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Abstract To compensate the drawback of most kinematic hardening rules that
exhibit hardening saturation, a solution is proposed by replacing the accumulated
plastic strain rate in the springback term by a rate related to the kinematic hardening
variable itself. The proposed approach defines a power-law counterpart to the linear
(Prager) and exponential (Armstrong-Frederick) laws.

1 Introduction

Most modern nonlinear kinematic hardening rules in metals plasticity have the
generic form

Ẋ = 2

3
Cε̇εε p − BBB(X, p,σσσ )Ṗ(X,σσσ , ε̇εε p) (1)

with X the kinematic hardening, p the accumulated plastic strain, σσσ the stress, ε̇εε p

the plastic strain rate, C a material parameter, and where the springback term BBBṖ
is sometimes replaced by a sum

∑
BBBkṖk . The scalar function Ṗ (as Ṗk) is a

homogeneous function of degree 1 in ε̇εε p, such as Ṗ(X,σσσ , λε̇εε p) = λṖ(X,σσσ , ε̇εε p)

∀λ ≥ 0. The tensorial function BBB has usually the sign of X and ‖BBB‖ increases when
the loading increases (in norm). This last feature gives back the concave shape of
stress-strain curves for metals.

For instance, this is the form of Armstrong-Frederick rule [1],

Ẋ = 2

3
Cε̇εε p − γ X ṗ (2)
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with γ a material parameter, but also of Burlet-Cailletaud rule [2], of Chaboche rule
[3] and of Ohno-Wang rule [9]. The normal n = ∂ f

∂σσσ
of the yield surface f = 0 is

used in some models,1 it is a function of the stress σσσ and of the kinematic hardening
X, the plastic strain rate reading then ε̇εε p = ṗ n(σσσ , X).

In uniaxial monotonic tension the generic law (1) simplifies in Ẋ = (C − B)ε̇p,
with B a positive increasing nonlinear function, rate independent. One observes then
that a saturation Ẋ = 0, X = X∞ = Const, is reached for all rules ensuring B → C
at high loading.

Different possibilities to avoid such a saturation of the kinematic hardening exist:
make γ = γ (p) a decreasing (to zero) function of the accumulated plastic strain as
in [8], make C dependent of the plastic strain amplitude, through an index function
written in the strain space, as in [6]. None recover the power law shape at high plastic
strains. Simple ways to naturally gain the non saturation of the kinematic hardening
have been proposed in [5]. They allows to define for kinematic hardening a power
law counterpart to the usual exponential law.

2 A First Family of Non Saturating Kinematic
Hardening Rules

Kinematic hardening X is a thermodynamics force associated with a tensorial internal
state variable denotedααα, homogeneous to a strain. It is often derived from a quadratic
thermodynamics potential as [7]

X = 2

3
C(T )ααα (3)

where C is the hardening parameter previously introduced, temperature dependent.
Initially isotropic and plastically incompressible materials are considered next, with
then the expression p = ∫

( 2
3 ε̇εε

p : ε̇εε p)1/2dt for the accumulated plastic strain and
with εεε p = εεε p ′ the deviatoric plastic strain rate. In Prager law of linear hardening
the internal variable ααα is equal to εεε p. In case of (anisothermal) Armstrong-Frederick
rule it is given by the evolution law α̇αα = ε̇εε p − γααα ṗ. It is almost equal to the plastic
strain either when γ is small or when the plastic strain remains limited.

Among others, a rule avoiding kinematic hardening saturation is the following,
valid for anisothermal cases (see Sect. 4 for thermodynamics considerations),

α̇αα = ε̇εε p − 3Γ

2
X ȧ ȧ =

√
2

3
α̇αα : α̇αα (4)

1 Often f = (σσσ − X)eq − R − σy in von Mises plasticity, with R the isotropic hardening and σy
the yield stress.
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in which the back stress is now governed by von Mises norm ȧ of the rate α̇αα and with
Γ as material parameter.

