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Preface

Welcome to the proceedings of the 25th anniversary of the Australasian Joint
Conferences on Artificial Intelligence (AI 2012)! Since its inauguration in Sydney
in 1987, this annual conference has become the premier event for artificial intel-
ligence researchers in Australasia and a major international forum on AI world-
wide. For its silver anniversary, the conference returned to Australia’s iconic
and most populous city in December 2012, jointly hosted by the University of
Western Sydney and the University of New South Wales.

AI 2012 received 196 submissions with authors from 32 countries. Each sub-
mission was reviewed by at least three Program Committee members or exter-
nal referees. A lively and intense discussion ensued among the reviewers and
the dedicated members of the senior Program Committee. After this thorough
assessment and rigorous prepublication scrutiny, 76 submissions were finally ac-
cepted to be published as full papers in the proceeding. The acceptance rate of
less than 39% set a new height of quality for the conference.

AI 2012 featured three exciting keynote speeches by distinguished scientists:
Joseph Halpern (Cornell University, USA) talked about decision theory with
subjective states and outcomes. Mary O’Kane (New South Wales Chief Scientist
and Engineer, Australia) gave an overview of the early days and current impact
of AI in Australia. Mamoru Kaneko (University of Tsukuba, Japan) spoke about
epistemic logic and inductive game theory.

Four workshops with their own joint proceedings were held on the first day of
the conference: the 8th Australasian Ontology Workshop; the second Australian
Workshop on Artificial Intelligence in Health; the New Trends of Computational
Intelligence in Health Applications Workshop; and the workshop on A Semantic
Reasoning Approach to Data Linkage for Optimised Clinical Risk Management.
The workshops were complemented by two tutorials: Discrete Non-parametric
Methods for Machine Learning and Linguistics by Wray Buntine, and Multi-
media Information Extraction: Methods and Applications by Sri Krishnan. To-
gether these tutorials and workshops, which were overseen by the Workshop
Chair Hans Guesgen, provided an excellent start to the event.

Two challenges were held during AI 2012: the First General Game Play-
ing International Australian Open and the First Australasian Strategic Trading
Game. These two contests each had a purse of $1,000 for the winners.

AI 2012 would not have been successful without the support of authors, re-
viewers, and organizers. We thank the many authors for submitting their research
papers to the conference. We are grateful to the successful authors whose papers
are published in this volume for their collaboration during the preparation of
final submissions. We thank the members of the Program Committee and the
external referees for their expertise and timeliness in assessing the papers. We
also thank the organizers of the workshops and tutorials for their commitment
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and dedication. We are very grateful to the members of the Organizing Com-
mittee for their efforts in the preparation, promotion, and organization of the
conference, especially David Rajaratnam for his outstanding and tireless service.
We acknowledge the assistance provided by EasyChair for conference manage-
ment, and we appreciate the professional service provided by the Springer LNCS
editorial and publishing teams.

December 2012 Michael Thielscher
Dongmo Zhang
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Abstract. An important aim in bilateral negotiations is to achieve a win-win
solution for both parties; therefore, a critical aspect of a negotiating agent’s suc-
cess is its ability to take the opponent’s preferences into account. Every year,
new negotiation agents are introduced with better learning techniques to model
the opponent. Our main goal in this work is to evaluate and compare the perfor-
mance of a selection of state-of-the-art online opponent modeling techniques in
negotiation, and to determine under which circumstances they are beneficial in a
real-time, online negotiation setting. Towards this end, we provide an overview
of the factors influencing the quality of a model and we analyze how the per-
formance of opponent models depends on the negotiation setting. This results in
better insight into the performance of opponent models, and allows us to pin-
point well-performing opponent modeling techniques that did not receive much
previous attention in literature.

Keywords: Negotiation, Opponent Model Performance, Quality Measures.

1 Introduction

A negotiation between two agents is a game in which both agents try to reach an agree-
ment better than their status quo. To avoid exploitation, agents often keep their prefer-
ences private during the negotiation [6]; however, if an agent has no knowledge about its
opponent’s preferences, then this can result in a suboptimal outcome [10]. A common
technique to counter this is learning the opponent’s preference profile during the nego-
tiation, which aids in increasing the quality of the negotiation outcome by identifying
bids that are more likely to be accepted by the opponent [6,10,21].

If there have been previous negotiations with a similar opponent, the opponent model
can be prepared before the start of the negotiation; we will refer to these models as
offline models (for example [6]). Contrastingly, if the agent has to learn the preferences
during the negotiation it performs online modeling (for example [8,10,14]).

In this work we focus on online opponent models in a single-shot negotiation with
private preference profiles; i.e., a setting in which an agent has no knowledge about the
opponent’s preference profile and no history of previous negotiations is available. There
has been recent interest in opponent modeling for such settings, for example in the
Automated Negotiating Agents Competition (ANAC) [1,4]. Despite ongoing research
in this area, it is not yet clear how different approaches compare, and empirical evidence
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has raised the question whether using an opponent model is beneficial at all in such a
setting. To illustrate: state-of-the-art agents, such as the top three agents of both ANAC
2010 [4] and ANAC 2011 [1], do not model the opponent, yet outperformed agents that
do. One reason that opponent modeling does not guarantee a better outcome for an agent
is that the model can be a poor representation of the opponent’s preferences. If the model
consistently suggests unattractive bids for the opponent, it may even be preferable to not
employ one at all. Secondly, a time-based deadline introduces an additional challenge
for online opponent modeling, as learning the model can be computationally expensive
and can therefore influence the amount of bids that can be explored. More precisely,
the gain in using the model should be higher than the loss in utility due to decreased
exploration of the outcome space. We will refer to this as the time/exploration trade-off.

Apart from the inherent trade-off in opponent modeling, we are interested whether
opponent models are accurate enough to provide gains at all, even when ignoring com-
putational costs. To this end, we evaluate opponent models in two settings: a time-based
and round-based negotiation protocol. This paper compares a large set of opponent
modeling techniques, which were isolated from state-of-the-art negotiation strategies.
We measure their performance in various negotiation settings, and we provide a detailed
overview of how the different factors influence the final negotiation outcome.

After discussing related work in Section 2, we introduce the negotiation setting and
consider the difficulties in evaluating opponent models in Section 3. In Section 4 we
introduce a method to quantify opponent model performance, after which we apply it
to a set of models in Section 5. We formulate hypotheses and analyze the results in
Section 6; and finally, in Section 7 we provide directions for future work.

2 Related Work

Opponent modeling has received a lot of attention in automated negotiation. There are
three groups of related work when considering opponent model evaluation. The first
category consists of work that details an agent strategy in which the opponent model is
introduced, but the performance is not evaluated. Examples of this type are [8] and [20].

The second category compares a single novel model with a set of baseline strategies.
The approaches usually differ in how they define performance. In [10] for example,
a model is introduced for the same time-based protocol discussed in this work. The
performance of the opponent model is estimated by embedding it in a strategy and
comparing the average utility against two baseline strategies. The modeling technique
discussed by [16] introduces a model for a similar protocol, but in this case the baseline
is set by humans. Zeng and Sycara measure performance in terms of social welfare,
but focus on single-issue negotiations in which they compare the performance of three
settings: both learn, neither learn, and only the buyer learns [21]. Finally, [5] evaluates
the accuracy of a model against simple baseline strategies in terms of the likelihood that
the correct class is estimated to which the opponent’s preference profile belongs.

The last category is most similar to our work, and consists of literature comparing
the performance of a model against other models or against a theoretical lower or upper
bound. For example, Coehoorn and Jennings [6] evaluate the performance of their op-
ponent model using a standard bidding strategy that can be used both with and without
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a model. The performance of the strategy is evaluated in three settings: without knowl-
edge, with perfect knowledge, and when using an offline opponent model. This work
is similar to our work, however, it differs in the fact that we focus on online opponent
modeling. Our setting is especially challenging as it involves the time/exploration trade-
off. Another example is the work by [13], which introduces two opponent models for
e-recommendation in a multi-object negotiation. Compared to our work, we focus on
the more general type of multi-issue negotiations. Finally, [11] defines two accuracy
measures and uses these measures to analyze the accuracy of two opponent models.
The main differences are that we focus on a larger set of performance measures, and
pay more attention to the factors that influence the performance of the model.

Furthermore, as far as we know, our work is the first to compare and analyze such a
large set of state-of-the art models of the opponent’s preference profile.

3 Evaluating Opponent Models

The main goal of this work is to answer the following research question: “Under what
circumstances is it beneficial to use an online opponent model in a real-time negotiation
setting?”. An answer is not straightforward due to the time/exploration trade-off and
potentially poor accuracy of a model. In particular, we want to answer the following:

1. Assuming perfect knowledge about the opponent’s preferences, is there a signifi-
cant performance gain in using this information compared with ignoring it?

2. Is there a significant performance gain from using an online opponent model in
comparison to not using a model, assuming no prior knowledge is available?

The main difficulty in finding a conclusive answer to these questions, is that the perfor-
mance of an opponent model depends on the negotiation setting. Therefore, we study
an third, overarching research question:

3. How does the performance of using an opponent model depend on the setting?

3.1 Preliminaries

In this work we focus on a bilateral automated negotiation in which two agents try
to reach an agreement while maximizing their own utility. Agents use the widely-
employed alternating-offers protocol for bilateral negotiations [17], in which the ne-
gotiating parties take turns in exchanging offers. A negotiation scenario consists of the
negotiation domain, which specifies the setting and all possible bids, together with a
privately-known preference profile for each party. A preference profile is described by
a utility function u(x), which maps each possible outcome x in the negotiation domain
to a utility in the range [0, 1]. In this work we discuss opponent models that attempt to
estimate the opponent’s utility function u′(x) during the negotiation.

3.2 Influence of the Agent’s Strategy

Different agents apply their opponent model in different ways. There are two main
factors in which the application of an opponent model by a bidding strategy can differ:
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– Type of information gained from the opponent model. A bidding strategy can em-
ploy an opponent model for different reasons: for example, it can be employed to
select the best bid for the opponent out of a set of similarly preferred bids [3,20];
to select a bid that optimizes a weighted combination of both utility functions [8];
or to help estimate the utility of a specific outcome, such as the Nash-point [3].

– Selecting a bid using an opponent model. When a model is used to select a bid from
a set of similarly preferred bids, the question still remains which one to choose. One
can select the best bid for the opponent, but this may be suboptimal, as models may
be inaccurate. An alternative is to select a bid from the set of n best bids [3].

Even when the factors above are taken into account, still care has to be taken to properly
compare different models. Opponent models can only be fairly compared if the other
components, such as bidding strategy and acceptance strategy [2] are fixed.

3.3 Influence of the Opponent’s Strategy

All opponent modeling techniques make certain assumptions about the opponent, so as
to assign meaning to the observed behavior. If the opponent does not adhere to these
assumptions, the model may not reflect reality well. The set of strategies against which
a model is tested is a decisive factor when measuring its performance. Therefore, a set
of opponents should contain both agents that fulfill the model’s assumptions to deter-
mine its efficacy in optimal conditions; and agents that test the model’s robustness by
violating its assumptions.

The following assumptions were found by analyzing the models in Section 5.2:

1. The concession of the opponent follows a particular function. Some opponent mod-
eling techniques assume that the opponent uses a given time-based bidding strategy.
Modeling the opponent then reduces to estimating all issue weights such that the
predicted utility by the modeled preference profile is close to the assumed utility.

2. The first bid made by the opponent is the most preferred bid. The best bid is the se-
lection of the most preferred value for each issue, and thereby immediately reveals
which values are the best for each issue. Many agents start with the best bid.

3. There is a direct relation between the preference of an issue and the times its value
is significantly changed. To learn the issue weights, some models assume that the
amount of times the value of an issue is changed is an indicator for the importance
of the issue. The validity of this assumption depends on the distribution of the issue
and value weights of the opponent’s preference profile and its bidding strategy.

4. There is a direct relation between the preference of a value and the frequency it
is offered. A common assumption to learn the value weights is to assume that val-
ues that are more preferred are offered more often. Similar to the issue weights
assumption, this assumption strongly depends on the agent’s strategy and domain.

3.4 Influence of the Negotiation Scenario

Three main factors of a scenario influence the quality of an opponent model:

1. Domain size. In general, the larger the domain, the less likely a bid is a Pareto-bid.
Furthermore, domains with more bids are likely more computationally expensive
to model. Therefore, the influence of the time/exploration trade-off is higher.
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2. Bid distribution. The bid distribution quantifies how bids are distributed. We define
bid distribution as the average distance of all bids to the nearest Pareto-bid. The bid
distribution directly influences the performance gain attainable by a model.

3. Opposition. We define opposition as the distance from the Kalai-point to complete
satisfaction (1, 1). The opposition of a domain influences the number of possible
agreements, and opponent models may be help in locating them more easily.

4 Measuring the Performance of Opponent Models

As we noted in the previous section, the effectiveness of an agent’s opponent model is
heavily influenced by the negotiation setting. This work proposes a careful measure-
ment method of opponent modeling performance, and can be interpreted as a first step
towards creating a generic performance benchmark for the type of opponent models
that we study here. The following sections discuss the four components of the method.

4.1 Negotiation Strategies of the Agents

For the negotiation strategies of the agents in which the opponent models are embedded,
we elected a variant of the standard time-dependent tactic [7]. This strategy is chosen
for its simple behavior, which elicits regular behavior from its opponents; furthermore,
adding a model may significantly increase its performance. Given a target utility, the
adapted agent generates a set of similarly preferred bids and then selects a bid using the
opponent model. We focus on selecting a bid from a set of similarly preferred bids, as
this usage is commonly applied, for example in [20] and [14]. We embedded the models
in four time-dependent agents (e = 0.1; 0.2; 1.0; 2.0). We opted for multiple agents as
we believed that the concession speed can influence the performance gain.

The remaining issue in using an opponent model is which bid to select for the op-
ponent given a set of similarly preferred bids. Given the approaches in Section 3.2, we
opted to have the models select the best bid for the opponent, as this approach is most
differentiating: it leads to better performance of the more accurate opponent models.

4.2 Negotiation Strategies of the Opponents

This section discusses the opponents selected using the guidelines outlined in
Section 3.3. The set of opponent strategies consists of three cooperative agents, which
should be easy to model as their concession speed is high, and five competitive agents.
The set of conceding agents consists of two time-dependent agents with high concession
speeds e ∈ {1, 2}, and the offer decreasing agent, which offers the set of all possible
bids in decreasing order of utility. The set of competitive agents contains two time-
dependent agents with low concession speeds e ∈ {0.0, 0.2}, and the ANAC agents
Gahboninho, HardHeaded, and IAMcrazyHaggler.

Given the five opponent modeling assumptions introduced in Section 3.3, the first
assumption about the opponent’s decision function fails in general, as an opponent in
practice never completely adheres to the assumed decision function. The second as-
sumption holds for all agents except IAMcrazyHaggler, whose first bid is randomly
picked. The other three assumptions are typical for the frequency models. It is not
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possible to adhere to or violate these assumptions completely, as they depend both on
the negotiation scenario structure and opponents.

4.3 Negotiation Scenarios

As we explored in Section 3.4, the domain size, bid distribution, and opposition of a
negotiation scenario are all expected to influence an opponent model’s performance,
and therefore we aimed for a large spread of the characteristics of the scenarios, as
visualized in Table 1. In total seven negotiation scenarios were selected.

Table 1. Characteristics of the negotiation scenarios

Scenario name Size Bid distrib. Opposition
ADG [1] 15625 (med.) 0.136 (low) 0.095 (low)
Grocery [1] 1600 (med.) 0.492 (high) 0.191 (med.)
IS BT Acquisition [1] 384 (low) 0.121 (low) 0.125 (low)
Itex–Cypress [12] 180 (low) 0.222 (med.) 0.431 (high)
Laptop [1] 27 (low) 0.295 (med.) 0.178 (med.)
Employment contract [19] 3125 (med.) 0.267 (med.) 0.325 (high)
Travel [4] 188160 (high) 0.416 (high) 0.230 (med.)

4.4 Quality Measures for Opponent Models

The quality of an opponent model can be measured in two ways: a black box approach,
in which performance measures evaluate the quality of the outcome; and a white box
view, which uses accuracy measures capable of considering the internal design of a
strategy and revealing the accuracy of the estimation of the opponent’s preferences.

This work focuses on the performance measures shown in Table 2, as [11] has already
compared models using a white box approach, albeit in a more limited setting.

Table 2. Overview of the performance measures

Performance measure Description
Avg. utility [1,13,10] Average score of the agents against selected opponents on all ne-

gotiation scenarios.
Avg. time of agr. [2] Average time required to reach an agreement.
Avg. rounds [13,21] Average rounds a negotiation lasts. In a rounds-based setting, less

means more accurate.
Avg. Pareto dist. of agr. [1,9] Average minimal distance to the Pareto-frontier. Lower is better.
Avg. Kalai dist. of agr. [9] Average distance to the Kalai-point. Lower means more fair.
Avg. Nash dist. of agr. [9] Average distance to the Nash-point. Lower means more fair.

5 Experiments

We applied the method described in the previous section to our experimental setup
below in order to answer the research questions introduced in Section 3.
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5.1 Experimental Setup

To analyze the performance of different opponent models, we employed GENIUS [15],
which is an environment that facilitates the design and evaluation of automated ne-
gotiators’ strategies and their components. The experiments are subdivided into two
categories: we use a standard time-based protocol, as well as a round-based protocol.
In total, we ran 17920 matches, which on a single computer takes nearly two months.

Our main interest goes out to the real-time setting, as this protocol features the
time/exploration trade-off. We applied our benchmark to the set of models using the
time-based protocol. Each match features a real-time deadline set at three minutes.

In the round-based protocol the same approach is applied, but in this case, time does
not pass within a round, giving the agent infinite time to update its model. This provides
valuable insights into the best theoretical result an opponent model can achieve.

5.2 Opponent Models

We compare the performance of the opponent models used in ANAC [1,4], which is a
yearly international competition in which negotiating agents compete on multiple do-
mains. Each year, the competition leads to the introduction of new negotiation strategies
with novel opponent models. While the domain (i.e., the set of outcomes) is common
knowledge to all agents, the utility function of each player is private information and
hence has to be learned. The utility functions of the agents are linearly additive; that
is, the overall utility consists of a weighted sum of the utility for each individual issue.
The setting of ANAC is consistent with the preliminaries in this paper.

We specifically opted to use agents that participated in ANAC for the following rea-
sons: the agents are designed for one consistent negotiation setting, which makes it
possible to compare them fairly; their implementation is publicly available; and finally,
we believe that the agents and opponent models represent the current state-of-the-art.
We used modeling techniques from ANAC 2010 [4], ANAC 2011 [1], and a selection of
opponent models designed for ANAC 2012. We isolated the opponent models from the
agents and reimplemented them as separate generic components to be compatible with
all other agents (as in [2]). As discussed in Section 3.2, this setup allows us to equip a
single negotiation strategy with various opponent models, which makes it straightfor-
ward to fairly compare the different modeling techniques.

Table 3 provides a summary of the online opponent models used in our experi-
ments, with references to the papers in which they are described. We did not include
the Bayesian Model from [10] and the FSEGA Bayesian Model [18], even though they
fitted our setup, as both models were not designed to handle domains containing more
than a 1000 bids. We are aware that many alternative opponent modeling techniques
exist [5,10,16,21]; however, for our negotiation setting, this is currently the largest set
available of comparable opponent modeling techniques.

Based on our analysis, we found that in our selection two approaches to opponent
modeling are prominent: Bayesian opponent models and Frequency models.

Bayesian opponent models generate hypotheses about the opponent’s preferences
[10]. The models presuppose that the opponent’s strategy adheres to a specific decision
function; for example a time-dependent strategy with a linear concession speed. This is
then used to update the hypotheses using Bayesian learning.
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Table 3. Overview of the online opponent models and their modeling assumptions (M)

Model Description M
No Model No knowledge about the preference profile. -
Perfect Model Perfect knowledge about the preference profile. -
Bayesian Scal-
able Model [10]

This model learns the issue and value weights separately using Bayesian
learning. Each round, the hypotheses about the preference profile are up-
dated based assuming that the opponent conceded a constant amount.

1

IAMhaggler Bay.
Model [20]

Efficient implementation of the Bayesian Scalable Model in which the op-
ponent is assumed to use a particular time-dependent decision function.

1

HardHeaded
Freq. Model [14]

This model learns the issue weights based on how often the value of an
issue changes between turns. The value weights are determined based on
the frequency in which they have been offered.

3
4

Smith
Freq. Model [8]

Similar to the HardHeaded Frequency Model, but less efficient. The issue
weights depends on the relative frequency of the most offered values.

3
5

Agent X
Freq. Model

This model is a more complex variant of the HardHeaded Frequency
Model that also takes the opponent’s tendency to repeat bids into account.

3
4

N.A.S.H.
Freq. Model

In contrast to HardHeaded Frequency Model, this model learns the issue
weights based on the frequency that the assumed best value is offered.

2
4

Frequency models learn the issue and value weights separately. The issue weights
are usually calculated based on the frequency that an issue changes between two offers.
The value weights are oten calculated based on the frequency of appearance in offers.

Both modeling approaches are prone to failure as they rely on a subset of the as-
sumptions introduced in Section 3.3. More specifically, Bayesian models make strong
assumptions about the opponent’s strategy, whereas frequency models assume knowl-
edge about the value distribution of the issues of a preference profile and place weak
restrictions on the opponent’s negotiation strategy. Generally, the Bayesian models are
far more computationally expensive; however, it is unknown if they are more accurate.

6 Results

Below we analyze the outcomes of the experiment to provide an answer to the research
questions in the form of hypotheses H1–H6. We first discuss the overall gain in per-
formance when using perfect knowledge versus online opponent modeling. Section 6.2
provides an answer to the final research question on how the negotiation setting influ-
ences the performance of an opponent model.

6.1 Overall Performance of Opponent Models

Our experimental results for a selection of the quality measures described in Section 4.4
are shown in Table 4 for both the time-based and round-based protocol. Before we
analyze the performance gain of online opponent models, we first answer the question
whether perfect knowledge aids in improving the negotiation outcome at all:

H1. Usage of the perfect model by a negotiation strategy leads to a significant perfor-
mance gain in comparison to not using an opponent model.

We expected that perfect knowledge about the opponent’s preferences would signif-
icantly improve performance of an agent. Our main aim here was not to reconfirm
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the already widely acknowledged benefits of integrative bargaining, but to analyze
whether our experimental setup is a valid instrument for measuring the learning effect
in other types of settings. Our expectation is confirmed by the experiment, as the Perfect
Model yields a significant performance increase on all quality measures (except aver-
age rounds) for both protocols. For the real-time protocol, the difference between the
best online opponent model (HardHeaded Frequency Model) and No Model is 0.0135;
for the round-based protocol it is 0.0144 (Smith Frequency Model). Note that while the
gains are small, there are three small domains where opponent modeling does not result
in significant gains. If we solely focus on the large Travel negotiation scenario, then
the gain relative to No Model becomes 0.0413 for the Perfect Model. Especially note
the improvement in distance between the outcome and Pareto-frontier, and the earlier
agreements, in Table 4. This leads us to conclude that using an opponent model leads
to better performance as it aids in increasing the quality of the outcome.

H2. Usage of an online opponent model leads to a significant performance gain when
time is not an issue. Online opponent modeling does not yield the same benefit in
a real-time setting because of the time/exploration trade-off.

We noted previously that in some cases, ANAC agents that do not model the opponent
can outperform agents that do, and such agents have even won the competition. This
led us to believe that online modeling does not benefit the agents, either because it
misrepresents the preferences, or by taking too much time in a time-sensitive setting.

This is why it came as a surprise that in both the time- and round-based protocol,
online opponent models performed significantly better on all quality measures. For the
time-based protocol the best online opponent models are the frequency models, ex-
cept for the Smith Frequency Model who scores badly in this case. However, for the
round-based protocol, the Smith Frequency Model is actually best. This is caused by the
time/exploration trade-off, because the model is computationally expensive as indicated
by the small amount of bids offered in the time-based protocol.

Surprisingly the worst performance on a quality measure is not always made by using
No Model. For example in the time-based experiment the Bayesian Scalable Model has
the worst performance. The Bayesian model of IAMhaggler however, performs much
better, but disappoints in the round-based protocol. We believe this can be attributed to
its updating mechanism: only unique bids are used to update the model, which speeds-
up updating but can result in poor performance against slowly conceding agents that
offer the same bid multiple times.

In conclusion, online opponent model can result in significant gains and surprisingly,
frequency models lead to the largest gains, outperforming the Bayesian models. We
believe that the winners of ANAC could have performed even better by learning the
opponent’s preferences with a frequency model. The success of the frequency model
can be attributed to its simplicity and hence faster performance, and to the fact that it
is more robust by making weaker assumptions about the strategy of the opponent in
comparison to the Bayesian modeling approaches.

6.2 Influence of the Negotiation Setting

We will now discuss the influence of each of the three components of the negotiation
setting on the quality of an opponent model, following the structure of Section 3.
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Table 4. Performance of all models on a set of quality measures for both protocols

Quality Measures
Perfect HH.

FM
Agent X
FM

Nash
FM

IAH.
BM

Smith
FM

None Scal.
BM

Time-based
Avg. utility .7285 .7260 .7257 .7257 .7178 .7156 .7125 .7077
Avg. time of agr. .4834 .4865 .4867 .4865 .4958 .4937 .5022 .5055
Avg. rounds 7220 7218 7231 7198 7004 4745 7352 4836
Avg. Pareto dist. of agr. .0007 .0017 .0015 .0018 .0069 .0068 .0059 .0071
Avg. Kalai dist. of agr. .2408 .2434 .2447 .2428 .2515 .2474 .2683 .2561
Avg. Nash dist. of agr. .2442 .2471 .2481 .2483 .2541 .2500 .2721 .2594
Rounds-based
Avg. utility .7235 .7196 .7191 .7192 .7111 .7199 .7050 .7124
Avg. time of agr. .4928 .4975 .4978 .4977 .5058 .4974 .5136 .5038
Avg. rounds 2508 2531 2533 2533 2572 2531 2567 2562
Avg. Pareto dist. of agr. .0010 .0029 .0023 .0028 .0073 .0026 .0066 .0063
Avg. Kalai dist. of agr. .2332 .2380 .2395 .2380 .2456 .2369 .2614 .2445
Avg. Nash dist. of agr. .2370 .2403 .2437 .2404 .2516 .2403 .2644 .2472

Influence of the Agent’s Strategy. The performance gain of using an opponent model
necessarily depends on the strategy in which it is embedded. Table 5provides an overview
of the relative gain in comparison to No Model for all opponent models in the time-based
experiment. Based on the results, we have tested the following hypothesis:

H3. The more competitive an agent, the more it benefits from using an opponent model.

