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Abstract. We use optimism to introduce generic asymptotically opti-
mal reinforcement learning agents. They achieve, with an arbitrary finite
or compact class of environments, asymptotically optimal behavior. Fur-
thermore, in the finite deterministic case we provide finite error bounds.
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1 Introduction

This article studies a fundamental question in artificial intelligence; given a set of
environments, how do we define an agent that eventually acts optimally regard-
less of which of the environments it is in. This question relates to the even more
fundamental question of what intelligence is. [Hut05] defines an intelligent agent
as one that can act well in a large range of environments. He studies arbitrary
classes of environments with particular attention to universal classes of envi-
ronments like all computable (deterministic) environments and all lower semi-
computable (stochastic) environments. He defines the AIXI agent as a Bayesian
reinforcement learning agent with a universal hypothesis class and a Solomonoff
prior. This agent has some interesting optimality properties. Besides maximiz-
ing expected utility with respect to the a priori distribution by design, it is also
Pareto optimal and self-optimizing when this is possible for the considered class.
It was, however, shown in [Ors10] that it is not guaranteed to be asymptoti-
cally optimal for all computable (deterministic) environments. [LH11a] shows
that this is not surprising since, at least for geometric discounting, no agent
can be. [LH11a] also shows that in a weaker (in average) sense, optimality can
be achieved for the class of all computable environments using an algorithm
that includes long exploration phases. Furthermore, it is simple to realize that
Bayesian agents do not always achieve optimality for a finite class of deterministic
environments even if all prior weights are strictly positive.

We use the principle of optimism to define an agent that for any finite class of
deterministic environments, eventually acts optimally. We extend our results
to the case of finite and compact classes of stochastic environments. In the
deterministic case we also prove finite error bounds. Optimism has previously
been used to design exploration strategies for both discounted and undiscounted
MDPs [KS98, SL05, AO06, LH12], though here we define optimistic algorithms
for any finite class of environments.
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Related Work. Besides AIXI [Hut05] that was discussed above, [LH11a] in-
troduces an agent which achieves asymptotic optimality in an average sense for
the class of all deterministic computable environments. There is, however, no
time step after which it is optimal at every time step. This is due to an infi-
nite number of long exploration phases. We introduce an agent, that for finite
classes of environments, does eventually achieve optimality for every time step.
For the stochastic case, the agent achieves with any given probability, optimality
within ε for any ε > 0. Our very simple agent is relying elegantly on the prin-
ciple of optimism, used previously in the restrictive MDP case with discounting
[KS98, SL05, LH12] and without [AO06], instead of an indefinite number of ex-
plicitly enforced bursts of exploration. [RH08] also introduces an agent that relies
on bursts of exploration with the aim of achieving asymptotic optimality. The
asymptotic optimality guarantees are restricted to a setting where all environ-
ments satisfy a certain restrictive value-preservation property. [EDKM05] stud-
ied learning general Partially Observable Markov Decision Processes (POMDPs).
Though POMDPs constitute a very general reinforcement learning setting, we
are interested in agents that can be given any (deterministic or stochastic) class
of environments and successfully utilize the knowledge that the true environment
lies in this class.

Background. We will consider an agent [RN10, Hut05] that interacts with an
environment through performing actions at from a finite set A and receives
observations ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1].
Let H = (A×O ×R)∗ be the set of histories and R : H → R the return

R(a1o1r1a2o2r2...anonrn) =

n∑

j=1

rjγ
j

with the obvious extension to infinite sequences. A function from H × A to
O × R is called a deterministic environment (studied in Section 2. A function
π : H → A is called a policy or an agent. We define the value function V
by V π

ν (ht−1) := R(ht:∞) =
∑∞

i=t γ
i−tri where the sequence ri are the rewards

achieved by following π from time step t onwards in environment ν after having
seen ht−1.

Instead of viewing the environment as a function from H × A to O × R we
can equivalently write it as a function ν : H × A × O × R → {0, 1} where we
write ν(o, r|h, a) for the function value of (h, a, o, r). It equals zero if in the first
formulation (h, a) is not sent to (o, r) and 1 if it is. In the case of stochastic
environments, which we will study in Section 3, we instead have a function
ν : H×A×O×R→ [0, 1] such that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. Furthermore, we

define ν(ht|π) := ν(or1:t|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1). ν(·|π) is

a probability measure over strings or sequences as will be discussed in the next
section and we can define ν(·|π, ht−1) by conditioning ν(·|π) on ht−1. We define
V π
ν (ht−1) := Eν(·|π,ht−1)R(ht:∞) as the ν-expected return of policy π.
A special case of an environment is a Markov Decision Process (MDP) [SB98].

