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Preface

The IUTAM symposium ‘‘Advanced Materials Modelling for Structures’’, held in
Paris in April 23–27, 2012, was co-organised by Onera (The French Aerospace
Lab) and the Ecole des Mines de Paris under the auspice of the International Union
of Theoretical and Applied Mechanics. The meeting was a new version of the
previous IUTAM symposia ‘‘Creep in Structures’’ proposed every 10 years
(Stanford, U.S.A., 1960; Gothenburg, Sweden, 1970; Leicester, U.K., 1980; Cra-
cow, Poland, 1990; Nagoya, Japan, 2000) to discuss recent advances and results in
this fundamental field of applied mechanics [1–5].

These last years an important progress was observed in testing practice for high
temperature behaviour as well as in observation techniques, giving important
information on deformation patterns and damage evolutions in interaction with the
material microstructure which can be used to propose more physically based
constitutive models. At the same time, the research fields in solid mechanics and
particularly the modelling of advanced materials have evolved considerably thanks
to the development of multiscale approaches. Although some progress has been
made in the theoretical field, the application of multi-scale modelling to compute
real components subjected to strong thermo-mechanical loads is still at an early
stage, with different groups around the world following a wide range of approa-
ches. This is particularly the case for high temperature structures where nonlinear
phenomena, like creep, are predominant and drive lifetime.

The aims of the Symposium were not only to consolidate the advance in high
temperature materials research, but also to provide a forum to discuss the new
horizon placing a particular emphasis on multiscale approaches at several length-
scales applied to nonlinear and heterogeneous materials. Discussion of new
approaches have been emphasised from various related disciplines, including
metal physics, micromechanics, mathematical and computational mechanics.

According to the spirit and following the Rule and Guidelines of IUTAM
symposia, this Symposium gathered a group of active scientists and engineers
researching within well-defined fields. The single session format conference gave
the opportunity for in-depth discussions between delegates and for young doc-
torate students to interact with seniors. The Symposium brought together some 60
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participants from 11 countries. Forty-nine invited oral presentations were divided
into relatively long talks (45 min General Lectures and 35 min ordinary ones) in
order to encourage interactions and discussions. Lunches taken in a single room
during the conference as well as an informal dinner on a boat trip on the river
Seine brought in a warm and convivial atmosphere.

A wide range of topics have been discussed during the meeting. Accordingly,
the program was divided into the following main fields:

• Crystal Plasticity (3 sessions)
• Mechanical Modelling (2 sessions)
• Continuum Damage Mechanics (2 sessions)
• Coupled Fields (2 sessions)
• Material Science (2 sessions)
• Cyclic Plasticity (2 sessions)
• Creep Modelling and Interactions (2 sessions)
• Multiscale Modelling (2 sessions)

The editors wish to thank all the authors and delegates for their contribution.
After reviewing, 32 papers are finally presented in this volume that aims to become
a helpful and valuable reference in the field of mechanics for scientists as well as
for engineers.

The success of this event is due to the help of many people. We would like to
thank the International Scientific Committee, the Organising Committee and the
session chairpersons who were really effective in leading discussions. Our special
thanks are extended to Prof. David Hayhurst for his encouraging support in the
preparation of this conference. We would like to express our thanks to the editorial
staff of Springer-Verlag for their co-operation in publishing this volume.

Magdeburg, November 2012 Holm Altenbach
Paris Serge Kruch
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Micromechanical Modelling of Void Healing

Shireen Afshan, Daniel Balint, Jianguo Lin and Didier Farrugia

Abstract Predicting effective consolidation or level of remnant porosity for a range
of steel grade (function of solidification regime), billet size, pass schedule/roll design
and thermo-mechanical conditions has always been an important issue for steel pro-
ducers as it will affect the mechanical properties of final products (strength, ductility,
etc.). It is known that partial or complete recovery of strength in such porous mate-
rials can be obtained by pore closure and diffusive healing processes at elevated
temperature. This study investigates the elimination of porosity through two stages
of void closure and healing. An Abaqus/UMAT has been developed for the analysis
of the material porosity elimination process including two stages of void closure and
healing. The model uses the Gurson-Tvergaard (GT) model under compression to
predict the void closure. The closure model parameters were calibrated by an opti-
misation technique using a representative volume element concept. Then a healing
model based on a combination of diffusion bonding, creep and plasticity was imple-
mented as a UMAT subroutine and finally the whole behaviour of the material was
controlled using a status check method developed in this work.

1 Introduction

High-temperature internal damage healing and microstructurally related processes
have been the subject of significant interest and study for many years. Void elimina-
tion can be investigated through two stages. The first stage is void closure when the
void shrinks to a slit (crack) as a result of compression. At the end of this stage the
surfaces of the slit may not be bonded properly and will be separated easily by further
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application of a small tension. A strong bond which has the mechanical properties
of the original material is obtained in the second stage when the surfaces of the void
are bonded.

The problem of void closure has been studied by many researchers and great
progress has been made to identify the parameters that affect the behaviour of voids
during hot rolling or forging. Some of these studies generally have dealt with the
combination of parameters such as the effects of rolling reduction, die geometry (die
shape and size) and the rate of deformation [5, 12, 17, 18, 22]. Other parameters
such as pressure, temperature and time have also been investigated [9, 26]. It is well
known that void closure is more easily and quickly obtained if plastic deformation
takes place under the influence of compressive hydrostatic pressure. Wang et al. [23]
found that pore closure occurs at a certain level of hydrostatic pressure and speeds
up at high temperatures. It was also shown that the holding period of the pressure in
the compressive state affects the degree of healing.

Void healing has been studied as the final stage of crack healing [23, 24] and metal
bonding [4, 7]. In crack healing, pore formation is due to crack splitting whereas in
metal bonding, voids form as a result of deformation of surface asperities. There have
been many attempts to model the void shrinkage process, however these models use
different approaches. The discrepancies arise from the varied origins of the models.
Some of the models [2, 3, 11] originated from powder sintering models, whereas
others [7] were developed from void growth models, where void shrinkage was
considered as negative void growth [10, 16].

Attempts to model diffusion bonding of different shapes of voids can be found in
the literature. In some cases the original surface has been modelled as a series of long
parallel straight-sided ridges [3, 4]. Other works have been carried out based on the
assumption that the surfaces to be bonded consisted of parallel, semicircular grooves
with unit length and width [14]. Attempts to model diffusive shrinkage of spherical
and spheroidal voids have also been made [19, 25], where expressions have been
derived for the shrinkage rate as a function of the void spacing, the applied stress,
the internal pressure built up by the gas filled in the void as well as relevant material
parameters.

This study investigates the applicability of the Gurson-Tvergaard (GT) model
[8, 20, 21] to predict void closure under compressive stress states. A FE model is
developed which applies the closure model parameters from an automated calibration
algorithm [1] and simulates the healing process, predicting the healing extent and
the healing time as a function of physical and material properties.

2 Model

An Abaqus/UMAT has been developed for the analysis of the material porosity
elimination process including two stages of void closure and healing. The model
uses reverse GT to predict void closure, where as a result of compression the void
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Fig. 1 The change in VVF with time as a result of reverse Gurson and healing model

volume fraction (VVF) of the material reduces to a point, after which it does not
decrease any more. This is the point when a void is assumed to be closed (Fig. 1).

In order to estimate the time required for healing, pores are assumed to be small
cylinders. This study applies the model proposed by Pilling [13–15] to predict the
healing time.

The voids in different positions experience varying stress states and will close
at different times and under different pressures. Therefore at each time increment
characteristics of each element should be monitored. This requires the definition of
an array storing the stress conditions, healing process and finally the element status.
Defining I as,

I i, j
k = [Si, t i

c, t i
h, σ

i
e,k, Pi

k ]

in which i is the element number, j is the number of parameters/properties associated
with I (here j = 5) and k is the increment number; tc, is the time at which the void
closes, th is the time required for healing, σe is the equivalent stress of the element
(this is required in calculation of the healing time), P is the pressure under which the
void closure happens and S represents the status of the element which is defined as
follows,

Si =
{

0 if vv f i
k < vv fc

1 if vv f i
k ≥ vv fc

The above definition means that the element status is defined as zero for a void which
has not yet been closed and as one if the element’s void volume fraction (vvf) has
reached the void volume fraction at closure (vvfc).

It is evident that at the initial state (before the process starts), I is empty or in
other words, I i, j

0 = 0. As the compression starts, the void volume fraction of each
element would be checked. If an element reaches the vvfc, additional application of
the reverse GT model will not heal the void. For healing to take place the material has
to be held at a certain pressure and temperature for some time. A model is therefore
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required to predict the bonding time as a function of physical and material properties
of the test.

Once an element closes the healing time (th) will be calculated for that particular
element depending on its stress state. Every time an element heals, the extent of
healing (defined as the percentage of the healed elements of the whole FE model) is
calculated. However, the load distribution might be such that some elements experi-
ence less pressure and consequently remain unclosed; therefore a healing of 100 %
might not occur.

While elements are checked for closure status, the stress state of those elements
which have already been closed might change from compression to tension. In that
case since the elements have not been completely healed they might reopen again. To
check this situation the change in vvf is monitored at each time increment. A positive
change in the vvf implies that the element is under tension and the void is growing.
In that case if the vvf of that element exceeds the vvfc the element status has to be
changed from closed (S = 1) to open (S = 0). The flow chart in Fig. 2 represents
the structure of the model for the void elimination process.

Fig. 2 The developed UMAT structure
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Fig. 3 Illustration of the void healing process

Practically, after each element is closed the bonding time should be implemented
for that element. But since the healing times for different elements could be long the
problem of simulating real time emerges. To overcome this problem the elements will
only be checked for closure. The healing times would then be calculated individually
for each element. The total time required for the whole process will then be obtained as
the maximum closure and healing time summation. The process has been illustrated
in Fig. 3.

3 Results

An axisymmetric model of a cylinder of material with a central porous zone was
constructed using Abaqus/Standard, a schematic of which is shown in Fig. 4. The
developed UMAT was applied to the porous section and the outer section was given
elastic plastic properties of a free cutting steel grade obtained experimentally at
900 ◦C and ε̇ = 0.1 [6]. The cylinder was initially compressed, held under pressure
for some time and then stretched. Figure 5 compares the variation in VVF for a model
with the developed closure-healing UMAT and the same model with the reverse
Gurson (Closure) UMAT.
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Fig. 4 The cylindrical model with defined central porous zone

Fig. 5 The comparison of the Gurson UMAT and the developed closure-healing UMAT

As the results show for the Gurson UMAT model, where the void has been only
closed and not healed the VVF will increase as a result of tension whereas for the
developed closure-healing UMAT the VVF will remain zero, indicating the void
healing process has taken place.

The process of void healing is represented in Fig. 6, where the extent of healing
is shown at different time increments.



Micromechanical Modelling of Void Healing 7

Fig. 6 Extent of healing at a t = 9.84 s, b t = 9.93 s, c t = 9.93 s and d t = 10 s

4 Conclusion

An Abaqus/UMAT has been developed for the analysis of the material porosity
elimination process. The calibrated q parameters for certain triaxiality and initial
VVF are fed into the UMAT to predict Void Closure. Pilling’s healing model [13]
has been implemented into the UMAT to predict the change in VVF with time as a
function of physical conditions and material properties.
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Surface Viscoelasticity and Effective
Properties of Materials and Structures

Holm Altenbach and Victor A. Eremeyev

Abstract In this paper we discuss the influence of surface viscoelasticity on the
effective properties of materials such as effective bending stiffness of plates or
shells. Viscoelasticity in the vicinity of the surface can differ from the properties
of the bulk material, in general. This difference influences the behavior of nanosized
thin elements. In particular, the surface viscoelastic stresses are responsible for the
size-depended dissipation of nanosized structures. Extending of the Gurtin-Murdoch
model and using the correspondence principle of the linear viscoelasticity we derive
the expressions of the stress resultant tensors for shear deformable plates and shells.

1 Introduction

The surface effects play an important role for such nanosized materials as films,
nanoporous materials, etc., while in this case the influence of surface is more signif-
icant. The mechanics of solids which takes into account explicitly the phenomenon
of surface stresses was proposed by Gurtin and Murdoch [1]. Within the framework
of the theory of surface stresses an elastic body can be considered as a “usual” elastic
body with elastic membrane glued on its surface. Unlike to classical mechanics of
materials where the surface stresses can be neglected in most cases, at the micro- and
nanoscale the surface stresses play an important role. For example, they influence
the effective or apparent properties of very thin specimens and predict the so-called
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size effect, that is dependence of apparent material properties on a specimen size.
Hence, the classical continuum mechanics can be extended at the nanoscale taking
into account surface stresses acting on the boundary of a nanosized body, see [2, 3].
In the literature are presented various applications of the Gurtin-Murdoch model in
nanomechanics, see, for example, the review [4]. In particular, the theory of elastic-
ity with surface stresses is used in the two-dimensional theories of nanosized plates
and shells, see [5–13]. Let us note that in most of papers the elastic medium is con-
sidered. On the other hand, inelastic behavior analysis is also important in micro-
and nanomechanics. Dissipative processes in the vicinity of the surface are related
to the higher mobility of molecules, surface imperfections, absorbates, etc., see [14]
among others. For the description of surface dissipation of nanosized beams, Ru [15]
was proposed one-dimensional constitutive law that is similar to the model of the
standard viscoelastic solids but formulated for the two-dimensional surface stresses.

Following [16] in this paper we consider the influence of surface viscoelasticity
on the effective or apparent properties of nanosized thin-walled structures. We recall
the basic equations of the continuum with surface stresses and use the more general
constitutive viscoelastic model for the surface stresses than the proposed by Ru
[15]. Using the correspondence principle, we present the governing equations of
plates and shells with viscoelastic surface stresses. Here we assume that the bulk
material is elastic while the surface has viscoelastic properties. We formulate the two-
dimensional (2D) constitutive equations and obtain the 2D relaxation functions for
plates and shells. Finally, we compare the proposed model of shells with viscoelastic
surface stresses with the model of a sandwich plate with viscoelastic faces.

2 Basic Equations of Linear Elasticity with Viscoelastic
Surface Stresses

Let us consider the problem for a deformable body with surface stresses. Let V ∈ R
3

is the volume of the body with the boundary Ω = ∂V . For quasistatic deformations
of solids with surface stresses the boundary-value problem is given by

∇ · σ + ρf = 0, x ∈ V, (1)

u|Ω1 = 0, n · σ |Ω2 = t, x ∈ Ω, (2)

where σ is the stress tensor, u the displacement vector, ∇ the 3D gradient operator
(3D nabla operator), ρ the density, f the density of the volume forces, and n the
external unit normal toΩ = Ω1

⋃
Ω2,Ω1

⋃
Ω2 = ∅. The surface stress vector t is

expressed through a given load ϕ and the stress vector due the surface stresses tS by
the formula [1, 2, 17]

t = ϕ + tS, tS = ∇S · τ .
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Here τ is the surface stress tensor onΩ , ∇S is the surface nabla operator onΩ given
by ∇S = ∇ − n∂/∂z, where z is the coordinate along the normal to Ω .

For the sake of simplicity, we restrict ourselves to an isotropic material. We also
assume that the bulk material is elastic but the surface stresses are viscoelastic. Hence,
we have the Hooke law for the bulk material

σ = 2με + λItr ε with ε = ε(u) ≡ 1

2

(∇u + (∇u)T
)
, (3)

where ε is the strain tensor, λ andμ are Lamé’s moduli, and I is the three-dimensional
unit tensor, respectively.

For the surface stresses we assume the following constitutive equation

τ = 2

t∫
−∞

μS(t − τ)ė(τ ) dτ +
t∫

−∞
λS(t − τ)tr ė(τ ) dτA, (4)

e = e(v) ≡ 1

2

(∇Sv · A + A · (∇Sv)T
)
,

where e is the surface strain tensor, v the displacement of the surface point x of Ω2,
A ≡ I − n ⊗ n the two-dimensional unit tensors, the overdot denotes differentiation
with respect to time t , and λS and μS are the relaxation functions of the surface film
Ω2, respectively.

Following [1, 17], we state that the displacements of the surface filmΩ2 coincide
with the body displacements on the boundary v = u|Ω2 .

The integral constitutive law (4) contains the viscoelastic constitutive equation of
[15] as the special case. If μS and λS are constants then (4) reduces to the elastic
constitutive equations used in [2].

The system of Eqs. (1)–(4) constitute the boundary-value problem (BVP) for the
elastic body with viscoelastic surface stresses. In what follows we use this BVP to
derive two-dimensional (2D) equations of shear-deformable shells.

3 Reduction to the Two-Dimensional Theory

In the literature there are known various approaches of derivation of 2D equations
of plates and shells using the reduction procedure of the equations of 3D continuum
mechanics. Here we apply to the nonclassical BVP (1)–(4) the through-the-thickness
integration procedure described, for example, in [18].

In the case of viscoelastic material we use the correspondence principle which
establishes that if an elastic solution of the problem is known, the corresponding
viscoelastic solution can be obtained by substituting for the elastic quantities the
Laplace transform of the unknown functions [19, 20]. In other words, one can use
the solution of BVP for elastic material as the solution of BVP for viscoelastic
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material but given in terms of Laplace transform. According to this principle we use
the results of 3D to 2D reduction procedure for the elastic shell-like body given by
[6, 7].

In fact, using the Laplace transform one can write (4) as it follows

τ = 2sμS(s)e + sλS(s)(tr e)A, (. . .)(s) =
∞∫

0

(. . .)(t)e−st dt, (5)

which coincides formally with the surface Hooke’s law assumed in [6, 7].
The through-the-thickness integration procedure applied to shell-like bodies with

surface stresses leads to the following 2D equations, see [16],

∇S ·T + q = 0, ∇S ·M + T× + m = 0, (6)

where T is the stress resultant tensor, M the couple stress tensor, T× denotes the
vectorial invariant of second-order tensor T, see [18], q and m are the surface force
and couple vector fields defined as in [6, 7].

Tensors T and M can be represented each as the sums of two terms, see [5–7, 16],

T = Tb + Ts, M = Mb + Ms . (7)

Here Tb and Mb are the stress and couple stress resultant tensors related to the bulk
material while Ts and Ms are the stress and couple stress resultant tensors related to
the surface stresses. With the accuracy of O(h/R)where h is the shell thickness and
R is the maximum of the curvature radius of the shell base surface, one can use the
following formulae for Tb, Mb, Ts , and Ms

Tb = 〈A · σ 〉, Mb = −〈A · zσ × n〉, 〈(. . .)〉 =
h/2∫

−h/2

(. . .) dz, (8)

Ts = τ+ + τ−, Ms = −h

2
(τ+ − τ−)× n, (9)

where τ± are the surface stresses acting at the shell faces, i.e. τ± = τ
∣∣
z=±h/2.

Equation (8) result in the following component representations

Tb = Tαβρ
α⊗ρβ + Tα3ρ

α ⊗ n, Mb = −Mαβρ
α ⊗ ρβ × n, α, β = 1, 2,

(10)

Tαβ = 〈σαβ〉, Tα3 = 〈σα3〉, Mαβ = 〈zσαβ〉,

where σαβ = ρα · σ · ρβ , σα3 = ρα · σ · n, ρα and ρβ are the main and reciprocal
bases on the shell base surface ω with the unit normal vector n.
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In what follows we use the linear approximation of the translation vector u

u(z) = w − zϑ, n·ϑ = 0. (11)

This approximation is used in the theories of shear-deformable plates and shells, see,
e.g., [18], w is the translation vector of the shell base surface ω and ϑ is the rotation
vector of the shell normal. Both are kinematically independent each other.

For the isotropic shell dependence of Tb and Mb on strain measures is given by

Tb = C1ε + C2Atr ε + Γ γ ⊗ n, Mb = − [D1κ + D2Atr κ] × n, (12)

C1 = 2C22, C2 = C11 − C22, D1 = 2D22, D2 = D33 − D22.

where ε, κ , and γ are strain measures introduced by

ε = 1

2

(
∇Sw · A + A · (∇Sw)T

)
, κ = 1

2

(
∇Sϑ · A + A · (∇Sϑ)T

)
,

γ = ∇S(w · n)− ϑ,

and the components C11, C22, D22, D33, and Γ are given by

C11 = Eh

2(1 − ν)
, C22 = Eh

2(1 + ν)
,

D22 = Eh3

24(1 + ν)
, D33 = Eh3

24(1 − ν)
, Γ = kμh,

E = 2μ(1 + ν), ν = λ

2(λ+ μ)
,

C ≡ C11 + C22 = Eh

1 − ν2 , D ≡ D11 + D22 = Eh3

12(1 − ν2)
,

where E and ν are the Young modulus and Poisson ratio of bulk material. C and
D are the tangential and bending stiffness of the shell, Γ is the transverse shear
stiffness, and k the transverse shear factor, respectively.

Let us consider the constitutive equations for Ts and Ms . For simplicity we assume
the same viscoelastic behaviour of both shell faces. From (11) it follows the relations

τ± =
t∫

−∞
λS(t − τ)tr ε̇(τ ) dτA + 2

t∫
−∞

μS(t − τ)ε̇(τ ) dτ

∓ h

2

⎛
⎝

t∫
−∞

λS(t − τ)tr κ̇(τ ) dτA +
t∫

−∞
2μS(t − τ)κ̇(τ ) dτ

⎞
⎠ .
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Finally we have, see [16],

Ts =
t∫

−∞

[
C S

1 (t − τ)ε̇(τ )+ C S
2 (t − τ)Atr ε̇(τ )

]
dτ, (13)

Ms = −
t∫

−∞

[
DS

1 (t − τ)κ̇(τ )+ D2(t − τ)SAtr κ̇(τ )
]

dτ × n, (14)

C S
1 = 4μS, C S

2 = 2λS, DS
1 = h2μS, DS

2 = h2λS/2.

As a result from (7), (13), and (14) we derive the constitutive equations of the
shell with viscoelastic surface stresses in the form

T =
t∫

−∞
[C1(t − τ)ε̇(τ )+ C2(t − τ)Atr ε̇(τ )] dτ + Γ γ ⊗ n,

M = −
t∫

−∞
[D1(t − τ)κ̇(τ )+ D2(t − τ)Atr κ̇(τ )] dτ × n,

C1(t) = 2C22 + 4μS(t), C2(t) = C11 − C22 + 2λS(t),

D1(t) = 2D22 + h2μS(t), D2(t) = D33 − D22 + h2

2
λS(t).

The tangential and bending relaxation functions are given by

C = Eh

1 − ν2 + 4μS + 2λS, D = Eh3

12(1 − ν2)
+ h2

2
(2μS + λS). (15)

Let us note that the surface stresses do not influence the transverse shear stiffness.

4 Plate with Surface Stresses as Three-Layered Plate

The presented above model of plates and shells with surface stresses is similar to the
theories of three-layered plates and shells that are widely presented in the literature,
see [7] for the elastic case and [16] for viscoelastic faces. We consider the symmetric
three-layered plate (sandwich plate) with the thickness h = hc + 2hf , where hc is
the thickness of core, hf the thickness of faces, and hc � hf . We assume that the
core is made of elastic material with the Young modulus E or the shear modulus
μ, and Poisson ratio ν while the faces are viscoelastic with the relaxation function
Ef(t) and the constant Poisson ratio νf .
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Using the approach suggested in [7, 21], for the viscoelastic sandwich plate we
obtain the constitutive equations in the form similar to (13) and (14) but with different
expressions for relaxation functions. The tangential and bending relaxation functions
of the three-layered plate are given by

C̃ = C̃11 + C̃22 = 2Ef hf

1 − ν2
f

+ Ehc

1 − ν2 , (16)

D̃ = D̃22 + D̃33 = 1

12

[
Ef(h3 − h3

c)

1 − ν2
f

+ Ech3
c

1 − ν2
c

]
, (17)

C̃11 = 1

2

(
2Ef hf

1 − νf
+ Ehc

1 − ν

)
, C̃22 = 1

2

(
2Ef hf

1 + νf
+ Ehc

1 + ν

)
,

D̃22 = 1

24

[
Ef(h3 − h3

c)

1 + νf
+ Eh3

c

1 + ν

]
, D̃33 = 1

24

[
Ef(h3 − h3

c)

1 − νf
+ Eh3

c

1 − ν

]

Comparing (16) with (15)1 we conclude that the surface relaxation functions λS and
μS can be expressed through the relaxation function of faces Ef , Poisson ratio νf ,
and the thickness hf . With accuracy of O(h2

f ) we obtain that

μS ≈ Ef hf

2(1 + νf)
≡ μf hf , λS ≈ νf Ef hf

1 − ν2
f

≡ λf hf
1 − 2νf

1 − νf
, (18)

where λf is the second relaxation function of faces. Let us note that the comparison
of (15)2 with (17) results in the same formulae. Hence, we get

μS = lim
hf→0

μf hf , λS = lim
hf→0

λf
1 − 2νf

1 − νf
hf . (19)

The latter equations give us the interpretation of the surface viscoelastic functions
μS and λS through the relaxation functions of plate faces and their thickness.

5 Conclusions

Here we discuss the extension of the constitutive relations of elastic thin-walled
structures with surface stresses taking into account the surface viscoelasticity. As
in the Gurtin-Murdoch model of surface elasticity the linear surface viscoelasticity
contains the surface stresses which depend on the surface the prehistory of strains.
In the linear isotropic case these dependencies are given by the relation (4). Using
the correspondence principle and the through-the-thickness integration technique of
reduction of 3D equations to 2D ones we derive the constitutive equations for stress
resultants and analyzed the dependence of the effective properties on bulk and surface
material behaviour.
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High-Temperature Inelastic Behavior
of the Austenitic Steel AISI Type 316

Holm Altenbach and Yevgen Gorash

Abstract A conventional material model is extended to taking into account of
varying thermo-mechanical loading conditions in a wide stress range. The devel-
oped model basis is a creep constitutive law in the form of the hyperbolic sine stress
response function originally proposed by Nadai. The extension is done by incorpora-
tion of two additional inner variables reflecting hardening and recovery effects under
cyclic loading conditions. The first one is presented by the relatively fast saturating
back-stress K describing the kinematic hardening. The second one is presented by the
relatively slow saturating parameter H describing the isotropic hardening. Evolution
equations for K and H originally proposed by Chaboche are formulated in a mod-
ified form and based on the Frederick-Armstrong concept. The uniaxial modelling
results are compared with cyclic stress-strain diagrams and alternative experimental
data in the form of creep curves, tensile stress-strain diagrams, relaxation curves,
etc. for the austenitic steel AISI type 316 at 600 ◦C in a wide stress range.

1 Introduction

The review of failures in fossil-fired steam power plants [5] indicate that 81 % of the
failures are mechanical in nature, and that the remainder occurs due to corrosion.
Considering the mechanical failures, 65 % are classified as short-time, elevated-
temperature failures. Only 9 % are due to creep, with the rest being due to fatigue,
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Fig. 1 Failure of the steel AISI type 316 components at Eddystone unit no. 1 power station,
after [20]

weld failures, erosion, etc. Thus, failure occurs due to the complex interaction of
creep deformation mechanisms and other material behavior processes, which lead
to an acceleration of the material degradation. Therefore, for the purpose of correct
simulation of a creep failure case study (CFCS), appropriate life time assessment
and precise prediction of failure location, it is necessary to apply unified material
behavior models. They have to describe various creep deformation mechanisms, the
accompanying processes like damage, strain hardening/softening, recovery, stress
relaxation, the processes evolving independently like plasticity, LCF, oxidation, cor-
rosion, embrittlement, etc. In order to simulate the CFCS of Eddystone unit no. 1
components (see Fig. 1) it is necessary to develop a unified material model, which
is able to describe the inelastic behavior of the steel AISI type 316 for the temper-
atures up to 650 ◦C. Due to the details of CFCS [8, 20], the model has to include
such phenomena as creep, plasticity, LCF resulting into creep-fatigue interaction and
evolution of corresponding damage parameters to assess the time of failure.

Inelastic material behavior of the austenitic steel AISI type 316 has been compre-
hensively studied experimentally in the 1990s by several material research laborato-
ries [11, 12, 17–19]. The uniaxial creep tests were force-controlled and conducted
for a wide range of constant stress values from 50 to 350 MPa and for the temperature
range 500–750 ◦C. One of the material property, which was also measured individu-
ally for each creep curve under defined stress and temperature, was the instantaneous
(or initial) strain εins. Figure 2 shows the comparison of εins values obtained from
creep experiments [17–19] in the stress range 60–330 MPa at temperature 600 ◦C
with elastic strain εel derived from the Hooke’s law εel = σ/E , where Young’s
modulus was E = 150 GPa, see [9]. It illustrates the fact that certain initial plastic
strain εpl for the steel AISI type 316 at 600 ◦C is induced even for moderate stress
values. This observation also coincides with the value of the experimental yield limit
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Fig. 2 Instantaneous strain of the steel AISI type 316 at 600 ◦C from experiments [17–19]

σy = 114 MPa corresponding to the temperature 600 ◦C [9]. Thus, at high temper-
atures the material behavior of the steel AISI type 316 is viscous and requires the
accounting of the significant amount of plastic strain εpl.

The steel AISI type 316 steel has been used within the power-generating industry,
e.g. superheater pressurized tubing exposed to temperatures of 650 ◦C or higher.
Comparing to martensitic and ferritic steels, austenitic grades including ASTM 316
have a lower yield strength σy, but excellent ductility. Their long-term ductility
can vary from below 10 % to over 100 % also depending on the temperature. All
basic thermal and mechanical properties of the steel AISI type 316 show significant
temperature dependence [9]. For more detailed description we refer to [8].

2 Creep Constitutive Equation

The deformation mechanism map of steel AISI type 316 [11] shows the require-
ment to take into account both main creep mechanisms during the creep modelling:
power-law creep, which includes generally the high stress range, and linear or vis-
cous creep, which includes generally moderate and low stress ranges. The indus-
trial application conditions lay mostly in the “viscous creep” region, close to the
transition boundary, which provides relatively better creep resistance. On the other
hand, the laboratory testing conditions lay mostly in the power-law region, so its
results have limited validity for the industrial use of the steel. The temperature range
for the steel AISI type 316 relevant to the engineering practice lays in the range
500–700 ◦C.

Within the phenomenological approach to creep modelling one usually starts with
the formulation of a constitutive equation. Figure 3 illustrates collected experimental
data [12, 17–19] for the steel AISI type 316, presenting the dependence of the
minimum creep rate ε̇cr

min on the applied stress σ in the ranges of “moderate” and
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“high” stress levels. The conventional stress-response function proposed by Norton
and Bailey is usually extended with the Arrhenius-type function to describe creep
behavior in “power-law” area at different temperatures:

ε̇cr = g (σ, T ) = c exp [−Qcr/RT ] σ n, (1)

where the creep exponent n = 15, creep material parameter c = 10−11 h−1 and
creep activation energy Qcr = 330000 J/mol are defined fitting the experimental
data [12, 17–19] within only high stress range, as illustrated on Fig. 3.

Similarly to the approach in [16] employed for X20CrMoV12-1 steel, the hyper-
bolic sine stress response function originally proposed by Nadai [14] is selected as
the basis for constitutive model due to satisfactory fitting of experimental data for
the complete stress range and the temperature range 500–750 ◦C:

ε̇cr = f (σ, T ) = A (T ) sinh [B (T ) σ ] , (2)

where the temperature-dependent creep material parameters A(T ) and B(T ) are
Arrhenius-type temperature-response functions:

A(T ) = a exp [−Qln/RT ] and B(T ) = b exp
[−Qpw/RT

]
. (3)

In Eqs. (2) and (3) all the necessary secondary creep material parameters of the steel
AISI type 316 are identified by fitting the available experimental points [12, 17–19]
at the general diagram Fig. 3 corresponding to several temperatures simultaneously:
a = 75776 h−1, Qln = 170000 J/mol, b = 0.7 MPa−1 and Qpw = 12000 J/mol.
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3 Phenomenological Approach

Referring to [15] the phenomenological approach to the development of a unified
material model is based on the mathematical description of experimental creep curves
obtained from uniaxial creep tests under constant loading, since creep is the dominant
material behavior at high temperatures. The best way to illustrate the developed
technique is to explain processes affecting the shape of an idealized creep curve in
Fig. 4 and to propose some phenomenological description for them. According to
mechanical properties of the steel AISI type 316 [9] explained in Fig. 2, the values
of the normal stress σ in the specimen, corresponding to moderate axial loading,
may exceed the yield limit of the material σy ≈ 100−120 MPa. The instantaneous
inelastic material response is therefore elasto-plastic at high temperatures:

εins = εel + εpl, (4)

where εins, εel and εpl are the instantaneous, the elastic and the plastic strains, respec-
tively. The elastic strain εel is characterized by the temperature dependent Young’s
modulus E . A portion of εpl is defined by the hardening processes, which induce the
evolution of both hardening parameters—relatively slow saturating isotropic H and
relatively fast saturating kinematic K . The contribution of each parameter on εpl is
dependent on the stress level, i.e. at high stresses mainly by H and at low stresses
mainly by K .

The time-dependent inelastic response is the slow increase of the creep strain
εcr with a variable creep strain rate ε̇cr. Depending on the character of creep strain
acceleration ε̈cr, three stages can be considered in a typical creep curve as illustrated
in Fig. 4: the first stage (primary or reduced creep), the second stage (secondary
or stationary creep) and the third stage (tertiary or accelerated creep). Moreover,
referring to [21] the shape of the creep curve is determined by following competing
reactions or processes, as explained in Fig. 4:
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(a) creep strain hardening;
(b) softening processes such as recovery, recrystallization, strain softening, and pre-

cipitate overaging;
(c) damaging processes characterized by the damage parameter ω resulting in cav-

ities initiation and cracking.

One of these three factors—creep strain hardening (a)—tends to decrease the creep
rate ε̇cr, whereas the two factors—(b, c)—tend to increase the creep rate ε̇cr. The
balance among these factors determines the creep curve shape. During the primary
creep stage the decreasing slope of the creep curve is attributed to strain hardening,
which decreases the creep rate to a certain value (minimum creep rate ε̇cr

min). A part of
creep strain εpr accumulated during the primary creep stage is defined by the evolution
of both hardening parameters K and H , as in the case of εpl. The contribution of each
parameter on εpr depends on the stress level. A number of creep material properties
can be deduced from the uniaxial creep curve. The most important of them are the
duration of each of the creep stages, the value of the minimum creep rate ε̇cr

min, the
time to fracture t∗ and the strain value at fracture ε∗:

ε∗ = εins + εcr = εel + εpl + εcr, (5)

As the first iteration in the unified model development, it is formulated for a
defined temperature. The temperature 600 ◦C is chosen as the basic for the definition
of creep material parameters for the steel AISI type 316, since this value is close to
the mean service temperature of the power plant components from Eddystone unit
no. 1. For the purpose to adjust the basic creep law, two experimental sets of creep
curves at 600 ◦C are employed for the creep parameters identification. The first set
includes 6 creep curves in the stress range 60–170 MPa [19]. The second set includes
6 creep curves in the stress range 200–300 MPa [2]. Each curve from the both sets
is differentiated numerically with respect to time in order to identify corresponding
minimum creep rate values ε̇cr

min. The result of this identification is illustrated in Fig. 5
with unfilled and filed points. Both sets of ε̇cr

min are fitted numerically by Eqs. (1)
and (2) using the weighted Levenberg-Marquardt algorithm as illustrated in Fig. 5
with solid and dashed lines, providing the following values of material parameters:
n = 7.515 and C = 5.647 ·10−23 1/h, A = 2.335 ·10−10 1/h and B = 0.053 1/MPa.
Applying a strain-controlled loading to Sinh creep model with a fixed value of the
total strainΔεt , than one can obtain a perfect stress response, i.e. the model provides
irreversible deformation without any increase in stresses reaching a certain stress
level. One gets a stable closed hysteresis loop as shown in Fig. 5.

Following [10] depending on the form of stress response under cyclic strain-
controlled loading all metals for high-temperature application are usually divided
into cyclic (or isotropic) stable and instable. Typical examples of stable metals
are medium-carbon steels, which have the width of elasto-plastic hysteresis loop
almost not dependent on the number of loading cycles. Instable metals are subdi-
vided into isotropic hardening and softening, while their instability is usually asso-
ciated with microstructure transformations undergoing cyclic or significant inelastic
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deformations, see Fig. 6. Isotropic softening metals are characterized by the gradient
narrowing of elasto-plastic hysteresis loop observable after first loading cycle. Such
type of metals is usually presented by high-strength heat-resistant steels, e.g. marten-
site steel X20CrMoV12-1 described in [16] with a combined model for hardening,
softening and damage processes. Isotropic hardening metals are characterized by the
gradient expansion of the elasto-plastic hysteresis loop observable after first load-
ing cycle. Such type is usually presented by ductile stainless steels, e.g. austenitic
steel AISI type 316, which cyclic plasticity behavior is described in [6] for a wide
temperature range with the Chaboche unified visco-plasticity model [2].

One can make the assumption that the plastic strain εpl and the strain accumulated
during primary creep stage εpr for stable metals are defined only by kinematic hard-
ening, which provides the shift of the initial yield surface. In the case of softening
metals this assumption is also correct, but the softening phenomenon additionally
influences εpl, providing the reduction of the initial yield surface, and the second
creep stage. The steady-state segment almost vanishes due to the creep acceleration
caused by material transformation towards softer microstructure and followed by
damage accumulation on the tertiary stage, see Fig. 6 and for explanation [16]. In the



24 H. Altenbach and Y. Gorash

case of hardening the strains εpl and εpr are defined by both kinematic and isotropic
hardening, which provides an additional growth of the initial yield surface. The
influence of the hardening reduces the creep strain deceleration on the second part
of primary stage, thus also the vanishing steady-state segment of the second stage.
Such a behavior is caused by material transformation towards harder microstructure
and followed by damage accumulation on the tertiary stage, see Fig. 6. Therefore,
for the adequate description of inelastic material behavior of the steel AISI type 316,
it is necessary to formulate such a phenomenological model, which is able to reflect
all the features of hardening specified above.

4 Formulation of the Unified Model

The constitutive Eq. (2) based on the Sinh stress-response function is taken as a basis
of the proposed unified visco-plasticity model for the steel AISI type 316. It will be
extended below in order to take into account both the kinematic and the isotropic
hardening effects. Therefore, the model is formulated not for ε̇cr, but for the inelastic
strain rate ε̇in. Note that the values of the creep parameters A and B for Eq. (2) remain
the same as they are defined in Sect. 3 by fitting the available experimental creep
curves at 600 ◦C. Thus, the extension consists in replacement of the value of applied
stress σ by the value of viscous stress σv, which is initially significantly higher than
the value of σ , but saturates towards it under a constant loading after a certain time
depending on the applied stress and loading rate:

σv = σ/(1 − h + H)+ σ0 sign (σ − K )− K , (6)

where σ0 and h are material parameters for the steel AISI type 316 at 600 ◦C, which
present the saturation values for the kinematic backstress K and the isotropic hard-
ening variable H , respectively. The influence of additional material state variables
(K and H ) and corresponding saturation values σ0 and h results in so-called over-
stress X = σv − σ , which saturates towards zero under a constant loading after a
certain time. The value of the overstress in the initial moment of time before the
elastic response of material considering the finite loading rate is following:

X = σ h /(1 − h)+ σ0. (7)

In the case of the following form for viscous stress

σv = σ/(1 − H)+ σ0 sign (σ − K )− K (8)

the model provides kinematic hardening combined with isotropic softening.
The evolution equations for hardening state variables (K and H ) are taken in the

same form as implemented in [6, 16] using the Frederick-Armstrong concept [4].
The evolution equation for the isotropic hardening parameter H is as it follows:
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Ḣ = C1 (h − H) |ε̇in|, (9)

where the value of the saturation parameter h varies from 0 to 1, specifying the initial
yield stress σy on the first 0.25 hysteresis loop of the tensile stress-strain diagram.
Parameters C1 define the rate of saturation for parameter H towards the value of
h, thus providing the stabilization of hysteresis loops and reaching the conventional
value of the ultimate stress σu on the tensile stress-strain diagram.

The evolution equation for kinematic hardening backstress K is following:

K̇ = C2
[
σ0 sign (σ − K )− K

] |ε̇in|, (10)

which is very close to the conventional form [2, 4], and provides the same effect of
kinematic shift under application of reverse loading and positive value of σ , because
the sign of ε̇in is defined by the difference between σ and K . In Eq. (10) σ0 presents
some kinematic shift of the initial yield surface, and C2 defines the rate of this shift,
thus providing the graduate transition from the elastic slope to plastic on tensile
stress-strain diagram and the initial strain rate on primary creep stage.

In addition, the relation between the elastic εel and the inelastic strain εin for a
strain-controlled test is formulated in the following form:

σ̇ = E(ε̇t − ε̇in), (11)

where E is the elasticity modulus and εt is the applied total strain.
The unified visco-plasticity model (2), (6), (9)–(11) provides all the required

features of material behavior under constant and monotonic loading, as illustrated in
Figs. 4 and 6, and hardening behavior under cyclic loading, as illustrated in Fig. 7.
The resulting hysteresis loop illustrating anisotropic hardening can be decomposed
on two idealized hysteresis loops presenting the separate influence of kinematic
backstress K and isotropic parameter H on the constitutive model (2).

5 Verification of the Model by Uniaxial Tests

Referring to [13] for a qualitative analysis, several characteristic tests have to be per-
formed to describe the phenomenology of visco-plastic materials at high temperature.
The classical tests are essentially conducted in simple tension or tension-compression
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at constant temperature. The specimen is subjected to an axial load (force or
displacement) which produces a uniform state of stress or strain within the whole
useful volume of the specimen. The most general types of uniaxial tests required
to characterize a material and to verify a corresponding material model are creep,
relaxation, hardening and cyclic tests. These types of tests can be conducted in dif-
ferent combinations with different duration for the complex investigation of material
behavior. If the tests, with the exception of relaxation, are conducted during unde-
fined period of time, than the fracture of the specimen is achieved and the durability
characteristics of the material can be obtained, including fracture stress and strain,
time, number of cycles to fracture and energy dissipated in fracture.

Therefore, simulation results obtained by the proposed model (2), (6), (9)–(11)
with appropriate creep parameters have to be compared with all mentioned above
types of uniaxial experimental data for the steel AISI type 316 at 600 ◦C. The values
of creep parameters A = 2.335 · 10−10 1/h and B = 0.053 1/MPa for constitutive
Eq. (2) are defined in Sect. 3 by fitting the available creep curves [2, 19]. The values
of hardening material parameters C1 = 20, h = 0.35 in Eq. (9) and C2 = 1100,
σ0 = 170 MPa in Eq. (10) are defined in the first iteration by fitting of the first 1.25
loop from the experiment [6], conducted under 0.3 % of εt amplitude with strain rate
ε̇t = 2.66 · 10−4 1/s. The experimental data in [6] are fitted by the Chaboche visco-
plasticity model with the set of 10 corresponding material parameters also provided
in [6], as shown in Fig. 8. The comparison of the cyclic simulation results for two
unified models in Fig. 8 shows that the Chaboche model provides much better results
for cyclic stress response and form of saturated loop after 50 cycles.

However, for the experimental data of relaxation [3] and hardening tests [1]
the proposed model provides much more preferable simulation results, than the
Chaboche model. The explanation for this is that the material parameters provided
from [6] have been identified using only the cyclic tests. Moreover, in [2] the capacity
of the Chaboche model to reproduce relaxation tests was demonstrated. The relax-
ation curve obtained by the proposed model, corresponding to the value of total strain
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εt = 0.003 achieved with the strain rate ε̇t = 8 · 10−6 1/s, provides the necessary
rate of stress decrease, which coincides with experimental relaxation curve [3], as
shown in Fig. 9a. The stress-strain diagram obtained by the proposed model, corre-
sponding to the strain rate ε̇t = 0.02 1/min = 3.33 · 10−4 1/s selected regarding the
EN 10002-5 standard, provides the necessary level of yield stress σy and hardening
slope of the experimental stress-strain diagram [1], as shown in Fig. 9b.

Finally, the creep test simulation results obtained by the both models are compared
with experimental strain rate versus strain dependencies extracted from two sets of
experimental creep curves. The first set includes creep curves in low stress range (60–
170 MPa) provided by [19] and shown in Fig. 10, and the second set includes creep
curves in high stress range (200–300 MPa) provided by [2] and shown in Fig. 11.
The Chaboche model with corresponding material constants does not provide any
reasonable creep simulation results for the both sets of creep curves. Creep simulation
results presented on Figs. 10 and 11 provided by the proposed model are far from the
optimal matching of experiments. The simulated inelastic strains εin overestimate
the experimental strains before reaching ε̇cr

min for low stresses and underestimate the
experimental strains for high stresses.

The positive features of obtained simulation results include two facts observed on
Figs. 10 and 11. First, the required values of ε̇cr

min are reached for the complete stress
range with the exception of some moderate stresses. Second, the simulation curves
for the low stress range demonstrate the separate influence of kinematic and isotropic
hardening resulting in smooth changing of the curves’ slope before reaching ε̇cr

min, as
it is assumed in Sect. 3 in Fig. 6. This assumption is confirmed by the experimental
curve shape corresponding to 200 MPa on Fig. 11, which demonstrate the influence
of different hardening types. Therefore, the creep simulation results may be improved
by setting the saturation parameters σ0 and h corresponding to kinematic backstress
K and isotropic parameter H as functions depending on σ . Then, these functions
can be separately fitted to corresponding segments of experimental creep curves.



28 H. Altenbach and Y. Gorash

4 x 10 1 x 10 0.01-4 -3

1 x 10

1x 10

1 x 10

-5

-6

-7

1 x 10

1 x 10

-8

-9

170 MPa
120 MPa
100 MPa
80 MPa
60 MPa

170 MPa
120 MPa
100 MPa
80 MPa
60 MPa

Total strain

)h/1(
etar

niart S Tests [19]:
Proposed
model:

0.1

Fig. 10 Comparison of the model simulation results for the strain rate from creep tests conducted
at low stresses [19]

0.01

1 x 10

1 x 10

-3

-4

1 x 10

1 x 10

-5

-6

0.01 0.02                                                 0.07        0.1                         0.2            0.3

300 MPa
270 MPa
255 MPa
230 MPa
200 MPa

300 MPa
270 MPa
255 MPa
230 MPa
200 MPa

Total strain

)h/1(
etar

nia rt S

Tests [2]:

Proposed
model:

ε̇cr
min

K

H

Fig. 11 Comparison of the model simulation results for the strain rate from creep tests conducted
at high stresses [2]

6 Conclusions

The results of a numerical life-time assessment for the main steam piping (MSP)
from Eddystone unit no. 1 power station applying conventional creep-fatigue model
[7, 8] in ABAQUS comply with a conservative locus on creep-fatigue damage inter-
action diagram. In order to improve the simulation results, a conventional sinh-based
creep model for the steel AISI type 316 has been extended by the introduction of
two additional hardening state variables (K and H ). The uniaxial simulation results
of the proposed unified model satisfactory comply with cyclic stress response, creep
curves, stress-strain diagram and relaxation curve at 600 ◦C. In comparison to the
unified Chaboche model, the proposed model has less number of material constants
(7 vs. 10) and provides better results in modelling of creep and relaxation. The
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constitutive Eq. (2) of the proposed model, analogically to conventional model [7,
8], can be coupled with evolution equations for creep damage ωcr and fatigue dam-
age ωf parameters. In case of constant loading, ωcr influences the accumulation of
inelastic strain εin resulting in tertiary creep stage on creep curve. In case of variable
loading, the influence ofωf on εin results in the fast narrowing of last hysteresis loops
before the fracture. However, the proposed model is less accurate regarding the cyclic
behavior, therefore it requires some significant improvements, such as introduction
of stress and temperature dependence for hardening material constants. In order to
provide better fitting of experimental data a numerical optimization procedure has
to be developed for material parameters identification.
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Finite Element Modelling of the
Thermo-Mechanical Behaviour of a 9Cr
Martensitic Steel

R. A. Barrett, P. E. O’Donoghue and S. B. Leen

Abstract A multi-axial, unified sinh viscoplastic material model has been developed
to model the behaviour of advanced materials subjected to high temperature cyclic
loading. The material model accounts for rate-dependent effects related to high tem-
perature creep and cyclic plasticity effects such as isotropic and kinematic hardening.
The material model, which is capable of simulating both isothermal and anisothermal
loading conditions, is implemented in multi-axial form in a material user subroutine
and validated against uniaxial test data. The results validate the implementation for
both isothermal and anisothermal uniaxial loading conditions for as-new P91 steel.

1 Introduction

Next generation power plants are faced with the need to facilitate an ever increasing
growth in renewable energy technologies. The unpredictable nature of renewable
sources of energy, attempts to minimise CO2 emissions and more widespread use
of flexible combined cycle gas power plant, results in the need for fossil-fuel based
power plant to operate with increased flexibility. Such a load-following mode of
operation results in potentially large cyclic thermal gradients, which in turn, lead to
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increased thermo-mechanical fatigue (TMF) of plant components and a reduction
in component life. Coupled with this increased TMF is the requirement to improve
overall plant efficiency and hence reduce the level of CO2 emissions. This may be
achieved through the use of an ultra-supercritical (USC) cycle, with plant compo-
nents subjected to increased steam pressure and temperature. With Type IV cracking
already observed in plant components operating under a subcritical cycle [17], there
is a need for the development of accurate life prediction methods for power plant com-
ponents. To achieve this, effective and efficient computational methods are required
to predict the life of plant components. This, in turn, requires material models which
can accurately describe the constitutive behaviour of candidate materials, such as
9Cr steels, under high temperature loading.

The material model must have the capability to simulate, on the one hand, the
rate-dependent effects associated with high temperature creep, while also maintain-
ing the ability to model phenomena related to cyclic loading conditions, such as
the Bauschinger effect and isotropic hardening. Thus, a unified approach is required
to model the creep-fatigue interaction observed in 9Cr steels. A number of models
capable of dealing with the high temperature creep-fatigue interaction have been
proposed, such as uniaxial implementations of the Chaboche power law model [3,
9, 10, 15, 20, 21], the two layer viscoplasticity model [6] and the MATMOD model
[13]. The model proposed in the current study is a multi-axial sinh formulation.
The sinh formulation is beneficial for a number of reasons. Firstly, as 9Cr steels
display a linear stress-strain rate relationship at low stresses and strain rates and an
exponential relationship at higher values, the sinh formulation allows for reliable
interpolation and extrapolation beyond the limited experimental data available. Sec-
ondly, the mechanisms which dominate deformation vary from diffusion based creep
at low stresses and high temperature to dislocation based creep at higher stresses [8].
As the low stress regime corresponds to Nabarro-Herring creep with an exponent
of unity and the higher stress regimes are represented by power law creep with an
exponent of up to 11 [18], the use of a sinh formulation allows for smooth transition
from one phenomena to another.

The sinh material model is implemented in both uniaxial and multi-axial form. The
multi-axial implementation is developed in a user material subroutine, for use with
the commercial finite element (FE) code Abaqus. This study presents the first step
in assessing the performance of the multi-axial material model by validating against
uniaxial isothermal fatigue data [10] and uniaxial TMF test data [15] available in the
literature.

2 Material Model

The sinh unified viscoplastic material model described in this study allows for accu-
rate modelling of the isotropic and kinematic hardening phenomena associated with
cyclic loading and the creep effects related to high temperature loading. This is
achieved through the use of the following constitutive equation for the effective
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accumulated plastic strain rate:

ṗ = α sinh β (J(σ − χ)− R − k) (2.1)

where J(σ−χ ) is the von Mises effective stress function, R is the isotropic hardening
parameter, k is the initial yield stress, χ is the back-stress tensor and α and β are
temperature-dependent, viscoplastic material parameters. The material model uses
an implicit integration scheme to evaluate the increment of effective plastic strain.
The nature of the implicit scheme used in this model dictates that a trial stress is
used to check for viscoplastic behaviour. This allows for the dissipation potential to
be evaluated at the current timestep and the use of a radial return method [4] applies
plastic correction to the value of trial stress obtained.

2.1 Material Model Development

Assuming only small strains apply, classical additive decomposition of strain gives
the following equation for the total strain, ε:

ε = εel + εpl + εth (2.2)

where εel corresponds to the elastic strain, εpl is the plastic strain and εth is the
thermal strain. The increment in stress, �σ, is calculated using the multi-axial form
of Hooke’s law, coupled with Eq. (2.2) written in terms of the elastic strain:

�σ = 2μ
(
�ε −�εth

)
+ λTr

(
�ε −�εth

)
I − 2μ�εpl (2.3)

where λ and μ are Lamé’s constants. In Eq. (2.3), the first two terms on the right
hand side give the trial stress and the final term corresponds to the applied plastic
correction. The increment of plastic strain, �εpl, is determined by the flow rule:

�εpl = �pn (2.4)

where n represents the tensor normal andΔp corresponds to the increment in effective
plastic strain. For a von Mises material, the tensor normal is defined by the following
equation:

n = ∂ f

∂σ
= 3

2

s − χ

J (s − χ)
(2.5)

In Eq. (2.5), s is deviatoric stress and f defines the viscous stress if f > 0 and the
elastic domain if f ≤ 0. For the current model, f is defined as:

f = J (σ − χ)− R − k (2.6)
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Nonlinear kinematic hardening, which accounts for translation of the centre of the
elastic domain in 3D stress space, is described by a summation of Armstrong-
Frederick type back-stress tensors [2, 11]:

χ = χ1 + χ2 (2.7)

χ̇ i = 2

3
Ci ε̇

pl − γiχ i ṗ + 1

Ci

∂Ci

∂T
χ i Ṫ (2.8)

where T is temperature and Ci andγi are temperature-dependent material parameters.
The three terms in Eq. (2.8) correspond to (i) a linear kinematic hardening term, (ii)
a recall term and (iii) a temperature rate term, respectively. χ1 accounts for the
kinematic behaviour at lower strain hardening levels and χ2 for higher levels of
strain hardening. The variable R takes into account the expansion/contraction of the
elastic domain and is given by the following relationship [11, 22]:

Ṙ = b (Q − R) ṗ +
(

1

b

∂b

∂T
+ 1

Q

∂Q

∂T

)
RṪ (2.9)

where b and Q are temperature-dependent material parameters representing the decay
rate and the saturation value of R respectively. In Eqs. (2.8) and (2.9), the temperature-
rate terms account for the effects of anisothermal loading conditions and the varia-
tions of the material parameters b, Q and Ci as functions of temperature.

The sinh formulation defined above has been implemented in uniaxial form in a
stand-alone computer program and also in multi-axial form within a user material
(UMAT) subroutine in the general-purpose, non-linear FE code Abaqus. Figure 1
depicts a flowchart of the main processes involved in the subroutine. Once the equiv-
alent trial stress has been obtained, a check for viscoplastic behaviour on the current
timestep is conducted. Viscoplastic behaviour is implemented (ε̇pl �= 0) if the fol-
lowing criterion is met:

Ω > 0 and
∂Ω

∂σ
: σ̇ > 0 (2.10)

where Ω is the dissipation potential, defined for the hyperbolic sine model as:

Ω = α

β
cosh (β f ) sgn (β f ) (2.11)

If viscoplastic behaviour is observed, a Newton iterative method is employed to
obtain a converged increment in effective plastic strain and the increments of the
plastic strain tensor are evaluated using the flow rule, described by Eq. (2.4). The
increment of stress is then calculated using the simple constitutive equation:

�σ = �:(�ε −�εpl −�εth) (2.12)
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Fig. 1 Flowchart of the mate-
rial user subroutine process

where � is the standard elasticity matrix.

2.2 Material Model Parameters

This paper is primarily concerned with the multi-axial implementation of a hyperbolic
sine unified viscoplasticity model for cyclic stress-strain rate dependence and with
preliminary identification of the salient hyperbolic material parameters, α and β, for
the TMF behaviour of as-new P91. To this end, the published stress relaxation data of
Koo et al. [10] for temperatures of 500 and 600 ◦C and the isothermal cyclic data of
Saad et al. [15] for P91 steel, between 400 and 600 ◦C are employed. The experimental
cyclic data of Saad et al. [15] is obtained at a strain rate of 0.1 %/s and a strain range
of ±0.5 %. The first step is calibration of the material parameters. This is achieved
using the stand-alone uniaxial code. Three sets of constants are identified, namely (i)
elastic constants, Young’s modulus (E), Poisson’s ratio (ν, taken as 0.3 throughout),
initial yield stress (k) and the coefficient of thermal expansion (αCOE), (ii) kinematic
and isotropic hardening parameters and (iii) the cyclic viscoplastic parameters. For
P91 steel, the temperature-dependent parameters for (i) are published by ASME [1]
and are given in Table 1. The present model is essentially a generlisation of the unified
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Table 1 Published temperature-dependent values of Young’s modulus and coefficient of thermal
expansion for as-new P91 steel [1]

Temperature (◦C) E (GPa) αCOE (/
◦C)

400 184 12.95 × 10−6

500 163 13.31 × 10−6

600 142 13.59 × 10−6

Table 2 Isotropic and kinematic hardening parameters for as-new P91 steel [15]

T (◦C) k (MPa) Q (MPa) b C1 (MPa) γ1 C2 (MPa) γ2

400 96 −55.0 0.45 352500.0 2350.0 48600.00 405.0
500 90 −60.0 0.60 215872.6 2191.6 48235.29 460.7
600 43 −75.4 1.00 106860.0 2055.0 31159.90 463.0

Table 3 Temperature-
dependent hyperbolic
material parameters for
as-new P91 steel

Temperature (◦C) α (s−1) β (MPa−1)

400 8 × 10−07 0.07
500 4 × 10−07 0.064
600 1 × 10−07 0.055

Chaboche power law model, with (i) a hyperbolic viscoplasticity function replacing
the power-law function and (ii) inclusion of additional temperature-rate terms for the
isotropic and kinematic hardening functions, but otherwise with similar isotropic and
kinematic hardening evolution functions. Hence, for the current study, the kinematic
and isotropic hardening parameters of [15] are adopted in general. Note that the initial
yield stress value, k, at 600 ◦C is however, lower than that of [15], as calibration of
the relaxation data of Koo et al. [10] led to a modified value of 43 MPa for this.
As it is well documented that P91 steel undergoes cyclic softening behaviour due
to coarsening of the microstructure [7, 15, 16], the isotropic hardening parameter Q
has a negative value (Table 2).

From this initial material data, an iterative process is undertaken within the uniax-
ial code, whereby preliminary values of the cyclic viscoplastic parameters, α and β,
are obtained by comparison with stress relaxation data [10] and isothermal cyclic data
[15]. The resulting temperature-dependent values are listed in Table 3. Piece-wise lin-
ear interpolation is used to evaluate the material constants for the anisothermal cases.
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Fig. 2 Stress relaxation tests at 500 ◦C for a calibration of the hyperbolic viscoplastic parameters
from the data of Koo et al. [10] and b validation against data of Saad et al. [15]

Fig. 3 Calibration of the material parameters from the experimental data of Saad et al. [15] at
500 ◦C and a strain rate of 0.1 %/s for a the initial cycle and b after 600 cycles

3 Results

The uniaxial code has been successfully calibrated against the previously published
experimental results of [10, 15] and the multi-axial UMAT implementation has, in
turn, been successfully validated against (i.e. gave identical results to) the uniaxial
stand-alone code. The details are not shown here for compactness. The results of the
calibration process are illustrated in Figs. 2a, 3 and 4. Following calibration using the

Fig. 4 Calibration of the material parameters from the experimental data of Saad et al. [15] at
600 ◦C and a strain rate of 0.1 %/s for a the initial cycle and b after 300 cycles
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Fig. 5 Validation comparison of FE-predicted and the experimental data of Koo et al. [10] at 500 ◦C
and a strain rate of 0.01 %/s for a the initial cycle and b after 130 cycles

Fig. 6 Loading conditions for a TMF-IP loading and b TMF-OP loading

uniaxial code, the next steps are (i) validation of the multi-axial FE-implementation
for isothermal (uniaxial) strain-controlled test conditions for P91 steel, and (ii) inves-
tigation of the validity of the isothermally-identified parameters for anisothermal
(TMF) test conditions for P91 steel, including initial assessment of the effects of the
additional temperature-rate terms over the range of test conditions from [10, 15].
Validation of the performance of the multi-axial material model for uniaxial isother-
mal cyclic loading conditions is conducted against data available in the literature [10,
15]. Figure 2b depicts the results obtained for a stress relaxation test at a temperature
of 500 ◦C for the conditions tested in [15] and Fig. 5 illustrates the isothermal cyclic
results obtained at a temperature of 500 ◦C for a different strain rate of 0.01 %/s,
where excellent agreement with the experimental data is obtained. A similar quality
of correlation is achieved for isothermal modelling at 400 ◦C. As expected, P91 steel
exhibits considerable cyclic softening, with a 22 % reduction in the stress range for
isothermal loading at 600 ◦C, for example.

Figure 6 shows the in-phase (IP) and out-of-phase (OP) anisothermal loading
conditions simulated within the present study. Figure 7 illustrates that excellent cor-
relation is achieved between the FE and measured [15] stress-strain responses for IP
loading in the 400–500 ◦C range. Similar results are obtained for the 400–600 ◦C IP
case, as shown in Fig. 8, although the model over-predicts stress range by about 5 %,
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Fig. 7 Comparison of FE-predicted and measured [15] hysteresis loops for 400−500 ◦C TMF-IP
loading, for a the initial loop and b after 100 cycles

Fig. 8 Comparison of FE-predicted and measured [15] hysteresis loops for 400−600 ◦C TMF-IP
loading, for a the initial loop and b after 3 cycles

Fig. 9 Comparison of FE-predicted and measured [15] hysteresis loops for 400−500 ◦C TMF-OP
loading, for a the initial loop and b after 100 cycles

at the tensile side, for later cycles. Figure 9 shows that the model performs well for
the early cycles for the 400–500 ◦C OP case; however, it slightly over-predicts stress
range (∼10 %) for later cycles, but still captures the tensile peak accurately.
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4 Discussion and Conclusions

For the strain rates and strain ranges considered, the FE implementation of a multi-
axial hyperbolic sine material model results in good correlation with both the exper-
imental data and the unified Chaboche model implementations of [10, 15]. For the
isothermal conditions simulated from 500 to 600 ◦C, the results show excellent agree-
ment with the experimental data; discrepancies within the results may be attributable
to non-optimised material parameters.

It has been argued (e.g. [5, 14]) that the hyperbolic sine viscoplasticity function,
as compared to the power-law function of the unified Chaboche model, is (i) more
representative of the mechanisms of deformation for martensitic-ferritic steels at
high temperature, spanning a range of loading levels, e.g. cyclic loading, and (ii)
therefore, has potential benefits for interpolation and extrapolation from the limited
test conditions, typically employed for constitutive parameter identification, to the
broader range of stress, strain-rate and temperature conditions experienced by real-
plant components, as particularly required for ever-more flexible plant operation. This
benefit has been alluded to within the present study by the ability of the hyperbolic
sine material model to simulate the behaviour of P91 steel at different strain rates
(e.g. see Figs. 3 and 5). Further validation of the multi-axial capability of the material
model is required in future work, for example, by comparison with notched specimen
data, e.g. see [19]. The ultimate aim is for application to realistic plant operating
conditions for identification of representative TMF conditions for testing, e.g. see
[6] and life prediction.

For the case of anisothermal loading conditions, the predicted results, which are
also similar to those of the unified Chaboche model [15], suggest that the isothermal
identification of material parameters is a reasonable basis for subsequent anisother-
mal behaviour prediction. The IP predictions are superior to the OP predictions,
particularly for later OP cycles. The additional temperature-rate terms (i.e. the tem-
perature derivative terms on the right hand side of Eqs. 2.8 and 2.9) have been found,
for the conditions studied here, to lead to a relatively small effect on stress range,
typically about 6 %. It is proposed that the use of a global optimisation technique,
such as in [12], in future work will allow more detailed identification of the material
parameters.
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Enhanced Global Digital Image Correlation
for Accurate Measurement of Microbeam
Bending

L. I. J. C. Bergers, J. Neggers, M. G. D. Geers and J. P. M. Hoefnagels

1 Introduction

Microbeams are simple on-chip test structures used for thin film and MEMS materials
characterization [3], see Fig. 1. Optical profilometry techniques are typically used for
the measurement of deformations [8, 10]. Profilometry can be combined with Euler-
Bernoulli (EB) beam theory to extract material parameters, like the E-modulus or
creep parameters. The latter requires characterization of time-dependent microbeam
bending, though non-trivial, as it involves long term sub-microscale measurements.
On the one hand environmental instabilities directly hinder accurate long term mea-
surements. On the other hand microfabrication limitations often affect the ideal fixed-
end geometrical boundary condition [2]. This requires attention, because a non-ideal
fixed-end, e.g. a compliant anchor, introduces errors when using the microbeam
deflection with EB-theory [6]. Hence, the problem is attaining sufficient accuracy
and precision in these measurements.

