, all overlay nodes have an overlay port through which
they can send messages to, and receives messages from other nodes in the overlay
(dependent on the network service provided by the overlay, e.g. multicast). Each
node also has a set of N data ports through which the node communicates with
the end systems using the required middleware protocol, e.g. an SLP data port
allows the overlay to communicate with end systems using this protocol.

Middleware functionality is then performed as actions on the messages re-
ceived and exchanged between these ports; examples including message transla-
tion and filtering are defined in Fig. 4). We use simple examples to then illustrate

OverlayStar: Open End-to-End Middleware Services 237

Fig. 5. Middleware logic actions applied at end system nodes

this procedure. Fig. 5A shows that a message received as a Protocol P message
from a data port is translated to a Protocol Q message and sent on the corre-
sponding data port (hence in this example the message is not transmitted to
the overlay). Fig. 5B describes similar functionality but this time the message
from the data port is translated before it is sent to the overlay. Finally, Fig. 5C
illustrates the filtering of messages between the data ports and the overlay port.
As previously stated, the approach is extensible to add new message actions to
underpin a wider range of middleware services.

Data Flow Specification.Actions themselves are not enough to achieve service
functionality; control logic is required to define the flow of data at the individ-
ual nodes. Thus, we further employ timed automata to specify the message flow
across the overlay; a sequence of middleware, translating, multicast and queuing
actions (resp. noted δ,∝ and ::) are constrained by both time and message guards.
Hence, it is possible to define different service functionality. For instance, in the
case of a global resource discovery overlay integrating heterogeneous end system
protocols, one solution is to follow a translate and multicast strategy: each node
performs local translations between the disparate protocols employed in its do-
main; if there is no local resource match then the overlay node can pass the re-
quest to its neighbours by sending them the received incoming requests and/or
their translated forms to increase chances to get successful answers. Fig. 6, illus-
trates a specification of a timed automaton T Abonjour1 that applies the aforemen-
tioned strategy to the Bonjour service discovery protocol. As soon as a message
m of type DNS Question is received, it is translated locally according to the un-
derlaying gateway capabilities, to either SLP, UPnP, or other service discovery
protocols (and noted f(m)) (Fig. 6, ❶). If DNS Response messages are received
locally (i.e. from the local environment) in less than 4 time units, they are sent
to the requester (vertex ❺, ❻). Otherwise, the messagem and its translated form
f(m) are queued and multicasted to overlay neighbors (vertex ❷).

Every 5 time units, if a DNS Response message is received it is queued to be
sent later (vertex ❸). Any other messages received are translated to Bonjour
(vertex ❼). If the translation is successful, then it means that a DNS Response

has been received and then is queued. If the translation is not successful, the
message f(m) is either discarded if it has been already seen by the current
node, or multicasted to overlay neighbors otherwise (vertex ❹). Finally, if the
delay of 10 time units has passed without receiving any messages then all previ-
ously queued DNS Response responses are sent to the requester, and the queue
is flushed (vertex ❺, ❻).

238 P. Grace et al.

s0
y<5

y<4;y:=0

y>=4;y:=0

s6

s1δm

5

?m;

y:=0

type=DNS_Question;
m

y>
=10;y:

=0
∅;∅

;

2 3
∅ ; ∅

?m;

m type=DNS_Response;

y<5;y:=0

m type=DNS_Response;
>>m;

s2

6

y=0;y:=0

nil

∅ ;

;

;

;

y<0
∅ ;

:q::m;

5<y<10;y:=0
δm

y<0
y=0;y:=0

∅;
f(m) =DNS_Response;type

>>m;

m type DNS_Response;�=

∅ ;

y=0;y:=0

4

nil;

:q::m;

y<0
;

y=0;y:=0

f(m) DNS_Response;type
 �=
nil

∅

;

∅
;

y=
0;

y:
=

0f(
m

);
:q

::f
(m

) ∧

s4s3s5

(m,f(m))

:q::f(m)∧
∝

:q::m;

!q

:q::

∝

f(m)
id = m1
 id|∃m1
 id ∈ q

f(
m
)

id

�=
m

1

id
|∃
m

1

id

∈
q

7

y<10

Fig. 6. Translate and forward strategy

From our model it is straightforward to define additional compelling strate-
gies. For instance, in the case where the response time of the global resource
discovery service is important, Fig. 6 can be altered to multicast incoming re-
quest immediately to find corresponding responses in other networked environ-
ment, without waiting for local responses. Further, Fig. 7 shows the node logic for
event filtering in a global event service. Here, subscription requests are multicast
across the network and translated and applied as local filtering rules. Published
events are then translated to an abstract message specification to which the fil-
ters are applied. Published Messages that match the filters are translated to the
legacy end system protocols and multicasted across either the local network or
the overlay according to the messages’ origin. This is a relatively simple publish-
subscribe service that handles protocol heterogeneity; there are many potential
broker strategies, which we believe the overlay and flow specifications are flexible
enough to define.

Reusing Overlays for Multiple Middleware Services. The behavior of
an overlay, noted T AO, is modeled through a set of timed automata that are
composed together. In a way similar to process algebras such as CCS [18] and
FSP [17], we introduce the parallel composition operator ‖ to compose timed
automata. Hence, the behavior of T AO consists of individual timed automata
that execute their transitions independently. As in our model, each timed au-
tomaton is independent from each other, compared to traditional process alge-
bras, our composition operator ‖ does not provide any synchronization features
among composed timed automaton. Further clocks are local to each composed
automaton. There are no global or shared clocks variable. So, provisioning n
applications using P1, P2,..., Pn protocols across an overlay O is described by
the following formula: T AO = T Atopology ‖ T AP1 ‖ T AP2 ‖ T AP3 ‖ ... ‖ T APn .
The timed automaton T Atopology describes the self-organization behavior of the
overlay and T AP1 , ..., T APn specify the different translation strategy for each

OverlayStar: Open End-to-End Middleware Services 239

s0
y<0
s1

>>m;
type=STOMP_Pub;
m s2

δm

∅ ;

y<0
s4

s5 y<0nil
?m;

type=STOMP_Sub;
m
nil
y:=0

?m;
type=STOMP_Pub;

m

nily:=0

filter(m,q)=TRUE

filter(m,q)=FALSE
;∅

nil

y=0;y:=0y=0;y:=0

y=0;y:=0

m;
;∅

nil
y=0;y:=0

y<0
s3∅;

filter(m,q)=TRUE
δm

y=0;y:=0

nil
y=0;y:=0

∝m;
;∅

y<0

∝m∧q :: m
 id
∅ ;∅

y=0;y:=0

filter(m,q)=FALSE
;∅

nil
y=0;y:=0

λ

Fig. 7. Event translation and filtering strategy

supported middleware service. The strength of our model comes from its flexi-
bility. Replacing one strategy by another or taking into account a new service
and/or a new overlay topology is straightforward as the ‖ operator enables a
modularized specification.

4 The OverStar Framework Implementation

Here we describe the further implementation details of the OverStar software
framework. OverStar is implemented in Java and leverages the capabilities of the
Starlink framework [4]. There are two key elements to the implementation: i) the
implementation of reusable building blocks that underpin the action keywords
that are performed during the service flow specification logic (e.g. interoperabil-
ity), and ii) the implementation of the timed automata interpreters.

4.1 Actions: Reusable Software Building Blocks

As previously described, Actions are performed to realise the service flow logic
behaviour. These are defined as key words in the timed automaton; and these key
words relate to reusable software building blocks. Hence, the logic is extensible
and adaptable through the creation of new building blocks.

Actions are specified using the Starlink framework. Starlink uses k-colored
automata to capture the properties of a protocol by a color k and ensures that
the messages are sent and received using the appropriate network service. This
supports the parsing of a message into the abstract message format such that
additional logic can be performed on the messages irrespective of the heteroge-
neous protocols. Hence, an action is a k-colored automata with the message logic
relating to the action. When the timed-automata specifies a transition with a
particular keyword action then the corresponding coloured automata is executed.
To illustrate this method, we present one example in Fig. 8; this is a transla-
tion from SLP request messages to UPnP request messages. The original SLP

240 P. Grace et al.

request message is translated to a SSDP request that initiates UPnP behaviour.
The bi-coloured state performs the assignment of field data from one message
to another. Other examples are: the translation of STOMP to XMPP messages,
or the parsing of either of these such that they can be filtered by message topic.

?SLP_SrvReq !UPnP_Search
s10 s11s

4
0 s41

Fig. 8. Starlink merged automaton for SLP to UPnP protocol translation

4.2 Timed Automata Interpreters

Both the Overlay and Service flow interpreters dynamically execute timed au-
tomata written in XML (we do not provide a schema here, however, the notation
provided in Section 3 offers a concise representation). To illustrate how OverStar
operates, we now summarise the behaviour that occurs at the two state types.

At a receiving state, the interpreter listens for messages from the overlay or
data port. The receiving state parses the message to determine the automaton
action e.g. translate, filter, etc. Transitions to other states are taken based upon
both action types and guard conditions. For example, where there is a time-guard
on the state a timeout exception is used, i.e. the state listens for new events and
the timeout value is set to the guard value. If no event is received in the time-
frame the exception is caught and the appropriate transition is executed.

At a sending state, the interpreter constructs a new instance of an overlay
message to be forwarded in the overlay. This consists of the original legacy
protocol message with a new OverStar header. The header contains a small
amount of data (17 bytes) capturing the message type (e.g. forward, join in 1
byte), a unique message identifier (8 bytes), message source IP (4 bytes), and
message source port (4 bytes). The sending state can also send concrete protocol
messages to a given legacy end system using the correct protocol behaviour.

5 Evaluation

5.1 Case Study Based Methodology

We employ a case-study approach to evaluate the ability of the OverStar frame-
work to achieve its primary contributions. For this we developed two different
but complimentary middleware services to highlight the flexibility of OverStar:

– A resource discovery service that can react to requests from heterogeneous
end system protocols (e.g. SLP, Bonjour and UPnP) and ensure that match-
ing service responses are returned.

– An event service that joins end systems using heterogeneous publish-
subscribe technologies, e.g., STOMP and XMPP-XE0060 and ensures that
events that match subscriptions are received despite the heterogeneous pro-
tocols.

OverlayStar: Open End-to-End Middleware Services 241

The two services employ very different legacy middleware technologies and pose
different challenges to applicability of OverStar. The resource discovery and
event service solutions were deployed in the emulated complex network environ-
ment as described in Section 5.2. Utilising this experimental setup, we performed
three measures: i) the end-to-end interoperability achieved by OverStar; ii) spe-
cific optimisations within the two services as specified by the service logic; and
iii) the overheads occurred during OverStar’s operation. These results are used
to evaluate the extent to which the primary contributions are achieved.

5.2 Experimental Setup

To evaluate various aspects of OverStar, we have setup a particular network en-
vironment enabling reasonably large scale experiments. We have deployed Over-
Star across heterogeneous domains (e.g. 4, 8, 16) interconnected via a network
backbone. A heterogeneous domain is instantiated as a Virtual Local Area Net-
work (VLAN). A VLAN contains a set of devices that are logically connected
within a single broadcast domain, and located in the same IP subnet. In fact,
a one-to-one mapping between VLANs and IP subnets is applied, according
to the best practices in network design. Devices may host either the OverStar
middleware to act as an OverStar node, or middleware services relying on hetero-
geneous protocols. The key advantage of using VLANs to interconnect devices is
to confine traffic generated by services (e.g. broadcast, multicast and/or unicast)
into one domain without interfering with another, while abstracting the under-
lying physical network topology. Additionally, in our experiments, devices are
emulated via Linux Kernel-based Virtual Machines (KVM) to use real operating
systems and run unmodified both middleware services and OverStar middleware.
The whole setup was conducted on a rack server equipped with 4 AMD opteron
processors at 2 GHz, including 12-core per processor (for a total of 48 cores),
and 32 GB of RAM. The server multiplexes virtual resources such as VLANs,
KVMs on top of physical ones, and enables IP routing between domains.

5.3 Interoperability Experiments

In the emulated environment, we deployed a set of heterogeneous end systems
across different domain configurations, i.e., four domains, eight domains, and
sixteen domains; where in each domain, heterogeneous end systems utilise one
of: SLP, Bonjour and UPnP to request or advertise a resource. We then specified
and deployed an OverStar service solution using a multicast tree overlay timed-
automata to connect the domains (up to sixteen). The service was specified
to immediately multicast received requests from the heterogeneous end-systems
onto the overlay; when received at the domain nodes these are translated to per-
form discovery using the local protocols. We measured the number of successful
match responses to the requests as the percentage interoperability achieved; this
was compared to: i) no interoperability solution deployed, and ii) local bridges
(i.e. bridges for SLP to UPnP, Bonjour to SLP, etc. deployed in each domain).

242 P. Grace et al.

The results in Fig. 9 show that local bridges increase the potential interoper-
ability as they reach more services in the local domain, but OverStar achieves
the necessary end-to-end interoperability via the global integrated service (n.b.
across the experiment there is a least one matching service, and in many cases
multiple matches). A similar experiment was performed for heterogeneous end-
system event services (STOMP and XMPP-XE0060). Here the OverStar speci-
fication used a multicast tree with the local filtering only timed-automata (see
Fig. 7). To measure the interoperability percentage in this case we compared the
actual received events as a percentage of the matching events published across
the network. Similarly, OverStar is able to achieve end-to-end interoperability in
the event service case compared to the local domain approaches. Overall, these
results demonstrate that hypothesis one is proven.

Fig. 9. Percentage interoperability results

5.4 Optimisation Experiments

For the optimisation experiments we use the same experimental setup as with
the previous experiment. However, this time we apply different timed-automata
strategies for the middleware service specifications. For the resource discovery
case: i) multicast and translate (as used in the interoperability experiment), and
ii) match service requests locally and multicast to the overlay when there isn’t a
response (this specification is captured in Fig. 6). For the event service case: i)
local filtering only (where all publications are multicast on the overlay and local
filters determine which are translated to the end-systems (see Fig. 7), and ii)
global filtering where subscriptions are multicast to the OverStar nodes to ensure
that only matching publications are sent between domains. The results in Fig. 10
show that for resource discovery, strategy one reduces the maximum response
time from a matched service in the global network, but this approach occurs
significant message overhead especially as the domain configuration grows larger.

OverlayStar: Open End-to-End Middleware Services 243

Strategy two reduces this number of messages sent in the network, although the
maximum response time is increased. It is interesting to note that the deployment
of local bridges in a domain can create a cycle (i.e. the message is translated from
one protocol using one bridge and then back to the same protocol by a separate
bridge) leading to an infinite number of messages in the domain and across the
network. The use of OverStar is shown to prevent such cycles occurring. Finally,
in the case of the strategies for the event service, it can be seen that strategy two
reduces the overall number of messages in the network compared to strategy one;
hence, this minimises the message translations that take place. Overall, these
results show that OverStar can be flexibly used to optimise for different domain
configurations and requirements and offer initial proof of hypothesis two.

Fig. 10. Comparison of different service strategies

5.5 Resource Overheads Experiments

Finally, we examine the resource overheads of the OverStar implementation. For
this, we measure the time taken to perform three indicative individual actions on
each OverStar node: i) the time to translate from an SLP message to a Bonjour
message, ii) the time to translate from a STOMP message to an XMPP message,
and iii) the time to translate from a STOMP message to an abstract message
and then perform filtering. The results in Table. 1 show that OverStar intro-
duces an expected overhead, however, this does not detract significantly from
the overall performance of the services (e.g. compared to the overall response
time of resource discovery). N.b. the measures are dependent on the protocol
types; STOMP to XMPP involves text to XML message translation and hence
is slower than SLP to Bonjour which is a binary to binary translation.

Table 1. Direct bridging deployments only

Action Time (ms)

SLP to Bonjour 0.28
STOMP to XMPP 0.39
STOMP to filter 0.25

244 P. Grace et al.

6 Related Work

6.1 Interoperability Solutions

Interoperability solutions focus on the search for a universal standard; and where
such a standard is agreed and adopted the problem is solved. However, history
has shown this approach to be unsuccessful. Two primary examples: the set of
CORBA standards from the OMG [10] and the set of Web Services standards [3]
from the W3C. However, such one size fits all standards are not suited to the
extreme heterogeneity of systems-of-systems, e.g. from small scale sensor appli-
cations and embedded devices through to large scale Internet applications.

Rather than seek universal standards, alternative approaches either build di-
rect bridges between systems e.g. the SOAP to CORBA bridge4, embrace sim-
plicity (i.e. RESTful solutions) or look for transparency (i.e. Service Buses).
REST presents a simple uniform API atop a global standard protocol (the HTTP
protocol being widely used to connect systems) allowing many interoperability
problems at the communication level to be addressed. However, the Restful ap-
proach leaves interoperability issues arising at the application behaviour and
data level unresolved. For example, a service cannot respond to a GET oper-
ation request composed of an operation name and data parameters that has
different behaviour and syntax to itself. Opposed to standards, transparent so-
lutions mimic the action of a language interpreter, that is they receive commu-
nications from system A and then translate this such that system B can under-
stand and vice versa. Enterprise Service Buses (ESBs) e.g. Artix, INDISS [5],
z2z [6], Janus [1] and uMiddle [19], provide such capabilities between multiple
“languages”. However, transparent solutions are typically restricted to a set of
known middleware types, and the development effort required to extend them
for new protocols is significant. Connect [2] has examined semantics-based
solutions to automate this challenging task, however, the focus is single party
protocols between two systems; within the Connect approach, [13] examines
interoperability between heterogeneous multiparty middleware abstractions, but
does not consider the underlying deployment complexities of achieving end-to-
end interoperability in heterogeneous systems-of-systems.

Analysis. Generally, interoperability has been considered from an enterprise
systems perspective, where interactions are point-to-point, planned and long-
lived. Hence, they remain limited when considering the dynamic composition
of heterogeneous systems, where the knowledge about the services provided by
different systems and the protocols they employ are unknown until binding time
and a common translation technology cannot be agreed upon in advance.

Further, none of the above solutions considers the cases of interoperation be-
tween systems using heterogeneous multi-party communication protocols (e.g.
multi-party discovery, group communication, publish subscribe, etc.), they con-
sider only the case where a single system must interact with another. OSDA [15],
MUSDAC [20] and SeDiM [7] offer bridging solutions between service discovery

4 http://soap2corba.sourceforge.net/

http://soap2corba.sourceforge.net/

OverlayStar: Open End-to-End Middleware Services 245

domains to provide universal solutions i.e. a service lookup request from one
domain can be answered in another network domain irrespective of the service
discovery protocols employed in that domain. Notably, OSDA uses a peer-to-
peer ring to communicate messages between heterogeneous domains. However,
the weakness of these platforms are threefold: i) they are specific solutions im-
plemented for service discovery and cannot be flexibly applied to other problem
domains e.g. group communication; ii) they employ a transparent intermediary
between domains and hence mappers to and from this intermediary must be
developed by hand for every protocol, and iii) the intermediary is a ‘subset of all
protocols’ and as such this subset may become too small to underpin interoper-
ability in a general fashion, e.g., if service discovery protocols A and B provide
attribute based lookup while protocol C does not then the intermediary cannot
include attribute lookup; this lessens any potential interoperation between A
and B. In comparison, OverStar supports the specification of end-to-end inter-
operability solutions between heterogeneous multi-party middleware protocols
that span heterogeneous network domains.

6.2 Overlay Networks and Middleware

Overlay networks are virtual communications structures that are logically ‘laid
over’ an underlying physical network. They are established solutions for provid-
ing scalable application services across heterogeneous networks, nodes and sys-
tems. For example, publish-subscribe and group interaction can be underpinned
in the Internet by multicast overlays such as SRM [8]. Similarly, DHT-based
peer-to-peer overlays provide reliable resource discovery in large-scale distributed
systems e.g. Pastry [22] and Chord [25]. And publish subscribe services are one
example of middleware services layered atop DHT, e.g., Scribe [23]. These prop-
erties make them suited to connecting heterogeneous systems of systems; yet
the different types of middleware protocols suggests that a single network type
is insufficient and it must be possible to flexibly specify an overlay to underpin
the broad range of potential middleware services.

There exist toolkits that provide principled support for overlay network de-
velopment. JXTA5 is a framework where p2p applications are developed atop a
resource search abstraction; this supports grouping and contacting nodes. This
abstraction can be implemented using a number of overlay topologies. This ap-
proach involves a full development life-cycle and hence, higher-level declarative
languages and models have been produced to simplify the complex task of con-
structing new overlays. Macedon [21] is a state machine compiler for overlay
protocol design. Event-driven state machines (EDSMs) have been used over
decades for protocol design and specification. Macedon extends this approach
to an overlay specific, C++ based language from which it generates source code
for overlay maintenance and routing. In the P2/Overlog project [16], applica-
tions use a declarative logic language to specify their requirements of the overlay
network. This is combined with a data flow approach, as opposed to a finite state

5 http://www.jxta.org

http://www.jxta.org

246 P. Grace et al.

machine approach, to maintain the overlay at runtime. Like Macedon, this sim-
plifies the development process of overlays in specific cases. iOverlay [14] provides
a message switch abstraction for the design of the local routing algorithm. The
neighbors of a node are instantiated as local I/O queues between which the user
provided implementation switches messages. This simplifies the design of overlay
algorithms by hiding the lower networking levels.

Analysis. While suited to the construction and maintenance of overlay net-
works, the above are limited with respect to the high-level declaration and de-
ployment of the atop application services. That is, it is not possible to specify
the data-flow behaviour in terms of handling the problem of end-to-end inter-
operability. In comparison, OverStar supports the declarative specification of
middleware services atop overlay networks in order to optimise the flow of mes-
sage data and the necessary dynamic translations between protocols .

7 Concluding Remarks and Future Work

In this paper we have highlighted the importance of integration of end systems
leveraging heterogeneous middleware; and here, end-to-end interoperability is
a key requirement. Indeed, it can no longer be assumed that a single protocol
is used across network and organizational boundaries in order to implement
network services such as service discovery, multicast, group communication and
publish subscribe. Instead, heterogeneous protocols will be employed. In the
face of this heterogeneity, new approaches to build global middleware services
are required that ensure that all services and devices are connected in an efficient
and optimised way in order to effectively coordinate.

For this purpose, we have introduced novel models that specify overlay be-
haviour to support the development of middleware services that achieve end-to-
end interoperability in complex systems-of-systems and an associated software
framework (OverStar). The key contributions of which are the use of timed
automata for: i) the specification of the topology and maintenance of the over-
lay network which interconnects heterogeneous protocols across large-scale net-
works; ii) the specification of the overlay’s application service, in this case the
logic and flow tailored to the particular middleware service type. We evaluated
this framework using both resource discovery and event communication services.
Our initial results from the simple case-studies have shown that the OverStar
solution increases interoperability within the network and reduces the resource
consumption in terms of messages sent compared to bridging solutions.

There are a number of interesting avenues of future work. The first is to extend
the models in order to capture improved strategies for performing optimised,
scaleable, end-to-end interoperability of resource discovery, group communica-
tion, and publish subscribe services. In this regard, overlay networks are well
suited to self-organizing behaviour, hence there is the potential for the overlay
to monitor the environments and protocols in order to better determine how to
optimise the deployed middleware service. The use of interpreted models pro-
vides a mechanism to easily adapt the behaviour of the service by dynamically

OverlayStar: Open End-to-End Middleware Services 247

changing the model at runtime. Complimentary to this, the use of machine un-
derstandable models, i.e., timed automata, makes machine learning of solutions
an interesting way forward; for example, machine learning protocols have been
used to learn the automata for individual network protocols [12], and there is
the possibility of learning more complex overlay network specifications.

Acknowledgments. This work is part funded by the CONNECT project,
funded under the Framework 7 FET Programme: http://www.connect-forever.eu.

References

1. Bissyandé, T.F., Réveillère, L., Bromberg, Y.-D., Lawall, J.L., Muller, G.: Bridging
the Gap between Legacy Services and Web Services. In: Gupta, I., Mascolo, C.
(eds.) Middleware 2010. LNCS, vol. 6452, pp. 273–292. Springer, Heidelberg (2010)

2. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V., Nundloll, V.,
Paolucci, M.: The Role of Ontologies in Emergent Middleware: Supporting Inter-
operability in Complex Distributed Systems. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 410–430. Springer, Heidelberg (2011)

3. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,
Orchard, D.: Web services architecture (February 2004)

4. Bromberg, Y.-D., Grace, P., Reveillere, L.: Starlink: Runtime interoperability be-
tween heterogeneous middleware protocols. In: 31st International Conference on
Distributed Computing Systems, ICDCS 2011, pp. 446–455 (2011)

5. Bromberg, Y.-D., Issarny, V.: INDISS: Interoperable Discovery System for Net-
worked Services. In:Alonso, G. (ed.)Middleware 2005. LNCS, vol. 3790, pp. 164–183.
Springer, Heidelberg (2005)

6. Bromberg, Y.-D., Réveillère, L., Lawall, J.L., Muller, G.: Automatic Generation
of Network Protocol Gateways. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware
2009. LNCS, vol. 5896, pp. 21–41. Springer, Heidelberg (2009)

7. Flores, C., Blair, G., Grace, P.: An adaptive middleware to overcome service dis-
covery heterogeneity in mobile ad hoc environments. In: IEEE Distributed Systems
Online (2007)

8. Floyd, S., Jacobson, V., Liu, C., McCanne, S., Zhang, L.: A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM
Trans. Netw. 5, 784–803 (1997)

9. Grace, P., Hughes, D., Porter, B., Blair, G., Coulson, G., Taiani, F.: Experiences
with open overlays: a middleware approach to network heterogeneity. In: Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems, Eurosys 2008, pp. 123–136. ACM, New York (2008)

10. Object Management Group. The common object request broker: Architecture and
specification version 2.0. Technical report (1995)

11. Yih-Chun, H., Perrig, A., Johnson, D.: Ariadne: a secure on-demand routing pro-
tocol for ad hoc networks. Wirel. Netw. 11(1-2), 21–38 (2005)

12. Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On Handling Data in
Automata Learning - Considerations from the CONNECT Perspective In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235.
Springer, Heidelberg (2010)

248 P. Grace et al.

13. Issarny, V., Bennaceur, A., Bromberg, Y.-D.: Middleware-Layer Connector Syn-
thesis: Beyond State of the Art in Middleware Interoperability. In: Bernardo, M.,
Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 217–255. Springer, Heidelberg
(2011)

14. Li, B., Guo, J., Wang, M.: iOverlay: A Lightweight Middleware Infrastructure for
Overlay Application Implementations, pp. 135–154 (2004)

15. Limam, N., Ziembicki, J., Ahmed, R., Iraqi, Y., Li, D., Boutaba, R., Cuervo, F.:
Osda: Open service discovery architecture for efficient cross-domain service provi-
sioning. Computer Communications 30(3), 546–563 (2007)

16. Loo, B., Condie, T., Hellerstein, J., Maniatis, P., Roscoe, T., Stoica, I.: Imple-
menting declarative overlays. In: Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, SOSP 2005, New York, NY, USA, pp. 75–90
(2005)

17. Magee, J., Kramer, J.: Concurrency - state models and Java programs, 2nd edn.
Wiley (2006)

18. Milner, R.: Operational and Algebraic Semantics of Concurrent Processes (1990)
19. Nakazawa, J., Tokuda, H., Edwards, W., Ramachandran, U.: A bridging framework

for universal interoperability in pervasive systems. In: 26th IEEE International
Conference on Distributed Computing Systems, ICDCS 2006 (2006)

20. Raverdy, P., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol ap-
proach to service discovery and access in pervasive environments. In: 3rd Annual
International Conference on Mobile and Ubiquitous Systems - Workshops, pp. 1–9
(July 2006)

21. Rodriguez, A., Killian, C., Bhat, S., Kostic, D., Vahdat, A.: Macedon: Methodology
for automatically creating, evaluating, and designing overlay networks. In: In NSDI,
pp. 267–280 (2004)

22. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

23. Rowstron, A., Kermarrec, A.-M., Druschel, P.: SCRIBE: TheDesign of a Large-Scale
Event Notification Infrastructure. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001.
LNCS, vol. 2233, pp. 30–43. Springer, Heidelberg (2001)

24. Souto, E., Guimar, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kelner, J.:
Mires: a publish/subscribe middleware for sensor networks. Personal Ubiquitous
Comput. 10(1), 37–44 (2005)

25. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet ap-
plications. IEEE/ACM Trans. Netw. 11, 17–32 (2003)

Opportunistic Multipath Forwarding

in Content-Based Publish/Subscribe Overlays

Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen

Middleware Systems Research Group, University of Toronto
{reza,jacobsen}@eecg.utoronto.ca

Abstract. Fine-grained filtering capabilities prevalent in content-based
Publish/Subscribe (pub/sub) overlays lead to scenarios in which publica-
tions pass through brokers with no matching local subscribers. Processing
of publications at these pure forwarding brokers amounts to inefficient
use of resources and should ideally be avoided. This paper develops an
approach that largely mitigates this problem by building and adaptively
maintaining a highly connected overlay mesh superimposed atop a low
connectivity primary overlay network. While the primary network pro-
vides basic end-to-end forwarding routes, the mesh structure provides a
rich set of alternative forwarding choices which can be used to bypass
pure forwarding brokers. This provides unique opportunities for load bal-
ancing and congestion avoidance. Through extensive experimental evalu-
ation on the SciNet cluster and PlanetLab, we compare the performance
of our approach with that of conventional pub/sub algorithms as base-
line. Our results indicate that our approach improves publication delivery
delay and lowers network traffic while incurring negligible computational
and bandwidth overhead. Furthermore, compared to the baseline, we ob-
served significant gains of up to 115% in terms of system throughput.

1 Introduction

Flexibility, scalability and loose coupling properties of the Publish/Subscribe
(pub/sub) model has led to its adoption in a variety of enterprise, datacenter
and wide-area network environments [1,2,3,4]. Microsoft, Google and Yahoo, for
instance, use pub/sub for end-user notification delivery [5], data dissemination in
large-scale server farms [3], and in distributed data storage systems [2]. In enter-
prise settings, pub/sub has appeared in several contexts and standards including
Enterprise Service Bus (ESB) [6,4], algorithmic trading [7], WS-Notifications and
WS-Eventing. In wide-area networks, pub/sub messaging has been used in push-
based RSS feeds [8], global supply chain data exchange networks [1], and as a
potential addressing and routing paradigm for future Internet protocols [9].

Widespread adoption of the pub/sub model further underlines the significance
of scalable architectures that can efficiently utilize network resources in order to
achieve low message delivery delay and high throughput. A distributed content-
based pub/sub system deploys a set of dedicated application layer routers (a.k.a.
brokers) to form an overlay network [10,11,12,13,14,15,16]. Clients connect to
brokers and are offered the flexibility to specify fine-grained filtering constraints
on publications they are interested to receive. Publications that satisfy these

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 249–270, 2012.
� IFIP International Federation for Information Processing 2012

250 R. Sherafat Kazemzadeh and H.-A. Jacobsen

constraints are forwarded through the overlay towards brokers where interested
subscribers reside and are then delivered to those clients.

It is generally infeasible to maintain full connectivity in a large overlay and
it becomes imperative to only utilize a selective set of all links. Furthermore,
in content-based pub/sub systems the set of matching subscribers to which a
given publication must be delivered is highly variable and cannot be determined
in advance. This makes it challenging to build optimal dissemination overlays
that only span to brokers with interested local subscribers. As a result, existing
pub/sub systems use a shared dissemination overlay and may forward publica-
tions through uninterested (a.k.a. pure forwarding) brokers with no local match-
ing subscribers. Processing of publications at pure forwarding brokers increases
publication hop count and propagation latency, and therefore amounts to ineffi-
cient use of bandwidth and computational resources in the network.

To lower the number of pure forwarders, reconfiguration techniques modify
the overlay step-by-step by adding links between brokers with similar subscriber
interests and removing links between those with less similarity [17,18]. Altering
overlay links in this manner has a large system-wide footprint and while benefi-
cial to some end-to-end publication flows it can at the same time be detrimental
to many others. Furthermore, each reconfiguration step requires coordinated
updates to routing tables of many brokers, a process that is slow, costly and po-
tentially disruptive. Alternatively, clustering techniques group subscribers with
similar interests and move them closer to brokers where publishers reside [19]. In
content-based pub/sub systems in which clients may have widely varying inter-
ests, the performance of clustering schemes is not always guaranteed. Further-
more, clustering algorithms may prescribe clients with multiple subscriptions to
connect to more than one broker, an inconvenience that must ideally be avoided.

A related common problem in virtually all existing pub/sub systems is that
overlay forwarding paths are set up in a fixed end-to-end manner. In other words,
a publication is forwarded over a fixed path to a destination broker (where match-
ing subscribers are connected) regardless of whether or not the message is of
interest to subscribers at intermediate brokers along the path. This rigidity in-
evitably results in a large number of pure forwarders, especially in a content-
based pub/sub system with highly varied subscriber interests. This deficiency
could be mitigated if the overlay connectivity between sources and destinations
offered a multitude of redundant forwarding paths giving brokers the flexibility
to pick the best forwarding path for each publication on a one-by-one basis.

To this end, we propose an adaptive overlay management and dynamic routing
approach that constructs a highly connected mesh structure atop a primary over-
lay network. The primary network offers basic connectivity among end-to-end
brokers and may use existing routing algorithms. By monitoring ongoing traffic
in the primary network, brokers identify popular transit routes and establish
additional communication links, referred to as soft links. Soft links collectively
construct a highly connected overlay mesh and provide a rich set of redun-
dant paths between all source and destination broker pairs. Figure 1 illustrates
a snapshot view of the number of end-to-end paths in a running system using this

Opportunistic Multipath Publication Forwarding 251

 1

 10

 100

 1000

 0 20 40 60 80 100A
va

ila
bl

e
pa

th
s

% of source-destination brokers

250 Brokers
120 Brokers

Fig. 1. Number of end-to-end forwarding
paths in networks of 120 and 250 brokers (log
scale)

scheme. About 40% of brokers in a
network of size 120 have at least one
hundred distinct forwarding paths
among them. This is increased to
more than 1, 000 for 13% of brokers
in a network of size 250. In our ap-
proach, all these routes are readily
available for publication forwarding
and the decision on which path to
take is made at runtime and based
on the relative location of matching
subscribers. This is in contrast to most pub/sub systems [13,10,14] which use
fixed end-to-end forwarding paths and send a message towards a destination bro-
ker over the same path regardless of whether or not it matches subscriptions
at intermediate brokers. The premise of our approach is that availability of a
very large set of alternative routes gives brokers the opportunity to consciously
use the path that is best suitable for delivery of the message to all interested
subscribers while incurring fewer pure forwarders.

To forward publications in the overlay mesh and determine the relative lo-
cation of matching subscribers, brokers rely on knowledge of their neighboring
brokers within a certain distance, denoted by configuration parameter Δ. This
knowledge enables a broker to anticipate how publications flow within its Δ-
neighborhood and which alternative routes towards the destinations incur fewer
pure forwarders. Furthermore, brokers monitor ongoing traffic to choose the best
set of soft links based on three criteria: Avoiding pure forwarding brokers, avoid-
ing slow primary links, and bypassing congested network hotspots. As another
advantage of our approach, modifying the overlay mesh of soft links requires only
local updates to routing tables. This is a light-weight process and a significant
improvement over full overlay reconfiguration techniques [17,18] which require
coordinated updates to several brokers’ routing tables.

In this paper, we make the following contributions: (i) A scheme to adaptively
maintain a highly connected overlay mesh for pub/sub systems; (ii) techniques
to update brokers’ routing tables based on network connectivity with no need
for coordination among neighbors; (iii) four forwarding strategies and efficient
cache data structures to realize them; (iv) a traffic profiling technique to identify
popular transit routes within the overlay; and (v) comprehensive experimental
evaluations using a Java-based open-source implementation, called Publiy [20].

2 Publication Forwarding Strategies

In this section, we give a high level overview of four publication forwarding strate-
gies that we develop in this paper. We defer the details of how each forwarding
strategy can be efficiently implemented to subsequent sections.

We use Figure 2 to describe how publication p is forwarded by Broker A in
each strategy. In the figure, p matches subscribers local to Brokers N3 , N5 , and

252 R. Sherafat Kazemzadeh and H.-A. Jacobsen

p

N1 N2

N3

N4

N5

N6

A

(a) S0: p is sent 6 times

p

N1 N2

N3

N4

N5

N6

A

(b) S1: p is sent 5 times

p

N1 N2

N3

N4

N5

N6

A

(c) S2: p is sent 3 times

Fig. 2. Forwarding publication p matching subscribers at N3 ,N5 ,N6 using different
strategies. Primary and soft links are represented by solid and dashed lines, respectively

N6 . Moreover, solid lines represent primary links in the network and dashed lines
are extra soft links created and maintained in our approach.

Strategy 0 (S0): This strategy corresponds to conventional pub/sub systems
and is presented here mainly as baseline for comparison. Conventional approaches
are based on fixed end-to-end forwarding paths [13,14,16] along which matching
publications traverse towards interested subscribers. These paths are established
over communication links which we refer to as primary links. In Figure 2(a), Bro-
ker A sends one copy of p to N1 which is its immediate neighbor located closer
to matching subscribers. Observe that since forwarding paths are maintained in
a fixed end-to-end manner, Broker A’s decision to send p to this neighbor is not
impacted by whether p is of interest to intermediate brokers along p’s projected
downstream propagation path.

Strategy 1 (S1): Brokers using this strategy take advantage of their neighbor-
hood knowledge to anticipate the propagation path of publications within their
Δ-neighborhoods. Armed with this knowledge, brokers identify nearby pure for-
warders and attempt to bypass them using additional soft links that they pos-
sess. S1 allows brokers to utilize both primary links as well as soft links and send
publications to their farthest reachable neighbors that are on the intersection
of primary paths towards all matching subscribers. In Figure 2(b), the inter-
section of primary paths from Broker A to Brokers N3 ,N5 and N6 consists of
path 〈N1 ,N2 〉. As a result, Broker A sends p to N2 (i.e., the farthest reachable
neighbor on this path) thus bypassing N1 . Broker N2 will then be responsible
to forward p to N3 and N4 . Observe that S1 enables brokers to improve the
system’s performance by opportunistically bypassing some pure forwarders.

Strategy 2 (S2): This strategy also makes use of both primary and soft links
to bypass pure forwarding brokers but compared to S1 this is done in a more
aggressive manner. More specifically, brokers that run S2 attempt to directly
forward publications towards matching subscribers using their farthest reaching
primary and soft links. In Figure 2(c), Broker A uses its soft links and directly
forwards separate copies of p to N3 , N5 , and N6 . Note that this strategy improves
the chance of bypassing a larger number of pure forwarders. However, this comes
at the cost of having Broker A send more copies of publication p.

Opportunistic Multipath Publication Forwarding 253

Strategy Hybrid (SH): The above strategies consume different amount of
output bandwidth per processed publication, e.g., Broker A sends three copies
of p using S2 while S0 and S1 each require A to send only one copy. Brokers
using SH take advantage of this trade-off and dynamically switch between S1
and S2 to tune their output bandwidth consumption. More specifically, a broker
with limited output bandwidth uses S1 to minimize utilization of its scarce
resources. This, however, can potentially lead to increased network-wide traffic.
On the other hand, brokers with no resource constraints use S2 which incurs
fewer overall network messages at the expense of more bandwidth utilization at
each forwarding broker per publication.

We underscore that the advantages of our forwarding strategies grow in
content-based pub/sub systems featuring selective multicast. In these systems,
publications are likely to match highly varied subsets of subscriptions (the num-
ber of these subsets grows exponentially with the system size). Furthermore, in-
terested subscribers are not known in advance and are identified only at runtime.
This high degree of unpredictability and matching diversity makes it inherently
difficult to optimize the pub/sub overlay when forwarding paths are constructed
in a fixed end-to-end manner (i.e., the case of conventional pub/sub systems).
In contrast, the flexibility of forwarding publications through a well-connected
overlay mesh of soft links in our approach greatly remedies this problem and
enables fine-grained tuning of forwarding paths in an opportunistic manner.

Realization of our forwarding strategies requires pub/sub brokers to maintain
Δ-neighborhood knowledge and perform complex path computations in order to
decide how to forward a publication. In the following sections, we elaborate on
efficient techniques and data structures to enable brokers to harvest the benefits
of high connectivity in the overlay mesh at a negligible overhead.

3 Overlay Maps

We assume that there is an initial pub/sub overlay that provides basic con-
nectivity among brokers. We refer to this overlay and its links as the primary
network and primary links, respectively. In this section, we elaborate on brokers’
internal data structures, namely the Master Overlay Map and Working Overlay
Map, used by brokers to make forwarding decisions. Roughly speaking, the for-
mer reflects a partial view of the primary network which is stable and changes
infrequently. The latter, however, acts as an efficient lookup cache and provides
a dynamic view of the overlay mesh which is built atop the primary network.

Master overlay maps: Brokers store a partial view of the primary network in a
local data structure called the Master Overlay Map (MOM). This partial view is
in the form of a subgraph centered at the broker and includes neighboring brokers
and their primary links located within distance Δ (i.e., Δ-neighborhood). The
primary network is stable and changes infrequently, possibly due to occasional
broker joins or departures. These changes are propagated hop-by-hop in Δ-
neighborhoods so that nearby brokers update their MOMs accordingly.

Working overlay maps: Other than primary links, brokers possess two other
types of links, namely soft links and candidate links. These links construct an

254 R. Sherafat Kazemzadeh and H.-A. Jacobsen

Primary Soft link
link

X5AX2

N2 N3 X4

N4X3X1N1

(a) MOM: A’s primary view.

N4A

N2 N3

N1

(b) WOM: A’s mesh view.

Fig. 3. Master and working over-
lay maps at Broker A (Δ = 4)

N
ei
g
h
b
o
rs

Su
bs
ti
tu
te
d

ne
ig
hb
or
s

B
et
w
ee
n

se
t

B
eh
in
d

se
t

B
ey
on
d

se
t

N1

{
X1, X3,

X4

}
{N1} {N2}

{
N1, N3,

N4

}

N2 {X2 } {N2}
{
N1, N3,

N4

}
{N2 }

N3 ∅ {N1 ,N3} {N2} {N3 }
N4 ∅ {N1 ,N4} {N2} {N4 }

Fig. 4. Information in A’s WOM (Δ = 4)

overlay mesh that is superimposed atop the primary network. Unlike primary
links, soft and candidate links change frequently in order to enable quick adap-
tation to changes in publication traffic, network and load conditions (details
described in Section 6). In order to accommodate this level of dynamism and
provide an efficient way to use the connectivity of the overlay mesh for publi-
cation forwarding, we devise the Working Overlay Map (WOM) data structure.
WOM is derived from MOM and transforms the broker’s initial knowledge of
the primary network into a concise representation in accordance to its current
set of primary, soft and candidate links. WOM is reconstructed locally upon ev-
ery update to the broker’s links and acts as a pre-computed cache for efficient
publication forwarding. In what follows, we describe the steps in construction of
WOM from the perspective of Broker A shown in Figure 3.

Step 1: Initially, A’s WOM contains all the neighboring brokers and primary
links in its MOM, in addition to A’s own non-primary links. Since Broker A
is often not directly connected to a number of its neighbors, the goal of this
step (called edge contraction) is to weed out these neighbors from A’s view –
thus making it more concise. For this purpose, Broker A considers its neighboring
brokers in descending order of distance in the primary network. For each Broker v
with no direct link, the edge between v and a closer Broker w is removed and v is
substituted with w . Furthermore, all edges incident (attached) to v are removed
and attached to w . Once complete, WOM forms a graph that only contains
neighboring brokers to whom A maintains a direct link. Figures 3(a) and 3(b)
illustrate A’s MOM and WOM before and after this process, respectively.

Step 2: Broker identifiers in the resulting graph are sorted in an array, denoted
by BrokerArr

A
, in ascending order of their distance in WOM. Henceforth, Ni,

refers to the ith broker in this array and we have dist(Ni) ≤ dist(Ni+1).

Step 3: For each Broker Ni , three auxiliary sets are computed that contain
identifiers of neighbors located in different relative positions with respect to A
and Ni (see Figure 4). These auxiliary sets are as follows:

Opportunistic Multipath Publication Forwarding 255

– BetweenSet(A,Ni) contains Ni and brokers located on the path between A
and Ni in the primary network. In Figure 3, BetweenSet(A,N4) = {N1 ,N4}.

– BeyondSet(A,Ni) contains brokers located downstream of Ni from A’s point
of view (including Ni). In Figure 3, BeyondSet(A,N1) = {N1 ,N3 ,N4}.

– BehindSet(A,Ni) contains brokers located downstream of A from Ni ’s point
of view. In Figure 3, BehindSet(A,N1) = {N2}.

We have now covered how brokers’ overlay maps are updated. Next, we discuss
maintenance of subscription routing tables.

4 Subscription Routing Tables

Brokers maintain their subscription routing tables in a similar manner as to
their views of the primary network and overlay mesh. More specifically, there are
two routing tables, namely Master Subscription Table and Working Subscription
Table: Subscription entries in the former table construct end-to-end forwarding
paths in the primary network. The entries in the latter, however, adapt these
paths to the current overlay mesh connectivity as reflected in the broker’sWOM.

Master subscription tables: We introduce the notion of subscription anchor
used to store subscription information in brokers’ routing tables. From the per-
spective of a broker, an anchor for a subscription is a broker located up toΔ hops
closer to the issuing subscriber (the anchor of a local subscriber points to the
broker itself). Anchors are used to forward matching publications hop-by-hop
(or multiple hops at a time) towards subscribers. The advantage of using an-
chors in this manner is that brokers are able to anticipate the propagation path
of matching publications within their Δ-neighborhoods and foresee forwarding
paths towards all matching subscribers inside and outside of their neighborhoods.
Availability of this information allows brokers to choose the actual publication
forwarding path from a wealth of alternative routes within their neighborhoods
(strategies that are used for this purpose are discussed in Section 5).

The anchor placement algorithm works as follows:1 Subscriptions are issued
by clients and are propagated throughout the network along the primary links
only. Starting from the broker that a subscriber is connected to, each receiving
broker stores a copy of the subscription in a set data structure called the Master
Subscription Table (MST). Subscription entries in this set are in the form of
s = 〈id , preds , anchor , ppath〉, where id is a unique subscription identifier, preds
are predicates specifying client interests, anchor is the subscription anchor, and
ppath is the propagation path of the subscription through the primary network.
As a subscription propagates in the primary network, we require its anchor to
be adjusted at each intermediate broker as follows: If the issuing subscriber is
within distance Δ− 1, the anchor remains unchanged; otherwise, the anchor is
set to the identifier of the broker which is one hop closer to the subscriber than
the subscription’s previous anchor. For example, in Figure 3(a), the anchor
of a subscription s issued by X5 will be updated to N4 before N1 sends the

1 Applicability of our approach extends to other pub/sub routing schemes that can
accommodate the placement of subscription anchors in brokers’ Δ-neighborhoods.

256 R. Sherafat Kazemzadeh and H.-A. Jacobsen

subscription to Broker A (Δ = 4). Note that the information to correctly adjust
the anchors is readily available locally at brokers as part of their MOM.

Working subscription tables: Similar to how WOM is derived from MOM,
brokers derive the Working Subscription Table (WST) from their MST and use it
for publication forwarding. Construction of WST uses information pre-computed
in WOM as follows: For each subscription, smst ∈ MST , a new subscription, swst ,
with identical preds and id fields but with an updated anchor is added into the
WST. The anchor of swst is the identifier of the broker that smst .anchor was
substituted with during Step 1 in the construction of WOM (see Section 3).
WST is updated upon every change to brokers’ links and in order to adapt
routing tables to the state and connectivity of the overlay mesh. However,
once constructed, all subsequently issued subscriptions (and unsubscriptions)
are simultaneously added to (and removed from) both MST and WST.

Subscription Covering: Subscription covering is an important optimization
technique that improves matching performance by compacting brokers’ routing
tables. Subscription s1 is said to cover s2, iff, all publications that match s2 also
match s1. We compute covering sets for subscriptions with identical anchors. A
publication is forwarded over a link if it matches at least one of the subscriptions
in the corresponding covering set. Section 7 investigates the impact of broker
parameters on performance gains brought about by the covering techniques.

5 Publication Forwarding

This section presents efficient techniques to realize the publication forwarding
strategies of Section 2. Regardless of the exact strategy used, the processing of
publications involves two steps: publication matching and path computation. In
the first step, brokers use their WST and a matching algorithm to identify the
set of subscriptions that match the publication’s content. The exact implemen-
tation of the matching algorithm is outside the scope of this paper and has been
investigated extensively in the literature. We only assume that the output of the
algorithm is in the form of a set of broker identifiers corresponding to the anchor
of matching subscriptions in the WST. We use Anchors(p) to denote this set
for publication p. In the next step (i.e., path computation), the broker uses its
WOM and computes a final set of neighbors to which it has direct links. This set
is denoted as Fwrd(p), and once computed, the broker forwards p accordingly
(if the publication matches a local subscription, the issuing subscribers receive
a copy of the publication). This section presents how Fwrd(p) is computed.

Path Computations for S0: This strategy concerns conventional pub/sub
systems [13,14,16,10] and is presented here purely as a baseline for comparison.
Brokers do not establish and maintain soft links and Δ can effectively be set to 1.
Furthermore, subscription anchors in WST only consist of immediate neighbors
in the primary network. As a result, we have Fwrd(p) = Anchors(p).

Path Computations for S1: In this strategy, brokers possess soft links and
exploit them in order to bypass uninterested neighbors. At the same time, a

Opportunistic Multipath Publication Forwarding 257

1: function Compute Forwarding S1(Anchors(p)) �Input: p’s matching anchors.
2: Anchors(p) � {X ∈ Anchors(p)∧ primary path to X does not intersect with

primary propagation path of p} � Only keep downstream anchors.
3: Intersection �∅; Fwrd(p) � ∅
4: for all (Ni ∈ Anchors(p)) do
5: if (Intersection ∩ BetweenSet(A,Ni) = ∅) then
6: Intersection � Intersection ∪ BetweenSet(A,Ni)
7: else
8: Intersection � Intersection ∩ (BetweenSet(A,Ni) ∪BehindSet(A,Ni))

9: j � |BrokerArrA |
10: while (j > 0 ∧ Anchors(p) �= ∅) do
11: if (Anchors(p) ∩ BeyondSet(A,Nj) �= ∅ ∧Nj ∈ Intersection) then
12: Fwrd(p) � Fwrd(p) ∪ {Nj }
13: Anchors(p) � Anchors(p) − BeyondSet(A,Nj)

14: j � j − 1

15: return Fwrd(p)

Fig. 5. Path computation for S1 at Broker A

forwarding broker attempts to achieve this goal by sending the publication to the
farthest reachable brokers on the intersection of the primary paths to neighbors
in Anchors(p). For efficient path computation, the broker takes advantage of the
pre-computed auxiliary sets in its WOM as shown in Figure 5. In Lines 4–8, the
set of brokers on the intersection of primary paths to Anchors(p) is computed:
Intersection. This is carried out via a series of set operations over the pre-
computed auxiliary sets. Next, the while loop in Lines 10–14 processes brokers,
Nj , on the intersection of the paths in descending order of distance. If there is a
broker in Anchors(p) that is beyond Nj (i.e., BeyondSet(A,Nj)∩Anchors(p) �=
∅), then Nj is added to Fwrd(p) and all brokers located beyond Nj (including
Nj itself) are removed from Anchors(p) (Line 13). The rationale behind this is
once Nj receives the publication, it sends the publication to all other downstream
brokers, i.e., BeyondSet(A,Nj). Finally, when Anchors(p) becomes empty all
matching subscription anchors have been accounted for and Fwrd(p) is returned.

Path Computations for S2: The goal of brokers in S2 is to directly send
publications to all reachable anchors in Anchors(p) excluding those that have a
closer reachable broker on their primary path. This is different from S1 where
publications are likely to be sent to pure forwarding brokers located on the
intersection of paths to the anchors. Figure 6 presents the path computation
algorithm. Intuitively, the brokers in Anchors(p) are considered in ascending
distance (i.e., from lower subscripts to higher). Each such broker is added to
Fwrd(p) in Line 6, and all its downstream brokers are removed from Anchors(p)
in Line 7. Finally, when Anchors(p) becomes empty Fwrd(p) is returned.

Path Computations for SH: Brokers that use the hybrid strategy SH moni-
tor their output publication traffic and use a threshold (e.g., 80% of their uplink
capacity) to decide when to switch between S1 and S2. Once the link utilization

258 R. Sherafat Kazemzadeh and H.-A. Jacobsen

passes this limit, the broker uses S1 to preserve its bandwidth. If the link uti-
lization is lower than the limit brokers use S2 which more aggressively attempts
to bypass pure forwarding brokers.

Implementation Notes: The size of all auxiliary sets is bounded by the number
of brokers’ links. Since this is relatively small, bit-vectors can provide an efficient
implementation for the set operations in the algorithms: Broker Ni in WOM
is associated with the i-th bit in a bit-vector and set union, and intersection
operations are carried out via bit-wise ‘&’ and ‘|’, respectively.

1: function Compute Forwarding S2(Anchors(p)) � Input: p’s matching anchors.
2: Anchors(p) � {X ∈ Anchors(p)∧ primary path to X does not intersect with

primary propagation path of p} � Only keep downstream anchors.
3: j ←1 ; Fwrd(p) ← ∅
4: while (j ≤ |Links| ∧Anchors(p) �= ∅) do
5: if (Nj ∈ Anchors(p)) then
6: Fwrd(p) ← Fwrd(p) ∪ {Nj }
7: Anchors(p) ← Anchors(p) − BeyondSet(A,Nj)

8: j ← j + 1

9: return Fwrd(p)

Fig. 6. Path computation for S2 at Broker A

6 Managing Broker Links

In large overlays, the overhead of establishing many connections makes it in-
feasible to maintain full network connectivity. We would therefore like to have
brokers selectively establish a small set of “good” soft links. A good soft link
contributes most to the system performance and has three characteristics: First,
it transmits a large volume of traffic; second, it bypasses a large number of inter-
mediate pure forwarding brokers in the primary network; and, third, the more
overloaded the bypassed brokers are the better a soft link is. In what follows,
we first introduce candidate links and then devise a profiling scheme to identify
“good” soft links.

A broker, say A, can have three types of links: (i) primary links (denoted by
pLinksA) are designated communication links in the primary network over which
end-to-end forwarding paths are constructed; (ii) soft links (i.e., sLinksA) aug-
ment the primary network and build a highly connected mesh overlay; and (iii)
candidate links (i.e., cLinksA) are not real communication links and only act as
temporary stubs in the routing tables to facilitate the process of identifying good
soft links. We use the term broker degree to refer to the number of primary links
a broker has, and the term fanout for the maximum number of communication
links, i.e., primary and soft links combined. Finally, we use LinksA to denote
the set of all links at Broker A, i.e., LinksA = pLinksA ∪ sLinksA ∪ cLinksA.

Opportunistic Multipath Publication Forwarding 259

Publication Traffic Profiling: We define the gain of a link over time interval
T as the number of brokers that the link bypasses in the primary network times
the number of publications that are sent over the link during T times a scaling
parameter that factors in the load of bypassed intermediate neighbors. More
precisely, Broker A computes the gain of its own link to Broker N as follows:

gain(N) = (# pubs sent to N during T) ∗ (dist(A,N)− 1) ∗ loadScalingFactor(N)

The loadScalingFactor is intended to further boost the gain of a link that
bypasses overloaded intermediate brokers. It is defined as follows:

loadScalingFactor(N) = Π∀X(1+min(0, normalizedLoad(X)−loadThreshold))

where normalizedLoad(X) is the normalized load of Broker X located on the
primary path between A and N . We considered output publication rate as our
preferred broker load metric as opposed to input publication rate. This is due to
the fact that a portion of brokers’ input publication traffic is destined to local
subscribers and cannot be avoided. In contrast, the output publication traffic is
more indicative of the volume of publications that a broker relays. Relayed traffic
can be opportunistically reduced using soft links that bypass pure forwarders.

Candidate Links: Prospective soft links with unknown gains that are first con-
sidered for profiling are called candidate links. A candidate link acts as a stub in
the broker’s WOM and WST and enables publication profiling in a similar way
to primary and soft links. In contrast to primary and soft links, however, a candi-
date link does not have a network connection and publications that are intended
to be sent over a candidate link are transparently funnelled over a primary or
soft link to another neighbor that is closer in the primary network. Candidate
links allow brokers to locally estimate their gain without going through the link
establishment process. Once a candidate link is determined to be “good”, it is
promoted to become a soft link and its corresponding connection is established.

Soft Link Management: Brokers periodically examine the gain of their links
and decide which ones to keep and which ones to discard. The total number of
links in each round is constrained by the configuration parameter maxlinks and
consists of at most fanout primary/soft links and (maxlinks− fanout) candidate
links. Broker links are ranked based on their measured gains. Soft links with low
gains are discarded and candidate links with high gains are promoted to become
soft links. In this process, brokers respect the fanout limit on their maximum
number of communication links. Finally, brokers may add new candidate links
to be profiled in the next round. New candidate links are chosen based on the
following heuristics: If an existing link to a neighbor, say X , has a high gain, then
there is some chance that direct links to X ’s neighbors also achieve a good gain.
This is especially true if X ’s high gain is due to the traffic that will eventually
be relayed to its neighbors. To determine such cases, the broker considers the
neighbors of a high gain link as new candidate links. If such links indeed prove
to deliver a good gain, they will be promoted to soft links in the future rounds.

To adapt to network conditions, brokers exchange load information and mea-
sure their communication links’ round trip times. This information is used in

260 R. Sherafat Kazemzadeh and H.-A. Jacobsen

the candidate selection process by prioritizing soft links that bypass slow links
and overloaded neighbors. This simple cost model effectively enables brokers to
explore their neighborhoods in search of viable soft links at a low cost.

Primary Link Management: The techniques presented so far enable brokers
to choose their soft links based on publication traffic and neighbors’ load con-
ditions. Addition and removal of soft links is a light-weight process and only
requires local (not coordinated) routing table updates. Hence, brokers can af-
ford to employ this technique frequently and adapt swiftly to network and traffic
changes. The soft link management scheme may also allow brokers to deal with
transient crash or temporary disconnection of their neighbors [21]. In contrast,
primary links are meant to be more stable, mainly since changes to the primary
network require costly coordinated updates to MOMs and MSTs of many affected
brokers (this cost is unavoidable in the case of permanent crash or departure).

We now present the primary network reconfiguration procedure in the form of
aΔ-move whereby a broker disconnects one of its primary links and establishes a
new primary link to another broker within its originalΔ-neighborhood. Any form
of overlay modification can then be carried out via a series of Δ-moves, joins and
departures of edge brokers. Figure 7 illustrates the state of the primary network
before (left) and after (right) Broker A moves from N to B. Solid lines in the
figure represent primary links and the move path, PA:N�B = 〈N,N2, · · · , B〉, is
the primary path between Broker N and B. The figure also illustrates subscrip-
tion anchors in nearby brokers’ MSTs (i.e., dashed arrows) that are affected by
the move. We use Figure 7 to describe the move procedure via which Broker A’s
and other nearby brokers’ MOMs and MSTs are updated. Note that the update
process only concerns the master data structures. Furthermore, in order to ensure

reconfiguration

Group3

Group1

Group3

Group4 Group4
Group1

After
reconfiguration

Before

B

A

AB

NN

➊

· · ·

MΔ

AΔ

A2

· · ·

N2

· · ·

M2

B2

MΔ

· · ·

M2

· · ·

BΔBΔ

· · ·

A2

B2

· · ·

AΔ

· · ·➉

➉
N2

Fig. 7. Overlay before (left) and after
(right) Δ-move of Broker A. Solid and
dashed lines are primary links and sub-
scription anchors at affected brokers, respec-
tively.

that the state of the network re-
mains consistent, the move process
uses an external coordinator to pre-
vent concurrent moves from taking
place within overlapping neighbor-
hoods. Also, note that while a move
is pending, the primary network can
still enjoy a high level of adaptation
that is brought about using soft links.

Updating MOMs and MSTs:
Following a move by Broker A from
N to B, brokers within the old and
new Δ-neighborhood of A must up-
date their MOMs as well as the
subscription anchors in their MSTs
accordingly in order to correctly re-
flect the state of the primary network
following the move. These brokers are
said to be affected by A’s move and

Opportunistic Multipath Publication Forwarding 261

can carry out updates as follows: An affected broker needs three pieces of in-
formation to compute its new MOM: Its initial MOM, as well as Broker A’s
initial and final MOMs. The update is done by excluding neighbors of A that
are no longer within distance Δ and adding ones in A’s new Δ-neighborhood
that fall within distance Δ. Likewise, an affected broker needs three pieces of
information to compute new anchors for the subscriptions in its MST. The in-
formation needed includes: Its old and new MOMs (the new MOM is computed
as discussed above) as well as the move path PA:N�B. The move procedure, de-
scribed next, ensures that the information required in the above update process
(i.e., the move path and Broker A’s old and new MOMs) is provided to affected
brokers. As a result, affected brokers can locally compute their new MOMs and
MSTs that reflect the state of the network after the join.

The Δ-move Procedure: The move procedure involves the following phases:

Preparation Phase: Before starting a move, Broker A contacts the coordinator
for permission. Once granted, it contacts the destination Broker B and receives
B’s MOM. This will be used by A to construct temporary MOMtmp and MSTtmp

that reflect the state of its post-move Δ-neighborhood and subscription anchors.

Initialization Phase: BrokerA injects a specialmove initiation message, minit,
at Broker N . The move initiation message is propagated within Broker A’s old
Δ-neighborhood and receiving brokers discard any soft or candidate links that
they may have that bypass Broker A and refrain from creating new ones until
the move completes. This step completes once A receives a confirmation message
from N indicating completion of propagation of minit in A’s Δ-neighborhood.

Update Phase: Broker A issues a move in-progress message, minprog, at B that
includes information about its old and new MOMs as well as the moving path
PA:N�B. This message is propagated within A’s post-move Δ-neighborhood and
receiving brokers construct a temporary MOMtmp and MSTtmp which includes
the state of their new Δ-neighborhoods and subscription anchors after the move.
These brokers use MOMtmp and MSTtmp for forwarding of publications from this
point on. At the same time, they also refrain from creating any soft or candidate
links that bypass Broker A. While the move procedure is in progress, Broker A
may receive duplicate publication messages routed via Brokers N and B. As a
matter of fact, the rationale behind the restriction of requiring nearby brokers
to not bypass Broker A while the move is still in progress is to allow effective
duplicate detection and elimination at a single broker (i.e., Broker A). Broker
A properly discards the duplicates and forwards the publications it receives for
the first time according to its new MOMtmp and MSTtmp. Finally, propagation
of the minprog message completes when a corresponding confirmation message
arrives at Broker A. At this point, Broker A proceeds to the final phase.

Wrap-Up Phase: BrokerA ends its move by issuing a move end message, mend,
at Brokers N and B. This message propagates within the Δ-neighborhood of
Broker N prior to the move and the Δ-neighborhood of Broker B after the move
(i.e., to all brokers affected by the move). Receiving brokers that are no longer

262 R. Sherafat Kazemzadeh and H.-A. Jacobsen

in A’s Δ-neighborhood, discard portions of their MOMs that are downstream of
A (including Broker A itself) and substitute subscription anchors that point to
A with a broker located at distance Δ on the moving path. Furthermore, brokers
that remain or have entered A’s newΔ-neighborhood discard their old MOM and
MSTs and replace them with their temporary counterparts constructed earlier
as part of the move procedure (i.e., MOMtmp and MSTtmp). From this point
on, these brokers can create soft or candidate links that bypass Broker A.

7 Evaluation

We carried out large-scale experimental evaluations on the SciNet cluster [22] as
well as PlanetLab [23] using Publiy, our Java-based open-source pub/sub sys-
tem [20]. SciNet machines each have eight 2.66 GHz 64-bit Intel Xeon CPU cores
with 8 GB of memory and PlanetLab machines are a mix of single, dual, and quad
core Intel-family 1.8− 3.2 GHz CPUs equipped with 1− 3 GB of memory. We
used several network configurations and pub/sub workload datasets to compare
our proposed forwarding strategies against S0, as baseline. Our experimental se-
tups are designed with the anticipated use cases of large-scale pub/sub systems in

Table 1. Experimental configurations

Config.
Net. Broker

Platform
size degree

C1 120 3 SciNet

C2 250 3 SciNet

C3 500 3 SciNet

CPL 21 3 Planetlab

datacenter or wide-area environments in
mind. They are varied in terms of net-
work size, subscription matching distri-
bution, and system parameters such as
fanout, and bandwidth capacity. Table 1
summarizes different network configura-
tions used in this section. Henceforth, we
use the short names, e.g., C1, C2, etc., to
refer to the network configuration setups
in Table 1.

In the beginning of each experimental run, brokers propagate subscriptions in
the network. In principle, each subscription can be originated from a separate
subscriber process. However, due to scarcity of our resources running thousands
of clients was infeasible. Instead, we skipped last mile message delivery to clients
and only considered publication forwarding within the broker overlay network.
We thus had brokers to locally log delivered publications instead of sending them
to an actual subscriber (each broker runs on a dedicated CPU core). We believe
that this approach is fair for our comparative study, since direct delivery to
subscribers incurs the same amount of processing and bandwidth in all strategies.

Figure 8(a) summarizes the matching distribution of the subscription and
publication workload datasets used in our experiments. These datasets are ei-
ther based on real-world traces of user interactions in social networks [24] (i.e.,
dataset DT-FB) or are synthesized using a Zipf distribution. This choice was mo-
tivated by the study of Liu et al. who showed that the popularity of RSS feeds in
real-world application scenarios follows Zipf distributions [25]. Figure 8(b) com-
pares the matching distribution of three of our synthesized datasets by illustrat-
ing what percentage of publications matches what percentage of subscriptions in

Opportunistic Multipath Publication Forwarding 263

Dataset Config
Subs Matching subs
count per pub

DT1
C1

6, 552 8% (Sparse)
DT2 19, 472 53% (Dense)

DT3 C2 28, 690 9% (Sparse)

DT4
CPL

900 9% (Sparse)
DT5 6, 000 54% (Dense)

DT-C C3 10, 000 4% (Covering)

DT-FB C1 120, 000 6.5% (Sparse)

(a) Datasets summary.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100%
 m

a
tc

h
in

g
 b

ro
ke

rs
 (

C
D

F
)

% of publications

DT1 (sparse)
DT2 (dense)

DT-FB
Avg DT1 (sparse)
Avg DT2 (dense)

Avg DT-FB

(b) Subscription matching distribu-
tion for DT1, DT2, and DT-FB.

Fig. 8. Workload specification

the system. As such, datasets with fewer or larger average number of matching
subscriptions per publication are categorized as sparse or dense, respectively.
Finally, dataset DT-C has subscriptions that also have covering relationships.

In all the experimental runs in this section, we set Δ to 4. Although a larger
value was in principle possible, it complicates the move procedure (which, as
stated in Section 6, is complementary to our approach) by increasing the number
of affected brokers within Δ-neighborhood of a moving broker. A smaller Δ, on
the other hand, limits the range of fanout values that we can experiment with.
This is due to the fact that brokers only connect to neighbors that are Δ hops
away and the size ofΔ-neighborhoods indirectly constrains the maximum fanout .

Publication Forwarding Path Length: Publication hop count provides valu-
able insight into the internal workings of the system in each strategy and has
a direct impact on delivery delay, throughput and ultimately system scalability.
It is expected that if brokers maintain a larger number of soft links the overlay
mesh becomes more connected, offering more optimized forwarding paths in the
network. Brokers can selectively pick the best forwarding route based on the
strategies used in order to reduce the number of pure forwarders. We compared
publication hop counts incurred using different strategies experimentally. The re-
sults are illustrated in Figure 9 which plots the cumulative distribution function
(CDF) of publication propagation path lengths for executions of configuration
C1 with datasets DT1 (sparse) and DT2 (dense). The Δ and broker fanout pa-
rameters in all executions were set to 4 and 35, respectively. Measurements were
carried out within a 10 min interval in which exactly the same number of publi-
cations are injected in the system at a low rate of 3, 600 msg/sec. At this rate, no
network hotspots are formed and all strategies deliver the same number of publi-
cations. This allows us to compare different strategies based on the publication
hop count metric independently of other interfering factors.

As shown in Figure 9, compared to S0, strategies S1 and S2 substantially
lower publication hop count (data points in the graphs are shifted left). Fewer
hops also imply that publications are matched against subscriptions fewer times.
Furthermore, as there are no overloaded brokers, SH performs similar to S2. An

264 R. Sherafat Kazemzadeh and H.-A. Jacobsen

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11

%
 D

el
iv

er
ed

 p
ub

s

Path length (hops)

(C
D

F
)

S0
S1
S2
SH

(a) DT1 (sparse): 348 thousand deliveries.

 0
 20
 40
 60
 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11

%
 D

el
iv

er
ed

 p
ub

s

Path length (hops)

(C
D

F
)

S0
S1
S2
SH

(b) DT2 (dense): 1.03 million deliveries.

Fig. 9. Publication propagation path lengths using configuration C1 and fanout of 35

interesting effect to observe in the graphs is that the difference between S0 and
S1 is smaller in the dense dataset compared to the sparse dataset. This is due
to the fact that publications in the dense dataset match more subscriptions and
the intersection of primary paths (as computed in S1) is likely to bypass fewer
neighbors. This brings the performance of S1 closer to S0.

Number of Pure Forwarding Brokers: As mentioned earlier, due to the se-
lectivity of content-based forwarding, some brokers inevitably relay publications
that are not of interest to their local subscribers. Availability of a diverse set of
alternative forwarding paths in our overlay mesh enables brokers to reduce such
occurrences by tailoring the actual propagation path of publications based on
the relative location of matching subscribers at runtime. Our measurements are
reported in Table 2 and show that compared to S0, our forwarding strategies
cut the number of pure forwarders by up to 70%. Furthermore, if we consider
the yield of a pub/sub system as the total number of publications delivered (i.e.,
arrive at brokers with local matching subscribers) over the total number of pub-
lications sent between brokers (including those relayed by pure forwarders), we
see that S2 achieves a yield of up to 77%. This is an indication that the system
operates more efficiently and better utilizes its resources.

Table 2. Pure forwarding and system yield for different strategies (Configuration C1)

(a) C1/DT1: 348, 000 pubs delivered.

Strategy
Number of System

pure forwarders yield

S0 559, 000 38%
S1 348, 000 50%
S2 216, 000 61%
SH 195, 000 64%

(b) C1/DT2: 1, 034, 000 pubs delivered.

Strategy
Number of System

pure forwarders yield

S0 1, 010, 000 50%
S1 687, 000 60%
S2 325, 000 76%
SH 300, 000 77%

Publication Delivery Delay: Figure 10 plots average publication delivery
delay (vertical axis) for pairs of brokers that host subscribers and publishers
(horizontal axis).2 The overall average delay for S0 (baseline) is 14.0 ms. This is

2 SciNet uses infiniband interconnect with ultra low latency. We have therefore injected
a delay of 1 ms for broker-to-broker communication to account for networking delay.

Opportunistic Multipath Publication Forwarding 265

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000

D
el

iv
er

y
de

la
y

(m
s)

Broker-to-broker pairs

S0
S1
S2
SH

Fig. 10. Publication delivery delay: x-
axis shows pairs of source-destination bro-
kers; y-axis is avg. delay for corresponding
pair (Conf. C1/DT2, Δ = 4, fanout = 35)

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14

A
gg

re
ga

te
 p

ub
 tr

af
fic

Time (min)

(t
ho

us
an

d
m

sg
/s

ec
) S0

S1
S2
SH

Fig. 11. Aggregate network traffic using
different strategies (Conf. C1/DT2, Δ = 4,
fanout = 35). During first 4 mins subscrip-
tions are propagated (traffic not shown).

lowered to 12.5 ms for S1 and 9.3 ms for S2 and SH (up to 50% improvement over
the baseline). Also, note that this improvement would have been even greater if
the input publication traffic was higher and caused the network to congest.

Network Traffic: Fewer pure forwarders and higher yield implies that the sys-
tem can deliver the same number of publications by sending fewer messages
among brokers. This lowers network traffic and improves efficiency of bandwidth
utilization. Using the same configurations as before, Figure 11 illustrates the
aggregate network traffic in terms of the number of publications transmitted.
The average network traffic in strategies S0, S1, S2 and SH is 3, 400 msg/sec,
2, 850 msg/sec, 2, 200 msg/sec and 2, 200 msg/sec, respectively. Compared to
the baseline, this represents up to 35% improvement in bandwidth utilization.
Furthermore, the traffic resulting from load exchange messages (in S1, S2 and
SH) incurs less than 2% of the total bytes sent and received. This implies that
the bandwidth conservation achieved in our strategies still outperforms its over-
heads.

Computational Overhead: Strategies S1, S2 and SH update WOM and WST
after changes to broker links. Our measurements indicate that each update to
WOM takes about 0.8 ms. This has a negligible amortized overhead considering
the fact that this update takes place roughly every 20 seconds in our implemen-
tation. Construction of WST, on the other hand, is dependent on the size of the
subscription routing table and takes about 17 ms for a workload that consists of
6, 500 subscriptions (i.e., DT1). Finally, thanks to our efficient MOM data struc-
ture and the use of bit-vectors for path computation the time that it takes for
S1 and S2 to forward publications remains unchanged. Detailed measurements
regarding computational and memory costs are available in [26].

Impact of fanout on Broker Performance: Increasing fanout improves
overlay connectivity but comes at the cost of maintaining a larger number of con-
current network connections. This incurs an overhead related to buffer manage-
ment and TCP’s congestion control mechanism. Additionally, as we investigate

266 R. Sherafat Kazemzadeh and H.-A. Jacobsen

experimentally in this section, a larger fanout limits the advantages brought
about by subscription covering techniques and contributes to a degradation in
matching performance. This effect is due to fragmentation of the subscription
space. To clarify this point consider the following simple example: If subscription
s1 covers s2 and s2 covers s3, a broker that possesses only one link (fanout = 1)
computes {s1} as the covering set. Therefore, publications are matched against
one subscription only. On the other hand, if the broker possesses two or more
links, the covering sets are likely to grow larger making matching more expen-
sive. For example, if s1’s anchor is downstream one link and s2 and s3’s anchors
are downstream of another link, then the broker computes two covering sets each
with one subscription, i.e., {s1} and {s2}. As a result, matching becomes more
time consuming. The exact size of the covering sets, of course, depends on sub-
scription predicates and relative location of issuing subscribers in the network.

We investigated this phenomenon using configuration C3 with 500 brokers
and dataset DT-C with covering relationships. We measured publication match-
ing performance in a system using different fanout values. Figure 12 illustrates
the results normalized based on smallest fanout value of 5. The checkered bars
represent average size of covering sets over a 120s interval. It is evident that
the fragmentation caused by larger fanout values increases the size of covering
sets. Furthermore, larger covering sets translate to an even sharper increase in
predicate evaluation operations needed to match each publication. For example,

 100

 120

 140

 160

 180

5 10 15 20 25

In
cr

ea
se

 (
%

)

Broker Fanout

Covering subscription set size
Predicate evaluation per pub matching

Fig. 12. Larger fanout lowers benefits
of covering techniques (data normalized
based on fanout = 5)

between fanout of 5 and 10 there is a
12% jump in covering set size and a 34%
jump in predicate evaluations. This dis-
crepancy is due to the fact that covering
subscriptions are more generic and usu-
ally come with fewer predicates than cov-
ered subscriptions which in turn are more
specific and contain more predicates.

System Throughput: In large-scale
messaging systems that serve thousands
of clients in a datacenter or an enterprise,
throughput is perhaps the most important aspect of the system. The reduction in
the number of pure forwarders in our strategies frees up brokers’ valuable band-
width and processing resources. These resources can be put to use for disseminat-
ing a larger number of publications, therefore improving throughput. To study
this effect, we carried out extensive experimental analysis using different config-
urations and datasets on SciNet [22] and PlanetLab [23]. Figure 13(a) illustrates
the results using configuration C1 and datasets DT1 (left) and DT2 (right). We
used a high aggregate publishing rate of 72, 000 msg/min to push the system
to the edge. At this rate, the number of deliveries within our 10 min measure-
ment interval gives a clear comparative understanding of the system throughput
in each strategy (i.e., some strategies deliver more publications). Two trends
are visible in the figure. First, increasing fanout from 5 to 35 significantly im-
proves the number of publication deliveries. Second, our forwarding strategies

Opportunistic Multipath Publication Forwarding 267

 0

 1

 2

 3

 4

 5

5 15 25 35 5 15 25 35

M
ill

io
n

pu
bl

ic
at

io
ns

 d
el

iv
er

ed

Fanout

S0
S1
S3
S4

DT2DT1

(a) Configuration C1

 0

 1

 2

 3

 4

 5

5 15 25 35

M
ill

io
n

pu
bl

ic
at

io
ns

 d
el

iv
er

ed

Fanout

S0
S1
S3
S4

DT3

(b) Configuration C2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10 15 10 15

T
ho

us
an

d
pu

bl
ic

at
io

ns
 d

el
iv

er
ed

Fanout

S0
S1
S3
S4

DT5DT4

(c) Configuration CPL

Fig. 13. Publications delivered within a fixed measurement interval

outperform S0 (the baseline) by up to 115%. Both trends are also present in Fig-
ure 13(b) in which configuration C2 and dataset DT3 were used. An interesting
observation in both figures is that S2 tends to marginally outperform SH. This
is indeed expected since at our very high publishing rate many brokers become
overloaded and adaptively switch to S1. Although this strategy reduces the load
on such overloaded brokers but produces more publications in the network as
a whole (compare number of publications sent in Figure 2(b) and Figure 2(c)).
This excess traffic degrades the performance of the system as a whole.

In practice, however, brokers are generally provisioned to operate within a
safe buffer from their full capacity. Despite this, broker heterogeneity or traffic
imbalances may develop occasional network hotspots. In these scenarios, the
adaptive nature of SH is useful to prevent formation of network bottlenecks. To
investigate this effect, we re-ran configuration C1/DT1 with a low publishing rate
of 7, 200 msg/min but throttled brokers’ uplinks to be capped at 150 msg/sec.

 160

 180

 200

 220

 240

S1 S2 SH

P
ub

lic
at

io
ns

 (
x1

00
0)

Strategy

234

209

238

 0

 1

 2

 3

 4

 5

 6

S1 S2 SH

A
vg

. h
op

 c
ou

nt

Strategy

5.93

3.38

5.80

Fig. 14. Performance of different
strategies (brokers uplink capped at
150 msg/sec)

At this rate, some overlay hotspots are
formed and the ability of overloaded brokers
to dynamically switch to S1 prevents ex-
cessive use of their scarce bandwidth. Fig-
ure 14 illustrates the throughput and aver-
age publication hop count in this scenario
using different strategies. It can be seen
that SH outperforms S2 in terms of the
number of deliveries as it is less likely to
develop hotspots.

PlanetLab Results: We verified our re-
sults on the shared PlanetLab environment
where nodes’ CPU and bandwidth capacity is limited and variable. Figure 13(c)
illustrates the results of our throughput analysis with configuration CPL and
datasets DT4 (left graph) and DT5 (right graph). The measurement interval is
5 minutes, aggregate publishing rate is 3, 300 msg/min and the brokers’ uplinks
are capped at 10 KB/s. At this rate, the system using DT4 and S0 becomes

268 R. Sherafat Kazemzadeh and H.-A. Jacobsen

congested and delivers fewer messages than expected. However, S1 and S2 both
reach full delivery goals. Similarly, using DT5, S0 delivers the least number of
publications while S1 and S2 achieve much higher (but not full) deliveries.