At each turn of a negotiation session, a set of possible agreements can be defined. This
is the intersection of two sets: the set of bids that an agent considers for offering, and
the set of all bids acceptable to the opponent. The more competitive the agent, the
smaller the intersection between the two sets. When an agent concedes, the number
of possible agreements increases at the cost of utility. An opponent model can help
in finding possible agreements, preventing concession and therefore loss in utility. We
therefore expected the gain for competitive agents to be higher, as the set of possible
agreements each turn is smaller, and therefore an optimal bid is more easily missed by
an agent not employing an opponent model. This is especially decisive in the last few
seconds of the negotiation, when many agents concede rapidly to avoid non-agreement.

The hypothesis is confirmed by our experiments. In Table 5 there is a negative corre-
lation between the concession speed and relative gain in performance. If we ignore the
results of the three worst performing models, a small – albeit statistically significant –
negative correlation of −0.508 is found.

Influence of the Opponent’s Strategy. The opponent’s behavior also has an important
impact on the performance of an opponent model. Based on the results shown in Table 6,
we test the three hypotheses below.

H4. An agent benefits more from an opponent model against competitive agents.

Intuitively, the more competitive the opponent, the more useful the opponent model as
the set of possible agreements is smaller, analogous to hypothesis H3. Therefore, we
expected the highest gain against the competitive agents Gahboninho V3, HardHeaded,
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Table 5. Utility of each opponent model relative to using No Model for each agent

Agents e = 0.1 e = 0.2 e = 1 e = 2

Perfect Model 0.0180 0.0164 0.0152 0.0144
HardHeaded Freq. Model 0.0156 0.0137 0.0118 0.0128
Agent X Freq. Model 0.0161 0.0137 0.0116 0.0113
N.A.S.H. Freq. Model 0.0166 0.0129 0.0108 0.0121
IAMhaggler Bay. Model 0.0084 0.0055 0.0033 0.0039
Smith Freq. Model -0.0031 0.0020 0.0071 0.0063
Bayesian Scalable Model -0.0050 -0.0058 -0.0032 -0.0053

and IAMcrazyHaggler. However, in Table 6 only the gain for Gahboninho V3 and
IAMcrazyHaggler is very high.

For HardHeaded, we believe this can be attributed to the agent using an opponent
model itself. If the opponent uses a well-performing opponent model, then the per-
formance gain of an opponent model can be expected to be lower, as the opponent is
already able to make Pareto-optimal bids. Our experiment appears to the confirm this
hypothesis in the case of playing against HardHeaded, whose well-performing oppo-
nent model seems to diminish the effect of opponent modeling by the other side.

Concluding, given the results of our experiment, we believe that the hypothesis holds,
at least for consistently competitive opponents without an opponent model.

H5. Frequency models are more robust against opponents employing a random tactic
than the Bayesian models.

In order to estimate the opponent’s utility of a certain bid, both types of models make
certain assumptions about the opponent. The Bayesian opponent models assume that
the opponent follows a particular decision function through time (cf. modeling assump-
tion 1 in Section 3.3), while the frequency models assume higher valued bids are of-
fered more often (cf. modeling assumptions 3 and 4). Many opponent strategies do not
adhere to these assumptions, which causes the learning models to make wrong predic-
tions when playing against them. For example, opponents such as IAMcrazyHaggler
who employ a random negotiation strategy, explicitly violate the assumptions of both
models. For the Bayesian learning models, this means the opponent preferences will be
estimated incorrectly, and more so through time. The frequency models however, are
much more robust, not only in the sense that a negotiation tactic has a greater chance
to satisfy its assumptions, but more significantly: it is less sensitive to a tactic violating
its assumptions. For instance, in the case of IAMcrazyHaggler, it will deduce that it
equally prefers any bid it has offered so far – which, in this case, is exactly right.

We therefore expected relatively poor performance from the Bayesian models. This
hypothesis is confirmed by our experiment: the frequency models have a high per-
formance gain against IAMcrazyHaggler, whereas using the Bayesian models is even
worse than not using an opponent model at all.

Influence of the Negotiation Scenario. The performance of an opponent model is
influenced by the characteristics of the negotiation scenario, such as amount of bids,
distribution of the bids, and the opposition of the domain. Table 7 provides an overview
of the relative gain of all opponent models in comparison to No Model for in the time-
based experiment. Based on these results, we formulate the following hypothesis:
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Table 6. Utility of each opponent model relative to using No Model for each opponent

Opponents TDT
0

TDT
0.2

TDT
1.0

TDT
2.0

OD Gah. HH. IcH.

Perfect .0085 .0015 .0008 .0022 .0060 .0676 .0015 .0399
HH. Freq. Model .0085 .0013 -.0002 .0019 .0060 .0515 .0000 .0388
Agent X Freq. Model .0085 .0019 .0002 .0036 .0058 .0561 .0009 .0285
N.A.S.H. Freq. Model .0085 .0005 -.0005 .0020 .0065 .0507 .0037 .0336
IAH. Bay. Model .0000 .0003 -.0021 -.0001 -.0046 .0511 .0039 -.0066
Smith Frequency -.0038 -.0023 -.0019 .0007 -.0113 .0357 -.0224 .0297
Bay. Scalable Model .0000 -.0033 -.0055 -.0058 -.0535 .0458 -.0128 -.0036

H6. The higher the amount of bids, bid distribution, or opposition of a scenario, the
more an agent benefits from using an opponent model.

We anticipated the bid distribution to be the major factor determining the performance
gain of an opponent model. If the bid distribution is high, then the Pareto-frontier is
more sparse. This means a higher gain can be expected of utilizing an opponent model to
locate bids close to the Pareto-frontier. This hypothesis is confirmed by our experiments,
as we found a strong Pearson correlation of 0.778 between the bid distribution and the
performance gain of the best four models, and 0.701 if we solely focus on the perfect
opponent model. Therefore we confirm this sub-hypothesis.

Another factor is the size of the negotiation domain. If a domain contains more bids,
then there are relatively less bids that are Pareto-optimal, so an opponent model can aid
more in identifying them. On the other hand, opponent models are more computation-
ally expensive on the larger domains. Despite this effect, we found a strong Pearson
correlation between the amount of bids and the performance gain: 0.631 for the best
four models, and 0.596 when using the perfect model.

The final factor is the opposition of the scenario. Intuitively, if the opposition is
higher, then there are less possible agreements. Opponent models can aid in identifying
these rare acceptable bids, thereby preventing break-offs and unnecessary concessions.
Nevertheless, if the opposition is high, then the bids are also relatively closer to the
Pareto-optimal frontier, which renders it more difficult for an opponent model to make
a significant impact on the negotiation outcome. Despite this effect, we expected that
higher opposition would lead to higher performance gain. However, in our experiments
we noted only a small positive Pearson correlation of 0.256 for the best four models and
0.262 for the perfect model. Based on these results we are unable to draw a conclusion,
which leads us to believe the two mentioned effects cancel each other out, making the
other two characteristics of the scenario decisive in the effectiveness of a model.

Table 7. Gain of each model relative to using No Model for each scenario parameter

Model Low Medium High
Size Perfect 0.001 0.022 0.041

Best 4 0.002 0.018 0.039
Bid Distribution Perfect 0.001 0.013 0.035

Best 4 -0.001 0.010 0.034
Opposition Perfect 0.001 0.023 0.020

Best 4 -0.001 0.022 0.016
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7 Conclusion and Future Work

This paper evaluates and compares the performance of a selection of state-of-the-art
online opponent models. The main goal of this work is to evaluate if, and under what
circumstances, opponent modeling is beneficial.

Measuring the performance of an opponent model is not trivial, as the details of
the negotiation setting affects the effectiveness of the model. Furthermore, while we
know an opponent model improves the negotiation outcome in general, the role of time
should be taken into account when considering online opponent modeling in a real-
time negotiation because of the time/exploration trade-off: a computationally expensive
model may produce predictions of better quality, but in a real-time setting it may lead
to less bids being explored, which may harm the outcome of the negotiation.

Based on an analysis of the contributing factors to the quality of an opponent model,
we formulated a measurement method to quantify the performance of online opponent
models and applied it to a large set of state-of-the-art opponent models. We analyzed
two main types of opponent models: frequency models and Bayesian models. We noted
that the time/exploration trade-off is indeed an important factor to consider in oppo-
nent model design of both types. However, we found that the best performing models
did not suffer from the trade-off, and that most – but not all – online opponent models
result in a significant improvement in performance compared with not using a model;
not only because the deals are made faster, but also because the outcomes are on av-
erage significantly closer to the Pareto-frontier. A main conclusion of our work is that
we noted that frequency models consistently outperform Bayesian models. This is not
only because they are faster, because the effect remains in a round-based setting. This
suggests that frequency models combine the best of both worlds. Surprisingly, despite
their performance, frequency models have not received much attention in literature.

Our other main conclusion concerns the effects of the negotiation setting on an op-
ponent model’s effectiveness. We found that the more competitive an agent, or its oppo-
nent, the more benefit an opponent model provides. In addition, we found that the higher
the size or the bid distribution of a scenario, the higher the gain of using a model.

For future work, it would be interesting to examine other uses of opponent modeling,
such as opponent prediction. Another direction of future work is to investigate the in-
teraction between opponent model performance and its accuracy through time. We also
plan to test a larger set of models derived from literature and ANAC 2012.
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Abstract. We use optimism to introduce generic asymptotically opti-
mal reinforcement learning agents. They achieve, with an arbitrary finite
or compact class of environments, asymptotically optimal behavior. Fur-
thermore, in the finite deterministic case we provide finite error bounds.

Keywords: Reinforcement Learning, Optimism, Optimality.

1 Introduction

This article studies a fundamental question in artificial intelligence; given a set of
environments, how do we define an agent that eventually acts optimally regard-
less of which of the environments it is in. This question relates to the even more
fundamental question of what intelligence is. [Hut05] defines an intelligent agent
as one that can act well in a large range of environments. He studies arbitrary
classes of environments with particular attention to universal classes of envi-
ronments like all computable (deterministic) environments and all lower semi-
computable (stochastic) environments. He defines the AIXI agent as a Bayesian
reinforcement learning agent with a universal hypothesis class and a Solomonoff
prior. This agent has some interesting optimality properties. Besides maximiz-
ing expected utility with respect to the a priori distribution by design, it is also
Pareto optimal and self-optimizing when this is possible for the considered class.
It was, however, shown in [Ors10] that it is not guaranteed to be asymptoti-
cally optimal for all computable (deterministic) environments. [LH11a] shows
that this is not surprising since, at least for geometric discounting, no agent
can be. [LH11a] also shows that in a weaker (in average) sense, optimality can
be achieved for the class of all computable environments using an algorithm
that includes long exploration phases. Furthermore, it is simple to realize that
Bayesian agents do not always achieve optimality for a finite class of deterministic
environments even if all prior weights are strictly positive.

We use the principle of optimism to define an agent that for any finite class of
deterministic environments, eventually acts optimally. We extend our results
to the case of finite and compact classes of stochastic environments. In the
deterministic case we also prove finite error bounds. Optimism has previously
been used to design exploration strategies for both discounted and undiscounted
MDPs [KS98, SL05, AO06, LH12], though here we define optimistic algorithms
for any finite class of environments.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 15–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Related Work. Besides AIXI [Hut05] that was discussed above, [LH11a] in-
troduces an agent which achieves asymptotic optimality in an average sense for
the class of all deterministic computable environments. There is, however, no
time step after which it is optimal at every time step. This is due to an infi-
nite number of long exploration phases. We introduce an agent, that for finite
classes of environments, does eventually achieve optimality for every time step.
For the stochastic case, the agent achieves with any given probability, optimality
within ε for any ε > 0. Our very simple agent is relying elegantly on the prin-
ciple of optimism, used previously in the restrictive MDP case with discounting
[KS98, SL05, LH12] and without [AO06], instead of an indefinite number of ex-
plicitly enforced bursts of exploration. [RH08] also introduces an agent that relies
on bursts of exploration with the aim of achieving asymptotic optimality. The
asymptotic optimality guarantees are restricted to a setting where all environ-
ments satisfy a certain restrictive value-preservation property. [EDKM05] stud-
ied learning general Partially Observable Markov Decision Processes (POMDPs).
Though POMDPs constitute a very general reinforcement learning setting, we
are interested in agents that can be given any (deterministic or stochastic) class
of environments and successfully utilize the knowledge that the true environment
lies in this class.

Background. We will consider an agent [RN10, Hut05] that interacts with an
environment through performing actions at from a finite set A and receives
observations ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1].
Let H = (A×O ×R)∗ be the set of histories and R : H → R the return

R(a1o1r1a2o2r2...anonrn) =

n∑
j=1

rjγ
j

with the obvious extension to infinite sequences. A function from H × A to
O × R is called a deterministic environment (studied in Section 2. A function
π : H → A is called a policy or an agent. We define the value function V
by V π

ν (ht−1) := R(ht:∞) =
∑∞

i=t γ
i−tri where the sequence ri are the rewards

achieved by following π from time step t onwards in environment ν after having
seen ht−1.

Instead of viewing the environment as a function from H × A to O × R we
can equivalently write it as a function ν : H × A × O × R → {0, 1} where we
write ν(o, r|h, a) for the function value of (h, a, o, r). It equals zero if in the first
formulation (h, a) is not sent to (o, r) and 1 if it is. In the case of stochastic
environments, which we will study in Section 3, we instead have a function
ν : H×A×O×R→ [0, 1] such that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. Furthermore, we

define ν(ht|π) := ν(or1:t|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1). ν(·|π) is

a probability measure over strings or sequences as will be discussed in the next
section and we can define ν(·|π, ht−1) by conditioning ν(·|π) on ht−1. We define
V π
ν (ht−1) := Eν(·|π,ht−1)R(ht:∞) as the ν-expected return of policy π.
A special case of an environment is a Markov Decision Process (MDP) [SB98].

This is the classical setting for reinforcement learning. In this case the environ-
ment does not depend on the full history but only on the latest observation
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and action and is, therefore, a function from O × A × O × R to [0, 1]. In this
situation one often refers to the observations as states since the latest observa-
tion tells us everything we need to know. In this situation, there is an optimal
policy that can be represented as a function from the state set S (:=O) to A.
We only need to base our decision on the latest observation. Several algorithms
[KS98, SL05, LH12] have been devised for solving discounted (γ < 1) MDPs for
which one can prove PAC (Probably Approximately Correct) bounds. They are
finite time bounds that hold with high probability and depend only polynomi-
ally on the number of states, actions and the discount factor. These methods are
relying on optimism as the method for making the agent sufficiently explorative.
Optimism roughly means that one has high expectations for what one does not
yet know. Optimism was also used to prove regret bounds for undiscounted
(γ = 1) MDPs in [AO06] which was extended to feature MDPs in [MMR11].
Note that these methods are restricted to MDPs and that we do not make any
(Markov, ergodicity, stationarity, etc.) assumptions on the environments, only
on the size of the class.

Outline. In this article we will define optimistic agents in a far more general
setting than MDPs and prove asymptotic optimality results. The question of
their mere existence is already non-trivial, hence asymptotic results deserve at-
tention. In Section 2 we consider finite classes of deterministic environments and
introduce a simple optimistic agent that is guaranteed to eventually act opti-
mally. We also provide finite error bounds. In Section 3 we generalize to finite
classes of stochastic environments and in Section 4 to compact classes.

2 Finite Classes of Deterministic Environments

Given a finite class of deterministic environments M = {ν1, ..., νm}, we define
an algorithm that for any unknown environment from M eventually achieves
optimal behavior in the sense that there exists T such that maximum reward is
achieved from time T onwards. The algorithm chooses an optimistic hypothesis
from M in the sense that it picks the environment in which one can achieve
the highest reward (in case of a tie, choose the environment which comes first
in an enumeration of M) and then the policy that is optimal for this environ-
ment is followed. If this hypothesis is contradicted by the feedback from the
environment, a new optimistic hypothesis is picked from the environments that
are still consistent with h. This technique has the important consequence that if
the hypothesis is not contradicted we are still acting optimally when optimizing
for this incorrect hypothesis.

Let hπ,νt be the history up to time t generated by policy π in environment ν.
In particular let h◦ := hπ

◦,μ be the history generated by Algorithm 1 (policy π◦)
interacting with the actual “true” environment μ. At the end of cycle t we know

h◦t = ht. An environment ν is called consistent with ht if h
π◦,ν
t = ht. LetMt be

the environments consistent with ht. The algorithm only needs to check whether

oπ
◦,ν

t = ot and rπ
◦,ν

t = rt for each ν ∈ Mt−1, since previous cycles ensure

hπ
◦,ν

t−1 = ht−1 and trivially aπ
◦,ν

t = at. The maximization in Algorithm 1 that
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Require: Finite class of deterministic environments M0 ≡ M
1: t = 1
2: repeat
3: (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt−1

V π
ν (ht−1)

4: repeat
5: at = π∗(ht−1)
6: Perceive otrt from environment μ
7: ht ← ht−1atotrt
8: Remove all inconsistent environments from Mt

(Mt := {ν ∈ Mt−1 : hπ◦,ν
t = ht})

9: t ← t+ 1
10: until ν∗ �∈ Mt−1

11: until M is empty

Algorithm 1. Optimistic Agent (π◦) for Deterministic Environments

defines optimism at time t is performed over all ν ∈ Mt, the set of consistent
hypotheses at time t, and π ∈ Π = Πall is the class of all deterministic policies.

Theorem 1 (Optimality, Finite Deterministic Class). If we use Algorithm
1 (π◦) in an environment μ ∈ M , then there is T <∞ such that

V π◦
μ (ht) = max

π
V π
μ (ht) ∀t ≥ T.

A key to proving Theorem 1 is time-consistency [LH11b] of geometric discount-
ing. The following lemma tells us that if we act optimally with respect to a
chosen optimistic hypothesis, it remains optimistic until contradicted.

Lemma 1 (Time-consistency). Suppose (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt
V π
ν (ht),

that we act according to π∗ from time t to time t̃−1 and that ν∗ is still consistent
at time t̃ > t , then (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt̃

V π
ν (ht̃).

Proof. Suppose that V π∗
ν∗ (ht̃) < V π̃

ν̃ (ht̃) for some π̃, ν̃. It holds that V π∗
ν∗ (ht) =

C + γ t̃−tV π∗
ν∗ (ht̃) where C is the accumulated reward between t and t̃ − 1. Let

π̂ be a policy that equals π∗ from t to t̃ − 1 and then equals π̃. It follows that
V π̂
ν̃ (ht) = C + γ t̃−tV π̂

ν̃ (ht̃) > C + γ t̃−tV π∗
ν∗ (ht̃) = V π∗

ν∗ (ht) which contradicts the
assumption (π∗, ν∗) ∈ argmaxπ∈Π,ν∈Mt

V π
ν (ht). Therefore, V

π∗
ν∗ (ht̃) ≥ V π̃

ν̃ (ht̃)
for all π̃, ν̃.

Proof. (Theorem 1) At time t we know ht. If some ν ∈ Mt−1 is inconsistent

with ht, i.e. h
π◦,ν
t �= ht, it gets removed, i.e. is not inMt′ for all t

′ ≥ t.
Since M0 =M is finite, such inconsistencies can only happen finitely often,

i.e. from some T onwards we haveMt =M∞ for all t ≥ T . Since hπ
◦,μ

t = ht ∀t,
we know that μ ∈Mt ∀t.

Assume t ≥ T henceforth. The optimistic hypothesis will not change after this
point. If the optimistic hypothesis is the true environment μ, we have obviously
chosen the true optimal policy.
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In general, the optimistic hypothesis ν∗ is such that it will never be contra-
dicted while actions are taken according to π◦, hence (π∗, ν∗) do not change
anymore. This implies

V π◦
μ (ht) = V π∗

μ (ht) = V π∗
ν∗ (ht) = max

ν∈Mt

max
π∈Π

V π
ν (ht) ≥ max

π∈Π
V π
μ (ht)

for all t ≥ T . The first equality follows from π◦ equals π∗ from t ≥ T onwards.
The second equality follows from consistency of ν∗ with h◦1:∞. The third equality
follows from optimism, the constancy of π∗, ν∗, and Mt for t ≥ T , and time-
consistency of geometric discounting (Lemma 1). The last inequality follows from
μ ∈ Mt. The reverse inequality V π∗

μ (ht) ≤ maxπ V
π
μ (ht) follows from π∗ ∈ Π .

Therefore π◦ is acting optimally at all times t ≥ T .

Besides the eventual optimality guarantee above, we also provide a bound on
the number of time steps for which the value of following Algorithm 1 is more
than a certain ε > 0 less than optimal. The reason this bound is true is that
we only have such suboptimality for a certain number of time steps before a
point where the current hypothesis becomes inconsistent and the number of
such inconsistency points are bounded by the number of environments.

Theorem 2 (Finite error bound). Following π◦ (Algorithm 1),

V π◦
μ (ht) ≥ max

π∈Π
V π
μ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most |M| log ε(1−γ)
γ−1 time steps t.

Proof. Consider the �-truncated value

V π
ν,�(ht) :=

t+�∑
i=t+1

γi−t−1ri

where the sequence ri are the rewards achieved by following π from time t + 1

to t + � in ν after seeing ht. By letting � = log ε(1−γ)
log γ (which is positive due to

negativity of both numerator and denominator) we achieve |V π
ν,�(ht)−V π

ν (ht)| ≤
γl

1−γ = ε. Let (π∗
t , ν

∗
t ) be the policy-environment pair selected by Algorithm 2 in

cycle t.

Let us first assume hπ
◦,μ

t+1:t+� = h
π◦,ν∗

t

t+1:t+�, i.e. ν
∗
t is consistent with h◦t+1:t+�, and

hence π∗
t and ν∗t do not change from t+ 1, ..., t+ � (inner loop of Algorithm 1).

Then

V π◦
μ (ht)

drop terms,
↓
≥ V π◦

μ,� (ht)

same ht+1:t+�,
↓
= V π◦

ν∗
t ,�

(ht)

π◦=π∗
t on ht+1:t+�,
↓
= V

π∗
t

ν∗
t ,�

(ht)

≥
↑

bound extra terms

V
π∗
t

ν∗
t
(ht)− γ�

1−γ =
↑

def. of (π∗
t , ν

∗
t ) and ε := γ�

1−γ

max
ν∈Mt

max
π∈Π

V π
ν (ht)− ε ≥

↑
μ ∈ Mt

max
π∈Π

V π
μ (ht)− ε.
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Now let t1, ..., tK be the times t at which the currently selected ν∗t gets incon-

sistent with ht, i.e. {t1, ..., tK} = {t : ν∗t �∈ Mt}. Therefore h◦t+1:t+� �= h
π◦,ν∗

t

t+1:t+�

(only) at times t ∈ T× :=
⋃K

i=1{ti − �, ..., ti − 1}, which implies V π◦
μ (ht) ≥

maxπ∈Π V π
μ (ht)− ε except possibly for t ∈ T×. Finally

|T×| = �·K < �·|M| = log ε(1− γ)
log γ

|M| ≤ |M| log ε(1− γ)
γ − 1

We refer to the algorithm above as the conservative agent since it sticks to
its model for as long as it can. The corresponding liberal agent reevaluates
its optimistic hypothesis at every time step and can switch between different
optimistic policies at any time. Algorithm 1 is actually a special case of this as
shown by Lemma 1. The liberal agent is really a class of algorithms and this larger
class of algorithms consists of exactly the algorithms that are optimistic at every
time step without further restrictions. The conservative agent is the subclass of
algorithms that only switch hypothesis when the previous is contradicted. The
results for the conservative agent can be extended to the liberal one, but we have
to omit that here for space reasons.

3 Stochastic Environments

A stochastic hypothesis may never become completely inconsistent in the sense
of assigning zero probability to the observed sequence while still assigning very
different probabilities than the true environment. Therefore, we exclude based
on a threshold for the probability assigned to the generated history. Unlike in
the deterministic case, a hypothesis can cease to be the optimistic one without
having been excluded. We, therefore, only consider an algorithm that reevaluates
its optimistic hypothesis at every time step. Algorithm 2 specifies the procedure
and Theorem 3 states that it is asymptotically optimal.

Theorem 3 (Optimality, Finite Stochastic Class). Define π◦ by using Al-
gorithm 2 with any threshold z ∈ (0, 1) and a finite class M of stochastic envi-
ronments containing the true environment μ, then with probability 1− z|M− 1|
there exists, for every ε > 0, a number T <∞ such that

V π◦
μ (ht) > max

π
V π
μ (ht)− ε ∀t ≥ T.

We borrow some techniques from [Hut09] that introduced a “merging of opin-
ions” result that generalized the classical theorem by [BD62]. The classical result
says that it is sufficient that the true measure (over infinite sequences) is ab-
solutely continuous with respect to a chosen a priori distribution to guarantee
that they will almost surely merge in the sense of total variation distance. The
generalized version is given in Lemma 2. When we combine a policy π with an
environment ν by letting the actions be taken by the policy, we have defined a
measure, denoted by ν(·|π), on the space of infinite sequences from a finite al-
phabet. We denote such a sample sequence by ω and the a:th to b:th elements of
ω by ωa:b. The σ-algebra is generated by the cylinder sets Γy1:t := {ω|ω1:t = y1:t}
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Require: Finite class of stochastic environments M1 ≡ M, threshold z ∈ (0, 1)
1: t = 1
2: repeat
3: (π∗, ν∗) = argmaxπ,ν∈Mt

V π
ν (ht−1)

4: at = π∗(ht−1)
5: Perceive otrt from environment μ
6: ht ← ht−1atotrt
7: t ← t+ 1
8: Mt := {ν ∈ Mt−1 : ν(ht|a1:t)

maxν̃∈M ν̃(ht|a1:t)
≥ z}

9: until the end of time

Algorithm 2. Optimistic Agent (π◦) with Stochastic Finite Class

and a measure is determined by its values on those sets. To simplify notation in
the next lemmas we will write P (·) = ν(·|π), meaning that P (ω1:t) = ν(ht|a1:t)
where ωj = ojrj and aj = π(hj−1). Furthermore, ν(·|ht, π) = P (·|ht).

