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1 Introduction

Microbeams are simple on-chip test structures used for thin film and MEMS materials
characterization [3], see Fig. 1. Optical profilometry techniques are typically used for
the measurement of deformations [8, 10]. Profilometry can be combined with Euler-
Bernoulli (EB) beam theory to extract material parameters, like the E-modulus or
creep parameters. The latter requires characterization of time-dependent microbeam
bending, though non-trivial, as it involves long term sub-microscale measurements.
On the one hand environmental instabilities directly hinder accurate long term mea-
surements. On the other hand microfabrication limitations often affect the ideal fixed-
end geometrical boundary condition [2]. This requires attention, because a non-ideal
fixed-end, e.g. a compliant anchor, introduces errors when using the microbeam
deflection with EB-theory [6]. Hence, the problem is attaining sufficient accuracy
and precision in these measurements.

A first step towards precise microbeam bending experiments is the careful design
and construction of the setup and proper control of the profilometer’s environment
[1]. In [1] we presented a simple image correlation based methodology to correct
the rigid body motions, e.g. due to drift, of the deformed specimen on the xyθxθy-
positioning stage. The difference between the reference profile and this deformed
profile yielded the tip deflection. However, this correlation based correction has a
drawback: the correction is extrapolated to the entire beam profile based on a limited
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Fig. 1 Scanning electron micrograph of a typical on-chip microbeam attached to a free-standing
double clamped plate that is anchored to the substrate

reference area on the anchor. As the beam lies in the extended direction of the anchor,
the resulting tip deflection is sensitive to an extrapolation error.

Following Neggers et al. [7], we here present an improved approach for microbeam
bending analysis. The approach in [7] extracts curvature from profilometry data of
bulged membranes through enhanced global digital image correlation (GDIC). The
key point is the use of the deformation kinematics as degrees of freedom to be
solved in the minimization problem formulated for DIC as demonstrated by Hild
and Roux [4, 5]. Therefore, in the approach presented here we combine the drift
and beam bending kinematics and directly correlate on the beam, eliminating any
extrapolation errors. The correlation procedure yields the displacement fields. This
does not directly yield the beam deflection, because the position of the anchor is not
resolved. However, the curvature field of the beam can be directly extracted from
this displacement field, because a C2-continuous basis for the degrees of freedom is
chosen. This effectively filters measurement noise, overcoming issues when taking
derivatives to calculate the curvature. In short, this improved approach yields an
accurate curvature field, in stead of beam deflection, that serves equally well in
analyzing microbeam bending mechanics.

In this work, we describe the kinematics involved followed by the implementation
into the GDIC procedure through which the curvature is determined. To asses the
accuracy of this new procedure a numerical experiment is performed of which the
implementation and results are discussed.
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2 Principle of Global Digital Image Correlation and Curvature
Measurement

In the solid mechanics community DIC has become an established method to measure
deformation fields at various length scales both in 2D and 3D geometries [9]. For
the 2D case one records an image of an undeformed, reference situation of an object
and of its the deformed situation. Parts of the image with a unique pattern can then
be correlated from one image to the next, allowing one to extract the displacements
between the two instances. Traditionally, one applies a pattern with sufficient detail
and variation to obtain uniqueness for the correlation procedure.

The correlation procedure in 2D is based on the principle of optical flow conser-
vation. It states that the reference image, represented by the intensity field f (x), is
related to the deformed image, g(x) through the in-plane displacement field uxy(x)

and measurement noise n0(x):

g(x + uxy(x)) = f (x) + n0(x). (1)

In the case of optical profilometer data, the intensity is in fact a height, and can
also vary due to e.g. deformations. This quasi 3D nature can be exploited by relaxing
the optical flow conservation:

g(x + uxy(x)) = f (x) + uz(x) + n0(x). (2)

The unknown displacement fields u(x) are found through minimizing the global
residual η of the weak form of Eq. (2) over the considered domain

η2 =
∫

[( f (x) − g(x + uxy(x)) + uz(x)]2dx =
∫

r(x)2dx, (3)

where r(x) is the residual field. The displacement field is parameterized and inter-
polated using a set of basis functions φn(x) acting globally over the entire domain
and weighted with a discrete set of degrees of freedom un

u(x) = ux (x)ex + uy(x)ey + uz(x)ez =
∑

n

unφn(x)ei , (4)

where i = [x, y, z] and the basis functions φn(x) are polynomial functions depending
on x = xex + yey

φn = xα(n)yβ(n). (5)

The choice for this parametrization has the benefit that it allows one to introduce
degrees of freedom suitable for describing the deformation kinematics, whilst main-
taining a continuously differentiable solution. This aspect is important, because the
strain and, particularly for microbeam bending, curvature fields are (higher order)
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derivatives of the displacement fields. Furthermore when the order of the polynomi-
als are limited, measurement noise is effectively filtered, yielding a robust curvature
measurement: the smooth continuously differentiable displacement fields and not
the measurement data serve as input for differentiation.