This is the classical setting for reinforcement learning. In this case the environ-
ment does not depend on the full history but only on the latest observation
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and action and is, therefore, a function from O × A × O × R to [0, 1]. In this
situation one often refers to the observations as states since the latest observa-
tion tells us everything we need to know. In this situation, there is an optimal
policy that can be represented as a function from the state set S (:=O) to A.
We only need to base our decision on the latest observation. Several algorithms
[KS98, SL05, LH12] have been devised for solving discounted (γ < 1) MDPs for
which one can prove PAC (Probably Approximately Correct) bounds. They are
finite time bounds that hold with high probability and depend only polynomi-
ally on the number of states, actions and the discount factor. These methods are
relying on optimism as the method for making the agent sufficiently explorative.
Optimism roughly means that one has high expectations for what one does not
yet know. Optimism was also used to prove regret bounds for undiscounted
(γ = 1) MDPs in [AO06] which was extended to feature MDPs in [MMR11].
Note that these methods are restricted to MDPs and that we do not make any
(Markov, ergodicity, stationarity, etc.) assumptions on the environments, only
on the size of the class.

Outline. In this article we will define optimistic agents in a far more general
setting than MDPs and prove asymptotic optimality results. The question of
their mere existence is already non-trivial, hence asymptotic results deserve at-
tention. In Section 2 we consider finite classes of deterministic environments and
introduce a simple optimistic agent that is guaranteed to eventually act opti-
mally. We also provide finite error bounds. In Section 3 we generalize to finite
classes of stochastic environments and in Section 4 to compact classes.

2 Finite Classes of Deterministic Environments

Given a finite class of deterministic environments M = {ν1, ..., νm}, we define
an algorithm that for any unknown environment from M eventually achieves
optimal behavior in the sense that there exists T such that maximum reward is
achieved from time T onwards. The algorithm chooses an optimistic hypothesis
from M in the sense that it picks the environment in which one can achieve
the highest reward (in case of a tie, choose the environment which comes first
in an enumeration of M) and then the policy that is optimal for this environ-
ment is followed. If this hypothesis is contradicted by the feedback from the
environment, a new optimistic hypothesis is picked from the environments that
are still consistent with h. This technique has the important consequence that if
the hypothesis is not contradicted we are still acting optimally when optimizing
for this incorrect hypothesis.

Let hπ,ν
t be the history up to time t generated by policy π in environment ν.

In particular let h◦ := hπ◦,μ be the history generated by Algorithm 1 (policy π◦)
interacting with the actual “true” environment μ. At the end of cycle t we know

h◦
t = ht. An environment ν is called consistent with ht if h

π◦,ν
t = ht. Let Mt be

the environments consistent with ht. The algorithm only needs to check whether

oπ
◦,ν

t = ot and rπ
◦,ν

t = rt for each ν ∈ Mt−1, since previous cycles ensure

hπ◦,ν
t−1 = ht−1 and trivially aπ

◦,ν
t = at. The maximization in Algorithm 1 that
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Require: Finite class of deterministic environmentsM0 ≡M
1: t = 1
2: repeat
3: (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt−1

V π
ν (ht−1)

4: repeat
5: at = π∗(ht−1)
6: Perceive otrt from environment μ
7: ht ← ht−1atotrt
8: Remove all inconsistent environments fromMt

(Mt := {ν ∈Mt−1 : hπ◦,ν
t = ht})

9: t← t+ 1
10: until ν∗ �∈ Mt−1

11: untilM is empty

Algorithm 1. Optimistic Agent (π◦) for Deterministic Environments

defines optimism at time t is performed over all ν ∈ Mt, the set of consistent
hypotheses at time t, and π ∈ Π = Πall is the class of all deterministic policies.

Theorem 1 (Optimality, Finite Deterministic Class). If we use Algorithm
1 (π◦) in an environment μ ∈ M , then there is T < ∞ such that

V π◦
μ (ht) = max

π
V π
μ (ht) ∀t ≥ T.