A first step towards precise microbeam bending experiments is the careful design
and construction of the setup and proper control of the profilometer’s environment
[1]. In [1] we presented a simple image correlation based methodology to correct
the rigid body motions, e.g. due to drift, of the deformed specimen on the xyθxθy-
positioning stage. The difference between the reference profile and this deformed
profile yielded the tip deflection. However, this correlation based correction has a
drawback: the correction is extrapolated to the entire beam profile based on a limited
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Fig. 1 Scanning electron micrograph of a typical on-chip microbeam attached to a free-standing
double clamped plate that is anchored to the substrate

reference area on the anchor. As the beam lies in the extended direction of the anchor,
the resulting tip deflection is sensitive to an extrapolation error.

Following Neggers et al. [7], we here present an improved approach for microbeam
bending analysis. The approach in [7] extracts curvature from profilometry data of
bulged membranes through enhanced global digital image correlation (GDIC). The
key point is the use of the deformation kinematics as degrees of freedom to be
solved in the minimization problem formulated for DIC as demonstrated by Hild
and Roux [4, 5]. Therefore, in the approach presented here we combine the drift
and beam bending kinematics and directly correlate on the beam, eliminating any
extrapolation errors. The correlation procedure yields the displacement fields. This
does not directly yield the beam deflection, because the position of the anchor is not
resolved. However, the curvature field of the beam can be directly extracted from
this displacement field, because a C2-continuous basis for the degrees of freedom is
chosen. This effectively filters measurement noise, overcoming issues when taking
derivatives to calculate the curvature. In short, this improved approach yields an
accurate curvature field, in stead of beam deflection, that serves equally well in
analyzing microbeam bending mechanics.

In this work, we describe the kinematics involved followed by the implementation
into the GDIC procedure through which the curvature is determined. To asses the
accuracy of this new procedure a numerical experiment is performed of which the
implementation and results are discussed.
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2 Principle of Global Digital Image Correlation and Curvature
Measurement

In the solid mechanics community DIC has become an established method to measure
deformation fields at various length scales both in 2D and 3D geometries [9]. For
the 2D case one records an image of an undeformed, reference situation of an object
and of its the deformed situation. Parts of the image with a unique pattern can then
be correlated from one image to the next, allowing one to extract the displacements
between the two instances. Traditionally, one applies a pattern with sufficient detail
and variation to obtain uniqueness for the correlation procedure.

The correlation procedure in 2D is based on the principle of optical flow conser-
vation. It states that the reference image, represented by the intensity field f (x), is
related to the deformed image, g(x) through the in-plane displacement field uxy(x)
and measurement noise n0(x):

g(x + uxy(x)) = f (x)+ n0(x). (1)

In the case of optical profilometer data, the intensity is in fact a height, and can
also vary due to e.g. deformations. This quasi 3D nature can be exploited by relaxing
the optical flow conservation:

g(x + uxy(x)) = f (x)+ uz(x)+ n0(x). (2)

The unknown displacement fields u(x) are found through minimizing the global
residual η of the weak form of Eq. (2) over the considered domain

η2 =
∫

[( f (x)− g(x + uxy(x))+ uz(x)]2dx =
∫

r(x)2dx, (3)

where r(x) is the residual field. The displacement field is parameterized and inter-
polated using a set of basis functions φn(x) acting globally over the entire domain
and weighted with a discrete set of degrees of freedom un

u(x) = ux (x)ex + uy(x)ey + uz(x)ez =
∑

n

unφn(x)ei , (4)

where i = [x, y, z] and the basis functionsφn(x) are polynomial functions depending
on x = xex + yey

φn = xα(n)yβ(n). (5)

The choice for this parametrization has the benefit that it allows one to introduce
degrees of freedom suitable for describing the deformation kinematics, whilst main-
taining a continuously differentiable solution. This aspect is important, because the
strain and, particularly for microbeam bending, curvature fields are (higher order)
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derivatives of the displacement fields. Furthermore when the order of the polynomi-
als are limited, measurement noise is effectively filtered, yielding a robust curvature
measurement: the smooth continuously differentiable displacement fields and not
the measurement data serve as input for differentiation.

The introduction of the degrees of freedom and the appropriate basis functions can
be based on prior knowledge of the deformation kinematics. For example, a uniaxial
strain in x, εxx , could be described by adding a basis function of degree [α, β] =
[1, 0] in x-direction: φ10 = x1 y0. Adding this basis function to the z-direction would
describe a constant tilt. One should however be aware that superfluous degrees of
freedom will not necessarily yield the correct solution for the displacement fields,
because of the measurement noise. On the other hand residual fields showing system-
atic deviations from zero might indicate insufficient kinematic degrees of freedom.
Therefore, the prior knowledge allows a sufficient choice of degrees of freedom that
will describe the kinematics, but limit inaccuracies due to noise.

As the curvature field is the desired measurand from the microbeam bending
experiment, we consider all rigid body displacements, rotations about the x- and
y-axis, resulting from drift of the xyθxθy-platform, and the end-loaded bending
of the single clamped microbeam. The bending results in a gradient in curvature,
involving a third order displacement derivative along the beam’s axis, which is taken
along the x-direction. Hence the parametrization of the displacement fields takes the
following form:

u(x) = (ux,00)ex +(uy,00)ey +(uz,00 +uz,10x +uz,01 y+uz,20x2 +uz,30x3)ez . (6)

From the displacement fields resulting from the GDIC procedure, the curvature
field tangent to the beam’s surface in x-direction, κxx (x), can be derived. First the
curvature tensor is constructed as the dyadic product of the gradient operator and the
surface normal:

κ = ∇ ⊗ n, (7)

where the gradient operator is defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
. (8)

The normal vector is calculated from the position field of the deformed microbeam
z(x, y), obtained by applying the resulting displacement fields to the reference pro-
file:

n = ∇z(x)
||∇z(x)|| . (9)

Finally the curvature field in a given tangent direction is calculated by

κt(x) = t · κ · t (10)
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where the unit tangent vector, t(τ ), along an in-plane unit vector τ (x) = τx ex +τyey

is

t = τx ex + τyey + (∇ f ) · τ ⊗ ez√
τx

2 + τy
2 + [(∇ f ) · τ ]2

(11)

and τ ⊗ ez is the dyadic product of the two vectors. In the processing applied, the
curvature is measured along the tangent in-plane unit vector τ = 1ex .

3 Evaluation of Accuracy

In order to evaluate the accuracy of the GDIC approach a numerical microbeam bend-
ing experiment is conducted. A linear elastic finite element model of a representative
microbeam (l = 100 µm, w = 20 µm, t = 5 µm) is modeled in Marc/Mentat using
quadratic thick shell elements, see Fig. 2. Only half of the microbeam is modeled due
to symmetry. It is deflected at the end by 2 µm. The surface topography of a physical
microbeam is measured using a Sensofar Plu2300 confocal optical profilometer, see
Fig. 3a and [1] for details. A corresponding part of this topography, see ROI f in
Fig. 3b, is deformed with the numerically generated displacement fields. An addi-
tional constant in-plane displacement uxy(x) = 1, 162ex − 0, 830ey µm as well as
an out-of-plane tilt uz(x) = (0, 0005x −0, 0006y)ez µm simulate drift, see ROIg in
Fig. 3b. These values are selected as uneven half-pixel multiples, where the pixel size
is 0, 332×0, 332 µm2, serving as a worst case, because this leads to the poorest DIC
accuracy [4]. The deformed and displaced topography serves as input for the GDIC
procedure with the natural surface features serving as the pattern. Subsequently the
curvature is calculated based on the GDIC output and compared to the numerically
prescribed curvature calculated from the nodal displacements and rotations of the
FEM output.

-2.0
-1.6
-1.2
-0.8
-0.4
 0.0

Displacement Z [um]

Fig. 2 The FEM model in deformed state used for generating the displacement fields. The left end
is deflected, whilst the right end is clamped
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(a) (b)

Fig. 3 a A contour plot of two actual microbeams. The box on the top beam’s surface indicates
the part used for GDIC as shown in b: ROIs of the undeformed f and deformed g selection from the
beam

To minimize numerical artifacts when doing this numerical evaluation there are
some issues to address. First, the computational mesh and discrete surface topog-
raphy will have a different discretization. This is overcome by interpolating both
surfaces with C1- or C2-continuous interpolation functions to finer and equal grids
and excluding pixels adjacent to the border of the region of interest. Second, the
prescribed curvature fields calculated from interpolated nodal displacement fields
will show artifacts, because the nodal displacements are not C1-continuous between
elements. Although nodal rotations strictly speaking also suffer the same disconti-
nuity, they effectively do form a C1-continuous gradient of the displacement field
for the curvature calculation. Hence the nodal rotations θi are interpolated and used
in the curvature calculation through the following definition of n:

n = tan(θy(x))ex + tan(θx (x))ey + ez√
tan(θx (x))2 + tan(θy(x))2 + 1

. (12)

4 Results

The results of the GDIC at different levels of deflection are judged by the displace-
ment fields obtained in x-, y- and z-direction and the residual field. The resulting
displacement fields show good agreement with the prescribed displacement fields, see
Fig. 4. For the in-plane displacements an accuracy of<13 nm is observed, which cor-
responds to ∼0, 04 pixels for a 332 nm pixel size. The accuracy of the z displacement
field is <2 nm, whilst its field reveals a systematic error. This might be caused by a
slight curvature in y-direction that is not covered by the admitted degrees of freedom.

When regarding the residual field and comparing to the undeformed pattern, see
Fig. 5, no systematic features are observed, indicating the correlation has reached the
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(a)Ux from GDIC (b)ΔUx

(c) Uy from GDIC (d)ΔUy

(e) Uz from GDIC (f) ΔUz

Fig. 4 Resulting displacement fields including drift at 2 µm deflection obtained through GDIC.
a, c, e are the GDIC obtained displacement fields and b, d, f are the difference fields between the
GDIC and FEM displacement fields

global minimum. Further, the amplitude of the residual field is relatively large, about
10 % of the undeformed pattern. If the global minimum is obtained, this amplitude
can only be attributed to the limited number of pixels, being ∼20 × 190, and the
effect of interpolating the surface pattern within the correlation algorithm. Improving
this requires a smoother surface pattern and higher spatial sampling. Nonetheless,
the results are adequate compared to local DIC approaches where typically facets of
15 × 15 pixels are employed to resolve displacement fields with similar accuracy.

The curvature fields κxx obtained through the GDIC at 1 and 2 µm deflection and
the difference between these and the simulated κxx reveal a good measurement of
κxx , see Fig. 6. The expected gradient in κxx is visible, approaching 0 at the tip of the
beam (left hand side of images) and reaching a maximum at the clamped end (right
hand side of images). The difference shows a limited error, caused by the limited
choice of degrees of freedom and required interpolation during correlation.

(a) Undeformed ROI (b) Residual at 2 µm deflection

Fig. 5 Comparison of the amplitude in the pattern and the resulting residuals showing a relatively
low residual
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(a) κxx at 1 μm deflection (b) Curvature difference at 1 μm deflection

(c) κxx at 2 μm deflection (d) Curvature difference at 2 μm deflection

Fig. 6 Curvature fields κxx at 1 and 2 µm deflection reveal the expected gradient, whilst the
differences with the numerically prescribed fields show a good accuracy

Fig. 7 The accuracy of κxx
obtained is good for the part
of the ROI that is not near the
loaded end or the clamped end

XX

X
X

6 1

Within the probed range of κxx the accuracy of the measurement is <1 % for
most of the ROI, see Fig. 7. The accuracy, defined as the relative error (κxx,G DI C −
κxx,F E M )/κxx,F E M , increases near the clamped end due to the additional κyy and
at the loaded end due to the definition of the accuracy. Naturally one can opt not to
measure data near these regions.

5 Conclusion

We presented an enhanced digital image correlation approach to extract beam curva-
ture from full-field deformation data of microbeam bending experiments. A limited
yet sufficient amount of degrees of freedom in the GDIC described the bending
kinematics as well as possible rigid body motions that might be caused due to drift
in actual experiments. A numerical analysis of the accuracy based on FEM revealed
that the proposed GDIC accurately resolved the bending kinematics: an accuracy in
the κxx -measurement of<1 % for parts of the beam away from the clamped and free
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ends. The presented numeric analysis can also be extended to simulate the influence
of measurement artifacts, e.g. noise or pattern quality. This GDIC methodology thus
enables the precise measurement of beam curvature required for time-dependent
microbeam bending experiments. It might also find application in other microbeam
bending analyses, e.g. stress measurements of deflecting structural parts of microde-
vices in case of known material parameters.
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An Investigation of the Mechanical Properties
of Open Cell Aluminium Foam Struts:
Microtensile Testing and Modelling

Charles Betts, Daniel Balint and Jianguo Lin

Abstract A microtensile test procedure has been developed to directly determine
the mechanical properties of individual metal foam struts. The results reveal that the
measured strut properties display a considerable reduction in elastic stiffness com-
pared to the typical value of 70 GPa for aluminium alloys. A realistic finite element
modelling procedure of the as-tested struts has been established, using X-ray micro-
tomography scans of the undeformed struts, to assess the reasons for this reduction in
stiffness. The material model in the FE simulations was established using a damage
model that comprises of a set of continuum mechanics-based viscoplastic damage
constitutive equations. The equations were calibrated with the microtensile test data
and implemented into ABAQUS through the user defined subroutine VUMAT. The
prime factor in the recorded reduction in stiffness was found to be slippage between
the grips and the strut during testing.

1 Introduction

Metal foams are a relatively new class of materials that show good potential for
lightweight structures, energy absorption, and thermal management [1–3]. They can
combine low density with good bending stiffness and strength [2]. They can also
be made with integral skins [4]. They display a densification stage when subjected
to a compressive stress, where the stress rises rapidly with strain as the foam cells
crush—this has the implication that the integrity of a metal foam core sandwich panel
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is not necessarily compromised when subjected to impacts. Open cell foams do not
trap moisture (i.e. they are less susceptible to corrosion than honeycomb cores) [5].

Efforts have been made to accurately assess the mechanical properties of metal
foams. The important length scale in metal foams is cell size or strut length. The
unit cell of cellular/lattice materials is in the order of millimetres or micrometres,
allowing them to be treated both as structures and materials. The lattices can be
studied using traditional methods of mechanics, but one must also treat the lattice
as a ‘material’ in its own right, with its own set of effective properties that allows a
direct comparison with fully dense materials [6, 7]. Analytical methods to determine
the basic properties of metal foams have been extensively studied—see e.g. [8].
From these models it is apparent that the foam strength is strongly dependant on the
individual cell strut properties. Typically, the material properties of the bulk alloy
from which the foam is made are used to predict the foam properties. However, due
to the foaming process and length scale of the struts, there can be notable differences
between the mechanical properties of the bulk alloy and the individual struts due to
differences in both composition and microstructure.

Few studies have been previously done to assess the mechanical properties of indi-
vidual metal foam struts, especially with regards to their direct measurement [9–12].
This paper aims to further this work by developing a novel microtensile testing tech-
nique to measure the tensile properties of metal foam struts. X-ray micro-tomography
(XMT) is employed as a means to accurately measure the strut cross-sections prior to
deformation, so as to enable the experimental force readings to be converted to stress.
A set of continuum mechanics-based viscoplastic damage constitutive equations are
used to model the material behaviour of the struts. The equations are calibrated with
the microtensile test data and implemented into ABAQUS through the user defined
subroutine VUMAT. Realistic finite element (FE) simulations of the as-tested struts
are then conducted, using the XMT scans for the part geometry. The FE simulations
are used to evaluate any experimental errors in the microtensile test set-up.

2 Characterisation of Metal Foam Samples

2.1 Ageing of Metal Foam Samples and Chemical Composition

The metal foam was acquired from BPE International, Germany. It is a metal matrix
composite with TiC particles fabricated from an Al-Zn-Mg-Cu (7xxx series) alloy and
has an open cell structure. To achieve peak strength, the T6 heat treatment process,
detailed below, was applied to the as-cast metal foam. The T6 ageing condition does
not significantly impair the ductility of the struts.

1. The foam was solution heat treated at 480 ◦C and subsequently quenched in cold
water;

2. The foam was then aged by heating to 120 ◦C for 4 h;
3. The foam was then left to cool slowly at room temperature.



An Investigation of the Mechanical Properties of Open Cell Aluminium Foam Struts 55

Table 1 Chemical composition of Al-Zn-Mg-Cu-TiC alloy metal foam strut (in weight percent)

Element Mg Al Si Ti Cu Zn
Average 1.09 Balance 0.68 6.49 1.46 4.18

Average based on 8 readings from 2 separate samples

The chemical composition of the metal foam was determined using energy-dispersive
X-ray spectroscopy (EDX) and is shown in Table 1.

3 Experimental Procedures

3.1 Microtensile Test Set-up

The Gatan Microtest 300 rig was used for microtensile testing of the metal foam struts
in the scanning electron microscope (SEM). Figure 1 shows the test set-up. The struts
were clamped with parallel, flat-surface steel grips. The tests were conducted at a
speed of 0.5 mm/min, with a sampling time of 500 ms.

3.2 Determination of Stress and Strain

To convert the force readings from the test software into engineering stress, the unde-
formed cross-sectional area of the struts is required. Each strut was scanned using
XMT prior to testing. The 3D render was imported into the analysis software Avizo,
where cross-sectional slices of the strut could be exported at specific increments
(between 15.79 and 18.25 μm, depending on the scan).

Thirty cross-sectional slices were taken along the central region of each strut
and their area was measured using the imaging software ImageJ. The force readings

Grips

Sample

Fig. 1 Photograph of the microtensile testing set-up showing Gatan Microtest rig
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were converted to stress by dividing each value by the average area of the thirty
cross-sectional slices.

Engineering strain was determined from the test rig crosshead displacement.

4 Microtensile Test Results

4.1 Microtensile Properties of the Struts

Ten metal foam struts were heat treated as outlined in Sect. 2.1. The struts were
scanned using XMT and microtensile tested. Six specimens fractured at the grips
and were thus excluded from the analysis. Figure 2a gives the experimental stress-
strain graphs for the four struts that did not fracture at the grips.

Fig. 2 a Experimental
microtensile test stress-strain
graphs for the metal foam
struts aged at 120 ◦C for 4 h.
Four repeats were carried out
under the same conditions.
b Corrected stress-strain
graphs adjusted to address the
observed significant reduction
in strut stiffness seen in a. The
calibrated damage model is
also shown
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Figure 2a shows that the gradient of the initial elastic region of the stress-strain
plots is much lower than the ballpark figure of 70 GPa for corresponding aluminium
alloys. The average gradient measured from the experiment results is 14 GPa. The
reasons for this disparity are discussed in Sect. 6. The tested struts show decent
repeatability in the results, with the UTS varying from 398 to 435 MPa and the
failure strain varying from 8.4 to 9.8 %.

4.2 Corrected Stress-Strain Graphs of the Struts

From the observed test results in Fig. 2a, it is clear that the elastic behaviour of the
struts was not correctly measured. Previous work [12] has suggested this may be
due to the initial curvature of the struts, which may reduce the strut stiffness. This
proposal is further assessed in Sect. 5.2. Strut slippage effects are discussed in Sect. 6.

It is proposed that at the onset of yielding, the struts are subjected to uniaxial
tensile testing conditions and slippage effects are significantly reduced. The stress-
strain plots of Fig. 2a have consequently been modified as follows:

1. The elastic region of the plots has been modified so that the Young’s modulus is
equal to 70 GPa;

2. The displacement due to slippage effects has been subtracted from the total
measured displacement so as to correct the reported strain values.

The validity of this approach is investigated in Sect. 6. Figure 2b shows the cor-
rected stress-strain graphs.

5 Damage Modelling

5.1 Unified Viscoplastic Damage Constitutive Law and Calibration

A series of constitutive equations for viscoplastic damage have been previously devel-
oped [13–15]. These equations capture the effect of various time-dependant phenom-
ena such as dislocation-associated hardening and damage. When implemented into
an FE model, this approach can validate results and facilitates the extrapolation to
new loading states. The multi-axial constitutive equation set presented in [16] is
proposed to describe the damage behaviour of the metal foam struts:

ε̇P
e =

(
σ̃e−k−R

K

)n
(1)

˙̄ρ = A1(1 − ρ̄)ε̇P
e (2)

R = Bρ̄
1
m (3)
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e
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e
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where ε̇P
e is the effective viscoplastic strain rate. ε̇P

e =
(
σ̃e−k−R

K

)n
when σ̃e−k−R ≥

0 and ε̇P
e = 0 when σ̃e −k−R < 0. ˙̄ρ is the rate of normalised dislocation density and

R describes the hardening caused by dislocations within the material.ω is damage and
varies from 0 (no damage) to 1 (full damage). α = 1 when σkk = σ11+σ22 +σ33 ≥ 0
or α = 0 when σkk = σ11 + σ22 + σ33 < 0 which ensures damage is only included
in the constitutive equation set when loading is in tension.

εe
ij is the elastic strain and is determined from the total strain, εt

ij subtracted from

the plastic strain, εp
ij· k is the material yielding stress and K is the drag stress. G and λ

are the Lamé parameters (where G is the shear modulus). The von Mises stress is

given by σe =
√

3
2 SijSij. The deviatoric stress is given by Sij = σij − 1

3σkkδij. ˜( )

denotes effective tensors in terms of damage, such as in Eq. (7). δij is the Kronecker
delta, equal to 1 when i = j and equal to 0 when i �= j. All indices—i, j, k, l—follow
the usual tensor conventions. n, A1, B, m, C, and n0 are material constants.

The material constants associated with the equation set were determined by cal-
ibrating the damage model using the corrected test results presented in Sect. 4.2.
Table 2 gives the set of parameters used for the tested struts. Figure 2b shows the
calibrated damaged model superimposed on the corrected test stress-strain plots.

5.2 FE Model of As-Tested Struts

FE modelling of the as-tested metal foam struts has been conducted using the soft-
ware ABAQUS 6.9-1. The models consist of a 3D meshed geometry of identical
dimensions to the as-tested struts. This has been achieved by importing the XMT
scans into the analysis software Avizo, where the geometry was meshed with a
4-node tetrahedral grid. The mesh was imported into ABAQUS with element type
C3D4 selected.

Table 2 Constants used in the multi-axial constitutive equation set for the metal foam struts

E (GPa) υ k (MPa) K (MPa) n A1 B (MPa) C m n0

70 0.33 180 100 1.4 0.55 1450 0.8 2 6
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MPC

(a) (b)

Fig. 3 a Comparison of stress-strain graphs for the calibrated damage model and the FE model of
the as-tested strut. b FE model of as-tested metal foam strut with calibrated damage model set as
material definition

The applied boundary conditions are shown in Fig. 3b. The bottom face of the strut
was constrained in all degrees of freedom. A uniform tensile load was modelled by
applying a multi-point constraint (MPC) along the top face of the strut, whereby all
nodes along that face were tied to the central node. Load versus displacement plots
were obtained by moving this central node in the vertical direction under a controlled,
linear displacement. The viscoplastic damage constitutive equation set presented in
[16] was implemented into the ABAQUS model through the user defined subroutine
VUMAT.

5.3 FE Results of As-Tested Struts

Figure 3a shows a comparison of the stress-strain graphs for the calibrated damage
model of Sect. 5.2 and the FE model of one of the as-tested struts. There is good
agreement between the two curves, indicating that the damage model has been suc-
cessfully implemented into ABAQUS, and that any effect of the struts straightening
from an initially curved shape by bending before uniaxial tension has minimal impact
on the force versus displacement readings.

The large reduction in the gradient of the initial elastic region of the experimental
stress-strain plots in relation to that for corresponding aluminium alloys is therefore
due primarily to another factor. The effect of slippage between the tested struts and
the grips has been considered in Sect. 6.
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6 FE Analysis of Slippage Effects

An FE model has been constructed to capture the effect of slippage between the grips
and the tested strut to establish the reasons for the reduction in measured stiffness. The
strut geometry was constructed as described in Sect. 5.2. The grips were modelled
as rigid bodies.

6.1 Applied Boundary Conditions, Loads
and Material Model

For the first time step of the analysis, the grips were brought together by applying a
vertical displacement to a reference point on each of the grips. All other degrees of
freedom were constrained. In the second step, the left pair of grips was constrained in
all degrees of freedom and a horizontal displacement was applied to the right pair of
grips with all other degrees of freedom constrained so as to model the test conditions.
The material model is as per that used in Sect. 5.2.

6.2 Surface Interactions

To model the effect of slippage between the grips and the strut, the tangential surface
interaction between the grips and strut was assigned a penalty friction formulation,
with a constant coefficient of friction, μf = 0.25. This value was selected through
trial and error so as to achieve the best fit with the experimental data, and lies within
the typical range for aluminium/steel surface interactions—see e.g. [17]. The effect
of varying μf is discussed in Sect. 6.3.

6.3 FE Results of Slippage Effects

Figure 4 shows a comparison, for one tested strut, of the stress-strain graphs for the
FE model with slippage for three different values of coefficient of friction, μf = 0.15,
0.25 and 0.40, and the experimental microtensile test result of the same strut. The best
agreement is achieved in the observed stiffness between the FE model with slippage
and the experiment result when μf = 0.25. Figure 4 indicates that slippage between
the strut and grips is the prime cause for the measured reduction in strut stiffness
during microtensile testing. As expected, a lower value of μf reduces the observed
stiffness in the FE model with slippage and a higher value of μf increases it.
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Fig. 4 Comparison of elastic region of stress-strain graphs for the FE model with slip with
μr = 0.15, μr = 0.25, and μr = 0.40 and the microtensile experimental result of same strut

Figure 5 compares the strain field along the same longitudinal strut cross-section
between the FE model with slip (with μf = 0.15, 0.25 and 0.40) and the FE model
with no slip for a displacement of 0.00211 mm. It can be seen from Fig. 5 that the
effective gauge length (defined as the region where appreciable strain is observed)
is greater for the FE model with slip (equal to 2 × 0.86 mm for μf = 0.15) than that
with no slip (equal to 2 × 0.58 mm). This furthers the explanation for the reduction
in observed strut stiffness. Increasing the coefficient of friction in the model with
slip reduces the effective gauge length and the measured strains increase and tend
towards that for the case with no slip, as observed in Fig. 6a, b.

Fig. 5 Comparison of strain field along the same longitudinal strut cross-section between the FE
model with slip with μr = 0.15, μr = 0.25, and μr = 0.40 and the FE model with no slip for a
displacement of 0.00211 mm
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Fig. 6 Convergence of FE
model with slip with increas-
ing μ f towards the FE model
with no slip for (a) average
strain across the gauge length;
and (b) effective gauge length

7 Conclusions

A microtensile test procedure has been developed to directly determine the mechan-
ical properties of individual metal foam struts. The conversion of the force data to
stress has been achieved using XMT scans of the undeformed struts.

The measured strut properties showed a significant reduction in elastic stiffness
compared to the typical value of 70 GPa for aluminium alloys. The reasons for this
have been investigated via realistic FE modelling of the as-tested struts. The material
model in the FE simulations was established using a set of continuum mechanics-
based viscoplastic damage constitutive equations. The equations were calibrated with
the microtensile test data and implemented into ABAQUS through the user defined
subroutine VUMAT. The calibrated damage model is used in forthcoming FE studies
to determine the extent of structural damage in a foam for different loading scenarios.

It has been established that, for the metal foam material investigated in this paper,
strut curvature has a minimal impact on the measured strut stiffness. Slippage between
the grips and the strut during microtensile testing appears to be the chief factor in
the recorded reduction in stiffness.
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The microtensile test procedure and ability to ascertain the mechanical properties
of individual metal foam struts is valuable as there can be notable differences between
the mechanical properties of the bulk alloy and the individual struts due to variances
in both composition and microstructure.
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Multiscale Optimization of Joints of Dissimilar
Materials in Nature and Lessons for Engineering
Applications

Victor Birman, Yanxin Liu, Stavros Thomopoulos and Guy M. Genin

Abstract In this chapter we review various aspects of biological attachments of
dissimilar materials, concentrating on the example of tendon-to-bone attachment, a
composite made up of compliant collagen fibers and stiff mineral platelets. The nat-
ural optimization of this attachment occurs on several scales, including macroscopic
morphology and interdigitation. Macroscopically, interdigitation is analogous to
z-pinning in composite joints. Microscopically, functional grading occurs for both the
orientation of collagen fibers and the distribution of mineral. Nanoscopic optimiza-
tion involves the sequencing of mineral deposition within and around the collagen
fibrils. The lessons from the tendon-to-bone attachment are pertinent to the attach-
ments of dissimilar materials in engineering. A discussion on possible applications
of these lessons in engineering attachments is included in the concluding section of
the chapter.

1 Introduction

Engineering science increasingly relies on lessons available from biology. Natural
biological systems invariably demonstrate superior adaptability to loads encountered
during their life cycle. In particular, attachments and joints of dissimilar materials
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in biology represent an excellent example of such sophistication that can provide
lessons applicable to engineering materials and structures.

Typical examples of attachments of dissimilar materials in biology include:

– Joints between the tooth and alveolar bone [1], which exhibit two interfaces with
graded variations in their stiffnesses. These interfaces are between the alveolar
bone and cementum and between cementum and root dentin.

– Joints between tendon and bone, i.e., the so-called tendon-to-bone insertion site.
This joint is discussed in this chapter; here, the stiffness changes by almost two
orders of magnitude over a short distance (1 mm or less).

Attachments of dissimilar materials in engineering have attracted significant inter-
est due to an ever-increasing application of advanced and novel structural and material
systems. Examples of such attachments include joints between a composite wing or
control surface and an aluminum fuselage, chip-substrate packages in electronics, a
joint between the composite superstructure and the steel hull in naval architecture, etc.
Multiple problems in such assemblies are caused by a mismatch between the proper-
ties of connected materials that is sometimes addressed through functional grading.

In this chapter, we outline the results of our recent studies on mechanics of the
tendon-to-bone insertion site. This natural biological site possesses high resilience
and toughness, while the regenerated site upon healing is highly vulnerable, exhibit-
ing failure rates up to 94 % [2]. The analysis of the regenerated insertion site, as
compared to the natural site, points to the reason for such a striking difference.
While the natural site is characterized by multiscale grading, orthotropic properties
and an optimum gross morphology, the regenerated site is filled with scar tissue that
is homogeneous and isotropic. We demonstrate some of the mechanisms responsi-
ble for the resilience and toughness of the natural tendon-to-bone insertion site and
suggest methodologies and solutions for engineering materials, utilizing the lessons
learned from our biomechanical research.

2 Optimization Through Multiscale Functional Grading
and Interface Morphology

Functional grading in engineering applications is often conducted on a single scale
[3]. For example, macromechanical grading of the fiber orientation around a hole
was suggested as a method of reduction of stress concentrations [4]. Functionally
graded architectures developed in the eighties to enhance thermomechanical proper-
ties of ceramic-metal space plane structures exposed to an elevated temperature were
characterized by through-the thickness microscale grading of ceramic and metal con-
stituents [5]. In comparison, natural functional grading often occurs across several
scales. A typical example of a multiscale biological attachment is the tendon-to-bone
joint, where two materials with a nearly two-order of magnitude property mismatch
(the modulus of elasticity of bone and the longitudinal modulus of tendon are of
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the order of 20 GPa [6] and 450 MPa [7], respectively) are joined through a transi-
tional region that is less than 1 mm long. The tendon-to-bone insertion represents a
continuous functionally graded material where the grading occurs on the nanometer
scale as well as on the micrometer scale. The insertion site consists of collagen fibers
and mineral inclusions. While the orientation of collagen fibers varies from nearly
uniaxial in the tendon to a less organized distribution at the insertion, the content of
mineral increases nearly linearly from the front of the partially mineralized region of
the insertion to the bone [8]. The deposition of mineral on and within collagen fibrils
as its concentration increases from the front of the partially mineralized region to
the bone may follow several scenarios, differing in the sequence by which mineral is
deposited in the gaps between collagen molecules and/or on the surface of each fibril.

Optimum stress and stiffness distributions across the insertion site are achieved
through four mechanisms:

1. Nanometer scale gradation: (a) Distribution of bioapatite (mineral) on and within
partially mineralized collagen fibrils; (b) Nanoscale architecture facilitating the for-
mation of a compliant bond between the tendon and bone.

It is necessary to first explain the structure of a partially mineralized tendon-to-
bone insertion region. Collagen is formed of triple-helix molecules organized in a
twisted quasi-triclinic packing [9]. In turn, collagen molecules are arranged in fibril
of several hundred nanometers diameter, forming a periodic staggered structure.
Collagen fibers are formed from an assembly of fibrils. Fibers assemble to form
fascicles and fascicles then assemble to form the tendon.

We investigated five different scenarios of bioapatite accumulation in the graded
region, from the bone to the outer radius of mineralization (Fig. 1). The difference
in the scenarios was related to the sequence of deposition of the mineral in the gap
regions of the fibril, between collagen molecules forming the fibril, and within the
intermolecular space. For example, the “gap-nucleated” scenario implies mineral
first filling the gaps between the collagen molecules, following with the extrafibrillar
mineralization of gaps and subsequently, mineralization of the entire surface of the
fibril. The “nucleation-inhibited” scenario assumes that mineral first fills of the gaps
between collagen molecules, followed with the formation of an extrafibrillar sheet
originating at one location and eventually encompassing the entire fibril. Other sce-
narios covered all possible sequences of the mineral accumulation between collagen
molecules and on the surface of the fibril.

As was shown in our study, all five scenarios demonstrate a local drop in the
stiffness, close to the boundary of the mineralization radius. Previous experimen-
tal studies confirmed that this drop in stiffness exists at the physiologic insertion
[2]; furthermore, experimental measures were even larger than those predicted by
our nanoscale modelling. We concluded, based on the qualitative confirmation of
experimental data, that a local reduction in the stiffness may serve to facilitate stress
transfer at the insertion.

2. Micrometer scale gradation [10–12]: (a) Variable orientation of collagen fibers
along the insertion length; (b) Graded distribution of mineral from bone to tendon.
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Fig. 1 Variation of the longitudinal modulus along the tendon-to-bone insertion site. The volume
fraction of mineral is identified by the intensity of color. There is a small dip in the stiffness close
to the front of the mineralized region due to fiber misalignment. The increase of the modulus from
the front of the mineralized region to bone is governed by the nanoscale mechanism of mineral
accumulation (e.g., “nucleation-inhibited” versus “nucleation at gaps” models) [13]

Two mechanisms, i.e., a variable orientation distribution of collagen fibers along
the insertion site combined with a graded distribution of bioapatite (mineral) at the
microscopic scale, combine to enhance the attachment strength and toughness and
reduce stress concentrations. These gradients are involved in the process of micro-
scopic optimization. The orientation of collagen fibers at the insertion site varies
beginning with the predominantly uniaxial organization in the tendon. As the fibers
become less organized approaching the bone, the stiffness of the tendon can be
expected to drop. However, the second gradient, that of the increasing concentration
of mineral, reverses the initial drop in the stiffness. The distribution of mineral grad-
ually (nearly linearly) increases from the front of partially mineralized tissue to fully
mineralized bone, as reflected in Fig. 1. The combination of these gradients results in
a presumably optimum distribution of stiffness, toughness, and strength throughout
the insertion site.

Further investigation [11] focused on spatial stiffness optimization aimed at a
reduction of the stress concentration factor in an axisymmetric model resembling
a rotator cuff (Fig. 2a). We used Bezier curves to approximate a distribution of the
longitudinal and transverse moduli as well as the main Poisson ratio along the inser-
tion site. The dimensions chosen in the analysis were representative of those in a
human humeral head. The optimum distribution of properties that enables the com-
plete elimination of the stress concentration is shown in Fig. 2b. Note that the dip
in the stiffness found in this study and producing the optimum outcome was larger
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Fig. 2 Idealized axisymmetric model of the functionally graded tendon-to-bone insertion site a. The
results of optimization aimed at a minimum stress concentration b. As follows from these results,
a dip in the stiffness is beneficial for reduced stress concentration

than that predicted in the nanoscale investigation (Fig. 1). This discrepancy may be
related to specifics of mineral accumulation in the partially mineralized section of
the insertion site that are still not entirely clear. However, the qualitative agreement
between nanoscale and microscale modelling that is also in agreement with experi-
mental data is instructive. The optimum insertion site between dissimilar materials in
nature, and extrapolating from this, the optimum attachment of dissimilar materials
in engineering, involves a compliant region that should be graded to produce the
most desirable combination of strength, stiffness, and toughness.

3. Macroscale interface grading: Interdigitation of the insertion site, including
Sharpey fibers [14] extending from the tendon into the bone [10].
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Fig. 3 Interdigitation along the interface between dissimilar materials in nature (a) and engineering
(b). The presence of mineral gradually decreases from bone to tendon (a). In composite interfaces,
z-pins representing small-diameter rods embedded in the material are employed to avoid or delay
delamination (b). So-called “Sharpey fibers” resembling z-pins orthogonal to the interface were
observed in biological attachments (not shown)

Interdigitation may improve the stress distribution at the junction between the
compliant tendon and stiff bone. In engineering, a similar concept was devel-
oped to improve toughness along the interfaces of composite laminates. Ultimately,
interdigitation may serve both functions: improvement of toughness and reduction
of the interfacial stresses.

An example of interdigitation at the tendon-to-bone insertion site is shown in
Fig. 3a. Although Sharpey fibers are not observed in this figure, their presence in
other biological attachments has been documented (e.g., [15]). Even in the absence
of observable Sharpey fibers, the interface in Fig. 3a clearly demonstrates the zone
where the materials of predominantly collagen (tendon) and predominantly mineral
(bone) coexist. The function of gradients in these materials along the insertion site is
discussed in the previous sections of this chapter. The schematics of a z-pinned inter-
face in a composite T-joint is shown in Fig. 3b. The function of such joint is usually
an enhancement of toughness, while in-plane strength is unavoidably sacrificed.
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The z-pinning concept originated in the aerospace industry, where z-pins represent
high-strength small-diameter (usually, less than 1.0 mm) cylindrical rods oriented
perpendicular or at an angle to the interface between the layers. Typically, z-pins are
inserted prior to curing using an ultrasonic gun [16]. Adding just 1.9 % volume frac-
tion of carbon z-pin fibers can increase the fracture toughness of a composite laminate
by a factor of 18, without a noticeable reduction in in-plane tensile strength [17, 18].
The effectiveness of z-pins in the enhancement of the delamination resistance of
composites was also demonstrated in [19], where it was suggested that roughening
the surface of z-pins may be beneficial for their performance. The effect of z-pins on
fracture toughness of composite laminates was further studied by Byrd and Birman
[20–22] using the example of a standard double cantilever (DCB) test. It was shown
that adding z-pins constituting between 1 and 1.5 % volume fraction of the DCB can
result in the arrest of delamination cracks. Furthermore, it was suggested that the
effectiveness of z-pins could be enhanced by designing their surface in a manner
improving the “grasp” between the z-pin and adjacent material (e.g., woven z-pins
with a naturally rough surface). A comprehensive review of z-pinning in composite
laminates was published by Mouritz [23], outlining the manufacturing process and
discussing advantages and disadvantages of z-pinning. Although quantitative guid-
ance of engineering design based upon the physiologic analog of z-pinning at the
tendon-to-bone insertion sites is premature, the existence of an analog to z-pinning
in nature suggests that the strategy is well grounded.

4. Morphology of the insertion: Geometric shaping across the insertion site con-
tributes to nonuniformity “employed” to achieve a desirable reduction of the stress
concentration [10].

We studied the effect of the shape of the regenerated upon healing insertion site
on the stress concentration, varying the shape of the site and employing the proper-
ties typical for bone, tendon and insertion scar tissue (Fig. 4a). In this problem, we
considered peak principal stresses, based on the assumption that the tendon-to-bone
insertion site is optimized for effective load transfer. The optimization resulted in the
shape depicted in Fig. 4b, where we show the initial shape on the left and the opti-
mum, somewhat counterintuitive shape, on the right. The stress concentration factor
in the optimum shape was reduced to 1.05. This outcome may be instructive for
reparative surgery; modern surgical reattachment often involves suturing the tendon
to the bone [24]. Outcomes may be improved through a reduction of the stress con-
centration utilizing morphological studies aimed at an optimum stress concentration.

3 Comment on Multifunctional Optimization of the Attachment
of Dissimilar Materials

While the previous discussion outlines studies that were mostly concerned with a
reduction of stresses at the tendon-to-bone insertion site, such outcomes are not
the only possible reason for the multiscale grading discussed above. A resilient
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Fig. 4 Morphological optimization of the regenerated tendon-to-bone insertion site a. The stress
concentration (peak principal stress normalized with respect to the applied tendon stress) can be
eliminated by proper shaping of the fillet b

and reliable biological attachment should also possess high toughness. It has been
established that high toughness is not necessarily related to the high stiffness of
biological or engineering materials [25, 26]. We presume that, at the tendon-to-bone
insertion, a drop in the stiffness is beneficial for a reduction of stresses but may also
produce a desirable enhancement in toughness.

A second observation is that reduction of stresses may not necessarily improve
the strength of the attachment, as a stress analysis should also be accompanied by an
analysis of strength. For example, the Tsai-Hill criterion for a unidirectional graded
composite material in the state of plane stress is

σ 2
1 (X)

s2
L (X)

− σ1 (X) σ2 (X)

s2
L (X)

+ σ 2
2 (X)

s2
T (X)

+ τ 2
12 (X)

s2
LT (X)

= 1 (1)

where X is a position vector, σ1 and σ2 are the stresses along and across the fiber
direction, respectively, τ12 is a shear stress, and sL , sT and sLT are the strengths in the
longitudinal and transverse directions, and the in-plane shear strength, respectively.
Evidently, grading the material with the sole goal of reducing the stresses may actually
weaken it, if the stress reduction is accompanied with the decrease of the strength.
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A third issue arising in the process of the optimization of the attachment between
dissimilar materials and related to toughness is the effect of grading on the fracture
toughness of the interface. As was shown in our previous study [10], the order of
singularity along the bondline between dissimilar materials is affected by the property
mismatch. While the property mismatch may be optimized for a reduction of stresses,
there is no guarantee that it will eliminate (or even minimize) the order of singularity.

Therefore, an analysis of attachment should account for all aspects of the mate-
rial and structural behavior, including the stress distribution and concentration, the
local strength, and the toughness. This conclusion is applicable to the majority of
engineering materials, though the list of realistic optimization tools may be limited
by availability and cost. The complexity of multifunctional optimization employing
grading, morphology, and interdigitation that is successfully resolved in natural bio-
logical attachments is significant. It is therefore not surprising that engineers often
limit the scope of the problem, concentrating on what are assumed to be essential
aspects (e.g., minimization of peeling and transverse shear stresses in bonded joints).

4 Conclusions and Lessons for Engineering Applications

Studies of the insertion site demonstrate the presence of a multiscale grading of
material distribution and organization. Both the experimental evidence as well as the
optimization modelling indicate the presence of a counterintuitive dip in insertion
stiffness compared to the stiffness of either bone or tendon [2]. As is shown in our
research, one function of this dip is to minimize stress concentrations. It can also be
argued that the dip enhances toughness of the attachment, although this has yet to be
proven. Other factors that benefit the attachments of dissimilar materials, including
the tendon-to-bone insertion site, are interdigitation and shape optimization of the
interfacial region.

Both natural and engineering attachments serve multiple functions. Accordingly,
the desirable outcome of multiscale grading, interdigitation, and shape optimization
is a multifunctional optimization, including stiffening, strengthening, and tough-
ening of the attachment. The achievement of such a comprehensive goal, while
demonstrated in biology, is seldom achievable in engineering.

Research presented in this article may lead to the development of biomimetic
engineering materials and structures employing multiscale grading for multifunc-
tional optimization. In particular, some possible methods applicable to attachments
of dissimilar materials in engineering include:

– Nonuniformly distributed inclusions in the interfacial layer, enhancing its tough-
ness and strength;

– Functionally graded z-pinned interfaces (e.g., concentrating z-pins close to the
edges of lapped joints may alleviate three-dimensional stresses leading to fracture);

– Wavy or interdigitated interfaces resembling biological attachments;
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– Fibrous interfaces enhanced by addition of nanoparticles whose volume fraction
is functionally graded.
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Some Consequences of Stress Range Dependent
Constitutive Models in Creep

James T. Boyle

Abstract Detailed procedures for high temperature design remain elusive, even
though advanced material models for creep have been developed over several decades
and (some) employed in detailed inelastic finite element analysis. The simplified
design approaches which are available have in general been developed on the basis
of simple power-law creep models, but most have not been re-assessed if more
advanced creep models are adopted. Over many years fairly simple alternatives to
the power-law have been available but few have been similarly assessed in the design
context. These simple alternatives have usually focussed on the problem of stress
range dependency: the form of the constitutive model, even for secondary creep,
changes as the stress increases from low through moderate to high stress. In this
paper some simplified design approaches are initially re-assessed for such creep
laws using two simple structures.

1 Introduction

Studies of the behaviour of structural components at high temperature subject to
creep have a long history and their behavioural characteristics, certainly for constant
and cyclic load, well established. However, the majority of these studies have been
based on relatively simple constitutive models in particular time- or strain-hardening
for primary creep with a basic power-law model for secondary creep. These basic
models can be enhanced to include tertiary creep with the introduction of well-
known damage models of the Kachanov-Rabotnov type. Over the past decade, the
modelling of advanced high temperature materials has improved considerably and,
coupled with advances in computational modelling of real-world components, has
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allowed a much more realistic and detailed representation of structural behaviour at
high temperature subject to precise thermo-mechanical load histories. This can be
seen in a comparison between reviews of the state of the art of creep analysis in the
early 1980s [7] and the late 2000s [11].

Nevertheless, most design rules for high temperature have been developed based
on an understanding of creep behaviour with the simple constitutive models, which
remain the most widely used even in design and assessment approaches using detailed
nonlinear finite element analysis. To be useful for design purposes, modern advanced
material models need to be able to make reference to conventional understanding of
the behavioural characteristics of structures subject to creep. Yet this can often be
problematic, not due to imprecision in the advanced models, but rather deficiencies
in the simple models. Recent studies [2–5, 12] of the behaviour of structures using
simple creep models, but ones which are stress range dependent (that is, the form of
the constitutive model, even for secondary creep, changes as the stress increases from
low through moderate to high stress) have shown that under some types of loading
creep behaviour of structures is significantly altered, while for others familiar design
concepts can remain valid. Simple stress range dependent constitutive models have
been around for well over 60 years but have been rarely used: the power-law has
been favoured since it is simple to use and has some desirable features which have
led to robust simplified methods for creep design.

The examples used in this paper are intentionally simple. Arguably, detailed
numerical simulations of complex structures subject to creep using advanced mate-
rials modelling may only be confirmed through experimental verification, which is
usually prohibitively expensive and time consuming. For example, for many years it
was not well understood that for some load conditions in creep, for example where
there was significant constraint, that conventional finite element analysis gave poorly
converged results [8]. Confidence in such material models, together with an appreci-
ation of their possible limitations and use in nonlinear finite element analysis, must
come from investigations of simple structures. On the other hand, this must be bal-
anced with the need for design procedures for creep to be simple, justifiable and
transparent. This requires the characteristic behaviour of structures subject to creep,
even with advanced material models, to be well understood. This always begins with
detailed studies of simple structures in order to develop such design rules, which can
then hopefully be verified for more complex structures.

2 Stress Range Dependent Creep Laws

With the assumption that the mechanism of creep is the same for both primary and
secondary phases of creep, the majority of approaches to material modelling start
with the nonlinear secondary phase where strain rate is constant (‘steady creep’) with
simple modifications to include primary creep. In the common time- hardening or
strain- hardening models, a function of time or a function of strain respectively pre-
multiply the steady state model. The most common creep laws which have been used



Some Consequences of Stress Range Dependent Constitutive Models in Creep 79

for design and analysis purposes have been based on the power-law. Over stress ranges
where the creep strain rate is high, and at constant temperature, the relation between
creep strain rate, ε̇c, and stress, σ , can be well represented by a power-law relation

ε̇c = Bσ n (1)

where B and n are material constants. The stress exponent, n, represents the gradient
of a plot of log(stress) against log(creep strain rate). Nevertheless, the power law is
only valid over a certain stress range: it has long been known that the stress exponent
can change as stress ranges from low, through medium to high values, depending
on the material. An alternative to the power law, suggested by Prandtl and Nadai
amongst others, took the hyperbolic sine form

ε̇c = B sinh(Aσ) (2)

with A & B material constants. This model recognised that at low stress the relation-
ship between creep strain rate and stress was sensibly linear viscous, while remaining
nonlinear at high stress. Garofalo later combined the power- and Prandtl- laws in the
form

ε̇c = B(sinh(Aσ))n (3)

A more recent attempt to develop a material model which can represent linear
viscous behaviour at low stress as well as power-law behaviour at high stress has
been given in [12] as

ε̇c

ε̇0
= σ

σ0
+

(
σ

σ0

)n

(4)

where ε̇0 and σ0 are material constants. This will be referred to as a modified power-
law. Figure 1, taken from the data in [12], shows a plot of creep strain rate against
stress for the steady creep of 9 % Cr steel at 600 ◦C. The transition from linear
behaviour to power-law behaviour can be easily seen.

In the following, the behaviour of two simple structures using these varied material
models will be examined.

3 Steady Creep of a Two-Bar (Parallel) Structure

Consider two bars of length L1 and L2 with the same cross sectional area, A, in
parallel. It is assumed that the bars are fixed at their top and rigidly attached to a
horizontal bar under a tension Q [7], Fig. 2.

If the material undergoes steady creep according to the modified power-law, Eq. 4,
then it can be shown that, if we take L2 ≥ L1, then the maximum stress, σ1, occurs
in bar no.1 and is the solution of the nonlinear equation

β((α − S)+ (α − S)n) = S + Sn (5)
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Fig. 1 Steady creep of 9 % Cr steel at 600 ◦C from [12]

Fig. 2 Two-bar (parallel)
structure

on defining the normalised quantities

α = Q

Aσ0
β = L2

L1
S = σ1

σ0
(6)

The parameter, α, may be considered a ‘load factor, since it gives the ratio of
nominal stress Q/A to the transition stress σ0. In the case of a pure power law the
maximum normalised stress can be written in a form which is independent of the
load factor, but this is not possible here. The parameter, β, may be considered a
‘geometry factor’.

Two characteristics of the behaviour of structures subject to steady power-law
creep have emerged over the past forty years as being useful for design. In the first it
has been observed (see [7] for example) that the maximum stress is almost linear with
the reciprocal of the power exponent, n. The steady creep of some basic structures—a
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Fig. 3 Variation of maximum normalised stress in the two-bar (parallel) structure with 1/n

beam in bending and a pressurised thick cylinder—subject to the modified power
law were investigated in [12]. These basic problems were re-analysed in [2] and it
was shown that the linearity with respect to 1/n was approximately maintained for
the modified power-law for most values of the load factor α. This can be verified for
the current two-bar structure from a solution of Eq. 5, shown in Fig. 3:

In the case of this particular structure, the variation is not large. For larger values
of the load factor the maximum normalised stress increases with 1/n, as is normally
found [7]. For smaller values of the load factor, where linear viscous behaviour
would dominate, the maximum normalised stress slightly decreases—for a purely
linear viscous material the maximum normalised stress would simply be proportional
to the load factor.

The second characteristic structural behaviour found for power-law creep is the
existence of a ‘reference stress’. In the reference stress method some measure of
deformation (strain or displacement) can be written in the form of a scaling factor
multiplied by the result of a uniaxial test held at the reference stress [7]. Both the
scaling factor and the reference stress are approximately independent of the mate-
rial properties. The reference stress concept was reviewed in the IUTAM Creep in
Structures symposiums in 1970 [10], then in the 1980 [1] and last in 2000 [6].

In the present problem, the vertical downward deflection rate of each bar, q̇ , is
written in the form [7]

q̇ = δ × ε̇(σR) (7)

where δ is the scaling factor and σR the reference stress. For steady power-law creep
the scaling factor is in fact a function of the reference stress and the power exponent
n. However it can be shown that provided

σR = 1

2

Q

A
(8)
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Fig. 4 Variation of scaling factor with load factor for Prandtl’s law

Then in the limit

� = δ(n → ∞)

L2
→

√
1

β
(9)

The scaling factor corresponding to n = 1 is about 10 % below this value and as
n increases the scaling factor approaches the limiting value given by Eq. 9.

The concept of the reference stress and scaling factor was extended to other creep
laws, for example the Prandtl law, Eq. 2, in [9]. The Prandtl law was examined
for the current problem in [7]. It was found that the scaling factor for the Prandtl
law depended not only on the material parameter (A in Eq. 2) but also on the load
factor, α. In the case of the power-law the scaling factor is independent of the load
factor. Nevertheless it was shown that the scaling factor was relatively insensitive to
the load factor over a wide range of values of the load factor, and further that the
limiting value found for the power-law, Eq. 9, was approximately an upper bound;
this can be seen in Fig. 4 for β = 2.

Similar behaviour can be seen if the use of a modified power-law for this structure
is examined. It can be shown that the normalised scaling factor,�, in Eq. 9 is given by

� = 1

β

⎛
⎜⎝ S + Sn

σR
σ0

+
(
σR
σ0

)n

⎞
⎟⎠ (10)

where S is the solution of Eq. 5. The normalised scaling factor depends on the material
parameters n, σ0 and the load factor (through S) as for Prandtl’s law. However, if we
choose the same reference stress as in the case of the power-law, Eq. 8, then in Eq. 10
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Fig. 5 Variation of scaling factor with load factor for modified power law

σR

σ0
= 1

2
α (11)

The variation of the normalised scaling factor with n and load factor is shown in
Fig. 5 for β = 2. As in the case of Prandtl’s law, Fig. 4, the scaling factor is almost
independent of these, and approximately bounded by the limiting value of scaling
factor from the power law.

In conclusion, two of the more familiar simplified methods derived from the
power-law—approximate linear variation of maximum stress with the reciprocal of
the power-exponent—are also applicable using a modified power-law.

4 Relaxation of a Two-Bar (Series) Structure

Consider two bars with cross sectional areas, A1 and A2, but of the same length, L,
attached in parallel. It is assumed that the bars are fixed at the end of the first bar and
subject to an applied displacement, q, at the end of the second bar, Fig. 6.

Fig. 6 Two-bar (series) structure
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Fig. 7 Stress-strain trajectory in bar no.2 for a power law

This problem has been discussed at length in [3–5] in the context of the design
problem of ‘elastic follow-up’ for a range of stress range dependent creep laws. Under
relaxation conditions it would be expected for the stresses to relax to zero, while the
deformation remained almost constant. However in some structural configurations it
is known that predominantly elastic behaviour in one part slows down the relaxation
of stress in another part, with a resultant localised accumulation of strain. The design
problem has been to estimate the localised maximum inelastic strain without detailed
inelastic analysis. (Elastic follow-up is a particular problem in high temperature
piping systems where detailed analysis is expensive).

In the case of a power law it has been found that a plot of the variation of maximum
stress with strain (called an isochronous stress-strain trajectory) is almost linear and
approximately independent of the power exponent. The trajectory for the current
problem is shown in Fig. 7, taken from [3, 4]. The maximum stress and strain occur
in bar no.2—Fig. 7 shows the trajectory for the normalised stress and strain, in bar
no.2 with respect to their initial (elastic) values for n = 5 and β = 2. The normalised
strain tends to a limiting value

λ = 1 + β

1 + βn
(12)

where β = A2/A1. This is nearly independent of the power exponent for n > 5 such
thatλ → 1+β as n → ∞. It is also independent of any load factor. This characteristic
behaviour, linearity of the stress-strain trajectory and near independence of the power
exponent, has been used as the basis for several simplified approaches used in design.

In [3, 4] this problem was re-analysed for several stress range dependent creep
laws: results for the Prandtl and modified power laws are shown for n = 5 and β = 2
in Figs. 8 and 9.

In conclusion, the basis of a common design approach used to estimate elastic
follow-up, derived from studies of structures subject to a power-law are not applicable
using stress range dependent creep laws.
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Fig. 8 Stress-strain trajectory in bar no.2 for Prandtl’s law

Fig. 9 Stress-strain trajectory in bar no.2 for a modified power law

5 Conclusions

Two simple structures have been examined here: in the first a two-bar (parallel) struc-
ture under steady creep has been used to show that familiar, simplified approximate
methods remain applicable to stress range dependent creep laws. In the second, relax-
ation in a two-bar (series) structure shows that simplified methods for estimating the
real design problem of elastic follow-up are not applicable to stress range dependent
creep laws. The latter result is new and perhaps surprising since such creep laws have
been around for many years but not studied in the context of this problem. To the
author, it is a clear demonstration of the need to ensure current design approaches
are compatible with advanced material models, and vice versa.
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Micro-Mechanical Numerical Studies
on the Stress State Dependence
of Ductile Damage

Michael Brünig, Steffen Gerke and Vanessa Hagenbrock

Abstract The paper discusses the effect of stress state on ductile damage behavior.
The continuum model has been generalized to take into account stress state depen-
dence of the damage criterion with branches corresponding to different damage
mechanisms depending on the stress triaxiality and the Lode parameter. Experi-
ments with differently notched tension and shear specimens taken from aluminum
sheets are used to identify basic material parameters. Additional series of micro-
mechanical numerical analyses of void containing unit cells have been performed to
be able to get more insight in the complex damage and failure behavior of ductile
metals. These calculations cover a wide range of stress triaxialities and Lode parame-
ters. The numerical results are used to show general trends, to develop equations for
the damage criterion, and to identify material parameters of the continuum model.

1 Introduction

Accurate modelling of inelastic behavior of ductile metals is evident in structural
mechanics and corresponding numerical analyses. In the literature, various con-
tinuum approaches predicting elastic-plastic behavior as well as material soften-
ing caused by damage and failure processes have been discussed. In this context,
phenomenological damage models have been developed motivated by experimental
observations or numerical analyses on the micro-scale. They are based on internal
scalar or tensorial damage variables whose increase is governed by evolution laws.

It is now well known that stress intensity, stress triaxiality and the Lode para-
meter are important factors controlling initiation and evolution of ductile damage
and failure. These dependencies can be studied by performing experiments and
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corresponding numerical simulations of a series of tests with carefully designed
and differently loaded specimens experiencing a wide range of stress states [1–8].
However, this procedure on the macro-level detects several interesting effects but
do not allow to predict general trends. To overcome this problem and to be able to
detect additional features on the scale of the micro-defects, micro-mechanical numer-
ical analyses can be carried out solving boundary-value problems of representative
volume elements with micro-structural details to reliably predict the constitutive
response at the macro-level. Thus, three-dimensional finite element calculations of
microscopic void-containing cell models have been discussed [9–13] to get more
insight in damage and failure mechanisms of ductile solids and to understand stress-
state-dependent behavior of micro-defect growth and corresponding ductile damage
and failure mechanisms. The numerical results show that the micro-defect growth
and their coalescence as well as the macroscopic deformation behavior of the unit
cells and the critical failure strain remarkably depend on the value of both the stress
triaxiality and of the Lode parameter.

Nearly all published papers deal with void growth and coalescence in regions
with high hydrostatic stress states. Thus, their results can only be used in moderate
or high stress triaxiality domains where the effect of the Lode parameter on damage
and failure behavior has been shown to be marginal [5]. Therefore, further numer-
ical calculations have to be performed to get detailed information on damage and
failure mechanisms in ductile solids for a wide range of stress triaxialities and Lode
parameters even in the shear and compression ranges. In this context, the present
paper discusses results of numerical unit-cell simulations on the micro-scale cover-
ing a wide range of three-dimensional stress states. They are used to develop and to
verify stress-state-dependent damage criteria taking into account different branches
corresponding to various damage modes.

2 Continuum Model

A continuum model is used to predict the inelastic deformations as well as the dam-
age and failure behavior taking into account information of microscopic mechanisms
of individual micro-defects and their interaction. Brünig et al. [6, 7] proposed a phe-
nomenological framework to model inelastic deformation behavior of ductile mate-
rials including anisotropic damage caused by micro-defects. This approach takes
into account different damage mechanisms depending on the amount of the stress
triaxiality (Fig. 1): evolution of micro-shear-cracks for negative stress triaxialities,
void growth for large positive stress triaxialities and mixed behavior for lower pos-
itive stress triaxialities. In the hydrostatic pressure regime a cut-off value of stress
triaxiality [14] is taken into account below which damage does not occur. This stress-
triaxiality-dependent concept will be generalized to be able to take also into account
the effect of the Lode parameter on damage behavior.
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Fig. 1 Damage mechanisms

In particular, the onset of damage is assumed to be governed by the damage
condition

f da = α I1 + β
√

J2 − σ = 0 (1)

where I1 and J2 denote the first and second deviatoric stress invariants, σ is the
damage threshold and α and β represent the damage mode parameters taking into
account the different branches depending on the stress triaxiality

η = σm/σeq = I1/(3
√

3J2) (2)

defined as the ratio of the mean stress σm and the von Mises equivalent stress σeq as
well as on the Lode parameter

ω = 2T̃2 − T̃1 − T̃3

T̃1 − T̃3
with T̃1 ≥ T̃2 ≥ T̃3 (3)

expressed in terms of the principal stress components T̃1, T̃2 and T̃3.

3 Experiments and Numerical Simulations

Experiments and corresponding numerical simulations on the macro-scale have to
be performed to be able to identify material parameters appearing in the constitutive
equations. However, since it is not possible to uniquely identify all material para-
meters appearing in equations modelling inelastic deformation as well as damage
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and failure behavior of ductile metals, numerical simulations on the micro-level
considering parts of micro-defect containing materials have been performed.

3.1 Experiments and Numerical Simulations
on the Macro-Scale

Basic material parameters are taken from tension tests with smooth specimens. Fur-
thermore, stress-state-dependent constitutive parameters can be identified by com-
parison of experimental data from various tests with differently notched tension and
shear specimens taken from aluminum sheets [15, 16] with corresponding numerical
simulations [7, 17]. Two- and three-dimensional analyses have been performed to be
able to identify the stress state dependence of the damage mode parameter β. How-
ever, the experiments with flat specimens did not show remarkable three-dimensional
effects and, therefore, it was not possible to study in detail the effect of the Lode
parameter on damage behavior.

Due to the lack of information on the influence of the Lode parameter on damage
of aluminum sheets by experimental procedures, application of an alternative method
is proposed to study the effect of stress state on the damage and failure behavior of
ductile metals. Additional numerical simulations on the micro-scale will be per-
formed to be able to study in detail the dissipative and deteriorating mechanisms on
the microscopic level.

3.2 Numerical Simulations on the Micro-Scale

To be able to develop damage evolution equations and to identify corresponding
material parameters in micro-mechanically motivated constitutive relations the defor-
mation behavior of three-dimensional unit cell models undergoing various loading
conditions is studied in detail. The initial void volume fraction is assumed to be 3 %
and symmetry boundary conditions are taken into account which simulate periodic
distributions of micro-defects. The analysis of this prototype problem is motivated by
the observation that nucleation, growth and coalescence of micro-voids and micro-
shear-cracks are the most important mechanisms on the micro-level leading to dete-
rioration of material properties on the macro-scale as well as to failure in ductile
metals.

It should be noted that the three-dimensional unit cells do not exactly deform like
pre-damaged solids with different distributions of micro-defects. However, interac-
tion of these defects on the micro-level can approximately be taken into account due
to symmetry boundary conditions of the unit cells under investigation. Interpreta-
tion of the numerical results of the unit cell calculations will give information on
micro-level-mechanisms like changes in size and shape of single defects as well as
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formation and localization of plastic zones. This will provide data for the develop-
ment of damage and failure criteria as well as of damage evolution equations on the
macroscopic level.

Three-dimensional numerical unit-cell calculations have been carried out using
the finite element program ANSYS. The analyses are based on different loading
conditions covering a wide range of Lode parameters ω = −1,−1/2, 0, 1/2, 1 and
of stress triaxiality coefficients η = −1,−2/3,−1/3, 0, 1/3, 2/3, 1.

During the entire loading history of the unit cells the stress triaxiality coefficient (2)
and the Lode parameter (3) are kept constant in all numerical simulations discussed
in the present paper. This allows detailed studies of their effect on damage and failure
behavior. In particular, to be able to guarantee always constant parameters, the unit
cells have to be loaded by the principal stresses

T̃2(T̃1, ω, η) =
(
−6ω + 27η2 + 9ω2η2 + 2ω2 ± 9

√
η2ω̂

)
T̃1

−9 + 6ω − ω2 + 27η2 + 9ω2η2

with ω̂ = (−6ω − 2ω3 + 4ω2 + ω4 + 3) (4)

and

T̃3(T̃1, ω, η) =
(

27η2 + 9 + 9ω2η2 − ω2 ± 18
√
η2(3 + ω2)

)
T̃1

−9 + 6ω − ω2 + 27η2 + 9ω2η2 . (5)

In Eqs. (4) and (5), the first principal stress component T̃1 characterizes the load
intensity. In addition, the initially plane surfaces of the unit cell models have to
remain plane during the loading process. Then, these always plane surfaces can be
taken as symmetry boundaries. This allows interpretation that the unit cell model is
a part of a pre-damaged solid with regular distribution of initially spherical voids.