Definition 1 (Total Variation Distance). The total variation distance be-
tween two measures (on infinite sequences ω of elements from a finite alphabet)
P and Q is defined to be

d(P,Q) = sup
A
|P (A)−Q(A)|

where A is in the previously specified σ-algebra generated by the cylinder sets.

The results from [Hut09] are based on the fact that Zt =
Q(ω1:t)
P (ω1:t)

is a martingale

sequence if P is the true measure and therefore converges with P probability
1 [Doo53]. The crucial question is if the limit is strictly positive or not. The
following lemma shows that with P probability 1 we are either in the case where
the limit is 0 or in the case where d(P (·|ω1:t), Q(·|ω1:t)) → 0. We say that the
environments ν1 and ν2 merge under π if d(ν1(·|π), ν2(·|π))→ 0.

Lemma 2 (Generalized merging of opinions [Hut09]). For any measures
P and Q it holds that P (Ω◦ ∪ Ω̄) = 1 where

Ω◦ := {ω :
Q(ω1:t)

P (ω1:t)
→ 0} and Ω̄ := {ω : d(P (·|ω1:t), Q(·|ω1:t))→ 0}

Lemma 3 (Value convergence for merging environments). Given a pol-
icy π and environments μ and ν it follows that

|V π
μ (ht)− V π

ν (ht)| ≤
1

1− γ d(μ(·|ht, π), ν(·|ht, π)).

Proof. The lemma follows from the general inequality∣∣EP (f)− EQ(f)
∣∣ ≤ sup |f | · sup

A

∣∣P (A)−Q(A)
∣∣

by inserting f := R(ωt:∞) and P = μ(·|ht, π) and Q = ν(·|ht, π), and using
0 ≤ f ≤ 1/(1− γ).
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The following lemma replaces the property for deterministic environments that
either they are consistent indefinitely or the probability of the generated history
becomes 0.

Lemma 4 (Merging of environments). Suppose we are given two environ-
ments μ (the true one) and ν and a policy π (defined e.g. by Algorithm 2). Let
P (·) = μ(·|π) and Q(·) = ν(·|π). Then with P probability 1 we have that

lim
t→∞

Q(ω1:t)

P (ω1:t)
= 0 or lim

t→∞
|V π

μ (ht)− V π
ν (ht)| = 0.

Proof. This follows from a combination of Lemma 2 and Lemma 3.

The next lemma tells us what happens after all the environments that will be
removed have been removed but we state it as if this was time t = 0 for notational
simplicity.

Lemma 5 (Optimism is nearly optimal). Suppose that we have a (finite
or infinite) class of (possibly) stochastic environments M containing the true
environment μ. Also suppose that none of these environments are excluded at
any time by Algorithm 2 (π◦) during an infinite history h that has been generated
by running π◦ in μ. Given ε > 0 there is ε̃ > 0 such that

V π◦
μ (ε) ≥ max

π
V π
μ (ε)− ε

if
|V π◦

ν1 (ht)− V π◦
ν2 (ht)| < ε̃ ∀t, ∀ν1, ν2 ∈M.

Proof. (Theorem 3) Given a policy π, let P (·) = μ(·|π) where μ ∈ M is the
true environment and Q = ν(·|π) where ν ∈M. Let the outcome sequence (the
sequence (o1r1), (o2r2), ...) be denoted by ω. It follows from Doob’s Martingale
inequality [Doo53] that for all z ∈ (0, 1)

P (sup
t

Q(ω1:t)

P (ω1:t)
≥ 1/z) ≤ z , which implies P (inf

t

P (ω1:t)

Q(ω1:t)
≤ z) ≤ z.

This proves, using a union bound, that the probability of Algorithm 2 ever
excluding the true environment is less than z|M− 1|.

The limits ν(ht|π◦)
μ(ht|π◦) converge almost surely as argued before using the Martin-

gale convergence theorem. Lemma 4 tells us that any given environment (with
probability one) is eventually excluded or is permanently included and merge
with the true one under π◦. The remaining environments does, according to
(and in the sense of) Lemma 4, merge with the true environment. Lemma 3 tells
us that the difference between value functions (for the same policy) of merging
environments converges to zero. Since there are finitely many environments and
the ones that remain indefinitely inMt merge with the true environment under
π◦, there is for every ε̃ > 0 a T such that when following π◦, it holds for all
t ≥ T that

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃ ∀ν1, ν2 ∈Mt.
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The proof is concluded by Lemma 5 in the case where the true environment
remains indefinitely included which happens with probability z|M− 1|.

4 Compact Classes

In this section we discuss infinite but compact classes of stochastic environ-
ments. First note that without further assumptions, asymptotic optimality can
be impossible to achieve, even for countably infinite deterministic environments
[LH11a]. Here we consider classes that are compact with respect to the total
variation distance, or more precisely with respect to

d̃(ν1, ν2) = max
h,π

d(ν1(·|h, π), ν2(·|h, π))

where d is total variation distance from Section 3. An example is the class
of Markov Decision Processes (or POMDPs) with a certain number of states.
Algorithm 2 does need modification to achieve asymptotic optimality in the
compact case. An alternative to modifying the algorithm is to be satisfied with
reaching optimality within a pre-chosen ε > 0. This can be achieved by first
choosing a finite covering of M with balls of total variation radius less than
ε(1 − γ) and use Algorithm 2 with the centers of these balls. To have an al-
gorithm that for any ε > 0 eventually achieves optimality within ε is a more
demanding task. This is because we need to be able to say that the true envi-
ronment will remain indefinitely in the considered class with a given confidence.
For this purpose we introduce a confidence radius inspired by MDP solving al-
gorithms like MBIE [SL05] and UCRL [AO06]. We still use the notationMt as
in Algorithm 2 and we define Algorithm 3 based on replacing it with a larger
M̃t. If we do not do this the true environment is likely to be excluded.

Definition 2 (Confidence radius). We denote all environments within rzt
from Mt by

M̃t := {ν ∈M | ∃ν̃ ∈Mt : d̃(ν̃, ν) ≤ rzt }.

Given z > 0 we say that rzt (ht) is a p-confidence radius sequence if rzt (ht) → 0
almost surely and if the true environment is in M̃t for all t with probability p.

Definition 3 (Algorithm 3). Given a class of environments M that is com-
pact in the total variation distance we define Algorithm 3 as being Algorithm 2
withMt replaced by M̃t

Definition 4 (Radon-Nikodym differentiable class). Suppose that the class
M is such that if μ ∈ M is the true environment, then for any policy π it holds

with probability one that for all ν ∈ M, Xt,ν := ν(ht|π)
μ(ht|π) converges as t → ∞ to

some random variables Xν . We call such a class Radon-Nikodym (RN) differ-
entiable. If the property holds with respect to a specific policy π we say that the
class is RN-differentiable with respect to π.
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Remark 1. Every countable class is RN-differentiable and so is the class of MDPs
with a certain number of states. The MBIE [SL05] and UCRL [AO06] algorithms
are based on the fact that one can define confidence radiuses for MDPs, though
their bounds need separate intervals for each state-action pair depending on the
number of visits. For an ergodic MDP all state-action pairs will almost surely be
seen infinitely often and the max length of those intervals will tend to zero. There-
fore, one can define a radius based on this maximum length or, alternatively, one
can easily allow Algorithm 3 to run with such rectangular sets instead.

Theorem 4 (Optimality, Compact Stochastic Class). Suppose we use
Algorithm 3 with threshold z ∈ (0, 1), a compact (in total variation) RN-
differentiable class (with respect to π◦ is enough) M of stochastic environments
and a p-confidence radius sequence rzt forM. Denote the resulting policy by π◦.
If the true environment μ is in M, then with probability p there is, for every
ε > 0, a tim e T <∞ such that

V π◦
μ (ht) ≥ max

π
V π
μ (ht)− ε ∀t ≥ T.

Lemma 6 (Uniform exclusion). Let Qν(·) = ν(·|π◦) and P (·) = μ(·|π◦)
where μ is the true environment and π◦ the policy defined by Algorithm 3. For
any outcome sequence ω, let

M0(ω) := {ν | Qν(ω1:t)

P (ω1:t)
→ 0}.

For any closed subset of M0(ω) and for every z > 0, there is T < ∞ such that

for every ν in this subset there is t ≤ T such that Qν(ω1:t)
P (ω1:t)

< z.

Proof. Since M is compact and the subset in question is closed it follows that
it is also compact. Using the Arzelà-Ascoli Theorem [Rud76] we conclude that

there is a subsequence tk such that Zν
k := min{1, Qν(ω1:tk

)

P (ω1:tk
) } converges uniformly

to 0 onM0 which means that there is tk such that Zν
k < z for all ν ∈ M0 and

we can let t = T = tk.

Proof. (Theorem 4) The strategy is to use that all environment that will be
excluded and does not lie within a certain distance of some environment that
merges with the true one, will be excluded after a certain finite time. Then we
can say that the remaining environments’ value functions differ at most by a
certain amount and we can apply Lemma 5.

We can with probability one say that for each ν ∈ M, it will hold that Zt =
ν(ht|π◦)
μ(ht|π◦) converges and each environment will be inM0 = {ν ∈ M | Zt → 0} or
M̄ = {ν | d(ν(·|ht, π◦), μ(·|ht, π◦)) → 0}. M̄ is compact (in the total variation
distance topology) since it is a closed subset (again in the topology defined by
d̃) of the compact setM.



Optimistic Agents Are Asymptotically Optimal 25

For any ε̃1 > 0 we can do the following: For each ν ∈ M, consider a total
variation ball of radius 2δ where δ = (1−γ)ε̃1/4. Note that |V π◦

ν (ht)−V π◦
ν′ (ht)| <

ε̃1/2 for all t whenever d̃(ν, ν
′) < 2δ. The collection of these balls induces an open

cover of the compact setM and it follows that there is a finite subcover. Consider
the balls in this finite cover that intersect with M̄. Let A be the union of these
finitely many open balls. Let B =M\A. B is then a closed subset ofM0. We
want to say that there is a finite time after which all environments in B will have
been excluded from M̃t. This happens if B̃, defined as the union of the closed
balls of radius rzt at every point in B, has been excluded fromMt. If t is large
enough for rzt < δ, then B is also a closed subset ofM0. Lemma 6 tells us that all
of the environments in B̃ will have been excluded fromMt after a finite amount
of time T1 and, therefore, all the environments in B will have been excluded from
M̃t. Thus M̃t ⊂ A ∀t ≥ T1 and in particular the optimistic hypothesis ν∗ will
be in A when t ≥ T1. Let ν

∗(= ν∗t ) be the optimistic hypothesis at time t ≥ T1
and π∗(= π∗

t ) the optimistic policy.
Each parameter in A (and in particular ν∗) lies within δ of a ball with center

ν which lies within δ of a point ν̃ ∈ M̄. Hence d̃(ν∗, ν̃) < 2δ and |V π◦
ν∗ (ht) −

V π◦
ν̃ (ht)| < ε̃1/2.
Due to the uniform merging of environments (under π◦) on M̄, there is T2 ≥

T1 such that |V π◦
ν1 (ht)−V π◦

ν2 (ht)| < ε̃1/2 ∀ν1, ν2 ∈ M̄ ∀t ≥ T2. We conclude that

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃1 ∀ν1, ν2 ∈ A ∀t ≥ T2 and since M̃t ⊂ A

|V π◦
ν1 (ht)− V π◦

ν2 (ht)| < ε̃1 ∀ν1, ν2 ∈ M̃t ∀t ≥ T2.

From Lemma 5 we know that if we picked ε̃1 small enough we know that for
t ≥ T2, V

π◦
ν∗ (ht) ≥ V π

ν (ht)− ε/2 for all π ∈ Π, ν ∈ M̃t. Furthermore, by picking
ε̃1 sufficiently small we can, for t ≥ T2, ensure that there is ν̃ ∈ M̃t such that
|V π◦

ν̃ (ht)−V π◦
μ (ht)| < ε/2. Given that the true environment remains indefinitely

in M̃t, which happens with at least probability p, it follows that

V π◦
μ (ht) ≥ max

π
V π
μ (ht)− ε ∀t ≥ T2.

5 Conclusions

We introduced optimistic agents for finite and compact classes of arbitrary en-
vironments and proved asymptotic optimality. In the deterministic case we also
bound the number of time steps for which the value of following the algorithm
is more than a certain amount lower than optimal. Future work includes inves-
tigating finite-error bounds for classes of stochastic environments.

Acknowledgement. This work was supported by ARC grant DP120100950.
The authors are grateful for feedback from Tor Lattimore and Wen Shao.



26 P. Sunehag and M. Hutter

References

[AO06] Auer, P., Ortner, R.: Logarithmic online regret bounds for undiscounted
reinforcement learning. In: Proceedings of NIPS 2006, pp. 49–56 (2006)

[BD62] Blackwell, D., Dubins, L.: Merging of Opinions with Increasing Informa-
tion. The Annals of Mathematical Statistics 33(3), 882–886 (1962)

[Doo53] Doob, J.: Stochastic processes. Wiley, New York (1953)
[EDKM05] Even-Dar, E., Kakade, S., Mansour, Y.: Reinforcement learning in pomdps

without resets. In: Proceedings of IJCAI 2005, pp. 690–695 (2005)
[Hut05] Hutter, M.: Universal Articial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin (2005)
[Hut09] Hutter, M.: Discrete MDL predicts in total variation. In: Advances in

Neural Information Processing Systems, NIPS 2009, vol. 22, pp. 817–825
(2009)

[KS98] Kearns, M.J., Singh, S.: Near-optimal reinforcement learning in poly-
nomial time. In: Proceedings of the 15nd International Conference on
Machine Learning (ICML 1998), pp. 260–268 (1998)

[LH11a] Lattimore, T., Hutter, M.: Asymptotically Optimal Agents. In: Kivinen,
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Abstract. The primitive unicellular organism slime mould Physarum
Polycephalum has attracted much attention from researchers of both bi-
ology and computer science fields. Biological experiments have revealed
that its foraging mechanism can be used to solve shortest path prob-
lems, while its foraging process can construct efficient networks among
food sources. Oregonator Model and Cellular Automaton have been pro-
posed to simulate the intelligence and morphology of Physarum. To bet-
ter understand the network formation of Physarum, a multi-agent system
(MAS) model of particles was introduced by Jones, which can simulate
many interesting patterns of Physarum transport networks. The MAS
model is improved in three aspects: the number of sensors of each in-
dividual agent is reduced to two, while the function of each sensor is
extended to sample both chemical nutrient and trail. A memory mod-
ule is added to the architecture of an agent, by which the evolution
mechanism can be achieved to maintain the population of the system.
With such improvements, the system is more flexible and adaptive, and
the networks constructed using the MAS model are more approximate
to the ones by Physarum in biological experiments. All these are veri-
fied by constructing stable networks including Steiner’s minimum tree,
cycle-like and spanning trees.

Keywords: Multi-agent Systems, Population Evolution, Physarum
Polycephalum, Transport Networks.

1 Introduction

Physarum Polycephalum, or the true slime mould, has been existing and evolving
on the planet for millions of years. The multinucleated single-cell protist prefers
darksome and moist environment. It feeds with fungal spores, bacteria and other
microbes in nature and oat flakes in laboratories. The plasmodium is the most
interesting phase in the life cycle of Physarum, in which it shows amazing be-
haviors such as establishing efficient transport networks with low cost and high
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fault tolerance [1,2]. Since Nakagaki found that Physarum can find the shortest
path to solve maze problem [3], the intelligent behavior of Physarum has been
the focus of researchers in various fields over the past decade.

Different methods have been proposed to analyze and simulate the intelli-
gence of Physarum. Based on Hagen-Poiseuille equation in chemistry and Kirch-
hoff Law in physics, Nakagaki and Tero et al proposed a mathematical model
to describe the feedback between flux and conductivity of the protoplasm tubes
[4,5]. The model explains the adaptive feature of Physarum in maze-solving. It
was also used to simulate the design of the railway network around Tokyo [6].
Inspired by the model, some modified methods are introduced to engineer-
ing technology, such as protocol design in Wireless Sensor Network (WSN)
[7] and dynamic reconfiguration in service-oriented internet-ware systems [8].
Adamatzky conducted researches on Physarum in the perspective of reaction-
diffusion. He treats it as a bio-realized unconventional computing substrate called
Physarum Machine, and uses it to solve maze, graph problems and design logi-
cal gates [9]. Through the Oregonator model of Belousov-Zhabotinsky reaction,
Adamatzky analyzes the common characteristics between Physarum’s foraging
behavior and reaction-diffusion [10]. Gunji and Niizatoa et al, utilize Cellular
Automatons to simulate Physarum solving maze, Stainer minimum tree and
spanning tree problems as well as Physarum’s motion and morphology [11], and
reproduce adaptive and robust transport networks [12]. Jones presents a low-level
particle-based agent model to approximate the network formation of Physarum
[13]. In that model, a population of agents governed by the same rules resulted in
their ordered arrangement, which is the emergence of networks in swarm. Other
interesting features such as pattern formation of that model are discussed in [14]
and [15].

The focus of this paper is mainly on the improvements of Jones’ agent model
to construct an enhanced multi-agent system. The improvements are in three
aspects: 1) The environmental information sensed by the left and the right sensor
is enough for an agent to choose its new direction, therefore we get rid of the
forward sensor in Jones’ model; 2) A Motion Counter is added to establish the
evolution mechanism of the system, it actually works as a memory module; and 3)
The trail and the chemo-nutrient, two chemo-attractants, are emitted by agents
and food sources, respectively. Our sensor is able to distinguish the two chemo-
attractants, and different weights are introduced to represent the corresponding
influence of each chemo-attractant.

Based on the improvements, the pattern formation and flexibility of popula-
tion on periodic and fixed boundary conditions are discussed. The enhanced MAS
model is then employed to construct stable networks including Steiner’s mini-
mum tree, cycle-like and spanning trees. The results are compared with those
constructed by Physarum. It shows that enhanced MAS can generate better
networks – the networks are much closer to the ones constructed by Physarum.

In Section 2, the enhanced MAS model is discussed in details. Section 3
presents the approximation of Physarum transport networks using the improved
MAS model. And finally, Section 4 is concluding remarks.
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2 The Enhanced Multi-Agent System Model

This section discusses the improved MAS model in details. The architecture and
behavior of individual agent are presented first, followed by other features of the
model.

2.1 The Architecture and Behavior of a Single Agent

Our multi-agent system performs on the 2D scenario, which is divided into 200×
200 square grids. A grid is a spatial unit, and the chemo-attractants diffuse on
the scenario by means of a simple average filter. The agents motion and the range
of diffusion by the chemo-attractants are limited in the discretized plane. A time
step in our system is finished when all available agents finish one decision in a
random sequence. An agent’s body occupies one grid and moves no more than
one grid at each time step. The agent’s sensor samples the chemo-attractants in
the grid where the sensor locates. A sensor is a virtual device, which could coexist
with other agent body or sensors in the same grid. The emergence pattern of
the system is organized by the arrangement of agents’ body.

A single agent is composed of three components, i.e. the left sensor, the right
sensor and the main body as shown in Fig. 1. The length of the sensor arm is used
to represent the distance between the sensor and the body of an agent. The sensor
angle formed by the sensor arm and the forward orientation is fixed to 45◦. Each
sensor is armed with a Trail Sampling module and a Chemo-nutrient Sampling
module, which are used to measure the trail and chemo-nutrient concentration of
its grid, respectively. The Synthesis Comparator compares the synthetic weighted
values of chemo-attractants sampled by the left sensor and the right sensor, and
controls the agent to move toward the direction with larger value.

The Motion Counter is simple but effective to record the motion of an agent
and balance the amount of the population. A new born agent initializes its mo-
tion counter as zero and chooses the forward direction from the eight usual geo-
graphical orientations randomly. At each time step, an agent attempts to move
forward to the neighbor grid. If the neighbor grid is occupied by another agent,
the agent stays at the current grid and changes its forward direction randomly and

Sensor Arm
Length

Left
Sensor

Right
Sensor

Forward

Sensor
Angle

Motion
Counter

Trail Sampling

Chemo-nutrient 
Sampling

Synthesis
Comparator Agent 

Body

Trail Sampling

Chemo-nutrient 
Sampling

Fig. 1. The architecture and morphology of a single agent
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Fig. 2. Four situations that an agent (colored by sky-blue) might confront. (a) Failure
to move forward. (b) Success to move forward. (c) Success to move forward and repro-
duction is triggered. (d) Elimination is triggered by reason of being immovable for a
long time.

subtracts one from its Motion Counter. If the neighbor grid is empty, the agent
moves to the grid, and deposits certain quantity of trail here, it also adds one to
theMotion Counter and rotates to the direction with higher sense value. The num-
ber in Motion Counter quantifies the fitness of an agent. The larger the number
in Motion Counter is, the more adaptable to the environment the agent is; other-
wise, the agent is not fitted for the environment. In consequence, two values (RT
and ET , see Table 1) are set to trigger the reproduction and the elimination of
an agent. When the number in the Motion Counter is greater than RT , a child
agent is born at the last grid where its father agent stayed. If the number is less
than ET , the elimination is triggered and leads the forever disappearance of that
agent. Fig. 2 gives examples how these situations may take place.

2.2 Basic Parameters of the System

Our enhanced system partially preserves the parameters presented in [13], but
the last seven parameters in Table 1 are newly introduced. They are used to
distinguish chemo-nutrient and trail, the diffusion and attenuation of chemo-
nutrient, and achieve agents’ evolution.

An agent calculates the actual value of the sampled chemo-attractant SV by
the simple linear weighted method SV =WT × TV +WN ×NV , in which TV
and NV denote the trail value and nutrient value in the sensor’s grid, respec-
tively. WT and WN are the coefficients to distinguish the different influences of
trail and nutrient. To emphasize the function of nutrient,WN is larger thanWT .
In the scenario, a food source has the shape of square and occupies 3× 3 grids.
The concentration of chemo-nutrient in these grids occupied by a food source
is simulated by the parameter CN . The chemo-nutrient diffuses in the way of
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Table 1. Basic parameter setting of the system

Parameter Value Explanation

Scenario Size 200×200 grids The planar area for network formation
Initial Population Density 50% Initially generating 200×200×50%

agents in the scenario randomly
Sensor Arm Length 7 grids The distance between sensor and its

body
depT 5 The quantity of trail deposited by an

agent
dampT 0.1 Diffusion damping factor of trail
filterT 3×3 The size of mean filter for trail
WT 0.4 The weight of trail value sensed by an

agent’s sensor
CN 10 The Chemo-Nutrient concentration of

each Node
dampN 0.2 Diffusion damping factor of chemo-

nutrient
filterN 5×5 The size of mean filter for chemo-

nutrient
WN 1-WT The weight of chemo-nutrient value

sensed by an agent’s sensor
RT 15 If the motion counter is greater than RT,

the reproduction is triggered
ET -10 If the motion counter is less than ET,

the elimination is triggered

a 5 × 5 average filter that is a general smoothing operator in image processing.
The damping factor dampN controls the attenuation of chemo-nutrient. At each
time step, chemo-nutrient in all grids excluding the food source grids updates
simultaneously through that filter and decreases to 1 − dampN of the previous
value. On fixed boundary condition, the system adopts zero as its boundary
value.Those grids near the boundary of the scenario require the value to com-
pute its new chemo-attractant through its corresponding filter. As mentioned in
Section 2.1, RT and ET are used to maintain the number of agents. And they
do not require precise adjustment, but too small values may lead to an unstable
mesh-like pattern.

The length of sensor arm is the sampling distance of an agent. On fixed
boundary condition, a sensor of an agent might reach out of the scenario. If
the left sensor reaches out of the scenario, its agent chooses to turn right 45
degrees; Otherwise, it turns left. However if both sensors are out, its agent turns
back. When the length of sensor arm is shorter than the diffusion distance of
chemo-attractants, isolated mass may appear in final pattern.

2.3 The Pattern Formation and Population Evolution

After introducing the basic parameters in Table 1, we run the system without the
inducing of any food source and observe its self-organized pattern and dynamic
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population evolution on periodic boundary condition and on fixed boundary con-
dition in this subsection. On either boundary condition, according to the setting
of initial population density, 10,000 agents are generated randomly without po-
sitional conflict before running the system. Fig. 3 shows the snapshots images of
the system running from initial state to stable on periodic boundary condition
(Fig. 3(a)) and fixed boundary condition (Fig. 3(b)). A black pixel of Fig. 3
stands for an occupied grid.

In Fig. 3(a), the initial dense irregular little meshes gradually fuse into bigger
ones, while the width of each edge is almost the same. Finally, the pattern is
stable at the state with five connected straight line segments and without any
mesh as shown in bottom middle of Fig. 3(a). By the same operation in [13], the
final pattern is tiled to produce a bigger picture in bottom right. The obtained
Honeycomb-like mesh here has some differences in angles and edge length from
that of [13]. The 120 degrees are not found here, but a closer edge length ratio
is observed. The ratio of angles (149.2 degrees vs 105.4 degrees) is 1.42 to 1,
and the ratio of the edges length (146 grids vs 102 grids) is 1.43 to 1. The very
close ratio of edge length and angle seems to indicate a possible relation between
them in this pattern formed by this system.

The pattern formation on fixed boundary condition shown in Fig. 3(b), is sig-
nificantly different from that on periodic boundary condition. In the stable state
(bottom left), all meshes are closed but no strait line survives. The population
of agents decreases with the system running. At last, several agents congregate
to a little mass in the center of the scenario, which maintains a minimization
area of the population. Even though the pattern being stable on the mass, the
evolution mechanism of our system keeps both the population and generation
dynamically.