A key to proving Theorem 1 is time-consistency [LH11b] of geometric discount-
ing. The following lemma tells us that if we act optimally with respect to a
chosen optimistic hypothesis, it remains optimistic until contradicted.

Lemma 1 (Time-consistency). Suppose (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt
V π
ν (ht),

that we act according to π∗ from time t to time t̃−1 and that ν∗ is still consistent
at time t̃ > t , then (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt̃

V π
ν (ht̃).

Proof. Suppose that V π∗
ν∗ (ht̃) < V π̃

ν̃ (ht̃) for some π̃, ν̃. It holds that V π∗
ν∗ (ht) =

C + γ t̃−tV π∗
ν∗ (ht̃) where C is the accumulated reward between t and t̃ − 1. Let

π̂ be a policy that equals π∗ from t to t̃ − 1 and then equals π̃. It follows that
V π̂
ν̃ (ht) = C + γ t̃−tV π̂

ν̃ (ht̃) > C + γ t̃−tV π∗
ν∗ (ht̃) = V π∗

ν∗ (ht) which contradicts the
assumption (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt

V π
ν (ht). Therefore, V

π∗
ν∗ (ht̃) ≥ V π̃

ν̃ (ht̃)
for all π̃, ν̃.

Proof. (Theorem 1) At time t we know ht. If some ν ∈ Mt−1 is inconsistent

with ht, i.e. h
π◦,ν
t �= ht, it gets removed, i.e. is not in Mt′ for all t

′ ≥ t.
Since M0 = M is finite, such inconsistencies can only happen finitely often,

i.e. from some T onwards we have Mt = M∞ for all t ≥ T . Since hπ◦,μ
t = ht ∀t,

we know that μ ∈ Mt ∀t.
Assume t ≥ T henceforth. The optimistic hypothesis will not change after this

point. If the optimistic hypothesis is the true environment μ, we have obviously
chosen the true optimal policy.
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In general, the optimistic hypothesis ν∗ is such that it will never be contra-
dicted while actions are taken according to π◦, hence (π∗, ν∗) do not change
anymore. This implies

V π◦
μ (ht) = V π∗

μ (ht) = V π∗
ν∗ (ht) = max

ν∈Mt

max
π∈Π

V π
ν (ht) ≥ max

π∈Π
V π
μ (ht)

for all t ≥ T . The first equality follows from π◦ equals π∗ from t ≥ T onwards.
The second equality follows from consistency of ν∗ with h◦

1:∞. The third equality
follows from optimism, the constancy of π∗, ν∗, and Mt for t ≥ T , and time-
consistency of geometric discounting (Lemma 1). The last inequality follows from
μ ∈ Mt. The reverse inequality V π∗

μ (ht) ≤ maxπ V
π
μ (ht) follows from π∗ ∈ Π .

Therefore π◦ is acting optimally at all times t ≥ T .

Besides the eventual optimality guarantee above, we also provide a bound on
the number of time steps for which the value of following Algorithm 1 is more
than a certain ε > 0 less than optimal. The reason this bound is true is that
we only have such suboptimality for a certain number of time steps before a
point where the current hypothesis becomes inconsistent and the number of
such inconsistency points are bounded by the number of environments.

Theorem 2 (Finite error bound). Following π◦ (Algorithm 1),

V π◦
μ (ht) ≥ max

π∈Π
V π
μ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most |M| log ε(1−γ)
γ−1 time steps t.

Proof. Consider the �-truncated value

V π
ν,�(ht) :=

t+�∑

i=t+1

γi−t−1ri

where the sequence ri are the rewards achieved by following π from time t + 1

to t + � in ν after seeing ht. By letting � = log ε(1−γ)
log γ (which is positive due to

negativity of both numerator and denominator) we achieve |V π
ν,�(ht)−V π

ν (ht)| ≤
γl

1−γ = ε. Let (π∗
t , ν

∗
t ) be the policy-environment pair selected by Algorithm 2 in

cycle t.