Facebook Dataset: We verified our results using dataset DT-FB which was
extracted from real-world traces of user interaction in online social networks [24]
(see [26] for methodology and details). In a deployment using configuration C1
with aggregate publishing rate of 3, 600 msg/min and fanout of 20, our measure-
ments indicate that S1 and S2 outperform S0 by 37% and 115%, respectively.

8 Related Work

Our approach is related to Resilient Overlay Networks (RON) [27] which uses
mesh-based overlay routing to deal with failures. However, unlike RON which
targets generic unicast routing, our techniques are specifically tailored for selec-
tive publication multicast in content-based pub/sub systems. Furthermore, in
contrast to RON which maintains a full-mesh, the use of Δ-neighborhoods in
our approach, improves scalability and keeps the overhead to a negligible limit.

Snoeren et al. forward publications over multiple disjoint paths in a mesh net-
work [15]. Instead of improving bandwidth efficiency, their scheme is concerned
with exploiting path redundancy to guarantee message delivery. Overlay recon-
figuration techniques adapt the broker overlay by creating links between brokers
with similar subscriptions [17,18]. We see these techniques as complementary to
our approach. However, as noted in Section 6, changes to the primary network
require costly coordinated updates to routing tables of many brokers. Our use of
soft links to adapt the overlay avoids the high cost of such full reconfigurations.

In MEDYM [28], the first broker computes a dissemination tree that spans
only to brokers with local matching subscribers. The message piggybacks this
tree and is used by other brokers in a source routing-like manner. This has the
advantage that the propagation tree has no pure forwarding brokers. However,
inclusion of routing information in publications incurs high overhead, especially
for messages destined to a large number of brokers. Li et al. [29] create re-
dundant forwarding paths in a cyclic overlay using overlapping advertisement
trees. The quality and diversity of the paths, however, depend heavily on over-
lapping advertisements and their nondeterministic propagation patterns in the
overlay. In contrast, our approach actively creates soft links to maintain redun-
dant forwarding paths after taking broker load and link quality into account.

9 Conclusions

In this paper, we developed a novel approach to adapt a pub/sub overlay based
on publication traffic and network conditions by selectively creating special links,
called soft links. Soft links boost the network connectivity and provide a large
number of end-to-end forwarding paths. The diversity of these redundant paths
in the resulting overlay mesh is particularly suited for content-based pub/sub

Opportunistic Multipath Publication Forwarding 269

systems in which recipients of a given publication are not known in advance and
are only determined at runtime after subscription matching. Furthermore, thanks
to the notion of Δ-neighborhoods our approach does not require coordinated
route updates and each broker unilaterally decides which soft links to establish.
Our extensive experimental results carried out on a cluster and Planetlab confirm
that our approach significantly improves the system’s throughput and efficiency.

References

1. Global Data Synchronization Network (GDSN): http://www.gs1.org
2. Cooper, B.F., et al.: Pnuts: Yahoo!’s hosted data serving platform. PVLDB (2008)
3. Google Publish/Subscribe (GooPS): CANOE summer school (2009)
4. Li, G., Muthusamy, V., Jacobsen, H.-A.: A distributed service-oriented architecture

for business process execution. TWEB 4(1) (2010)
5. Adya, A., Dunagan, J., Wolman, A.: Centrifuge: integrated lease management and

partitioning for cloud services. In: NSDI (2010)
6. Oki, B., Pflügl, M., Siegel, A., Skeen, D.: The information bus – an architecture

for extensible distributed systems. In: SOSP, pp. 58–68 (1993)
7. Sadoghi, M., et al.: Efficient event processing through reconfigurable hardware for

algorithmic trading, vol. 3, pp. 1525–1528. VLDB Endowment (2010)
8. PubSubHubBub, http://code.google.com/p/pubsubhubbub/
9. Publish Subscribe Internet Routing Paradigm (PSIRP), http://www.psirp.org

10. Fidler, E., Jacobsen, H.-A., Li, G., Mankovski, S.: The PADRES distributed pub-
lish/subscribe system. In: ICFI (2005)

11. Bhola, S., Strom, R.E., Bagchi, S., Zhao, Y., Auerbach, J.S.: Exactly-once delivery
in a content-based publish-subscribe system. In: DSN (2002)

12. Papaemmanouil, O., Cetintemel, U.: SemCast: Semantic multicast for content-
based data dissemination. In: ICDE (2005)

13. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM TOCS (2001)

14. Cugola, G., et al.: The JEDI event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE TSE (2001)

15. Snoeren, A.C., Conley, K., Gifford, D.K.: Mesh-based content routing using XML.
In: SOSP (2001)

16. Chand, R., Felber, P.: XNET: A reliable content-based publish/subscribe system.
In: SRDS (2004)

17. Baldoni, R., et al.: Efficient publish/subscribe through a self-organizing broker
overlay and its application to SIENA. Computer Journal 50(4), 444–459 (2007)

18. Migliavacca, M., Cugola, G.: Adapting publish-subscribe routing to traffic de-
mands. In: DEBS (2007)

19. Cheung, A.K.Y., Jacobsen, H.-A.: Dynamic Load Balancing in Distributed
Content-Based Publish/Subscribe. In: van Steen, M., Henning, M. (eds.) Middle-
ware 2006. LNCS, vol. 4290, pp. 141–161. Springer, Heidelberg (2006)

20. Publiy project, http://msrg.utoronto.ca/~reza/
21. Kazemzadeh, R.S., Jacobsen, H.-A.: Reliable and highly available distributed pub-

lish/subscribe service. In: SRDS, pp. 41–50. IEEE (2009)
22. University of Toronto SciNet Consortium, http://www.scinet.utoronto.ca
23. PlanetLab testbed, http://www.planet-lab.org/

http://www.gs1.org
http://code.google.com/p/pubsubhubbub/
http://www.psirp.org
http://msrg.utoronto.ca/~reza/
http://www.scinet.utoronto.ca
http://www.planet-lab.org/

270 R. Sherafat Kazemzadeh and H.-A. Jacobsen

24. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions
in social networks and their implications. In: EuroSys (2009)

25. Liu, H., Ramasubramanian, V., Sirer, E.G.: Client behavior and feed characteristics
of RSS, a publish-subscribe system for web micronews. In: IMC (2005)

26. Kazemzadeh, R.S., Jacobsen, H.-A.: Adaptive multi-path forwarding in the Publiy
distributed publish/subscribe systems. Tech. rep. (2011), http://msrg.org

27. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay
networks. Computer Communication Review 32(1) (2002)

28. Cao, F., Singh, J.: MEDYM: Match-early and dynamic multicast for content-based
publish-subscribe service networks. In: ICDCSW (2005)

29. Li, G., Muthusamy, V., Jacobsen, H.-A.: Adaptive Content-Based Routing in Gen-
eral Overlay Topologies. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS,
vol. 5346, pp. 1–21. Springer, Heidelberg (2008)

http://msrg.org

PolderCast: Fast, Robust, and Scalable
Architecture for P2P Topic-Based Pub/Sub

Vinay Setty1, Maarten van Steen2, Roman Vitenberg1, and Spyros Voulgaris2

1 Department of Informatics, University of Oslo, Norway
{vinay,romanvi}@ifi.uio.no

2 Department of Computer Science, VU University, Amsterdam, The Netherlands
{steen,spyros}@cs.vu.nl

Abstract. We propose PolderCast, a P2P topic-based Pub/Sub sys-
tem that is (a) fault-tolerant and robust, (b) scalable w.r.t the number
of nodes interested in a topic and number of topics that nodes are in-
terested in, and (c) fast in terms of dissemination latency while (d) at-
taining a low communication overhead. This combination of properties
is provided by an implementation that blends deterministic propagation
over maintained rings with probabilistic dissemination following a limited
number of random shortcuts. The rings are constructed and maintained
using gossiping techniques. The random shortcuts are provided by two
distinct peer-sampling services: Cyclon generates purely random links
while Vicinity produces interest-induced random links.

We analyze PolderCast and survey it in the context of existing
approaches. We evaluate PolderCast experimentally using real-world
workloads from Twitter and Facebook traces. We use widely renowned
Scribe [5] as a baseline in a number of experiments. Robustness with
respect to node churn is evaluated through traces from the Skype super-
peer network. We show that the experimental results corroborate all of
the above properties in settings of up to 10K nodes, 10K topics, and 5K
topics per-node.

Keywords: Publish/Subscribe, Peer-to-Peer, Gossiping.

1 Introduction

Publish/subscribe (pub/sub) has become a popular communication paradigm
that provides a loosely coupled form of interaction among many publishing data
sources and many subscribing data sinks[8]. Many applications report benefits
from using this form of interaction, such as application integration [20], finan-
cial data dissemination [2], RSS feed distribution and filtering [15], and business
process management [14]. As a result, many industry standards have adopted
pub/sub as part of their interfaces. Examples of such standards included WS No-
tifications, WS Eventing, OMG’s Real-time Data Dissemination Service, and the
Active Message Queuing Protocol.

In pub/sub, subscribers convey their interests in receiving messages and pub-
lishers disseminate publication messages. The language and data model to

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 271–291, 2012.
c© IFIP International Federation for Information Processing 2012

272 V. Setty et al.

subscribe and publish vary among systems. In this paper, we focus on the
topic-based pub/sub model. In a topic-based system, publication messages are
associated with topics and subscribers register their interests in receiving all
messages published to topics of interest. While traditional pub/sub implemen-
tations are either centralized or based on a federated organization of coopera-
tively managed servers, an increasingly higher number of pub/sub applications
are being deployed in P2P environments [22]. Following this trend, a number
of decentralized topic-based pub/sub systems have been proposed over the last
decade [3, 5, 7, 9, 16, 19, 27, 28]. These systems build a decentralized infrastruc-
ture in which the nodes are first dynamically organized into an application-level
overlay network, and the resulting network is subsequently used for event rout-
ing.

The designers of these systems are facing an uphill struggle because of the
distinctively high number of desirable characteristics that a large-scale P2P
pub/sub system has to possess all at once in order to be a viable practical
solution. In particular, the list includes: (1) Correct delivery of all publications,
i.e., absence of false negatives or deterministic 100% hit-ratio guarantee in a
failure-free run, (2) High hit-ratio under realistic node churn, (3) Fast recovery
at the end of a churn period and mending of the overlay so as to achieve 100%
hit-ratio, (4) Low degree of overlay nodes, (5) Relay-free routing (also called
topic-connectivity), which means that only subscribers interested in a topic are
involved in routing events for that topic, (6) Scalability with the number of
nodes, topics, number of nodes interested in a topic, and number of topics a
node is interested in, (7) Effective dissemination: fast, with as little duplicate
delivery as possible, and fair distribution of load due to routing and processing,
and (8) Low overhead of overlay maintenance. The design challenge is amplified
due to a number of trade-offs: low node degree and relay-free routing, robust-
ness under churn and lack of duplicate delivery, scalability and precise delivery
with few false negatives and false positives are fundamentally at odds with each
other. Furthermore, each of the principal solution approaches provides a bun-
dle of desirable and undesirable properties at the same time: dissemination over
multicast trees is fast and without duplication but it is fragile, whereas gossiping
is robust but lacking deterministic delivery guarantees.

In this paper, we present PolderCast1, a P2P architecture for topic-based
pub/sub. To the best of our knowledge, PolderCast is the first solution that
takes all of the above factors into account and harmonizes them. In order to
substantiate this claim, we present a survey of existing approaches and analyze
their performance with respect to most of the above characteristics.

This combination of desirable properties is provided by an implementation
that blends deterministic propagation over maintained rings with probabilistic
dissemination following a limited number of carefully selected random shortcuts.
Per-topic rings allow for relay-free routing and 100% hit-ratio in absence of node
churn, yet they are constructed in such a fashion so as to reuse the same links

1 The term is inspired by the Dutch polder model, in which diverse societal groups
collaboratively negotiate to obtain broadly supported solutions.

PolderCast: Fast, Robust, and Scalable Architecture 273

for multiple rings thereby minimizing the average node degree. Although at a
conceptual level this overlay structure encompasses a separate Hybrid Dissemi-
nation [25] overlay per-topic, our design leverages interest locality to produce a
single composite overlay with substantially fewer links and hence, lower node de-
grees. Our implementation is based on a new efficient epidemic-based algorithm
for creating and maintaining the proposed overlay in a self-organizing way.

We evaluate and validate the properties of our system using extensive sim-
ulations in large-scale settings of up to 10K nodes, 10K topics, and 5K topics
per-node. We use real-world traces from Twitter and Facebook social networks to
model subscriptions. Robustness with respect to node churn is evaluated through
traces from the Skype super-peer network. We empirically show that our system
(1) converges fast, (2) provides 100% hit-ratio in the absence of node churn and
reasonably good hit-ratio in the presence of node churn, (3) has logarithmic dis-
semination speed in terms of number of hops and (4) has constant factor traffic
overhead. We use Scribe [5] as a baseline in a number of our experiments.

2 Preliminaries

The system consists of a set V of nodes. Each node in the system has a unique
identifier (e.g., a hash of its IP address), assigned to it when joining the system.
Node identifiers are assumed to be sortable and to occupy a circular value space.
We assume that the underlying communication network is fully connected, in the
sense that any node can send a message to any other node, provided it knows
its IP address.

The topic-based publish/subscribe communication system is organized around
a set T of topics. Each node can play the role of a subscriber or publisher or
both. A subscriber v expresses its interest in a set of topics Tv ⊆ T . We call
|Tv| the subscription size of node v. A publisher posts an event on exactly one
topic t. The published event should be delivered to all |Vt| (Vt ⊆ V) subscribers
interested in t (no false negatives) and only to them (no false positives).

Both publishers and subscribers are allowed to join and leave at any moment,
without any prior notice. Node crashes are, therefore, inherently dealt with as
ungraceful leaves. In fact, there is no way to distinguish between the two. We
assume that a node that leaves and rejoins after a while can remember its prior
state.

3 Survey of Related Approaches

In practice, a pub/sub system should satisfy a wide spectrum of desirable prop-
erties in the context of high robustness, low dissemination latency, low com-
munication overhead, and high scalability. Many of those properties exhibit an
inherent trade-off with each other so that striking the right balance is a central
challenge in a pub/sub system design and a guiding objective for our approach.

Table 1 compares the characteristics of PolderCast with principally differ-
ent approaches for P2P topic-based pub/sub systems.

274 V. Setty et al.

Table 1. Comparison of State of the Art with PolderCast

Property\System Scribe[5] Vitis[19] SpiderCast[7] StAN[16] daMulticast[3] Polder-
Cast

Central nodes∗ RV RV&GW WB None None None

High hit-ratio
under churn?

✗, see
Sec. 6.6 � N/A N/A � �

100% hit-ratio in
absence of churn?

� � N/A N/A ✗ �

TCO? ✗ ✗ Prob. Prob. Det. Det.
Degree of node v O(log |V|) O(1) O(|Tv |) O(|Tv|) Θ(|Tv|) O(|Tv|)
Incl. dissemination? � � ✗ ✗ � �
Average
Duplication Factor

None Scoped
flooding N/A N/A Gossiping ≤ Fanout(f)

Average Delay O(log |V|) O(log2 |V|) N/A N/A O(log |Vt|) Typically
O(log |Vt|)#

∗ RV: Rendezvous. GW: Gateway. WB: Weak bridge.
For more details refer to Sec. 6.4 and the discussion below in this section.

With respect to robustness, a pub/sub system should ideally guarantee both
100% hit-ratio without node churn and high hit-ratio in presence of node churn.
Consider that existing approaches to P2P pub/sub either utilize epidemic dissem-
ination (daMulticast [3]), or build specialized dissemination overlays. It is well-
known that while robust under churn, epidemic dissemination does not provide
full reliability, even in a completely static system. On the other hand, most existing
dissemination overlays for topic-based pub/sub are fragile (such as dissemination
trees in Scribe [5], Magnet [9], or Bayeux [28]) or at least they rely on designated
nodes whose existence is critical for correct operation of distributed matching. For
example, Scribe and Vitis [19] have a dedicated rendezvous node for each topic. Ad-
ditionally, Vitis builds subclusters for each topic and the communication between
subclusters is handled by gateway nodes. While these systems provide a number
of churn-handling mechanisms, fragility of dissemination overlays or reliance on
central nodes conceptually limit the potential for high hit-ratio under churn, as we
further explore in our evaluation in Sec. 6.6. SpiderCast [7] builds an unstructured
overlay that strives to maximize clustering of nodes according to their interest in
topics. As observed in [16], this approach may yield an overlay in which highly-
connected clusters are interconnected by few links, which we call weak bridges. Ex-
istence of such weakbridges also impacts the robustness of the system under churn.

PolderCast combines deterministic dissemination over a ring with prob-
abilistic dissemination similar to gossiping. The former mechanism guarantees
100% hit-ratio in a static system while the latter provides a high hit-ratio under
churn. This is further corroborated by the experimental evaluation in Sec. 6.6.

Consider the characteristics of the overlay built in various existing approaches:
A low number of relay nodes is instrumental in reducing the communication and
processing cost of dissemination as well as propagation latency expressed by path
lengths. Furthermore, guaranteed absence of relays, a.k.a. topic-connectivity [6],
simplifies message routing mechanisms. On the other hand, fanout is a com-
mon minimization parameter in overlay design, which strongly affects system
scalability.

PolderCast: Fast, Robust, and Scalable Architecture 275

Unfortunately, the desirable characteristics of having a low node degree and
relay-free routing exhibit a fundamental trade-off [6]. At one extreme is having
a fixed node degree independent of the number of topics a node is interested in.
Such an approach is proposed in Vitis. This results in a relatively high number
of subclusters that need to be connected by additional means, such as gateways,
rendezvous nodes, and relays. Scribe builds dissemination structures on top of
an underlying DHT whose node degree might be either constant or logarithmic
with the total number of nodes in the system. In these systems, a pair of nodes
interested in the same topic might be connected by a chain of Θ(log |V|) relays.

At the other extreme of the trade-off are systems that build and maintain a
separate overlay for each topic independently, such as Tera [4] and systems that
employ gossiping on a per-topic basis, such as daMulticast. These approaches
guarantee topic-connectivity during stable periods without churn. However, the
degree of node v in these systems is in the order of the number of subscriptions:
Θ(|Tv |).

SpiderCast and StAN strive to maintain a topic-connected overlay by building
random links between the nodes while exploiting the correlation between node
interests in order to minimize the degree. Since correlations are typically present
in pub/sub workloads, this results in a lower degree compared to Tera or daMul-
ticast. After the system becomes stable, these systems will eventually produce
a topic-connected overlay with high probability. Yet, the guarantee of relay-free
routing is only probabilistic, which yields low overhead and latencies, but re-
quires additional mechanisms to route messages across potentially disconnected
clusters.

The PolderCast approach we propose in this paper provides a deterministic
guarantee of relay-free routing similar to Tera or daMulticast. At the same time,
the degree is similar to that of SpiderCast or StAN due to exploiting correlations.
As shown in Table 1, SpiderCast and StAN focus on overlay construction and
maintenance and do not propose any specific routing algorithm, thereby render-
ing the discussion about message dissemination properties as well as hit-ratio
nonapplicable to these systems.

For the rest of the approaches, we consider two salient factors that determine
the efficiency of message dissemination:

(a) Average Message Duplication Factor per node: the number of times
(excluding the first) that the same published message is received by a node
on average. When the routing is relay-free, average message duplication factor
directly translates into the communication cost of message dissemination.

In Scribe, Magnet, and Bayeux, a routing tree is used to disseminate pub-
lications, which eliminates any duplication of messages. In the hybrid overlay
approach of Vitis, the node floods a published message to those of its neigh-
bours that are interested in the message topic. Even though Vitis has a fixed
total degree per node, this fanout may be high enough so as to lead to a high
number of duplicate deliveries for the same published message. In daMulticast,
the configurable fanout of the epidemic dissemination used for propagating pub-
lished messages governs the duplication factor. In PolderCast there is a fixed

276 V. Setty et al.

maximum dissemination fanout f (typically f= 2) for each topic. Each node
interested in the topic forwards a message only once (the first time the node
receives the message) along at most f links, which gives a bound of f on the
duplication factor.

(b) Average Path-Length: the average number of hops required for a mes-
sage to reach a node interested in that message. As shown in Table 1, all of the
structured and hybrid overlay approaches have an expected path length that
is logarithmic or square logarithmic with the total number of nodes |V| in the
system. Yet, the inclusion of relays nodes (both at the DHT level and pub/sub
implementation level) into the dissemination path causes path lengths for some
nodes being significantly longer than O(log |V|), as we show in Sec. 6.4. DaMul-
ticast performs gossiping on a per-topic basis so that the expected path length
is logarithmic with the number of nodes O(log |Vt|) interested in the topic.

In our approach, we also strive to achieve expected path lengths that are
logarithmic with O(log |Vt|) due to the random shortcuts links used for dissem-
ination. From the results in [25], it can be derived that if there is a sufficient
number (f -1) of random shortcut links between the nodes interested in a partic-
ular topic, PolderCast guarantees average dissemination path lengths for that
topic to be asymptotically logarithmic. However, our dissemination mechanism
uses a fixed number of random links independently of the number of topics a
node is interested in. This may potentially render the dissemination mechanism
ineffective for a node that is interested in many topics, in which case the average
path length may become linear with |Vt| due to the use of ring links only. For-
tunately, this scenario does not manifest itself for typical pub/sub workloads, as
confirmed by the empirical results in Sec. 6. Note that the dissemination fanout f
determines the base of the logarithm and as such, governs the trade-off between
the dissemination speed and duplication factor.

Based on the analysis in this section, we conclude that the solution for topic-
based pub/sub we propose is (a) free from rendezvous and relay nodes (b) robust
and resistant to churn, and (c) it facilitates efficient message dissemination.

4 PolderCast: Disseminating Events

We present PolderCast in a top-down approach. In this section we describe the
structure of the target overlay and we explain how dissemination is performed
once this overlay is in place. Then, in Sec. 5, we dive into the mechanisms in
charge of building and maintaining such an overlay.

4.1 The Dissemination Overlay

At a conceptual level we maintain a separate ring per topic augmented by random
links shared across the topics. Each ring connects all subscribers of the corre-
sponding topic and only them. Individual topic rings altogether form a single,
connected, and navigable overlay. Ensuring connectivity among all subscribers
of a topic, a property known as topic connectivity, allows for relay-free routing

PolderCast: Fast, Robust, and Scalable Architecture 277

r

{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}
t1

{t1,t2}

Random Link

Ring Link

pq

r

s

u

s
{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}

t2

{t1,t2}

pq

r

t

u

{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}

t3

{t1,t2}

pq

r

s
t

u

{t1,t3} {t1,t3}
{t1,t3}

t

v v v

Fig. 1. Topology for three topics {t1, t2, t3}, showing the ring neighbor links and ran-
dom neighbor links originating from the node p. Note that q serves as successor of p
for all three topics, and v serves as predecessor of p for topics t1, t2 illustrating link
sharing.

among them. It is the reason why PolderCast achieves 100% hit-ratio in the
absence of node churn: When an event for a certain topic reaches any subscriber
of that topic, it is guaranteed to reach all remaining subscribers by being propa-
gated along that topic’s ring. While this distribution mechanism alone might be
adequate for topics with a moderate number of subscribers, its linear dissemina-
tion speed does not scale with the popularity of topics. This is the reason why we
introduce random links serving as dissemination shortcuts. Propagating events
across (some of the) random links to arbitrary other subscribers of the same
topic, accelerates dissemination to exponential speed. It additionally provides a
controlled degree of redundancy that increases robustness and hit-ratio under
node churn.

In this work, we request that a publisher on topic t subscribes to t prior to
publishing events, thus becoming a part of the dissemination ring. This overhead
for publishers is considered acceptable by most applications and in many existing
pub/sub systems.

The rings for each topic are bidirectional and nodes are placed into rings in the
order of their node ids. That is, a node p maintains, with respect to each topic t
in its subscription, two links: one to its t-successor and one to its t-predecessor.
The t-successor of node p is defined as the node with the closest higher than p’s
id (in modulo arithmetic), among all subscribers of topic t. The t-predecessor is
defined likewise for the closest lower id. Fig. 1 gives a sample topology of three
topics, and the respective intermingling rings.

It should be observed that while the use of rings in hybrid dissemination struc-
tures has appeared in the past [25], their application to topic-based pub/sub is
new. The main challenges of using ring in pub/sub lies in combining such struc-
tures, one per topic, into a single manageable overlay. In practice, maintaining a
separate ring per topic is very expensive, notably for nodes subscribed to many
topics. However, it has been observed that subscriptions tend to be strongly
correlated [15]. Our approach exploits this correlation in order to substantially
lower the number of links maintained: A single link can serve as a ring link for
multiple topics.

278 V. Setty et al.

It is possible to build an overlay with link consolidation across the topics as
the central optimization metric in mind. This approach minimizes node degree
but may result in a per-topic ring being partitioned into multiple sub-rings.
In order to avoid this risk, PolderCast takes a more balanced approach and
builds a guaranteed ring for each topic separately but in such a way that links
have a higher chance of being reused in multiple topics. Specifically, rings are
constructed based on node ids instead of their subscriptions. Assume nodes p
and q are both subscribed to t1 and t2, and they are ring neighbors for t1. This
means that they are both on the ring for t2 and their ids are numerically close,
thereby increasing the chance that they will be ring neighbors for t2 as well. We
further investigate the effect of link consolidation in our experiments in Sec. 6.

With respect to random links, their choice and quantity may have a profound
impact on the performance, as discussed in Sec. 3. PolderCast combines a
configurable number of random links of two types: interest-induced links formed
between subscribers with similar subscriptions shorten average dissemination
path lengths. At the same time, uniform random links help overcome partitions
under node churn and improve load balancing by diverting incoming links from
nodes that subscribe to many topics, which become a likely target for interest-
induced links. We describe the algorithm for random link formation in Sec. 5
and consider the importance of the links of each type in Sec. 6.

4.2 Event Dissemination

Our event dissemination protocol is inspired by that of RingCast [25] (the proto-
col is parameterized by a dissemination fanout, f): A node receiving an event for
topic t for the first time, propagates it f times. Specifically, if the event has been
received through the node’s t-successor (or t-predecessor), it is propagated to its
t-predecessor (or t-successor) and f -1 arbitrary subscribers of t. If the event was
received through some third node, or if it originated at the node in question,
it is propagated to both the t-successor and the t-predecessor, as well as to f -2
other subscribers of t. Finally, if a copy of this event has already been received
in the past, it is simply ignored.

Event
source

Successor / Predecessor

Random link

Fig. 2. Dissemination example for a par-
ticular topic, in a partitioned ring

Fig. 3. Three-layered architecture. Each
layer gossips with the respective layer in
other nodes.

PolderCast: Fast, Robust, and Scalable Architecture 279

From the results in [25], it can be derived that if there is a sufficient number
(f -1) of random shortcut links between the nodes interested in a particular topic,
PolderCast guarantees average dissemination path lengths for that topic to
be asymptotically logarithmic. Even under node churn PolderCast tries to
achieve complete dissemination as shown experimentally in Sec. 6.6. Fig. 2 gives
an intuitive illustration of dissemination in a partitioned ring.

Since we apply this dissemination protocol for multi-topic pub/sub, however,
analyzing its performance in PolderCast is significantly more difficult because
the random links are shared across multiple topics and the number of utilizable
random links varies for each and every node. Furthermore, some of the random
links are skewed towards peers with multiple overlapping topics. This may inter-
fere with the nice property of exponential dissemination speed that is inherent
to many gossiping protocols. It may also cause a node whose subscription is
similar to those of many other peers to become a hotspot due to a high number
of incoming random links. We evaluate these aspects experimentally in Sec. 6.

5 PolderCast: Building the Overlay

PolderCast’s overlay management mechanism is built around three modules:
Rings, Vicinity, and Cyclon, as shown in Fig. 3. Each module maintains its
own view, managed by a separate gossiping protocol, which gossips periodically,
asynchronously, and independently from the other two modules. In table below
we list the parameters controlling the number of neighbors maintained (view
size), and the maximum number of neighbors included in a gossip message (gos-
sip size), per module.

module name view size gossip size
Rings �ring (per subscribed topic) gring

Vicinity �vic (in total) gvic

Cyclon �cyc (in total) gcyc

Considering a node p with topics Tp, the three modules operate as follows.
With respect to each topic t ∈ Tp, the Rings module on p is responsible for
discovering p’s t-successor and t-predecessor. It achieves this by considering a few
links to arbitrary subscribers of t as a starting point, and periodically gossiping
with them to trade them for other subscribers of t of gradually closer ids.

The Vicinity module is responsible for feeding the Rings module with a few
neighbors for each topic t ∈ Tp, of arbitrary ids. It is based on Vicinity [23],
a topology management protocol that strives at discovering for each node the
closest other nodes based on some proximity function. Per the proximity function
introduced in the context of PolderCast, the more topics two nodes share the
closer they are ranked. Moreover, as detailed in Sec. 5.2, our proximity function
dynamically adapts to favor topics currently under-represented in the Rings
module.

Finally, the Cyclon module [24], is a lightweight peer sampling service [12],
providing each node with a continuous stream of neighbors chosen uniformly

280 V. Setty et al.

at random from the whole network. As detailed in Sec. 5.3, this is essential for
keeping the whole overlay connected, and enabling flexible overlay maintenance
in the face of failures and node churn.

For any of the three modules, node q being a neighbor of node p means that p
has a copy of q’s profile in the respective module’s view. A node’s profile contains
(i) its IP address and port number, (ii) its (unique) node id, and (iii) the ids
of topics the node is subscribed to, each annotated with a priority that node
assigns to finding neighbors of that topic. The priority of a topic is determined
by the number of neighbors it has in the Rings module: topics with fewer Rings
neighbors are assigned higher priority. Clearly, two or more copies of a node’s
profile may be different, notably when the node updates its subscriptions, or
reports different priorities for its topics. When gossiping to a neighbor, a node
sends a fresh copy of its profile, reflecting its current state.

Note that the three gossiping protocols comprising PolderCast are executed
continuously. In a network characterized by dynamicity, due to nodes departing
or joining at any time, crashing, or merely changing their subscriptions, there is
no notion of final convergence. Instead, nodes engage in a constant convergence
process.

5.1 The Rings Module

The Rings module manages the ring links. That is, it aims at discovering a
node’s successor and predecessor for each topic in its subscription, and at quickly
adapting to new successors/predecessors in dynamic networks.

In that respect, each node maintains �ring neighbors for each topic in its
subscription: �ring/2 with lower and �ring/2 with higher id. It periodically picks
a node from its Rings view, and the two nodes exchange up to gring neighbors
to help each other improve their Rings views.

Assume p selects its neighbor q for gossiping. First, p collects all subscribers
of topics which p and q have in common, considering the union of views of all
three modules. Second, it sorts them by id, and for each topic in common with q
it selects the �ring/2 ones with just lower and the �ring/2 ones with just higher id
than q’s id. If more than gring nodes have been selected, it randomly picks gring

of them. Finally, it sends the selected nodes (i.e., the respective node profiles)
to q. Node q does the same in return.

Although the dissemination protocol requires just two ring links per topic,
namely the topic successor and predecessor, Rings maintains up to �ring links
per topic. This provides stand-by successors and predecessors to be used in case
of failures or node churn. Additionally, it helps nodes navigate to their direct
ring neighbors faster, once they have reached the proximity of their ids.

Finally, in order to increase the diversity of neighbors contacted for gossiping,
the Rings module employs a Least Recently Used (LRU) selection policy. This
prevents contacting the same neighbor twice in a short interval, when it probably
has no new useful information, at the expense of not contacting some other
neighbor for a much longer duration. The LRU policy also plays an important

PolderCast: Fast, Robust, and Scalable Architecture 281

role in churn handling by PolderCast, thus its implementation details are
deferred to Sec. 5.4.

5.2 The Vicinity Module

The Vicinity module is responsible for maintaining interest-induced random
links, that is, randomly chosen links between nodes that share one or more
topics. Such links serve as input to the Rings module, as detailed in Sec. 5.1.
Additionally, they are used by the dissemination protocol to propagate events
to arbitrary subscribers of a topic, as explained in Sec. 4.2.

Interest-induced random links are handled by Vicinity [23], a generic proto-
col for topology construction and management that lets nodes find their closest
neighbors out of the whole network, based on some proximity function. In short,
each node maintains a view of �vic neighbors and periodically gossips with them
to discover nodes of even closer proximity, in which case it retains them in place
of the least proximal neighbors.

Let p choose q for gossiping. Node p merges its views from all three modules.
Then, it selects the gvic nodes closest to q by applying the proximity function
on its behalf, and ships them over to q. Upon reception, q merges the received
neighbors with the union of all its views, and updates its Vicinity view to the
�vic closest neighbors. Finally, q responds by selecting and shipping back its gvic

closest to p nodes.
Clearly, the proximity function plays a crucial role in Vicinity. In the con-

text of PolderCast, the proximity function is designed to ensure that the
Rings module is supplied with (arbitrary) neighbors for all its topics. In that
respect, candidates subscribed to topics annotated with higher priority by the
target node are ranked closer compared to candidates of lower priority topics.
Among candidate nodes that rank equally in terms of topic priorities, proximity
is determined by the number of topics shared with the target node: the more
shared topics, the closer their ranking.

5.3 The Cyclon Module

Uniform random links are handled by the Cyclon peer sampling service [24].
This module’s purpose is twofold. First, it keeps the whole set of subscribers
connected in a single partition, even in the presence of churn, large scale failures,
or subscription changes. Connectivity is crucial to let new subscribers find their
way to their appropriate neighborhood sets, irrespectively of where they initially
joined the network. Second, it constitutes a source of links selected uniformly at
random from the whole network. Such a source of random links is fundamental
to the operation of the other two modules. Further details about the Cyclon
protocol can be found in [24].

5.4 Churn Handling

It is a key design goal of PolderCast to provide a high hit-ratio and reasonably
low delivery latency under node churn, while keeping the number of duplicate

282 V. Setty et al.

messages controllably small. To that end, PolderCast should adapt promptly
to two types of changes. First, information updates, such as newly joining nodes,
new subscriptions, etc. should be propagated fast. Second, the system should
quickly detect the disconnection (graceful or due to failures) of nodes, and discard
related information from the network.

With respect to propagating new information fast, PolderCast relies on
its fast convergence properties. When a node joins the network, for example,
its Vicinity module will quickly find some neighbors for each topic. Once a
neighbor has been found for some topic, the Rings module can quickly locate the
appropriate successor and predecessor in an already largely connected topic ring.
When a node’s subscription changes, Vicinity will adjust its topic priorities to
boost under-represented (new) topics. We further explore the convergence speed
of PolderCast experimentally in Sec. 6.2.

With respect to ridding the system from outdated links, PolderCast em-
ploys a proactive mechanism for removing dead neighbors from node views.
Whenever a node p gossips with a neighbor q, it temporarily removes q from the
respective module’s view, anticipating that q will respond and will be inserted
anew in p’s view. This way, dead neighbors are silently discarded, while alive
ones are refreshed. To prevent dead neighbors from remaining indefinitely in a
view, a node always selects to gossip with its least recently refreshed neighbor.

Freshness of a neighbor is approximated by an age field, associated with every
view entry. Once per cycle, a node increments the ages of all its neighbors by one.
A neighbor’s age is zeroed when a gossip message (or response) is received from
that neighbor. A neighbor’s age is retained also when that neighbor is handed
from one node to another. This way, a dead node’s links will have increasingly
higher chance to be selected for gossiping (and consequently discarded), even if
they are copied among third nodes.

Although the age mechanism provides only an approximation of a link’s fresh-
ness, it turns out to work sufficiently well for fast removal of dead links. We
investigate the impact of node churn on the performance of PolderCast in
Sec. 6.6.

6 Experimental Evaluation

We evaluate PolderCast by simulation based on real-world traces. We focus
on the overlay properties (such as the node degree), efficiency of dissemination
(delays and duplicate delivery), communication overhead of overlay maintenance,
and performance under node churn (hit-ratio for message delivery and speed
of convergence for overlay construction). We also compare the performance of
PolderCast with Scribe[5] as a baseline.

We implement both PolderCast and Scribe using the widely adopted Peer-
Sim simulator [17]. Scribe is implemented as an application atop Pastry DHT[21].
We use the implementation of Pastry for PeerSim, publicly available at [1]. We
evaluate both PolderCast and Scribe at a scale of up to 10K nodes. Experi-
ments of similar scale are common in this area [18, 19].

PolderCast: Fast, Robust, and Scalable Architecture 283

Unless otherwise mentioned, the view sizes of Cyclon and Vicinity (�cyc

and �vic, respectively) were set to 20 entries each, and the gossip lengths in all
three protocols (gcyc, gvic, and gring) were set to 10 entries. The configuration
parameters for Scribe are b = 4 which defines the base 2b = 16 for the log
structure of Pastry DHT and l = 32 for the leaves of the DHT routing table.

6.1 Experimental Settings

Subscription Workload: Our subscription workloads come from massively
deployed social networks, namely Twitter and Facebook.

(1) Twitter Dataset: We used a public Twitter dataset [13], containing 41.7
million distinct user profiles and 1.47 billion social followee/follower relations. In
Twitter, when a user posts a message (known as a tweet), the tweet is delivered
to all followers of that user. As such, each user is modelled as a topic and all its
followers are the respective subscribers. Similarly the set of users (followees) a
user Alice follows, form Alice’s subscription set. Note that in Twitter, relations
are unidirectional, i.e., user Alice following user Bob does not require also Bob
following Alice.

(2) Facebook Dataset: We used a public Facebook dataset [26], with over 3 mil-
lion distinct user profiles and 28.3 million social relations as a second workload
for our evaluations. Similarly to Twitter, users are modelled as topics as well
as subscribers. However, in Facebook relations are bidirectional, therefore two
friends in the Facebook social graph subscribe to each other in our model.

Our simulations were performed with workloads of 10K nodes (i.e., up to 10K
topics and 10K subscribers), extracted from the original Twitter and Facebook
social graphs in a methodology inspired from [18, 19]. More specifically, starting
with a random set of a few users as seeds, we traversed the social graph using
breadth first search, until the target number of nodes was reached, and all edges
between them were extracted to our sample.

Fig. 4 shows the complementary cumulative distribution function (CCDF) of
follower/followee counts for both the original Twitter(TW) and Facebook(FB)
datasets, as well as for our respective extracted datasets in the inner plot. The
plots indicate that the original dataset properties were retained in our extracted
sample.

Publication Workload: Due to lack of publicly available real world publication
workload we synthetically generate publications. We post one publication event
for each topic, initiated by a randomly picked subscriber of that topic. Although
in practice, event arrival rate may vary across different topics, we use a uniform
publication rate since it has no effect on the metrics we consider in this paper.

Latency and Churn Datasets: We use the King dataset [11] to model com-
munication latency between nodes. Finally, we evaluate our system under node
churn, using real world churn traces: Skype dataset. We use Skype super-peer

284 V. Setty et al.

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106 107

C
om

pl
em

en
ta

ry
 C

D
F

Number of followees/followers

Followers TW
Followees TW
Followers FB
Followees FB

10-510-410-310-210-1100

100 101 102 103 104

Fig. 4. Distribution of followers and followees, for the Twitter (41.7M users) and Face-
book (3M users) traces. Inner plot: trace samples used (10K users).

churn traces from [10], which tracked joining and leaving timestamps of 4000
nodes for one month, starting on September 12, 2005.

6.2 Speed of Convergence

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

TWITTER

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

FACEBOOK

OVERLAY: missing links
OVERLAY: incomplete rings
OVERLAY: missing links (no vic)
OVERLAY: incompl. rings (no vic)
DISSEMINATION: miss ratio
DISSEMINATION: incompl. postings

Fig. 5. Convergence speed

We first evaluate the time it takes
to jump-start a PolderCast over-
lay from scratch. We start by
10,000 nodes that are already run-
ning Cyclon (i.e., each node has
�cyc links to random other nodes),
but whose Vicinity and Rings
views are completely empty, and
we let them gossip to self-organize
in a PolderCast overlay. Ob-
serve that fast convergence to an
optimal overlay upon the extreme
case of simultaneous bootstrapping
typically implies fast reconciliation af-
ter a period of milder churn.

Given the input, we start by an
offline construction of correct target
rings to which the systems should
converge over time. Then, we deploy
PolderCast.

At each cycle, we measure the percentage of target ring links that are not yet
in place (missing links), as well as the percentage of topics for which the ring has
not converged yet (incomplete rings). Fig. 5 shows these metrics for the Twitter
and Facebook workloads, respectively.

In order to assess the overlay’s efficiency in disseminating events, we conduct
another experiment by “freezing” the overlay at the end of each cycle, and posting
one event for each topic. We record the percentage of nodes that missed an event

PolderCast: Fast, Robust, and Scalable Architecture 285

they should have received (miss ratio), as well as the percentage of events that
did not make it to all subscribers of their topic (disconnected topics). These
measurements are also shown in Fig. 5.

The results show that the overlay converges quite fast: Within 60 cycles, 99%
of topic rings are complete. They also indicate that the PolderCast overlay is
highly efficient even with partially complete rings because it takes fewer cycles
to achieve a connected overlay (0% miss ratio) per topic. This is due to prop-
agating events across random links, provided by the combination of Vicinity
and Cyclon views.

We also show that our three-layered architecture explained in Sec. Sec. 5 is
essential to improve the speed of convergence. In Fig. 5 we compare the conver-
gence speed of PolderCast, without the Vicinity layer in the middle, and
we can see that it takes almost 3-6 times longer to converge. This is because
Vicinity provides interest-induced random links, essential for speeding up the
construction process.

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000

cy
cl

es
 to

 c
on

ve
rg

e

Number of topics per node (subscription size)

Twitter
Facebook

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000

cy
cl

es
 to

 c
on

ve
rg

e

Size of the ring (topic popularity)

Twitter
Facebook

Fig. 6. Correlation between conver-
gence speed and size of the subscrip-
tion/ring

Fig. 7. Node degree in Rings layer

Apart from the speed it is also important to make sure that the overlay con-
struction is scalable with respect to the number of nodes that participate in a
ring (topic popularity) and the number of topics a node is interested in (sub-
scription size). As shown in Fig. 6, even a node interested in over 400 topics
converges reasonably fast. This is mainly due to having a higher number neigh-
bours compared to a node interested in a few topics only, which offer it much
higher reachability for a large number of topics.

286 V. Setty et al.

6.3 Overlay Degree

In Fig. 7 we assess the effect of a node’s subscription size on its Rings view
size. Due to interest locality, a single neighbor may serve multiple of its topics.
This helps the node retain its Rings outdegree low, and effectively contributes
to higher scalability with respect to the subscription size of nodes. We do not
consider the degree due to random links here since their number is fixed and
small compared to that of ring links.

For the Twitter data, PolderCast manages to exploit correlation in the
subscriptions to a large extent. However, for Facebook data, the node degree
grows almost linearly with subscription size suggesting less subscription correla-
tion. In Scribe, the average degree of a node v in the system is bounded by the
number of nodes in the Pastry routing table that point to node v. This number
is logarithmic with the total number of nodes and independent of the number of
topics that node is subscribed to. This may be an important advantage in the
case of an extremely high number of topics a node is interested in.

6.4 Event Dissemination

We now analyze the event dissemination protocol proposed in Sec. 4.2. We mea-
sure (1) the dissemination delay, in terms of number of hops required for a
publication to reach the subscribers and (2) the duplication factor, namely the
ratio between the number of all event messages received over the number of
distinct event messages received. The measurements were taken by injecting the
publications as described earlier and averaging the two metrics for 1000 cycles.
From this point on, we run PolderCast with only Facebook data with 10K
nodes, omitting results for Twitter data due to lack of space.

As one can see in Fig. 8(a), with the increase in dissemination fanout the
average dissemination delay significantly decreases. However, this decrease takes
place at the cost of an increase in the average number of duplicate messages
seen by nodes as shown in Fig. 8(b). To compare Scribe with PolderCast we
plot the average delay in Fig. 8(a). We can see that the average dissemination
delay in Scribe is almost 1.7 times higher than the worst-case dissemination
delay of PolderCast. This is due to the long chain of nodes induced by Scribe
dissemination trees, even though DHT gurantees log |V| hops delay. These longer
chains stem from the inclusion of relay nodes, both at the Scribe and Pastry level.

As shown in plots in Fig. 8(a,b), the choice of random shortcut links has
an interesting trade-off between dissemination delay and duplicate messages. At
one extreme, if we use the Cyclon view as a source for random shortcut links,
neither the dissemination delay decreases, nor the duplication factor increases
with the increase in fanout f . This is attributed to the fact that since the Cyclon
view is limited in size, and its view is chosen in an interest-agnostic way, the
random shortcuts for a topic the node is interested in are not useful for the
topics of interest, forcing the dissemination protocol to fall back on ring links.
On the other extreme, if we only use the Vicinity view as a source of random
links, it leads to a significant decrease in average delay, at the cost of an increase

PolderCast: Fast, Robust, and Scalable Architecture 287

 1

 10

 1 2 3 4 5 6

N
um

be
r

of
 H

op
s

Fanout (F)

(a) Average Dissemination Delay

 0

 1

 2

 3

 1 2 3 4 5 6

D
up

lic
at

io
n

F
ac

to
r

Fanout (F)

(b) Average Duplication Factor

CYC only
PolderCast(CYC + VIC)
VIC only
Scribe

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
om

pl
em

en
ta

ry
 C

D
F

Delay in Number of Hops

(c) Distribution of Dissemination Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
om

pl
em

en
ta

ry
 C

D
F

Duplication Factor

(d) Distribution of Duplication Factor

Fig. 8. Event Dissemination Analysis

in the average number of duplicates. In PolderCast we balance this trade-off
by combining the Cyclon and Vicinity views, which results in the middle
ground both for average delay and average duplication factor.

The choice of random shortcuts also has implications on the balancing of load
on the nodes. In Fig. 8(d) one can see that if only Vicinity is used for random
shortcut links, around 20% of the nodes receive messages at least 4 times. This
is due to the fact that nodes that are interested in many topics (> 100) have
a high chance to be present in the Vicinity view of many nodes. Since we use
both Vicinity and Cyclon views for random shortcuts, it reduces the number
of duplicate messages for nodes interested in many topics. It should be noticed
that Scribe does not have any duplicate messages since messages in Scribe are
disseminated using multicast trees.

In Fig. 8(c) we can see a similar pattern for dissemination delay and we again
take the middle ground between the two extremes. Fig. 8(c) also shows that there
is a significant number of messages in Scribe with a relatively high dissemination
delay, as we explained above.

6.5 Overlay Maintenance

The next experiment aims at evaluating the overhead in overlay maintenance.
We measure the number of control messages sent and received by each node to

288 V. Setty et al.

 1

 10

 100

 1000

 10000

 1 10 100 1000

#M
es

sa
ge

s/
C

yc
le

Subscription Size

Bandwidth Consumption

PolderCast #Messages
Scribe #Messages

Fig. 9. Bandwith consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

C
D

F
 (

F
ra

ct
io

n
of

 N
od

es
)

Percentage unwanted traffic

Traffic Overhead Distribution

Scribe (Twitter Data)
Scribe (Facebook Data)

Fig. 10. Traffic Overhead

maintain the overlay. Note that as shown in Fig. 9 nodes interested in many
topics (> 100) transmit a higher number of messages. This is due to the fact
that they are more frequently selected as a target for gossiping. This factor does
not play a significant role: the cycle duration can be chosen to be as high as 1
minute in real scenarios thereby rendering the bandwidth overhead negligible.
On the other hand, more intensive control communication by nodes interested
in many topics contributes to faster overlay convergence.

It is clear from Fig. 9 that Scribe incurs a higher communication overhead.
The number of control messages sent and received by a node v in Scribe is
proportional to the number of subscriptions v is interested in. Even though each
node has a limited number of children in the multicast tree to maintain, Scribe
sends regular heartbeat messages for each topic (both topics of interest and
topics for which v is a relay) to keep the trees connected.

The existence of relays and lack of topic-connectivity in Scribe additionally
causes unwanted traffic passing through the nodes. We measure the amount of
overall traffic (both control and application traffic) passing through each Scribe
node and distinguish between the traffic relevant to the subscription topics of
the node and unwanted traffic. In Fig. 10 we show the amount of unwanted
traffic at each node. We can see that over 90% of the nodes receive more than
80% of unwanted traffic. Such an overhead does not exist in PolderCast since
topic-connectivity ensures that each node receives only the traffic relevant to the
node’s subscription topics.

6.6 Message Dissemination under Churn

In this experiment we evaluate PolderCast and Scribe publication dissemina-
tion under the churn model described earlier. We inject publications as explained
earlier with fanout f set to 2. We maintain two successors and two predecessors
for each topic (�ring= 4). To assess the resilience of our protocol to node churn,

PolderCast: Fast, Robust, and Scalable Architecture 289

at the end of each cycle we freeze the overlay and we measure the miss-ratio,
i.e., the fraction of nodes that missed at least one publication event. It is worth
noting that we set the cycle duration to be 1 minute. As a consequence, we
introduce 60 times more node churn during each cycle than originally provided
by the churn traces. When measuring the miss-ratio, we exclude the warm-up
period of 10 seconds after the node joins the network.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50
 0

 250

 500

 750

 1000

M
is

s
ra

tio

N
et

w
or

k
S

iz
e

Hours

Miss-ratio Under Skype Churn Traces

Network Size
PolderCast Miss-ratio

Scribe Miss-ratio

Fig. 11. Message Dissemination Under Churn

As shown in Fig. 11, for the Skype churn model the miss-ratio in PolderCast
never grows beyond 0.01 except when there is a sharp drop in network size. In
that case, the miss ratio momentarily grows to 0.04, but stabilizes quickly. This
is due to (1) the use of random shortcuts, keeping the dissemination structure
connected even though the ring is partitioned, and (2) since �ring= 4, with
the failure of one successor/predecessor the ring can still stay connected. When
hundreds of nodes are joining the system (i.e., when there is a flash crowd),
PolderCast continues to maintain the miss-ratio below 0.01.

From Fig. 11 it can be seen that Scribe has almost 10 times higher miss-ratio
than PolderCast. Especially during the flash crowd at the beginning Scribe
has a significantly higher miss-ratio due to a slower construction of the multicast
trees when around 600 nodes join. Similarly we can see a spike in the miss-ratio
when a sharp drop in network size occurs after around hours 18. There is a spike
in the miss-ratio of PolderCast as well, but the relatively higher miss-ratio of
Scribe is caused by the sudden departure of several rendezvous nodes.

7 Conclusions

In this paper we presented PolderCast, a P2P architecture for topic-based
pub/sub which aims to achieve relay-free, fast and robust dissemination over
a scalable overlay with a minimal maintenance cost. PolderCast achieves a

290 V. Setty et al.

delicate balance between these conflicting but desirable properties. We evaluated
PolderCast with Scribe as baseline, using large scale simulations with publicly
available real world traces from Facebook [26] and Twitter [13].

References

1. An implementation of the Pastry protocol for PeerSim,
http://peersim.sourceforge.net/code/pastry.tar.gz

2. Tibco rendezvous, http://www.tibco.com
3. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN (2004)
4. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci-Piergiovanni, S.: Tera:

topic-based event routing for peer-to-peer architectures. In: DEBS (2007)
5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.T.: Scribe: a large-scale

and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications 20, 1489–1499 (2002)

6. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: PODC (2007)

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: a scalable interest-
aware overlay for topic-based pub/sub communication. In: DEBS (2007)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

9. Girdzijauskas, S., Chockler, G., Vigfusson, Y., Tock, Y., Melamed, R.: Magnet:
practical subscription clustering for internet-scale Pub/Sub. In: DEBS (2010)

10. Guha, S., Daswani, N., Jain, R.: An Experimental Study of the Skype Peer-to-Peer
VoIP System. In: IPTPS (2006)

11. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: SIGCOMM (2002)

12. Jelasity, M., Montresor, A., Babaoglu, Ö.: T-Man: Gossip-based fast overlay topol-
ogy construction. Computer Networks 53(13), 2321–2339 (2009)

13. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: WWW (2010)

14. Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM Trans. Web. 4, 2:1–2:33 (2010)

15. Liu, H., Ramasubramanian, V., Sirer, E.G.: Client behavior and feed characteristics
of RSS, a publish-subscribe system for web micronews. In: IMC (2005)

16. Matos, M., Nunes, A., Oliveira, R., Pereira, J.: Stan: exploiting shared interests
without disclosing them in gossip-based publish/subscribe. In: IPTPS (2010)

17. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: P2P Computing
(2009)

18. Patel, J.A., Rivière, É., Gupta, I., Kermarrec, A.M.: Rappel: Exploiting interest
and network locality to improve fairness in publish-subscribe systems. Computer
Networks 53, 2304–2320 (2009)

19. Rahimian, F., Girdzijauskas, S., Payberah, A.H., Haridi, S.: Vitis: A gossip-based
hybrid overlay for internet-scale publish/subscribe enabling rendezvous routing in
unstructured overlay networks. In: IPDPS (2011)

20. Reumann, J.: GooPS: Pub/Sub at Google. Lecture & Personal Communications
at EuroSys & CANOE Summer School (2009)

21. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

http://peersim.sourceforge.net/code/pastry.tar.gz
http://www.tibco.com

PolderCast: Fast, Robust, and Scalable Architecture 291

22. Triantafillou, P., Aekaterinidis, I.: Peer-to-peer publish-subscribe systems. In: En-
cyclopedia of Database Systems 2009, pp. 2069–2075 (2009)

23. Voulgaris, S.: Epidemic-Based Self-Organization in Peer-to-Peer Systems. Phd the-
sis, VU Universiteit Amsterdam (2006)

24. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership man-
agement for unstructured P2P overlays. Journal of Network and Systems Manage-
ment 13, 197–217 (2005)

25. Voulgaris, S., van Steen, M.: Hybrid Dissemination: Adding Determinism to Prob-
abilistic Multicasting in Large-Scale P2P Systems. In: Cerqueira, R., Campbell,
R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp. 389–409. Springer, Heidelberg
(2007)

26. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions
in social networks and their implications. In: EuroSys (2009)

27. Wong, B., Guha, S.: Quasar: a probabilistic publish-subscribe system for social
networks. In: IPTPS (2008)

28. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux:
an architecture for scalable and fault-tolerant wide-area data dissemination. In:
NOSSDAV (2001)

Unification of Publish/Subscribe Systems

and Stream Databases

The Impact on Complex Event Processing

Joseph Sventek and Alexandros Koliousis

School of Computing Science, University of Glasgow
{joseph.sventek,alexandros.koliousis}@glasgow.ac.uk

Abstract. There is increasing demand for complex event processing of
ever-expanding volumes of data in an ever-growing number of application
domains. Traditional complex event processing technologies, based
upon either stream database management systems or publish/subscribe
systems, are adept at handling many of these applications. However,
a growing number of hybrid complex event detection scenarios require
features of both technologies. This paper describes a unification of
publish/subscribe and stream database concepts to tackle all complex
event processing scenarios, with particular emphasis upon hybrid
scenarios. The paper describes the architecture for this unified system,
the automaton programming language that it supports, and the run-
time system that animates automata. Several examples of automata
that exploit the system’s unified nature are discussed. Raw automata
performance is characterised, and its relative performance against
Cayuga with respect to stock trend analysis is presented.

Keywords: complex event processing, user-defined functions, streams,
automata, publish, subscribe, cache.

1 Introduction

There is increasing demand for complex event processing of ever-expanding
volumes of data in an ever-growing number of application domains. This
explosive growth is fueled by a number of trends in the industry: the availability
of inexpensive wireless sensor nodes, the rapid penetration of smart phones in
the mobile telephony market, and the growth in availability and sophistication
of cloud computing resources. The data deluge resulting from the convergence
of these trends dictates that we develop ever more functional and performant
complex event processing systems in order to mine the data for information of
business or personal importance.

Complex event processing is traditionally achieved using two different
technologies: stream database management systems, in which one is able to
look backward in time via select statements, and publish/subscribe systems, in
which one is able to look forward in time via subscriptions to notifications.
Some event processing scenarios naturally fall into one or the other of these

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 292–311, 2012.
c© IFIP International Federation for Information Processing 2012

Unification of Publish/Subscribe Systems and Stream Databases 293

categories; increasingly, there are a number of hybrid scenarios in which both
capabilities are required – i.e. the ability to process received notifications is
dependent upon access to global and local state representing historical and/or
active policy information that is crucial to the correct processing of the data.

This paper describes a unification of publish/subscribe and stream database
concepts to address these hybrid scenarios. At the same time, the resulting
system should also handle scenarios for which the unified nature is not required.
The keystone of this unified system is a topic-based, publish/subscribe cache
(henceforth, the Cache). Topics are organised in memory as either append-
only stream tables or static relational tables. Ad hoc select queries, enhanced
with time windows, can be presented to the cache at any time. An imperative
programming language – viz., the Glasgow Automaton Programming Language
(GAPL) – is used to program automata to detect complex event patterns over the
cached streams and relations.When registered against the cache, each automaton
subscribes to chosen topics and receives each event inserted into those topics
through the publish/subscribe infrastructure for further processing. Automata
can also access (modify) the relational tables, publish new tuples into stream
tables, and send events to external processes.

The remainder of the paper is organised as follows. Firstly, we describe related
work to place our system in context (§2). This is followed by a discussion of the
Cache architecture (§3), the automaton programming language (§4), and the
automaton execution model (§5). We then proceed with an evaluation of the
system’s performance from a number of perspectives, including a performance
comparison against Cayuga for several, relevant stock analysis queries (§6). The
paper concludes with a discussion of the impact that such a unified system has
on future complex event processing (§7), and future work (§8).

2 Related Work

Codd’s relational model structures data into a mathematical object, a relational
database, where new information can be extracted using algebraic operators such
as projection, selection, union, or join [1]. The ordering of columns (attributes)
and rows (tuples) in a relational database is immaterial. On the other hand, data
streams are modelled as append-only databases supporting continuous queries
for which the relative temporal ordering of tuples is significant.

The continuous semantics of queries were first defined in Tapestry, a database
system for mail and bulletin board messages [2]. Roughly speaking, a continuous
query is a monotonic query – or, equivalently, a non-blocking query [3] – that
yields incremental results over a sliding time window whose duration is defined
by the current execution time and the last timestamp observed in the previous
result set. Fig. 1 shows a variant of the basic continuous query execution model,
as proposed in Tapestry. This model inspired the first generation of interactions
with the Cache, where continuous queries over network flow streams were used to
produce real-time visualisations of home networking traffic [4]. Fig. 1 also shows
an equivalent implementation of the continuous query model in GAPL, as an

294 J. Sventek and A. Koliousis

1 # Let T be a table with attribute x.
Set τ = −∞
Set S = ∅
FOREVER DO

5 S = {select x from T [since τ]}
Each tuple j in S has a timestamp tj.
τ = argmaxj∈S tj
Return results to user
Sleep for some period of time, t sec.

10 ENDLOOP

11 subscribe e to T; # A new tuple e of T.
subscribe p to Timer;
window S;
int period, τ;
initialization {

16 S = Window(sequence, SECS, t);
period = t;
τ = 0;

}
behavior {

if (currentTopic() == ‘T’)
22 append(S, Sequence(e.x), e.tstamp);

else { # The current topic is Timer.
τ += 1;
if (τ % period == 0) {

26 send(S); # Return results.
S = Window(sequence, SECS, t);

}
}

30 }

Fig. 1. The continuous query execution model [2] (left); and its equivalent Glasgow
automaton (right). Our [since τ] extension to select (line 5) guarantees to return all
tuples that have been inserted into table T in the last t seconds. On the other hand, the
automaton reacts upon every insertion of a tuple e to table T, populating a time-based
sliding window S of duration t (lines 16, 22). Every t seconds, the automaton sends
this window to its registering process (line 26).

introductory example to our automata and the unified nature of the Cache. The
nature of this unification, as well as our language features, will become apparent
in the subsequent sections.

Since TQL, Tapestry’s query language, numerous variants of SQL, the
language of Codd’s relations, have been introduced in the literature, capturing
those continuous semantics. CQL, for instance, the continuous query language of
the STREAM data management system [5], provides users with a comprehensive
list of time- or count-based sliding window operators to express non-monotonic
relations over stream attributes – in other words, stateful relations. Thus, it
became apparent to us that the use of sliding windows in stream processing
is two-fold. Apart from producing incremental results, sliding windows are also
used to maintain the intermediate state necessary for order-agnostic operators
– mainly, aggregation and join.

Closely related to this work are user-defined aggregate functions, e.g. like those
provisioned in Aurora’s SQuAl [6]. A user-defined aggregate function consists of
three parts: an initialization function that defines (local) state, opening a window
within which the computation takes place; an iteration function that updates
state; and a termination function that returns state, when the window closes.
User-defined aggregates have been proven to be a sufficient extension to SQL
for modeling complex patterns over data streams as finite state machines [3]. At
this point, two further analogies can be drawn between user-defined functions
and Glasgow automata.

Unification of Publish/Subscribe Systems and Stream Databases 295

First, an automaton can not only update local state, but also append tuples to
other streams, locally (via a publish command) or remotely (via a send command).
Second, in contrast to other event query languages, state need not necessarily
be local: using associations, an automaton can modify relational tables, whose
current state is immediately available to the rest of the system.

Non-deterministic finite state automata, a computational model used in the
event query languages of Cayuga [7,8] and SASE [9,10,11], further extend the
notion of user-defined aggregates by expressing complex patterns as composites
of ordered sequences of events. The FOLD operator of Cayuga, for example,
iterates over an a priori unknown sequence of events until a terminating
predicate is satisfied, maintaining aggregate statistics in the process; or, the skip

till next match operator of SASE maintains intermediate state in arrays in order
to express Kleene closures, an operator that has recently received considerable
attention in complex event detection [12]. For non-deterministic finite automata,
the complexity of a pattern lies in determining what comes “next” in event
processing [13]. But apart from folding (or skipping) events, it is hard to specify
patterns with branching in a Cayuga or SASE automaton. Indeed, a stream has
to be replicated and each branch of the pattern must be represented as a different
automaton. Finally, it is not always possible to express nested patterns, e.g. a
query that uses the local state maintained by another.

The Cache was first used as a stream database of network flows and related
policies that govern a home network. Network monitoring and management
scenarios have been featured heavily in stream database research. The Tribeca
query language [14], for example, supported demultiplexing and multiplexing
of packet streams. The demultiplexing of streams, while similar to the group

by SQL operator, enables processing of sub-streams beyond mere aggregate
statistics using pipes to transform streams at several stages. The importance of
multiplexing (merging) network streams has also been stressed in Gigascope, a
high-performance network monitoring tool [15]. Gigascope has a two-level query
architecture to process packets on high-speed links. High performance is achieved
by pushing low-level queries (e.g., protocol filtering or aggregation) closer to the
physical network interface. High-level queries then perform more complex tasks.

A number of packet stream processing algorithms focus on the frequency
of certain flow attributes, e.g. the throughput to (from) an IP address or a
transport port. The problem has been formally characterized as mining the
frequent items in data streams [16], and its applications to network monitoring
include finding the heaviest bandwidth consumers (heavy-hitters), or finding
the heaviest connection initiators (super-spreaders) [17]. These algorithms are
expressible, as we will demonstrate, in GAPL. Finally, modern traffic analysis
tools also query the implicit structure of flows in a traffic mix, in an attempt
to match application labels to the underlying flow patterns, and vice versa.
Thus, flow monitoring queries are not just mere counters of some traffic volume
metric, e.g. of the number of bytes or packets. Besides identifying frequent items,
patterns of temporally correlated flows are used for classification or intrusion
detection and are usually expressed as sequences of events [18].

296 J. Sventek and A. Koliousis

3 The Topic-Based Publish/Subscribe Cache

There are many situations in which detection of interesting events requires the
ability to receive raw events as they occur and the ability to query, as well as
modify, global state. In many deployment scenarios, these actions need to be
done in real-time. This section describes a topic-based publish/subscribe cache
that facilitates such real-time processing.

A working system consists of our centralised Cache and a varying number
of applications that use it; the applications and the Cache interact through a
custom RPC mechanism. There are three distinct roles that applications can
assume with respect to this system:

– populate tables with raw events via insert commands;
– retrieve data from tables periodically via select commands; and/or
– register interest to be notified when complex event patterns are detected.

The Cache supports the usual SQL commands for creating tables and inserting
tuples into tables. The Cache supports two types of tables, ephemeral tables,
append-only streams for which the primary key is the time of insertion, and
persistent tables, time-varying relations for which the primary key is the first
defined field of the table schema. Tuples inserted into ephemeral tables are stored
in a circular memory buffer,1 while tuples inserted into persistent tables are
stored in the heap. For persistent tables, an on duplicate key update modifier to
the insert command is used to update, rather than append, a row in the heap,
while maintaining the temporal order of events. Thus, when retrieving tuples
from the Cache, the default order for either table type is the time of insertion,
unless overridden by an order by modifier.

For monitoring applications, the selection operator has been augmented with
appropriate time and count window extensions to reflect the continuous nature of
the events. Thus, apart from typical order by and group by operators, ad hoc select
queries over cached streams can use time interval expressions that narrow the
scope of results to a particular time period, e.g. select ∗ from table [since τ], where
τ is the timestamp of the last retrieved tuple. Typically, monitoring applications
submit such queries periodically.

The third role of applications, viz. reaction applications, is enabled by the
unification of this stream database view of events with a publish/subscribe
infrastructure, achieved as follows. Every table created in the Cache, whether
ephemeral or persistent, corresponds to a publish/subscribe topic with the same
name. Whenever a tuple is inserted into a table, that tuple is published as an
event to its associated topic. Applications can register automata (i.e., complex
event patterns) against the database. As new tuples are inserted into a table, all
automata that have subscribed to that topic will receive events for processing.
If, while processing an event, an automaton determines that it has detected a
pattern of interest, it may send information about the complex event to the
application that registered the automaton.

1 This is the reason that the component is called the Cache.

Unification of Publish/Subscribe Systems and Stream Databases 297

Table 1. Description of data types

Type Basics

int 64-bit integer
real Double-precision floating point
tstamp 64-bit unsigned integer (nsec since the epoch)
bool True or false
string Variable-length UTF-8 character array

Type Aggregates

sequence Ordered set of heterogeneous basic data type instances
map Map from an identifier to an instance of the bound type
window Collection of bound type instances, constrained either to a

fixed number of items or a fixed time interval
identifier Key used in maps
iterator Used to iterate over all instances in a map (keys) or window

(data values)

Additionally, during normal processing of events, an automaton may publish
(append, insert, or update) a new tuple into another table in the Cache, whether
ephemeral or persistent. This unity allows for complex patterns to be presented
as materialised views in the stream database and, vice versa, materialised views
to be used to derive complex patterns. A typical reaction application (e.g., a
policy management engine) registers one or more automata with the Cache.

4 The Automaton Programming Language

4.1 Language Design Principles

Support for complex event pattern matching, requiring both consumption of raw
publish/subscribe events and access to static relations, dictated the following
features of the Glasgow Automaton Programming Language:

– the ability to subscribe to one or more topic streams over which raw events
are conveyed;

– the ability to publish raw or derived events to other publish/subscribe topics;
– the ability to store local state across many event deliveries to an automaton;
– the ability to query one or more persistent tables to access and/or modify

static, global relations; and
– the ability to send information about complex event occurrences back to an

automaton’s registering application.

Furthermore, one requires a small set of basic data types, a small set of aggregate
data structures, and a small set of control constructs to store and filter events
locally. The basic data types are described in Table 1. The language also defines
a minimal set of aggregate types, e.g. a sequence, a map, or a window, and types
required to manipulate these aggregate types, e.g. an iterator over a window.

298 J. Sventek and A. Koliousis

Every aggregate type is instantiated with a constructor. Note that a sequence
instance can contain heterogeneous basic type instances, while each map or
window instance is bound to a particular type, basic or aggregate. In fact,
the ability to instantiate windows of sequences or maps of sequences enables
the creation of ephemeral or persistent tables, respectively, that are truly local
within the context of an automaton thread. Finally, the language supports if then
else and while constructs. It also supports a typical set of operators for arithmetic,
conditional expressions, and assignment.

Overall, the C-like syntax for GAPL was chosen to facilitate the coding of
commonly-used stream processing algorithms (cf. §6.4), while enabling high-
performance filtering of events.

4.2 General Form for an Automaton

In its general form, an automaton program consists of subscriptions, associations,
declarations, an initialization clause, and a behavior clause – in that order.

Each automaton source starts with binding a local variable to each publish/-
subscribe topic to which it wishes to be subscribed. Every time an event is
delivered on any subscribed topic, the bound local variable refers to the last
received event over that topic. Attribute values are assigned automatically to
variables with names and types being determined by the corresponding table
schema. These variables are accessed using the dot notation. For example,
variable e.x holds the value of attribute x of event e. The Cache provides a
built-in topic, Timer, which delivers a tuple every second consisting simply of a
timestamp data type attribute.2 All other topics must have been created earlier
by create table calls made by applications (or during Cache initialization, from a
configuration file). An automaton must always subscribe to at least one topic.

Associations are used to bind a local map variable to a persistent table in the
Cache. The automaton can then access and modify tuples in the associated
persistent table through calls to lookup() and insert() methods on that map
variable, respectively. Subsequent declarations in an automaton enable the
programmer to declare additional local variables needed for processing.

The initialization clause of an automaton is executed once, after successful
compilation. It is usually used to initialise local variables, but therein a
programmer can perform any actions supported by the language. The behavior
clause, on the other hand, is executed each time an event is delivered to any of
the subscribed topics.

4.3 Example Hybrid Automaton

This section describes an automaton that implements a hybrid application
scenario, one in which the the processing of events depends upon access to global
persistent policy state, taken from the current deployments of the Cache – i.e.,
as part of a home network router [4].

2 This is an example of punctuation-carrying heartbeat functionality [19].

Unification of Publish/Subscribe Systems and Stream Databases 299

31 create table Flows (
proto integer,
saddr varchar(16), sport integer,
daddr varchar(16), dport integer,
npackets integer, nbytes integer)

32 create persistenttable Allowances (
ipaddress varchar(16) primary key,
nbytes integer)

33 create persistenttable Usage (
ipaddress varchar(16) primary key,
nbytes integer)

Fig. 2. Tables associated with the band-
width usage consumption automaton

34 subscribe f to Flows;
associate a with Allowances;
associate b with Usage;
int n, limit;
identifier ip;
sequence s;
behavior {

ip = Identifier(f.daddr);
if (hasEntry(a, ip)) {

limit = seqElement(lookup(a, ip), 1);
if (hasEntry(b, ip))

n = seqElement(lookup(b, ip), 1);
else

n = 0;
n += f.nbytes;
s = Sequence(f.daddr, n);
if (n > limit)

send(s, limit, ‘limit exceeded’);
insert(b, ip, s);

}
54 }

Fig. 3. Bandwidth usage consumption
automaton

Households occupied by multiple, sometimes unrelated adults (e.g., students
sharing a flat) often opt for broadband plans with rapidly escalating charges if a
per month bandwidth allowance is exceeded. These households wish to control
bandwidth consumption as it nears the monthly allowance. Additionally, it is
often the case that a single member of the household is usually the cause of
exceeding the monthly allowance; therefore, there is a desire to track the usage
of a subset of the members of the household.

The three tables used to demonstrate this functionality are shown in Fig. 2.
Table Flows is an ephemeral table populated with periodic aggregate statistics
of home networking traffic (i.e., per flow number of bytes and number of
packets accumulated every second). The other two tables are persistent. The
Allowances table is populated with a monthly download byte-limit per monitored
IP address using a network management utility; and the Usage table records
accumulated bandwidth usage, reset to zero by a network management utility
at an appropriate frequency.

Fig. 3 shows an automaton that tracks the bandwidth usage per monitored
IP address, generating a notification to the registering application (i.e., a policy-
based management system) when a limit has been exceeded. The automaton
subscribes to Flows events; and associates maps a and b with tables Allowances

and Usage, respectively. Upon receipt of each Flows event, it does the following:

– it generates an identifier ip from the flow’s destination address;
– if no entry for ip is found in Allowances, it stops processing;
– otherwise, it looks up an allowance for this ip address;
– if there is an entry for ip in table Usage, it fetches the accumulated usage;
– otherwise, it sets usage n to zero;

300 J. Sventek and A. Koliousis

– it increments n by the number of bytes in the Flows tuple;
– if ip’s limit is exceeded, it sends an event to the registering application; and
– it updates the usage for this IP address in the Cache.

5 Automaton Execution Model

When an application registers an automaton against the Cache, it provides the
source code for the automaton along with data required for the Cache to create an
RPC channel back to the registering application (i.e., a host, a port, and a service
name). The source code is then compiled into instructions for a stack machine.
If a compilation error is detected, information about the error is communicated
back to the registering application, and the RPC channel is closed.Upon successful
compilation, a new Pthread is created to animate the automaton, and an identifier
is returned instead; this identifier can be used by the registering application to
manage the automaton at a later time (e.g., to unregister it).

When the Pthread is created, the byte code sequences resulting from the
compilation of the initialization and behavior clauses are bound to an instance of
a stack machine interpreter. The initialization sequence is executed once and the
thread then enters a continuous loop, awaiting an event on one of its subscribed
topics (a tuple insertion); the runtime system guarantees that tuples are delivered
to an automaton in strict time-of-insertion order. Upon receipt of an event, the
behavior sequence is executed. If an automaton executes a send in the behavior
sequence, an RPC call, containing the send() arguments, is made to the registering
application. If the automaton executes a publish in the behavior sequence, a tuple
is inserted into the table (topic) specified in the publish() arguments, potentially
triggering other automata to execute. The default Pthread scheduling algorithm
is used by the Cache and appropriate conditional critical regions are used to
guarantee safe execution amongst multiple automata threads.

The runtime implements an aggressive garbage collection policy as soon as it
knows that heap allocated storage is no longer in use; the delete procedure can
be optionally invoked by code to advise when storage is no longer in use.

5.1 Optimizations Enabled by the Execution Model

Many complex event processing systems based upon the stream database model
require the creation of multiple temporary event streams for their operators to
perform the requisite aggregations and disaggregations demanded by a pattern
matching logic. This leads to a very large number of operators that must be
scheduled, and a very large number of additional tuples that need to be delivered
to a directed acyclic graph of operators that represent the query. The imperative
structure of GAPL, together with the ability to declare and manipulate an
automaton’s local state, enable combinations of multiple operators into a single
automaton, thus reducing the scheduling stress on the Cache. The following
example, documented fully in [20], demonstrates this effect.

The DEBS 2012 Grand Challenge posed two complex queries with regards to
monitoring manufacturing equipment. Here we discuss the first query, illustrated

Unification of Publish/Subscribe Systems and Stream Databases 301

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

5
58

8

6

9

710
7

10

69

Fig. 4. The DEBS 2012 Grand Challenge query

in Fig. 4. The query consists of fifteen operators (circles), generating nine
intermediate streams (squares). Operators 1 and 4 compute a state transition
by correlating consecutive events inserted into the initial stream 0; once a
pattern is detected by either of them, events are published to operator 7. In
turn, operator 7 looks for events in stream 5 followed by events in stream 8.
Since this logic is sequential, GAPL allows us to combine these three operators
together, in one automaton. Also, operators 10 and 11 have different functionality
but they maintain the same state, a 24-hour sliding window over stream 58. If
these operators were to be treated separately, then the same window would be
maintained twice. Since their logic is independent, this duplication can also be
avoided by merging them in one automaton. The other ten operators simply
replicate the aforementioned functionality but on different attributes. In fact,
our final solution merged all fifteen operators into a single automaton – i.e. one
execution thread – avoiding the use of intermediate streams all together. By
doing so, the throughput increased by 57% and the execution time decreased
significantly, as opposed to having one automaton per operator [20].

5.2 Multi-query Optimizations

Sharing derived events amongst Glasgow automata is currently a programmer’s
task and it is achieved by explicitly publishing these events to intermediate
streams that are, in turn, accessible by other automata running in the context
of the Cache; it is not an automated process. Managing these events program-
matically, using basic or aggregate data type instances, is one of the key features
that enable high-performance event filtering.

A limitation, however, of user-defined optimisations is that multiple automata
registrations are not open to multi-query optimisations possible in other query
engines. Cayuga, for example, merges equivalent automaton states into a
directed acyclic graph using YFilters [21,7], whose edges represent static or
dynamic predicates that determine state transitions. This trade-off, where on one
hand scaling to thousands of queries requires multi-query optimisations, while
on the other hand high performance and expressiveness requires user-defined
optimisations, is an open research question; we explore it by investigating the
use of GAPL as an intermediate language between the two approaches.

302 J. Sventek and A. Koliousis

55 subscribe t to Timer;
int i;
int limit;
tstamp start;
int dt;

60 # built-in specific declarations, e.g. sequence s; int x;
initialization {

limit = 100000;
63 # built-in specific initialization, e.g. s = Sequence(‘A’, 1);

print(‘Start of <built-in> test’);
}
behavior {

i = 0;
start = tstampNow();
while (i < limit) {

70 # invoke built-in, e.g. x = seqElement(s, 1);
i += 1;

}
dt = tstampDiff(tstampNow(), start);
print(String(‘<built-in>: ’, float(dt)/100000000.0));

75 }

Fig. 5. Built-in cost template automaton

6 Evaluation

Experiments are run on two AMD Athlon 64 dual core 2.7GHz processors with
4GB of RAM running Ubuntu Linux 2.6 and Windows 7, respectively. The
Cache is implemented as a multi-threaded process. Its main thread handles RPC
requests (e.g., tuple insertions, automaton registrations) from other processes
serially; new threads are created upon each successful automaton compilation.
The remainder of this section documents the performance of automata in this
environment.

6.1 Cost of Built-In Functions

Automata are interpreted programs, thus it is important to characterise the costs
of invoking built-in functions in the language. The automaton template in Fig. 5
was used to measure the execution costs to invoke a representative set of the
built-in functions supported by the language. The built-in specific declarations
(line 60), initialization (line 63), and invocation (line 70) were incorporated into
the template as appropriate. The print function was used to display the results
on standard output; the number printed is the number of microseconds required
for each invocation of the built-in under test. Each automaton was executed for
two minutes on an unloaded machine.

Fig. 6 shows the minimum, 25-th, 50-th, 75-th percentiles, and maximum of
execution times recorded for each built-in.3 Several things are apparent from
this data:

3 The overhead of the while loop was subtracted from the values produced by the
automaton.

Unification of Publish/Subscribe Systems and Stream Databases 303

 0.1

 1

 10

 100

seqElement hourInDay insert hasEntry lookup Identifier publish send

E
xe

cu
tio

n
tim

e
(μ

s)

Fig. 6. The execution cost of built-in functions

– the average cost of basic built-in functions (e.g. insert, lookup) is ∼ 3μs;
– identifier generation, which requires access to the heap and copying of strings,

is about twice as expensive as a basic built-in;
– publishing an event to another topic is about three times the basic built-in

cost; and
– sending an event to an external process takes ∼ 200μs.

6.2 Performance at Scale

As the number of simultaneously subscribed automata increases, one expects
the scheduling delay for each automaton to increase. Thus, it is important to
understand how the Cache performs as the number of automata and also the
frequency of tuple insertion scale up.