Figure 2 demonstrates the effect of stress state on damage. For different ratios of
the principal stress components T̃1:T̃2:T̃3 corresponding to different amounts of stress
triaxiality η and Lode parameter ω Fig. 2 shows the initial (contours) and deformed
(grey) shapes of one eighth of the initially spherical voids. In particular, for the high
stress triaxiality value η = 1 the effect of the Lode parameter ω on deformation of
micro-defects is marginal. During the entire loading process the initially spherical
void nearly remains spherical and only its size increases. This means that isotropic
void growth is the predominant microscopic damage mechanism in the high stress
triaxiality regime and damaged induced anisotropy does not play a significant role.
However, the numerical cell model calculations predict an increase in the effect of
the Lode parameter on micro-defect deformation with decreasing stress triaxialities
η ≤ 1/3. For example, the evolution of prolate elliptical pores with one elongated
principal direction is observed for the negative Lode parameter ω = −1 whereas the
formation of oblate elliptical voids with two equally stretched principal directions
is numerically predicted for the positive Lode parameter ω = 1. On the other hand,
the size of the micro-defects decreases in the high negative stress triaxiality regime
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ω = -1 ω = 0 ω = 1

η 
=

 -
1

-0.25 : -1.0 : -1.0 -0.27 : -0.63 : -1.0 -0.4 : -0.4 : -1.0

η 
=

 0

1.0 : -0.5 : -0.5 1.0 : 0.0 : -1.0 0.5 : 0.5 : -1.0

η 
=

 1
/3

1.0 : 0.0 : 0.0 1.0 : 0.37 : -0.27 1.0 : 1.0 : -0.5

η 
=

 1

1.0 : 0.4 : 0.4 1.0 : 0.63 : 0.27 1.0 : 1.0 : 0.25

Fig. 2 Deformation of voids depending on stress triaxiality η and on Lode parameter ω

(η = −1). This means that no further damage occurs under high compression loading
conditions and the material behavior can be described by an elastic-plastic model.

In the proposed continuum damage model [6] the formation of damage is charac-

terized by the damage strain rate tensor Ḣ
da

. In this context, the amount of damage
is taken to be quantified by the scalar-valued equivalent damage strain measure

εda
v =

∫
ε̇da

v dt (6)

with

ε̇da
v =

√
2

3
Ḣda · Ḣda. (7)

Figure 3 shows the increase in equivalent damage strain with increasing loading
of the unit cells. In particular, for high positive stress triaxialities larger equivalent
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Fig. 3 Equivalent damage
strain versus equivalent strain

damage strain measures are numerically predicted whereas they are smaller for shear
loading conditions (η = 0). However, remarkable equivalent damage strains may be
seen even for negative stress triaxialities where decrease in volume of the micro-
defects has been observed (see Fig. 2) indicating that no further damage occurs.
Hence, the equivalent damage strain measure (6, 7) alone is not able to characterize
the occurrence of damage and to quantify its amount.

To overcome this problem, the formation of the void volume fraction f is also
taken into account. In the present analyses, it is directly computed from the current
geometry of the initially spherical void in the unit cell model. Figure 4 shows the
formation of the volume of the micro-defects with increasing loading of the one-pore
material sample for different stress states. In particular, in the high stress triaxial-
ity regime an increase in porosity is observed while for shear loading (η = 0) no
remarkable change in void volume fraction is numerically predicted indicating iso-
choric deformation behavior. On the other hand, decrease in volume of micro-defects
can be seen in Fig. 4 for negative stress triaxiality. This means that no further damage
occurs. This observation based on unit cell model calculations agrees well with the
introduction of a cut-off value [14] based on experiments. Thus, to be able to decide

Fig. 4 Void volume fraction
versus equivalent strain
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Fig. 5 Damage mode para-
meter versus stress triaxiality

whether damage occurs in a loaded solid or not, the numerically predicted formation
of the void volume fraction f is considered. In this context, non-marginal decrease
in volume of initial micro-defects means that no damage takes place during loading
of ductile solids.

Comparison of macroscopic experimental-numerical results discussed above and
numerical results taken from unit cells with 3 % initial void volume fraction and
from undamaged cubes with the same volume of the elastic-plastic matrix material
allow identification of the macroscopic stress at the onset of damage. In this point,
for each macroscopic stress state the first and second deviatoric stress invariants are
determined to be able to compute with Eq. (1) the damage mode parameter β shown
in Fig. 5.

For different Lode parameters ω and stress triaxiality coefficients η the damage
mode parameters obtained from micro-mechanical numerical analyses described
above (different points in Figs. 5 and 6) are used to propose the non-negative function

β(η, ω) = β0(η, ω = 0)+ βω ≥ 0 (8)

Fig. 6 Damage mode para-
meter βω versus Lode para-
meter
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and to identify the associated material parameters

β0 =
{−0.45η + 0.85 for − 1/3 ≤ η ≤ 0

−1.28η + 0.85 for η > 0
(9)

and

βω = −0.017ω3 − 0.065ω2 − 0.078ω (10)

by curve fitting, see Figs. 5 and 6. It can be seen that in the negative stress triaxiality
regime −1/3 ≤ η ≤ 0 the damage mode parameter is large indicating remarkable
influence of J2 on damage behavior. This corresponds to dominant micro-shear-
mechanisms whereas the negative hydrostatic stress is small and does not remarkably
affect the damage behavior. On the other hand, for high stress triaxiality coefficients,
β = 0 and only the first stress invariant I1 is assumed to characterize the onset of
damage caused by nearly isotropic void growth mechanisms. Based on the numerical
calculations presented here, the amount of stress triaxiality determining the transition
from void growth mode to the mixed damage mechanism depends on the Lode
parameter and is not a material constant. In particular, for positive Lode parameters
(ω > 0) the void growth mechanisms are more dominant than for negative ones
(ω < 0).

4 Conclusions

The effect of stress state on damage has been discussed and quantified for the onset
of damage. It has been shown that it is not possible to validate the effect of the stress
triaxiality and the Lode parameter only by experiments with differently notched
tension and shear specimens and corresponding numerical simulations on the macro-
scale. To overcome this problem, additional numerical 3D calculations on the micro-
level have been performed considering pre-damaged unit cubes with spherical voids
under different loading conditions. Details of functions describing occurrence of
damage have been detected taking into account a wide range of stress triaxialities
and Lode parameters. Based on this procedure, it is possible to quantify the stress-
state-dependent damage criterion with different branches corresponding to different
damage and failure mechanisms on the micro-scale. Therefore, the combination of
experiments with macroscopic numerical simulations and numerical calculations on
the micro-scale may be seen as an efficient tool to obtain data to validate stress state
dependence of damage and failure criteria in phenomenological continuum models.
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Characterization of Load Sensitive Fatigue
Crack Initiation in Ti-Alloys Using Crystal
Plasticity Based FE Simulations

P. Chakraborty and S. Ghosh

Abstract Fatigue life in near α Ti-alloys shows large variation with characteristics
of applied load and is due to the microstructurally dependent deformation behav-
ior in these alloys. In the present work, the load sensitive fatigue crack nucleation
behavior is investigated using a physically motivated crack initiation law and cyclic
crystal plasticity based finite element (CPFE) simulations of statistically equivalent
image based microstructures. Since cyclic CPFE simulation for large number of
cycles using conventional time integration schemes is computationally prohibitive,
a wavelet transformation based multi-time scale (WATMUS) method developed in
[1, 2] is used in the present work to perform accelerated simulations. To predict
cycles to nucleation, a physically motivated crack nucleation model based on crystal
plasticity variables developed in [3] has been used in this work. The nucleation model
is calibrated and validated with experiments. The sensitivity of crack nucleation to
the characteristics of the applied load is studied by performing WATMUS method
based CPFE simulations for different cyclic load profiles on a statistically equivalent
microstructure.

1 Introduction

Cycles to crack initiation in near α Ti-alloys at room temperature shows large
variation with characteristics of applied load. This scatter is attributed to strong influ-
ence of underlying microstructure on the deformation and fatigue behavior in these
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alloys [4–6]. A mechanistic approach is pursued in the present work to incorporate
this microstructural influence on crack initiation. Similar methodology has been used
in [7–12] where CPFE simulations of polycrystalline microstructures are performed
and fatigue life models are developed based on crystal plasticity variables. Such
a mechanistic approach is more accurate than conventional lifing methods where
microstructural influences on fatigue life is accommodated through shifts in data
curves obtained from extensive testing [13].
At room temperature, inelastic deformation in Ti-alloys predominantly happens due
to slip on different slip systems in individual grains in the microstructure and is
strongly size and orientation dependent. Depending on the orientation of a grain with
respect to loading axis, it can have large plastic deformation (soft grain) or little or no
plasticity (hard grain). Such heterogeneous plastic deformation in the polycrystalline
microstructure results in stress concentration at grain interfaces and is conceived
as the driver for microstructurally dependent crack nucleation in near α Ti-alloys
[4, 14]. A size and rate dependent CPFE model for near α Ti-alloys developed in
[15–17] captures this microstructurally dependent stress rise accurately and has been
used in the present work. The morphological and crystallographical features of the
polycrystalline alloys are statistically represented in the CPFE models [18, 19]. The
use of such a statistical description not only reduces the number of grains in the FE
simulations but also captures some of the key microstructural features that affect its
macroscopic and microscopic responses.
Although CPFE simulations accurately capture the deformation behavior of poly-
crystalline alloys, they require very fine time steps at large applied stresses and
strains when conventional time integration schemes are used. This lead to exorbitant
computational requirements when fatigue analysis is performed for large number
of cycles, since such reduced time steps are required in every cycle of the loading
process. To resolve this computational prohibitiveness, fatigue life predictions have
been performed in [7, 20, 21] by extrapolating the results based on CPFE simulations
performed for few number of cycles. However extrapolation can lead to considerable
error in the evolution of local microstructural variables and cause inaccurate fatigue
life estimates based on these variables. Hence for accurate prediction, it is desirable
to perform cyclic CPFE simulations till the failure event e.g. crack nucleation.
The dual-time behavior exhibited by the crystal plasticity variables under cyclic
loading conditions allows the use of multi-time scale methods to perform acceler-
ated FE simulations. In these methods the low and high frequency responses are
decoupled and the low frequency evolution is integrated with coarser time steps
to obtain computational benefit. WATMUS method developed in [1, 2] is used to
perform accelerated cyclic CPFE simulations in the present work. This method is
distinctly advantageous over other multi-time scale schemes such as the method of
separation of motions [22, 23], asymptotic expansion based methods [24–26] or
almost periodic temporal homogenization operator based method [27, 28] where
inherent scale separation and local periodicity or almost periodicity in temporal evo-
lution is assumed. Such assumptions are invalid for crystal plasticity variables which
show strong non-periodic evolution and spatio-temporal localization. In WATMUS
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method assumptions on characteristics of evolution are not made and hence proves
suitable for decoupling the dual-time response of crystal plasticity variables.
A non-local crack nucleation model developed in [3] based on CPFE variables has
been used in the present work to study load dependent crack initiation in these
alloys. The nucleation criterion is based on stress concentration and dislocation pile
up at interface of soft and hard grains. The model is calibrated and validated with
fatigue experiments performed on samples of Ti-6242. WATMUS method based
cyclic CPFE simulations of statistically equivalent image based microstructures in
conjunction with the non-local crack nucleation model is used to characterize the
load dependent fatigue crack initiation in near α Ti-alloys. An overview of the CPFE
model and WATMUS method to perform accelerated CPFE simulations is presented
in Sects. 2 and 3 respectively. The crack nucleation model developed in [3] has been
extended in the present work and is discussed in Sect. 4. A detailed numerical study of
the variations in number of cycles to crack nucleation and characteristics of applied
load is presented in Sect. 5.

2 Size and Rate Dependent CPFE Model for Near
α Ti-Alloys

In crystal plasticity based models, the evolution of inelastic deformation in poly-
crystalline alloys happens due to slip on different slip systems [29, 30]. The slip
rate on the individual slip systems depend on the orientation of grains to which they
belong and their resistance to slip. Hence through proper representation of orien-
tations of grains in the underlying microstructure and slip system properties, the
macroscopic and microscopic deformation behavior of polycrystalline alloys can be
accurately captured through crystal plasticity based models. The morphological and
crystallographical features of the microstructure are represented statistically from
distributions of orientation, misorientation, size, shape of grains and microtexture,
obtained from OIM scans of samples of these alloys [18, 19]. In the present work,
the crystal plasticity based model and the associated parameters for near α Ti-alloys
reported in [15–17] has been used.
The ability of CPFE simulations of statistically equivalent material coupon to capture
microstructurally driven local event causing failure motivated the development of a
crack nucleation model based on crystal plasticity variables in [3]. However fatigue
life predictions using such an approach usually involve cyclic CPFE simulations of
statistically equivalent microstructures for large number of cycles. Such simulations
can be computationally unachievable using conventional integration schemes. Hence
WATMUS method is used to improve the efficiency of cyclic CPFE simulations till
crack nucleation and is described below.
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3 Wavelet Transformation Based Multi-Time Scale
Method for Accelerated Cyclic CPFE Simulations

Under cyclic loading, CPFE variables exhibit dual-time behavior characterized
by high frequency oscillations due to applied load and low frequency monotonic
response due to material relaxation that evolve with cycles. In the WATMUS method
[1], decoupling of high and low frequency responses is achieved through a wavelet
based transformation as shown below.

vζ(t) = v(N , τ ) =
n∑

k=1

vk(N )ψk(τ ) where τ ∈ [0, T ] (1a)

vk(N ) = 1

T

T∫
0

v(N , τ )ψk(τ )dτ (1b)

where vζ(t) is single time scale variable, v(N , τ ) is the corresponding dual-scale
representation, ψk(τ ) are wavelet basis functions that capture high frequency oscil-
lation within each cycle, n is the number of basis functions required for accurate
representation of the waveform, vk(N ) are the corresponding coefficients that evolve
monotonically with cycles and T is time period of applied load. This transformation
allows integration of CPFE equations in the coarse scale with time steps of cycles
and provides computational benefit.
The compact support, multi-resolution and orthogonality properties of the wavelets
allow significant reduction in the number of basis functions required for accurate
representation of arbitrary waveforms and hence used in the method. They also
eliminate spurious oscillations that arise due to considering finite number of terms
from the set formed by infinitely supported basis functions like Fourier series.
In the WATMUS method, the FE weak form for quasi-static problems is transformed
in terms of wavelet basis functions

Rαi,k(N ) = 1

T

T∫
0

Rαi (N , τ )ψkdτ

=
∑

e

∫
V0,e

1

T

T∫
0

∂Pα

∂x j
σ j i JeψkdτdV0,e

−
∑
ST

∫
S0

1

T

T∫
0

Pαti JAψkdτd S0 = 0 (2)
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where Pα are the polynomial shape functions in every element e, ST are the surfaces
on which tractions are applied, α are the nodes of the discretized domain, V0,e and
S0 are the element volumes and surfaces in the reference configuration respectively
and σ j i are the stresses at integration points in the spatially discretized domain. The
modified weak form shown in Eq. 2 is solved at discrete cyclic increments by using
a Quasi-Newton scheme to obtain the wavelet coefficients of nodal displacements
Cα

i,k where

Cα
i,k(N ) = 1

T

T∫
0

uαi (N , τ )ψk(τ )dτ (3)

and uαi are the nodal displacement degrees of freedom of the conventional FE model.
The oscillatory stress σ j i (N , τ ) in Eq. 2 depends on the oscillatory deformation
gradient Fi j (N , τ ) and internal variables ym(N , τ ). Fi j (N , τ ) is obtained from the
coefficients of nodal displacements and the oscillatory evolution of ym(N , τ ) in any
cycle is obtained from

ym(N , τ ) = ym0(N )+
τ∫

0

fm(ym, Fi j , N , τ )dτ (4)

where ym0(N ) = ym(N , τ = 0) are the internal variables at the start of a cycle. The
initial values of internal variables ym0 have a monotonic evolution with cycles and
form the cycle scale internal variables. Cycle scale rate equations are numerically
defined for ym0 and is shown below.

∂ym0

∂N
= ym0(N + 1)− ym0(N ) = ym(N , T )− ym0(N ) (5)

where

ym(N , T ) = ym0(N )+
T∫

0

fm(ym, Fi j , N , τ )dτ (6)

Since fm are non-linear functions, numerical integration using backward Euler
scheme is used in Eq. 6. The cycle scale internal variables are integrated using second
order backward difference formula as shown below.

ym0(N ) = β1 ym0(N −ΔN )− β2 ym0(N −ΔN −ΔNp)+ β3
∂ym0

∂N

∣∣∣
N
ΔN

where β1 = (r + 1)2

(r + 1)2 − 1
β2 = 1

(r + 1)2 − 1
β3 = (r + 1)2 − (r + 1)

(r + 1)2 − 1

and r = ΔNp

ΔN
(7)
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A Newton-Raphson scheme is used to integrate Eq. 7.
To reduce the number of global degrees of freedom, only the evolving wavelet coef-
ficients of nodal displacements are solved at any cyclic increment from the cycle
scale weak form shown in Eq. 2. These coefficients are selected based on criterion
developed in [1]. The evolution of CPFE variables saturates with advancing load
and integration of the coarse variables can be performed with larger cycle jumps.
Hence, prediction of cycle jumps are made based on an upper bound on the error in
truncation of Taylor series in second order backward difference formula in Eq. 7. The
use of these adaptive criteria significantly enhances the performance of WATMUS
method to perform cyclic CPFE simulations.

4 Non-Local Crack Initiation Model for Near α Ti-Alloys

In the present work, fatigue crack nucleation studies are made using the model
developed in [3]. The model is motivated from experimental observations of failed
Ti-6242 samples under fatigue loading with maximum stress at 90–95 % of yield
strength and stress ratio σmin/σmax = 0. Detailed experimental investigations per-
formed at failure sites suggest that regions with hard grains surrounded by soft grains
are susceptible to initiate sub-surface cracks in near α Ti-alloys [31, 32].
In the presence of soft grains with large plastic deformation adjacent to hard grains,
large stresses develop in the hard grains to satisfy strain compatibility condition.
Additionally, dislocation motions causing plastic deformation in soft grains are pre-
vented at hard-soft grain interfaces which results in piling up of these dislocations
at the interface. In the crack nucleation model both these aspects are considered.
It is hypothesized that the pile up of dislocation at the interface cause micro crack
formation in hard grains. These micro cracks experience large stresses in hard grains
and propagate to form macroscopic crack nucleation sites. A stress intensity factor
R is defined for the growth of micro cracks as shown below

R = Tef f
√

c and Tef f =
√

〈Tn〉2 + βT 2
t (8)

where c is the micro-crack length and Tef f is the effective traction on crack plane.
Both shear Tt and normal Tn component of traction are considered. Since compressive
nature of normal traction Tn cause crack closure, a Macaulay bracket is used implying
compressive normal traction has no effect on the stress intensity factor R.
The micro crack length c is related to dislocation pile up length B in adjacent soft
grain using the relation proposed in [33]. In the formula, the equilibrated wedge
shaped micro-crack length c is given by

c = G

8π(1 − ν)γs
B2 (9)



Load Sensitive Fatigue Crack Initiation in Ti-Alloys 103

where G is the shear modulus and γs is the surface energy. The dislocation pile length
B is evaluated from closure failure around any burgers circuit due to inhomogeneous
plastic deformation as shown below

B =
∮
Γ

dx̄ =
∮
Γ

FpdX =
∫
Ω

Λ.ndΩ (10)

where n is normal to surface Ω in which the burger’s circuit is considered and Λ is
Nye’s dislocation tensor which depends on curl of Fp

Λ = ∇T × Fp (11)

The stress intensity factor R evolves with increasing cycles of applied load. Macro-
scopic crack nucleation is considered to happen when R at any material point on the
interfaces of hard soft grains in the microstructure exceeds the critical stress intensity
factor Rc. The critical stress intensity factor Rc is a material constant for a given alloy
and is calibrated from experiments.
In the present work, load sensitive fatigue life of Ti-6242 is investigated. Hence,
Rc is evaluated for this alloy from WATMUS based cyclic CPFE simulations and
dwell fatigue experiments. A detailed description of the calibration procedure is pro-
vided in [3]. The procedure is extended in the present work by considering the basal
plane as the plane of crack nucleation to determine R. Using in situ surface acoustic
wave techniques and dwell fatigue experiments performed on different samples of
Ti-6242, it has been observed that crack initiation happens at 80–85 % of total num-
ber of cycles to failure [34]. Based on this observation, a lower and upper bound on
Rc is determined and these are

Crack nucleation at 80 % of total life Rc(80 %) = 6.54 MPa
√
μm

Crack nucleation at 85 % of total life Rc(85 %) = 6.80 MPa
√
μm

5 Sensitivity of Cycles to Crack Nucleation
to Characteristics of Applied Load

A statistically equivalent microstructure of Ti-6242 is considered to correlate cycles
to crack nucleation and characteristics of applied load. Two separate studies has been
performed. In the first study, comparisons between dwell load, normal cyclic load
and maximum stress levels are performed. In the second study, the effect of hold-time
in the dwell load on cycles to crack nucleation has been studied.
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5.1 Comparison Between Dwell and Normal Cyclic Load

In this sensitivity study the statistically equivalent microstructure is subjected to 4
different types of load as shown below:

• Case A: σmax = 894 MPa, σr = 0, Tload = Tunload = 1 s and Thold = 120 s
• Case B: σmax = 847 MPa, σr = 0, Tload = Tunload = 1 s and Thold = 120 s
• Case C: σmax = 894 MPa, σr = 0, Tload = Tunload = 61 s and Thold = 0 s
• Case D: σmax = 894 MPa, σr = 0, Tload = Tunload = 1 s and Thold = 0 s

Maximum applied stress (σmax ) is 95 % of yield strength in cases A, C and D and is
90 % of the yield strength in case B. Dwell load with 2 min hold is applied in cases A
and B. Triangular load with time periods T = 122 and T = 2 s is applied in cases C
and D respectively. WATMUS method is used to perform cyclic CPFE simulations
and stress intensity factor R is evaluated at nodes situated at grain interfaces. In a
cycle, R is evaluated at start of unloading and corresponds to τ = 121 s in cases A
and B, τ = 61 s in case C and τ = 1 s in case D. The evolution R at the node where
crack nucleation is predicted using calibrated Rc is shown in Fig. 1.

The number of cycles to crack initiation based on calibrated Rc values at 80 and
85 % of total life is summarized in Table 1. As can be observed from the table,
the microstructure has a shorter fatigue initiation life when subjected to dwell load
(cases A and B) as compared to normal cyclic loading (cases C and D). The number
of cycles to crack nucleation for dwell (case A) and normal fatigue (case D) at 95 % of
yield strength shows the same trend as observed experimentally [4–6]. In the normal
cyclic loading cases, the decrease in frequency of the load deteriorates the life of the
microstructure as can observed from cases C and D. Also it can be observed from
this study that an increased maximum stress in normal cyclic loading (cases C and

Fig. 1 Evolution of R with cycles at the predicted crack initiation site for 4 different fatigue load
cases A,B,C and D
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Table 1 Comparison of number of cycles to crack initiation for different cyclic load forms

Case No. Cycles to crack nucleation
80 % of life 85 % of life

A 167 177
B 2945 3172
C 9191 9734
D 51997 55195

D) is less detrimental than the hold at a lower maximum stress under dwell loading
(case B).

5.2 Comparison Between Different Hold Times
for Dwell Load

The number of cycles to crack nucleation for different hold time and same time period
of dwell with maximum applied stress at 95 % of yield strength, is also compared
for this statistically equivalent microstructure. WATMUS based CPFE simulations
are performed for three different load cases shown below:

• Case E: Tload = Tunload = 16 s and Thold = 90 s
• Case F: Tload = Tunload = 31 s and Thold = 60 s
• Case G: Tload = Tunload = 46 s and Thold = 30 s

The number of cycles to initiate a crack is evaluated from non-local crack nucle-
ation model described in Sect. 4. The evolution of R at the crack initiation site is

Fig. 2 Evolution of R with Cycles for 5 different fatigue load cases A,E,F,G and C
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Fig. 3 Comparison of number
of cycles to crack initiation
for different hold time at
maximum stress

shown in Fig. 2. A plot of number of cycles to crack initiation versus hold time
is shown in Fig. 3. A definite trend in life to initiation with hold time can be
observed.

6 Conclusion

Fatigue crack nucleation in near α Ti-alloys is strongly influenced by its underlying
microstructure and a mechanistic approach based on CPFE simulations of statisti-
cally equivalent microstructures in conjunction with a physically motivated crack
nucleation model is pursued in the present work to accurately predict this behavior.
WATMUS method is used to perform accelerated cyclic CPFE simulations which
is otherwise infeasible. A non-local crack nucleation model based on micro-crack
growth under the influence of local stresses at hard soft grain interfaces is used
to predict initiation. A critical stress intensity factor is defined that dictates crack
nucleation and is calibrated from dwell fatigue experiments performed on samples
of Ti-6242. A statistically equivalent microstructure is subjected to different cyclic
load patterns and cycles to crack nucleation is predicted from the proposed model.
From the predictions, a trend in cycles to crack initiation and hold, loading, unloading
time and maximum applied stress level can be observed.
In the present work the workability of the proposed integrated computational
and experimental approach to quantify scatter in fatigue crack nucleation in near
α Ti-alloys has been demonstrated. The methodology can be extended to other poly-
crystalline alloy systems for accurate fatigue life predictions and is considered as a
future work.
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Creep Crack Growth Modelling in 316H
Stainless Steel

Catrin M. Davies and Ali Mehmanparast

Abstract It has been realised that plasticity has a significant effect on the creep
ductility of Austenitic Type 316H stainless steel at 550 ◦C. Recently a model has
been produced to estimate the creep ductility and strain rate as a function of the plas-
tic strain levels in the material. A variable creep ductility model, incorporating stress
dependent strain rate effects, has therefore been implemented in a finite element (FE)
analysis to predict creep crack growth (CCG) in 316H stainless steel at 550 ◦C. Recent
experimental results have shown that material pre-compression to 8 % plastic strain
at room temperature accelerates the creeping rate and significantly reduces the creep
ductility of 316H stainless steel at 550 ◦C. In addition pre-compression significantly
hardens the material and thus the levels of plasticity on specimen loading in tension
are reduced. As a result, accelerated cracking rates are observed in pre-compressed
(PC) materials compared to as-received (AR) (non-compressed) materials. The vari-
able creep ductility FE CCG model has been employed to predict the CCG behaviour
of AR and PC materials and to analyse their differences. Comparisons are also made
to FE and analytical constant creep ductility models.

1 Introduction

The creep crack growth (CCG) behaviour of 316H stainless steel is of significant
concern, particularly in relation to its use in the UK’s advanced gas cooled reactors
(AGRs). A considerable amount of uniaxial creep and CCG tests have been performed
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on Type 316H stainless steel, taken from ex-service steam headers, and tested at
550 ◦C (see e.g. [1–3]). Recently, significant interest has been developed in pre-
compressed (PC) 316H of up to 8 % plastic strain at room temperature [4–6]. It
has been found that pre-compression generally hardens the material, reduces the
creep rupture times, reduces creep ductility and subsequently increases the CCG rate
compared to that of AR material [4–6]. The CCG behaviour of PC material has also
been found similar to long term (low load) CCG tests on AR material [6].

Predicting CCG is fundamentally important in high temperature components life-
time assessments. Finite element (FE) analysis provides a tool to enable CCG predic-
tions to be performed and the sensitivity of key parameters to be studied. FE analysis
is therefore a beneficial aid for understanding CCG behaviour. In this work CCG
predictions are obtained for AR and PC materials. Previous studies (e.g. [7, 8]) have
assumed the material has a constant creep ductility, εf . However recent studies show
that the creep ductility of 316H at 550 ◦C is influenced by the levels of plastic strain
in the material [4, 5, 9]. In [9] the applied stress was normalised by the temperature
dependent 0.2 % proof stress of the material, σ/σ0.2, to examine plasticity effects on
creep failure behaviour. A stress dependent creep ductility model has therefore been
incorporated into FE analyses to predict CCG and the results compared to short and
long term experimental data on AR and PC materials.

2 Deformation, Damage and Fracture Models

The tensile and creep deformation behaviour of 8 % PC and AR materials at 550 ◦C
have previously been compared in [4, 5], and their CCG behaviour compared in [6].
A summary of the key features relevant to this work is given below, following which
the creep failure and CCG models employed are presented.

2.1 Tensile and Creep Deformation

A comparison of the AR and PC materials tensile response at 550 ◦C is shown in
Fig. 1. The material exhibits significant hardening due to the prior plastic compres-
sive strain. Subsequently the 0.2 % proof stress of the PC material is 50 % higher
(260 MPa) than that of the AR material (170 MPa). The elastic moduli are however
similar at 140 GPa.

Creep deformation is considered to be composed of three regimes—primary, sec-
ondary and tertiary creep. The use of an average creep rate, obtained directly from
creep rupture data, has been proposed to account for all three stages of creep. This
average creep rate, ε̇A, is defined as

ε̇A = εf /tr = ε̇o(σ/σ0)
n = Aσ n (1)
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Fig. 1 Tensile response
of AR and PC materials at
500 ◦C
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where εf is the uniaxial failure strain, tr is the time to rupture and σ is the equivalent
(Mises) stress. The variables,σ0, A and n in Eq. (1) are generally taken as temperature
dependent material constants. The value of n and subsequently A may vary over a
wide stress range. Results for AR 316H stainless steel at 550 ◦C shown in [9] indicate
that for σ/σ0.2 ≥ 1.035, A = 1.24 × 10−23 MPam−nh−1 and n = 7.5, and for
σ/σ0.2 < 1.035, A = 6.56 × 10−12 MPam−nh−1 and n = 2.3. Similar average
creep properties have been found between AR and PC material [5, 9], thus the same
values of A and n are used in this work for both material conditions. The transition
between high/low A and n are also considered to occur at the same normalised stress
level for both AR and PC materials.

2.2 Creep Ductility

The trends in the uniaxial creep ductility for 316H stainless steel over a wide range
of stresses have recently been examined in [9]. Three regions of creep ductility
have been identified. These consist of an upper shelf (σ/σ0.2> 1.32) and lower
shelf (σ/σ0.2< 0.84) region with a stress dependent transition region in between, as
illustrated in Fig. 2 for 550 ◦C. Note that the upper shelf value shown, 13.6 %, is the
average value of the data set available and the trends for σ/σ0.2< 1.32 have been
estimated based on trends identified in data at higher temperatures [9]. Preliminary
results have shown that when plotted against, σ/σ0.2, the PC creep ductility data falls
upon the AR trends lines [9], hence the trend shown in Fig. 2 may be used for both
AR and PC material.

2.3 Creep Damage Model

The creep ductility exhaustion approach has been used to model creep damage accu-
mulation. The damage parameter, ω, is defined such that 0 ≤ ω ≤ 1 and failure
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Fig. 2 Stress dependent creep
ductility
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occurs when ω approaches 1. The rate of damage accumulation, ω̇, is related to the
equivalent creep strain rate and multiaxial creep ductility, by the relationship,

ω̇ = ε̇c/ε∗f (2)

and the total damage at any instant is the integral of the damage rate in Eq. (2), thus
given by

ω =
∫ t

0
ω̇ dt (3)

In the vicinity of the crack tip the local (multiaxial) creep ductility, ε∗f , may be
obtained for the material under study from the Cocks and Ashby [10] model. The
model describes the ratio of the multiaxial to uniaxial failure strain, ε∗f /εf , as

ε∗f
εf

= sinh

[
2

3

(
n − 1/2

n + 1/2

)] /
sinh

[
2

(
n − 1/2

n + 1/2

)
σm

σe

]
(4)

where σm/σe is the ratio between the mean (hydrostatic) stress and equivalent (von
Mises) stress, which is often referred to as triaxiality.

2.4 Creep Fracture Parameters

At long times, where a steady state of creep deformation and damage has developed
at a crack tip, the CCG rate, ȧ, may be described by the crack tip parameter C∗
according to the power law relationship,

ȧ = DC∗φ (5)
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where D and φ are material constants, which are temperature and stress state depen-
dent [11]. Under steady state conditions ȧ versus C∗ data appear as a straight line
when plotted on log-log axes [11]. Prior to steady state conditions being achieved,
these data points will appear as a ‘tail’.

The C∗ parameter may be determined experimentally in CCG tests from the load
line displacement rate measurements, �̇, using the relation [12]

C∗ = P�̇

Bn(W − a)
Hη (6)

where P is the applied load, Bn is the net specimen thickness between the side-
grooves and W is the specimen width. In Eq. (6), H and η are geometry dependent
constants. For a C(T) specimen H = n/(n + 1) and η = 2.2 [12]. Validity criteria
are specified in [13] for the use of the C∗ parameter to describe creep crack initiation
and growth (see e.g. [1]).

2.5 Creep Crack Growth Models

The NSW model [14], which is based on a ductility exhaustion approach, predicts
the steady state creep crack growth rate, ȧ, using

ȧ = (n + 1)/ε∗f (C∗/In)
n/(n+1)(Arc)

1/(n+1) (7)

where ε∗f is the critical multiaxial failure strain appropriate to the crack tip stress
state and In is a nondimensional function of n, values for which are tabulated in [15]
for both plane stress and plane strain conditions. In [16] it is recommended that ε∗f
is taken to be the uniaxial failure strain, εf , under plane stress conditions.

3 Finite Element Model

Finite element analyses were conducted on a two dimensional FE model of a com-
pact tension, C(T), specimen of width, W = 50 mm, thickness B = 25 mm and
normalised crack length a/W = 0.5 using ABAQUS v6.11. Half of the specimen
has been modelled and symmetry conditions employed. Previous work has demon-
strated that plane strain analyses are consistent with full 3D analyses [7]. In the
region of the crack path regular square elements of size 20 µm, have been used. The
influence of mesh sensitivity has previously been examined (see e.g. [7, 8]). A small
geometry change analysis has been performed employing four noded continuum
elements for plane stress analyses (CPS4) and ‘hybrid’ elements (CPE4H) for plane
strain analyses. Three loading cases have been considered using both AR and PC
material properties, as described in Table 1, under both plane stress (PS) and plane
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Table 1 Summary of C(T) specimens modelled and loading details

ID P (kN) K (a0) (MPa
√

m) σre f /σ0.2 PS σre f /σ0.2 PE

AR1 10.0 17.3 0.53 0.37
AR2 14.5 25.0 0.77 0.53
AR3 19.5 33.6 1.03 0.71
PC1 10.0 17.3 0.35 0.24
PC2 14.5 25.0 0.50 0.35
PC3 19.5 33.6 0.67 0.46

strain (PE) conditions. Note that the normalised reference stress, σre f /σ0.2, shown
in Table 1 can be used as an indicator of the levels of plasticity at the crack tip on
loading.

3.1 Creep Damage and Crack Growth Simulation

Following the approach in [7], crack growth is simulated by reducing an element’s
load carrying capacity when the damage parameter,ω, attains a critical value. To avoid
numerical difficulty, the stress (at a gauss point) in a damaged element is limited to a
small value by switching its material response to elastic-perfectly plastic behaviour
with a yield stress of 1 MPa. This is done using a user defined field (USDFLD)
subroutine in ABAQUS where the creep damage parameter is also evaluated [17].
The USDFLD subroutine was also used to switch the values of A and n depending on
the normalised stress value as described in Sect. 2.1. When the damage at the centroid
of the element attains ω = 1.0 then that element is considered fully damaged and
the crack advances. The analyses were run until terminated by the program when
numerical difficulties were encountered. Therefore various crack extensions have
been achieved in each simulation.

4 Comparison of CCG Predictions and Experimental Data

CCG data have previously been reported on AR and PC material on the C(T) geometry
at a range of load levels [1, 6, 18]. These data are shown in Fig. 3, where long and
short term AR data are distinguished. Mean, upper bound (UB) and lower bound (LB)
fits have been made to each data set. As can be seen, the CCG rate of the PC material
is around a factor of 7 higher than that of the short term (ST) AR material, for a
given C∗. Higher CCG rates are also observed in the long-term (LT) AR tests, which
follow the same trend lines as the PC material. These results have been discussed
in terms of loss of specimen constraint due to plasticity effects in short term (high
load) tests and the reduction of creep ductility and retention of specimen constraint
in the long term AR and PC data [1, 6, 18]. Note that the slopes of the trends lines
to the PC and AR material are similar, as detailed in [18]. This also indicates that the
creep stress exponent, n, is similar in both materials.
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4.1 Comparison of Predictions to CCG Models

The FE predictions are compared to the NSW model’s predictions in Fig. 4, for the
AR data assuming plane stress (PS) conditions. Note that three data sets are shown
for each load considered. Firstly predictions have been obtained assuming constant
creep ductility and creep strain rate properties, corresponding to the upper shelf (US)
creep ductility, and similarly corresponding to the lower shelf (LS) creep ductility
values, see Fig. 2. The third data set for a given load has been obtained using the
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Fig. 4 Comparison of CCG predictions from the FE and NSW model on AR material for plane
stress conditions
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stress dependent creep ductility and strain rate model described in Sects. 2.1 and 2.2.
As expected the US data fall close to or upon the NSW-US model’s prediction. Note
that although the ASTM validity criteria for ȧ versus C∗ have been applied to all the
predictions, some tails may remain in the FE data as also observed in the experimental
data. The LS FE and NSW-LS predictions generally follow the same trend, however
the AR1-LS and AR2-LS data generally fall above the NSW-LS prediction which
may be attributed to transient creep effects and small variations in the crack tip angle.
The initial data for AR3-LS are coincident with the NSW-LS model prediction. As
the crack extends and subsequently C∗ increases, the levels of crack tip plasticity
also increases, leading to a loss of specimen constraint and hence lower CCG rates.
This may explain why the latter half of the AR3-LS data fall below the NSW-LS
prediction. The AR2 and AR3 data from the stress dependent model fall exactly on
the NSW-US model because the normalised reference stress, σre f /σ0.2, for these
valid points are relatively low. The AR1 data shown start at the NSW-LS prediction,
but then fall towards and below the NSW-US prediction and data. Though not shown,
the crack extension achieved in the simulation for AR1 was significantly higher than
that of AR2 and AR3. Therefore, even though the applied load in specimens AR2
and AR3 were higher than that of AR1-PS, the σre f /σ0.2 values corresponding to
the data points shown are higher in AR1-PS, and significantly greater than unity for
the majority of the data shown. This again leads to high crack tip plasticity, loss of
specimen constraint and hence a reduction of CCG rate with crack extension. Note
also that due to the various crack extensions achieved for the three loads examined
for a given condition, the C∗ values shown may not increase in proportion to the
applied load, as in the case of AR1-PS, AR2-PS and AR3-PS.

4.2 Comparison of Predictions to Experimental Data

The plane stress (PS) FE predictions shown in Fig. 4 are compared to plane strain
(PE) predictions in Fig. 5. Also included in Fig. 5 are the mean (solid line) and upper
bound (UB) and lower bound (LB) (shown as dashed lines) fits to the short and
long term AR experimental data. Though not shown, the mean fit to the short term
AR experimental data falls very closely to the NSW-US prediction described above.
Though the data at high C∗ values fell below the NSW-US prediction (which assumes
high constraint) these FE predictions fall upon the lower bound fit to the short term
AR experimental data. All FE predictions in Fig. 5 fall between the UB fit to the
long term data and the LB fit to the short term data. Also there is a general trend of
increasing CCG rates as C∗ decreases, at relatively low C∗ values, as also seen in
the experimental data, except for the AR-PS-US data which follows the short term
AR material trends, as expected. The amount of crack extensions achieved in the PE
simulations were limited, however some data is shown in Fig. 5. The AR1-PE-US
and AR2-PE data, which are at relatively small C∗ values, fall on the UB to the long
term AR data. The AR3-PE-US, AR2-PE-US and AR1-PE data fall close to the LB
long term trend line, which is also close to the UB short term trend line. Note that



Creep Crack Growth Modelling in 316H Stainless Steel 117

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

da
/d

t(
m

m
/h

)

C* (MPam/h)

AR1-PS
AR1-PS-LS
AR1-PS-US
AR1-PE
AR1-PE-US
AR2-PS
AR2-PS-LS
AR2-PS-US
AR2-PE
AR2-PE-US
AR3-PS
AR3-PS-LS
AR3-PS-US
AR3-PE-US

Fig. 5 Comparison of CCG predictions and experimental data for AR material

the CCG rate of the AR2-PE data is higher than that of AR1-PE, for a given C∗, due
to the high values of σre f /σ0.2 in the valid data available for AR1-PE.

In Fig. 6 the PC predictions are compared to the AR and PC trend lines fitted to
the experimental data (as shown in Fig. 3). All FE predictions shown fall within the
UB and LB trends lines on the PC data. The CCG rate predictions from the stress
dependent creep and ductility model decrease as C∗ increases, and tends from the
upper bound fit to the PC data (if extrapolated) to the LB fit to the PC data. The
PS data for the three loads considered is approximately coincident for C∗ ranging
between 1 × 10−5 to 1 × 10−4 MPamh−1, with the small differences corresponding
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Fig. 7 Comparison of CCG predictions for AR and PC material for a given load

to the relative σ/σ0.2 values of the FE data at these C∗ values. For this range of C∗,
the PE CCG predictions are effectively the same as the PS predictions, indicating
a balance between the increase in CCG rate due to higher triaxiality in PE and a
decrease in CCG due to the relatively high σre f /σ0.2 for this data. Data for PC1-PE
however have relatively low σ/σ0.2 values, and hence the CCG rate falls along the
UB fit to the PC data. Data for PC2-PE-US have a relatively low σre f /σ0.2 value
and the CCG rate predictions fall upon the mean fit to the experimental PC data.
Also note, as may be expected, the lower shelf constant creep ductility predictions,
PC2-PS-LS data, fall close to the low load (and σre f /σ0.2) predictions from the stress
dependent model for C∗ values from 1 × 10−6 to 1 × 10−5 MPamh−1.

A comparison of the AR and PC data is shown for example at the load of 14.5 kN
in Fig. 7. The influence of plasticity alone on the CCG rate may be seen by comparing
AR2-PS-US and PC2-PS-US, where a marginally higher CCG rate for a given C∗ is
observed for the PC material which has lower σre f /σ0.2 values. Similar trends are
seen between AR2-PS-LS and PC2-PS-LS. Limited data is available from the stress
dependent model for AR material at this load. However it can be seen that, for a given
C∗, the CCG rate of the PC material is around 7 times faster than the AR, which is
consistent with the experimental observations. This factor between the CCG rate of
AR and PC materials may be reduced for plane strain conditions. However there are
insufficient data available at present to deduce such trends.

5 Conclusions

Finite element models have been developed to predict the CCG rate of AR and
PC materials, using a novel stress dependent creep strain rate and ductility model.
Good agreement has been found between the CCG rate versus C∗ predictions and
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experimental data. The new stress dependent model has enabled the transition from
high CCG rates to lower CCG rates at low and high C∗ values, respectively, to be
predicted as seen in the experimental data. By comparing the results of the stress
dependent and a constant creep ductility model’s predictions, the influence of both
crack tip plasticity and creep ductility on the CCG rate has been determined. The
accelerated CCG rate in PC compared to AR material observed experimentally has
been successfully predicted by the FE model. This model is a valuable tool to predict
the CCG rate of AR and PC materials at a range of loads and temperatures.
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On the Non Saturation of Cyclic
Plasticity Law: A Power Law
for Kinematic Hardening

Rodrigue Desmorat

Abstract To compensate the drawback of most kinematic hardening rules that
exhibit hardening saturation, a solution is proposed by replacing the accumulated
plastic strain rate in the springback term by a rate related to the kinematic hardening
variable itself. The proposed approach defines a power-law counterpart to the linear
(Prager) and exponential (Armstrong-Frederick) laws.

1 Introduction

Most modern nonlinear kinematic hardening rules in metals plasticity have the
generic form

Ẋ = 2

3
Cε̇εε p − BBB(X, p,σσσ )Ṗ(X,σσσ , ε̇εε p) (1)

with X the kinematic hardening, p the accumulated plastic strain, σσσ the stress, ε̇εε p

the plastic strain rate, C a material parameter, and where the springback term BBBṖ
is sometimes replaced by a sum

∑
BBBkṖk . The scalar function Ṗ (as Ṗk) is a

homogeneous function of degree 1 in ε̇εε p, such as Ṗ(X,σσσ , λε̇εε p) = λṖ(X,σσσ , ε̇εε p)

∀λ ≥ 0. The tensorial function BBB has usually the sign of X and ‖BBB‖ increases when
the loading increases (in norm). This last feature gives back the concave shape of
stress-strain curves for metals.

For instance, this is the form of Armstrong-Frederick rule [1],

Ẋ = 2

3
Cε̇εε p − γX ṗ (2)
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with γ a material parameter, but also of Burlet-Cailletaud rule [2], of Chaboche rule
[3] and of Ohno-Wang rule [9]. The normal n = ∂ f

∂σσσ
of the yield surface f = 0 is

used in some models,1 it is a function of the stress σσσ and of the kinematic hardening
X, the plastic strain rate reading then ε̇εε p = ṗ n(σσσ ,X).

In uniaxial monotonic tension the generic law (1) simplifies in Ẋ = (C − B)ε̇p,
with B a positive increasing nonlinear function, rate independent. One observes then
that a saturation Ẋ = 0, X = X∞ = Const, is reached for all rules ensuring B → C
at high loading.

Different possibilities to avoid such a saturation of the kinematic hardening exist:
make γ = γ (p) a decreasing (to zero) function of the accumulated plastic strain as
in [8], make C dependent of the plastic strain amplitude, through an index function
written in the strain space, as in [6]. None recover the power law shape at high plastic
strains. Simple ways to naturally gain the non saturation of the kinematic hardening
have been proposed in [5]. They allows to define for kinematic hardening a power
law counterpart to the usual exponential law.

2 A First Family of Non Saturating Kinematic
Hardening Rules

Kinematic hardening X is a thermodynamics force associated with a tensorial internal
state variable denotedααα, homogeneous to a strain. It is often derived from a quadratic
thermodynamics potential as [7]

X = 2

3
C(T )ααα (3)

where C is the hardening parameter previously introduced, temperature dependent.
Initially isotropic and plastically incompressible materials are considered next, with
then the expression p = ∫

( 2
3 ε̇εε

p : ε̇εε p)1/2dt for the accumulated plastic strain and
with εεε p = εεε p ′ the deviatoric plastic strain rate. In Prager law of linear hardening
the internal variable ααα is equal to εεε p. In case of (anisothermal) Armstrong-Frederick
rule it is given by the evolution law α̇αα = ε̇εε p − γααα ṗ. It is almost equal to the plastic
strain either when γ is small or when the plastic strain remains limited.

Among others, a rule avoiding kinematic hardening saturation is the following,
valid for anisothermal cases (see Sect. 4 for thermodynamics considerations),

α̇αα = ε̇εε p − 3Γ

2
X ȧ ȧ =

√
2

3
α̇αα : α̇αα (4)

1 Often f = (σσσ − X)eq − R − σy in von Mises plasticity, with R the isotropic hardening and σy
the yield stress.
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in which the back stress is now governed by von Mises norm ȧ of the rate α̇αα and with
Γ as material parameter.

In case of isothermal loading, C is constant, and Eq. (4) can be rewritten as

Ẋ = 2

3
Cε̇εε p − ΓX ẋ ẋ =

√
3

2
Ẋ : Ẋ (5)

and leads to a non vanishing rate Ẋ solution of the separate variables differential
equation Ẋ + ΓX ẋ = 2

3 Cε̇εε p.
In order to recover a power-law like reponse in monotonic loading, Eq. (4) can

be generalized as

α̇αα = ε̇εε p − 3Γ

2
X M−2

eq X ȧ Xeq =
√

3

2
X : X (6)

or (isothermal case):

Ẋ = 2

3
Cε̇εε p − Γ X M−2

eq X ẋ (7)

with M ≥ 2 an additional parameter (already introduced in [3] in another context).
In uniaxial tension-compression (along 1), εεε p = diag[εp,− 1

2εp,− 1
2εp], X =

diag[ 2
3 X,− 1

3 X,− 1
3 X ] so that Xeq = |X |, ẋ = |Ẋ |. Such a first proposal reduces

to the scalar expression

Ẋ + Γ |X |M−2 X |Ẋ | = C ε̇p (1D) (8)

• In case of monotonic tension, X and Ẋ are positive and Eq. (8) reduces to(
1 + Γ X M−1

)
Ẋ = C ε̇p therefore to the kinematic hardening solution of

X + 1

M
Γ X M = Cεp (9)

At large plastic strains X is unbounded and behaves in ε1/M
p

X ≈ K ε1/M
p K =

(
MC

Γ

)1/M

(10)

• In case of symmetric cyclic loading, X ranges between X Max and Xmin = −X Max ,
the same calculation with now Ẋ > 0 in tension and Ẋ < 0 in compression ends
up to cycle stabilization and to the maximum kinematic hardening solution of

X Max + 1

M
Γ X M

Max = C
Δεp

2
(11)
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and then to a cyclic hardening law2 Δσ
2 = k + X Max linear in plastic strain

amplitude at small Δεp and asymptotically a power function at large Δεp with
then

X Max ≈ K

(
Δεp

2

)1/M

(12)

Again it is unbounded and no saturation is reached.

The tensile responses obtained for different sets of parameters are given in Fig. 1.
Young’s modulus is taken as E = 200000 MPa and k = 400 MPa is set. For the
comparison with Prager and Armstrong-Frederick rules (Fig. 1a), the same constant
C = 20000 MPa is used for all models and the chosen value for Γ (M = 2) is
2.5 × 10−3 MPa−1 and corresponds to the same first dσ

dε and second d2σ
dε2 derivatives

at yielding onset than with Armstrong-Frederick rule (for which C = 20000 MPa
still and γ = 50). Parameters Γ for other M are chosen such as all the curves meet
at point (ε = 0.02, σ = 655 MPa).

Figure 1b shows a feature specific to the present law: the possibility with large
modulus C (106 MPa in the example) to model very steep stress increase at low
plastic strain. In the figure all stress-strain curves are plotted with the same value for
modulus K , i.e. for the same power law limit at large plastic strains.

In cyclic loading a (classical) modelling flaw is encountered if the value of the

kinematic hardening obtained in tension reaches the critical value X Max = Γ
1

1−M .

For X Max = Γ
1

1−M , the slope dX
dεp

becomes negative (!) right after load reversal. Such
a flaw has been pointed out and solved in [9] simply by making linear the kinematic
hardening after load reversal. The law proposed next uses this remedy.

3 Proposal of a Non Saturating Kinematic
Hardening Rule

In order to avoid kinematic hardening saturation, one proposes instead of Eq. (6) the
following law, this time with no flaw at large plastic strain amplitudes,

{
X = 2

3 Cααα

α̇αα = ε̇εε p − 3Γ
2C X M−2

eq X 〈Ẋeq〉 or (isothermal) Ẋ = 2

3
Cε̇εε p − Γ X M−2

eq X 〈Ẋeq〉
(13)

where 〈.〉 stands for positive part, i.e. 〈Ẋeq〉 = Ẋeq = d
dt (

3
2 X : X)1/2 when positive,

〈Ẋeq〉 = 0 else. The tensile response is unchanged compared to previous law. But a
linear kinematic hardening is now obtained in the cycle parts at decreasing (in norm)

2 The constant k = σy + R∞ is the sum of the yield stress and of the (assumed) saturated isotropic
hardening R∞.
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Fig. 1 Tensile stress-strain response from proposed non saturating kinematic hardening rule: (a)
compared to linear Prager law and Armstrong-Frederick saturating law (C = 20000 MPa, γ = 50)
at given C for different exponents M , (b) at given K = (MC/Γ )1/M and M for different values of
parameter C (K = 347 MPa, M = 5)

kinematic hardening, i.e. at re-yielding just after load reversal (note that this feature
is encountered in Ohno-Wang model). Both the monotonic and cyclic features of
the new kinematic hardening rule (13) are illustrated in Fig. 1 (again with constant
isotropic hardening), still with E = 200000 MPa and k = 400 MPa.

Cycle stabilization is obtained in case of symmetric (immediate, Fig. 2) and of
non symmetric periodic applied strains (cyclic softening up to stabilization, see [5]).
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Fig. 2 Cyclic response obtained for increasing stress amplitudes (with k = 400 MPa, C = 5 ×
105 MPa, M = 5, Γ = 5 × 10−7 MPa1−M ): Δε = 0.05, 0.1, 0.15, 0.2, 0.25

Figure 2 illustrates the main model feature for large values of C : the possibility
to represent very steep stress increase at the onset of plasticity (with no visible
elasticity/plasticity slope discontinuity), also then in case of cyclic loading. The
stress-amplitude is increased after each two cycles (starting from Δε = 5 × 10−2).
Such a smooth shape of cyclic strain-stress curves, very steep just out from elasticity
domain and decreasing rapidly when yielding (but with no saturation), cannot be
represented by means of a single Armstrong-Frederick law. As the value for C is
large, the linear part after load reversal is barely noticeable. The monotonic tensile
model response is reported in the figures.

The monotonic stress strain response is still given by Eq. (11) so that

{
σ = σy + R(εp(X))+ X

εp = 1
C

(
X + 1

MΓ X M
) (14)

or at constant isotropic hardening and setting still k = σy + R∞, K = (MC/Γ )1/M ,

εp =
〈
σ − k

C

〉
+

〈
σ − k

K

〉M

(15)
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Fig. 3 Modelling of cyclic behavior of 316L by proposed non saturating kinematic hardening rule
with constant isotropic hardening (left: exp. from [4], right: model, Eq. (13))

The cyclic plasticity response (at saturated hardening) is given by

{
Δσ
2 = k + X Max

Δεp
2 = 1

C

(
X Max + Γ

2M X M
Max

) (16)

or
Δεp

2
=

〈
Δσ
2 − k

C

〉
+ 1

2

〈
Δσ
2 − k

K

〉M

(17)

An illustration of the ability the proposed kinematic rule to model cyclic plasticity
is given for a material usually quite complex to model (the 316L stainless steel) in
Figs. 3 (hysteresis loops) and 4 (cyclic plasticity law, Eq. 17). Note that no modelling
at all of the isotropic hardening is introduced (k = const) (Fig. 5).

Other examples of identifications are given in Fig. 6 for different materials. The
corresponding material parameters are (setting Kc = ( 2MC

Γ

)n = 2n K with n =
1/M :

The ratcheting behavior with the new rule is found at given C intermediate
between linear Prager Modelling (no ratcheting at all) and Armstrong-Frederick
modelling (which usually overestimates ratcheting). The ratchet step—i.e. the plas-
tic strain increment over an hysteresis loop—for a stress varying cyclically between
σmin > −k and σMax > k (with σMax − σmin > 2k) is gained in a closed form as

δεp = (σMax − k)M − (σmin + k)M

K M
(18)
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Fig. 4 Cyclic plasticity law of 316L by proposed non saturating kinematic hardening rule with
constant isotropic hardening (left: exp. from [4], right: model, Eq. (13))

Fig. 5 Cyclic plasticity curves (experiments from Lemaitre and Chaboche, 1985, model from
Eq. (17))

It is found constant—at saturated isotropic hardening—and related to the value of
exponent M and modulus K governing the non saturation of the kinematic hardening
(and to the size of elasticity domain through k). Note that ratcheting is often modeled
by the introduction of several kinematic hardening variables Xi , setting X = ∑

Xi

and taking for k a relatively small value. According to the corresponding differ-
ent plasticity mechanisms at the microscopic scale, it seems judicious to consider
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(a) (b)

Fig. 6 Comparison of identifications for 35NCD16 steel (stresses in MPa)

Table 1 Material parameters

Material k (MPa) C (MPa) Γ (MPa1−M ) M K (MPa) Kc (MPa)

35NCD16 990 260000 4 × 10−8 4 2258 2685
Cobalt 75 150000 2 × 10−7 4 1316 1565

NIMONIC 410 1400000 5.5 × 10−15 7 1086 1199
Steel 200 400000 7.5 × 10−9 5 768 882
TA6V 250 600000 1.3 × 10−10 5 1873 2152
316L 10 200000 2.5 × 10−7 4 1337 1591

different laws, i.e. laws of different nature, of different mathematical expression for
each Xi , including rules of Armstrong-Frederick type, including rule (13) (Table 1).

Let us end this section by a remark indirectly related to the implementation in
a finite element code: the form given by Eq. (13) is implicit since the rate of ααα

(therefore of X) depends on the rate of Xeq . Recalling the definition of von Mises
norm gives 〈Ẋeq〉 = 3

2 〈X : Ẋ〉/Xeq . Altogether with Eq. (13), this allows to show
that X : Ẋ is of same sign than X : ε̇εε p, at least in the isothermal case. After some
algebraic work, the following alternative (nevertheless fully equivalent) expression
for Ẋ to isothermal law (13) is derived,

Ẋ = 2

3
Cε̇εε p − CΓ X M−3

eq

1 + Γ X M−1
eq

〈
X : ε̇εε p〉 X (19)

more classical to implement.
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4 Positivity of the Intrinsic Dissipation

A full plasticity model using the proposed kinematic hardening laws is a non standard
model, the new springback terms not deriving from an evolution potential. One must
then prove the positivity of the intrinsic dissipation D = σσσ : ε̇εε p − R ṗ − X : α̇αα [7].
Isotropic hardening is introduced as the couple of variables (R, p). The criterion
function is the classical f = (σσσ −X)eq − R −σy such as f < 0 → elasticity. Also

classically, the plastic strain rate is derived by normality: ε̇εε p = ṗ 3
2

σσσ ′−X
(σσσ−X)eq

. Plasticity

is incompressible (tr ε̇εε p = 0) and kinematic hardening is deviatoric (X = X′), as
announced.

After some algebraic work, the dissipation takes the form

Law (4): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2
X : X ȧ = σy ṗ + Γ X2

eq ȧ ≥ 0

Law (6): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2
X M−2

eq X : X ȧ = σy ṗ + Γ X M
eq ȧ ≥ 0

Law (13): D = [
(σσσ − X)eq − R

]
ṗ + 3Γ

2C
X M−2

eq X : X 〈Ẋeq〉

= σy ṗ + Γ

C
X M

eq 〈Ẋeq〉 ≥ 0 (20)

and is therefore positive for any loading, proportional or not, isothermal or not ( ṗ, ȧ
and 〈Ẋeq〉 are positive by definition).

5 Conclusion

Families of non saturating kinematic hardening laws have been proposed. In order to
gain non saturation of the kinematic hardening, the springback term BBBṖ in Eq. (1)
is not assumed linear in ṗ anymore but in ȧ = ( 2

3α̇αα : α̇αα)1/2 or, better, in the positive
part 〈Ẋeq〉, with Xeq the von Mises norm of kinematic hardening X. By use of
this replacement, any existing rule Ẋ = 2

3 Cε̇εε p − BBB ṗ can then easily gain the non
saturation property by changing it into Ẋ = 2

3 Cε̇εε p − BBB 〈Ẋeq〉. As examples:

• Burlet-Cailletaud rule [2] made non saturating,

Ẋ = 2

3
C ε̇ p − Γ X M−2

eq (X : n) n 〈Ẋeq〉 normal n = ∂ f

∂σ
such as ε̇ p = n ṗ

(21)
• Ohno-Wang rule [9] made non saturating

Ẋ = 2

3
C ε̇ p − Γ X M−2

eq 〈k : n〉 X 〈Ẋeq〉 k = X
Xeq

(22)
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• Chaboche kinematic hardening rule [3], with threshold Xth , made non saturating

Ẋ = 2

3
C ε̇ p − Γ 〈Xeq − Xth〉M−1k 〈Ẋeq〉 (23)

Proposed rule (13) is the power-law counterpart for kinematic hardening, fully
complementary to Armstrong-Frederick saturating rule. Its properties have been
illustrated on qualitative examples.

General plasticity modelling, including ratcheting, often introduces several kine-
matic hardening variables Xi . Considering rules of different nature for each Xi can
help to extend the validity domain of the plasticity models, setting for example
X = XPrager +XAF +XNSat +· · · , with XPrager = 2

3 C
ε p linear, with XAF following
Armstrong-Frederick rule (2), and with XNSat following the non saturating rule (13)
or any of the extension (21)–(23).

References

1. Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger
effect, CEGB report RD/B/N731. Berkeley Nuclear Laboratories, Berkeley, UK (1966)

2. Burlet, H., Cailletaud, G.: Modelling of cyclic plasticity in finite element codes. In: Desai,
C.S., Krempl, E., Kiousis, P.D., et al. (eds.) International Conference on Constitutive Laws for
Engineering Materials: Theory and Applications, pp. 1157–1164. Tucson, Arizona (1987)

3. Chaboche, J.L.: On some modifications of kinematic hardening to improve the description of
ratcheting effects. Int. J. Plast. 7, 661–678 (1991)

4. Chaboche, J.L., Dang Van, K., Cordier, G.: Modelization of the strain memory effect on the
cyclic hardening of 316 stainless steel. SMIRT-5, Division L Berlin (1979)

5. Desmorat, R.: Non-saturating nonlinear kinematic hardening laws. C.R. Mec. 338, 146–151
(2010)

6. Delobelle, P., Robinet, P., Bocher, L.: Experimental study and phenomenological modelization
of ratchet under uniaxial and biaxial loading on an austenitic stainless steel. Int. J. Plast. 11,
295–330 (1995)

7. Lemaitre, J., Chaboche, J.-L., Benallal, A.: Desmorat. R, Mécanique des matériaux solides,
Dunod (2009)

8. Marquis, D.: Phénoménologie et thermodynamique: couplages entre thermoélasticité, plasticité,
vieillissement et endommagement. Thèse de Doctorat d’état, Université Paris 6 (1989)

9. Ohno, N., Wang, J.D.: Kinematic hardening rules with critical state of dynamic recovery. Int. J.
Plast. 9, 375–403 (1993)



Micromechanical Studies of Deformation,
Stress and Crack Nucleation in Polycrystal
Materials

F. P. E. Dunne and C. Sweeney

Abstract Crystal plasticity analyses of fatigue crack nucleation in an fcc nickel
alloy and bcc ferritic steel have been carried out. Three and four-point bend tests
respectively carried out on the nickel alloy and steel samples are analysed using a
direct representation of the observed microstructures and crystallographic orienta-
tions obtained by EBSD. In so doing, direct comparisons of predicted stress, accu-
mulated plastic strain and the independent slip system accumulated slips have been
assessed in relation to the location of fatigue crack nucleation. Regions of accumu-
lated plastic strain are found to be precursors to the experimentally observed sites
of crack nucleation and propagation in the fcc nickel polycrystal, but for nucleation
only in the bcc ferritic steel. For the latter, a decomposition of the accumulated plas-
tic strain in to the major contributors from the independent slip systems show close
coincidence of the crack nucleation site with both {110} and {112} slip and that it is
not the case that a single slip system type dominates.

1 Introduction

It is becoming increasingly desirable to calculate strain and stress response at progres-
sively smaller length scales. Major drivers for this are in, for example, development
of understanding of deformation and fatigue crack nucleation [1, 2]. Length scales
of order grain size are relevant to polycrystalline materials for which there is sig-
nificant interest in slip transfer, slip localization, grain boundary sliding, twinning,
fatigue crack nucleation, and micro-texture [3–11]. Also of great interest is the ability
to calculate accurately the evolving densities of dislocations, be they geometrically
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necessary (GND) or statistically stored (SSD), because of the potential roles played
in latent hardening, initiation of recrystallisation and nucleation of fatigue, for exam-
ple. There are now many modelling techniques available in crystal plasticity finite
element analysis [12] and for the determination of GND density and their inclu-
sion in modelling studies related to indentation size effects [13, 14], facet fatigue
[7–10] and micro-deformation [1, 15–17] for example, is widespread. However, what
is currently less clear is how well current modelling techniques, and in particular,
crystal plasticity finite element methods, properly and accurately capture indepen-
dent experimentally observed behaviour; that is, at the level of individual grains, the
strain and stress distributions, the lattice rotations and the densities of GNDs. Hence
the primary aim of this paper is to present a summary of length-scale–enhanced
crystal plasticity calculation and high resolution EBSD measurement in the context
particularly of fatigue crack nucleation.
Our approach in the present paper is to attempt to enable as close as possible a
tie-up between the experimental model and that used in gradient-enhanced CPFE
analyses. We choose an fcc nickel polycrystal and a bcc ferritic steel and in the
latter, investigate fatigue crack nucleation in notched, four-point bend test samples in
which the grain size is not dissimilar to the notch radius. In this way, crack nucleation
can be related directly to microstructural features local to the notch including grain
boundaries, triple points, crystallographic orientation, and the elastic anisotropy.
Firstly, we briefly summarize the gradient-enhanced crystal model employed here
and go on to address fatigue crack nucleation, and FIPs, in a polycrystal fcc nickel
alloy and then in the ferritic steel polycrystal notched samples addressing particularly
the role of elastic anisotropy.