Let us first assume hπ◦,μ
t+1:t+� = h

π◦,ν∗
t

t+1:t+�, i.e. ν
∗
t is consistent with h◦

t+1:t+�, and
hence π∗

t and ν∗t do not change from t+ 1, ..., t+ � (inner loop of Algorithm 1).
Then

V π◦
μ (ht)

drop terms,
↓
≥ V π◦

μ,� (ht)

same ht+1:t+�,
↓
= V π◦

ν∗
t ,�

(ht)

π◦=π∗
t on ht+1:t+�,

↓
= V

π∗
t

ν∗
t ,�

(ht)

≥
↑

bound extra terms

V
π∗
t

ν∗
t
(ht)− γ�

1−γ =
↑

def. of (π∗
t , ν

∗
t ) and ε := γ�

1−γ

max
ν∈Mt

max
π∈Π

V π
ν (ht)− ε ≥

↑
μ ∈ Mt

max
π∈Π

V π
μ (ht)− ε.



20 P. Sunehag and M. Hutter

Now let t1, ..., tK be the times t at which the currently selected ν∗t gets incon-

sistent with ht, i.e. {t1, ..., tK} = {t : ν∗t �∈ Mt}. Therefore h◦
t+1:t+� �= h

π◦,ν∗
t

t+1:t+�

(only) at times t ∈ T× :=
⋃K

i=1{ti − �, ..., ti − 1}, which implies V π◦
μ (ht) ≥

maxπ∈Π V π
μ (ht)− ε except possibly for t ∈ T×. Finally

|T×| = �·K < �·|M| =
log ε(1− γ)

log γ
|M| ≤ |M| log ε(1− γ)

γ − 1

We refer to the algorithm above as the conservative agent since it sticks to
its model for as long as it can. The corresponding liberal agent reevaluates
its optimistic hypothesis at every time step and can switch between different
optimistic policies at any time. Algorithm 1 is actually a special case of this as
shown by Lemma 1. The liberal agent is really a class of algorithms and this larger
class of algorithms consists of exactly the algorithms that are optimistic at every
time step without further restrictions. The conservative agent is the subclass of
algorithms that only switch hypothesis when the previous is contradicted. The
results for the conservative agent can be extended to the liberal one, but we have
to omit that here for space reasons.

3 Stochastic Environments

A stochastic hypothesis may never become completely inconsistent in the sense
of assigning zero probability to the observed sequence while still assigning very
different probabilities than the true environment. Therefore, we exclude based
on a threshold for the probability assigned to the generated history. Unlike in
the deterministic case, a hypothesis can cease to be the optimistic one without
having been excluded. We, therefore, only consider an algorithm that reevaluates
its optimistic hypothesis at every time step. Algorithm 2 specifies the procedure
and Theorem 3 states that it is asymptotically optimal.

Theorem 3 (Optimality, Finite Stochastic Class). Define π◦ by using Al-
gorithm 2 with any threshold z ∈ (0, 1) and a finite class M of stochastic envi-
ronments containing the true environment μ, then with probability 1− z|M− 1|
there exists, for every ε > 0, a number T < ∞ such that

V π◦
μ (ht) > max

π
V π
μ (ht)− ε ∀t ≥ T.

We borrow some techniques from [Hut09] that introduced a “merging of opin-
ions” result that generalized the classical theorem by [BD62]. The classical result
says that it is sufficient that the true measure (over infinite sequences) is ab-
solutely continuous with respect to a chosen a priori distribution to guarantee
that they will almost surely merge in the sense of total variation distance. The
generalized version is given in Lemma 2. When we combine a policy π with an
environment ν by letting the actions be taken by the policy, we have defined a
measure, denoted by ν(·|π), on the space of infinite sequences from a finite al-
phabet. We denote such a sample sequence by ω and the a:th to b:th elements of
ω by ωa:b. The σ-algebra is generated by the cylinder sets Γy1:t := {ω|ω1:t = y1:t}
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Require: Finite class of stochastic environmentsM1 ≡M, threshold z ∈ (0, 1)
1: t = 1
2: repeat
3: (π∗, ν∗) = argmaxπ,ν∈Mt

V π
ν (ht−1)

4: at = π∗(ht−1)
5: Perceive otrt from environment μ
6: ht ← ht−1atotrt
7: t← t+ 1
8: Mt := {ν ∈Mt−1 : ν(ht|a1:t)

maxν̃∈M ν̃(ht|a1:t)
≥ z}

9: until the end of time

Algorithm 2. Optimistic Agent (π◦) with Stochastic Finite Class

and a measure is determined by its values on those sets. To simplify notation in
the next lemmas we will write P (·) = ν(·|π), meaning that P (ω1:t) = ν(ht|a1:t)
where ωj = ojrj and aj = π(hj−1). Furthermore, ν(·|ht, π) = P (·|ht).