To stress the system, we vary the number of automata that subscribe to the
Flows topic (cf. §4.3). Independently, we vary the frequency of tuple insertion
into the Flows table. An important measure of the ability for the system to
handle the increased scale is the delay between when a tuple is inserted into the
table/topic, and when each subscribed automaton processes the event. This is
measured using the automaton in Fig. 7. For each automaton, a different value
is assigned to id (line 85); the subsequent log generated by the automaton is
analysed for mean and standard deviation of the average delay observed across
all automata, as well as for minimum and maximum delays observed (lines 91-
93). The independent parameters for the experimental runs are the number of
automata simultaneously subscribed and the cycle period of tuple insertion into
Flows, Δt.

Fig. 8 displays the measured delay parameters for Δt = 8ms. It is clear
that the average delay grows linearly as the number of automata scales from
one to eight. Note that, in the deployments to date, the typical number of flow
tuples inserted are approximately 100 events/second; Δt = 8ms corresponds to
an insertion rate of 125 tuples/second. It is also important to note that it is
quite uncommon in our experience to have several automata subscribed to high
frequency topics like Flows.

304 J. Sventek and A. Koliousis

76 subscribe f to Flows;
real min, max, mean, dt;
int count, nsecs;
string id;
initialization {

min = 1000.;
max = 0.;
mean = 0.;
count = 0;

85 id = ‘A’;
}
behavior {

count += 1;
nsecs = tstampDiff(tstampNow(),

f.tstamp);
dt = float(nsecs)/1000000.;

91 mean = mean + (dt - mean) /
float(count);

if (dt > max) max = dt;
93 if (dt < min) min = dt;

if (count >= 1000) {
print(String(id, ‘:’, mean,

‘,’, min, ‘,’, max));
min = 1000.;
max = 0.;
mean = 0.;
count = 0;

}
101 }

Fig. 7. Performance at scale template
automaton

 0

 0.05

 0.1

 0.15

 0.2

1 2 4 8

D
el

ay
 (

m
s)

automata

Fig. 8. Delay vs. # automata, Δt = 8ms

 0

 0.05

 0.1

 0.15

 0.2

4 8 16 32 64

D
el

ay
 (

m
s)

t (ms)

Fig. 9. Delay vs. event inter-arrival rate
with 4 automata running

Fig. 9 shows the measured delay parameters for four automata as Δt scales
from 4ms to 64ms (insertion rates of 250 events/second to 16 events/second).
The average and variance of the delay remain essentially constant across this
range of packet insertion rates.

Thus, the system scales well with number of automata and frequency of
tuple insertion. The linear growth in average and standard deviation of delay
with number of automata is consistent with scheduling increasing numbers of
Pthreads. The constancy of average and variance against insertion frequency
indicates that there is plenty of execution capacity in the Cache for the loads
presented.

6.3 Performance at Stress

Another important measure of the capacity of the system is the maximal rate at
which it can absorb and generate RPC requests and responses. To measure this,
we executed the automaton of Fig. 10 to measure one-way and two-way stress
performance, with a single application performing insert calls into a Test table
as rapidly as possible. Note that to measure two-way stress performance, simply
uncomment line 117 in the automaton.

Unification of Publish/Subscribe Systems and Stream Databases 305

102 subscribe t to Timer;
subscribe e to Test;
int count;
initialization {

count = 0;
print(‘Start of stress test’);

}
behavior {

if (currentTopic() == ‘Timer’) {
if (count > 0)

print(String(count,
‘events/sec’));

count = 0;
} else {

count += 1;
Uncomment for 2-way stress test:

117 # send(s);
}

119 }

Fig. 10. Performance at stress template
automaton

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16

In
se

rt
s/

se
c

integer attributes

1-way
2-way

Fig. 11. Integer stress test

 0

 1000

 2000

 3000

 4000

 5000

101 102 103 104

In
se

rt
s/

se
c

Buffer size (bytes)

1-way
2-way

Fig. 12. Character string stress test

The performance as the number of integer fields in the Test table schema
varies from 1 to 16 is shown in Fig. 11. Fig. 12 shows the performance as the
number of characters in a schema consisting of a single varchar field varies from
1 to 10,000. The RPC system performs fragmentation/reassembly at 1024-byte
boundaries, so the drop with buffer size is to be expected.

6.4 Finding Frequent Items

This section evaluates the implementation of the “frequent” algorithm, a one-
pass algorithm for finding the top-k items in a data stream [16], as a Glasgow
automaton (Fig. 13). The algorithm stores k−1 out of n items, according to their
popularity; after processing n events, the approximate result set will contain at
least those items that have occurred n/k times. The input data to the automaton
are 264, 745 out-going HTTP requests (appended to an ephemeral table Urls) to
5,572 unique hosts, as logged by a router running in a small office environment at
the University of Glasgow. Fig. 14 shows the Zipfian frequency distribution of the
data set, where hosts are ranked by their popularity, a well-known characteristic
of Web traffic.

An alternative approach is to introduce the algorithm as a built-in procedure
in the language, a de facto approach in traditional query languages. Indeed,

306 J. Sventek and A. Koliousis

120 subscribe e to Urls;
map T;
iterator i;
identifier id;
int count;
int k;
initialization {

k = k ;
T = Map(int);

}
behavior {

id = Identifier(e.host);
if (hasEntry(T, id)) {

count = lookup(T, id);
count += 1;
insert(T, id, count);

} else if (mapSize(T) < (k-1))
insert(T, id, 1);

else {
i = Iterator(T);
while(hasNext(i)) {

id = next(i);
count = lookup(T, id);
count -= 1;
if (count == 0)

remove(T, id);
else

insert(T, id, count);
}

}
150 }

Fig. 13. The frequent algorithm [16]

1

10

102

103

104

105

1 10 102 103 104

re

qu
es

ts

Rank

Fig. 14. Number of requests per Web page
ordered by popularity

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

101 102 103

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

k

imperative
built-in

Fig. 15. Imperative vs. built-in execution
time of the frequent algorithm

151 subscribe e to Urls;
map T;
initialization { T = Map(int); }

154 behavior { frequent(T, Identifier(u.host), k); }

Fig. 16. The frequent algorithm as a built-in function

there might be situations where, despite the efficient code generated from the
GAPL compiler, an interpreted solution may be insufficiently performant.

To demonstrate this, we also implemented the frequent algorithm as a built-
in function in the language and evaluated the two approaches – namely, the
automaton of Fig. 13 and the automaton of Fig. 16. From an algorithmic
perspective, the execution time of these automata is dominated by O(1)
operations (e.g. inserting into T) and O(k) operations (e.g., iterating over T). As
k increases, the number of O(1) operations increases, and the O(k) operations
become more expensive. Thus, it is expected that as k increases, the mean
execution time (μ) will decrease and the standard deviation (σ) will increase.
Fig. 15 shows the coefficient of variation (σ/μ) for both the imperative and the
built-in implementation of the frequent algorithm.

Unification of Publish/Subscribe Systems and Stream Databases 307

P
ric
e

Time

A

B

C

D

E,F

Fig. 17. An M-shaped pattern in the dataset illustrated

6.5 Comparison with Cayuga

This section evaluates the performance of the Cache against the Cayuga query
engine [7]. Most of the examples in the Cayuga distribution, as well as the data
sets provided, are related to complex event processing for stock market investors.
We evaluate three exemplar Cayuga queries against equivalent implementations
in GAPL. The dataset used contains 112,635 anonymised stock events whose
schema consists of a timestamp, an identifier as a company’s name, and a price.

The first query is an example of a basic built-in operator that simply publishes
incoming events to another stream. In the Cayuga Event Language (CEL), the
query is:

155 SELECT * FROM Stock PUBLISH T

The equivalent Glasgow automaton is one that subscribes to stream Stock and
publishes an event to another stream T with the same schema. I.e.,

156 subscribe s to Stock;
157 behavior { publish(‘T’, s); }

The second query is an example of a Cayuga automaton with multiple states
that detects a double-top formation in the price chart of any stock – this is a
well-known pattern amongst trade analysts, also known as an M-shaped pattern.
Fig. 17, for example, shows one of the M-shaped patterns found in the data set.
The CEL query that detects such patterns is illustrated in Fig. 18. Certain details
of the query have been omitted, while others have been simplified; we summarise
its functionality in the following.4

Starting from the innermost expression (lines 174-176), Cayuga correlates
two consecutive Stock events for the same company until the price rebounds.
The engine then attaches a new automaton instance to the next query state,
continuously iterating over an a priori unknown number of Stock events for the
same company, as long as its price monotonically increases. This is achieved
by the inner FOLD operator (line 177). Cayuga proceeds outwards in the query,
transiting to the next Cayuga automaton state, looking for a monotonic decrease
in that stock’s price, and so on, spawning new automaton instances along the
way and storing valleys and peaks of a given stock’s price in attributes A to F of
the resulting schema.

4 The complete queries summarised in Figures 18 and 19 are available at
www.dcs.gla.ac.uk/∼koliousa/middleware.html.

308 J. Sventek and A. Koliousis

158 SELECT Name, A, B, C, D, E, Price as F
FROM
FILTER {...} (# Price increases.
FILTER {...} (# Price decreases.
SELECT Name, A, B, C, D, Price as E
FROM
FILTER {...} (# Price increases.
SELECT Name, A, B, C, Price as D
FROM
FILTER {...} (# Price decreases.
SELECT Name, A, B, Price as C
FROM
FILTER {...} (# Price increases.
SELECT Name, A, Price as B
FROM
FILTER {...} (# Price decreases.

174 SELECT Name, Price as A
FROM Stocks

176 NEXT {$1.Name=$2.Name} Stock
177) FOLD{...} Stock # Price increasing.

) FOLD{...} Stock # Price decreasing.
) FOLD{...} Stock # Price increasing.
) FOLD{...} Stock # Price decreasing.
) NEXT {$1.Name = $2.Name} Stock

182) PUBLISH T

Fig. 18. M-shaped pattern in Cayuga

183 subscribe s to Stock;
map m;
identifier id;
sequence stock;
real a, ..., f, previous; # Prices
bool A, ..., F; # States
initialization { m = Map(sequence); }
behavior {

id = Identifier(s.id);
if (! hasEntry(m, id)) {

Init states & prices for stock id
stock = Sequence(s.price, false, ...);
insert(m, id, stock);

} else {
stock = lookup(m, id);
previous = seqElement(stock, 0);
A is the 1st element, B the 2nd, etc.
...
if (previous < s.price) {

Monitor increasing...
} else if (previous > s.price) {

Monitor decreasing...
}

}
207 }

Fig. 19. M-shaped pattern in GAPL

208 subscribe s to Stock;
map stocks;
identifier id;
sequence tuple, updated;
initialization { stocks = Map(sequence); }
behavior {

id = Identifier(s.id);
if (! hasEntry(stocks, id)) {

New run; set count to 1.
tuple = Sequence(s.price, s.time, 1,

s.price, s.time);
insert(stocks, id, tuple);
publish(‘Folded’, ‘create’, s.id,

tuple);
} else { # Existing run; update.

tuple = lookup(stocks, id);
if (s.price > seqElement(tuple, 3)) {

Price is increasing;
Incr. count (l. 228)
updated = Sequence(

seqElement(tuple, 0),
seqElement(tuple, 1),

228 seqElement(tuple, 2) + 1,
s.price, s.time);

insert(stocks, id, updated);
publish(‘Folded’, ‘change’,

s.id, updated);
} else {

remove(stocks, id);
publish(‘Folded’, ‘remove’,

s.id, tuple);
}

}
237 }

238 subscribe f to Folded;
map m;
window w;
identifier id;
sequence s;
iterator i;
initialization { m = Map(window); }
behavior {

id = Identifier(f.id);
if (f.command == ‘create’) {

w = Window(sequence, ROWS, 1000);
s = Sequence(f.price1, f.time1,

f.count, f.price2, f.time2);
append(w, s);
insert(m, id, w);

} else if (f.command == ‘change’) {
w = lookup(m, id);
s = Sequence(f.price1, f.time1,

f.count, f.price2, f.time2);
append(w, s);

} else { # Removed from map stocks.
w = lookup(m, id);
i = Iterator(w);
while (hasNext(i)) {

s = next(i);
publish(‘T’, s);

}
remove(m, id);

}
265 }

Fig. 20. Detecting sequences of increasing stock prices

Unification of Publish/Subscribe Systems and Stream Databases 309

 1

 10

 100

 1000

Q1 Q2 Q3
W

al
l-c

lo
ck

 ti
m

e
(s

ec
)

Cayuga
Cache

Fig. 21. Benchmarking against Cayuga

Our implementation (simplified) is shown in Fig. 19. The automaton main-
tains booleans A to F, together with their associated price values (a to f), in
a map of sequences; each entry represents a small state machine for a given
stock. Once all states A to F for a stock are true, then the M-shaped pattern has
been detected. Depending on the current stock price, the algorithm backtracks
to previous states or proceeds to the next (ascending or descending price runs)
accordingly. Note here that our solution is algorithmic, using the if then else

constructs of GAPL.
The final query is an example use of the FOLD operator to perform aggregate

computations across multiple iterations. The CEL query has the form:

266 SELECT *
FROM (
SELECT *, 1 AS counter FROM Stock
) FOLD {$1.Name = $2.Name, $.Price < $2.Price, $.counter + 1 AS counter} Stock

270 PUBLISH T

The desired behaviour is to detect continuous runs of increasing prices for each
stock, and to display the sequence of events that constituted each run. This has
been implemented using the two Glasgow automata illustrated in Fig. 20. The
automaton on the left maintains a map entry (a sequence) for a given company
(s.id) as long as its price is monotonically increasing. At the end of each run, i.e.,
when the stock’s price decreases, the sequence contains the current lowest price,
the start time, the length of the run, and current highest price, and the end
time. In order to also display the sequence of events that constitute each run,
we publish to another topic, Folded, and implement a custom state management
system – with states create, change, and remove – in the automaton on the right.

Fig. 21 shows the results from comparing the execution time of the three CEL
queries with their equivalent implementations in the automaton programming
language. The Cayuga engine best compiles in Microsoft’s Visual Studio, thus
the experiments were run on a Windows platform. The Cayuga execution times
are the elapsed time after all events have been loaded into memory and until
all events have been processed. The Cache was never provisioned for post-hoc
analysis of in-memory data: all events are processed in real-time. For a fair
comparison, we derive our timings by first appending all events in a window,
and then iterate over the window and execute the queries.

For the first query, the performance improvement against Cayuga is an order
of magnitude. This strengthens the argument of the efficacy of the automa-
ton execution model and the efficient unification of the publish/subscribe

310 J. Sventek and A. Koliousis

infrastructure with the data stream management code. For the second query, the
automaton detects the pattern twice as fast as Cayuga. This is another example
of the ability to implement multiple state machines under a single execution
thread, which contributes to this performance enhancement. Finally, for the third
query, our implementation is dramatically faster (×50) than Cayuga’s equivalent.

7 The Impact on Complex Event Processing

We have proposed an algorithmic, imperative approach to complex event
processing. The first impact of this work is Turing completeness, something that
was proposed from a theoretical basis in [3]. Some event languages have a solid
background in event calculi and result in one-line expressions that are compact
implementations, but are not open to user optimizations – apart from physical
query execution plans. For example, there is a large body of complex event
language research on Kleene closures [9]. Although not explicitly documented
here, we have implemented SASE’s Kleene closure operator (e.g., based on
partition contiguity) with a map of windows in GAPL.

Our experiences thus far are that the imperative programming style of GAPL
enables it to be used in many domains: home network management [4], industrial
applications [20], and, given the present comparisons to Cayuga, stocks. In
addition to its expressiveness, this imperative model has been shown more
performant than a declarative event language (CEL). Thus, it may be viewed
as an intermediate language between SQL-like queries (logical query plans) and
their execution interpretation (physical query plans).

8 Conclusions

It is clear that the automaton language, as integrated into the Cache, provides a
very high-performance complex event processing capability. It can be criticized
for its imperative, C-like structure, in terms of usability by individuals wanting
to deploy their own automata. We have started to investigate compilation of
stream expressions for complex event patterns, such as Cayuga’s, into equivalent
automata. An alternative approach is to compile stream expressions directly into
instructions for the stack machine that underlies the Cache.

In comparing with Cayuga, we have determined that we need to be able to
create streams on the fly. This will enable exploration of the dynamic demulti-
plexing of streams, as lately discussed in [22]. We continue our comparative
endeavours with the Linear Road Benchmark [23].

References

1. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13, 377–387 (1970)

2. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: Proceedings of the ACM SIGMOD (1992)

Unification of Publish/Subscribe Systems and Stream Databases 311

3. Law, Y.N., Wang, H., Zaniolo, C.: Query languages and data models for database
sequences and data streams. In: Proceedings of the VLDB (2004)

4. Sventek, J., Koliousis, A., Dulay, N., Pediaditakis, D., Rodden, T., Lodge, T.,
Sharma, O., Sloman, M., Bedwell, B., Glover, K., Mortier, R.: An Information
Plane Architecture Supporting Home Network Management. In: Proceedings of
the IFIP/IEEE IM (2011)

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15, 121–142 (2006)

6. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture
for data stream management. The VLDB Journal 12, 120–139 (2003)

7. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards Expressive
Publish/Subscribe Systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)

8. Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald,
M., Thatte, M., White, W.: Cayuga: a high-performance event processing engine.
In: Proceedings of the ACM SIGMOD (2007)

9. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: Proceedings of the ACM SIGMOD (2008)

10. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of the ACM SIGMOD (2006)

11. Gyllstrom, D., Agrawal, J., Diao, Y., Immerman, N.: On supporting kleene closure
over event streams. In: Proceedings of the IEEE ICDE (2008)

12. Mozafari, B., Zeng, K., Zaniolo, C.: From regular expressions to nested words:
unifying languages and query execution for relational and XML sequences. Proc.
VLDB Endow. 3(1-2), 150–161 (2010)

13. White, W., Riedewald, M., Gehrke, J., Demers, A.: What is “next” in event
processing? In: Proceedings of the ACM PODS (2007)

14. Sullivan, M., Heybey, A.: Tribeca: a system for managing large databases of
network traffic. In: Proceedings of the USENIX ATEC (1998)

15. Cranor, C., Johnson, T., Spataschek, O., Shkapenyuk, V.: Gigascope: a stream
database for network applications. In: Proceedings of the ACM SIGMOD (2003)

16. Cormode, G., Hadjieleftheriou, M.: Finding the frequent items in streams of data.
Commun. ACM 52, 97–105 (2009)

17. Sekar, V., Reiter, M.K., Zhang, H.: Revisiting the case for a minimalist approach
for network flow monitoring. In: Proceedings of ACM IMC (2010)

18. Kandula, S., Chandra, R., Katabi, D.: What’s going on?: learning communication
rules in edge networks. In: Proceedings of the ACM SIGCOMM (2008)

19. Johnson, T., Muthukrishnan, S., Shkapenyuk, V., Spatscheck, O.: A heartbeat
mechanism and its application in Gigascope. In: Proceedings of the VLDB (2005)

20. Koliousis, A., Sventek, J.: DEBS Grand Challenge: Glasgow automata illustrated.
In: Proceedings of the ACM DEBS (2012)

21. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst. 28(4), 467–516 (2003)

22. Zeitler, E., Risch, T.: Massive scale-out of expensive continuous queries.
PVLDB 4(11), 1181–1188 (2011)

23. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E.,
Stonebraker, M., Tibbetts, R.: Linear road: a stream data management benchmark.
In: Proceedings of the VLDB (2004)

High-Performance Location-Aware

Publish-Subscribe on GPUs

Gianpaolo Cugola and Alessandro Margara

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, Milan, Italy

{cugola,margara}@elet.polimi.it

Abstract. Adding location-awareness to publish-subscribe middleware
infrastructures would open-up new opportunities to use this technology
in the hot area of mobile applications. On the other hand, this requires
to radically change the way published events are matched against re-
ceived subscriptions. In this paper we examine this issue in detail and
we present CLCB, a new algorithm using CUDAGPUs for massively par-
allel, high-performance, location-aware publish-subscribe matching and
its implementation into a matching component that allows to easily build
a full-fledged middleware system. A comparison with the state-of-the-art
in this area shows the impressive increment in performance that GPUs
may enable, even in this domain. At the same time, our performance
analysis allows to identify those peculiar aspects of GPU programming
that mostly impact the performance of this kind of algorithm.

Keywords: Publish-Subscribe Middleware, Location-Awareness,
Content-Based Matching, Parallel Hardware, CUDA GPUs.

1 Introduction

The diffusion of mobile devices, like notebooks, tablets, and smartphones, which
characterized the last few years, has enabled mobile computing scenarios based
on location-aware services. In several cases these services involve some form of
event-based interaction [22] among the different parties, being them the final
users or the components of the mobile applications they use. Examples of ser-
vices that combine these two models of interaction are location-aware advertising
(that reach potential clients based on their location and interests), location-aware
social networking (that want to let co-located people to “socialize”, i.e., commu-
nicate and coordinate), traffic information services (where information reaches
interested users based on their location), emergency services (that spread some
emergency-related information only to the people present in a specific area where
the emergency situation occurs), and so on.

From a software engineering standpoint we notice that this model of inter-
action can be efficiently supported by a location-aware publish-subscribe mid-
dleware layer, which lets distributed components subscribe to the notification
of events (often simply “events”) happening in a given location (usually in the
neighborhood of the subscriber) and publish the events they want to notify to

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 312–331, 2012.
c© IFIP International Federation for Information Processing 2012

High-Performance Location-Aware Publish-Subscribe on GPUs 313

others. In particular, a content-based infrastructure [14] is the most suited for
the kind of services we mentioned, as it provides the level of expressiveness to
allow subscribers to express their interests based on the whole content of the
event notifications published.

The key element of every content-based publish-subscribe middleware infras-
tructure is the matching component in charge of filtering incoming events against
received subscriptions to decide the interested recipients. If we focus on this
component and on the algorithm it implements, we notice that none of those
proposed so far [1,14] fits the mobile scenarios we address. Indeed, in order to
maximize performance all the matching algorithms assume: (i) that subscrip-
tions are fairly stable and (ii) that they differ from each other (i.e., they include
constraints on different attributes1), and they leverage these assumptions to in-
dex existing subscriptions in complex data structures that minimize the number
of comparisons required to match incoming events. Unfortunately, both these
assumptions are violated by location-aware publish-subscribe: the location con-
straint is present in every subscription and subscriptions change frequently since
the area of users’ interests moves with them.

To overcome these limitations we developed CLCB - Cuda Location-aware
Content-Based matcher, a new matching algorithm that leverages the processing
power of CUDA Graphical Processing Units (GPUs) to provide high-performance
location-aware content-based matching. In designing CLCB we started from
the consideration that modern GPUs in general, and those that implement the
CUDA architecture in particular, offer a huge computing power suited for differ-
ent types of processing, once the right algorithm has been designed. Indeed, GPU
programming is a complex task that requires programmers to take into account
the peculiarities of the hardware platform, from the memory layout and the way
memory is accessed, to the fact that GPU cores can be used simultaneously only
to perform data-parallel computations.

In the remainder of the paper we show how CLCB addresses these issues,
exploiting all the processing power of CUDA GPUs to minimize both the time
to perform location-aware content-based matching of incoming events, and the
time to update subscriptions when users move and the area of their interests
changes. A comparison against various state-of-the-art systems shows the ad-
vantages GPUs may bring to this domain. In particular, next section introduces
the location-aware publish-subscribe model we consider, while Section 3 offers an
overview of the CUDA programming model. The CLCB algorithm is described in
Section 4, while Section 5 evaluates its performance. Finally, Section 6 presents
related work and Section 7 provides concluding remarks.

2 The Interaction Model in Details

As the name suggests, location-aware publish-subscribe middleware infrastruc-
tures enable a model of interaction among components that extends the

1 See Section 2 for the specific nomenclature we use to refer to the format of events
and subscriptions.

314 G. Cugola and A. Margara

traditional publish-subscribe model by introducing a concept of “location”. In
particular, we assume a data model that is very common among content-based
publish-subscribe middleware infrastructures [9], where event notifications are
represented as a set of attributes, i.e., 〈name, value〉 pairs, while subscriptions
are a disjunction of filters, which, in turn, are conjunctions of elementary con-
straints on the values of single attributes, i.e., 〈name, operator, value〉 triples.

As far as location is concerned, we assume that each event happens in a
specific location, while filters have an area of relevance. Notice that we associate
the area of relevance to filters and not subscriptions on purpose. Indeed, this
choice allows to easily model the (common) situation of a user that wants to
subscribe to events X happening in an area AX or to events Y happening in a
different area AY .

For simplicity we assume that locations are expressed using Cartesian coordi-
nates and that the area of relevance of each filter is a circle, which we represent
using three floats: two for the center of the area and one for its radius2.

Given these definitions, the problem of location-aware content-based matching
we want to solve can be stated as follows: given an event e happening at a location
loc(e) and a set of subscriptions S = {s1, ..., sn}, each composed of a set of filters
si = {fi1 , ..., fim} with their area of relevance area(fi1), ..., area(fim), find those
subscriptions sj such that:

∃k : loc(e) ∈ area(fjk) ∧matches(e, fjk)

where matches(e, fjk) iff every constraint in fjk is satisfied by an attribute in e.
Moreover, the peculiarity of the scenarios we consider is that the area of

relevance of filters changes frequently as it reflects the actual location of the
subscribers, which are supposed to move at run-time.

3 Parallel Programming with CUDA

Attaining good performance with parallel programming is a complex task. A
näıve paralleling of a sequential algorithm is usually not sufficient to efficiently
exploit the presence of multiple processing elements, and a complete re-design
of the algorithm may be necessary, taking into account the peculiarity of the
underlying architecture and its programming model.

Introduced by Nvidia in Nov. 2006, the CUDA architecture offers a new pro-
gramming model and instruction set for general purpose programming on GPUs.
Different languages can be used to interact with a CUDA compliant device: we
adopted CUDA C, a dialect of C explicitly devoted to program GPUs. The
CUDA programming model is founded on five key abstractions:

Hierarchical Organization of Thread Groups. The programmer is guided
in partitioning a problem into coarse sub-problems to be solved independently
in parallel by blocks of threads, while each sub-problem must be decomposed

2 This choice does not impact our algorithm and can be easily changed to represent
both the location of events and the area of relevance of filters differently, including
3-dimensional areas.

High-Performance Location-Aware Publish-Subscribe on GPUs 315

into finer pieces to be solved cooperatively in parallel by all threads within a
block. This decomposition allows the algorithm to easily scale with the number
of available processor cores, since each block of threads can be scheduled on any
of them, in any order, concurrently or sequentially.

Shared Memories. CUDA threads may access data from multiple memory
spaces during their execution: each thread has a private local memory for au-
tomatic variables; each block has a shared memory visible to all threads in the
same block; finally, all threads have access to the same global memory.

Barrier Synchronization. Since thread blocks are required to execute inde-
pendently from each other, no primitive is offered to synchronize threads of
different blocks. On the other hand, threads within a single block work in co-
operation, and thus need to synchronize their execution to coordinate memory
access. In CUDA this is achieved exclusively through barriers.

Separation of Host and Device. The CUDA programming model assumes
that CUDA threads execute on a physically separate device (the GPU), which
operates as a coprocessor of a host (the CPU) running a C/C++ program. The
host and the device maintain their own separate memory spaces. Therefore,
before starting a computation, it is necessary to explicitly allocate memory on
the device and to copy there the information needed during execution. Similarly,
at the end results have to be copied back to the host memory and the device
memory have to be deallocated.

Kernels. They are special functions that define a single flow of execution for
multiple threads. When calling a kernel k, the programmer specifies the number
of threads per block and the number of blocks that must execute it. Inside the
kernel it is possible to access two variables provided by the CUDA runtime:
the threadId and the blockId, which together allow to uniquely identify each
thread among those executing the kernel. Conditional statements involving these
variables can be used to differentiate the execution flows of different threads.

Architectural Issues

There are details about the hardware architecture that a programmer cannot
ignore while designing an algorithm for CUDA. First of all, the CUDA architec-
ture is built around a scalable array of multi-threaded Streaming Multiprocessors
(SMs). When a CUDA program on the host CPU invokes a kernel k, the blocks
executing k are enumerated and distributed to the available SMs. All threads
belonging to the same block execute on the same SM, thus exploiting fast SRAM
to implement the shared memory. Multiple blocks may execute concurrently on
the same SM as well. As blocks terminate new blocks are launched on freed SMs.

Each SM creates, manages, schedules, and executes threads in groups of par-
allel threads called warps. Individual threads composing a warp start together
but they have their own instruction pointer and local state and are therefore
free to branch and execute independently. On the other hand, full efficiency is
realized only when all threads in a warp agree on their execution path, since
CUDA parallels them executing one common instruction at a time. If threads
in the same warp diverge via a data-dependent conditional branch, the warp

316 G. Cugola and A. Margara

executes each path serially, disabling threads that are not on that path. Only
when all paths complete the threads converge back to the same execution flow.

An additional issue is represented by memory accesses. If the layout of data
structures allows threads with contiguous ids to access contiguous memory lo-
cations, the hardware can organize memory accesses into several memory-wide
operations, thus maximizing throughput. This aspect significantly influenced the
design of CLCB’s data structures, as we discuss in the next section.

Finally, to give an idea of the capabilities of a modern GPU supporting CUDA,
we provide some details of the Nvidia GTX 460 card we used for our tests. It
includes 7 SMs, which can handle up to 48 warps of 32 threads each (for a
maximum of 1536 threads). Each block may access a maximum amount of 48KB
of shared, on-chip memory within each SM. Furthermore, it includes 1GB of
GDDR5 memory as global memory. This information must be carefully taken
into account when programming: shared memory must be exploited as much
as possible to hide the latency of global memory accesses but its limited size
significantly impacts the design of algorithms.

4 The CLCB Algorithm

In this section we first explain why existing solutions for content-based matching
and spatial searching cannot fully satisfy the requirements of a location-aware
publish-subscribe middleware, then we present our CLCB algorithm in details.

4.1 Why a New Algorithm?

To support the model of interaction described in Section 2 a middleware has to
perform a location and content-based filtering of incoming events against existing
subscriptions, which are two complex and time consuming tasks. In principle,
this can be done in three ways::

1. by encoding the location of events as part of their content (i.e., as an ad-hoc
attribute) and the area of relevance of filters inside the filters themselves
(i.e., as an ad-hoc constraint), using a traditional content-based matching
algorithm to filter incoming events against existing subscriptions;

2. by separating the location from the content matching problem, to solve the
former through an algorithm explicitly designed for spatial searching and
the latter through a traditional content-based matching algorithm;

3. by combining the location and content matching steps in a single, ad-hoc
algorithm.

The first approach has two limitations: (i) in the mobile scenario we target the
area of relevance of filters changes frequently and this would require a frequent
update of the location constraints, while traditional content-based matching al-
gorithms organize subscriptions into complex data structures that make updates
relatively expensive; (ii) the presence of a similar constraint (the one about loca-
tion) on every filter reduces the efficiency of existing algorithms, which leverage

High-Performance Location-Aware Publish-Subscribe on GPUs 317

S1 S3 S4

S1* S3*S2a

S2

Cont Kernel

Loc Kernel Cont Kernel Zip Kernel

Reset Kernel

S1a S1b S2S2*

CCM

CLCB

Fig. 1. The CCM and CLCB algorithms compared

the differences among filters to reduce the number of comparisons to perform.
In Section 5 we will measure the actual impact of these limitations.

The second approach is the one we take as a benchmark in Section 5, showing
that it is outperformed by our CLCB algorithm, which, in turn, follows the third
approach. The next two sections describe how it works.

4.2 CLCB: An Overview

To perform the content-based matching part of its job, CLCB exploits a modified
version of CCM, our CUDA-based matching algorithm [24]. CCM stores received
subscriptions into the GPU memory, organizing the constraints that compose
them into groups, based on the name of the attribute to which they apply. To
process an incoming event e, CCM moves e into the GPU memory and evaluates
all the constraints that apply to e. For each satisfied constraint it increments
a counter3 associated to the corresponding filter. When the counter for filter
f equals the total number of constraints in f then f is satisfied and so is the
subscription to which f belongs. When this happens, CCM marks the element
that corresponds to the satisfied subscription into an ad-hoc bit vector that
represents the result of processing. Such vector is kept in the GPU memory
and copied back to the CPU memory when the processing of e finishes. To
maximize the utilization of the GPU’s computing elements, CCM processes all
the constraints in parallel, using a different CUDA thread for each of them, and
it increases the counters of filters through atomic operations.

In summary, for each incoming event e CCM performs the following steps (see
top of Figure 4.2):

S1 copies e and all the data structures required for processing from the CPU to
the GPU memory;

S2 uses the GPU to evaluate all the constraints that apply to the attributes of
e in parallel, counting the satisfied constraints and setting the bit vector of
matched subscriptions;

S3 copies the bit vector of matched subscriptions to the CPU memory.
S4 resets the bit vector of matched subscriptions and the counters of satisfied

constraints associated to each filter to 0, ready for processing a new event.

A näıve approach to add location-awareness to CCM would be to add an ad-
ditional step, before or after the content-based matching, where checking the

3 CCM belongs to the vast category of “counting” algorithms. See Section 6.

318 G. Cugola and A. Margara

location of event e against the area of relevance of stored filters. Unfortunately,
this would not attain the best performance. Instead, we followed a different ap-
proach (see bottom of Figure 4.2), which combines location and content-based
matching in a single, integrated process. In particular, we added two intermedi-
ate steps between S1 and S2. For each filter f :

S1a performs an initial content-based pre-filtering, by encoding the names of
attributes in e as a Bloom filter [5] that is compared with the pre-calculated
Bloom filter that encodes the names of constraints in f . This allows to effi-
ciently4 compare the two sets of names, discarding f if it includes constraints
on attributes not present in e;

S1b checks the area of relevance of f against the location of e.

Both these steps are executed into a single CUDA kernel (named Loc in Fig-
ure 4.2), using a different CUDA thread to process each filter in parallel.

The presence of the two steps above allowed us to optimize the content-based
matching algorithm of CCM (i.e., step S2) to immediately skip those filters
whose area of relevance does not match the location of e. We also modified
CCM by observing that it was designed for scenarios where a large number of
filters is included into a relatively small number of subscriptions. For this reasons
it encodes its results (i.e., the set of matched subscriptions) as a bit vector. On
the contrary, we expect most location-aware services to have a large number
of subscriptions and to select only a small portion of them while processing an
event. In this scenario, encoding results as a large and sparse bit vector becomes
inefficient. Accordingly, we added the following step just before S3:

S2a converts (using a CUDA kernel named Zip in Figure 4.2) the bit vector
generated by CCM into an array of matched subscription identifiers.

This is the result that is copied back to the CPU memory at the new step S3*.
Finally, we were able to move most of the processing formerly in S4 into the

Loc kernel (which implements steps S1a and S1b), reducing the total number of
kernels to launch.

4.3 CLCB in Detail

Data Structures. Figure 4.3 shows the data structures used in CLCB. In par-
ticular, Figure 2(a) shows the data structures stored on the GPU memory per-
sistently (across event processing)5.

Vector FPos stores the center (x and y coordinates) of the area of relevance
of each filter as two 32 bit floats (more precisely we use a float2 CUDA type).
Nearby is vector SqDist, which stores the square of the radius of the correspond-
ing area of relevance. These two data structures are separated from the others
to simplify location updates.

4 Comparing two Bloom filters for set inclusion requires a single bit-wise and plus a
comparison.

5 We focus on the CLCB specific data structures, leaving aside those used by CCM.
The interested reader may find a precise description of these structures in [24].

High-Performance Location-Aware Publish-Subscribe on GPUs 319

x1 y1 x2 y2 x3 y3 xn ynFPos

d1 d2 d3 ... dnSqDist

n = number of filters

c1 c2 c3 ... cnFCount

b1 b2 b3 ... bnBF

k = number of subscriptions

s1 s2 s3SubsBV sk

s1 s2 s3Subs sk SubsCount

... ...CCM
Data Structs

...

...

... ...

(a) Stored on the GPU

InputBF

x yInputPos

Att1 Attm...Attrs
(used by CCM)

m = number of attributes

(b) Generated from the input event

Fig. 2. Data structures of CLCB

BF is a vector of Bloom filters (as 32 bit integers), which encodes, for each
filter f , the set of names of the constraints in f (see step S1a above). Notice that
32 bit may seem small for a Bloom filter, but: (i) they are enough to guarantee
10% of false positives with up to 6 constraints per filter (independently from
the number of names in the workload); (ii) we use them to quickly identify
those filters that have no chance to be matched, i.e., we may tolerate some false
positives if this increases performance, and moving to 64 bit or more would
greatly reduce performance as the bandwidth toward GPU memory is limited.

Vector FCount stores, for each filter f , the number of constraints currently
satisfied in f (including the implicit constraint on the area of relevance). As
such, it is used both during the location-based filtering step S1b and during the
content-based filtering step S2.

SubsBV is the bit vector of matched subscriptions generated after the location-
based and content based filtering steps S1a, S1b, and S2 take place.

Finally, vector Subs represents the final result of the CLCB computation
(generated by step S2a). It stores the (32 bit) identifiers of the subscriptions
satisfied by the event. SubsCount contains the number of matched subscriptions,
i.e., the number of elements actually stored in Subs.

Notice that the internal organization of data into FPos, SqDist, BF, and
FCount allows to store the relevant information regarding filters into contiguous
memory regions. This allows to implement steps S1.a and S1.b (i.e., the entire
Loc kernel) in such a way that threads with contiguous ids access contiguous
memory regions: a key choice to allow the CUDA runtime to optimize memory
accesses by grouping them into a reduced number of memory-wide operations.

The data structures that encode the relevant information about the event e
under processing are shown in Figure 2(b). They are built by the CPU and trans-
ferred to the GPU memory for processing. In particular, InputBF is the Bloom
filter that encodes (as a 32 bit integer) the names of e’s attributes; InputPos is
a float2 element that represents the coordinates of the location of e. Finally,
vector Attrs stores the attributes of e, which are used during the content-based
filtering step S2.

320 G. Cugola and A. Margara

Algorithm 1. The Loc and Zip kernels in details
1: function Loc
2: id = blockId.x · blockDim.x + threadId
3: if id ≥ n then
4: return
5: end if
6: if id==0 then
7: SubsCount = 0
8: end if
9: if ! includes(InputBF, BF[id]) then
10: FCount[id] = 0
11: return
12: end if
13: Pos = FPos[id]
14: sqDistX = (InputPos.x − Pos.x) · (InputPos.x − Pos.x)
15: sqDistY = (InputPos.y − Pos.y) · (InputPos.y − Pos.y)
16: if sqDistX + sqDistY > SqDist[id] then
17: FCount[id] = 0
18: else
19: FCount[id] = 1
20: end if
21: end function
22:
23: function Zip
24: id = blockId.x · blockDim.x + threadId
25: if id ≥ k then
26: return
27: end if
28: if SubsBV[id] == 1 then
29: SubsBV[id] = 0
30: position = atomicAdd(SubsCount, 1)
31: Subs[position] = id
32: end if
33: end function

Processing Kernels. Algorithm 1 shows the Loc and Zip kernels, while the
details of the Cont kernel can be found in [24].

The Loc kernel performs steps S1a and S1b. In implementing it, we tried to
stop the execution of threads as soon as possible. This increases the chances that
all the threads in a warp (the minimum allocation unit for CUDA) terminate,
thus freeing resources for other threads. Moreover, this also reduces the number
of memory accesses performed by each thread, which often represents the main
bottleneck in CUDA. In particular, each thread of the Loc kernel first computes
its id and uses it to decide which filter to consider, from 0 to n − 1. Since
each block consists of a fixed number of threads (usually 256) and threads are
allocated in blocks, it is often impossible to allocate the exact number of threads
required (n in our case). Accordingly we check, at Line 3, if the current thread is
required, discarding useless threads immediately. Line 7 is performed by a single
thread (the one with id = 0), which resets the counter of matched subscriptions
SubsCount. This is a necessary step to be ready to process the new event and
embedding it into this kernel reduces the number of operations that the host
program issues to the GPU.

Lines 9–12 encode step S1a above. Each thread performs a preliminary content-
based evaluation of the filter f for which it is responsible, by comparing the
Bloom filter that encodes the set of constraint names in f (i.e., BF[id]) with

High-Performance Location-Aware Publish-Subscribe on GPUs 321

the Bloom filter that encodes the set of attribute names in e (i.e., InputBF).
This operation only requires to read a 32 bit element (InputBF) shared among
threads (automatically cached by modern NVIDIA GPUs), while another 32 bit
element for each thread must be read from the main memory (BF[id]). As al-
ready mentioned, the layout of the BF data structure and the way it is accessed
by threads allows the CUDA runtime to combine the latter reads into a reduced
number of memory-wide operations.

If the content-based comparison above succeeds, each thread compares the
location of the input event and the area of relevance of the filter it is responsible
for. This is done at Lines 13–16. If the comparison succeed the thread sets the
counter of satisfied constraints of the current filter (FCount[id]) to 1. In any
other case this value is reset to 0 (Lines 10 and 17). Again, this is a necessary step
to be ready to process the new event and embedding it into the Loc kernel allows
to eliminate kernel Reset, which was originally part of CCM (see Figure 4.2).
We also notice that the introduction of kernel Loc allows to modify the CCM
algorithm (kernel Cont) so that each thread there immediately checks the value
of the counter for the filter it is responsible for. If it is 0 than the thread can
immediately terminate as it is sure that either the Bloom filter based content
check or the location-based matching did not succeed.

After the Loc and Cont kernel runs, we execute the Zip kernel, whose pseudo-
code is shown in Algorithm 1. It executes one thread for each subscription. At
the beginning (Line 24) every thread computes its id and immediately terminates
if it exceeds the total number of subscriptions. Then, every thread checks one
element of the SubsBV bit vector in parallel. If the element is set to 0, the
thread can safely terminate. Otherwise, it resets the element to 0 to be ready for
the next event and appends the identifier of the corresponding subscription to
vector Subs. To do so, it atomically increases SubsCount using the atomicAdd

function provided by the CUDA runtime. This function returns the old value of
SubsCount, which the thread uses to access the Subs vector.

Reducing Memory Accesses. In the Loc kernel, each thread accesses a differ-
ent element of vector FCount, setting it to 1 if the filter matches the event and
to 0 in the other cases (i.e., to be ready for the next steps). In most application
scenarios, we expect that only a (small) fraction of FCount needs to be set to
1, since only a small fraction of the filters is geographically close to the location
of the event under processing. Accordingly, we could reduce memory accesses
by reducing the number of times we have to reset the FCount elements to 0. To
obtain this result we notice that each element of FCountmust be a 32 bit integer
for architectural reason: the Cont kernel needs to increase it using an atomicAdd

operation, which is defined only for 32 bit integers. However, we expect filters to
include only a small number of constraints, much less than 256, so a single byte
would be enough for our purposes. Moving from these premises, we optimized
the Loc and Cont kernels grouping runs by four. At run r = 1, ..., 4 we set to 1
the rth byte of FCount[id] if necessary, while we reset the whole 4 bytes only
at the first run. This way we reset the FCount vector only once every four runs,
which results in an average improvement in processing time of about 20%.

322 G. Cugola and A. Margara

Reducing Latency. Both the operations of launching a kernel and issuing a
memcopy between the CPU and the GPU memory in CUDA are asynchronous
and initiated by the host CPU. A straightforward implementation could force
the CPU to wait for an operation involving the GPU to finish before issuing the
following one. This approach, however, pays the communication latency intro-
duced by the PCI-Ex bus for every command sent to the GPU. To solve this
issue, CLCB makes use of a CUDA Stream, which is a FIFO queue where the
CPU can put operations to be executed sequentially on the GPU. This way
we may explicitly synchronize the CPU and the GPU only once for each event
processed, to make sure that the GPU has finished its processing and all the
results have been copied into the main memory before the CPU accesses them.
This approach enables the hardware to issue all the instructions it finds on the
Stream immediately, paying the communication latency only once.

5 Evaluation

This section evaluates CLCB, comparing it with existing approaches for content-
based matching and spatial indexing. We evaluate the time required to match
an incoming event and the time required to update the area of relevance of a
filter. Moreover, we show how the relatively small amount of memory provided
by existing GPUs does not constitute a limitation for our algorithm.

Experiment Setup. To study the performance of CLCB we started from a
default scenario (see Table 1) that represents a typical metropolitan situation,
with 250k subscribers, each installing 10 filters. The area of relevance of filters
is fixed at 0.01% of the entire area under analysis: this is equivalent to consider
a circle with 76m radius in a city like Milan. Each filter contains 3 to 5 con-
straints and is satisfied by 0.5% of incoming events, on the average. We consider
subscribers (hence the area of relevance of the filters they sent) to be uniformly
distributed. Since in some scenarios this could be a non-realistic assumption,
we also considered the case where subscribers are concentrated in certain areas
(actually, we will show that this further increases the advantages of CLCB w.r.t.
existing approaches). To compute the time required to match each event, we
submitted 1000 events having 3 to 5 attributes each, and calculated the average
processing time. Similarly, to compute the update time we changed the area of
relevance of 1000 filters, calculating the average update time.

All tests have been run on a 64bit Linux PC with an AMD Phenom II x6 CPU
running at 2.8GHz and 8GB of RAM. We used GCC 4.6 and the CUDA Toolkit
4.1. The GPU is a Nvidia GTX 460 with 1GB of RAM. We repeated each test
several times with different seeds to generate subscriptions and events. For each
measure, we report the average value we measured, omitting, for readability, the
95% percentile, which is always below 1% of the measured value.

Limitation of Content-Based Matching Algorithms. As already men-
tioned in Section 4.1, it is theoretically possible to provide a location-based
service using a traditional content-based matching algorithm and encoding the
area of relevance of each subscription as a special constraint. Here, we show the
limitations of this approach by analyzing the performance of two state of the

High-Performance Location-Aware Publish-Subscribe on GPUs 323

Table 1. Parameters for the default
scenario

Number of events 1000
Attributes per event, min-max 3-5
Number of subscriptions 250000
Content constr. per filt., min-max 3-5
Filters per subscription 10
Number of distinct names 100
Area covered by each filter 0.01%
Spatial distribution Uniform
Selectivity of content 0.5%

Table 2. Processing and update times
of content-based matching systems

SFF BETree
Proc. Time w/o Location 13.78 ms 1.48 ms
Proc. Time w/ Location 118.69 ms 84.09 ms
Update Time 10151 ms n.a.

art algorithms: SFF [9] v. 1.9.5 and BETree [27]. They are among the fastest
implementations of the two main classes of matching algorithms, i.e., counting
algorithms and tree-based algorithms, respectively (see Section 6).

The results we collected using the parameters of our default scenario are
shown in Table 2. We first consider the average time required to process a single
event: in the first line we consider only content-based matching (there is no
area of relevance associated to filters). In this scenario SFF requires 13.78ms
to process a single events, while BETree requires 1.48ms. In the second line of
Table 2, we also consider the area of interest. We observe a significant increase in
processing time: SFF becoming 8.6 times slower and BETree becomes 56.8 times
slower. This happens because the complexity of both the (classes of) algorithms
is influenced by the number of constraints on each event attribute. For this
reason, adding the location constraint (that applies to the same attribute of
every event) to each filter represents a challenging scenario for these algorithms.
By comparison, in the default scenario, CLCB requires 0.306ms to perform both
content-based and location-based matching, providing a speedup of 389× over
SFF and 275× over BETree.

The third line of Table 2 shows the average time required to update the area
of relevance of a single filter. SFF builds some complex indexing structures to
speedup the processing: since it was designed to work under the assumption
of rare changes in the interests of subscribers, it does not provide primitives
to update filters, but completely re-creates all indexes after each update. For
this reason, updating the area of relevance requires more than 10s with SFF.
As for BETree, we could not made this test directly, as we only had access to
an executable binary that implements the BETree algorithm starting from a
file that holds all the subscriptions. On the other hand, given the way BETree
operates, we expect results similar to those of SFF.

Limitation of Location-Based Filtering Algorithms. Several data struc-
tures have been proposed in the literature to store and retrieve localized infor-
mation. They are generally known as spatial indexing structures and the most
widely adopted is R-Tree [20]. In the following we compare CLCB against R-
Tree. In particular, we used the R∗-Tree variant6, known for its efficiency [3].

6 We adopted the open source C++ libspatialindex library 1.7.0 available at
http://libspatialindex.github.com

http://libspatialindex.github.com

324 G. Cugola and A. Margara

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(a) Each filter covers 0.001% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(b) Each filter covers 0.01% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(c) Each filter covers 0.1% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(d) Each filter covers 1% of area

Fig. 3. Matching times of CLCB and R-Tree compared (uniform spatial distribution)

Since the performance of R-Tree is influenced by several parameters, we con-
ducted some preliminary tests to determine the most convenient ones for our
scenarios.

Here we compare the event matching and location update times of R-Tree
and CLCB while varying (i) the percentage of area covered by each filter and
(ii) the geographical distribution of filters and events. All the other parameters
are defined as in our default scenario. As for the area of relevance, we consider 4
different coverage percentages: 0.001%, 0.01%, 0.1%, and 1%. In our metropoli-
tan scenario, considering the city of Milan, this means using areas of relevance
with a radius of 24m, 76m, 240m, and 759m, respectively. Considering an entire
country like Italy these numbers become: 1km, 3km, 10km, and 31km, while in
a small city like Pisa they become: 7m, 22m, 71m, and 225m, respectively.

Figure 3 shows the average time required by R-Tree and CLCB to process a
single event when using a uniform geographical distribution for events and filters.
Notice that CLCB executes both location-based and content-based matching,
while R-Tree only provides location-based filtering. First, we observe that the
advantage of CLCB increases with the number of subscriptions. With very small
problems, R-Tree is more efficient, since CLCB pays the (almost fixed) overhead
for launching the kernels and moving input data and results between the CPU
and the GPU memory. However, also in these cases, the performance of CLCB
and R-Tree are comparable; moreover, CLCB starts to provide better results
with about 400 subscriptions (i.e., 4000 filters). Second, the area of relevance
of each filter does not impact on the performance of CLCB; on the contrary, it

High-Performance Location-Aware Publish-Subscribe on GPUs 325

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(a) Each filter covers 0.001% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(b) Each filter covers 0.01% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(c) Each filter covers 0.1% of area

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB (Location + Content)
R-Tree (Location only)

(d) Each filter covers 1% of area

Fig. 4. Matching times of CLCB and R-Tree compared (zipf spatial distribution)

has a great influence on R-Tree, whose performance degrades when the areas of
filters overlap. With 1 million subscriptions (10 millions filters), CLCB provides
a speedup of 2.47× when each filter covers 0.001% of the area, and 251.7×
speedup when each filter covers 1% of the area.

In most application scenarios, we expect events and filters to exhibit an uneven
geographical distribution, with higher density of population concentrated around
a few areas of interest. We analyze how this aspect impacts on performance in
Figure 4, where we use a Zipf power law to generate the location of events and the
center of the area of interest of filters. This change does not significantly impact the
performance of CLCB.On the contrary, it has a great impact on thematching time
of R-Tree, which increases significantly w.r.t. Figure 3. Even in the less expensive
scenario in which each filter covers 0.001% of the area (Figure 4 a), it exhibits a
matching time of more than 10ms with 700k subscriptions or more.With 1 million
subscriptions, CLCB provides a speedup of 11.7×, 16.3×, 132.8×, and 544× with
filters covering 0.001%, 0.01%, 0.1%, and 1% of the area, respectively.

Figure 5, shows the average time required to move the area of relevance of a
single filter. Since our tests showed that this time is only marginally influenced
by the average size of the area of relevance, both for R-Tree and CLCB, Figure 5
shows the results obtained in our default scenario (i.e., when each filter covers
0.01% of the area). Notice also that, according to some preliminary tests we
made, the update time is independent from the specific changes we consider,
being changes that move the area of relevance a few meters away, or changes
that move it far away; and, again, this is true both for CLCB and R-Tree.

326 G. Cugola and A. Margara

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900 1000

U
pd

at
e

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB
R-Tree

(a) Uniform distribution

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900 1000

U
pd

at
e

T
im

e
(m

s)

Number of Subscriptions (thousands)

CLCB
R-Tree

(b) Zipf distribution

Fig. 5. Update times of CLCB and R-Tree compared

This means that the results we collect do not depend from the specific pattern of
mobility [6] followed by clients. Accordingly we considered 1000 random changes
and measured the average time to update the area of interest of filters.

Given these premises, we observe that R-Tree organizes filters into a balanced
tree. Moving the area of relevance of a filter requires removing the old area of
relevance and adding a new one: in some cases this operation may also require a
recursive re-balancing of the tree. The case of CLCB is much simpler since each
update only requires the copy of 2 float values (32 bit each) from the CPU to the
GPU memory: this takes a constant time of 2.65 microseconds. On the contrary,
the update time for R-Tree increases with the number of filters installed. With
1 million subscriptions, the update time is about 5.26ms: in this scenario CLCB
provides a speedup of 1985× when considering a uniform distribution for the
areas of relevance. By comparing Figure 5 a and b, we observe that, differently
from the matching time, the update time is only marginally influenced by the
geographical distribution of filters (being uniformly distributed or aggregated
around certain areas).

Analysis of CLCB. To better understand the performance of CLCB, we mea-
sured the time spent in the five steps described in Section 4 (see Figure 4.2):
(i) Copy Input, where the CPU generates the input data structures and copies
them to the GPU (step S1 in figure); (ii) execution of the Loc kernel performing
location-based filtering; (iii) execution of the Cont kernel performing content-ba-
sed filtering; (iv) execution of the Zip kernel that stores matching subscriptions
into a compact array; (v) Copy results, where the results are copied back from
the GPU to the CPU memory (step S3 in figure).

Figure 6(a) shows the results we measured when changing the number of
subscriptions, while the remaining parameters are defined as in our default sce-
nario. First of all, we observe that the first and last steps (copy of input from
the CPU to the GPU and copy of results from the GPU to the CPU) require a
small amount of time (less than 0.1ms), which does not depend from the num-
ber of filters deployed in the system. Moreover, they are dominated by the cost
of kernels execution, which increases with the complexity of the problem. This
is a significant result: often, when porting algorithms to the GPU, the over-
head required for moving information back and forth from the CPU to the GPU

High-Performance Location-Aware Publish-Subscribe on GPUs 327

 0.001

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

Copy Input
Loc Kernel

Cont Kernel

Zip Kernel
Copy Results

(a) Filter selectivity = 0.5%

 0.001

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Subscriptions (thousands)

Copy Input
Loc Kernel

Cont Kernel

Zip Kernel
Copy Results

(b) Filter selectivity = 100%

Fig. 6. Distribution of times in CLCB

memory overcomes the benefits of parallel execution. This is not the case for
CLCB, which minimizes the amount of information transferred from the CPU
to the GPU (only the content of the event under analysis) and from the GPU
to the CPU (only the list of matched subscriptions).

To stress the system even more, we considered a second scenario, where the
constraints of filters were chosen to select every event. The only form of filtering
remaining depends on the location of events and the area of relevance of filters.
Albeit unrealistic, this is an interesting scenario for the extreme challenges it
brings to CLCB: (i) the content-based pre-filtering of events does not provide
any advantage; (ii) a larger amount of subscriptions is selected and need to
be transferred back to the CPU, at the end of computation; (iii) the Cont

kernel becomes more expensive, since all constraints are satisfied and no thread
can be stopped. Figure 6(b) shows the results we measured in this scenario.
Interestingly, the execution time of the Loc kernel is only marginally influenced
and the same happens to the Zip kernel; moreover, despite the time to copy
results back to the CPU memory grows, it remains below 0.6ms even in the
larger scenario with 1 million of subscriptions. In practice, the overall running
time is dominated by the Cont kernel, which is the one registering the largest
growth. This is an inevitable consequence of the extreme scenario. As we already
verified, every content-based matching algorithm suffers when filters contain the
same names of the event under processing.

Memory Consumption. Memory often represents a serious bottleneck to the
scalability of GPU-based algorithms. Indeed, GPUs often host a limited amount
of memory w.r.t. CPUs (up to 4GB, at most). Moreover, to increase performance,
information needs to be flattened out and stored into contiguous regions, often
increasing memory consumption.

Figure 7 shows the GPU memory demand of CLCB when increasing the num-
ber of filters deployed. Our reference hardware (which is a cheap card only pro-
viding 1GB of RAM) could support more than 1.3 millions subscriptions (13
millions of filters). Considering one subscription (10 filters) per user this means
supporting 1.3 millions users (the entire population of a city like Milan) with a
single entry-level graphic card. We can reasonably assert that memory consump-
tion does not represent an issue for CLCB.

328 G. Cugola and A. Margara

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Number of Subscriptions (thousands)

Fig. 7. Memory consumption of CLCB

As a final note, we foresee the possibility to combine CLCB with higher level
partitioning algorithms to exploit multiple machines, each one covering a differ-
ent geographical region.

6 Related Work

This section describes related work in the fields of publish-subscribe middleware
and matching algorithms, models and algorithms for location-aware publish-sub-
scribe, and spatial indexing structures.

Publish-Subscribe Middleware. The last decade saw the development of a
large number of publish-subscribe middleware [26,2,14,25,12] first exploiting a
centralized dispatcher, then moving to distributed solutions for improved scala-
bility. A key aspect of every publish-subscribe middleware is the matching algo-
rithm it uses to evaluate incoming events against installed subscriptions.

Two main categories of matching algorithms can be found in the literature:
counting algorithms [16,9,24] and tree-based algorithms [1,7,27]. In our evalua-
tion, we considered one algorithm for each class: SFF and BETree. SFF maintains
a counter for each filter to record the number of constraints satisfied by the current
event. On the contrary, tree-based algorithms, like BETree, organize subscriptions
into a rooted search tree. Inner nodes represent an evaluation test; leaves represent
the received subscriptions. Given an event, the search tree is traversed from the
root to the leaves. At every node, the value of a single attribute is tested, and the
satisfied branches are followed until the fully satisfied subscriptions are reached
at the leaves. To the best of our knowledge, no existing work has demonstrated
the superiority of one of the two approaches in every scenario. However, in [27]
BE-Tree has been compared against many state-of-the-art matching algorithms,
showing best performance in a wide range of scenarios.

Despite the efforts described above, content-based matching is still considered
a time consuming task. To overcome this limitation, researchers have proposed
to distribute matching among multiple brokers, exploiting covering relationships
between subscriptions to reduce the amount of work performed at each node [8].
The use of a distributed dispatching infrastructure is orthogonal w.r.t. CLCB,
which can be used in distributed scenarios, contributing to further improve per-
formance. In this field, it becomes critical to efficiently propagate updates to
subscriptions through the network of processing brokers. To accomplish this

High-Performance Location-Aware Publish-Subscribe on GPUs 329

goal, the idea of parametric subscriptions [21] has been proposed. Again, CLCB
could play a role here, as it allows to efficiently install updates at each broker.

The idea of parallel matching has been recently addressed in a few works.
In [17], the authors exploit multi-core CPUs both to speedup the processing
of a single event and to parallelize the processing of different events. Unfor-
tunately, the code is not available for a comparison. Other works investigated
how to parallel matching using ad-hoc (FPGA) hardware [28]. To the best of
our knowledge, CCM [24] is the first matching algorithm to be implemented on
GPUs, and CLCB is the first to explore GPUs for location-based publish-sub-
scribe. Along the same line, in [13] we explored the possibility to use GPUs to
support Complex Event Processing.

Location-Aware Publish-Subscribe. Location-aware publish-subscribe has
been introduced as a key programming paradigm for building mobile applica-
tions [10,15]. Existing proposals mainly focused on techniques for supporting
physical and logical mobility of clients in distributed publish-subscribe infras-
tructures [18], with little or no emphasis on the matching algorithm.

A more general model is represented by context-aware publish-subscribe, in
which a generic context (not only location) is associated with each subscrip-
tion [11,19]. We plan to study how to extend CLCB to efficiently support the
expressiveness provided by the context-aware publish-subscribe model.

Spatial Indexing Data Structures. Spatial indexing data structures organize
and store information items that have an associated location on a bi-dimensional
or multidimensional space. They provide spatial access methods for extracting
stored elements through spatial queries (e.g., to extract all elements contained,
in a given area, that overlap a given area, etc.). The most known and widely
adopted spatial indexing structure is the R-Tree [20], a variant of a B+ tree in
which each inner node stores the minimum bounding rectangle including all the
areas defined in its children. The performance of an R-Tree strongly depends on
the heuristics used to decide how to keep the tree balanced: the heuristics used
by R∗-Tree [3] (our reference) are often cited among the most effective.

A few works have been proposed that aim at parallelizing spatial indexing
methods. None of them can be directly applied to the problem we target in
this paper. In [29] the authors focus on parallelizing spatial join for location-
aware databases. Similar results are presented in [4], where the authors discuss
how several data mining techniques can be efficiently implemented on GPUs.
In [23], a GPU-based implementation of R-Tree is presented: differently from
our approach, parallelism is not exploited to increase the performance of a single
query, but to run different queries in parallel. Finally, the work in [30] proposes
a technique to speedup processing of large R-Tree structures by storing recently
visited nodes on the GPU memory and re-use them for future queries. Different
from our approach, the authors focus on structures that do not fit in main
memory; only a portion of the computation is performed on the GPU and several
interactions between the CPU and the GPU may take place while navigating
the tree. A maximum speedup of 5× is achieved with this technique, which is
significantly below the results provided by CLCB. More generally, none of these

330 G. Cugola and A. Margara

works is publicly available for comparison, while, to the best of our knowledge,
CLCB is the first solution that combines both location-based and content-based
filtering into one solution.

7 Conclusions

In this paper, we presented CLCB, a location-aware content-based matching al-
gorithm for CUDA GPUs. CLCB is designed to enable both high-performance
processing of events and low-latency update of the area of relevance associated
with subscriptions. As such, it may easily be adopted as the core component
of a location-aware event-based middleware infrastructure capable of supporting
large scale scenarios. A comparison of CLCB with existing content-based match-
ing algorithms and with algorithms for spatial access, shows relevant speedups
both in terms of processing and update time.

Acknowledgment. We would like to thank Prof. Hans-Arno Jacobsen and
Dr. Mohammad Sadoghi for giving us access to their BETree prototype and for
helping us in using it during our tests. This work was partially supported by the
European Commission, Programme IDEAS-ERC, Project 227977-SMScom.

References

1. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: PODC 1999, pp. 53–61. ACM,
New York (1999)

2. Baldoni, R., Virgillito, A.: Distributed event routing in publish/subscribe com-
munication systems: a survey. Tech. rep. DIS, Università di Roma ”La Sapienza”
(2005)

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: SIGMOD 1990, pp. 322–331.
ACM, New York (1990)

4. Böhm, C., Noll, R., Plant, C., Wackersreuther, B., Zherdin, A.: Data Mining Using
Graphics Processing Units. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Trans.
on Large-Scale Data- & Knowl.-Cent. Syst. I. LNCS, vol. 5740, pp. 63–90. Springer,
Heidelberg (2009)

5. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

6. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing 2(5), 483–502 (2002)

7. Campailla, A., Chaki, S., Clarke, E., Jha, S., Veith, H.: Efficient filtering in publish-
subscribe systems using binary decision diagrams. In: ICSE 2001, pp. 443–452.
IEEE Computer Society, Washington, DC (2001)

8. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based
networking. In: INFOCOM 2004, Hong Kong, China (March 2004)

9. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: SIGCOMM
2003, Karlsruhe, Germany, pp. 163–174 (August 2003)

10. Cugola, G., de Cote, J.: On introducing location awareness in publish-subscribe
middleware. In: 25th IEEE ICDCS Workshops, pp. 377–382 (June 2005)

High-Performance Location-Aware Publish-Subscribe on GPUs 331

11. Cugola, G., Margara, A., Migliavacca, M.: Context-aware publish-subscribe: Model,
implementation, and evaluation. In: ISCC 2009, pp. 875–881 (July 2009)

12. Cugola, G., Picco, G.: REDS: A Reconfigurable Dispatching System. In: SEM 2006,
pp. 9–16. ACM Press, Portland (2006)

13. Cugola, G., Margara, A.: Low latency complex event processing on parallel hard-
ware. Journal of Parallel and Distributed Computing 72(2), 205–218 (2012)

14. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

15. Eugster, P., Garbinato, B., Holzer, A.: Location-based publish/subscribe. In: NCA
2005, pp. 279–282 (July 2005)

16. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Fil-
tering algorithms and implementation for very fast publish/subscribe systems. In:
SIGMOD 2001, pp. 115–126. ACM, New York (2001)

17. Farroukh, A., Ferzli, E., Tajuddin, N., Jacobsen, H.A.: Parallel event processing
for content-based publish/subscribe systems. In: DEBS 2009, pp. 8:1–8:4. ACM,
New York (2009)

18. Fiege, L., Gartner, F., Kasten, O., Zeidler, A.: Supporting Mobility In Content-
Based Publish/Subscribe Middleware. In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 998–998. Springer, Heidelberg (2003)

19. Frey, D., Roman, G.-C.: Context-Aware Publish Subscribe in Mobile Ad Hoc Net-
works. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467,
pp. 37–55. Springer, Heidelberg (2007)

20. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD
1984, pp. 47–57. ACM, New York (1984)

21. Jayaram, K., Jayalath, C., Eugster, P.: Parametric subscriptions for content-based
publish/subscribe networks. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 128–147. Springer, Heidelberg (2010)

22. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley, Boston (2001)

23. Luo, L., Wong, M., Leong, L.: Parallel implementation of r-trees on the gpu. In:
ASP-DAC 2012, January 30 - Febraury 2, pp. 353–358 (2012)

24. Margara, A., Cugola, G.: High performance content-based matching using gpus.
In: DEBS 2011 (2011)

25. Mühl, G., Fiege, L., Gartner, F., Buchmann, A.: Evaluating advanced routing al-
gorithms for content-based publish/subscribe systems. In: MASCOTS 2002 (2002)

26. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer
(2006)

27. Sadoghi, M., Jacobsen, H.A.: Be-tree: an index structure to efficiently match
boolean expressions over high-dimensional discrete space. In: SIGMOD 2011,
pp. 637–648. ACM, New York (2011)

28. Tsoi, K.H., Papagiannis, I., Migliavacca, M., Luk, W., Pietzuch, P.: Accelerat-
ing publish/subscribe matching on reconfigurable supercomputing platforms. In:
MRSC 2010, Rome, Italy (March 2010)

29. Yampaka, T., Chongstitvatana, P.: Spatial join with r-tree on graphics processing
units. In: IC2IT (2012)

30. Yu, B., Kim, H., Choi, W., Kwon, D.: Parallel range query processing on r-tree
with graphics processing unit. In: DASC 2011, pp. 1235–1242 (December 2011)

Enabling Efficient Placement
of Virtual Infrastructures in the Cloud

Ioana Giurgiu1, Claris Castillo2, Asser Tantawi2, and Malgorzata Steinder2

1 Systems Group, Dept. of Computer Science, ETH Zurich
igiurgiu@inf.ethz.ch

2 IBM T.J. Watson Research Center
{claris,tantawi,steinder}@us.ibm.com

Abstract. In the IaaS model, users have the opportunity to run their
applications by creating virtualized infrastructures, from virtual ma-
chines, networks and storage volumes. However, they are still not able
to optimize these infrastructures to their workloads, in order to receive
guarantees of resource requirements or availability constraints. In this
paper we address the problem of efficiently placing such infrastructures
in large scale data centers, while considering compute and network de-
mands, as well as availability requirements. Unlike previous techniques
that focus on the networking or the compute resources allocation in a
piecemeal fashion, we consider all these factors in one single solution. Our
approach makes the problem tractable, while enabling the load balanc-
ing of resources. We show the effectiveness and efficiency of our approach
with a rich set of workloads over extensive simulations.

Keywords: Network-aware virtual machine placement, Cloud, Perfor-
mance.

1 Introduction

In enterprise data centers, infrastructure architects tailor hardware and software
configuration to optimize for their workloads. To run a production application,
the administrator provisions physical machines, storage, networks, middleware,
and application code such that the application is resilient to hardware failures
and performance bottlenecks. The Cloud changes the infrastructure provisioning
model. A typical IaaS offers virtualized building blocks, such as virtual machines,
storage volumes, and networks, which users of the Cloud connect together to cre-
ate virtualized infrastructures for their workloads. Very little control is given to
a user with respect to the layout of these virtualized building blocks on the phys-
ical infrastructure. As a result, it is impossible for the user to build a virtualized
infrastructure that guarantees, for example, high communication bandwidth be-
tween virtual machines, proximity to storage, or spreading of multiple virtual
machines across different racks for availability reasons. As a matter of fact, the
only support for workload optimization available in today’s Cloud is via pre-
built virtual infrastructures which are tuned to specific workloads. For instance,
Amazon EC2 offers high performance computing (HPC) instances [1].

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 332–353, 2012.
c© IFIP International Federation for Information Processing 2012

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 333

We believe that this cookie-cutter approach hinders further adoption and de-
velopment of the technology. Instead, Cloud users should be able to design and
deploy virtual infrastructures that optimize for their workload. We refer to these
virtual infrastructures as Virtual Network Infrastructures (VNI). More specifi-
cally, a VNI is represented as a set of heterogeneous virtual machines with con-
straints governing the performance of these virtual machines as a whole in order
to satisfy application requirements. In this work we address one crucial problem
in enabling this vision. We are concerned with developing placement techniques
that allow the Cloud to efficiently and effectively allocate resources that satisfy
VNI constraints and Cloud level goals.We consider VNIs consisting of virtual ma-
chines with compute and network demand, as well as availability requirements.

A VNI can be represented as an attributed graph. As such, the VNI placement
problem is equivalent to the problem of graph monomorphism and therefore is
NP-hard [2]. The complexity of the problem arises from its combinatorial nature,
thus efficiency is a major challenge. Others in the community have tackled less
constrained versions of this problem [3,4,5]. The proposed approaches however,
address the placement problem in a piecemeal fashion: they either focus on the
aspects pertaining to network performance leaving aspects of the allocation of
compute resources as a secondary objective or vice versa, or suffer from high
complexity. Our approach is unique in that it tackles the problem in a compre-
hensive manner by factoring in network, compute and availability performance
aspects into one single solution.

We have developed a novel placement framework that makes the problem
tractable and is generic enough to support increasing complexity. The core of
the framework is the introduction of a novel resource abstraction, called a cold
spot from here on. A cold spot consists of a collection of compute nodes that
exhibit high availability of compute resources and network connectivity. Cold
spots identify subsets of resources where VNIs should be best deployed. They
help reduce and guide the search space for the optimization problem. Our place-
ment framework consists of four steps: (a) identifying cold spots, (b) clustering
virtual machines to reduce overall communication traffic and reduce placement
complexity, (c) identifying candidate cold spots whose features are similar to
those of the VNI in order to increase the chances of deployment, and (d) per-
forming the actual placement by using efficient graph-based search algorithms
that optimize for load balancing.

The main contributions of this work can be summarized as follows:

– We develop a placement framework that breaks down the placement problem
into four tractable subproblems.

– We introduce a novel resource abstraction called cold spot that effectively
reduces the search space and improves performance.

– We present experimental results that show the efficiency and effectiveness of
our approach in large data centers.

The remainder of this paper is organized as follows. We formulate the problem
in Section 2. Section 3 overviews all four stages of our technique in detail, while
Section 4 presents our experimental results. Finally, in Section 5 we discuss open

334 I. Giurgiu et al.

questions and future work. Section 6 provides an overview of the current state
of the art and positions our work. And, we conclude in Section 7.

2 Problem Formulation

We consider a data center which consists of a collection of physical machines
(PM) that are inter-connected by a network consisting of a set of links (LK).
Every PM can host one or more virtual machines (VM). A VNI comprises a
set of networked and constrained VMs and is the deployable unit within the
data center. The placement problem consists of mapping VMs in a given VNI to
PMs in the data center. Next, we describe the physical infrastructure and VNI
characterization in more detail. Table 1 summarizes the most common terms
used throughout the paper.

Let PM = {PMi|i = 1, 2, ..., nPM} denote the set of physical machines in
the data center. Each PM has a set of resources R = {rm|m = 1, 2, ..., nR},
such as CPU, memory, and disk storage. The total capacity of resource rm on
PMi is denoted by rci,m, whereas rui,m represents its usage on the same PM,
rui,m ≤ rci,m. We define the amount of resource available for rm on PMi as
rai,m = rci,m − rui,m. We assume that a PM is connected to a switch through
an edge link, and that switches are interconnected through core links.

The network is modeled as a graph, where PMs and switches are vertices, while
links are edges. We denote the set of links as LK = {LKk|k = 1, 2, ..., nLK}.
Each link is characterized by a communication bandwidth. The total bandwidth
capacity of LKk is denoted by bck, whereas buk represents its usage, buk ≤ bck.
The amount of available bandwidth is defined as bak = bck−buk. We characterize
data center D by the tuple (PM,LK).

A VNI P is characterized by the tuple (VM, Λ, S). The set VM = {VMj|j =
1, 2, ..., nVM} represents the collection of virtual machines which constitute the

Table 1. Common terminology

Term Description Term Description

rm Resource (e.g., CPU) bak Bandwidth available in LKk, i.e.,
bck − buk

rci,m Total capacity of resource rm on
PMi

buk Bandwidth usage of LKk

rui,m Usage of resource rm on PMi bck Total bandwidth capacity of LKk

rai,m Availability of resource rm on
PMi, i.e., rci,m − rui,m

rdj,m Resource demand of VMj on re-
source rm

λi,j Network demand between VM i

and VM j

nPMCS Cardinality of the set of PMs be-
longing to cold spot CS

li,j Locality constraint between
VM i and VM j (∞, −∞)

path(i, j) Set of links on path between PMi

and PMj

nV M Cardinality of the set of VMs
belonging to a VNI

nPM Cardinality of the set of PMs in
data center

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 335

VNI. VMj is characterized by a set of resource demands rdj,m, one per resource
type in R. These resource demands are considered when placing a specific VM
onto a PM, in order to make sure that there are enough available resources on the
PM to satisfy the VM demands. The communication bandwidth demand between
VMi and VMj is denoted by λi,j ≥ 0, where 1 ≤ i, j ≤ nVM and λi,i = 0. We
assume that the matrix Λ = [λi,j] is symmetrical with zero diagonal. In other
words, bandwidth requirements among VMs in a given VNI may be modeled
as an undirected graph, where the vertices are VMs and the edges are pairwise
communication demands.

Availability constraints are characterized as follows. We consider a data cen-
ter which is partitioned into a hierarchy of availability zones, where PMs in the
same zone have similar availability characteristics. As an example, a hierarchy of
availability zones may be induced by the containment hierarchy of PMs, blade
centers, racks, cluster and data centers. In such case, one may model this hierar-
chy as a tree, where the leaves are the PMs and the intermediate node represents
a zone of availability. Thus, we associate an availability level, Vl, l = 0, · · · , L,
for a node at level l in the tree, where l = 0 represents the leaves, i.e., PMs, and
l = L represents the root of the tree with height L, i..e, highest level switch. We
assume that V0 ≤ V1 · · · ≤ VL, since two PMs in distant availability zones have
higher chances of having one of them available. Using this tree model, two PMs
PMi and PMj with the lowest common ancestor at level l have vi,j = Vl (Clearly,
vi,i = V0). For convenience we define gi(l), i = 1, · · · , nPM and l = 0, · · · , L as
the set of PMs such that for PMj ∈ gi(l) we have vi,j = Vl. Following these
observations, availability constraints can be directly mapped into locality con-
straints. More specifically, to represent location constraints between VMs, we
define the matrix S = [sli,j], where s

l
i,j represents the type of location constraint

between VMi and VMj , where 1 ≤ i, j ≤ nV M and i �= j and l refers to
the availability zone level required by the constraint. In this paper we assume
two distinct types, namely sli,j ∈ {+∞,−∞}, corresponding to colocation and
anti-colocation, respectively. To illustrate, an anti-colocation constraint at the
PM-level (l = 0) between VMi and VMj indicates that VMs must be placed
on different PMs and is associated with an infinitely large communication cost
between them. Alternatively, a colocation constraint means that the VMs must
be placed on the same PMs and is associated with a small communication cost.

We denote by π(P,D) a particular placement of VNI P in data center D.
For brevity we will write it as π(P). π(P) is a vector of length nVM , where
πj(P) is the PM onto which VMj is placed. The placement process maps every
VM in VM(P) to a particular PM in PM, such that (a) the VM’s resource
demands are satisfied by the PM, (b) the bandwidth constraints between any
two communicating VMs are met by the links of the data center connectivity
network, (c) the pairwise location constraints are satisfied.

Placement Goals. We consider two classes of objectives in our placement tech-
nique: system behavior objectives (1-2) and performance objectives (3-5):

1. Efficient and scalable placement – We need to place VNIs in such a way
that (a) the performance of the application is maximized (e.g., fewer hops

336 I. Giurgiu et al.

Fig. 1. VNI placement process

between communicating VMs reduces network delay), and (b) the placement
time scales with the increasing size of the data center.

2. High VNI acceptance rate – The placement algorithm must maximize the
number of VNIs for which constraints are satisfied.

3. Load balancing – For all placed VNIs, we seek to balance allocation of all
resources across the data center.

4. Resource constraints – We assume that resources are not over-committed.
Hence, VNI resource demands must be met by the corresponding resources
available on the data center. Formally, ∀PMi ∈ PM, ∀rm ∈ R,

rui,m ≡

⎡
⎣∑

p

∑
V Mj∈VM(p)

rdj,m Iπj(p),PMi

⎤
⎦ ≤ rci,m,

where p runs over all placed VNI and I is the indicator function. Further-
more, ∀LKk ∈ LK,

buk ≡

⎡
⎣∑

p

∑
V Mi,VMj∈VM(p)

λi,j ILKk∈path(πi(p),πj(p))

⎤
⎦ ≤ bck,

where path(PM i, PM j) represents the set of links along the path between
PM i and PM j . For simplicity, we assume that the traffic demand between
two PMs is routed through a single path in the network.

5. Hard location constraints – The colocation and anti-colocation constraints
must be satisfied for all placed VNIs. As we explain later, softening con-
straints can be easily achieved. That is, ∀p, ∀VM i, V M j ∈ VM(p),

sli,j = +∞ ⇒ VMj ∈ gi(l), s
l
i,j = −∞ ⇒ VMj �∈ gi(l).

3 Placement Algorithms

Our approach to meet the constraints and performance objectives presented
earlier is to divide the placement problem into four steps as shown in Figure 1.
In this section, we discuss these steps in detail.

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 337

3.1 Cold Spot Discovery

One key component of our placement technique is the concept of cold spot. A
cold spot is a resource construct consisting of a collection of physical computing
nodes that exhibit high availability of compute resources and ample network
connectivity to other PMs. In principle, any property of interest can be consid-
ered when constructing cold spots. This step is concerned with discovering such
cold spots in the system and is invoked periodically and asynchronously relative
to the placement request. This observation is important since performing any
analysis on the data center graph is expected to be computationally intensive.

The intuition behind this stage is twofold. First, it reduces the search space
when placing a VNI within the data center, which results in an overall lower
placement time and hence better scalability. Second, cold spots improve resource
utilization by reducing resource fragmentation. We demonstrate these benefits
in Section 4. This step takes as input the data center model, its state (which
includes resource allocation), as well as a dynamic parameter, called threshold
and produces a set of cold spots. This stage is further divided into two main
steps: ranking the PMs and generating a set of cold spots.