2 Crystal Plasticity Model

Crystal plasticity kinematics rely on the deformation gradient F, which is usually
multiplicatively decomposed into elastic and plastic parts and where

Ḟ
p = L p F p and L p =

n∑
i=1

γ̇ i si ⊗ ni (1)

where the plastic part of the velocity gradient L p incorporates the crystallographic
slip from the active slip systems i, with normal vector ni and slip direction vector si ,
and γ̇ i is computed according to a slip rule. The slip rule used here was developed
by Dunne et al. [18], and is used in the following form:

γ̇ i = ρm
S bi2

ν exp

(
−�F

kT

)
sinh

(
(τ i − τ i

c )γ0�V i

kT

)
(2)

with �V i = lbi2
where l = 1√

ψ(ρs
S+ρG)
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where ρm
S and ρs

S are the mobile and sessile SSD densities respectively, ρG is the
overall GND density, n the frequency of attempts (successful or otherwise) by dislo-
cations to jump the energy barrier, bi the Burger’s vector magnitude for slip system i,
DF the Helmholtz free energy, k the Boltzman constant, T the temperature in Kelvin
(K), t i the resolved shear stress, τ i

c the critical resolved shear stress (a slip system
is considered active when τ i ≥ τ i

c ), g0 the shear strain that is work conjugate to the
resolved shear stress, DV the activation volume, l the pinning distance, and y is a
coefficient that indicates that not all sessile dislocations (SSDs or GNDs) necessarily
act as pinning points. The subsequent implicit integration of constitutive equations
and the determination of the consistent elastic—plastic tangent stiffness are also
detailed in [18].

2.1 GND Development

The determination of the GND density has been discussed by many authors and here
we equate the closure failure (Nye, 1953) written in terms of density of GNDs and
the cumulative Burger’s vector given with respect to the deformed configuration to
give ∑

i

(
bi ⊗ ρi

G

)
=

(
curlFe−1

)T
(3)

in which Fe is the elastic deformation gradient, the summation is over all active slip
systems.
In crystals with high degrees of symmetry, the geometric constraints on dislocation
density, imposed by the plastic slip gradient field, can be satisfied with many different
dislocation configurations. This is the well-acknowledged non-uniqueness problem.
In crystals of such symmetry the number of distinct dislocation types may exceed
the nine independent components of the Nye tensor, hence a unique solution for
the dislocation density may not be possible. Therefore, the GND density may be
obtained only by solving Eq. (3) with an imposed constraint such as minimization
of stored energy or dislocation line length, for example. In the next section, we
firstly summarize an investigation of the FIP accumulated plastic strain in a nickel
polycrystal and go on to address fatigue crack nucleation in ferritic polycrystal steel
notched, four-point bend samples.

3 Microstructure-Sensitive Fatigue Crack
Nucleation in fcc Nickel

Polycrystal samples were developed containing out-of-plane columnar grain struc-
ture, hence generating a repeatable model ‘two-dimensional’ material. An example
sample free surface is shown in Fig. 1a in which EBSD has been employed to identify
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(a) (b)

Fig. 1 a Microstructure and fatigue crack nucleation and growth in the fcc nickel polycrystal
sample subjected to three-point cyclic loading together with b the corresponding crystal plasticity
model predictions showing accumulated plastic strain after one complete loading cycle

grains and their boundaries together with the crystallographic orientations (which
here are approximately uniform through the depth of the sample. Three-point bend
tests were carried out on the samples using cylindrical supports generating fully-
reversed downward displacement leading to the preferential nucleation of fatigue
cracks in gauge region of the test samples, shown in Fig. 1a. The figure also shows
the experimentally observed fatigue crack nucleation and growth in the gauge region.
A crystal plasticity finite element model of the test sample was also developed and
subjected, in principle, to loading conditions identical to those in the experiments,
and the resulting distribution of accumulated plastic slip after one cycle of cyclic
plasticity is shown in Fig. 1b. Bands of intense slip are predicted to develop, ema-
nating from the sample free surface at locations within a grain and at the boundary
between two grains. Grain boundaries appear to be important in the development of
the highest levels of plastic slip.
Comparison of the slip band locations with the experimentally observed sites of
crack nucleation on the (plane stress) free surfaces shows that the cracks which are
seen to nucleate and grow have done so within the predicted bands of persistent
slip. The directions of the propagating cracks also match those of the predicted
slip. However, no crack nucleation was observed experimentally in the right-most
predicted slip band, and this clearly raises the appropriateness or otherwise of the
accumulated plastic strain as a FIP. We investigate this further by consideration of
crack nucleation in a bcc ferritic steel.

3.1 Elastic Anisotropy in Crack Nucleation in Polycrystal
Ferritic Steel

Figure 2 shows a schematic for the four-point bend test set up and identifies the region
of the sample containing a notch which has been fully characterised using EBSD in
order to identify grain boundaries and crystallographic orientations. The inset figure
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Fig. 2 Schematic diagram showing the notched, four-point bend test sample together with a rep-
resentation of the fully characterised region (inset)

shows the corresponding crystal plasticity model setup in which each grain identified
in the test sample is explicitly represented in the model.
Material properties (critical resolved shear stress and hardening coefficients) were
determined from simple shear tests carried out on polycrystal samples in the same
material. The regions of the material removed from the notch area, shown simply as a
finite element mesh in the inset figure, are simply assumed to deform elastically given
that the loading applied was specified to be representative for high cycle fatigue such
that localised plasticity only occurs in the region close to the notch, and even then
at highly localised locations (see later). Figure 3 shows the sample microstructure
close to the notch and the location of observed fatigue crack nucleation (at about
300 k cycles) and growth (at about 1100 k cycles). Also shown are the axial (bend-
ing) stresses predicted by the corresponding crystal plasticity model together with
the accumulated plastic strain at first yield (according to the crystal model) and at
the peak load in the first cycle. The experimentally observed crack development is
superimposed on the crystal plasticity calculations showing close coincidence of the
nucleation site with both the highest axial (bending) stress and accumulated plastic
strain at first and subsequent yield. However, crack nucleation occurs at a free-surface
triple point and propagates transgranularly, and the propagation can be seen not to
coincide with the clear predicted directions of the slip bands which can be associated
with grain boundaries. Figure 4 shows the accumulated slip developing on (a number
of) the {110} and {112} slip systems showing the decomposition of the accumulated
plastic strain. Both slip system types can be seen to be contributing at the precise
site of the observed crack nucleation, but then diverge from the direction of crack
propagation.
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Crystal Plasticity
 Predictions

Fig. 3 Notched sample microstructure and fatigue crack nucleation (∼300 k cycles) and propa-
gation (at ∼1100 k cycles) together with the predicted axial (bending) stresses and accumulated
plastic strain at first yield and peak load in the first loading cycle. The experimentally observed
crack development is superimposed onto the crystal plasticity predictions showing close overlap
with the site of highest axial stress and accumulated plastic strain close to first yield

4 Conclusions

The results of bend tests on characterised fcc nickel and bcc ferritic steel samples
have been compared with detailed crystal plasticity finite element representations of
the sample geometries and microstructures. Regions of accumulated plastic strain are
found to be precursors to the experimentally observed sites of crack nucleation and
propagation in the fcc nickel polycrystal, but for nucleation only in the bcc ferritic
steel. For the latter, a decomposition of the accumulated plastic strain in to the major
contributors from the independent slip systems show close coincidence of the crack
nucleation site with both {110} and {112} slip and that it is not the case that a single
slip system type dominates.
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Fig. 4 Predicted accumulated slip on the {110} and {112} slip systems and comparison with the
accumulated plastic strain at first yield and peak load in the first cycle
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Modelling of Coupled Dissipative
Phenomena in Engineering Materials

Halina Egner and Władysław Egner

Abstract In the present paper a general phenomenological model, based on the
irreversible thermodynamics, is formulated and used to describe the multi-dissipative
material. Two examples are presented: (1) Thermo-elastic-plastic-damage material
accounting for coupling between heating rate and two dissipative phenomena: plas-
ticity and damage; (2) 2M1C (2 mechanisms—1 yield criterion) model derived by
Cailletaud and Sai [3] and identified by Velay et al. [13] to describe the elasto-
viscoplastic behaviour of AISI L6 steel at different (but constant) temperatures, is
extended to account for the effect of temperature change.

1 Introduction

The increasing demands for high performance materials require the adequate consti-
tutive modelling, as well as the appropriate predictions of the overall failure mecha-
nisms under complex thermo-mechanical loading.

When engineering materials classified as elastic-plastic are subjected to external
loading, the material degradation connected with slip rearrangements of crystallo-
graphic planes through dislocation motion is observed at the macro-scale as plastic
behaviour (cf. [5]).

Another dissipative phenomenon is the development of micro-cracks and micro-
voids [1, 9]. The nucleation, growth and interaction of these micro-defects under
external loads result in a deterioration process on the macro-scale and, as a conse-
quence, change of the constitutive properties of the material.
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If the elastic-plastic-damage material is loaded so that not only inelastic strains
develop, but also the temperature is changed, then thermo-elasticity, thermo-plasticity
and thermo-damage are encountered. The experimental results [2] proved that not
only the temperature itself but also the heating rate makes a significant impact on
parameters that determine carrying capacity at elevated temperatures. In [5] the
discussion is made for the necessity of temperature rate terms in the context of
hardening rules.

2 General Model of Dissipative Materials Based
on Irreversible Thermodynamics

Continuum mechanics approach, applied in the present work, provides the con-
stitutive and damage evolution equations in the framework of thermodynamics of
irreversible processes. The material heterogeneity (on the micro- and meso-scale) is
smeared out over the representative volume element (RVE) of the piece-wise dis-
continuous material. The true distribution of micro-changes within the RVE, and
the correlation between them are measured by the change of the effective constitu-
tive properties. The micro-structural rearrangements are defined by the set of state
variables of scalar, vectorial or tensorial nature.

2.1 Basic Assumptions

In the case of infinitesimal deformation the total strain ε can be expressed as the sum
of the elastic, (εE ), inelastic (εI ), and thermal strain (εθ ).

The irreversible rearrangements of the internal structure can be represented by
a group of state variables describing the current state of material microstructure:
{�k}, k = p, d, ph, . . . (p meaning plastic, d—damage, ph—phase change etc),
where �k may be scalars, vectors or even rank tensors. For example, for damage
description, in the case where the damaged material remains isotropic, the current
state of damage is often represented by the scalar variable �d denoting the volume
fraction of cracks and voids in the total volume, while damage acquired orthotropy
requires a second order tensor, for example the classical Murakami-Ohno [11]
tensor �d .

Another group of state variables consists of internal (hidden) variables correspond-

ing to the modifications of loading surfaces:
{
hk

} =
{

rk, αk
i j , l

k
i j pq , gk

i jpqmn

}
, k =

p, d, ph, . . . where rk is related to isotropic expansion of the loading surface, αk
i j

affects translatoric displacements of the loading surface, lk
i j pq is a hardening ten-

sor which includes varying lengths of axes and rotation of the loading surface,
and gk

i jpqmn describes changes of the curvature of the loading surface (distortion)
related to k-th dissipative phenomenon (cf. [8]). The complete set of state variables
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{Vst } reflecting the current state of the thermodynamic system consists of observable
variables: elastic strain tensor εE

i j and absolute temperature θ , and two groups of

microstructural {�k} and hardening {hk} state variables:

{Vst } = {εE
i j , θ;�k; hk}, k = p, d, ph, . . . (1)

2.2 Equations of the Model

By the use of state variables (1) the Helmholtz’ free energy of the material can be
written as a sum of elastic (e), plastic (p), damage (d), phase change (ph) etc. terms
(cf. [1, 10]):

ρψ = ρψ(Vst ) =
n∑

j=1

ρψ j , j = e, p, d, ph, . . . (2)

The following state equations express the thermodynamic forces conjugated to state
variables (1):

σi j = ∂(ρψ)

∂εE
i j

, s = −∂ψ
∂θ
, −Y k = ∂(ρψ)

∂�k
, Hk = ∂(ρψ)

∂hk
(3)

In the above equations ρ is mass density, s is specific entropy, Y k stand for thermo-
dynamic forces conjugated to microstructural state variables �k , whereas Hk are
hardening forces conjugated to hidden state variables hk .

To derive the kinetic equations the existence of several dissipation potentials Fk

is assumed, corresponding to each k-th microstructural rearrangement (due to plastic
flow F p , damage growth Fd , phase change F ph etc.) and defined independently
but partly coupled (weak dissipation coupling, [4]).

The kinetic equations for state variables are obtained by the use of the generalized
normality rule [4, 6]:

ε̇ I
i j =

n∑
k=1

λ̇k ∂Fk

∂σi j
= λ̇p ∂F p

∂σi j︸ ︷︷ ︸
ε̇

p
i j

+ λ̇d ∂Fd

∂σi j︸ ︷︷ ︸
ε̇ I d

i j

+ λ̇ph ∂F ph

∂σi j︸ ︷︷ ︸
ε̇

ph
i j

+ . . . (4)

�̇k =
n∑

i=1

λ̇i ∂Fi

∂Y k
= λ̇p ∂F p

∂Y k︸ ︷︷ ︸
�̇pk

+ λ̇d ∂Fd

∂Y k︸ ︷︷ ︸
�̇dk

+ λ̇ph ∂F ph

∂Y k︸ ︷︷ ︸
�̇phk

+ . . . (5)
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−ḣk =
n∑

i=1

λ̇i ∂Fi

∂Hk
= −

⎛
⎜⎜⎝λ̇p ∂F p

∂Hk︸ ︷︷ ︸
ḣ pk

+ λ̇d ∂Fd

∂Hk︸ ︷︷ ︸
ḣdk

+ λ̇ph ∂F ph

∂Hk︸ ︷︷ ︸
ḣ phk

+ . . .

⎞
⎟⎟⎠ (6)

where λ̇i are non-negative consistency multipliers and n is a number of dissipa-
tive phenomena, like plastic flow, damage growth, phase change etc., taking place
in the material. For rate-independent problems the consistency multipliers may be
calculated from the consistency conditions ḟ k = 0, k = 1, 2, . . . , n.

The parameters λ̇i are assumed to obey the classical Kuhn-Tucker loading/
unloading conditions.

3 Modelling of Coupling Between Dissipative Phenomena
in Engineering Materials

3.1 Coupling Between Thermo-Plasticity
and Thermo-Damage

In view of the experimental observations it seems justified to extend the common
formulations for coupled thermo-elastic-plastic-damage behaviour, accounting not
only for damage effect on the elastic modules but also on plastic and thermal char-
acteristics. Additionally, the effect of both temperature and damage rates has to be
included (cf. [7]).

The following form of the state potential, which is here the Helmholtz free energy
(2), decomposed into thermo-elastic (ρψ te), thermo-plastic (ρψ tp) and thermo-
damage (ρψ td) terms, is assumed after [1]:

ρψ te = ρh(θ)+ 1

2
εE

i j Ei jkl(θ,D)εE
kl − βi j (θ,D)εE

i j (θ − θ0) (7)

βi j (θ,D) = Ei jkl(θ,D)αθkl(θ,D) (8)

ρψ tp = 1

3
C p(θ,D)α p

i jα
p
i j + R p∞(θ,D)

[
r p + e−bp(θ,D)r p

bp(θ,D)

]
(9)

ρψ td = 1

2
Cd(θ,D)αd

i jα
d
i j + Rd∞(θ,D)

[
rd + e−bd (θ,D)rd

bd(θ,D)

]
(10)

In Eqs. (7)–(10) h(θ) is the function of temperature, αθ (θ,D) is the thermal expan-
sion tensor; E(θ,D) is the elastic stiffness tensor; C p(θ,D), Cd(θ,D), R p∞(θ,D),
Rd∞(θ,D), bp(θ,D), bd(θ,D) are material parameters, which in general may be
temperature and damage (D) dependent. Symbols αk

i j and rk , k = p, d denote state
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variables related to kinematic and isotropic hardening, respectively. Symbol θ0 stands
for the reference temperature at which no thermal strains exists.

State equations can be written by the use of Eq. (3). Note that the damage driving
force Y d

i j in the presence of coupling between thermo-elasticity, thermo-plasticity

and thermo-damage in the state potential (2), consists of three terms: Y ed
i j (σ ; θ,D),

Y pd
i j (X

p, R p; θ,D), Y dd
i j (X

d , Rd ; θ,D)which stand for the elastic, plastic and dam-
age strain energy release rates, respectively, as the extension of commonly used
definitions of the elastic strain energy release rate only [6, 9]. Here Xk

i j and Rk stand

for thermodynamic forces conjugated to hardening variables αk
i j and rk .

The rates of state variables can be obtained by the use of the generalized normal-
ity rule, Eqs. (4)–(6) (cf. [6]). The evolution equations for thermodynamic conjugate
forces are derived taking the time rate of state Eq. (3), see Table 1. By taking into
account the temperature and damage dependence of material characteristics addi-
tional terms appear in rate equations of thermodynamic forces, which may play a
significant role when solving high temperature and/or damage rate problems, such
as fire conditions or thermal shock problems.

Since the thermodynamic conjugate forces are functions of temperature and dam-
age, the consistency relations for development of plasticity and damage may be
transformed to the following form:

ḟ p = ∂ f p

∂σi j
Ei jkl ε̇kl − λ̇ph11 − λ̇d h12 + S p θ̇ = 0 (11)

ḟ d = ∂ f d

∂σi j
Ei jkl ε̇kl − λ̇ph21 − λ̇d h22 + Sd θ̇ = 0 (12)

The quantities h11, h12, h21 and h22 are the generalized hardening moduli (cf. [12])
which are shown in details in [6]. The temperature sensitivity parameters S p and Sd

express how the yield and damage surfaces change with temperature.
To obtain the general loading/unloading criteria let us first observe that for f p < 0

and f d < 0 a thermo-elastic response occurs. Thermo-plasticity requires f p = 0
and λ̇p ≥ 0, while thermo-damage demands f d = 0 and λ̇d ≥ 0. Taking into
account (11)–(12) we have λ̇p = (Ap

i j Ei jkl ε̇kl + S̄ p θ̇ )/w and λ̇d = (Ad
i j Ei jkl ε̇kl +

S̄d θ̇ )/w, where w = h11h22 − h21h12 > 0, Ap
i j = h22∂ f p/∂σi j − h12∂ f d/∂σi j ,

Ad
i j = −h21∂ f p/∂σi j + h11∂ f d/∂σi j , S̄ p = h22S p − h12Sd and S̄d = h11Sd −

h21S p. Therefore, for coupled thermo-plasticity and thermo-damage we arrive at the
following loading/unloading criteria:

f k = 0 and

⎧⎪⎨
⎪⎩

Ak
i j Ei jmn ε̇mn + S̄k θ̇ > 0 ⇒ active loading

Ak
i j Ei jmn ε̇mn + S̄k θ̇ = 0 ⇒ neutral loading

Ak
i j Ei jmn ε̇mn + S̄k θ̇ < 0 ⇒ elastic unloading

, k = p, d (13)
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Fig. 1 Illustration of loading/unloading conditions for coupled thermo/plastic/damage process:
loading surface contracting with increasing temperature and damage

It should be noticed here that conditions (11)–(12), in the presence of the full thermo-
plasticity and thermo-damage coupling, are different from corresponding conditions
for uncoupled isothermal case (see Fig. 1). Namely, if we consider purely thermo-
elastic behaviour, where λ̇p = 0 and λ̇d = 0, we obtain the thermo-elastic stress rate
which results for a given total strain rate ε̇kl and a given temperature rate θ̇ provided
that the material responds thermo-elastically [12], see Table 1:

σ̇ te
i j = Ei jkl ε̇kl + [(∂Ei jkl/∂θ)ε

E
kl − (∂βi j/∂θ)(θ − θ0)+ βi j ]θ̇ (14)

Now if the considered loading surface contracts with increasing temperature and/or
damage, then even if (∂ f p/∂σi j )σ̇

te
i j < 0 active plastic loading may occur (see Fig. 1),

and even if (∂ f d/∂σi j )σ̇
te
i j < 0 active damage loading may take place.

In the case of thermo-elastic-plastic-damage material the general coupled heat
equation takes the following form:

ρcθε θ̇ = (ki j θ, j ),i + r + ρθ
∂2ψ
∂εi j ∂θ

(ε̇i j − ε̇ I
i j )+ ρ

∂ψ
∂εi j

ε̇ I
i j + (σi j − ρ

∂ψ
∂εi j

)ε̇i j +
−ρ

(
∂ψ
∂Di j

− θ
∂2ψ
∂θ∂Di j

)
Ḋi j − ρ

(
∂ψ
∂r p − θ

∂2ψ
∂θ∂r p

)
ṙ p − ρ

(
∂ψ

∂α
p
i j

− θ
∂2ψ

∂θ∂α
p
i j

)
α̇

p
i j

−ρ
(
∂ψ

∂rd − θ
∂2ψ

∂θ∂rd

)
ṙ d − ρ

(
∂ψ

∂αd
i j

− θ
∂2ψ

∂θ∂αd
i j

)
α̇d

i j

(15)

which is nonlinear and fully coupled to mechanical problem.

3.2 Extended 2M1C (2 Mechanisms—1 Yield Criterion)
Model

In this analysis the 2M1C model derived by Cailletaud and Sai [3] and identified by
Velay et al. [13] to describe the elasto-viscoplastic behaviour of AISI L6 steel at dif-
ferent (but constant) temperatures, is extended to account for the effect of temperature
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pq
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D

kl
ε

E pq
−
∂
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θ 0
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∂
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Ẋ
p ij

=
2 3

C
p
α̇

p ij
+

X
p ij

C
p

∂
C

p

∂
D

kl
Ḋ
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ṙd

+(
R

d ∞
−

R
d
)

bd
∂

bd

∂
D

ij
ln
(

R
d ∞

R
d ∞

−
R

d
)] Ḋ
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Table 2 State variables and thermodynamic forces for 2M1C model

State variable Conjugated force

εE
i j (elastic strain) σi j = Ei jkl (θ)ε

E
kl

θ (temperature) s

α
(1)
i j (kinematic hardening) X (1)i j = 2

3 (C11(θ)α
(1)
i j + C12(θ)α

(2)
i j )

α
(2)
i j (kinematic hardening) X (2)i j = 2

3 (C22(θ)α
(2)
i j + C12(θ)α

(1)
i j )

r (1) (isotropic hardening) R(1) = b1(θ)Q1(θ)r (1)

r (2) (isotropic hardening) R(2) = b2(θ)Q2(θ)r (2)

change (nonisothermal conditions). The set of state variables and corresponding ther-
modynamic conjugated forces is given in Table 2.
The model material parameters are contained in Table 3.
Total strain is partitioned into an elastic, inelastic and thermal components: εi j =
εE

i j + ε I
i j + εθi j while inelastic strain can be partitioned itself in two different strain

mechanisms: ε I
i j = A1(θ)ε

(1)
i j + A2(θ)ε

(2)
i j .

The equations of the 2M1C model for isothermal case are in details presented in
[13] and therefore will not be repeated here. However, in nonisothermal conditions
additional terms appear in the evolution equations for thermodynamic conjugate
forces, due to temperature-dependence of the material characteristics (k = 1, 2;
l = 1, 2; k �= l):

σ̇i j = (σ̇i j )θ̇=0 −
[
−∂Ei jpq

∂θ
(εpq − ε I

pq)+ ∂βi j

∂θ
(θ − θ0)+ βi j

]
θ̇ (16)

Ẋ (k)i j = (Ẋ (k)i j )θ̇=0 + 2

3

(
∂Ckk

∂θ
α
(k)
i j + ∂Ckl

∂θ
α
(l)
i j

)
θ̇ (17)

Ṙ(1) = (Ṙ(1))θ̇=0 +
(
∂b1

∂θ
Q1∞ + b1

∂Q1∞
∂θ

)
(1 − e−2μp∗

)r (1)θ̇ (18)

Ṙ(2) = (Ṙ(2))θ̇=0 +
(
∂b2

∂θ
Q2 + b2

∂Q2

∂θ

)
r (2)θ̇ (19)

Taking into account the above equations the heat balance law may be written in the
following form:

Table 3 2M1C Model coefficients

E(θ), R0(θ) Young modulus and yield stress
K (θ), n(θ) Viscous coefficients
C11(θ),C22(θ),C12 Parameters of kinematic part
A1(θ), A2(θ) Localisation coefficients of strain mechanisms
M1(θ),M2(θ),m1(θ),m2(θ) Static recovery terms
Q1∞(θ), Q2(θ), b1(θ), b2(θ) Parameters of isotropic part
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ρcθε θ̇ = −qi,i + r − θ Pi j (ε̇i j − ε̇ I
i j )+ σi j ε̇

I
i j −

(
R(1) − θ ∂R(1)

∂θ

)
ṙ (1)

−
(

X (1)i j − θ
∂X (1)i j
∂θ

)
α̇
(1)
i j +

−
(

R(2) − θ ∂R(2)
∂θ

)
ṙ (2) −

(
X (2)i j − θ

∂X (2)i j
∂θ

)
α̇
(2)
i j

(20)

4 Numerical Calculations

The generalized mid-point rule will be used in which the linear interpolation between
two points is performed. The fully implicit backward Euler scheme is chosen, which is
always stable and very accurate. Adopting the Newton-Raphson method, the iterative

solution procedure is defined as �S(k+1) = �S(k) − [
J(k)

]−1
R(k) where �S =

{�λ,�Vα}T is the vector containing the increments of unknowns, [J] = ∂R
∂�S is a

Jacobian matrix and R = {Rλ, RV }T is a residual vector, containing the components
RSi = �Si −�Ŝi , where�Si is a variable while�Ŝi denotes the function resulting
from the evolution rule for i-th variable Si . The condition R(ΔS) = 0 defines the
solution. If we expand this condition into a Taylor series, we obtain the following

solution for �S : �Sn+1 = �Sn −
[(

∂R
∂�S

)n]−1
Rn .

The iteration procedure is stopped when the norm of R is sufficiently small.

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0,010 -0,008 -0,006 -0,004 -0,002 0,000 0,002 0,004 0,006 0,008 0,010
εmech

σ [MPa]

Fig. 2 Numerical simulation of cyclic loading in temperature 500 ◦C
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Fig. 3 Effect of temperature rate terms on stress-strain curve

4.1 Numerical Results

The numerical results are shown in Figs. 2 and 3. Figure 2 presents the numerical sim-
ulation of cyclic loading of 55NiCrMoV7 tempered martensitic hot work tool steel,
performed in temperature 500 ◦C, which shows a satisfactory agreement with the
results given in [13]. In Fig. 3 the effect of temperature rate terms is visible. Namely,
in the absence of temperature rate terms the hysteresis loops shift unreasonably in
stress, see [5].
The results presented above need to be completed with further simulations to inves-
tigate the effect of temperature rate in more detail.

5 Conclusions

The presented paper concerns the modelling of coupling between dissipative
phenomena in engineering materials. A special attention is paid to complete and
consistent incorporation of temperature and damage softening into the kinetic equa-
tions, which results in additional, temperature and damage rate dependent terms,
most often neglected in the existing models. However, for high temperature and/or
damage rates these terms may play a significant role. It is indicated, that in the
case of plastic and/or damage softening the classical loading/unloading conditions
have to be extended with additional terms accounting for thermal-plastic-damage
coupling, otherwise the recognition of active/neutral/passive processes may be false.
The numerical simulations of the influence of temperature rate terms on the hysteresis
loops for extended 2M1C model performed so far show unreasonable shift in stress in
the absence of temperature rate terms. Further simulations will be done to investigate



Modelling of Coupled Dissipative Phenomena in Engineering Materials 151

the problem in more detail. However, the application of the presented considerations
to a general dissipative material requires better experimental recognition of the influ-
ence of different dissipative phenomena (like damage, phase transformations etc.)
on the material characteristics.
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Damage Deactivation of Engineering
Materials and Structures

Artur Ganczarski and Marcin Cegielski

Abstract When a material is subjected to a cyclic loading at high values of stress
or strain, damage develops together with cyclic plastic strain. This process is often
accompanied by damage deactivation characterized by actual state of microcracks,
which are generally active under tension and passive under compression. In clas-
sical formulation damage deactivation occurs instantly when loading changes sign
and consequently leads to non smooth path separating both load ranges. The real
materials, however, do not exhibit such bilinear paths. Therefore, the more realistic
model based on continuous damage deactivation is proposed, in which microcracks
close gradually. In the present paper several applications of continuous damage deac-
tivation in modelling of cycle fatigue of engineering materials such as: aluminum
alloy Al-2024 and ferritic steel 20MnMoNi55 are demonstrated and compared with
experimental results. Detail quantitative and qualitative analysis of obtained solutions
confirms necessity and correctness of proposed approach.

1 Introduction

In the case of cycle fatigue, when the stress level is larger than the yield stress,
damage develops together with the cyclic plastic strain, after the incubation period
that precedes the nucleation and growth of micro-defects is met. In the most fre-
quent approach to the cycle fatigue, in case when a loading is the periodic strain-
controlled of constant amplitude, the following assumptions are made: the material
becomes perfectly plastic during first cycle, the variation of damage is neglected for
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the integration over one cycle and the strain-damage relations are identical both for
tension and compression. These allow to simplify calculations of damage cumulation
per one cycle and give linear dependency of damage with number of cycles, finally
leading to the Manson-Coffin law of low cycle fatigue [18, 23].

On the other hand, the more refined approaches to cycle fatigue [2, 17], based on
the kinetic theory of damage evolution and the Gurson-Tvergaard-Needleman model
of damage incorporating isotropic hardening, respectively, are able to predict some
qualitative phenomena of damage accumulation, crack initiation and fracture only
approximately, since they do not account for the unilateral damage.

The phenomenon of the unilateral damage, also called the damage deactivation or
the crack closure/opening effect is typical for materials subjected to reverse tension-
compression cycles. In the simplest one-dimensional case, if the loading is reversed
from tension to compression, the cracks will completely close such that the mate-
rial behaves as uncracked, or in other words, its initial stiffness is recovered. The
mathematical description of unilateral damage is based on the decomposition of
the stress or strain into the positive and negative projections [14, 16, 19, 20]. In the
simplest case the damage modified stress or strain are used, based on the concept of
the Heaviside function, where the negative principal components are ruled out. This
means that the negative principal strain or stress components become completely
inactive in further damage process as long as the loading condition can again render
them active [19]. In a more general approach, both positive and weighted negative
eigenvalues of strain or stress tensors influence damage evolution [12, 21]. The pos-
itive parts of the strain or stress can also be expressed by the use of the fourth-order
positive projection operators written in terms of their eigenvectors [11, 14]. The
limitations of the consistent unilateral damage condition applied to the continuum
damage theories have been discussed in [4–6]. Authors showed that in the existing
theories developed in [13, 15, 22] either non-symmetries of the elastic stiffness or
non-realistic discontinuities of the stress-strain response may occur for general mul-
tiaxial non-proportional loading conditions. It is easy to show that if the unilateral
condition does affect both the diagonal and the off-diagonal terms of the stiffness or
compliance tensor, a stress discontinuity takes place when one of principal strains
changes sign and the other remain unchanged [24]. In the model proposed in [5]
only the diagonal components corresponding to negative normal strains are replaced
by the initial (undamaged) values. The consistent description of the unilateral effect
was recently developed in [9, 10]. Authors introduced a new fourth-rank damage
parameter built upon the eigenvectors of second-order damage tensor that controls
the crack closure effect with the continuity requirement of the stress-strain response
fulfilled.

2 Concept of Continuous Damage Deactivation

In case of uniaxial state of stress and scalar damage, micro-cracks remain open under
tension and almost entirely close under compression, hence the effective stress and
the appropriate effective modulus of elasticity are defined in [17] as follows
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Fig. 1 Concept of the contin-
uous damage deactivation

σ̃ =
{
σ/(1 − D)
σ/(1 − Dh)

Ẽ =
{

E (1 − D) if σ > 0
E (1 − Dh) if σ < 0

(1)

Above formulas contain the crack closure parameter h (0 ≤ h ≤ 1), that depends
on a material and loading, however, in practice it is considered to be constant h =
hc = 0.2. Application of this model for description of unloading path leads to linear
relation between the stress decrease and the strain decrease given by Ẽ+. Entering the
compression range the material switches to the path characterized by the modulus of
elasticity which is equal to Ẽ− (solid line in Fig. 1). The real materials do not exhibit
such bilinear unloading paths, therefore the concept of continuous crack closure that
allows to eliminate mentioned switch between Ẽ+ and Ẽ− is introduced. It consists
in the replacement of parameter h by a function h(σ ), being linear in the simplest
case, such that

h (σ ) = hc + (1 − hc) (σ − σe)/(σb − σe) (2)

According to above relation function h(σ ) is equal to 1 when σ = σb and hc when
σ = σe, see Fig. 1.

Three-dimensional generalization of the continuous damage deactivation requires
distinction between tension and compression. When the stress tensor is given by its
eigenvalues the following decomposition proposed in [17] is applied

σ = diag {σ1, σ2, σ3} = 〈σ 〉 − 〈−σ 〉 (3)

In case of isotropic damage and application of the principle of strain equivalence the
general form of effective stress proposed in [17] is as follows

σ̃ = ± 〈±σ 〉
1 − Dh

± ν

1 − 2ν

[Tr 〈±σ 〉 − 〈±Tr(σ )〉]1
(1 − Dh)

(4)

Terms associated to the factor ν/(1 − 2ν), introducing coupling, disappear if all
eigenvalues of stress are of the same sign and in such case simplified effective stresses
and the corresponding elastic modules take the form
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σ̃ =
{ 〈σ 〉/(1 − D)

−〈−σ 〉/(1 − Dh)
Ẽ =

{
E(1 − D) “tension”
E(1 − Dh) “compression”

(5)

Application of the concept of continuous crack closure needs additional hypothesis
that introduces the relation between the crack closure magnitude and a scalar function
of the stress tensor

h(σ ) = hc + (1 − hc)[χ(σ )− χ(σ e)]/[χ(σ b)− χ(σ e)] (6)

here the known Hayhurst function

χ (σ ) = βTr (σ )+ (1 − β) J2 (σ ) (7)

3 Examples

3.1 Low Cycle Fatigue of Aluminum Alloy Al-2024

The objective of this example is the modelling of damage deactivation concept in
the aluminum alloy Al-2024 in order to describe the phenomenon of non-symmetric
hysteresis loop evolution due to different damage growth under tension and com-
pression observed in experiment [1], see Fig. 2a. Detailed analysis of the subsequent
strain-stress loops, obtained in uniaxial tension-compression test at the constant
strain amplitudeΔε = ±1 %, confirms an elasto-plastic behavior of the material and
strong influence of the unilateral damage effect. During the initial cycles the material
exhibits plastic hardening leading to the stabilized cycle and, then asymmetric drop

(a) (b)

Fig. 2 Cycle fatigue for aluminum alloy Al-2024: a tension-compression test [1], b numerical
simulation with model of continuous damage deactivation [8]
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of both the stress amplitude and the modulus of elasticity reveals following damage
growth. This process is accompanied by a gradual decrease of the hysteresis area
and a change of shape of subsequent hysteresis loops, associated with a formation of
the characteristic inflection point on their lower branches. Description of plastic flow
including degradation of material properties by damage, able to model experiment
is based on the kinetic of damage evolution [17, 18]. In case of uniaxial stress state
the dissipation potential being a sum of the plastic and damage potentials is assumed
in simplified form

F = |̃σ − X | − R − σy + 0.75X2/X∞ + Y 2 H(p − pD)/2S(1 − Dh) (8)

where elastic strain energy density release rate is equal to Y = σ̃ 2/2E . Application of
the formalism of associated plasticity leads to the following evolution equations [8]

dσ/dε = E (1 − Dh) elastic range
dσ/d p = (1 − Dh)2

{[
X∞γ + b (R∞ − R)

]
sgn (̃σ − X)− γ X

}
plastic range

−σ̃ 3 H(p − pD)/2E S

dR/d p = b (R∞ − R) (1 − Dh)
dX/d p = γ

[
X∞sgn (dεp)− X

]
(1 − Dh)

dD/d p = σ 2 H
(

p − pD
)
/2E S (1 − Dh)2

(9)
The effect of continuous damage deactivation describe by Eq. (2) is limited by the
additional assumption that the stress referring to the beginning of damage deac-
tivation is equal to σb = 0. Magnitudes of all material constants defining model
are given in Table 1. Numerical integration of system of evolution equations (9) for
constant strain range Δε = ±1 % is done by use of the fourth-order Runge-Kutta
technique with the adaptive stepsize control. Model under consideration properly
maps unilateral nature of damage softening, in this sense that the dead center ordi-
nates of subsequent hysteresis loops coincide exactly with the appropriate points on
experimental curves, see Fig. 2b. Additionally, a gradually decreasing area of the sub-
sequent hysteresis loops and accompanying change of curvature at their unloading
branch, are well mapped.

Table 1 Material data for alloy Al-2024

E [GPa] σy [MPa] b R∞ [MPa] γ X∞ [MPa] S [MPa] pD

70 230 0.1 120 4.0 60 3500 0.248

3.2 Yield Surface Affected by Damage

Damage evolution equations presented in the previous example are derived on the
basis of kinetic law of damage evolution [17, 18]. Key point of this theory is the
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potential of dissipation taken as a sum of the plastic potential referring to theory
of associated plasticity and a damage dissipation potential. In the simplest case
of isotropic damage and absence of both kinematic and isotropic hardening, it is
assumed that the kinetic coupling acts only by the effective stress deviator and this
corresponds to the following yield function

f (σ , Dh) = 0 (10)

Simultaneously, it is postulated that the yield function f is a scalar continuous or
partly continuous (having at most finite set of corner points) and convex function.
Form of yield function is strictly associated with magnitude of damage deactivation
parameter h in Eq. (10) and consequently essentially differs in case of tension when
damage is active than in case of compression when damage remains inactive. In case
of the plane stress state and under assumption that damage is active if only one of
stress components is positive (σ1 > 0 or σ2 > 0) or in other words h = 1 if Tr 〈σ 〉
is positive, yield potential takes following form

σ 2
1 − σ1σ2 + σ 2

2 =
{
σ 2

y (1 − D)2 1st, 2nd, 4th quarter
σ 2

y 3rd quarter
(11)

and turns out to be non-smooth and non-convex (Fig. 3a). The above mentioned defect
of yield potential may be successfully removed by introducing continuous damage
deactivation, when micro-cracks do not close instantaneously but gradually Eq. (6).
Restricting considerations to the simplified case when χ(σ ) in Eq. (7) depends only
on positive value of the first invariant of stress tensor (β = 1 and Tr(σ ) = Tr 〈σ 〉).
Assuming further that micro-cracks are fully open under maximum tension σb =
2(1− D)σy/

√
3 and close completely under compression (hc = 0) the yield function

is given by formulas

σ 2
1 − σ1σ2 + σ 2

2 =

⎧⎪⎨
⎪⎩
σ 2

y (1 − D)2 arc C1C2

σ 2
y

(
1 − D

1−D

√
3

2
σ2/1
σy

)2
arcs C1 A2 or C2 B2

σ 2
y arc A2 B2

(12)

Now yield function is composed of two ellipses and two hyperbolas and its convex-
ity and smoothness are recovered (Fig. 3b). Subsequent stages of damage affected
yield function versus experimental investigations (isochronous creep curves) [19]
are shown in Fig. 3c, d.

3.3 Low Cycle Fatigue of Notch Specimen Made of Ferritic Steel

Success in modelling of low cycle fatigue of alloy Al-2024 as well as recovery of
both convexity and smoothness of yield function allow to consider more advanced
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(a) (b)

(c) (d)

Fig. 3 Yield function affected by damage: a non-smooth and non-convex case corresponding to
discontinuous damage deactivation (D = 0.6), b smooth and convex after application of continuous
damage deactivation (D = 0.6), c subsequent yield functions [7], d experimental investigations [19]

3D problem. Cyclic test with elongation controlled amplitudes Δl = ±0.1 mm of
notched specimens made of ferritic steel 20MnMoNi55 was done in [2]. Subsequent
elongation-cyclic load curves, exhibiting Bauschinger-like continuously softening
effect are shown in Fig. 4a. A crack initiates at the notch root and extends through
the specimen diameter. The test was stopped after 83 cycles to examine the damage
evolution.

Analogously to the previous example, inelastic deformation is described in frame-
work of kinetic law of damage evolution [17, 18] generalized for the case of finite
deformation. The dissipation potential is assumed in following form

F = J2(S̃′ − X′)− R − σy + 0.75X′ : X′/X∞ + FD(Y, D) (13)
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Fig. 4 Cyclic load versus elongation of specimen made of ferritic steel 20MnMoNi55: a test result
[2], b simulation with finite element model [3]

The elastic deformation is described by Hooke’s law in which the effective elastic
tensor Ẽ is given by Eq. (5). The associated flow rule defines plastic deformation

dep = 1.5(S̃′ − X′)dλ/[J2(S̃′ − X′)(1 − Dh)] (14)

whereas the cumulative plastic strain is equal

d p = √
2dep : dep/3 = dλ/(1 − Dh) (15)

Application of formalism of associated plasticity yields following evolution equa-
tions for isotropic and kinematic hardening

dR/dλ = b(R∞ − R) dX′/dλ = γ [2X∞dεp(1 − Dh)/3dλ− X′] (16)

both dependent on plastic multiplier which is to satisfy the consistency condition

∂F/∂S′ : dS′ + ∂F/∂X′ : dX′ + ∂F/∂R : dR = 0 (17)

The strain energy density release rate based on Eq. (13) is equal to

Y = 0.5E−1 : S̃ : S̃ (18)
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hence damage evolution equation takes the following form

dD/d p = E−1 : S : S H(p − pD)/[2S(1 − Dh)2] (19)

Described formalism referring to the total Lagrangian formulation is implemented
into finite element code for quadrilateral axisymmetric elements. Magnitudes of
material constants, identified by Brocks and Steglich [2], are demonstrated in Table 2.
The numerical simulation exhibits all quantitative phenomena of decreasing load due
to damage evolution with damage localization starting at the notch root, see Fig. 4b,
as in the experiment. Value of damage parameter D ≥ 0.87 indicates complete loss
of stress carrying capacity of the respective element and hence cracking. The number
of cycles to failure is equal to about one half when compare to experiment. Further
analysis associated with propagation of damage front inside the material is possible if
one of special techniques, referring to numerical solution of singular boundary value
problem, is applied. Application of classical methods based on Gaussian elimination
or LU decomposition is possible as long as system of equations or global stiffness
matrix remain nonsingular in mathematical or numerical sense. In other words, this
means that critical magnitude of damage D = 1.0 is attainable only with certain tol-
erance since appropriate effective stress Eq. (5) approaches infinity whereas effective
stiffness Eq. (5) tends to zero. In all such cases, when global stiffness matrix becomes
singular the special techniques of FEM, based on turning off completely damaged
elements or substituting by elements of zero or negligible stiffness, turn out to be
very attractive. Simultaneously, it is worth to mention here the singular value decom-
position as a potentially attractive algorithm which seems to be the most general and
effective tool for solving this kind of problems. In the problem under consideration
however, the direction of damage front propagation is easy to predict since it begins at
the notch bottom and goes towards a symmetry axis, in other words along appropriate
edge of finite element mesh. Above observation is a basis for application simplified
technique in which subsequent boundary conditions are released following damage
parameter D, reaching critical magnitude 0.9 in subsequent Gaussian points. Results
of damage analysis done in such a way are shown in Fig. 4b. In subsequent hysteresis
loops one can observe further difference in drop of stress amplitude between tension
and compression as well as appearance of characteristic inflection point at hysteresis
brunch referring to compressive range. This effect is strictly associated with contact
of both edges of completely damaged element, next damage deactivation as a result
of compression and consequently recovery of initial stiffness.

Table 2 Material constants of ferritic steel 20MnMoNi55

E [GPa] ν σy [MPa] b R∞ [MPa] X∞ [MPa] γ S [MPa]

210 0.3 470 75 8.0 7500 70 5.0
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4 Conclusions

Application of continuous damage deactivation gives both quantitative and qualita-
tive good agreement with experimental data and confirms necessity and correctness
of this approach in modelling of low cycle fatigue aluminum alloy Al-2024 and
ferritic steel 20MnMoNi55.

Continuous damage deactivation concept applied to model of damage affected
plastic potential recovers its convexity and smoothness, simultaneously allowing to
avoid physically unjustified discontinuities.
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Effect of Orientation and Overaging
on the Creep and Creep Crack Growth
Properties of 2xxx Aluminium Alloy Forgings

Elisabetta Gariboldi and Antonietta Lo Conte

Abstract Long-term high temperature properties of aluminium alloy forgings are
widely affected by the extent and direction of plastic flow as well as by the heat
treatment and exposure causing overaging processes. The classical creep crack
propagation models, for which the material is often considered as isotropic and
microstructurally stable, must be adapted to take into account the effects of crystal
orientation and of overaging. After presenting the creep behaviour of 2014 and of
2016 Al alloy forgings in different sampling directions and overaging conditions, FE
simulations of the crack propagation of CT specimens sampled in different direc-
tions were carried out. The possibility to account for the progressive overaging of
the material was also taken into account in the model.

1 Introduction

Aluminium-alloy forgings are currently used to manufacture structural components
of relatively large and complex shape. The plastic deformations imparted to the
material significantly affects its microstructure, which can be roughly described by
the effects of grain size and crystal orientations, as well as distribution of intermetallic
particles, typically fragmented along the plastic flow direction. Additionally, in heat
treatable Al alloys, submicrometer particles formed during the solution treatment and
ageing steps can evolve during service at relatively high temperature. Thus, long-
term high temperature properties of aluminium alloy forgings are widely affected
by the extent and direction of plastic flow as well as by the heat treatment and
exposure leading to overaging processes [1, 2]. The above features should also be
considered when predicting the propagation of cracks originated from process- or
service-induced defects in a progressively overaging material. The classical creep-
crack propagation models for which the material is often considered as isotropic and
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microstructurally stable must be adapted to take into account the effects of orientation
and of overaging.

The aims of the present paper are to investigate the effects of orientation and
overaging on the creep behaviour in age-hardenable 2xxx Al alloy forgings and to
explore the possibility to predict the growth of cracks by means of a combination of
a material description taking into account the more widely available and accessible
uniaxial tension and creep data and of a FE model describing crack propagation by
means of a procedure that allows the release of nodes when a critical damage level
is locally reached.

2 Materials and Experimental Procedures

Two forgings were experimentally investigated. The first was made of a Al-4.4
Cu-0.5Mg-0.9Si-0.8Mn alloy (IADS AA 2014 grade), axysimmetrically forged from
a previously extruded bar into the shape of a cave cylinder 230 mm high, with an
outer diameter of about 190 mm. The forging was supplied in peak aged (T6) con-
dition (ST at 505 ◦C, WQ, aging at 160 ◦C for 16 h). In the second forging, the hot
work process was carried out on an axysimmetric as-cast cylinder of Al-4Cu-0.5M-
0.6Si-0.5Ag-Zr (AA 2016) alloy, leading to its final size of 180 mm in height and of
270 mm in outer diameter. The alloy was then heat treated to peak hardness condition
by an heat treatment cycle corresponding to that of 2014 alloy.

Two sets of 20×20×100 mm3 bars were sampled longitudinally or tangentially to
the cylinder (referred as L and T directions, respectively). Tension tests were carried
out at temperatures within the range 20–200 ◦C. Constant tension load creep tests
were performed in the temperature range 130–200 ◦C, with rupture times ranging
from 1 to 10000 h. In the case of 2014 alloy, tension and creep tests were also
performed on small sets of L and T specimens previously aged at 170 ◦C for times
up to 1000 h (exposures A, C and D, details given in [3]).

The material characterization was completed by creep crack growth (CCG) tests
at 150 ◦C on CT specimens sampled in CR and CL directions (details of sampling
in [4]). The experimental plan for CCG tests, to be carried out at 150 ◦C according
ASTM 1457-07 standard on side-grooved and fatigue precracked CT 1/2′′ specimens
included tests at initial KI of 15 and 22 MPa

√
m. During the tests, the crack opening

displacement was monitored by means of an extensometric system and the crack
length was indirectly measured by means of a DC PD method using the procedure
and calibration curve described in [5].

3 Experimental Results and Analyses

The different process routes and alloy compositions led to different microstructural
features of the alloy. They can be observed in Fig. 1, where metallographic sections
display the microstructures in L-T planes. The 2014 alloy was characterized by the
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(a) (b)

Fig. 1 Metallographic sections of 2014 and 2016 forgings (a and b, respectively). L direction is
vertical, T direction horizontal in the micrographs

extensive plastic flow in the longitudinal direction, along which grains were elon-
gated and bounded by two kinds of coarse secondary particles, most of a quaternary
Fe-Mn-Si-Cu phase (dark particles in Fig. 1a) and some globular Al2Cu particles.
In the case of the 2016 alloy forging, the plastic deformation slightly modified the
as-cast structure characterized by radially elongated grains, that were slightly flat-
tened. Also in this case, secondary Al2Cu particles were located preferentially at
grain boundaries. The amount of secondary phases was in any case lower than that
in 2014 alloy forging.

It is well-known that in these age hardenable Al alloys, the above mentioned
second phases, rather coarse and typically located at grain boundaries, are not
responsible of the significant strengthening of the material. This is mainly induced
by the presence of the much finer intragranular phases that evolve on aging following
one or more precipitation sequences, depending on the alloy composition. Previous
studies carried out on the alloys here taken into account [6–8] confirmed that the
strengthening phases are mainly produced by the sequence (SSSS → GPZ → θ

′′ →
θ
′ → θ(Al2Cu)). It is also confirmed that after some hours of exposure, the formation

of θ
′ in forgings was completed. Further exposure led to a progressive θ

′ coarsening
and to a corresponding loss in material strength. Since coarsening is controlled by
diffusion of Cu in Al, an equivalent time spent at a reference temperature T can be
defined as:

tT,tot = e(−QCu/R∗T ) ∗
k∑

i=1

ti ∗ e(QCu/RTi ) (1)

where ti is the ith time interval spent at temperature Ti , R the gas constant and
QCu is the activation energy for the diffusion of Cu in Al, 133.9 kJ/mol [9]. This
equivalent time, is proportional to an alternative time-temperature parameter (the
normalized time tnorm) used in previous studies [3, 6]. With respect to tnorm, tT,tot
can be more easily handled in cases were the material behaviour at a single temper-
ature can be described and used to model the behaviour of components operating in
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Fig. 2 σ/G versus t150 ◦C, r, tot for 2014 (a) and 2016 (b) alloys tested in T and L directions

isothermal conditions. The total equivalent time (tT,tot) in age-hardenable alloys can
be considered as a sum of an equivalent aging time up to T6 temper (tT,aging), of a
exposure equivalent time (tT,exp, related to further exposure in single and/or more
time/temperature steps) and finally to the equivalent creep time (tT,creep), as follows

tT,tot = tT,aging + tT,exp + tT,creep (2)

In case rupture times are taken into account, tT,tot and tT,creep can be replaced by tT,r,tot
and tT,r,creep. Neglecting the possible effects of applied stress on overaging processes
[2, 10], the creep strength to shear modulus ratio (σ /G) can be correlated to tT,r,tot.
Figure 2 shows the results of creep tests carried out at different test temperatures
and at different previous exposure times for the two investigated forgings in L and T
directions in stress-tT,r,tot plots. Here the temperature of 150 ◦C has been considered
as a reference, as usually done for Al alloys. The substitution of t150 ◦C,r,tot to the
simple time to rupture (tr) leads to a ‘master curve’ describing the creep strength of
the alloys in a wide range of equivalent times at 150 ◦C. It can be observed that 2014
forging displays the higher creep strength (and correspondingly, the longer creep
lives) in the longitudinal direction, while no significant difference exists between
L and T orientations in the 2016 alloy. Lastly, for both materials, the experimental
data lay on downward-curved rather than on straight lines, and this prevents the use
of a single power-law equation correlating stress to t150 ◦C,r,tot over extended stress
ranges.

Experimental creep data were also analysed in terms of (minimum) creep strain
rate, using an Arrhenius-type temperature dependence to ‘normalize’ data at different
test temperature to an equivalent strain rate at 150 ◦C. Figure 3 shows the correlation
between the strain rate and the ratio between applied stress and shear modulus.
Experimental points lay on a master curve clearly showing a change of slope at
about 10−5 l/h, corresponding to the Sherby Dorn threshold strain rate for the Power
Law Breakdown. Below this limit the experimental data can be fitted by the classical
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Fig. 3 Equivalent strain rates at 150 ◦C as function of the applied stress for 2014 and 2016 alloys
(a and b, respectively) in L and T sampling directions

Norton’s power-law equation. As Fig. 3a shows, in this stress range the Norton’s
indexes of 2014 alloy were close to 9 for both sampling directions. The strain rate in
T direction was about 2.5 times higher than that in L direction. In the case of 2016
alloy (Fig. 3b), no significant difference of strain rates with sampling orientation
was revealed. In the low-stress range, a single fitting equation with Norton’s index
slightly higher than 5 could be used. The existence of the Monkman-Grant correlation
between the minimum strain rate and times to rupture, a useful tool to predict times
to rupture of tests interrupted after reaching the minimum strain rate, was checked.
For both forgings the relationship was substantially the same for the two orientations,
as here presented in Fig. 4a for 2014 alloy.

The creep ductility of the forgings was significantly affected by their microstruc-
tural features. Ductility will be here given in terms of reduction of area (RA) at
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alloy in different sampling directions and exposure times before creep tests
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rupture. In short- and long-time tests the 2014 alloy displayed the highest ductility
in L direction. Microstructural observations on crept specimens [3, 10] revealed that
creep damage leading to the final fracture of these specimens began with the forma-
tion of cavities at the coarse intermetallic particles. These linked first longitudinally
and then transversally, leading to final separation of specimens by a ductile fracture
mode. The role played by the matrix on the creep fracture mechanism suggested to
correlate RA to t150 ◦C,tot, describing matrix softening (see Fig. 4b). A clear trend
to increased RA for longer exposure times can be noticed for data in L direction.
Notwithstanding the higher experimental scatter and lower RA levels, a similar trend
is also suggested for T specimens, where linkage of cavities is favoured.

In the case of 2016 alloy, the RA in both sampling directions was relatively high
scattered. Microstructural observation revealed a creep fracture mechanisms similar
to that of 2014 alloy, with low ductility values related to the presence of irregularly
oriented microstructures or of some residual casting defects. Average RA of 19 and
57 % were considered for 2016 alloy in L and T directions, respectively.

4 Modelling the Crack Propagation in a 2XXX Al Alloy Forgings

The possibility to link uniaxial creep behaviour and crack growth propagation is of
wide interest to predict the behaviour of components containing defects (cracks) by
means of FEM simulations and has often been proposed in literature (see for example
the recent paper [11]). A further advantage would be the possibility to develop models
requiring only the time to failure and creep ductility parameters (elongation at rupture
or reduction of cross-sectional area) that can be derived from stress-rupture creep
tests. In the Nickbin-Smith-Webstrer (NSW) model [12, 13], the uniaxial material
creep behaviour up to final fracture is accounted by means of an average creep rate
defined as the ratio between the uniaxial creep rupture strain, (εr) and the time to
rupture (tr).

In the present case, the crack propagation has been simulated by a two-dimensional
FE model corresponding to the CT specimen used for experimental tests. Symmetry
reasons led to model the only upper half of the specimen. Four-noded plane-strain
isoparametric elements were used with decreasing size, becoming square-shaped
elements towards the crack growth zone. In this zone the element size was approx-
imately 0.050 mm, roughly corresponding to the grain size in T and R directions
of 2014 alloy forging and to 1/2 and 1/3 of the grain size in the L and T direction
of 2016 alloy forging, respectively. The load was applied to a rigid pin in contact
with the hole of the CT specimen. A rigid surface was considered along the specimen
symmetry plane, containing the initial crack and within which the crack was assumed
to grow. The nodes on the crack plane ahead the crack tip were constrained to the
rigid surface and were allowed to slide along it until they were involved in the crack
growth. When critical conditions for material fracture were reached (see below), the
nodes were released. Both the critical condition and the technique for node release
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were implemented in a dedicated Fortran subroutine coupled with the ABAQUS 6.9
code for FE simulation [14].

Calculations were performed using elastic-plastic creep behavior. Elastic behavior
was considered as symmetric isotropic. The plastic response was assumed to be
governed by a Von Mises flow rule with isotropic hardening. The post yield strain
was treated as piecewise linear up to the rupture load (σr), beyond which no strain
hardening occurred. The material creep response was described by a secondary creep
law using the average creep rate defined above. Following the approach proposed in
the NSW model [12, 13] a ductility exhaustion approach was chosen as the critical
condition for the material ahead of a growing crack: the local damage parameter
ω approached 1 at the crack tip when the local equivalent accumulated strain (εc)
reached the local multiaxial strain (εr,m). At each temporal step of the FE simulation,
the damage rate (ω̇) was computed in the four– integration points of each element as
the ratio between the equivalent creep strain rate (ε̇c) and the multiaxial failure strain
rate (ε̇r,m). The Cocks and Ashby model [15], already combined to NSW model in
literature [12, 13], was here used to describe (εr,m), accounting for the constrain effect
at the crack tip, assuming that creep damage was mainly related to the formation of
voids. The critical condition for the release of a node along the crack path was defined
as a local damage (obtained by integrating local damage rate) exceeding 0.99 in at
least two integration points of each finite element.

The whole method proposed above was re-arranged to model the creep behavior
and crack propagation in Al forgings at 150 ◦C, considered as a reference temperature
for this alloy class. The elastic behavior was kept as symmetric isotropic, as in the
base-model previously explained, while the uniaxial plastic and creep properties of
the material in the direction perpendicular to the crack plane were considered. In
this case the directions L and T for which uniaxial tension and creep data were
available, were taken into account. In the first extension of the model, for which the
results are here proposed, overaging effects on the advancing crack were neglected,
considering uniaxial local creep rupture strain (εr) independent on the exposure time,
but only related to the alloy and to the uniaxial specimen orientation (i.e. εrL �= εrT).
In the case of 2016 alloy εrLand εrT were set as 0.19 and 0.57, respectively, while in
2014 alloy forging, they were fixed as 0.44 and 0.28, respectively. The value of time
to rupture (tr) to be inserted in the equation of average strain rate was derived for
both alloys by combining the power-law description of the minimum strain rate to
the Monkman-Grant correlation, thus obtaining in all cases a power-law correlation
between tr and the applied stress σ. The tr − σ correlation was the same for uniaxial
creep data in L and T direction of 2016 alloy forging. In 2014 alloy forging the tr −σ

correlations in L and T directions were characterized by the same power-law index,
but at the same stress level, tr in L direction was 2.5 times longer than in T direction.

The above descriptions of the material properties were used to simulate the
behavior of the CT specimens in creep crack growth tests. Simulations were repeated
varying material, specimen orientation and applied load. Figure 5 shows the results
for the cases of constant loads corresponding to initial KI of 15, 18 and 20 MPa

√
m.

The initiation time (tinitiation), assumed as the time at which the crack length increases
of 0.2 mm, are also plotted in the case of the 2016 alloy.
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Fig. 5 Simulated crack propagation at 150 ◦C in planes perpendicular to the T or L directions of
the forgings in CT specimens of 2014 (a) and 2016 (b) alloys. Curves corresponding to different
initial KI values are shown

The creep crack propagation behavior of the two forgings is significantly different,
as could be reasonably expected on the basis of short- and long-term data. In 2014
alloy forging, propagation was significantly faster for cracks laying perpendicularly
to T direction. On the contrary, only small differences are predicted for similar cracks
propagating in the 2016 alloy forging. Further, in this case cracks advanced more
easily when developing in a plane perpendicular to the L direction.

At present no creep crack growth test was concluded and these curves cannot
be validated experimentally. Nevertheless, for the ongoing test, carried out on CR
specimen (crack plane perpendicular to T direction) at initial K I = 15 MPa

√
m, the

use of a potential drop calibration curve supplied a rough estimation of the crack
length on the basis of its assumed initial length (to be properly measured at the end
of the test) led to an initiation time close to 1000 h.

5 Including Overaging and Other Orientation Effects
in the Model

The analyses of experimental creep data on 2014 alloy forgings demonstrated that
both the creep strength and the creep ductility at relatively high stress levels, such
as those experienced by the material zone ahead the tip of a propagating crack, are
strongly affected by the time previously spent at high temperature. These experi-
mental observations can be used to adapt the model to the more general case of age
hardenable alloys, taking into account overaging effects. The idea is to substitute the
uniaxial local creep rupture strain (εr) and time to rupture (tt) (the ratio of which
defines the average creep strain rate) with their correlations to equivalent times spent
at the reference temperature. Taking into account (εr), Fig. 4b suggests the power-law
correlation to the total equivalent time to rupture (tT,r,tot): εr = C(tT,r,tot)

m. Further,
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the effects of material ovaraging on εr can be taken into account by simply consid-
ering tT,r,tot as the sum of a part related to the time spent at high temperature by the
component during its life (or by the CT specimen during the test, tT,test) and of a
constant contribution related to the initial heat treatment (tT,aging). The description
of equivalent creep rupture times of an overaged material can be obtained combining
the power-law equation tT,r,tot = D∗(σ )−q, fitting experimental data in Fig. 2, to
Eq. (2), where tT,tot and tT,creep are substituted by tT,r,tot and tT,r,creep:

tT,r,creep = tT,r,tot − tT,aging − tT,exp = D∗(σ )−q − tT,aging − tT,exp (3)

The average strain rate of overaging Al alloys thus becomes:

ε̇A = εr

tr
=

(
C(tT,test + tT,aging)

m

D∗(σ )−q − tT,aging − tT,exp

)
(4)

where D, C, q and m are constants related to the material and to the specimen
orientation.
Focusing on the case of the crack containing CT specimen tested at 150 ◦C directly
after aging, tT,aging is a constant and tT,test simply corresponds to the test time, the
identification in it of a time considered as of pure exposure at high temperature (tT,exp)
and of a second period where creep phenomena occur (tT,creep) is not straightforward.
Even considering that in points laying on the crack path the applied stress will
progressively increases up to the final fracture, fixing a threshold stress or strain
above which creep takes place seems not suitable to identify the exposure time, since
material strength and ductility depend on the exposure time itself. The idea is to
fix a limit to the sum of tT,aging and tT,exp in terms of the fraction f (for example
f equal to 1/100, 1/1000…) of the total equivalent time leading to creep fracture
under a given stress value (σexp). This corresponds to the definition of the following
correlation between the limit exposure time and σexp:

tT,aging + tT,exp,lim = f ∗D∗(σexp)
−q (5)

In a specific point ahead of the crack tip, tT,test will be equal to tT,exp until the
(increasing) stress level in that point reaches the σ exp for the actual tT,exp = tT,exp,lim.
Once this condition has been reached in this point, tT,exp will be kept at tT,exp,lim and
tT,test = tT,exp,lim + tT,creep. Points laying along the crack path will be characterized
by progressively increasing tT,exp,lim and decreasing σexp. The above method to
account for the overaging effects can be relatively easily implemented in the FEM
simulation of the crack propagation by means of a user subroutine.

Another extension of the above model can be introduced to take into account
different situations that can occur in axysimmetrical forging components within
which a crack grows. The above mentioned model links the crack propagation behav-
iour to uniaxial plastic and creep properties normally to the crack plane. While the
simulation can predict widely different situations of cracks advancing in the R-T or
R-L planes (see Fig. 4), no difference would be found for cracks growing in different
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directions within the same crack plane, such as for example in the case of CR- and
CL-oriented CT specimens, where crack develops in the same plane along R and L
directions, respectively. As explained before, no experimental data on the creep crack
propagation are presently available to check differences in the propagation behav-
iour and mechanisms in differently oriented cracks. Nevertheless, previous fracture
toughness tests and related microstructural investigations carried out at room temper-
ature and at 130 ◦C on the same forged materials revealed that the distance between
second phases along the crack path was the main microstructural feature affecting the
crack propagation properties of the material [4]. Together with the plastic behavior of
the matrix, these latter are significantly affected by test temperature and overaging.