Definition 1 (Total Variation Distance). The total variation distance be-
tween two measures (on infinite sequences ω of elements from a finite alphabet)
P and Q is defined to be

d(P,Q) = sup
A

|P (A)−Q(A)|

where A is in the previously specified σ-algebra generated by the cylinder sets.

The results from [Hut09] are based on the fact that Zt =
Q(ω1:t)
P (ω1:t)

is a martingale

sequence if P is the true measure and therefore converges with P probability
1 [Doo53]. The crucial question is if the limit is strictly positive or not. The
following lemma shows that with P probability 1 we are either in the case where
the limit is 0 or in the case where d(P (·|ω1:t), Q(·|ω1:t)) → 0. We say that the
environments ν1 and ν2 merge under π if d(ν1(·|π), ν2(·|π)) → 0.

Lemma 2 (Generalized merging of opinions [Hut09]). For any measures
P and Q it holds that P (Ω◦ ∪ Ω̄) = 1 where

Ω◦ := {ω :
Q(ω1:t)

P (ω1:t)
→ 0} and Ω̄ := {ω : d(P (·|ω1:t), Q(·|ω1:t)) → 0}

Lemma 3 (Value convergence for merging environments). Given a pol-
icy π and environments μ and ν it follows that

|V π
μ (ht)− V π

ν (ht)| ≤ 1

1− γ
d(μ(·|ht, π), ν(·|ht, π)).

Proof. The lemma follows from the general inequality
∣∣EP (f)− EQ(f)

∣∣ ≤ sup |f | · sup
A

∣∣P (A)−Q(A)
∣∣

by inserting f := R(ωt:∞) and P = μ(·|ht, π) and Q = ν(·|ht, π), and using
0 ≤ f ≤ 1/(1− γ).
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The following lemma replaces the property for deterministic environments that
either they are consistent indefinitely or the probability of the generated history
becomes 0.

Lemma 4 (Merging of environments). Suppose we are given two environ-
ments μ (the true one) and ν and a policy π (defined e.g. by Algorithm 2). Let
P (·) = μ(·|π) and Q(·) = ν(·|π). Then with P probability 1 we have that

lim
t→∞

Q(ω1:t)

P (ω1:t)
= 0 or lim

t→∞ |V π
μ (ht)− V π

ν (ht)| = 0.

Proof. This follows from a combination of Lemma 2 and Lemma 3.

The next lemma tells us what happens after all the environments that will be
removed have been removed but we state it as if this was time t = 0 for notational
simplicity.

Lemma 5 (Optimism is nearly optimal). Suppose that we have a (finite
or infinite) class of (possibly) stochastic environments M containing the true
environment μ. Also suppose that none of these environments are excluded at
any time by Algorithm 2 (π◦) during an infinite history h that has been generated
by running π◦ in μ. Given ε > 0 there is ε̃ > 0 such that

V π◦
μ (ε) ≥ max

π
V π
μ (ε)− ε

if
|V π◦

ν1 (ht)− V π◦
ν2 (ht)| < ε̃ ∀t, ∀ν1, ν2 ∈ M.

Proof. (Theorem 3) Given a policy π, let P (·) = μ(·|π) where μ ∈ M is the
true environment and Q = ν(·|π) where ν ∈ M. Let the outcome sequence (the
sequence (o1r1), (o2r2), ...) be denoted by ω. It follows from Doob’s Martingale
inequality [Doo53] that for all z ∈ (0, 1)

P (sup
t

Q(ω1:t)

P (ω1:t)
≥ 1/z) ≤ z , which implies P (inf

t

P (ω1:t)

Q(ω1:t)
≤ z) ≤ z.

This proves, using a union bound, that the probability of Algorithm 2 ever
excluding the true environment is less than z|M− 1|.

The limits ν(ht|π◦)
μ(ht|π◦) converge almost surely as argued before using the Martin-

gale convergence theorem. Lemma 4 tells us that any given environment (with
probability one) is eventually excluded or is permanently included and merge
with the true one under π◦. The remaining environments does, according to
(and in the sense of) Lemma 4, merge with the true environment. Lemma 3 tells
us that the difference between value functions (for the same policy) of merging
environments converges to zero. Since there are finitely many environments and
the ones that remain indefinitely in Mt merge with the true environment under
π◦, there is for every ε̃ > 0 a T such that when following π◦, it holds for all
t ≥ T that

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃ ∀ν1, ν2 ∈ Mt.
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The proof is concluded by Lemma 5 in the case where the true environment
remains indefinitely included which happens with probability z|M− 1|.