Ranking of Physical Compute Nodes. The first step ranks all the PMs in
the data center based on their resources availability. We define the availability of
a particular PMi by a measure, RAPMi , which is based on the compute resources
and the network bandwidth of all outgoing links, namely,

RAPMi =
∑

rm∈R
wm rai,m ·

∑
LKk∈links(PMi)

bak,

where wm is a weight which can be adjusted in order to tailor the PMs ranking
relative to a specific type of resource and links(PMi) represents the set of links
connected to PMi (via NICs).

We want PMs with ample network connectivity to other PMs in the system to
be ranked higher, as they have a higher potential to satisfy the needs of VNIs. To
this end, we propose a heuristic that has a long-sighted view of the PMs network
connectivity. That is, to compute the rank of a given PM the heuristic first
identifies the PM’s neighborhood as the set of PMs that are K hops away, and
then computes its network connectivity to these PMs as a function of network
bandwidth. K is a parameter which could be set in relation to the data center
diameter or VNI size. This step generates a list of all PMs in decreasing order
of their availability, computed with the heuristic NRAPMi defined as,

NRAPMi =

∑
PMj∈neighbors(PMi,K)

RAPMi
+RAPMj

2 minLKk∈path(PMi,PMj)(bak)

| neighbors(PMi,K) |

where neighbors(PMi,K) is the set of PMs that are at most K hops away from
PMi. Notice that the heuristic accounts for the minimum available bandwidth
on the path between PMi and a neighbor PMj to characterize the network
component, as well as for both PMi’s and PMj’s compute resources availability.

338 I. Giurgiu et al.

Cold Spots Generation. Cold spots are constructed by continuously adding
PMs to already existing collections based on several heuristics. To keep track
of the non-added PMs we maintain an updated list. The first entry in the list,
which corresponds to the PM with the highest rank, becomes the root of the new
cold spot. In order to decide whether a particular not-yet-added PMi should be
added to the new cold spot, we define the measure PotentialPMi as follows. Let
CS denote the currently identified cold spot. We define the potential of PMi as
the weighted sum,

PotentialPMi = (1− w)Ri + w

√
H2

i +B2
i

2

which includes three terms: Ri, Hi, and Bi. They are defined as,

Ri =
∑

rm∈R
wm rui,m,

Hi =

∑
PMj∈CS

hops(PMi,PMj)−1
hops(PMi,PMj)+1

nPMCS

, Bi =

∑
PMj∈CS 1− hops(PMi,PMj)∑

LKk∈path(PMi,PMj)
1

1−buk

nPMCS

where Ri is a measure of resource utilization of PMi, Hi captures the distance,
expressed in number of hops (hops(PMi, PMj)), between PMi and all PMs that
have been already added to the cold spot CS, and Bi the bandwidth utilization
between all the links connecting PMi to all PMs in the cold spot. Both Hi,
and Bi terms are expressions of the network connectivity aspect. As such, the
weight w provides better controllability of the algorithm over the characteristics
of the cold spot. The complexity of the algorithm is O((nPM + nPMCSnV M)
lognV M). It is important to note that our network metrics can be easily modified
to accommodate for network technologies wherein the number of hops is not a
metric of relevance, e.g., flat networks, by only incorporating link utilization.

PMs that have lower potential values are more desirable, thus a PMi is in-
cluded as part of CS if PotentialPMi ≤ threshold. The threshold is a parameter
that greatly influences the features of the resulting cold spots. Fig. 2(a) provides
an example of how cold spots are discovered for a data center consisting of 16
PMs, depending on the variance of the resources load on PMs and the thresh-
old value. If the load variance on the PMs is low, then the prevailing factor for
adding new PMs to a cold spot is their distance to PMs already found in the
cold spot. In the opposite scenario, the cold spot discovery step groups PMs with
similar characteristics of their compute loads and neighborhood qualities, even
beyond the first-level switch. The algorithm is driven by the threshold value.
The lower it is, the more selective the filtering (i.e., adding PMs to a cold spot)
is, and vice-versa. Thus, with a threshold of 0.2 and a low load variance, the
algorithm groups together PMs under the same first-level switch.

3.2 VNI Clustering

The clustering step groups the highly communicating VMs of a VNI in order
to reduce traffic, while at the same time satisfying the location constraints.

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 339

(a) Cold spot discovery example (b) VNI clustering example

Fig. 2. Cold spot discovery and VNI clustering examples

The purpose of performing the clustering is to guide and simplify the place-
ment, by establishing the order in which the VMs should be considered by the
placement algorithm to improve network utilization–while respecting locality
constraints.

Our proposed algorithm is based on stochastic flow injection [6]. Due to
space constraints we omit the description of the algorithm and refer the reader
to [6]. We extended this technique to also consider locality constraints between
pairs of VMs as follows. Since anti-colocation and colocation constraints trans-
late to either placing VMs separately on different PMs or placing them to-
gether, we add logical links between location-constrained VMs with ∞ or −∞
weights, as expressions of communication demands. The algorithm complexity
is O(nLKCS

nVM
2) where LKCS corresponds to the number of links in the cold

spot. Notice that other clustering techniques such as K-mean clustering could
have been used and extended to incorporate locality constraints.

To illustrate consider a VNI composed of 5 VMs as shown in Fig. 2(b). As-
sume that VM3 has the highest average compute demand followed by VM5,
VM1, VM4 and VM2. The communication links between VMs have demands
expressed in Mbps (e.g., 3Mbps between VM1 and VM3). Additionally, we
include two colocation and one anti-colocation constraints. By applying the al-
gorithm, we generate 3 clusters of VMs, satisfying all location constraints. As
expected, VM1 and VM2 need to be placed on different PMs, while all remain-
ing VMs must be colocated – with these being hard requirements. The last step
orders the VMs within each cluster based on their average compute demands,
followed by a sorting between clusters. We can easily see that the first cluster
considered in the placement step contains VM3, VM4 and VM5, since VM3 is
the most demanding VM. Similarly, VM1 precedes VM2 at placement.

3.3 Cold Spot Selection

This step compares specific VNI features against the properties of the available
cold spots and selects those cold spots that have an increased chance of allocating

340 I. Giurgiu et al.

resources to match the VNI demands. To do this we introduce a metric ScoreCS

which is used to rank all cold spots. Let us consider a VNI P, then ScoreCS is
defined as,

ScoreCS = (nPMCS − sparsityP) ∗AvgCS,P ∗DevCS,P .

We describe in detail each of the three components that make up ScoreCS .
SparsityP provides a lower-bound in the number of PMs needed for placing

P if all the resources in the cold spot were fully available. We omit the algorithm
to compute this metric due to space constraints. Instead, we explain by example.
Suppose we have a VNI P is composed of VM1, VM2, and VM3. Also, suppose
that there is an anti-colocation constraint between VM2 and VM3. This means
that we need at least 2 PMs to place the VNI, since VM2 and VM3 need to
be placed on different machines. A similar approach is followed for colocation
constraints.

AvgCS,P is the average remaining availability over all nR resources and the
links. To define it, consider cold spot CS and the set of physical machines in
CS as PMCS = {PMi|i = 1, 2, ..., nPMCS}. Further, let LKCS = {LKk|k =
1, 2, ..., nLKCS} be the set of links in CS. Let the VNI under consideration include
the set of VMs, VMP = {VMj|j = 1, 2, ..., nVM}. We define

rrm =
1

nPMCS

⎡
⎣ ∑
i=1,2,...,nPMCS

rai,m −
∑

j=1,2,...,nV M

rdj,m

⎤
⎦

as the average remaining availability of resource rm,m = 1, 2, ..., nR, in CS after
satisfying the resource demand of VNI, P.

Further, we define

br =
1

nLKCS

⎡
⎣ ∑
k=1,2,...,nLKCS

bak −
∑

i,j=1,2,...,nV M ; i>j

λi,j

⎤
⎦

as the average remaining bandwidth over all links in the CS after satisfying the
bandwidth demand of VNI, P.

Thus, we can now define

AvgCS,P =

∑
m=1,2,...,nR

rrm + br

nR + 1
.

DevCS,P is the absolute deviation in remaining resource availability, given by

DevCS,P =
∑

m=1,2,...,nR

| rrm −AvgCS,P | + | br −AvgCS,P | .

In a nutshell, the first term of the equation evaluates whether the size of the
cold spot is bigger than the sparsity of the VNI. The second term computes for
each resource the difference between the average aggregate cold spot availability

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 341

Fig. 3. Cold spot selection example for clustered VNI and a data center with 16 PMs

and the average aggregate VNI demand. Finally, the last term computes the
overall variance we would obtain if the VNI was placed in the given cold spot
– the smaller the variance, the better. The score needs to be positive for the
cold spot to be considered a candidate and we always choose the cold spot
with the minimum score value. The intuition behind the ScoreCS metric is that
the cold spots whose features are most similar to those of the VNI should be
ranked higher, and therefore tried first for placement. The algorithm complexity
is O(nPMCS lognPMCS) for each cold spot found.

Consider the scenario from Fig. 3, with the same VNI as in Fig. 2(b) and four
cold spots, each having 2, 4, 5 and 5 PMs, respectively. Assume that the VNI to
be placed has the sparsity value 3, given by the location constraints and the fact
that the PMs capacity allows neither VM1 or VM2 to be placed together with
the cluster VM3, VM4, and VM5. Thus, the first step of the algorithm already
eliminates CS4, by comparing its size with the sparsity metric, and builds the
candidates set with the remaining cold spots. Consider, in the second step, that
by computing AvgCS,P and DevCS,P , all candidates obtain similar values and
the metric differentiating them is the size against sparsity. Given the way we
score the candidates, the cold spot with the smallest size (CS2) is ranked first
in the placement step, while the largest ones are last.

3.4 VNI Placement

The final step performs the actual VNI placement within the current cold spot,
selected from the candidate list. We employ a breadth-first search algorithm,
which attempts to retrieve the optimal path from the search tree based on heuris-
tics. We describe the optimization goal later in this section. The search tree is
an expression of the optimization problem of finding the optimal placement for
a VNI. Its root is the starting search point (i.e., no VM placed yet), the inner
nodes correspond to partial placements and leaf nodes to complete placements.
The search tree is dynamically constructed at runtime by iteratively creating
successor nodes linked to the current node. This is achieved by considering the
possible placements for VMs sequentially, depending on how VMs are ordered
as a result of the clustering step. A heuristic function, estimating the cost of the
paths from the root to the current node, is used. At each step during traversal,
the node with the lowest heuristic value is chosen. In what follows, we discuss
our heuristic used in the search algorithm given in Algorithm 1.

342 I. Giurgiu et al.

Algorithm 1. VNI placement algorithm

Params: V NI P = (VM, λ, S), VM = {VM1, ..., VMnV M },
CS = {PMCS ,LKCS}, {PMCS = {PM1, ..., PMnPMCS

}, path

1: Initialize pending, placed, path, V, and S to ∅
2: For each VM ∈ P, add VM to pending

3: while pending <> ∅ do
4: VMcurrent ← pending[0]

5: if placed == ∅ then
6: For each PM ∈ CS, add (VMcurrent, PM, h) to S

7: Add (VMcurrent, PM) = mink∈S{h} to path

8: else
9: V ← getPMsForConstraints(VMcurrent, path)

10: For each PM ∈ V, add (VMcurrent, PM, h) to S

11: Add (VMcurrent, PM) = mink∈S{h} to path

12: end if
13: Remove VMcurrent from pending

14: Add VMcurrent to placed

15: end while

Our cost heuristic is an expression of the resource fragmentation in the cold
spot caused by the partial placement decisions, from the root to the current
node in the search tree. Since the algorithm always advances on the path with
minimum cost, i.e., minimizing resource fragmentation, our heuristic is effec-
tively seeking at balancing the cold spot resources utilization. Thus, for cold
spot CS, we introduce the cold spot fragmentation measure denoted by hCS ,
which includes contributions due to (1) network fragmentation, expressed as the
number of isolated regions, and (2) resource imbalance, expressed as the devia-
tion of utilized CPU, disk storage, and memory resources within the cold spot.
We define an isolated region as a set of PMs that share a link whose utiliza-
tion is higher than 90% when communicating to the rest of the network starting
from the first level switch. To illustrate, all the PMs contained in a bladecenter
whose link connecting to the rack-level switch is 92% utilized would comprise
an isolated region. Let Nisolatedregions be the number of isolated regions in CS.
In order to compute its value, we implemented a recursive algorithm that we
omit due to space limitation. As described earlier, the cold spot CS consists
of the set of physical machines PMCS = {PMi|i = 1, 2, ..., nPMCS}. We de-
fine, ram = 1

nPMCS

∑
i=1,2,...,nPMCS

rai,m, as the average availability of resource

rm,m = 1, 2, ..., nR, in CS. Further, we define

AvgCS =
1

nR

∑
m=1,2,...,nR

ram and DevCS =
∑

m=1,2,...,nR

| ram −AvgCS |,

as the average availability over all nR resources in CS and the absolute deviation
in resource availability, respectively.

We denote the cold spot fragmentation measure as

hCS =
Nisolatedregions ∗DevCS/nR

AvailCS
,

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 343

where AvailCS denotes the overall availability of CS and is given by

AvailCS =

∑
i,j=1,2,...,nPMCS

; i>j

(raPMi
+raPMj

)

2 ∗ mink∈path(PMi,PMj) bak

nPMCS (nPMCS − 1)
,

where

raPMi =
1

nR

∑
m=1,2,...,nR

rai,m.

The algorithm complexity is O(nPMCS
+ nVM

2). In order to speedup the VNI
placement, we consider a simple, but effective variant based on beam search.
Instead of accounting for all valid PMs for the current VM (i.e., by satisfying
the location constraints relative to VMs already placed), only a reduced number
of PMs are processed. Given the previously placed VMs, for the current VM we
consider those PMs that are closest, in number of hops, to all the PMs already
allocated. Only if, by computing the heuristic, none of the closest PMs have the
necessary resources for the current VM, we expand the search by including the
PMs that have not been considered in the first step. In most cases, the solution
found by applying beam search will be suboptimal, but significantly faster.

4 Evaluation

In this section we present simulation results to demonstrate the performance of
our VNI placement technique. We use the method of batch means to estimate
the performance parameters we consider (and which we discuss shortly), with
each batch consisting of 15 runs. For every run, the following methodology is
used. We start with an empty data center and sequentially place VNIs until its
average compute load – as mean over CPU, memory, and disk storage utilization–
reaches 25%, 50% and 75%. Next, we remove random placed VNIs and add
new ones with an exponential distribution, such that the average compute load
remains stable around the respective targeted values. Each experiment is run
such that 50% of the initially placed VNIs are replaced by new VNIs and we
collect the performance metrics periodically. Our simulator is written in Java
and the experiments were performed on a ThinkPad T520, with 4GB RAM and
Intel Core i3-2350m processor, running Ubuntu 11.04.

We consider three types of performance metrics which capture the perspec-
tive of the VNI, user and the system. The average path length per placed VNI
represents the VNI metric and captures the distance in number of hops between
VMs belonging to the same VNI instance. We consider three user metrics: (1)
placement time, which represents the time it takes to solve the placement prob-
lem, (2) number of attempts, which captures the average number of attempts
or cold spots considered until successfully placing a VNI, and (3) drop rate,
which is a ratio of the number of rejected VNIs over the total number of offered
VNIs. Finally, the system metrics include the (1) average network utilization,
(2) average network congestion, defined as the mean over most congested links
per placed VNI, (3) network variance, and (4) compute resources variance.

344 I. Giurgiu et al.

1

2

3

4

5

6

64 256 1024

A
ve

ra
ge

 p
at

h
le

ng
th

 a
fte

r
pl

ac
em

en
t

Number of physical machines in data center

25% average load
50% average load
75% average load

(a) Average path length per VNI

0

2

4

6

8

10

64 256 1024

D
ro

p
ra

te
 o

f g
en

er
ic

 V
N

Is
 (

in
 %

)

Number of physical machines in data center

25% load
50% load
75% load

(b) Average drop rate

10

100

500
1000

10000
15000

64 256 1024P
la

ce
m

en
t a

nd
 c

ol
d

sp
ot

 d
is

co
ve

ry
 ti

m
e

(m
se

c)

Number of physical machines in data center

Placement time
Cold spot discovery time

(c) Placement and discovery times

0

10

20

30

40

50

60

70

80

90

100

25 50 75
N

et
w

or
k

an
d

co
m

pu
te

 r
es

ou
rc

es
 u

til
iz

at
io

n
(%

)

Average load in data center consisting of 256 physical machines

Average network utilization
Average network congestion

Average CPU utilization
Average memory utilization

Average disk storage utilization

(d) Network and compute utilizations

Fig. 4. Results for the generic VNI workload with various data center sizes

Tree networks are widely adopted in data centers due to their cost-effectiveness
and simplicity. Therefore, we consider a data center consisting of a three level
tree structure. Following a bottom-top order it can be described as follows: the
first level consists of PMs, the second level consists of bladecenters – with each
bladecenter containing 16 PMs, the third level consists of racks – with each rack
containing 4 bladecenters. We vary the number of racks to produce data centers
of different capacities, where by capacity we refer to the size of the data center
in number of PMs. We consider three data center sizes: 64, 256, and 1024 PMs.
Each PM has 32 cores, 64GB RAM, and 4TB storage capacities, while each net-
work link has 1Gbps capacity. Additionally, between any two PMs there exists a
unique path in the data center. Following, the data center diameter (i.e., maxi-
mum number of hops between any two PMs) is 4 for 64 PMs, 6 for 256 PMs, and
8 for 1024 PMs. Note that our technique is applicable to any network topology.

We consider a rich set of workloads. We first evaluate our technique against
a generic VNI mix in Section 4.1 and show the impact that each placement
stage has on the performance of our approach. Second, we consider a more
realistic workload mix consisting of cache, hadoop, and three-tiered like VNIs
as described in Section 4.3. Finally, we report on the impact that the threshold
value has on the cold spot discovery step (Section 4.4) and compare our approach
to a technique proposed for virtual network embedding [7] in Section 4.5.

4.1 Generic VNI Mix

We consider three types of VNIs: small, large, and extra-large consisting of small,
large, and extra-large VM instances, respectively. The resource demands of the
VMs follow the specifications of Amazon EC2 instances [8]. That is, their respec-
tive resource demands are: (1 core, 1.7GB memory, 160GB storage), (4 cores,

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 345

7.5GB memory, 850 GB storage), and (8 cores, 15GB memory, 1690 GB storage).
A generic mix is composed of 60% small VNIs, 25% large VNIs, and 15% extra-
large VNIs. The number of VMs per VNI is between 2 and 10 following a uniform
distribution. For every pair of VMs, we create network demand and locality con-
straints with probability 0.5 and 0.1, respectively, with the ratio of colocation
to anti-colocation constraints being 0.5. The network demands between small,
large, and extra-large pairs of VMs are 5, 20, and 50Mbps, respectively.

Results are shown in Fig. 4. As it can be observed, the average path length
for placed VNIs remains stable at a value of 2 hops and is independent of the
data center diameter, thus demonstrating the scalable nature of our approach.
This is due to the fact that cold spots enable keeping network traffic under the
first-level switch, hence reducing network traffic across higher-level switches. We
also note that the average number of attempts to place a VNI varies between 1
and 2, which demonstrates that our selection techniques is effective at ranking
cold spots as a function of how their features compare to the offered VNI.

Fig. 4(b) depicts a low drop rate of less than 2%. More specifically, for the 64-
PM, 256-PM, and 1025-PM data center, (62, 118, and 184), (239, 468, and 723),
and (977, 1858, and 2820) VNIs are offered in total, respectively for the 25%, 50%,
and 75% loads. As expected, we observe in Fig. 4(c) that the placement time in-
creases linearly with the size of the data center, going from 90 ms for 64 PMs to
1100ms for 1024 PMs. Similarly, the cold spot discovery time increases as the data
center becomes larger, from ≈170 ms for 64 PMs, to ≈1255 ms for 256 PMs, and
to ≈9590 ms for 1024 PMs. However, recall that this time is amortized since the
cold spot discovery step is executed asynchronously to VNI placement calls.

Fig. 4(d) considers the 256-PM data center and shows the average compute
and network utilizations, as well as their corresponding variances, as measures
of resource load balancing. Note that Amazon EC2 instances are CPU inten-
sive, therefore the CPU load for all three loads (i.e., 25%, 50%, 75%) is slightly
higher than memory and disk storage. To characterize the data center network,
we measure the average utilization and the average congestion. The network uti-
lization has similar values as the compute one and its deviation is less than 16%.
As expected, the network congestion is higher than the utilization, since for ev-
ery placed VNI it accounts only for the most congested link on the path between
the corresponding PMs. We observe that the maximum network congestion VNIs
experience is 81% corresponding to a load of 75%.

4.2 Breaking Down the Placement Technique

In this section we investigate the impact that each individual placement step
has on the overall performance. To do this we repeat the experiments with each
individual step disabled or modified as described below.

VNI Clustering. First, we repeat the experiment for the 256 PMs data center
with the VNI clustering step disabled. As it can be observed in Fig. 5(a), without
clustering the network utilization and congestion increases by 10–25% and 10–
30%, respectively. Furthermore, the variance in the links utilization is higher by
up to 60% for lower data center loads, while the congestion variance is higher

346 I. Giurgiu et al.

0
10
20
30
40
50
60
70
80
90

100

25 50 75A
ve

ra
ge

 n
et

w
or

k
ut

ili
za

tio
n

an
d

co
ng

es
tio

n
(%

)

Average load of compute resources in data center consisting of 256 physical machines

Average network utilization with no clustering
Average network utilization with clustering

Average network congestion with no clustering
Average network congestion with clustering

(a) Average network utilizations

0

10

20

30

40

50

60

70

80

90

100

25 50 75

V
N

I d
ro

p
ra

te
 (

%
)

Average load of compute resources in data center consisting of 256 physical machines

No cold spots
Cold spots

Path length improvement with cold spots

(b) Average drop rate and path length

0

500

1000

1500

2000

2500

3000

3500

4000

25 50 75

A
ve

ra
ge

 p
la

ce
m

en
t t

im
e

(m
se

c)

Average load for data center with 256 physical machines

Cold spots
No cold spots

(c) Average placement time

10

20

30

40

50

60

70

80

90

100

25 50 75

A
ve

ra
ge

 u
til

iz
at

io
n

(%
)

Average load for data center with 256 physical machines

Core links utilizations (no cold spots)
Core links utilization (cold spots)

Network utilization increase
Network congestion increase

(d) Average network performance

Fig. 5. Network performance with vs. without VNI clustering (a) and cold spot vs.
data center level (b-d) in a 256-PM data center

by up to 45%. We conclude that the clustering step is effective at ensuring that
highly-communicating VMs are placed in close proximity, which, as a result,
improves network utilization and load balancing.

Cold Spot Discovery. Next, we compare our previous results for the generic
VNI workload mix with those obtained when disabling the cold spot discovery
step. That is, for every incoming VNI, the placement considers all the PMs in
the data center for placement. We plot the results in Fig. 5(b)– 5(d). We observe
that without cold spots the average path length for placed VNIs increases by a
factor of 2. That is, VMs belonging to the same VNI are placed further apart
from each other, thus impacting the traffic in the core links. In fact, we observe
the core links utilization increases up to 10x factor. As a consequence, the drop
rate increases from less than 2% to up to 25%. This is due to the fact that as
core links become congested, the network becomes fragmented and it is more
difficult to find a feasible placement for incoming VNIs. A secondary effect is
observed in the increased average network utilization and congestion by up to
40% for lower loads of the data center. Finally, given that to place a VNI the
algorithm considers all the PMs in the data center, the placement time increases
by 10–12x factor as shown in Fig. 5(c).

Random Cold Spot Selection. Further, we are interested in assessing our cold
spot selection technique. To do this we consider a selection algorithm wherein
cold spots are selected in a random fashion. Fig. 6 shows the average placement
attempts and variance of compute resources. As observed, randomly selecting
cold spots increases the number of attempts required for successful placements by
a factor of 1.5–2x. In addition, the compute resources variance is higher by 15%

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 347

1

2

3

4

5

6

25 50 75

A
ve

ra
ge

 n
um

be
r

of
 a

tte
m

pt
s

to
 p

la
ce

 a
 V

N
I

Average load for data center with 256 physical machines

Cold spot selection
Random cold spot selection

(a) Average attempts per VNI

0

10

20

30

40

50

60

70

80

90

100

25 50 75

A
ve

ra
ge

 d
ev

ia
tio

n
(%

)

Compute resources deviation in data center consisting of 256 physical machines

CPU deviation for random cold spot selection
CPU deviation for cold spot selection

Memory deviation for random cold spot selection
Memory deviation for cold spot selection

Disk storage deviation for random cold spot selection
Disk storage deviation for cold spot selection

(b) Average compute variance

Fig. 6. Random cold spot selection vs. our default algorithm in a 256-PM data center

1

2

3

4

5

6

25 50 75

A
ve

ra
ge

 p
at

h
le

ng
th

 a
nd

 a
tte

m
pt

s

Average load for data center with 256 physical machines

Average path length(random cold spots)
Average path length(cold spots)

Average attempts(random cold spots)
Average attempts (cold spots)

(a) Path length and attempts per VNI

0

10

20

30

40

50

60

70

80

90

100

25 50 75

D
ro

p
ra

te
 a

nd
 c

or
e

lin
ks

 u
til

iz
at

io
n

(%
)

Average load of compute resources in data center consisting of 256 physical machines

Drop rate (random cold spots)
Drop rate (cold spots)

Core links utilization (random cold spots)
Core links utilization (cold spots)

(b) Drop rate and core links utilization

Fig. 7. Comparison between random cold spots and our default algorithm on 256 PMs

to 55%, with the more significant impact for lower data center loads. Similarly,
the network utilization and congestion are also increased by up to 40% and 15%,
respectively. We conclude that the cold spot selection step intelligently chooses
the best candidate cold spots for each VNI, to achieve better load balancing and
VNI performance in the data center.

Random Cold Spot Discovery. Finally, we evaluate how our cold spot dis-
covery technique influences the performance of our placement technique (Fig. 7).
We consider a cold spot discovery algorithm wherein PMs are randomly added
to cold spots, as opposed to being added based on their rankings. In this algo-
rithm, the size of the randomly generated cold spots corresponds to the average
observed in our previous experiments which is 16. This step is invoked every 20
new incoming VNIs. As expected, the average path length of the placed VNIs
increases to 3–4 hops and in some cases even reaches the data center diameter.
We also observe an increase in the average number of attempts to place VNIs.
Given the random locality in the data center of the VMs within one cold spot,
many VNI placements impose demands on the core links. As such, we notice an
increase to up to 90% utilization, as opposed to utilizations under 10% with our
technique. An important effect of the core links congestion is the increased drop
rate, to up to 36% of the total number of offered VNIs.

4.3 Placing Cache, Hadoop, and Three-Tiered VNIs

The second part of the evaluation considers realistic workloads, composed of
cache, hadoop, and three-tiered VNIs, and measures the effectiveness of our

348 I. Giurgiu et al.

Fig. 8. Topologies for the cache, hadoop, and three-tiered VNIs

1

2

3

4

5

6

64 256 1024

A
ve

ra
ge

 p
at

h
le

ng
th

 a
fte

r
pl

ac
em

en
t

Number of physical machines in data center

25% average load
50% average load
75% average load

(a) Average path length per VNI

0

5

10

15

20

25

30

64 256 1024

D
ro

p
ra

te
 o

f r
ea

l V
N

Is
 (

in
 %

)

Number of physical machines in data center

25% load
50% load
75% load

(b) Average drop rate

10

100

500
1000

10000
15000

64 256 1024P
la

ce
m

en
t a

nd
 c

ol
d

sp
ot

 d
is

co
ve

ry
 ti

m
e

(m
se

c)

Number of physical machines in data center

Placement time

(c) Average placement time

0
10
20
30
40
50
60
70
80
90

100

25 50 75

N
et

w
or

k
an

d
co

m
pu

te
 r

es
ou

rc
es

 u
til

iz
at

io
n

(%
)

Average load in data center consisting of 256 physical machines

Average network utilization
Average network congestion

Average CPU utilization
Average memory utilization

Average disk storage utilization

(d) Network and compute utilizations

Fig. 9. Results for mix VNI workload with various data center sizes

placement technique for the performance metrics considered in the previous sec-
tion. Fig. 8 shows the topologies corresponding to these specific VNIs.

Note that cache and hadoop VNIs have identical topologies, where all VMs
communicate in a full mesh model and their number varies between 6 and 12.
The compute demands match the specifications of Amazon EC2’s high-memory
extra large instances (6.5 cores, 17.1GB memory, 420GB storage). The network
demands are 2Mbps and 25Mbps for the cache and hadoop VNIs, respectively.
Whereas, the cache VNI has no location constraints, the VMs of hadoop VNIs
need to be placed on PMs located under the same first-level switch (bladecenter).
The three-tiered VNIs contain a proxy layer with 2 small EC2-like instances,
an application layer, consisting of 5 to 10 large EC2-like instances, and the
database layer with 1 extra-large EC2-like instance. The network connectivity
between layers is full mesh, with 10Mbps demand for proxies and 100 Mbps
for the database instance. The location constraints apply to the VMs belonging
to the application and proxy layers, such that they need to be placed on PMs
located under the same first-level switch.

Fig. 9 reports the results obtained when placing a mix of realistic VNIs,
where 50% are three-tiered, 25% are cache and the remaining 25% are hadoop.

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 349

1

2

3

4

5

6

7

8

25 50 75

A
ve

ra
ge

 p
at

h
le

ng
th

 a
fte

r
pl

ac
em

en
t

Average load of compute resources in data center consisting of 1024 physical machines

Threshold = 0.2
Threshold = 0.3
Threshold = 0.4
Threshold = 0.6
Threshold = 0.8

(a) Average path length per VNI

0

10

20

30

40

50

60

70

80

90

100

25 50 75

D
ro

p
ra

te
 o

f r
ea

l V
N

Is
 (

in
 %

)

Average load of compute resources in data center consisting of 1024 physical machines

Threshold = 0.2
Threshold = 0.3
Threshold = 0.4
Threshold = 0.6
Threshold = 0.8

(b) Average drop rate

Fig. 10. Results with different threshold values in a 1024-PM data center

We observe that the average path length per placed VNI is 2 and remains in-
dependent of the data center diameter. It is also noticeable that the network
constrained nature of the cache and hadoop VNIs results in higher drop rate of
up to 8% when the average load in the data center is 75% and longer placement
time by at most 20% as compared to placing generic VNIs. This results in an
increase in the number of attempts to place a VNI to an average between 2
and 3.2. In Fig. 9(d) we note that the average memory load is higher than both
CPU and disk storage. This effect is due to the higher memory footprint of both
cache and hadoop VNIs. We also observe that network congestion increases by
up to 30% for lower loads as compared to when generic VNIs are used due to
the higher network demand of the VNIs.

4.4 Cold Spot Discovery Threshold

Next, we investigate how the threshold used in the cold spot discovery step in-
fluences the properties of the cold spots and the effectiveness of our technique.
To do this we run our simulation with the mix of realistic workloads on a 1024
PMs size data center for various threshold values. Selective results are shown
in Fig. 10. We notice an increase in average path length per VNI placed as
the threshold increases. Over extensive experiments, we found that a value of
0.2 results in cold spots that are balanced and PMs are closely located. With
other values, one can easily generate cold spots that are either too small in size,
and thus not suitable for the offered VNIs, or too large, and thus making the
placement process less effective. As a result, the drop rate increases with higher
thresholds, reaching 43% in some cases. This follows intuition since VMs are lo-
cated further from each other, which means core links quickly become congested.
We conclude that choosing different thresholds can impact the performance of
our technique. In Section 5 we discuss this aspect further.

4.5 Comparison to VNM

Finally, we want to compare our approach with previous techniques.The closest
work to ours is a virtual network mapping (VNM) technique previously pro-
posed in [7]. In [7], the authors recognize the need to consider both physical
node and links optimizations together throughout the placement process. Addi-
tionally, the algorithm controls the network allocation (routing) and therefore

350 I. Giurgiu et al.

1

2

3

4

5

6

25 50 75

A
ve

ra
ge

 p
at

h
le

ng
th

 fo
r

pl
ac

ed
 V

N
Is

Average load for data center with 256 physical machines

VNM technique
Our approach

(a) Average path length per VNI

0

20

40

60

80

100

25 50 75

D
ro

p
ra

te
 a

nd
 c

or
e

lin
ks

 u
til

iz
at

io
n

Average load of compute resources in data center consisting of 256 physical machines

Drop rate with VNM placement
Drop rate with our approach

Core links utilization with VNM placement
Core links utilization with our approach

(b) Average drop rate

Fig. 11. Comparison between our approach and the VNM technique proposed in [7]

has more flexibility at finding a feasible placement. The algorithm in [7] finds a
cluster of physical nodes that are lightly loaded without considering the network
connectivity of the physical nodes and solves the routing problem of connect-
ing physical nodes based on the topology of the virtual network. To match the
authors’ assumption that one physical node can only allocate resources for one
virtual node, we apply our placement technique on generic VNIs whose VMs and
links require at least 50% of a PM’s compute resources and bandwidth capacity.
We note that this is an unrealistic assumption since in practice, VM to PM den-
sities as high as 100 VMs per PMs are the norm in cloud environments. However,
it allows us to perform a more fair comparison between both techniques.

Our results for a 256-PM data center are presented in Fig. 11. As expected,
satisfying the compute constraint of 50% demand imposes additional difficulty
on our algorithm, which results in an increased drop rate to up to 25%. However,
since the VNM technique does not consider the ample network connectivity of
physical nodes, the resources chosen do not properly match the nature of VNIs.
Consequently, the drop rate increases to up to 70% and the core links utilization
increases as the average load of the data center increases. Similarly, the average
path length per placed VNI is higher by a 2x factor. We conclude that considering
locality and neighborhood quality in the cold spot discovery are primary factors
for resource allocation in data centers.

5 Discussion

In this section, we briefly address some additional considerations towards a more
complete VNI placement framework to be considered as future work.

VNI-Aware Dynamic Cold Spot Discovery: We have shown that con-
structing cold spots based on network and compute resource availability suffices
to achieve good placement performance for workloads with compute, network,
and availability constraints. As workloads become more complex, the process of
cold spot discovery needs to be extended to address workloads characteristics,
e.g., proximity to specific storage devices. We favor an online approach wherein
via learning mechanisms the cold spot discovery process is tuned to identify cold
spots whose properties are aligned with the incoming workload.

Integration into a Real System: Our technique is model driven, therefore to
adopt it in a real environment one requires to build a model of the data center

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 351

and the workloads. This is a simple software engineering task. In fact, significant
part of the placement technique presented in this paper has been deployed in a
data center environment.

Optimizations: First, we foresee being able to merge and split cold spots in
order to produce cold spots with specific characteristics for different workloads.
Second, when VNIs are destroyed, we do not keep track of their placement
scheme. This could be used to improve the placement efficiency of future VNIs.
Third, the placement algorithm could be improved by using A* algorithms so
that partial placement decisions are based on estimations of the final resource
fragmentation. This enhancement has the potential of pruning paths in the
search space even further and achieve better placement outcomes.

6 Related Work

Following we present a comparative analysis of similar research problems, as well
as simpler versions of the VNI placement problem.

Virtual Network Placement. The VNI placement problem shares similarities
with the Virtual Network Mapping (VNM) problem which plays a central role in
building a virtual network (VN). During the mapping process each virtual node
(link, respectively) is assigned to a node (path, respectively) of the physical net-
work such that a set of resource constraints is satisfied. In the VNI problem
however, we are concerned with a broader and finer-grained set of constraints
in addition to network and compute resources. Several efficient heuristics have
been developed to solve the VNM problem in the past [9,10,11,12]. Some of these
restrict the search space by assuming the node place is given in advance and only
solve the link embedding problem [12]. Others [11] rely on probabilistic meta-
heuristics such as simulated annealing and reduce complexity by type-casting
the virtual routers and physical nodes. In [10] the authors reduce complexity by
decomposing the network substrate and the virtual networks into known topolo-
gies and assume that a substrate node can only host one virtual node. Others
such as [9] only focuses on the network aspects of the problem.

Topology-Aware Task Mapping. The problem of placing task graphs in par-
allel computers is also similar to our problem. Tasks nodes must be placed on
processors nodes while respecting the network communication constraints and
the resource constraints of the processors. In the task graph placement problem
however, compute resources are specified coarsely. Therefore, existing solutions
focus on maximizing communication throughput. Typically, task-mapping al-
gorithms consist of two stages: partitioning and mapping. In the partitioning
stage, a clustering process groups together task nodes with high communication
requirements. In our technique we have adopted and extended an existing clus-
tering technique used in [6] for task graphs to cluster virtual machines. In [13]
the authors present a topology-aware placement technique that considers the
topology of the processor network when making placement decisions. Note that
both works focus on the network aspects of the problem.

352 I. Giurgiu et al.

Network-Aware Virtual Machine Placement. In [5] the authors formulate
the network aware virtual machine placement problem as an optimization prob-
lem and prove its hardness. The heuristic proposed assumes a homogeneous slot
resource model, thus each physical machine can allocate a fix number of virtual
machines and is only concerned with network and compute resources. Further-
more, its complexity is O(n2) where n is the number of physical machines. Our
technique, in contrast, addresses the exploding combinatorial nature of the prob-
lem by identifying cold spots in advance and thus achieving better performance.
In [4] a novel cloud network platform is proposed which extends the provisioning
model of the Cloud to include a rich set of network services. In CloudNaas the
placement of virtual machines and network demand is fully decoupled, i.e., a
bin-packing technique is used to decide on the allocation of compute resources,
while a separate technique is used to handle the allocation of network demand.
This approach leads to resource fragmentation since compute and network re-
sources can be unevenly utilized. We advocate for a more coupled approach that
considers the management of both network and compute resource into one single
integrated solution. Finally, in [3] the authors propose using a placement engine
based on an optimization solver to orchestrate multiple resources. This solver
can take up to 6.1 seconds to load balance 1000VMs on a 15 PMs Cloud when
only compute resources are considered. This is another evidence of the scalabil-
ity challenge faced in provisioning resources in the Cloud. Note that we target
solving the initial placement problem in sub-seconds on much larger systems.

7 Conclusions

We have considered the problem of placing virtual infrastructures with compute,
network, and availability constraints in the Cloud. Unlike previous approaches,
that address the placement problem from either the network or computer re-
sources perspective, our approach factors in both in one integrated solution. We
have developed a novel placement framework which makes the problem tractable
and is generic enough to support increasing complexity. The center of our tech-
nique lies in the introduction of cold spots, defined as resource constructs that
reduce the combinatorial complexity of the problem, while enabling the load
balancing of resources. We have shown the effectiveness and efficiency of our
approach with a rich set of workloads over extensive simulations.

References

1. Amazon: HPC Applications (2012), http://aws.amazon.com/hpc-applications/
2. Bengoetxea, E.: Inexact graph matching using estimation distribution algorithms.

Ecole Nationale Supérieure des Télécommunications, Paris (2002)
3. Liu, C., Loo, B.T., Mao, Y.: Declarative automated cloud resource orchestration.

In: Proceedings of SOCC 2011, pp. 1–8. ACM (2011)
4. Benson, T., Akella, A., Shaikh, A., Sahu, S.: CloudNaaS: a cloud networking plat-

form for enterprise applications. In: Proceedings of SOCC 2011, pp. 1–13 (2011)

http://aws.amazon.com/hpc-applications/

Enabling Efficient Placement of Virtual Infrastructures in the Cloud 353

5. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center net-
works with traffic-aware virtual machine placement. In: Proceedings of the 29th
IEEE Conference on Computer Communications (INFOCOM 2010), pp. 1–9. IEEE
(2010)

6. Taura, K., Chien, A.: A heuristic algorithm for mapping communicating tasks on
heterogeneous resources. In: Proceedings of HCW 2000, pp. 102–115 (2000)

7. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings of INFOCOM 2006, pp. 1–12 (2006)

8. Amazon: EC2 instances (2012), http://aws.amazon.com/ec2/instance-types/
9. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:

substrate support for path splitting and migration. SIGCOMM Computing Com-
munications Review, 17–29 (2008)

10. Zhu, X., Santos, C., Beyer, D., Ward, J., Singhal, S.: Automated application com-
ponent placement in data centers using mathematical programming. International
Journal of Network Management 18, 467–483 (2008)

11. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Computing Communications Review 33, 65–81 (2003)

12. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to
virtual network resource allocation. In: Proceedings of GLOBECOM 2003 (2003)

13. Agarwal, T., Sharma, A., Laxmikant, A., Kale, L.: Topology-aware task mapping
for reducing communication contention on large parallel machines. In: Proceedings
of IPDPS 2006 (2006)

http://aws.amazon.com/ec2/instance-types/

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 354–373, 2012.
© IFIP International Federation for Information Processing 2012

A Scalable Inline Cluster Deduplication Framework
for Big Data Protection

Yinjin Fu1,2, Hong Jiang2, and Nong Xiao1,*

1 State Key Laboratory of High Performance Computing,
National University of Defense Technology, China

2 Department of Computer Science and Engineering, University of Nebraska-Lincoln, USA
yinjinfu@gmail.com, jiang@cse.unl.edu, nongxiao@nudt.edu.cn

Abstract. Cluster deduplication has become a widely deployed technology in
data protection services for Big Data to satisfy the requirements of service level
agreement (SLA). However, it remains a great challenge for cluster deduplica-
tion to strike a sensible tradeoff between the conflicting goals of scalable de-
duplication throughput and high duplicate elimination ratio in cluster systems
with low-end individual secondary storage nodes. We propose Σ-Dedupe, a
scalable inline cluster deduplication framework, as a middleware deployable in
cloud data centers, to meet this challenge by exploiting data similarity and lo-
cality to optimize cluster deduplication in inter-node and intra-node scenarios,
respectively. Governed by a similarity-based stateful data routing scheme, Σ-
Dedupe assigns similar data to the same backup server at the super-chunk gra-
nularity using a handprinting technique to maintain high cluster-deduplication
efficiency without cross-node deduplication, and balances the workload of
servers from backup clients. Meanwhile, Σ-Dedupe builds a similarity index
over the traditional locality-preserved caching design to alleviate the chunk in-
dex-lookup bottleneck in each node. Extensive evaluation of our Σ-Dedupe pro-
totype against state-of-the-art schemes, driven by real-world datasets, demon-
strates that Σ-Dedupe achieves a cluster-wide duplicate elimination ratio almost
as high as the high-overhead and poorly scalable traditional stateful routing
scheme but at an overhead only slightly higher than that of the scalable but low
duplicate-elimination-ratio stateless routing approaches.

Keywords: Big Data protection, cluster deduplication, data routing, super-
chunk, handprinting, similarity index, load balance.

1 Introduction

The explosive growth of data in volume and complexity in our digital universe is
occurring at a record rate [1]. Enterprises are awash in digital data, easily amassing
petabytes and even exabytes of information, and the risk of data loss escalates due to
the growing complexity of data management in Big Data. No matter how the data is
lost, it is costly for an enterprise [2]. One of the best protection strategies against
threats is to backup data locally or remotely. The frequency, type and retention of

* Corresponding author.

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 355

backups vary for different kinds of data, but it is common for the secondary storage in
enterprises to hold tens of times more data than the primary storage, and more data
stored and moved for disaster recovery. The sprawling of backup storage systems not
only consumes more data storage space, power and cooling in data centers, it also
adds significant administration time and increases operational complexity and risk of
human error. Meanwhile, to satisfy the high velocity requirements in modern storage
systems, memory becomes the new disk, and disk becomes the new tape. Managing
the data deluge under the changes in storage media to meet the SLA requirements
becomes an increasingly critical challenge for Big Data protection.

Data deduplication, a specialized data reduction technique widely deployed in disk-
based backup systems, partitions large data objects into smaller parts, called chunks, and
represents and replaces these chunks by their hash fingerprints for the purpose of improv-
ing communication and storage efficiency by eliminating data redundancy in various ap-
plication datasets. IDC data shows that nearly 75% of our digital world is a copy [4], while
ESG points out that over 90% data is duplicated in backup datasets [5]. To satisfy scalable
capacity and performance requirements in Big Data protection, cluster deduplication
[6,7,8,9,11,12] has been proposed to provide high deduplication throughput in massive
backup data. It includes inter-node data assignment from backup clients to multiple dedup-
lication nodes by a data routing scheme, and independent intra-node redundancy suppres-
sion in individual nodes. Unfortunately, cluster deduplication at large scales faces chal-
lenges in both inter-node and intra-node scenarios. For the inter-node scenario, there is a
challenge called deduplication node information island, which means that deduplication is
only performed within individual servers due to overhead considerations, and leaves cross-
node redundancy untouched. Thus, data routing becomes a key issue in cluster deduplica-
tion to concentrate data redundancy within individual nodes, reduce cross-node redundan-
cy and balance load. For the intra-node scenario, it suffers from the disk chunk index loo-
kup bottleneck. That is, the chunk index of a large dataset, which maps chunk fingerprint
to where that chunk is stored on disk in order to identify the replicated data, is generally
too big to fit into the limited memory of a deduplication server and causes the parallel
deduplication performance of multiple data streams from backup clients to degrade signif-
icantly due to the frequent and random disk I/Os to look up the chunk index.

There are several existing solutions that aim to tackle these two challenges of clus-
ter deduplication by exploiting data similarity or locality. Locality based approaches,
such as the stateless routing and stateful routing schemes [6], exploit locality in back-
up data streams to optimize cluster deduplication. These schemes distribute data
across deduplication servers at coarse granularity to achieve scalable deduplication
throughput across the nodes, while suppress redundant data at fine granularity in indi-
vidual servers for high duplicate elimination ratio in each node. However, to achieve
high cluster deduplication effectiveness, it requires very high communication over-
head to route similar data to the same node. Similarity based methods leverage data
similarity to distribute data among deduplication nodes and reduce RAM usage in
individual nodes [8]. These methods can easily find the node with highest similarity
by extracting similarity features in the backup data streams, while they often fail to
obtain high deduplication effectiveness in individual deduplication servers. A more
recent study, called SiLo [18], exploits both locality and similarity in backup
streams to achieve a near-exact deduplication but at a RAM cost that is much lower
than locality-only or similarity-only based methods. However, it only addresses the

356 Y. Fu, H. Jiang, and N. Xiao

intra-node challenge of single deduplication server. Inspired by SiLo, we aim to ex-
ploit data similarity and locality to strike a sensible tradeoff between the goals of high
deduplication effectiveness and high performance scalability for cluster deduplication.

In this paper, we propose Σ-Dedupe, a scalable source inline cluster deduplication
framework, as a middleware deployable in data centers and cloud storage environ-
ments, to support Big Data protection. The main idea behind Σ-Dedupe is to optimize
cluster deduplication by exploiting data similarity and locality in backup data streams.
To capture and maintain data locality in individual deduplication server, we adopt the
notion of super-chunk [6], which represents consecutive smaller chunks of data, as a
unit for assigning data to nodes. We extract the super-chunk feature by using
handprinting technique, a new application of deterministic sampling, to detect resem-
blance among super-chunks. According to the super-chunk handprint, we design a
similarity based stateful data routing algorithm to route each super-chunk to a target
node with highest discounted resemblance by storage usage. After the target node
selection, all the fingerprints of those chunks belonging to the super-chunk are sent to
the target node to determine whether these chunks are duplicate or unique. Finally, the
backup client only needs to send the unique chunks of the super-chunk to the target
node. To reduce the overhead of resemblance detection in each node, we build a simi-
larity index to store the handprints of the stored super-chunks in each node, which
also helps to alleviate the chunk disk index bottleneck for the deduplication processes
in individual nodes by combining it with the conventional container-management
based locality-preserved caching scheme [3].

The proposed Σ-Dedupe cluster deduplication system has the following salient fea-
tures that distinguish it from the existing state-of-the-art cluster deduplication
schemes:

─ Σ-Dedupe exploits data similarity and locality by applying a handprinting tech-
nique at the super-chunk level to direct data routing from backup clients to de-
duplication server nodes to achieve a good tradeoff between the conflicting
goals of high cluster deduplication effectiveness and highly scalable deduplica-
tion throughput.

─ Σ-Dedupe builds a similarity index over the traditional container-based locality-
preserved caching scheme to alleviate the chunk disk index lookup bottleneck
for the deduplication process in each deduplication server node. The similarity
index balances between memory overhead and deduplication accuracy for intra-
node redundancy suppression by dynamically adjusting the handprint size.

─ Evaluation results from our prototype implementation of Σ-Dedupe show that it
consistently and significantly outperforms the existing state-of-the-art schemes
in cluster deduplication efficiency by achieving high global deduplication effec-
tiveness with balanced storage usage across the nodes and high parallel dedupli-
cation throughput at a low inter-node communication overhead. In addition, it
maintains a high single-node deduplication performance with low RAM usage.

2 Background and Motivation

In this section, we first provide the necessary background and related work for our
research by introducing the cluster deduplication techniques, and then present data

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 357

similarity analysis based on a handprinting technique to motivate our research in the
scalable inline cluster deduplication for Big Data protection.

2.1 Cluster Deduplication Techniques

Deduplication can be divided into four steps: data chunking, chunk fingerprint calcu-
lation, chunk index lookup, and unique data store. Source deduplication is a popular
scheme that performs the first two steps of the deduplication process at the client side
and decides whether a chunk is a duplicate before data transfer to save network
bandwidth by avoiding the transfer of redundant data, which differs from target de-
duplication that performs all deduplication steps at the target side. To immediately
identify and eliminate data redundancy, inline deduplication is a process that performs
deduplication on the traditional data I/O path with some impact on I/O performance.
The throughput and capacity limitations of single-node deduplication have led to the
development of cluster deduplication to provide high deduplication throughput in
massive backup data. In our scheme, in order to shorten the backup window and im-
prove the system scalability by reducing data transfer over the network, we choose
source inline cluster deduplication to optimize the backup data storage in large-scale
storage systems. However, in cluster deduplication design, in addition to the design
challenge of the traditional chunk index structure in single-node deduplication, the
design of data routing for the assignment of data to deduplication nodes has become a
difficult challenge in achieving high global duplicate elimination ratio and scalable
performance with balanced workload across the deduplication nodes.

Many existing cluster deduplication schemes, such as EMC Data Domain’s global
deduplication array [24], IBM’s ProtecTier [22], and SEPATON’s S2100-ES2 [25],
are designed to work well in small clusters. But using these technologies to scale to
thousands of nodes in cloud datacenters would most likely fail due to some of their
shortcomings in terms of cluster-wide deduplication ratio, single-node throughput,
data skew, and communication overhead. Hence, the design of inter-node data routing
scheme and intra-node redundancy suppression in large-scale cluster deduplication
has become increasingly critical in recent years.

HYDRAstor [9] performs deduplication at a large-chunk (64KB) granularity with-
out data sharing among the nodes, and distributes data at the chunk level using distri-
buted hash table (DHT). Nevertheless, 64KB is still too limited to capture and pre-
serve sufficient amount of locality for cluster deduplication purposes. While its
chunk-level DHT based data routing is effective in lowering communication overhead
and avoiding data sharing across the deduplication nodes, the intra-node local dupli-
cate elimination ratio is reduced due to the large chunk size that tends to evade redun-
dancy detection.

EMC’s super-chunk based data routing [6] exploits data locality to direct data routing
at the super-chunk level. It can route data evenly at the coarse-grained super-chunk level
to preserve data locality and keep load balanced for scalable deduplication performance,
and perform a fine-grained chunk-level redundancy suppression to achieve high dedup-
lication effectiveness for intra-node local deduplication. Depending on whether the
information on previously stored data is used, super-chunk based data routing can be
divided into stateless routing and stateful routing. Stateless routing is also based on
DHT with low overhead and can effectively balance workload in small clusters, but

358 Y. Fu, H. Jiang, and N. Xiao

suffers from severe load imbalance in large clusters. Stateful routing is designed for
large clusters to achieve high global deduplication effectiveness by effectively detecting
cross-node data redundancy with the state information, but at the cost of very high sys-
tem overhead required to route similar data to the same node.

Extreme Binning [8] is a file-similarity based cluster deduplication scheme. It can
easily route similar data to the same deduplication node by extracting similarity cha-
racteristics in backup streams, but often suffers from low duplicate elimination ratio
when data streams lack detectable similarity. It also has high data skew for the state-
less routing due to the skew of file size distribution as studied in [13] and [17]. Simi-
lar to Extreme Binning, a new file-similarity based data routing scheme is proposed
by Symantec [23] recently, but only a rough design is presented.

Table 1 compares some of the typical and representative cluster deduplication
schemes, as discussed above. In relation to these existing approaches, our Σ-Dedupe
is most relevant to Extreme Binning, and EMC’s super-chunk based data routing
(Stateless and Stateful). It aims to overcome many of the weaknesses described about
these schemes. Comparing with Extreme Binning, Σ-Dedupe performs stateful data
routing with a strong ability to discover similarity at the super-chunk level instead of
the file level to enhance cluster-wide deduplication ratio and reduce data skew. Simi-
lar to EMC’s super-chunk based data routing, Σ-Dedupe can preserve data locality at
the super-chunk granularity, but is different from the former in that it exploits strong
similarity at the super-chunk level to route data by a handprinting technique and only
performs local stateful routing to keep load balanced and lower system overhead.

Table 1. Comparison of key features among representative cluster deduplication schemes

Cluster Dedupli-
cation Scheme

Routing
Granularity

Deduplica-
tion Ratio

Throughput Data Skew Overhead

NEC HydraStor Chunk Medium Low Low Low

Extreme Binning File Medium High Medium Low

EMC Stateless Super-chunk Medium High Medium Low

EMC Stateful Super-chunk High Low Low High

Σ-Dedupe Super-chunk High High Low Low

2.2 Super-Chunk Resemblance Analysis

In the hash based deduplication schemes, cryptographic hash functions, such as the
MD5 and SHA families of functions, are used for calculating chunk fingerprints due
to their very low probability of hash collisions that renders data loss extremely unlike-
ly. Assume that two different data chunks have different fingerprint values; we use
the Jaccard index [14] as a measure of super-chunk resemblance. Let h be a crypto-
graphic hash function, h(S) denote the set of chunk fingerprints generated by h on
super-chunk S. Hence, for any two super-chunks S1 and S2 with almost the same aver-
age chunk size, we can define their resemblance measure r(S1, S2) according to the
Jaccard index as expressed in Eq (1).

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 359

(1)

Our similarity based data routing scheme depends on the creative feature selection on
super-chunks by a handprinting technique. The selection method is based on a genera-
lization of Broder’s theorem [15]. Before we discuss the theorem, let’s first introduce
the min-wise independent hash functions.

Definition 1. A family of hash functions Η = {hi: [n]→[n]} (where [n]={0, 1, … , n-
1}) is called min-wise independent if for any X ⊂ [n] and x ∈X, it can be formally
stated as in Eq. (2), where Prh∈H denotes the probability space obtained by choosing h
uniformly at random from H.

(2)

As the truly min-wise independent hash functions are hard to implement, practical
systems only use hash functions that approximate min-wise independence, such as
functions of the MD/SHA family cryptographic hash functions.

Theorem 1. (Broder’s Theorem): For any two super-chunks S1 and S2, with h(S1)
and h(S2) being the corresponding sets of the chunk fingerprints of the two super-
chunks, respectively, where h is a hash function that is selected uniformly and at ran-
dom from a min-wise independent family of cryptographic hash functions. Then Eq.
(3) is established.

(3)

Considering that h is a min-wise independent cryptographic hash function, for any x
∈S1, y ∈S2, the probability of x equaling y is the Jaccard index based resemblance

r(S1, S2), then we have a result as expressed in Eq. (4). Since there are |S1| choices for

x and |S2| choices for y, Eq. (3) in the above theorem is established.

(4)

We consider a generalization of Broder’s Theorem, given in [10], for any two super-
chunks S1 and S2, and then we have a conclusion expressed in Eq. (5), where mink

denotes the k smallest elements in a set. It means that we can use the k smallest chunk
fingerprints as representative fingerprints of a super-chunk to construct a handprint
for it to find more similarity in datasets. With k being the handprint size, two super-
chunks will more likely be found similar.

 (5)

We evaluate the effectiveness of handprinting on super-chunk resemblance detection
in the first 8MB super-chunks of four pair-wise files with different application types,

r(S1,S2)
| S1∩ S2 |
| S1∪ S2 |

≈
| h(S1)∩ h(S2) |
| h(S1)∪ h(S2) |

Pr
h∈H

(min{h(X)}= h(x)) = 1
| X |

Pr(min{h(S1)}= min{h(S2)}) = r(S1,S2)

Pr(min{h(S1)}= h(x)∧min{h(S2)}= h(y)∧ h(x) = h(y)) =
r(S1,S2)
| S1 | i | S2 |

Pr(min
k
{h(S

1
)}∩ min

k
{h(S

2
)}≠ ∅)

= 1− Pr(min
k
{h(S

1
)}∩ min

k
{h(S

2
)}= ∅)

≥ 1− (1− r(S1,S2))k ≥ r(S1,S2)

360 Y. Fu, H. Jiang, and

including Linux 2.6.7 vers
DOC and HTML files. W
chunking algorithm [16] to
2KB, 4KB and 32KB as mi
threshold of chunk size, res
chunking (CDC) algorithm
real resemblance value bas
comparison on each pair of
representative fingerprints
The estimated resemblance
approaches the real resemb
of Figure 1 suggests that a
4 to 64 representative fing
only use a single represen
handprinting method can fi
a resemblance value of les
HTML versions.

Fig. 1. The

3 Σ-Dedupe Desig

In this section, we present
Besides the high throughpu
ter deduplication system m
sacrificing capacity saving
design for system architectu

─ Throughput. The clu
ber of nodes by para
nodes should perform
dex lookup bottleneck
ty even with some but

N. Xiao

us 2.6.8 kernel packages, and pair-wise versions of P
We actually use the Two-Threshold Two-Divisor (TTT
o subdivide the super-chunk into small chunks with 1K
inimum threshold, minor mean, major mean and maxim
spectively. TTTD is a variant of the basic content defi

m that leads to superior deduplication. We can calculate
sed on the Jaccard index by the whole chunk fingerp
f super-chunks, and estimate the resemblance by compar

in handprint comparison with different handprint siz
e, as shown in Figure 1 as a function of the handprint s
blance value as the handprint size increases. An evaluat
reasonable handprint size can be chosen in the range fr

gerprints. Comparing with the conventional schemes t
ntative fingerprint (when handprint size equals to 1),
ind more similarity for file pairs with poor similarity (w
s than 0.5), such as the two PPT versions and the pair

e effect of handprinting resemblance detection

gn

the design of the Σ-Dedupe cluster deduplication syst
ut requirement in individual deduplication nodes, any cl
must support scalable performance without significan
g. We use the following design principles to govern
ure and data routing scheme:

uster deduplication throughput should scale with the nu
allel deduplication across the cluster nodes. Deduplicat
m near-raw-disk data backup throughput by eliminating
k, implying that our scheme must optimize for cache loc
t acceptable penalty on capacity saving.

PPT,
TD)
KB,

mum
ined
the

print
ring
zes.

size,
tion
rom
that
our

with
r of

em.
lus-
ntly
our

um-
tion

g in-
cali-

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 361

─ Capacity. In backup data streams, similar data should be forwarded to the same
deduplication node to achieve high duplicate elimination ratio. And capacity
usage should be balanced across nodes to support high scalability and simplified
system management. If system resources are scarce, deduplication effectiveness
can be sacrificed to improve the system performance.

─ Scalability. The cluster deduplication system should easily scale out to handle
massive data volumes with balanced workload among deduplication nodes, im-
plying that our design must not only optimize the intra-node throughput by cap-
turing and preserving high locality, but also reduce inter-node communication
overhead for data routing by exploiting data similarity.

To achieve high deduplication throughput and good scalability with negligible capaci-
ty loss, we design a scalable inline cluster deduplication framework in this section. In
what follows, we first show the architecture of our inline cluster deduplication sys-
tem. Then we present our similarity based data routing algorithm to achieve scalable
performance with high deduplication efficiency. This is followed by the description of
the similarity index based lookup optimization for high deduplication throughput in
deduplication nodes.

3.1 System Overview

The architecture of our cluster deduplication system is shown in Figure 2. It consists
of three main components: backup clients, deduplication server cluster and director.

 Fig. 2. Σ-Dedupe architectural overview Fig. 3. Data structures in deduplication server

Backup Clients. There are three main functional modules in a backup client: data
partitioning, chunk fingerprinting and data routing. The backup client component
backs up and restores data streams, performs data chunking with fixed or variable
chunk size and super-chunk grouping in the data partitioning module for each data
stream, and calculates chunk fingerprints by a collision-resistant hash function, like
MD5, SHA-1 or SHA-2, then selects a deduplication node for the routing of each
super-chunk by the data routing scheme. To improve cluster system scalability by

362 Y. Fu, H. Jiang, and N. Xiao

saving the network transfer bandwidth during data backup, the backup clients deter-
mine whether a chunk is duplicate or not by batching chunk fingerprint query in the
deduplication node at the super-chunk level before data chunk transfer, and only the
unique data chunks are transferred over the network.

Deduplication Server Cluster. The deduplication server component consists of three
important functional modules: similarity index lookup, chunk index cache manage-
ment and parallel container management. It implements the key deduplication and
backup management logic, including returning the results of similarity index lookup
for data routing, buffering the recent hot chunk fingerprints in chunk index cache to
speedup the process of identifying duplicate chunks and storing the unique chunks in
larger units, called containers, in parallel.

Director. It is responsible for keeping track of files on the deduplication server, and
managing file information to support data backup and restore. It consists of backup
session management and file recipe management. The backup session management
module groups files belonging to the same backup session of the same client, and file
recipe management module keeps the mapping from files to chunk fingerprints and all
other information required to reconstruct the file. All backup-session-level and file-
level metadata are maintained in the director.

3.2 Similarity Based Data Routing Algorithm

As a new contribution of this paper, we present the similarity based data routing algo-
rithm. It is a stateful data routing scheme motivated by our super-chunk resemblance
analysis in Section 2. It routes similar data to the same deduplication node by looking
up storage status information in only one or a small number of nodes, and achieves
near-global capacity load balance without high system overhead. In the data partition-
ing module, a segment of the data stream is first divided it into n small chunks, that
are grouped into a super-chunk S. Then, all the chunk fingerprints {fp1, fp2, …, fpn}
are calculated by a cryptographic hash function in the chunk fingerprinting module.
The data routing algorithm, shown below, performs in the data routing module of
backup clients.

Algorithm 1. Similarity based stateful data routing

Input: a chunk fingerprint list of super-chunk S, {fp1, fp2, … , fpn}
Output: a target node ID, i
1. Select the k smallest chunk fingerprints {rfp1, rfp2, …, rfpk} as a handprint for the

super-chunk S by sorting the chunk fingerprint list {fp1, fp2, …, fpn}, and sent the
handprint to candidate nodes with IDs {rfp1 mod N, rfp2 mod N, …, rfpk mod N} in
the deduplicaton server cluster with N nodes;

2. In deduplication server cluster, obtain the count of the existing representative fin-
gerprints of the super-chunk in the candidate nodes by comparing the representa-
tive fingerprints of the previously stored super-chunks in the similarity index. The
returned k count values, one for each of the k candidate nodes, are denoted as {r1,
r2, …, rk}, which are corresponding to the resemblances of S in these nodes;

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 363

3. Calculate the relative storage usage, which is a node storage usage value divided
by the average storage usage value, to balance the capacity load in the candidate
nodes by discounting the resemblance value with it, and the relative storage usage
values in the k candidate nodes, are denoted as {w1, w2, …, wk};

4. Choose the deduplication server node with ID i that satisfies ri/wi = max{r1/w1,
r2/w2, …, rk/wk} as the target node.

Our similarity based data routing scheme can achieve load balance for the k candi-
date nodes by adaptively choosing deduplication server node. We now prove that the
global load balance can be approached by virtue of the universal distribution of ran-
domly generated handprints by cryptographic hash functions, in Theorem 2 below.

Theorem 2. If each super-chunk handprint includes k fingerprints, and a local load
balancing scheme is considered for the k candidate nodes with a mapping based on a
modulo operation, then loads on all deduplication nodes can approach a global load
balance.

Proof. We prove the proposition by contradiction. Assume that the deduplication
cluster consists of N nodes, where N k. Now, we assume that our proposition is
false. It means that there are at least two capacity load levels in the deduplication
cluster without a global load balance. We can divide all nodes into two groups by load
level, denoted {H1,…, Hi} for the high load level and {L1,…, Lj} for the low load
level, where i + j = N. For any super-chunk, the fingerprints in its handprint all map to
either the high-load group or the low-load group, which means that all the super-
chunks can be divided into two groups with the same cryptographic hash function. If
all fingerprints in the handprint of super-chunk A map to the high-load group while
all fingerprints in the handprint of super-chunk B map to the low-load group, then we
can easily construct a super-chunk C, for which half of the fingerprints in its
handprint are from super-chunk A and the other half are from super-chunk B. Now we
find that super-chunk C belongs to neither high-load group nor low-load group. This
contradicts to our deduction for cryptographic hash functions when the proposition is
false. Hence, our proposition must be true. We will further evaluate the theorem by
experiments on real datasets in Section 4.

3.3 Similarity Index Based Deduplication Optimization

We outline the salient features of the key data structures designed for the deduplica-
tion server architecture. As shown in Figure 3, to support high deduplication through-
put with low system overhead, a chunk fingerprint cache and two key data structures,
similarity index and container, are introduced in our design.

Similarity index is a hash-table based memory data structure, with each of its entry
containing a mapping between a representative fingerprint (RFP) in a super-chunk
handprint and the container ID (CID) where it is stored. To support concurrent lookup
operations in similarity index by multiple data streams on multicore deduplication
nodes, we adopt a parallel similarity index lookup design and control the synchroniza-
tion scheme by allocating a lock per hash bucket or for a constant number of consecu-
tive hash buckets.

364 Y. Fu, H. Jiang, and N. Xiao

Container is a self-describing data structure stored in disk to preserve locality, sim-
ilar to the one described in [3], that includes a data section to store data chunks and a
metadata section to store their metadata information, such as chunk fingerprint, offset
and length. Our deduplication server design supports parallel container management
to allocate, deallocate, read, write and reliably store containers in parallel. For parallel
data store, a dedicated open container is maintained for each coming data stream, and
a new one is opened up when the container fills up. All disk accesses are performed at
the granularity of a container.

Besides the two important data structures, the chunk fingerprint cache also plays a
key role in deduplication performance improvement. It keeps the chunk fingerprints
of recently accessed containers in RAM. Once a representative fingerprint is matched
by a lookup request in the similarity index, all the chunk fingerprints belonging to the
mapped container are prefetched into the chunk fingerprint cache to speedup chunk
fingerprint lookup. The chunk fingerprint cache is a key-value structure, and it is con-
structed by a doubly linked list indexed by a hash table. When the cache is full, fin-
gerprints of those containers that are ineffective in accelerating chunk fingerprint
lookup are replaced to make room for future prefetching and caching. A reasonable
cache replacement policy is Least-Recently-Used (LRU) on cached chunk finger-
prints. To support high deduplication effectiveness, we also maintain a traditional
hash-table based chunk fingerprint index on disk to support further comparison after
in-cache fingerprint lookup fails, but we consider it as a relatively rare occurrence.

To backup a super-chunk, after selecting the target node by our data routing algo-
rithm, we resort to looking up the representative fingerprints in the similarity index.
When a representative fingerprint is matched, we find the mapped container in the
chunk fingerprint cache. If the container is already cached, we compare the finger-
prints in the super-chunk with all the chunk fingerprints in the corresponding contain-
er; otherwise, we prefetch the fingerprints of that container from its metadata section
before further comparison. After the search in all containers of the matched represent-
ative fingerprints, the unmatched fingerprints will be compared with the on-disk
chunk fingerprint index. Finally, the chunks corresponding to the unmatched finger-
prints are stored in an open unfilled container or a new container. Our similarity-index
based optimization can achieve high throughput with less system RAM overhead by
preserving strong chunk-fingerprint cache locality over container management.

4 Evaluation

We have implemented a prototype of Σ-Dedupe as a middleware in user space using
C++ and pthreads, on the Linux platform. We evaluate the parallel deduplication effi-
ciency in the single-node multi-core deduplication server with real system implemen-
tation, while use trace-driven simulation to demonstrate how Σ-Dedupe outperforms
the state-of-the-art cluster deduplication techniques by achieving a high cluster-wide
capacity saving that is very close to the extremely high-overhead stateful approach at
a slightly higher overhead than the highly scalable stateless approach, while maintain-
ing a scalable performance in large cluster deduplication. In addition, we conduct
sensitivity studies to answer the following important design questions:

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 365

─ What is the best chunk size for the single-node deduplication to achieve high
deduplication efficiency?

─ How does similarity index lock granularity affect the representative fingerprint
index lookup performance?

─ How sensitive is the cluster deduplication ratio to handprint size?

4.1 Evaluation Platform and Workload

We use two commodity servers to perform our experiments to evaluate parallel de-
duplication efficiency in single-node deduplication servers. All of them run Ubuntu
11.10 and use a configuration with 4-core 8-thread Intel X3440 CPU running at 2.53
GHz and 16GB RAM and a SAMSUNG 250GB hard disk drive. One server serves as
both the backup client and director, and the other as the deduplication server. Our
prototype deduplication system uses GBit Ethernet for internal communication. To
achieve high throughput, our backup client component is based on an event-driven,
pipelined design, which utilizes an asynchronous RPC implementation via message
passing over TCP streams. All RPC requests are batched in order to minimize the
round-trip overheads. We also perform simulation on one of the two servers to eva-
luate the cluster deduplication techniques.

Table 2. The workload characteristics of the real-world datasets and traces

Datasets Size (GB) Deduplication Ratio
Linux 160 8.23(CDC) / 7.96(SC)
VM 313 4.34(CDC) / 4.11(SC)
Mail 526 10.52(SC)

Web 43 1.9(SC)

We collect two kinds of real-world datasets and two types of application traces for
our experiments. The Linux dataset is a collection of Linux kernel source code from
versions 1.0 through 3.3.6, which is downloaded from the website [19]. The VM dataset
consists of 2 consecutive monthly full backups of 8 virtual machine servers (3 for Win-
dows and 5 for Linux). The mail and web datasets are two traces collected from the
web-server and mail server of the CS department in FIU [20]. The key workload charac-
teristics of these datasets are summarized in Table 2. Here, the “size” column represents
the original dataset capacity, and “deduplication ratio” column indicates the ratio of
logical to physical size after deduplication with 4KB fixed chunk size in static chunking
(SC) or average 4KB variable chunk size in content defined chunking (CDC).

4.2 Evaluation Metrics

The following evaluation metrics are used in our evaluation to comprehensively as-
sess the performance of our prototype implementation of Σ-Dedupe against the state-
of-the-art cluster deduplication schemes.

Deduplication Efficiency: A simple metric that encompasses both capacity saving
and system overhead in deduplication process. It is well understood that the

366 Y. Fu, H. Jiang, and N. Xiao

deduplication efficiency is proportional to deduplication effectiveness that can be
defined by deduplication ratio (DR), which is the ratio of logical size to physical size
of the dataset, and inversely proportional to deduplication overhead that can be meas-
ured by deduplication throughput (DT), which is the ratio of logical dataset size to
deduplication process time. Based on this understanding and to better quantify and
compare deduplication efficiency of a wide variety of deduplication techniques, we
adopt a metric, called “bytes saved per second”, which is first defined in [13], to
measure the efficiency of different deduplication schemes in the same platform by
feeding a given dataset. It is calculated by the difference between the logical size L
and the physical size P of the dataset divided by the deduplication process time T. So,
deduplication efficiency (DE) can be expressed in Eq. (6).

 (6)

Normalized Deduplication Ratio: The metric is designed for cluster deduplication
effectiveness. It is equal to the cluster deduplication ratio divided by deduplication
ratio achieved by a single-node, exact deduplication system. This is an indication of
how close the deduplication ratio achieved by a cluster deduplication method is to the
ideal cluster deduplication ratio.

Normalized Effective Deduplication Ratio: A single utility measure that considers
both cluster-wide deduplication effectiveness and storage imbalance. It is equivalent
to normalized deduplication ratio divided by the value of 1 plus the ratio of standard
deviation σ of physical storage usage to average usage α in all deduplication servers,
similar to the metric used in [6]. According to the definition of normalized deduplica-
tion ratio by cluster deduplication ratio (CDR) and single-node deduplication ratio
(SDR), normalized effective deduplication ratio (NEDR) can be expressed in Eq. (7).
It indicates how effective the data routing schemes are in eliminating the deduplica-
tion node information island.

 (7)

Number of Fingerprint Index Lookup Messages: An important metric for system
overhead in cluster deduplication, which significantly affects the cluster system scala-
bility. It includes inter-node messages and intra-node messages for chunk fingerprint

lookup, both of which can be easily obtained in our simulation to estimate cluster
deduplication overhead.

4.3 Parallel Deduplication Efficiency on Single-Node Server

As deduplication is a resource intensive task, we develop parallel deduplication on
multiple data streams for each node with multi-thread programming in pthreads to
leverage the compute capabilities of multi-core or many-core processor of modern
commodity servers. In our design, we adopt the RAM file system to store the work-
load and avoid unique data write to disks to eliminate the disk I/O performance bot-
tleneck, due to our low disk I/O configuration. Meanwhile, we assign a deduplication
thread for each data stream to read in parallel different files that are stored in RAM to

DE = L − P

T
= (1− 1

DR
) × DT

NEDR = CDR

SDR
× α

α + σ

 A Scalable Inline Cl

create multiple data stream
hash fingerprinting at back
Considering the fact that st
hash based content defined
ing it based on the open so
The implementation of the
4(a) shows the experiment
the backup client. The thro
linearly and reach their pea
printing and 1890MB/s for
processor at the client is a
backup datasets, CDC ma
throughput and high dedupl
hash collision even though

(a) Chunking and fingerprint
in backup client

Fig. 4. In

To exploit the multi-cor
we also develop parallel si
For our multiple-data-strea
deduplication thread, but al
index in each deduplicaiton
evenly partitioning the ind
bucket granularity to suppo
lel similarity index when a
performance bottleneck of
with chunk fingerprints gen
the parallel index lookup f
locks. When the number of
lock overhead becomes no
the CPU supports 8 concu
when the number of locks i
switching that causes data s

luster Deduplication Framework for Big Data Protection

ms. We measure the throughput of parallel chunking
kup clients as a function of the number of data strea
tatic chunking has negligible overhead, we only test Ra
d chunking (CDC) for chunking throughput by impleme
ource code in Cumulus [21] with 4KB average chunk s

hash fingerprinting is based the OpenSSL library. Fig
results of CDC and MD5/SHA-1 based fingerprinting

oughput of chunking and fingerprinting can scale alm
ak values (148MB/s for CDC, 980MB/s for SHA-1 fin
r MD5 fingerprinting) with 4 or 8 data streams, since

a 4-core 8-thread CPU. To find more data redundancy
ay affect the performance of deduplication for its l
lication time. We select SHA-1 to reduce the probability
its throughput is only about a half that of MD5.

ing throughput (b) The performance of similarity index
parallel lookup

ntra-node parallel deduplication performance

re or many-core resource of the deduplication server no
imilarity index lookup in individual deduplication serv
am based parallel deduplication, each data stream ha
ll data streams share a common hash-table based simila
n server. We lock the hash-table based similarity index
ex at the single-hash-bucket or multiple-contiguous-ha

ort concurrent lookup. We test the performance of the pa
all index data is loaded in memory. To avoid the possi

a single backup client, we feed the deduplication ser
nerated in advance. Figure 4(b) shows the performance
for multiple data streams as a function of the number
f locks is greater than 1024, the performance drops as

on-negligible. 8 data steams still perform the best beca
rrent threads, while the performance of 16 streams dr
is larger than 16 because of the overhead of thread cont
swapping between cache and memory.

367

and
ams.
abin
ent-
size.
gure
g in

most
nger

the
y in
low
y of

ode,
vers.
as a
arity
x by
ash-
aral-
ible
rver
e of
r of
the

ause
rops
text

368 Y. Fu, H. Jiang, and

(a) Deduplication efficiency

Fig. 5. Sen

We measure the dedupli
client and a single dedupli
effectiveness and overhead
the entire workload in me
unique-data-chunk store ste
chunking method and the s
be achieved by using sma
Chunking (SC) scheme. Th
increased amount of metad
and variable chunk size, n
impact of the metadata ov
Saved Per Second”, the ded
tion of the chunk size. The
deduplication efficiency du
duplication efficiency is dy
depends on the workload.
deduplication efficiency w
workload, 8KB for statica
with CDC. As a result, we c
4KB as the chunk size in th

In our Σ-Dedupe design
deduplication optimization
fingerprints of a handprint
where we define the handp
number of chunk fingerpri
deduplication effectiveness
chunk index lookup modul
demonstrate the effectivene
Figure 5(b) shows the dedu
only optimization (without
lized to that of the traditi
of 4KB, as a function of t
be seen, the deduplication

N. Xiao

in single server (b) Deduplication effectiveness as a functio

of the sampling rate and super-chunk size

sitivity study on chunk size and handprint size

ication efficiency in a configuration with a single back
ication server to show the tradeoff between deduplicat

d. To eliminate the impact of the disk bottleneck, we st
emory and perform the deduplication process to skip
ep. The deduplication effectiveness is affected by the d
selected chunk size. High deduplication effectiveness

all chunk size and the CDC scheme instead of the St
his high effectiveness, however, comes at the expense of
data necessary to manage the increased number of chu
negatively impacting system’s performance. To assess
verhead on deduplication efficiency, we measure “By
duplication efficiency as defined in Section 4.2, as a fu
e results in Figure 5(a) show that SC outperforms CDC
ue to the former’s low overhead in data chunking. The
ynamically changing with the selected chunk size, and a

The single deduplication server can achieve the high
when the chunk size is 4KB for statically chunked Lin

lly chunked VM workload and 2KB for both worklo
choose to perform chunking with the SC scheme and se

he following experiments for high deduplication efficien
n, handprinting plays a key role in similarity-index ba

since the container ID is indexed by the representat
t. Handprinting is a novel use of deterministic sampli
rint-sampling rate as the ratio of handprint size to the to
ints in a super-chunk. This sampling rate affects both
 and RAM usage in each node. We turn off the traditio
e in our prototype, and conduct a series of experiment

ess of the handprint-based local deduplication in Σ-Dedu
uplication ratio produced by applying our similarity-ind
t traditional chunk index) to the Linux workload, norm
ional single-node exact deduplication with a chunk s
the handprint-sampling rate and super-chunk size. As

ratio falls off as the sampling rate decreases and as

on

kup
tion
tore
the

data
can

tatic
f the
unks

the
ytes
unc-
C in

de-
also
hest
nux

oads
elect
ncy.
ased
tive
ing,
otal
the

onal
s to
upe.
dex-
ma-
size
can
the

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 369

super-chunk size decreases, and the “knee” point for the 16MB super-chunk at the
sample rate of 1/512 is a potentially best tradeoff to balance deduplication effective-
ness and RAM usage, and it translates to a handprint size of 8. Meanwhile, the results
further suggest that, interestingly, the deduplication ratio remains roughly constant if
the sampling rate is halved and super-chunk size is doubled at the same time. As a

result, we can find that 8 representative fingerprints in a handprint are sufficient to
achieve a deduplication ratio that is close to that of the exact deduplication approach
with high RAM utility. Furthermore, and importantly, Σ-Dedupe only uses 1/32 of the
RAM capacity required by the traditional chunk index to store our similarity index to
achieve about 90% of the deduplication effectiveness when the super-chunk and
handprint sizes are 1MB and 8 respectively.