The introduction of the degrees of freedom and the appropriate basis functions can
be based on prior knowledge of the deformation kinematics. For example, a uniaxial
strain in x, εxx , could be described by adding a basis function of degree [α, β] =
[1, 0] in x-direction: φ10 = x1 y0. Adding this basis function to the z-direction would
describe a constant tilt. One should however be aware that superfluous degrees of
freedom will not necessarily yield the correct solution for the displacement fields,
because of the measurement noise. On the other hand residual fields showing system-
atic deviations from zero might indicate insufficient kinematic degrees of freedom.
Therefore, the prior knowledge allows a sufficient choice of degrees of freedom that
will describe the kinematics, but limit inaccuracies due to noise.

As the curvature field is the desired measurand from the microbeam bending
experiment, we consider all rigid body displacements, rotations about the x- and
y-axis, resulting from drift of the xyθxθy-platform, and the end-loaded bending
of the single clamped microbeam. The bending results in a gradient in curvature,
involving a third order displacement derivative along the beam’s axis, which is taken
along the x-direction. Hence the parametrization of the displacement fields takes the
following form:

u(x) = (ux,00)ex +(uy,00)ey +(uz,00 +uz,10x +uz,01 y+uz,20x2 +uz,30x3)ez . (6)

From the displacement fields resulting from the GDIC procedure, the curvature
field tangent to the beam’s surface in x-direction, κxx (x), can be derived. First the
curvature tensor is constructed as the dyadic product of the gradient operator and the
surface normal:

κ = ∇ ⊗ n, (7)

where the gradient operator is defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
. (8)

The normal vector is calculated from the position field of the deformed microbeam
z(x, y), obtained by applying the resulting displacement fields to the reference pro-
file:

n = ∇z(x)

||∇z(x)|| . (9)

Finally the curvature field in a given tangent direction is calculated by

κt(x) = t · κ · t (10)
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where the unit tangent vector, t(τ ), along an in-plane unit vector τ (x) = τx ex +τyey

is

t = τx ex + τyey + (∇ f ) · τ ⊗ ez√
τx

2 + τy
2 + [(∇ f ) · τ ]2

(11)

and τ ⊗ ez is the dyadic product of the two vectors. In the processing applied, the
curvature is measured along the tangent in-plane unit vector τ = 1ex .

3 Evaluation of Accuracy

In order to evaluate the accuracy of the GDIC approach a numerical microbeam bend-
ing experiment is conducted. A linear elastic finite element model of a representative
microbeam (l = 100 µm, w = 20 µm, t = 5 µm) is modeled in Marc/Mentat using
quadratic thick shell elements, see Fig. 2. Only half of the microbeam is modeled due
to symmetry. It is deflected at the end by 2 µm. The surface topography of a physical
microbeam is measured using a Sensofar Plu2300 confocal optical profilometer, see
Fig. 3a and [1] for details. A corresponding part of this topography, see ROI f in
Fig. 3b, is deformed with the numerically generated displacement fields. An addi-
tional constant in-plane displacement uxy(x) = 1, 162ex − 0, 830ey µm as well as
an out-of-plane tilt uz(x) = (0, 0005x −0, 0006y)ez µm simulate drift, see ROIg in
Fig. 3b. These values are selected as uneven half-pixel multiples, where the pixel size
is 0, 332×0, 332 µm2, serving as a worst case, because this leads to the poorest DIC
accuracy [4]. The deformed and displaced topography serves as input for the GDIC
procedure with the natural surface features serving as the pattern. Subsequently the
curvature is calculated based on the GDIC output and compared to the numerically
prescribed curvature calculated from the nodal displacements and rotations of the
FEM output.