In case of isothermal loading, C is constant, and Eq. (4) can be rewritten as

Ẋ = 2

3
Cε̇εε p − Γ X ẋ ẋ =

√
3

2
Ẋ : Ẋ (5)

and leads to a non vanishing rate Ẋ solution of the separate variables differential
equation Ẋ + Γ X ẋ = 2

3 Cε̇εε p.
In order to recover a power-law like reponse in monotonic loading, Eq. (4) can

be generalized as

α̇αα = ε̇εε p − 3Γ

2
X M−2

eq X ȧ Xeq =
√

3

2
X : X (6)

or (isothermal case):

Ẋ = 2

3
Cε̇εε p − Γ X M−2

eq X ẋ (7)

with M ≥ 2 an additional parameter (already introduced in [3] in another context).
In uniaxial tension-compression (along 1), εεε p = diag[εp,− 1

2εp,− 1
2εp], X =

diag[ 2
3 X,− 1

3 X,− 1
3 X ] so that Xeq = |X |, ẋ = |Ẋ |. Such a first proposal reduces

to the scalar expression

Ẋ + Γ |X |M−2 X |Ẋ | = C ε̇p (1D) (8)

• In case of monotonic tension, X and Ẋ are positive and Eq. (8) reduces to(
1 + Γ X M−1

)
Ẋ = C ε̇p therefore to the kinematic hardening solution of

X + 1

M
Γ X M = Cεp (9)

At large plastic strains X is unbounded and behaves in ε
1/M
p

X ≈ K ε
1/M
p K =

(
MC

Γ

)1/M

(10)

• In case of symmetric cyclic loading, X ranges between X Max and Xmin = −X Max ,
the same calculation with now Ẋ > 0 in tension and Ẋ < 0 in compression ends
up to cycle stabilization and to the maximum kinematic hardening solution of

X Max + 1

M
Γ X M

Max = C
Δεp

2
(11)
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and then to a cyclic hardening law2 Δσ
2 = k + X Max linear in plastic strain

amplitude at small Δεp and asymptotically a power function at large Δεp with
then

X Max ≈ K

(
Δεp

2

)1/M

(12)

Again it is unbounded and no saturation is reached.

The tensile responses obtained for different sets of parameters are given in Fig. 1.
Young’s modulus is taken as E = 200000 MPa and k = 400 MPa is set. For the
comparison with Prager and Armstrong-Frederick rules (Fig. 1a), the same constant
C = 20000 MPa is used for all models and the chosen value for Γ (M = 2) is
2.5 × 10−3 MPa−1 and corresponds to the same first dσ

dε
and second d2σ

dε2 derivatives
at yielding onset than with Armstrong-Frederick rule (for which C = 20000 MPa
still and γ = 50). Parameters Γ for other M are chosen such as all the curves meet
at point (ε = 0.02, σ = 655 MPa).

Figure 1b shows a feature specific to the present law: the possibility with large
modulus C (106 MPa in the example) to model very steep stress increase at low
plastic strain. In the figure all stress-strain curves are plotted with the same value for
modulus K , i.e. for the same power law limit at large plastic strains.

In cyclic loading a (classical) modelling flaw is encountered if the value of the

kinematic hardening obtained in tension reaches the critical value X Max = Γ
1

1−M .

For X Max = Γ
1

1−M , the slope dX
dεp

becomes negative (!) right after load reversal. Such
a flaw has been pointed out and solved in [9] simply by making linear the kinematic
hardening after load reversal. The law proposed next uses this remedy.

3 Proposal of a Non Saturating Kinematic
Hardening Rule

In order to avoid kinematic hardening saturation, one proposes instead of Eq. (6) the
following law, this time with no flaw at large plastic strain amplitudes,

{
X = 2

3 Cααα

α̇αα = ε̇εε p − 3Γ
2C X M−2

eq X 〈Ẋeq〉 or (isothermal) Ẋ = 2

3
Cε̇εε p − Γ X M−2

eq X 〈Ẋeq〉
(13)

where 〈.〉 stands for positive part, i.e. 〈Ẋeq〉 = Ẋeq = d
dt (

3
2 X : X)1/2 when positive,

〈Ẋeq〉 = 0 else. The tensile response is unchanged compared to previous law. But a
linear kinematic hardening is now obtained in the cycle parts at decreasing (in norm)

2 The constant k = σy + R∞ is the sum of the yield stress and of the (assumed) saturated isotropic
hardening R∞.
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Fig. 1 Tensile stress-strain response from proposed non saturating kinematic hardening rule: (a)
compared to linear Prager law and Armstrong-Frederick saturating law (C = 20000 MPa, γ = 50)
at given C for different exponents M , (b) at given K = (MC/Γ )1/M and M for different values of
parameter C (K = 347 MPa, M = 5)

kinematic hardening, i.e. at re-yielding just after load reversal (note that this feature
is encountered in Ohno-Wang model). Both the monotonic and cyclic features of
the new kinematic hardening rule (13) are illustrated in Fig. 1 (again with constant
isotropic hardening), still with E = 200000 MPa and k = 400 MPa.