The population density, expressing the scale of population, is defined as the
percentage of the number of agents to that of grids in the scenario. It is an impor-
tant feature of population structure. Three different initial population density,
1%, 50% and 90%, are chose to understand the influence of evolution mechanism
to the population. Running the system for 20,000 time steps, the curves of the
population density at each step on periodic and fixed boundary condition are

(a) (b)

Fig. 3. Agent swarm self-organized progress on periodic and fixed boundary conditions
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(a) (b)

Fig. 4. The population evolutions on periodic and fixed boundary conditions with
different initial population density

shown in Fig. 4(a) and 4(b). The three markers, the red delta, the green X and
the blue circle in Fig. 4 present the initial population density of 1%, 50% and
90% respectively. The embedded subgraphs in both Fig. 4(a) and 4(b) amplify
the detail in the first and last 500 time steps. During the first 500 steps, the three
kind curves trend to close the line whose population density is equal to 10%, ei-
ther suffering a rapid decrease or experiencing a slow increase. A fluctuation of
population in a narrow range is observed in all curves in the last 500 steps. The
fluctuation of each curve maintains its necessary and different amount of agents
to guarantee the persistence of the pattern.

3 The Approximation of Physarum Transport Networks

This section describes the situation that all the parameters in Table 1 are used
to run the system on fixed boundary condition for simulating the formation of
Physarum transport networks. In biological experiments, there are two common
methods to investigate the evolution of Physarum networks. One method is to
use the organism of Physarum to cover the substrate as well as all food sources,
such as in [1] and [2]. The other is inoculating the Physarum from one food
source, which used in [6] and [10]. The designs of the numerical experiments
in this section simulate both methods by consulting some distributions of food
sources in those works and other datasets in [13] as well. The videos of all
the experiments in this section are available online (http://www.tudou.com/
home/ 79693894).

3.1 Networks Formation from All Nodes Covered

During the approximation of Physarum networks, the scenario could be seen
as the substrate cultured the Physarum, and the food sources as the nodes.

http://www.tudou.com/home/_79693894
http://www.tudou.com/home/_79693894
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This section constructs RGB images to show the approximated networks. The
purple spots in the images simulate food sources, and the green edges simulate
protoplasmic tubes of Physarum. The value of Green channel represents the trail
in the scenario, however the chemo-nutrient is mapping to both Red and Blue
channels.

Fig. 5 shows the network formation of each data set by four images (1-4 from
top to bottom) using the basic parameters in Table 1. Initially the randomly
generated 20,000 agents cover exactly half grids of the scenario, which has an
analogy to the methods using pieces of Physarum covering the available agar
surface in [1]. By running the system within 20,000 steps, the network of every
dataset will be stable as shown in the fourth image of each subfigure. In Fig.
5(a), the final network is analogous to Steiner’s minimum tree (SMT) which is
similar to the thick tubes of Physarum shown in [2]. The network formed by
Physarum on the six food sources from [1] reveals a half SMT and half cycle-
like pattern shown as Fig. 6(a). However the network formed on the same nodes
distribution in [13] is of the only feature of SMT shown in Fig. 6(b). The network
formation of the six nodes dataset in Fig. 5(b) of this paper, which seems to be a
compromise between them, reveals a pattern of SMT on both sides of the nodes
as well as a circle in the middle. The network formation in Fig. 5(c) shows a
pattern of Delaunay triangulation network mentioned in [1], but the transitory
unstable edges in the middle of the circle shown in the second and third images

(a) (b) (c) (d) (e)

Fig. 5. Networks formation on various distributions of nodes completely following the
parameters in Table 1. The time-line direction of these snapshots is from top to bottom,
and the bottom image is the final stable pattern of each dataset.
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(a) (b) (c) (d)

Fig. 6. Figures from [1] and [13] are used to compare with the networks of our system

(a) (b) (c) (d)

Fig. 7. Outer cycle network formation when the initial population set to 100%

of Fig. 5(c) is more close to the real network of Physarum shown in Fig. 6(c). Fig.
5(d) is very similar to that in [13] shown as Fig. 6(d), however ours forms a circle
connected the inner nodes. The stable network shown in Fig. 5(e) manifests a
more complex structure which blends both the properties of SMT and cycle.

For feather exploring the performance of the system presented in Section 2,
we change some parameters to rerun this system on the datasets used above.
If the initial population density is set to 100%, there is no empty grid for any
agent move forward in this scenario. The population decreases suddenly as the
evolution mechanism working, and some agents near the four bounds of the
scenario can survive. Then those agents reproduce to form a closed ring and
shrink to the center gradually until the ring is adsorb firmly by the outer nodes.
That is the interesting pattern shown in Fig. 7. Nodes arrangement in Fig. 7(d)
is the supplement of Fig. 7(c) to illustrate how the inner nodes are excluded
by the outer cycle. The networks of data set in Fig. 5(c) and 5(d) under the
parameter of 100% initial population density are not given because they have
the same stable patterns to those in Fig. 5.

Furthermore the dataset, whose three nodes are locating at the vertices of an
equilateral triangle, is chosen as the test of approximation. In Fig. 8, the upper of
each subfigure is the network formed by our system and the lower is the similar
Physarum network in [2]. When adopting the basic setting of the system, the
SMT pattern formed to connected all the nodes as shown in Fig. 8(a). If the
system sets a larger filterN to simulate a further distance of nutrient diffusion,
the pattern called cycle (Fig. 8(b)) and analogue of SMT(Fig. 8(c) and 8(d))
in [2] could be observed. The last two patterns are not stable, both of them
might transform to SMT. The results of numerical experiment and biological
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(a) (b) (c) (d)

Fig. 8. Various networks formation of three nodes located at the vertices of an equi-
lateral triangle. The upper subfigures are from our system ant the lowers from [2](FS
is short for Food Source). (a) uses the basic parameter setting. (b) changes the filterN
to 19× 19. (c) and (d) change the filterN to 17× 17.

experiment illustrate the flexibility of our system to form various networks in
the same dataset.

3.2 Networks Formation from One Covered Node

When cultured in a nutrient-rich substrate, Physarum propagates many branches
of protoplasmic tubes. While in a nutrient-poor substrate, it propagates its pseu-
dopodia cautiously to forage for food sources with fewer and tree-like tubes. In
[10], a biological experiment is designed to investigate the spanning tree con-
structed in the nutrient-poor substrate. The distribution of food sources in that
experiment is alike the nodes arrangement in the first image of Fig. 10. By in-
oculating the Physarum at the southern food source, the protoplasmic tubes
constructs a spanning tree of all food sources finally. In that work, the two
component Oregonator Model of BZ reaction is used to explain the building
of the spanning tree. Fig. 9 quotes from [10]. The left image of Fig. shows the
result of two-variable Oregonator Model after erosion operation on diffusion
wave and the right one is the enhanced picture of Physarum constructing the
spanning tree.

Inspired by that work, some changes are applied to the system in this paper
to simulate the Physarum’s behavior to construct spanning tree in nutrient-poor
substrate. Firstly, the parameters related to nutrient are adjusted to the suitable
values to emphasize the importance of nodes and its gradient in a larger range.
Thus these parameters CN , filterN , WN and WS are set to 20, 13 × 13, 0.8
and 0.2, respectively. Secondly, 10 agents are generated manually at the grids of
southern node and the system is set up. Then the population of agents develops
and gradually covers all nodes. Finally the stable spanning tree is constructed,
which is similar to the both trees constructed by the Oregonator Model and
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Fig. 9. The spanning trees constructed by Oregonator Model and Physarum from [10]

Fig. 10. The process of constructing spanning tree from top to bottom and left to right

the biological experiment in [10]. Fig. 10 records the process of the formation of
spanning tree by this system.

4 Concluding Remarks

The enhanced Multi-agent system in this paper approximates the formation
of Physarum networks in various distributions of food sources. In this system,
the diffusion of chemical nutrient is independent from that of trail emitted by
agents. Meanwhile, the number of sensors is decreased to two, but the function
of a senor is extended to sample both nutrient and trail. The most interesting
point of this work is that the Motion Counter as a simple memory module of an
agent achieves the complex evolution mechanism. It is a flexible and self-adjusted
method to maintain the population to form a stable pattern, comparing with that
of utilizing the local population density and probability.

The pattern formation and the variation of population in the system are ob-
served on periodic and fixed boundary conditions. Then some datasets based
on the food sources arrangement in biological experiments of other researchers
are used to investigate the features of the networks formation by the system.
Features, including SMT, cycle-like and spanning-tree, are found in these final
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networks which are similar to the real networks constructed by Physarum. Future
works for this system are to explore other possible patterns on various setting
of parameters, the construction of efficient networks on more complex data sets
and the feature of dynamical reconstruction of the system.
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Abstract. Real-time environmental monitoring can provide vital situa-
tional awareness for effective management of natural resources. Effective
operation of Shellfish farms depends on environmental conditions. In this
paper we propose a supervised learning approach to predict the farm
closures. This is a binary classification problem where farm closure is a
function of environmental variables. A problem with this classification
approach is that farm closure events occur with small frequency leading
to class imbalance problem. Straightforward learning techniques tend to
favour the majority class; in this case continually predicting no event.
We present a new ensemble class balancing algorithm based on random
undersampling to resolve this problem. Experimental results show that
the class balancing ensemble performs better than individual and other
state of art ensemble classifiers. We have also obtained an understanding
of the importance of relevant environmental variables for shellfish farm
closure. We have utilized feature ranking algorithms in this regard.

1 Introduction

Authorities such as the Tasmanian Shellfish Quality Assurance Program
(TSQAP) are responsible for ensuring that shellfish harvested from commercial
growing areas are shown to be free of harmful contaminants. Microbial contami-
nants in particular pose a major risk to public health. The potential presence of
such contaminants are continually monitored through a combination of manual
sampling and real-time sensors at each of the shellfish growing sites through
indicators of salinity, rainfall and river flow, as well as direct water samples of
the microbes themselves. When these indicators fall outside the limits provided
by the management plan at a particular site, the growing site must be closed.
If the shellfish are close to harvesting size and the closure time is lengthy this
can result in significant loss of stock. This has economic implications for the in-
dividual farms, but can also cause disruptions in the supply of shellfish causing
negative impact on the industry statewide.

Management of the TSQAP is hindered by tedious and complex manual pro-
cesses that are required to obtain the relevant environmental data. This is mainly
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due to different sensors residing with different organisations that provide the
data in different formats through different means; including FTP servers, dial-
up communications, web pages etc. This has resulted in a system that relies
heavily on the availability of a single expert and has resulted in harmful events
being missed when this expert was unavailable. Consequently, we have begun
developing a real-time decision support tool for the TSQAP. This tool will de-
liver all of the proxy indicators of quality assurance from each of the different
data custodians in real-time and combine them within a visual interface to pro-
vides an overall picture of the water quality at each site. In addition to the
initial improvements obtained through data integration, the use of data mining
and knowledge discovery may potentially assist with short-term and long-term
management decisions.

In this paper we present a classification approach to predict shellfish farm
closures. Shellfish farms are closed depending on location, rainfall, salinity and
toxicity etc. We have developed a data set where we obtained information on
farm closures and corresponding readings of environmental variables. This gives
rise to a classification problem. However as the closures are relatively infrequent
events, traditional techniques will tend to favour the majority class resulting in
a system that always predicts that no event is present. As well as the issues
we will face in the future with regards to unreliable inputs from sensors and
heterogenous sensors at each of the farm locations, we first need to approach
the minority class problem. This will also be relevant when we analyse other
potentially harmful events to the aquaculture industry such as algal blooms.
We have developed a random class balancing ensemble method to address this
problem. We have also presented the results of feature ranking to understand
of the relative importance of relevant environmental variables for shellfish farm
closure.

2 Related Work

Shellfish farm closure prediction remains to date a novel application of data-
driven techniques. In general, data mining/machine learning techniques are rarely
applied to aquaculture problems; with the exception of prediction of harmful
algal blooms [1].

Ensemble classifiers [2] create complementary base classifiers by manipulating
the training set. The idea is to train base classifiers on different subsets of the
data. In bagging [3–9] the subsets are randomly drawn (with replacement) from
the training set. Boosting [10–13] is a hierarchical process where the first subset
is created by randomly drawing patterns from the training set. The patterns that
are not correctly classified by the current classifiers are given more importance
by the classifiers following passes.

Synthetic Minority Oversampling TEchnique (SMOTE) boosting was devel-
oped to address the class imbalance problem. SMOTE not only under samples
the majority class, but oversamples the minority class by introducing ‘synthetic’
examples [14]. These examples are generated by adding a random number to the
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difference between two neighbouring feature vectors of minority class examples.
The amount of oversampling is a tuneable parameter.

3 Random Class Balancing

The class balancing ensemble classifier framework is presented in Figure 1. Given
the training data a number of M subsets are produced using random under sam-
pling. This is done to address the class imbalance problem. The under sampling
process creates a training set with equal number of instances from every class.
When the classifiers are trained on the balanced data set the bias mentioned
above is eliminated. We term this method Random Class Balancing (RCB). The
random selection process, however, may ignore significant clusters of the major-
ity class. To address this issue we produce M different subsets from the train-
ing data using random under sampling. Classifiers are then trained on the M
different training subsets.

During testing a sample is classified by all the M classifiers. The decisions
produced by the M different base classifiers are merged into a single verdict
using majority voting fusion. In this process the class that receives the maximum
vote is considered to be the final classification verdict.

The class balancing ensemble classifier framework incorporates balancing to
address the unfairness to the minority classes. Use of multiple subsets of the
training data improves the overall sampling efficiency. Combined the accuracy
of the minority class improves with minimal reduction of accuracy of the majority
class.

Fig. 1. Class Balancing Ensemble classifier framework

4 Dataset

The dataset is derived from 4543 manual water samples taken by TSQAP
between 1988 and 2010. It includes four features:

– Level of Thermotolerant Coliforms - Level of faecal bacteria present
per 100 millilitres.
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– Location - 45 shellfish locations all over Tasmania.
– Rain - Rainfall in millimetres recorded for last 7 days from the closest

weather station.
– Salinity - salt level in the water sample in Practical Salinity Units (PSU).

The sample dates have been merged with farm closure dates taken from TSQAP
annual reports to create an output class, which is the close/open decision made
by the TSQAP manager. We are particularly interested in the examples where
the output class is Closed as this is when the farmers or the TSQAP manager
will want to take action. Unfortunately, over 88% of the samples have the output
class Open. However, we want to keep as many of the individual samples as we
can, even if the farm was kept open, because as much information as possible is
necessary to create an accurate model of these kinds of complex environmental
processes.

5 Results

5.1 Feature Ranking

Determining which features are most relevant for predicting farm closures will
inform our recommendations to farmers regarding what sensors to add. We also
wanted to evaluate if learning could be simplified by removing any features that
were irrelevant. We have used attribute/feature ranking as the search method
to get an ordering of the features. An attribute evaluator method is required
to evaluate the strength of an attribute. We have obtained evaluation scores of
the attributes from eight different evaluators available in the Weka toolbox [15].
The scores and ranks are presented in Table 1 and Table 2. The average ranks
of the attributes are obtained at the end to get an ensemble decision from all
the evaluators.

From the average over the eight evaluators the following ordering of the
attributes is observed, from most to least significant:

1. Location
2. Salinity
3. Rain
4. Coliforms

5.2 Class Balancing

The shellfish closure dataset was applied to four different classifier types from
the Weka Toolbox [15]; Decision Trees (Table 3) with the J48 classifer, Random
Forest (4), Multilayer Perceptrons (Table 5), Support Vector Machines (Table
6) using the SMO classifier, and Bayesian Networks (Table 7). The default pa-
rameters were used for all of the classifiers and 5-fold cross validation was per-
formed on each. For the ensemble classifiers there were ten classifiers in each
ensemble.



Predicting Shellfish Farm Closures with Class Balancing Methods 43

Table 1. Attribute score on the Shellfish Farm Closure dataset

Evaluator Rain Coliforms Location Salinity

Chi-squared Ranking Filter 316.3 307.4 901.3 429.2
Filtered Attribute Evaluator 0.045 0.042 0.1 0.06
Gain Ratio Feature Evaluator 0.02 0.34 0.037 0.04
Information Gain Ranking Filter 0.5 0.04 0.1 0.06
OneR Feature Evaluator 89.1 88.4 88.1 87.7
ReliefF Ranking Filter 0.03 0.001 0.03 0.01
SVM Feature Evaluator 4 3 1 2
Symmetrical Uncertainty Ranking Filter 0.03 0.05 0.07 0.06

Table 2. Attribute/Feature ranking on the Shellfish Farm Closure dataset

Evaluator Rain Coliforms Location Salinity

Chi-squared Ranking Filter 3 4 1 2
Filtered Attribute Evaluator 3 4 1 2
Gain Ratio Feature Evaluator 4 3 2 1
Information Gain Ranking Filter 3 4 1 2
OneR Feature Evaluator 1 2 3 4
ReliefF Ranking Filter 1 4 2 3
SVM Feature Evaluator 1 2 4 3
Symmetrical Uncertainty Ranking Filter 4 3 1 2

Average 2.5 3.2 1.9 2.8
Ranking 3 4 1 2

In Table 3 to 7 below, Random Class Balancing (RCB) refers to the average of
the individual classifiers before they were added to the ensemble. For the Decision
Tree tests we implemented three different voting methods. Average refers to the
average vote over the ensemble, Majority is where a majority vote is taken with
a random selection taking place on equal numbers of votes, and Maximum takes
the vote of the classifier whose classification has the highest probability. The

Table 3. Accuracy of decision trees with ensemble and class balancing methods on the
Shellfish Farm Closure dataset

Method Overall % Closed % Open %

Default 91.9 (± 1.8) 43.4 (± 4.8) 98.0 (± 0.9)
SMOTE 92.0 (± 2.1) 73.5 (± 3.6) 96.5 (± 2.3)
Ensemble Avg 88.1 (± 0.01) 0.0 (± 0.0) 100.0 (± 0.0)
Ensemble Maj 88.2 (± 0.2) 35.0 (± 48.7) 88.2 (± 0.2)
RCB 78.8 (± 2.5) 90.4 (± 3.3) 77.2 (± 5.1)
RCB Ensemble Average 80.1 (± 1.6) 93.7 (± 2.4) 78.3 (± 1.7)
RCB Ensemble Majority 80.1 (± 1.5) 98.9 (± 2.5) 76.9 (± 4.3)
RCB Ensemble Maximum 75.7 (± 1.5) 93.8 (± 2.5) 73.3 (± 4.3)
AdaBoost 96.6 (± 0.6) 82.0 (± 4.0) 98.5 (± 0.3)
Bagging 95.4 (± 0.8) 72.4 (± 4.8) 98.5 (± 0.4)
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Fig. 2. Accuracy of the minority class, Closed, on the Shellfish Farm Closure dataset
using Decision Tree classifiers

Table 4. Accuracy of Random Forest ensemble and class balancing methods on the
Shellfish Farm Closure dataset

Method Overall % Closed % Open %

Default 96.1 (± 0.4) 83.0(± 2.5) 97.8 (± 0.3)
SMOTE 95.0 (± 0.1) 83.5 (± 3.6) 96.5 (± 0.6)
RCB 87.6 (± 0.5) 91.6 (± 1.7) 87.0 (± 0.6)
RCB Ensemble 89.7 (± 0.5) 93.3 (± 1.7) 89.3 (± 0.6)

Table 5. Accuracy of Multi-Layer Perceptrons with ensemble and class balancing
methods on the Shellfish Farm Closure dataset

Method Overall % Closed % Open %

Default 87.8 (± 0.3) 46.8 (± 10.2) 98.0 (± 0.9)
SMOTE 85.3 (± 1.9) 28.1 (± 10.9) 93.0 (± 3.7)
RCB 67.2 (± 4.1) 72.1 (± 13.1) 66.5 (± 10.0)
RCB Ensemble 75.3 (± 4.1) 60.5 (± 3.8) 71.4 (± 10.3)



Predicting Shellfish Farm Closures with Class Balancing Methods 45

Table 6. Accuracy of SVM ensemble and class balancing methods on the Shellfish
Farm Closure dataset

Method Overall % Closed % Open %

Default 88.1 (± 0.01) 0.0 (± 0.0) 100.0 (± 0.0)
SMOTE 88.1 (± 0.01) 0.0 (± 0.0) 100.0 (± 0.0)
RCB 81.3 (± 2.8) 42.7 (± 5.2) 86.5 (± 3.6)
RCB Ensemble 81.6 (± 2.1) 45.2 (± 4.0) 86.6 (± 2.8)

Table 7. Accuracy of Bayes Net ensemble and class balancing methods on the Shellfish
Farm Closure dataset

Method Overall % Closed % Open %

Default 84.9 (± 0.6) 50.2 (± 3.3) 89.6 (± 0.7)
SMOTE 83.8 (± 0.6) 60.2 (± 3.6) 87.0 (± 0.7)
RCB 75.8 (± 1.4) 69.0 (± 3.3) 76.7 (± 1.7)
RCB Ensemble 75.6 (± 0.6) 70.2 (± 3.4) 76.3 (± 0.4)
AdaBoost 87.6 (± 1.6) 24.4 (± 13.7) 96.1 (± 3.2)
Bagging 85.4 (± 0.9) 46.1 (± 2.6) 90.7 (± 1.2)

Fig. 3. Accuracy of the minority class, Closed, on the Shellfish Farm Closure dataset
using Bayesian Network classifiers
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remaining classifier methods use average voting as this is the default in Weka.
The Bagging and AdaBoost classifiers were also taken from the Weka toolbox
and used with the default parameters.

Figure 3 plots the accuracy on the Closed output class of interest for each of
the decision tree approaches. Figure 7 plots the accuracy on the Closed output
class of interest for each of the Bayesian Network approaches.

6 Discussion

The results of the feature ranking emphasise the importance of clustering the
farms based on the location. It will not be possible to create a general classifier
for every location, but we may be able to cluster the locations to avoid having
a separate model for each location. Salinity is the most important environmen-
tal variable, followed by rain. It is interesting to note that the direct measures
of thermotolerant coliforms are the least relevant when these are the levels we
are directly trying to measure. It suggests that closures are carried out in an-
ticipation of drops in thermotolerant coliforms most often, rather than due to
high levels of the coliforms themselves. This will be important for our real-time
system as the health department and the farmers will want to be forewarned
of potential closures so, for example, they can harvest early, instead of closing
when it is essentially too late to take appropriate action.

The results of the learning methods show that the classification accuracy
can be significantly improved by class balancing techniques. SMOTE shows an
improvement over the default method for Decision Trees, Random Forest and
Bayesian Networks on the minority class; with the largest increase in accuracy
apparent for Decision Trees. The Random Forest proving the best performer
using the default method.

The Random Class Balancing Ensembles consistently had the highest accu-
racy on the minority Closed output class. Although it did negatively affect the
accuracy on the entire data set and the Open output class. We will need to inves-
tigate if there is a method that does not decrease the accuracy of the majority
class when class balancing. The results suggest that SMOTE also loses accuracy
in the majority class. The Bagging and Boosting were able to greater overall
accuracy, but significantly lower accuracy on the minority class than the RCB
Ensemble method. The Bagging and Boosting methods also had higher variance
in accuracy.

There was a small increase in accuracy using majority voting, but similar
results were gained from the average and maximum voting methods. For the
remaining experiments we left the voting as the average voting default as the
accuracy increase was not deemed significant enough.

The accuracy of MLPs and SVMs likely suffer from the format of the location,
which has been determined as the most important feature. The location informa-
tion would not translate well to a single normalised input. It would also not be
feasible to have an input node for each of the 45 locations. We believe the neural
network learners will respond well to reducing the locations to a much smaller
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number of clusters before learning. However, these learners still experience a
significant increase in accuracy after class balancing.

7 Conclusion

We were successfully able to train classifiers on the Shellfish Farm Closure
dataset and produce accurate classifications of farm closures. The application
of machine learning techniques in this domain is novel in itself. The classifiers
were consistently improved by using class balancing techniques; with 98.9% ac-
curacy on the minority class possible with the RCB Ensemble method described.
We also confirmed the importance of salinity as a indictator for farm closure, as
well as the importance of the farm location.

We intend to make these classifications with input from real-time data streams
to provide an intuitive visualisation tool for the health authority. The probability
of closure will be represented by a traffic light colour system on a geographic
map. We believe this greatly reduce the workload of the manager as well as the
current dependence on her skills.
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Abstract. Multilayer feedforward neural networks trained via supervised learn-
ing have proven to be successful in pattern recognition. This paper presents the 
technique of using single hidden layer feedforward neural network as an auto-
matic classifier in music classification. Han Chinese folk songs from five  
distinct geographical regions in China are studied and encoded using a novel 
musical feature density map (MFDMap) for machine classification. The  
extreme learning machine (ELM) and its two variants are employed as the  
classifiers to categorize the folk songs. Our simulations show that by using a 
low-pass finite impulse response extreme learning machine (FIR-ELM), we can 
achieve 80.65% classification accuracy. 

Keywords: Musical feature density map, music classification, extreme learning 
machine, artificial neural network, Han Chinese folk song. 

1 Introduction 

Automatic music classification has been widely studied in the past decade, but the 
majority of the works focuses on Western music. Some examples are [1], [2] and [3]. 
Though Chinese music classification has not been ignored, little effort has been made 
in this area. An example is the classification of Chinese folk music using Hidden 
Markov model [4]. Two sets of perceptual features were used for the purpose of clas-
sifying Chinese folk music according to the audio taxonomy defined by the authors. 
As the authors defined Chinese folk music as either vocal or instrumental, they  
focused mainly on the timbral and rhythmic features. 

As far as we are aware, there is only one work for Chinese music classification that 
involved using an artificial neural network (ANN) as the classifier. Xu, Wang and 
Yan [5] used a radial basis function neural network to classify Chinese folk songs 
based on 74 features extracted from the audio signals. The authors achieve 43.208% 
classification accuracy using Classification Contribution-Ratio Based Selection  
algorithm for music feature selection. 