A first-order estimate of RAM usage, based on our earlier analysis, indicates that,
comparing with the intra-node deduplicaition scheme of the EMC super-chunk based
data routing—DDFS [3], and the intra-node deduplication of Extreme Binning, for a
100TB unique dataset with 64KB average file size, and assuming 4KB chunk size and
40B index entry size, DDFS requires 50GB RAM for Bloom filter, Extreme Binning
uses 62.5GB RAM for file index, while our scheme only needs 32GB RAM to main-
tain similarity index. We can further reduce the RAM usage by adjusting super-chunk
size or handprint size with the corresponding deduplication effectiveness loss.

4.4 Cluster-Deduplication Efficiency

We route data at the super-chunk granularity to preserve data locality for high perfor-
mance of cluster-wide deduplication, while performing deduplication at the chunk gra-
nularity to achieve high deduplication ratio in each server locally. Since the size of the
super-chunk is very sensitive to the tradeoff between the index lookup performance and
the cluster deduplication effectiveness, as demonstrated by the sensitivity analysis on
super-chunk size in [6], we choose the super-chunk size of 1MB to reasonably balance
the conflicting objectives of cluster-wide system performance and capacity saving. In
this section, we first conduct a sensitivity study to select an appropriate handprint size
for our Σ-Dedupe scheme, and then compare our scheme with the state-of-the-art ap-
proaches that are most relevant to Σ-Dedupe, including EMC’s super-chunk based data
Stateful and Stateless routing and Extreme Binning, in terms of the effective deduplica-
tion ratio, normalized to that of the traditional single-node exact deduplication, and
overhead measured in number of fingerprint index lookup messages. We emulate each
node by a series of independent fingerprint lookup data structures, and all results are
generated by trace-driven simulations on the four datasets under study.

Handprint-based Stateful routing can accurately direct similar data to the same de-
duplication server by exploiting data similarity. We conduct a series of experiments to
demonstrate the effectiveness of cluster deduplication by our handprint-based dedup-
lication technique with the super-chunk size of 1MB on the Linux workload. Figure 6
shows the deduplication ratio, normalized to that of the single-node exact deduplica-
tion, as a function of the handprint size. As a result, Σ-Dedupe becomes an approx-
imate deduplication scheme whose deduplication effectiveness nevertheless improves
with the handprint size because of the increased ability to detect resemblance in su-
per-chunks with a larger handprint size (recall Section 2.2). We can see that there is a

370 Y. Fu, H. Jiang, and

Fig. 6. Cluster deduplicatio
normalized to that of single-n
duplication, as a function of ha

significant improvement in
handprint size is larger than
queries, we are able to find
the given super-chunk to be
a sensible balance between
and match the handprint siz
of 8 representative fingerpr
super-chunks of 1MB in siz

To compare Σ-Dedupe w
tion, we use the effective d
ratio of the single-node exa
effectiveness with the load-
with the state-of-the-art clu
ning (ExtremeBin), EMC’s
schemes, across a range of
size for the four datasets a
Web, do not contain file-le
based Extreme Binning sch
effective deduplication ratio
routing. More specifically,
obtained by the Stateful sch
while this performance ma
cluster sizes, from 1 throug
Σ-Dedupe and Stateful rou
unbalanced capacity distrib
on the VM dataset because
the VM dataset, workload p
detection ineffective. Σ-Ded

N. Xiao

on ratio (DR),
node exact de-
andprint size

Fig. 7. System overhead in terms of the
number of fingerprint-lookup messages

n normalized deduplication ratio for all cluster sizes w
n 8. This means that, for a large percentage of super-chu
d the super-chunk that has the largest content overlap w
e routed by our handprint-based routing scheme. To str
 the cluster-wide deduplication ratio and system overhe
ze choice in single-node, we choose a handprint consist
rints in the following experiments to direct data routing
ze.
with the existing data routing schemes in cluster dedupli
deduplication ratio (EDR), normalized to the deduplicat
ct deduplication, to evaluate the cluster-wide deduplicat
-balance consideration. We compare our Σ-Dedupe sche
uster-deduplication data routing schemes of Extreme B
s stateless (Stateless) and EMC’s stateful (Stateful) rout
f datasets. Figure 8 plots EDR as a function of the clu
nd four algorithms. Because the last two traces, Mail

evel information, we are not able to perform the file-le
heme on them. In general, Σ-Dedupe can achieve a h
o very close that achieved by the very costly Stateful d
the Σ-Dedupe scheme achieves 90.5%~94.5% of the E

heme for a cluster of 128 server nodes on the four datas
argin narrows to 96.1%~97.9% when averaging over
gh 128. Stateless routing consistently performs worse t
uting due to its low cluster-wide data reduction ratio
bution. Extreme Binning underperforms Stateless rout
e of the large file size and skewed file size distribution
properties that tend to render Extreme Binning’s simila
dupe outperforms ExtremeBinning in EDR by up to 32.

e

when
unk

with
rike
ead,
ting
g on

ica-
tion
tion
eme
Bin-
ting
ster
and
evel
high
data

EDR
sets,
r all
than
and
ting
n in
arity
.8%

 A Scalable Inline Cl

Fig. 8. Effective deduplication
tion, as a function of cluster siz

and 228.2% on the Linux an
the four datasets, Σ-Dedu
25.6%~271.8% for a cluste
these improvements will lik

In cluster deduplication
neck in each deduplication
often adversely impacts the
tion overhead from fingerp
metric used in [6], the num
tric by totaling the number
tasets of Linux and VM, fo
ure 7 that plots the total nu
cluster size, Σ-Dedupe, Ext
overhead due to their const
lication process, while the n
grows linearly with the clu
routing only have 1-to-1
source deduplication due to
must send the fingerprint lo
cation that causes the syst
though it can reduce the ov
scribed in Algorithm 1, the

luster Deduplication Framework for Big Data Protection

n ratio (EDR), normalized to that of single-node exact dedupl
ze on four workloads

nd VM datasets respectively for a cluster of 128 nodes.
upe is better than Stateless routing in EDR by up
er of 128 nodes. As can be seen from the trend of curv
kely be more pronounced with cluster sizes larger than 1
systems, fingerprint lookup tends to be a persistent bot

n server because of the costly on-disk lookup I/Os, wh
e system scalability due to the consequent high communi
print lookup. To quantify this system overhead, we adop
mber of fingerprint-lookup messages. We measure this m

of chunk fingerprint-lookup messages on the two real
r the four cluster deduplication schemes. As shown in F
umber of fingerprint-lookup messages as a function of
treme Binning and Stateless routing have very low syst
tant fingerprint-lookup message count in the cluster ded
number of fingerprint-lookup messages of Stateful rout
uster size. This is because Extreme Binning and Statel
client-and-server fingerprint-lookup communications

o their stateless designs. Stateful routing, on the other ha
ookup requests to all nodes, resulting in 1-to-all commu
tem overhead to grow linearly with the cluster size e
verhead in each node by using a sampling scheme. As
e main reason for the low system overhead in Σ-Dedup

371

lica-

For
p to
ves,

128.
ttle-
hich
ica-
pt a
me-
da-

Fig-
the

tem
dup-
ting
less
for

and,
uni-
ven
de-

pe is

372 Y. Fu, H. Jiang, and N. Xiao

that the pre-routing fingerprint-lookup requests for each super-chunk only need to be
sent to at most 8 candidate nodes, and only for the lookup of representative finger-
prints, which is 1/32 of the number of chunk fingerprints, in these candidate nodes.
The total number of fingerprint-lookup messages for Σ-Dedupe is the sum of after-
routing message number, which is almost the same as Extreme Binning and Stateless
routing, and pre-routing message number, which is a quarter (8×1/32) that of after-
routing. So the fingerprint lookup message overhead will not exceed 1.25 times that
of Stateless routing and Extreme Binning in all cluster sizes.

5 Conclusion

In this paper, we describe Σ-Dedupe, a scalable inline cluster deduplication frame-
work for Big Data protection, which achieves a tradeoff between scalable perfor-
mance and cluster-wide deduplication effectiveness by exploiting data similarity and
locality in backup data streams. It adopts a handprint-based local stateful routing
algorithm to route data at the super-chunk granularity to reduce cross-node data re-
dundancy with low overhead, employs similarity index based optimization to improve
deduplication efficiency in each node with very low RAM usage. Our real-world da-
taset-driven evaluation clearly demonstrates Σ-Dedupe’s significant advantages over
the state-of-the-art cluster deduplication schemes for large clusters in the following
important two ways. First, it nearly (over 90%) achieves the cluster-wide deduplica-
tion ratio of the extremely costly and poorly scalable Stateful cluster deduplication
scheme but only at a slightly higher overhead than the highly scalable Stateless and
Extreme Binning schemes. Second, it significantly improves the Stateless and Ex-
treme Binning schemes in the cluster-wide effective deduplication ratio while retain-
ing the latter’s high system scalability for low overhead. Meanwhile, high parallel
deduplication efficiency can be achieved in each node by exploiting similarity and
locality in backup data streams. In the near future, we will implement our scalable
data routing scheme in large-scale cluster deduplication systems.

Acknowledgements. We thank other members of ADSL in UNL and the anonymous
reviewers for their helpful comments and valuable suggestions to improve our paper.
This research is partially funded by the 863 Program of China under Grant No.
2011AA010502, the National Natural Science Foundation of China under Grants No.
61025009, 61120106005, 61232003, 60903040 and 61170288, China Scholarship
Council, and the US NSF under Grants IIS-0916859, CCF-0937993, CNS-1016609
and CNS-1116606.

References

1. Villars, R.L., Olofson, C.W., Eastwood, M.: Big Data: What It Is and Why You Should
Care. White Paper, IDC (2011)

2. Kolodg, C.J.: Effective Data Leak Prevention Programs: Start by Protecting Data at the
Source-Your Databases. White Paper, IDC (2011)

 A Scalable Inline Cluster Deduplication Framework for Big Data Protection 373

3. Zhu, B., Li, K., Patterson, H.: Avoiding the Disk Bottleneck in the Data Domain Dedupli-
cation File System. In: Proc. of USENIX FAST (2008)

4. Gantz, J., Reinsel, D.: The Digital Universe Decade-Are You Ready? White Paper, IDC
(2010)

5. Biggar, H.: Experiencing Data De-Duplication: Improving Efficiency and Reducing Ca-
pacity Requirements. White Paper. The Enterprise Strategy Group (2007)

6. Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., Shilane, P.: Tradeoffs in Scalable
Data Routing for Deduplication Clusters. In: Proc. of USENIX FAST (2011)

7. Douglis, F., Bhardwaj, D., Qian, H., Shilane, P.: Content-aware Load Balancing for Distri-
buted Backup. In: Proc. of USENIX LISA (2011)

8. Bhagwat, D., Eshghi, K., Long, D.D., Lillibridge, M.: Extreme Binning: Scalable, Parallel
Deduplication for Chunk-based File Backup. In: Proc. of IEEE MASCOTS (2009)

9. Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W., Strzelczak, P., Szczepko-
wski, J., Ungureanu, C., Welnicki, M.: HYDRAstor: a Scalable Secondary Storage. In:
Proc. of USENIX FAST (2009)

10. Bhagwat, D., Eshghi, K., Mehra, P.: Content-based Document Routing and Index Parti-
tioning for Scalable Similarity-based Searches in a Large Corpus. In: Proc. of ACM
SIGKDD (2007)

11. Yang, T., Jiang, H., Feng, D., Niu, Z., Zhou, K., Wan, Y.: DEBAR: a Scalable High-
Performance Deduplication Storage System for Backup and Archiving. In: Proc. of IEEE
IPDPS (2010)

12. Kaiser, H., Meister, D., Brinkmann, A., Effert, S.: Design of an Exact Data Deduplication
Cluster. In: Proc. of IEEE MSST (2012)

13. Fu, Y., Jiang, H., Xiao, N., Tian, L., Liu, F.: AA-Dedupe: An Application-Aware Source
Deduplication Approach for Cloud Backup Services in the Personal Computing Environ-
ment. In: Proc. of IEEE Cluster (2011)

14. Jaccard Index, http://en.wikipedia.org/wiki/Jaccard_index
15. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise Independent Per-

mutations. Journal of Computer and System Sciences 60(3), 630–659 (2000)
16. Eshghi, K., Tang, H.K.: A framework for Analyzing and Improving Content-based Chunk-

ing Algorithms. Technical Report, Hewlett Packard (2005)
17. Wallace, G., Douglis, F., Qian, H., Shilane, P., Smaldone, S., Chamness, M., Hsu, W.:

Characteristics of Backup Workloads in Production Systems. In: Proc. of FAST (2012)
18. Xia, W., Jiang, H., Feng, D., Hua, Y.: Silo: a Similarity-locality based Near-exact Dedup-

lication Scheme with Low RAM Overhead and High Throughput. In: Proc. of USENIX
ATC (2011)

19. The Linux Kernel Archives, http://www.kernel.org/
20. FIU IODedup Traces, http://iotta.snia.org/traces/391
21. Vrable, M., Savage, S., Voelker, G.M.: Cumulus: Filesystem Backup to the Cloud. In:

Proc. of USENIX FAST (2009)
22. IBM ProtecTIER Deduplication Gateway, http://www-03.ibm.com/systems/

storage/tape/ts7650g/index.html
23. Efstathopoulos, P.: File Routing Middleware for Cloud Deduplication. In: Proc. of ACM

CloudCP (2012)
24. EMC Data Domain Global Deduplication Array, http://www.datadomain.com/

products/global-deduplication-array.html
25. SEPATON S2100-ES2,

http://www.sepaton.com/products/SEPATON_ES2.html

CloudPack�

Exploiting Workload Flexibility through Rational Pricing

Vatche Ishakian, Raymond Sweha, Azer Bestavros, and Jonathan Appavoo

Computer Science Department, Boston University
Boston, MA 02215, USA

{visahak,remos,best,jappavoo}@cs.bu.edu

Abstract. Infrastructure as a Service pricing models for resources are
meant to reflect the operational costs and profit margins for providers to
deliver virtualized resources to customers subject to an underlying Ser-
vice Level Agreements (SLAs). While the operational costs incurred by
providers are dynamic – they vary over time depending on factors such
as energy cost, cooling strategies, and aggregate demand – the pricing
models extended to customers are typically fixed – they are static over
time and independent of aggregate demand. This disconnect between the
dynamic cost incurred by a provider and the fixed price paid by a cus-
tomer results in an economically inefficient marketplace. In particular, it
does not provide incentives for customers to express workload schedul-
ing flexibilities that may benefit them as well as providers. In this paper,
we utilize a dynamic pricing model to address this inefficiency and give
customers the opportunity and incentive to take advantage of any flexi-
bilities they may have regarding the provisioning of their workloads. We
present CloudPack: a framework for workload colocation, which pro-
vides customers with the ability to formally express workload flexibili-
ties using Directed Acyclic Graphs, optimizes the use of cloud resources
to minimize total costs while allocating clients’ workloads, and utilizes
Shapley valuation to rationally – and thus fairly in a game-theoretic
sense – attribute costs to the customers. Using extensive simulation, we
show the practical utility of our CloudPack colocation framework and
the efficacy of the resulting marketplace in terms of cost savings.

Keywords: Cloud computing, resource provisioning, scheduling.

1 Introduction

Motivation: Cloud computing has emerged as compelling paradigms for the
deployment of distributed applications and services on the Internet. Critical to
this, are Infrastructure as a Service (IaaS) providers which own and maintain
large physical datacenter installations and use virtualization technologies to pro-
vide customers with resources in the form of Virtual Machines. By relying on

� This research was supported in part by NSF awards #0720604, #0735974, #0820138,
#0952145, and #1012798.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 374–393, 2012.
� IFIP International Federation for Information Processing 2012

CloudPack 375

virtualized resources, customers are able to easily deploy, scale up or down their
applications [3].

IaaS providers incur a significant capital investment as part of creating and
providing such services. A data center’s return on investment (profit) relies heav-
ily on decreasing its overall cost through efficient cooling and energy conser-
vation [16, 33], while increasing its overall utilization (Revenue) as customers’
adoption of cloud services increases.

Minimizing the overall cost involves a non-trivial optimization that depends
on many factors, including time and location dependent factors. For example, in
some cities, the cost of energy is variable depending on time of day [1,32], while
the cost of cooling might be higher during peak utilization times. The location of
allocated virtual resources in the data center can also be a crucial factor in cost
reduction. An efficient allocation can lead to powering down of resources [16],
or in decreased cost of cooling [2]. These approaches are but examples of what
providers must consider in order to decrease their overall costs.

Problem Description: Despite the complexities associated with minimizing
the overall cost of cloud providers, the pricing models extended to cloud cus-
tomers are typically fixed – they are static over time and independent of aggre-
gate demand. For example, the pricing model of IaaS providers such as Amazon
and Rackspace for leasing resources is in the form of fixed-price SLAs, which
do not vary with resource availability, seasonal peak demand, and fluctuating
energy costs.1 From the customers’ perspective, fixed pricing has its advantages
due to its simplicity and the fact that it provides a sense of predictability. That
said, fixed pricing has many disadvantages for customers and providers alike
due to the fact that it does not allow both of them to capitalize on customer-side
flexibility.

Under a fixed pricing model, customers do not have any incentive to expose
(or the means to capitalize on) the flexibility of their workloads. By workload
flexibility, we refer to scheduling flexibilities that customers may be able to tol-
erate, such as requesting a virtual machine for backup operations which can run
anytime during a day. This customer-side demand flexibility could be seen as
an asset that may benefit both customers and providers. From the provider’s
perspective, demand flexibility could be seen as an additional lever in the afore-
mentioned optimization of operational costs, whereas from the customer’s per-
spective, demand flexibility could be seen as a feature of their workloads that
should translate to cost savings. Fixed pricing models do not enable demand
flexibility to play a role in the marketplace, effectively resulting in an inefficient
marketplace [24].

Leveraging customer-side demand flexibility requires the development of dy-
namic (as opposed to fixed) pricing mechanisms and associated flexible SLA mod-
els that provide customers with proper incentives and assurances. In particular,

1 Amazon spot instance is a prime example of flexible pricing, but unlike our Cloud-
Pack framework, it does not provide customers any guarantees in terms of when
and for how long a customer’s demand is going to be honored.

376 V. Ishakian et al.

Fig. 1. CloudPack Colocation Framework

the pricing mechanism must provably reward (and certainly never mistreat) cus-
tomers for expressing the scheduling flexibilities in their workloads.
Scope and Contribution: In this paper, we present CloudPack: (see Sec-
tion 3) a colocation framework that achieves the above-stated goals by giving
customers both the means and the incentive to express any flexibilities they may
have regarding the provisioning of their workloads. Architecturally, our frame-
work can be described as illustrated in Figure 1: it consists of two major services,
Back-end services and Front-end services. The CloudPack framework can be
incorporated into an offering by cloud providers; it can be implemented as a
value-added proposition or as a secondary market by IaaS resellers; or it can be
directly leveraged in a peer-to-peer fashion by IaaS customers.

Front-end services are exposed to the IaaS customers and consists of two com-
ponents: Workload Specification Component (Section 3.1), and Pricing Compo-
nent (Section 3.4). The workload specification component provides customers
not only the ability to state their requests in terms of virtualized resources
subject to SLAs, but also to express their allocation flexibilities represented as
Directed Acyclic Graphs (DAGs). The pricing component not only attributes
accrued costs rationally – and thus fairly in a game-theoretic sense – across cus-
tomers, but also provides incentives for customers to declare their flexibilities by
guaranteeing that they will not be mistreated as a consequence.

Back-end services are oblivious to the IaaS customers and are utilized by the
provider to control its resources. The Back-end services consist of the following
components: An Allocation Component (Section 3.2) that colocates workloads
(virtual resource requests) from multiple customers on the same set of physical
resources. The main objective of the Allocation component is with the aim of
minimize the total cost of used IaaS resources, while adhering to customers’ SLAs
provided using the Workload Specification Component. Profiling or monitoring
Component whose main purpose is to provide customers with the raw data that
enables them to adjust their reservations as well as gaining insight and visibility
into resource utilization, overall performance. Finally the migration component is
used to eliminate hotspots, enable load balancing, and allow for physical resource
maintenance.

Profiling [8, 13, 37, 39] and Migration [20, 21, 25, 27] Components have been
extensively studied in the literature and are implemented as standard features

CloudPack 377

in widely popular virtualization technologies such as Xen and VMware, thus we
consider them to be beyond the scope of this work.

To demonstrate the promise of using CloudPack framework to manage the
colocation of different workloads, using simulation (Section 4), we perform an
extensive experimental evaluation of our framework using synthetically gener-
ated workloads, selected from a set of representative real workload models. The
results highlight the practical utility of our dynamic pricing mechanism, the effi-
cacy of our algorithm in colocating workloads, and the rationally fair distribution
of costs among customers.

2 CLOUDPACK: Background and Setting

In this section, we present an IaaS resource cost model utilized by CloudPack
along with assumptions about the underlying IaaS setting needed to instantiate
our colocation framework.

2.1 IaaS Resource Cost Model

As we alluded before, fixed resource pricing does not reflect the time-variant ex-
penses incurred by providers and fails to capitalize on the scheduling flexibilities
of customers. Expenses incurred by providers are affected by different criteria
such as datacenter utilization, efficient cooling strategies, ambient temperature,
total energy consumption, and energy costs. Indeed, studies indicate that the
amortized cost of energy and physical resources account for 30% and 45% of
the cost of datacenters, respectively [3, 15]. In addition, it is becoming a norm
for datacenters to be charged a variable hourly rate for electricity [32], or for
peak usage [15]. Accordingly, in this paper, we consider two factors to be the
primary determinants of the costs incurred by providers: (1) the variable cost of
electricity as a function of the time of the day, and (2) the level of utilization of
resources, and hence the power consumption, at each point in time.

In order to pursue this notion further, we need an accurate model of resource
energy consumption. Recent work on energy [12, 14, 33] suggest that a physical
machine’s power consumption increases linearly with the system load, with a
base idle power draw – power consumed by an idle physical machine – of 60%.
Under this simple model one can already observe a generic notion of fixed and
variable costs. In addition, Ranganathan et al. [35] suggest a linear relationship
between watts consumed for powering and watts consumed for cooling. Using
this knowledge, it is reasonable to assume that the total expense of operating a
physical resource j during time t is:

Pj + f(t, Uj(t))

where Pj reflects an amortized fixed cost of the resource j. The function f(t, Uj(t))
is the energy cost consumed by resource j at time t under utilization Uj(t). we
define f(t, Uj(t)) as follows:

f(t, Uj(t)) = α(t)(v0 + (1 − v0)Uj(t) ∗Rj)

378 V. Ishakian et al.

where α(t) is a coefficient reflecting the energy cost at time t, and v0 is the energy
fraction consumed by the resource when idle,2 and Rj is the fixed capacity of
resource j which is generic enough to reflect a single host, a single rack, or an
entire datacenter.3 Note that f(t, Uj(t)) has also a fixed part reflecting the cost
of operating the resource if the resource is turned on and is in an idle state.

2.2 IaaS Setting

As an underlying infrastructure for CloudPack, we assume an IaaS setting
consisting of any number of possibly heterogeneous resources, (e.g. physical ma-
chines). Each resource is characterized by a number of dimensions (e.g., CPU,
network, memory, and disk space) which constitute dimensions of the resource
capacity vector. The cost of resources follows the IaaS resource cost model pre-
sented in the previous section.

Fig. 2. CloudPack Epoch Example

A fundamental principle in the instantiation of our colocation framework is the
concept of epochs. We consider an epoch to be a sequence of periodic timeslots
during which the workloads of customers can be colocated. The determination
of colocation configurations is calculated at the beginning of an epoch, and
is fixed for the entire duration of that epoch. Figure 2 illustrates an example
epoch consisting of three timeslots, through which customers’ requests (virtual
machines) are allocated on the physical machines.

Customers who are not able to join at the beginning of an epoch will only be
considered for colocation during the next epoch. Similar to grid markets, we envi-
sion different marketplaces operating at different timescales, with epochs ranging
from days to weeks to months. One way to minimize customer wait time is to
instantiate marketplaces with overlapping epochs of the same duration. Another
method would be to have multiple marketplaces of epochs with exponentially
increasing time scales, where a customer can colocate in a logarithmic number
of shorter time-scale epochs before reaching the epoch he desires to join [18].

2 Throughout this paper, we take v0 to be 60% [12,14,33].
3 Although we take energy as an example of time variant cost, our model could apply
any other time variant cost.

CloudPack 379

3 CLOUDPACK: The Framework

In this section, we present the three major components of the CloudPack
colocation framework: Workload Specification, Allocation, and Pricing.

3.1 CLOUDPACK: Workload Specification Component

We propose an expressive resource specification language for customer work-
loads, which allows them to declare their quantitative resource requirements as
well as any associated temporal flexibilities.4 Our resource specification language
is XML based, we omit the syntax due to space constraints. A workload is repre-
sented as a DAG. A node in the graph represents a single task (virtual machine),
to be mapped to a resource, and consumes some of the resource dimensions. A
task has two attributes: The total number d of timeslots (periods) during which
the task must remain on the same resource, and a quantitative resource request
matrix V ∈ R

m×d where d represents the required duration and m represents
the different dimensions requested during each period. The directed edges in the
graph represent the temporal dependencies between tasks. An edge between node
k and k′ dictates that task k needs to finish execution before task k′ starts exe-
cution. The weight on an edge w ≥ 0 designates the maximum delay a customer
can tolerate between releasing a resource by task k and acquiring a resource for
the execution of task k′. In addition, a customer i specifies an execution window
(T s

i , T
e
i), where T s

i is the workload earliest start time, and T e
i is a deadline for

the completion of the workload. This formally declared temporal flexibility by a
customer will be exploited by our framework to achieve better colocation.

This model is expressive enough for various types of applications. Figure 3 (a)
shows a sample specification for a batch workload. Such a workload is represen-
tative of bulk data transfer or backup applications. The workload consists of five
tasks with different utilization levels and durations. The tasks are not tempo-
rally dependent, thus there are no edges between them, implying that they may
be satisfied in any order within the execution window. Specifying a web server,
which requires the workload to execute on the same resource would result in
representing the workload as one node with a duration equal to 24 and volume
V of size m× 24 that varies accordingly. Figure 3 (b) illustrates a pipelined
workload with 24 nodes, where tasks need to execute in sequence throughout
an entire day with different utilizations, and the delay between the execution of
two consecutive tasks is zero.

The above example illustrates a scenario in which the customer has no schedul-
ing flexibilities. Figure 3 (c) illustrates a typical MapReduce workload, where a
scheduling task needs to execute, followed by a set of independent map tasks,
and finishing with a reduce task. Figure 3 (d) is a constrained version of the

4 We note that our workload specification language allows customers to specify addi-
tional dimensions associated with each node (e.g., location, operating system, etc.).
Without loss of generality, in this paper, we only consider dimensions related to
consumable physical resources.

380 V. Ishakian et al.

Fig. 3. An example illustrating different workload models

MapReduce workload, where some communicating tasks need to run concur-
rently. We introduce a marker node, (in red), that has a duration of zero and
a utilization of zero; it forces a number of tasks to run concurrently once the
marker node is scheduled. This feature is essential for High Performance Com-
puting workloads.

Note that current customers of cloud offerings such as Amazon need to specify
and map their actual applications to resource requests as part of their adequate
resource reservation (e.g. small, medium, large). Profiling and benchmarking
techniques such as the ones described in [8, 39] can be used to predict an appli-
cations resource consumption.

3.2 CLOUDPACK: Allocation Component

In the previous section, we presented our workload specification language, which
allows IaaS customers to describe their workloads. In this section, we formulate
the allocation problem and present a linear programming optimization solution.
The objective of the system is to fulfill the requests of all customers, taking into
consideration their flexibility (constraints) while incurring the minimal total cost.
The aggregate load on the system can be represented by the graph G =< V,E >,
representing the union of the DAGs Gi =< Vi, Ei > representing the workloads
of all customers i ∈ U – namely, V =

⋃
∀i Vi and E =

⋃
∀iEi.

We define Y (t, j) to be a binary decision variable that equals to one when
resource j is in use at time t. We also define X(j, t, k, l) to be a binary decision
variable such that

X(j, t, k, l) =

⎧⎨
⎩

1 If resource j at time t is assigned to node k’s duration l.

0 Otherwise

CloudPack 381

We formulate our colocation optimization problem as follows, (verbal description
to follow):

min
∑
∀t,j

(Y (t, j)× Pj + Y (t, j)× (α(t) × v0)

+ α(t)× (1 − v0)Uj(t)×Rj) (1)

Subject to: ∑
∀l

X(j, t, k, l) ≤ Y (t, j) ∀t, j, k (2)

∑
∀k,1≤l≤dk

X(j, t, k, l)× u(k, l) ≤ Rj ∀j, t (3)

∑
∀j,t

X(j, t, k, l) = 1 ∀k ∈ V, 1 ≤ l ≤ dk (4)

X(j, t, k, l) = X(j, t+ 1, k, l+ 1) (5)

∀j, t, k ∈ V, 1 ≤ l < dk

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t < T s
i , 1 ≤ l ≤ dk (6)

X(j, t, k, l) = 0 ∀j, k ∈ Vi, t > T e
i , 1 ≤ l ≤ dk (7)

∑
j,t<t′

X(j, t, k, dk) ≥
∑
j′

X(j′, t′, k′, 1) ∀t′, (k, k′) ∈ E (8)

∑
j

X(j, t′, k, dk) ≤
∑

j′,t′<t≤t′+We+1

X(j′, t, k′, 1) (9)

∀t′, (k, k′) ∈ E

where Pj and Rj are the cost and capacity of a specific physical resource j, u(k, l)
is the utilization request of a nodes k’s duration l, Uj(t) is the total utilization of
resource j at time t is formally defined as (

∑
∀k,1≤l≤dk

X(j, t, k, l)× u(k, l))/Rj,
v0 is the energy consumed by resource j while idle, and α(t) is the cost of
energy at time t. This formulation is a general enough to model different types
of resources. Intuitively, the optimization problem aims to minimize the cost
of resources across time while keeping in line with each customer’s specified
flexibility. The objective function is the sum of three parts, reflecting the cost of
leasing the resource: Y (t, j) × Pj reflects the fixed cost of leasing the resource,
Y (t, j)×α(t)×v0 is the initial cost of energy to run the resource at an idle state
if that resource is in use at time selected at time t, and α(t) × (1 − v0)Uj(t) ×
Rj stands for the additional (variable) cost as a consequence for utilizing the
resource.5

Equation (2) ensures that a resource j is utilized at time t, by setting Y (j, t)
to one if that resource is used to serve the requests of any customer during

5 We do not multiply the third component of Equation (1) by Y (t, j), since if the
resource j is not assigned during time t, then its Uj(t) = 0.

382 V. Ishakian et al.

that time. Equation (3) ensures that the utilization of a single resource does
not exceed a fixed capacity Rj . This constraint is needed not to overprovision
the resources. Equation (4) guarantees that all periods of each task are fulfilled
exactly once. Equation (5) ensures that a task’s periods are allocated consecu-
tively on the same resource. This constraint is essential for fulfilling requirements
of workloads such as a WebServer. Equation (6) and (7) ensure that the time
of execution of customer i’s tasks are between the start time T s

i and end time
T e
i specified by the customer. Finally, Equation (8) and (9), guarantee that the

allocation of resources respects the client’s edge constraints (flexibility). In par-
ticular, Equation (8) constrains the allocation of the first timeslot of a request k′

to follow the resources allocated to the last timeslot of request k, while Equation
(9) guarantees that such an allocation happens within the specified client’s delay
We on edge (k, k′).

3.3 CLOUDPACK: Greedy Heuristic

The optimization problem defined in the previous section is a variant of mixed-
integer programming, which is known to be NP-hard in general6. Therefore, in
this section, we propose a greedy algorithm that results in solutions to our allo-
cation problem, which we show to be effective in our experiments. The algorithm
starts from an initial valid solution and iterates over several greedy moves un-
til it converges. The final solution is the configuration based on which physical
resources are going to be allocated to the customers.

The initial solution is generated by randomly assigning workloads to resources,
such that each workload’s specific constrains are satisfied. Naturally, the initial
solution’s total cost is far more expensive than an optimal solution.

At each greedy move (iteration), the algorithm chooses a workload which has
the highest current-to-optimal cost ratio r among all customer workloads. Cal-
culating the optimal cost of a workload is not trivial, however, we can calculate
the utopian cost, a lower bound on the optimal workload cost efficiently, where
the utopiancost of a workload reflects only the cost of energy and resources that
the workload actually uses. The utopian cost is calculated under the assumption
that there is a perfect packing of the workload, with the energy cost being the
minimum throughout the customer’s specified workload start and end times.

Once the workload with the highest r is identified, we proceeds to relocate
it such that r is minimized. If the relocation results in reducing the total cost
of the solution, then the relocation (move) is accepted, the solution is updated,
and the process is repeated. Otherwise, the algorithm chooses the workload with
the second highest ratio r and iterates. The algorithm stops when the iteration
step fails to find a move for any of the workloads.

3.4 CLOUDPACK: Pricing Component

The allocation component is designed to minimize the total aggregate cost of
using resources. However, we need a pricing component to apportion (distribute)

6 The proof of NP-hardness is omitted due to space limitations.

CloudPack 383

this total cost across all customers. This component requires an appropriate
pricing mechanism, which ensures that the interests of customers, particularly
fairness in terms of costs that customers accrue for the resources they acquire,
and provides guarantees of no mistreatment of a customer’s flexibility.

There are many ways to apportion the total cost across customers. For in-
stance, one option would be to divide the cost equally among customers. Clearly,
this mechanism will not be fair as it does not discriminate between customers
with large jobs and customers with small jobs. Another option would be to charge
each customer based on the proportional cost of each resource they utilize. As
we will show next, such an option is also not fair.

Consider an example of two customers A and B each with a single task work-
load with 50% resource utilization. Customer A is constrained to run during the
highest energy cost period. Customer B has no such constraint. Let cl be the
cost of running during low energy period, and ch be the cost of running during
high energy period. An optimized solution would colocate customer A and B to
run during the highest energy cost period with a total cost of ch. For all costs of
ch > 2× cl, a proportional share pricing mechanism would divide the total cost
across both customers, thus forcing unfairly customer B to pay more than what
he/she would have paid (cl) had he/she run by herself at the lowest cost period.

A “rationally fair” pricing mechanism allocates the total cost over the cus-
tomers in accordance with each customer’s marginal contribution to the aggre-
gate cost of using the resources. Such mechanism should take into consideration
not only the actual customer workload demands, but also the effects of the
workload constraints.

To quantify per-customer contribution, we resort to notions from economic
game theory. In particular, we adopt the concept of Shapley value [29], which
is a well defined concept from coalitional game theory that allows for fair cost
sharing characterization among involved players (customers).

Given a set of n customers U , we divide the total cost of the system C(U) by
ordering the customers, say u1, u2, · · · , un, and charging each customer his/her
marginal contribution to the total system cost. Thus, u1 will be charged C(u1),
u2 will be charged C(u1, u2)−C(u1), etc. Since the ordering of customers affects
the amount they will be charged, a fair distribution should take the average
marginal cost of each customer over all possible ordering permutations. Then
the marginal cost of φ(C) of each customer u is defined as follows:

φu(C) =
1

N !

∑
π∈SN

(C(S(π, u))− C(S(π, u) \ u)) (10)

where S(π, u) is the set of players arrived in the system not later than u, and π
is a permutation of arrival order of those customers. Thus player u is responsible
for its marginal contribution v(S(π, u)) − v(S(π, u) \ u) averaged across all N !
arrival orders of π.

Looking back at the previous example of two customers A and B, there are
two possible ordering: B,A and A,B. For the first, the cost of B = cl and
the cost of A = ch − cl. For the second, the cost of A = ch, and the cost of

384 V. Ishakian et al.

B = 0. After averaging both costs, we end up with a rationally fair individual
cost distribution: B = cl

2 and A = ch − cl
2 .

By adopting Shapley value as a rationally fair mechanism for allocating costs,
customers have the incentive to declare the flexibility (if any), because the pric-
ing mechanism guarantees that a customer’s cost will not increase because of
flexibility. We formalize this notion in the following theorem.

Theorem 1. The fair pricing mechanism under Shapley value guarantees no
mistreatment as a result of customer flexibility, i.e., φi(C)− φi(C)F ≥ 0, where
φi(C) is the cost of customer i and φi(C)F is the cost of flexible customer i
under Shapley value.

Proof. The proof is by contradiction. Assuming that the opposite is true, i.e.,
φi(C) − φi(C)F < 0, implies that there exists at least one permutation where
C(S(π, i)) − C(S(π, i) \ i) − C(S(π, i))F + C(S(π, i) \ i)F < 0. Since the con-
figuration of other players did not change, then C(S(π, i) \ i)F = C(S(π, i) \ i).
Thus, C(S(π, i))−C(S(π, i))F < 0. This implies that the optimization solution
OPT (i) resulting in C(S(π, i)) is better than the optimization solution OPT (i)F
resulting in C(S(π, i))F . But if OPT (i) is better than OPT (i)F then the opti-
mization should have found it, since the flexibility of the customer contains the
constrained version as well – a contradiction.

While computing the exact cost for each customer using Equation (10) is straight-
forward for small number of customers, finding the exact cost becomes infeasible
as the number of customers increases. Thus, we resort to computing an estimate
of the Shapley value using sampling.7 We utilize Castro’s [7] polynomial time
estimation of Shapley value, which not only achieves a good estimation of the
original Shapley value, but also provides bounds on the estimation error.
Let the vector of estimated Shapley values based on all possible N ! permutations
be Sh = (φ1(C), φ2(C), · · · φn(C)); Let the vector of estimated Shapley values

based on m sample permutations be Sĥ = (φ̂1(C), φ̂2(C), · · · , φ̂n(C)). Using the
central limit theorem, Castro’s technique calculates the number of permutations
m needed such that P (|φi(C)− φ̂i(C)| ≤ ε) ≥ 1−α, where ε is the error bound,
and α is the confidence factor. Calculating the number of samples m required to
achieve the bound P (|φi(C)− φ̂i(C)| ≤ ε) ≥ 1−α requires knowing the standard
deviation σ, which is an unknown value. In our setting, to calculate σ, we first
(conservatively) take the standard deviation σi of each customer to be ωh − ωl:
ωl reflects the cost incurred by the customer under the assumption that there is
an optimal packing of the workload with minimum cost of energy, and ωh reflects
the cost incurred by the customer under the assumption that the workload is the
only workload in the system with a maximal cost of energy. A worst case value
on σ could be calculated by taking σ = max(σ1, σ2, · · · , σi) for all customers i.

Let φ̂i(C)F be the flexibility of a customer using a Shapley value sampling
technique. The mistreatment guarantee by the system no longer holds. However,

7 Estimating Shapley value has proven to be effective in calculating the contribution
of customers to the effective network peak demand [36].

CloudPack 385

as we show in Theorem 2, we can bound the mistreatment of the customer based
on the original Shapley value.

Theorem 2. The fair pricing mechanism under an estimated Shapley value
bounds the mistreatment of a customer as a result of his/her flexibility from

the original Shapley value to be ≤ ε i.e., P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α
2 , where

φ̂i(C)F is the sampled cost of flexible customer i, φi(C) is the cost of customer
i under Shapley value, ε is the error bound, and α is the confidence factor.

Proof. Using a Shapley value sampling technique, we have P (|φ̂i(C)F−φi(C)F |≤
ε) ≥ 1−α, thus, P (φ̂i(C)F −φi(C)F ≤ ε) ≥ 1− α

2 . But we know from Theorem

1 that φi(C)F ≤ φi(C), thus, P (φ̂i(C)F − φi(C) ≤ ε) ≥ 1− α
2 .

Since comparison against Shapley valuation is impractical because of it com-
putational inefficiency, which might not provide confidence for customer to be
flexible, A further motivation is provided by bounding the flexible Shapley value
with the estimated Shapley value.

Theorem 3. The fair pricing mechanism under estimated Shapley value bounds
the mistreatment of a customer as a result of his/her flexibility to be ≤ ε1 + ε2,

i.e. φ̂i(C)F ≤ φ̂i(C) + ε1 + ε2 with probability (1 − α
2)

2, where φ̂i(C)F is the

sampled cost of flexible customer i, φ̂i(C) is the sampled cost of customer i, ε1
and ε2 are the sample error bounds, and α is the confidence factor.

Proof. Using the Shapley value sampling technique, we have the following re-
sults: |φi(C)− φ̂i(C)| ≤ ε1 and |φ̂i(C)F −φi(C)F | ≤ ε2 with probability (1−α).

Thus, P ((φi(C)− φ̂i(C)) ≤ ε1) ≥ 1− α
2 and P (φ̂i(C)F − φi(C)F ≤ ε2) ≥ 1− α

2 .

Since the sampling process is independent, The probability of (φi(C)− φ̂i(C)) ≤
ε1 and φ̂i(C)F − φi(C) ≤ ε2 is equal to (1− α

2)
2.

In addition, from Theorem 1, we have φi(C)F ≤ φi(C). Therefore we have

φ̂i(C)F ≤ ε2 + φi(C)F ≤ ε2 + φ̂i(C) + ε1 with probability (1− α
2)

2.

Finally, an added property of Shapley and sampled Shapley value is budget
balance i.e. the total cost of customers is always equal to the total cost of the
resources used. This property works as incentive for providers or resellers, since
it guarantees that they are going to get a revenue which covers the resources
they lease.

4 CLOUDPACK: Experimental Evaluation

In this section, we present results from extensive experimental evaluations of
CloudPack colocation framework. Our main purpose is to establish the feasi-
bility of our proposed framework as an underlying mechanism to make effective
use of a provider’s IaaS and still achieve a fair distribution of costs among cus-
tomers, by (1) establishing the efficacy of our greedy heuristic by comparing it to
optimally allocated workloads, (2) evaluating the cost incurred by the customer

386 V. Ishakian et al.

Fig. 4. High Performance Computing Workloads

to use such a system to allocate a workload compared to the utopian cost, and
(3) measure the benefit of a customer from flexibility.

Workload Models: To evaluate our experiments, we synthetically generate
workloads based on the workload models (shown in Figure 3), such as batch,
and MapReduce workloads. We generate two pipeline workload versions: Web-
server which has a single node with an execution length equal to the length
of the epoch, and a chain workload which has a variable number of sequential
tasks.8 In addition, we enrich our set of workloads with two additional High
Performance Computing workloads (c.f. Figure 4) for Protein annotation work-
flow (PAW), and Cognitive Neuroscience (fMRI) [40]. We believe that this set
of workload models is representative for many cloud based applications. We as-
sume homogeneous resources with the fixed cost part equal to 10 cents per hour,
a resource capacity equal to one, and an epoch consisting of twenty four hours
where customers configurations are calculated at the beginning of the epoch. To
calculate the number of samples m required to estimate a Shapley costs, we take
ε = 0.1, and α = 0.05. Based on available server power consumption measure-
ments provided by Koomey [23], specifically for mid-range server, we assume
that a physical resource’s power consumption is 500 watts per hour.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20

C
os

t $

Hours

Fig. 5. Energy Cost (KW/H)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 10 20 30 40 50 60 70 80 90 100

R
at

io

of Physical Machines

Fig. 6. Packing Ratio (Heuristic/Optimal)

Energy Cost: To model the energy cost for our framework, we use real energy
costs from the Ameren website [1]. Ameren publishes energy costs daily on an

8 We vary the length of the chain workload in our experiments.

CloudPack 387

hourly basis. We get energy cost for a one month period (from 08/01/11 to
08/31/11) and average them per hour. Figure 5 shows the average price of energy
for this period over a 24-hour period. The cost of energy reflects a diurnal pattern
– higher during the day and cheaper at night.

Efficacy of Our Greedy Heuristic: In this experiment, we evaluate the per-
formance of our greedy heuristics compared to an optimal allocation of tasks.
Since knowing an optimal allocation is difficult (bin packing is NP-hard), we
resort to generating workloads for which we know (by construction) that an
optimal allocation exists.

We do so by simulating a set of physical machines for the duration of an
epoch, and repeatedly creating fragments that sum up to a physical machine’s
full capacity. We generate fragments based on a uniform distribution between
zero and one, thus the average number of fragments per resources is two.9 Similar
results for physical machine’s fragmentation were observed given other distribu-
tions but were omitted due to lack of space. We proceed in a round-robin fashion
over the set of workload models in our disposal (except the batch), and greed-
ily embed each workload over the physical machines. Once no more workloads
can be embedded, we assign the remaining unembedded fragments as part of
a batch workload. By construction, we know that a “perfect” allocation exists
(with every resource being fully utilized for the entire epoch).

We set the start time and end time of all workloads to be the beginning and
end of the epoch, respectively. Next, we place the resulting workloads to be the
input to our greedy heuristic. Our purpose from this experiment is to evaluate
how far our heuristic is from an optimal allocation. Therefore, we assume that
the cost of electricity is fixed (i.e., independent of time).

Figure 6 shows the ratio of allocation achieved using our algorithm relative to
an optimal allocation. The x-axis shows the number of physical machines used,
and the y axis shows the ratio of workload allocation achieved using our heuristic
over that of an optimal allocation. The results are reported with 95% confidence.
The figure shows that our algorithm’s performance is highly comparable to the
optimal. Furthermore, as we increase the number of physical machines, the ratio
decreases.

Fair Pricing Scheme vs. Utopian Customer Cost: Unlike the previous
experiment, which aimed to show the efficacy of our heuristic by comparing
its performance to an optimally-allocated set of workloads, the purpose of this
experiment is to highlight the fairness of our game-theoretic inspired pricing
scheme in comparison to the utopian cost of the customer. As we alluded before,
the utopian cost is the (possibly unrealistic) minimal possible cost – reflecting
only the cost of the energy and resources the customer actually uses.

To generate workloads, we start by selecting a workload model based on a uni-
form distribution where each workload model: HPC (fMRI, PAW), WebServer,
MapReduce (MR), Chain, and batch get equal percentages (20%) of the total

9 If the generated fragment is greater than the leftover resource capacity, then we
assign the fragment the remaining resource capacity.

388 V. Ishakian et al.

workload population. Once a workload is selected, we generate a start time ran-
domly for the workload to execute, and set the end time of the workload to be the
start time plus the length of execution of the workload. This is an easy step since
all of the workloads except chain have fixed structures. For chain workloads, we
generate the number of consecutive resource requests based on an exponential
distribution with a mean of six. If the end time is greater than the duration
of the epoch, then we exclude that workload, and proceed to generate a new
one, otherwise we accept the generated workload as part of the overall workload
population.

To model the utilization of the webserver workload, we use a standard method
of generating the workloads based on an exponential distribution whose mean
is modulated by a Sine function. This is done to model the diurnal pattern of
higher web server load during the day, and lower web server load at night. For
the remaining workload models, we generate the utilization of requests based on
a uniform distribution between 0.2 and 1.

 0

 0.5

 1

 1.5

 2

 2.5

 3

HPC MR WS Chain Batch

C
os

t

Workloads

actual
utopian

worst

Fig. 7. Per workload cost compari-
son

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.5 1 1.5 2 2.5

E
ffi

ci
en

cy
 R

at
io

α

HPC
MR
WS

Batch

Chain(6)
Chain (12)
Chain (18)

Fig. 8. Effect of energy fluctuation on
workload cost

Figure 7 shows the distribution of costs based on sampled Shapley value for 30
workloads, where all workload models have equal percentage of workload popu-
lation (20%). We also show the utopian cost, as well as the cost incurred by the
customer had she opted to execute her workload by herself (i.e. no colocation),
which we denote as Worst cost. As shown, approximate Shapley value is close
to the utopian cost. An interesting observation is the ratio between the utopian
and approximate cost is highest for webserver workloads, while batch workloads
are very close to the utopian. In fact, we also observe that batch workloads can
even pay less than their utopian. This is due to the fact that batch workloads are
the least restrictive workloads in terms of modeling (no edges between tasks),
and have complete time flexibility, while webservers have the least flexibility.

To further investigate this phenomena, we proceed to measure the sensitivity
of workload costs to fluctuation in energy costs. To model variability in energy
cost, we use the distribution of energy highlighted in Figure 5, and modulate it
by multiplying it with α, where α varies between 0 and 2.5. For each workload
model, we generate 50 workloads and calculate the cost of colocation using the
modulated energy cost. We generate two additional variations of chain workloads

CloudPack 389

with length based on exponential distribution with mean 12 and 18 respectively.
We define the efficiency ratio as the ratio between the actual customer cost over
the utopian cost. Figure 8 highlights our results. The x-axis plots the changing
values of α. For α = 1, the cost of energy reflects the actual cost shown in Figure
5. As highlighted, inflexible workloads, such as the webserver suffer most as a
result of increase in energy cost with overall increase of more than 20 percent,
while batch workloads do not show any increase.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 10 20 30 40 50

E
ffi

ci
en

cy
 R

at
io

% (Batch)

HPC
MR
WS

Chain(6)
Chain (12)
Chain (18)

Fig. 9. Workloads with batch mix

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
ffi

ci
en

cy
 R

at
io

Hours

HPC
MR

Chain(6)
Chain (12)

Fig. 10. Effect of Flexibility

Given the fluidity (maximal flexibility) of batch workloads, we investigate their
effect when colocated with other workloadmodels. We performed experiments us-
ing the same settings as the previous experiment: set the value of α = 1, and for
each workload, we mix it with different percentages of batch workloads. Figure 9
shows the measured efficiency ratio for different percentages of batch workload
mix. We observe that pipeline based workloads like chain and webserver are a
better fit for batch workloads than HPC or MR workloads. One reason which is
based on observing the actual allocation outcome is due to the existence of par-
allel branches in MR and HPC models, which provides these workloads – unlike
chain and webserver workloads – an additional opportunity for allocation.

Benefit from Flexibility: To measure the effect of flexibility on the overall
reduction in cost, we performed experiments using the same setting as before,
while allowing the extension of start time and end time of workloads by σ, for
different values of σ (hours). Figure 10 shows the effect of customer flexibility
on workloads.10 As expected, the more flexible a workload is, the better the
efficiency ratio.

5 Related Work

Economic Models for Resource Management: Several resource manage-
ment techniques have been proposed for large-scale computing infrastructures
using various micro-economic models such as auctions, commodity markets, and

10 We do not include models of webserver and chains with average length 18 since they
do not allow for much flexibility in a 24-hour epoch.

390 V. Ishakian et al.

iterative combinatorial exchange [4, 6, 30, 38]. Amazon EC2 spot instance is a
prime example of one of these markets. Customers bid for resources, and will
be allocated such resources as long as their bid is higher than the market price
at the time of allocation. Unlike EC2 spot instance which does not provide an
SLA regarding the allocation period, in CloudPack, customers are guaranteed
to execute throughout the entire time of their allocation.

Ishakian et al, [20] develop a colocation service which allows for migration,
profiling and allocation of workloads. In that setting, a customer’s workload
consists of a single task and interactions are driven by the rational behavior of
customers, who are free to relocate as long as the relocation minimize their cost.
In this Setting, a customer’s workload consists of multiple tasks and we optimize
the allocation of resources and apportion costs using the game-theoretic-inspired
Shapley concept – what we devise is a pricing mechanism and not a game. As a
result, each customer ends up paying a marginal cost.

Unlike all of the models referenced above, CloudPack allows for an explicit
consideration of the flexibility of customers (as opposed to having such a flexi-
bility be expressed through the strategic choices of customers).

Data Center Energy Management: Minimizing the operating cost of data
centers is a very active research topic. Along these lines, there has been signifi-
cant breakthroughs in terms of optimizing the use of resources through efficient
server power management [14, 33], optimized workload distribution and consol-
idation [16, 32] or better cooling [31]. The authors in [33] motivate the need
for coordination among different energy management approaches because they
may interfere with one another in unpredictable (and potentially dangerous)
ways. They present a power management solution that utilizes control theory
for coordination of different approaches.

A common characteristic in the above-referenced, large body of prior work is
that the IaaS provider is doing the optimization, which does not provide any
incentive for customers. In our model, we aim to minimize the overall opera-
tional cost of the datacenter, and provide the transparency that allows flexible
customers to take advantage of their flexibility.

Workflow Scheduling: Different workflow management and scheduling tools
have been proposed that focus on scheduling DAGs with the purpose of opti-
mizing the makespan and consider QoS properties like deadlines and/or budget
constraints [17,26,34,40]. Henzinger et al [17] provide a static scheduling frame-
work that is based on small state abstractions of large workloads, Similar to
previous work, Our model aims to minimize the overall operational cost of the
datacenter. However, we provide a provably fair pricing mechanism which dis-
tributes the cost of leasing resource over customers and provides them with the
incentive to declare their flexibility.

Service Level Agreements: There has been significant amount of research on
various topics related to SLAs. The usage , specification, and economic aspects
of resource management in grids have been considered in [5, 9, 22, 28]. An in-
herent assumption in such systems is that the customer’s SLAs are immutable.

CloudPack 391

We break that assumption by allowing the customer to provide multiple yet func-
tionally equivalent forms of SLAs. Our framework utilizes this degree of freedom
to achieve a better colocation.

Languages and Execution Environments: Workflow/dataflow languages
have been proposed since the sixties, with IBM job control language [19] a prime
example. Since then, different languages and execution engines have been devel-
oped [10,11,30]. These languages modeled coordination or dependencies among
tasks (programs) as DAGs. Task dependencies reflect data dependencies between
tasks. In our language, workloads define resource requests and dependencies are
model customer temporal tolerance or flexibility.

Parkes et al [30] outline a tree based bidding language (TBBL), where re-
sources are mapped to the leaves of the tree, and inner nodes model logical
operations. TBBL can be used to describe customer requests, however, a such
description would be inefficient due to the exponential increasing number of
nodes resulting from a customer’s flexibility.

6 Conclusion

In this work, we proposed a new pricing model for cloud resources that bet-
ter reflects the costs incurred by IaaS providers, and gives cloud customers the
opportunity and incentive to take advantage of any scheduling flexibilities they
might have. We presented CloudPack: a framework for colocation of customer
workloads. Our framework provides (1) a resource specification language that
allows customers to formally express their flexibility, (2) an algorithm that op-
timizes the use of cloud resources, and (3) a game-theoretic inspired pricing
mechanism that achieves a rationally fair distribution of incurred costs over cus-
tomers. We presented performance evaluation results that confirm the utility
and potential of our framework.

Our on-going research work is pursued along three dimensions. Along the
first, we are investigating extensions to our specification language to allow for
yet more expressive forms of SLAs – e.g., non-parametric constraints, such as
geographic location, anti-colocation, and network proximity, as well as provid-
ing customers with a choice construct that allows them to specify alternative
workload configurations and physical resource flexibilities. Our second line of
work is focusing on extending CloudPack to allow for resource allocation with
uncertainty, i.e., account and provide cost for resource failures. Our third line of
work is focused on developing a prototype of a our colocation framework that
will allow us to conduct experiments in a dynamic setting that is subject to the
overheads resulting from actual allocation and relocation of workloads. Elements
of this prototype have been developed as part of our earlier work on XCS a VM
cloud colocation service [20].

References

1. Ameren real-time prices (March 2011),
https://www2.ameren.com/RetailEnergy/realtimeprices.aspx

https://www2.ameren.com/RetailEnergy/realtimeprices.aspx

392 V. Ishakian et al.

2. Ahmad, F., Vijaykumar, T.N.: Joint optimization of idle and cooling power in data
centers while maintaining response time. In: ASPLOS 2010, pp. 243–256. ACM,
New York (2010)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commu-
nications of the ACM 53(4) (2010)

4. AuYoung, A., Buonadonna, P., Chun, B.N., Ng, C., Parkes, D.C., Shneidman, J.,
Snoeren, A.C., Vahdat, A.: Two auction-based resource allocation environments:
Design and experience. In: Buyya, R., Bubendorfer, K. (eds.) Market Oriented
Grid and Utility Computing, ch. 23. Wiley (2009)

5. Barmouta, A., Buyya, R.: GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration. In: IPDPS 2003. IEEE
Computer Society Press, Washington, DC (2003)

6. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6) (2009)

7. Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research 36(5) (2009)

8. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs be-
tween profit and customer satisfaction for service provisioning in the cloud. In:
HPDC, New York, USA (2011)

9. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A Protocol
for Negotiating Service Level Agreements and Coordinating Resource Management
in Distributed Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 153–183. Springer, Heidelberg (2002)

10. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1) (2008)

11. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.,
Vahi, K., Livny, M.: Pegasus: Mapping scientific workflows onto the grid. In: Grid
Computing, pp. 131–140. Springer (2004)

12. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: ISCA, New York, USA (2007)

13. Ferguson, A.D., Bod́ık, P., Kandula, S., Boutin, E., Fonseca, R.: Jockey: guaranteed
job latency in data parallel clusters. In: EuroSys, pp. 99–112 (2012)

14. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation in
server farms. In: SIGMETRICS 2009. ACM, New York (2009)

15. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: Research
problems in data center networks. CCR Online (Janaury 2009)

16. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S.,
McKeown, N.: ElasticTree: Saving energy in data center networks. In: NSDI (2010)

17. Henzinger, T., Singh, V., Wies, T., Zufferey, D.: Scheduling large jobs by abstrac-
tion refinement. In: Proceedings of the Sixth Conference on Computer Systems,
pp. 329–342. ACM (2011)

18. Hua, K., Sheu, S.: Skyscraper broadcasting: A new broadcasting scheme for
metropolitan video-on-demand systems. ACM SIGCOMM Computer Communi-
cation Review 27 (1997)

19. IBM: Job Control Language. (May 2011), http://publib.boulder.ibm.com/
infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zcourses/

zcourses jclintro.html
20. Ishakian, V., Sweha, R., Londoño, J., Bestavros, A.: Colocation as a Service. Strate-

gic and Operational Services for Cloud Colocation. In: IEEE NCA (2010)

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zcourses/zcourses_jclintro.html
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zcourses/zcourses_jclintro.html
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zcourses/zcourses_jclintro.html

CloudPack 393

21. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live Migration of Virtual Machines. In: NSDI, pp. 273–286. USENIX
Association, Berkeley (2005)

22. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. Netw. Syst. Manage. 11, 57–81 (2003)

23. Koomey, J.: Estimating total power consumption by servers in the us and the world
(2007)

24. Lai, K.: Markets are dead, long live markets. SIGecom Exch. 5(4), 1–10 (2005)
25. Liu, H., Jin, H., Liao, X., Hu, L., Yu, C.: Live Migration of Virtual Machine Based

on Full System Trace and Replay. In: Proc. of the 18th ACM HPDC (2009)
26. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B.,

Johnsson, L.: Scheduling strategies for mapping application workflows onto the
grid. In: HPDC, Washington, DC, USA (2005)

27. Nelson, M., Lim, B.H., Hutchins, G.: Fast Transparent Migration for Virtual Ma-
chines. In: ATEC 2005: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, pp. 25–25. USENIX Association, Berkeley (2005)

28. Netto, M.A., Bubendorfer, K., Buyya, R.: SLA-Based Advance Reservations with
Flexible and Adaptive Time QoS Parameters. In: Proceedings of the 5th Interna-
tional Conference on Service-Oriented Computing (2007)

29. Nisan, N.: Algorithmic game theory. Cambridge Univ. Press (2007)
30. Parkes, D., Cavallo, R., Elprin, N., Juda, A., Lahaie, S., Lubin, B.,Michael, L., Shnei-

dman, J., Sultan, H.: ICE: An iterative combinatorial exchange. In: Proceedings of
the 6th ACM Conference on Electronic Commerce, pp. 249–258. ACM (2005)

31. Parolini, L., Sinopoli, B., Krogh, B.: Reducing data center energy consumption
via coordinated cooling and load management. In: USENIX Conference on Power
Aware Computing and Systems (2008)

32. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the
electric bill for internet-scale systems. In: SIGCOMM, pp. 123–134 (2009)

33. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power”
struggles: coordinated multi-level power management for the data center. In: AS-
PLOS 2008, pp. 48–59 (2008)

34. Ramakrishnan, L., Chase, J.S., Gannon, D., Nurmi, D., Wolski, R.: Deadline-
sensitive workflow orchestration without explicit resource control. J. Parallel Dis-
trib. Comput. 71, 343–353 (2011)

35. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power manage-
ment for dense blade servers. In: ISCA, pp. 66–77 (2006)

36. Stanojevic, R., Laoutaris, N., Rodriguez, P.: On economic heavy hitters: Shap-
ley value analysis of 95th-percentile pricing. In: Proceedings of the 10th Annual
Conference on Internet Measurement. ACM (2010)

37. Verma, A., Cherkasova, L., Campbell, R.H.: Resource provisioning framework for
mapReduce jobs with performance goals. In: Kon, F., Kermarrec, A.-M. (eds.)
Middleware 2011. LNCS, vol. 7049, pp. 165–186. Springer, Heidelberg (2011)

38. Wolski, R., Plank, J.S., Bryan, T., Brevik, J.: G-commerce: Market Formulations
Controlling Resource Allocation on the Computational Grid. In: IPDPS (2001)

39. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.D.: Profiling and Modeling Re-
source Usage of Virtualized Applications. In: Issarny, V., Schantz, R. (eds.) Mid-
dleware 2008. LNCS, vol. 5346, pp. 366–387. Springer, Heidelberg (2008)

40. Yu, J., Buyya, R., Tham, C.: Cost-based scheduling of scientific workflow appli-
cation on utility grids. In: Proceedings of the First International Conference on
e-Science and Grid Computing, pp. 140–147. IEEE Computer Society (2005)

Dynamic Software Deployment

from Clouds to Mobile Devices

Ioana Giurgiu1, Oriana Riva2,�, and Gustavo Alonso1

1 Systems Group, Dept. of Computer Science, ETH Zurich
2 Microsoft Research, Redmond

Abstract. With the functionality of mobile applications ever increas-
ing, designers are often confronted with either the resource limitations
of the devices or of the network. As pointed out by recent work, appli-
cation partitioning between mobile devices and clouds, can be used to
solve some of these issues, improving performance and/or battery life.
In this paper, we argue that the static decisions made in existing work
cannot leverage the full potential of application partitioning. Thus, to
allow for variations in the execution environment, we have developed
a system that dynamically adapts the application partition decisions.
The system works by continuously profiling an applications performance
and dynamically updating its distributed deployment to accommodate
changes in the network bandwidth, devices CPU utilization, and data
loads. Using several real applications, we show that our approach pro-
vides performance gains as high as 75% over traditional approaches and
achieves lower power consumption by a factor close to 45%.

Keywords: Mobile cloud computing, dynamic distribution, modularity.

1 Introduction

Today’s mobile users demand increasingly ubiquitous applications and ever richer
functionality on their devices. They want to create panoramas from photo collec-
tions, manage their finances, and even run augmented reality or data analytics
applications while interacting spontaneously and expecting fast response times.
These demands and expectations create a complex design problem. On the one
hand, running the applications entirely on the mobile is limited by the computa-
tional resources of the devices. On the other hand, running the applications re-
motely is limited by the network bandwidth and often raises usability issues due
to varying latency. Thus, recent research efforts have proposed to offload parts of
an application from the mobile device to the cloud [6,8,9,11,26], thereby demon-
strating important gains in battery life and performance. Code offloading raises
two important questions: what and when to migrate for remote execution. While
most techniques exclusively focus on what to offload, by making offline parti-
tioning decisions, we advocate that understanding when it becomes beneficial to
offload code is just as important. Changes in the network bandwidth or latency,

� Work done while being at ETH Zurich.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 394–414, 2012.
c© IFIP International Federation for Information Processing 2012

Dynamic Software Deployment from Clouds to Mobile Devices 395

sudden increases of the CPU load on the mobile device, and variations in the
user’s inputs during interactions can dramatically impact the performance and
responsiveness of most applications, an aspect often ignored in existing work.

Consider an example from furniture houses where computer-based applica-
tions can help customers visualize the possible arrangement of furniture items in
their homes. Static approaches would store the furniture catalog and perform the
image rendering remotely, independent of any changes in environmental factors.
However, one can easily imagine situations in which varying network conditions
result in significantly slower application responsiveness (e.g.,, due to a drop in
available bandwidth). In such scenarios, an adaptive system would recognize that
the network is the bottleneck and not the device’s CPU, and would promptly
limit data transfers and move more computation to the mobile device. A similar
decision can be made based on the amount of data involved, something that de-
pends on what the user wants to upload in every interaction. There will always
be situations where static partitioning has chosen the wrong configuration.

In this paper, we address the challenges of (1) what parts of an application
to offload and (2) when, by considering the changing conditions one is likely to
encounter when operating with mobile devices. Our system explores an adaptive
deployment model where the cloud moves part of the application to the mobile
device to improve user experience and minimize data transfers. To ensure high
flexibility in what application parts to offload, we assume applications are modu-
larized. Writing modular applications is already a well-established practice with
increasing software support [10,19,23] and various projects recognize the benefits
of decoupling an application’s functionalities into pluggable modules [4, 12, 27].
Thus, given a modular application, we deliver an automatic pipeline of opera-
tions that optimally partitions it on-the-fly between the cloud and the mobile
device according to the device’s CPU load, network conditions, or user inputs.
Full automation is key to improve user experience and to ensure the user does
not have to be involved in what are complex architectural decisions. Thus, the
dynamic aspects of our system guarantee that on-the-fly acquisition of an ap-
plication does not result in unacceptable delays. Additionally, we introduce a
novel mechanism to allow devices to autonomously and dynamically adjust an
application configuration based on the user’s inputs.

Our system runs on Android [3] and Amazon EC2 instances [1]. It was evalu-
ated with three applications: a service for ticket purchase, an indoor localization
application and a text-to-speech synthesizer. In all cases, for small, medium and
large EC2 instances, we observe significant gains (i.e., reduced interaction time
by up to 75% and lower power consumption by up to 45%), while considering
all data and code migration costs. The system dynamically adapts to changes in
the data load or the execution environment, by promptly finding and switching
to the optimal configuration. An additional benefit of our approach is that appli-
cations that could not otherwise be run on the mobile device (except maybe for
very small data loads), execute successfully for all data inputs, while minimiz-
ing the overall interaction time. An example is FreeTTS [13], a text-to-speech
synthesizer application which we used in the evaluation. If running entirely on

396 I. Giurgiu, O. Riva, and G. Alonso

the mobile device, FreeTTS works up to a maximum input of only 5 KB of
text, showing after that an exponential increase in the execution time. We show
that with our technique this restriction does no longer hold and the application
performance is significantly improved.

The rest of the paper is organized as follows. In the next section, we discuss
related work. Section 3 describes the system’s goals and design principles, while
Section 4 gives insights on its implementation. In Section 5, we describe our
applications and present results in Section 6. Finally, we conclude in Section 7.

2 Related Work

An increasing amount of work is being done in the context of application par-
titioning and offloading to remote servers or the cloud. However, most systems
tackle the static problem, that of making partitioning decisions before an ap-
plication interaction is initiated and without readjusting the offloading scheme
at runtime. More recently, the dynamic aspect has gained more attention and
several approaches have emerged [7–9, 22] although they are all based on very
different premises and present different limitations.

MAUI [9] and CloneCloud [7,8] aim at improving the performance and battery
life on the mobile device by offloading application state to either remote servers
or cloud clones. Both require the application to be pre-installed at the device,
which creates problems with the number of platforms to be supported and as
software evolves. Our system provides on-demand installation, which removes
the need of having the software pre-installed and makes it significantly easier
to evolve the application. Furthermore, MAUI’s offloading unit (i.e., method)
is finer-grained compared to ours (i.e., OSGI modules [19]). Thus it becomes
unfeasible for applications with more than tens of methods, since their algorithm
requires exponential time to traverse the entire search space. Finally, although
MAUI can react to CPU or network changes, it cannot adapt to varying user
inputs. Our approach uses a caching algorithm to solve this problem.

CloneCloud shows the effectiveness of static analysis of Java code to manage
dynamic offloading. However, their evaluation shows significant gains only for
large inputs, i.e.,, 100 photos, as only then the achieved speedup on the clones
becomes significant. A serious drawback is that the gains observed do not con-
sider the bandwidth cost. CloneCloud assumes that the device and remote server
have fully synchronized file systems and removes the cost of such synchronization
from the measurements. As soon as dynamic data is involved the observed cost
in battery and performance is likely to be dominated by the data transfer. In our
scenarios, we consider the cost of data transfers an integral part of the problem.
Thus, we account for the data migration overhead and observe significant per-
formance improvements by doing so even with modest amounts of data involved.
Odessa [22] has also recognized the need to dynamically adjust offloading deci-
sions, and proposes a technique to structure the parallelism across mobile devices
and remote servers for streaming applications. More recently, [17] has proposed
a fault-tolerant approach to save energy on mobile devices by server offloading
without partitioning. The application is present at both ends and only state

Dynamic Software Deployment from Clouds to Mobile Devices 397

is migrated to switch from local to remote executions. State migration, how-
ever, has the same problems as data migration as the overhead typically comes
from the user data and cannot be ignored. Therefore, most of these dynamic
approaches offload the application state only, while ignoring the hurdles of both
code and data migration. We argue these problems are essential and need to be
addressed, thus our system provides support to offload code and data on-the-fly.

Static approaches have been proposed in the context of ”cyber foraging’” [5,
25]. Spectra [5, 11] and Chroma [6] partition applications into local and re-
moteable tasks, pre-installed on surrogates. Task partition is based on manu-
ally specified execution plans. Other systems use virtual machine techniques to
increase flexibility. Slingshot [28] and Goyal and Carter’s prototype [15] allow
users to install their own functionality on surrogates. These systems are different
from ours in that they rely on the developer to manage the partitioning process
and require application pre-installation. In the context of program partitioning,
Coign [16] provides static partitioning of COM components, while Wishbone [18]
and Abacus [2] focus on partitioning either stream or data-intensive applications.
However, none of these systems readjust their partitioning decision at runtime.
Other work tackled the migration of Java applications [20] remotely. In addition
to their static approach, their offloading unit (i.e., Java classes) is unsuitable for
large applications. Other systems have treated applications as three-tier struc-
tures [29–31] to simplify partitioning. Although they put little burden on the
programmer, there is no support for dynamic migration of components.

3 System Overview

Our system’s goal is to make cloud applications not originally designed for mobile
platforms capable of running on mobile devices in a resource-efficient manner,
while maintaining high performance under dynamic conditions. In order to pro-
vide an improved user experience for a wide range of applications (with long-
and short-term interactions), our approach addresses several requirements.

On-the-fly application installation and updates. In practice, it is not possible
to assume that a device has all necessary applications pre-installed. Moreover,
for cloud providers it is important to reduce the data transfer to its clients at in-
stallation time and provide support for versioned updates. Our system eliminates
full code pre-installation and enables application updates at runtime.

Dynamic and optimal application partitioning. The decision on how to dis-
tribute an application between the cloud and the mobile device is not obvious,
but highly application- and platform-specific. Moreover, mobile devices can ex-
perience changes in connectivity due to mobility and network instability, as
well as variations in the application load (both in CPU and data transfer) due
to multiple concurrently-running applications. Our system considers an appli-
cation’s structure, resource requirements and device constraints to identify its
best mobile-cloud partition and adjust it online. In addition, it reconfigures the
current application deployment without interrupting ongoing interactions. In Al-
fredO, an optimal partitioning is the application distribution that results in the

398 I. Giurgiu, O. Riva, and G. Alonso

lowest interaction time. It is equivalent to the graph cutting problem and can
be solved with linear programming, as described later in Section 3.3.

Adaptation to varying data inputs. The number and size of data inputs (e.g.,
size of images to process, length of text to synthesize, etc.) can impact an ap-
plication’s execution time, and thus its optimal partitioning between client and
cloud. As user inputs cannot be easily predicted, it is hard to know a priori which
partitioning configuration suits best a particular user interaction. Rather than
deferring the partitioning decision to the cloud side, our system allows clients
to autonomously decide which configuration to adopt once the user inputs have
been submitted to the application.

The system builds on top of our previous work [14, 24], where we tackled the
problem of static code offloading, based on offline profiling of applications.

3.1 Architecture

To benefit from our model, applications must be built in a modular fashion,
where ideally modules contain highly-cohesive functionalities and communicate
through low-coupled dependencies. The steps taken to distribute a modular ap-
plication between the cloud and the mobile device are shown in Fig. 1. First, on
the cloud, the application profiler instruments the application to extract a com-
pact description of its modular structure, as well as CPU and communication
statistics (step 1a). On the client, the mobile device’s profiler collects measure-
ments of the CPU load, network status and available storage space (step 1b).
Both profilers submit this information to the graph generator component, which
uses these measurements to generate a compact specification of the application
and environment, in the form of a resource consumption graph (step 2). Based
on this description, the optimizer identifies the best distribution of modules and
configures the deployment accordingly (step 3a). For different simulations of the
user inputs, the optimizer computes asynchronously the most suitable partitions
and caches them on the mobile device (step 3b).

At bootstrap, our system offloads the minimum functionality required to start
the application on the mobile device. Once the first code migration phase has
completed and the acquired components are active, the user can start using the
application. At runtime, due to different user inputs, fluctuations in the network
connectivity, or changes in load on the mobile device (e.g., users switch from
WiFi to 3G, move to low bandwidth areas or increase the device’s CPU load by
starting more applications) the profilers and optimizer are constantly running
such that the partitioning configuration can be changed on the fly.

Fig. 1 also shows that our system runs on top of the R-OSGi [23] and OSGi [19]
platforms, that provide module management and remote communication capa-
bilities across application modules.

3.2 Code Pre-installation and Updates

Our approach removes the need to pre-install an application on the mobile device
before interaction and provides users with on-the-fly installations and updates.

Dynamic Software Deployment from Clouds to Mobile Devices 399

Fig. 1. Architecture and pipeline of operators

This flexibility comes from the modular nature of our design principles (i.e.,
supported by the OSGI management system our system relies on), and proves
to be not only efficient, but also convenient for both cloud providers and clients.

On-demand migration, especially for large applications, is significantly more
efficient than full pre-installation. For example, FreeTTS [13], used in our eval-
uation, has a small code base of 4 MB. If application updates are constantly
made available, with a code pre-installation approach the application has to be
fully downloaded each time, as versioning is not supported. With AlfredO, only
the code necessary to enable the interaction is fetched on the mobile device,
merely 260 KB for this application. Once one starts using the application, our
system acquires on-the-fly the code necessary to provide users with an optimal
interaction. Moreover, by supporting versioning, when code updates are avail-
able, AlfredO fetches only the newly modified modules. Additionally, modularity
allows us to naturally foster the deployment of applications that contain criti-
cal or security restricted pieces of code (i.e., banking). With our system, only
those components that have no privacy issues can be installed on the client. This
means that software or service providers can still benefit from increased security,
while improving user experience on the device.

3.3 Optimal and Dynamic Application Partitioning

Our system partitions applications between the cloud and mobile device while
optimizing interaction time and bandwidth utilization. We describe how the
optimal partition of an application is identified and how is adapted at runtime.

Application Instrumentation and Profiling. The profiler is responsible for
characterizing the structure and behaviour of a given cloud application, as well
as collecting measurements at every user interaction. First, it extracts the inter-
module dependencies which have a direct impact on bootstrapping and executing
the application, as well as the partitioning decision. Dependencies impose the
order in which modules need to be started and restrict their location. The more
dependencies a module has, the more expensive its remote invocations become
if moved to the mobile device. Second, for each module, the profiler measures
its code size, the amount of sent and received data, and its execution time.

400 I. Giurgiu, O. Riva, and G. Alonso

From the network perspective, mobile devices connect to the outside world
through 3G orWiFi, if available. The differences in their data rates arewell known,
with a theoretical maximum below 14 Mbps for 3G (HSDPA) and 54 Mbps for
WiFi (802.11g). In practice, the gap is much higher and mobility makes network
conditions even more unstable. Thus, the profiler monitors on the device which
network interface is currently in use and what are the bandwidth and latency on
the link. Section 4 provides more details on the profiling step.

Application and Network Specification. The profiled data is used to pro-
vide a compact description of each application module. A module is a logical
unit encompassing one or more application functions. An example of module
specification provided by the profiler is the following:

module ’mPayment’ {

deps: [mRSA, mBank]; type: [nIO, movable]; CPU: 168ms; size: 17kB}

wire ’wPR’: (’mPayment’, ’mRSA’, 50kB)

wire ’wPB’: (’mPayment’, ’mBank’, 7kB)

network: (’WiFi’, 6Mbps, 87ms)

A module, such as the mPayment used in the ticket machine application, has a
number of dependencies (deps) on other modules (i.e., it uses functions provided
by such modules). In this case, mPayment depends on mRSA and mBank. Its
type property specifies whether it communicates with components outside the
application (type=IO) or only with internal modules (type=nIO). In addition,
as not all modules can be migrated to a mobile device (e.g., due to privacy issues,
database management), they are also classified into movable and non-movable.
Some of these properties can be automatically extracted by processing a module’s
dependencies (e.g., database connections), but, if not obvious, it is also possible
for the developer to manually annotate them. CPU and size report the average
execution time for such module and its code size. A wire specifies how much data
is transferred between two inter-connected modules, while network specifies the
type of network connection the device is currently using (WiFi or 3G), as well
as its measured bandwidth and latency.

Application Optimization. Based on the application and network specifica-
tions, the optimizer decides how to partition the application while minimizing
the overall interaction time and respecting device-specific constraints, such as
maximum storage space available for installing modules and maximum amount
of data which can be transferred to the cloud.

The application specification is represented through a consumption graph,
which captures both the application structure and the gathered statistics. It
consists of a directed acyclic graph G = {M,D}, where a vertex Mi is a module
and an edge dij models a dependency between Mi and Mj . Each vertex Mi has a
cost expressed through two parameters: the code size ci and the execution time
ti of the corresponding module. Each edge dij has a cost expressed by the size
of data transferred between the connecting modules, inij + outji.

Given the consumption graph, the optimization problem consists of finding a
cut in the graph such that some application modules execute on the device and

Dynamic Software Deployment from Clouds to Mobile Devices 401

the rest on the cloud. Let us consider an application with n modules, M1, M2, ...,
Mn and a partition P = Pdevice

⋃
Pcloud, where Pdevice = {Mp|p ∈ [1, ..., k]} is

the set of modules to migrate on the mobile device and Pcloud = {Ms|s ∈ [1, ..., l]}
is the set of modules residing in the cloud. The objective function minimizes
the overall interaction time of the application, while taking into account the
overhead of acquiring and installing the necessary modules on the device, as
well as generating proxies for all remote dependencies.

min OP = min (

k∑
i=1

ci
B

+ tis ∗ k + tp ∗ r +
k∑

i=1

ti +

l∑
j=1

tj +

t≤k∑
i=1

w≤l∑
j=1

(inij + outji)

B
)

such that :

k∑
i=1

ci ≤ CMAX and

t≤k∑
i=1

w≤l∑
j=1

inij ≤ DMAX

The first part in the function models the cost of migrating k modules to the
mobile device over a link of bandwidth B, installing and starting them (tis ∗ k),
as well as generating the proxies for all remote dependencies (tp∗r). As we explain
in Section 4, in order to become active, modules need to be installed and started,
and proxies must also be established to manage the client-cloud communication.
Our measurements show that the overall installation and starting time of an
application’s partition linearly increases with the number (k) of modules fetched
on the device. tis is a parameter characteristic of the phone platform, which
can be measured at bootstrap. For the phone platform we used, for instance,
we found tis = 1700 ms. The proxy generation time depends on the number of
remote dependencies (r) the fetched modules require. We found the startup time
per proxy (tp) to be in average 360 ms (300 ms for WiFi, 420 ms for 3G).