A similar behavior is expected for the case of creep crack propagation. The
microstructural feature affecting the crack propagation along different directions
in the same crack plane can be here taken into account by means of growth direction-
dependent multiaxial strain factor (MSFdir) correlating the value of multiaxial failure
strain to the uniaxial failure strain i.e. εr,m = MSF∗

dir εr . The form of the MSFdir
may be estimated using an appropriate model for void growth and coalescence in
anisotropic material.

6 Conclusions

Experimental data on 2014 and 2016 alloy forgings confirmed significant effects
of orientation and overaging on their creep behaviour. Data analyses in terms of
equivalent times at a reference temperature allowed to describe the effects of prior
exposure on the creep strength and ductility. The above data were included in a
FE simulation of crack growth in differently oriented planes, characterized by a
procedure based on the release of nodes when a critical damage level is locally
reached. The proposed method can be slightly rearranged to include overaging effects
and crack propagation along different directions within the same crack plane.
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Dislocation-Induced Internal Stresses

Peter Geantil, Benoit Devincre and Michael E. Kassner

Abstract Long-range internal stresses (LRIS) are widely suggested to exist in plas-
tically deformed materials as a result of dislocation distribution heterogeneity and
polarization. Important examples of plastically induced dislocation microstructures
are cell and subgrain walls in monotonically deformed materials and edge-dislocation
dipole bundles and walls in cyclically deformed materials. Evidence for internal
stresses in dislocation microstructures was observed early and the existence of LRIS
is commonly supposed responsible for important properties such as the Bauschinger
effect in reversed and cyclic deformation. On the other side, other experiments includ-
ing dipole separation observations and convergent beam electron diffraction exper-
iments are less supportive of LRIS. This is why we recently revisited the question
of LRIS using X-ray microbeam diffraction experiments for oriented monotoni-
cally and cyclically deformed Cu single crystals. From synchrotron radiation at the
Advanced Photon Source it was possible to determine elastic strains in very small
volumes within the dislocation cell interiors, and most recently, within the cell walls.
These experiments clearly show the existence of LRIS in the dislocation cell struc-
ture albeit, at modest levels. The magnitude and statistical variation of these stresses
are detailed, and further explored using dislocation dynamics simulations. Our new
results are placed in the context of earlier experiments.

P. Geantil (B) · M. E. Kassner
University of Southern California, Los Angeles, CA, USA
e-mail: geantil@usc.edu

B. Devincre
LEM, CNRS / ONERA, 29 avenue de la division Leclerc,
Chatillon Cedex 72 92322, BP, France
e-mail: devincre@onera.fr

M. E. Kassner
Office of Naval Research,Washington, DC, USA
e-mail: kassner@usc.edu

H. Altenbach and S. Kruch (eds.), Advanced Materials Modelling for Structures, 177
Advanced Structured Materials 19, DOI: 10.1007/978-3-642-35167-9_17,
© Springer-Verlag Berlin Heidelberg 2013



178 P. Geantil et al.

1 Introduction

Plastic deformation in crystalline metallic materials is controlled at low and inter-
mediate temperatures by dislocation glide. As dislocations move in their slip planes,
they strongly interact with each other through stress fields and contact reactions.
These long and short-range interactions (including thermally activated processes
like cross-slip) cause the development of complex dislocation microstructures made
of regions with high and low dislocation densities. In monotonic deformation, when
multiple slip systems are active, the dislocation microstructure takes the from of low
dislocation density volumes surrounded by dislocation dense walls. This structure is
cellular in nature and fairly uniform in space. In single slip deformation, a different
microstructure develops consisting of elongated clusters of dislocations. These clus-
ters, made up of primarily edge dislocation dipoles and multipoles loops, result in
bundles and braids and ultimately in persistent slip bands if the crystal is cyclically
deformed.

What has long been discussed is the existence of long range internal stresses
(LRIS) in parallel to dislocation patterning, and the influence of LRIS on the material
mechanical properties. In this debate, a composite model was proposed by Mughrabi
[1] and Pedersen et al. [2]. They presented the simple case where hard (high dislo-
cation density walls) and soft (low dislocation density channels, or cell interiors)
are compatibly deformed. Each component yields plastically at a different stress
depending on the dislocation density and arrangement.

Figure 1 illustrates a simplified two dimensional dislocation cell. The crosshatched
lines represent the simplified slip system consisting of two active slip planes. Dislo-
cations present on these slip planes in the left panel accumulate at the walls. Some
dislocations pass through the walls, while others are deposited onto the wall. The
middle panel shows the effective sum of the dislocations gliding and being deposited
onto the wall. The final structure allows for two things: The material deforms com-
patibly between the walls and cell interior, and the sum of the dislocations provide a
tensile internal stress in the dislocation dense walls, and a compressive stress in the
cell interiors.

In the past years, a number of experiments have been done in an attempt to measure
the existence of LRIS:

• In-situ TEM experiments have been performed attempting to evaluate the existence
of LRIS and resulting magnitudes. Morris and Martin [4] quenched a creep-
deformed solid solution Al-Zn alloy. When cooling to ambient temperature, pre-
cipitates form that pin dislocations (and dislocation loops) in place. A comparison
between dislocation curvature and the line tension bowing equation was applied
and suggested enormous LRIS near dislocation walls, at 20 times the applied stress.
Two influential experiments were conducted by Mughrabi [1] and Lepinoux and
Kubin [5]. Internal stresses were assessed by measuring dislocation loop radii as
a function of position within persistent slip band channels in cyclically deformed
Cu single crystal. Observations confirmed that the dislocations were bowed more
drastically near the dislocation walls than in the center of the channels and LRIS
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c < 0

Cell Wall

Cell Interior

w > 0

Fig. 1 The left diagram shows the accumulation of dislocations inside the walls as well as at the
interface. The second panel shows the sum of the dislocations, allowing for compatible deformation
of the walls and cell interiors, as well as a source of internal stress. The third panel shows the resulting
internal stresses present in the microstructure [3]

were calculated at up to three times the applied stress near dipole walls. Correc-
tions were later made by Mughrabi and Pschenitzka [6] reducing the value of LRIS
to 1.3 times the applied stress.

• CBED measurements. Lattice parameters were measured in creep deformed sam-
ples. The subgrain boundaries of an aluminum sample and the subgrain cell walls
of a copper poly-crystal were inspected using convergent-beam electron diffrac-
tion (CBED) [7]. Measurements of the lattice parameters showed no evidence of
residual stress within the uncertainty of ±8 MPa (applied creep stress was 7 MPa)
for the Al sample, and ±30 MPa (applied creep stress of 20 and 40 MPa) for the Cu
sample. Internal stresses may not be resolved in such experiments if they are of the
same order or less than the applied stress. Finally the areas where measurements
were taken were thin, and surface relaxation effects may exist.

• Dipole height measurements. Cyclic deformation experiments on Al and Cu single
crystals (oriented for single slip) deformed to about half the saturation stress by
Kassner et al. [8] showed the average dipole heights in the presaturation microstruc-
ture are approximately independent of location, being equal in the dipole bundles
and channels. This may suggest a uniform stress state across the microstructure,
which means no significant LRIS exist. Small LRIS cannot be excluded from this
as the stress to separate the widest dipoles in Cu is 2–3 times the applied stress.
[8, 9]. CBED in the cyclically deformed Cu also showed no evidence of LRIS.

• X-Ray line profile asymmetry. During plastic deformation, the diffraction line pro-
file of a crystalline material broadens and develops an asymmetric shape. In agree-
ment with the composite model, this asymmetric peak is considered the sum of two



180 P. Geantil et al.

separate diffraction peaks. In the original Ungar et al. study [10], the sub-profiles
were assumed symmetric, and values for the volume fraction of cell interiors and
cell walls was obtained using TEM. The larger amplitude and narrower full-width
half-maximum (FWHM) peak comes from the dislocation cell interiors, while the
shorter, broader peak is a result of the cell walls. The average lattice parameter
of each region was deduced from these sub-peaks. In a correction to the previous
experiment, Ungar et al. [11] suggested values of 0.1σa in the cell interior and
0.4σa in the cell wall of the deformed copper single crystals.

2 X-Ray Microbeam Measurements

Recently, the development of a specialized micro-diffraction tool by Larson et al.
[12] has been extremely important in the effort to characterize LRIS within deformed
materials. It was used in a previously discussed experiment by Levine et al. [13] which
provided valuable and novel insight into the nature of LRIS. The micro-diffraction
setup has the ability to probe materials non-destructively with sub-micron spatial
resolution, and measure lattice parameters in sub-micron sized volumes. Jakobsen
et al. [14, 15] have also performed influential work with a transmission X-ray setup,
measuring cell strains in polycrystalline pure Cu and looking at subgrain evolution
in in-situ deformed single crystal Cu.

2.1 Methodology

The X-ray microbeam used here is focused down to roughly 0.5×0.5 microns using
a Kirkpatrick-Baez (KB) setup. The setup consists of two parabolic orthogonal X-ray
mirrors set at grazing incidence to the X-ray beam. The mirrors focus the beam in the
x and y directions independently. A platinum wire is scanned in half micron steps
across the sample, blocking diffracting beams with each step. Subtracting subsequent
images allows for back solving of the spatial location of the diffracting material and
provides the third dimension of resolution.

As an effect of plastic distortion heterogeneity, dislocation channels (in cyclically
deformed) and cells (in monotonically deformed) in deformed samples diffract in
many directions. Using a monochromatic beam, only cells meeting the Bragg con-
dition will diffract, meaning they must have a specific orientation. To avoid this
complication the experiment requires stepping the monochromator, selecting dis-
crete values of λ in 2–3 eV (electron-Volt) steps over a range of 1–2 keV. Using
this methodology, the Bragg condition will be met for each section of the dislo-
cation microstructure and all crystallographic orientations will provide diffraction
information.
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Fig. 2 Strain measurements associated with various dislocation cell wall and cell interior X-ray line
profiles. The two groupings are clearly from dislocation cell interior and cell wall measurements

2.2 Results

A series of energy-wire scans were performed on 99.999 % pure, single crystal Cu,
deformed in compression ε = 0.28 with a final flow stress of 210 MPa. All mea-
surements were done using the axial 006 reflection. To obtain diffraction from each
cell interior the energy was scanned over approximately 1 keV. With the setup, an
uncertainty in measurements was calculated as �q/q = 1 × 10−4. For copper, this
leads to a maximum uncertainty in stress measurements of 7 MPa.

Once scans were completed, a total of 387 peaks and walls were analyzed. The data
displayed in Fig. 2 compares the resulting strain measurements versus the FWHM.
There are clearly two groupings of measurements: One relating to cell interiors under
a tensile stress, and the other to cell walls under a compressive stress. The volume
average internal stress in the walls is 0.1σa , and −0.1σa in the cell interiors.

Possible effects of the free surface in our measurements were also investigated.
Over the range of depths probed (roughly 10 microns), no discernible trend in the
internal stresses is observed. The stresses maintain the same range of values, when
going deeper into the sample.

The strain data clearly have a large range of values. This tells us the strain vari-
ations within the cell walls and interiors is quite large, ranging from approximately
−100 to 100 MPa. This spread of 200 MPa is comparable to the final applied flow
stress of 210 MPa. Along with the strain information, we have the integrated inten-
sities of the X-ray line profiles which, in the kinematic scattering regime [16], is
proportional to the volume of diffracting material. We can therefore make calcula-
tions as to the statistical distribution of stresses and the volume averaged stresses
within the sample. These data were reported recently in Levine et al. [16] and Fig. 3
shows a histogram of the distribution of strains found within the material.
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Fig. 3 Normalized histograms of the cell interior and wall stresses measured in the Cu single
crystal sample. The volume averages of the internal stresses are roughly 0.1σa in the cell walls, and
−0.1σa in the cell interiors

TEM analysis of the cellular structure in the studied sample gives an estimation
of wall material to cell interior material of 55 % to 45 % (±10 %) respectively. Using
these numbers, and the measured strains, we found the integrated stress of the bulk
measured volume to be 4 MPa. Given that our uncertainty in stress calculation is
7 MPa this cell interior versus wall partition is not surprising and consistent with
mechanical equilibrium.

3 Dislocation Dynamics Simulation

Efforts to model the LRIS induced by the dislocation microstructure present in f.c.c.
materials in multi-slip deformation has been successfully done in earlier studies [17,
18]. In these studies, dislocation dynamics (DD) simulations were used to reproduce
the genesis of the dislocation microstructures at small plastic strain. Dislocation
patterning is a systematic tendency observed in DD simulations and is produced by the
short-distance and contact interactions between dislocations [19, 20]. Surprisingly,
if LRIS do not necessarily contribute to the formation of dislocation patterning, they
were found to automatically appear from structures like the dislocation cells. In the
latter case, LRIS have been found in qualitative agreement with the composite model
predictions [18].

The new simulations presented in this paper were performed using the DD code
microMegas. Details regarding the basic principles of these three-dimensional simu-
lations can be found in Devincre et al. [21, 22]. For the present calculations original
shortcut procedures have been made to quickly develop a copper dislocation cell
structure as close as possible to the one discussed in the previous section. The cell
structure was then deformed at a flow stress of roughly 150 MPa, similar to that used
in the microbeam measurements. During deformation, the structure was analyzed to
examine plastic strain and internal stress.
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100 nm

Fig. 4 Slices of the initial dislocation cell structure. The first is viewed along the [100] axis, and
second along the [111] axis. Due to the periodic boundary conditions, the walls are only required
to be on one side of the simulation box in each direction. A clearly defined cell interior is present

3.1 Methodology

The simulated copper volume element is roughly one cell volume with dimensions
0.4 µm × 0.3 µm × 0.33 µm and periodic boundary conditions. This volume is first
seeded with dislocation prismatic loops on four active slip systems with an initial
density of 4 × 1014 m−2. Then, to quickly generate a starting cell structure, a tensile
load of 200 MPa is applied to only a section of the total simulation volume. During
this step, dislocation interactions were ‘turned off’ in the loaded region, thus allowing
the dislocations to glide out and form dislocation cell walls on its borders (where
junctions and interactions occurred). Once a cell structure is formed, all interactions
in the simulated volume are turned on and the dislocation microstructure is relaxed at
zero applied stress to check the stability of the 3D dislocation network formed. At this
step the total dislocation density has increased to 1 × 1015 m−2. The microstructure
resulting from this initial shortcut is shown in Fig. 4.

The following results were obtained after significant deformation of the Fig. 4
microstructure at a constant strain-rate, imposing approximately a tensile flow stress
of 150–200 MPa (as dislocation density increased). During this simulation, the cell
structure was stable and the dislocation density in the cell walls was continuously
increasing.

3.2 Results

As deformation proceeds with the developed cell structure, a first observation is the
emission of mobile dislocations from the cell walls. These dislocations travel through
the cell interior, and are deposited on the opposite side, either at the wall interface, or
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Fig. 5 Strain measurements for the e11, e22, and e33 strain tensor components evaluated in the cell
walls and cell interior. The x-axis is spatial, with the dislocation walls being between roughly 0 and
3 (and due to the periodic boundary conditions 7 as well), and the remaining strain measurements
coming from the cell interiors

inside the wall. Occasionally a dislocation may pass through the wall as well. Plastic
deformation of this nature would, in principle, cause more plastic deformation in the
cell interiors.

To measure the strains occurring in the cell interior relative to the cell walls, the
simulated volume was first subdivided into 7 × 7 × 9 boxes. The strain tensor was
calculated for each box, and this information was used to look at the average strains
in the cell walls and interior. Adjacent columns of boxes which went through one
dislocation wall and the cell interior were averaged together and plotted. These plots
are shown in Fig. 5. It’s apparent that there is generally more plastic strain occurring
in the cell interiors along the strain axis (the e33 component of the strain tensor) than
in the cell walls. This finding is consistent with the composite model predictions.

In addition, the internal stresses were calculated within the microstructure. In
the present calculations, the calculated LRIS is formed as the system moved toward
equilibrium during the initial microstructure formation. Once a constant strain rate
is imposed, the internal stresses fluctuated and gradually relaxed. Fig. 6 shows the
internal stress calculation of a plane within the simulation cell after ∼0.5 % strain.
The average stress in the cell interior region was roughly 10 % of the applied stress,
in the opposite direction. The magnitude and sign of this stress is in accordance
with the composite model, and microbeam measurements reported previously. This
value was calculated considering all the dislocations in the simulated volume and one
additional slice of dislocation replicas in the periodic crystal (i.e. a total volume of 27
simulation boxes). Increasing the periodicity further to account for more dislocation
replicas did not alter the calculated stress.

4 Concluding Remarks

All of the microbeam measurements and DD simulation results confirm many of the
assumptions and results of the composite model. The dislocation wall and interior
stresses are of the correct sign, and the volume averaged stresses are in accordance
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Fig. 6 The dislocation cell simulation volume with a contour showing the calculated LRIS per-
pendicular to the plane along the strain axis. The average internal stress of the cell interior in this
slice is −19 MPa, which is roughly −0.1σa . This value is analgous to the volume averaged back
stress measured in microbeam experiments

with the volume fraction of wall and interior material as seen in TEM images. Addi-
tionally, there does not appear to be a measurable surface effect on the internal
stresses.

The movement and deposition of dislocations across the cell interior assumed in
the composite model, appears to be confirmed by DD simulations. It allows for the
cell interior to experience more plastic strain than the cell walls. This fact was further
explored in Fig. 5, and shows all three walls experiencing smaller strains than the
cell interior.

An important note mentioned previously, is the stability of the simulated structure.
Through the entire simulation, the cell structure remained stable without any artificial
pinning or constraints. The simulated dislocation structure was able to create LRIS
similar to those measured by microbeam. This value is significantly smaller than
those found in previous experiments.
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A Strain Rate Sensitive Formulation
to Account for the Effect of γ ′ Rafting
on the High Temperature Mechanical
Properties of Ni-Based Single Crystal
Superalloys

Jean-Briac le Graverend, Jonathan Cormier, Serge Kruch,
Franck Gallerneau and José Mendez

Abstract The **Polystar** model was recently developed to fulfill the effects
of possible fast microstructure evolutions occurring upon high temperature non-
isothermal loadings. New internal variables were introduced in a crystal plasticity
framework to take into account microstructure evolutions such as γ ′ dissolu-
tion/precipitation and dislocation recovery processes, and their effects on the creep
behavior and creep life. Nevertheless, this model does not take into account one
of the main microstructural evolutions occurring specifically at high temperature,
the γ ′ directional coarsening. Fedelich and Tinga have already proposed models
respectively based on a modification of the kinematic hardening and on the level of
the von Mises stress. Nevertheless, if the Fedelich’s model is implicitly strain rate
sensitive, improvements have to be performed for strain controlled tests under fast
conditions for which such a model may overestimates the γ channel width evolu-
tions. A new formulation has been proposed to explicitly account for such a strain rate
sensitivity and was successfully implemented in the **Polystar** model. The effect

J.-B. le Graverend (B) · S. Kruch · F. Gallerneau
Onera, 29 avenue de la Division Leclerc, BP 72, 92322 Châtillon, France
e-mail: jean-briac.le_graverend@onera.fr

S. Kruch
e-mail: serger.kruch@onera.fr

F. Gallerneau
e-mail: franck.gallerneau@onera.fr

J.-B. le Graverend · J. Cormier · J. Mendez
Institut P’, CNRS-ENSMA-Université de Poitiers, UPR CNRS 3346, ENSMA-Téléport 2, 1
avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex, France

J. Cormier
e-mail: jonathan.cormier@ensma.fr

J. Mendez
e-mail: jose.mendez@ensma.fr

H. Altenbach and S. Kruch (eds.), Advanced Materials Modelling for Structures, 189
Advanced Structured Materials 19, DOI: 10.1007/978-3-642-35167-9_18,
© Springer-Verlag Berlin Heidelberg 2013



190 J.-B. le Graverend et al.

of γ ′ rafting on the mechanical behavior is well reproduced for both cyclic and
monotonic tension tests.

1 Introduction

Monocrystalline nickel base superalloys are widely used in the hottest parts of aero-
engines or industrial gas turbines [1]. Blades made of these alloys operate for thou-
sands of hours at temperatures as high as 1373 K (1100 ◦C) [2]. These alloys are
chosen for their superior mechanical performances at high temperatures, in partic-
ular their creep resistance for uncooled components such as high pressure turbine
blades of turboshaft engines for helicopters or small industrial gas turbines. These
interesting properties result from the precipitation of a high volume fraction (close
to 70 %) of the long-range ordered L12 γ

′ phase which appears as cubes coherently
embedded in a face-centered cubic (fcc) solid solution γ matrix.

The recent development of “microstructure sensitive models” (i.e. in which inter-
nal variables representing microstructure are added) has been motivated by need
to obtain a better predictivity of the mechanical behavior under conditions where
microstructure is likely to evolve during the thermomechanical loading. Indeed,
under such conditions, classical constitutive modelling approaches where temper-
ature dependence is only taken into account by the temperature dependence of the
material’s parameters fails to predict transient mechanical responses of the alloy
during thermomechanical loading [3]. For example, such a modelling approach is
undertaken to account for the impact of the γ ′ morphology evolution under direc-
tional coarsening conditions on the mechanical properties of Ni-based single crystal
superalloys [4, 5]. Indeed, when a single crystal superalloy has a negative γ /γ ′
misfit (coherency stress due to the difference between the lattice parameters of the
γ phase and the γ ′ phase), a directional coarsening of the γ ′ precipitates occurs
perpendicularly to the applied stress axis (see Fig. 1). This morphological evolution,
more widely known under the “γ ′ rafting” denomination, usually takes place during
the primary creep stage when the γ ′ phase has entirely coalesced and the γ channels
become wider along the applied stress axis (see Fig. 1) [6–8].

2 µm

(a) (b) (c)

0

Fig. 1 γ ′ rafting during a creep test at 1050 ◦C/160 MPa: γ /γ ′ microstructure at the beginning
of the experiment (a), after 4.7 h (during primary creep stage) (b) and after 9.4 h (beginning of
secondary creep stage) (c). Note that the γ ′ phase appear in dark
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In this article, a set of constitutive equations that is able to account for the rafting
kinetics under isothermal and non-isothermal loading without requiring a computa-
tionally intensive microstructural analysis will be detailed. The **Polystar** model
recently developed under a crystal plasticity framework was used to implement new
evolution laws to account for a strain rate sensitivity of the γ ′ rafting [9].

2 Model Presentation

The **Polystar** model has been developed under a crystal viscoplasticity frame-
work using the Méric & Cailletaud model as a basis [10]. It only considers the activity
of octahedral slip systems since no experimental evidences of cube slip support the
use of such systems [11]. A full description of the **Polystar** model is available
elsewhere [9]. Only the equations devoted to account for the impact of γ ′ rafting will
be discussed in the present article.

In this model first devoted to the creep behavior modelling, only non-linear
isotropic hardening was considered for the evolution of internal stresses. The impact
of γ ′ microstructural evolutions was taken into account using an Orowan stress which
was introduced in the isotropic hardening using the following formulation:

rs = τ s
0 + b × (Q + Q∗)×

∑
j

hsjρ
j +

√
2

3

Gb

w001
(1)

The Orowan stress is the last term of Eq. (1) while the first and the second terms
of this equation represent respectively the initial critical resolved shear stress on
each octahedral slip systems and the dislocation hardening through the isotropic
state variable ρs and cross hardening by means of the interaction matrix [h]. Q is
a temperature dependent material parameter which depends on the temperature and
which corresponds to a steady-state dislocation hardening. Q* is a transient hardening
which is time and temperature dependent through the evolution of an associated
internal variable a* [9].

The initial expression of the γ -channel width along a [001] direction (w001) was
the following one:

w001 = a0

δ
× ( f ml

l − dtp × fs) (2)

fl and fs represent respectively the volume fractions of large and hyperfine γ ′
precipitates of a bimodal distribution of γ ′ particles. dtp, a0 and δ are model para-
meters.

It was decided to modify this equation to take into account the γ ′ microstructure
degradation occurring at high temperature. This microstructure degradation basically
consists in a homothetic particle growth due to Ostwald ripening (wisotropic in Eq. (3))
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and in a directional coarsening (i.e. γ ′ rafting, see e.g. Fig. 1) under the action of
mechanical applied stress (wmechanic in Eq. (3)).

Thus, a new expression of the γ -channel width evolution is proposed which
both satisfy γ channels widening under pure isothermal conditions and during non-
isothermal solicitations:

w001 = w0 × wthermic × (1 + wmechanic + wisotropic) (3)

wthermic keeps the formulation proposed by Cormier and Cailletaud, as defined in
their model [9]:

wthermic = f ml
l − dtp × fs (4)

Moreover, the yield criterion was modified to take into account the kinematic
hardening:

f = ∣∣τ s
∣∣ − rs → f = ∣∣τ s − xs

∣∣ − rs (5)

2.1 Homothetic Growth

The driving force for isotropic coarsening is the reduction of the internal γ /γ ′ inter-
facial energy. For this reason, the wisotropic variable will only be time and temperature
dependent and not deformation/stress state dependent.

Contrary to what has been proposed by Fedelich et al. [5], it was decided to use
a cube root with a temperature dependent model parameter:

wisotropic = 3
√

1 + χ0e
−Ut
RT t (6)

In this equation, T is the temperature in Kelvin, Ut an activation energy, R the
perfect gas constant and χ0 a model parameter independent of the temperature.

Indeed, according to the Lifschitz-Slyozov-Walter (LSW) theory, particles coars-
ening controlled by diffusion processes is cube root dependent on time when the
precipitate volume fraction is small [12]. This theory was developed for a binary
system and for spherical particles which is not the case for single crystal superalloy.
However, Ardell and Nicholson [13] have shown that the assumption of a diffusion-
controlled growth stayed available in Ni-based single crystal superalloys. Moreover,
Brailsford and Wynblatt [14] have shown that this type of particle growth led to an
exponent equal to 3 in the LSW theory.
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2.2 Directional Coarsening

Matan et al. have shown that a creep strain threshold was necessary to be overcome so
that the γ ′ rafting process become significant and can proceeds, still in absence of any
applied stress [15]. This threshold is equal to 0.10±0.03 % at 950 ◦C for CMSX-4®
alloy. Indeed, as Embury et al. [16] have shown, dislocations enhance the diffusion
processes by pipe-line diffusion. Thus, once a given dislocation density at the γ /γ ′
interfaces is reached (corresponding to the relaxation of coherency stresses), the γ ′
rafting process occurs.

For this reason, it was chosen to develop a set of constitutive equations to account
for γ ′ rafting dependence on the accumulated viscoplastic strain. Indeed, using the
accumulated viscoplastic strain (v) as the internal variable driving the γ ′ rafting in
Eq. (7), rafting will continue at high temperature even if the external load is removed.

Moreover, in case of tests with large viscoplastic strain amplitudes or fast ther-
momechanical solicitations, it was necessary to consider a strain rate dependence to
be able to reproduce all types of test (i.e. cyclic loading. stress relaxation, tension
tests, etc.). wmechanic was hence given the following expression depending on the new
internal variable (ξ ) accounting for the strain rate sensitivity (Eq. (8)).

wmechanic =
K0 ×

(
1 − e

− t
τdiffusion

)
× 3

√
v

1 + sinh−1(ξ × v0)
(7)

ξ̇ =
(

v̇2

ξ0
− ξ

)
× v̇ −

(
ξ

M

)m

(8)

In these equations, M, m, ξ0, v0 and K0 are temperature dependent model
parameters.

The first term of Eq. (8) allows to smooth evolutions of wmechanic during fast strain
controlled tests (ε̇ ≥ 10−4 s−1): the faster the test is, the higher ξ is, leading to a
decrease of wmechanic. The second term of Eq. (8) allows obtaining a recovery effect
in case of mechanical tests for which a large strain rate range can be encountered.

τdiffusion = d2

2 × Dγ ′
Al (T )

(9)

For the specific time of diffusion (Eq. (9)), it was chosen to consider the diffusion
of aluminium in the γ ′ phase since it was observed that the rate limiting factor of γ ′

rafting is the diffusion of γ ′ elements in the γ ′ phase [17]. Hence, Dγ ′
Al is the diffusion

coefficient of aluminium in the γ ′ phase (unit in m2/s) and d is the diffusion mean
free path for diffusion (unit in m) (see [18] and [19] for more details).
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3 Results

3.1 Channel Width Calibrations

The parameters involved in the γ channel width evolutions given through
Eqs. (6)–(9) were calibrated using interrupted creep tests and subsequent image
analyses for several conditions of stress and temperature. Two examples of these
evolutions at 1050 ◦C under 140 MPa and 1200 ◦C under 67 MPa are given in Fig. 2
for MC2 alloy.

It can be observed a rather good representation of the γ channel width evolution,
within the scatter of the experimental results. Thus, the new formulation proposed to
account for the γ ′ microstructure degradation through the increase in the γ channel
width has been calibrated using creep tests under different temperature/stress con-
ditions and is subsequently used to account for the impact of γ ′ coarsening on high
temperature tensile or LCF properties.

3.2 Mechanical Behavior

The aim of the strain rate formulation is to obtain an evolution of γ channel width
which allows to account for the impact of the (long term) γ ′ degradation on the
mechanical properties. Indeed, the γ channel width does not evolve during fast tests
and a minimum time (or plastic deformation) is required to trigger the γ ′ rafting.
Thus, the predictivity of the modified version of the **Polystar** model including
kinematic hardening and the microstructure degradation equations (Eq. (6)–(9)) was
assessed using different mechanical tests.

(a) (b)

Fig. 2 Experimental evolutions of the γ channel width during creep tests at 1050 ◦C/160 MPa (a)
and at 1200 ◦C/67 MPa (b) compared with the **Polystar** calibrations
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3.2.1 Creep Tests

To get a first estimation of the potential benefits of this modified version of the
**Polystar** model, three isothermal creep tests were studied (see Fig. 3).

To only consider the impact of the microstructure degradation on the mechanical
behavior (i.e. primary and secondary creep stages), the damage equations of the
**Polystar** model were inactivated. It can be observed in Fig. 3 that the longer the
creep test, the better the predictability of the modified **Polystar** model. Indeed,
it is observed a better prediction of the secondary creep strain rate for longer creep
tests where the γ ′ rafting is the most pronounced.

Moreover, the strain rate formulation used for the γ channel width evolution gives
an evolution of the Orowan stress in good agreement with Fedelich’s results [5] (see
Fig. 4. However, the plastic strain threshold observed by Matan et al. [18] equal to
0.1 ± 0.03 % necessary to trigger γ ′ rafting (and hence, the Orowan stress decrease)
is not captured by our model, as for the Fedelich one.

The new formulation of the **Polystar** model was also validated using com-
plex non-isothermal experiments. As an example, the predictivity of the model
was assessed using a non-isothermal creep test including first an isothermal part at
1050 ◦C/120 MPa for 24 h and then a thermal cycling under 120 MPa which consists
in 15 min/1050 ◦C–1 min/1100 ◦C–15 min/1050 ◦C–1 min/1150 ◦C repeated four

(a) (b)

(c)

Fig. 3 Comparison between experiments and simulations for creep tests at 1050 ◦C/160 MPa (a),
1050 ◦C/180 MPa (b) and 1050 ◦C/230 MPa (c)
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Fig. 4 Evolution of the Orowan stress as a function of creep strain for three different applied
stresses at 1050 ◦C

(a) (b)

Fig. 5 Comparison between simulations and experiment during a non-isothermal creep test whose
reference level is 1050 ◦C/120 MPa. The thermal and stress loading appears as insert in a while
b shows the numerical evolution of the γ channel width during test

times (see Fig. 5). The modified **Polystar** model gives a better simulation espe-
cially for strain jumps during the non-isothermal section of the test (Fig. 5a). Indeed,
it was evidenced that during such kind of non-isothermal experiments, the γ ′ raft-
ing is very detrimental to the creep strain rate and life [20]. Such an impact is well
captured by the present version of the model.

3.2.2 Cyclic Tests

Figure 6 shows the comparison between the experiments and simulations performed
with the original and modified version of the model. Even if the stress levels do
not corresponds perfectly with the experimental ones, the numerical evolutions of γ
channel width are in good agreement with what has been observed experimentally.
Indeed, as shown by Gaubert [21] for the AM1 alloy at 950 ◦C, a slow cyclic test
(dε/dt ≤ 10−5 s−1) with a fully reversed strain cycling leads to microstructural
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(a) (b)

(c) (d)

Fig. 6 Comparison between experiments and simulations for two LCF conditions using differ-
ent strain rates and strain amplitudes at 1050 ◦C: 14th cycles at 10−3 s−1 (a) and 24th cycles at
10−5 s−1 (b). c and d represent respectively the numerical evolution of γ channel width presented
in a and b

evolutions characterized by a 45° orientation of the γ ′ rafting with respects to the
tension/compression axis. Hence, for a same number of LCF cycles, the γ channel
width will be smaller in case of a fast mechanical cycling test compared to a slow
cycling one.

3.2.3 Tensile Tests

Two strain rates were also investigated for tensile tests (10−3 and 10−5 s−1) to analyze
the model sensitivity to the strain rate (see Fig. 7).
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(a) (b)

Fig. 7 Comparison between experiments and simulations during tensile tests at 1050 ◦C:10−3

s−1 (a) and 10−5 s−1 (b). Purple curves represent the evolution of γ channel width during
simulations

Modifications bring to the model slightly improve the modelling of the tensile
behavior.

Moreover, a comparison between experiment and simulations for a tensile test
under variable strain rate shows that the modified version of the **Polystar** model
provides a better description of the viscoplastic part. When the strain rate decreases
from 10−3 to 10−5 s−1, the experimental decrease of stress is equal to 145 MPa
whereas the initial **Polystar** and the modified **Polystar** gives respectively
195 and 175 MPa.

4 Conclusion

The strain rate sensitive formulation developed to account for the effect of γ ′ rafting
on the high-temperature mechanical properties of Ni-based single crystal superalloys
gives results in good agreement with experiments over a wide range of strain rate:
from 10−3 to 10−8 s−1.

The consideration of microstructural evolutions was successful in the prediction
of the non-isothermal creep behavior after a γ ′ microstructure degradation.

Thus, this new formulation is an advanced modelling tool for the prediction of both
microstructural evolutions at high-temperature for Ni-based single crystal superal-
loys and their impact on the mechanical properties.
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An Overview of Small Specimen
Creep Testing

T. H. Hyde, W. Sun and C. J. Hyde

Abstract In this paper, some commonly used small specimen creep testing methods,
including sub-sized uniaxial creep testing, impression creep testing, small punch
creep testing, small ring creep testing and small two bar creep testing, are briefly
reviewed. Firstly, the reference stress method and the concept of equivalent gauge
length (EGL) are described; these form the basis for processing and interpreting the
data from small specimen creep tests. Then, the performance and capability of each
of these small specimen creep test techniques are discussed and their relative advan-
tages and limitations, for specific practical applications, are assessed. In particular,
the suitability of each of the methods for determining “bulk” material properties is
described and it is shown that an appropriate test type can be chosen for each par-
ticular case. Typical examples of the application of the small specimen creep test
methods, in determining creep deformation and rupture life data, are given. Finally,
the future possibilities for the exploitation of small specimen creep test techniques
are briefly considered.

1 Introduction

Power plants and chemical plants may operate at elevated temperatures for extended
periods of time, e.g. more than 30 years. During this time, the material used in the
construction of the plants degrades and the creep strength of the material reduces.
NDT and small specimen test techniques are used to sample and test the material.
For this reason, various small or miniature specimen test methods have been devel-
oped and used (e.g. [1]). For example, small punch tests (e.g. [2, 3]), which can be
performed at room and elevated temperatures, have been used to obtain the elastic-
plastic and creep behaviour of some materials. Alternatively, test methods such as
the impression creep test and the small ring creep test methods [4–7], the latter of
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which is suitable for testing highly creep resistant materials [7], have been developed
and used to determine the secondary creep behaviour of materials. The latest work
on small specimen creep testing involves the development of specimen types which
are suitable for obtaining creep rupture data (e.g. [8]). The small test specimens used
for these types of tests can be obtained from small button-shaped (scoop) samples
(∼25 mm in diameter and 2–4 mm in thickness), which are removed, for example,
by a non-destructive sampling technique [9].

Small specimen creep testing has become increasingly attractive because some
power plant components are now operating beyond their original design life, and eco-
nomic, “non-invasive” and reliable testing techniques are required when performing
remaining life evaluations (e.g. [10, 11]). The ability to measure creep properties
from a small volume of material has the potential to, rapidly and economically, sup-
port the development of new high temperature, exotic alloys (e.g. [12]). Also, data
from small volumes of materials have a direct input into remaining life and ranking
studies [5, 13], thereby improving the accuracy of plant/component life prediction.
Such data can be used to generate creep constitutive laws for weld materials and for
local structures generated during the welding process (e.g. [14, 15]). However, each
of the specimen types has its own unique advantages and disadvantages and it may
not always be obvious which one is the most appropriate test method to be used for
a specific application.

This paper contains an overview of small specimen creep testing methods, their
practical applications and the requirements for future development of small specimen
creep testing techniques.

2 Theoretical Basis for Data Correction

2.1 Creep Deformation and Reference Stress Method (RSM)

In general, the principle of converting the non-conventional, small specimen creep
test data to the corresponding uniaxial data is based on the inverse application of the
reference stress method. For some components and loading modes, it is possible to
obtain analytical expressions for steady-state creep deformation rate, (e.g. [16–18]).
For components made from a material obeying Norton’s power law, i.e., the general
form of the solution is:

Δ̇ss = f1(n) f2(dimensions)Bσnom
n (1)

where f1(n) is a function of the stress index, n, f2(dimensions) is a function of the
component dimensions and σnom is a conveniently determined nominal stress for the
component and loading.
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Δ̇ss = f1(n)

αn
f2(dimensions)B(ασnom)

n (2)

Choosing α (= η) so that f1(n)/(η)n is independent (or approximately independent)
of n, then Eq. (2) can be further simplified to:-

Δ̇ss ≈ Dε̇c(σR) (3)

where D is the so-called reference multiplier [D = (f1(n)/(η)n)f2(dimensions)] and
ε̇c(σR) is the creep strain rate obtained from a uniaxial creep test at the so-called
reference stress, σR (=ησnom). The reference multiplier, D, has units of length, and
can generally be defined by D = βd, where d is a conveniently chosen “characteristic”
component dimension. Therefore, if the values of η and β are known, for the known
loading mode and component dimensions, the corresponding equivalent uniaxial
stress can be obtained from the expression σR(=ησnom), and the corresponding.

2.2 Determination of Reference Parameters

If an analytical solution can be obtained, substituting two values of n into the expres-
sion f1(n)/ηn and equating the two resulting expressions allows the value of η to
be determined. Hence, σR (=ησnom) and D can be obtained. This approach was
proposed by MacKenzie [19]. However, analytical solutions only exist for a small
number of, usually, relatively simple components and loadings.

If, for example, computed solutions, using the finite element method, are obtained
for a creep problem, for several n values, but keeping all other material properties,
loading and component dimensions the same, then σR can be obtained. This is done
by guessing several values of α, normalising the steady-state value of displacement
rate, �̇ss, with respect to B(ασnom)

n and hence finding the value of α which renders
[�̇ss/(B(α σnom)

n)] independent of n (i.e. α = σR = η). This process is most easily
visualised by plotting log[�̇ss/(B(ασnom)

n)] against n, for various values of α, as
illustrated in Fig. 1. It can be seen that the straight lines produced, using all of the α

values, have approximately the same intercept on the log axis. This intercept is equal
to the logarithm of the reference multiplier, D.

2.3 Equivalent Gauge Length (EGL)

For a conventional uniaxial creep test, the creep strain at a given time is usually
determined from the deformation of the gauge length (GL). If the gauge length
elongation is �c and the elastic portion is neglected, then

εc ≈ Δc

GL
(4a)
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Fig. 1 Schematic diagram
illustrating a method which
can be used to obtain reference
parameters from FE analysis

For non-conventional small specimen creep tests, an equivalent gauge length (EGL)
[6, 7] can be defined, if the measured creep deformation can be related to an equivalent
uniaxial creep strain, in the same form as that of Eq. (4a), i.e.

εc ≈ Δc

EGL
(4b)

The EGL is related to the dimensions of the specimen and in some cases may be
related to the time-dependent deformation of the test specimen. The creep strain
and creep deformation given in Eq. (4b) may be presented in a form related to the
reference stress, σR, i.e.

εc(σR) ≈ �c

D
(5)

in which D (= βd) is the reference multiplier, which is, in fact, the EGL for the
test. In some cases, the geometric changes, which occurs due to the time-dependent
deformation of the component, are small (e.g. for impression creep tests), and in
such cases, the effects of geometric changes on D (EGL) can be neglected.

3 Small Specimen Creep Testing Methods

3.1 Sub-Sized Uniaxial Creep Test

“Conventional”, sub-sized, “uniaxial” specimens (e.g. [20]), Figs. 2a and 3a, have
been used for creep testing. Small cylindrical specimens, typically 1.2–3 mm in diam-
eter, were electron beam welded onto conventional end pieces. Data obtained were
compared with those of conventional full size creep tests; the two sets of data com-
pared very favourably. Provided grain sizes are not too large, specimen diameters
as small as 1 mm can be used to produce “bulk” material creep properties. Small
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Fig. 2 Small creep test specimens: a Sub-size uniaxial specimen (GL ≈ 5–12 mm; dGL ≈ 1–
3 mm); b SPT specimen (D ≈ 8 mm; to ≈ 0.5 mm); c ICT specimen (w = bi ≈ 10 mm; di ≈ 1 mm;
h ≈ 2.5 mm); d SRT specimen (R ≈ 5 mm, d ≈ 1 mm and depth bo ≈ 2 mm); and e TBT specimen
(Lo ≈ 5–10 mm; b ≈ 1–2 mm; R ≈ 2–3 mm; thickness d ≈ 1–2 mm)

Fig. 3 Schematics diagrams showing the small specimen loading arrangements: a Uniaxial; b SPT;
c ICT; d SRT; and e TBT

gauge lengths (<10 mm) can significantly reduce strain measurement sensitivities
compared to conventional creep test specimens and can make strain measurements
sensitive to relatively small temperature variations. The effects of specimen mis-
alignment are greater when specimen diameters are small. In addition, specimen
manufacture could be more complicated and more expensive than for conventional
“full size” specimens.
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3.2 Impression Creep Test (ICT)

The impression creep testing technique involves the application of a steady load
to a flat-ended rectangular indenter, Figs. 2c and 3c, placed on the surface of a
material at elevated temperature, and the small load-line displacement is measured.
The displacement-time record from such a test is related to the creep properties of a
relatively small volume of material in the immediate vicinity of the indenter. Tests
are usually performed with a constant load level, at a fixed temperature. For the
rectangular indenters, the reference stress approach has been used as the basis [4]
for determining the corresponding equivalent uniaxial stress, σ, and creep strain, εc.
These are related to the mean indenter pressure, p̄, and creep displacement, �c, via
relationships [4]:-

σ = η p̄ (6a)

εc = Δc

βdi
(6b)

The η and β in Eq. (6) are non-dimensional conversion factors. The η and β values
for the recommended geometry (w × bi × h = 10 × 10 × 2.5 mm) are η ≈ 0.4
and β ≈ 2 [4], for an indenter width of di = 1 mm. These are independent of
material properties and do not vary with impression depth provided �c is relatively
small compared to the specimen thickness, h. The technique has been used for a
wide range of materials (e.g. low alloy ferritic CrMoV steels, stainless steels, high
chromium martensitic steels such as P91 and T91 [21], and P92). A typical set of data
obtained from such tests for a 1/2 CrMoV steel is shown in Fig. 4. The slight fluctu-
ations in the data are mainly caused by temperature variations within the furnace and
within the laboratory. However, it can be seen that these variations are typically well
within +1μm.

Fig. 4 Impression deforma-
tions with time at 90 MPa
and 600 ◦C obtained from
ex-service 1/2CrMoV steam
pipe samples
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3.3 Small Punch Creep Test (SPT)

The small punch creep test involves the application of a central load, through a
spherical punch or a ball, to a thin disc, at high temperatures. A typical small punch
test specimen and experimental set-up are shown in Figs. 2b and 3b, respectively;
typical specimens measure 8 mm in diameter and 0.5 mm in thickness (e.g. [2]).
The test involves the measurement of relatively large deformations, producing a
deformation curve leading to fracture. The fact that fracture occurs is a particularly
attractive feature of this type of test as the possibility of estimating the creep rupture
data for the material exists. Empirical relationships between the applied load, P, the
“membrane stress”, σ, the equivalent strain at the edge of contact, ε, and the total
deformation,�, have been obtained. For the case of ap = 2.0 mm and Rs = 1.25 mm,
the P/σ ratio and the strain, ε, for � > 0.8 mm, are given by [15, 22]:-

P/σ = 1.72476Δ− 0.05638Δ2 − 0.17688Δ3 (7a)

ε = 0.17959Δ+ 0.09357Δ2 + 0.00440Δ3 (7b)

The variation of the maximum P/σ, with ap, Rsp and to, for � > 0.8 mm, has been
obtained and this leads to an expression for σ of the form:-

σ = 0.3

Ksp

Pap
0.2

R1.2
s to

(8)

where ap, Rs and to are the radius of the unclamped region of the disc between the
supports, the radius of the punch and the initial thickness of the disc, respectively;
Ksp is a non-dimensional correlation factor, which is determined empirically for the
particular material. The units for Eqs. (7b) and (8) are: dimensions and deformation in
mm, stress in MPa and force in N. Typical creep deformation versus time curves are
shown in Fig. 5, which exhibits similar behaviour to that of typical uniaxial curves,

Fig. 5 Typical small punch
test data for a P91 steel at
650 ◦C
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i.e. there appears to be “primary”, “secondary” and “tertiary” regions. However,
a high level of local plasticity occurs at the start of the test, which could have a
significant effect on the material, and therefore, the subsequent “creep dominant”
deformation.

3.4 Small Ring Creep Test (SRT)

This small specimen type (patent application PCT/GB2008/001547) is an elliptical
ring (a particular case of which is that of a circular ring), diametrically loaded in
tension, as illustrated in Figs. 2d and 3d. Load-line deformation versus time curves
are obtained during the test. It is designed to be “flexible” to enable small strains
to be related to relatively large deformations. However, the deformations do not
significantly affect the conversion parameters, i.e. η and β, which enables highly
accurate secondary creep properties to be obtained.
The steady-state creep solution for the load-line deformation rate, �̇V, of an elliptical
ring, obeying a Norton’s law (ε̇c = Bσn), has been obtained, based on the principles
of virtual complimentary work and stationary complimentary energy. The conversion
relationships (η and β) for a range of geometries have been obtained by use of the
reference stress approach. Detailed analytical procedures have been reported [6]. The
main relationships are:

ε̇c(σre f ) = d

4abβ
Δ̇V (9a)

σre f = η
Pa

bod2 (9b)

For a circular ring (a = b = R), Eq. (9) become:-

ε̇c(σre f ) = d

4R2β
Δ̇V (10a)

σre f = η
P R

bod2 (10b)

The test results for circular (a/b = 1) and elliptical (a/b = 2) rings, with R/d = 5,
for a P91 steel at 650 ◦C, with a range of equivalent uniaxial stresses, are shown in
Fig. 6.

3.5 Small Two-Bar Specimen Creep Test

A new small specimen test type, suitable for use in obtaining both uniaxial creep
strain rate data and creep rupture life data, is shown in Figs. 2e and 3e [8]. The
specimen has a simple geometry and can be conveniently machined and loaded
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Fig. 6 Deformation (�/R)
versus time curves obtained
from circular rings for a P91
steel at 650 ◦C
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(through pin-connections) for testing. Conversion relationships between the applied
load and the corresponding uniaxial stress, and between the measured load-line (pins)
deformation, and the corresponding uniaxial minimum creep strain rate, have been
obtained, based on the reference stress method. The η-value (≈1) is found to be
practically independent of dimension ratios, and the β-value varies with dimension
ratios, and for Lo/b = 4.5 and R/b = 1.25, β = 1.46 [8]. Test results obtained from
the two-bar specimens, for a P91 steel, at 600 ◦C, Fig. 7, have been used to validate
the test method. It can be seen that the deformation curves obtained from the two bar
test specimens are the same as those for a typical uniaxial specimens.

4 Application of Small Specimen Creep Testing

4.1 Some Practical Aspects of Small Specimen Creep Testing

Production of test specimens involves extraction of material samples (using the scoop
technique, for example) and machining them to make the specimens. Depending on

Fig. 7 Deformation versus
time curves obtained from two
bar specimens for a P91 steel
at 600 ◦C
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the accessibility of the site from which the sample is to be extracted, etc., and the
production of specimens can be a costly process. However, the overall production
costs of the ICT, SRT and SPT specimens are comparable to the costs associated with
the production of standard uniaxial creep test specimens; sub-size uniaxial specimens
may involve electron beam welding as well as machining processes and hence these
specimens are likely to be more expensive [20].

Dead-weight machines are often used for standard uniaxial creep tests and the test
equipment is therefore relatively inexpensive; the small specimen testing is recom-
mended to be carried out on servo-electric screw thread machines [21], which may
be more expensive to operate than dead-weight machines.

Conventional sub-sized uniaxial creep test specimens, Fig. 2a, have cross-sectional
areas and “test volumes” which are large enough to ensure that bulk material proper-
ties are obtained, provided the grain sizes or other significant metallurgical features
are small compared with the test volumes and cross-sectional areas. Practical expe-
rience indicates that the “test volumes” of the other small specimens are generally
large enough to produce accurate bulk material data.

4.2 Choice of Small Specimen Test Types

Various factors can influence the choice of which small specimen test type is to be
used for a particular application; these factors include the type of data required, e.g.
creep strain rate data or creep rupture data, the material to be tested, etc. The test
conditions may also be important factors in specimen type selection. Apart from the
sub-size uniaxial specimen type, of the other methods described in this paper, only
the SPT and TBT methods are capable of producing, directly, creep rupture data.
If the temperatures and the test environment for these specimens do not produce
excessive oxidation, then it would be acceptable to use these methods. However,
research is ongoing into the interpretation of the SPT data, to obtain corresponding
uniaxial data, and a generally accepted approach has not yet been developed (e.g.
[22]).

The ICT method can be used to obtain creep strain data, but this requires the use
of an indenter made from a material which has a creep strength which is two to three
orders of magnitude greater than that of the material to be tested. For example [7],
a Ni-base superalloy indenter has been used successfully to test P91, P92 and 316
stainless steel specimens. It is also necessary to avoid the possibility of environmental
effects by use of an inert gas or a vacuum, if necessary.

The SRT method can also be used to obtain creep strain data, but unlike the ICT
method, which required the indenter material to have very high creep strength, the
loading pins for the ICT tests can have a creep strength which is even lower than that
of the material to be tested. Hence, Ni-base superalloy materials can also be tested
and the tests will produce accurate data. Which of the ICT and SRT specimen types
is chosen to be used will depend on the strain magnitudes for which data is required.
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Fig. 8 Minimum creep strain
rate (MSR) data for 316
stainless steel at 600 ◦C and
2-1/4Cr1Mo weld metal at
640 ◦C, obtained from uniaxial
and impression creep tests
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4.3 Determination of Creep Data from Small Specimen Tests

4.3.1 Minimum Creep Strain Rate Data

Minimum creep strain rate data obtained from ICT specimen tests carried out on
0.5CrMoV steel, at 640 ◦C, and on a 316 stainless steel, at 600 ◦C, are given in Fig. 8
[5]. Also shown in Fig. 8 are the corresponding uniaxial creep test data. It can be
seen that, in all cases, excellent agreement exists between the uniaxial creep test
data and the corresponding ICT data. Figure 9a shows the results obtained from
uniaxial creep data and the corresponding SRT data for a P91 steel, at 650 ◦C. It
can be seen that the two sets of results agree very well. It should be noted that the
stress levels for which the ring test results were obtained produced easily measurable
deformations with high accuracy. These types of results would be at the limit of what
would be achievable, with acceptable accuracy and sensitivity of measurement, from
impression creep tests. Figure 9b shows the uniaxial and SRT test data for an Inco718
Ni-base superally, at 800 ◦C. It can be seen that use of the SRT method, even for a
highly creep resistant material (Ni-base), produces very good agreement between
the SRT and uniaxial data.

4.3.2 Creep Rupture Life Data

For SPTs, using the empirical relationship (Eq. (8)) for the stress, σ , which relates to
the corresponding stress in a uniaxial creep rupture test, the uniaxial rupture lifetimes
can be estimated by using a suitable Ks value. Taking the value of Ks to be 1.275,
creep rupture data, based on small punch tests of P91, at 650 ◦C has been obtained, see
Fig. 10, as compared with the corresponding uniaxial data. The agreement between
the two sets of data, on the log (σ ) verses log (tf) plots, is good.

Creep deformation curves obtained from two-bar specimen tests are shown in
Fig. 7 for a P91 steel at 600 ◦C. The creep rupture data obtained from these tests
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Fig. 9 a Minimum creep
strain rate data for a P91
steel at 650 ◦C obtained from
uniaxial and ring tests. b Min-
imum creep strain rate data
for a Nickel base superalloy at
800 ◦C obtained from uniaxial
and ring tests
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Fig. 10 Converted creep
rupture data (using Eq. (8),
with Ks = 1.275) obtained
from a SPT on a P91 steel
at 650 ◦C, compared with
corresponding uniaxial data
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are compared with the corresponding uniaxial data in Fig. 11. The results given in
Figs. 7 and 11 clearly show that the two-bar specimen type is capable of producing
the full uniaxial creep strain curve. Specific considerations have also been given to
the design and dimension ratio ranges to be used for these specimens; this will be
reported in a future paper.
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Fig. 11 Creep rupture data
obtained from two bar and
uniaxial specimens for a P91
steel at 600 ◦C
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5 Discussion

The material extraction process and small specimen manufacture is, in general, more
costly than is the manufacture of conventional uniaxial creep test specimens, but
not prohibitively so. Test equipment for standard creep testing has been in existence
for many decades and compared to the servo-electric types of test machines rec-
ommended by the authors [21], the cost is less. Testing, data recording and data
processing for the small specimen and conventional specimen types of test are of
similar complexity. Hence, although obtaining small specimen results is more costly
compared with uniaxial tests, this should not prohibit the use of small specimens,
especially as it may be the only practical and reliable method available to obtain
some types of creep data.

It has been shown that all of the small specimen test types described in this paper
are capable of providing very accurate data. In the case of two of the methods (SPT
and ICT) a great deal of test data and test experience exists and there is growing
confidence in the use of such methods for practical proposes. The SRT method is
relatively new and hence less data is available, but the results of the testing of a
Ni-base material (Fig. 9b) are particularly encouraging.

The concept of EGL (equivalent gauge length) is very useful for assessing the
relative sensitivities of the small specimen test methods. The EGLs of SPT and ICT
specimens are low whereas the SRT specimens have very high EGL which are of the
same order of magnitude as the gauge lengths of conventional uniaxial specimens.
These can be seen in Table 1.

Provided care is taken, there is no reason why oxidation effects (or the question
of whether bulk properties are being obtained) should cause a problem. Also, by
performing stepped load or stepped temperature tests, additional information such
as the creep stress exponent or the activation energy can be obtained [5, 23].

At this relatively early stage in the development of small specimen creep test
methods, there would be considerable benefit to be gained by collaborating with
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Table 1 Summary of correlation formulae

Specimen σnom η β βLnom (EGL)

Uniaxial
4P

πdGL
2 1 1 GL

ICT [4]
P

bidi
∼0.4 ∼2.0 ∼2di

SRT (elliptical) [6]
Pa

bod2 0.892 ∼0.3−0.7
4abβ

d

SRT (circular) [6]
PR

bod2 0.892 0.448
4R2 β

d

SPT* [22]
P

2 π Rsto

0.6 π

Ks

(
ap

Rs

)0.2

– –

Two-Bar [8]
P

2bd
∼1 ∼1.4 βLo

*Large deformation effects and complex geometry and deformation behaviour for the SPT make it
difficult to define material and deformation independent parameters

a view to producing codes of practice for performing small specimen tests, for all
specimen types.

6 Concluding Remarks and Future Work

Impression creep testing is suitable for determining minimum creep strain rate data,
particularly at relatively high stresses. It has been extensively used as a “ranking test”
and for determining creep properties for HAZs. Sophisticated measurement systems,
capable of measuring very small deformations, and high accuracy of temperature
control, are required. The potential effects of the impression deformation on the
conversion relationships may need to be considered.

The small punch technique involves the measurement of relatively large deforma-
tions. Significant local plasticity and complicated deformation modes occur during
the test. At present, there is no sound mechanics-based method which is universally
accepted for data interpretation. However, it is believed that creep rupture properties
could be related to small punch test results and the test method and the results could
be very useful for power plant material ranking assessment. Future research into the
understanding of the effects of the large initial plastic deformation and hardening on
the subsequent creep process is necessary.

The small, ring-type specimen test involves relatively large deformation in rela-
tion to its’ overall dimensions, which is associated with relatively low strains. The
method is suitable for determining minimum creep strain rate data, particularly at
relatively low equivalent uniaxial stresses. A unique application of this test type is
for obtaining data for highly creep resistant materials. Future developments involve
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the establishment of time-dependent geometric correction functions to compensate
for the effects of geometry changes during the deformation process.

The creep test data obtained from the small two bar specimen tests, for a P91
steel, have shown good correlation with corresponding uniaxial test data. This indi-
cates that this specimen type is capable of producing full uniaxial creep curves.
Further experimental data and validation are necessary; research is currently being
undertaken in order to provide the necessary data and validation.

Acknowledgments The authors wish to thank Brian Webster and Shane Maskill at the University
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Kelvin Modes Based Cubic Plasticity
and Induced Anisotropic Damage:
Application to Creep of AM1 Single Crystal

Roxane Marull and Rodrigue Desmorat

Abstract Modelling the anisotropic elasto-visco-plastic and damage behavior of
FCC single crystal superalloys is a crucial issue, especially in the aircraft engines
industry that widely uses such alloys for parts such as turbine blades. If micro-scale
written models based on the theory of crystal plasticity and developed at the slip
system level have already proved efficient in several loading cases, it is also possi-
ble to propose a novel meso-scale model based on Kelvin decomposition of Hooke
elasticity tensor which is here applied to the initial cubic symmetry of these superal-
loys. Three modes (and three corresponding stresses) are then highlighted and used to
build a yield criterion which is extended to plasticity and then to visco-plasticity; this
fully defined model is identified and validated on different loading cases. The Kelvin
modes decomposition also enables the full construction of an anisotropic damage
model (described by a second order tensor damage variable), from the definition of
a cubic effective stress ensuring the coupling of elasto-visco-plasticity (micro- or
meso-scale written) with damage, to the incremental damage law. Coupling is here
detailed and carried out at 950 °C for 〈001〉, 〈111〉 and 〈011〉 oriented creep (primary
to tertiary) of AM1 single crystal, thus validating the proposed visco-plastic and
damage models and corresponding parameters sets that are easily identified thanks
to the decoupling of Kelvin modes in crystalline orientations 〈001〉 and 〈111〉.
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1 Introduction

Modelling the (visco-)plastic behavior of anisotropic materials such as single crystal
superalloys is often a thorny but crucial issue. Different approaches that are written
at different scales were proposed at this aim, from mesoscopic models [1, 17] to
cristallographic-phenomenologic [2, 15, 24] or dislocation dynamics descriptive [6]
micro-scale models based on Schmid criterion. If micro-scale (visco-)plasticity mod-
els that rely on the FCC crystallographic structure of considered alloys have proved
efficient to describe the anisotropic behavior of this material class, mesoscopic mod-
els are usually insufficient for they do not take the specific cubic symmetry of FCC
single crystals into account. The authors have proposed in a previous work a yield
criterion based on Kelvin modes decomposition [22, 23] that accounts for cubic sym-
metry and that was successfully applied to different loading cases for CMSX2 single
crystal superalloy [5]. This yield criterion can be extended to plasticity and visco-
plasticity what is the aim of present paper. After having proposed a (visco-)plastic
model and having validated it in tension and in (primary and secondary) creep on
AM1 single crystal superalloy, we here once again use Kelvin modes decomposition
for cubic symmetry in order to define an effective stress and an anisotropic incre-
mental damage law extending Lemaitre law [10] and thanks to which anisotropic
tertiary creep of AM1 can be modeled.

2 Kelvin Decomposition for Cubic Material Symmetry

Kelvin decomposition [7, 19, 21–23] consists in the spectral decomposition of
Hooke fourth-order elasticity tensor EEE into eigenvalues Λ(I ) and eigentensors e(I )

so that EEE : e(I ) = Λ(I )e(I ). Eigentensors that are associated to a same eigenvalue
ΛK are grouped to define a projector

PPP
K =

∑
I/Λ(I )=ΛK

e(I ) ⊗ e(I ) (1)

and the projection of Cauchy stress σ on the K th mode defines in a unique and
objective manner the associated Kelvin stress by σ K = PPP

K : σ . There are up to six
Kelvin modes depending on considered material symmetry.

Kelvin decomposition applied to cubic symmetry exhibits three eigenvalues
(or Kelvin moduli) : ΛK=1 = 3K = E/(1 − 2ν), ΛK=2 = E/(1 + ν) and
ΛK=3 = 2G, with E the Young modulus, ν the Poisson ratio and G the shear
modulus. Kelvin stresses σ K = PPP

K : σ , obtained by projection of the stress tensor
thanks to Kelvin projectors that are detailed for cubic symmetry in [5, 7], are in fact
easily gained:

• σ K=1 = σ H is the hydrostatic stress 1
3 trσ 111 (associated to the Kelvin modulus

3K ),
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• σ K=2 = σ d is the diagonal part of the deviatoric stress in the natural anisotropy
basis (associated to the Kelvin modulus E/(1 + ν)),

• σ K=3 = σ d is the out of diagonal deviatoric tensor in this same basis (associated
to the Kelvin modulus 2G).

Two deviatoric stresses, σ d and σ d , are then naturally introduced from Kelvin analy-
sis with σ ′ = σ d +σ d and σ = σ ′ +σ H . Three modes (d, d and H ) associated with
objectively defined projectors PPP

d , PPPd and PPP
H have then been highlighted in the case

of initial cubic symmetry. Corresponding Kelvin stresses are the base for a novel
yield criterion.

3 Plasticity Model for FCC Single Crystals

3.1 Yield Function

A yield criterion usually defines the elasticity domain by f = f (σ ) < 0. In the case
of cubic material symmetry, f can then be expressed as f = f (σ d , σ d , σ H ) < 0.
Incompressible plasticity being often assessed for metallic materials, the hydrosta-
tic mode can be excluded from the criterion. Hosford [8] besides points out the
weaknesses of quadratic criteria regarding to cystallographic considerations. A non-
quadratic criterion is then proposed [5]

f =
(
σ d

eq

σy

)n

+ σ d
eq

σ y
− 1 (2)

denoting (.)eq =
√

3
2 (.)

′ : (.)′ the von Mises norm and where σy , σ y and n are the
three material parameters involved in the yield function. Their identification is easily
carried out by plotting for each temperature all available data (experimental points
and reliable modellings) in a novel and unique diagram with set of axes (σ d

eq , σ
d
eq).

The locus of experimental points and/or of reliable criteria (such as Schmid criterion
for example) can be approximated by a degree n polynomial and σy (resp. σ y) is the

value of σ d
eq (resp. σ d

eq ) when σ d
eq = 0 (resp. σ d

eq = 0), as illustrated in Fig. 1 in the
case of CMSX2 tension-shearing at room temperature.

This novel Kelvin modes based yield criterion has been successfully applied to
oriented tension (yield stress vs. solliciation orientation between 〈001〉 and 〈011〉
orientations) and tension-shearing of CMSX2 FCC superalloy [5].
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Fig. 1 Yield surface experimental data and proposed Kelvin modes based yield criterion plotted in
the σ d

eq versus σ d
eq diagram (CMSX2 at room temperature, experimental data after [18])

3.2 Introduction of Isotropic Hardening

Previously defined and validated Kelvin modes based yield criterion is naturally the
basis for a full plasticity model that can be built by normality, firstly by introducing
isotropic hardening. Two isotropic hardening variables homogeneous to a strain, r
and r , associated to hardenings R and R are then defined in the thermodynamic
framework [13] so that the hardening laws are R = R(r) and R = R(r). A yield
function that accounts for hardening is

f =
(

σ d
eq

σy + R

)n

+ σ d
eq

σ y + R
− 1 (3)

and plastic multiplier λ̇ is related to the rates of the internal variables r and r by the
generalized normality rule (associated plasticity model)

ṙ = −λ̇ ∂ f

∂R
and ṙ = −λ̇ ∂ f

∂R
(4)

It can be noticed here that the yield criterion is dimensionless, the plastic multiplier
being homogeneous to MPa/s. It is determined in the plasticity modelling by the
consistency condition f = 0 and ḟ = 0 and will be obtained in the visco-plasticity
modelling from a viscosity law f = fv(ṙ , ṙ) > 0 . The plastic strain rate is also
derived by normality

ε̇ p = λ̇
∂ f

∂σ
= 3

2
λ̇n

(σ d
eq)

n−1

(σy + R)n
σ d

σ d
eq

+ 3

2
λ̇

1

(σ y + R)

σ d

σ d
eq

= ε̇ pd + ε̇ pd (5)
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and is naturally parted into a “diagonal deviatoric” ε̇ pd = PPP
d : ε̇ p and a “non-

diagonal deviatoric” ε̇ pd = PPP
d : ε̇ pd part in the natural anisotropy basis.