The single hidden layer feedforward neural network (SLFN) is one of the simplest 
and most popular types of ANN. Hornik, Stinchcombe and White [6] have proved that 
a SLFN, using any desired activation function, is a universal approximator. Such 
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SLFN is able to approximate virtually any function if given a sufficient number of 
hidden neurons and a sufficiently large training set. The extreme learning machine 
(ELM) [7] is an emerging technology that utilized a SLFN. It has been proved to out-
perform conventional SLFNs, especially the gradient-based SLFNs [7]. Nonetheless, 
ELM technique has limited attention in music classification research. The only re-
search that employs ELM as a music classifier is [8], where a four genre (classical, 
dance, pop and rock) music classification is performed. Khoo, Man and Cao [9]  
employed the regularized extreme learning machine (R-ELM) as a geographical based 
classifier for Han Chinese folk song. 

In this paper, we propose using the finite impulse response extreme learning ma-
chine (FIR-ELM) as the music classifier for Han Chinese folk songs. The FIR-ELM is 
a variant of ELM which incorporated two improvements to the ELM. It introduced 
two balancing parameters to adjust the balance of the empirical risk and the structural 
risk of the neural network and improved the limitation of the arbitrary characteristic in 
both ELM and R-ELM by introducing the filtering technique to the input layer of the 
SLFN. It is more robust especially in solving complex problem such as the one  
discussed in this paper. 

The corpus for our music classification task is the Han Chinese folk songs from 
five distinct regions in China. There are two distinct approaches for music representa-
tion: audio and symbolic. In this paper, we employ a novel symbolic musical feature 
representation method, the musical feature density map (MFDMap). Unlike audio 
representation, our MFDMap is very similar to musical notations and hence more 
appropriately model the human perception of music. In addition, the characteristic of 
symbolic representation facilitates the possibility of building intelligent systems for 
music theory teaching and learning. 

This paper is organized as follows. In Section 2, we will describe our proposed 
musical feature density map and the data set used for the simulations. A brief over-
view of the ELM, the R-ELM and the FIR-ELM will be presented in Section 3. In 
Section 4, the simulation results will be presented and discussed. Finally, we will 
conclude our work in Section 5 and propose ideas for further research. 

2 Music Representation 

In this paper, musical features were extracted from Kern files. There is no particular 
reason for choosing this format except that the database we employed is coded in 
Kern format. It is important to note that from a practical perspective, the features 
discussed in this section could just as easily be extracted from other existing symbolic 
formats such as MIDI notation. 

2.1 Solfege – To Characterize Melody Progression of Notes 

One of the main characteristics of folk songs is their method of transmission. Unlike 
other styles of music, such as classical music, folk songs are transmitted orally. Much 
existing research that adopts symbolic representation overlooks this important charac-
teristic of folk songs. They usually employ the exact pitch representation of the song 



 Automatic Han Chinese Folk Song Classification Using Extreme Learning Machines 51 

melody. As folk songs are transmitted orally, the key of the tune in which a person 
sings may vary. This means that the tune of a folk song may be sung in many  
different pitches but the melody progression of all notes remains unchanged. In this 
case, exact pitch representation will interpret the different versions independently as 
different songs instead of as the same song, which results in inaccuracy. 

Instead of using the exact pitch representation, we proposed using solfege repre-
sentation of the song melody. Solfege is a solmization technique that is commonly 
used for sight singing. Each note in a musical scale is assigned to a unique syllable. 
These syllables are usually written as numerical notations in musical scores of  
Chinese folk songs. Solfege notation can be easily computed using the available pitch 
and key information. It is a consistent and robust feature. Despite the different key of 
each version of the same folk song, the solfege representation always remains the 
same. The solfege representation can be computed using the following equation: 

 )7()(solfege)(solfege ×+= inni  (1) 

for n = 1,2,3,…,N, where N is the number of notes in a folk song and i is the number 
of octaves above or below the Middle C. 

2.2 Interval – To Characterize Musical Flows 

From a broad geographical view, the Han Chinese folk songs can be divided into the 
northern and southern style, each of which is associated with the two major rivers in 
China: the Yellow River of the north and the Chang Jiang of the south. In this divi-
sion, the environment, climate and landscape structure play a significant role in form-
ing the characteristics of the folk songs from the different regions. For example, the 
cold, dry and windy climate in the north that affects the agricultural activities and 
lifestyle of the people is reflected by a more intense and disjunct progression of melo-
dy in folk songs from that area. Conversely, the folk songs from the southern regions 
are more lyrical and conjunct. This important characteristic of the musical flow and 
movement of folk songs is reflected in our encoding scheme through the measurement 
of the musical interval and changes in duration between adjacent notes. 

The musical interval is the measurement of the pitch ratio between two adjacent 
notes. We measure the interval in terms of the number of semitones between two 
adjacent notes. The intervals of a folk song melody with N number of notes can be 
calculated using the following equation: 

 )1(pitch)(pitch)(interval −−= nnn  (2) 

for n = 2,3,4,…,N, where N is the number of notes. 

2.3 Duration – To Characterize Rhythmic Pattern 

Rhythmic patterns define the distinctive identity between music of diverse style and 
form. For example, a melody with lots of short notes within a short length of time 
presents an agitated impression but a chunk of lengthy notes usually creates a more 
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One of the advantages of MFDMap is that it preserves the main characteristic of 
symbolic representations, that is, it closely models the human perception of music. 
Most musical styles can be differentiated by the high occurrence of certain musical 
features or the absence of them. This is effectively modelled in the MFDMap. The 
structure of MFDMap is flexible. It allows all musical features to be encompassed in 
one map. Any musical features that are not applicable to a particular musical style can 
be easily removed from the map. MFDMap is also extendable whereby new musical 
features can be added to it. 

By using the occurrence percentage of each musical feature within a song, 
MFDMap encompasses the complete melody instead of segmenting it into chunks of 
notes. This is important as music is usually continuous. Each musical note is not an 
independent object but is closely related to the preceding note(s) and the successive 
note(s). MFDMap uses the whole song and extracts useful musical features from it, 
each song has a unique map and the problems of finding a representative segment size 
can be easily avoided. 

2.6 Data Set 

We have chosen Chinese folk songs from five regions: Jiangsu, Dongbei, Guangdong, 
Shanxi and Sichuan as our corpus from the larger database of Han Chinese folk songs 
from [10]. The melody of each folk song in the corpus is encoded into a MFDMap of 
its own. There are a total of 312 folk songs in our corpus. 90% of the songs are  
randomly assigned as the training set and the remaining form the testing set. 

3 Machine Classifier 

3.1 Extreme Learning Machine 

The major bottlenecks of the gradient-based single hidden layer feedforward neural 
network are the slow learning speed and the convergence issue. These are caused by 
the learning algorithms that are employed by the SLFN. Gradient-based algorithms 
suffer from the problem of choosing the learning step that gives good convergence. In 
addition, the parameters such as the input weights and the hidden layer biases of these 
learning algorithms need iterative tuning to obtain better learning performance which 
results in a time consuming and resource consuming process. 

The extreme learning machine is proposed by Huang, Zhu and Siew [7] to  
overcome these drawbacks. ELM algorithm utilizes SLFN architecture but unlike the 
gradient-based SLFN, ELM randomly chooses the input weights and analytically 
determines the output weights of a SLFN. In [7], the ELM was theoretically proven to 
give good generalization performance at an extremely fast learning speed. The brief 
overview of the ELM algorithm is described as follows. 

For a dataset with N distinct samples {(X,T) | X = [x1,x2,…,xN], T = [t1,t2,…,tN]} 
where xi = [xi1,xi2,…xin]

T∈Rn is the input vector and ti = [ti1,ti2,…tim]T ∈Rm is the 
target vector, the SLFN with Ñ hidden neurons can be written as 
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for i = 1,2,…,N where oi = [oi1,oi2,…,oim]T∈Rm is the output vector with respect to xi 
= [xi1,xi2,…,xin]

T the input vector, βj = [βj1,βj2,…,βjm]T is the output weights vector 
connecting the jth hidden neuron and the output neurons, wj = [wj1,wj2,…,wjn]

T is the 
input weights vector connecting the input neurons and the jth hidden neuron, bj is the 
bias of the jth hidden neuron and g(x) is the activation function. This SLFN with Ñ 
hidden neurons and activation function g(x) is proven to be able to approximate N 
data samples with zero error, such that 

 0
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=−
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i
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Therefore, there exist βj, wj and bj such that 
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for i = 1,2,…,N. The above (7) can then be written compactly in matrix form Hβ = T 
where 
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The ELM algorithm works by first randomly initializing the input weights and hidden 
layer biases of the SLFN. Then, the hidden layer output H is calculated. Finally, the 
output weights β are computed using the Moore-Penrose generalized inverse: 

 ΤΗΗΗβ T1T )( −= . (10) 

The major difference between the ELM algorithm and gradient-based learning algo-
rithms is the tuning of the hidden layer. In conventional algorithms, the learning process 
needs to be repeated many times to tune the input weights but ELM does not require 
such tuning and its optimal output weights are calculated analytically without any itera-
tive procedure. This results in an extremely fast learning speed and a simpler architec-
ture with fewer parameters to tune. In addition, ELM determines its output weights 
using the generalized inverse operation which assures a unique solution with the small-
est norm. This allows the ELM algorithm to effectively avoid the local minima issue. 



 Automatic Han Chinese Folk Song Classification Using Extreme Learning Machines 55 

Although ELM greatly improved the performance of conventional SLFNs, it still 
poses a few drawbacks. Firstly, the random assignment of the input weights and  
hidden layer biases leads to the generation of non-optimal solutions. The arbitrary 
characteristic of the randomly assigned input weights is similar to the local minima 
problem in gradient-based algorithm. It results in diverse solutions by an ELM over 
different trials. Hence, it is difficult to determine the optimal solution in a single run. 
Repeated trials of testing are required to evaluate the mean classification accuracy of 
an ELM. In addition, there is no universal value or range of values to set the input 
weights. Hence, the choice of values is purely empirically based. The next section 
will further discuss an enhancement to this limitation of ELM. 

Next, the design of the output layer weights in ELM gives rise to another issue. 
ELM uses the generalized inverse of the hidden layer output matrices to determine the 
output weights. This minimum norm least squares solution of the hidden layer output 
is an empirical risk minimization (ERM) operation which tends to result in an 
overfitting model especially if the training set is not sufficiently large. In statistical 
learning theory, the real prediction risk in learning consists of empirical risk and 
structural risk. In order to achieve good generalization performance, a model needs to 
accomplish a good balance between these two risks. 

Deng, Zheng and Chen [11] proposed to overcome the drawback in the output 
weights by introducing a regularization term into the ELM algorithm. A weight factor 
γ for empirical risk is inserted to regularize the proportion of the empirical risk and 
the structural risk. Their improved ELM is called the regularized extreme learning 
machine and it used the following equation to calculate the output weights β: 

 THHH
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3.2 Finite Impulse Response Extreme Learning Machine 

As mentioned in the previous section, the ELM poses two major limitations: the  
robustness issues and the effect of the structural and empirical risks. R-ELM was 
proposed to enhance the limitation in the output weights by introducing a balancing 
parameter in the optimization of the error function. However, this improvement does 
not significantly reduce the structural and empirical risks since the input weights and 
the hidden layer biases are still randomly assigned. The finite impulse response ex-
treme learning machine proposed by Man et al. [12] served to further improve the 
ELM algorithm, particularly to overcome the robustness issue of the input weights 
and the hidden layer biases. 

In the FIR-ELM, the input weights are designed such that the hidden layer of the 
SLFN serves as a pre-processor to remove the effects of the input disturbances. As the 
output of a linear hidden neuron in a SLFN is the sum of the weighted input data, 
each of these hidden neurons can be treated as an FIR filter. Hence, based on the FIR 
filter design techniques in signal processing, the hidden layer of a SLFN can be de-
signed as a group of low-pass, high-pass, band-pass or band-stop filters, or any other 
types of filter to pre-process input data with disturbance or undesired frequency  
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components. The main advantages of such design are that the input disturbances and 
undesired frequency components can be removed and that both the empirical and 
structural risks of the SLFN can be greatly reduced. The output weight matrix in  
FIR-ELM is designed to further balance the empirical risk and structural risk. It is 
calculated based on minimizing an objective function that includes both the weighted 
sum of the output error squares and the weighted sum of the output weight squares of 
the SLFN. 

It should be noted that there is one main difference between FIR-ELM and both the 
ELM and R-ELM. The SLFN in both ELM and R-ELM uses nonlinear hidden neu-
rons and linear output neurons. However, in FIR-ELM, the SLFN uses both linear 
hidden neurons and linear output neurons. In order to assure that the SLFN with linear 
hidden neurons has the capability of universal approximation, an input tapped-delay-
line memory with n – 1 delay units is added to the input layer. Fig. 1 depicts the 
SLFN architecture of the FIR-ELM, where D is the n – 1 time-delay element that is 
added to the input layer to form the tapped-delay-line memory, the input sequence 
x(k),x(k – 1),…,x(k – n + 1) represents a time series consisting of the present observa-
tion x(k) and the past n – 1 observations of the process, the hidden layer has Ñ linear 
neurons and the output layer has m linear neurons. 

The definition for the SLFN with Ñ hidden neurons and m output neurons using 
FIR-ELM algorithm is similar to the ELM from equation (5) to equation (9). Howev-
er, instead of randomly assigned the input weights, input weights wij for the ith hidden 
neuron of the SLFN in FIR-ELM is obtained as follows: 
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for 0 ≤ k < n – 1 is the impulse response of a truncated low-pass filter for the ith hid-
den neuron and ωc is the cut-off frequency of the low-pass filter. It is noted that the 
similar design methods can be used to design the hidden neurons as high-pass, 
 

 

Fig. 1. The FIR-ELM network architecture with linear neurons and time-delay elements 
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band-pass or band-stop filter, or other types of filter for the purpose of pre-processing 
the input data. 

The output weights for the SLFN is then calculated by minimizing both the 
weighted sum of the output error squares and the weighted sum of the output weights 
squares of the SLFN: 

 Minimize 






 + 22
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where γ and d are constant balancing parameters for adjusting the balance of the  
empirical risk and the structural risk. Hence, the output weights of the SLFN in  
FIR-ELM can be obtained as follows: 
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4 Simulations and Results 

In order to examine the performance of the finite impulse response extreme learning 
machine as the machine classifier for Han Chinese folk song classification, we conduct-
ed our simulations using three classifiers: the ELM, the R-ELM and the FIR-ELM. The 
maximum number of hidden neurons employed in all classifiers is up to 2000 neurons. 
As the input weights in both ELM and R-ELM are randomly assigned, each repetition 
of the simulation will produce a different result. Hence, the simulations using ELM and 
R-ELM were repeated 50 times for the mean classification accuracy. 

In FIR-ELM, the length of the FIR filter is the same as the size of the MFDMap, 
which is 175. The balancing parameters are set as γ = 1 and d = 0.01 based on empiri-
cal studies. The simulations were performed using four different types of FIR filter: 
low-pass, high-pass, band-pass and band-stop filters, over a range of cutoff frequen-
cies ωc ranging from 0.1 to 0.9 with a step size of 0.1. A band width of ±0.05 is used 
for the band-pass and band-stop filters. The targets for the three classifiers are set 
using the 1-of-c method by assigning each of the five geographical regions to one 
target. For a set of targets, the one representing a particular region is assigned ‘1’ and 
the remaining targets are assigned ‘0’. 

The comparison of the classification accuracy of the three classifiers is presented in 
Table 1. Since both ELM and R-ELM possess arbitrary characteristics, the simulation 
was repeated 50 times to obtain the mean classification accuracy and this is shown in 
Table 1 together with their respective standard deviations. In FIR-ELM simulation, 
the low-pass filter performs the best among the four different filters. Hence the classi-
fication performance for FIR-ELM shown in Table 1 is the low-pass FIR-ELM with 
cutoff frequency at 0.3. 
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Table 1. Classification performance of ELM, R-ELM and low-pass FIR-ELM 

Number 
of Hidden 
Neurons 

ELM R-ELM 
FIR-ELM 
(low-pass) 

Accuracy 
(%) 

Standard 
Deviation 

(%) 

Accuracy 
(%) 

Standard 
Deviation 

(%) 

Accuracy 
(%) 

50 51.94 7.96 55.35 6.16 29.03 
100 50.77 7.22 60.97 5.80 48.39 
200 44.00 7.37 63.29 5.71 61.29 
500 45.03 9.15 68.45 5.91 67.74 

1000 58.06 7.90 69.03 5.13 74.19 
1200 60.84 5.97 70.39 5.28 80.65 
1500 62.13 6.35 68.71 5.30 80.65 
2000 64.97 6.29 69.74 5.29 67.74 

 
It is fairly obvious in Table 1 that increasing the number of hidden neurons usually 

leads to some increase in performance for each classifier. Due to the nature of music, 
there is great subjectivity that makes music classification a difficult task to accom-
plish. Although there are differences between folk songs from various geographical 
regions, the divergence is not easily recognized. In the Han Chinese folk song classi-
fication, the differences between the categories are fairly subtle. Sorting these folk 
songs into regional source is not an obvious task even for humans. The performance 
shown by these machine classifiers is very encouraging. 

In general, the low-pass FIR-ELM is the best classifier among the three. The R-
ELM performs slightly better than ELM. The FIR-ELM shows its best performance at 
1200 hidden neurons, achieving an accuracy of 80.65% while R-ELM accomplishes 
70.39% accuracy and ELM 60.84% accuracy. The performance of the ELM fluctuates 
a little when the number of hidden neurons is less than 500 but begins to show steady 
improvement in performance when more hidden neurons are added and reaches 
64.97% accuracy with 2000 hidden neurons. The performance of R-ELM on the other 
hand is fairly steady with a slight drop from 1500 hidden neurons. The low-pass  
FIR-ELM is the most robust among the three classifiers. Its classification accuracy 
improves as the number of hidden neurons increases and reaches its saturation point at 
1200 hidden neurons. The FIR-ELM manages to maintain this good performance until 
1500 hidden neurons before starting to show a hint of deterioration. 

The learning time, in number of seconds, required for each classifier to achieve a 
complete learning of the music classification task is shown in Table 2 to demonstrate 
the performance speed of each classifier. Overall, these classifiers perform at an ex-
tremely fast speed. The maximum time required by a classifier at 2000 hidden neu-
rons is 3.3 seconds. The low-pass FIR-ELM starts off being the fastest but eventually 
become the slowest among the three classifiers when the number of hidden neurons 
increases. The learning time required by the R-ELM is about the same as the FIR-
ELM while ELM performs at a slightly faster speed than both R-ELM and FIR-ELM 
between 1000 to 2000 hidden neurons. 
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Table 2. Learning time in number of seconds for ELM, R-ELM and FIR-ELM classifiers 

Number of 
Hidden 
Neurons 

ELM 
(sec.) 

R-ELM 
(sec.) 

FIR-ELM  
(low-pass) 

(sec.) 
50 0.0163 0.0049 0.0046 

100 0.0270 0.0068 0.0066 
200 0.0752 0.0131 0.0113 
500 0.2274 0.0812 0.1022 

1000 0.2910 0.4454 0.5115 
1200 0.3147 0.7212 0.7566 
1500 0.3562 1.3228 1.3881 
2000 0.4172 2.9797 3.2972 

5 Conclusion and Future Work 

We have introduced our novel symbolic music encoding method known as the 
MFDMap. We have demonstrated the feasibility of using our MFDMap in machine 
classification of Han Chinese folk songs through simulations using the extreme learn-
ing machine, the regularized extreme learning machine and the finite impulse re-
sponse extreme learning machine. Our simulation results have successfully shown 
that the finite impulse response extreme learning machine using a low-pass filter is 
the best classifier among the three classifiers. It is more robust especially in solving a 
complex task such as music classification. 

In this paper, our MFDMap employed only symbolic representations of the musical 
features. One possible enhancement is to extend the versatility and capabilities of our 
MFDMap to also incorporate musical features extracted from audio signals, especially 
timbral related features. In addition, the corpus employed by the MFDMap can be 
extended to include folk songs of other geographical regions in China. 
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Abstract. People-to-people recommendation aims at suggesting suitable 
matches to people in a way that increases the likelihood of a positive interac-
tion. This problem is more difficult than conventional item-to-people recom-
mendation since the preferences of both parties need to be taken into account. 
Previously we proposed a profile-based recommendation method that first uses 
compatible subgroup rules to select a single best attribute value for each corre-
sponding value of the user, then combines these attribute value pairs into a rule 
that determines the recommendations. Though this method produces a signifi-
cant improvement in the probability of an interaction being successful, it has 
two significant limitations: (i) by considering only single matching attribute 
values the method ignores cases where different attribute values are closely re-
lated, missing potential candidates, and (ii) when ranking candidates for rec-
ommendation the method does not consider individual behaviour. This paper 
addresses these two issues, showing how multiple attributes can be used  
with compatible subgroup rules and individual reply rates used for ranking  
candidates. Our experimental results show that the new approach significantly 
improves the probability of an interaction being successful compared to our 
previous approach. 

Keywords: recommender systems, social network analysis. 

1 Introduction 

Social networks connect people in the world. To extend them, many social network 
web sites have been developed. People in online social networks communicate using 
messages. To establish a successful social interaction, a user, called here a sender, 
sends a message to another user, called here a receiver, and the receiver should reply 
positively to the sender. The success of the interaction depends on reciprocal inter-
ests between the sender and the receiver. Therefore it is desirable for social networks 
to provide sophisticated services that encourage successful social interactions between 
users. People-to-people recommenders address exactly this issue. People-to-people 
recommenders differ from the conventional item-to-people recommenders since they 
need to take into account the preferences of both sender and receiver.  
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This research focuses on the problem of recommending suitable matches in an 
online dating social network. Unlike other social networks, online dating site members 
usually provide accurate and detailed information about themselves since this is the 
primary source of information potential partners use to find them. People who have 
(one or more of) the same attribute values are called here a subgroup, and it has been 
reported that people in the same subgroup usually have similar preference patterns [1]. 
Our people-to-people recommendation method, called Compatible Subgroup Rules 
(CSR) [2], is based on this property. The term ‘compatible subgroup’ means that a 
subgroup is more interested in another subgroup compared to other subgroups, and 
vice versa. The degree of compatibility is is measured by a compatibility score, which 
is calculated using past interaction data (training data). A rule is defined to suggest a 
compatible subgroup for a given subgroup containing the active user. Recommenda-
tion rules are constructed from training data that contains information for senders, 
receivers, interaction results (positive or negative), and attribute values of the sender 
and the receiver, as follows. For a given subgroup defined by an attribute value of the 
active user, the method finds its compatible subgroup defined by a value of the same 
attribute using the training data. The attribute values of the identified compatible  
subgroups are incrementally combined together to increase the probability of success 
interaction. This attribute combination process finishes if there is no significant interac-
tion between a user subgroup and its compatible subgroup in the training data. The 
most specialised compatible subgroups are used to propose recommendations. This 
method shows a 26% success rate for the top 10 recommendations and 23% for the top 
100 recommendations, considerably greater than the 15% baseline success rate [3].   

In spite of its success, this previous method has the following limitations. First, the 
method only chooses a single compatible subgroup for each subgroup defined by the 
active user’s attribute value. It ignores the fact that an attribute may have multiple 
values that result in very similar compatibility scores to the active user subgroup. 
Since candidates having the similar (but not best) attribute value are not recommend-
ed, many suitable candidates for recommendation may be missed. Second, the method 
only measures a compatibility score using the sender’s interest in the receiver sub-
group without considering other possible interest measures. Finally, the method ranks 
the candidate receivers using the compatibility scores of the age and location attrib-
utes, which does not take into account individual interactions. This paper addresses 
these limitations and presents several extended CSR methods. The extended CSR 
methods utilise multiple compatible subgroups based on heuristics for including mul-
tiple values for an attribute, include various compatibility score measures, and consid-
er the individual activities of compatible subgroup members to rank the recommended 
candidates. We conducted experiments to evaluate the extended CSR methods using 
historical data from a commercial online dating site. Our experimental results show 
that the best new proposed method significantly improves the probability of success-
ful interactions compared to the CSR method based on single attribute values. 

2 Related Work 

A recommender system is a system that learns a user’s preferences and makes  
recommendations the user might like. Recommender systems can be classified into 
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item-to-people and people-to-people recommenders [4,5]. Item-to-people recommen-
dation has been studied from the early stages of the Web, and has been applied in 
various domains. Although there is some non-Web research [6,7], people-to-people 
recommendation has recently gained attention as social networks become popular on 
the Web [8–10]. People-to-people recommender systems have been used to recom-
mend experts [7,11,12], friends [10,13] and collaborators [14], etc. Our research has 
focused on recommending partners in online dating. Methods for people-to-people 
recommendation can be classified into behaviour-based methods, profile-based meth-
ods and hybrid methods. Behaviour-based methods exploit interaction data between 
users such as contact between users, comments posted on another user’s page, follow-
ing relationships to other users, etc. Typically a collaborative filtering approach is 
used to identify similar users and generate candidate users using interaction data 
[15,16]. Profile-based methods use user-supplied data to suggest candidate recom-
mendations [6,11–13,17]. Hybrid methods combine behaviour-based and profile-
based methods [8]. We previously proposed a profile-based recommendation method 
that uses subgroup interaction data to find a compatible subgroup based on a user’s 
profile [2]. We also proposed hybrid methods that combine our interaction-based 
collaborative filtering approach with our profile-based method [3]. In this paper, our 
research focuses on extending our previous profile-based approach, but it could easily 
be combined with interaction-based collaborative filtering in ways similar to those 
described in [3]. 

3 Recommendation Methods 

3.1 Definitions 

Definition 1. A user  is a member of the social network website and is described 
by  distinct attribute values for  different attributes: , … ,  

where  represents the value of attribute . The user provides these attribute values 
when joining the site and can update them at any time. The site allows the user to 
select only one value for each attribute. Regardless of type, e.g. numeric for number 
of children or date for date of birth, all values are converted into nominal values  
before recommendation rules are constructed.  

Definition 2. A subgroup is a group of users who have the same gender and the same 
values for one or more attributes. For example, the female postgraduate subgroup 
consists of the female users who have value postgraduate for the education attribute.  