The second part of the function models the computation time of the modules
executing on the client and on the cloud. We explain in Section 4 how the client’s
CPU time is estimated. Finally, the last term in the function captures the time
necessary for transferring data between the distributed modules. The solution to
the problem must also satisfy a group of user-defined constraints. The example
above shows constraints on the maximum size of bytecode to be migrated to
the mobile device and on the data transferred from the device to the cloud at
each application invocation. To find the optimal partition we modify the ALL
algorithm proposed in [14] to account also for the CPU and network analysis.
The ALL algorithm takes as input the consumption graph and generates all pos-
sible partitioning configurations obtained by traversing the graph in an adapted
topological order that combines both breadth-first and depth-first search. The
algorithm first eliminates the configurations that do not satisfy the user’s con-
straints, and then evaluates the objective function for each valid configuration
such that the optimum can be found. Its complexity is O(|M ||D|log|D|).

Dynamically Adjusting Partitions. Since the execution environment changes
dynamically (variations in CPU load on the mobile phone, network bandwidth,
etc.) our system needs to be able to promptly switch from an application dis-
tribution to another, if necessary. In order to do this, the optimizer periodically

402 I. Giurgiu, O. Riva, and G. Alonso

runs and detects when the current partitioning is no longer optimal. In replacing
a current distribution with a newer (optimal) one, it is important to minimize
the application’s interruption time, and possibly carry out most of the reconfig-
uration work in parallel to the ongoing execution. To reduce the overall boot-
strap cost, our technique takes into account which modules have been fetched
and installed on the mobile device by the previous distribution. The optimizer
searches for the optimal configuration, and, if different from the current one,
it transfers the missing modules to the mobile device. While the previous con-
figuration continues to operate, the system installs the newly fetched modules.
Once the initialization of the new configuration has finished, if there is an on-
going interaction, at its termination our system seamlessly switches to the new
configuration which will be used from the next interaction onwards.

Adaptation to Varying Data Inputs. Besides variations in CPU load and
network, a user’s data inputs can significantly affect the partitioning decision.
This is relevant for a large class of interactive applications that our system
targets. While in some applications, user inputs are relatively standardized or
it is possible to build an accurate approximation model (e.g., a ticket machine),
for other applications it is hard to predict properties such as number, type, and
size of the inputs. For instance, in an image processing application, the size and
number of images during a user session are relevant factors in determining the
CPU and network requirements of the application. Likewise, for a text-to-speech
synthesizer, the text size to be translated can impact the application’s behavior.

We exclude the possibility of running the optimizer on the client side because
this would involve extra communication for collecting the profiling information
from the cloud side, as well as extra CPU overhead for running the algorithm.
Instead, we allow clients to cache some of the optimizer’s solutions and au-
tonomously decide on which partitioning configuration to use.

The optimizer first computes the optimal partitioning with the current net-
work conditions and some default user inputs. It then generates additional solu-
tions by simulating possible operating scenarios. Scenarios are defined by varying
various features, describing both the operating environment and user inputs. For
instance, the network bandwidth feature has the format network(lower, upper)
and examples are wifi(0.0,3.0), wifi(3.1-6.0), 3G(0.0,1.5), 3G(1.6-3.0). The in-
put feature has the format input([lower num,upper num],[lower size,upper size])
and qualifies number and size ranges of a specific input (e.g., images submitted
to an image-processing application, text sent to a speech synthesizer). Examples
are intext([1-5],[1-500]), intext([1-5],[501-1000]), intext([6-10],[1-500]).

By generating all the possible combinations of such features, a pool of scenario
configurations is derived.The optimizer computes the optimal partitioning for each
configurationand returns to the client a report consistingof tuples<configuration -
type,solution>. At each interaction with the application, the client consults the
cached report and based on the inputs received and the operating conditions, it
autonomously decides on which configuration to adopt.

A potential riskwith this approach is that by considering all possible values that
the features might take, the number of scenarios to process grows exponentially.

Dynamic Software Deployment from Clouds to Mobile Devices 403

Fig. 2. Example of bundle deployment using R-OSGi

To limit this number, the server maintains a history of the minimum and maxi-
mum values previously observed for each feature and computes a maximum num-
ber of ranges for each one (typically in the order of 4 ranges). In addition, the
features are manually specified by developers such that only relevant aspects are
monitored. If a new input does not fit in any of the ranges, then the chosen con-
figuration will be done corresponding to the range closest to the input.

4 Implementation

Our system is implemented for the Android platform and is based on ApacheFe-
lix [10] (i.e., a Java implementation of the OSGi module management system),
with the addition of R-OSGi [23] for remote execution across platforms. The
architecture is shown in Fig. 1. The runtime on the cloud includes the applica-
tion profiler, the consumption graph generator and the optimizer. The optimizer
returns to the mobile device the list of modules, bundles in OSGi terminology,
to fetch using the migrator, and a pool of selected configurations to cache. The
client runs the device profiler and a reduced version of the application profiler
collecting only CPU statistics.

Flexible Bundle Deployment. Bundles are reusable pieces of software pack-
aged in binary components, containing bytecode and metadata (i.e., versioning
and dependencies). Modular designs encourage the coupling of related functions
in the same bundle, exposed through a service interface. Any bundle that wants
to use another bundle needs references to the registered services, thus being
oblivious to any implementation details. OSGi allows an application to install,
start, stop and uninstall bundles, as well as register services.

Since OSGi is restricted to single machines, our system requires an addi-
tional layer for remote communication, namely R-OSGi. R-OSGi’s main goal is
to provide dynamism and full location transparency for bundles, without chang-
ing their implementation or structure. To provide remote communication across
bundles, R-OSGi generates a proxy on the calling bundle’s side, which delegates
service calls to the remote side. The proxy is registered with the local service
registry as an implementation of the remote bundle service. An alternative to
proxy generation is the actual fetching and installation of the remote bundle.

In Fig. 2, we consider a cloud application consisting of two bundles mPayment
and mRSA, with their services SP, SE and SD, such that SP depends on both
SE and SD. Initially only mPayment is fetched on the mobile device and remote

404 I. Giurgiu, O. Riva, and G. Alonso

proxies are generated for mRSA’s services. As the optimal distribution can dy-
namically change, our goal is to switch between partitions without interrupting
an ongoing interaction, by exploiting R-OSGi’s dynamic bundle management.
Changing a configuration means acquiring the new bundles, installing and start-
ing them, stopping and uninstalling the currently running ones, as well as gen-
erating the necessary remote proxies. Let us assume that the optimizer decides
to fetch also mRSA on the mobile device. To initialize mRSA on the client, our
system performs the following operations: (a) it migrates the code of mRSA to
the device; (b) it installs and starts mRSA; (c) it generates remote proxies for
all dependencies on mRSA; (d) it removes its proxy used by mPayment. When
the process is completed, the new configuration is ready to be used. With the
exception of operation (d), all other steps can occur in parallel with an ongoing
interaction, without the need for the current configuration to stop.

Profiling with Structural Reflection. Application profiling uses load-time
reflection at bytecode level. Every bundle has a MANIFEST file with metadata
on versioning, services and dependencies on other bundles. For each service, the
profiler identifies the Java classes implementing it and injects in all methods code
to measure the execution time and the size of I/O parameters. The overall exe-
cution time per bundle is the sum of the running times of all executed methods.
Measuring the data transfer between bundles allows us to identify which bundles
are closely coupled and can benefit from colocation. The execution time helps to
identify computational-intensive bundles which might cause performance degra-
dation if ran on the mobile device. Finally, by inspecting the JAR package of a
bundle, the profiler extracts its bytecode size, which is relevant to estimate the
bundle’s migration time and the storage required on the mobile device.

The first time an application is profiled, all static (i.e., bytecode size, services
and dependencies) and dynamic (i.e., running time and I/O data size) parame-
ters are measured on the cloud. At runtime, the profiler monitors only the dy-
namic variables. To avoid flapping in the measurements, it maintains a history
of measurements and computes exponentially smoothed moving averages.

CPU, Network and Power Profiling. Our system does not assume offline
profiling for all applications and mobile platforms. Relative to CPU, this would
require running all configurations for every application on the mobile device,
and measuring the execution time for each invocation. In practice, we found a
simple approximation to be accurate enough for our optimization problem, with
the benefit of a small overhead on the client. The execution time of each bundle
on the device is approximated as tc = ts ∗ K, where ts is its execution time
on the cloud and K is a factor indicating how much slower the client’s CPU is
compared to the remote machine. Offline, we experiment with various mobile
platforms and estimate the corresponding K parameters. In our setup, we found
K=3 to work well for all our applications. At the beginning of a user interaction,
the optimizer uses the estimated K parameter, and then dynamically corrects
the initial estimation based on the CPU execution time of all bundles running

Dynamic Software Deployment from Clouds to Mobile Devices 405

on the device. In addition, on the mobile side we periodically obtain the current
CPU load of the device, over all active processes, from Android API functions.

Relative to network, the profiler detects whether the user is using WiFi or
3G by parsing the content of proc/net/dev. To estimate the bandwidth and
latency of the current network, the system prunes the network by periodically
sending 50 kB of data to the cloud. We found 50 kB to be a good representative
size for our applications. Measurements are carried out every 30 seconds, but
once an application interaction starts, opportunistic profiling is used instead:
the bandwidth estimation is based on transfers carrying actual application data.

In order to profile the power consumed by running application bundles on
the mobile device, our system uses PowerTutor [21], an online power estima-
tion system that has been implemented for the Android platform. Since CPU
and network are prime factors for application bundle distribution, we profile the
CPU and WiFi/3G statistics provided by PowerTutor and define the power con-
sumption as Powertotal = PowerWiFi|3G + PowerCPU . Measuring the power
consumed by an application can validate whether our latency-based model is
effective in both minimizing the interaction time and reducing the device’s en-
ergy consumption. Thus, we require that the power consumed with the optimal
configuration found by the system is smaller than those experienced when the
entire application is running either on the device or in the cloud. Our results in
Section 6 validate these conditions.

5 Applications

We briefly describe the three prototype applications we used to evaluate our sys-
tem: indoor localization (IL), text-to-speech synthesizer (TTS) and ticketing ma-
chine (TM). IL and TTS belong to the maps and media application categories,
while TM is an example of infrastructure service. The class of applications we tar-
get are computationally and network intensive, and are characterized by request-
reply interactions. However, the model can be extended to other categories, such
as streaming, by incorporating queuing networks to naturally emulate the behav-
ior of application modules and capture clients arrival rate.

(a) Localization

GUI 1

6

72

3

4

5

8

1210

119

DB

10 = mBlender

8 = mEdgeHistogram

3 = mMaps

9 = mColorHistogram

6 = mDirections

4 = mLocalization

11 = mWavelet

2 = mBrowser

12 = mSegmentation

1 = mInit

5 = mCache

7 = mORM

(b) Modularization of the indoor localization

Fig. 3. IL application on Android and its modularization scheme

406 I. Giurgiu, O. Riva, and G. Alonso

We developed IL and TM from scratch, and modularized an already existing
TTS synthesizer [13]. A screenshot of the IL application is shown in Fig. 3(a).
The IL application provides users with visualization facilities of a building map,
including map tracking, browsing and directions to people and places within
the building. Localization is carried out using the phone camera. As shown in
Fig. 3(b), these functions were implemented using 12 bundles. mInit sets pa-
rameters and user preferences. mMaps and mBrowser allow the user to choose
buildings, places and people for which mORM retrieves maps from a database.
mCache can save the searched maps for future use. To locate themselves inside
a building, users take photos of their surroundings, which are then compared for
similarity against existing snapshots in the database. To determine the similar-
ity degree, photos are decomposed in wavelets and features, such as color and
edge histograms (mWavelet, mColorHistogram, mEdgeHistogram). The average
values are then compared to the precomputed ones in the database. Finally,
mDirections displays a map highlighting the path from the user’s current posi-
tion to the browsed place or person. mBlender and mSegmentation use image
processing algorithms to draw the required directions. Only mORM is marked as
non-movable to the mobile device, since it is strongly coupled with the database.

For the TTS and TM applications we only provide a brief description. TTS
supports two operations: (a) the translation of a text extracted from a photo
taken with the device’s camera, and (b) the generation of speech from the trans-
lated text. The application has been implemented by adapting modules from the
FreeTTS [13] synthesizer. The application was modularized in 10 bundles. Fi-
nally, the TM application was the result of a joint project with the Swiss national
railway (SBB). TM allows users to purchase train tickets, browse train routes,
check prices and receive electronic tickets from their mobile devices. The applica-
tion’s functions were split into 10 bundles, out of which some contained private
data of SBB and therefore were bound to remain in the cloud. For both appli-
cations the graph obtained by modularization is similar to the one in Fig. 3(b).

6 Evaluation

We evaluate how our system meets the following goals: (a) improving an applica-
tion’s performance in the cloud-mobile device setup, (b) dynamically switching
between partitioning configurations, (c) reacting to variations in CPU load, net-
work and user inputs, and (d) maintaining a reasonable overhead on the device.
In the tests we use the three applications described and all experiments consider
15 repetitions. The client runs on a HTC Desire smartphone and the server on
small, medium or large standard Amazon EC2 instances. The HTC Desire phone
runs Android 2.1, has a Qualcomm QSD 8250 1 GHz processor and 576 MB of
RAM. The smartphone communicates with the server using WiFi or 3G.

To show that AlfredO chooses the optimal configuration, in all experiments
we consider all possible distributions of the applications and execute them in the
setup described above. Then, by comparing the measurements obtained against
the optimizer output, we can argue whether AlfredO’s decision matches reality.

Dynamic Software Deployment from Clouds to Mobile Devices 407

 0

 10

 20

 30

B
oo

ts
tra

p
tim

e
(s

)

Number of photos

In
do

or
 lo

ca
liz

at
io

n

Te
xt

-to
-s

pe
ec

h

Ti
ck

et
 m

ac
hi

ne

UI Opt All UI Opt All UI Opt All

W
iF

i

3G

Fetch
Install

Start
Proxy

(a) Startup time

 0

 200

 400

 600

 800

 1000

 1200

 1400

UI Opt ALL

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

WiFi 3G

(b) Power consumption (IL)

Fig. 4. Startup time and power consumption on HTC Desire for the three applications
on EC2 US-East instances (WiFi and 3G in use)

6.1 Initialization Cost

First, we characterize the performance overhead of our system on the Android
platform. On the HTC Desire, the start up consists of launching the client com-
ponents shown in Fig. 1 and registering their inter-dependencies. This takes on
average 12–14s. Once the system is running, the startup time of an application
varies depending on the module distribution between client and cloud.

Fig. 4(a) shows the installation times for all three applications. For each appli-
cation, we report 3 pairs of bars. For each pair, the first represents the WiFi case
and the second one the 3G case. The first set of bars reports the installation time
for the UI configuration, in which only the user interface is fetched on the mobile
device. The second set (Opt) represents the installation time for the optimal dis-
tribution, while the last (All) evaluates the case in which the entire application
is installed on the client. Fig. 4(b) reports how much power is consumed for the
IL application for all three configurations (UI, Opt and All). The purpose of this
experiment is to show how the time and power consumption for an application
deployment can be greatly reduced by acquiring only parts of it on the device.
For the TTS application, the gap between the Opt and All installation times is
of almost 18s, which is a considerable overhead for a mobile device. We also no-
tice a significantly less power consumption by 600–700mW when installing the
optimal distribution, compared to acquiring the whole application locally. On
the other hand, when comparing the Opt and UI configurations, one may think
that acquiring only the user interface represents always the quickest option. In
the next set of experiments, we show that the problem is more complex, and
analyze how the resulting application interaction time and power consumption
varies with the chosen partitioning configuration.

A more detailed analysis of Fig. 4 also shows the overall installation time
breakdown. This includes the overhead for fetching, installing and starting the
selected bundles, as well as generating proxies for remote dependencies. The
fetching time depends on the bundles’ code size, while the installation-start time
is typically around 1.7s per bundle. Generating one remote proxy takes around
300ms for WiFi and 420ms for 3G. For the IL application (see Fig. 3(b)), the
UI setup acquires 1 bundle and generates 5 proxies, while the Opt configuration

408 I. Giurgiu, O. Riva, and G. Alonso

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5 6 7 8 9 101112131415

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(a) IL (US-Large)

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5 6 7 8 9 101112131415

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(b) IL (US-Medium)

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 2 3 4 5 6 7 8 9 101112131415

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(c) IL (US-Small)

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(d) TM (US-Large)

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(e) TM (US-Medium)

 0

 5

 10

 15

 20

1 2 3 4 5 6 7 8 9 10

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(f) TM (US-Small)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1 2 3 4 5 6 7 8 9 101112131415

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(g) TTS (US-Large)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1 2 3 4 5 6 7 8 9 101112131415

In
te

ra
ct

io
n

tim
e

(s
)

configurations

WiFi 3G

(h) TTS (US-Medium)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

1 2 3 4 5 6 7 8 9 101112131415
In

te
ra

ct
io

n
tim

e
(s

)

configurations

WiFi 3G

(i) TTS (US-Small)

Fig. 5. Interaction time for the three applications with varying configurations, on dif-
ferent EC2 instances (WiFi and 3G in use)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 3 4 5 6 7 8 9 101112131415

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

Configuration

WiFi 3G

(a) IL (US-Large)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 3 4 5 6 7 8 9 10

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

Configuration

WiFi 3G

(b) TM (US-Large)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 3 4 5 6 7 8 9 101112131415

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

Configuration

WiFi 3G

(c) TTS (US-Large)

Fig. 6. Power consumption for the three applications with varying configurations, on
EC2 US-Large instances (WiFi and 3G in use)

fetches 6 bundles and generates 3 proxies. The time required to stop-uninstall a
bundle is in the range of 1.6s and a proxy removal requires around 350–400ms.

6.2 Steady-State Behaviour

Next, we consider the system’s steady state, when all required bundles for a con-
figuration have been fetched, installed and started. Fig. 5 reports the observed
interaction time for a subset of the possible partitionings for the three appli-
cations on three EC2 instance types (small, medium and large). Configurations
are ordered by increasing number of bundles acquired on the client.

Dynamic Software Deployment from Clouds to Mobile Devices 409

Acquiring more bundles on the mobile side does not necessarily improve per-
formance, and installing only the user interface (configuration 1 in all figures)
is not always the optimal choice. In general, how an application’s performance
varies is not so easily correlated to how many modules are moved to the client or
what their size is. These results motivate the need for a partitioning algorithm
capable of picking the most suitable partition. The optimal partitioning for IL
depends on the EC2 instance type, with configuration 10 for large and medium
instances and 13 for small machines. Similarly, for TTS configuration 5 is best
for large instances and 6 for medium and small ones. In the case of TM, the
optimal configuration is 6 for all instances. Fig. 6 reports the power consumed
by the same configurations for all applications, but only on large EC2 instances.
Our measurements confirm that the optimal configuration in terms of interaction
time is also the most power-efficient for all applications. In addition, we observe
similar trends between the power consumption and interaction times for small
and medium EC2 instances, where the best configurations for both IL and TTS
applications change. The results show that an interaction latency-based model
is enough to find those distributions that are also the most power-efficient. The
reasoning behind is that network operations are more expensive in terms of
mWs consumed, and therefore solving the partitioning problem with the goal of
minimizing overall data transfers also achieves optimal power consumptions.

Next, we apply our solving algorithm and measure the achieved improvement
on the interaction time and power consumption. For all our applications, the
algorithm is able to select the best configuration. Table 1 reports the interaction
time and power consumption of the optimal configuration, as well as the algo-
rithm solving time. The performance gain on the mobile device is very promising.
For TM the gain in performance is up to 61%, when we compare with the two
extreme cases, All and UI. For IL and TTS, the improvements are even higher,
up to 75% and 69% respectively. Finally, the comparison on power consump-
tion presents similar trends and gains for all three applications by 20–46%, with
smaller values for 3G as expected due to its increased latency. The percentages

Table 1. Gains on performance and power consumption (on EC2-Large)

Solver TM (0.16s) IL (0.2s) TTS (0.17s)

Time(s) Power(mW) Time(s) Power(mW) Time(s) Power(mW)

Opt WiFi 5.17 493 6.13 668 14.14 774
3G 6.72 673 10.01 848 19.05 928

All WiFi 33% 30% 75% 46% 69% 21%
3G 29% 27% 60% 38% 58% 18%

UI WiFi 57% 43% 56% 37% 31% 34%
3G 52% 39% 54% 32% 29% 32%

410 I. Giurgiu, O. Riva, and G. Alonso

are computed as the ratio between Difft and Optt, where Difft represents the
difference between the execution time obtained with ALL or UI depending on
the case and the execution time obtained with Opt, while Optt is the optimal
interaction time.

To understand how performance is improved we need to consider the applica-
tions’ bundle structure. In the case of IL, shown in Fig. 3(b), the best configu-
ration contains mInit, mCache, mMaps, mBrowser, mDirections and mBlender.
For this application, it is not convenient to fetch more bundles because they are
too computational intensive for the mobile platform and their execution time on
the client exceeds the time required for data transfers to the cloud.

Once the optimizer has identified the optimal configuration, the mobile client
fetches, installs and starts the corresponding bundles, and sets up the remote
proxies. However, the more the user interacts with the application, the faster the
initialization cost is amortized. We measured the number of invocations neces-
sary to fully amortize the initialization cost. For WiFi at most two interactions
are sufficient to pay off the initial overhead, while for 3G already one invocation
is enough to amortize the overhead. This confirms that our approach can bring
such a high performance improvement to fully hide the installation overhead,
and thus makes it suitable for both long-term short-term interactions.

6.3 Dynamic Optimization and Redeployment

We investigate which configuration is optimal at bootstrap, when no bundle has
been acquired yet on the mobile device. Ideally, in choosing the best partitioning
one should consider the number of user interactions. In the case of one interac-
tion, the configuration with minimal installation time is probably better, while
for more interactions, having a lower invocation time is more important. As the
number of interactions cannot be easily known a priori, our system makes the
decision entirely online and periodically re-evaluates it, as shown in Fig. 7(a).

Consider a user performing three consecutive interactions with the IL appli-
cation. The optimizer processes the objective function every 10s and returns the
best configuration. At time 0 (no code is acquired yet on the device), the opti-
mizer picks configuration 2 (c2), which does not provide the lowest interaction
time, but minimizes the overall time for initialization and interaction. As some
bundles have already been fetched on the client, at time 10, the optimizer picks
the configuration with the lowest interaction time, c10. Installing the new dis-
tribution is done in parallel to the application running. Its cost is roughly 8s,
since c2 is already active, and it can be used already for the second interaction.

Fig. 7(a) shows the benefits of initializing c10 in parallel to the application ex-
ecution (Parallel). In this way, before c10 becomes active, there is an interruption
of only 1.2 s (Sp) due to the removal of the 3 remote proxies used by c2. This is the
only operation that cannot be executed concurrently, but its overhead is negligible
compared to the performance gain. In fact, when comparing against the case when
the initialization happens sequentially (Sequential), the parallel approach allows
the user to carry out 3 full interactions in the time the sequential one completes 2.

Dynamic Software Deployment from Clouds to Mobile Devices 411

0 10 20 30 40 50

Time (s)

F+I+St F+I+St Sp

c2 c10 c10 c10 c10

F+I+St Sp F+I+St

int 1 (c2) int 2 (c10) int 3 (c10)

int 1 (c2) int 2 (c10) int 3 (c10)

F+I=bundle fetching and installation
St=bundle start
Sp=bundle stop

Optimizer
Parallel

Sequential

(a) Parallel bundle initialization (3G)

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

E
nd

-t
o-

en
d

in
te

ra
ct

io
n

tim
e

(s
)

C
P

U
 u

til
iz

at
io

n

Time (s)

c10 c10 c5 c5 c5 c2 c2 c2 c10 c10

Dynamic
Static
CPU

Optimizer

(b) Adapting to CPU changes (WiFi)

Fig. 7. Parallel bundle initialization and adapting to CPU changes (IL)

Moreover, in the sequential approach, the application is not available for roughly
10s (represented with a dotted line).

6.4 Reactivity to CPU Load

The ability of reconfiguring an application online allows the system to quickly
react to changing network conditions or CPU load. We give an example of the
latter in the next experiment. We cause an increase in the device’s CPU utiliza-
tion to 67% and 95%, by running for a few minutes a CPU-intensive process.
The optimizer reacts to the CPU variations by choosing a ”cheaper” configura-
tion in terms of consumed CPU. Fig. 7(b) shows the performance improvements
our approach (Dynamic) has over the Static one, which always runs with the
configuration chosen at the first interaction.

As shown in Fig. 7(b), the first interaction with IL uses c10. When the CPU
increase to 67% occurs, based on new profiled data the optimizer decides to
switch to c5, which contains 4 of the 6 bundles from c10. This decision improves
performance by roughly 5s over the static approach (visible in the 4th inter-
action). Between the 4th and 5th interactions, an additional increase to 95%
occurs. Again, the optimizer reacts by choosing c2, which reduces the number of
bundles running on the mobile device to 2. The performance improvement of the
dynamic approach compared to the static case is even larger. Finally, we decrease
the CPU utilization to 37% and the optimizer decides to switch back to c10. Its
bootstrap is done in parallel to the 7th interaction and the performance becomes
similar to the static case. Given that application interactions running with spe-
cific configurations are not interrupted once the optimizer switches to different
partitionings, allows our approach to become stable. This stability comes from
the fact that the optimizer is given the opportunity to periodically verify and
strengthen its decision while the application is executing.

This test shows the efficiency of our dynamic approach over a static one. The
same mechanism has shown to be effective in reacting to changes in network
bandwidth caused by unstable wireless connectivity or switching between WiFi

412 I. Giurgiu, O. Riva, and G. Alonso

 0

 20

 40

1 2 3 4 5

In
te

ra
ct

io
n

tim
e

(s
)

Number of photos

c10

c10

c13

c13

c14

WiFi (no cache)
WiFi (cache)

3G (no cache)
3G (cache)

(a) Localization (US-Large)

 0

 20

 40

 60

 80

 100

1 2 3 4 5

In
te

ra
ct

io
n

tim
e

(s
)

Number of photos

c10
c10

c13
c13

c14

c13

c13

c14

c14

c14
WiFi (no cache)

WiFi (cache)
3G (no cache)

3G (cache)

(b) Localization (US-Small)

 0

 20

 40

 60

 80

 100

 120

 140

2.6KB 8.1KB 14.2KB 19.7KB 25.2KB

In
te

ra
ct

io
n

tim
e

(s
)

Text size

c5

c9

c9

c10

c10
WiFi (no cache)

WiFi (cache)
3G (no cache)

3G (cache)

(c) TTS (US-Large)

Fig. 8. Reactivity to changing user inputs for the IL and TTS applications

and 3G. Due to space restrictions we only briefly present our observations. By
reducing the available bandwidth on the device, for WiFi the optimizer switches
from c10 to c13, which brings more bundles locally and reduces the remote data
transfer. By doing so, a user is able to perform 11 interactions in the same time
8 interactions are executed with the static approach. For 3G, c14 is chosen and
more bundles than in the WiFi scenario are brought on the device. This is due
to the lower available bandwidth with 3G connections. The dynamic AlfredO
manages to perform 8 interactions compared to 6 with the static approach.

6.5 Adapting to Changing User Inputs

Next, we consider the system’s ability to adapt to changing user inputs, based
on a set of usage scenarios and associated configurations cached on the device.
We evaluate this feature with the IL and TTS applications.

In Fig. 8, we compare the interaction time when the cache is disabled or
enabled. If disabled, the device adopts the configuration used for the previous
interaction. If enabled, the client chooses the best configuration depending on
the inputs. For IL, we test by increasing the set of inputs from 1 to 5 images,
each 300 kB in size. For TTS, we vary the size of the text from 2.6 kB to 25.2 kB.

On large EC2 instances, both applications show gains of 20-25% with cache
enabled. For IL, Fig. 8(a) shows that already with 3 photos it is best to switch
from c10 to c13. With 5 or more photos moving to c14 is optimal. In the TTS
application (Fig. 8(c)), the system changes from c5 to c9 at the first increase
in text size. With a text increase to 19.7kB, the best configuration becomes
c10 and improves performance by over 25s for both WiFi and 3G. For small
EC2 instances, the cache decides to switch from c13 to c14 with 3 input photos
(Fig. 8(b)), when in fact c13 has a lower interaction time for 3G. This is due
to the generic nature of the cached solutions, which cannot cover all possible
scenarios. Even so, the penalty in performance is very small (1.5s).

6.6 Resource Overhead

Finally, we discuss the system’s overhead on the mobile platform. The code size
of all components residing on the mobile device is 178 kB, while on the cloud side
is 903 kB. The memory footprint is typically less than 7 MB and is comparable to
other applications or processes running simultaneously on the Android platform.

Dynamic Software Deployment from Clouds to Mobile Devices 413

Profiling requires code injection for all bundles. The code increase depends
on the number of classes and methods to be profiled, but it typically does not
exceed 2–3 kB for a bundle of 20–25 kB. We observed that the performance
degradation due to profiling is under 8% for all bundles. The data generated by
the profiler represents the statistics collected at each user interaction. In average,
the logged measurements require less than 2 kB of data.

7 Conclusions

With the ever richer functionality of mobile applications, users are confronted
with either the computational limitations of their devices or the network limita-
tions. Recent work has proposed application partitioning between mobile devices
and remote servers or clouds, to improve performance and battery life. In this
paper, we argue that static decisions or ignoring the effects of user data cannot
leverage the full potential of code offloading when variations in network, device
CPU load, or user inputs occur. Our system shows that dynamically adapting
partitioning decisions is key to improve user experience. Our experiments over
different networks and cloud infrastructures show that our approach significantly
reduces interaction time and power consumption by (1) fetching application parts
to the mobile device when appropriate, (2) dynamically adjusting the distributed
configuration to changes in the network conditions, client load and user inputs,
and (3) caching deployment settings for efficient execution with varying appli-
cation inputs. Additionally, our system offers a greater degree of flexibility for
applications on mobile devices as it supports a wider range of scenarios than
just services running completely in the cloud.

References

1. Amazon EC2, http://aws.amazon.com/ec2/
2. Amiri, K., Petrou, D., Ganger, G., Gibson, G.: Dynamic Function Placement for

Data-intensive Cluster Computing. In: Proc. of USENIX, pp. 307–322 (2000)
3. Android, http://code.google.com/android
4. Google AppInventor, http://appinventor.googlelabs.com/about
5. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.: The case

for cyber foraging. In: Proc. of the 10th Workshop on ACM SIGOPS European
Workshop: Beyond the PC, pp. 87–92. ACM (2002)

6. Balan, R.K., Satyanarayanan, M., Park, S.Y., Okoshi, T.: Tactics-based remote
execution for mobile computing. In: Proc. of MobiSys, pp. 273–286. ACM (2003)

7. Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: Elastic execution
between mobile device and cloud. In: Proc. of EUROSYS. ACM (2011)

8. Chun, B., Maniatis, P.: Augmented smarphone applications through clone cloud
execution. In: Proc. of the 12th USENIX HotOS Workshop (2009)

9. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: MAUI: making smartphones last longer with code offload. In: Proc. of
MobiSys, pp. 49–62. ACM (2010)

10. Apache Felix, http://felix.apache.org/site/index.html

http://aws.amazon.com/ec2/
http://code.google.com/android
http://appinventor.googlelabs.com/about
http://felix.apache.org/site/index.html

414 I. Giurgiu, O. Riva, and G. Alonso

11. Flinn, J., Park, S., Satyanarayanan, M.: Balancing performance, energy and quality
in pervasive computing. In: Proc. of ICDCS, pp. 217. IEEE (2002)

12. Fragments, http://android.com/guide/topics/fundamentals/fragments.html
13. FreeTTS, http://freetts.sourceforge.net/docs/index.php
14. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the Cloud: Enabling

Mobile Phones as Interfaces to Cloud Applications. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

15. Goyal, S., Carter, J.: A lightweight secure cyber foraging infrastructure for
resource-constrained devices. In: Proc. of WMCSA, pp. 186–195 (2004)

16. Hunt, G., Scott, M.: The coign automatic distributed partitioning system. In: Proc.
of OSDI, pp. 187–200. USENIX (1999)

17. Kwon, Y.-W., Tilevich, E.: Power-efficient and fault-tolerant distributed mobile
execution. In: Proc. of ICDCS (2012)

18. Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden, S.: Wishbone: Prole-
based Partitioning for Sensornet Applications. In: Proc. of NSDI, pp. 395–408
(April 2009)

19. OSGi Alliance. OSGi Service Platform, Core Specification, v4.1, Draft (2007)
20. Ou, S., Yang, K., Zhang, J.: An effective offloading middleware for pervasive ser-

vices on mobile devices, vol. 3, pp. 362–385. Elsevier Science (2007)
21. Powertutor (2009), http://ziyang.eecs.umich.edu/projects/powertutor/
22. Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., Govindan, R.: Odessa:

enabling interactive perception applications on mobile devices. In: Proc. of MobiSys
(2011)

23. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications
Through Software Modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Mid-
dleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

24. Rellermeyer, J.S., Riva, O., Alonso, G.: AlfredO: An Architecture for Flexible
Interaction with Electronic Devices. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 22–41. Springer, Heidelberg (2008)

25. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

26. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

27. Microsoft Silverlight, http://www.silverlight.net
28. Su, Y., Flinn, J.: Slingshot: deploying stateful services in wireless hotspots. In:

Proc. of MobiSys, pp. 79–92. ACM (2005)
29. Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke, J., Shanmugasun-

daram, J.: Computation offloading to save energy on handheld devices: A partition
scheme. In: Proc. of CASES, pp. 238–246. ACM (2001)

30. Yang, F., Gupta, N., Gerner, N., Qi, X., Demers, A., Gehrke, J., Shanmugasun-
daram, J.: A unified platform for data driven web applications with automatic
client-server partitioning. In: Proc. of WWW, pp. 341–350. ACM (2007)

31. Yang, F., Shanmugasundaram, J., Riedewald, M., Gehrke, J.: Hilda: A high-level
language for data-driven web applications. In: Proc. of ICDE, pp. 32–43. IEEE
Computer Society (2006)

http://android.com/guide/topics/fundamentals/fragments.html
http://freetts.sourceforge.net/docs/index.php
http://ziyang.eecs.umich.edu/projects/powertutor/
http://www.silverlight.net

Enhancing the OS against Security Threats

in System Administration

Nuno Santos1, Rodrigo Rodrigues2, and Bryan Ford3

1 MPI-SWS
2 CITI / Universidade Nova de Lisboa

3 Yale University

Abstract. The consequences of security breaches due to system admin-
istrator errors can be catastrophic. Software systems in general, and OSes
in particular, ultimately depend on a fully trusted administrator whom
is granted superuser privileges that allow him to fully control the system.
Consequently, an administrator acting negligently or unethically can eas-
ily compromise user data in irreversible ways by leaking, modifying, or
deleting data. In this paper we propose a new set of guiding principles for
OS design that we call the broker security model. Our model aims to in-
crease OS security without hindering manageability. This is achieved by
a two-step process that (1) restricts administrator privileges to preclude
inspection and modification of user data, and (2) allows for manage-
ment tasks that are mediated by a layer of trusted programs—brokers—
interposed between the management interface and system objects. We
demonstrate the viability of this approach by building BrokULOS, a
Linux-based OS that suppresses superuser privileges and exposes a nar-
row management interface consisting of a set of tailor-made brokers. Our
evaluation shows that our modifications to Linux add negligible overhead
to applications while preserving system manageability.

1 Introduction

Security threats related to system administrator (“admin”) activity are receiv-
ing increasing attention, fueled by a series of events that highlighted the damage
that such activities can inflict [6, 19, 22]. Traditionally, system maintenance re-
quires superuser privileges for a range of operations. As a result, admins holding
such privileges can put user data at risk through leakage, corruption, or loss.
These hazards have raised concerns in many organizations [12, 13], and become
even more relevant as companies [5] and government agencies [1] outsource IT
management to third parties such as cloud providers. In the space of operating
system design, in particular, these concerns have in part motivated research in
“least-privilege” system designs that reduce the TCB size [16,25,37], offer more
fine-grained protection [11], harden the TCB using formal verification [21], or
use labeling to reason about and control information flow [33, 36].

A unifying goal underlying the existing body of work is to build untrusted-
admin systems, i.e., systems that can be used by users who wish to store and
process sensitive data (either locally or “in the cloud”) without requiring trust

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 415–435, 2012.
c© IFIP International Federation for Information Processing 2012

416 N. Santos, R. Rodrigues, and B. Ford

in the administrators of either their own systems or the cloud platform. The
focus of this body of work has been on low-level kernel or hypervisor mecha-
nisms, and little attention has been devoted to the higher-level challenges of
building untrusted-admin systems that actually remain administerable. For ex-
ample, in the influential Decentralized Information Flow Control (DIFC) model
exemplified by the HiStar OS [36], building an untrusted-admin system requires
not just the DIFC-enforcing kernel but also a set of user-level processes with
declassification privileges, which users (data owners) must trust to handle their
data appropriately during management activities that by nature must touch or
affect this data. If a cloud system is to offer data backup services, for example,
then the system must include some form of trusted daemon or declassifier that
can read the user’s data and forward it to the backup destination (perhaps after
encryption). However, HiStar did not look into the problem of how to securely
design these trusted daemons or declassifiers so as to cope with the range of
management tasks performed by the admins.

The main challenge in finding a solution to this problem lies in a tension
between security and manageability. In practice, operating systems require a
wide variety of tasks to keep the system operational, some of which may touch
or otherwise impact sensitive user data and processes, e.g., adding and remov-
ing software packages and drivers, loading kernel modules, applying security
patches, managing user accounts, backing up and restoring user data, etc. Any
of these “standard” administrative actions, if not handled carefully, could give
an untrusted admin access to sensitive data either directly (e.g., a compromised
backup daemon or declassifier) or indirectly (e.g., if an admin can “upgrade” a
correct kernel module to an insecure version). Actually designing realistic and
usable mechanisms and tools enabling administrators to do their job of managing
OSes, in an untrusted-admin model, remains a largely unexplored challenge.

To address this challenge, we introduce and explore an untrusted-admin sys-
tem design model that we call the broker security model, which we apply to the
design of operating systems, but is a software system design model that can be
applicable to a range of software systems. Our model is inspired by the central
observation that users must in practice trust admins for resource availability,
even if they do not wish to trust admins for information security. For example,
a malicious or merely negligent admin can always “pull the plug,” drop network
connectivity, or fail to migrate data or virtual machines off of old hardware to be
decommissioned. Such availability failures are typically obvious to users, how-
ever, and leave a clear “accountability trail”; a cloud provider will not survive
as a business if it fails to maintain promised resource availability.

Thus, we aim to create a clean OS design separation between resource avail-
ability mechanisms, over which admins must have control in order to do their
job, and information security mechanisms, over which admins must not have
control. To meet this goal, our model only allows the admin to access and ma-
nipulate system objects in well-formed ways through a set of trusted programs
called brokers. Brokers never concede the admin superuser privileges. Instead,
they only provide him with the specific functionality that is necessary to manage

Enhancing the OS against Security Threats in System Administration 417

the system (e.g., create a user account) and control the resources (hence data
availability) while ensuring that users gain control over the confidentiality and
integrity of their data. To enforce this policy, the model defines three security
invariants that the brokers must preserve; insofar as the these invariants are met,
the system designer is free to specify the number and functionality of brokers
that can better assist the admin in managing the system and to devise the most
adequate mechanisms to enforce the model’s security invariants.

To validate the broker security model, we present the design and implemen-
tation of a proof-of-concept OS called Broker Umbrella for Linux-based OSes
(BrokULOS), which is based on a Debian Linux distribution enhanced with
tailor-made broker extensions. One key design challenge is related to the fact that
themanagement tasks inLinux are numerous, heterogeneous, and ill-defined. Since
superuser privileges can no longer be granted to the admin, it is not clear which
functionsmust be implemented to provide fullOSmanageability andwhether these
tasks can be performed without violating the model’s security constraints. We
address these questions by (1) characterizing the broker functionality based on a
comprehensive survey of the fundamental tasks for maintaining a vanilla Debian
distribution, and (2) specifying how exactly this functionality must be adapted in
order to preserve the invariants of the broker model. We find that this functional-
ity can be implemented by extending well-known Linuxmechanisms and therefore
show that the degree of protection proposed by the broker model is practical on
commodity OSes, and does not require the use of niche research systems like HiS-
tar (though these systems could also benefit from adopting our model).

In summary, our contributions are as follows. First, we characterize the im-
portant problem of enhancing the security of software systems in general (and
OSes in particular) against administration threats while retaining system man-
ageability. Second, we propose a principled way to approach this problem by
introducing the broker security model. Third, we comprehensively study OS
platforms and design BrokULOS, a system that demonstrates that enforcing
this model on commodity OS platforms is possible with relatively few changes
to existing Linux mechanisms. Finally, we evaluate our prototype, showing that
BrokULOS preserves manageability, adds modest overhead to the management
operations performed by the admin, and negligible overhead to the system.

2 Goals, Assumptions, and Threat Model

Our main goal is to devise a security model for enhancing the security of software
systems against mismanagement threats. We focus, in particular, on adminis-
tration roles that target the OS and require superuser privileges, e.g., installing
applications, configuring devices, setting up security policies, creating user ac-
counts, etc. We aim to find a sweet spot in the design space that strikes a balance
between limiting the power of the admin and providing the functionality that
is required for maintaining the system. We envision that the principles of our
security model will be applicable to a range of software systems that currently
depend on granting superuser privileges in their specific domains (e.g., database
servers or web applications). To demonstrate the feasibility of our model, our

418 N. Santos, R. Rodrigues, and B. Ford

Fig. 1. Software system under the broker security model

solution should not require deep changes to existing OSes and should mostly
preserve compatibility with legacy applications.

Our model rests upon several assumptions. We consider that the implemen-
tation of the OS trusted computing base (TCB) is correct. Our focus is not
minimizing the TCB size; such goal is complementary to our work and has been
the focus of various other research projects [24, 25, 34, 37]. For this reason, our
design is centered on a monolithic kernel with a large TCB. Nevertheless, we
discuss in Section 8 a possible approach to reducing the TCB size by using an
information flow kernel such as HiStar [36]. Additionally, we assume that the
machine that hosts the system is physically secure, and that the system exposes
a management interface that allows the admin to manage the system remotely.
This situation is common in many organizations that host and process sensitive
data, such as cloud providers [15].

We characterize our threat model. We assume that the admin has access to
the machine through its management interface and uses the operations exposed
by this interface to maintain the system and access user data (either on disk or
memory). In a commodity OS, for example, this interface consists of all opera-
tions that require superuser privileges and therefore need to be performed from
the root account or through a sudo gateway. In particular, if the management
interface allows the admin to reboot the system, which is a necessary capability
in the case of an OS, the admin can bypass the system security protections and
have access to the persistent system state stored on disk. However, the admin
cannot exploit vulnerabilities in the TCB code, for instance, to perform privilege
escalation attacks, nor perform physical attacks on the machine. In addition, we
do not consider side channel attacks.

3 Broker Security Model

The broker security model enhances the security of a software system by weak-
ening the trust requirements relative to the system admin. In particular, it pre-
cludes the admin from compromising the confidentiality and integrity of user
data and computations, while preserving manageability.

Figure 1 shows how the broker security model extends a software system.
The base system (which follows a conventional system design) is modeled as a
collection of objects, each of them containing data and holding a set of hardware

Enhancing the OS against Security Threats in System Administration 419

resources. In an OS, for example, these objects include files, processes, user
accounts, etc. The system allows users and admin to access and manage objects
through two interfaces—a user interface and a management interface. In the
base system the management interface gives the admin superuser privileges,
which allow him to fully control all system objects and therefore access user data
without restrictions. Under the broker security model, however, the management
interface no longer grants superuser privileges but only allows the admin to
execute a set of trusted programs called brokers.

Brokers mediate the access to objects in a well-formed manner as to (1)
provide the functionality that is necessary and sufficient to manage objects
properly (e.g., create user accounts) and (2) let the admin retain control over
resource availability while shifting control over user data confidentiality and
integrity to users. To make sure that users retain control over their data security,
brokers must maintain the following three security invariants:

1. Information security. A broker does not allow user data to be output or
modified in ways that violate the confidentiality and integrity of that data. For
example, allowing a debugger to be attached to a user process without the user
being aware of or having authorized this operation violates this property.
2. Identity protection. A broker does not allow user identities and associated
credentials to be hijacked or overridden. Otherwise, the admin could abuse this
privilege to impersonate a user and access his data. For example, allowing the
admin to change user passwords arbitrarily breaks this requirement.
3. System integrity. A broker ensures that the system can only transition between
system states that preserve security invariants 1 and 2. For example, a broker can-
not allow arbitrary kernel modules to be loaded because this feature could be ex-
ploited for privilege escalation: loading a malicious module could subvert brokers’
security mechanisms.

This simple model can then be applied to enhance the security of software
systems (and OSes in particular) by adopting a two-step methodology. First,
one must specify the broker layer by identifying the functionality that the set
of brokers need to offer while simultaneously obeying the three security invari-
ants prescribed by the model. Second, one needs to devise the mechanisms that
implement brokers’ functionality and enforce the security invariants. We next
apply these steps to an OS.

4 OS Broker Functionality

A natural way to enforce the broker security model in an OS is to start from a
point that is secure by design yet overly restrictive, and then add carefully crafted
brokers to regain manageability. In particular, a natural starting point is a design
that forces the admin to operate from a regular user account, i.e., suppress the root
account and prevent unrestricted execution of privileged commands through sudo.
The challenge then becomes specifying and designing a set of brokers that (1) do
not overlook functionality that is necessary for keeping the system administrable
and yet (2) enforce the security invariants of the broker model.

420 N. Santos, R. Rodrigues, and B. Ford

To achieve this, we start with a thorough characterization of the set of com-
mands that brokers should support by surveying the most fundamental manage-
ment tasks performed by admins. The tools that support these tasks can then
provide the baseline mechanisms needed to implement the brokers. Since these
tools are likely to violate the broker model invariants, it is necessary to validate
whether and how such violations take place so that we can enhance these tools
to build brokers that satisfy the invariants.

Table 1 shows the list of tasks that we surveyed along with an indication of
how the various tasks violate the three security invariants we listed previously.
This list combines the results of two approaches. In a bottom-up approach, we
studied a collection of packages and respective tools available in a basic Debian
distribution, identified the functionality of each tool, and used our judgment
to assess whether its functionality is fundamental for the admin. In a top-down
approach, we studied the system administration literature and identified the high
level tasks that an admin needs to perform. Overall, we manually inspected 902
executables included in 100 packages1 and studied three different textbooks [14,
17, 35]. We then converged on a single (coarse-grained) task list, which we have
examined with professional system administrators from the host institution of
one of the authors to make sure it reasonably characterizes the management
activity of a typical OS admin.

The tasks that violate the information security (IS) invariant mostly involve
processes, files, and volumes and their primary goal is to manage resources and
user data. For example, to learn about the memory utilization and open files by
user processes, tools like ps and lsof reveal sensitive information that may be
contained, e.g., in command line arguments of the process or in the names of
user files. Similarly, tools for backing up and restoring user data (e.g., tar and
gzip) would allow the admin to inspect and modify user data.

The tasks that breach the identity protection (IP) invariant are mostly related
to user accounts and group management. User account operations include the
ability to arbitrarily set and modify the identity and credentials of a user account
(e.g., changing the password of an account using passwd). Group management
enables adding and removing users from groups with tools like useradd and
usermod. These capabilities would allow the admin to access files and processes
owned by the user, in the first case, or shared within a group, in the second case.

The tasks that compromise the system integrity (SI) invariant are mostly re-
lated to software and system management. Typical OSes allow the admin to in-
stall arbitrary software, which can affect both the TCB (e.g., by upgrading the
kernel, installing OS services, loading kernel modules) as well as shared applica-
tions. With this capability the admin could escalate his privileges to access user
data by tampering with the TCB or by installing backdoors in shared applications.
Admins can also set up devices to compromise the system integrity. For example,
the ability to set the system time can be used to launch replay attacks.

1 These packages were selected from a minimal Debian distribution according to two
criteria: they contain the basic tools (package “Priority” is “Required” or “Impor-
tant”) and provide system administration support (package “Section” is “Admin”).

Enhancing the OS against Security Threats in System Administration 421

Table 1. Management tasks grouped into categories: Tasks are grouped by category.
For each task we indicate the security invariants they violate: information security (IS),
identity protection (IP), and system integrity (SI).

Category Management task IS IP SI

Software List, install, upgrade, and remove shared applications and libraries ×
List, install, upgrade, and remove system services and kernel images ×
Configure software and diagnose errors ×
Apply security patches ×
Manage local system documentation ×

Accounts Create, modify, and delete user accounts ×
Disable user accounts temporarily

Modify account credentials ×
Force users to modify their credentials

Groups Create, modify and delete user groups ×
Processes Monitor and limit memory utilization by user processes ×

Check for runaway processes ×
Modify process execution priorities ×
Check for unattended login sessions ×

Files Perform backup and restore of user data ×
Set and view disk quotas

Check file space utilization ×
Remove temporary files (in /tmp and in /lost+found) ×
Re-distribute disk space in the filesystem ×
Mount and unmount filesystems

Check filesystem integrity and fight fragmentation ×
Check disk space ×
Create, modify, and format partitions

System Restart the system after panics, crashes, and power failures

Load, list, and unload kernel modules ×
Start and stop services ×
Automate and schedule system administration tasks with cron

Check and clear system log files ×
Configure and modify swap space

Configure init and runlevels ×
Configure the network and check open connections ×
Setup system clock ×
Setup and check the status of the printer

Note that the purpose of Table 1 is not to enclose all management tasks.
Instead, it comprises only the set of fundamental broker operations, which ad-
mins can then rely upon for more complex tasks. For example, for diagnosing
resource misuse, admins can use various brokers, e.g., for checking runaway pro-
cesses, unattended login sessions, and process memory utilization. In fact, it
is typical to use helper tools to identity the source of such problems. Another
example, for recovering from system bugs, admins can use brokers for securely
installing software and backing up / restoring user data. Indeed, rather than fix-
ing compromised systems, the common practice for system recovery is to make
clean-slate software reinstalls and restore user data from backups; this method
guarantees that the system state is again known and trustworthy.

Ideally, the table should list all the tasks that are necessary and sufficient to
meet all needs of OS admins. In spite of our best efforts and positive feedback

422 N. Santos, R. Rodrigues, and B. Ford

Fig. 2. Broker-enhanced OS architecture

from expert system administrators, however, this table is not necessarily com-
plete and may need to be adapted by adding, modifying, or removing entries
depending on the concrete OS, deployment environment, and admin needs.

Now that we have characterized the functionality that should be offered by
the broker layer, we present an OS design that implements it.

5 Broker-Enhanced OS Design

We start with an overview of the OS architecture that we propose and then
describe how each security invariant is enforced by the brokers.

5.1 Architecture

Figure 2 illustrates the internals of a broker-enhanced OS. Since it is not our
primary goal to minimize the size of the TCB, we simply extend a vanilla Debian
Linux distribution with a set of components that implement the broker exten-
sions for the system. These components consist of broker commands, dedicated
services, and an LSM kernel module.

In contrast to the vanilla Debian distribution, there is no superuser account
(root) nor any other way that the admin can obtain superuser privileges. Instead,
both users and the admin run their processes in protection domains with UID
> 0. UID 0 is then reserved for the components that need to run in privileged
mode such as OS services (e.g., init, sshd), and broker commands. The space
of unprivileged domains (UID > 0) is split into two parts: UIDs ≤ ut, which are
reserved for services that do not need to run in privileged mode, and UIDs > ut,
which are reserved for user accounts (where ut is a configurable threshold).

Brokers consist of a well-defined set of trusted programs that run in priv-
ileged mode (UID = 0). Table 2 shows examples of the most representative
brokers, grouped into categories according to their semantics. To allow for in-
voking brokers from a non-privileged account, we rely on the well known sudo

Enhancing the OS against Security Threats in System Administration 423

gateway, which also authorizes broker execution based on the role—admin or
user—associated with each account. To bootstrap the creation of admin ac-
counts, the admin role is assigned to the first account to be created; the admin
can then define the role of the subsequent user accounts.

Next, we describe in more detail the mechanisms introduced by the broker
extensions that provide support for the management tasks in Table 1 while
preserving the security invariants required by the model. We structure this pre-
sentation according to the invariants that are to be preserved.

5.2 Enforcing the Information Security Invariant

The information security invariant stipulates that the admin cannot access user
data through the system management interface. This is the model’s most fun-
damental requirement because otherwise user data confidentiality and integrity
could be directly violated. To meet this requirement, the protection domains
of the admin and users should be perfectly isolated from each other. However,
this can be challenging when user domains must be crossed over, particularly for
resource management and data management tasks. We discuss these in turn.

Managing Account Resources. The admin must be able to control the re-
sources associated with a user account (e.g., set user quotas for CPU and mem-
ory). This control, however, requires permission to access the resources allocated
to user data. Without the proper protections, however, such access could allow
the admin to access user data, thereby compromising its confidentiality and in-
tegrity. To enforce a clean separation between resources and data, we propose
taking the following steps.

The first step is to conservatively isolate the protection domains of admin
and users. To start, we can use the UID-based protection domains to prevent
direct access to user files and processes that are not explicitly shared by the
users. However, it is also necessary to prevent information leakage through the
/proc filesystem. The Linux kernel exposes extensive information relative to user
processes in a collection of files located under /proc/PID , where PID is the process
number. The kernel generates the content of these files on the fly whenever
they are opened and sets the permissions of many of them to publicly readable.
However, making some of these files public violates the information security
invariant (e.g., files stat or cmdline expose many details about the memory
usage or the command line of processes, respectively). To prevent access to this
information with minimal kernel changes, we simply override the file permissions
to make them private to the process owner and accessible to the system brokers.
We preserve kernel compatibility by adding these changes in an LSM module.

To enable the admin to manage account resources, the second step is to pro-
vide a set of specific brokers for process and file management. These brokers,
however, only let the admin “see” an account as a bundle of CPU, memory, and
storage resources whose utilization he can observe, restrict (by setting quotas),
and deallocate as a whole. For example, brokers for process management only
output aggregate information of resource utilization and always operate on all

424 N. Santos, R. Rodrigues, and B. Ford

Table 2. List of representative brokers grouped into categories: Describes each broker’s
functionality and command name (in parenthesis)

Category Examples of representative brokers

Packages
list packages (pkg-list), get package (pkg-get), install package (pkg-install), up-
grade package (pkg-upgrade), remove package (pkg-remove), flush package cache
(pkg-flush)

Accounts
create account (acc-create), disable account (acc-disable), enable account
(acc-enable), force password reset (acc-force), reset password (acc-passwd), delete
account (acc-delete), load user policy (acc-polload)

Groups
create group (grp-create), list groups (grp-list), delete group (grp-delete), add
member (grp-addmem), list members (grp-lstmem), remove member (grp-remmem)

Processes
list resource utilization (ps-list), kill account processes (ps-kill), set account pro-
cess priority (ps-renice)

Files
backup account files (fls-backup), restore account files (fls-restore), list storage
usage (fls-du), move account (fls-move), clean temp (fls-cltmp)

System
insert module (mod-insert), remove module (mod-remove), list services (svc-list),
start service (svc-start), stop service (svc-stop), reboot (sys-reboot), setup system
clock (dev-clock), setup network card (dev-net)

processes of an account (e.g., by applying kill and renice to all processes).
Brokers for file management follow the same approach. As another example,
monitoring the storage consumed by a user and moving user files to another
volume only reveals aggregate disk utilization and displaces all files located in
users’ home directories or in user-approved subdirectories, respectively.

Exporting Account Data. The aforementioned techniques allow for resource
managementwithout user data access. However, in certain operations like backing
up and restoring user data the admin needs to export user data from the user ac-
count’s protection domain, where the data is secured, to another machine. To sup-
port these operations while preserving information security, the system encrypts
the data and appends integrity checks before the data leaves the protection do-
main. However, we need to ensure that, when restoring the data, the backed up
data can only be decrypted (1) on machines booting an untampered version of
BrokULOS and (2) by the original owner of the data. To guarantee this property,
the user data is encrypted and decrypted with a seal key. The seal key is a unique
cryptographic key that the system associates with each newly created account. To
enforce requirement (1), we take advantage of TPM primitives, which allow us to
encrypt (seal) the seal key such that it can only be decrypted (unsealed) if the ma-
chine boots a correctBrokULOS binary. If the booted system is correct, the sys-
tem then ensures that the seal key is only accessible to the owner’s account, thereby
ensuring requirement (2). To support recovering data on a different machine, e.g.,
because the original one was decomissioned, sealing could be extended to allow for
unsealing to take place on anymachinewith a similar configuration.This extension
could be done by coupling BrokULOS with Excalibur [32], a trusted computing
system that enforces access control policies for multi-node environments.

5.3 Enforcing the Identity Protection Invariant

With the protection mechanisms for the enforcement of information security in
place, the admin no longer has direct access to user data. Nevertheless, these

Enhancing the OS against Security Threats in System Administration 425

Fig. 3. State transitions between account states: The user must explicitly accept that
the account is valid before it can be used. In the active state, the admin can temporarily
disable the account or force the user to change authentication credentials. The resources
of a deleted account can be released at a later point in time.

protections could be circumvented if the identity protection invariant is not as-
sured. This invariant requires that the admin cannot control user credentials and
identities, otherwise he could impersonate users and access their data directly.
Thus, ideally, users should be able to control their own identities without hinder-
ing the admin’s ability to control resources. In practice, however, shifting control
to users entails some loss of management flexibility for the admin. Therefore, we
need to design brokers for managing accounts and groups that provide reason-
able manageability without sacrificing the identity protection invariant, as we
describe next.

Managing User Accounts. In managing user accounts, we enforce the identity
protection invariant by offering a set of brokers for regulating an account’s life
cycle such that user login credentials are strictly controlled by the user.

The basic life cycle of a user account is shown in Figure 3. An account is
created by the admin; he specifies the initial configuration of the account (e.g.,
user name, home directory) and an initial login credential, which is only going
to be used once. The first time the user logs in with the initial login credential,
he must ensure that he has exclusive access to the account by claiming it. This
process involves running a secure protocol which serves two purposes. First, it
provides a report describing the initial account’s configuration and state. If the
account has been set up with initialization scripts or if somebody has logged
into it before, the user will be able to detect these irregularities and abort the
operation. If, however, the report shows no problems, the user can set up his
authentication credentials (e.g., by uploading the user’s public key) without
admin interference. This process will disable the initial login credential and lock
the user name associated with the account. From this point onwards, only the
user can login to his account and he has full control over its content, but not its
resources. The admin can still adjust the resources associated with the account,
disable user login temporarily (e.g., in the case of a misbehaving user), force a
user to change credentials, and, whenever necessary, delete the account.

Changing credentials is done by users themselves using the credentials they
have uploaded to the system. To address the concern that losing user credentials

426 N. Santos, R. Rodrigues, and B. Ford

would prevent a user from ever logging in, our system supports two override
mechanisms. One is to rely on a trusted third party, either a single entity or a
quorum, to reset the user credentials. Another is to increase redundancy by reg-
istering multiple credentials and using various authentication mechanisms (e.g.,
public key, password, passphrase). Although this approach does not eliminate
the problem entirely, it reduces the likelihood of permanent loss of access.

Managing Group Membership. Aside from allowing users to control their
own identities and credentials, user groups’ members need to be properly authen-
ticated. Otherwise, the admin could gain access to group-shared data by creating
fake identities and registering them as legitimate group members. To enforce the
identity protection invariant when managing groups, the BrokULOS admin is
still allowed to create and delete user groups, but adding and removing members
is delegated to users themselves. The approach we use for delegation is to des-
ignate a (per-group) group leader that makes group membership authorization
decisions. The group leader must validate users’ identities before adding them
to a group. Since relying on user names chosen by the admin is insecure for
authentication, the group leader must check users’ credentials (e.g., a certificate
of the user’s public key).

5.4 Enforcing the System Integrity Invariant

The mechanisms we have introduced thus far can effectively enforce both the in-
formation security and identity protection invariants. However, if the admin can
compromise these mechanisms, these assurances can no longer be guaranteed.
Thus we next propose a mechanism for enforcing the system integrity invariant,
taking into account two aspects of the problem: managing TCB components and
shared applications.

Managing TCB Components. Managing TCB components involves in-
stalling, upgrading, configuring and removing software components that run in
privileged domains—either in the kernel space (i.e., the kernel itself or kernel
modules) or in the user space with UID 0 (e.g., services, system libraries, system
tools, and brokers)—and configuring devices (e.g., setting up the network and
the system timer). To enforce the integrity of the TCB, all these operations must
be validated, and this is done using special-purpose brokers.

In particular, for installing TCB components, brokers only authorize this op-
eration if the new TCB component is “trusted”. Several definitions of trust could
be used, for example, in an ideal world, the system would automatically verify if
the implementation is correct. BrokULOS uses a simple model where a TCB
component is trusted if its compliance with the broker security model is endorsed
by one or multiple third parties that are mutually trusted by both the admin
and users, referred to as Mutually Trusted Signers or MTSes. (Users’ consent
is necessary otherwise a misbehaved admin could use this mechanism to modify
the TCB.) To enforce this consent, admins set up the initial MTS certificates
in the system and users must approve or reject them whenever they claim their

Enhancing the OS against Security Threats in System Administration 427

accounts. MTS certificates can be changed over time—e.g., when renovating or
revoking them, or when adding new MTSes—by either establishing a chain of
trust that only accepts new MTS certificates signed by a preexisting MTS, or
by polling all users before accepting a new MTS certificate. The MTS role can
be performed by any entity mutually approved by admin and users (e.g., certi-
fication organizations, software development companies, specific administration
roles within the organization, or open source communities).

Regarding device configuration, we again only accept configurations that are
vouched for by an MTS. The notion of what is expected from a trusted configura-
tion is device-specific. Therefore device-specific brokers are expected to perform
the appropriate validations. A particularly interesting case is the system clock,
where the system time should not be set arbitrarily. Therefore, we restrict time
updates to trusted NTP servers sent over secure channels. This is done by re-
quiring the NTP configuration file (which identifies addresses and credentials
of the NTP servers) to be signed by an MTS. Given the large number of de-
vices, we did not design brokers for all of them, but new devices could easily be
accommodated by incorporating appropriate brokers.

In addition to enforcing TCB integrity, it is necessary to assure users of its
enforcement. This is because the admin can circumvent the TCB protection
mechanisms by rebooting the machine and tampering with the TCB binaries on
disk. We offer these guarantees by means of a remote attestation protocol, which
users run when they claim their accounts. Our protocol is based on a standard
attestation protocol [30], which transmits the boot time measurements (hash)
of the TCB components signed by the TPM. We then extend it to include the
MTS identities as well as the user account report (see Section 5.3). Thus, when
users claim their accounts they can validate the hashes of the TCB binaries and
the MTS identities, thus assessing the integrity of the TCB.

Managing Shared Applications. Finally, another type of software that
must be trusted to correctly manipulate user data are shared applications (e.g.,
MySQL). To give users the flexibility of choosing which applications they trust,
we let them define user policies that express their restrictions. The policy lan-
guage expresses a list of rules, each of them consisting of comparisons among
four attributes we currently support: package maintainer, package name, package
version, and filename.

To enforce these policies, we developed a special purpose LSM kernel module.
The LSM module overrides the standard DAC permissions and enforces the user
policy at runtime: whenever the user runs an external program, the LSM mod-
ule intercepts this operation, evaluates the policy, and aborts the execution if
the policy evaluation fails. To evaluate each policy rule, the LSM module checks
the attribute conditions specified in the policy against a set of extended filesys-
tem attributes featuring the executable. The filesystem attributes are attached
by the broker layer whenever the executable’s package is installed. The broker
responsible for installing the packages obtains the attributes for each program
from a manifest contained in the program’s package. Users load their policies
into the LSM module once they claim their accounts.

428 N. Santos, R. Rodrigues, and B. Ford

6 Implementation

Our BrokULOS prototype is based on the Debian GNU/Linux 6.0 (“Squeeze”)
distribution running Linux 2.6.39.3. Our implementation effort includes the bro-
ker layer, which we implemented in about 4, 400 lines of Python code, and the
LSM kernel model, coded in less than 1, 000 lines of C code. For convenience,
brokers take advantage of basic tools such as dpkg, gpg, and useradd to perform
the low level changes to the system. These tools are included in the core pack-
ages of BrokULOS, which comprises 77 packages, out of a total of 266 packages.
This package configuration is based on Debian’s minimal setup, which is then
extended with BrokULOS’s functionality.

The LSM module implements the protection mechanisms for overriding the
DAC permissions of the /proc files and evaluating user policies. To implement
this functionality, it places handlers in two LSM hooks (bprm check security and
inode permission). The LSM module provides an interface via VFS under the
mount point /brokulos for loading the user policies into the module.

Our current prototype uses TPMs to support remote attestation and secure
storage. We use TrustedGRUB [3] to measure the integrity of the files of core
packages and extend the PCR registers with these measurements accordingly.
Then, we use the TPM’s quote primitive to generate and sign an attestation
report when requested by the users. This procedure requires setting up an AIK
key so that the TPM can sign the report. The implementation of secure storage
has some limitations: we keep the entire system on an encrypted partition using
LVM, but, as of now, we have not modified LVM so that the encryption keys
are protected using the sealing primitives of the TPM. This technique, however,
poses no particular challenges and is already used in Windows by BitLocker [26].

7 Evaluation

We now evaluate the security, manageability, and compatibility of BrokULOS,
and experimentally gauge its performance overheads.

7.1 Security

BrokULOS improves security in three main aspects. First, it significantly re-
duces the management interface exposed to the admin. Unlike a commodity
Linux distribution where the admin is endowed with superuser privileges, in
BrokULOS the admin can only perform the privileged operations exposed
through the broker layer. The broker layer makes the management interface
explicit, and narrows it to a relatively small numbers of trusted programs. Thus,
provided these programs are correctly implemented, the admin cannot acquire
privileges not contemplated in the broker model.

Second, BrokULOS explicitly restricts the software that can run in a privi-
leged domain, i.e., that belongs to the TCB. In a commodity Linux distribution,
because the admin can install arbitrary software in the privileged protection do-
main, it is not possible to foresee which security properties are guaranteed by the

Enhancing the OS against Security Threats in System Administration 429

system. In BrokULOS, however, only the software that is signed by an MTS
can run in the privileged domain. Thus, provided that MTSes are trustworthy,
the system enforces the well-defined security invariants of the broker model.

Finally, BrokULOS allows users to specify the software they trust to process
their data. BrokULOS conservatively prohibits the execution of all shared pro-
grams (i.e., not owned by the user) and allows the user to open exceptions based
on a user policy. This mechanism prevents the user from accidentally running
applications that could compromise the security of his data.

An orthogonal aspect of the system security is shrinking the TCB size to
reduce the likelihood of code vulnerabilities. As we mentioned, this aspect was
not the emphasis of our work and we therefore see it as being complementary
and a follow up to BrokULOS. Nevertheless, we note that while brokers add
code to the TCB, it is only a small additional fraction of much simpler code when
compared to the OS kernel. Furthermore, we expect to make broker programs
trustable by releasing their source code.

7.2 Manageability

The ideal way to evaluate the system manageability would be through the prac-
tical experience of deploying and managing the system in a real setting. Not
having access to such a deployment, our methodology is to validate the whether
BrokULOS provides adequate broker coverage to accommodate all the man-
agement tasks we have surveyed (see Table 1).

Our current prototype provides a set of 41 brokers spanning multiple task cat-
egories. In some cases there is a one-to-one correspondence between the task and
a particular broker (e.g., backing up data is supported by file-backup), whereas
in others a single broker serves multiple tasks (e.g., ps-list lists both the CPU
and memory allocated to an account). Overall, BrokULOS currently covers
the most crucial set of management tasks. We provide only limited support for
tasks related to devices (e.g., managing the printer) and filesystems (e.g., format
partitions and fight fragmentation). Overall, out of the 33 coarse-grained tasks
of the table, our system fully supports 29. Although devising brokers to support
the remaining tasks constitutes a challenge when compared to the brokers we
have built so far, the high fraction of management tasks covered by the existing
brokers shows that our system provides extensive management support.

7.3 Compatibility

Overall, BrokULOS preserves compatibility with existing Linux mechanisms
and applications. Our solution requires no modifications to the Linux kernel
besides plugging in a kernel module to the standard LSM interface. The sys-
tem leaves ABI / APIs unchanged, thereby preserving application compatibility.
However, some popular administration tools are disabled, since they violate the
broker model. This is the case, for example, lsof, which prints out a list of every
file that is in use in the system. As a result, the admin may have to adapt and
possibly change his scripts to use BrokULOS’s brokers.

430 N. Santos, R. Rodrigues, and B. Ford

 0.001

 0.01

 0.1

 1

 10

pkg-update

pkg-install

pkg-rem
ove

pkg-get

pkg-flush

acc-create

acc-delete

acc-disable

acc-enable

acc-passwd

grp-create

grp-delete

grp-addm
em

grp-rem
m

em

m
od-list

m
od-insert

m
od-rem

ove

ps-list

ps-kill

ps-renice

T
im

e
(s

)

Debian
Brokulos

Fig. 4. Performance of brokers when executed by the admin: Covers representative
brokers relative to package, account, group, module, and process management. The
brokers for installing, getting, and removing packages use the hello package, which
suffices for measuring the broker overhead for any package.

7.4 Performance

To evaluate the performance of our prototype, we focused on the places where
BrokULOS introduces overheads to the vanilla Debian distribution: the broker
layer, which affects management operations, and the LSMmodule, which impacts
the execution latency of all programs in the system. (Recall that the LSM handler
code runs every time the exec system call is executed.)

Our evaluation methodology is as follows. To study the broker layer over-
head we use microbenchmarks. For each broker, we measure its execution time,
measure the execution time of a vanilla Debian operation whose functionality is
comparable to the broker’s (e.g., user account creation), and then compare both
values to analyze the performance penalty incurred by BrokULOS’s manage-
ment tasks. For each experiment, we run 10 trials and report the mean time
and standard deviation. To study the overhead of the LSM module we measure
the impact of policy evaluation on the execution time of a large task, namely
compiling the Linux kernel 2.6.39.3. We measure the overall execution time with
and without policy evaluation, using a policy with 266 rules, where each of them
tests a package installed in the system. We use an Intel Xeon machine with a
2.83GHz 8-core CPU, and 1.6GB of RAM.

Figure 4 plots the results of the broker layer evaluation. It shows only the subset
of system brokers that (1) require sanitization of standard admin tools to enforce
compliance with the broker model (e.g., reseting the network card is not shown),
and (2) have a direct correspondence with a vanilla Debian operation (e.g., the
backup broker is not shown). There is a significant disparity in the performance
overhead among brokers. Brokers whose Debian counterpart execute in the order
of 10ms undergo a performance penalty of around one order of magnitude. For
execution times above the 0.1s threshold, however, the performance between the
two cases is comparable. The high overhead of short-lived brokers is partly due to
the extra functionality, but mostly due to being implemented in Python, whereas

Enhancing the OS against Security Threats in System Administration 431

their Debian counterparts are implemented more efficiently in C. If we consider,
e.g., the ps-renice broker, which sets the same priority to all the processes of a
user, and its counterpart, which corresponds to the command renice -u, the 10-
fold increase is simply due to Python overhead. Since the broker functionality is
not significantly more complex than that of pre-existing tools’, we believe that
implementing brokers from scratch and in C should produce comparable perfor-
mance to the Debian distribution.

Our LSM module study shows that policy evaluation is efficient. The overall
execution times of the kernel compilation in Debian and in BrokULOS show
no differences, which means that the LSM module adds negligible overhead to
long running tasks. These results are expected since the LSM module handlers
perform very little work and only when a program is executed.

8 Discussion

In this section we discuss several issues regarding possible design extensions and
the deployment of the system.

Shrinking the TCB Size. Several directions could be taken to reduce
BrokULOS’s TCB size. One direction is to leverage existing sandboxing mecha-
nisms for Linux such as UserFS [20] in order to run some of the trusted programs
(e.g., privileged services) in an unprivileged environment. Thus, exploiting one of
these services would not compromise the entire system. To avoid depending on
the correctness of the large Linux kernel, a second direction is to explore designs
based on microkernels [21] or on DIFC kernels [23, 36]. The important thing to
note is that the broker security model is also applicable in these settings, with
the added advantage that brokers can set fine-grained policies; e.g., the ps-list

broker can be constrained to only be able to read the /proc files. Thus, in the
event of an exploit, the attacker could only leak information from those files and
nothing else, thereby improving security.

Extension to Medium- and Large-Scale Deployments. In real deploy-
ments, a machine rarely operates autonomously; it may rely on networked ser-
vices for storing data (e.g., NFS), authentication (e.g., LDAP), or upgrading
software (e.g., package repositories), for example. In cloud computing or grid
platforms, each machine is itself a constituent of a larger distributed system.
Although in this paper we have focused on securing a single machine, we believe
that the same principles can be applied to a distributed setting by propagating
trust across components using secure channels and remote attestation mecha-
nisms. However, we have not yet explored these extensions.

9 Related Work

We organize related work into security models, systems that restrict admin priv-
ileges, and security mechanisms for Linux.

432 N. Santos, R. Rodrigues, and B. Ford

Security Models. Bell-LaPadula [8] and Biba [9] are well known information
flow security models for multilevel security that can express confidentiality and
integrity policies, respectively. These and other IFC models [28], however, focus
on how information flows in a system and have not looked at expressing the range
of management operations required by admins (e.g., for managing software),
which is the focus of our work. Clark-Wilson (CW) [10] is an informal security
model concerning data integrity, which aims to prevent users from manipulating
data objects arbitrarily. Our broker model shares similarities with CW in that
CW also relies on trusted programs to streamline the way data objects can
change. In contrast, we focus not on users’ access control but on admins’, and
we go beyond CW in prescribing concrete invariants that trusted programs must
adhere to in order to secure the system’s management interface.

Systems That Restrict Admin Privileges. Despite apparent similarities
with some of our design choices, current commodity OSes rely on a fully trusted
admin. In particular, although Ubuntu [4] does not have a root account, the
admin can still acquire superuser privileges and perform arbitrary operations
through a trusted program. The Plan9 [31] distributed system was the first OS
without superuser. Plan9 comprises multiple nodes, each of which is managed
independently by a node’s owner. Although there is no system-wide superuser,
the owner of each node can control not only the node resources, but also compro-
mise the security of the user data located on the node. More recently, HiStar [36]
showed that the separation between resource management and data manage-
ment is possible using DIFC. However, HiStar only provides the DIFC foun-
dations for data protection and does not consider the high-level manageability
issues addressed in BrokULOS. Similarly, trusted computing systems [25, 33]
have focused on securing user data and computations from the admin by using
confinement [25] and labeling [33] techniques, but without specific concerns for
preserving manageability. In the hypervisor world, the work by Murray et al. [27]
and more recently CloudVisor [37] allow for management of VMs without admin
interference, but address different challenges than BrokULOS’s, which targets
OSes rather than virtualized platforms.

Security Mechanisms for Linux. Many mechanisms have been specifically
designed to improve Linux security. A large body of these mechanisms aim to
confine untrusted code to some kind of sandboxing environment, e.g., chroot,
Jails [18], Linux containers [2], and UserFS [20]. Other mechanisms such as
SELinux [29] and AppArmor [7] provide some specific support for MAC in Linux.
Each of these mechanisms cannot per se address the manageability issues that
constitute the focus of our work. Nevertheless, some of these proposals share
similarities with BrokULOS’s user policies. SELinux also allows defining poli-
cies based on specific programs, but it differs from BrokULOS in that SELinux
policies are defined by the admin, whereas BrokULOS’s policies are defined by
the users. AppArmor allows attaching policies to programs based on file paths,
which BrokULOS also supports. However, in AppArmor, if a program has
no policy associated with it, then it is by default not confined. Thus, contrary

Enhancing the OS against Security Threats in System Administration 433

to BrokULOS, it cannot protect users from accidentally executing malicious
programs not covered by the policies. Note, however, that BrokULOS’s key
contribution is not so much in proposing fundamentally new mechanisms, but in
showing that, by putting together and adapting well known Linux mechanisms,
enhancing Linux according to the broker model is possible, adds little impact to
performance, and provides good manageability.

10 Conclusion

This paper introduced the broker security model, a general security model aimed
at protecting the confidentiality and integrity of user data from system admin-
istration errors. By only trusting admins for resource availability and not for
information security, this model improves data protection with little impact on
system manageability. It achieves this property by relying on a layer of brokers—
trusted programs that mediate access to system objects. We showed that this
model is practical for OSes by implementing and evaluating BrokULOS, our
proof-of-concept broker-compliant OS. The broker model lays out important
principles in the design of untrusted-admin systems. We envision applying it to
other software systems (e.g., databases and web applications) and improving the
mechanisms necessary to enforce this model (e.g., by reducing the TCB size).

Acknowledgements. We would like to thank Carina Schmitt and Jörg Her-
rmann for sharing with us their experience as professional system admins. We
are also grateful to the anonymous reviewers for their feedback. This work was
partly supported by the National Science Foundation under grant CNS-1149936.
The research of Rodrigo Rodrigues is supported by an ERC starting grant.