In order to take the interaction between hardenings relative to different Kelvin
modes into account (following the modelling proposed by [15] where an interaction
between the hardenings relative to different slip systems is introduced), an interaction

function g = g(pd pd) = g∞(1 − e−binter

√
pd pd

) that is equal to zero for sheer d
and d modes (i.e. 〈001〉 and 〈111〉 sollicitations) can finally complete the modelling:

f =
(

σ d
eq

σy + R

)n

+ σ d
eq

σ y + R
− 1 − g (6)

with ṗd =
√

2

3
ε̇ pd : ε̇ pd and ṗd =

√
2

3
ε̇ pd : ε̇ pd (7)

It is interesting to notice that 〈001〉 and 〈111〉 oriented tensions exhibit a full
decoupling of deviatoric modes d and d. In these very cases, the yield function
easily reads

f 〈001〉 =
(

σ d
eq

σy + R

)n

− 1 in 〈001〉 since σ d
eq = 0 (8)

f 〈111〉 = σ d
eq

σ y + R
− 1 in 〈111〉 since σ d

eq = 0 (9)

This decoupling allows an easy identification of hardenings R and R. This identi-
fication has been led for AM1 superalloy for which tensile curves are given by [20] at
950 ◦C. Although experimental curves result from tensile tests at ε̇ = 16.6×10−5s−1,
we will here consider in a first approach a plastic (without viscosity) model identifi-
cation ( f = 0).

For 〈001〉 oriented tension, i.e. when σ d = 0, we have from (6) σ d
eq = σy +R = σ.

From the 〈001〉 tensile curve saturating shape, isotropic hardening R is chosen equal
to R = R∞

(
1 − e−br

)
. Plastic strain rate is easily found equal to ε̇ p〈001〉 = ṙ in

this uniaxial case so that

σ = σy + R∞
(

1 − e−bε p
)

for 〈001〉 oriented sollicitation (10)

what enables an analytical plotting of corresponding curve (〈001〉 full line of Fig. 2)
by identifying parameters σy , R∞ and b on the experimental curve (pink circle
symbols, Fig. 2). A similar process for 〈111〉 oriented tension, i.e. for σ d = 0 leads to

σ = σ y + R∞
(

1 − e−bε p
)

for 〈111〉 oriented sollicitation (11)
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Fig. 2 Experimental (circle symbols) and modeled (full lines) tensile curves of 〈001〉 (pink), 〈111〉
(blue) and 〈011〉 (black) oriented AM1 superalloy at 950 ◦C

and corresponding curve is then analytically plotted (〈111〉 full line of Fig. 2) by
identifying parameters σ y , R∞ and b on the experimental curve (blue circle symbols,
Fig. 2).

The model response for 〈011〉 oriented tension fits the experimental curve (respec-
tively black full line and circle symbols, Fig. 2) by adjusting the parameters involved
in the interaction function g. Table 1 provides the value of the model parameters.

The proposed Modelling appears to fit very well experimental data and allows to
represent the plastic anisotropy of AM1 superalloy.

4 Extension to Visco-Plasticity

Visco-plasticity is characterized by condition f = fv > 0 where f is the yield
criterion defined at Eq. 3 and fv is the viscosity function that is here dimensionless
and defined as

fv =
[

1 +
(

ṗd

ε̇0

)1/N
]n

− 1 +
(

ṗd

ε̇0

)1/N

− 2ki

(
ṗd

ε̇0

) n
2N

(
ṗd

ε̇0

) 1
2N

(12)

where ṗd and ṗd are defined by Eq. 7. Such a function is equivalent, for pure
tension oriented 〈001〉 and 〈111〉 (resp. modes d and d) to Lemaitre- [11] or

Table 1 Parameters for Kelvin modes based plasticity model at 950 ◦C for AM1 superalloy

Temperature (◦C) σy (MPa) R∞ (MPa) b σ y (MPa) R∞ (MPa) b n g∞ binter

950 400 320 600 375 85 100 4 0.4 10000
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Fig. 3 Experimental (circle symbols) and modeled (full lines) primary and secondary creep curves
of 〈001〉 (pink), 〈111〉 (blue) and 〈011〉 (black) oriented AM1 superalloy at 950 ◦C

Johnson-Cook-type [9] multiplicative hardening-viscosity law. Here again, an
interaction between modes is proposed so that parameter ki allows a better mod-
elling of secondary creep for mixed modes. Five new viscosity parameters have been
introduced (ε̇0, ε̇0, N , N and ki ) that can be easily identified, once again thanks to
the decoupling of modes d and d.

The full visco-plasticity model is validated on AM1 creep at 950◦ C for a 300 MPa
applied stress. All involved parameters (except n and ki ) can be deduced, thanks to
the deviatoric modes decoupling, from already known parameters of isotropic or
crystallographic-phenomenologic models. We have then chosen here to use as much
as possible these previously identified parameters [3] and to compare experimental
results from this reference to the modelling we propose. The interaction of hardenings
through function g is here neglected (as the interaction between slip systems was
also neglected for the micro-scale model identification) but the interaction in the
viscosity law is kept and used to better model 〈011〉 creep. Resulting curves are
shown in Fig. 3.

Here again, modelling is quite satisfying. The creep response for orientation 〈011〉
could be better reproduced by modelling the primary creep with the consideration
of the hardening interaction function g. Tertiary creep is not yet modeled and it is
the subject of next section which introduces the concept of anisotropic continuous
damage.

5 An Anisotropic Damage Model for Initially Cubic Materials

Coupling of visco-plasticity with damage is defined by the principle of strain equiv-
alence [10]

σ = ẼEE : εe ⇐⇒ σ̃ = EEE : εe = EEE : (ε − ε p) (13)
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with the elasticity law deriving from the free enthalpy ε − ε p = εe = ρ
∂ψ∗

e
∂σσσ

and the
damage variable DDD being a second order tensor allowing an anisotropic description
of induced damage [16]. A delicate issue of this study is the definition of an effective
stress for anisotropic damage that is pertinent to cubic symmetry. The Kelvin modes
based effective stress proposed in reference [4] seems satisfying but improvable so
that we here propose

σ̃ =
(

HHHσ d HHH
)d +

(
HHHσ d HHH

)d +
[ 〈σH 〉+

1 − ηH DH
+ 〈σH 〉−

]
111 (14)

= σ̃ d + σ̃ d + σ̃ H (15)

with HHH = (111 − DDD)−
1
2 and HHH = (111 − ηDDD)−

1
2 (16)

where σH = 1
3 trσ , DH = 1

3 trD and where ηH and η are respectively hydrostatic
sensibility and orientation sensibility parameters. This thus defined effective stress
derive form a thermodynamic state potential [4], is symmetric and independent from
elasticity parameters and enables an easy coupling of plasticity and damage by inject-
ing σ̃ instead of the stress tensor σ into the chosen plasticity criterion, here the Kelvin
modes based one,

f =
[
(σ̃ )deq

σy + R

]n

+ (σ̃ )deq

σ y + R
− 1 − g (17)

and the full coupled model is then built by normality. Positive and negative parts of
the trace of stress tensor < trσ >+ = max(trσ , 0) and < trσ >− = min(trσ , 0)
are used instead of classical term trσσσ

1−ηH DH
of [12] to model a damage that is weaker

in compression (in negative stress triaxiality cases) than in tension (in positive stress
triaxiality cases).

A rate form anisotropic damage law accounting for the stress triaxiality effect and
respectful of the material initial cubic symmetry is proposed [14]

ḊDD =
⎡
⎢⎣(1 + ν)

(
σ̃ d

)2

2E S
+

(
σ̃ d

)2

4GS
+ 〈σ̃H 〉2+ 111

6K SH

⎤
⎥⎦

s

ṗcub (18)

where ṗcub =
√

2
3 (ε̇

pd : ε̇ pd + c ε̇ pd : ε̇ pd) is a cubic plastic strain rate, with para-

meter c weighting the respective contributions of modes d, and d and where s, S, S
and SH are the damage parameters. This formulation involves elasticity parameters
E, ν and G in such a manner that a trḊDD is, in the isotropic particular case with
exponent s = 1, equal to Ḋ defined by Lemaitre law Ḋ = (Y

S

)
ṗ when only one

deviatroric mode d or d is activated.
This damage model is here validated for creep of AM1 superalloy at 950 ◦C. The

coupling with visco-plasticity indeed allows to complete the creep curves shown
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Fig. 4 Experimental (circle symbols) and modeled (full lines) creep lifetime curves of 〈001〉 (pink),
〈111〉 (blue) and 〈011〉 (black) oriented AM1 superalloy at 950 ◦C

Fig. 3 by adding the tertiary creep part. For such a monotonic loading, the damage
threshold can be defined in terms of plastic strain εpD . It is identified from experi-
mental creep curves [3]. A parameters set for damage is identified thanks to creep
lifetime curves for orientations 〈001〉, 〈111〉 et 〈011〉 (see Fig. 4), parameters S and
SH (here chosen equal to S) identified with 〈001〉 oriented lifetime curve and S
identified thanks to 〈111〉 oriented lifetime curve. Parameters η and c are adjusted to
fit the 〈011〉 lifetime data. Finally, coupling visco-plasticity and damage enables the
obtention of full creep curves shown Fig. 5, the fracture occuring when damage DI

reaches the critical value Dc, i.e. when the maximum principal value of the damage
tensor reaches a critical value.

Figures 4 and 5 present respectively the lifetime (rupture defined by D = Dc)
for different stress levels and full creep curves at 300 MPa and give a satisfying
modelling of the three oriented creep curves. Let us recall that considered lifetime
corresponds to the instant where the maximum damage principal value reaches the

Fig. 5 Experimental (circle symbols) and modeled (full lines) full creep curves of 〈001〉 (pink),
〈111〉 (blue) and 〈011〉 (black) oriented AM1 superalloy at 950 ◦C



226 R. Marull and R. Desmorat

critical value D = Dc which is here taken equal to Dc = 0.2 whatever the loading
direction. It appears that simulated curves are in good agreement with experimental
creep lifetimes and creep curves at 300 MPa.

6 Conclusion

The Kelvin modes decomposition has proved efficient to define a full elasto-
(visco-)plasticity model for FCC superalloys that has been identified and validated
in several loading cases. The coupling with anisotropic damage, insured by a cubic
effective stress, has been successfully established and carried out to describe tertiary
creep.
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A Grand Master Curve Approach
for Off-Axis Creep Rupture Behavior
of Orthotropic Fiber Composites
at Different Temperatures

Masamichi Kawai

Abstract A new time-temperature extrapolation method is proposed for the off-axis
creep rupture behavior of unidirectional polymer matrix composites at different stress
levels over a range of temperature. It is developed using the framework of the classic
Kachanov-Rabotnov damage model in conjunction with a modified temperature shift
factor of the Arrhenius type that takes into account a rapid degradation in the strength
of a polymer in the vicinity of its glass transition temperature. A particular emphasis
is placed on establishment of an analytical formula for extrapolating creep rupture
data that depend not only on temperature but also on the direction of creep loading.
Validity of the proposed master curve approach to prediction of anisotropic creep life
of a unidirectional polymer matrix composite is evaluated by comparing calculated
and experimental results. It is also shown that the time-temperature extrapolation
method suggests a new and general form of multiaxial creep failure criterion for
orthotropic polymer matrix composites.

1 Introduction

Matrix dominated creep rupture is the key for accurate evaluation of the durability
of polymer matrix composite (PMC) laminates [1]. To understand and model the
matrix dominated creep rupture of PMC laminates, it is necessary to observe the
off-axis creep rupture behavior of unidirectional PMC laminates for various fiber
orientations over a range of stress and temperature. For a class of unidirectional PMC
laminates, the off-axis creep rupture behavior has already been observed [2, 3]. In
addition to these studies, the present author also examined the short-term off-axis
creep rupture behavior of a unidirectional T800H/2500 carbon/epoxy laminate for
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various fiber orientations at 100 ◦C [4]. A power-law relationship was observed in the
experimental data [4] for the unidirectional composite, regardless of fiber orientation.
The creep rupture time was inversely proportional to the minimum creep rate for all
the fiber orientations. The Monkman-Grant plots [5] of the off-axis creep rupture
data did not fall in a single curve, but they were almost parallel with each other.
The normalized master rupture curve approach developed in the previous study [4]
was successful in coping with the fiber orientation dependence of the off-axis creep
rupture data obtained from the short-term tests at the test temperature of 100 ◦C.

Only a limited amount of data was available for the creep rupture behavior of uni-
directional PMC laminates under off-axis loading conditions over a wide range of
temperature. Thus, the temperature dependence of off-axis creep rupture behavior in
unidirectional PMC laminates has not sufficiently been understood, and an efficient
procedure for extrapolating off-axis creep rupture data to a range of different tem-
peratures and longer periods of lifetime has not been established. These facts suggest
that further basic investigations on the matrix dominated creep fracture behavior of
unidirectional PMC laminates is required with a view to developing an engineering
creep rupture life prediction method that takes account of their temperature and fiber
orientation dependence.

In an earlier study [6], therefore, the tensile creep rupture behavior of unidirec-
tional carbon/epoxy T800H/2500 laminate under off-axis loading conditions [4] was
further examined at different temperatures. Development of a phenomenological
creep rupture model that takes into account the temperature and fiber orientation
dependence of the off-axis creep rupture behavior of the unidirectional CFRP lami-
nate was also attempted. In this attempt, the Larson-Miller (LM) parameter [7] was
successfully used to identify a master curve for the off-axis creep rupture behav-
ior of the unidirectional composite. The master curve identified was described by
means of a linear relationship of the non-dimensional effective stress [8] and the
LM parameter. The use of such a linear relationship in the previous study [6] for
describing a master creep rupture curve, however, implicitly assumes that the slope
of creep rupture curve is proportional to temperature; i.e. ∂σ ∗

C/∂ ln tR ∝ T . The
assumption that was implicitly made in the formulation in the previous study [6] was
in fact inconsistent with the nonlinear temperature dependence that was observed in
experiments [6].

In the present study, a new time-temperature extrapolation method is proposed
for the off-axis creep rupture behavior of a unidirectional polymer matrix composite
at different stress levels over a range of temperature. It is developed using the classic
Kachanov-Rabotnov damage model [9, 10] in conjunction with a new temperature
shift factor of the Arrhenius type that takes into account a rapid degradation in strength
of a polymer in the vicinity of its glass transition temperature. A particular emphasis
is placed on establishing an analytical formula for extrapolating creep rupture data
for polymer matrix composites that depend not only on temperature but also on the
orientation of reinforcing fibers. The validity of the proposed master curve approach
to prediction of anisotropic creep life of a unidirectional polymer matrix composite
is evaluated through comparison with the experimental results obtained in a previous
study [6]. It is also shown that the time-temperature extrapolation method developed
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in this study suggests a more general form of multiaxial creep failure criterion for
orthotropic polymer matrix composites.

2 Off-Axis Creep Rupture Behavior of Unidirectional
Composites

The characteristic features of the off-axis creep rupture behavior of a unidirec-
tional carbon/epoxy laminate that were observed in the previous study [6] are briefly
reviewed below.

2.1 Off-Axis Creep Rupture Curves

The off-axis creep rupture data that were obtained at 130 ◦C for the different fiber
orientations of θ = 10, 30, 45 and 90 ◦ are shown in Fig. 1, as log-log plots of creep
stress σC against rupture time tR . In Fig. 1, the static tensile strengths are plotted by
symbols on the vertical axis crossing at the rupture time tR = 10−3 h, since the time to
static tensile fracture at the constant displacement rate of 1.0 mm/min was in the order
of 10−3 h regardless of test temperature. It is obvious that the off-axis creep rupture
strength becomes lower as the fiber orientation angle increases, demonstrating a
strong fiber orientation dependence of the off-axis creep rupture time. All the off-axis
creep rupture data for the different fiber orientations approximately fall on a single
straight line in the log-log plot over the range of creep rupture time up to 10 h. This
feature is common to all the results that were obtained at different test temperatures.
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Fig. 1 Off-axis creep rupture data at 130 ◦C
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The power-law relationships that were fitted to the plotted data for different fiber
orientations are almost parallel with each other. Therefore, the off-axis creep rupture
data for these fiber orientations can be described using a power-law relationship

σ
q1
C tR = C1 (1)

where the stress exponent q1 and the coefficient C1 stand for the slope and intercept
of the straight line fitted to the log-log plot of creep rupture data, respectively.

2.2 Normalized Off-Axis Creep Rupture Curves

The off-axis creep rupture data are re-plotted using the creep stress levels,σC/σB(exp),
in which σC and σB(exp) are the creep stresses and the static tensile strength, respec-
tively. The results are shown in Fig. 2 for the test temperature of 130 ◦C. It can clearly
be observed that the normalized off-axis creep rupture data are distributed within a
narrow range for all the fiber orientations. It is also seen that the normalized creep
rupture data can approximately be represented by a single straight line over the range
of rupture time. This feature is common to the normalized plots of the creep rupture
data for all test temperatures. This observation demonstrates that the fiber orientation
dependence of off-axis creep rupture strength can approximately be removed using
normalized creep stress level, regardless of the test temperature. In other words, the
use of normalized creep stress level allows construction of a master rupture curve
(MRC) for off-axis creep data that is independent of off-axis fiber orientation at each
of the test temperatures. These facts justify that the normalized creep stress level
becomes a useful measure to cope with the anisotropic creep rupture behavior of the
unidirectional CFRP laminate over the range of test temperature below 130 ◦C.
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The straight line fitted to the normalized creep rupture data at a given test tem-
perature, which represents a master creep rupture curve for the temperature that is
independent of off-axis fiber orientation, can be described by the following formula:

(
σC

σB(exp)

)n

tR = t0
R (2)

where the stress exponent n stands for the slope of the fitted straight line, and t0
R is

a reference time associated with the condition σC = σB(exp).
The slope of the normalized creep rupture curve depends on temperature, and

the temperature dependence of the slope can be described by means of a power-law
relationship

1

n(T )
= AT m (3)

where A and m are material constants.

3 Creep Rupture Life Extrapolation Method Based
on Larson-Miller Parameter

The off-axis creep rupture data for the unidirectional composite depend not only on
temperature but also on fiber orientation. Therefore, we need simultaneous scaling
of stress and rupture time, in general, to identify a single master relationship that is
approximately independent of temperature as well as of fiber orientation in a specified
temperature range.

3.1 Stress Scaling

A theoretical counterpart of the experimental creep strength ratio σC/σB(exp) may be
identified with the non-dimensional effective stress σ ∗ [8] that is based on the Tsai-
Hill static failure criterion [11]. For the case of plane stress, it can be expressed as

σ ∗ =
√(σ11

X

)2 − σ11σ22

X2 +
(σ22

Y

)2 +
(τ12

S

)2
(4)

where the stress components involved are taken with respect to the in-plane principal
axes of material anisotropy, and X and Y represent the longitudinal and transverse
strengths and S denotes the shear strength related to the principal fiber coordinate
system. Note that 0 ≤ σ ∗ ≤ 1, and the static failure occurs when σ ∗ = 1.
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3.2 Time Scaling

In order to build a grand master curve for off-axis creep rupture data at differ-
ent temperatures, a time-temperature extrapolation parameter is required. One of
the commonly used time-temperature parameters (TTPs) is the Larson-Miller (LM)
parameter [7] defined as

PL M = T (C + log tR) (5)

where T is test temperature in K , tR is time to rupture in hours, and C is a material
constant called the Larson-Miller constant.

3.3 An Extrapolation Formula

A master rupture curve for off-axis creep may be formulated by means of the non-
dimensional effective stress and the Larson-Miller parameter in the functional form

σ ∗
C = f (PL M ) (6)

In the previous study [6], the linear relationship of the following form

σ ∗
C(RT ) = a + bPL M (7)

was used to extrapolate the off-axis creep rupture data. The solid line in Fig. 3 indi-
cates the master creep rupture curve identified by fitting Eq. (7) to the normalized
creep rupture data for all fiber orientations at different temperatures. It is seen that a
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good agreement between the theoretical and experimental grand master creep rupture
behaviors has been achieved.

4 A Damage Mechanics Based Time-Temperature
Extrapolation Method

A more general procedure for extrapolating short-term off-axis creep rupture data is
developed on the basis of the classic Kachanov-Rabotnov damage mechanics model
for creep failure [9, 10]. It is formulated using a modified temperature shift factor of
the Arrhenius type.

4.1 Temperature-Dependent Damage Evolution

Temperature affects the scale of time. To define an engineering creep parameter that
is consistent with damage mechanics modelling of creep failure and to establish
the associated extrapolation method, it is assumed that similar to thermorheologi-
cally simple materials, the effect of temperature on time is described by means of a
temperature shift factor aTre f (T ), defined as

dtT =Tre f = 1

aTre f (T )
dtT =T (8)

where dt is a time increment, and T and Tre f denote the current temperature and a
reference temperature, respectively. The temperature shift factor meets the condition
aTre f (Tre f ) = 1.

A representative form of temperature shift factor that meets the condition aTre f

(Tre f ) = 1 can be given as

aTre f (T ) = exp

[
H

R

(
1

T
− 1

Tre f

)]
(9)

Assuming the temperature-time transformation given by Eq. (8) with Eq. (9), we can
describe a temperature-dependent damage evolution law of the Kachanov-Rabotnov
type in the following form:

dω

dt
= K

(
1

1 − ω

)k

f (σ ∗
Tre f
)

1

aTre f (T )
(10)

where σ ∗
Tre f

is the non-dimensional effective stress defined as
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σ ∗
(Tre f )

=
√√√√

(
σ1

X(Tre f )

)2

− σ1σ2

X2
(Tre f )

+
(

σ2

Y(Tre f )

)2

+
(

τ12

S(Tre f )

)2

(11)

where X(Tre f ), Y(Tre f ), and S(Tre f ) are the in-plane principal strengths at a reference
temperature.

Integrating Eq. (10) under a constant state of stress and temperature with the initial
condition (t = 0, ω = 0) and assuming the creep rupture condition ω = 1, we can
derive the following expression of creep rupture time tR :

log(1 + k)K + log tR = −
[

log f (σ ∗
Tre f
)+ log

1

aTre f

]
(12)

Substitution of the temperature shift factor given by Eq. (9) yields

log f (σ ∗
Tre f
) = − 1

T

[(
T

Tre f
− 1

)
a + PL M

]
(13)

where a = (H/R) log e and C = log{(1 + k)K }.
The experimental results [6] suggest assuming the power-law stress dependence

of creep rupture time

f (σ ∗
Tref
) = σ ∗n(T )

Tref
(14)

Then, we can obtain the following master curve for off-axis creep rupture

log σ ∗
Tre f

= −P∗
0 (15)

where

P∗
0 = 1

T n(T )

[
PL M +

(
T

Tre f
− 1

)
a

]
(16)

Note that P∗
0 defines a new temperature-time extrapolation parameter.

4.2 Consideration of Glass Transition Temperature

A rapid change in temperature dependence in the vicinity of the glass transition
temperature Tg can be taken into account by assuming a modified temperature shift
factor of the following form:
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aT = exp

[
H

R

(
1

T
− 1

Tre f

)
1

L(T )

]
(17)

where

L(T ) = −
(

1 − T

TM

)c
{

1 −
(

T

TM

)d
}

(18)

In Eq. (18), TM stands for a maximum temperature at which a given composite loses
its load bearing capability, and it may be expressed as TM = Tγ + β. Then, the
temperature-time extrapolation formula can be generalized into the following form:

log σ ∗
Tre f

= −P∗ (19)

where P∗ is a generalized temperature-time extrapolation parameter, and it is
defined as

P∗ = 1

T n(T )

[
PL M + 1

L(T )

(
T

Tre f
− 1

)
a

]
(20)

Note that by elimination of L(T ), Eq. (20) can be reduced to Eq. (16).
Figure 4 shows a master curve for off-axis creep rupture plotted using the gen-

eralized temperature-time extrapolation parameter. It is seen that a single master
relationship can be identified over a range of temperature below Tg .
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5 A Multiaxial Creep Failure Criterion

The temperature-time extrapolation formula, Eq. (19), developed in this study sug-
gests the principal creep strengths

X (P∗) = X(Tre f )10−P∗
(21)

Y (P∗) = Y(Tre f )10−P∗
(22)

S(P∗) = S(Tre f )10−P∗
(23)

Replacing the principal static strengths in the Tsai-Hill static failure criterion with
these principal isochronous strengths that are functions of the temperature-time para-
meter P∗, we can define the following creep failure criterion:

f =
(

σ1

X (P∗)

)2

− σ1σ2

X (P∗)2
+

(
σ2

Y (P∗)

)2

+
(

τ12

S(P∗)

)2

= 1 (24)

Note that Eq. (19) can be derived from this creep failure criterion for the case of
simple off-axis loading of coupon specimens.

6 Conclusions

A procedure for establishing an enginerring creep data extrapolation formula by
means of a simple damage law of the Kachanov-Rabotnov type was proposed. Fol-
lowing this procedure, we developed a new engineering time-temperature extrapola-
tion formula for the off-axis creep rupture behavior of unidirectional polymer matrix
composites at different stress levels over a range of temperature. It can cope not only
with the temperature dependence but also with the fiber orientation dependence of
the off-axis creep rupture behavior of unidirectional CFRP laminates. It was proved
that the use of the time-temperature extrapolation formula developed in the present
study is equivalent to the use of a multiaxial creep failure criterion for orthotropic
polymer matrix composites that is based on the principal isochronous strengths.
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Recent Advances in the Processing
and Properties of Ultrafine-Grained Metals
Prepared Using Severe Plastic Deformation

Terence G. Langdon

Abstract Conventional thermo-mechanical processing provides the potential for
producing materials with very small grain sizes, typically of the order of ∼5–10 µm.
However, recent experiments have demonstrated that much smaller grain sizes may
be attained, within the submicrometer or nanometer range, through the application
to the material of severe plastic deformation (SPD). In processing by SPD, the mate-
rial is deformed to a high strain in the presence of a hydrostatic pressure and this
introduces a high density of dislocations which re-arrange into a low energy con-
figuration and thereby produce arrays of grain boundaries. Typical SPD processes
include equal-channel angular pressing (ECAP) and high-pressure torsion (HPT).
Materials processed using SPD have numerous advantages over coarse-grained mate-
rials including exceptionally high strength and a potential for use in rapid superplas-
tic forming operations at elevated temperatures. Accordingly, processing by SPD
has become a major research area within the field of Materials Science over the
last decade. This paper examines some of these more recent developments with an
emphasis on processing using HPT.

1 Introduction

In polycrystalline metals, the grain size plays a major role in dictating the proper-
ties of the material. Specifically, materials become stronger when the grain size is
reduced and, in addition, materials with small grain sizes exhibit high superplastic
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ductilities when deformed at elevated temperatures. This trend forms the basis for
the commercial superplastic forming industry in which complex shapes and curved
parts are easily formed from superplastic sheet metals [1]. The superplastic form-
ing industry is now more than forty years old and it processes thousands of tons of
metallic parts every year for a range of applications including in the aerospace and
automotive sectors. The materials used in superplastic forming are obtained through
thermo-mechanical processing in which the metals are subjected to straining and
heat treatments in order to produce grain sizes that are typically in the range of
∼5–10 µm. In practice, thermo-mechanical processing is generally not capable of
producing materials with grains sizes smaller than 1 µm.

There are two basic procedures for producing metals having grain sizes of <1 µm
[2]. The first procedure, known as the “bottom-up” approach, assembles polycrys-
talline metals from individual atoms using deposition techniques or from nanoscale
building blocks produced, for example, by high-energy ball milling. However, these
techniques have the disadvantage that the samples are very small, they are suitable
only for use in micro-devices and they contain at least a small amount of residual
porosity. The second procedure is the “top-down” approach in which bulk fully-dense
coarse-grained polycrystalline solids are processed by severe plastic deformation
(SPD) to introduce a high dislocation density without any concomitant change in
the cross-sectional dimensions of the specimens. Using this approach, the disloca-
tions are able to re-arrange into arrays of high-angle grain boundaries and the grain
sizes are typically in the submicrometer range of 100–1000 nm or even in the true
nanometer range of <100 nm. Several different SPD procedures are now available
[3, 4] but most attention has been devoted to date to the procedures of equal-channel
angular pressing (ECAP) [5] and high-pressure torsion (HPT) [6]. Of these two pro-
cedures, HPT processing is especially attractive because it introduces grains which
are smaller than those produced using ECAP [7].

Processing by HPT has a long history dating back to the work of Nobel Laureate
Professor P.W. Bridgman conducted at Harvard University in the 1930s and 1940s
[8, 9]. However, it was only much later, with the advent of sophisticated instruments
for analytical microscopy, that HPT processing was recognized as a tool that may be
used to introduce exceptional grain refinement into polycrystalline solids [10–12].
Accordingly, there is a considerable current interest in the effects of HPT processing
and many investigations of HPT materials are now underway at various laboratories
around the world. The objective of this paper is to provide a description of the HPT
process and to examine some of the more recent developments.

2 Principles of Processing by HPT

The principle of HPT processing is to subject a specimen to a high applied pressure,
P, and concurrent torsional straining. A typical HPT facility is shown in Fig. 1 [13].
Samples are generally in the form of thin disks, typically with diameters of 10 or
20 mm, although there are some recent experiments describing HPT processing using
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Fig. 1 In HPT processing,
a sample, in the form of a
disk, is subjected to a pressure
P and concurrent torsional
straining [13]

small cylindrical samples [14–16]. The disk is then placed in a depression on the
lower anvil, the two anvils are brought in to position, the pressure is applied, and one
anvil is rotated to provide the torsional straining. This type of processing is generally
termed quasi-constrained HPT because the sample is held between two anvils but
there is a small gap between the anvils so that there is some limited outflow of material
during processing [17, 18]. This contrasts with constrained HPT where the sample
is held rigidly within the anvil without any outward flow and unconstrained HPT
where the sample is free to flow outwards at all points during processing [19].

When a disk is processed by HPT, it can be shown that the imposed strain is
proportional to (Nr/h) where N is the total number of revolutions in HPT, r is the
radius of the disk and h is the disk height or thickness [20, 21]. It follows directly from
this relationship that the strain varies with the radial distance from the center of the
disk and at the center, where r = 0, the strain is zero. This calculation suggests that
the strain imposed in HPT will be very inhomogeneous, with a high strain around the
edge of the disk and an absence of any strain at the center. Based on this calculation,
there have been several attempts to evaluate the degree of inhomogeneity after HPT
processing. Generally, these evaluations are based on taking measurements of the
hardness values across the disks after HPT processing. As will shown in the following
section, these measurements reveal a potential for achieving an exceptionally high
level of homogeneity in HPT.

3 Potential for Achieving Homogeneity After Processing by HPT

The degree of homogeneity occurring in samples of Ni after processing by HPT was
explored in 2003 and the results are shown in Figs. 2 and 3 [7]. These plots show
the values of the microhardness in a three-dimensional display where the lower axes
denote the positions on the disks having diameters of 10 mm. In Fig. 2 the results are
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Fig. 2 Hardness values in Ni processed by HPT through 5 turns at P = 1.0 GPa [7]

Fig. 3 Hardness values in Ni processed by HPT through 5 turns at P = 9.0 GPa [7]

shown for an applied pressure of 1.0 GPa after 5 turns and in Fig. 3 the results are
again for 5 turns but with an applied pressure of 9.0 GPa. In Fig. 2 there is a clear
depression in the center so that the hardness levels are high around the edge whereas
in Fig. 3 there is a much higher level of homogeneity across the disk.

The important result from these early experiments was that the level of homo-
geneity increases with increasing pressure and/or with increasing numbers of turns.
Contrary to expectations based on the simple relationship for the imposed strain in
HPT, there is a potential for achieving a reasonably high level of homogeneity pro-
vided the pressure is sufficiently high and the torsional straining is applied through
a sufficient number of turns. This unexpected result was subsequently confirmed in
a theoretical analysis of HPT using strain gradient plasticity [22].

An important contribution followed shortly thereafter in experiments conducted
in 2004 on an austenitic steel processed by HPT [23]. In general, these experiments
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Fig. 4 Plot of microhardness against shear strain for disks of an austenitic steel processed under a
pressure of 5.3 GPa through 0.17 to 16.0 turns [23]

recorded similar data to the results presented earlier in Figs. 2 and 3 for pure Ni but
the analysis was extended by showing that all of the datum points may be reasonably
correlated in a single plot of microhardness against the shear strain. This plot is
given in Fig. 4 and it shows data recorded under a pressure, P , of 5.3 GPa for various
numbers of turns from 0.17 to 16.0 [23]. All results fall on a single line and there is
an initial sharp increase and then, after a shear strain of ∼50, a horizontal portion
where the results have achieved a steady-state condition.

The data in Fig. 4 suggest there will be a saturation in the grain size produced by
HPT processing such that, for any selected processing conditions, the grain size will
be refined to a well-defined value. There have been several discussions on the para-
meters influencing this saturation condition [24, 25] and there is good experimental
evidence that it is dependent upon the stacking fault energy of the material [26, 27].
This suggests it may be of a similar form to the model developed for the minimum
grain size that may be achieved by the synthesis of bulk nanocrystalline materials by
ball milling [28].

4 Experimental Examples of Hardness Variations in HPT

Examples are shown in Figs. 5 and 6 for hardness data obtained using an Al-6061
alloy processed by HPT. In Fig. 5, the hardness values are shown as a function of
the position on the disk with the lower line representing the unprocessed condition
and the points for N = 0 representing the application of an applied stress of 4.0 GPa
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Fig. 5 Values of microhardness versus positions on the disk of an Al-6061 alloy processed by HPT
at 4.0 GPa [29]

Fig. 6 Hardness versus equivalent strain for an Al-6061 alloy processed by HPT [30]

for 1 min without any torsional straining [29]. In Fig. 6, individual hardness values
are plotted against the equivalent strain for an Al-6061 alloy tested under an applied
pressure of 6.0 GPa [30].

The important result from Fig. 5 is that the hardness increases under the applied
pressure even when there is no torsional straining. There is a further increase with
torsional straining especially around the edge of the disk and thereafter these higher
values at the edge gradually sweep inwards so that the sample begins to display
a reasonably uniform distribution of hardness values. In Fig. 6 the hardness data
obtained from an Al-6061 alloy with P = 6.0 GPa are plotted against the equivalent
strain and it is apparent that all points cluster on or about a single line. This is
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Fig. 7 Examples of three types of variation of hardness with equivalent strain: a without recovery,
b with recovery and c with a weakening [31]

consistent with the earlier result shown in Fig. 4 and it suggests that hardness values
gradually increase in HPT processing and then saturate at a well-defined value.

Extensive measurements conducted on a number of different materials has shown
that this conclusion is an over-simplification. In practice, the variation of hard-
ness with equivalent strain is dependent upon the nature of the material. In many
face-centered cubic metals the behaviour will follow the trend in Fig. 6, as depicted
schematically in Fig. 7a, but in some other materials the trend will be different: these
variations are depicted as Fig. 7b, c [31]. Figure 7b occurs in a material such as high-
purity aluminium where there is a very high stacking-fault energy so that recovery by
cross-slip is relatively easy. In high-purity Al, hardness measurements give higher,
rather than lower, hardness values in the centers of the disks in the initial stages of
HPT processing because of the rapid recovery occurring around the disk peripheries
[32]. Figure 7c occurs in materials such as the two-phase Zn-22 % Al eutectoid alloy
where there is a weakening effect due to the high pressure imposed in HPT [33]: for
this alloy the weakening is due to a reduction in the distribution of Zn precipitates
within the Al-rich grains.
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Fig. 8 The variation of hardness across disks of pure Al at the center and at upper and lower
positions after (a) 1/4 turn, (b) 1/2 turn, (c) 1 turn, (d) 5 turns and (e) 20 turns

The hardness data described so far relate to measurements taken on the sur-
faces of disks processed by HPT. However, these results give no information on
the hardness values in the cross-sections of the HPT disks. To overcome this prob-
lem, hardness measurements have been taken also on different sections within the
disks [34]. Figure 8 shows results for high purity aluminium where hardness mea-
surements were taken in the central cross-sectional plane of each disk and at planes
located ∼200 µm from the upper and lower surfaces. These results demonstrate that
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high purity Al exhibits excellent homogeneity after processing by HPT through 5 or
more turns.
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Macro/Micro Elastic-Viscoplastic Analysis
of Woven Composite Laminates
with Misaligned Woven Fabrics

Tetsuya Matsuda, Shinya Kanamaru, Naoya Honda and Nobutada Ohno

Abstract The elastic-viscoplastic behavior of woven composite laminates in which
woven fabrics are stacked with misalignment is analyzed both macroscopically and
microscopically using a homogenization theory. For this, a novel boundary condi-
tion for unit cell analysis is proposed based on the point-symmetry and periodicity
of internal structures in woven composite laminates. Using the boundary condition,
the homogenization theory for nonlinear time-dependent composites developed by
the authors is rebuilt for woven composite laminates with misaligned woven fabrics.
The theory rebuilt is able to deal with any laminate misalignment of woven fabrics
using the same analysis domain, avoiding not only geometry and mesh generation
of an analysis domain for every misalignment, but also the influence of mesh depen-
dence. The present theory is then applied to the elastic-viscoplastic analysis of glass
fiber/epoxy woven composite laminates with misaligned woven fabrics. It is shown
that the misalignment significantly affects the macro/micro elastic-viscoplastic prop-
erties of the laminates.
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1 Introduction

Plain-woven composite laminates made of plain-woven fabrics and matrix materials
as shown in Fig. 1 possess high specific strength, high specific stiffness and excel-
lent formability. Thus, they are used in many industrial sectors such as aerospace,
transportation and energy-related industries, meaning that they can encounter severe
situation including high stress and high temperature. It is therefore of great impor-
tance to analyze not only elastic but also inelastic properties of plain-woven com-
posite laminates. In such analysis, misalignment of woven fabrics in laminates as
illustrated in Fig. 1b, which will be referred to as “laminate misalignment” hereafter,
becomes an important issue because they can affect mechanical properties of the
laminates. Therefore, it is worth developing a theory to analyze inelastic behavior of
plain-woven laminates with laminate misalignment.

The mathematical homogenization theory [1] is one of the most useful theories for
inelastic analysis of plain-woven composite laminates. Thus, some researches have
already applied this theory to such analysis. Takano et al. [2] conducted a microscopic
damage analysis of plain-woven glass fiber-reinforced plastic (GFRP) laminates
with “in-phase” or “out-of-phase” laminate configuration. Here, the in-phase and
out-of-phase mean that plain-woven fabrics in laminates possess no misalignment
and half a unit cell misalignment, respectively. Zeman and Šejnoha [3] further
adopted quasi-quarter of a cell misalignment in addition to the two above-mentioned
laminate configurations in a statistical investigation of the elastic properties of plain-
woven carbon fiber-reinforced plastic (CFRP) laminates. Results of these analyses
revealed significant influence of misalignment on the mechanical properties of plain-
woven laminates. In the analyses, however, the misalignment was restricted to half or
quasi-quarter of unit cells. In addition, the analyses for the misaligned cases required
twice the volume of unit cells defined for aligned cases.

The authors [4–7], on the other hand, have performed elastic-viscoplastic and
creep analyses of fiber-reinforced composites using a homogenization theory for
nonlinear time-dependent composites [8, 9]. In one of these studies [6], the authors
proposed a theory which was able to deal plain-woven composite laminates with

2y

3y

1y

Matrix

Fiber bundles (weft)

Fiber bundles (warp)

(a) (b)

Fig. 1 Plain-woven composite laminates: a without laminate misalignment, b with laminate mis-
alignment
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both the in-phase and out-of-phase laminate configurations using the same basic
cell, which was based on a point-symmetric boundary condition for unit cell analy-
sis [10]. Here, the basic cell means a quarter of a unit cell for the in-phase case, which
will be described in the subsequent section, resulting in significant improvement of
computational efficiency. This method, however, was also limited to the half a cell
misalignment, and was not able to deal with arbitrary misalignment of the type shown
in Fig. 1b. More recently, the authors [11] developed a homogenization theory for
nonlinear time-dependent periodic materials with laminate misalignment. Though
this theory was considerably useful because it was able to deal with arbitrary mis-
alignment in periodic materials, it was not able to analyze the mechanical properties
of plain-woven composite laminates with misalignment using the basic cell.

In this study, the homogenization theory applicable to the elastic-viscoplastic
analysis of plain-woven composite laminates with arbitrary laminate misalignment
is developed by employing the basic cell as an analysis domain. This theory is
able to deal with any laminate misalignment using the same basic cell. Using the
present theory, the elastic-viscoplastic analysis of plain-woven glass fiber/epoxy
laminates with misaligned plain-woven fabrics is analyzed both macroscopically and
microscopically to examine the effects of misalignment on the elastic-viscoplastic
behavior of the laminates.

2 Homogenization Theory for Plain-Woven Composite
Laminates with Misaligned Plain-Woven Fabrics

2.1 Point-Symmetry and Periodicity of Perturbed Velocity Fields

A plain-woven composite laminate with misaligned plain-woven fabrics is consid-
ered as illustrated in Fig. 2, in which each fabric is assumed to possess the same
amount of arbitrary misalignment in the y2-direction. The laminate is subjected to a
uniform load and exhibits infinitesimal deformation both macroscopically and micro-
scopically. Then, a cuboid cell A shown in the figure, which will henceforth be called
“basic cell”, is defined as an analysis domain, and its boundary is denoted as Γ . It
should be noted that this A is a quarter of a usual unit cell for the plain-woven lam-
inate without misalignment depicted in Fig. 1a. Microscopic stress and strain fields
in A are denoted as σij(y, t) and εij(y, t), respectively, where t represents time.

According to the conventional homogenization theory [1], the microscopic veloc-
ity field u̇i(y, t) in Y is expressed as

u̇i(y, t) = Ḟij(t)yj + u̇#
i (y, t), (1)

where (˙) indicates differentiation with respect to t, Fij(t) denotes the macroscopic
deformation gradient, and u̇#

i stands for the perturbed velocity from the macroscopic
one Ḟij(t)yj. Then the microscopic strain rate has the following expression:
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Fig. 2 Plain-woven laminate with laminate misalignment and its basic cell A

ε̇ij(y, t) = Ėij(t)+ ε̇#
ij(y, t), (2)

where Ėij and ε̇#
ij indicate respectively the macroscopic strain rate and the perturbed

strain rate described as Ėij = (Ḟij + Ḟji)
/

2 and ε̇#
ij = (u̇#

i,j + u̇#
j,i)

/
2 , in which ( ),j

represents the differentiation with respect to yj.

Here, let us discuss the property of the distribution of u̇#
i in the laminate. First,

we divide Γ into eight parts as shown in Fig. 2, i.e. Γα(α = 1, 2, . . . , 8). It is noted
that Γ1 and Γ2, Γ3 and Γ4, and Γ5–Γ8 respectively belong to the top, bottom and
lateral boundary surfaces of the cell. Then, it is found from the cross-sectional view
in Fig. 2 that the internal structure of the laminate possesses point-symmetry with
respect to the centers ofΓ1 andΓ4. In addition, one can find that such point-symmetry
is also satisfied with respect to the centers ofΓ5–Γ8. Thus, the distribution of u̇#

i must
possess the point-symmetry with respect to these points. The internal structure, on
the other hand, possesses periodicity in the direction indicated by the dashed line
in the cross-sectional view in Fig. 2. This suggests that the distribution of u̇#

i on Γ2

and Γ3 must be periodic. These point-symmetry and periodicity of u̇#
i on Γ can be

used as a boundary condition to rebuild the homogenization theory, the process of
which will be described in the following subsections. It should be noted that the same
point-symmetry and periodicity exist with respect to the microscopic stress σij and
its rate σ̇ij.
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2.2 Weak Form of Equilibrium of Microscopic Stress
and Its Boundary Integral Term

The equilibrium of σij is expressed in a rate form as

σ̇ij,j = 0. (3)

Now, let vi(y, t) be an arbitrary variation of the perturbed velocity field u̇#
i defined

in A at t. Then, the integration by parts and the divergence theorem allow Eq. (3) to
be transformed to a weak form:

∫
A
σ̇ijvi,jdA −

∫
Γ

σ̇ijnjvidΓ = 0, (4)

where nj indicates the unit vector outward normal to Γ . It is noted here that the
integral term in the above equation can be expressed as

∫
Γ

σ̇ijnjvidΓ =
∑
α

∫
Γα

σ̇ijnjvidΓα. (5)

As discussed in the previous subsection, distributions of u̇#
i , i.e. vi, and σ̇ij are point-

symmetric on Γ1, Γ4 and Γ5–Γ8 with respect to their centers, whereas, nj keeps the
same direction on each boundary surface. Thus, we obtain

∫
Γα

σ̇ijnjvidΓα = 0, (α = 1, 4, 5, 6, 7, 8). (6)

In contrast, distributions of vi and σ̇ij are periodic on Γ2 and Γ3, whereas, nj takes the
opposite directions on these boundary surfaces. Consequently, the following relation
is obtained: ∫

Γ2

σ̇ijnjvidΓ2 +
∫
Γ3

σ̇ijnjvidΓ3 = 0. (7)

From Eqs. (6) and (7), Eq. (5) vanishes, which allows Eq. (4) to be written as

∫
A
σ̇ijvi,jdA = 0. (8)

This resulting equation has the same form as that obtained in the original work by
Wu and Ohno [8], and Ohno et al. [9], which enables us to rebuild the homogenization
theory of time-dependent composites as briefly described in the following subsection.
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2.3 Homogenization Theory

Constituents of the laminate are assumed to exhibit linear elasticity and nonlinear
viscoplasticity as characterized by

σ̇ij = cijkl(ε̇kl − βkl), (9)

where cijkl and βkl represent the elastic stiffness and viscoplastic strain rate of the
constituents, satisfying cijkl = cjikl = cijlk = cklij and βkl = βlk . Using the above
equation, Eqs. (2) and (8), the evolution equation of microscopic stress σij and the
relation between macroscopic stress rate Σ̇ij and strain rate Ėkl are derived [8, 9]:

σ̇ij = cijpq

(
δpkδql + χkl

p,q

)
Ėkl − cijkl

(
βkl − ϕk,l

)
, (10)

Σ̇ij =
〈
cijpq

(
δpkδql + χkl

p,q

)〉
Ėkl −

〈
cijkl

(
βkl − ϕk,l

)〉
, (11)

where δij indicates Kronecker’s delta, 〈〉 stands for the volume average in A defined
as 〈#〉 = |A|−1

∫
A #dA, in which |A| signifies the volume of A. Moreover, χkl

i and ϕi

in the above equations are functions which are determined by solving the following
boundary value problems for A, respectively:∫

A
cijpqχ

kl
p,qvi,jdA = −

∫
A

cijklvi,jdA, (12)
∫

A
cijpqϕp,qvi,jdA =

∫
A

cijklβklvi,jdA. (13)

In general, the boundary value problems (12) and (13) are solved numerically
for finding χkl

i and ϕi using the finite element method (FEM). In this analysis, the
boundary condition described in the previous subsections, instead of the original Y -
periodic boundary condition [1], is applied. The obtained χkl

i and ϕi allow Eqs. (10)
and (11) to determine the microscopic and macroscopic elastic-viscoplastic behavior
of plain-woven composite laminates with laminate misalignment. It is emphasized
that the present theory enables only one basic cell to be sufficient to deal with arbitrary
misalignment in the y2-direction by changing the ratio of Γ1 and Γ2, and Γ4 and Γ3.

3 Elastic-Viscoplastic Analysis of Plain-Woven Composite
Laminates with Laminate Misalignment

3.1 Analysis Conditions

In the present analysis, elastic-viscoplastic behavior of plain-woven glass fiber/epoxy
composite laminates with laminate misalignment is analyzed using the theory
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Fig. 3 Basic cell of the plain-woven GFRP laminates and its finite element mesh: a full view and
b fiber bundles in the basic cell

developed. As shown in Fig. 3, a basic cell A of the plain-woven GFRP laminates was
defined, and divided into eight-node isoparametric elements (2048 elements, 2499
nodes). The geometry of A was determined by referring to the previous study [6].
Then, the laminate misalignment in the y2-direction (warp direction) was considered
as illustrated in Fig. 4. The amount of laminate misalignment and the length of the
basic cell were denoted as d and l, respectively, and five cases of d were selected
from 0 to l in increments of l/4, i.e. d = 0, l/4, l/2, 3l/4 and l. It is noted that d = 0
and l correspond respectively to the in-phase and out-of-phase mentioned in Sect. 1.

The laminates were subjected to macroscopic uniaxial tension at a constant strain
rate of 10−5 s−1 at room temperature. The loading direction was selected to be 45◦
off-axis because viscoplastic behavior of the laminates became most significant at
the angle [6].

The material constants of the fiber bundles were the same as those in the previous
study [6], which had been determined from the elastic constants of the fibers and the
epoxy listed in Table 1, by regarding the bundles as glass fiber/epoxy unidirectional
composites and as linear elastic materials. For the determination, the homogeniza-
tion theory [1] was used on the assumption that the fiber volume fraction in the
bundles was 75 % in accordance with microscope observation, and that the bundles
had a hexagonal fiber array. The epoxy matrix, on the other hand, was regarded as
an isotropic elastic-viscoplastic material which obeyed the following constitutive
equation [6]:

ε̇ij = 1 + νm

Em
σ̇ij − νm

Em
σ̇kkδij + 3

2
ε̇

p
0

[
σeq

g(ε̄p)

]n sij

σeq
, (14)

where Em, νm and n signify the material constants, g(ε̄p) stands for a hardening
function depending on equivalent viscoplastic strain ε̄p, ε̇p

0 indicates reference strain

rate, sij denotes the deviatoric part of σij, and σeq = [
(3

/
2)sijsij

]1/2. These material
constants are shown in Table 1, which were determined by referring to the previ-
ous study [6]. The constitutive equation (14) has been shown to be valid as far as
monotonic loading is concerned [4–7]. Incidentally, no failure was assumed to occur
in the glass fibers and epoxy.
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Fig. 4 Misalignment of plain-woven fabrics in the plain-woven GFRP laminates

Table 1 Material constants of the glass fibers and epoxy

Glass fiber Ef = 80 × 103 νf = 0.30
Epoxy Em = 5.0 × 103 νm = 0.35 ε̇

p
0 = 10−5

n = 20 g(ε̄p) = 31.7 × (ε̄p)0.14 + 9.50

MPa (stress), mm/mm (strain), s (time)

3.2 Results of Analysis: Macroscopic Stress-Strain Relations

Figure 5 shows the macroscopic stress-strain relations of the plain-woven laminates
subjected to the uniaxial tension in the 45◦-direction. As seen from the figure, the
influence of laminate misalignment on the behavior of laminates is clearly observed
especially at the viscoplastic region. The viscoplastic flow stress decreases as the
laminate misalignment increases, i.e. the flow stress for d = l is about 13 % lower
than that for d = 0 at E11 = 0.02. The cause of this result is discussed from a
microscopic point of view in the next subsection.

Fig. 5 Macroscopic stress-
strain relations of the plain-
woven GFRP laminates with
laminate misalignment sub-
jected to uniaxial tension in
the 45◦-direction
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Fig. 6 Deformed shapes of the basic cell and the distributions of resultant shear stress for the
45◦-direction loading (E45◦ = 0.02, displacement × 5): a d=0, b d=l/4, c d=l/2, d d=3l/4 and e d=l
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3.3 Results of Analysis: Microscopic Behavior

Figure 6 shows the deformed shapes of the basic cell and the distributions of resul-
tant shear stress on their upper boundary surfaces for the 45◦-direction loading. In
these figures, the magnitude of vectors represents (σ 2

31 + σ 2
32)

1/2. It is seen from
the figures that the distribution of resultant shear stress markedly varies depending
on the laminate misalignment. Figure 6a shows that, when d = 0, high shear stress
occurs around the cell center, which was caused by the rotation of the adjacent warp
and weft toward the loading direction. Such high shear stress regions move along the
y2-direction due to the increase of laminate misalignment as depicted in Figs. 6b–d.
Moreover, with d = l, the shear stress drastically decreases and almost disappears
as shown in Fig. 6e, because the warp and warp or the weft and weft are neigh-
boring across the upper boundary facet of the unit cell. These results can explain
the decrease of macroscopic flow stress with the increase of laminate misalignment
shown in Fig. 5.

4 Conclusions

In the present study, the homogenization theory applicable to the elastic-viscoplastic
analysis of plain-woven composite laminates with arbitrary laminate misalignment
is developed by employing a basic cell as an analysis domain. The theory developed
enables one basic cell to be sufficient to deal with arbitrary laminate misalignment.
Then, elastic-viscoplastic behavior of plain-woven glass fiber/epoxy composite lami-
nates with misaligned plain-woven fabrics was analyzed using a basic cell. Five cases
of misalignment including no misalignment were considered, and the laminates with
such misalignment were subjected to 45◦-off-axis tension at a constant strain rate.
It was shown that macroscopic flow stress of the laminates varied depending on the
misalignment, and that microscopic deformation and stress distribution in the basic
cell were significantly affected by the misalignment.

It is emphasized that the present theory is able to avoid not only the generation
of basic cell geometry and its finite element mesh for every misalignment, but also
the influence of mesh dependence caused by different meshes for different misalign-
ment. The present theory is therefore useful for analyzing properties of plain-woven
composite laminates with laminate misalignment.
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A Masing-Type Modelling Concept for Cyclic
Plasticity at Elevated Temperature
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Abstract Classical plasticity models commonly apply a yield surface concept for
the formulation of elastic-plastic constitutive behaviour. This inherently implies a
discontinuous transition between the elastic and plastic deformation regime. In the
absence of a direct physical interpretation, the identification of the model parameters
is further strongly affected by the adopted elastic modulus and yield stress. A con-
tinuous Masing-type model formulation is suggested that effectively represents the
continuous elastic-plastic behaviour of a low-alloy steel (2CrMoNiWV). The small
number of four model parameters allows for a straight-forward parameter identifi-
cation due to their direct interpretability both in the stress–strain characteristic and
on the physical basis of the Masing approach. In particular, a significant correlation
has been found between three of the model parameters and the sub-grain size and
dislocation density evolutions upon low-cycle fatigue loading. The adopted approach
suggests potential for a future physically motivated modelling concept for the sim-
ulation of cyclic plasticity.
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1 Introduction

Low-cycle fatigue (LCF) loading of metallic materials generally leads to changing
mechanical properties. These include both cyclic hardening and/or softening of the
material strength at a given strain and an evolution of the elastic-plastic flow charac-
teristics of the material. It is well known that a complex interplay between dislocation
formation, annihilation and their rearrangement is responsible for an evolution of the
dislocation microstructure which causes changes of the mechanical properties. The
formation of characteristic heterogeneous dislocation arrangements, such as walls
and channels, dislocation cells or sub-grains, has commonly been observed to occur
in cyclically loaded metallic materials [1].

Effective constitutive models need to account for this cyclic mechanical evolu-
tion. It is a basic principle of constitutive modelling to maximise the application
range of a model while minimising its complexity to as practical a level as possi-
ble. A great variety of model approaches has been developed that aim to describe
cyclic elastic-plastic constitutive material behaviour ranging from simple phenom-
enological models (e.g. [2]) to complex multi-scale approaches (e.g. [3]). While the
former models show difficulties to accurately represent the observed complex mate-
rial behaviour due to the absence of physical consideration, the latter approaches are
sounder in their background but are applicable for special cases only due to their
high level of complexity.

A widely accepted phenomenological approach is the yield surface concept. Plas-
tic deformation only occurs when an equivalent stress exceeds the discrete yield
stress. The following stress state is then determined by the isotropic and kinematic
hardening laws of the respective model (e.g. [4]). Without special measures this
approach can imply a discontinuous transition between the elastic and plastic defor-
mation regime, generally causing an inaccurate representation of the constitutive
behaviour at small strains. Additional parameters can be included to overcome this
problem, e.g. by consideration of additional backstress terms. Over-parameterisation,
however, can lead to ill-posed parameter identification problems that result from the
lack of physical background of the parameters. As appropriate evolution laws are
required for the model parameters in order to describe the cyclic constitutive mate-
rial behaviour, it is further advantageous to minimise the number of parameters.
Advanced model formulations should therefore aim at a small number of physically
interpretable parameters.

A more general approach was introduced in 1923 by Masing [5] to explain the
Bauschinger effect. He assumed that any macroscopically isotropic metallic material
volume can be subdivided into a discrete amount of basic volume elements (BVE).
Each of these BVEs features an elastic-ideally plastic constitutive behaviour with
identical elastic modulus E but different element yield stresses σy,i . It was further
assumed that the BVEs are loaded in parallel such that every BVE experiences
a microscopic strain identical to the macroscopically applied strain ε, Fig. 1. As
every BVE was attributed the same cross-sectional area, they contributed to the
macroscopic stress to the same extent. Further development of this originally discrete
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(a) (b)

Fig. 1 a Elastic-perfectly plastic characteristic of a basic volume element and its rheological model
representation with a spring-dry friction element (Prandtl element). b Masing model: representation
of a macroscopic volume with n parallely loaded Prandtl elements

Masing model by Afanas’ev [6] and Iwan [7] considers a distribution of element
yield stresses which assigns different weights to the contributions of the BVEs.
This continuous Masing model has been widely applied to study and interpret the
cyclic constitutive behaviour of different materials, e.g. Polák et al. [8] and Christ
et al. [9]. It was Chiang [10] that first suggested a modelling scheme to describe the
mechanical response upon multi-axial loading on the basis of the continuous Masing
approach using a Rayleigh-type element yield stress distribution. Skelton et al. [11]
also recognised the possibility to model the elastic-plastic constitutive behaviour
with a continuous Masing-type model by relating the Ramberg-Osgood approach to
the element yield stress distribution.

In the following, we propose a continuous Masing-type modelling approach
on the basis of a modified Cauchy element yield strain distribution function. It is
shown that the constitutive behaviour of a bainitic low-alloy steam turbine rotor steel
(2CrMoNiWV) is very well represented. The evolution of the four model parameters
is determined from sequential fitting of the model to a LCF test and it is shown that
there is a significant correlation between three of the parameters and the sub-grain
size and dislocation density evolutions. The adopted approach suggests potential for a
future physically motivated modelling concept for the simulation of cyclic plasticity.
A more detailed treatment of the presented model can be found in [12, 13].

2 Model Formulation

In his original formulation, Masing only assumed a discrete number of BVEs, all
contributing to the same extent to the macroscopic stress [5]. Afanas’ev [6] and
Iwan [7] further developed this approach by assuming a distribution of element yield



266 T. Mayer et al.

stresses ψ[(Eεr ] that accounts for the frequency of appearance of an element yield
stress in the macroscopic volume. This implies the consideration of an infinite amount
of BVEs that make up the macroscopic volume.

The fundamental relationship of the continuous Masing model is derived in the
following as a starting point for constitutive modelling. More detailed elaborations
can be found in Christ [9] and Mayer [12].

2.1 Continuous Masing Model

Relative stress–strain coordinates are used for a formulation that allows both
monotonic and cyclic loading, Fig. 1.

εr = κ(ε − ε0)

σ r = κ(σ − σ0)
(1)

κ = sign[dε] defines the loading direction, i.e. +1 for tension going and −1 for
compression going loading. ε0 and σ0 are the total strain and stress, respectively, at
the start of the corresponding loading branch.

The elastic-ideally plastic element stress response of the i-th BVE, σ r
i can thus

be formulated in relative stress–strain coordinates.

σ r
i =

{
Eεr , σ r

y ≤ σ r
y,i

σ r
y,i , σ

r
y > σ r

y,i
(2)

As long as the pseudo-elastic stress σ r
y = Eεr is smaller than the element yield

stress σ r
y,i of a BVE, it deforms elastically. If it is larger, the BVE deforms plas-

tically with σ r
i = σ r

y,i . The macroscopic stress response is thus made up of stress
contributions originating from elastic and plastic elements. The consideration of an
element yield stress distribution ψ[Eεr ] allows to account for the different stress
contributions of the BVEs. It gives the relative frequency of BVEs that possess an
element yield stress σ r

y,i equal to the pseudo-elastic stress σ r
y = Eεr .

With this, the macroscopic stress–strain relationship is obtained by summing up
the respective contributions of the elastic and plastic BVEs weighted by the element
yield stress distribution function.

σ = σ0 +κσ r [εr ] = σ0 +κ

⎡
⎢⎢⎢⎢⎢⎢⎣

Eεr

⎡
⎣1 −

Eεr∫
0

ψ(σ r
y )dσ

r
y

⎤
⎦

︸ ︷︷ ︸
elastic

+
Eεr∫
0

σ r
yψ[σ r

y ]dσ r
y

︸ ︷︷ ︸
plastic

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)
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The tangent modulus is obtained from Eq. (3) by derivation using a variable
substitution and the fundamental theorem of differential and integral calculus.

dσ

dε
= E

⎡
⎣1 −

Eεr∫
0

ψ[σ r
y ]σ r

y

⎤
⎦ = E(1 − χ) (4)

It is apparent from Eq. (4) that the tangent modulus is proportional to the share of
elastically deformed BVEs, i.e. 1 − χ . χ thereby describes the cumulative density
function of ψ[Eεr ], i.e. the relative number of BVEs that feature an element yield
stress σ r

y,i ≤ Eεr . Finally, the second derivative of Eq. (3) yields the fundamental
relationship between the element yield stress distribution and the second derivative
of the stress–strain hysteresis, i.e. its curvature.

ψ[Eεr ] = − κ

E2

d2σ

dε2 (5)

With the choice of an appropriate element yield stress distribution function, a closed
form stress–strain relationship can be derived by two-fold integration of Eq. (5).

2.2 Element Yield Strain Distribution

It appears relatively reasonable to subdivide a material volume into BVEs with differ-
ent element yield stresses on the basis of an element yield stress distribution function.
The question may arise, however, whether this is founded on a physical basis.

Various materials have been investigated on the basis of the relationship given
in Eq. (5). Originally, Masing reasoned that different orientations of the crystallites
with respect to the loading direction are responsible for the element yield stress
distribution in polycrystalline material [5]. Christ, however, pointed out that this is
likely to form a minor contribution only [9]. It is Mughrabi’s comprehensive work
on different cyclically deformed poly- and single crystalline metals that identifies
heterogeneous dislocation structures, such as walls and channels, cells or sub-grains
as the origin of internal long-range stresses, e.g. [1]. To mobilise the dislocations that
are subjected to the internal stress fields of heterogeneous dislocation structures, the
local internal stresses have to be overcome by the externally applied load to initiate
plastic deformation. This gives rise to the interpretation of the element yield stress
distribution as a distribution of internal stresses in a macroscopic volume. Polák [14]
further pointed out that an additional effective short-range stress affects the element
yield stress distribution causing its shift to higher stresses. This is of importance for
temperatures T < 0.1 − 0.2Tm where short-range interactions between dislocations
and e.g. interstitial atoms, precipitates or other dislocations lack the thermal activa-
tion to overcome these obstacles. The shape of the element yield stress distribution
is further significantly influenced by the presence of different phases. Precipitation
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hardening and dynamic strain ageing considerably change the types of dislocation
structures that form during low-cycle fatigue loading [9]. Thereby, also the shape of
the element yield stress distribution is affected. At elevated temperatures, the strong
thermal activation is expected to generally increase the frequency of plastic defor-
mation occurring at a certain element yield stress due to the activation of dislocation
climb mechanisms.

In order to accurately describe the experimentally observed element yield stress
distribution, the performance of different formulations has been examined. A mod-
ified Cauchy distribution appeared to be the best choice for the representation of
the monotonic and cyclic elevated temperature behaviour of a bainitic 2CrMoNiWV
steam turbine rotor steel.

ψ[Eεr ] = β

π

Γ

Γ 2 + [Eεr − H ]2 (6)

H denotes the mode of the element yield stress and Γ the half width at half the
maximum of ψ[Eεr ]. Both parameters have the dimension of stress. Reformulation
of Eq. (6) to derive the corresponding element yield strain distribution ϕ[ε] facilitates
the further steps of constitutive modelling.

ϕ[ε] = β

π

γ

γ 2 + [ε − [ε0 + κη]]2 (7)

The location parameter η = H/E describes the mode of the distribution, while
γ = Γ/E denotes the scale parameter, i.e. the half width at half maximum, Fig. 2.
Both parameters have the dimension of strain. Parameter β is used to normalise the
area of ϕ[ε] to unity.