Cycle stabilization is obtained in case of symmetric (immediate, Fig. 2) and of
non symmetric periodic applied strains (cyclic softening up to stabilization, see [5]).
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Fig. 2 Cyclic response obtained for increasing stress amplitudes (with k = 400 MPa, C = 5 ×
105 MPa, M = 5, Γ = 5 × 10−7 MPa1−M ): Δε = 0.05, 0.1, 0.15, 0.2, 0.25

Figure 2 illustrates the main model feature for large values of C : the possibility
to represent very steep stress increase at the onset of plasticity (with no visible
elasticity/plasticity slope discontinuity), also then in case of cyclic loading. The
stress-amplitude is increased after each two cycles (starting from Δε = 5 × 10−2).
Such a smooth shape of cyclic strain-stress curves, very steep just out from elasticity
domain and decreasing rapidly when yielding (but with no saturation), cannot be
represented by means of a single Armstrong-Frederick law. As the value for C is
large, the linear part after load reversal is barely noticeable. The monotonic tensile
model response is reported in the figures.

The monotonic stress strain response is still given by Eq. (11) so that

{
σ = σy + R(εp(X)) + X

εp = 1
C

(
X + 1

M Γ X M
) (14)

or at constant isotropic hardening and setting still k = σy + R∞, K = (MC/Γ )1/M ,

εp =
〈
σ − k

C

〉

+
〈
σ − k

K

〉M

(15)
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Fig. 3 Modelling of cyclic behavior of 316L by proposed non saturating kinematic hardening rule
with constant isotropic hardening (left: exp. from [4], right: model, Eq. (13))

The cyclic plasticity response (at saturated hardening) is given by

{
Δσ
2 = k + X Max

Δεp
2 = 1

C

(
X Max + Γ

2M X M
Max

) (16)

or
Δεp

2
=

〈
Δσ
2 − k

C

〉

+ 1

2

〈
Δσ
2 − k

K

〉M

(17)

An illustration of the ability the proposed kinematic rule to model cyclic plasticity
is given for a material usually quite complex to model (the 316L stainless steel) in
Figs. 3 (hysteresis loops) and 4 (cyclic plasticity law, Eq. 17). Note that no modelling
at all of the isotropic hardening is introduced (k = const) (Fig. 5).

Other examples of identifications are given in Fig. 6 for different materials. The
corresponding material parameters are (setting Kc = ( 2MC

Γ

)n = 2n K with n =
1/M :

The ratcheting behavior with the new rule is found at given C intermediate
between linear Prager Modelling (no ratcheting at all) and Armstrong-Frederick
modelling (which usually overestimates ratcheting). The ratchet step—i.e. the plas-
tic strain increment over an hysteresis loop—for a stress varying cyclically between
σmin > −k and σMax > k (with σMax − σmin > 2k) is gained in a closed form as

δεp = (σMax − k)M − (σmin + k)M

K M
(18)
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Fig. 4 Cyclic plasticity law of 316L by proposed non saturating kinematic hardening rule with
constant isotropic hardening (left: exp. from [4], right: model, Eq. (13))

Fig. 5 Cyclic plasticity curves (experiments from Lemaitre and Chaboche, 1985, model from
Eq. (17))

It is found constant—at saturated isotropic hardening—and related to the value of
exponent M and modulus K governing the non saturation of the kinematic hardening
(and to the size of elasticity domain through k). Note that ratcheting is often modeled
by the introduction of several kinematic hardening variables Xi , setting X = ∑

Xi

and taking for k a relatively small value. According to the corresponding differ-
ent plasticity mechanisms at the microscopic scale, it seems judicious to consider
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(a) (b)

Fig. 6 Comparison of identifications for 35NCD16 steel (stresses in MPa)

Table 1 Material parameters

Material k (MPa) C (MPa) Γ (MPa1−M ) M K (MPa) Kc (MPa)

35NCD16 990 260000 4 × 10−8 4 2258 2685
Cobalt 75 150000 2 × 10−7 4 1316 1565

NIMONIC 410 1400000 5.5 × 10−15 7 1086 1199
Steel 200 400000 7.5 × 10−9 5 768 882
TA6V 250 600000 1.3 × 10−10 5 1873 2152
316L 10 200000 2.5 × 10−7 4 1337 1591

different laws, i.e. laws of different nature, of different mathematical expression for
each Xi , including rules of Armstrong-Frederick type, including rule (13) (Table 1).