4 Compact Classes

In this section we discuss infinite but compact classes of stochastic environ-
ments. First note that without further assumptions, asymptotic optimality can
be impossible to achieve, even for countably infinite deterministic environments
[LH11a]. Here we consider classes that are compact with respect to the total
variation distance, or more precisely with respect to

d̃(ν1, ν2) = max
h,π

d(ν1(·|h, π), ν2(·|h, π))

where d is total variation distance from Section 3. An example is the class
of Markov Decision Processes (or POMDPs) with a certain number of states.
Algorithm 2 does need modification to achieve asymptotic optimality in the
compact case. An alternative to modifying the algorithm is to be satisfied with
reaching optimality within a pre-chosen ε > 0. This can be achieved by first
choosing a finite covering of M with balls of total variation radius less than
ε(1 − γ) and use Algorithm 2 with the centers of these balls. To have an al-
gorithm that for any ε > 0 eventually achieves optimality within ε is a more
demanding task. This is because we need to be able to say that the true envi-
ronment will remain indefinitely in the considered class with a given confidence.
For this purpose we introduce a confidence radius inspired by MDP solving al-
gorithms like MBIE [SL05] and UCRL [AO06]. We still use the notation Mt as
in Algorithm 2 and we define Algorithm 3 based on replacing it with a larger
M̃t. If we do not do this the true environment is likely to be excluded.

Definition 2 (Confidence radius). We denote all environments within rzt
from Mt by

M̃t := {ν ∈ M | ∃ν̃ ∈ Mt : d̃(ν̃, ν) ≤ rzt }.

Given z > 0 we say that rzt (ht) is a p-confidence radius sequence if rzt (ht) → 0
almost surely and if the true environment is in M̃t for all t with probability p.

Definition 3 (Algorithm 3). Given a class of environments M that is com-
pact in the total variation distance we define Algorithm 3 as being Algorithm 2
with Mt replaced by M̃t

Definition 4 (Radon-Nikodym differentiable class). Suppose that the class
M is such that if μ ∈ M is the true environment, then for any policy π it holds

with probability one that for all ν ∈ M, Xt,ν := ν(ht|π)
μ(ht|π) converges as t → ∞ to

some random variables Xν . We call such a class Radon-Nikodym (RN) differ-
entiable. If the property holds with respect to a specific policy π we say that the
class is RN-differentiable with respect to π.
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Remark 1. Every countable class is RN-differentiable and so is the class of MDPs
with a certain number of states. The MBIE [SL05] and UCRL [AO06] algorithms
are based on the fact that one can define confidence radiuses for MDPs, though
their bounds need separate intervals for each state-action pair depending on the
number of visits. For an ergodic MDP all state-action pairs will almost surely be
seen infinitely often and the max length of those intervals will tend to zero. There-
fore, one can define a radius based on this maximum length or, alternatively, one
can easily allow Algorithm 3 to run with such rectangular sets instead.

Theorem 4 (Optimality, Compact Stochastic Class). Suppose we use
Algorithm 3 with threshold z ∈ (0, 1), a compact (in total variation) RN-
differentiable class (with respect to π◦ is enough) M of stochastic environments
and a p-confidence radius sequence rzt for M. Denote the resulting policy by π◦.
If the true environment μ is in M, then with probability p there is, for every
ε > 0, a tim e T < ∞ such that

V π◦
μ (ht) ≥ max

π
V π
μ (ht)− ε ∀t ≥ T.

Lemma 6 (Uniform exclusion). Let Qν(·) = ν(·|π◦) and P (·) = μ(·|π◦)
where μ is the true environment and π◦ the policy defined by Algorithm 3. For
any outcome sequence ω, let

M0(ω) := {ν | Qν(ω1:t)

P (ω1:t)
→ 0}.

For any closed subset of M0(ω) and for every z > 0, there is T < ∞ such that

for every ν in this subset there is t ≤ T such that Qν(ω1:t)
P (ω1:t)

< z.