β =
⎡
⎣

∞∫
0

ϕ[ε]dε
⎤
⎦

−1

= 1
1
2 + 1

π
arctan

[
η
γ

] (8)

With this the tangent modulus can be derived according to [12].

dσ

dε
= E

[
α − κ

β

π

[
arctan

[
ε − [ε0 + κη]

γ

]
+ arctan

[
κ
η

γ

]]]
(9)

Equation (9) considers an apparent elastic modulus Eapp = αE smaller than the
representative elastic modulus E of the BVEs due to relaxation effects at the strain
reversal points at elevated temperatures. The modulus relaxation parameter α is
used to account for these viscous effects at the strain reversal points, Fig. 2. Further
integration of Eq. (9) yields a closed form stress–strain relationship on the basis of
the modified Cauchy distribution.
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Fig. 2 Schematic of element yield strain distribution (left) and tangent modulus (right). Interpre-
tation of the four model parameters E, α, γ and η

Fig. 3 Influence of model parameters on the stress–strain characteristics

σ = σ0 + E

[
α[ε − ε0] − κ

β

π

[
[ε − [ε0 + κη]]

×
[

arctan

[ [ε − [ε0 + κη]]
γ

]
+ arctan

[
κ
η

γ

]]]

− κ
γβ

2π

[
ln

[
1 +

[
ε − [ε0 + κη]

γ

]2
]

− ln

[
1 +

[
η

γ

]2
]]]

(10)

As apparent from Eqs. (9) and (10), the transition from the elastic to the plastic
loading regime is continuous and based on four parameters E , α, η and γ . Their
influence on the stress–strain characteristics is shown in Fig. 3.
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Fig. 4 Comparison of the suggested continuous Masing-type approach with a Chaboche approach
with one and three backstress terms (2CrMoNiWV: 565 ◦C, 0.1 %/s)

3 Model Performance

The model presented in Eq. (10) has several features providing potential advantages
over the classical yield surface approach: (i) It describes a continuous transition from
the elastic to the plastic loading regime; (ii) The model only involves four parameters
facilitating both model calibration and potentially their evolutionary formulation; (iii)
There is a physical motivation based on the continuous Masing concept.

Figure 4 shows a comparison between the suggested Cauchy approach for the
element yield strain distribution and a classical Chaboche model with one and three
backstress terms. It is apparent from the tangent modulus that with the classic yield
stress approach there is a discontinuous transition between the elastic and plastic load-
ing regimes. This can cause problems to accurately represent the actual mechanical
behaviour at low plastic strains. Only by including more backstress terms significant
improvement can be obtained. This is, however, to the cost of the number of para-
meters. A four parameter Masing-Cauchy approach yields comparable results to a
three-term backstress approach with eight parameters.

The small number of parameters in the suggested Masing-type approach allows for
a straight-forward model calibration. As the four model parameters feature a direct
interpretation in the stress–strain characteristic, Fig. 2, initial values can be easily
found for the actual optimisation. In addition, an over-parameterisation leading to an
ill-posed optimisation problem is avoided. With this, it is possible to carry out a fast
sequential model calibration for successive loading branches of e.g. a LCF test as
shown in Fig. 5 for 2CrMoNiWV. The model very well represents both monotonic and
cyclic constitutive behaviour. Figure 6 shows the evolution of the model parameters.
It is apparent that the evolutions of tension and compression going loading branches
differs, indicating a tensile-compressive asymmetry of the material. While the tension
going elastic modulus E remains relatively constant, the compression going modulus
drops potentially due to the presence of macroscopic damage. The location and scale
parameters η and γ , respectively, are both decreasing, indicating a general cyclic
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Fig. 5 Cyclic stress–strain curve for 2CrMoNiWV (565 ◦C, 0.1 %/s, ±1 %) (top). Comparison
between model fits and stress–strain data and its first and second derivative (bottom)

Fig. 6 Cyclic evolution of model parameters corresponding to Fig. 5 for tension (solid) and com-
pression (dashed) going loading

softening of the material and a reduced variability of the element yield strains due
to ongoing recovery of the microstructure during cyclic loading.

As already discussed in Sects. 2.1 and 2.2, the continuous Masing approach is
based on the idea that a material volume can be subdivided into basic volume elements
that feature different yield stresses. The distribution of yield stresses (or strains) is
a fingerprint of the strength determining mechanisms at different strains. Dynamic
recovery (i.e. the annihilation and re-arrangement of dislocations and the formation
and growth of sub-grains) is responsible for the dislocation density reduction and
the sub-grain growth in 2CrMoNiWV [15]. Figure 7 shows the relationship between
the four model parameters and the sub-grain size as determined in a multi-specimen
LCF approach. Correlations between α, η and γ with the sub-grain size D and the
dislocation density are found to be significant and high. As expected, the elastic
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Fig. 7 Scatter plots for analysis of the correlation between the tension going model parameters and
the sub-grain size evolution as determined for 2CrMoNiWV in [15]

modulus E is not influenced by these microstructural parameters and it states a
representative parameter for the whole entity of BVEs. It can thus be concluded
that the model parameters well reflect the evolving state of the material and that the
model appropriately represents its constitutive behaviour. A detailed treatment of the
proposed approach is given in [12, 13]. Ongoing research focuses on the formulation
of the parameter evolution.

4 Conclusion

A new continuous Masing approach based on a Cauchy element yield strain distri-
bution has been proposed and shown to provide a promising foundation for future
physically motivated evolutionary cyclic plasticity models.
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Phase-Field Simulation of Microstructural
Evolution in Nickel-Based Superalloys
During Creep and in Low Carbon Steels
During Martensite Transformation

Yoshinori Murata, Yuhki Tsukada and Toshiyuki Koyama

Abstract Phase-field simulation was applied to both microstructural simulation of
nickel-based superalloys and lath martensite phase formed in heat resistant steels. In
nickel-based superalloys, in order to simulate comprehensively from the formation
to collapse processes of the rafted structure by the phase-field method, an idea that
the anisotropy increases with simulation time was employed in the calculation of
the elastic strain energy in alloy. This idea corresponds to the phenomenon that
creep strain increases with creep time. The results were in good agreement with
the microstructural change observed in practical Ni-based alloys. In lath martensite
phase, an elasto-plastic phase-field model was constructed for Fe-0.1 mass%C steel
on the basis of the two types of slip deformation (TTSD) model. The simulation
results demonstrate that the morphology of the six variants in a packet of the lath
martensite phase can be well predicted.

1 Introduction

Ni-based superalloys have excellent creep strength at high temperatures and are
used for gas turbines. The superior mechanical property of the superalloys originates
from the γ ′ strengthening phase precipitating in the γ phase, and depends on the
γ ′ volume fraction, morphology and size distribution of the (γ + γ ′) two-phase
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microstructure. During the aging heat treatment without external stress, the cuboidal
γ ′ phase precipitates and arranges along the 〈100〉 crystallographic directions in the
γ phase. During creep tests, on the other hand, the cuboidal γ ′ phase evolves into
the rafted structure, in which plate like γ and γ ′ phases are stacked alternately in
the direction perpendicular to the tensile stress in practical superalloys. The rafted
structure collapses especially in the late stage of long term creep, and the creep
strength of the superalloys is related to the stability of the rafted structure [1]. It
is useful to determine contributing factors in the morphological evolution during
both aging heat treatment and high temperature creep for stabilizing the (γ + γ ′)
microstructure.

It is well known that the mechanical properties of steels are strongly affected
by the morphology of the incorporated martensite phase. In ferrous alloys, various
morphologies of the martensite phase, such as thin plate, lenticular, and lath marten-
site, can be observed with different chemical compositions [2, 3]. Among them,
lath martensite is important for heat-resistant steels because the carbon content in
recent heat-resistant steels is about 0.1 mass% and the martensite phase formed in
such steels is lath martensite. Lath martensite has a hierarchical structure consist-
ing of packets, blocks, and laths containing densely packed complex and tangled
dislocations without twins.

In recent years, the phase-field method has been applied to simulating microstruc-
tural evolution in materials [4–8]. The phase-field approach describes a microstruc-
ture using a set of conserved and non-conserved field variables which change
continuously across the interface regions. By solving a set of equations govern-
ing the evolution of the fields, the microstructural evolution can be simulated driven
by the minimization of the total free energy of the system, which includes chemical
free energy, interfacial energy and elastic strain energy.

The purposes of this study are to investigate the contributing factors in microstruc-
tural evolution in Ni-based superalloys and to present the morphology of lath marten-
site with a sub-block microstructure in Fe-0.1 mass% C steel using a series of phase-
field simulations based on TTSD model [9].

2 Calculation Method

2.1 Ni-Based Superalloy

We consider the (γ + γ ′) two-phase model, and the volume fraction of the γ ′ phase,
f (r, t), and four artificial order parameters, φi (r, t) (i = 1, 2, 3, 4), which describe
the four types of ordered domains of the γ ′ phase [2], are employed as field variables.
These field variables vary spatially (r) and temporally (t). The temporal evolution of
the field variables is given by solving the Cahn-Hilliard and Allen-Cahn equations,
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∂ f (r, t)

∂t
= M∇2 δGsys

δ f (r, t)
, (1)

∂φi (r, t)

∂t
= −L

δGsys

δφi (r, t)
(i = 1, 2, 3, 4), (2)

where Gsys is the total free energy of the system, M is the diffusion mobility and
L is the structural relaxation coefficient. The total free energy is given by

Gsys =
∫

r

[
Gchem( f, φi )+ Egrad(φi )+ Estr(φi )

]
dr, (3)

where Gchem is the chemical free energy density, Egrad is the gradient energy density
and Estr is the elastic strain energy density. The chemical free energy density is
expressed as

Gchem = {1 − h(φi )}Gm
chem( f m)+ h(φi )G

p
chem( f p)+ wg(φi ), (4)

where w is the double-well potential height [7, 8]. In Eq. (4), Gm
chem and Gp

chem are
the chemical free energy density of the γ matrix and the γ ′ precipitate, respectively.
The functions h (φi ) and g (φi ) are selected as [8]

h(φi ) =
4∑

i=1

[φ3
i (10 − 15φi + 6φ2

i )], (5)

g(φi ) =
4∑

i=1

[φ2
i (1 − φi )

2] + α

4∑
i=1

4∑
j �=i

φ2
i φ

2
j . (6)

Here,α is a coefficient that depends on the definition of interfacial thickness. Employ-
ing the description by Kim et al. [10], the interface region is regarded as a mixture
of the γ and γ ′ phases with different volume fractions of the γ ′ phase but with equal
chemical potentials:

f = {1 − h(φi )} f m + h(φi ) f p, (7)

(
∂Gm

chem

∂ f

)
f = f m

=
(
∂Gp

chem

∂ f

)
f = f p

. (8)

The gradient energy density is estimated from the artificial order parameters as

Egrad = 1

2
κφ

4∑
i=1

(∇φi )
2, (9)
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where κφ is the gradient energy coefficient of the order parameter [11]. The gradient
energy in the phase-field model is correlated with the interfacial energy, and the
parameter, w, in Eq. (4) and κφ in Eq. (9) are related to both the interfacial energy
density, γs , and the interface width, 2λ.

The elastic strain energy density, Estr, arising from the lattice misfit between the
γ and γ ′ phases is calculated on the basis of micromechanics [12, 13]:

Estr = 1

2
Ci jklε

el
i j (r, t)εel

kl(r, t)− σ
appl
i j ε̄i j , (10)

where σ appl
i j and ε̄i j represent the external stress and the macroscopic strain, respec-

tively. The elastic strain εel
kl is expressed as

εel
kl(r, t) = εkl(r, t)− ε0

kl(r, t), (11)

where εkl and ε0
kl represent the total strain and eigenstrain, respectively. The eigen-

strain is expressed as

ε0
kl(r, t) = ε0δklh(φi ), (12)

and

ε0 = am − ap

am
, (13)

where ε0 represents the lattice misfit and δkl is the Kronecher delta function. In
Eq. (13), am and ap are the lattice parameters of the γ matrix and the γ ′ precipitate,
respectively. The total strain εkl is represented as the sum of the homogeneous strain
(ε̄kl ) and heterogeneous strain (δεkl (r)):

εkl(r) = ε̄kl + δεkl(r), (14)

and heterogeneous strain can be expressed as

δεkl(r) = 1

2

{
∂uk(r)
∂rl

+ ∂ul(r)
∂rk

}
, (15)

where ui (r) represents the i th displacement component. The Hooke’s law gives the
local elastic stress as σ el

i j (r) = Ci jklε
el

kl (r), where Ci jkl denotes the elastic con-
stants. Assuming homogeneous elasticity (Ci jkl = constant), the local displacement
field is evaluated by solving the local mechanical equilibrium equation (∂σ el

i j /∂r j =
0) in Fourier space, and then the elastic strain energy density is calculated from
Eq. (10).
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2.2 Low Carbon Steel

Based on the TTSD model [10], an elasto-plastic phase-field model is developed by
considering both of the Bain deformation and plastic deformation. For the phase-
field model, a field variable φi (r)(i = 1, 2, 3) is introduced to describe the Bain
deformation. i = 1, 2, 3 is used to distinguish the three cases of coordinate coinci-
dences and r is the coordinate vector. The eigenstrain caused by the Bain deformation
εB

kl(i)(i = 1, 2, 3) is listed in matrix form as

εB
kl(1) =

⎛
⎝

√
2aα′/aγ − 1 0 0

0
√

2aα′/aγ − 1 0
0 0 cα′/aγ − 1

⎞
⎠ , (16)

εB
kl(2) =

⎛
⎝ cα′/aγ − 1 0 0

0
√

2aα′/aγ − 1 0
0 0

√
2aα′/aγ − 1

⎞
⎠ , (17)

εB
kl(3) =

⎛
⎝

√
2aα′/aγ − 1 0 0

0 cα′/aγ − 1 0
0 0

√
2aα′/aγ − 1

⎞
⎠ , (18)

where aγ is the lattice parameter of the austenite phase, aα′ and cα′ are the lattice
parameters of the martensite phase, respectively. With respect to plastic deformation,
the other field variable pαi (r)(i = 1, 2, 3) is introduced to characterize the values
of local plastic strain produced by dislocations from a specific slip system, where α
is the number of slip systems. When α is equal to 1 or 2, it corresponds to the slip
system [101] (1̄01)α′ or

[
1̄01

]
(101)α′ , respectively. pαi is defined as [14]

pαi = |bi |
mα

i · dhkl
(i = 1, 2, 3). (19)

Here, |bi | is the absolute value of the Burgers vector, mα
i is the number of lattice

planes between two adjacent slip planes in each slip system, and dhkl is the distance
between (hkl)α′ planes.

The eigenstrain tensor εP
kl , caused by plastic deformation can be written as [14]

εP
kl =

∑
α

bαi ⊗ nαi + nαi ⊗ bαi
2

∣∣bαi ∣∣ · pαi (r)(i = 1, 2, 3), (20)

where bαi is the Burgers vector, nαi is the unit vector of the slip plane normal, and ⊗
represents the dyadic product.
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The martensitic transformation is a minimization process of the total free energy,
which is defined as the sum of the chemical free energy Echem, gradient energy Egrad,
and elastic strain energy Eel [15]:

Etotal = Echem({φi (r)})+ Egrad({pa
i (r)})+ Eel({φi (r)}, {pa

i (r)}). (21)

Equation (21) indicates that the chemical free energy is involved in Bain deformation,
the gradient energy is involved in plastic deformation, and the elastic strain energy
is related both with Bain deformation and dislocation slip.

The dynamics of the martensitic transformation is controlled by the Allen-Cahn
equation:

∂M(r, t)

∂t
= −L M

δEtotal

δM(r, t)
, (22)

where M(r, t)(M = φi , pαi ) are the field variables and L M is the kinetic parameter
of each field variable.

3 Results and Discussion

3.1 Ni-Based Superalloy

We perform the simulation of microstructural evolution of the γ ′ phase during creep
under a tensile stress along [001] crystallographic direction. Under the assumption
that only the γ phase is uniformly deformed, the total transformation strain is calcu-
lated as

εtotal
0 =

⎛
⎝ ε0 0 0

0 ε0 0
0 0 ε0

⎞
⎠ +

⎛
⎝ εp/2 0 0

0 εp/2 0
0 0 −εp

⎞
⎠ , (23)

where εp represents the plastic strain of the matrix along the [001] tensile axis. Then,
the eigenstrain is expressed as

ε0
kl(r, t) = εtotal

0 h(φi ). (24)

3D phase-field simulation at 1193 K was carried out under the periodic boundary
conditions. The system size is 384×384×384 nm3. The double-well potential height
and the gradient energy coefficient are set to be w = 3.6×107 J m−3 and κφ = 1.0×
10−10 J m, respectively. Elastic inhomogeneity is ignored for efficient computation,
and the elastic constants of pure Ni (C11 = 250, C12 = 150 and C44 = 123 GPa)
[16] are employed for the entire system. The volume fraction of the γ ′ phase in the
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Fig. 1 Morphological evolution of the γ ′ phase during creep at 1193 K under 130 MPa tension
along [001] calculated from 3D phase-field simulation. a t = 0, b t = 5000, c t = 10000, d t = 20000,
e t = 30000 and f t = 40000. All time expressed here are dimensionless time steps

equilibrium state is set to be 60 % and the lattice misfit is assumed to be ε0 = −0.004
[1]. The external tensile stress along [001] direction is set to be 130 MPa.

Figure 1a shows initial configuration of the (γ + γ ′) microstructure, which was
prepared using the phase-field simulation without incorporating external stress and
plastic strain. The cuboidal γ ′ precipitates aligned along the 〈100〉 direction of the
γ matrix is observed. In Fig. 1, the plastic strain (creep strain) is increased at a
constant rate of dεp / dt = 4.0 × 10−7, where t represents the simulation time step.
This corresponds to the fact that the creep strain increases with creep time. During
t = 0–20000, it is observed that the γ ′ phase evolves toward the direction normal
to the applied tension axis and (001) rafted structure is produced. After t = 20000,
the (001) rafted structure gradually transforms into wavy morphology as shown in
Fig. 1d–f. This morphological change coincides with the result reported previously
that the lamellar structure collapses in the late stage of long term creep [1].

The formation and collapse of the rafted structure are attributed to the change in the
stable shape of the γ ′ phase during creep; the habit plane of plate-like structure devi-
ates from (001) with increasing the creep strain. This can be specifically understood
by considering the habit plane and orientation relations of a tetragonal precipitate
in a cubic parent phase, because the γ ′ phase can be regarded as a tetragonal phase
with eigenstrain calculated by Eqs. (23) and (24). During long term creep at high
temperatures, the microstructure is subject to the morphological evolution with the
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Fig. 2 Schematic interpretation of the relation between the Miller indices of the habit plane of the
γ ′ phase and the tetragonal ratio of the total transformation strain t1 = εtotal

0 11/ε
total
0 33

help of atomic diffusion. Hence, the stability of the rafted structure is closely related
to the change in the energetically favorable structure arising from the introduction
of the creep strain.

Figure 2 shows the relation between the Miller indices of the habit plane of the γ ′
phase and the tetragonal ratio of the total transformation strain t1 = εtotal

0 11/ε
total
0 33

[11]. When the creep strain is introduced, t1 is between 0 and 1 and the habit plane of
the γ ′ phase is (001). This is the reason that the (001) plate-like structure (rafted struc-
ture) is formed, which is consistent with the simulation results shown in Fig. 1a–d.
Furthermore, continuing increase in the creep strain leads to the negative value of t1
and make the habit plane of the γ ′ phase deviate from (001). As a result, the destabi-
lization of the (001) plate-like structure occurs, resulting in the collapse of the rafted
structure as shown in Fig. 1d–f.

3.2 Low Carbon Steel

The martensitic transformation in Fe-0.1C mass% steel was simulated at 300 K
in three-dimensional space. The simulation was carried out in a cubic with N3

(N = 64) meshes and the mesh size is 4 nm, and therefore the computational domain
is 256 × 256 × 256 nm. For the initial state, it is assumed that there is a single
pre-martensite nucleus in the center of the austenite cubic. The lattice parameters
both in austenite matrix and martensite phase are chosen as: aγ = 3.599×10−10 m,
aα′ = 2.867×10−10 m, cα′ = 2.880×10−10 m. The elastic constants in pure iron are
referred in this simulation, which are C11 = 2.3310×1011, C12 = 1.3544×1011 and
C44 = 1.1783 × 1011 Pa, respectively. The driving force of martensitic transforma-
tion, in 0.1C mass% steel at 300 K is estimated to be 5085 J/mol. The gradient energy
coefficients are determined to be κφ = 1.0 × 10−13, κu,w = 3.0 × 10−13J m2/mol
to obtain a smooth interface of austenite/martensite phase. The kinetic parameters
are set to be Lφ = Lu = Lw = 1. By inserting such parameters into Eq. (22), the
martensitic transformation was performed with a time step of �t∗ = 0.001, and
∗ represents a dimensionless physical quantity.
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Fig. 3 Variants distribution in a packet with time t. a t∗ = 4, b t∗ = 8, c t∗ = 15 and d t∗ = 30.
Each colour represents a martensite variant, which is explained in e. There are three combinations
of variants, i.e., V1 ∼V4, V2∼V5 and V3∼V6, representing three blocks

Figure 3 shows the variant distribution in a packet on the 〈111〉 plane and the six
colored areas represent the six variants illustrated explicitly in Fig. 3e. As shown
in Fig. 3e, each combination of variants, i.e., V1∼V4, V2∼V5, and V3∼V6 repre-
sent the sub-block morphology in lath martensite. A domain composed of the two
martensitic variants defined by the KS relationship is ideal for the adjustment of the
plastic deformations via the two slip systems.

4 Summary

Phase-field simulations have been carried out to investigate the role of elastic strain
induced by the lattice coherency between the γ and γ ′ phases in microstructural
evolution in Ni-based superalloys and to simulate the formation of lath-martensite
phase in a low carbon steel. As a result, the formation and collapse of the (001)
rafted structure in Ni-based superalloys has been reproduced. It is found that this
morphological evolution is attributed to the change in the energetically stable struc-
ture during creep. Furthermore, the martensitic transformation in a Fe-0.1 mass%C
steel was simulated by elasto-plastic phase-field model. It is considered that this
result gives a substantive formation mechanism of the hierarchical microstructure
of lath martensite, although elastic constants of the martensite phase itself are not
available at the present time.
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Viscoplastic Constitutive Model to Divide
Inelastic Strain into Time-Independent
and Time-Dependent Strains

Ken-ichi Ohguchi and Katsuhiko Sasaki

Abstract This paper proposes a viscoplastic constitutive model for solder alloys.
The model is a type of so-called elasto-plastic-creep model in which the inelastic
strain is divided into the time-independent plastic strain and the time-dependent
creep strain. Especially in the proposed model, the creep strain is characteristically
divided into the transient part and the steady-state part. An experimental method
which we termed “stepped ramp wave (SW) loading test” is also shown. The SW
test can quantify both the plastic strain and the creep strain generated under a loading.
The parameters used in the proposed model can be estimated systematically during
the quantification process. In addition, the development behaviours of the plastic and
creep strains can be clarified by the quantification, and they are useful for constructing
the model for each strain with high precision.

1 Introduction

Solder joints in electronic packaging connect chips and substrate which have different
coefficient thermal expansion (CTE) value. Then, the mismatch in CTE causes cyclic
inelastic deformation of the solder joints when cyclic change in temperature occurs
at usage environment of electronic equipment. The cyclic deformation causes fatigue
failure of the solder joints and therefore the fatigue strength of the solder joints must
be evaluated by conducting finite element analysis (FEA). To conduct the evaluation
accurately, the FEA must employ a constitutive model which can precisely describe
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the deformation behavior of solder alloys. Especially, the deformation behavior of
solder alloys shows significant time dependency even at room temperature, and there-
fore the model must be able to describe time-dependent deformations such as strain
rate effect on the stress-strain relation, creep and stress relaxation. Then, there have
been many studies for constructing the constitutive model for solder alloys e.g., [1–4]
and those for applying the existing constitutive model to solder alloys e.g., [5, 6].

We also have constructed a constitutive model for solder alloys [7]. The model
is so-called elasto-plastic-creep model in which the inelastic strain is separated into
the time-independent plastic strain and the time-dependent creep strain. To give this
type of model a high ability for describing the deformation of solder alloys, detail
information of the development behavior of plastic and creep strains during loadings
is needed. In addition, since the development period for recent electronic equipment
should be shortened, the constitutive model used in the FEA of solder joints is required
to be able to estimate the parameters for the model without complicated procedure in a
short term. Then, considering these things, we have proposed an experimental method
termed “stepped ramp wave (SW) loading test” [8]. By conducting this test once at an
arbitrary temperature, the material parameters used in our model at the temperature
can be estimated systematically. Also, both the plastic strain and the creep strain
generated under a loading can be quantified by conducting the SW loading test, and
therefore the development behaviors of these strains are clarified. This paper shows
the constructed model and demonstrates the availability of the SW loading test for
the parameter estimation and the inelastic strain development behavior analysis.

2 Viscoplastic Constitutive Model

We employ an elasto-plastic-creep model as a viscoplastic constitutive model for
solder alloys. In the model, the total strain ε consists of three strains of the elastic
strain εe, the plastic strain εp, and the creep strain εc. The elastic strain εe can be
expressed using Hooke’s law:

εe = (De)−1 : σ , (1)

where σ is the stress tensor and De is the elastic tensor.
The plastic strain εp and the creep strain εc are expressed in the following dis-

crete form using the backward Euler’s method with consideration for employing the
constitutive model into FEM analysis:

ε
p
i+1 = ε

p
i +�εp

εc
i+1 = εc

i +�εc, (2)
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where the subscripts i and i+1 respectively denote the start and end of a calculation
step. �εp and �εc are the plastic strain increment and the creep strain increment in
the current calculation step, respectively.

The plastic strain increment �εp is calculated by using the following equation
derived by the associate flow rule considering kinematic hardening:

�εp = 3

2σ̄ p
i+1

�σ̄ p

H
(si+1 − bi+1), (3)

where H is the plastic tangent modulus and σ̄ p is the scalar expressed by the following
equation:

σ̄
p
i = √

3/2(si − bi ) : (si − bi ), (4)

where s and b are the deviatoric stress and the deviatoric back stress, respectively.
The deviatoric back stress b which represents the center position of the yield surface
is obtained by using the following linear kinematic hardening rule:

bi+1 = bi + 2/3H�εp. (5)

The creep strain increment �εc is expressed as:

�εc = 3si+1

2σ̄i+1

¯̇εc
i+1�t, (6)

where σ̄ is the von Mises type equivalent stress and �t is the time increment in the
current calculation step. ¯̇εc is the equivalent creep strain rate expressed as the sum
of the two equivalent creep strain rates of the transient part and the steady-state part
as follows:

¯̇εc
i = ( ¯̇εc

i )I + ( ¯̇εc
i )II, (7)

where ( ¯̇εc
i )I and ( ¯̇εc

i )II are respectively the equivalent transient creep strain rate and the
equivalent steady-state creep strain rate. ( ¯̇εc

i )I is expressed by the following equation
which means ( ¯̇εc

i )I is proportional to ( ¯̇εc
i )II [9]:

( ¯̇εc
i )I =

{
C1 exp

(
− (ε̄

c
i )H

C2

)}
( ¯̇εc

i )II, (8)

where C1 and C2 are the material constants of positive values. (ε̄c
i )H is the creep hard-

ening parameter, and then Eq. (8) means that the transient creep strain rate approaches
zero with increase in the value of (ε̄c

i )H.
The equivalent steady-state creep strain rate ( ¯̇εc

i )II employs the following Norton’s
law:

( ¯̇εc
i )II = Aσ̄ n

i , (9)

where A and n are the material constants.
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Fig. 1 Schematic outline of the stepped ramp wave (SW) loading

3 Parameter Estimation by SW Loading Test

3.1 SW Loading Test

Figure 1 shows a schematic outline of the stepped ramp wave (SW) loading. The
stepped ramp wave consists of an instantaneous straining part expressed as IS and
a maintained strain part expressed as MS as shown in Fig. 1. The instantaneous
straining (IS) and maintained strain (MS) parts were repeatedly stepped until the
strain reached at εend as shown in Fig. 1. The strain rate for IS should be set in
the maximum speed that testing machine can supply, to prevent the development of
the creep strain during the straining. The subscripts n of IS and MS in Fig. 1 denote
the number of repeated steps during the loading. When the strain is εn in Fig. 1, the
strain is maintained for a time period �tms, and after that the strain is increased by
the instantaneous loading until �εis. Finally, the strain εend is maintained for a time
period �tend.

Figure 2 shows a stress-strain relation of Sn-3.0Ag-0.5Cu solder subjected to the
SW loading in which�εis,�tms, εend and�tend were respectively set to 2.75×10−4,
0.5 s, 4.4 × 10−2, 600 s. In Fig. 2, the stress increases and decreases cyclically until
the strain reaches εend. The small graph in Fig. 2 shows the cyclic stress relaxation
curve which corresponds to the stress-strain relation in the circled region. The stresses
increase at the instantaneous strained parts, while stress relaxation occurred at the
strain maintained parts.
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Figure 3 shows the stress relaxation curve obtained by maintaining the εend strain
of 600 s, here the stress decreases rapidly for about 50 s, while it decreases more
gradually after 50 s. Namely, the stress relaxation rate dσ /dt given as shown in Fig. 3
becomes lower with time and decrease in the stress.
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3.2 Parameter Estimation Method

3.2.1 Parameters for Elastic and Plastic Strains

In the constitutive model shown in the previous chapter, the elastic and plastic strains
are treated as the time-independent strains, while the creep strain is treated as the
time-dependent strain. Then, the parameters for the elastic and plastic strains should
be estimated by using the stress-strain relation which does not include the time-
dependent creep strains. To obtain such a stress-strain relation, the stress-strain rela-
tions which correspond to each IS process in Fig. 2 are connected. This is because
the deformation at the IS part does not include the creep deformation because of the
instantaneous loading [8].

The open circles in Fig. 4 show the relationship between the stress and the
time-independent elasto-plastic strain obtained by the above-mentioned connection.
Meanwhile, the dashed line in Fig. 4 shows the approximated curve of the stress-
elasto-plastic strain relation by the following Ramberg-Osgood law:

ε
ep
t = σt

E
+ ε0

(σt

D

)m
, (10)

where the subscript t denotes uniaxial condition, εep
t is the elasto-plastic strain, E is

Young’s modulus, D is the reference stress at the plastic strain ε0 of 5.00 × 10−4,
and m is the hardening exponent.

The first and second terms on the right-hand side in Eq. (10) respectively represent
the elastic and plastic strains. Therefore, the parameters for the elastic and plastic
strains can be estimated from the approximate curve using Eq. (10). Namely, Young’s
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modulus for the elastic strain can be estimated from the first term of Eq. (10). Also
the plastic tangent modulus for the plastic strain can be obtained by differentiating
the second term of Eq. (10). Therefore, considering the correspondence between the
uniaxial stress and the equivalent stress, the plastic tangent modulus is expressed as
follows:

H = D

mε0

(σt

D

)1−m = D

mε0

(
σ̄

D

)1−m

. (11)

For the approximation in Fig. 4, the parameters in Eq. (10) were respectively set
to E = 21.0 GPa, D = 36.1 MPa, and m = 14.0.

3.2.2 Parameters for Creep Strain

The parameters for the creep strain are estimated from the stress relaxation curves
shown in Figs. 2 and 3. At first, assuming that the stress relaxation shown in Fig. 3
is caused by only the steady-state creep deformation, the parameters for Norton’s
law of Eq. (9) are estimated. To do that, the following relationship between the axial
creep strain rate ε̇c

t and the axial stress relaxation rate σ̇t by maintaining strain is
employed [8, 9]:

ε̇c
t = −σ̇t/E, (12)

σ̇t in Eq. (12) means the dσ/dt shown in Fig. 3. Then, the relationship between the
creep strain rate and the stress which is necessary for deriving creep laws can be
obtained by evaluating a number of stress relaxation rates at arbitrary stress levels
and applying them into Eq. (12) [8, 9].

Figure 5a shows the relationship between the creep strain rate and the stress
obtained by the above–mentioned method. The open circles indicate creep strain
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rates at a number of stress levels, while the solid line is the approximation of those
by Norton’s law of Eq. (9). By this approximation, the parameters of A and n for
Norton’s law were respectively estimated as A = 8.10 × 10−19 and n = 9.32.

Using the estimated A and n, and the cyclic stress relaxation curve shown in Fig. 2,
the parameters of C1 and C2 in Eq. (8) for the transient creep strains are estimated
as follows:

(i) Calculate the creep strain increment �εc
t and creep strain rate ε̇c

t at each MS
process by using Eq. (12).

(ii) Calculate the steady-state creep strain increment (�εc
t )II and steady-state creep

strain rate (ε̇c
t )II at each MS process by using Norton’s law with the estimated

A and n.
(iii) Subtract (�εc

t )II from �εc
t to determine the transient creep strain increment

(�εc
t )I at each MS process. Also, subtract (ε̇c

t )II from ε̇c
t to determine the transient

creep strain rate (ε̇c
t )I.

(iv) Calculate the ratio of (ε̇c
t )I/(ε̇

c
t )II at each MS process. Then, plot the relationship

between (ε̇c
t )I/(ε̇

c
t )II and the transient creep strain (εc

t )I as shown in Fig. 5b.
(v) Regarding the (εc

t )I as the creep hardening parameter (ε̄c
i )H in Eq. (8), approxi-

mate the plotted relation in the step (iv) by using an equation obtained by dividing
both side of Eq. (8) by ( ¯̇εc

i )II.

The solid line in Fig. 5b shows the approximation result in the step (v). As a result
of the approximation, the parameters of C1 and C2 were respectively estimated as
18.2 and 3.03 × 10−4.

As explained above, we have estimated the parameters for creep strain without
conducting long-time creep tests under a number of stress levels.

4 Simulations and Discussions

Numerical simulations of the viscoplastic deformations of Sn-3.0Ag-0.5Cu solder
were conducted using the proposed constitutive model with the parameters estimated
by the SW test.

Figure 6 shows the stress–strain relations obtained by the tensile loadings under
3 different strain rates at 295 K. There are some differences between the simulations
and the experiments, especially in the transient region of the stress-strain relation.
However, the strain rate effect in which the stress level of the stress-strain relation
becomes larger with increase in the strain rate is reproduced very well by the simu-
lations.

Figure 7 shows the creep curve which is obtained by maintaining a stress of
24.4 MPa at 295 K. In Fig. 7, the transient creep region can be observed in both
the experimental creep curve and the simulation. Comparing the creep strain of the
experiment with that of the simulation at 600 s, these values are approximately equal.
Namely, the simulation almost expresses the characteristics of the experimental creep
curve.
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The constitutive model for solders must be able to describe the cyclic deformation
because the model is employed to predict the deformation behavior of solder joints
subjected to cyclic thermal stress. In the proposed constitutive model, whereas the
plastic model is applicable to the cyclic deformation, the creep model is not. Namely,
although there is a possibility that the recovery of the strain hardening due to accu-
mulation of transient creep strains occurs when the loading direction changes during
the cyclic loading, the creep model shown as Eqs. (6)–(9) does not consider it.

Then, we have investigated the development behavior of the creep strain under
cyclic loading by applying the SW loading to a cyclic tension-compression loading
of Sn-3.0Ag-0.5Cu solder, and have discussed whether there is such a possibility
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Fig. 8 Calculated cyclic
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in the cyclic loading of solder [10]. The result of the investigation suggested that
strain hardening due to the accumulation of transient creep strain is recovered when
the loading direction changes from being tension to being compressive or vice versa.
Consequently, the creep model for cyclic loading of solders must have considered the
strain hardening recovery. Therefore, the creep hardening parameter (ε̄c

i )H in Eq. (8)
(of which we employed (ε̄c

i )I as a substitution) was set to zero when the sign of the
stress changes in the simulation of cyclic loadings.

Figure 8 shows the stress-strain relation due to the cyclic loading under the
5.0 × 10−3 s−1 strain rate on the tensile side 5.0 × 10−5 s−1 on the compressive
side. The experimental result expressed by open circles in Fig. 8 shows that the
absolute stress level on the tensile side is higher than that on the compressive side
because the strain rates on the tensile side are higher than that on the compressive
side, and the hysteresis loop is unsymmetrical. Comparing the experimental result
with the simulation expressed by the solid line in Fig. 8, there are some differences
between the experiment and the simulation. However, the unsymmetrical shape of
the hysteresis loop is described by the simulation. Particularly, the characteristic
rapid stress decrease with decrease in the strain rate at the maximum strain, which
is shown in the inset graph in Fig. 8, is well predicted by the simulation.
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5 Conclusions

This paper presented a viscoplastic constitutive model for solders and an experimental
method of the SW test for estimating the parameters in the model. The model and the
experimental method were applied to Sn-3.0Ag-0.5Cu lead-free solder. The results
are summarized as follow.

(1) A viscoplastic constitutive model in which the inelastic strain was divided into
the time-independent plastic strain and the time-dependent creep strain was pre-
sented. In the model, the creep strain was characteristically divided into the
transient part and the steady-state part.

(2) An experimental method which we termed the SW test was presented. The
test employs a stepped ramp wave loading which consists of an instantaneous
straining (IS) part and short-time maintained strain (MS) part, and the IS and
MS parts are repeatedly stepped until the strain reaches a value. When the strain
reaches the value, the strain is maintained for a time period.

(3) The parameters for the elastic and plastic strains in the presented model can be
estimated by using the stress-elasto-plastic strain relation obtained by connecting
the stress-strain relation at IS part.

(4) By using the stress relaxation curve obtained at strain maintenance part, the
parameters for creep strain in the presented model can be estimated without
conducting long-time creep tests.

(5) The presented constitutive model can describe the viscoplastic deformations of
Sn-3.0Ag-0.5Cu lead-free solder although the model employs the parameters
estimated by conducting the SW loading test only once. Therefore, the constitu-
tive model and the parameter estimation method employing the SW test would
be an efficient tool to develop electronic equipment.
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Multiaxial Low Cycle Fatigue for Ni-Base Single
Crystal Super Alloy at High Temperature

Masao Sakane, Shengde Zhang, Akira Yoshinari, Noriaki Matsuda
and Nobuhiro Isobe

Abstract This paper presents multiaxial low cycle fatigue lives of YH61 Ni-base
single crystal superalloy at elevated temperature. Tension-torsion low cycle fatigue
tests were performed using hollow cylinder specimens with aligning the specimen
axis to [100] direction at 1173 K. Biaxial tension-compression low cycle fatigue tests
were also performed using cruciform specimens whose x and y axes were aligned
to 〈110〉 directions. The effect of strain multiaxiality on the multiaxial low cycle
fatigue lives was discussed. Couples of multiaxial stress and strain parameters were
applied to the experimental data for correlating the multiaxial low cycle fatigue lives
of both types of the specimens. The strain parameters yielded a large scatter in the
correlation and Mises equivalent stress was only the parameter to give a satisfactory
correlation of multiaxial low cycle fatigue lives of the superalloy.

1 Introduction

Nickel base superalloys have been widely used in high temperature applications
because of their superior mechanical properties and resistance to high temperature
corrosion and oxidation [1]. Especially, single crystal (SC) superalloys have been
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initially used as a blade material of aircraft gas turbines and they also have been
recently introduced to a blade material of power generation gas turbines [2].

SC turbine blades undergo not only creep damage caused by centrifugal forces
but also low cycle fatigue (LCF) damage caused by the variation of temperature
during start up and shutdown of turbines. Advanced gas turbine blades are cooled
internally and by air film covering over the outer surface of blades to lower SC blade
temperature, so the blades undergo complex multiaxial LCF damage in the combi-
nation of mechanical and thermal loading. In addition, SC superalloys have strong
anisotropic deformation and fracture characteristics due to their crystallographic tex-
ture, so developing an accurate multiaxial LCF damage evaluation method taking
account of the anisotropy of SC superalloys is essential for a safe design and operation
of power generation gas turbines.

Many studies [3–10] reported creep and LCF characteristics of SC superalloys
under uniaxial stress state and only a few studies [11–13] discussed those under
multiaxial stress states. Meric et al. [11] proposed a model of describing the defor-
mation behavior of SC superalloy based on the crystal plasticity under tension and
torsion loadings and found the soft zone occurred in torsion loading. Kanda et al.
[12] performed tension-torsion multiaxial LCF tests using CMSX-2 SC superalloy
and applied several multiaxial strain and stress parameters for discussing the suit-
ability of the parameters for correlating the multiaxial LCF lives. Yorikawa et al.
[13] proposed a new strain parameter, taking account of the anisotropy of the elastic
constants, and demonstrated that the parameter is suitable for correlating the tension-
torsion multiaxial LCF lives of YH61 SC superalloy. However, LCF studies for SC
superalloys under multiaxial stress states are still insufficient and are limited in a
specific case of CMSX-2 [14].

The objective of this paper is to discuss the LCF lives of YH61 nickel base SC
superalloy in two types of multiaxial testings. One is the tension-torsion LCF testing
using hollow cylinder specimens aligned the specimen axis to [100] crystallographic
direction at 1173 K. The other is the biaxial tension-compression LCF testing using
cruciform specimens whose x and y axes were aligned to 〈110〉 directions. The
effect of strain multiaxiality on the multiaxial LCF lives was discussed. Couples of
multiaxial stress and strain parameters were applied for correlating the LCF lives in
both types of testings and the suitability of the parameters was discussed.

2 Experimental Procedure

The material tested was YH61 nickel base SC superalloy with a FCC crystallographic
structure of which the chemical composition and heat treatment are listed in Tables 1
and 2.

Figure 1a is a hollow cylinder specimen used in tension-torsion LCF tests with
16 mm I.D., 19 mm O.D. and 25 mm gage length. The axis of the specimen was
aligned to [100] crystallographic direction. Solid cylinder specimens were partly
used in push-pull uniaxial LCF tests whose illustration is not presented in this paper.
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Table 1 Chemical composition of the material tested (wt %)

C Cr Co Mo W Re Ta Nb Al Hf B Ni

0.07 7.1 1.0 0.8 8.8 1.4 8.9 0.8 5.1 0.25 0.02 Bal.

Table 2 Heat treatment condition

Solution treatment 1250 ◦C/4h + 1260 ◦C/4h + 1270 ◦C/4h + 1280 ◦C/4h, GFC

Aging 1080 ◦C/4h, GFC + 871 ◦C/20h, GFC

GFC: Gas flow cooling

(a)

(b)

Fig. 1 Shape and dimensions of the specimens tested (mm). a Hollow cylinder specimen.
b Cruciform specimen
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Fig. 2 Strain waveform used in multiaxial LCF tests

Figure 1b is a cruciform specimen used in biaxial tension-compression LCF tests
whose x axis was aligned to the [110] and the y axis to [110] crystallographic direc-
tions. Since casting of a large SC plate for providing specimen is difficult technically
and costly, only a square plate of YH61 SC superalloy was cast with dimensions of
110 ×110 mm and 12 mm in thickness. IN625 superalloy plates were TIG welded to
the edges of the YH61 plate. The shape of the cruciform specimen was determined
by a finite element analysis to distribute the stress and strain uniformly in the gage
part [15].

A tension-torsion electric-hydraulic servo machine with load capacity of 245 kN
and torque capacity of 2.82 kNm was used in tension-torsion LCF tests for hol-
low cylinder specimens. Axial displacement and twist angle were measured with a
tension-torsion extensometer. A biaxial tension-compression electric-hydraulic servo
machine with load capacity of 50 kN, that has four actuators and four servo controllers
to generate widely ranged biaxial strain states [16], was used in tension-compression
LCF tests for cruciform specimens. Two extensometers were attached to the gage part
of cruciform specimen to measure the strains in directions of x and y. Each type of
the specimens was heated by a high frequency induction heater and the temperature
variation along the gage length was within ±10 K during test.

Strain controlled tension-torsion LCF tests were performed using hollow cylinder
specimens in the range of principal strain ratio (φ) of −1 ≤ φ ≤ −0.5 at 1173 K.
The principal strain ratio is the ratio of minimum principal strain (ε3) to maximum
principal strain (ε1), i.e., φ = ε3/ε1 for the case of hollow cylinder specimens. The
φ = −0.5 test corresponds to a uniaxial push-pull test assuming that the Poisson’s
ratio is 0.5, and the φ = −1.0 test is a torsion test. Biaxial tension-compression LCF
tests using cruciform specimens were also performed in the principal strain range of
−1 ≤ φ ≤ 1.0. The principal strain ratio is defined as φ = εx/εy that is somewhat
different definition from that in the tension-torsion case but the definition has the
same physical meaning.

Figure 2 shows a strain waveform used in this study, where the ordinate of the
figure is Mises equivalent strain. The strain waveform used was a fully reversed
triangular strain waveform with a Mises strain rate of 0.1 %/s. The number of cycles
to failure (Nf) was defined as the cycles with a 25 % axial or shear stress amplitude
drop from the stable value in tension-torsion tests, while as the cycles with a 5 %
load drop for biaxial tension-compression tests.
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(-0.62) (-0.55) (-0.72) (-0.62) (-0.55) 

(a) (b)

Fig. 3 Correlation of fatigue lives with strain parameters at 1173 K. a Mises strain range. b Maxi-
mum principal strain range

3 Experimental Results and Discussion

3.1 Multiaxial LCF Life Under Tension-Torsion Loading

Figure 3 correlates tension-torsion LCF lives of hollow cylinder and solid bar spec-
imens whose specimen axis is [100] direction with (a) Mises strain range and
(b) maximum principal strain range. In the figures, the solid line represents the push-
pull LCF lives of solid bar specimens. The uniaxial LCF lives of hollow cylinder
specimens are slightly smaller than those of the solid bar specimens in the φ = −0.5
tests, which may result from smaller crack propagation path in the cylinder specimen
than in the solid bar specimen. The LCF lives with smaller φ show smaller lives in
the correlation with the two strain parameters, that is, introducing the torsion loading
reduces LCF lives in the tension-torsion LCF tests. The two parameters give a large
scatter in the data correlation.

Figure 4a, b correlate the tension-torsion LCF lives with Mises stress and maxi-
mum principal stress, respectively. On the contrary to the correlation with the strain
parameters shown in Fig. 3, Mises stress correlates successfully the tension-torsion
LCF lives within a factor of two scatter band whereas a couple of data are out of the
band, Fig. 4a. The correlation with maximum principal stress gives a slightly larger
scatter than with Mises stress, where the LCF lives with smaller φ are underestimated
from the push-pull LCF lives than Mises stress, but maximum principal stress gives
a far better correlation than the two strain parameters shown in Fig. 3a, b.

The results in Figs. 3 and 4 showed that the two strain parameters yielded a large
scatter but Mises stress gave a successful correlation. To discuss the difference in the
correlation of the tension-torsion LCF lives between Mises strain and Mises stress,
LCF lives and Mises stress ranges at Mises strain range of 0.68 % are compared
against the principal strain ratio in Fig. 5. The LCF life increases with the principal
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Factor of 2 Factor of 2 

(a) (b)

Fig. 4 Correlation of fatigue lives with stress parameters at 1173 K. a Mises stress range. b Maxi-
mum principal stress range

Nf

eq

Fig. 5 Variations of number of cycles to failure and Mises stress range with principal strain ratio
for hollow cylinder specimens

strain ratio but Mises stress range, on the contrary, decreases with the principal strain
ratio. The trend of LCF lives well corresponds with that of Mises stress. LCF test in
which larger Mises stress range occurs shows smaller LCF life.

3.2 Multiaxial LCF Life Under Biaxial Tension-Compression
Loading

Figure 6 shows the variation of biaxial tension-compression LCF lives of cruciform
specimens with the principal strain ratio in the y directional strain range constant
tests. In multiaxial LCF tests using cruciform specimens, multiaxial LCF lives in
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Fig. 6 Variation of number of cycles to failure with principal strain ratio for cruciform specimen

Factor of 200 Factor of 400

(a) (b)

Fig. 7 Correlation of multiaxial LCF lives of hollow cylinder and cruciform specimens with Mises
strain and maximum principal strain. a Mises strain range. b Maximum principal strain range

the full range of the principal strain ratio of −1 ≤ φ ≤ 1 are obtainable. The LCF
lives increased with the principal strain ratio range of −1.0 ≤ φ ≤ 0.5, while they
decreased in the range of 0.5 ≤ φ ≤ 1. In the tension-torsion LCF tests using the
hollow cylinder specimens, the LCF lives increased with the principal strain ratio
range of −1.0 ≤ φ ≤ −0.5 as shown in Fig. 5. The trend of the tension-torsion tests
using hollow cylinder specimens in Fig. 5 well agrees with the results shown in Fig. 6
using cruciform specimens in the principal strain ratio range of −1.0 ≤ φ ≤ −0.5.

Figure 7a, b correlate the tension-torsion and biaxial tension-compression LCF
lives with Mises strain range and maximum principal strain range. These strain
parameters give a large scatter of the data depending on the principal strain ratio for
both types of the specimens. Mises strain range underestimates most of the lives by
a factor of 200 at maximum, Fig. 7a. Maximum principal strain range gives almost
the same results as Mises strain range but the degree of the underestimation becomes
somewhat larger.
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Fig. 8 Correlation of multiaxial LCF lives of hollow cylinder and cruciform specimens with Mises
stress and maximum principal stress. a Mises strain range. b Maximum principal strain range

Figure 8a, b correlate the multiaxial LCF lives in the two types of tests with Mises
stress and maximum principal stress. The correlation of the LCF lives with the stress
parameters are quite improved from that with the strain parameters shown in Fig. 7.
Mises stress range correlates most of the lives within a factor of 2 although it has a
trend to give an unconservative estimate for the φ = −0.5 data of hollow cylinder
specimens and conversely a conservative estimate for φ = −1.0 data. Maximum
principal stress underestimates most of the lives more than a factor of 2 and some
of the data locate outside a factor of 18. The results in Fig. 8 clearly indicate that
the multiaxial LCF lives in the principal strain ratio range of −1.0 ≤ φ ≤ 1.0 are
estimatable from the uniaxial push-pull LCF lives using Mises stress.

4 Conclusions

(1) Tension-torsion LCF lives using hollow cylinder specimens increased with prin-
cipal strain ratio range of −1.0 ≤ φ ≤ −0.5. Biaxial tension-compression LCF
lives using cruciform specimens increased with the principal strain ratio range of
−1.0 ≤ φ ≤ 0.5 but decreased in the range of 0.5 ≤ φ ≤ 1.0. The results using
the hollow cylinder specimens agreed with those using the cruciform specimens.

(2) Mises strain and maximum principal strain ranges gave a lager scatter in the cor-
relation of tension-torsion and biaxial tension-compression LCF lives depending
on the principal strain ratio.

(3) Mises stress and maximum principal stress correlated the multiaxial LCF lives
of the two types of the specimens mostly within a factor of two scatter and Mises
stress gave the better correlation than maximum principal stress. The successful
correlation of multiaxial LCF lives with Mises stress indicated that multiaxial
LCF lives in a full range of the principal strain ratio are estimatable by using
Mises stress range based on the LCF lives in uniaxial push-pull tests.
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Mechanics of Materials for Microelectronic
Components and Packages

Vadim V. Silberschmidt

Abstract Modern microelectronic packages are multi-material structures contain-
ing miniaturised components with dimensions in a micrometre range. This, together
with their specific in-service conditions, defines main features of realisation of defor-
mation processes in them. The latter need special approaches and techniques both in
characterisation and modelling. The chapter deals with some examples of materials
used in microelectronic components and packages, namely, lead-free and indium sol-
ders. The former is used in many microelectronic devices while the latter is employed
predominantly in low-temperature applications. Respective features and deforma-
tion mechanisms are presented together with discussion of their implementation in
numerical (finite-element) modelling.

1 Introduction

Microelectronic devices have become an important part of nearly all the aspects of
our life; they surround us everywhere. The main drive in their development for many
years was miniaturisation in order, on the one hand, to enhance their performance and,
on the other hand, to decrease their manufacturing costs. As a result of miniaturisation
characteristic dimensions of components in microelectronic packages are now in a
micrometre range, so that solder bumps contain only a few grains. This makes a
use of macroscopic parameters as well as models at best questionable and should be
considered in simulation strategies.

The main regime of loading for microelectronic devices is thermal cycling that is
defined by changes in external temperature and/or powering of devices. The former
results in a predominantly spatially uniform temperature distribution while the latter
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can cause thermal gradients even in small-sized components [1, 2]. The mismatch
in thermo-mechanical properties of constituent materials, especially in magnitude of
their coefficients of thermal extension, is the source of thermal stresses and/or strains
that can cause accumulation of irreversible deformation and failure of the component
at some stage of its loading history. Thermal fatigue can take a form of creep-
fatigue since many traditional solder materials are specifically chosen for their low
melting point, moving their operational conditions into the area of high homologous
temperatures. Indium, used as a solder for low-temperature microelectronics, is prone
to creep even at low homologous temperatures [3].

A presence of interfaces between dissimilar materials in the package is another
important feature in assessment of performance and reliability of microelectronic
packages. Two major points should be considered: (i) stress concentration at the
edges of interfaces that in many cases act as loci for the onset of fracture process
and (ii) processes at interfaces initiated by manufacturing and affected by post-
manufacturing storage and/or service. The latter are not limited to some manufac-
turing defects of areas of decohesion but also comprises initiation and growth of
intermetallic compounds (IMCs). IMCs have non-trivial spatio-thermal realisation
[4, 5] and are affected by manufacturing parameters [6–9]. They are much more
brittle, and in small solder joints and/or after long aging can occupy a significant
part of the joint making it a composite structure that should be adequately modelled.
This topic is outside the scope of the current paper and would not be treated below.

Apart of the factors mentioned above, even at such small a length scale the shape
and dimensions of constituents in multi-material packages are as important as for
macroscopic structures and should be considered when dealing with specific systems.
This paper describes effects of main mentioned factors on deformation processes in
electronic devices. Obviously, it is impossible to cover such a vast field within a single
work hence the discussion is limited to behaviour of solder joints in multi-material
packages, covering arrays of bumps in flip-chip joints as well as surface-mount
devices. Two types of solders—lead-free and indium—are considered: lead-free sol-
der for both cases, and indium only for the former one.

2 Joints and Materials

Modern microelectronic devices employ various types of joining its components. In
this chapter two main types will be considered: flip chip connection, consisting of
many joints, and surface mounting (see Fig. 1). Both schemes can use the same type
of a solder material. As immediately apparent from these schematics, even in the
case of a post-manufacturing stress-free state, the components are prone to thermal
stresses and strains due to the difference in their coefficients of thermal expansion.
Since solders are much softer than most of other components in packages (i.e. with
lower values of the Young’s modulus and yield points), their deformation will be
largest, and, as a result, they will be exposed to large-amplitude thermal fatigue and,
possibly, to creep-fatigue as well.
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Fig. 1 Schematics of flip chip connection (a) and surface mounting (b)

But before dealing with material-specific response of the packages some important
features should also be considered.

2.1 Structural Features

Though being at a scale of tens of microns, components of microelectronic devices
can demonstrate ‘architecture’-related features. Their response is by no means spa-
tially uniform even when the devices are exposed to uniformly distributed temper-
atures. The factors such as the effect of the shape and stress concentrators can play
a significant part at this scale as well. For instance, consider the case of the eutec-
tic Sn3.5Ag solder connecting two Cu pads with fixed distance between two pads
and diameters of pad/joint interfaces (80 μm in each case). For the three possible
shapes of joints, varying in the diameter of their middle section (Fig. 2), different
distributions of stresses and sizes of coarsened Ag3Sn particles, affecting the soft-
ening behaviour under purely thermal cycling, were found [10]. For instance, the
shape with the smallest diameter demonstrates not only the shift of the areas with
the highest coarsening rate away from the edges of interfaces, but also a formation
of another one just in the centre of the joint.

Fig. 2 Shapes of solder joints with different diameters for the same distance between pads in flip
chip connection
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Fig. 3 Two-dimensional (a) and three-dimensional (b) models of surface mount assembly

This example demonstrates a need for careful introduction of the geometric fea-
tures even for rather small elements of microelectronic packages in order to cap-
ture main deformation and/or fracture mechanisms. In some cases simplifications,
e.g. a decrease in problem’s dimensional can be considered, as it is the case in the
large-scale multi-component structures. For instance, solder joints in surface mount
assemblies can take a rather non-trivial shape (see Fig. 3). Still, a comparison of
full three-dimensional simulations with two-dimensional ones allowed the use of the
latter. Both the maximum temperature excursions and the maximum shear stresses
were observed in the same location in both formulations, and the distribution patterns
were similar [1].

2.2 Intrinsic Spatial Non-Uniformity

Still, specific structural features (e.g. shape), discussed above, are automatically cap-
tured in a (detailed-enough) finite-element model. Another feature—a spatially non-
uniform distribution of temperatures—should be taken care of explicitly, and many
works disregard it. It is based on a misconception that due to minuscule dimensions
of (mainly well-conducting) components the temperature in all parts of the package
is the same. Experiments prove that it is not the case (Fig. 4).
Powering of microelectronic devices can cause spatially non-uniform distributions of
temperature [1]. Direct measurements with a high-precision infrared camera demon-
strate differences of several degrees (Fig. 4). Considering the small scale of the base—
several millimetres—the resulting magnitudes reach to 103–104 K/m, and should be
accounted for in the analysis.
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Fig. 4 Temperature distribution over chip resistor for two levels of power (The maximum rated
power of operation is 0.25 W)

2.3 Material Properties at Microscale

Another important problem is determining respective material properties to be
employed in finite-element simulations of microelectronic devices. The use of prop-
erties obtained at the macro-scale for bulk specimens is, in many cases, a poor approx-
imation of reality. Hence, a special emphasis is on obtaining mechanical properties
at the micro-scale. For soft solders, there is an additional challenge linked to their
gripping. As a result, a solder is usually attached to copper plates (Fig. 5a), which
are much stiffer.

But even in this case of a relatively simple geometry of the tested solder its stress
state under conditions of uniform tension along the longitudinal direction of the
specimen is rather non-uniform. Thus, loading of such a specimen will produce the

Fig. 5 a Specimen with solder joint; b geometry of specimen with solder joint and its octant used
in FE analysis (both gap and length can vary)
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Fig. 6 a Distribution of equivalent stresses in solder joint with 1 mm gap length. b Effect of solder
shape on triaxiality factor

response not of a studied material but rather of a structure. This presupposes a use
of supporting FE simulations (see Fig. 5b) to extract the material’s data from the
‘structural’ response. The results of the simulations (Fig. 6a) vividly demonstrate
non-uniformity of the stress distribution. To quantify the effect of the solder’s size,
a triaxiality parameter is introduced as the ratio of volume averages (for the solder
part of the specimen) of the hydrostatic stress and von Mises (equivalent) stress σe:

R = σh

σe
. (1)

Apparently, for a given thickness of the entire specimen, a decrease in the char-
acteristic size of the solder joint (its gap length) will cause a significant increase in
triaxiality of the stress state, affecting the solder’s response to the applied load.

Additionally, with decrease in dimensions polycrystallinity starts playing a more
prominent part since fewer grains will occupy the solder—down to 3–5 for a SAC
solder with thickness of 100 μm [11]. Obviously, in this case different modelling
approaches are necessary, as discussed below.

3 Numerical Models and Constitutive Equations

A discussed interaction between structural (‘architecture’) and material features in
microelectronic packages needs analysis at least at two different scale levels: of the
entire device and of its critical component. The former is used to obtain a global
response of all the elements of the device (albeit, usually, with a coarser mesh and
simplified mechanical models of its parts) in order to obtain boundary conditions
for the lower-scale simulations. Such mapping allows a significantly finer meshes
and/or more complex material formulations for the modelled component.
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Fig. 7 a Model of one quarter of package. b Substrate and solder bumps (chip removed; arrow
indicates solder with finer mesh)

One of the obvious examples is a use of a quarter or an octant of the flip-chip
interconnection (based on its symmetry) in three-dimensional finite-element sim-
ulations. But even this approach for a case of a square grid array does not allow
sufficient resolution of a single solder bump. Hence, a general solution can be used
to define, for instance, displacement fields at its interfaces with other components
and use them in a single-bump model with a higher spatial resolution. An alternative
to this two-stage approach was suggested in [11, 12]. In this approach, one of the
solder bumps in a model of a quarter of a flip-chip (shown by an arrow in Fig. 7) was
discretised with a finer mesh than all the other bumps.

Such an approach allows obtaining both a global response as well as a refined local
one in a single run of simulations. This is possible thanks to a significant rigidity of a
chip that prevents large global deformations in a case of purely thermal cyclic loading
in a temperature range defined by the device’s usability envelope (between 253 and
353 K in that case). The refined model, e.g. for a single bump loaded as a part of a
package, provides an opportunity to assess not only the effect of different material
formulations of various mechanisms, underpinning its deformational behaviour, but
also to include directly some elements of its microstructure into consideration.

SnAgCu grains are composed predominantly of β-Sn that defines their mechanical
behaviour. It has a body-centred tetragonal unit cell, with one side longer than two
other sides, thus resulting in orientation-dependence of its properties. To study the
effect of this structure, four different modelling schemes were used to model a solder
bump in [11]: (i) macroscopically isotropic; (ii) single-crystal; (iii) bi-crystal and
(iv) multi-crystal (two last cases are presented in Fig. 8).

Though the obtained results for the same loading history in terms of von Mises
stress does not differ much for different formulations or different orientations for
the same formulation (e.g. various orientations of a single grain in models (ii))—
some 5 % for the maximum level, the differences in shear stresses due to different
orientations are much larger (Fig. 9).
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Fig. 8 Bi-crystal (a) and multi-crystal (b) models of solder joints (different colours correspond to
different orientations of BCT unit cells; only orientations along three principal axes of co-ordinate
systems are used)

Fig. 9 Distributions of out-of-plane shear stresses (in MPa) for two cases of orientation of crys-
talline lattice along two different orthogonal orientations in single-grain model of solder bump

3.1 Constitutive Equations

Apparently, each constituent material in a multi-material package should be described
with its own set of constitutive equations. In many cases not all the constituents
demonstrate a complex type of material performance within the usability envelope of
the device. For instance, silicon and ceramics in many cases can be described in terms
of elastic (albeit, anisotropic) behaviour. Solders, in contrast, demonstrate a thermo-
elasto-visco-plastic behaviour in many cases thanks to their low melting point. This
continuous description is, where necessary, expanded to incorporate additional defor-
mational mechanisms, usually linked to crystalline plasticity. A discussion below is
limited to solders only.

At the macroscopic (continuous) level, thermo-elasticity is dealt with using a tra-
ditional scheme—isotropic or anisotropic, depending mostly on the type of manufac-
turing process. Plasticity is usually described with a Johnson-Cook model, capable to
account for effects of temperature and strain-rate sensitivity [13] that are prominent
due to high homologous temperatures of traditional in-service conditions for solders.
Description of creep contribution involves normally a hyperbolic sine equation:
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ε̇ss = A[Sinh(ασ)]n exp

(
− Q

RT

)
, (2)

where A, α and n are material parameters, σ is the applied stress, Q is the activa-
tion energy. R is the gas constant and T is the absolute temperature. This form can
need modification to incorporate effects of main deformation mechanisms, respon-
sible for creep at different temperatures. This is especially important in case of
low-temperature (cryogenic) application, where In is used as a solder (the coefficient
of thermal expansion of indium also changes significantly in the temperature range
characteristic for such applications) [3].

At the microscopic level, mechanism-specific constitutive relationships can be
introduced to accommodate the effect of main mechanisms such as dislocation mobil-
ity, void diffusion etc. An example of such model descriptions for thermal cyclic
loading of SnAgCu solder can be found, e.g. in [11, 12]. A benefit of numerical
schemes incorporating such mechanisms (at a price of developing user-defined sub-
routines) is a possibility of quantification of the effects caused by single mechanisms
that can be hardly achieved in tests where many mechanisms interact in a complex
way.

4 Conclusions

Mechanics of materials for microelectronic devices is characterised, as have been
shown, by additional levels of complexity. As in structural mechanics, it needs to
incorporate a precise (and in many cases, especially of 3d integration, intricate)
geometry of packages and interconnections together with non-trivial boundary con-
ditions that in many cases include thermal exchanges with environment. The stage
of introduction of material’s properties should take consideration both of the char-
acteristic length scale of material as well as manufacturing-induced anisotropy (and,
in many cases—heterogeneity due to presence of IMCs, voids and interfaces). Most
properties should be obtained not only for a specific length scale and realisation
of manufacture, but also for a large range of temperatures and, in case of solders,
various strain rates.