Definition 3. A contact is an action where a user, the sender, sends a message to 
another user, the receiver. Such a contact indicates that the sender is interested in the 
receiver. 

Definition 4. An interaction between two users is a contact from a sender to a re-
ceiver with either a reply from the receiver to the sender or no reply (if the receiver 
chooses to ignore the contact). An interaction is classified as either positive or  
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negative depending on the receiver’s reply message type (which is defined by the 
system), and if the receiver does not reply to the sender, the interaction is classified as 
negative. An interaction always shows that the sender is interested in the receiver, but 
the receiver may or may not be interested in the sender. 

Definition 5. A sender (receiver) subgroup is the set of senders (receivers) in a set 
of interactions. Sender subgroups are denoted sg; receiver subgroups are denoted rg. 

3.2 Interest Measures  

Interest measures show how much the members of one subgroup are interested in the 
members of another, and are calculated using the number of interactions between 
them. Interest measures in this work are computed from interaction data for the train-
ing period (three months before the time of recommendation). We define four types of 
interest measure reflecting different intuitions.  

Definition 6. Interest in target group measures how much more a sender subgroup 
 contacts a receiver subgroup  compared to all receivers . This is defined as: 
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where ,  is the number of messages sent from the sender subgroup  to the 
receiver subgroup  and ,  is the number of messages sent from the sender 
subgroup   to all receivers . 

Definition 7. Lift in interest in target group measures how much more a sender 
subgroup , compared to all senders , is interested in a receiver subgroup . 
This is defined as: 
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where ,  is the sender subgroup ’s interest in the receiver subgroup , and ,  is all sender ’s interest in the receiver subgroup , as in Definition 6. 

Definition 8. Success with target group measures how much more successful a 
sender subgroup  is when contacting a receiver subgroup  compared to all 
receivers . This is defined as: 
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where , ,  is the number of messages sent from the sender subgroup  to 
the receiver subgroup  with positive replies from the receivers, and ,  is the 
number of messages sent from the sender subgroup  to the receiver subgroup .  

Definition 9. Lift in success with target group measures how much more successful a 
sender subgroup  is when contacting a receiver subgroup  compared to all re-
ceivers , relative to the improvement in success for all senders . This is defined as: 

),,(

),,(
),,(

+
+=+

rgSP

rgsgP
rgsgL

 



 People-to-People Recommendation Using Multiple Compatible Subgroups 65 

where , ,  is the sender subgroup ’s success with the receiver subgroup 
 and , ,  is the success of all senders  with the receiver subgroup . 

3.3 Compatibility Score  

In this research, the term ‘compatibility’ means that a sender subgroup is interested in 
a receiver subgroup, and vice versa. The compatibility score measures the degree of 
compatibility of two subgroups. To dampen significant differences between two  
subgroup interests in each other, we use the harmonic mean to combine the two  
reciprocal interest measures.     

Definition 10. A compatibility score between a sender subgroup  and a receiver 
subgroup  measures how much two subgroups are interested in each other. It is 
defined as: 
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where ,  is the interest of sender subgroup  in the receiver subgroup  and ,   is the interest of  in . Note that there are different compatibility scores 
for a sender and receiver subgroup depending on the particular interest measure. 

3.4 Learning Compatible Subgroup Rules  

Compatible subgroup rules are used to recommend candidate receivers for a given 
user [2,3]. A compatible subgroup rule has the form: 

if  =  and . . . and   =  then  =  and . . . and   =  

where each  is an attribute (e.g. occupation) and each   is the best matching 
value of this attribute for candidates to the value  of the user. The meaning of  
the rule is that if a user satisfies the condition part of the rule, the system should  
recommend candidates satisfying the conclusion part of the rule. 

The above approach is, however, limited in that for a given user attribute value,  
only a single attribute value of the candidate is chosen. When the candidate attribute 
values are closely related, many acceptable candidates are therefore not recommend-
ed. As an example, the occupation attribute has values legal, accounting and consult-
ing, which the data indicates are all very similar in compatibility for the value of legal 
for the occupation attribute of the user. To allow for rules with multiple attribute  
values, we generalize the form of the compatible subgroup rule as follows: 

if  =  and . . . and   =  then  ∈  and . . . and   ∈  

where each  is an attribute (e.g. occupation) and each   is a set of compatible 
multiple attribute values of this attribute for candidates to the value  of the user 
(equivalently, we treat each condition  ∈  as a disjunction of equality tests). 
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Our recommendation algorithm based on compatible subgroup rules is as follows. 
Let a user have attribute values { , … , } for attributes { , … , }. Rules are con-
structed for each user individually. Rule construction starts with an empty rule (no 
condition and no conclusion) and produces a sequence of more and more specific 
rules , … , . At each step, starting with a rule , an attribute  with value  of 
the user is chosen that has the highest subgroup success rate;   is added to the 
condition of the rule and ∈  is added to the conclusion of the rule, where  is the 
set of compatible values for the gender (male/female) of the sender (see below). The-
se conditions are added to the rule only if it improves the overall rule success rate ,  defined as follows, and this improvement is statistically significant: 

),(

),,(
),(

rgsgn

rgsgn
rgsgSR

+=  

where  is the sender subgroup defined by the current rule condition and  is the 
receiver subgroup defined by the current rule conclusion. 

The two main aspects of the recommendation algorithm are finding multiple  
compatible subgroups (making use of heuristics to combine single attribute values 
into sets of compatible attribute values), and generating and ranking candidate  
receivers.  
 
Finding Multiple Compatible Subgroups. For a user with value  of attribute , 
the set of compatible attribute values  is determined as follows. First, for all  
possible values  of , the compatibility score of  with  is calculated using 
Definition 10, giving a distribution of scores. The mean and standard deviation of  
this set is calculated. A value is included in the set  if its score is at least 0.5 stand-
ard deviations above the mean (this heuristic is based on preliminary experimental  
analysis). 

For example, Figure 1 illustrates compatibility scores of different female age sub-
groups with the male age 35–39 subgroup. The female age 35–39 subgroup is the 
most compatible subgroup. However, it also shows that the female age 30–34 sub-
group has a very similar compatibility score to the age 35–39 subgroup. Both are 
included in the set . 

 

 

Fig. 1. Multiple Compatible Subgroups: Compatibility scores for male age 35–39 subgroup 
with female age subgroups. The threshold line shows the mean plus 0.5 standard deviations. 
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Attribute Condition 
(User Value) 

Conclusion 
(Compatible Values) 

Rule Success 
Rate 

gender  male  female 14.9% 
age 42 35–39 OR 45–49 OR 30–34 14.7% 
location Sydney-North Sydney-East OR Sydney-North  15.2% 
education Graduate Graduate OR Diploma  32.7% 
smoke Don’t smoke Don’t smoke 37.5% 

… … … … 
drink Occasionally  Occasionally  54.5% 
  

Fig. 2. Compatible Subgroup Rules: Each row represents a pair of conditions successively 
added to the rule where multiple attribute values for each user attribute are chosen. As condi-
tions are added, the rule success rate increases but the number of potential candidates decreases. 

Figure 2 illustrates an example rule of rule construction for a hypothetical male us-
er, starting with gender. First age is considered. Since the user is 42, he is in the age 
band 40–44; the best set of female age bands are 35–39, 45–49 and 30–34. According-
ly the disjunction of these conditions for the female is added to the rule. Rule con-
struction continues with the location attribute, where the male is in Sydney-North. 
The set of compatible values for the female are Sydney-East and Sydney-North. Con-
tinuing this process to define a sequence of rules, the rules become more and more 
specific, but generate fewer and fewer candidates. 

Generating and Ranking Candidate Receivers. Given the sequence of rules , … ,  generated as above, the potential recommendations are all candidates satis-
fying the conclusion part of any such rule who were active in the previous 28 days 
(but only as many candidates as needed are generated, starting with the most specific 
rule ). Candidates satisfying a more specific rule  are ranked higher than those 
only satisfying a rule  where .  However, candidates satisfying the same rule 
are ranked as follows, using data from the previous 28 days. First, candidates are or-
dered in terms of positive reply rate (defined as the proportion of contacts received to 
which the candidate has given a positive reply). Second, if positive reply rates are 
equal, the number of positive replies is used to order the candidates (those with a 
larger number are ranked higher). Third, if two candidates are still equally ranked, 
they are ranked in order of the number of contacts received (again, those who  
received more contacts are ranked higher). Finally, any ties between remaining  
candidates are broken randomly. 

4 Experimental Design 

To evaluate the proposed new methods for defining compatible subgroup rules using 
multiple attributes with different interest measures and the new way of ranking candi-
dates, we used the same experimental setup previously used for single attribute com-
patible subgroup rules [3]. In these experiments we used data from a commercial 
online dating site and generated recommendations once, for March 1, 2010, using 
only data that would have been available on that date. For evaluation of the recom-
mendation methods, we collected two types of data – interaction data and user profile 



68 Y.S. Kim et al. 

data. Profile data consists of basic information about the user, such as age, location, 
marital and family status, plus attributes such as smoking and drinking habits, educa-
tion and occupation. Each interaction is recorded with a date/time stamp, the type of 
message and the response message type, which is labelled as either positive or nega-
tive, or null if no reply has been received (contacts without reply are classified  
as negative). We used historical data to evaluate the recommendation methods. The  
following datasets were collected for the experiment: 

─ Rule Learning Data: This dataset consists of interaction data and user profile data 
for the users who were the senders and/or receivers of interactions for three months 
prior to the recommendation construction date.  There were about 5 million inter-
actions by 200,000 users. The collected data was used to learn the recommendation 
rules. 

─ Active User Data: This dataset consists of active user profiles and their interaction 
data for 28 days prior to the recommendation construction date. The collected  
dataset is used to generate candidate receivers using the recommendation rules. 
There are about 137,000 active users. 

─ Test Data: This dataset consists of interactions from the first three weeks of March 
2010 initiated by the active users. The test set consists of around 130,000 users 
with around 650,000 interactions, of which roughly 15% are positive interactions.  

After collecting these datasets, we generated up to 100 candidate receivers for each 
active user using our recommendation methods, with candidate receivers ranked as 
defined above. We then examined whether or not the data showed positive or negative 
test interactions with the candidate receivers. Note that we did not provide users with 
actual recommendations; the method compares the recommendations with the interac-
tions that occurred in the test set with people who would have been recommended. 

The two main metrics are precision and recall for the top N recommendations, 
where N = 10, 20, …, 100. Precision measures the proportion of recommended inter-
actions that occurred which were positive, so is analogous to the user’s success rate 
when adopting the recommendations. More precisely, if R is the set of recommended 
interactions and T is the test set, precision is defined as follows, where  is the set 
of positive interactions in T and n(S) the number of elements in the set S. 

 

A high precision suggests that the recommendations are useful, while a low precision 
suggests the recommendations are not helpful. Note that this measure can be consid-
ered the probability that an interaction resulting from a recommendation is positive. 
Therefore, we can compare this result with the baseline probability of an interaction 
being positive (without recommendation). 

Recall measures how many of the positive test interactions are included within the 
top N recommendations, so is analogous to how much the users liked the recommen-
dations. This is measured by the proportion of positive interactions recommended that 
are positive interactions in the test set. 
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This measure indicates whether positive interactions are likely to happen when the 
recommendations are given to users. If the probability of an interaction being positive 
(precision) is very high, but such interactions are unlikely to occur, those recommen-
dations are not particularly useful. Therefore, for recommendation methods where the 
precision is similar, a high recall is a good indicator that the recommendations are 
better. Even though we have used precision and recall as our evaluation metrics, they 
differ from the conventional use. Normally such measures are applied to a test set 
where each item is known to be relevant or irrelevant, but in our experiments we cal-
culate these measures based on the interactions that occurred in historical data. Since 
these actually occurring interactions are only a very small subset of all possible inter-
actions (around 650,000 out of 4.7 billion), and since we generate only a limited 
number of recommendations (only up to 100 for each user), the intersection of the 
recommended interactions and the test set interactions is very small. This results in 
very small recall results in our experiments. Nevertheless, recall is a useful metric for 
comparing different methods on how much users like the given recommendations. 

5 Results  

5.1 Precision and Recall with Candidate Behaviour-Based Ranking  

The basic comparison of our methods is shown in Figure 3, which shows precision 
and recall for the top N recommendations for our previous method based on single 
attribute values [2,3] (ranked using the harmonic mean of the compatibility scores 
for age and location under Definition 6), and four new methods based on compatible 
subgroup rules using multiple attribute values with the four different interest 
measures (Definitions 6–9) and behaviour-based ranking as described in Section 3.4. 

The first observation is that all methods based on multiple attributes have a much 
higher precision (for all values of N) than the previous method based on single attrib-
utes. Second, though the methods using interest measures based on successful interac-
tions show the highest precision, recall is very low for these methods, suggesting that 
the rules used to generate the recommendations are too specific. In other words, the 
fraction of the candidate receivers that show a high success rate is usually very  
small, and combining several of those compatible values results in very successful 
interactions, but these interactions very rarely occur in the historical data. 

Thus the methods based on just multiple attribute values with interest in target 
group and multiple attribute values with lift in interest in target group perform 
best, with similar precision and much higher recall than the methods using interest 
measures based on successful interactions. The method using interest in target 
group is slightly superior. Moreover, the recall is higher than that based on single 
attribute values, giving evidence that these methods based on multiple attribute 
values with behaviour-based ranking are generating better candidates. 
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(a) Precision (b) Recall

Fig. 3. Precision and Recall with Candidate Behaviour-Based Ranking 

5.2 Precision and Recall without Candidate Behaviour-Based Ranking  

To examine whether the improvement over the previous single attribute method is due 
to the ranking or to the method of constructing rules by combining multiple attributes, 
precision and recall for the methods without using behaviour-based ranking are shown 
in Figure 4. In this case, the candidate receivers are only ranked by the compatible 
subgroup rules, with ties broken randomly (hence it is expected that precision will be 
lower). In fact, the precision for the methods based on multiple attribute values 
without success is much lower than in Figure 3, similar to that for single attribute 
values, though slightly higher with lift in interest in target group. Recall, however, 
is comparable to the method based on single attribute values. The results show that 
the ranking method is critical to the increased precision of the methods. 

 

 

(a) Precision (b) Recall 

Fig. 4. Precision and Recall without Candidate Behaviour-Based Ranking 
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6 Conclusion 

This paper presented several extensions of a profile-based method for people-to-
people recommendation based on compatible subgroup rules. We proposed four types 
of interest measures, and a new way of combining several compatible attribute values 
in rule construction, and a ranking method based on candidate behaviour. Our exper-
imental results show that a new method based on multiple attribute values with 
interest in target group has much higher precision than the other methods and higher 
recall than our previous method based on single attribute values, indicating that the 
recommendations generates using this method are of higher quality. Our results also 
show that candidate behaviour-based ranking is very effective in reordering the can-
didate receivers. In other work [3], we combined single attribute compatible subgroup 
rule recommendation with interaction-based collaborative filtering [15] and obtained 
significant improvements in precision and recall. We expect that our new methods are 
also likely to improve the performance of such hybrid recommendation methods, but 
this has not yet been evaluated. This will be the subject of further work. 
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Abstract. Psoriasis is a common skin disease with no known cure. It
is both subjective and time consuming to evaluate the severity of psori-
asis lesions using manual methods. More objective automated methods
are in great demand in both psoriasis research and in clinical practice.
This paper presents an algorithm for scoring the severity of psoriasis
lesions from 2D digital skin images. The algorithm uses the redness of
the inflamed skin, or erythema, and the relative area and roughness of
the flaky scaled skin, or scaling, in lesions to score lesion severity. The
algorithm is validated by comparing the severity scores given by the algo-
rithm against those given by dermatologists and against other automated
severity scoring techniques.

Keywords: Skin image analysis, Severity modelling, Classification,
Computer-aided diagnosis, Psoriasis.

1 Introduction

Psoriasis is a chronic skin disease with no known cure. It manifests as lesions
consisting of red inflamed and itchy skin (erythema) and scaly flaky skin (scal-
ing). There are an estimated 125 million people worldwide suffering this disease.
In Australia, the percentage of affected people is between 2%-5% [1]. As there is
no known cure, a great deal of effort has been expended on finding good treat-
ments for psoriasis symptoms. However, no treatment is generally accepted and
different physicians will treat the same symptoms differently. There is a need to
compare various treatment methods objectively to determine which treatment
is more effective in both psoriasis research and in clinical practice. Psoriasis
severity scores are commonly used for comparing treatments [2].

The severity score is a number that is used to classify the severity of psori-
asis. A number of severity scores have been proposed in recent decades [3–5].
A widely used severity score is the Psoriasis Area and Severity Index, or PASI
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score [6]. The PASI score is calculated by dividing the body into a number of
regions and grading the severity of the erythema (the red inflamed skin), and
the severity of the scaling (the scaly, flaky skin typically found inside a lesion)
within a region [6]. The severity of erythema and scaling in PASI scores are esti-
mated visually often leading to significant inter- and intra- individual variation
in scores. Further, PASI scores require that the symptoms of several lesions are
estimated which greatly increases the workload of dermatologists. An objective
and automatic scoring method will greatly help reduce variation in scoring and
help to improve treatment research and clinical outcomes for patients as well as
reducing the workload for clinicians.

Table 1 gives the different classes of PASI scores and some examples of lesions
that would have the corresponding classification.

Table 1. PASI Erythema and Scaling Severity Intensity Scoring

Scores Grade
Erythema
scoring

Erythema
images

Scaling scoring
Scaling im-
ages

1 Mild Light red
Fine scaling covering
part of the lesion

2 Moderate
Red,but not
dark red

Fine to rough scaling
covering a large part
of the lesion

3 Severe Dark red
Rough, thick scaling
covering a large part
of the lesion

4 Very severe Very dark red
Very rough, very
thick scaling totally
covering the lesion

The aim of this paper is to give a procedure for automatically estimating
the severity of erythema and scaling using 2D digital skin images and the PASI
severity scale for erythema and scaling.

Computer aided methods for psoriasis severity scoring have been under inves-
tigation for a number of decades [7]. In [8] the severity scores for erythema are
correlated with the hue (H) value and saturation (S) value in the HSV colour
model. The colour differences between psoriasis lesions and normal skin were
investigated in [9] which concludes that the distribution of erythema severity is
correlated with the difference in hue value.

However, in [8, 9] the colour value is sampled randomly ignoring the variation
in lesion and skin colour to assess psoriasis severity. The colours of pigments in
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lesions are used by [10] to derive mean colour values in RGB colours space and
then these are used to grade the severity of lesions using K-Nearest Neighbours.

To the best of our knowledge the only work that attempts to grade the severity
of scaling is given in [10], where the severity of scaling is derived by building a
decision tree using the area of scaling inside the lesion to determine the lesion
severity.

The algorithm presented in this paper differs by deriving a series of features
that relate to the redness of erythema, the relative area of scaling and roughness
of scaling, to evaluate the severity of erythema and scaling in lesions. The features
used in this paper are based on a haemoglobin and melanin colour space [11]
and the relative scaling area and texture [12]. Haemoglobin is related to the red
colour in skin and melanin is related to the yellow and brown colour in skin. The
algorithm and the severity features proposed are validated using multivariable
analysis and classification evaluation.

2 A Method for Scoring the Severity of Symptoms:
Erythema and Scaling in Psoriasis Lesions

2.1 Segmenting Erythema and Scaling in 2D Digital Skin Images

The severity scoring algorithm depends on first being able to identify psoriasis
lesions. A typical psoriasis lesion is composed of an area of red inflamed skin
(erythema) that surrounds an area of raised, rough scaly skin. Psoriasis lesions
can also manifest as just erythema or as patches of scaly skin that are only
partially surrounded by erythema. In our previous work an algorithm for seg-
menting erythema from normal skin is given in [11] and for segmenting scaling
from erythema and normal skin is given in [12].

In [11] there are two key steps in the segmentation of erythema: (1) the
decomposition of skin colour into melanin and haemoglobin components; and
(2) erythema classification. Firstly, two independent components are extracted
in the log RGB colour space using Independent Component Analysis, which
correlates well with the haemoglobin and melanin.

Assuming that the variation in skin colour in the image are caused by melanin
and haemoglobin and that melanin and haemoglobin are mutually independent
then skin colour can be expressed as a linear combination of the melanin and
haemoglobin components. A simple model of skin colour in the RGB colour space
in terms of melanin and haemoglobin components is given by:

Lx,y = cmqmx,y + chqhx,y +Δ (1)

where cm and ch are the melanin and haemoglobin basis vectors in the RGB
colour space, qmx,y and qhx,y are the quantities of each pigment for the skin colour
Lx,y at coordinate (x, y), and Δ is a constant vector that depends on other skin
pigments and skin structure. Secondly, a Support Vector Machine (SVM) is then
used to separate erythema pixels from normal skin using the erythema features
qmx,y and qhx,y.
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Scaling is segmented from normal skin and erythema using a classification
algorithm composed of the following steps:

Step 1. A scaling colour contrast filter is constructed using the L∗ com-
ponent and the a∗ component in the L∗a∗b∗ colour space. The filter height-
ens the contrast between the whiter scaling pixels and the surrounding red
erythema pixels.
The filter is a good differentiator of scaling from erythema but does not
always give enough contrast to differentiate scaling from normal skin, espe-
cially under bright lights or if the skin is pale like scaly skin in a lesion.

Step 2. Scaling, which is rough, can be differentiated from normal skin, which
is smooth, based on texture. Gabor filters have proved a useful tool for
estimating the degree of ’roughness’ and so are used here.
The second step is to derive a set of Gabor responses for each pixel in the
image using a bank of Gabor filters tuned for different directions and spatial
frequencies. The resulting Gabor feature in the image can be displayed
using a gray-scale value that captures the degree of ’roughness’ at the pixel.

Step 3. The Gabor features together with the colour contrast features obtained
from the scaling colour contrast filter are then used to segment scaling from
normal skin using a SVM smoothed by a Markov Random Field (MRF),
which properly classifies any pixels that are misclassified by the SVM.

Figure 1 shows the segmentation of erythema and scaling in a psoriasis lesion.

Original image

Melanin component 
image

Haemoglobin 
component image 

Scaling saliency map Gabor feature image

Segmentation result

Fig. 1. Segmentation of erythema and scaling: segmented erythema is marked in red,
and segmented scaling is marked in blue

2.2 Determining the Severity of the Psoriasis Lesions Using
Erythema and Scalingness

In this paper we view erythema and scaling scoring as a multiclass classification
problem. The erythema and scaling are can be simply referred as symptom type
I and symptom type II respectively.

The input is a 2D digital image of a lesion described by a set F with a series
of features depending on the symptom type that is being scored. Ignoring the
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zero score due to its non-ambiguity in the clinical scoring, the output will be
the set C = {1 := Mild, 2 := Moderate, 3 := Severe, 4 := Very severe}. The
classification function P is built, such that P : F → C.

The rule of PASI guidelines for scoring the symptom type I erythema is based
on the colour of the lesion (as shown in Table 1). The deeper the red colour, the
higher the severity score.

The haemoglobin and melanin components are the features used for scoring
erythema. Note that dermatologists score erythema by comparing with the sur-
rounding normal skin and so we employ the relative haemoglobin and relative
melanin features, ∇qh and ∇qm, in our classification algorithm. The erythema
severity feature set is given by F = {∇qh,∇qm}, where ∇qh is the mean differ-
ence of haemoglobin values between erythema and normal skin, and ∇qm is the
mean difference of melanin values between erythema and the normal skin in the
lesion.

Scoring of erythema is done by a KNN for its simplicity, where K = 5 has
been empirically determined. The severity of erythema is decided by the majority
training samples in the K nearest neighbourhoods.

The PASI scoring of symptom type II: scaling is also shown in Table 1. The
severity scoring rule is based on the roughness of the scaling and the area of
scaling relative to the whole lesion.

The features used to differentiate scaling from erythema and normal skin are
thus F = {g, r}, where g is the mean value of Gabor features describing the
degree of roughness and r is the ratio of scaling area to the whole lesion area.

The performance of the C4.5 decision tree used in our algorithm is better
than a range of other classification methods which was determined empirically
for the scaling severity classification problem. The decision tree is split based on
a normalised information gain criterion, followed by post-pruning to avoid the
over-fitting [13].

3 Validating the Method

3.1 The Experimental Design

Samples of psoriasis skin images are collected from the Skin & Cancer Foundation
Victoria, where the imaging environment is carefully set to ensure controlled
illumination. The images used in the comparison were those that were given the
same PASI scores by two dermatologists.

The proposed algorithm is validated based linear correlation and classification
performance. The linear correlation between the features used in our method
with the severity scores given by dermatologists is analysed first. Then the clas-
sification accuracy of our scoring method is compared with other scoring systems.

In the linear correlation stage, a t-test is used to measure the correlation based
on the hypothesis that the observation of one class is at least as extreme as an-
other class. The resulting p-values and F-values are shown. Moreover, correlation
between severity scores and severity features is analysed using correlation coef-
ficients. The analysis shows a linear relationship using a normalised covariance.
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In the classification performance evaluation stage, classification accuracy is
calculated as the percentage of correctly classified samples. In our experiment,
the classification accuracy for each severity degree is evaluated by a 10-fold
cross validation. Assuming the accuracy difference between two classifiers is a t-
distribution, by setting the confidence level to be 0.95, the confidence interval of
true accuracy difference is analysed. If zero is not in the range of the confidence
interval, the performance of two classifiers is significantly different.

3.2 Symptom Type I: Erythema Severity Scoring

There are 88 images of erythema lesions spanning a number of different skin
types and ethnicities, where 10 samples score 1, 31 samples score 2, 37 samples
score 3, and 10 samples score 4.

Linear Correlation Analysis. The result of linear correlation between ery-
thema severity and colour features is shown in Table 2. Table 2 also shows relative
hue component ∇Hab used in [9], and relative spectral components ∇R, ∇G ,
∇B from the RGB colour space proposed in [10]. The relative colour component
features are defined to be the difference of mean values between erythema and
normal skin. Specifically, the hue component in [9] is defined as the arctangent
of ratio of a∗ component to b∗ component in the L∗a∗b∗ colour space.