Proof. Since M is compact and the subset in question is closed it follows that
it is also compact. Using the Arzelà-Ascoli Theorem [Rud76] we conclude that

there is a subsequence tk such that Zν
k := min{1, Qν(ω1:tk

)

P (ω1:tk
) } converges uniformly

to 0 on M0 which means that there is tk such that Zν
k < z for all ν ∈ M0 and

we can let t = T = tk.

Proof. (Theorem 4) The strategy is to use that all environment that will be
excluded and does not lie within a certain distance of some environment that
merges with the true one, will be excluded after a certain finite time. Then we
can say that the remaining environments’ value functions differ at most by a
certain amount and we can apply Lemma 5.

We can with probability one say that for each ν ∈ M, it will hold that Zt =
ν(ht|π◦)
μ(ht|π◦) converges and each environment will be in M0 = {ν ∈ M | Zt → 0} or

M̄ = {ν | d(ν(·|ht, π
◦), μ(·|ht, π

◦)) → 0}. M̄ is compact (in the total variation
distance topology) since it is a closed subset (again in the topology defined by
d̃) of the compact set M.
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For any ε̃1 > 0 we can do the following: For each ν ∈ M, consider a total
variation ball of radius 2δ where δ = (1−γ)ε̃1/4. Note that |V π◦

ν (ht)−V π◦
ν′ (ht)| <

ε̃1/2 for all t whenever d̃(ν, ν
′) < 2δ. The collection of these balls induces an open

cover of the compact setM and it follows that there is a finite subcover. Consider
the balls in this finite cover that intersect with M̄. Let A be the union of these
finitely many open balls. Let B = M\A. B is then a closed subset of M0. We
want to say that there is a finite time after which all environments in B will have
been excluded from M̃t. This happens if B̃, defined as the union of the closed
balls of radius rzt at every point in B, has been excluded from Mt. If t is large
enough for rzt < δ, then B is also a closed subset of M0. Lemma 6 tells us that all
of the environments in B̃ will have been excluded from Mt after a finite amount
of time T1 and, therefore, all the environments in B will have been excluded from
M̃t. Thus M̃t ⊂ A ∀t ≥ T1 and in particular the optimistic hypothesis ν∗ will
be in A when t ≥ T1. Let ν

∗(= ν∗t ) be the optimistic hypothesis at time t ≥ T1

and π∗(= π∗
t ) the optimistic policy.

Each parameter in A (and in particular ν∗) lies within δ of a ball with center
ν which lies within δ of a point ν̃ ∈ M̄. Hence d̃(ν∗, ν̃) < 2δ and |V π◦

ν∗ (ht) −
V π◦
ν̃ (ht)| < ε̃1/2.
Due to the uniform merging of environments (under π◦) on M̄, there is T2 ≥

T1 such that |V π◦
ν1 (ht)−V π◦

ν2 (ht)| < ε̃1/2 ∀ν1, ν2 ∈ M̄ ∀t ≥ T2. We conclude that

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃1 ∀ν1, ν2 ∈ A ∀t ≥ T2 and since M̃t ⊂ A

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃1 ∀ν1, ν2 ∈ M̃t ∀t ≥ T2.

From Lemma 5 we know that if we picked ε̃1 small enough we know that for
t ≥ T2, V

π◦
ν∗ (ht) ≥ V π

ν (ht)− ε/2 for all π ∈ Π, ν ∈ M̃t. Furthermore, by picking
ε̃1 sufficiently small we can, for t ≥ T2, ensure that there is ν̃ ∈ M̃t such that
|V π◦

ν̃ (ht)−V π◦
μ (ht)| < ε/2. Given that the true environment remains indefinitely

in M̃t, which happens with at least probability p, it follows that

V π◦
μ (ht) ≥ max

π
V π
μ (ht)− ε ∀t ≥ T2.

5 Conclusions

We introduced optimistic agents for finite and compact classes of arbitrary en-
vironments and proved asymptotic optimality. In the deterministic case we also
bound the number of time steps for which the value of following the algorithm
is more than a certain amount lower than optimal. Future work includes inves-
tigating finite-error bounds for classes of stochastic environments.
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J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS,
vol. 6925, pp. 368–382. Springer, Heidelberg (2011)

[LH11b] Lattimore, T., Hutter, M.: Time Consistent Discounting. In: Kivinen,
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