In many cases, especially when dealing with critical and post-critical behaviours
(onset and development of damage and fracture), the macroscopic approach is not
sufficient. It should be accomplished by two main features: (i) direct introduction of
microstructure (its morphology and main features with specific mechanical proper-
ties) and (ii) an additional set of mechanism-specific constitutive equations. Numer-
ical models for microelectronic packages should incorporate all the complicating
factors mentioned above; some of them can be found in commercial software pack-
ages but some need development of subroutines. Realisation of statistical simulations
based on such models in many cases should be fully three-dimensional and accom-
modate at least two interacting scale levels—of the entire device and of the critical
component.
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Constitutive Models for the Description
of Creep and Plasticity of Cast and Wrought
Mg-Al and Mg-Zn Alloys

Stefano Spigarelli, Mohamad El Mehtedi and A. Di Salvia

Abstract Investigations on the microstructural aspects of creep in Mg-Al alloys
resulted in the development of a constitutive model, describing the strain rate depen-
dence on applied stress and temperature. The model was used to describe the behav-
iour of the single-phase AZ31 alloy, as well as of the more complex materials. These
analyses demonstrated that the behaviour of hcp Mg-Al alloys follows, in general
terms, the same well known scheme typical of fcc Al-Mg alloys, also in respect to
the existence of two regimes, the first characterized by an n = 3 stress exponent,
and the second described by the modified form of the Garofalo equation. A low
stress regime dominated by grain boundary sliding was also observed in fine-grained
alloys. A similar approach was used to analyse creep and plasticity of Mg-Zn alloys.

1 Introduction: The Constitutive Model

The creep model here presented is based on two traditional constitutive equations,
i.e. the Garofalo relationship

ε̇d = A {sinh [α(σ/G)]}n exp(−Q/RT ) (1)

and the Norton equation

ε̇d = A′(σ/G)n exp(−Q/RT ) (2)
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where ε̇d is the minimum creep rate (or the testing strain rate in case of constant strain
rate tests) associated with dislocation motion, σ is the applied stress, T is the absolute
temperature, n is the stress exponent, α, A and A′ are material parameters, Q is the
creep activation energy, G is the shear modulus and R is the gas constant. While
Eq. 2 is valid in the low strain rate/high temperature regimes typical of creep, Eq. 1 is
more general, and can be used also above the power-law breakdown which usually
characterizes the experiments carried out in the intermediate temperature regime
(100–150 ◦C in the case of Magnesium alloys). Equation (1) reduces to Eq. (2) when
the applied stress is low.

The model takes into account the class A behaviour [1] observed in Mg alloys [2],
i.e. the existence of two different creep regimes: (i) a low strain-rate regime, with
n = 3 stress exponent, typical of alloys where deformation is controlled by viscous
glide of dislocations in an atmosphere of solute atoms; (ii) a high strain rate regime,
where creep is climb controlled, and n = 5. In addition, the role of grain boundary
sliding is also quantified. Each regime will be described separately in the following.

In the high-strain rate regime, creep is controlled by climb, n = 5, Q is equivalent
to the activation energy for lattice self diffusion in Mg (Ql); in many cases, the creep
experiments were carried out at relatively low temperature (100–150 ◦C), and, as a
result, most of the data lie above the power-law breakdown. Thus, the model is based
on the use of Eq. (1) [3], properly modified to take into account the effects of chemical
composition and of the grain size [4]. Major alloying elements considered in the
present study are Al and Zn in Mg-Al and Mg-Zn alloys respectively. These alloying
elements play two major roles, namely: (i) a solid solution strengthening effect;
(ii) a particle strengthening effect in those cases where precipitation of secondary
phase particles occurs. The particle-strengthening effect has been neglected in this
study, which considers data obtained above 200 ◦C, where particle coarsening or
even dissolution occur.

The most obvious effect of the elements in solid solution is to reduce the strain
rate, for a given stress, even in the climb-controlled creep regime. In this respect the
behaviour of the Mg-Al alloys is formally similar to that of the materials belonging
to the Al-Mg system [1]. The stress exponent in climb-controlled creep remains
constant, but the strain rate versus applied stress curve shifts toward lower values of
the strain rate as the content of elements in solid solution increases. This behaviour
can be modelled by supposing that either A or α change with the content of element
in solid solution. Preliminary studies on Al-alloys [5, 6] seem to suggest that α
is particularly sensitive to variations in chemical composition. The analysis of the
data obtained by Sato and co-workers for Mg-Al [7] (Fig. 1a) and of a collection of
literature results for Mg-Zn (see [8] for a detailed description) thus gave

α = 69.6/c0.37
Al (3)

and

α = 85/c0.3
Zn (4)
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Fig. 1 a Strain rate versus stress for Mg-Al coarse-grained dilute alloys tested at high temperature
[7] (the grain size was 170 µm); b variation of α with the concentration of the major alloying
element (Al or Zn) in solid solution [8]

where cAl and cZn were the concentration of Al and Zn in solid solution (Fig. 1b).
The grain size effect on the dislocation-creep properties of the AZ31 magnesium

alloy has been investigated by comparing data obtained by testing materials of similar
chemical compositions but different initial microstructures [9–12]. The results of this
analysis confirmed the presence of a weak but not negligible effect of the grain size
in the climb-controlled regime. The Eq. (1) was thus modified as follows:

ε̇d = A(b/d)p {sinh [α(σ/G)]}5 exp(−Ql/RT ) (5)

where d is the grain size and b is the Burgers vector, with p = 0.6 [4]. The model Eq. 5
was successfully used to describe the high temperature response of an Mg-4Al-1Ca
alloy [13, 14].

The existence of a low stress regime where the creep data can de described by a
power law with n = 3 (see Ref. [2] for a review of the literature data), suggested that,
in Mg-Al alloys, deformation could be controlled by viscous glide of dislocations in
atmospheres of Al-solute atoms, a behaviour which is intrinsically similar to that of
Al-Mg dilute alloys [1, 7]. Combination of the traditional models with the findings
of several studies on AZ31 [2] led to an equation in the form:

ε̇d = A∗(cAl)
−1(b/d)p∗ (σ/G)3 exp(−Q∗/RT ) (6)

which takes into account both the effects of the content of Al in solid solution and of
the grain size. In this regime p = 0.4 and Q∗ = 101 kJ/mol [2]. This value of the
activation energy Q∗, which was calculated by interpolating data from both strain
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rate changes (SRC) experiments and continuous tests, is substantially lower than the
theoretical value, i.e. the activation energy for diffusion of Al in Mg (143 kJ/mol).

Strain rate changes (SRC) experiments [11, 12], which present the advantage
of obtaining different data from a single experiment, with a limited grain growth,
led some authors [12] to suggest that at sufficiently high temperature, grain bound-
ary sliding (GBS) substantially contributes to the deformation of the sample. The
resulting creep model equations should be thus rewritten in the form

ε̇ = ε̇GBS + ε̇disl = AGBS (b/d)
p′
(σ/G)2 exp(−QGBS/RT )+ ε̇d (7)

where p′ is 2 or 3, QGBS is equivalent to Ql or to the activation energy or grain
boundary diffusion (QG B), which, in Mg, is close to 92 kJ/mol [15], while the ε̇d

term assumes the form of Eq. (5) or (6). It can be here observed that the anomalously
low Q∗ value computed by interpolating constant stress, constant strain rate and SRC
experiments, can be the result of the parallel actions of viscous glide (characterized
by a value of the activation energy similar to that of self diffusion) and GBS.

2 Description of Creep Data for Mg-Al and Mg-Zn Alloys

This section analyses the accuracy of the model in describing the creep response of
different Mg alloys. In all these cases the same A, A∗ and AGBS values were used.

2.1 The AZ31 Alloy

The AZ31 alloy contains a low amount of Al, and can be considered a single-phase
material, since only limited precipitation of Mg17Al12 in form of coarse particles
occurs during cooling from rolling or extrusion temperature (typical initial conditions
for creep testing). Figure 2 plots the data obtained by del Valle et al. [12] by SRC and
continuous experiments, and the model curves calculated by Eq. (7) with cAl = 2.2 %
(at.). The values of the activation energies Ql , Q∗ and QGBS were the theoretical
135, 143 and 92 kJ/mol respectively. The agreement between the SCR data and the
model curves is excellent, even though the only free parameters were the A, A∗
and AGBS constants. The deviation between the curves and the constant strain rate
experiments, as clearly suggested by del Valle et al., can be attributed to the marked
grain coarsening which occurs during the low-strain rate experiments, an effect that
will be later discussed.
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Fig. 2 Strain rate as a function of applied stress for SCR and constant strain rate tests [12].
Concentration of Al in solid solution in at.%

2.2 The AM60 and AZ61 Alloys

Recent investigations analysed the high temperature response of the AM60 [15] and
AZ61 [16] alloys with fine grain sizes, tested by the SRC technique. A common
feature of these investigations is the existence of a low-stress regime at temperatures
above 300 ◦C, characterised by a stress exponent close to 2 (Fig. 3), an indication of
the possible role of GBS as rate-controlling mechanism. The limited intergranular
precipitation of Mg17Al12, in these cases, is thought to have a beneficial effect in
retarding or even suppressing grain growth, thus maintaining the fine grain size which
is a prerequisite for the occurrence of GBS [16]. The analysis of the data obtained by
del Valle and Ruano [15] suggests that GBS assumes a significant role, and can be
described with p′ ∼= 2 and QGBS = QG B . Figure 3 shows the model curves obtained
by assuming that cAl = 3 %, i.e. that a minor but non negligible fraction of Al is
combined with Mg, to form the intermetallic precipitates which retard grain growth.
The values of the different parameters were those calculated to obtain the plots in
Fig. 2. The correlation between model curves and experimental data is in both cases
very good.

2.3 The ZK60 Alloy

Only few data on the high temperature response of Mg-Zn alloys are available, and
in most cases they apply to the ZK60 [17–19] (Fig. 4). In these alloys the existence
of a regime of viscous-glide controlled deformation has been not unambiguously
ascertained, being the amount of Zn in solid solution (cZn ∼= 0.023) relatively low.
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Fig. 3 Strain rate versus stress for an AM60 (d = 23 µm) [15] (a) and an AZ61 (d = 9 µm) [16]
(b). All these data were obtained by the strain rate change technique (SRC)

Fig. 4 Strain rate versus stress for ZK60 with different grain sizes: a data from [17]; b data from [18]

At temperatures above 200 ◦C, Zn is completely in solid solution; Zr acts as a grain
refiner, and for this reason the ZK60 exhibits a fine grain size [20]. Again, Eq. (7) with
the same values of the parameters was used. The simple substitution of the relevant
grain size results in an excellent description of the experimental data. Figure 5 shows
an additional dataset obtained by Watanabe et al. [21] by testing a ZK60 with ultra-
fine grain sizes. All the data in the figure were obtained by using continuous tests
under constant strain rate or constant load. The analysis of Fig. 5 confirms that the
use of a p′ exponent of 2 is more than adequate to quantify the grain size dependence
of the strain rate at 200 ◦C.
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Fig. 5 Strain rate versus
stress for ZK60 with different
grain sizes at 200 ◦C

3 Effect of Grain Growth

The model Eq. (7), in combination with Eqs. (5) and (6), gives an excellent description
of the SRC data obtained by different authors on different materials. Yet, two major
features still need to be clarified: (i) the relevance of the n = 3 regime; viscous glide
in many cases, in particular for fine-grained metals, is obscured by the concurring
effect of GBS, which results in higher strain rates; (ii) the quantification of the effect
of grain growth during continuous tests.

The first issue is analysed in Fig. 6a, which plots the data obtained by Kitazono
et al. [9], by Kim et al. [16], and by Mukai et al. [22] by testing AZ31 alloys with
coarse grain size (d = 85–130 µm). The initial grain size was large enough to
substantially reduce the potential effect of grain growth. The model Eq. (7) describes
very well the experimental data; the figure also reports the transitions stresses from
viscous glide to dislocation climb, and from GBS to viscous glide, i.e. the applied
stress corresponding to ε̇GBS = ε̇d . It can be easily observed that viscous glide is
rate controlling in a relatively large range of applied stresses. This observation in
turns demonstrates that high temperature deformation is controlled by viscous glide
of dislocations in all those cases in which a relatively coarse-grained alloy is tested
in the low-stress regime.

The second issue, i.e. the effect of grain growth during continuous tests, is
addressed in Fig. 6b. Del Valle et al. measured the grain growth during a test at
375 ◦C, under a strain rate of 5 × 10−5 s−1 [12]. These data permit to estimate the
growth law, i.e. the dependence of the grain size on testing time t , which assumed
the form:

d4 = d4
0 + K · t (8)
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Fig. 6 a Strain rate versus stress for the creep experiments on coarse grained AZ31 [9, 16, 22],
and model curve; b grain-growth corrected curve describing the AZ31 data obtained by continuous
tests by del Valle et al. [12]. The figure also reports the value of the grain size in correspondence of
the peak flow stress in some of the experimental conditions

where d0 was the initial grain size (17 µm), and K a temperature-dependent constant.
This relationship allows the estimation of the grain size in correspondence of the peak
flow stress for the continuous curves carried out at this temperature. Substitution of
the calculated d values into Eq. (7) gives the model curve illustrated in the figure.
Again, the correlation is excellent; this simple analysis unambiguously confirms
that the combination of constitutive Eqs. (5), (6) and (7) is able to describe, in a
wide range of temperature and applied stresses, the high temperature behaviour of
magnesium alloys, once the grain size instability is properly taken into account. The
use of Eq. (7) also allows to quantify the grain growth occurring during a standard
SCR test at 375 ◦C. A SRC experiment, in the form used by del Valle and co-workers
and described in [12, 15], typically consists in an initial deformation under a high
strain rate (10−3 s−1), followed by a jump down to 10−5 s−1. Subsequently, the strain
rate is increased in successive jumps; at the end of the test, the grain size calculated
by Eq. (7) increases from 17 to 18.4 µm, i.e. grain growth is almost negligible.

The above discussion demonstrates that a rationalization of the different exper-
imental behaviour observed by testing Mg alloy is possible, once the different
microstructural parameters (grain size and concentration of elements in solid solu-
tion) are considered and quantified. Moreover, a deformation mechanisms map can be
drawn by combining the constitutive equations for the various mechanisms (Fig. 7).
The figure is only a representative example, which was obtained for Mg-Al alloys at
300 ◦C.
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Fig. 7 Deformation mecha-
nisms map for Mg-Al alloys
at 300 ◦C by Eqs. (5)–(7)

4 Conclusions

The high temperature mechanical behaviour of Mg-Zn and Mg-Al alloys has
been considered in the present study. The experimental data has been success-
fully described by a constitutive model which takes into account the different rate-
controlling mechanisms, i.e. climb, viscous glide of dislocations and grain boundary
sliding. The use of the theoretical values for the activation energy, i.e. the activation
energy for self diffusion, for diffusion of Al in Mg, and for grain boundary diffu-
sion, resulted in an excellent description of the data, provided that microstructural
parameters, such as the grain size and the amount of elements in solid solution, are
considered.
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Deformation and Failure of Various
Alloys Under Creep-Fatigue Loading
and Their Modelling

Yukio Takahashi

Abstract Plant components often undergo the loading which have both aspects of
fatigue and creep, by experiencing steady-state operation intermitted by repeated
start-up/shut-downs and other transients. In such a case, material shows inelastic
deformation and failure characteristics that are different from those observed under
pure fatigue or pure creep conditions. In this paper, some recent progresses made
in both deformation and failure modelling under such a circumstance are outlined.
In the first part, an attempt to improve the capability of the inelastic constitutive
model is described with an example on modified 9Cr-1Mo steel. In the second part,
efforts made for improving the accuracy and reliability of failure prediction under
creep-fatigue loading are described.

1 Introduction

When the components are used at high temperatures where time-dependent inelastic
deformation, creep, cannot be ignored, failure due to its accumulation or interaction
with fatigue should be considered. It is known that inelastic deformation is closely
related with these phenomena in metallic materials which have high ductility so
that the accurate estimation of both inelastic deformation and resulting damage is
essential in order to precisely address the possibility of failure.
In general, inelastic deformation mainly controlled by dislocation movement is
known to be sensitive to microstructure of material which changes with inelastic
deformation itself as well as thermal effect at high temperature, causing substan-
tial history-dependency even in the originally same materials. These observations
prompted the development of “unified” constitutive models in which cyclic and creep
deformations are treated as inelastic deformation in a unified way. This type of models
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shows a larger advantage over the conventional “non-unified” approach treating plas-
tic and creep deformation separately even with some ad-hoc rules representing their
interaction, especially for the materials which show significant rate-dependency of
tensile curve as this phenomenon itself is not easy to express by the latter. Modified
9Cr-1Mo steel widely used in recent fossil power plants and also considered as a
promising candidate of structural materials in the future nuclear power plants is the
case so that efforts have been made for the development of a unified model which
can describe the behaviour of this steel [1–4] with a reasonably high accuracy. The
latest model [5] which is able to describe deformation behaviour under more critical
conditions including tertiary creep stage and its acceleration by cyclic loading will
be described in the paper.
In addition to deformation analysis, choice of methods to estimate damage and
resulting failure may also have a significant effect on the assessment of compo-
nents, as they often supply very different values of damage and consequently failure
lives. In order to find the most reliable approach to estimate creep damage under
creep-fatigue loading, systematic study has been performed using the data on var-
ious alloys employed in high-temperature components in power generation plants
[8]. An outline of the results obtained by this study will be described in a latter half
of the paper.

2 Modelling of Inelastic Deformation Under Creep-Fatigue
Interaction

2.1 Outline of Constitutive Model

Inelastic strain rate is governed by a complex law including history-dependency. It
was assumed in our model to be a function of deviatoric stress tensor, si j , and back
stress tensor, αi j , as

ε̇in
i j =

{
3

2

si j − αi j√
3(skl − αkl)(skl − αkl)/2

+ lη
|σkk |l
σkk

δi j

}
ṗ (1)

where ṗ denotes the equivalent inelastic strain rate calculated by

ṗ =
〈√

3(skl − αkl)(skl − αkl)/2 + η
|σkk |l+1

σkk
− Z

D

〉n

(2)

with Z being the drag stress increasing with decreasing inelastic strain rate for
representing the dynamic aging effect observed in many materials by and large.
Difference between tensile and compressive behaviours is generalized as the effect
of mean stress and expressed by the term including the hydrostatic stress, σkk and
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materials constants, l and η. D and n are additional material constants giving a flow
property. In both equations, αi j plays a dominant role, as a back stress tensor describ-
ing a kinematic nature of hardening. Variation of αi j is assumed to be given by sum
of several elements changing with the deviatric components of inelastic strain rate,
ėin

i j as

αi j =
N∑

k=1

⎡
⎣ςk

{
2
3rk ėin

i j − H(ᾱ(k) − rk)

〈
ėin

i j
α
(k)
i j
rk

− μ ṗ

〉
α
(k)
i j − μα

(k)
i j ṗ

}

−γk(ᾱ
(k))m−1α

(k)
i j

⎤
⎦ (3)

according to the proposal by [6] and its modification [7] with an additional term
representing static recovery for expressing continuous deformation observed at high-
temperature. Here rk represents the maximum value which the norm of each back
stress component, ᾱ(k) = (3α(k)i j α

(k)
i j /2)

0.5 can take. ςk ,μ and γk are constants related
to hardening, dynamic recovery and static recovery, respectively. Cyclic hardening
or softening can be described by changing the value of rk with the cyclical change
of inelastic strain from the initial value, r0

k . Furthermore, in the latest development
[5], acceleration of strain rate in constant-load tests observed as tertiary creep is
able to be expressed by assuming that the rate of static recovery increases with the
accumulation of inelastic strain and/or cyclic hardening/softening according to

γk = γ 0
k

{
1 + (ε̄in/ε̄0)

φ(r0
k /rk)

ϕ
}

(4)

with the equivalent inelastic strain given by ε̄in =
√

2εin
i j ε

in
i j /3 and constants, ε̄0, φ

and ϕ.

2.2 Comparison with Test Records on Modified 9Cr-1Mo Steel

Detailed modelling for Modified 9Cr-1Mo steel has been performed according to the
above equations and other complimentary equations [5]. Examples of simulations
by the model for several loading conditions are shown in Figs. 1, 2, 3 and 4 in
comparison with the corresponding experimental data. In Fig. 1 comparing creep
deformation under constant load, effectiveness of the present model can be clearly
seen by a comparison with the result obtained by the old model which does not
incorporate the change in static recovery rate through Eq. (4). Figure 2 then shows
the capability of the model in terms of describing the effect of prior cyclic loading on
creep deformation behaviour. It can be seen that the acceleration of creep deformation
induced by cyclic softening is expressed properly and naturally. Applicability of the
model to the conventional strain-controlled creep-fatigue loading condition can be
also seen in Figs. 3 and 4 where predicted hysteresis loops and stress relaxation
behaviours show a good agreement with the test data, although the mean stress
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Fig. 1 Comparison of test data and simulations on creep curve (600C, 200 Mpa)
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Fig. 2 Comparison of test data and simulations on creep curves with and without prior cyclic
loading (600C, 180 Mpa)
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Fig. 4 Comparison of test data and simulation on the stress relaxation in creep-fatigue test

developing in the direction opposite to the strain hold side tends to be larger in the
test than that in the simulation and a room for the improvement of the model seems
to still exist in this regard.
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3 Comparison of Creep Damage Models

3.1 Outline of Models

Tests for examining the material behaviour under creep-fatigue loading are usually
performed under strain-control, as an extension of low-cycle fatigue tests. Strain
is fixed for a certain period at a certain point on triangular waveform, usually at
the tensile peak strain. Stress relaxes during this period with the accumulation of
inelastic strain, causing some reduction in number of cycles to failure. The amount
of life reduction cannot be explained only by the increase in inelastic strain range,
suggesting the activation of different damage mechanism. The change in fracture
morphology, typically from transgranular to intergranular, is often observed. These
observations clearly suggest the need of introducing a parameter which is responsible
for representing this type of damage, usually called “creep damage” in addition to
the conventional fatigue damage.

In order to evaluate their characteristics in a systematic manner, four models for
the calculation of creep damage have been applied to creep-fatigue tests carried out
on various materials including ferritic and austenitic steels as well as superalloys [8].
They include the conventional approaches called time fraction and ductility exhaus-
tion methods, respectively. The former regards the stress as a parameter governing
creep damage and it is based on the assumption that the stress of the same value brings
about an equal amount of creep damage both in creep and creep-fatigue conditions,
in which creep damage per a hold time of tH is simply estimated by

dc =
∫ tH

0

dt

tR(σ )
(5)

where tR denotes the time to rupture expected in the constant-load creep test con-
ducted at the stress of σ . On the other hand, the following equation is used in the
ductility exhaustion approach to calculate creep damage:

dc =
∫ tH

0

ε̇in

δ(ε̇in)
dt (6)

where δ denotes the rupture elongation in the creep test where the average creep
strain rate is ε̇in .

Two additional approaches have also been applied in order to look for the pos-
sibility of improved estimation of damage. Both of them are based on the idea that
creep damage in creep-fatigue condition without a gloss accumulation of inelastic
strain should be evaluated only in terms of the effect of reducing ductility. In an
earlier approach, creep damage was estimated as

dc =
∫ tH

0

(
1

min [δ(ε̇in), δ0]
− 1

δ0

)
ε̇indt (7)
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where δ0 denotes the upper-bound rupture elongation under the absence of creep
damage (elongation in short-term tensile tests). On the other hand, a more recent
approach employs inelastic energy density instead of inelastic strain, as a parameter
governing the accumulation of creep damage as

dc =
∫ tH

0

(
1

W f (Ẇin)
− 1

W f 0

)
Ẇindt (8)

where Wf denotes the inelastic strain energy density at creep rupture when the inelas-
tic energy is applied at the rate of Ẇin bounded by Wf0 obtained by short-term tensile
tests. It should be noted that the use of strain energy density, rather than inelastic
strain, tends to give larger creep damage because of the consideration of the stress
as well as inelastic strain rate.

3.2 Results of Evaluation on Many Materials

The above four procedures have been applied to many creep-fatigue tests performed
on various alloys used in power generation and other high-temperature plants.
Figures 5, 6, 7, and 8 plot the accumulated creep damage calculated by the four
approaches against accumulated fatigue damage at failure obtained using inelastic
strain range, constituting so call “interaction diagram”. It should be noted that the
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Fig. 6 Accumulated fatigue damage versus creep damage by ductility exhaustion approach
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Fig. 7 Accumulated fatigue damage versus creep damage by modified ductility exhaustion
approach
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Fig. 8 Accumulated fatigue damage versus creep damage by energy-based approach

values of accumulated fatigue damage are common in all these figures and only
those of creep damage differ depending on the approach taken. It can be firstly seen
that the values of creep damage can change significantly with a choice of the proce-
dure. In particular, stress-based time fraction approach provided a very wide range
of creep damage, depending on materials and loading conditions, which is sometime
very small and in other cases excessively large. Such a large variation, even in the
same materials, renders determining a failure criterion as a function of accumulated
creep and fatigue damage quite difficult. The other three approaches using inelastic
strain or inelastic strain energy density do not show such an extremely large scatter,
providing more stable estimation of creep damage.

In comparing the two approaches using the inelastic strain as a damage indicator
in detail, a tendency to overestimate the damage observed in the classical ductility
exhaustion approach is improved by the additional term in the modified approach
given by Eq. (7). Benefit of using inelastic strain energy instead of strain can be also
seen from the comparison of Figs. 7 and 8, although its effect is not as magnificent as
those obtained when changing from stress-based to strain-based evaluation and when
adding the second term within the latter framework. The values of total accumulated
damage in the energy-based approach range from 0.2 to 5, which means that failure
lives can be predicted with an error within this range when a simple linear damage
summation rule is applied. There appears some tendency depending on the material
type, suggesting a possibility of further improvement of the model.
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4 Concluding Remarks

In order to make reliable assessment of integrity against the failure due to creep-
fatigue interaction, accurate evaluation of inelastic deformation and resulting dam-
age is indispensable. Some of the results obtained from recent works by the author
have been briefly described. A combination of a unified constitutive model with en
extended capability and a creep damage model based on inelastic strain energy den-
sity appears to be a most promising tool for accurate estimation of failure lives under
a wide range of loading including creep-fatigue interaction. The current constitutive
model is much more complicated than the damage model and an effort needs to be
continued to find a procedure for identifying material parameters in a systematic
way.
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The Effect of Temperature on Interfacial
Gradient Plasticity in Metallic Thin Films

George Z. Voyiadjis and Danial Faghihi

Abstract The material microstructural interfaces have a profound impact on the
scale-dependent yield strength and strain hardening when the surface-to-volume
ratio of the medium increases such as in micro and nanosystems. In this paper, the
framework of higher-order strain gradient plasticity with interfacial energy effect is
used to investigate the coupling of thermal and mechanical responses of materials in
small scales and fast transient processes. In addition to the nonlocal yield condition
for the material bulk, a temperature and rate dependent microscopic yield condition
for the interface is presented, which determines the stress at which the interface
begins to deform plastically and harden. In order to address the strengthening and
hardening mechanisms, the theory is developed based on the decomposition of the
mechanical state variables into energetic and dissipative counterparts. This, consec-
utively, provides the constitutive equations to have both energetic and dissipative
gradient length scales �en and �dis respectively. Hence four material length scales
are introduced: two for the bulk and the other two for the interface. In addition, the
effect of temperature on the yield strength and hardening of the interface is included
in the formulation by postulating that the interfacial energy decreases as temperature
increases. Finally the developed framework is solved numerically to investigate the
size effect of unaxial loading of a film substrate system.

1 Introduction

Thermoplastic modelling of metallic components becomes more complex when
their size reduces to the order of a few hundreds of nanometers and they are sub-
jected to inhomogeneous plastic flow under short elapsed time during a transient.
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Since conventional continuum plasticity theories, based on the local thermodynamic
equilibrium, do not account for the microstructural characteristics of materials, they
cannot be used to adequately address the following problems:

(i) Size dependency of the macroscopic yield strength and strain-hardening rate
during the inelastic deformation observed from micro-mechanical experiments
including those from nano/micro-indentation, torsion of micron-dimensioned
wires, and bending of micron-dimensioned thin films (see e.g., [28]).

(ii) The classical (macro-mechanical) test results such as increase in the macroscopic
yield strength and strain-hardening rate of polycrystalline metals with decrease
of the particle size and the grain diameter (i.e. the Hall–Petch behavior) (see
e.g., [10]).

(ii) Heat transport responses under both short time and spatial scales such as very
high transient thermal loads on microelectronic devices and pulsed-laser process-
ing of materials (see e.g., [24, 29]).

It is known that the observed size effect is mainly due to the interaction between
statistically stored dislocations (SSDs) which increases with the plastic strain and
density of geometrically necessary dislocations (GNDs), that are generated by inho-
mogeneous plastic flow attributable to gradients of plastic strain (e.g., [25]). Over
the size scale range in which most of the experiments have been conducted, the num-
ber of dislocations is generally so large that a continuum formulation such as strain
gradient plasticity (e.g., [2, 12, 13, 20, 26, 33, 34]) is required to describe the defor-
mation. Moreover, when the phonon mean free path is of the order of or larger than
the medium size, the heat transport is not purely diffusive (as opposed to the Fourier
law) and is partly ballistic. This is caused by the activation of microstructural effects
due to the small depth of the heat-affected zone or the smallness of the structures (e.g.,
[22, 31]). On the other hand, if the response time in the small volume components
reduces to the range comparable to the thermalization time, it leads to nonequilib-
rium transition of thermodynamics between electrons and phonons (e.g., [4, 9, 18,
30, 32]). Therefore, the continuum theory of heat transfer needs to be extended to
incorporate the effect of microscopic (i.e. phonon–electron) interactions.
In the implementation of the higher-order gradient theories, higher-order boundary
conditions naturally arise via the work principle, and in this sense the theories are
well-posed. These conditions are required at the external boundary of a region in
which plastic-flow occurs as well as at the internal boundary of the plastic region
and are motivated from the physical understanding of the dislocation mechanics at the
interface between the two phases. Free surfaces and interfaces of a material confined
in a small volume can strongly affect the mechanical properties of the material. Free
surfaces in submicron and nano-systems can be sources for development of defects
and its propagation towards the interior. Hard, soft, or intermediate interfaces between
distinct phase regions can also be locations for dislocations’ blocking and pile-ups
that give rise to strain gradients to accommodate the GNDs. The increase in the initial
yield stress with decreasing thickness observed in tensile tests of various thin films
are the experimental evidences in this direction. The free surfaces of the thin film and
the interface between the film and substrate, therefore, can have a significant effect
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on the strength of the thin film. In this regard, careful modelling of the interface will
supply critical information in the continued development of strain gradient plasticity
theories.
In this work a coupled thermo-mechanical framework of higher-order strain gradient
plasticity theory is used to investigate the behavior of small-scale metallic volumes
in fast transient times. In order to incorporate the multiple sources of thermodynamic
processes into higher order strain gradient-dependent theory, the state variables are
decomposed into energetic and dissipative components. Furthermore, the effect of
temperature change due to the plastic work along with the generalized heat equation is
incorporated into the formulation. The main focus of this paper is laid on investigating
the coupling of interfacial energy with temperature and how the yield strength and
the strain hardening are affected by the temperature change in the interface. In this
regard, the application of the developed theory is considered to investigate the thermal
and mechanical behavior of a metallic thin film on a silicon substrate under uniaxial
loading.

2 Thermodynamic Framework

A thermodynamic consistent formulation to address the thermomechanical behavior
of metals is derived in this section utilizing the thermodynamic principles, internal
state variables, and thermodynamic and dissipation potentials. In order to include
the micromechanical evolution, for the mechanical part, the enhanced strain gradient
theory is considered, however, a micromorphic model is taken into account for the
thermal counterpart of the formulation.
As it is mentioned in the introduction section, interface plays an important role
for the plastic deformation at the micron scale where there exists relatively high
ratio of surface area to volume ratio. Therefore it is further assumed that if internal
work develops in the region occupied by the elastic-plastic continuum, an additional
contribution to the internal virtual work should be considered [16, 17]. The principles
of virtual power should therefore include the contributions of the interface surface
energy that depends on the plastic strain state at the interface of the plastically
deforming phase (i.e. M I

i j ε̇
pI
i j ). This interface energy introduces resistance against

dislocation movements (emission/transmission). The principal of virtual power is
then obtained by equating the external power to the principle of internal power as
Pext = Pint follows:

∫
V
(σi j ε̇

e
i j + Xi j ε̇

p
i j + Si jk ε̇

p
i j, k + AṪ + Bi Ṫ,l)dV +

∫
s I
(M I

i j ε̇
pI
i j )d SI

=
∫

S
ti vi d S +

∫
S
(mi j ε̇

pI
i j )d S

(1)
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where σi j is the Cauchy stress tensor, ε̇e
i j is the rate of elastic strain, ε̇ p

i j is the local
plastic strain rate, Xi j and Si jk are the microforces conjugate to the plastic strain
and its gradient respectively. The terms A and Bi are generalized stresses, or the so
called microforces according to Gurtin’s terminology [19]. From Eq. (1) the nonlocal
microforce balance and nonlocal microtraction condition can be given, respectively,
as follows:

τi j = Xi j − Si jk,k; mi j = Si jk Nk (2)

The microscopic boundary conditions in Eq. (2)2 are related to the interfacial energy
at the free surfaces or interfaces. This interfacial energy introduces an interfacial
resistance against dislocation emission/transmission. A consideration of arbitrary
variations of the plastic strain at the interface defines conditions for the moment
tractions, M I

i j given the following interface nonstandard moment traction conditions

M I
i j + Si jk N I

k = 0 (3)

where N I
k denotes the unit normal vectors of the surface SI pointing outwards from

the interface. If interface properties should be included in the analysis then the con-
stitutive relations must be defined for the moment and the force tractions.

2.1 Thermodynamic Formulation with Higher Order Gradients
of Stress and Temperature

The second law of thermodynamics is used in order to derive the constitutive equa-
tions and the first law is considered to derive the generalized heat equation. By
introducing the Helmotz free energy such that � = e − T s, followed by taking the
time derivative of this relation and substituting in the entropy production inequalities,
the following Clausius-Duhem inequality for the bulk and the interface are obtained
respectively [35]:

σi j ε̇
e
i j + Xi j ε̇

p
i j + Si jk ε̇

p
i j, k + AṪ + Bi , T,i − ρΨ̇ − ρsṪ − (qi

T,i
T
) ≥ 0 (4)

M I
i j ε̇

pI
i j − Ψ̇ I − s I Ṫ I ≥ 0 (5)

The term s is the specific entropy where s I is the surface density of the entropy at
the interface. In order to model the small-scale phenomena, such as the effect of
size on the material mechanical properties and the width of the localization zones in
the softening media with variation in temperature in the localized region, an attempt
is made in this work to account for the effect of nonuniform distribution of micro-
defects with temperature on the homogenized response of the material. Furthermore,
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decomposition of the thermodynamic forces into energetic and dissipative compo-
nents give:

Xi j = Xen
i j + Xdis

i j = ρ
∂Ψ

∂ε
p
i j

+ ∂D
∂ε̇

p
i j

; Si jk = Sen
i jk + Sdis

i jk = ρ
∂Ψ

∂ε
p
i j, k

+ ∂D
∂ε̇

p
i j, k

(6)

M I
i j = M I en

i j + M I en
i j = ρ

∂Ψ I

∂ε
pI
i j

+ ∂D I

∂ε̇
pI
i j

(7)

where D and D I are the complementary part of the dissipation potentials.

2.1.1 Definition of the Thermodynamic Admissible Potentials

The choice of the form of the Helmholtz free energy function Ψ is very important
since it constitutes the bases in deriving the constitutive equations. The complexity
of any model is directly determined by the form of the Helmholtz free energy and
by the number of conjugate pair of variables. In this work, however, one postulates
the following general definition of energy:

Ψ = 1

2ρ
εe

i j Ei jklε
e
kl + 1

2ρ

(
h

(
1 −

(
T

Tm

)n)
ε

p
i jε

p
i j + G�2

enε
p
i j, kε

p
i j, k

)

− 1

2

cε
Tr
(T − Tr )

2 + 1

2ρ
αT,i i (8)

where Tm is the melting temperature (m is not a tensorial subscript) and n is the tem-
perature softening component which might be assumed different for each hardening
mechanism. In the above equation cε (ε is not a tensorial subscript) is the specific heat
coefficient at constant stress, a is an additional material parameter for an isotropic
heat conduction and Tr (r is not a tensorial subscript) is the reference temperature [14].
The interface is characterized by a surface energy that depends on the plastic strain
at the interface. The distinct feature of the present formulation is to introduce an
interfacial yield stress that allows the interface to follow its own yield behavior. This
interfacial yield stress is then described via dislocation transfer phenomena where its
physical justification is made from observations obtained by nanoindentation tests
near the grain boundaries of body centered cubic (bcc) metals [3, 8, 11, 27, 36]. The
interface Helmholtz free energy is postulated as follows:

Ψ I = 1

2
Gε pI

i j ε
pI
i j (9)

where �I
en is the interfacial energetic length scale which characterizes the back-

stresses at a dislocation pile-up near the interface.
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In this proposed work, one assumes the following functional forms for dissipation
potentials of the bulk:

D = 1

2

(
℘̇

℘̇ 0

)m (
1 −

(
T

Tm

)n) ⎡
⎣σY ε̇

p
i j ε̇

p
i j + σY �

2
dis

(
ε̇

p
i j, k ε̇

p
i j, k

)
℘̇

⎤
⎦

+ 1

2g
A2 − 1

2
kT,i i ≥ 0 (10)

where ℘̇ =
√
( ṗ)2 + �2

dis ṗ,k ṗ,k is the effective nonlocal flow rate, σY is a constant
for the initial coarse grain yield strength [21] g and is a material parameter [15]. The
interface the dissipation potential is given by:

D I =
(
σ I

Y �
I
dis

) (
1 − T I

TY

)nI
⎛
⎝ ε̇

pI
i j

ṗ I
0

⎞
⎠

m I

≥ 0 (11)

where σ I
Y is a constant representing the initial yield stress of the interface, ṗ I

0 is a
constant for interfacial flow rate and has the unit of (1/s) and m is a constant for
rate sensitivity parameter. The temperature-dependency of the interfacial energy is
provided here phenomenologically where TY is the bulk scale-independent temper-
ature at the onset of yield and 0 ≤ nI < 1 is the thermal exponent [1]. Equation
(9) implies that the interfacial energy decreases as the temperature increases and
when T I = TY , the interface behaves like a free surface with zero interfacial energy.
This corresponds to the condition that dislocations are nucleated within the bulk
and did not yet reach the interface. The functional dependence of the interfacial
energy in Eq. (9) is analogous to that proposed by Cahn [5] and Cahn and Hilliard
[6] for heterogeneous domains in which TY is interpreted as the critical temperature
at which the thickness of the interface becomes infinite. This function implies that
the interfacial properties may be a function of the thermo-mechanical properties of
the adjacent materials along with additional parameters that characterize the distinct
thermo-mechanical behavior of the interface. One might select another temperature
other than TY to normalize the temperature-dependency term in Eq. (9) that depends
on the material properties of the joined materials at the interfaces. In the case of
polycrystalline materials the interface represents a grain boundary. The grain bound-
aries act as strong obstacles to dislocation motion at low temperature while, at high
temperatures, the grain boundaries function as sites of weakness and grain boundary
sliding may occur leading to plastic flow or opening up voids along the boundaries
[23]. In this regard, one may assume the interfacial yield temperature as a fraction of
the material melting point, Tm , such as TY = α I Tm where 0.3< α I < 0.6 according
to Chung [7]. However, this argument needs to be verified through novel experimental
setups for extracting the thermo-mechanical properties of the interfaces.
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Making use of the above equations and substituting into the micro balance momen-
tum and interface nonstandard moment traction, the following expressions for the
nonlocal form of the yield criterion for the grain core region and interface can be
obtained:
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2.2 Evolution Equation of Temperature

Viscoplastic adiabatic deformation of metals is not only influenced by the rate of
loading but also by the initial testing temperature as well as its evolution due to
conversion of the plastic work into heat. According to the aforementioned thermo-
dynamic forces one can postulate the conservation of energy as follows:

ρė = σi j ε̇
e
i j + Xi j ε̇

p
i j + Si jk ε̇

p
i j, k + AṪ + Bi Ṫ , i − qi, i (14)

Substituting for the internal energy density rate e after taking the time rate of Ψ =
e − Ts into the first law of thermodynamics, the heat equation in the presence of a
viscous generalized stress Av is obtained as follows:

Xdis
i j ε̇

p
i j + Sdis

i jk ε̇
p
i j, k + AvṪ − divqi = ρ&̇T (15)

By solving for the entropy rate and substituting into Eq. (15), along with assuming

γ = k
ρcε
, τT = − Tra

k , and τq = Tr�

ρcε
(all these are scalar relations), the following

thermodynamic heat balance equation which accounts for the effect of microstruc-
tural interaction (microscale in space) in fast-transient (microscale in time) can be
obtained as follows:

Ṫ = 1

ρcε

(
Xdis

i j ε̇
p
i j + Sdis

i jk ε̇
p
i j, k

)
+ (γ T,i i + γ τT Ṫ,i i − τq T̈ ) (16)
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where γ is the effective thermal diffusivity in the phonon–electron or pure-phonon
system and τT and τq are two positive intrinsic time scales (scalar quantities) charac-
terizing the effect of the microstructural interactions and the fast transient response
respectively (e.g., [32]). The values of τT and τq (scalar quantities) have to be deter-
mined by the transient response of temperature measured in the laboratory.

3 Numerical Example: Uniaxial Loading of a Thin
Film on a Substrate

A thin film of thickness L constrained on a thick elastic substrate at z = 0 and
subjected to uniaxial uniform tension at high rates is considered. Since the film is
infinitely long in the x-direction and initially homogeneous, the solution depends
only on z such that by assuming a plane strain problem in the y-direction, the non-
vanishing components can be written for the stress tensor as σxx = σ0, where the
stress field σ0 is the uniform applied stress. Due to the symmetry and because the
strain components do not depend on x, the total strain εxx = ε0 must be uniform
throughout the film length such that the effective plastic strain and its Laplacian in
this case can be assumed as ε p

i j = ε
p
0 and ε p

i j,kk = ε
p
0,zz .

The results analyzed for the case of biaxial loading of a 1 µm thick aluminum film
on a silicon substrate during 1 µs is presented here. Typical properties of aluminum
are adopted such as: E = 70 GPa, v = 0.33, σY = 36 MPa and h = 100 MPA.
The thermal exponent for the bulk and the interface are assumed as n = 0.3 and
nI = 0.5 respectively. It is possible to obtain the numerical solution by solving
the nonlinear differential equation, Eq. (12), with the boundary condition, Eq. (13).
Moreover, a three point fourth order compact finite difference scheme suggested by
Zhang and Zhao (see e.g., [37]) is taken into account for solving the one-dimensional
generalized heat equation presented in Eq. (16).
Figure 1 shows the distribution of normalized plastic strain and temperature through
the film thickness at the last stage of loading for different values of energetic
and dissipative length scales. Figure 2 also shows the variation of interfacial plas-
tic strain and temperature with different values of the normalized length scales
(�en/L and �dis/L). From these figure one can realize that the energetic length
scale gives rise to the strain hardening. However, considering the compliant inter-
face leads to higher plastic strain and consequently higher temperature through the
thickness while the boundary layer formation is more pronounced when fewer dis-
locations are allowed to transmit through the interface (stiff interface). The variation
of interfacial plastic strain and temperature in both cases are qualitatively the same
with different energetic length scale values which for larger values of the length scale
they approach constant values. Contrary to the case with varying energetic length
scales which gives rise to strain-hardening, the higher amount of dissipative length
scale increases the yield strength but no additional strain hardening is observed in
this case.
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Fig. 1 Size effects due to energetic and dissipative length scales. Distribution of the normalized
plastic strain [plots (a) and (c)] and normalized temperature [plots (b) and (d)] across the normalized
film thickness. In all cases �I

en/L = �I
dis/L = 0.1

Fig. 2 Variation of interfacial plastic strain and temperature with energetic and dissipative length
scales

The effect of different values of the interfacial length scales are investigated in Fig. 3.
From this figure one can conclude that the interfacial energetic length scale only
affects the plastic strain and temperature at the interface while the plastic strain and
the temperature profiles though the thickness are the same for different length scales.
Although lower interfacial strains and temperatures are indicated in stiff interfaces,
their variation with �I

en/L is more pronounced for such stiff interface. On the other
hand, the variation of interfacial plastic strain and temperature with interfacial length
scale is quite different in each of �I

en/L and �I
dis/L as shown in Fig. 4. In both

cases, temperature and plastic strain at the interface decreases with increasing the
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Fig. 3 Size effects due to interfacial energetic and dissipative length scales. Distribution of the
normalized plastic strain [plots (a) and (c)] and normalized temperature [plots (b) and (d)] across
the normalized film thickness. In all cases �I

en/L = �I
dis/L = 0.5

Fig. 4 The variation of interfacial plastic strain and temperature with �I
en/L and �I

dis/L

normalized interfacial length scales. However, the variation is quite linear for the
case of �I

en/L and parabolic for �I
dis/L .

4 Conclusion

Free surfaces and interfaces of a material confined in a small volume or structure can
strongly affect the mechanical and thermal properties of micro and nanosystems.
In this work a coupled thermo-mechanical formulation within the framework of
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higher-order strain gradient plasticity and the application of micromorphic approach
to the temperature variable is used to investigate the behavior of small-scale metallic
volumes in fast transient times. The higher-order boundary conditions that result
from the mathematical consistency of strain gradient plasticity theory are interpreted
as microtraction forces that are related to the interfacial energy at the interface. The
interfacial energy is a measure of the interface resistance to dislocation motion, trans-
mission, and emission. The proposed interfacial condition in this paper allows the
interfaces to be able to follow their own yield behavior as well as being rate and
temperature dependent. It is postulated that the interfacial energy decreases as the
temperature increases. This implies that size effect on the yield strength and strain
hardening rate decreases as temperature increases. In order to address the strengthen-
ing and hardening mechanisms, the theory is developed based on the decomposition
of the mechanical state variables into energetic and dissipative counterparts. This,
consecutively, provides the constitutive equations to have both energetic and dissi-
pative gradient length scales �en and �dis respectively. Hence four material length
scales are introduced: two for the bulk and the other two for the interface.
The proposed framework is applied to solve uniaxial loading of a film-substrate
system with two different interface properties (hard and soft). It is concluded that the
postulated interfacial energy expression provides the size dependency of the yield
strength and strain hardening rates. Furthermore, it is concluded that the yield stress
(corresponding to the dissipative counterpart) is more temperature sensitive as the
film thickness decreases.
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A Cyclic Crystal Viscoplastic Model
Considering Both Dislocation Slip
and Twinning

Chao Yu, Guozheng Kang, Qianhua Kan, Otto T. Bruhns
and Chuanzeng Zhang

Abstract Based on the framework of crystal visco-plasticity, a new single crystal
cyclic constitutive model is first constructed to describe the cyclic plastic deformation
of single crystal metal by considering both the dislocation slip and twinning. The new
orientation of the slip system in the twinned region can be obtained only by a rotation
of the original one, and then, a rotation tensor is introduced in the proposed model.
Also, a nonlinear kinematic hardening rule is employed to describe the evolution
of resolved shear back stress in each active slip system and twinning system. Then,
an explicit scale-transition rule is adopted to extend the proposed single crystal
model to the polycrystalline version. Finally, the capability of the proposed model
to describe the uniaxial ratchetting is verified by comparing the simulations with the
corresponding experiments of polycrystalline Ti-6Al-4V alloy, a dual-phase material
consisting of a primary hexagonal close packed (HCP) phase α and secondary body-
centered cubic (BCC) phase β.
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1 Introduction

In the last decades, many constitutive models were proposed to describe the cyclic
deformation of metallic materials as reviewed by [1–4]. Most of the existing models
were derived directly from the macroscopic experimental results, and did not con-
sider the physical nature of plastic deformation reasonably. Recently, based on the
crystal plasticity, several micromechanical constitutive models were constructed to
capture the microscopic physical nature of plastic deformation. The typical mod-
els are presented in [5–10] and so on. However, the ratchetting of metallic materials
occurring in the asymmetrical stress-controlled cyclic loading as reviewed by [1–4] is
not reasonably considered in the above-mentioned models. More recently, Ref. [11]
presented a cyclic polycrystalline visco-plastic constitutive model to describe the
uniaxial ratchetting of 316L stainless steel (a FCC polycrystalline metal) by consid-
ering only the dislocation slip and referring to the work done by [12]. However, for
some materials such as Titanium alloys, twinning has been proved to be also a cause
of plastic deformation by [13, 14]. It is necessary to introduce the twinning mecha-
nism into the cyclic constitutive model to describe the ratchetting of polycrystalline
metals reasonably.

Therefore, in this work, a cyclic polycrystalline visco-plastic constitutive model
is proposed in the framework of thermodynamics and crystal plasticity to describe
the ratchetting of polycrystalline material at room temperature. In the model, both
dislocation slip and twinning are considered. An explicit scale-transition rule con-
sidering the plastic accommodation of grains is employed to transit the single crystal
model into its polycrystalline version. The capability of the developed model to pre-
dict the ratchetting is verified by comparing the simulations with the experiments of
a commercial Ti-6Al-4V alloy made in China.

2 Cyclic Polycrystalline Visco-Plastic Constitutive Model

2.1 Cyclic Single Crystal Constitutive Model

2.1.1 Assumptions for Elastic and Plastic Strains

Based on the hypothesis of small deformation, the total strain can be decomposed
into two parts, i.e., elastic strain εe, and plastic strain ε

p
twincaused by twinning and

ε
p
slipby dislocation slip:

ε = εe + ε
p
twin + ε

p
slip (1)

It is well-known that polycrystalline Ti-6Al-4V alloy is aggregated by the single-
phase grains of a primary α (HCP) and the dual-phase ones of primary α (HCP)
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and secondary β (BCC) phases. In the dual-phase single crystal grain, the volume
fraction of secondary β phase is represented by the parameter ξ; while in the single-
phase grain of a primary α (HCP), the parameter ξ is set to be zero. The details of
microstructure and the length-scale effect in a single crystal are not considered in
this work.

In this work, it is assumed that the twinning just occurs in the primary α (HCP)
phase, and then three types of twinning, i.e., tension twinning {101̄2} 〈

1̄011
〉

with
maximum shear strain of 16.7 %, compression one {101̄1} 〈

1̄012
〉

with maximum
shear strain of 22.5 %, and compression one {112̄2} 〈

1̄1̄23
〉

with maximum shear
strain of 63.8 % are considered by referring to [14]. Therefore, the plastic strain
caused by the twinning occurring in the primary α (HCP) phase is a sum of the
contributions by all the twinning systems, i.e.,

ε̇
p
twin = (1 − ξ)

ntwin∑
i=1

ḟ igi�i (2)

�i = 1

2
(mi ⊗ ni + ni ⊗ mi) (3)

f =
ntwin∑
i=1

f i (4)

Here, f is the total volume fraction of all twinning systems for the contribution to the
plastic deformation of the primary α (HCP) phase; ntwin is the number of twinning
systems; f i and�i are the volume fraction and orientation tensor of the ith twinning
system; gi is the maximum shear strain caused by the ith twinning system which is
listed in the previous context; mi and ni are the twinning direction and habit plane
normal vectors, respectively.

Concerning the dislocation slip occurring in the Ti-6Al-4V dual-phase single
crystal grain under the cyclic loading, two contributions are considered in this work,
i.e., one comes from the slip in the primary α (HCP) phase, and the other from that
in the secondary β (BCC) phase. There are four types of slip systems in the primary
α phase: basal slip system 3

〈
112̄0

〉
(0001), prismatic one 3

〈
112̄0

〉
(101̄0), first-order

pyramidal one 6
〈
112̄0

〉
(101̄1) and second-order pyramidal one 12

〈
112̄3

〉
(101̄1)are

considered by referring to [10]. In this work, the contribution of the second-order
pyramidal slip system to the plastic deformation is neglected, because its critically
resolved shear stress is much higher than those of basal, prismatic, and first-order
pyramidal slip systems.

With respect to the dislocation slip occurring in the secondary β (BCC) phase, it
is assumed that only the 12 primary slip systems 〈111〉 {110} will be activated under
the cyclic loading for simplicity. In the Ti-6Al-4V dual-phase single crystal, the
orientations of α and β phases are not arbitrary, but satisfy the Burgers’ orientation
relation [15, 16], i.e., (0001)α// {101}β and (112̄0)α// {111}β . So, if the orientation



354 C. Yu et al.

of the α phase in a dual-phased single crystal is determined, that of the β phase can
be readily obtained by the Burgers’ orientation relation.

Considering the further dislocation slip occurring in the twinned crystal struc-
ture, the total plastic strain caused by the dislocation slip can be obtained from the
following formula

ε̇
p
slip = (1 − ξ)

⎡
⎣(1 − f )

HCP_nslip∑
j=1

γ̇
j
0Pj

0 +
ntwin∑
i=1

f i

⎛
⎝HCP_nslip∑

j=1

γ̇
j
i Pj

i

⎞
⎠

⎤
⎦

+ ξ

BCC_nslip∑
i=1

λ̇iMi (5)

Here, the first term represents the plastic strain caused by the dislocation slip in the

un-twinned and twinned α phases and the second one in the β phase;
HCP_nslip∑

j=1
γ̇

j
0Pj

0

is the plastic strain caused by the dislocation slip in un-twinned α phase, Pj
0 is

the orientation tensor of the jth slip system, γ̇ j
0 is the slipping rate related to Pj

0;
HCP_nslip∑

j=1
γ̇

j
i Pj

i is the plastic strain caused by the dislocation slip in the ith twinned α

phase, Pj
i is the orientation tensor of the jth slip system in the ith twinned region, and

γ̇
j
i is the slipping rate related to Pj

i ;
BCC_nslip∑

i=1
λ̇iMi is the plastic strain caused by the

dislocation slip in β phase, Mi is the orientation tensor of the ith slip system, and λ̇i

is the slipping rate related to Mi.
The orientation tensors Pj

0 and Mi can be easily obtained by the slip direction and
the slip plane normal vectors using

Pj
0 = 1

2
(sj

HCP ⊗ ljHCP + ljHCP ⊗ sj
HCP) (6)

Mi = 1

2
(si

BCC ⊗ liBCC + liBCC ⊗ si
BCC) (7)

where sj
HCP is the slip direction and ljHCP is the slip plane normal vector of the jth

slip system in the primary HCP α phase, and si
BCC is the slip direction and liBCC is

the slip plane normal vector of the ith slip system in secondary BCC β phase. It is
well known that the orientation of the slip system in the twinned region of the α
phase is different from that in the un-twinned one. However, the crystal structure
remains unchanged during the twinning. The new orientation of the slip system in
the twinned region can be obtained by rotating the original one. So, a rotation tensor
is introduced similar to the work done in [11], i.e.,
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Ri = 2ni ⊗ ni − I (8)

where Ri the rotation tensor acting on the slip system in the ith twinned region. The
new orientation tensor of the jth slip system in the ith twinned region is formulated as

Pj
i = RiPj

0(R
i)T (9)

2.1.2 Thermodynamics Description

Considering a representative volume element (RVE) of a dual-phase single crystal,
the Helmholtz free energy can be written as

ψ = ψe + ψ
p
twin + ψ

p
slip (10)

The explicit expressions of each energy part can be obtained as follows

ψe(εe) = 1

2
εe : C : εe (11)

ψ
p
twin(t) =

∫ t

0

ntwin∑
i=1

Xi
twingiḟ idτ (12)

ψ
p
slip(t) = (1 − ξ)

∫ t

0

HCC_nslip∑
i=1

Xi ˙̄γ idτ + ξ

∫ t

0

BCC_nslip∑
i=1

Tiλ̇idτ (13)

˙̄γ i = (1 − f )γ̇ i
0 +

ntwin∑
j=1

f jγ̇ i
j (14)

Here, C is a fourth-order elastic tensor which for simplification can be set as an
isotropic tensor; ψp

twin(t) describes the strain hardening caused by the twinning,
while ψp

slip(t) represents the strain hardening caused by the dislocation slip; Xi
twinis

the resolved shear back stress of ith twinning system which is a dual variable of the

weighted volume fraction rate giḟ i;
HCP_nslip∑

i=1
Xi ˙̄γ i is the strain hardening caused by

the dislocation slip, Xi and ˙̄γ i are the resolved shear back stress and the effective
slipping rate of the ith slip system in the primary HCP α phase, respectively. Also,
BCC_nslip∑

i=1
Tiλ̇i is the hardening caused by the dislocation slip, Ti and λ̇i are the back

stress and the slipping rate of the ith slip system in the secondary BCC β phase. In
the isothermal case, the dissipative inequality can be written as

σ : ε̇ − ψ̇ ≥ 0 (15)
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Since the dissipation of the elastic deformation is zero, and no interaction between
the dislocation slip and the twinning is considered, the dissipative inequality can be
rewritten as

σ = C : εe (16)
ntwin∑
i=1

(σ : �i − Xi
twin)g

iḟ i ≥ 0 (17)

(1 − ξ)[(1 − f )
HCP_nslip∑

j=1

(σ : Pj
0 − Xj)γ̇

j
0

+
ntwin∑
i=1

HCP_nslip∑
j=1

f i(σ : Pj
i − Xj)γ̇

j
i ] + ξ

BCC_nslip∑
i=1

(σ : Mi − Ti)λ̇ (18)

By Eqs. (17) and (18) the thermodynamic driving force of each internal variable can
be written as

Fj
twin = (σ : �i − Xi

twin)g
i (19)

Fj
i = σ : Pj

i − Xj (20)

Qj = σ : Mi − Ti (21)

If the thermodynamic driving force Fi
twin is positive and larger than a critical value,

then twinning occurs. However, a negative thermodynamic driving force can recover
a part of the twinning deformation. So, a criterion should be constructed to distinguish
the twinning from its recovery. It can be stated as

σ̇ : εi ≥ 0; f i ≤ 1; f ≤ 1 for twinning of ith twinning system (22)

σ̇ : εi < 0; f i ≥ 0; f ≥ 0 for recovery of ith twinning system (23)

2.1.3 Evolution of Internal Variables

The evolution rule of the volume fraction of the twinning can be obtained in the
framework of visco-plasticity as

ḟ i =
〈

Fi
twin

giKtwin

〉n

for twinning of ith twinning system (24)

ḟ i = −
〈

−Fi
twin

giKtwin

〉n

for recovery of ith twinning system (25)
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where giKtwin is the resistance to twinning deformation, gi is a weighting factor intro-
duced to reflect a higher potential barrier encountered in the shear deformation with
larger magnitude, and n represents the rate sensitivity of the twinning deformation.
The evolution rules of the dislocation slip occurring in both the primary α and the
secondary β phase can be also obtained in the framework of visco-plasticity as

γ̇
j
i =

⎛
⎝

∣∣∣Fj
i

∣∣∣
KHCPslip

⎞
⎠

n

sign(Fj
i ) (26)

λ̇i =
( ∣∣Qi

∣∣
KBCCslip

)n

sign(Qi) (27)

whereKHCPslip is the viscosity resistance to the dislocation slip occurring in the
primary α phase and KBCCslip is that in the secondary β phase.

2.1.4 Hardening Rules

Due to the low symmetrical of HCP crystal lattice, it is difficult to obtain the inter-
action matrix for each slip and twin system. Thus, following the previous work done
by [10], only the self-hardening in each slip system or twinning system is considered
in formulating the evolution equations of the resistances Xi

twin, Xi and Ti during the
cyclic deformation of Ti-6Al-4V single crystal. Referring to the nonlinear kinematic
hardening rule proposed by [17], the following evolution rules are constructed

Ẋi
twin = Btwinḟ i − CtwinXtwin

∣∣∣ḟ i
∣∣∣ (28)

Ẋi = BHCP_slip ˙̄γ i − CHCP_slipXi
∣∣∣ ˙̄γ i

∣∣∣ (29)

Ṫ i = BBCC_slipλ̇
i − CBCC_slipT i

∣∣∣λ̇i
∣∣∣ (30)

where Btwin, BHCP_slip, BBCC_slip and Ctwin, CHCP_slip, CBCC_slip are the coefficients of
the strain hardening and the dynamic recovery terms for the resistances, respectively.
However, further work should be done in order to obtain the interaction matrix for
each slip and twin system.

2.2 Explicit Scale-Transition Rule

To obtain the stress-strain responses of polycrystalline aggregates from that of a single
crystal, an effective scale-transition rule is required. The explicit β-rule has already
been used in [11, 12] to develop a cyclic polycrystalline plastic model to describe
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the ratchetting behavior of some face-centered cubic (FCC) and body-centered cubic
(BCC) polycrystalline materials. So, the β-rule is also employed in this work and
outlined in the following parts.

With the assumption of homogeneous isotropic elasticity for polycrystalline
aggregates, the local stress tensor σg can be obtained from the applied uniform
stress tensor σ by using following formulae

σg = σ + C(β − βg) (31)

β̇
g = ε̇g − Dβg

∥∥εg
∥∥ (32)

where β = [βg], the symbol [•] denotes the volume average for the polycrystalline
aggregates, and C and D are material parameters.

3 Verification and Discussion

For the verification purpose, 50 isometric randomly oriented single crystal grains are
used to represent the polycrystalline Ti-6Al-4V alloy, which consist of 30 single-
phase α (HCP) grains and 20 dual-phase (α + β) ones. Thus, the total volume
fraction of the β phase is 3.2 %, when the parameter ξ is set to be 0.08. The proposed
model is verified at the macroscopic scale. Since the experimental data of cyclic
deformation for Ti-6Al-4V single-phase and dual-phase single crystal grains have
not been obtained yet in microscopic scale, all the material parameters can be just
determined by a trial-and-error method from the macroscopic experimental data
of a commercial Ti-6Al-4V alloy made in China (its chemical compositions are as
follows: C 0.06, Al 6.2, Fe 0.12, V 4.1, N 0.02, H 0.009, O 0.15, and the remained Ti),
and they are listed in Table 1. The experimental observation showed that the twinning
occurs during the ratchetting deformation of the Ti-6Al-4V alloy after certain cycles.

Firstly, the proposed model is verified by comparing the simulations and the
experiments under the monotonic tension. It can be seen from Fig. 1 that the simulated
results are in good agreement with the experimental ones.

Then, the proposed model is used to simulate the ratchetting of Ti-6Al-4V alloy
occurring under the uniaxial stress-controlled cyclic loading. The ratchetting strain

Table 1 Material parameters used in the proposed model

Elastic constants: E = 100 GPa; ν = 0.3
Flow rule: n = 25; Ktwin = 335 MPa; KHCPslip = 485 MPa; KBCCslip = 385 MPa
Kinematic hardening rule: Btwin = 6 GPa; Ctwin = 4; BHCP−slip = 0.4 GPa; CHCP−slip = 10;
BBCC−slip = 0.4 GPa; CBCC−slip = 10
β-rule: C = 5 GPa; D = 80
Volume fraction: ξ = 0.08
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Fig. 1 Simulated and experimental monotonic tensile stress-strain curves
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Fig. 2 Ratchetting behavior of Ti-6Al-4V polycrystalline alloy: a Ratchetting strain versus number
of cycles with various stress amplitudes; b Ratchetting strain versus number of cycles with various
mean stresses

is defined as εr = (εmax + εmin)/2, where εmax and εmin are the maximum and
minimum strains of each cycle, respectively. The results are shown in Fig. 2.

It can be seen from Fig. 2 that the simulated results are in fairly good agreement
with the corresponding experimental ones, and the dependences of the ratchetting
on the applied mean stress and stress amplitude observed in the experiments are also
reasonably described by the proposed model. It should be noted that the proposed
model just provides a constant rate of ratchetting strain due to the employment of
kinematic hardening rules similar to Armstrong-Frederick model [17]. Although the
decreased rate of ratcheting strain occurring at the beginning of the cyclic loading
test cannot be reasonably predicted, the capability of the proposed model to predict
the ratchetting behavior of the material can be improved by using more advanced
nonlinear kinematic hardening rules [4].
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4 Conclusions

A new cyclic polycrystalline visco-plastic constitutive model is proposed in the
framework of thermodynamics and crystal plasticity by considering the contributions
of both dislocation slip and twinning to the plastic deformation of a single crystal.
The polycrystalline version of the proposed model is obtained by extending the cyclic
single crystal plastic constitutive model with the help of an explicit scale-transition
rule (i.e., β-rule). It is shown that the simulated results of uniaxial ratchetting by the
proposed model are in fairly good agreement with the corresponding experimental
ones for polycrystalline Ti-6Al-4V alloy. As future research works, much effort is
necessary to verify the capability of the proposed model to describe the multiaxial
ratchetting of polycrystalline aggregates and the ratchetting of single crystals, where
the corresponding experimental studies are also needed.
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