References

1. Federal Government’s Cloud Plans: A $20 Billion Shift,
http://www.cio.com/article/671013/Federal Government s Cloud Plans

A 20 Billion Shift

2. Lxc Linux Containers, http://lxc.sourceforge.net
3. Trusted GRUB, http://trousers.sourceforge.net/grub.html
4. Ubuntu, http://www.ubuntu.com/
5. Verizon to Put Medical Records in the Cloud,

http://www.networkcomputing.com/cloud-computing/229501444

6. Insecurity of Privileged Users: Global Survey of IT Practitioners. Tech. rep. Ponem
Institute and HP (2011),
http://h30507.www3.hp.com/hpblogs/attachments/hpblogs/666/62/1/HP%

20Privileged%20User%20Study%20FINAL%20December%202011.pdf

7. AppArmor, http://www.novell.com/linux/security/apparmor
8. Bell, E.D., La Padula, J.L.: Secure computer system: Unified exposition and Mul-

tics interpretation. Tech. rep. MITRE Corp. (1976)
9. Biba, K.J.: Integrity considerations for secure computer systems. Tech. rep. MITRE

Corp. (1977)

http://www.cio.com/article/671013/Federal_Government_s_Cloud_Plans_A_20_Billion_Shift
http://www.cio.com/article/671013/Federal_Government_s_Cloud_Plans_A_20_Billion_Shift
http://lxc.sourceforge.net
http://trousers.sourceforge.net/grub.html
http://www.ubuntu.com/
http://www.networkcomputing.com/cloud-computing/229501444
http://h30507.www3.hp.com/hpblogs/attachments/hpblogs/666/62/1/HP%20Privileged%20User%20Study%20FINAL%20December%202011.pdf
http://h30507.www3.hp.com/hpblogs/attachments/hpblogs/666/62/1/HP%20Privileged%20User%20Study%20FINAL%20December%202011.pdf
http://www.novell.com/linux/security/apparmor

434 N. Santos, R. Rodrigues, and B. Ford

10. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer
Security Policies. In: IEEE Symposium on Security and Privacy (1987)

11. Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T., Loscocco, P.,
Warfield, A.: Breaking up is hard to do: security and functionality in a commodity
hypervisor. In: SOSP (2011)

12. ENISA: Cloud Computing - SME Survey (2009), http://www.enisa.europa.eu/
act/rm/files/deliverables/cloud-computing-sme-survey/

13. ENISA: Cloud Computing Risk Assessment (2009),
http://www.enisa.europa.eu/act/rm/files/deliverables/

cloud-computing-risk-assessment

14. GBdirect: Linux System Administration (2004),
http://training.gbdirect.co.uk

15. Hamilton, J.: An Architecture for Modular Data Centers. In: CIDR (2007)

16. Härtig, H., Hohmuth, M., Feske, N., Helmuth, C., Lackorzynski, A., Mehnert, F.,
Peter, M.: The Nizza Secure-system Architecture. In: CollaborateCom (2005)

17. Esteve, J., Boldrito, R.: GNU/Linux Advanced Administration (2007)

18. Kamp, P., Watson, R.N.M.: Jails: Confining the omnipotent root. In: SANE 2000
(2000)

19. Keeney, M.: Insider Threat Study: Computer System Sabotage in Critical Infras-
tructure Sectors. Tech. rep. U.S. Secret Service and CMU (2005),
http://www.secretservice.gov/ntac/its_report_050516.pdf

20. Kim, T., Zeldovich, N.: Making Linux Protection Mechanisms Egalitarian with
UserFS. In: USENIX Security Symposium 2010 (2010)

21. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: SOSP (2009)

22. Kowalski, E.: Insider Threat Study: Illicit Cyber Activity in the Information Tech-
nology and Telecommunications Sector. Tech. rep. U.S. Secret Service and CMU
(2008), http://www.secretservice.gov/ntac/final_it_sector_2008_0109.pdf

23. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information Flow Control for Standard OS Abstractions. In: SOSP (2007)

24. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V.D., Perrig, A.:
TrustVisor: Efficient TCB Reduction and Attestation. In: IEEE Symposium on
Security and Privacy (2010)

25. McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An Exe-
cution Infrastructure for TCB Minimization. In: EuroSys (2008)

26. Microsoft: BitLocker Drive Encryption,
http://www.microsoft.com/whdc/system/platform/hwsecurity/default.mspx

27. Murray, D.G., Milos, G., Hand, S.: Improving Xen Security Through Disaggrega-
tion. In: VEE (2008)

28. Myers, A.C., Liskov, B.: A Decentralized Model for Information Flow Control. In:
SOSP (1997)

29. NSA: Security-Enhanced Linux (SELinux) (2001), http://www.nsa.gov/selinux

30. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Commodity Com-
puters. In: IEEE Symposium on Security and Privacy (2010)

31. Cox, R., Grosse, E., Pike, R., Presotto, D., Quinlan, S.: Security in Plan 9. In:
USENIX Security Symposium 2002 (2002)

32. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-Sealed Data: A New
Abstraction for Building Trusted Cloud Services. In: USENIX Security (2012)

http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-sme-survey/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-sme-survey/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://training.gbdirect.co.uk
http://www.secretservice.gov/ntac/its_report_050516.pdf
http://www.secretservice.gov/ntac/final_it_sector_2008_0109.pdf
http://www.microsoft.com/whdc/system/platform/hwsecurity/default.mspx
http://www.nsa.gov/selinux

Enhancing the OS against Security Threats in System Administration 435

33. Sirer, E.G., de Bruijn, W., Reynold, P., Shieh, A., Walsh, K., Williams, D., Schnei-
der, F.B.: Logical Attestation: An Authorization Architecture for Trustworthy
Computing. In: SOSP (2011)

34. Steinberg, U., Kauer, B.: NOVA: A Microhypervisor-Based Secure Virtualization
Architecture. In: Eurosys (2010)

35. Wirzenius, L., Oja, J., Stafford, S., Weeks, A.: The Linux System Administrator’s
Guide (1993-2004), http://tldp.org/LDP/sag

36. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information
Flow Explicit in HiStar. In: OSDI (2006)

37. Zhang, F., Chen, J., Chen, H., Zang, B.: CloudVisor: Retrofitting Protection of
Virtual Machines in Multi-tenant Cloud with Nested Virtualization. In: SOSP
(2011)

http://tldp.org/LDP/sag

On the Practicality of Practical Byzantine

Fault Tolerance

Nikos Chondros, Konstantinos Kokordelis, and Mema Roussopoulos

University of Athens

Abstract. Byzantine Fault Tolerant (BFT) systems are considered to
be state of the art with regards to providing reliability in distributed
systems. Despite over a decade of research, however, BFT systems are
rarely used in practice. In this paper, we describe our experience, from
an application developer’s perspective, trying to leverage the publicly
available, highly- studied and extended “PBFT” middleware (by Castro
and Liskov), to provide provable reliability guarantees for an electronic
voting application with high security and robustness needs.

We describe several obstacles we encountered and drawbacks we iden-
tified in the PBFT approach. These include some that we tackled, such
as lack of support for dynamic client management and leaving state man-
agement completely up to the application. Others still remaining include
the lack of robust handling of non-determinism, lack of support for web-
based applications, lack of support for stronger cryptographic primitives,
and more. We find that, while many of the obstacles could be overcome,
they require significant engineering effort and time and their performance
implications for the end-application are unclear. An application devel-
oper is thus unlikely to be willing to invest the time and effort to do so
to leverage the BFT approach.

Keywords: Byzantine Fault Tolerance, Reliability, Distributed Systems.

1 Introduction

Byzantine Fault Tolerant (BFT) systems are considered by the systems research
community to be state of the art with regards to providing reliability in dis-
tributed systems. A BFT system implements a replicated state machine [1] typ-
ically consisting of n = 3f + 1 replica servers that each provide a finite state
machine and execute operations from clients in the same order. BFT systems
assume a pessimistic failure model, based on the classic Byzantine generals’ prob-
lem [2] which provides agreement amongst a set of nodes where at most f nodes
display arbitrarily incorrect behaviors, known as Byzantine faults.

BFT systems are attractive because they provide guaranteed safety and live-
ness properties when the assumption of up to f faulty nodes hold. Early work
on BFT systems was widely considered to be impractical for use by real systems
because they were either too slow to be used in practice or assumed synchronous
environments that rely on known message delay bounds. However, the seminal

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 436–455, 2012.
c© IFIP International Federation for Information Processing 2012

On the Practicality of Practical Byzantine Fault Tolerance 437

work of Castro and Liskov [3], published in 1999, changed this view. This work
proposed and implemented Practical Byzantine Fault Tolerance achieving an
impressive peak throughput of several tens of thousands (null) operations per
second, previously thought unattainable. As has been noted by others [4], over
the last thirteen years, the research community has seen a flurry of excitement
with several efforts to improve the performance and/or cost of BFT replication
systems. These efforts include studies aimed at increasing throughput or reduc-
ing latency of client requests [5–12, 4, 13], efforts to reduce the number of replica
servers needed to withstand f faults to achieve lower replication cost [5, 14, 13],
and efforts to boost the robustness of the protocol under both faulty servers and
faulty clients [15, 4]. A large majority of these systems [5, 6, 11, 15, 4, 10, 13]
are direct descendents of the Castro and Liskov system, hereonin referred to as
the PBFT approach (for Practical Byzantine Fault Tolerance). Both the imple-
mentations and evaluations of these systems depend on the initial PBFT code
base.

Despite BFT’s attractive correctness guarantees, BFTs are still rarely used in
practice. This is unfortunate, given the ever-increasing need for reliability in real-
world distributed systems. More and more applications require high security and
reliability to be both trustworthy to users and successful in use (e.g, electronic
voting and digital preservation). The lack of wide deployment of state-of-the-art
BFT technologies is puzzling. The open-source PBFT code initially provided by
Castro and later modified by others has been publicly available for several years,
and while readily sized up by the academic community for research purposes, it
has not been used in practice in real-world systems.

In this paper, we examine, from the perspective of an application developer,
the practicality, i.e., feasibility, of using the PBFT protocol and accompanying
implementation to provide provable reliability guarantees for a real-world appli-
cation. Our motivating application is a state-of-the art electronic voting system,
offered as a public Internet service. The current version is centralized [16]. Given
the critical nature of the application, our aim is to build a system that has no
centralized component. Every aspect of the system’s design should be distributed
to avoid single points of attack and failure. Our aim is to leverage the correctness
guarantees provided by PBFT systems to improve the security and reliability
properties of the system. In such a system, clients (on behalf of users/voters)
connect to the voting service, view the election procedures in which they have
a right to participate, send the user’s vote, and potentially reconnect at a later
point to view the progress and/or results of the election. Our aim has been to
gauge, from the perspective of a developer in need of providing reliability beyond
simple crash-fault recovery, how easily the PBFT approach and accompanying
system could be molded to fit the application developer’s needs.

We have focused on the original PBFT implementation for several reasons.
First, over the past thirteen years, the large majority of research efforts on im-
proving BFT systems have relied on the PBFT approach and implementation.
The PBFT codebase is the most stable and complete (in terms of implemented
features), and it has been widely studied and extended over several years by

438 N. Chondros, K. Kokordelis, and M. Roussopoulos

several research groups. Second, this is the only publicly-available implemen-
tation for which a proof of correctness under a formal model has been com-
pleted [17]. Third, even as the debate over improving BFT systems continues,
the interface to application developers provided by the PBFT middleware re-
mains the same. This means that any later developments in the PBFT system
suite can be easily leveraged by applications. Fourth, our particular electronic
voting application is written in C; the PBFT code base is written in C++. A re-
cent effort, called UpRight [18] aimed at easing the application developer’s effort
to make use of BFT technology is written in Java, still has several key features
missing (e.g., view changes are unimplemented), and seems to be a work-in-
progress that has not seen much development in the last two years. Thus, for a
developer wanting to leverage the attractive reliability guarantees of BFT now,
the original PBFT system offers more promise. Finally, we studied quorum-based
BFT systems, using Q/U (e.g., [7]) as well as the study in [19], but found that
these approaches are not suitable for our application, as we anticipate a high
level of concurrency in our replicated service.

We describe our experience trying to leverage the PBFT approach and code
base to enhance the reliability of our e-voting application. We describe several
obstacles we encountered and drawbacks we identified in the PBFT approach.
One key drawback we identified is that PBFT-based systems assume static mem-
bership – ie., clients and replica servers know each other apriori before system
initialization. Most Internet services require support for dynamic client manage-
ment, particularly when the number of envisioned clients is large. The PBFT
literature (original as well as all subsequent descendants of PBFT) does not ad-
dress this issue. Another key drawback is that PBFT leaves state management
completely to the application developer, who is required to manually manage a
raw memory region, while also issuing notifications to the library before chang-
ing memory contents. This may be fine when developing system services, but
is not a convenient base for an application. Additionally, PBFT treats a replica
server’s memory as stable storage, by assuming the use of uninterruptable power
supplies [3]. Many Internet application services, particularly an electronic voting
system, cannot afford to rely on this assumption and instead require traditional
ACID semantics to ensure data stored is consistent and persists despite crashes
and faults. The PBFT system suite leaves state management to the application
developer. This means that an application developer wishing to make use of an
available legacy database to provide ACID semantics is faced with the decision
of implementing these semantics into the application from scratch or retrofitting
the BFT middleware to interface with and support the legacy database.

In addition to the above, we describe a number of other drawbacks including:
the mechanism used by PBFT to handle nondeterminism in applications, the
lack of support for stronger cryptography, the lack of support for web-based
applications, and others. The description of our experience may seem pedantic,
with many minute low-level details, but we provide these here to give the reader
a clear understanding, from a holistic systems perspective, of the obstacles faced
by a developer trying to put the PBFT system to real, practical use. These are

On the Practicality of Practical Byzantine Fault Tolerance 439

details that are often considered “not important enough” to warrant attention in
many research papers (and prototype implementations, for that matter), usually
due to time and space constraints. Nonetheless they can trip up a third-party
developer hoping to make use of the novel research prototype. In practice, it is
the details that make or break the widespread deployment and use of a system.

We find that while many of the obstacles we describe could be overcome
with a “better” or “revised” BFT middleware implementation that is tuned
specifically for the needs of the particular application, they require significant
engineering effort and time. More importantly, the performance implications of
the changes required to meet the application’s needs are unclear. For example, we
describe how we overcome the first two drawbacks above. While adding support
for dynamic client management does not significantly affect system performance,
measured in null operations per second, retrofitting the PBFT middleware to
support a legacy database reveals a throughput performance of real operations
that is two orders of magnitude smaller than the null ones, advertised by prior
BFT studies.

To date, only two publications on BFT that we are aware of have noted
that reporting null operations per second as throughput is not representative
of real applications and thus not helpful to the end-developer [20, 13]. This is
understandable, as the focus of most BFT research efforts has not been on end-
application use but on improving the BFT middleware itself and null operations
provide a basis for comparison. Nonetheless, a developer faced with having to
make a slew of modifications to the BFT middleware to get an end-system that
has unknown performance properties is hesitant to invest the effort to do so.

This paper makes the following contributions:

– We identify a number of drawbacks in the PBFT protocol suite, from the
perspective of an end-application developer trying to leverage PBFT reliabil-
ity guarantees and we describe solutions to address these. The sheer number
of drawbacks severely affects the ease with which a developer can leverage
the PBFT approach.

– We present changes we made to the PBFT protocol and implementation
to enable dynamic client management, a must for many Internet service
applications in use today. We show that these changes can be made with
minimal additions to the PBFT protocol, thus not affecting its provable reli-
ability guarantees. We demonstrate, via empirical experiments, that support
for dynamic client management can be achieved with minimal performance
impact.

– We evaluate the performance impact of retrofiting the PBFT middleware
to support ACID semantics via a widely-used legacy database to ease the
state management burden of many applications requiring these semantics.
We evaluate the impact on performance of this change, and show that for
non-null operations, the throughput can be many times smaller than the
tens of thousands of null operations per second presented in prior studies.

The source code for our modifications to the PBFT protocol and implementation
is available online at http://sourceforge.net/p/p2bft.

440 N. Chondros, K. Kokordelis, and M. Roussopoulos

2 Background

2.1 Original Algorithm

The Castro-Liskov algorithm for Practical Byzantine Fault Tolerance [3] (abbre-
viated as PBFT) is a replication algorithm that can tolerate arbitrary faults. It
is based on State Machine Replication [21, 1] where transitions are applied to
an instance of the application’s state and result in a new, deterministic instance
of the state. The general idea is that a group of replicas form a static group
that provides a service. At each instance in time, one of them is the primary
and is responsible for sequencing the requests, providing total order. This in
turn guarantees linearizability [22], which is a correctness condition for concur-
rent objects where a concurrent computation is equivalent to a legal sequential
computation. A view is the epoch where the primary is stable. The remaining
replicas monitor client requests and the primary’s behavior and, if the latter is
found misbehaving, begin a view change procedure to elect a new primary.

The algorithm is asynchronous and provides liveness and safety guarantees
when less than a third of the replicas are faulty. More specifically, to tolerate
f Byzantine faults, the group needs at least 3f + 1 members. Safety, formally
proved by using the I/O Automaton model [23], guarantees that replies will be
correct according to linearizability. Liveness assures that clients will eventually
receive replies to their requests. The algorithm does not rely on synchrony to
provide safety but does rely on a weak synchrony assumption to provide liveness:
that delay(t) does not grow faster than t indefinitely. Here, delay(t) represents
the time interval between initial message transmission (t) and message delivery
to the replica process. For the protocol to be live, the client is expected to keep
retransmitting its request until it finally obtains the reply. Further assumptions
include independence of node failures and inability of an attacker to subvert
cryptographic protocols.

In normal operation, the client sends a request to the primary. The primary
assigns a monotonically increasing sequence number to the request and begins
a 3-phase agreement protocol with the other replicas, at the end of which each
node executes the request and directly transmits the reply to the client. The
latter will accept the reply as correct only when f + 1 replies match. The 3-
phase protocol consists of the exchange of the following messages, where the
target of a multicast is the set of replicas:

1. Pre-prepare, multicast from the primary, which assigns a sequence number
to a request and forwards its contents

2. Prepare, multicast by each replica, agreeing to the sequence number assign-
ment

3. Commit, multicast by each replica, which helps guarantee total ordering
across views

After the commit, each replica will execute the request and transmit the re-
ply directly to the client. In all of the above message exchanges, the sender is
expected to sign the contents with his private key.

On the Practicality of Practical Byzantine Fault Tolerance 441

Certain optimizations were applied by Castro and Liskov to this basic mode
of operation to improve the latency and throughput of the system. First of
all, the use of asymmetric cryptography was reduced, by introducing Message
Authentication Codes. The client assigns a different key to each replica and
sends the key to it, signed with the node’s public key. From then on, all requests
are accompanied by an ‘authenticator’, which is a structure that contains one
MAC for each replica. This considerably boosts performance, as we confirm in
Section 4. Another optimization is the tentative execution of requests before the
commit phase. The client cooperates in this mode of operation as it expects
2f + 1 tentative replies (marked as such by each replica) instead of the normal
f + 1. If such a quorum is not assembled, the client simply retransmits the
request message. As the replicas will in turn retransmit the last reply for this
client (which by now should be marked as stable, since the Commit phase should
be over), a smaller quorum of f+1 stable (non-tentative) replies may be enough.

Yet another optimization is the special treatment of read-only and big re-
quests. A request is considered big if its size exceeds a configurable threshold,
while the read-only status is explicitly set by the client. These differentiated
requests are multicast from the client to all replicas, to relieve the primary of
this burden. The default configuration of the original PBFT implementation sets
the threshold to 0, resulting in all requests being treated as big. The read-only
requests are specially treated and are executed as soon as they are received,
sequencing permitting, of course. Finally, request batching is employed to min-
imize network usage and agreement latency. A congestion window is defined as
the number of requests that have been received but not yet executed by the
primary; its size is an adjustable parameter of the system. When the primary
receives a request message, it calculates the difference between the last locally
executed sequence number and the sequence number assigned to the new request.
If this difference exceeds the defined congestion window, it postpones issuing the
pre-prepare message, giving itself time to catch up on request execution. Once
it does, it includes in a single pre-prepare message, as many outstanding request
messages as possible, thus minimizing latency due to individual agreement. Note
that batched requests capture parallelism from different clients, as each client is
allowed a single outstanding request only.

The original PBFT implementation was developed by Castro, and published as
open-source alongwithhis dissertation.The environment chosenwas:Linux,C++,
UDP as the network protocol, the Rabin assymetric cryptosystem, UMAC32 for
MACs and MD5 for digests. This implementation defines application “state” as a
single continuous virtual memory region. In fact, it splits this region in two, the
first part for the internal library needs and the second part for the application. The
library has a subsystem that manages the synchronization and checkpointing of
this state using copy-on-write techniques andMerkle (hash) trees [24]. The general
idea is that the state is divided in pages of equal length. A hash tree is formedwhere
the leaves are the actual data pages while the inner nodes are the hashes of their
children (either of the data pages at level height-1, or of the hash text at smaller
depths).At the root, a single digestuniquely identifies the completememory region.

442 N. Chondros, K. Kokordelis, and M. Roussopoulos

A checkpoint message communicates this root hash to the rest of the replicas to
agree that the state is properly synchronized. If a peer finds itself out of sync, an
efficient tree walking algorithm is started from the root, to identify the (hopefully
few) data pages that are different and have them retransmitted by the rest of the
group.

The server part of an application wishing to use PBFT services is expected to
initialize the library and then wait for up-calls from it, to service requests and
produce replies. While executing, it has free read access to arbitrary memory
regions inside the “state” managed by PBFT, but is expected to notify the
library before making any changes.

2.2 Reasoning about the Default Implementation

It is very hard to reason about the behavior of a distributed system when it
is run on multiple hosts, without a common clock. To address this hardle, we
modified the library to be able to run multiple times on the same host, using
different port numbers. We also created a log of all messages exchanged between
replicas that, given the common clock, allowed us to reason about the behavior
of the system, by creating UML sequence diagrams depicting the operation of
the system as a whole. All further observations are based on this groundwork.

2.3 Authenticators and Erratic Recovery Behavior

To better understand the recovery process, we stopped and restarted a replica,
using the default optimal configuration. We immediately witnessed erratic be-
havior in the recovery process, which started and re-synchronized the state to
the latest checkpoint, but was unable to execute the few requests remaining in
the log after that point because they failed the authentication test. Upon in-
vestigation, we found that the use of authenticators, introduced for efficiency,
impeded the recovery process, because the transient state of the restarted replica
had no recording of the authenticators to use for validating client requests. The
solution the existing system implements, is the periodic retransmission of the
authenticators from each client to all replicas, based on a timer. This way, once
the recovering replica receives the authenticators of the clients, it will be able to
resume the recovery process from the next checkpoint. The only way to lower the
timeframe for this service interruption, is to reduce the authenticator retransmis-
sion timeout, which results in increased load for the network. We investigated
other solutions including on-demand retransmission of the authenticators; we
did not pursue this however, because retransmissions can introduce denial-of-
service vulnerabilities, as a faulty replica could simply bombard the clients with
authenticator retransmission requests.

2.4 PBFT Behavior on UDP Packet Loss

The definition of a Byzantine fault is any possible fault, including an error as
trivial as a UDP packet loss. This creates interesting behaviors. We observed

On the Practicality of Practical Byzantine Fault Tolerance 443

that UDP packets were indeed lost in our experiments, even in the loop-back
interface, due to congestion caused by stress-testing the system. The impact of
this is profound, as such an error will leave a replica lagging behind in trans-
action execution and will cause the recovery process to commence on the next
checkpoint. Although elegant in theory, this approach will not work in a pro-
duction environment where it is unacceptable to lose replicas from such trivial
errors. One obvious solution would be the use of TCP for its reliability; that
however is not trivial to implement as it requires switching from a message-
oriented network layer to a connection-oriented one. The use of SCTP, which
allows reliable message-oriented communication looks more suitable, as long as
all replica hosting platforms implement it of course.

The big request optimization described above combined with a trivial UDP
packet loss can adversely affect the robustness of the system. In this case, big
requests are multicast to all replicas only once, from the client. The primary will
then use only the digest of the request body for further communication with
the rest of the replicas. Consider what happens if one of the packets traveling
from the client to one of the replicas is dropped on the way. All replicas will
begin the three-phase protocol to commit and execute the request, but when
execution time comes, the replica that missed the request body will be unable to
execute, and will be stuck at this point until the next checkpoint arrives and the
recovery process kicks in. For a request not marked as big though, the process
is different and more stable. Here, if the request from the client to the primary
is dropped, the client will timeout and retransmit the request, resulting in a
request execution workflow where either all or no replica at all participates.

2.5 PBFT Handling of Non-determinism

In the original PBFT implementation, a feature was introduced to resolve the
non-deterministic characteristics of most applications. The primary makes an
application-specific up-call, which returns a set of values that are attached by
the primary to the Pre-Prepare message. This data becomes common to all
replicas executing the request, thus providing deterministic behavior on request
execution. Subsequent work on the PBFT protocol [25] added an extra mech-
anism to validate this data on each replica. A new application-specific up-call
was established that, when passed the non-deterministic data, is expected to
validate it and return success or failure. For example, the primary attaches the
system clock to the Pre-Prepare message and each replica validates the passed
value against its own clock to make sure it is appropriate.

However, the handling of non-determinism described above introduces a subtle
issue. It is not always clear how the application can validate the non-deterministic
data passed to it via the new upcall. The hurdle for such a validation is the
instance in time it is supposed to happen. In the normal, fault-free lifetime of a
request, the validation happens as soon as the Pre-Prepare message is received,
which is almost immediately after it is transmitted. Thus validating against a
time delta is viable. However, when a request is replayed from the log during
recovery, the time drift can be quite large and validating using a time delta

444 N. Chondros, K. Kokordelis, and M. Roussopoulos

will fail and impede the recovery process. A solution to this issue would be to
differentiate message processing for the recovery process and completely skip
non-deterministic data validation during recovery. This however is again a non-
trivial exercise, as message execution in the original PBFT implementation is
completely agnostic to message origin.

3 PBFT Deployment Drawbacks, Obstacles,
and Solutions

3.1 Dynamic Client Membership

The existing PBFT protocol and implementation assumes completely static
membership where each node in the system, client or replica, needs a priori
knowledge of the address, port, and public key for every other node. Although
this approach was sufficient for the proof-of-concept prototype, it is too limiting
for real world use, particularly Internet service applications with a large num-
ber of clients. Our goal is to remedy this to enable clients to join and leave the
replicated service dynamically, while letting the replicas remain statically bound
to one another. The end result is that clients only need information regarding
replicas, but no information regarding other clients, allowing for a more scalable
deployment.

To achieve support for dynamic client membership, replicas need to identify
each client in an identical (deterministic) manner. This leads us to store the
client identifiers in the shared state of the service (i.e., in the continuous memory
region). When a client requests to join or leave the group, each replica needs to
process the request using the same version of the shared state. Thus, all such
client requests need to be totally ordered, at least with respect to one another.

We define two special system requests, namely a Join and a Leave, which
follow the same life-cycle as all other application-level (client) requests. This
results in a single total order across all requests, application or system, fulfilling
our requirement. The Join and Leave system requests are processed by the
middleware library and are invisible to the application.

We introduce a level of indirection between what the PBFT library already
uses as a node identifier and what the client reception module assigns to new
clients, for efficiency of message evaluation. Instead of using a single address
range of [0..max clients], an arbitrary identifier is assigned to each new client
and a table maps this number to the index in the array of client and server node
entries. This way, when a client request arrives, the system first checks to see if
the identifier exists in the redirection table before going into the more lengthy
process of verifying its signature or authenticator.

Originally, our idea was for the client to multicast a simple Join system re-
quest to all replicas, carrying its address, its public key and a random nonce,
signed with its private key. Each replica would assign the same new identifier
and transmit it back in the reply. However, a malicious client could initiate
an infinite number of connections, using phony addresses, thus exhausting the

On the Practicality of Practical Byzantine Fault Tolerance 445

bounded maximum number of node entries in each replica. To address this vul-
nerability, we improve the connection process by splitting the Join operation into
two phases. In the first phase, the client submits its data as previously described
and awaits a challenge. Upon receiving the challenge, the client calculates a re-
sponse and transmits it back to the replicated service in the second phase of the
Join. Only then will the replicas add the client to the system as a full mem-
ber. This approach ensures the client indeed owns the address he claims, since
receiving the challenge is necessary to compute the response.

We also add an application-level identification buffer to the Join message.
This buffer is passed to the application for authorization. It might include, for
example, an encrypted user id and password. The application then returns an
identifier to be associated with this client (e.g., the user id). The middleware
guarantees that only a single session can be active at a time for this specific
identifier, by terminating all previous sessions when a new one is established.
This way, even in a distributed denial of service attack, the attacker can only
establish as many sessions as the number of credentials he has managed to obtain.

The Leave system request is much simpler. It simply instructs each replica to
remove the client from its internal tables. All further communication with the
service is prohibited for this client.

We add timeouts to enforce cleanup of stale sessions once the node structures
are full. To achieve some common ground regarding time across all replicas, all
requests are timestamped with the time of the primary. When each request is
executed, its timestamp is recorded for each client. When a join request arrives
that cannot be serviced because the client/server node table is full, a cleanup
process is started that will locate all clients with a last executed request older
than the current join request minus a configurable threshold. All such sessions
are cleared to make room for the new connection. If no such stale sessions are
found, the new Join request is denied.

Note we have enhanced the PBFT protocol with support for dynamic client
membership without changing the inherent properties and message exchanges of
the protocol. Thus, our changes do not affect the safety and liveness guarantees
offered by PBFT.

3.2 A Higher Level State Abstraction

In a replicated state machine, the term ‘state’ is an abstract definition of the
persistent workspace of the application. PBFT defines state to be a continuous
virtual memory region where both the application and the middleware library
store their non-transient state in contiguous non-overlapping partitions. The
middleware library has full access to this memory region while the application
code is not executing, since it is responsible for managing replication and syn-
chronization of this state across replicas. The application, on the other hand,
has free read access to it, but is required to notify the library before mak-
ing changes to any region, thus permitting copy-on-write optimizations of state
synchronization.

446 N. Chondros, K. Kokordelis, and M. Roussopoulos

While this approach relieves the application considerably from having to deal
with state synchronization, it creates a number of questions which the applica-
tion developer must face: What can a modern application do with just a pointer
to a memory region? How is this state persistently stored on disk when the
service stops? And how does the developer avoid the havoc caused by a misbe-
having application which fails to notify the library before modifying memory?
To address these questions in a satisfactory manner, we decided to adapt an em-
bedded relational database engine, to intervene between the PBFT middleware
library and the application. This way, the application will have SQL-level access
to its state and the embedded engine will take care of interfacing with the PBFT
library to satisfy its requirements.

In our search for an embedded relational database engine, the major feature
we were after was storage of data in a single file, which we could map to virtual
memory. We selected SQLite [26] because it exhibits this feature and because
it is mature and widely deployed. SQLite is an embedded, in-process library
that implements a self-contained relational database engine using SQL as its
command language and a C call level interface for the application. It stores all
data objects in a single database file that is binary compatible across machine
architectures (endianness) and word sizes.

In SQLite’s quest to be a multi-platform product, the authors have defined
an abstraction layer called VFS (Virtual File System), that sits between the
relational engine and the operating system. By hooking into this subsystem, we
can manage memory mapping and perform PBFT-required memory modification
notifications, as well as re-implement non-deterministic functions, such as system
time and random values, by using the upcalls described in Section 2. Interaction
with VFS is illustrated in Figure 1.

Fig. 1. SQLite with its VFS inside a PBFT application

SQLite uses two disk files to manage the database, for reliability reasons. The
first file is the actual database, which we map to virtual memory. The second
file is the rollback journal (or write-ahead-log, in a different mode of operation),
which is used to rollback failed transactions. We leave this second file to be stored

On the Practicality of Practical Byzantine Fault Tolerance 447

on disk, since it allows the engine to recover in the case of system failure and it
is not actually part of the application state. The database file is synchronized
with its disk image on transaction commit.

We gain many advantages with this approach. First, a committed transaction
will be durable, even in the case of a system crash. That is, when the replica
node restarts operation, its state will include the last committed transaction,
and PBFT recovery will commence from this point. Second, even if the node is
to be removed from the replicated service, its data will be usable on its own,
being just another database file. Moreover, an uncommitted transaction will be
rolled back on the next attempt to access the database file, from the replicated
service or on its own. These advantages are simply the by-product of the ACID
semantics that SQLite provides and excellent reasons why developers will likely
want to take advantage of it.

One obstacle we faced was that while SQLite can freely manage the growth
and shrinkage of its database file, PBFT is not so permitting, because it requires
knowledge of the size of the memory region that represents the state, during its
initialization. To alleviate this, we use a sparse file that is defined to be a large
enough size on initialization, without actually occupying that space on disk, a
solution that is reasonable in modern 64-bit operating systems with large virtual
memory address ranges.

The application code now simply passes the name of the database file to the
PBFT initialization function responsible for starting up the replica server and
setting up any data structures needed by the middleware. The function returns
to the application code a standard SQLite database handle. Using this handle,
the application can call standard SQLite library functions (e.g. sqlite3 exec,
sqlite3 prepare v2, sqlite3 step) to access the database while executing during
the appropriate PBFT upcall. This way, an application already using SQLite is
immediately portable to the PBFT middleware with only minor changes to the
initialization code. Our approach thus guarantees that, whenever the application
is called to execute a request, it will have a database consistent with all other
replicas. This is achieved by the PBFT middleware library, which manages the
raw memory content where the database file is mapped, as it was designed to.

3.3 Remaining Issues

Cryptography. Applications requiring strong cryptography, such as private
key generation and storage on the server side of the application, are not well
supported by the current PBFT implementation. For key generation, strong
random values are required. Unfortunately, even if the primary obtains such
strong randomness from its local OS services, for example via /dev/random,
there is no way such values can be verified from the remaining replicas, by their
very definition of being random. Because of this, an adversary can obtain access
to one of the execution replicas, wait until it becomes the primary and use
predetermined values instead of random values. In this manner, the adversary
can trigger the generation of well-known private and public keys and thus violate
confidentiality. To alleviate such attacks, one solution would be to enforce a

448 N. Chondros, K. Kokordelis, and M. Roussopoulos

threshold signature scheme [27] for such authentication requirements, provided
for by the middleware library. In such a scheme, private key information for each
replica would never be transmitted over the network, as it would not be stored
in shared state. In a (f + 1, n) (where n = 3f + 1) threshold signature scheme,
the set of n replicas would collectively generate a digital signature despite up to
f byzantine faults. The PBFT protocol would have to be modified to provide
for such cryptographic operations.

Another confidentiality issue is the matter of protecting storage of sensitive
information. This has been studied by Yin et al [5], who propose separating the
agreement part of the PBFT protocol from the execution part, while also adding
an intermediate cluster of ‘privacy firewall’ nodes. In this layout, 3f+1 agreement
nodes receive the client requests and forward them to 2f + 1 execution nodes
for execution. To ensure that a faulty execution node cannot disclose sensitive
information, an h + 1 rows by h + 1 columns privacy firewall set of nodes is
positioned between the agreement and execution cluster, which allows tolerating
up to h faulty firewall nodes. This approach however, increases both deployment
complexity and request execution latency.

Stateless Applications Only. The original PBFT implementation purposely
ignores the notion of client-specific state. This, however, severely limits the tar-
get applications to those that are either stateless in nature, or manage session
state on their own using their global state abstraction; the latter will need to
pass session identifiers inside the request and reply bodies, without any assis-
tance from the middleware library. This is not an inherent limitation of the State
Machine Replication approach. It is simply a consequence of the lack of appro-
priate mechanisms in the PBFT library. With our addition of application level
sign-on messages to the protocol, resulting in identification of specific sessions,
a library-level subsystem can now be developed that will map parts of the state
to a specific session. This enables easier porting of stateful applications to the
BFT world.

Web Applications. Our end goal is to provide a web application to end
users, which provides them hassle-free access to the server counterpart of the
e-voting service. We aim to achieve this while providing end-to-end BFT seman-
tics. To this end, the browser-hosted part of the application, typically written in
JavaScript, will have to directly access each and every replica. This communica-
tion however cannot be carried over UDP because this protocol is not allowed
in the JavaScript runtime environment. Moreover, binary messages are highly
inconvenient in this context. Higher level protocols, such as WebSocket, and
structures like JSON or XML need to be used. Support for these technologies
needs to be incorporated in the middleware library, a task not so trivial because
of the need to switch from a point-to-point message-based communication to
a connected channel-oriented communication. Additionally, cryptographic func-
tions will need to be available in the browser-hosted client part, which requires
transitioning from Rabin to more widely available cryptosystems, such as RSA.

On the Practicality of Practical Byzantine Fault Tolerance 449

Additionally, we aim to have the replicas placed in different physical loca-
tions, to obtain real independance of faults caused by network partitions. This
requirement dictates operation in a Wide Area Network environment, where the
quadratic message complexity of PBFT will most probably prove costly regard-
ing request latency. Although we tried to simulate a WAN deployment scenario
using BFTsim [19], the simulator could not scale to a large enough number of
nodes (> 100) to obtain meaningful results. This issue has been studied in [28],
but no open-source implementation is readily available.

Summary: The above issues can be overcome, but require a significant amount
of engineering effort. An application developer wanting to leverage and deploy
PBFT now is likely to be unwilling to invest the time and effort required to
retrofit the PBFT approach to match the needs of his/her application.

4 Evaluation

In this section we present empirical measurements of the PBFT library, both
with and without our modifications supporting dynamic client and seamless
state management for applications requiring ACID semantics provided by a
legacy database. We test the PBFT library and our modifications to it on a
cluster of 8 machines connected with a 1Gbit Ethernet switch. The first four
machines are Intel Xeon E5620 at 2.40 GHz under CentOS 5.5 with Linux ker-
nel 2.6.18-194. The remaining four are Intel Core 2 Duo E6600 at 2.40 GHz
under Debian 5.0 with Linux kernel 2.6.26. All eight machines run 64 bit ver-
sions of their corresponding operating systems. Ping roundtrip time is measured
at 134-183 microseconds between all hosts. Bandwidth is measured, using iperf,
at 938 Mbits/sec. For all tests, we generate a server and client executable using
a particular library configuration set so as to measure the effect of turning on
or off a particular optimization and/or modification. We design the client to
connect to the library and wait for a signal. On signal reception, it records the
current time, starts its operation and then measures and reports elapsed time.
To coordinate all processes running on different hosts while at the same time
collecting and aggregating measurements, we implement a test framework us-
ing Python and netcat, where the latter runs on each host and allows a single
controller to submit scripts (i.e., experiments) and collect the results.

4.1 Non-SQL Experiments

We first conduct an experiment without the SQL state abstraction modifica-
tions we made to benchmark the original PBFT implementation. Our goal is to
measure the impact on system throughput of turning on/off the optimizations
described in Section 2. Recall that the use of certain optimizations (such as the
use of MACs and special handling of big requests) increases performance at the
cost of decreased robustness (e.g., slow recovery) of the system.

450 N. Chondros, K. Kokordelis, and M. Roussopoulos

Table 1. PBFT library configurations we test. sta=static clients, transactions are null
requests/responses of 1024 bytes.

Name TPS StDev

sta mac allbig batch 17.014 66
sta mac allbig nobatch 1.051 56
sta mac noallbig batch 3.030 57
sta mac noallbig nobatch 1.109 103
sta nomac allbig batch 1.291 4
sta nomac allbig nobatch 1.199 12
sta nomac noallbig batch 992 2
sta nomac noallbig nobatch 1.186 7
nosta nomac noallbig batch 988 1
nosta nomac noallbig nobatch 1.205 1

We generate and test a series of PBFT library configurations, shown in Ta-
ble 1. The first configuration is the default configuration preferred and recom-
mended by Castro, with all optimizations enabled, including the use of MACs,
special treatment of all requests as big requests, and request batching. Since
batching is the only optimization for which we did not observe faulty behav-
ior, we isolate it and test all other combinations of configurations with batching
enabled and disabled, to show its impact. The last four rows of Table 1 depict
the most robust configurations (use of MACs and big request handling turned
off). Since our particular application has stringent security and reliability re-
quirements, we choose to measure the impact of adding support for dynamic
client management using these configurations. We believe other Internet service
applications with similar high security and robustness needs would need to run
the PBFT library using these configurations. The client and server programs
built to measure throughput transmit null requests and responses of varying
sizes, of 256, 1024, 2048, and 4096 bytes. We test the system using 12 clients
spread evenly across 4 machines while being serviced by 4 replicas, each running
alone on a single host. In all cases, IP-level multicasting was turned off, as the
networks we are targeting (WANs) do not support it. The results for each of the
request and response sizes are similar, so for brevity we show a representative
plot, for size of 1024 bytes in Figure 2.

Fig. 2. PBFT tests Fig. 3. PBFT + SQL benchmark

On the Practicality of Practical Byzantine Fault Tolerance 451

From Table 1 and Figure 2, it is clear that the first configuration, which is
the default configuration of the PBFT library with all optimizations turned on
achieves the best throughput performance. In our experiments, this configuration
achieves approximately 17000 null operations per second, while for the most
robust configurations the throughput drops to about 1000 null operations per
second.

We observe that disabling the batching optimization seriously affects perfor-
mance when using MACs. When switching to signing with private keys, the delay
introduced is so large that batching can no longer assist in any way. Moreover,
when disabling big request handling, performance drops to 18% of the optimal,
while disabling the use of MACs causes performance to drop to 7.5% of the
optimal respectively. Disabling both big request handling and MAC use causes
performance to drop to 6% of the optimal. While we observe a difference in
performance amongst these configurations where some subset of optimizations
is turned off, the bottom line is that performance takes a big hit when turn-
ing off any of the optimizations. However, for an application with high security
requirements, we conjecture robustness is favored over performance.

We evaluate the impact on performance of adding support for dynamic client
management using the most robust configurations. The performance decrease is
0,5% (988 vs 992), which is negligible. This negligible decrease in performance
is attributable to the cost of accessing the redirection table that converts as-
signed customer ids to indexes in the tables tracking participating nodes (clients
and servers). We emphasize that the above tests are artificial because they are
testing “null” operations. The software on the replica spends no time executing
application code; it simply manages the network protocol. The large majority
of prior BFT studies present throughput in terms of null operations per second.
This is understandable as the focus is on providing a baseline benchmark against
which varying BFT protocols can be compared, but is not helpful to the appli-
cation developer who needs to understand how the system would behave using
real application requests.

4.2 SQL State Abstraction Experiments

In this subsection, we evaluate the performance of adding seamless state manage-
ment for applications requiring ACID semantics provided by a legacy database.
Null operations are thus not realistic to use in this setting. For our client ap-
plication request we choose the insertion of a single row into a database table.
This is the operation our e-voting service must perform to record a user’s vote
in an ongoing election. The tuple inserted into the database includes a simple
key and value text (representing voter identity and accompanying vote), in addi-
tion to a timestamp and a random value. We purposefully added the timestamp
and random value to test that replies are indeed identical across all replicas.
For this experiment, we enable request batching and vary turning on and off
the remaining options (use of MACs, big request handling, and support for dy-
namic clients). ACID semantics are provided using the rollback journal mode of

452 N. Chondros, K. Kokordelis, and M. Roussopoulos

SQLite. Throughput performance, measured as database insertion transactions
per second, is illustrated in Figure 3.

In this experiment, the big request handling optimization pays no dividends
because the system now spends time executing a real, non-null request which
requires accessing the hard disk. This dominates the overall request execution
lifetime. At any rate, the most robust configuration with dynamic clients enabled
is now at 43% of the best (sta mac noallbig). Since disk access is a big factor
in this experiment, we perform two more experiments to isolate its impact. In
these experiments, we measure the most robust configuration (where the use of
MACs and big request handling are disabled) with dynamic clients and ACID
semantics (as above) and we measure another configuration without ACID se-
mantics (no rollback journal and no flushing to disk on each operation). The
ACID version achieves 534 TPS while the No-ACID version achieves 1155 TPS,
an approximately 2x performance boost.

Summary: The optimizations turned on by default in the PBFT library, lead to
the high throughput numbers reported in prior studies, but as we have shown in
Section 2, using some simple fault scenarios (such as UDP packet loss), the high
performance numbers come at the cost of decreased robustness of the system.
Moreover, the performance numbers reported by a large majority of prior BFT
studies are based on a metric of null operations per second. This is not a help-
ful metric for the end-application developer, particular for a developer whose
application makes use of a legacy database for ACID semantics.

5 Related Work

Since the 1999 publication on PBFT by Castro and Liskov [3], there has been
a flurry of research activity focused on improving the BFT middleware perfor-
mance [5–8, 10–12, 4, 9, 13], replication cost [5, 14, 13], and robustness under
both faulty servers and faulty clients [15, 4]. A large majority of these sys-
tems [5, 6, 11, 15, 4, 10, 13] are direct descendents of the Castro and Liskov
PBFT system and reuse and build upon the Castro codebase. Thus, the obsta-
cles we encountered as application developers in using the PBFT system apply
to its descendents as well.

Wood et al. [13] write “no commercial data center uses BFT techniques de-
spite the wealth of research in this area” and posit that this is due to the high
cost of replication required by BFT protocols. They aptly point out that, for
applications such as web servers and database servers, it is the execution of
client requests and not the agreement of request ordering that dominates the
performance of a BFT protocol. They propose lowering the number of active
execution replicas to f + 1 by using virtual machines as execution nodes and
ZFS snapshots for quick state checkpointing. When the f + 1 replicas produce
inconsistent replies, a paused execution node is revived and starts executing re-
quests immediately. The middleware library fetches the state needed by these
requests on demand, to amortize the cost of state transfer. The paper claims
that for applications running over a WAN environment, the time to perform

On the Practicality of Practical Byzantine Fault Tolerance 453

state transfer is minimal compared to WAN latencies. The focus of the paper is
on reducing replication cost while maintaining good performance. While this is
welcome for an application to be deployed in a data center, the paper does not
address how the application developer can easily make use of the system, stating
simply that applications must be rewritten to take advantage of the system.

Clement et al. [18] introduce UpRight, with the goal of making it easy for
application developers to convert a crash-fault tolerant application into a BFT
application. It includes a number of state-of-the-art BFT techniques, including
separation of agreement from execution, insights from the Aardvark protocol [4]
on dealing with faulty clients and alleviating denial-of-service attacks, as well
as more flexible state management (but not at such a high level as a relational
engine). It also allows individual tailoring of crash-fault (Up) and arbitrary-fault
(Right) tolerance. Unfortunately, it is still a work in progress. with several key
features missing (e.g., view changes are unimplemented) and does not seem to
have seen much development since March 2010 [29], so it is not helpful to a
developer wishing to make use of BFT techniques now.

Several attempts have been made to address the inability of replicated BFT
services to mesh with the rest of the infrastructure in today’s multi-tier world.
Merideth et al. [30] introduced Thema, which aims to mask BFT complexity from
the application developer of web services based applications. An agent, visible
to the unaffected outside world, plays the role of the client of a BFT system.
Additionally, a proxy collects the multiple out-call requests from the replicas of
a BFT system, and issues the actual out-call on their behalf, returning the reply
when available. Unfortunately, both the agent and the proxy are centralized
components which are inappropriate for applications such as ours which require
completely distributed design.

Pallemulle et al. [31] focus on interoperability between BFT systems, while en-
forcing fault isolation and introduce a new protocol, named Perpetual to achieve
this. Sen et al. [20] in a system called Prophecy, designed to increase BFT per-
formance, introduce a Sketcher component, that tries to trade space for perfor-
mance, by storing a historical log of request/reply pairs and allowing the appli-
cation to differentiate its requests, asking for possible log-based replies. In its
distributed incarnation, D-Prophecy is simply an attempt to avoid re-execution
of repetitive requests. In the centralized version, Prophecy, the Sketcher com-
pletely avoids BFT access but now becomes a single point of failure.

Amir et al. [28] introduce Steward, a hierarchical BFT architecture, that tries
to scale BFT to a wide-area network, by introducing an abstraction layer above
PBFT using a Paxos-based protocol. It uses a threshold signature scheme to
ensure the recipient of a cross-domain message that enough replicas at the
originating site agreed with the request. Both these features are welcome to
security-conscious Internet application services. Unfortunately, no source code
is available.

Vandiver et al. [12] andGarcia et al. [10] introducemiddleware for BFTdatabase
replication. Incoroporating legacy databases into a BFT system is important for
a wide range of Internet applications. Unfortunately, both systems assume closed

454 N. Chondros, K. Kokordelis, and M. Roussopoulos

systems with a finite number of clients. The developer of an Internet-facing appli-
cation servicemust still deal with the issue of having end-user clients issue requests
to the replicated database system. Either these systems need to provide support
for dynamic client management or they must offload the Internet-facing appli-
cation component accepting customer/user requests to a centralized component,
something not appropriate for our particular application.

Finally, Guerraoui et al. [17] introduce a new abstraction allowing for the con-
struction of new BFT protocols with a fraction of the code currently necessary,
thus vastly simplifying the BFT researcher’s task. Having waded through the
20,000 lines of PBFT code, we applaud this effort and emphasize here the need
to simplify the end application developer’s task as well.

6 Conclusion

This paper is a call to the research community to look more closely at BFT
middleware from the perspective of a real-world application developer. Our ex-
perience in trying to apply the PBFT approach to a real-world application with
stringent security and reliability needs reveals a slew of difficulties that the ap-
plication developer must face if he wants to use even the highly- studied and
several-times extended PBFT protocol and codebase upon which a large major-
ity of subsequent BFT middleware is based. While the difficulties encountered
by the developer can be overcome, they require significant engineering effort and
have unclear performance ramifications. These two characteristics are likely to
make the developer hesitant to invest the effort to leverage BFT techniques.

The systems community prides itself on building and measuring real systems.
We believe that improving BFT middleware performance and robustness remain
important. However, if BFT middleware are to see widespread deployment in
real-world systems, then the research community needs to focus on the usability
of BFT algorithms from the perspective of the application developer.

References

1. Schneider, F.: Implementing fault-tolerant services using the state machine ap-
proach: a tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

2. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
TPLS 4(3), 382–401 (1982)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (February
1999)

4. Clement, A., Wong, E., Alvisi, L., Dahlin, M.: Making byzantine fault tolerant
systems tolerate byzantine faults. In: NSDI (April 2009)

5. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agree-
ment from execution for byzantine fault tolerant services. In: SOSP (October 2003)

6. Kotla, R., Dahlin, M.: High throughput byzantine fault tolerance. In: DSN (June
2004)

7. Abd-El-Malek, M., Ganger, G., Goodson, G., Reiter, M., Wylie, J.: Fault-scalable
byzantine fault-tolerant services. In: SOSP (October 2005)

On the Practicality of Practical Byzantine Fault Tolerance 455

8. Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: Hq relication: A
hybrid quorum protocol for byzantine fault tolerance. In: OSDI (November 2006)

9. Distler, T., Kapitza, R.: Increasing performance in byzantine fault-tolerant systems
with on-demand replica consistency. In: EuroSys (April 2011)

10. Garcia, R., Rodrigues, R., Preguica, N.: Efficient middleware for byzantine fault
tolerant database replication. In: EuroSys (April 2011)

11. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. In: SOSP (October 2007)

12. Vandiver, B., Balakrishnan, H., Liskov, B., Madden, S.: Tolerating byzantine
faults in transaction processing systems using commit barrier scheduling. In: SOSP
(October 2007)

13. Wood, T., Singh, R., Venkataramani, A., Shenoy, P., Cecchet, E.: Zz and the art
of practical bft. In: EuroSys (April 2011)

14. Distler, T., Kapitza, R., Popov, I., Reiser, H., Schroder-Preikschat, W.: Spare:
Replicas on hold. In: NDSS (February 2011)

15. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Byzantine replication under attack. In:
DSN (June 2008)

16. Kiayias, A., Korman, M., Walluck, D.: An internet voting system supporting user
privacy. In: ACSAC (December 2006)

17. Guerraoui, R., Knezevic, N., Quema, V., Vukolic, M.: The next 700 bft protocols.
In: EuroSys (April 2010)

18. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.:
Upright cluster services. In: SOSP (October 2009)

19. Singh, A., Das, T., Maniatis, P., Druschel, P., Roscoe, T.: BFT protocols under
fire. In: NSDI (2008)

20. Sen, S., Lloyed, W., Freedman, M.: Prophecy: Using history for high-throughput
fault tolerance. In: NSDI (April 2010)

21. Lamport, L.: The implementation of reliable distributed multiprocess systems.
Computer Networks 2 (1978)

22. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM TPLS 12(3), 463–492 (1990)

23. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1996)
24. Merkle, R.C.: A Digital Signature Based on a Conventional Encryption Function.

In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988)

25. Castro, M., Rodrigues, R., Liskov, B.: BASE: Using abstraction to improve fault
tolerance. ACM TOCS 21(3) (August 2003)

26. Sqlite embedded database engine, http://www.sqlite.org
27. Desmedt, Y.G., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)
28. Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-rotaru, C., Olsen, J.,

Zage, D.: Steward: Scaling byzantine fault-tolerant systems to wide area networks.
In: DSN (2006)

29. Upright: Making distributed systems up (available) and right (correct),
http://code.google.com/p/upright/w/list

30. Merideth, M., Iyengar, A., Mikalsen, T., Tai, S., Rouvellou, I., Narasimhan,
P.: Thema: Byzantine-fault-tolerant middleware for web-service applications. In:
SRDS (October 2005)

31. Pallemulle, S.L., Thorvaldsson, H.D., Goldman, K.J.: Byzantine fault-tolerant web
services for n-tier and service oriented architectures. In: ICDCS (June 2008)

http://www.sqlite.org
http://code.google.com/p/upright/w/list

SCORe: A Scalable One-Copy Serializable

Partial Replication Protocol�

Sebastiano Peluso1,2, Paolo Romano2, and Francesco Quaglia1

1 Sapienza University, Rome, Italy
{peluso,quaglia}@dis.uniroma1.it
2 IST/INESC-ID, Lisbon, Portugal
{peluso,romanop}@gsd.inesc-id.pt

Abstract. In this article we present SCORe, a scalable one-copy serial-
izable partial replication protocol. Differently from any other literature
proposal, SCORe jointly guarantees the following properties: (i) it is gen-
uine, thus ensuring that only the replicas that maintain data accessed
by a transaction are involved in its processing, and (ii) it guarantees
that read operations always access consistent snapshots, thanks to a
one-copy serializable multiversion scheme, which never aborts read-only
transactions and spares them from any (distributed) validation phase.
This makes SCORe particularly efficient in presence of read-intensive
workloads, as typical of a wide range of real-world applications. We have
integrated SCORe into a popular open source distributed data grid and
performed a large scale experimental study with well-known benchmarks
using both private and public cloud infrastructures. The experimental
results demonstrate that SCORe provides stronger consistency guaran-
tees (namely One-Copy Serializability) than existing multiversion partial
replication protocols at no additional overhead.

Keywords: Distributed Transactional Systems, Partial Replication,
Scalability, Multiversioning.

1 Introduction

In-memory, transactional data platforms, often referred to as NoSQL data grids,
such as Cassandra, BigTable, or Infinispan, have become the reference data man-
agement technology for grid and cloud computing systems. For these platforms,
data replication represents the key mechanism to ensure both adequate perfor-
mance and fault-tolerance, since it allows (a) distributing the load across the
different nodes within the platform, and (b) ensuring data survival in the event
of node failures.

� This work has been partially supported by national funds through FCT - Fundação
para a Ciência e a Tecnologia, under projects PTDC/EIA-EIA/102496/2008 and
PEst-OE/EEI/LA0021/2011, by the EU project Cloud-TM (contract no. 57784)
and by COST Action IC1001 EuroTM.

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 456–475, 2012.
c© IFIP International Federation for Information Processing 2012

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 457

A common design approach for these data platforms consists in the adop-
tion of relaxed data-consistency models, such as eventual consistency [1] and
non-serializable isolation levels [2], or restricted transactional semantics, such as
single object transactions [3] and static transactions [4]. These schemes have been
shown to yield significant performance advantages with respect to classic strongly
consistent transactional paradigms. Unfortunately, these advantages come at the
cost of additional complexity for the programmers, who have to reason on the
correctness of complex applications in presence of weak consistency guarantees
and/or may need to identify non-trivial work-around solutions to circumvent the
limitations of constrained programming paradigms.

Some recent proposals have been targeted at more strict consistency models,
such as One-Copy Serializability, and have been based on the usage of (opti-
mistic) atomic broadcast protocols [5]. Unfortunately, these solutions have been
tailored for the case of full replication (in which each node maintains a copy
of the entire data-set), which is a clearly not viable option for large scale sys-
tems. Indeed, the adoption of partial data replication schemes appears to be
an essential requirement for large scale systems. In this context, a key require-
ment to maximize scalability is to ensure genuineness [6,7], namely to guarantee
that only the sites that replicate the data items accessed within a transaction
exchange messages to decide its final outcome (hence excluding solutions that
rely on centralized components or that involve every site in the system). Unfor-
tunately, several partial replication protocols, such as [8,9], do not exhibit this
property, thus again hampering scalability. On the other hand, some genuine
protocols proposed in literature, such as [7], require read-only transactions to
undergo a remote validation phase. This is also quite undesirable from a perfor-
mance perspective, especially for geographically dispersed infrastructures, given
the predominance of read-intensive workloads in typical applications [10].

Genuine protocols guaranteeing relatively strong consistency levels, while also
avoiding the validation of read-only transactions have been recently presented in
[11,12]. However, these protocols do not ensure One-Copy Serializability (1CS).
In particular, the protocol in [11] only ensures Extended Update-Serializability
(EUS), which allows different client applications, during the execution of read-
only transactions, to observe the commits of non-conflicting update transactions
as serialized in different orders. Similar considerations can be made for the pro-
tocol in [12], with the additional note that the above anomalies can also involve
the commits observed by update transactions.

In this paper we present SCORe, namely a scalable one-copy serializable
replication protocol. SCORe overcomes the above drawbacks by employing a
genuine partial replication scheme which guarantees that read-only transactions
always observe a consistent snapshot of the data, hence avoiding to incur in ex-
pensive remote validation phases. This result is achieved by combining a local
multiversion concurrency control algorithm with a highly scalable distributed
logical-clock synchronization scheme that only requires the exchange of a scalar
clock value among the nodes involved in the handling of a transaction. All the
above features jointly allow SCORe to be performance effective, highly scalable,

458 S. Peluso, P. Romano, and F. Quaglia

and able to provide supports for a wider set of applications, including those that
impose strict data consistency requirements.

We have implemented SCORe within Infinispan, a mainstream open source
data grid framework developed by Red Hat [13]. We have assessed the effective-
ness of SCORe via an extensive experimental study based on both the TPC-C
[14] and YCSB [15] benchmarks, using as experimental testbeds a private clus-
ter with up to 20 nodes, and a public cloud (FutureGrid) with up to 100 nodes.
Major outcomes from the study entail demonstrations of linear scalability by
SCORe across a wide range of workloads, and no overheads compared to state
of the art genuine partial replication solutions [11] guaranteeing weaker consis-
tency semantics (namely EUS).

The remainder of this paper is organized as follows. In Sect. 2 we discuss
related work. The model of the system we are targeting is provided in Sect. 3.
The SCORe protocol is presented in Sect. 4. The proof of correctness is provided
in Sect. 5. The results of the experimental analysis are reported in Sect. 6.

2 Related Work

The issue of transactional systems replication has been thoroughly addressed in
literature. Most of the existing proposals have been targeted at the case of full
replication, where a copy of each data item is retained at each involved site. In
this context, solutions have been provided coping with aspects such as protocol
specification [16], and design of replication architectures based on middleware
level approaches [17,18] and/or on extensions of the inner logic of individual
transactional systems [16]. Comparative studies [19] have demonstrated how
the solutions that coordinate the replicas via total order group communication
primitives, such as [20,21], exhibit the potential for improved performance levels.
Also, total order based protocols relying on speculative transaction processing
schemes, such as [22,23], have been shown to further reduce the impact of dis-
tributed synchronization on both latency and throughput. On the other hand,
compared to all these proposals, in this paper we address performance and scal-
ability of the replicated system from an orthogonal perspective since our focus
is on architectures making use of partial data replication, as opposed to full
replication.

When considering partial replication schemes, literature proposals can be
grouped depending on (i) whether they can be considered genuine, and on (ii)
the specific consistency guarantees they provide. The works in [8,9] provide non-
genuine protocols where the commitment of a transaction requires interactions
with all the sites within the replicated system. Compared to these approaches,
genuine partial replication schemes have been shown to achieve significantly
higher scalability levels [11]. The protocol in [7] provides a genuine solution
also supporting strict consistency, namely 1CS. However, differently from the
present proposal, this protocol imposes that read-only transactions undergo a
distributed validation phase. Also, these transactions are potentially subject to
rollback/retry. Instead, the SCORe protocol we propose never aborts read-only

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 459

transactions, since it guarantees that they always observe a consistent snapshot
of data, and consequently spares them from expensive remote validations.

Analogously to SCORe, the solutions proposed in [11,12] are genuine and do
not require read-only transactions to be remotely validated. However, differently
from SCORe, they do not guarantee that read operations behave as if they were
performed within transactions executed on a given serial schedule. For the pro-
tocol in [11], this anomalous behavior can occur only for read-only transactions,
while for the protocol in [12] it may arise also for update transactions. Overall,
both these protocols target weaker consistency semantics than SCORe. Similar
arguments can be used when comparing SCORe with the recent proposal in
[24], which does not guarantee strong consistency in the case of read operations
performed on nodes maintaining distinct partitions of the replicated data.

As for the reliance on multiversions, our proposal is also related to the one
in [25], where a multiversion concurrency control mechanism is provided in or-
der to cope with distributed transaction processing in the context of distributed
software transactional memories. However this protocol does not cope with (par-
tially) replicated data and it guarantees Snapshot Isolation (SI).

3 Model of the Target System

We consider a classic asynchronous distributed system model composed of Π =
{N1, . . . , Nn} nodes, each one representing a transactional process within the
replicated system. We consider the classic crash-stop failure model. Hence, nodes
may fail by crashing, but never behave maliciously. A node that never crashes
is said to be correct, otherwise it is said to be faulty. We assume that nodes
only communicate through message passing, thus not having access to a shared
memory nor to a global clock. Messages are delivered via reliable asynchronous
channels, i.e., messages are guaranteed to be eventually delivered unless either
the sender or the receiver crashes. However, messages may experience arbitrarily
long (but finite) delays, and we assume no bound on relative process speeds or
clock skews.

We assume a simple key-value model for the data maintained by the nodes in
Π . Also, data are assumed to be multiversioned, hence each data item d, main-
tained by whichever node, is represented as a sequence of versions 〈k, val, ver〉,
where k is a key representing d’s identifier, val is its value and ver is a scalar,
monotonically increasing logical timestamp that identifies (and totally orders)
the versions of data item d. Each node Ni is assumed to store a partial copy of
the whole data set. We abstract over the data placement policy by assuming that
data are subdivided across m partitions, and that each partition is replicated
across r nodes. We denote with Γ = {g1, . . . , gm} the set of groups of nodes
belonging to Π , where gj represents the group of those nodes that replicate the
j-th data partition. Each group is composed of exactly r nodes (the value of r
being selected in order to ensure the target replication degree), of which at least
one is assumed to be correct. Given a data item d, we denote as replicas(d) the
set of nodes that maintain a replica of d, namely the nodes of group gj that

460 S. Peluso, P. Romano, and F. Quaglia

replicate the data partition containing d. The same notation is used to indi-
cate sets of nodes maintaining replicas of sets of data items. As an example,
replicas(S), with S = {d, d′}, is used to indicate the set of nodes maintaining a
copy of d or a copy of d′.

In order to maximize flexibility of the data placement strategy, we do not
require groups to be disjoint (they can have nodes in common), and assume
that a node may belong to multiple groups, as long as

⋃
j=1...m gj = Π . We

highlight that the assumed partitioning model allows capturing a wide range of
data distribution algorithms, and, in particular, algorithms based on consistent
hashing, which are very popular in NoSQL transactional data stores thank to
their ability to: (i) minimize data transfers upon joining/leaving of nodes (which,
for ease of presentation, we do not model explicitly in this work, although we
will briefly discuss how to cope with dynamic groups in Sect. 4.4); (ii) ensure
the achievement of target replication degrees; and (iii) avoid distributed lookups
to retrieve the identities of the group of processes storing the replicas of the
requested data items.

We model transactions as a sequence of read and write operations on data
items, which are preceded by a begin operation, and are followed by a commit or
an abort operation. A transaction can be originated on whichever node Ni ∈ Π ,
and can read/write data belonging to any partition. Also, we do not assume
any a-priori knowledge on the set of data items that will be read or written by
transactions. In addition a history over a set of transactions consists of a partial
order of events that reflects the operations (begin, read, write, abort, commit)
of those transactions.

4 The SCORe Protocol

4.1 Overview

SCORe is a genuine (hence highly scalable) partial replication protocol that
implements a one-copy serializable distributed multiversion scheme. As in typi-
cal non-distributed multiversion algorithms [26], SCORe replicas store multiple
versions of the data items that they maintain, each tagged with a scalar times-
tamp. However, SCORe introduces a novel distributed timestamp management
scheme that addresses two main issues: (i) establishing the snapshot visible by
transactions, i.e. selecting which one, among the multiple versions of a datum
(replicated across multiple nodes) should be observed by a transaction upon a
read operation; (ii) determining the final global serialization order for update
transactions via a distributed agreement protocol that takes place during the
transactions’ commit phase.

To this end SCORe maintains two scalar variables per node, namely commitId
and nextId. The former one maintains the timestamp that was attributed to
the last update transaction when committed on that node. nextId, on the other
hand, keeps track of the next timestamp that the node will propose when it will
receive a commit request for a transaction that accessed some of the data that
it maintains.

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 461

Snapshot visibility for transactions is determined by associating with each
transaction T a scalar timestamp, which we call snapshot identifier or, more suc-
cinctly, sid. The sid of a transaction is established upon its first read operation.
In this case the most recent version of the requested datum is returned, and the
transaction’s sid is set to the value of commitId at the transaction’s originating
node, if the read can be served locally. Otherwise, if the requested datum is not
maintained locally, T.sid is set equal to the maximum between commitId at the
originating node and commitId at the remote node from which T reads. From
that moment on, any subsequent read operation is allowed to observe the most
recent committed version of the requested datum having timestamp less than or
equal to T.sid, as in classical multiversion concurrency control algorithms.

SCORe relies on a genuine atomic commit protocol that can be seen as the
fusion of the Two-Phase Commit algorithm (2PC) and the Skeen’s total order
multicast [6]. 2PC is used to validate update transactions and to guarantee the
atomicity of the application of their post-images. Overlapped with 2PC, SCORe
runs a distributed agreement protocol, similar in spirit to Skeen’s total order
multicast algorithm, which allows to achieve a twofold goal: (i) totally ordering
the commit events of transactions that update any data item in a partition j
among all the nodes that replicate j (namely, gj); (ii) tracking the serialization
order between update transactions that exhibit (potentially transitive) data de-
pendencies by totally ordering them via a scalar commit timestamp that is also
used as version identifier of the post-images of committed transactions.

A key mechanism used in SCORe to correctly serialize transactions, and in
particular to track write-after-read dependencies [26], is to update the nextId of
a node upon the processing of a read operation. Specifically, if a node receives
a read operation from a transaction T having a sid larger than its local nextId,
this is advanced to T.sid. This mechanism allows to guarantee that any update
transaction T up that requests to commit on node Ni at time t is attributed a
commit timestamp larger than the timestamp of any transaction T that read a
value from Ni before time t, hence ensuring that T up is serialized after T .

Finally, since a transaction is attributed a snapshot identifier upon its first
read, which is used throughout its execution, SCORe guarantees that the snap-
shot read by a transaction is always consistent with respect to a prefix of
the (equivalent serial) history of committed transactions. As a consequence, in
SCORe read-only transactions never abort and do not need to undergo any
distributed validation.

The pseudocode of the SCORe protocol is reported in Algorithms 1, 2, 3, 4,
and discussed and analyzed in the following. For the sake of presentation, we will
first assume that the transaction’s coordinator does not crash, and then discuss
how to relax this assumption in Sect. 4.4.

4.2 Handling of Read and Write Operations

SCORe buffers write operations of transactions in a private writeset (denoted as
ws in Algorithm 1), which is only made visible upon transaction’s commit.

462 S. Peluso, P. Romano, and F. Quaglia

Read operations on a datum d first check whether d has already been updated
by the transaction, returning in this case the value present in the transaction’s
writeset. Otherwise, it is necessary to establish which of the versions of d is visi-
ble to the transaction. As already mentioned, transactions establish the sid that
they use to determine version’s visibility upon their first read. If this read oper-
ation is local, the transaction’s sid is simply set equal to the originating node’s
commitId. Otherwise, it is set equal to the maximum between the commitId of
the remote node from which the data is read and the commitId of the trans-
action’s originating node. Further, if the transaction’s sid is higher than the
node’s nextId, the latter is set equal to T.sid. This ensures that update trans-
actions that subsequently issue a commit request on that node are serialized
after T .

Next, the version visible by transaction T is determined, as in conventional
MVCC algorithms [26], by selecting the most recent version having commit
timestamp less than T ’s snapshot identifier. Before doing so, however, T first
waits for the completion of the commit phase of any transaction T ′ that i) is
updating d, and ii) is currently in its commit phase. In fact, in case T ′ is com-
mitted successfully, as it will be clearer in the following, it might be attributed
a timestamp smaller than T.sid. Hence, T ′ would be totally ordered before T
and the version of d created by T ′ would be visible to T . If T ′ aborted, on the
other hand, T should not see its updates. In order to enforce the correct tracking
of this read-after-write dependence, SCORe forces any transaction T reading a
data item d to wait until there are no longer transaction commit events pending
on d and with a (either final or temporary) commit timestamp smaller than
T.sid

The logic for handling remote read operations is defined by Algorithm 2. It
is worthy to highlight that, even though transactions update their own sid only
upon their first read operation, a node attempts to advance its local timestamps
commitId and nextId whenever it receives a message (associated with the re-
quest or the response of a read operation) from another node in the system
informing it that snapshots with higher timestamps have been already commit-
ted. This mechanism, which aims to maximize the freshness of visible snapshots,
is encapsulated by the updateNodeTimestamps function. This function advances
immediately the nextId timestamp, which is used to determine the timestamp
proposed for future commit requests. However, additional care needs to be taken
before advancing the node’s commitId timestamp. As this timestamp determines
the (minimum) snapshot visible by locally generated transactions, in fact, it can
be increased to a new value, say commitId′, only if it is found that there are no
committing transactions that may be given a timestamp less than or equal to
commitId′.

Finally, SCORe includes a simple, yet effective, optimization that consists
in immediately aborting update transactions which, based on their snapshot
identifier, are forced to observe, upon a read operation, data item versions that
have been already overwritten by more recently committed transactions.

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 463

Algorithm 1. Begin, read and write events (node Ni).

upon Write(Transaction T, Key k, V alue val) do
T.ws ← T.ws \ {< k,− >} ∪ {< k, val >};

upon V alue Read(Transaction T, Key k) do
if (∃ < k, val >∈ T.ws) then

return val;

if (is first read of T) then
T.sid ← Ni.commitId;

if Ni ∈ replicas(k) then
< val,maxCommitted,mostRecent >← doRead(T.sid, k);

else
if (is first read of T) then

send ReadRequest[T, k, T.sid, �]) to all Nj ∈ replicas(k);
else

send ReadRequest[T, k, T.sid, ⊥]) to all Nj ∈ replicas(k);

wait receive ReadReturn[T, val,maxCommitted,mostRecent] from Nj ∈ replicas(k);

if (is first read of T) then
T.sid ← maxCommitted;

if T.isUpdate ∧ ¬mostRecent then
T.abort();

T.rs ← T.rs ∪ {< k, val >};
return val;

function < V alue, SnapshotId, boolean > doRead(SnapshotId sid, Key k)
// Track write-after-read dependence
Ni.nextId ← max(Ni.nextId, readSid);
// Enforce read-after-write dependence
wait until (Ni.commitId ≥ readSid ∨ k.exclusiveUnlocked());
V ersion ver ← k.getLastV ersion();
while ver.vn > sid do

ver ← ver.prev;

return < ver.value, Ni.commitId, k.isLastV ersion(ver) >;

Algorithm 2. Handling of remote reads (node Ni).

upon receive ReadRequest[T, k, readSid, firstRead]) from Nj do
SnapshotId newReadSid ← readSid;
if firstRead ∧ Ni.commitId > newReadSid then

newReadSid ← Ni.commitId;

< V alue,mostRecent > val ← doRead(newReadSid, k);
send ReadReturn[T, val,mostRecent, Ni.commitId];
updateNodeTimestamps(readSid);

upon receive ReadReturn[T, val, lastCommitted,mostRecent] from Nj do
updateNodeTimestamps(lastCommitted);

function updateNodeTimestamps(SnapshotId lastCommitted);
// Update global snapshot knowledge
Ni.nextId ← max(Ni.nextId, lastCommitted);
Ni.maxSeenId ← max(Ni.maxSeenId, lastCommitted);

upon Ni.maxSeenId > Ni.commitId∧ pendQ.isEmpty()∧ stableQ.isEmpty() atomically do
Ni.commitId ← max(Ni.maxSeenId, Ni.commitId);

4.3 Commit Phase

As already mentioned, with SCORe read-only transactions can be committed
without undergoing distributed validation phases (unlike, for instance, in [7]).

464 S. Peluso, P. Romano, and F. Quaglia

Update transactions, on the other hand, execute a Two-Phase Commit proto-
col, which is detailed in the following. To guarantee genuineness, SCORe involves
in the commit phase of a transaction T only the nodes that maintain replicas
of the data items that T accessed. More in detail, when a node Ni requests to
commit transaction T , it broadcasts a Prepare message to all nodes Nj be-
longing to Replicas(T.rs ∪ T.ws). Upon the receipt of this message, node Nj

verifies whether the transaction can be serialized after every transaction that
has locally committed so far. To this end, it attempts to acquire exclusive, resp.
shared, locks for the data in T ’s writeset, resp. readset, that it locally maintains.
This lock acquisition is non-blocking since the node waits for a busy lock only for
a certain amount of time, which is determined by means of a configurable time-
out parameter. Next, if the acquisition of the locks succeeds, the node validates
T ’s readset, verifying that none of the items read by T has been overwritten by a
more recently committed transaction. If any of these operations fails, T is simply
rolled back, which will yield to the abort of the whole distributed transaction,
as in classic 2PC.

If the transaction passes the validation phase, however, the Vote message of
2PC is exploited to overlap a distributed agreement scheme similar in spirit to
Skeen’s total order multicast algorithm that aims to establish the final serializa-
tion order for the transaction. More in detail, Nj increments the nextId times-
tamp, inserts the pair< T ,Nj.nextId >, defined on the domain TransactionId×
SnapshotId in a queue of pending committing transactions (denoted as pendQ)
ordered by SnapshotId, and sends back to the transaction coordinator the value
of Nj.nextId in piggyback to the Vote message. The coordinator gathers the
Vote messages (aborting the transaction in case one of the contacted node does
not respond within a predefined timeout), determines the final commit times-
tamp for T as the maximum among the timestamps proposed by the transaction’s
participants, and broadcasts back a Decide message with the transaction’s final
commit timestamp.

Upon the receipt of the Decide message with a positive outcome, unlike clas-
sical 2PC, the transaction is not necessarily immediately committed. In fact, as
each data item is replicated over more than one node, and since we want to ensure
1CS without requiring the validation of read-only transactions, SCORe guaran-
tees that the commit events of all update transactions (even non-conflicting
ones) are totally ordered across all the replicas of a same partition. To ensure
this result, when a Decide message is received on Nj for transaction T with
final commit timestamp fsn, T is removed from the pending queue and is imme-
diately committed (atomically increasing Nj .nextId) only if there are no other
transactions in both the pending queue and a second queue, denoted as stableQ,
with snapshot id less than fsn. If this is not the case, T is buffered in stableQ,
which is ordered by SnapshotId as well, till it can be ensured that no other
pending transaction will ever receive a final commit snapshot id less than fsn
(see Algorithm 4).

We conclude by remarking that the idea of intertwining an atomic commit
algorithm and the Skeen’s total order multicast algorithm was, to the best of

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 465

our knowledge, first employed in our recent proposal GMU [11]. Differently from
SCORe, however, GMU relies on a vector-clock-based timestamping mechanism
that guarantees a weaker consistency criterion (Extended Update-Serializability
[10]).

Algorithm 3. Commit phase (node Ni).

upon boolean Commit(Transaction T) do
if T.ws = ∅ then

return �;

boolean outcome ← �;
Set proposedSn ← ∅;
send Prepare[T, T.sid, T.rs, T.ws] to all Nj ∈ replicas(T.rs ∪ T.ws)
for all Nj ∈ T.involvedNodes do

wait receive Vote[T, sn, res] from Nj or timeout;
if (res = ⊥ ∨ timeout) then

outcome ← ⊥;
break;

else
proposedSn ← proposedSn ∪ sn;

T.sid ← max(proposedSn);
send Decide[T, T.sid, outcome] to all Nj ∈ T.involvedNodes
wait until T.completed = �;
return T.outcome;

upon receive Prepare[T, sid, rs, ws]) from Nj

boolean outcome ← (getExclLocksWithTimeout(ws) ∧ getSharedLocksWithTimeout(rs)
∧ validate(rs, sid)); SnapshotIdsn ← NULL SID

if outcome then
sn ← Ni.nextId ← Ni.nextId+ 1;
pendQ ← pendQ ∪ {< T, sn >};

send Vote [T , sn, outcome] to Nj;

upon receive Decide[T, fsn, outcome]) from Nj atomically do
if outcome then

Ni.nextId ← max(Ni.nextId, fsn);
stableQ ← stableQ ∪ {< T, fsn >};

pendQ ← pendQ \ {< T, − >};
if ¬outcome then

releaseSharedLocks(T.rs);
releaseExclusiveLocks(T.ws);
if T.origin = Ni then

T.outcome ← ⊥;
T.completed ← �;

boolean validate(Set readSet, SnapshotId sid) do
for all k ∈ readSet do

if k.getLastV ersion().vn > sid; then
return ⊥;

return �;

4.4 Garbage Collection and Fault-Tolerance

For space constraints we can only briefly overview which standard mechanisms
could be integrated in SCORe to deal with garbage collection of obsolete data
versions and fault-tolerance.

466 S. Peluso, P. Romano, and F. Quaglia

Algorithm 4. Finalizing the commit phase of transaction T (node Ni).

1: upon ∃ < T, fsn > : {< T, fsn > = stableQ.head ∧
2: (� < T ′, sn > : < T ′, sn > = pendQ.head ∧ sn < fsn} atomically do
3: apply(T.ws, fsn);
4: releaseSharedLocks(T.rs);
5: releaseExclusiveLocks(T.ws);
6: stableQ ← stableQ \ {< T, fsn >};
7: if T.origin = Ni then
8: T.outcome ← �;
9: T.completed ← �;

10:

As in non-distributed MVCC algorithms, versions of a data item d having
timestamps less than the sid of any active transaction can be safely removed,
provided that most recent versions of d have already been committed. In a
distributed platform, it is required to disseminate the information on the sid of
the oldest active transaction at each node. This information can be spread by
relying, e.g., on lazy approaches based on piggybacking or gossip [27].

For simplicity, we have opted to present SCORe as layered on top of a 2PC
protocol, which is well known to be blocking upon failure of the coordinator.
However, the issue of how to ensure high availability of the transaction coordi-
nator state is well understood, and a range of orthogonal solutions have been pro-
posed in literature to deal with such failure scenarios. One may use, for instance,
protocols such as Paxos Commit [28] or other consensus based abstractions [29],
to replicate the state of the coordinator of a transaction T across the replicas
of any of the data partitions accessed by T . Note that, as we are assuming that
at least one process is correct for each replica group, failures of transactions’
participants will not lead to blocking scenarios during the execution of a remote
read operation. Failures of transactions’ participants can, instead, lead to aborts
during the commit phase, as the coordinator unilaterally aborts the transaction
if it times out while waiting for some reply during the prepare phase. To ensure
the liveness of the commit protocol, SCORe relies on an underlying Group Com-
munication System [5] in order to handle the removal of faulty replicas from the
system and manage its reconfiguration, which may imply the re-distribution of
data across replicas to guarantee a desirable replication degree.

Aiming at ensuring 1CS, SCORe opts for sacrificing availability (by aborting
transactions that span remote nodes) in order to ensure consistency in presence
of network partitions. This is not surprising, given the existence of well known
results, such as the CAP theorem [30], concerning the impossibility of achieving
both availability and consistency in presence of partitions.

Finally, SCORe does not introduce additional issues concerning the manage-
ment of dynamic process groups with respect to classic 2PC-based transactional
replication systems. Conversely, its supports for multiversion simplify signifi-
cantly the design of state-transfer mechanisms [31] aimed to synchronize the
state of newly joining nodes.

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 467

5 Correctness Proof

Preliminary Definitions. Let us start by briefly recalling some basic notions
and nomenclature on multiversioned histories [26]. Let us denote as xi the version
of data item x committed by transaction Ti. A multiversioned history H defines
a partial order on the operations executed by transactions on the multiversioned
dataset, and each operation can be a read, a write, a begin, a commit or an
abort operation. We use the following notation for the five types of operations:
bi denotes the begin of a transaction Ti, while ci and ai represent respectively its
commit and its abort; the notation ri(xj) is used to indicate the transaction Ti

performs a read on the version xj , while wi(xi) denotes a write of a new version
xi issued by transaction Ti. In addition, a multiversioned history H implicitly
defines a total order �x for each data item x. A version order � on H is the
union of the �x for each x in H .