The distribution of the melanin and haemoglobin components with changes
to erythema severity intensity is presented with box plots in Figure 2. Notice
that though mean values of the melanin component, haemoglobin component
and their summation are linearly related with the severity intensity in general,
it is hard to distinguish erythema severity by setting thresholding values alone.

Scoring. The result of our erythema scoring method is compared with the
results obtained by the Minimum Centre Distance (MCD), where a test sample
is grouped into a class in which the mean value of the training samples is closest
to the test sample in a feature space [14].

Table 2. Analysis Of Linear Correlation Between Erythema Severity And Colour
Features

Features p-value F-value Correlation coefficient

∇Hab 0.299 1.24 0.048

∇R 4.52E-06 10.79 -0.448

∇G 2.18E-10 21.4 -0.63

∇B 6.19E-07 12.72 -0.538

∇R+∇G+∇B 2.10E-08 16.22 -0.569
∇qm 0.048 2.74 0.194

∇qh 1.44E-09 19.19 0.616

∇qh +∇qm 6.58E-06 10.439 0.456
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Fig. 2. Box plots of haemoglobin component and melanin component distributions
with changes of erythema severity. (a) Box plot of melanin component distribution
with changes of erythema severity intensity. (b) Box plot of haemoglobin component
distribution with changes of erythema severity intensity. (c) Box plot of summation of
haemoglobin component and melanin component distribution with changes of erythema
severity intensity.

Figure 3 illustrates the classification accuracy of KNN and MCD clustering
samples using features of relative colour component ∇R,∇G and ∇B in the
RGB colour space and the features of relative haemoglobin and melanin com-
ponent, ∇qh and ∇qm. KNN clustering method using the relative haemoglobin
and melanin components shows the highest accuracy compared with other meth-
ods. The mean accuracy in the 10-fold cross validation is 78.85%. Moreover, the
performance of KNN is better than MCD in general. For erythema, the accu-
racy of severity 1 and severity 4 are better than the accuracy for severity 2
and severity 3. This is due to the ambiguity in scoring severity 2 and severity 3
lesions.

Assuming that the accuracy differences in the k-fold cross validation is a t-
distribution, the statistical significance of the accuracy difference between the
top classifier using KNN with the features used in our algorithm and other
severity classifiers are shown in Table 3. The indications are that performance
of the top classifier is significantly better that the rest.

Table 3. Accuracy difference between the classifier using KNN in space spanned by
haemoglobin component and melanin component and other implemented classifiers

Compared classifier Colour space Accuracy difference

MCD RGB colour space [-0.097, -0.092]
MCD Haemoglobin an melanin

component
[-0.1, -0.096]

KNN RGB colour space [-0.052, -0.05]
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(d)
Scoring accuracy of erythema with severity 1 Scoring accuracy of erythema with severity 2

Scoring accuracy of erythema with severity 3 Scoring accuracy of erythema with severity 4

Overall scoring accuracy of erythema

Fig. 3. Accuracy of erythema scoring with 10-fold cross validation for a series of sever-
ities and the corresponding classifier. (a) Accuracy of erythema scoring in the RGB
colour space using MCD. (b) Accuracy of erythema scoring in the space spanned by the
haemoglobin component and melanin component using MCD. (c) Accuracy of erythema
scoring in the RGB colour space using KNN. (d) Accuracy of erythema scoring in the
space spanned by the haemoglobin component and melanin component using KNN.

3.3 Symptom Type II: Scaling Severity Scoring

In the scaling severity scoring part, 52 images of psoriatic lesion are collected. They
are composed of 10 images with scaling severity 1, 17 images with scaling severity
2, 18 images with scaling severity 3, and 7 images with scaling severity 4.

Linear Correlation Analysis. Linear correlation analysis is shown in Table 4.
We examined the feature scaling area s, which is considered as a major element
related with scaling severity in [10], and the feature set proposed in this paper.

Observe that even though scaling area has a higher correlation coefficient
than relative scaling area, it does not possess priority in p-values and F-values,
especially when compared to the roughness degree.

Figure 4 shows the distribution of relative scaling area, scaling roughness
degree and their summation with changes of scaling severity intensity. We can see
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Table 4. Analysis of Linear Correlation Between Scaling Severity And Its Features

Features p-value F-value Correlation coefficient

s 0.023 3.44 0.316
r 0.019 3.61 0.18
g 8.67E-09 19.81 0.641
r+g 4.59E-07 14.55 0.58
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Fig. 4. Box plots of relative scaling area and scaling roughness degree distribution with
changes of scaling severity intensity. (a) Box plot of relative scaling area distribution
with changes of scaling severity intensity. (b) Box plot of scaling roughness degree
distribution with changes of scaling severity intensity. (c) Box plot of summation of
relative scaling area and scaling roughness degree distribution with changes of scaling
severity intensity.

that ranges of the two features and their summation overlap for different scaling
severity intensities. No clear linear relationship exists between the features and
the severity intensities.

Scoring. The performance of our scaling scoring method is compared with
KNN and the method in [10], where a decision tree is employed to score the
severity degree with the scaling area. The result is shown in Figure 5. For KNN
and the decision tree, scoring accuracy for severity 1 and severity 4 is generally
better than scoring accuracy for severity 2 and severity 3 as with the symptom
type I: erythema. Moreover, using the feature set of our method the accuracy is
much better than features proposed in [10]. Using features in [10], KNN and the
decision tree achieve accuracy of 79.58% and 78.58% respectively, while using our
proposed features, an accuracy of 86.75% for KNN and 88.67% for the decision
tree are achieved on the samples.

In Table 5, the statistical significance of the accuracy difference between the
classifier using the decision tree with the relative scaling area and the scaling
roughness degree and other implemented scaling scoring classifiers is shown. All
of the difference ranges do not include zero. Thus the accuracy of the decision tree
we proposed is significantly different when compared with the other classifiers.
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(d)
Scoring accuracy of scaling with severity 1 Scoring accuracy of scaling with severity 2

Scoring accuracy of scaling with severity 3 Scoring accuracy of scaling with severity 4

Overall scoring accuracy of scaling

Fig. 5. Accuracy of scaling scoring with 10-fold cross validation for a series of severities
and the corresponding classifier. (a) Accuracy of scaling scoring using KNN with the
feature proposed in [10]. (b) Accuracy of scaling scoring using KNN with the features
of relative scaling area and scaling roughness degree. (c) Accuracy of scaling scoring
using the decision tree with the feature proposed in [10]. (d) Accuracy of scaling scoring
using the decision tree with the features of relative scaling area and scaling roughness
degree.

Table 5. Accuracy difference between the classifier using the decision tree with rela-
tive scaling area and scaling roughness degree and other implemented scaling scoring
classifiers

Compared classifier Scaling features Accuracy difference

KNN Features in [10] [0.087, 0.095]
KNN Relative scaling area and

scaling roughness degree
[0.081, 0.02]

Decision tree Features in [10] [0.1, 0.102]
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4 Discussion

Comparing the erythema scoring method proposed here with [9] shows that our
method performs better on the sample. The statistics in Table 2 indicates that
our method performs better on the sample, while Figure 3 indicates that scoring
performance using the melanin and haemoglobin components is better on the
sample than the RGB colours, as suggested in [10]. This can be due to the fact
that melanin is distributed in normal skin and is factoring in erythema intensity.

Our scaling severity scoring method outperformed the method in [10], where
only scaling area is used. Table 4 indicates that the roughness degree in our
model has significantly better statistical correlation values.

Both erythema scoring and scaling scoring give good classification accuracy
for the lowest and highest severity, while the classification accuracy for medium
severity is a little lower. The severity features derived from segmentation have
the obvious advantage in distinguishing symptoms from normal skin, but to
further classify the symptom severity, more features closely related to the severity
intensities will be explored in future.

Severity 1 erythema may be improperly segmented if the training sets are not
chosen carefully. Selecting training sets from individual images will avoid this
problem. When it comes to the scaling segmentation, mis-segmentation hap-
pened to scaling with severity 1 as well. Shallow redness and shadows are ma-
jor disturbances in this situation. Determining severity intensity scores in the
presence of such disturbance is a topic for future work.

5 Conclusion

In this paper,we proposed automatic scoring methods for erythema and scaling
in 2D psoriasis images. Our algorithm is shown to perform better when com-
pared with previous severity models based on the concurrent scores from two
dermatologists for a range of different images. In the future, we will continue to
focus on the analysis of psoriasis images with the view to determining a wider
range of severity scores. More comprehensive models and learning methods will
be proposed to achieve this.

Acknowledgments. The authors would like thank to Skin & Cancer Founda-
tion Victoria, Australia and St. Vincent’s Hospital Melbourne for support of the
research.
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Abstract. This paper proposes a technique for the creation of a neural ensemble 
that introduces diversity through incorporating ten-fold cross validation togeth-
er with varying the number of neurons in the hidden layer during network train-
ing. This technique is utilized to improve the classification accuracy of masses 
in digital mammograms. The proposed technique has been tested on a widely 
available benchmark database. 

Keywords: Ensemble classifiers, committee of experts, neural networks, digital 
mammograms. 

1 Introduction 

Biomedical diagnostic systems are a real world application where pattern recognition 
systems have great potential due to their ability to repeatedly process large amounts of 
data without suffering from fatigue [1,2]. Breast cancer can have a high mortality and 
morbidity rate with survival directly linked to early detection and appropriate treat-
ment. In the United States alone there are expected to be 39,920 deaths in 2012 due to 
breast cancer [3]. The Gold standard for detection has long been considered to be 
screening mammography [4] due to its effectiveness and cost efficiency.  Recently a 
shortage of trained radiologists has increased the need for alternative techniques. Re-
searchers have examined this problem for a number of years with numerous solutions 
being investigated however due to the similarity between benign and malignant tu-
mors as well as processing constraints no suitable automated solution has been devel-
oped. Neural networks on the other hand have demonstrated a capacity to adapt to the 
medical problem domain and have a proven record [5].  The problem however with 
neural networks like other techniques in this area has been the variable classification 
accuracy [6]. Ensemble networks while relatively new on the pattern recognition 
sphere have shown their capabilities in this sphere as the accuracies obtained are 
higher than for a standard neural network [7]. The creation of an ensemble however 
relies on conflict between the constituent classifiers in order to produce a more accu-
rate classifier.  This conflict is known as diversity and the ability to create diverse 
classifiers for ensembles is an area of active research [8, 9]. 

This research is based on the construction of an ensemble network where the con-
stituent classifiers are neural networks that have been created with a different number 
of neurons in each hidden layer. 
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The remainder of this paper is organized as follows. Section two presents a review 
of existing ensemble systems for digital mammograms. The proposed technique is 
depicted in section three. Experimental results are detailed in section four while an 
analysis against other techniques is outlined in section five. The conclusions and  
future directions for this research are presented in section six. 

2 Background 

In some cases the complexity of a problem means that it is not easily solvable by a sin-
gle mechanism (classifier), as the capacity to encapsulate the problem cannot be easily 
bounded by a single model. In the case of mass breast cancer the similarities between 
the benign and malignant cases make it hard to make an accurate diagnosis between the 
two, as the resemblance between the diagnostic features is not clear-cut. The use of 
many networks combined together can provide a better result than a single classifier 
[7,10,11] as it is better able to model more complex paradigms.  Breast cancer in partic-
ular has proven to be an area where pattern recognition has struggled due to the similari-
ties between benign and malignant patterns.  Due to the nature of the disease and the 
practical application of pattern recognition techniques this field has received a lot of 
interest in recent times [10-16].  Due to the similar characteristics between the benign 
and malignant classes breast cases have low separability in feature space resulting in 
classification complexity and variable performance of classifiers. 

Although the creation of an ensemble has been shown to have higher accuracy than 
a single classifier [7,10,11] this is dependent on diversity existing in the constituent 
classifiers.   In a group if everyone follows the lead of a figurehead we have an occur-
rence which is known as “Group Think” where the decision and hence accuracy is 
really determined by one individual.  Disagreement will lead to potentially a better 
decision.  Diversity is this degree of disagreement and is therefore required to have 
accuracy higher than that of the best performing constituent classifier(s).  The creation 
of an ensemble however does raise several issues.  These issues are: 

• Selection of the constituent classifiers (types); 
• How many classifiers make up the ensemble; 
• Membership criteria (accuracy; diversity; computational speed and or memory 

requirements / restrictions); 
• Desired accuracy; 
• Time / memory requirements for solution calculation; 
• Nature of the classification problem. 

Mechanisms for introducing diversity have been a field of active research [8, 9].  
Roselin and Thangavel [13] created a metaheuristic ensemble classifier using ant-

miner, as they wanted clarity in relation to the output as many classifiers were seen to 
be too much of a black box approach.  Using anomalies from the MIAS database they 
achieved a classification accuracy of 83%. 

Liu et al. [12] contrasted the performance of a random forest technique (ensemble 
of classification and regression trees) against a Support Vector Machine (SVM) on 
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236 regions of interest from the Digital Database of Screening Mammography 
(DDSM) [17].  The random forest ensemble had few tuning parameters and per-
formed more than twice as fast as SVM however it achieved an accuracy of 79% (Az 
0.83) compared to 81% (Az 0.86) for SVM. 

Gou et al. [10] developed a Partition Based Network (PBN) boosting technique to 
handle class imbalanced datasets.  They paid more attention to the training of classes 
that were represented less (in this case the malignant condition) in order to convert the 
network training into a balanced activity.  Experiments were performed on the Uni-
versity of California Irvine (UCI) dataset [18] and achieved a higher accuracy value 
than for standard network boosting.  The PBN network achieved a classification rate 
of 96.50% compared to a network boost accuracy of 96.25%. 

Meena, Arya and Kala [14] achieved a classification accuracy of 96.87% on a UCI 
dataset [18] by implementing a modular neural network where a Self-Organising Map 
(SOM) selector selected the neural networks that would classify the breast anomalies. 
 Their approach involved the training of the SOM selector, as well as the training of 
the candidate networks.  This was to ensure that the best network possible network 
was chosen for the classification task. 

Huang, Monekosso and Wang [15] utilised a clustered ensemble to reduce the var-
iability and improve the accuracy of clustered classifiers, which they called Clustering 
Ensembles Based on Multi-classifier Fusion (CEMF) that worked by constructing a 
number of classifiers that were optimal at classifying a subset of data that had been 
created through partitioning of the data.  They had a 10.5% error rate on their breast 
cancer dataset. 

Luo and Cheng [19] used a Decision Tree (DT) that was bagged to gain a classifi-
cation rate of 83.4% on mass anomalies.  They also used a SVM-SMO (Support  
Vector Machine Sequential Minimal Optimization) from the Waikato Environment 
for Knowledge Analysis (WEKA) [20] data mining package.  They selected mass 
anomalies from the UCI machine repository database [18].  During their research they 
utilised feature selection techniques to reduce the number of input features for the 
classifier from five to four.  They employed four BI-RADS® features and found that 
the mass margin was the most important feature for mass classification. Luo and 
Cheng concluded that the ensemble that they created was more effective than using a 
single classifier. 

Zhang, Romuro, Furst and Raicu [21] developed an ensemble classifier where they 
partitioned a mass dataset from the DDSM [17] into four subsets.  The partitioning 
was based on patient age and mass shape category.  A number of classifiers were then 
evaluated and the best performing classifier on each subset was chosen.  The classifi-
ers evaluated were SVM, k-nearest neighbor and a DT.  The ensemble achieved a 
classification accuracy of 72%. 

3 Proposed Methodology 

Devising mechanisms for generating base classifiers that are diverse for the creation of 
an ensemble is an active area of research for meta-classifier research [8, 22]. Numerous 
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researchers have utilized techniques on manipulating the training dataset(s) in order to 
introduce diversity into the ensemble [7,9,22,23].  These techniques have involved 
training on separate features, training on each classifier on separate datasets as well as 
other mechanisms.  However the number of investigations into using different types of 
neural networks in ensembles has been low [9] in comparison to manipulation of the 
training dataset.  Neural networks gain their knowledge of the problem domain by 
being trained on a sufficiently large population sample so that they can then apply that 
learned knowledge to unseen cases.  If the configuration of the classifiers is different 
the classifier will represent the acquired knowledge in a different way.  This is similar 
to the variation in conceptual understanding that an audience will gain from listening to 
a lecture.  The focus of this research is the demonstration of one mechanism to intro-
duce diversity into the constituent classifiers.  Although an explicit diversity inclusion 
mechanism could have been employed an implicit approach was utilized [9].  Diversity 
is introduced by varying the number of neurons in the hidden layer.  This causes a 
traversal of feature space that is sufficiently different for each network to result in dif-
ferent weight values that represents the acquired knowledge in the classifier.  This 
introduces diversity into our resultant ensemble [9].  Ten fold cross validation was also 
utilized as this introduces diversity into the classifier.  Partridge and Yates had previ-
ously amended the number of neurons to introduce diversity [24] however their re-
search indicated that the impact on diversity and performance was marginal however 
they only trialed a range of 8 to 12 neurons in the hidden layer.  In this research a range 
from 2 to 150 neurons in the hidden layer has been trialed.  This work differs in that 
the dataset that is utilized also has ten fold cross validation occurring on it, which in 
itself introduces diversity into the ensemble [9]. 

The research methodology is represented in Figure 1 below.  The process begins 
with acquiring mammograms.  In this research the mammograms have been sourced 
from a benchmark database called the DDSM [17].  The DDSM provides open access 
to high quality mammograms that allows for testing of pattern recognition algorithms 
in order to advance the field of CAD systems for breast cancer diagnosis. 

Once the mammograms have been obtained (200 mass type anomalies evenly di-
vided between benign and malignant) the suspicious regions need to be extracted.  
The process of extracting the anomaly is known as image segmentation and allows a 
system to more effectively operate as the background noise from normal tissues are 
removed from the diagnostic or clinical system.  Anomalies that are sourced from the 
DDSM [17] can be extracted by a chain code that exists in order to facilitate the easy 
extraction of anomalies. 

Once the anomalies are extracted it is necessary to obtain the features from the 
anomalies that are used in feature space to create a mapping to a resultant classifica-
tion.  In this research BI-RADS® are utilised since they have a good diagnostic capa-
bility [25-26] and are the same as what a trained radiologist would use to come to a 
diagnosis.  Using the same features helps to increase the utility of this technique for 
potential clinical usage.  The diagnostic features are: 

• Density 
• Calcification Type / Mass Shape 
• Calcification Distribution / Mass Margin 
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• Abnormality Assessment Rank 
• Patient Age 
• Subtlety Value 

In this research the candidate neural networks that are constructed have six input  
neurons that correspond directly to the features that are utilised to form a diagnosis. 

 

Fig. 1. Proposed research methodology 

A number of candidate neural networks were generated for the purpose of this re-
search.  These networks were created by varying the number of neurons in the hidden 
layer from 2 neurons to 150 neurons in order to introduce diversity.  The networks 
were trained and tested using ten-fold cross validation.  Once the candidate networks 
were generated they were ranked based on classification accuracy and then these can-
didates were utilised to generate our ensemble classifier(s).  The ensemble was initial-
ly created by using the first three highest performing candidate networks and then was 
trained and tested (from Table 1 this would be an ensemble that has 24,5 and 15 neu-
rons in each hidden layer).  Following this the fourth highest performing candidate 
classifier was added and then it was trained and tested with the process continuing 
until a total of the 40 highest performing candidate classifiers had been incorporated 
into the ensemble and were trained and tested.  This was done to evaluate the effect of 
adding additional classifiers to the ensemble and to attempt to determine the best 
number of classifiers for the ensemble in terms of achieving a high classification  
accuracy.  The maximum number of constituent classifiers was limited to 40 as  
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the whole process (load data, train and test candidates, generate and evaluate the  
ensembles) was to occur in only a few minutes. 

In accordance with normal scientific practice ten fold cross validation was utilized 
for all experiments. The stopping condition for network training was a root mean 
square (rms) error of 0.001 or (a maximum of 3000 iterations).  This ensured that  
the networks were fully trained for the purposes of our experiments.  The other  
parameters were a learning rate of 0.05 and momentum of 0.7. 

Table 1. Selection of candidate neural networks for ensemble inclusion 

Accuracy 86 85.5 85.5 85.5 85 85 85 84.5 84.5 … 83 
Neurons 24 5 15 32 31 43 50 75 38 … 62 
Rank 1 2 3 4 5 6 7 8 9 … 40 

 
From Table 1 the best performing network had 24 neurons, the next 5, followed by 

15, then 32 in the hidden layer etc.  
The proposed system was implemented in MATLAB 7.12.0.  MATLAB was run-

ning on a 2.66 Ghz Intel Core i7 Mac Book Pro, with 8 Gig of RAM running Mac OX 
X 10.6.8.  The experiments were carried out on a subset from the DDSM [17] utilis-
ing only mass type anomalies.  The dataset represented 200 anomalies evenly divided 
between malignant and benign cases.   

4 Results 

Accuracy of the individual constituent classifiers ranged from 83% to 86% accuracy 
(Table 1).   

Table 2. Ensemble Performance 

# Classifiers Hidden Neurons TP TN Accuracy 
(%) 

4 24,5,15,32 91 95 93.0 
14 13,24,5,15,32,31,43,50,75,38,59,68,79,116 98 98 98.0 
18 24,5,15,32,31,43,50,75,38,59,68,79,116,146,

14,30,37,95 
98 96 97.0 

22 24,5,15,32,31,43,50,75,38,59,68,79,116,146,
14,30,37,95,103,104,138,140 

98 97 97.5 

25 24,5,15,32,31,43,50,75,38,59,68,79,116,146,
14,30,37,95,103,104,138,140,19,29,33 

99 97 98.0 

35 24,5,15,32,31,43,50,75,38,59,68,79,116,146,
14,30,37,95,103,104,138,140,19,29,33,36,40,
46,48,65,74,84,93,127,22 

97 96 96.5 

 
The only condition for inclusion in the ensemble networks was accuracy.  The en-

semble networks that were constructed had from three to forty constituent classifiers.  
Table 2 provides a summary of the results obtained for the ensemble classifiers. 
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5 Discussion 

The minimum accuracy that the ensemble achieved was 93% while the maximum accu-
racy was 98%.  Numerous classifiers achieved a classification accuracy of 97%. The 
improvement in classification accuracy supports the claim by previous researchers that 
ensembles have higher classification accuracy than their constituents providing that the 
requirement of diversity is met [27].  Ensembles increase accuracy by reducing the vari-
ance in prediction errors [1].  In this research a significant improvement in classification 
accuracy was achieved by varying the number of neurons in the hidden layer as well as 
utilizing ten-fold cross validation.  In order to determine how significant the results of 
this research are we need to compare the classification accuracy achieved with that of 
other researchers and also with the best performance achieved for an individual classifi-
er. Table 3 lists the performance of the proposed technique in comparison to current 
research.  The performance achieved by Verma et al. [28] of 93% is on the same dataset 
and is directly comparable as it is the same dataset as this research. 

Table 3. Comparative performance of proposed technique and current research 

Researcher / Reference Technique Accuracy [%] 
Ensemble technique Proposed ensemble technique 98.00 
Base classifier Neural network 86.00 
Verma et al. [28] Soft clustered neural network 93.00 
Liu et al. [11] SVM 81.00 
Liu et al. [11] Random forest 79.00 
Zhang et al. [20] Partitioned ensemble classifier 72.00 

 
An ANOVA analysis of variance was performed to determine if the improvement in 

classification accuracy between the neural network and the ensemble was significant. A 
5% confidence level was utilized according to standard scientific methodology. 

Table 4. ANOVA Summary  

Groups Count Sum Average Variance 
NN 38 3195.5 84.09 0.6197 
Ensemble 38 3674 96.68 1.3706 

Table 5. ANOVA Analysis 

Group Variation 
 SS df MS F P-value F crit 
Between 3012.66118 1 3012.6612 3027.46475 8.8016E-62 3.97 
Within 73.6381579 74 0.9951102    
       
Total 3086.29934 75     
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The p-value (Table 5) is significantly below the required 5% confidence level sub-
stantiating that the improvement in performance of the ensemble is statistically signif-
icant.  Of note is the variance in the ANOVA summary (Table 4.) for the ensemble is 
much higher than that of the neural network.  This is to be expected as the classifiers 
for the neural network were chosen on the basis of being the highest performers from 
the candidate classifier pool. The ensemble representatives came from a much smaller 
candidate pool and the variation was therefore higher as all candidates were chosen.  

6 Conclusions 

Neural networks have been used extensively to solve many classification dilemmas. The 
problem with such approaches is that a single neural network has not demonstrated the 
capacity to solve complex problems where the classification dilemma is not straight 
forward due to similarities between the distinct classes as occurs in breast cancer diag-
nosis. This has lead to various authors describing neural networks as a monolithic solu-
tion [14] and advocating the usage of ensemble and modular networks. In this solution 
we utilized redundancy through the creation of an ensemble network that introduced 
diversity by altering the number of neurons in the hidden layer as well as ten-fold cross 
validation. The results were fused through the majority vote algorithm. The perfor-
mance of these networks was then contrasted.  The results of this study have demon-
strated that ensembles perform better than a single constituent classifier. There is no 
universal classifier that works best on all given problems. It is not easy to determine a 
suitable classifier for a given problem, but the use of an ensemble allows for combining 
the best of multiple classifiers in order to improve accuracy and overcome the limita-
tions of a single classifier. The proposed ensemble approach improved the predictive 
performance for the mammogram dataset.  The improvement in classification accuracy 
was 12% percentage points (98%-87%) over the best performing single neural network 
classifier.  Our future research will involve the automation of the processes through 
genetic algorithm pruning of network candidates as well as performance and diversity 
measures to determine a better performing solution.  Our research shall also examine the 
effects of tuning the momentum and learning rate of the neural network and how this 
impinges on the creation of an ensemble network. 
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Abstract. As lifelong learning becomes increasingly important in our
society, mechanisms allowing students to evaluate their progress must be
provided. A commonly used and widely accepted feedback mechanism is
the multiple-choice test. Manual creation of multiple choice questions is
often a time consuming process involving many iterations of trail and
error. Using text processing and natural language processing techniques,
automated multiple choice question generation, in recent years, is get-
ting much closer to reality than ever. However, one of the most difficult
tasks in both manual creation and automated generation of this kind of
tests is the creation of distractors, because unsuitable distractors allow
students to easily guess the correct answer, which counteracts the goal
of these questions. In this paper, we investigated the desired properties
of distractors and identified relevant text processing algorithms, specif-
ically, latent semantic analysis and stylometry, for distractor selection.
The refined distrators are compared with baseline distrators generated
by our existing Automated Question Creator (AQC). Our preliminary
evaluation shows that this novel combined approach produces distractors
with a higher quality than those of the baseline AQC system.