Let us end this section by a remark indirectly related to the implementation in
a finite element code: the form given by Eq. (13) is implicit since the rate of ααα

(therefore of X) depends on the rate of Xeq . Recalling the definition of von Mises
norm gives 〈Ẋeq〉 = 3

2 〈X : Ẋ〉/Xeq . Altogether with Eq. (13), this allows to show
that X : Ẋ is of same sign than X : ε̇εε p, at least in the isothermal case. After some
algebraic work, the following alternative (nevertheless fully equivalent) expression
for Ẋ to isothermal law (13) is derived,

Ẋ = 2

3
Cε̇εε p − CΓ X M−3

eq

1 + Γ X M−1
eq

〈
X : ε̇εε p〉 X (19)

more classical to implement.



130 R. Desmorat

4 Positivity of the Intrinsic Dissipation

A full plasticity model using the proposed kinematic hardening laws is a non standard
model, the new springback terms not deriving from an evolution potential. One must
then prove the positivity of the intrinsic dissipation D = σσσ : ε̇εε p − R ṗ − X : α̇αα [7].
Isotropic hardening is introduced as the couple of variables (R, p). The criterion
function is the classical f = (σσσ −X)eq − R −σy such as f < 0 → elasticity. Also

classically, the plastic strain rate is derived by normality: ε̇εε p = ṗ 3
2

σσσ ′−X
(σσσ−X)eq

. Plasticity

is incompressible (tr ε̇εε p = 0) and kinematic hardening is deviatoric (X = X′), as
announced.

After some algebraic work, the dissipation takes the form

Law (4): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2
X : X ȧ = σy ṗ + Γ X2

eq ȧ ≥ 0

Law (6): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2
X M−2

eq X : X ȧ = σy ṗ + Γ X M
eq ȧ ≥ 0

Law (13): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2C
X M−2

eq X : X 〈Ẋeq〉

= σy ṗ + Γ

C
X M

eq 〈Ẋeq〉 ≥ 0 (20)

and is therefore positive for any loading, proportional or not, isothermal or not ( ṗ, ȧ
and 〈Ẋeq〉 are positive by definition).

5 Conclusion

Families of non saturating kinematic hardening laws have been proposed. In order to
gain non saturation of the kinematic hardening, the springback term BBBṖ in Eq. (1)
is not assumed linear in ṗ anymore but in ȧ = ( 2

3α̇αα : α̇αα)1/2 or, better, in the positive
part 〈Ẋeq〉, with Xeq the von Mises norm of kinematic hardening X. By use of
this replacement, any existing rule Ẋ = 2

3 Cε̇εε p − BBB ṗ can then easily gain the non
saturation property by changing it into Ẋ = 2

3 Cε̇εε p − BBB 〈Ẋeq〉. As examples:

• Burlet-Cailletaud rule [2] made non saturating,

Ẋ = 2

3
C ε̇ p − Γ X M−2

eq (X : n) n 〈Ẋeq〉 normal n = ∂ f

∂σ
such as ε̇ p = n ṗ

(21)
• Ohno-Wang rule [9] made non saturating

Ẋ = 2

3
C ε̇ p − Γ X M−2

eq 〈k : n〉 X 〈Ẋeq〉 k = X
Xeq

(22)
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• Chaboche kinematic hardening rule [3], with threshold Xth , made non saturating

Ẋ = 2

3
C ε̇ p − Γ 〈Xeq − Xth〉M−1k 〈Ẋeq〉 (23)

Proposed rule (13) is the power-law counterpart for kinematic hardening, fully
complementary to Armstrong-Frederick saturating rule. Its properties have been
illustrated on qualitative examples.

General plasticity modelling, including ratcheting, often introduces several kine-
matic hardening variables Xi . Considering rules of different nature for each Xi can
help to extend the validity domain of the plasticity models, setting for example
X = XPrager +XAF +XNSat +· · · , with XPrager = 2

3 C
ε
p linear, with XAF following

Armstrong-Frederick rule (2), and with XNSat following the non saturating rule (13)
or any of the extension (21)–(23).
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