-2.0
-1.6
-1.2
-0.8
-0.4
 0.0

Displacement Z [um]

Fig. 2 The FEM model in deformed state used for generating the displacement fields. The left end
is deflected, whilst the right end is clamped
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(a) (b)

Fig. 3 a A contour plot of two actual microbeams. The box on the top beam’s surface indicates
the part used for GDIC as shown in b: ROIs of the undeformed f and deformed g selection from the
beam

To minimize numerical artifacts when doing this numerical evaluation there are
some issues to address. First, the computational mesh and discrete surface topog-
raphy will have a different discretization. This is overcome by interpolating both
surfaces with C1- or C2-continuous interpolation functions to finer and equal grids
and excluding pixels adjacent to the border of the region of interest. Second, the
prescribed curvature fields calculated from interpolated nodal displacement fields
will show artifacts, because the nodal displacements are not C1-continuous between
elements. Although nodal rotations strictly speaking also suffer the same disconti-
nuity, they effectively do form a C1-continuous gradient of the displacement field
for the curvature calculation. Hence the nodal rotations θi are interpolated and used
in the curvature calculation through the following definition of n:

n = tan(θy(x))ex + tan(θx (x))ey + ez√
tan(θx (x))2 + tan(θy(x))2 + 1

. (12)

4 Results

The results of the GDIC at different levels of deflection are judged by the displace-
ment fields obtained in x-, y- and z-direction and the residual field. The resulting
displacement fields show good agreement with the prescribed displacement fields, see
Fig. 4. For the in-plane displacements an accuracy of <13 nm is observed, which cor-
responds to ∼0, 04 pixels for a 332 nm pixel size. The accuracy of the z displacement
field is <2 nm, whilst its field reveals a systematic error. This might be caused by a
slight curvature in y-direction that is not covered by the admitted degrees of freedom.

When regarding the residual field and comparing to the undeformed pattern, see
Fig. 5, no systematic features are observed, indicating the correlation has reached the
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(a)Ux from GDIC (b)ΔUx

(c) Uy from GDIC (d)ΔUy

(e) Uz from GDIC (f) ΔUz

Fig. 4 Resulting displacement fields including drift at 2 µm deflection obtained through GDIC.
a, c, e are the GDIC obtained displacement fields and b, d, f are the difference fields between the
GDIC and FEM displacement fields

global minimum. Further, the amplitude of the residual field is relatively large, about
10 % of the undeformed pattern. If the global minimum is obtained, this amplitude
can only be attributed to the limited number of pixels, being ∼20 × 190, and the
effect of interpolating the surface pattern within the correlation algorithm. Improving
this requires a smoother surface pattern and higher spatial sampling. Nonetheless,
the results are adequate compared to local DIC approaches where typically facets of
15 × 15 pixels are employed to resolve displacement fields with similar accuracy.

The curvature fields κxx obtained through the GDIC at 1 and 2 µm deflection and
the difference between these and the simulated κxx reveal a good measurement of
κxx , see Fig. 6. The expected gradient in κxx is visible, approaching 0 at the tip of the
beam (left hand side of images) and reaching a maximum at the clamped end (right
hand side of images). The difference shows a limited error, caused by the limited
choice of degrees of freedom and required interpolation during correlation.

(a) Undeformed ROI (b) Residual at 2 µm deflection

Fig. 5 Comparison of the amplitude in the pattern and the resulting residuals showing a relatively
low residual
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(a) κxx at 1 μm deflection (b) Curvature difference at 1 μm deflection

(c) κxx at 2 μm deflection (d) Curvature difference at 2 μm deflection

Fig. 6 Curvature fields κxx at 1 and 2 µm deflection reveal the expected gradient, whilst the
differences with the numerically prescribed fields show a good accuracy

Fig. 7 The accuracy of κxx
obtained is good for the part
of the ROI that is not near the
loaded end or the clamped end

XX

X
X

6 1

Within the probed range of κxx the accuracy of the measurement is <1 % for
most of the ROI, see Fig. 7. The accuracy, defined as the relative error (κxx,G DI C −
κxx,F E M )/κxx,F E M , increases near the clamped end due to the additional κyy and
at the loaded end due to the definition of the accuracy. Naturally one can opt not to
measure data near these regions.

5 Conclusion

We presented an enhanced digital image correlation approach to extract beam curva-
ture from full-field deformation data of microbeam bending experiments. A limited
yet sufficient amount of degrees of freedom in the GDIC described the bending
kinematics as well as possible rigid body motions that might be caused due to drift
in actual experiments. A numerical analysis of the accuracy based on FEM revealed
that the proposed GDIC accurately resolved the bending kinematics: an accuracy in
the κxx -measurement of <1 % for parts of the beam away from the clamped and free
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ends. The presented numeric analysis can also be extended to simulate the influence
of measurement artifacts, e.g. noise or pattern quality. This GDIC methodology thus
enables the precise measurement of beam curvature required for time-dependent
microbeam bending experiments. It might also find application in other microbeam
bending analyses, e.g. stress measurements of deflecting structural parts of microde-
vices in case of known material parameters.
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