Given a multiversioned history H and a version order � on the written data
item versions, a Direct Serialization Graph DSG(H,�) (as in [10,26]) is a direct
graph having a vertex VTi for each committed transaction Ti in H (i.e. ci is in

H) and a direct edge VTi

E−→ VTj from a vertex VTi to a vertex VTj if one of the
following statements holds:

– Tj directly read-depends on Ti (VTi

wr−−→ VTj). There exists a data item x
such that both wi(xi) and rj(xi) are in H .

– Tj directly write-depends on Ti (VTi

ww−−→ VTj). There exists a data item
x such that both wi(xi) and wj(xj) are in H and version xi immediately
precedes version xj according to the total order defined by �.

– Tj directly anti-depends on Ti (VTi

rw
� VTj). There exists a data item x and

a committed transaction Tk in H such that k �= i, k �= j, both ri(xk) and
wj(xj) are in H and version xk immediately precedes version xj according
to the total order defined by �.

A multiversioned history H is One-Copy Serializable iff there exists a version
order � such that the DSG(H,�) graph does not contain any oriented cycle.

One-Copy Serializability. Our proof is based on establishing a mapping be-
tween each vertex VTi in DSG(H,�) and the value of the commit timestamp of
Ti, denoted as commitSId(Ti). We prove the acyclicity of the DSG(H,�) by

showing that for each edge VTi

E−→ VTj ∈ DSG(H,�) SCORe guarantees that
commitSId(Ti) ≤ commitSId(Tj).

Note that, if Ti is a read-only transaction, commitSId(Ti) is equal to the sid
assigned to Ti upon its first read operation. On the other hand, in case Ti is
an update transaction, commitSId(Ti) is computed during Ti’s commit phase
and is equal to the maximum identifier among the ones proposed by the nodes
involved in the commit of Ti .

Let us start by assuming that E is a direct write-dependence edge, and show
that SCORe ensures that commitSId(Ti) < commitSId(Tj). This is because Ti

and Tj are both update transactions and they commit on a common subset S of

468 S. Peluso, P. Romano, and F. Quaglia

the nodes in the system (at least the nodes storing the data item on which the
write-dependence is materialized). In fact, in accordance with the design of the
commit phase, it is ensured that: (i) Tj cannot enter the commit phase of the
protocol before Ti has committed, since Tj has to wait for the release of some
exclusive lock owned by Ti at least on the nodes in S; (ii) Ti updates the nextId
on the nodes in S to a value at least equal to commitSId(Ti) before finalizing its
commit; (iii) the commitSId(Tj) is chosen as the maximum among the nextId
values, incremented by one, of the nodes involved in the commit of Tj .

Now assume that E is a direct read-dependence edge. This means that Tj

has read a version committed by Ti. Therefore the snapshot identifier used
by Tj to perform read operations, i.e. Tj .sid, is greater than or equal to the
Ti’s commit snapshot identifier due to the reading rule defined by the protocol.
So, if Tj is a read-only transaction, this entails that commitSId(Ti) ≤ Tj .sid
= commitSId(Tj); otherwise, if Tj is an update transaction its commit snap-
shot identifier will be always greater than its reading snapshot identifier, since
the value proposed by each node involved in the commit of Tj (i.e. the incre-
mented nextId) is greater than every snapshot seen by Tj . As a consequence,
commitSId(Ti) < commitSId(Tj) holds.

Finally, if E is a direct anti-dependence edge, we have to distinguish two
scenarios. In the former, if Ti is a read-only transaction, then the commitSId(Tj)
is greater than commitSId(Ti) since (i) the Tj’s commit snapshot identifier is
at least equals to all the values proposed for its commit and (ii) there exists a
value among the one proposed that is guaranteed to be greater than Ti’s reading
snapshot identifier (i.e. commitSId(Ti) in this scenario) due to the visibility
rule adopted on each read operation of Ti. In particular, Ti performs a read
operation on a data item x of a node N only after it has ensured that (i) the
nextId value on N will be greater than its reading snapshot identifier and (ii)
no transaction will commit an update on x using a snapshot id not greater than
commitSId(Ti). Otherwise, if Ti is an update transaction, it is guaranteed that
at the time Tj commits, Ti has been already successfully committed otherwise
Ti’s read-set would have been invalidated by Tj. This case is analogous to the one
in which E is a write-dependence edge since we have two update transactions,
Ti and Tj , that commit on a common subset of nodes S, and Ti commits before
Tj; therefore commitSId(Ti) < commitSId(Tj) holds.

Executing 1CS. Indeed, the SCORe protocol provides a consistency criterion
stronger than 1CS. In fact, the protocol ensures that the read operations is-
sued by every transaction T ∈ H , even those that eventually abort, observe the
state generated by a sequential history equivalent to H . This is verifiable by
considering that: (i) since a write operation is externalized only upon a success-
ful commit, a live or an aborted transaction at time t can be considered as a
read-only committed transaction that contains its read prefix performed until t,
except the operation which has triggered an abort (if any); (ii) the DSG(H,�)
graph has a node for each committed transaction or an aborted/live transaction
reduced to its read prefix.

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 469

This property, which was also called Executing 1CS by Adya [10], is also im-
plied by the more recent Opacity [34] property. However, it is easy to show that,
since SCORe fixes the timestamp of a transaction upon its first read operation,
it does not guarantee real-time ordering, as required by Opacity.

6 Experimental Data

In this section we report the results of an experimental study aimed at evaluating
the performance and scalability of SCORe. This study is based on a prototype
implementation of SCORe1 that has been integrated within the Infinispan data
grid system, a JAVA based open source NoSQL data platform developed by Red
Hat [13]. Similarly to what done by other distributed, in-memory data platforms,
Infinispan externalizes a simple key-value store interface. Also, it targets scala-
bility by natively relying on weak data consistency models, and on a lightweight
consistent hashing scheme [32], which allows partitioning data efficiently across
the nodes, while ensuring good load balancing and minimum reshuffling of keys
in presence of joins/departures of nodes from the platform. Further, Infinispan
natively supports partial replication, allowing to store each key across a fixed,
user-tunable number of replicas.

The strongest consistency level ensured by Infinispan is Repeatable Read [2]
(RR), which guarantees that no intermediate or aborted values are ever ob-
served, and that no two reads on the same key within the same transaction
can return different values. RR is definitely weaker than Serializability, as it
allows the commit of (both read-only and update) transactions that observe
non-serializable schedules [10]. To provide some more architectural details, In-
finispan relies on an encounter based two-phase-locking scheme, which is applied
only to write operations and that does not synchronize reads. Repeatability of
read operations is instead guaranteed by storing (locally caching) the read data
items, and returning the stored copies upon subsequent reads. For what concerns
the native replication protocol supported by Infinispan, it relies on a classical
2PC-based distributed locking algorithm [33].

Being Infinispan designed to achieve high scalability in the context of weak
data consistency models, we argue that it represents an ideal baseline to evaluate
the costs incurred in by the SCORe protocol in order to provide 1CS (i.e. strong
consistency) guarantees.

Benchmarks. We have evaluated SCORe using two different benchmarks. The
first one is a porting of TPC-C [14] adapted to execute on a NoSQL platform such
as Infinispan. TPC-C is a benchmark representative of OLTP environments, and
is characterized by complex and heterogeneous transactions, with very skewed
access patterns, and hence non-minimal conflict probability. In our study we con-
figured the benchmark to generate two workloads: one including 50% of update
transactions, and a second one including 90% of read-only transactions.

1 The SCORe prototype is publicly available at the URL http://www.cloudtm.eu

470 S. Peluso, P. Romano, and F. Quaglia

The second benchmark is YCSB (Yahoo! Cloud Serving Benchmark) [15],
which is specifically targeted at the assessment of key-value data grids and cloud
stores. This benchmark is somehow complementary to TPC-C since its transac-
tional profile is characterized by simpler transactions that rarely conflict.

Test-bed Platforms. We performed our study on two different experimental
testbeds. The first one, denoted as Cloud-TM platform, is a dedicated cluster
of 20 homogeneous nodes, where each machine is equipped with two 2.13 GHz
Quad-Core Intel(R) Xeon(R) E5506 processors and 16 GB of RAM, running
Linux 2.6.32-33-server and interconnected via a private Gigabit Ethernet. This
platform is representative of small/medium private clouds or data-center envi-
ronments, with dedicated servers and a fairly large amount of available (com-
putational and memory) resources per node. In all the experiments performed
on the Cloud-TM platform we used four threads per node to inject transactions
(in closed loop), which guaranteed a high utilization of the machine’s resources
without overloading them, which would otherwise lead to unreliable results in
terms of assessment of the distributed protocol used to handle partial replication.

The second used platform is FutureGrid, which is a public distributed test-bed
for parallel and cloud computing. This platform allowed us to evaluate SCORe in
environments representative of public cloud infrastructures, which are typically
characterized by more competitive resource sharing, ample usage of virtualiza-
tion technology, and relatively less powerful virtualized nodes. On top of the
FutureGrid platform we performed experiments using up to 100 virtual ma-
chines, equipped with 4GB RAM, two 2.93GHz cores Intel Xeon CPU X5570,
running CentOS 5.7 x86 64. All the VMs were deployed in the same physical
data-center and interconnected via Gigabit Ethernet. Also, again in order not
to saturate machine’s resources, in all the experiments performed on FutureGrid
we used two threads per node to inject transactions (in closed loop).

Finally, for both deploys on the above described platforms, we have set the
replication degree of each data item to the value 2.

Results. In Fig. 1 we show the achieved throughput values for TPC-C on top
of the Cloud-TM platform while varying the number of involved nodes between
2 and 20. The plots in the top row refer to the workload composed at the 90%
by read-only transactions, denoted as Workload A. The left plot reports the
throughput for write transactions, whereas the right plot reports the throughput
for read-only transactions. We contrast the performance of SCORe, with that
of the native RR scheme supported by Infinispan, and with that of the GMU
protocol presented in [11], which has also been integrated within Infinispan. As
already discussed, GMU ensures a consistency criterion (namely EUS - Extended
Update-Serializability [10]) weaker than 1CS, but stronger than RR. In other
words, GMU exhibits intermediate consistency semantics with respect to the
other two analyzed protocols.

The plots highlight that SCORe attains throughput values that are even
slightly better than those achieved by GMU. This phenomenon is explainable

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 471

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Read Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Write Transactions - (TPC-C Workload B)

SCORe
GMU

RR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Read Transactions - (TPC-C Workload B)

SCORe
GMU

RR

Fig. 1. TPC-C Benchmark (Cloud-TM)

by considering that, while SCORe relies on a timestamping mechanism based on
scalar clock values, GMU uses vector clocks, which introduce higher overheads
with respect to scalar clocks as the number of nodes in system grows.

The plot in the bottom row of Fig. 1 reports the results for TPC-C, obtained
on top of the Cloud-TM platform, for the scenario encompassing 50% of read-
only transactions, denoted as Workload B. While the comparative behavior of
SCORe vs GMU follows trends similar to those observed for 90% read-only trans-
actions, this time the performance loss of SCORe vs RR for update transactions
grows significantly. This is essentially due to the fact that the increased volume
of update transactions leads to an increased abort rate caused predominantly
by failures during the validation phase of the transaction’s read set (interest-
ingly, the aborts due to failures in the lock acquisition phase turned out to be
statistically marginal). In other words, as the update rate grows, the probability
for an update transaction to access a stale snapshot accordingly grows. In par-
ticular, for the case of 20 nodes, the abort probability for update transactions
with SCORe is on the order of 43%, while RR only exhibits around 8% abort
rate for update transactions, with aborts exclusively caused by deadlocks. How-
ever, when considering the total throughput for Workload B (including both
read-only plus update transactions), SCORe exhibits similar scalability trend
when compared to RR. Overall, the data show that, for increased contention
scenarios, strong consistency semantics do pay a performance toll, which, in this
specific configuration, corresponds to a throughput reduction up to 22% (at 20

472 S. Peluso, P. Romano, and F. Quaglia

 0

 10000

 20000

 30000

 40000

 50000

 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of Nodes

Read and Write Transactions - (YCSB)

SCORe
GMU

RR

Fig. 2. YCSB Benchmark (Cloud-TM)

 0

 200

 400

 600

 800

 1000

 1200

 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

C
om

m
itt

ed
 tx

/s
ec

)

Number of nodes

Read Transactions - (TPC-C Workload A)

SCORe
GMU

RR

Fig. 3. TPC-C Benchmark (FutureGrid)

nodes). On the other hand, we argue that this is an unavoidable cost to pay in
applications whose correctness can be endangered by adopting non-serializable
isolation levels.

In Fig. 2 we show the results obtained by running YCSB on the Cloud-TM
platform. We used Workload A [15] of the benchmark, which is an update inten-
sive workload (comprising 50% of update transactions) simulating a session store
that records recent client actions. We report the maximum throughput (com-
mitted transactions per second) achievable by the three considered protocols.
The plot shows that the average reduction in throughput for both SCORe and
GMU, compared to RR, oscillates around 8%, and that, again, the throughput
scales linearly at the same rate as RR, providing an evidence of the efficiency
and scalability of the proposed solution when considering transaction profiles
featuring applications natively tailored for key-value data stores.

In Fig. 3 we present the results obtained by running Workload A of TPC-C on
FutureGrid. The data confirm the general trends already observed on the Cloud-
TM platform, highlighting both the high scalability of the proposed solution and
its high efficiency when compared to vector-clock-based solutions, such as GMU,
whose overheads grow linearly with the scale of the platform.

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 473

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
n

ex
ec

ut
io

n
la

te
nc

y
(m

se
c)

Number of nodes

Read and Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 5

 10

 15

 20

 25

 30

 40 50 60 70 80 90 100

T
ra

ns
ac

tio
n

ex
ec

ut
io

n
la

te
nc

y
(m

se
c)

Number of nodes

Read and Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

Fig. 4. Average transaction execution latency (TPC-C Workload A) for both Cloud-
TM (left) and FutureGrid (right)

Finally, for completeness of the analysis, we report in Fig. 4 the average trans-
action execution latency for the case of TPC-C (Workload A) run on both Cloud-
TM and FutureGrid. By the data we observe that, for all the protocols, latency
values stay almost flat while increasing the size on the underlying platform (and
consequently of the total workload sustained), which again supports the claim
of good scalability of SCORe. Further, the relevance of this result is supported
by the fact that all the reported values were related to scenarios where the uti-
lization of infrastructural resources was high (as an example, for the tests with
TPC-C on top of FutureGrid the CPU utilization was constantly observed to
be over the 80%). Hence, the data refer to scenarios where the throughput was
relatively close to the maximum sustainable one.

7 Conclusions

In this article we introduced SCORe, which is, to the best of our knowledge, the
first partial replication protocol that jointly guarantees the following properties:
(i) genuineness, which maximizes system scalability by demanding that only
the replicas that maintain data accessed by a transaction are involved in its
processing; (ii) strong consistency of the snapshots observed by read operations,
thanks to a one-copy serializable multiversion scheme, which never aborts read-
only transactions and that spares them from any (distributed) validation phase.

We integrated SCORe in Infinispan, a popular open source distributed data
grid, and evaluated its performance by means of an experimental study relying
on well-known benchmarks and on the usage of both private and public cloud
infrastructures. The experimental results demonstrate that SCORe can scale up
to a hundred nodes, delivering throughput and latency comparable to schemes
that ensure much weaker consistency criteria.

We argue that the ability of SCORe to ensure strong consistency guarantees
without hampering scalability can enlarge significantly the spectrum of applica-
tions commonly deployed on large scale NoSQL data grids.

474 S. Peluso, P. Romano, and F. Quaglia

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proc. of the 21st ACM SIGOPS Symposium on Operating
Systems Principles, pp. 205–220 (2007)

2. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A cri-
tique of ANSI SQL isolation levels. In: Proc. of the ACM SIGMOD International
Conference on Management of Data, pp. 1–10 (1995)

3. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44, 35–40 (2010)

4. Aguilera, M.K., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia: a
new paradigm for building scalable distributed systems. ACM SIGOPS Operating
Systems Review 41, 159–174 (2007)

5. Defago, X., Schiper, A., Urban, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. J. ACM Computing Surveys 36, 372–421 (2004)

6. Guerraoui, R., Schiper, A.: Genuine atomic multicast in asynchronous distributed
systems. J. Theoretical Computer Science 254, 297–316 (2001)

7. Schiper, N., Sutra, P., Pedone, F.: P-Store: Genuine Partial Replication in Wide
Area Networks. In: Proc. of the 29th IEEE Symposium on Reliable Distributed
Systems, pp. 214–224 (2010)

8. Armendáriz-Iñigo, J.E., Mauch-Goya, A., González de Mend́ıvil, J.R., Muñoz-
Escóı, F.D.: SIPRe: a partial database replication protocol with SI replicas. In:
Proc. of the 2008 ACM Symposium on Applied Computing, pp. 2181–2185 (2008)

9. Serrano, D., Patiño-Mart́ınez, M., Jiménez-Peris, R., Kemme, B.: Boost-
ing Database Replication Scalability through Partial Replication and 1-Copy-
Snapshot-Isolation. In: Proc. of the 13th Pacific Rim International Symposium
on Dependable Computing, pp. 290–297 (2007)

10. Adya, A.: Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. PhD Thesis, Massachusetts Institute of Tech-
nology (1999)

11. Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability
Meets Consistency: Genuine Multiversion Update-Serializable Partial Data Repli-
cation. In: Proc. of the IEEE 32nd International Conference on Distributed Com-
puting Systems, pp. 455–465 (2012)

12. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Proc. of the 23th ACM Symposium on Operating Systems
Principles, pp. 385–400 (2011)

13. Marchioni, F., Surtani, M.: Infinispan Data Grid Platform. PACKT Publishing
(2012)

14. TPC Council: TPC-C Benchmark, Revision 5.11 (2010)
15. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proc. of the 1st ACM Symposium on Cloud
Computing, pp. 143–154 (2010)

16. Kemme, B., Alonso, G.: Don’t Be Lazy, Be Consistent: Postgres-R, A New Way to
Implement Database Replication. In: Proc. of the 26th International Conference
on Very Large Data Bases, pp. 134–143 (2000)

17. Lin, Y., Kemme, B., Patiño-Mart́ınez, M., Jiménez-Peris, R.: Middleware based
Data Replication providing Snapshot Isolation. In: Proc. of the 2005 ACM
SIGMOD International Conference on Management of Data, pp. 419–430 (2005)

SCORe: A Scalable One-Copy Serializable Partial Replication Protocol 475

18. Thomson, A., Abadi, D.J.: The case for determinism in database systems. J. VLDB
Endowment 13, 70–80 (2010)

19. Wiesmann, M., Schiper, A.: Comparison of Database Replication Techniques Based
on Total Order Broadcast. J. IEEE Transactions on Knowledge and Data Engi-
neering 17, 551–566 (2005)

20. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach. J.
Distributed and Parallel Databases 14, 71–98 (2003)

21. Thomson, A., Diamond, T., Weng, S., Ren, K., Shao, P., Abadi, D.J.: Calvin:
fast distributed transactions for partitioned database systems. In: Proc. of the
2012 ACM SIGMOD International Conference on Management of Data, pp. 1–12
(2012)

22. Carvalho, N., Romano, P., Rodrigues, L.: SCert: Speculative certification in repli-
cated software transactional memories. In: Proc. of the 4th Annual International
Conference on Systems and Storage, pp. 10:1–10:13 (2011)

23. Palmieri, R., Quaglia, F., Romano, P.: OSARE: Opportunistic Speculation in Ac-
tively REplicated Transactional Systems. In: Proc. of the IEEE 30th International
Symposium on Reliable Distributed Systems, pp. 59–64 (2011)

24. Baker, J., Bond, C., Corbett, J., Furman, J.J., Khorlin, A., Larson, J., Leon, J.,
Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Avail-
able Storage for Interactive Services. In: Proc. of the 5th Biennial Conference on
Innovative Data Systems Research, pp. 223–234 (2011)

25. Bieniusa, A., Fuhrmann, T.: Consistency in hindsight: A fully decentralized STM
algorithm. In: Proc. of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, pp. 1–12 (2010)

26. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

27. van Renesse, R., Birman, K.P., Vogels, W.: A Robust and Scalable Technology
For Distributed Systems Monitoring, Management, and Data Mining. J. ACM
Transactions on Computer Systems 21, 164–206 (2003)

28. Gray, J., Lamport, L.: Consensus on transaction commit. J. ACM Transactions on
Database Systems 31, 133–160 (2006)

29. Frølund, S., Guerraoui, R.: Implementing E-Transactions with Asynchronous
Replication. J. IEEE Transactions on Parallel and Distributed Systems 12, 133–146
(2001)

30. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proc. of the 19th
Annual ACM Symposium on Principles Of Distributed Computing, pp. 7 (2010)

31. Jiménez-Peris, R., Patiño-Mart́ınez, M., Alonso, G.: Non-Intrusive, Parallel Re-
covery of Replicated Data. In: Proc. of the 21st IEEE Symposium on Reliable
Distributed Systems, pp. 150–159 (2002)

32. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In: Proc. of the 29th Annual ACM Symposium on
Theory of Computing, pp. 654–663 (1997)

33. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. In: Proc. of the ACM SIGMOD International Conference on Management
of Data, pp. 173–182 (1996)

34. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: Proc.
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 175–184 (2008)

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 476–495, 2012.
© IFIP International Federation for Information Processing 2012

P3S: A Privacy Preserving Publish-Subscribe
Middleware

Partha Pal, Greg Lauer, Joud Khoury, Nick Hoff, and Joe Loyall

BBN Technologies
Cambridge, MA 02138

{ppal,glauer,jkhoury,nhoff,jloyall}@bbn.com

Abstract. This paper presents P3S, a publish-subscribe middleware designed to
protect the privacy of subscriber interest and confidentiality of published con-
tent. P3S combines recent advances in cryptography, specifically Ciphertext
Policy Attribute Based Encryption (CP-ABE) and Predicate Based Encryption
(PBE) with an innovative architecture to achieve the desired level of privacy.
An initial P3S prototype has been implemented on top of a COTS JMS platform
(ActiveMQ). Results of preliminary security analysis and initial evaluation of
latency and throughput indicate that the P3S design is both practical and flexi-
ble to provide different levels of privacy for publish-subscribe messaging over
various message sizes and network bandwidth settings.

Keywords: publish-subscribe, architecture, security, privacy, performance.

1 Introduction

Message-oriented middleware supporting publish-subscribe (pub-sub) interaction has
become fairly common in military and commercial applications. In pub-sub messag-
ing, information consumers and producers do not need to establish a connection be-
tween them a-priori (often described as loose coupling). Pub-sub style messaging also
provides selective filtering of information so that the consumers only receive messag-
es they are interested in (often described as brokering). The combination of brokering
and loose coupling facilitates scalability: instead of n entities each connecting to each
other (n2 connections), in a typical pub-sub system they just need to connect to the
broker (n connections). However, loose coupling and brokering make it hard to
maintain information privacy. Subscriber interest is usually visible at the broker
because it needs to do the matching and filtering, and standard encryption cannot be
used to protect the published content because there is no end to end security associa-
tion between the information producer and the ultimate receiver of the content.

This drawback limits the use of pub-sub messaging in a wide range of system and
application contexts. For example, in the commercial context, parties pursuing a mer-
ger and acquisition (M&A) deal may be interested in receiving updates on various
topics, but the knowledge that party X is interested in topic Y may tip the hand of
X. In a military context, intelligence analysts in a coalition environment may be

 P3S: A Privacy Preserving Publish-Subscribe Middleware 477

interested in receiving updates on information that they have agreed to share, but the
knowledge that country A is interested in topic B may compromise country A’s strat-
egy. Also, in both the commercial and military contexts, information updates may
have associated “need to know” type requirements stipulating that published content
should not be visible to anyone other than the subscribers with matching interest—for
example, the broker or other parties who are not interested in “Lehman Brothers”
should not receive updated information about Lehman Brothers.

Techniques like sharing encryption keys among publishers and consumers, re-
encryption, onion-routing etc. have been used to provide a level of privacy in pub-sub
systems. We discuss a number of such approaches in Section 7; however, none of
these provide a satisfactory solution to keeping subscriber interests private.

The main contributions of this paper are as follows:

• Design and implementation of a pub-sub middleware with a strong cryp-
tographic guarantee of the privacy of subscriber interest and confiden-
tiality of published content. To the best of our knowledge, no such system
exists today.

• Performance analysis indicating that such privacy guarantee can be pro-
vided at a reasonable cost over a variety of combinations of message size,
match rate and network bandwidth.

• Innovative combination of advanced cryptography with sophisticated ar-
chitecture design as a blueprint for developing advanced security capabil-
ities in the middleware.

The rest of the paper is organized as follows. Section 2 describes the privacy proper-
ties and performance characteristics that P3S set out to achieve. Section 3 presents the
basics of the advanced cryptographic techniques used in P3S. Section 4 and 5 presents
the P3S architecture design and current implementation respectively. Section 6 reports
our preliminary analysis of privacy and performance. Section 7 summarizes related
work, and Section 8 concludes the paper.

2 Terminology, and Privacy and Performance Targets

We use standard pub-sub terminology throughout the paper with a few exceptions.
Publisher is an entity that wishes to make information content available to subscrib-
ers, and subscriber is an entity that registers subscription interest and receives the
content that matches the interest. Payload refers to the content that a publisher wants
to publish. The term metadata is used to refer to the description of a payload.
Interest is a predicate about metadata and the term matching refers to the action of
determining if the metadata describing a published payload satisfies the subscriber’s
interest. Among the less common terms, we use third party to denote an entity that is
neither a publisher nor a subscriber. In P3S, there are four third parties namely, the
Repository Server, the Distribution Service, the PBE Token Server and the Attribute-
Based Access Control and Registration Authority (ARA). They will be introduced in

478 P. Pal et al.

more detail in Section 4. Finally, we also use the term participant to mean a publish-
er, a subscriber or a third party.

The P3S middleware aims to satisfy a set of privacy and performance requirements
above and beyond the traditional pub-sub functional requirements.

Basic P3S functional requirements are as follows. Publishers should not be aware
of subscribers; P3S is expected to deliver published items to subscribers with match-
ing interest. Matching is done based on metadata associated with published items,
described as attribute-value pairs chosen from a fixed, predefined space of attributes
and their values (metadata space). Subscriber interest is expressed as a conjunctive
predicate over the attribute value pairs from the metadata space. The predicates may
have wildcard (*) for values indicating interest in any value of the corresponding
attribute. P3S should deliver a published item to a subscriber if and only if the latter is
interested in the item. P3S should be open in the sense that legitimate clients may,
within a metadata space, register any subscription. Controlling what subscription
predicates a subscriber can issue is beyond the scope of the current paper; however
we assume that a legitimate client behaving honestly will not subscribe with wild-
cards for all attributes.

The P3S privacy requirements are focused on protecting subscriber interest and
minimizing the exposure of published content. Subscriber interests are private; other
participants should not learn the interest(s) of a subscriber. Similarly, the publisher
should not reveal payloads to subscribers unless their interests match. Furthermore
subscribers should not learn anything about published metadata beyond knowing that
their predicate does/doesn't match metadata. A publisher may not know if a particular
item was matched or not. Other participants may learn that an item was published as
long as the participant is unable to identify the item (for example the item is en-
crypted). An item that has been deleted based on its publisher’s intent should not be
available to subscribers even if the deleted item’s metadata matched the subscriber’s
interest. Additionally, a participant with access to the original item may not re-publish
the item after it has been deleted; he can however, publish the same content as a new
item (new identifier, new metadata) as his own.

Finally, in terms of performance requirements, P3S aims to keep the average
time to process and deliver a publication to an individual matching subscriber within
ten times (10x) that of a similar (baseline) system without the privacy protection.
Similarly, P3S throughput is also aimed to be no worse than ten times (10x) that of
the throughput of a similar system without privacy protection.

3 Cryptographic Background

3.1 Predicate Based Encryption (PBE)

PBE is a 1: n (one-to-many) encryption scheme where encryption depends on the
attribute values specified by the encryptor and where decryption keys depend on pre-
dicates. Decryption is possible only if the attribute values set by the encryptor (pub-
lisher in our case) satisfy the decryptor's (subscriber in our case) predicate. Formally,
following the model and notation from [7, 6], let , , … , denote the

 P3S: A Privacy Preserving Publish-Subscribe Middleware 479

attribute vector with elements chosen from the alphabet Σ, i.e., Σ , and let y
denote the l-element interest vector chosen from the alphabet Σ Σ , i.e., Σ where denotes the wildcard character. Let us also define the conjunctive
predicate : Σ Σ 0,1 as , 1 . As in [7, 6], we focus only on the match predicate
since it enables the construction of several other predicates.

Definition: A Public Key Predicate Based Encryption scheme (PK-PBE) consists
of the following algorithms: , : The setup algorithm takes a security parameter and outputs
a master public key and master secret key . , , : Encrypts the message using the master public key

 and the attribute vector . , : Takes secret key and interest vector and outputs a
token . , : Takes as input token for some interest vector and
ciphertext encrypted using some attribute vector and outputs message if , 1 and null otherwise.

Semantic security, token security, and collusion-resistance are the security properties
generally considered in the context of a predicate encryption scheme. Semantic secu-
rity requires that no information about the attribute vector be revealed by the ci-
phertext. Token security requires that no information about the interest vector be
revealed by the cryptographic token. Collusion-resistance means that multiple tokens
do not allow unauthorized decryption of a ciphertext, i.e., at least one of the tokens
must match in order to decrypt, hence combining tokens does not release information.
The public key encryption schemes in [6] and [7] provide semantic security and collu-
sion-resistance and will be the focus of this work. The schemes do not provide token
security. Any party with access to a token and the ability to generate encrypted
metadata is able to infer the interest vector (see [9]).

Hidden Vector Encryption (HVE) [6] is an efficient PBE construction based on
composite-order groups that assumes a single predicate – equality - and sup-
ports large alphabets. Iovino et al. [7] provide a more efficient HVE construction
that uses prime-order groups but restricts Σ to the binary alphabet Σ 0,1 . The
current implementation of P3S utilizes the construction and implementation in [7, 10].
While the P3S architecture is open to other PBE implementations, our choice of HVE
implies that the supported predicates are conjunctions of equality on a binary alphabet
augmented with wildcards. We extend the expressiveness of this binary PBE scheme
to support a richer attribute space. Attribute and predicates are represented as bit vec-
tors in HVE. To support a metadata space of N attributes, each of which may take one
of 8 values, we construct the 3N-bit vector where the first 3 bits are used to encode
the 1st attribute, the next 3 for the 2nd and so on. We do the same for and assume a
wildcard spans all bits that represent the attribute. Note that the security of our map-
ping follows directly from the attribute-hiding property of HVE [7].

480 P. Pal et al.

3.2 Ciphertext Policy Attribute Based Encryption

As in PBE, CP-ABE uses a set of attributes and a predicate over those attributes.
However CP-ABE encrypts the ciphertext with a policy (predicate) over the set of
attributes, and associates the decryption key with a set of attributes. Decryption of the
ciphertext is possible if and only if the decryptor's attributes match under the predicate
specified by the encryptor. CP-ABE is thus a 1: n (one-to-many) encryption scheme
in which the encryptor of the data (publisher in our case) does not need to explicitly
know who the participants (subscribers) are, yet can still constrain which participants
may decrypt the data.

Definition: A Ciphertext-Policy Attribute Based Encryption scheme (CP-ABE) [8]
consists of the following algorithms: , : The setup algorithm takes a security parameter and out-
puts the public parameters and master key . , , : Encrypts the message using the public parameters

 and policy (also called the access structure) defined over the attribute space.
The algorithm outputs the ciphertext such that only a user that possesses a
set of attributes that satisfy is able to decrypt. , : Takes master key and set of attributes

and outputs a private key . , , : Takes as input the public parameters and secret key
 and ciphertext for some policy . It outputs message if the attributes

satisfy the ciphertext policy.

In terms of its security properties, CP-ABE does not hide the policy , or the attributes
an entity holds. In fact, the policy is transmitted in the clear with the ciphertext. As
with PBE, CP-ABE is collusion-resistant in the sense that combining keys can decrypt
a message only if at least one of the keys can decrypt the message on its own.

We used the construction and implementation of Bethencourt et al [8, 15] in P3S.
This construction does not support the logical operator in , a shortcoming that
can be addressed by defining of an attribute by a separate attribute, but this
essentially doubles the number of attributes.

4 P3S Architecture

4.1 Components

The components of the P3S architecture are:

• Attribute-Based Access Control and Registration Authority (ARA): The ARA acts
as the certification authority, and only interacts with other components during
registration. During registration it provides the publishers and subscribers with in-
formation they need to publish, including the metadata and predicate schema,
CP-ABE and PBE keying material (see Section 4.3 for more details).

 P3S: A Privacy Preserving Publish-Subscribe Middleware 481

• Dissemination Server (DS): The DS sets up TLS tunnels to subscribers and pub-
lishers and keeps track of how to send information and acknowledgements to them.
It receives PBE-encrypted metadata and CP-ABE-encrypted payload from the pub-
lishers, and forwards PBE-encrypted metadata to registered subscribers, and the
CP-ABE-encrypted payload to the RS.

• Repository Server (RS): The RS stores CP-ABE encrypted payloads along with
their associated Globally-Unique-IDs (GUIDs), and sends the encrypted payload
associated with a GUID to a subscriber upon request.

• Predicate-Based Encryption Token Server (PBE-TS): The PBE-TS receives clear-
text subscription interest (predicate) from the subscriber, and returns the corres-
ponding PBE token to the subscriber.

The P3S architecture is designed to accommodate anonymization. If available, sub-
scribers contact PBE-TS and RS via the anonymization service. P3S’s basic privacy
properties are independent of anonymization, but if incorporated, anonymization en-
hances privacy protection further by hiding the subscriber identity to PBE-TS and RS.

4.2 High Level Overview

Fig. 1 illustrates the basic high-level P3S information flow. Publishers use CP-ABE to
encrypt payload with a policy that specifies what attributes are required to decrypt it.
Subscribers have attributes that allow decryption of the CP-ABE encrypted payload if
they satisfy the publisher's CP-ABE policy. In this sense, CP-ABE provides a level of
access control to protect the confidentiality of the payloads. Subscribers obtain PBE
tokens representing their subscription predicates. Publishers PBE encrypt a reference
to the payload using the associated metadata and send the encrypted metadata to sub-
scribers, via the DS. Subscribers match their tokens against the encrypted metadata. A
successful match yields the only information required to retrieve the payload from the
RS. Performing the matching in the subscriber combined with the use of PBE protects
the privacy of both subscriber interest and content metadata. The retrieval request is
then sent through an anonymization service (if available).

Fig. 1. P3S high level architecture

The CP-ABE encryption allows the publisher to control who can see the payload
without requiring the publisher to know which subscriber is receiving it. The PBE

Subscriber Publisher DS

Local interest matching
on encrypted metadata

PBE-encrypted metadata

ABE-encrypted payload

request and
receive payload

Decrypt payload if
subscriber has
proper attributes

PBE-encrypted metadata

RS

482 P. Pal et al.

encryption allows the subscriber to determine which publications match its interests
without the system disclosing the metadata associated with the publication. Recall
that the access policy in CP-ABE encryption is “in the clear”, and thus the access
policies should only refer to attributes that are safe to disclose to subscribers that may
fail to decrypt the payload, such as organization names or subscriber roles. PBE en-
cryption does not disclose the values of the attributes used to encrypt the data (except
to the extent that a match with subscriber predicates discloses it). However, our cur-
rent architecture does not provide a mechanism to restrict the types of queries that a
subscriber can make. The next section discusses the P3S protocol operation in detail.

4.3 Operation

Initialization: Fig. 2 illustrates the initialization process for Subscribers and Publish-
ers. The ARA provides the subscriber with the PBE metadata format, i.e., field/value
information for specifying subscription interests, contact information for the P3S
services (RS, DS and PBE-TS) and their public key certificates, a CP-ABE secret key
(SKC) based on the client attributes, which is used to decrypt payloads, and a certifi-
cate that indicates the participant is a subscriber.

Fig. 2. P3S initialization process

The ARA provides the publisher with the PBE public parameters, metadata format,
contact information and public key certificates for the P3S services (DS and PBE-TS),
and the CP-ABE policy attributes and the CP-ABE public parameter PKC to be used
by the publisher to encrypt the contents it wishes to publish.

Subscription: Fig. 3 illustrates the process of subscription. The subscriber generates a
symmetric key and then uses the public key of the PBE-TS to encrypt the 3-tuple , , and sends it to the PBE-TS
via the anonymization service. The PBE-TS decrypts the triple and, if the subscriber
certificate is valid, computes the PBE token corresponding to the plaintext predicate.
It then encrypts the token using the key and sends it back to the (unknown) sub-
scriber via the anonymization service. This process allows the subscriber to obtain the

 P3S: A Privacy Preserving Publish-Subscribe Middleware 483

token associated with its plaintext predicate while remaining anonymous to the PBE-
TS providing the token. Note that the PBE-TS sees the plaintext predicate.

Fig. 3. P3S subscription process

Publication: Fig. 4 illustrates the process of publication. The Publisher has a payload
and associated metadata to be published. It generates a unique from a large
space (making it hard to guess) and then uses PBE encryption to encrypt that .
It sends this PBE-encrypted to the DS which then forwards it to all the sub-
scribers. The Publisher then CP-ABE encrypts the 2-tuple , . The
CP-ABE encryption specifies a policy that defines the attributes required by a sub-
scriber if the payload is to be decrypted. The choice of this policy is outside of the
scope of this paper, but could be determined by the payload metadata. The Publisher
then sends the 3-tuple , , ,), where

 represents a time to live (TTL) for this item, to the DS which forwards it to the
RS. The RS stores the , indexed by the GUID
for later retrieval by subscribers. The RS stores the item for at least , after which
it is garbage collected.

Fig. 4. P3S publication process

484 P. Pal et al.

The subscribers receive the PBE-encrypted GUID from the DS and attempt to de-
crypt it using their PBE tokens. If a subscriber's predicate matches the metadata used
during the PBE encryption of the GUID, the GUID will be revealed. The subscriber is
then ready to request the associated payload. It first generates a symmetric key
and then encrypts the 2-tuple , with the RS's public key. It then sends this
message to the RS via an anonymization service. The RS decrypts the message, re-
trieves the , associated with the GUID, encrypts
that , using the key and sends it back to the
subscriber via the anonymization service. This process allows the subscriber to re-
quest a particular payload without revealing its identity to the RS.

The subscriber decodes the message using the key and then attempts to CP-
ABE decode the , . If it has the right attributes
to successfully decode it then it obtains the payload and associated GUID (which it
then uses to correlate the request and response).

Deletion: Deletion is handled by the RS’s garbage collection mechanism. The RS has
a configurable parameter and each publication provides the item specific TTL

 which represents the publisher’s intent to delete the content after the specific
period of time. The RS deletes the item corresponding to the identifier after . The reason for the configurable parameter is to provide some ac-
commodation for the uncontrollable delays in a distributed setting and slower con-
sumers. For a strict interpretation of deleting based on publisher’s intent can be
set to 0, which may result in considerably more failures to fetch the item for some
(slower) clients with matched subscription.

5 Current Prototype

We have implemented a P3S prototype using the Apache Active MQ [14] open source
Java implementation of the Java Message Service (JMS) standard. The current ver-
sion of the prototype includes all components and features described above except for
the anonymization service and CP-ABE encryption (i.e, the ARA and encryption of
published content). We have developed the CP-ABE support functionality using the
construction and library described in [8, 15], but it is not yet integrated with the P3S
prototype. The PBE encryption support is implemented by enhancing the HVE im-
plementation [7] of the JPBC [10] library, and is integrated in the prototype.

In the current implementation, the DS is implemented by extending the AMQ bro-
ker. The P3S subscriber and publisher protocols are implemented by extending the
AMQ client libraries. We retained the top level JMS interface, so that existing JMS
compliant publishers and subscribers can take advantage of the P3S’s privacy preserv-
ing properties without code change, once they include the P3S enhanced AMQ client
libraries. The RS is implemented as a composition of two services, a Web Service to
respond to subscriber’s request for content retrieval, and a Persistence Service that
subscribes to the DS for encrypted content and uses an embedded Apache Derby da-
tabase for storing them. The PBE-TS is also implemented as a Web Service that runs
within an embedded Jetty container and embeds the extended HVE library. We plan

 P3S: A Privacy Preserving Publish-Subscribe Middleware 485

to implement the ARA in a similar manner. Publishers and subscribers interact with
the DS over TLS.

6 Analysis of Privacy and Performance Overhead

6.1 Privacy

In this paper we present a semi-formal analysis of privacy. We begin with the threat
model considered in the analysis:

Definition: An Honest but Curious (HBC) participant only makes well-intentioned
requests (honest) but remembers everything that was sent to them (curious). They
do not eavesdrop, masquerade as other participants, or hijack communications.

Definition: A malicious participant attempts to eavesdrop, performs replay and
man-in-the-middle attacks, and masquerades as other participants.

Note that colluding HBC participants may share information without being malicious.
Our analysis focuses mainly on privacy under an HBC threat model, but includes
colluding HBC subscribers. The ARA, which we assume to be a trusted certification
authority, is not part of the analysis. Additionally, integrity and availability are also
kept out of scope for the most part except for the following. Because of TLS and the
request-response nature of P3S messages, participants can detect if network failures
cause message loss at the application level. The basic P3S operation is robust to node
failures as well. The RS stores encrypted content on disk. A crashed component can
resume publish-subscribe activities after restart without requiring re-encryption of any
published content. A restarted subscriber simply needs to (re)register with the DS and
(re)obtain its PBE tokens from the PBE-TS. Similarly, upon restart a publisher needs
only to (re)register with the DS. A restarted DS needs to wait for subscribers and
publishers to (re)register. A restarted RS simply needs to (re)register with the DS.

Structured Analysis Using Gadgets: A gadget is a simple mechanism we developed
to capture information dependency underneath an encryption scheme. In this section
we use the PBE gadget that captures PBE information elements and their interdepen-
dencies as an illustration. Gadgets for other encryption schemes used (e.g., CP-ABE,
Public Key, Symmetric Key) in P3S are similarly constructed.

More specifically, a gadget is a directed graph , where each node in
is either an information element or an AND gate & . Nodes in the red boundary are
the main information elements, the ciphertext and the token to unlock it. Edges in
represent information dependencies: a directed edge from node to node means
that information element depends on . When is the & gate, then depends on
all information elements that are incident to .

Fig. 5 shows the PBE gadget. Upper case labels like , , represent the set of
all possible information elements represented by their lower case counter-
parts , , . In Fig. 5, PBE ciphertext depends on the (plaintext) message
(which in P3S is a GUID) and the attribute vector (which in P3S is the metadata
description) and the PBE master public key . The & gate leading to

486 P. Pal et al.

embodies the PBE Encrypt
elements and dependencies
GenToken (which takes the
to produce the PBE token
text and PBE token
gadget can be extended to
using the encryption schem
connected only by broken e
ters to P3S such as the ass
attribute vector (repres
scriber identity and
Nodes in the extended gad
privacy requirements.

Analysis using the PBE
steps of the P3S system ov
and information they becom
information (information e
participants, and if so, unde
Undesired exposure of sens

In any execution of P3S,
However, because of the a
interests to subscriber iden
interest vector is visible
ciphertext and the

t operation described in section 3.1. Similarly, informat
s underneath the two other major PBE operations, nam
e interest vector and the PBE master secret key

 corresponding to) and Query (which takes the ciph
n to recover) are also shown in the PBE gadget

represent additional dependencies relevant to the syst
me represented by the gadget. For instance, in Fig. 5 no
edges are additional information and dependency that m
sociation between the publisher identity and
senting metadata), and the association between s
the interest vector (representing subscriber intere
get with dark borders represent the information subjec

Fig. 5. PBE Gadget

E gadget described above involves tracing the execut
er time focusing on the behavior of individual participa

me privy to during execution. We then test whether priv
elements with dark borders) becomes visible to undesi
er what circumstances (i.e., HBC, malicious or colludin
sitive information M is a threat to the privacy of M.
, the PBE-TS can see all subscription interests in plain t
anonymizer, the PBE TS cannot associate the subscript
ntities. Privacy of is still maintained even though
e to the PBE-TS. Similarly, anyone who has access to

right PBE token can decrypt it. However, under H

tion
mely

her-
t. A
tem

odes
mat-

the
sub-
est).
ct to

tion
ants
vate
ired
ng).

text.
tion
the
the

HBC

 P3S: A Privacy Preserving Publish-Subscribe Middleware 487

operation, a subscriber’s token is not shared with anyone else, and the PB-TS does not
see ciphertext . Therefore privacy of is not threatened.

Analysis using the PBE gadget illustrates the lack of token security in PBE [9]. If a
participant is able to obtain a token and create encrypted metadata, it will be able to
reveal by creating encrypted metadata for all attribute vectors (i.e.,) and test
them against the token . This threat is indicated by the orange edges connecting the & node with , and . In HBC execution of P3S, all non-3rd party participants
can encrypt any attribute vector in , but they only have access to their own tokens. A
colluding HBC subscriber S1 can share its Token with others, but if they can do that,
they might share their plaintext interest as well. Even then, such sharing does not re-
veal any more information than the union of the information revealed by them indivi-
dually. A malicious non-3rd party participant however can obtain any token , i.e.,
privacy of (subscriber interest) is threatened under malicious participants.

Another issue revealed by the gadget is that if a subscriber can subscribe to all or a
significant part of the space of all possible subscription interests (i.e.,) to accumulate , he can test any given ciphertext against all tokens in to reveal the
attribute vector used to encrypt . This is shown by the orange edges connecting
the & node with , , , and . HBC and non-colluding execution of P3S
will not allow a subscriber to share tokens, however, over time a subscriber might ac-
cumulate a large number of tokens, which could be used to launch this attack. We have
identified ways to mitigate this threat. One possibility is to time-stamp publications and
tokens, making tokens active only within a configurable period of time. This approach
has the advantage of providing a token revocation mechanism but requires the clients to
be time-synchronized and using time as an additional metadata attribute.

Summary of Non-3rd Party Participant’s Visibility: An HBC subscriber does not
know about anyone else’s subscription interest. It does not know metadata description
of published payloads even though it receives all PBE encrypted metadata. PBE
matching, even when the match succeeds, does not reveal the metadata description.
Matched metadata reveals the GUID, but the subscriber cannot see the corresponding
content unless it possesses the appropriate CP-ABE attributes to decrypt the CP-ABE
encrypted , pair. Being able to decrypt the payload does not reveal
the publisher identity unless the identity is included in the content. A subscriber that
also publishes of course has full visibility of its publications (content and metadata).

An HBC publisher will have no visibility of content and metadata being published
and subscribed by other participants. The publisher does not know whether the con-
tent it published matched with anybody’s subscription, or the identity of the matching
subscriber, or whether anyone actually received its content.

Summary of 3rd Party Participant’s Visibility: The HBC RS does not know which
publisher has published, since it receives all messages from the DS. It does not know the
content of the message since they are CP-ABE encrypted, and as a result does not know
anything about the content of the payload it sends to a subscriber. It does not know the
metadata associated with the content since that information is PBE encrypted and not
delivered to RS. The RS does not know which subscriber has requested a payload, since
all such requests are received from an anonymization service. The symmetric key
sent with such requests allows the RS to return the payload to the subscriber privately

488 P. Pal et al.

without having to know the subscriber's identity. The RS can keep track of whether a
CP-ABE encrypted payload has ever been requested and how many requests have
been received for each such encrypted payload. It knows neither the plaintext payload
nor the metadata associated with an encrypted payload.

The HBC DS knows nothing about the subscriber interests since those are kept lo-
cal to the subscribers. The DS does not know the content of the payload, since it is
CP-ABE encrypted. It does not know anything about the metadata associated with a
payload since that information is PBE encrypted. The DS does not know which payl-
oads have been requested since it does not see any requests for payload from sub-
scribers and, in any event, such requests are encrypted with the RS's public key. The
DS does know the size of payloads and the size of encrypted PBE metadata.

The HBC PBE-TS does not know anything about publications as it receives no
encrypted metadata and no encrypted payloads. The PBE-TS knows the plaintext
predicates generated by subscribers but does not know the binding of subscriber to
predicate as all PBE token requests are sent via the anonymization service. The sym-
metric key sent with such requests allows the PBE-TS to return the token to the
Subscriber privately without having to know the Subscriber's identity.

Eavesdroppers and Other Leakage: Eavesdroppers without any CP-ABE or PBE
credentials learn nothing about subscriptions, metadata or payload content. Eave-
sdroppers may learn the GUID sent by the publisher in the clear but may not decrypt
the associated CP-ABE payloads1. To prevent eavesdroppers from learning if more
than one subscriber has received the same payload, transmissions of a payload from
the RS to subscribers are super-encrypted with a subscriber-specified symmetric key.
Requests for payloads are encrypted with the RS's public key. Legitimate interactions
in P3S however reveal a number of auxiliary information about P3S to parties that are
not the intended receiver of such information. For example, the size of encrypted
content (subscribers and RS are legitimate end users of this interaction) is visible to
eavesdroppers as well as the DS. CP-ABE access control policy is visible to the RS
(matching subscribers are legitimate end users of this interaction). The RS knows if
an encrypted content has been sent to some subscriber(s) (i.e., matched). The aggre-
gate rate at which items are being published can be estimated by subscribers from the
number of encrypted metadata they're getting. The RS can estimate it by how
frequently payloads are stored. Eavesdroppers and the DS know the per-publisher
publication rate and number of items published by each publisher. Eavesdroppers and
the RS know the aggregate number of items received by subscribing clients.

6.2 Performance

We collected metrics by running the P3S prototype in various configurations such as
all parties on one physical server, the DS and RS on a server and a small number of
other participants on individual hosts in the network. However, these measurements
do not present the true performance characteristics of P3S. Even though only a frac-
tion of the subscriptions may actually match a given publication, it is important to

1 To protect against this the publisher may super-encrypt the GUID with the RS's public key

before publishing the payload message.

 P3S: A Privacy Preserving Publish-Subscribe Middleware 489

consider all subscribers in the model because the baseline needs to test each subscrip-
tion against a publication (impacts the broker’s processing load), and encrypted meta-
data for each publication needs to be disseminated to all clients (consumes network
bandwidth). Therefore, we used analytic models with parameter values obtained from
the current prototype to get an understanding of the performance at scale (e.g., 100s of
subscribers) of the P3S system vis-à-vis a baseline. We used a standard centralized
pub-sub system as baseline, where publishers submit their payload and metadata
(such as a topic) to a central broker, subscribers register subscriptions with the broker,
and the broker sends the payload whose metadata matches with a subscription to the
subscriber. In the P3S model, we ignored the anonymizer since as explained in the
previous section, anonymization is not necessary for the basic privacy guarantees of
P3S. Since CP-ABE is not yet integrated in the P3S prototype, we obtained the CP-
ABE timing and ciphertext sizes from the CP-ABE library running standalone. Table
1 shows the parameters of the model and their values used in the analysis. The two
metrics we evaluated are end-to-end latency and throughput:

• End-to-end Latency: This is the time taken by a single publication to reach all
matching subscribers including the time taken for encryption and decryption.

• Throughput: This is the maximum rate at which publications can be injected into
the system, such that all are properly matched and delivered.

Table 1. Parameters and values used in performance models

Symbol Meaning Input Values ℓ Network latency 45 ms
 Network bandwidth 10 Mbps
 Size of plaintext payload to be transferred Varying
 Size of PBE metadata specification 40 bits
 Size of PBE-encrypted metadata 10KB
 Size of CP-ABE-encrypted payload 0.6

 Serialization time for message size m /
 Number of subscribers 100
 Fraction of subscribers that match a given publication 5%
 Number of attributes in CP-ABE policy 10

 Security parameter in CP-ABE algorithm 384 bits

Sketch of the End-to-End Latency Model
The major contributors to end-to-end latency are shown in Fig. 6. End-to-end latency
for the baseline , where is the time for the publisher to send
its message (with metadata) to the broker, is the time for the broker to perform
the matching operation against all registered subscriptions, and is the time for the
broker to transmit the message to all matching subscribers.

Messages from one node to another incurs a fixed latency ℓ and a serialization
time , where is the message size. Given a network bandwidth , / . The baseline system may use standard cryptography (e.g., SSL) to

490 P. Pal et al.

encrypt messages, but diffe
text is insignificant to imp ℓ . Because the b

subscribers, and sending an . Simple
roughly .05ms, and therefor

Fig. 6. C

End-to-end latency for P
between the publisher send
ives the content retrieval re
send the encrypted item to
RS to send the encrypted i
four subcomponents (,
contributing to and ca
RS cannot serve the reques is actually a worst case
ceive the encrypted metadat
first. In practice, activities c
subscriber requests the con
receive the item while some

The time taken to PBE
, where

ronment). The time from w
receives the transmission
operation is ~30 ℓ) where G
component includes th
DS, and is approximated a
(3). The compon
lization times will be diffe
assumed to be 100 Mbps, a
tween the publisher and the

erence in the size of cleartext and the corresponding ciph
pact the processing and transmission times, which me

broker needs to send published item to match

n item to a single subscriber takes the same time as
e XPath matching operation in a modern desktop ta
re with subscribers 0.05 .

Contributors to latency for baseline and P3S

P3S max , , where is the elapsed ti
ding the encrypted metadata to the time when the RS re
equest from the last matching subscriber, is the time
RS (i.e., content submission), and is the time taken

item to requesting subscribers. As shown in Fig. 6 , , , and and has two , . Activi
an happen in parallel in P3S, but until both complete,
sted item, hence we take max , . This formulation
e estimate, which happens when matching subscribers
ta last, and the last matching subscriber requests the con
contributing to happen in parallel to or becaus
ntent as soon as its subscription matches, and the RS m
e subscribers are still receiving the encrypted metadata.
E encrypt and send the metadata to the DS (is ℓ

 is the PBE encryption time(30 in our test en
hen the DS starts dissemination to when the last subscri

 is ℓ). The time to perform PBE ma
 for the ~40KB ciphertext. The last component of

G denotes the size of a GUID, which is ~10 bytes. T
he time to CP-ABE-encrypt the content and send it to
as ℓ . CP-ABE encryption is fairly
nent is also estimated to be ℓ) but the se
erent because the bandwidth between the DS and RS
as might be typical on a LAN, whereas the bandwidth
e DS is 10Mbps as shown in Table 1. CP-ABE encrypt

her-
eans

hing

s,
akes

ime
ece-
e to
 for
has

ities
the

n of
re-

tent
se a
may ℓ
nvi-
iber
atch

,
The
the
fast

eria-
S is
be-

tion

 P3

adds to the size of the mes
mated from theory to be
CP-ABE policy, is a sec
oad. Finally, the componen
from the RS to all matchin
similarly to the disseminati . The last su
time for all other subscribe
itself, and the time to do the

Sketch of the Throughput
Fig. 7 shows the major con
imum rate at which each p
minimum of those rates. Fo
the rate at which the broke
rate at which the broker ca

ware threads for matching,

Fig. 7. Major

For P3S, the throughput

the DS can broadcast metad

is the rate at which a subs , where be the t

and is the number of ha
and is the rate at whic

. The subscri

requests are small and infre

Results
In this section, the message
payload size. Fig. 8 shows
the baseline has low latency

3S: A Privacy Preserving Publish-Subscribe Middleware

sage being sent, the size of the CP-ABE ciphertext is e2 , where is the number of attributes in
curity parameter, and is the size of the plaintext pa

nt , corresponding to the time taken to send the payl
ng subscribers and subsequent decryption, can be mode
ion of PBE-encrypted metadata i.e., ℓ
ubscriber to get the payload has to wait for the serializat
ers, the serialization time for itself, the network latency
e CP-ABE decryption (12).

t Model
ntributors to our throughput model. We determine the m
part of the system can process publications, and find
or the baseline, the throughput is min , where
er can match publications to subscriptions, and is
an send payloads to matching subscribers. Given ha

 , and .

r contributors to throughput for baseline and P3S

for P3S is min , , , where is the rate at wh

data items to subscribers and modeled as ;

scriber can perform PBE matches, and modeled as

time required for the subscriber to match their PBE to

rdware threads dedicated to matching (currently set to
ch the RS can satisfy payload requests, and modeled

iber sends a request to the RS when a match occurs, th

equent, and are not a limiting factor.

e size in the horizontal axis of all figures refers to clear t
the latency results for 10 . For small payloa

y (Fig. 8(a)) because it only has to serialize a small num

491

esti-
the

ayl-
oad
eled

tion
for

max-
the
 is
the

ard-

hich

oken

 2);
d as

hese

text
ads,

mber

492 P. Pal et al.

of small messages, and mat
dominated by the serializat
lows the baseline for large
dominates over other factor
exhibits a threshold. The
imately 38ms, regardless o
operations take 1ms or less
mance is within ten times th

Results for the throughpu
is the dominant factor in the
because fewer messages pe
tral broker. The P3S system
for large payloads, but it is

Fi

For small payloads, P3S
size, the DS must send the
scribers, which creates a bo
P3S performs worse than th
addressed by reconfiguring

(a) end-to-end latency ov

tching time is small. As the payloads get larger, latenc
tion time in the available bandwidth. The P3S system
e payloads. For large payloads, network serialization ti
rs such as the PBE matching time. For small payloads P
PBE matching operation at the subscriber takes appr
of clear text payload size. For 1K payloads, all netw
s. Accordingly, for small payloads, the P3S system perf
he baseline (Fig. 8(b)).

Fig. 8. End to end latency analysis

ut analysis are shown in Fig. 9. As with latency, bandwi
e baseline. As payload size increases, throughput decrea
er second can be sent out the network interface of the c
m exhibits almost exactly the same behavior as the basel
the bandwidth out of the RS that limits the throughput.

ig. 9. Throughput analysis for f = 5%

S performance flattens because regardless of the payl
PBE encrypted metadata (~40KB) to each of the 100 s

ottleneck in the network interface of the DS. Consequen
he baseline for small payloads (Fig. 9(b)). This issue can
the P3S architecture to use hierarchical dissemination.

ver varying message size (b) latency relative to baseline

y is
fol-
ime
P3S
rox-

work
for-

idth
ases
cen-
line

load
sub-
ntly,
n be

 P3S: A Privacy Preserving Publish-Subscribe Middleware 493

P3S throughput relative to the baseline shows no dependence on the number of
subscribers for a fixed matching rate f. We also observed that increasing the network
bandwidth from 10 to 100 Mbps helps both systems equally. But increasing the match
rate benefits P3S. The baseline only disseminates to subscribers who match, whereas
P3S must disseminate to all of them, and if more subscribers match, the baseline loses
its advantage. Fig. 10 shows the throughput of both P3s and the baseline for f = 50.
By contrast, the plots in Fig. 9 was for f =5%. Combining all these results, we can
conclude that P3S performs very well (within 10x) compared to the baseline except
for small payloads and low matching rates.

Fig. 10. Throughput analysis, f = 50%

7 Related Work

Standard security measures such as role-based access control and content encryption in
traditional pub-sub middleware offer only a partial solution: the decryption key needs to
be shared among potential subscribers and enough metadata and subscription informa-
tion needs to be visible to the broker. A content-based pub-sub scheme where content
decryption keys are shared using Pedersen commitment and matching is performed on
blinded attribute-value pairs is presented in [5]. Although their scheme has similar ob-
jectives, subscribers need to register a-priori with the publishers, and brokering is li-
mited to equality of strings and numeric comparison. Another approach outlined in [4]
makes use of reencryption and onion-routing indirection to dissociate the location of
predicate matching the publishers and subscribers. This scheme appears to be specia-
lized for a P2P content sharing network. In [3] a policy-based approach is presented
where data owners can specify who can access their publications and under what condi-
tion. But the broker and the policy enforcement mechanism can see both the published
content and subscriber interest. Contrail [16] presents a novel form of pub-sub for smart
phones that uses sender-side content filters for privacy. In this scheme, the association
between the publisher and subscriber is pretty strong- the subscriber and publisher per-
form a handshake to install the sender-side filter. Private stream searching [17] is anoth-
er relevant research area where the goal is to run encrypted query on unencrypted
streams to produce encrypted matching results. Homomorphic encryption [12] offers a

(a) throughput over varying message size (b) throughput relative to baseline

494 P. Pal et al.

potential solution for privacy preserving pub-sub however, homomorphic encryption
supporting complex computation performed at the broker is still not practical. We are
not aware of any work attempting to preserve the privacy of subscriber interest and
confidentiality of published content in the way described here other than the two other
projects under the R&D program supporting this work. One uses circuit-based minimal
model of secure computation [2] and Barrington’s theorem [1] to simulate the complexi-
ty class NC1 using width-5 branching programs. The other uses Oblivious Transfer [13]
to achieve the privacy objectives.

8 Conclusion

Current pub-sub systems do not provide privacy of published metadata or subscriber’s
interest, and can only provide a limited cover for published content. The P3S system
is designed to protect the privacy of subscriber interest and confidentiality of pub-
lished content. A P3S prototype is implemented on a COTS JMS platform (Apache
AMQ). The privacy guarantees of P3S come from innovative use of PBE and CP-
ABE, and an innovative system architecture that severely limits the exposure of pri-
vate information by isolating and careful positioning of key underlying information
and computation. All components required to support P3S protocol interactions have
been developed, the initial integrated P3S prototype integrates all capabilities except
for CP-ABE encryption and anonymization of subscriber interactions with the PBE-
TS and RS. Initial evaluation shows that P3S overhead is within 10x of the baseline
for a variety of payload size, match rate and network bandwidth combinations. Pre-
liminary privacy analysis shows that P3S preserves the privacy of published content
and subscriber interest for HBC participants, and even when some of them collude.

Analysis also revealed a number of shortcomings of the current P3S prototype. For
example, the PBE-TS is privy to plaintext subscriber interest. Also, there is no sub-
scription control policy enforced on the subscribers. We are currently investigating
how to address these shortcomings. One potential approach is to find alternative con-
figurations where subscriber interest never gets out of the subscriber. For instance, the
PBE-TS functionality can be embedded in each subscriber instead of being centra-
lized. Another alternative is to frame PBE Token generation as a secure 2-party com-
putation [11] in which the PBE TS has the PBE Master Key, and the subscriber has
the interest, and a PBE token is produced by a secure 2-party computation between
them without divulging any party’s information to the other. Apart from these, we are
also exploring innovative uses of the basic privacy-preserving pub-sub middleware
such as private multiparty chat or private control channels in a control system. Final-
ly, we are performing formal security analysis of P3S using indistinguishability
games to complement the semi-formal analysis presented in this paper.

Acknowledgement. The authors acknowledge the collaboration and guidance of
Brent Waters and Vitaly Shmatikov of Univeristy of Texas, Austin in integrating
CP-ABE and PBE in P3S.

This work is supported by the Intelligence Advanced Research Project Activity
(IARPA) via Department of Interior National Business Center (DoI/NBC) Contract
No. DIIPC20195. The U.S. Government is authorized to reproduce and distribute

 P3S: A Privacy Preserving Publish-Subscribe Middleware 495

reprints for Governmental purposes notwithstanding any copyright annotation there-
on. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DOI/NBC, or the U.S. Government.

References

1. Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. Journal of Computer and System Sciences 38(1), 150–164 (1989)

2. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended ab-
stract). In: STOC 1994, pp. 554–563 (1994)

3. Opyrchal, L., Prakash, A., Agrawal, A.: Supporting Privacy Policies in a Publish-
Subscribe Substrate for Pervasive Environments. Journal of Networks 2 (February 2007)

4. Klonowski, M., Kutylowski, M., Rozanski, B.: Privacy Protection for P2P Publish-
Subscribe Networks, Security and Protection of Information, Brno Univ. of Defense, pp.
63–74 (2005)

5. Nabeel, M., Shang, N., Bertino, E.: Privacy-Preserving Filtering and Covering in Content-
Based Publish Subscribe Systems. Purdue University Tech Report 2009-15, June 18 (2009)

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

7. Iovino, V., Persiano, G.: Hidden-Vector Encryption with Groups of Prime Order. In: Gal-
braith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88. Springer,
Heidelberg (2008)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryption. In:
Proceedings of the 2007 IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

9. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

10. GAS Lab Universita deli Studi di Salerno. jPBC Library,
http://gas.dia.unisa.it/projects/jpbc/index.html,
(last accessed May 18, 2012)

11. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg
(2007)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing (STOC 2009), New York, pp. 169–178
(2009)

13. Kilian, J.: Founding Cryptography on Oblivious Transfer. In: Proceedings of the 20th An-
nual ACM Symposium on the Theory of Computation, STOC (1988)

14. Apache Software Foundation. ActiveMQ,
http://activemq.apache.org/features.html, (last accessed May 18, 2012)

15. Bethencourt, J., Sahai, A., Waters, B.: CP-ABE Library,
http://acsc.cs.utexas.edu/cpabe, (last accessed May18, 2012)

16. Stuedi, P., Mohammed, I., Balakrishnan, M., Morley Mao, Z., Ramasubramanian, V.,
Terry, D., Wobber, T.: Contrail: Enabling Decentralized Social Networks on Smartphones.
In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 41–60.
Springer, Heidelberg (2011)

17. Ostrovsky, R., Skeith, W.E.: Private Searching on Streaming Data. Journal of Cryptolo-
gy 20(4), 397–430 (2007)

Author Index

Alonso, Gustavo 394
Appavoo, Jonathan 374
Arad, Cosmin 208

Barreto, João 187
Bestavros, Azer 374
Blair, Gordon 229
Bromberg, Yérom-David 229
Brouwers, Niels 21

Castillo, Claris 332
Chondros, Nikos 436
Cugola, Gianpaolo 312

De Meuter, Wolfgang 61
Do, Ngoc 1
Dowling, Jim 208
Dragojevic, Aleksandar 187

Eisenhauer, Greg 121

Ferreira, Paulo 187
Filipe, Ricardo 187
Ford, Bryan 415
Fu, Yinjin 354

Gandhi, Anshul 142
Gehani, Ashish 101
Giurgiu, Ioana 332, 394
Grace, Paul 229
Guerraoui, Rachid 187

Harchol-Balter, Mor 142
Haridi, Seif 208
Hoff, Nick 476
Hsu, Cheng-Hsin 1
Huneycutt, Chad 121

Ishakian, Vatche 374

Jacobsen, Hans-Arno 249
Jiang, Hong 354
Jung, Myoungsoo 164

Kandemir, Mahmut Taylan 164
Khoury, Joud 476
Koehl, Aaron 41
Kokordelis, Konstantinos 436
Koliousis, Alexandros 292
Kozuch, Michael A. 142

Langendoen, Koen 21
Lauer, Greg 476
Lee, Ki-Suh 81
Lombide Carreton, Andoni 61
Loyall, Joe 476

Margara, Alessandro 312
Marian, Tudor 81

Pal, Partha 476
Peluso, Sebastiano 456
Pinte, Kevin 61
Prabhakar, Ramya 164

Quaglia, Francesco 456

Rayan, Infantdani Abel 121
Réveillère, Laurent 229
Riva, Oriana 394
Rodrigues, Rodrigo 415
Romano, Paolo 456
Roussopoulos, Mema 436

Sagar, Abhishek 81
Santos, Nuno 415
Schwan, Karsten 121
Setty, Vinay 271
Sherafat Kazemzadeh, Reza 249
Steinder, Malgorzata 332
Sventek, Joseph 292
Sweha, Raymond 374

Talwar, Vanish 121
Tantawi, Asser 332
Tariq, Dawood 101

van Steen, Maarten 271
Venkatasubramanian, Nalini 1

498 Author Index

Vitenberg, Roman 271

Voulgaris, Spyros 271

Wang, Chengwei 121

Wang, Haining 41

Weatherspoon, Hakim 81
Wolf, Matthew 121

Xiao, Nong 354

Zhu, Timothy 142

	Title
	Preface
	Organization
	Table of Contents
	Mobile Middleware
	CrowdMAC: A Crowdsourcing System for Mobile Access
	Introduction
	CrowdMAC: Architecture and Approach
	Hardware and Network Architecture
	Software Architecture

	CrowdMAC Admission Control
	Basic Models and Problem Formulation
	Our Proposed Admission Control Algorithm - MAPA
	Performance Analysis for the MAPA Algorithm

	Handling Mobile Device and Mobile AP Mobility
	Testbed Implementation: A Proof-of-Concept
	Simulation Based Evaluation
	Settings
	Evaluation Under Static Scenarios
	Evaluation under Mobility Scenarios

	Related Work and Concluding Remarks
	References

	Pogo, a Middleware for Mobile Phone Sensing
	Introduction
	Related Work
	Design
	Testbed Organization
	Deployment
	Participation
	Experiment Description
	Programming Abstractions

	Implementation
	Example Application
	Node Architecture
	Publish-Subscribe Framework
	Scripting
	Event Scheduling
	Communication
	Tail Detection

	Evaluation
	Program Complexity
	Power Consumption
	Experimental Results

	Conclusions
	References

	m.Site: Efficient Content Adaptation for Mobile Devices
	Introduction
	Related Work
	System Architecture
	Site Administrator Tools
	Proxy Server
	Attribute System

	Evaluation
	Anticipated Load
	Target Usage
	Applying Attributes to the Test Site
	AJAX Support
	AJAX Evaluation
	Limits to Scalability

	Conclusion
	References

	MORENA: A Middleware for Programming NFC-Enabled Android Applicationsas Distributed Object-Oriented Programs
	Introduction
	Drawbacks of the Android NFC API
	Ambient-Oriented Programming
	Approach

	RFID-Enabled Android Applications as Distributed Object-Oriented Programs
	Things
	Initializing Things
	Discovering and Reading Things
	Saving Modified Things
	Broadcasting Things

	RFID-Tagged Objects by Reference
	Detecting RFID Tags
	The Tag Reference Abstraction
	Interaction with Other Phones Using Beam
	Filtering Events

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Tracing and Diagnosis
	Fmeter: Extracting Indexable Low-Level System Signatures by Counting Kernel Function Calls
	Introduction
	Methodology
	Low-Level System Signatures
	Statistical Data Analysis

	Extracting Signatures
	Evaluation
	Micro- and Macro-Benchmarks
	Clustering and Supervised Machine Learning

	Limitations
	Future Work
	Related Work
	Conclusion
	References

	SPADE: Support for Provenance Auditing in Distributed Environments
	Introduction
	Provenance Kernel
	Generating Metadata
	Operating System Provenance
	Application Provenance

	Persistent Storage
	Filtering
	Evaluation
	Related Work
	Conclusion
	References

	VScope: Middleware for Troubleshooting Time-Sensitive Data Center Applications
	Introduction
	System Design and Implementation
	Goals and Non-goals
	VScope Overview
	Troubleshooting Operations
	Flexible DPGs
	Implementation

	Experimental Evaluation
	VScope Base Overheads
	DPG Deployment
	Interaction Tracking
	Supporting Diverse Analytics

	Experiences with Using VScope
	Finding Culprit Region Servers
	Finding a `Naughty' VM

	Related Work
	Conclusions
	References

	Architecture and Performance
	SOFTScale: Stealing Opportunistically for Transient Scaling
	Introduction
	Our Experimental Testbed
	Workload
	Provisioning

	SOFTScale
	When to Invoke SOFTScale?
	How Much Application Work Can Memcached Handle?
	Need for Isolation
	The SOFTScale Algorithm
	An Analytical Model for Estimating SOFTScale's Performance

	Results
	Characterizing the Range of Load Jumps that SOFTScale Can Handle
	Spikes in Real-World Traces
	Spikes Created by Server Faults

	Lower Setup Times
	Future Architectures
	Prior Work
	Conclusion
	References

	Taking Garbage Collection Overheads Off the Critical Path in SSDs
	Introduction
	Background and Related Work
	Flash Translation Layer
	Garbage Collection

	Impact of Garbage Collection in Commercial SSDs
	High Level View of GC Scheduling
	Idle Period Classification
	Shifting Garbage Collection Overheads to Idle Periods

	Implementation of Our GC Strategies
	Details of Advanced GC Strategy (AGC)
	Details of Delayed GC Strategy (DGC)
	Putting the Two Schemes Together

	Experimental Evaluation
	Performance Comparison
	Worst Case Response Time
	Excess Waiting Time
	Performance Compariosn of 3SSDs-RAID
	Side-Effects of AGC and DGC

	Conclusions
	References

	Unifying Thread-Level Speculation and Transactional Memory
	Introduction
	A Unified TM+TLS Model
	TLSTM, A First Unified STM+TLS Middleware
	The Baseline STM: SwissTM
	Leveraging SwissTM with Thread-Level Speculation: Main Challenges
	Algorithm

	Evaluation
	Related Work
	Concluding Remarks
	References

	Message-Passing Concurrency for Scalable, Stateful, Reconfigurable Middleware
	Introduction
	Component Model
	Concepts in Kompics
	Kompics Operations
	Publish-Subscribe Event Dissemination
	Component Initialization and Life-Cycle
	Fault Management
	Dynamic Reconfiguration

	Implementation
	Case Study: A Scalable, Consistent Key-Value Store
	CATS Deployment Architecture
	CATS Simulation Architecture
	Local, Interactive, Stress-Test Execution
	CATS Experimentation

	Related Work
	Conclusions and Future Work
	References

	OverStar: An Open Approach to End-to-End Middleware Services in Systems of Systems
	Introduction
	The OverStar Approach
	Motivation
	The OverStar Middleware Framework

	Definition of Models to Specify Component Behaviour
	Timed Automata Specifications
	Overlay Specification: Timed Automata to Construct Overlays
	Sevice Specification: End-to-End Middleware Services

	The OverStar Framework Implementation
	Actions: Reusable Software Building Blocks
	Timed Automata Interpreters

	Evaluation
	Case Study Based Methodology
	Experimental Setup
	Interoperability Experiments
	Optimisation Experiments
	Resource Overheads Experiments

	Related Work
	Interoperability Solutions
	Overlay Networks and Middleware

	Concluding Remarks and Future Work
	References

	Publish/Subscribe Middleware
	Opportunistic Multipath Forwarding in Content-Based Publish/Subscribe Overlays
	Introduction
	Publication Forwarding Strategies
	Overlay Maps
	Subscription Routing Tables
	Publication Forwarding
	Managing Broker Links
	Evaluation
	Related Work
	Conclusions
	References

	Polder Cast: Fast, Robust, and Scalable Architecture for P2P Topic-Based Pub/Sub
	Introduction
	Preliminaries
	Survey of Related Approaches
	PolderCast: Disseminating Events
	The Dissemination Overlay
	Event Dissemination

	PolderCast: Building the Overlay
	The Rings Module
	The Vicinity Module
	The Cyclon Module
	Churn Handling

	Experimental Evaluation
	Experimental Settings
	Speed of Convergence
	Overlay Degree
	Event Dissemination
	Overlay Maintenance
	Message Dissemination under Churn

	Conclusions
	References

	Unification of Publish/Subscribe Systems and Stream Databases
	Introduction
	Related Work
	The Topic-Based Publish/Subscribe Cache
	The Automaton Programming Language
	Language Design Principles
	General Form for an Automaton
	Example Hybrid Automaton

	Automaton Execution Model
	Optimizations Enabled by the Execution Model
	Multi-query Optimizations

	Evaluation
	Cost of Built-In Functions
	Performance at Scale
	Performance at Stress
	Finding Frequent Items
	Comparison with Cayuga

	The Impact on Complex Event Processing
	Conclusions
	References

	High-Performance Location-Aware Publish-Subscribe on GPUs
	Introduction
	The Interaction Model in Details
	Parallel Programming with CUDA
	The CLCB Algorithm
	Why a New Algorithm?
	CLCB: An Overview
	CLCB in Detail

	Evaluation
	Related Work
	Conclusions
	References

	Big-Data and Cloud Computing
	Enabling Efficient Placement of Virtual Infrastructures in the Cloud
	Introduction
	Problem Formulation
	Placement Algorithms
	Cold Spot Discovery
	VNI Clustering
	Cold Spot Selection
	VNI Placement

	Evaluation
	Generic VNI Mix
	Breaking Down the Placement Technique
	Placing Cache, Hadoop, and Three-Tiered VNIs
	Cold Spot Discovery Threshold
	Comparison to VNM

	Discussion
	Related Work
	Conclusions
	References

	A Scalable Inline Cluster Deduplication Framework for Big Data Protection
	Introduction
	Background and Motivation
	Cluster Deduplication Techniques
	Super-Chunk Resemblance Analysis

	Σ-Dedupe Design
	System Overview
	Similarity Based Data Routing Algorithm
	Similarity Index Based Deduplication Optimization

	Evaluation
	Evaluation Platform and Workload
	Evaluation Metrics
	Parallel Deduplication Efficiency on Single-Node Server
	Cluster-Deduplication Efficiency

	Conclusion
	References

	CloudPack Exploiting Workload Flexibility through Rational Pricing
	Introduction
	CLOUDPACK: Background and Setting
	IaaS Resource Cost Model
	IaaS Setting

	CLOUDPACK: The Framework
	CLOUDPACK: Workload Specification Component
	CLOUDPACK: Allocation Component
	CLOUDPACK: Greedy Heuristic
	CLOUDPACK: Pricing Component

	CLOUDPACK: Experimental Evaluation
	Related Work
	Conclusion
	References

	Dynamic Software Deployment from Clouds to Mobile Devices
	Introduction
	Related Work
	System Overview
	Architecture
	Code Pre-installation and Updates
	Optimal and Dynamic Application Partitioning

	Implementation
	Applications
	Evaluation
	Initialization Cost
	Steady-State Behaviour
	Dynamic Optimization and Redeployment
	Reactivity to CPU Load
	Adapting to Changing User Inputs
	Resource Overhead

	Conclusions
	References

	Availability, Security and Privacy
	Enhancing the OS against Security Threats in System Administration
	Introduction
	Goals, Assumptions, and Threat Model
	Broker Security Model
	OS Broker Functionality
	Broker-Enhanced OS Design
	Architecture
	Enforcing the Information Security Invariant
	Enforcing the Identity Protection Invariant
	Enforcing the System Integrity Invariant

	Implementation
	Evaluation
	Security
	Manageability
	Compatibility
	Performance

	Discussion
	Related Work
	Conclusion
	References

	On the Practicality of Practical Byzantine Fault Tolerance
	Introduction
	Background
	Original Algorithm
	Reasoning about the Default Implementation
	Authenticators and Erratic Recovery Behavior
	PBFT Behavior on UDP Packet Loss
	PBFT Handling of Non-determinism

	PBFT Deployment Drawbacks, Obstacles, and Solutions
	Dynamic Client Membership
	A Higher Level State Abstraction
	Remaining Issues

	Evaluation
	Non-SQL Experiments
	SQL State Abstraction Experiments

	Related Work
	Conclusion
	References

	SCORe: A Scalable One-Copy Serializable Partial Replication Protocol
	Introduction
	Related Work
	Model of the Target System
	The SCORe Protocol
	Overview
	Handling of Read and Write Operations
	Commit Phase
	Garbage Collection and Fault-Tolerance

	Correctness Proof
	Experimental Data
	Conclusions
	References

	P3S: A Privacy Preserving Publish-Subscribe Middleware
	Introduction
	Terminology, and Privacy and Performance Targets
	Cryptographic Background
	Predicate Based Encryption (PBE)
	Ciphertext Policy Attribute Based Encryption

	P3S Architecture
	Components
	High Level Overview
	Operation

	Current Prototype
	Analysis of Privacy and Performance Overhead
	Privacy
	Performance

	Related Work
	Conclusion
	References

	Author Index