Keywords: Automated Multiple-Choice Question Generation,
Distractors, Text Processing, Latent Semantic Analysis, Stylometry.

1 Introduction

Our globalised world demands continuous adaption of knowledge and skills.
Consequently, new and improved pedagogical approaches and supportive tech-
nologies increasingly attract dedicated research and development efforts.
Technology-supported lifelong learning is becoming the key to extend formal
education not only in primary and secondary, but also in higher educational

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 95–106, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



96 J.R. Moser, C. Gütl, and W. Liu

learning settings. Specific types of informal learning, such as self-directed learn-
ing, become increasingly popular because they enable members of our society
to gain knowledge from specialized e-learning repositories, or even from web
resources. Especially in these settings, guidance on and information about the
learning progress becomes increasingly important, and thus a special focus has
to be put on knowledge assessment and feedback methodologies. The creation
of test items and the evaluation of tests, however, cannot be performed like in
formal settings but requires a creation of test items on the fly [4,6,10].

Our previous work [9,11] and in particular [12] have resulted in a prototype
Automatic Question Creator, referred to as AQC hereafter in this paper. The
prototype AQC is able to create test items automatically form text corpora [12].
In terms of students’ satisfaction of the overall quality of the test items gen-
erated, the prototype has demonstrated promising results. However, a deeper
investigation highlighted that automatically created distractors were perceived
by the study participants as being of rather low quality and too easy to detect.

Creating distractors was identified by Haladyna [13] as the most difficult
part of the multiple-choice test generation. Furthermore, as our own experience
showed, students are exceptionally good at detecting even subtle hints which
give away the correct answers. For example,

Q: Which of the following is the term used to describe the task of extract-
ing structured information from unstructured text in natural language?

A) Natural Language Processing
B) Information Extraction
C) Car
D) Insurance

where B) is the correct answer, C) and D) are easily detectable as wrong answers,
whereas A) is a reasonable distractor that may confuse students who do not have
a clear understanding of the testing concept Information Extraction.

Questionnaires containing unsuitable distractors would therefore only grade
the students’ ability in pattern detection, but not their knowledge or under-
standing in the subject area. Consequently, improvements in this subfield of
automated question generation will not only allow more students to study more
effectively in a self-teaching environment, but also contribute in general to the
whole field of automated assessment and lifelong learning.

In order to be able to create good distractors, we have to define what a
distractor actually is. The first and foremost property of a distractor adopted by
this paper is that: “a distractor is an unquestionably wrong answer”, as stated
by Haladyna [13]. Secondly, these wrong answers are distractive in that they
should be plausible to students who do not yet understand the course material.
Yet however, distractors should be spotted by, and should not confuse, people
who already possess the knowledge measured by the multiple-choice test.

In this paper, we developed a novel method for refining distractor generation
to ensure that the distractors are plausible yet difficult to detect. The idea of
the algorithm reported in this paper is based on the observations by Mitkov



Refined Distractor Generation with LSA and Stylometry 97

et al. [20], who stated that distractors semantically close to the correct answer
were the most plausible distractors, and by Haladyna [13], who elaborated that
distractors should resemble the grammatical form, style and length of the correct
answer.

In addition, we also make use of the weight measures produced by the existing
AQC system to improve the distractor quality. Terms receiving a higher weight
are considered to represent more important concepts, and substituting one of
these concepts for a different, incorrect one should be able to confuse students
who only superficially studied the course material.

Consequently, our implementation of the distractor generation process
combines the following approaches:

– Latent Semantic Analysis (LSA) which, according to Landauer et al. [18] is
able to capture semantic similarities of words and passages, is used as an
estimation for semantic closeness.

– Part-of-Speech (POS) tags which are, as Klein and Simmons [17] stated, a
set of grammatical codes. These codes can thus be used to ensure that the
answer and the distractors have the same grammatical form.

– Stylometry, which was defined by Holmes [16] as “the statistical analysis of
literary style”. Our proposed method also take the length differences into
consideration.

– The existing AQC weight measures, are used in our distractor refinement to
identify important concepts.

Our novel approach extracts concepts from some course material, automatically
identifies relevant concepts in the material and uses these concepts to generate
multiple-choice questions. The system then applies LSA to the course material,
calculates style measures, and uses the results from LSA and the style measures
to calculate the similarity between the correct answer and possible distractors.
The similarity results together with weights calculated by the AQC are used to
rank the distractors, and finally, a filter rejects obviously ungrammatical answers.

The remainder of this paper is structured in the following way: Section 2 in-
troduces the framework on which our research is based and describes related re-
search. Section 3 explains how we create the distractors, and Section 4 shows the
setup and results of our distractor evaluation experiment. The paper is summed
up in Section 5, and this section also provides ideas for future research.

2 Background and Related Work

2.1 Automatic Question Creator

Research focusing on automated test item creation, as stated by Gütl et al [11],
uncovered only a small number of already existing approaches and tools. Further-
more, these tools and approaches were also not flexible and extendable enough
to address the practical needs of automated question generation. Consequently,
in order to alleviate this situation, we initiated the design and implementation
of the AQC.
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The architecture of the AQC can be segmented into four parts, the preprocess-
ing, the concept extraction and the assessment creation module, and a graphical
user interface. The modules work in an independent pipelined fashion, where
each module accepts the output of the previous one, and each module can also
be controlled and influenced via the user interface.

The preprocessing module accepts unstructured or semi-structured text, per-
forms text cleaning and converts the cleaned result into an XML representation.
The resulting XML data is in turn processed by the concept extraction module
which performs structural, statistical and semantic analysis, calculates weights
for phrases present in the text, and uses these weights to extract suitable con-
cepts. This module is described in more detail in Section 3.2. The final module,
assessment creation, determines suitable sentences for each extracted concept,
and uses these sentences and the concepts to create open ended, single choice,
multiple-choice and completion exercises.

AQC’s distractors are created in the module responsible for generating
multiple-choice exercises, i.e. the assessment creation module. A brief descrip-
tion of how the system creates distractors can be found in Section 2.4, which
also introduces the already implemented generation approaches in AQC.

2.2 Latent Semantic Analysis

The aim of Latent Semantic Analysis (LSA) is, according to Landauer et al. [18],
to determine how similar the meaning of words or passages is. This similarity
measure can be used to rank distractors, where words or phrases highly correlat-
ing with the correct answer are assumed to be close enough to the correct one to
confuse students not possessing enough knowledge about the specified test item.

LSA is based on performing mathematical operations on a word-by-context
matrix. Context can be a sentence, a paragraph or a whole document, and the
original matrix counts how often which words appears in what context. This
usually high-dimensional but sparsely populated matrix is then normalized and,
via singular value decomposition (SVD), transformed into a product of three
different matrices. These three matrices are used to calculate a least-square best
fit matrix of the original one. The new matrix is understood to better capture
the relationship between words and their contexts than the original one.

2.3 Stylometry

Stylometry is, according to Holmes [15] concerned with extracting measurable
patterns describing the style of a text. These patterns support us in the task
of ensuring that the style of the incorrect answer sentences matches the one of
the correct sentence as closely as possible. The most commonly used features,
as identified by Abbasi and Chen [1], are:

– Lexical features, which capture word or character based statistics.
– Syntactic characteristics, providing statistics on function words, punctuation

and POS tags.



Refined Distractor Generation with LSA and Stylometry 99

– Structural properties, which consider text organization and layout.
– Content-specific elements, mainly usage statistics over important keywords

and phrases.
– Idiosyncratic features, like misspellings, grammatical errors or incorrect

usage of words.

However, as we compare sentences which only differ in a small amount of words,
not all of these features can be used. Specifically, punctuation, structural prop-
erties, phrase usage and the counting of misspellings are not applicable to our
distractor sentence style comparison.

2.4 Existing Distractor Generation Approaches

Past and current distractor generators mainly only consider single-word an-
swers, or they use simple algorithms for creating multi-word distractors. Single
word term distractors are commonly selected by word frequency (for instance by
Brown et al. [5]), by finding semantically related terms via WordNet (like [11]
or [20]) and, in the case of grammar tests, by performing rule-based changes to
the word form and tense (see [7]). Multi-word distractor generation commonly
tries to obtain related multi-word terms via WordNet. However, as this method
rarely produces results, Mitkov et al. [20] select noun-phrases with the same head
as the answer, and Gütl et al. [11] split the phrase into n-grams and randomly
select the longest related n-grams from WordNet, which frequently results in a
distractor phrase with only one changed word.

The approach most closely resembling ours was published by Aldabe and
Maritxalar [2]. This approach also uses LSA to find distractors, however, the
distractors are single-word only, while we focus on important multi-word con-
cepts. Moreover, in contrast to our work, they use manually created blanks,
without employing style measures. Furthermore, their published results are only
available for the Basque language.

3 Distractor Generation

3.1 System Composition

Figure 1 illustrates our distractor generation process as a pipeline of three in-
dependent modules. The system as a whole accepts free-form text documents
as input and generates a list of distractors as its output. The individual mod-
ules, which are described below, include the Concept Extraction, the Distractor
Selection and the Distractor Refinement module. Communication between the
modules is also performed in a pipelined fashion, where each module accepts a
list of items from the previous module. This communication approach together
with the clear segmentation of the system’s functionality simplifies the replace-
ment of parts or even whole modules and thus allows us to easily extend and
enhance this system.
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Fig. 1. Overview of the Distractor Generation Process

3.2 Concept Extraction

The concept extraction module, as shown in Figure 1, is actually a part of the
AQC, and could be reused without any modification. The most important tasks
of this module are the conversion of the input text into a normalized internal
representation, the annotation of the text, and the identification of concepts.

The preprocessing and analysis step accepts input texts in various formats,
like Microsoft Word, PDF, HTML or plain text, and converts these formats
to an internal HTML representation. This internal text is then processed by
the General Architecture for Text Engineering (GATE) (see [8]) which performs
tasks like tokenisation, named-entity recognition and POS tagging.

Term weights are calculated by performing statistical (like word and term
frequencies), semantic (employing WordNet to determine semantic relationships
between terms) and structural (for instance if the concept is part of the title,
abstract, or chapter heading) analysis of the input text. The numeric values ob-
tained by the analysis are in turn adjusted by user-defined factors and combined
into weight measures. Concept selection uses term weights together with weights
and annotations provided by XtraK4Me, a module to detect key-phrases in texts
(see Schutz [22]), to determine which phrases should be considered to constitute
concepts. The most important of these concepts are then used as correct answers
for the multiple-choice questions. For a more comprehensive explanation of the
details of this module, please see Gütl et al. [11].

3.3 Distractor Selection

After the concept extraction step is finished, lists of sentences and possible con-
cepts are available for this module. The elements of the lists are annotated with
POS tags and they contain weight measures provided by AQC. These lists, as
can be seen in Figure 1, are used to calculate the semantic similarity between the
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correct answer and the distractors and to produce a ranked list of distractors.
As stated in the introduction, LSA presents itself as a viable approach to this
calculation, and the resulting similarity values can be used to estimate if a term
could assume the role of a distractor.

The first task of this module is to generate a matrix which can be used for
SVD. The matrix in our case is a concept-sentence matrix, where the rows of the
matrix are the possible concepts as created by AQC, and the columns state how
often the concept appears in a specific sentence. This matrix is high-dimensional
yet sparsely populated. Experiments with our system showed that stemming and
stop-word removal improved the final distractor quality, and that adjusting the
the values by their row entropy, as proposed by Landauer et al. [18], actually
decreased the performance of our system.

The concept-sentence matrix is then transformed via SVD into three compo-
nent matrices, and the dimensionality of the diagonal matrix is reduced by only
keeping the highest values of this matrix. The matrix product of the transformed
and the reduced matrices provides an approximation of the original concept-
sentence matrix, which, as stated above, is able to capture hidden semantic re-
lations between the different concepts. The SVD transformation is implemented
by the Lingpipe [3] toolkit, which is used in our system.

The final step of this module takes the correct answer provided by AQC, and
selects its row from the approximated concept-sentence matrix. This row, in
turn, is used to calculate the cosine between the correct answer and all possible
distractor concepts by using the appropriate rows from the approximated matrix.
The resulting distractors are then sorted by their respective cosine values, where
higher values indicate higher quality distractors. Though many distance mea-
sures for determining the relatedness of two vectors are described in literature
(like the Euclidean distance, the maximum norm or even correlation between the
values of two vectors), experiments showed that the best results were achieved
by using the cosine similarity measure.

3.4 Distractor Refinement

Using the ranked list of distractors produced by the distractor selection module,
and the POS and weight annotations provided by the concept extraction we
are finally performing the last steps of our distractor generation. These steps,
as shown in Figure 1, re-rank the distractors and perform filter operations to
discard obviously ungrammatical distractors.

As stated above, the conditions imposed by the fact that the amount of dif-
ferent words between distractors and the correct answer is very small, only a
selected amount of stylometric features can be feasibly used. These features are:

– Lexical: the number of characters and digits, character and digit uni- and
bi-gram counts, the number of words and the average length of words.

– Syntactic: the POS-tag uni-gram count.
– Content-specific: the word frequency.
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The style value differences between the correct answer and possible distractors
are converted into numeric values and then used to re-rank the list provided by
the distractor selection module. These numeric values are obtained by calculating
the cosine for uni- and bi-gram counts, and by calculating the difference and
normalizing it by the average of the two values for all other style measures.

The next re-ranking step uses the term-weights created by the AQC, to de-
termine the importance of the extracted concepts. Though we initially assumed
that important concepts would provide good distractors, our experiments did
not provide a clear correlation between the term-weights and the viability of
these terms as a distractor. Though this re-ranking step had only a slight im-
pact on the selection process, we nevertheless kept this step and plan to examine
its effects in a future study.

A POS tag filter is responsible for ensuring that the grammatical forms of
all possible answers match. This filter extracts the POS tag of the head word
of the correct answer concept and compares it with the tags of the head word
of all distractor concepts. The current implementation of our system performs
exact POS matches and rejects the non-matching concepts, however, conversions
between similar word forms, like singular and plural, would be possible, and these
methods are scheduled for inclusion in a future version of our system.

The concluding refinement step performs a more sophisticated grammar check
than the POS filtering step above. Here all blanks generated by the AQC are
filled with the correct answer and with possible distractors, and the resulting
sentences are examined. As even sentences with the correct answer sometimes
contain grammatical errors or are flagged as being not completely correct, we had
to relax our rejection criteria, and only discard distractors which would introduce
additional errors. The actual checking is performed by the LanguageTool (see
[21]) which is provided as open source and written in Java. Furthermore, this
tool contains human-editable grammar rule files which allowed us to fine-tune
the evaluation algorithm for our needs.

4 Experiment and Results

4.1 Weight Influence Estimation

Different weight measures obviously influence the re-ranking process to a differ-
ent degree. To estimate these influences, we trained our system based on data
obtained from [11], and consequently used the MIT OpenCourseWare lecture
on “Project Management for Construction”, provided by Hendrickson [14], as
source material.

The AQC is responsible for generating the multiple-choice questions and the
concepts, which were used by our system to calculate a list of all relevant weight
measures. The resulting list was expanded by a column containing distractor-
fitness values between 0 and 1000 where 1000 indicated a perfect distractor, and
0 indicated that the concept should not be used. Multiple linear regression was
then performed with these fitness values as the dependent variable and with
all weight measures as independent variables. Examining the regression results
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showed that LSA similarity weights had the strongest influence on ranking of
the distractor, followed by character-bi-gram differences and POS-tag uni-gram
differences.

4.2 Experimental Setting

Evaluation of our distractor generation was performed in the context of the “ISR
Natural Language Processing Case Study”, which examined the newest version of
the AQC based on an introductory text to Natural Language Processing (NLP).
Our aim in this experiment was to show that the re-ranking influences obtained
for the “Project Management for Construction” were general enough to work
even for non-related topics, and thus we did not specifically adapt our distractor
generation approach to this new material.

Participants of the experiment had to study an introduction to NLP written
in English. They need to summarise this text, answer some questions concerning
this text, to extract important concepts and also had to answer some questions
intended to evaluate the knowledge of a student concerning the studied text.
As the last task, the participants had to rank three distractors created by AQC
and three distractors created by our system based on their assessments of each
term’s suitability as a distractor.

The experiment was conducted by nine tutors and PhD students who served
as an expert committee to evaluate the quality of the generated distractors. Two
of them are female and seven male with an average age of 33. All of the experts
are German native speakers with English as a second language.

We would also like to explain the reasons why we prefer a small but experi-
enced expert panel to the more general approach of conducting real tests among
large groups of students. Varying abilities in the students will add noise to the
evaluation results. In addition, without running other assessments, it is hard
to separate students into distinct groups of those with good conceptual under-
standing and those with superficial and easily confusable knowledge. The small
expert group, who all have good understandings in the subject matter, on the
other hand, are more suitable in making informed judgement. Moreover, teach-
ing experiences make them more aware of student common mistakes, which in
turn allow them to select distractors that are pedagogically valuable. Having
said that, we do plan in the future work to conduct evaluation on students.

4.3 Results

The ranking experiment, as can be seen from Figure 2, shows that our new LSA
and stylometry approach (LSA-STY) for creating distractors was indeed able
to outperform the base system. This figure displays the rank of each distractor
together with the percentage of how many of these ranks were filled by distractors
created with the LSA-STY system versus how many of these ranks were from
distractors of the base AQC system. The best distractor has a rank of 1, and the
worst a rank of 6. Consequently, a good distractor generation approach should
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Fig. 2. Result of the distractor ranking. LSA-STY: new system, AQC: base system,
lower ranks are better.

posses high percentage values on the low-rank side and low percentages on the
high-rank side.

The results for rank 1, the best possible distractor for a question, shows that
61% of these distractors were created by our LSA-STY system versus 39% by
the base system. A statistical analysis of this result shows that the two-tailed
P-value obtained from the chi-square test equals 0.035, which means that the
difference in this distribution can be considered to be statistically significant.
Though rank 2 has a high percentage of the second-best distractors generated
by the base system (58%), the P-value obtained for this distribution equals 0.14,
and thus should not be considered to be statistically significant. The distribution
for all other distractors is also not statistically significant.

However, though not significant, the number of the second-best distractors is
still high. This indicates, that the WordNet based distractor generation of of the
AQC will most probably also create viable distractors and should thus not be
completely discarded.

5 Conclusion and Future Work

Our system extends the multiple-choice module of the AQC by providing a so-
phisticated distractor selection method based on the NLP approaches, namely,
LSA and stylometry. The distractor selection considers previously extracted
concepts, ranks them via LSA, re-ranks them based on stylometry and AQC-
provided weight measures, and uses POS tags and a grammar checker to re-
move unsuitable candidates. Preliminary experiments performed by nine tutors
and PhD students showed that our new approach was able to produce the best
distractors for a significant number of questions.

Though our initial experiments showed an improvement in distractor quality, a
large scale test in a classroom setting has to be performed. This test should follow
the approach provided by [19] and [2], who split the answered questions according
to the marks awarded into a high- and a low-achieving group, and checked if the
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distractors were able to discriminate between these groups. Good question items
should confuse low-achieving students more often than high-achieving ones.

Furthermore, due to resource limits, our system was only trained with an
excerpt from the “project management in construction” course from MIT Open-
CourseWare and tested with an introductory text to Natural Language Process-
ing. The system will be tested with different course material spanning a wide
range of subjects. Additionally, when examining these subjects, domain-experts
will be employed to manually create some distractors for comparison purposes,
and a sub-study should identify how and why these experts select distractors,
and might even produce new distractor-weighting techniques.

Another interesting approach would be a combination of the base system and
our LSA and stylometry based approach. Though the difference in the number
of second-best distractors was not statistically relevant, the WordNet based ap-
proach of the base system nonetheless produced a high number of them, and
thus also generated viable distractors. This hybrid method could in turn use the
distractor-weighting techniques obtained by studying experts to decide which
distractor to select.
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Abstract. In this paper, we present a new genetic algorithm for pro-
tein structure prediction problem using face-centred cubic lattice and
hydrophobic-polar energy model. Our algorithm uses i) an exhaustive
generation approach to diversify the search; ii) a novel hydrophobic core-
directed macro move to intensify the search; and iii) a random-walk
strategy to recover from stagnation. On a set of standard benchmark
proteins, our algorithm significantly outperforms the state-of-the-art al-
gorithms for the same models.
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1 Introduction

Protein Structure Prediction (PSP) is computationally a very hard problem [24].
Given a protein’s amino acid sequence, the problem is to find a three dimensional
structure of the protein such that the total interaction energy amongst the amino
acids in the sequence is minimised. The protein folding process that leads to such
structures involves very complex molecular dynamics [4] and unknown energy
factors. In the pursuit of addressing this difficulties in a hierarchical way, re-
searchers have considered simplified models [21,17,26] for PSP. However, the
complexity of the simplified problem still remains challenging.

There are a large number of existing search algorithms that attempt to solve the
PSP problem by exploring feasible lattice-based structures called conformations.
The state-of-the-art results on face-centred cubic (FCC) lattice basedhydrophobic-
polar (HP) energymodel have been achieved by local search (LS)methods [5,9]. On
the other hand, genetic algorithms (GA) [14], and tabu search [3] found promising
results on 2D and 3D hexagonal lattice based HPmodels. In general, the success of
GA and LS methods crucially depends on the balance of diversification and inten-
sification of the search.Moreover, these algorithms often get stuck in localminima.
As a result, they perform poorly on large proteins. Any further progress to these
algorithms require addressing the above issues appropriately.

In this paper, we introduce a population based algorithm (GA+) under the
GA framework for simplified PSP. We use HP based energy model on 3D FCC
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lattice to simplify the problem. In GA+, we use i) an exhaustive generation
approach to diversify the search; ii) a novel hydrophobic core-directed macro
move to intensify the search; and iii) a random-walk based approach to recover
from stagnation. On a set of benchmark proteins, GA+ significantly outperforms
the state-of-the-art PSP algorithms in the same models.

The rest of the paper is organised as follows: Sect. 2 reviews background
knowledge, Sect. 3 discusses related work on PSP; Sect. 4 describes our new GA
for simplified PSP; Sect. 5 presents the experimental results and analyses; and
finally, Sect. 6 draws the conclusion and outlines our future research.

2 Preliminaries

Proteins are essentially sequences of amino acids. They adopt specific folded
three-dimensional structures to perform specific tasks. The function of a given
protein is determined by its native structure, which has the lowest possible free
energy level. Nevertheless, misfolded proteins cause many critical diseases such
as Alzheimer’s disease, Parkinson’s disease, and Cancer [8]. Protein structures
are important in drug design and biotechnology.

Homology modeling, protein threading, and ab initio are three computational
approaches used in PSP. Prediction quality of homology modeling and protein
threading depend on previously known structures of sequentially similar proteins.
Our work is based on the ab initio approach that depends only on the amino acid
sequence of the target protein. In our simplified PSP model, we use FCC lattice
for mapping conformations that satisfy a self-avoiding walk. We also use HP
energy model for conformation evaluation, and an enhanced genetic algorithm for
conformation search. The self-avoiding walk constraint, FCC lattice, HP energy
model, and genetic algorithms are described below.

2.1 Self-avoiding Walk

In lattice based protein representation, the amino acids of a given sequence
are mapped on lattice points satisfying a self-avoiding-walk constraint. A self-
avoiding walk constraint ensures no revisitation of any lattice point during the
sequence mapping.

2.2 FCC Lattice

The FCC lattice has the highest packing density compared to the other existing
lattices [10]. In FCC, each lattice point has 12 neighbours (Fig. 1a) with 12 basis
vectors (1, 1, 0), (−1,−1, 0), (−1, 1, 0), (1, 1, 0), (0, 1, 1), (0, 1,−1), (1, 1, 0), (1, 0,−1),

(0,−1, 1), (−1, 0, 1), (0,−1,−1), and (−1, 0,−1). The hexagonal closed pack (HCP)
lattice, also known as cuboctahedron (Fig. 1b), was used in [14]. In HCP, each
lattice point has 12 neighours that correspond to 12 basis vertices with real-
numbered coordinates, which causes the loss of structural precision for PSP. In
simplified PSP, conformations are mapped on the lattice by a sequence of basis
vectors, or by the relative vectors that are relative to the previous basis vectors
in the sequence.
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(a) (b) (c)

Fig. 1. a) FCC lattice, b) HCP lattice, c) HP energy model [16]

2.3 HP Energy Model

The HP energy model is based on the hydrophobicity of the amino acids. In the
HP model [7,16], when two non-consecutive hydrophobic amino acids become
topologically neighbours, they release a certain amount of energy, which for
simplicity is shown as −1 in Fig. 1c. The total free-energy E (Shown in Equation
1) of a conformation, based on the HP model, becomes the sum of the energy
released by all pairs of non-consecutive hydrophobic amino acids.

E =
∑

i<j−1

cij .eij (1)

Here, cij = 1 if ith and jth amino acids are non-consecutive in the sequence but
are neighbours on the lattice, otherwise 0; and eij = −1 if ith and jth amino
acids are both hydrophobic, otherwise 0.

2.4 Genetic Algorithms

GAs are a population-based search for optimisation problems. A genetic algo-
rithm maintains a set of solutions known as population. In each generation, it
generates a new population from the current population using a given set of
genetic operators known as crossover and mutation. It then replaces inferior
solutions by superior newly generated solutions to get a better current popula-
tion. A typical crossover operator randomly splits two solutions at a randomly
selected crossover point and exchanges parts between them (Fig. 2a). A typical
mutation operator alters a solution at a random point (Fig. 2b). In the case of
PSP, conformations are regarded as solutions of a GA. Below we describe genetic
operators used in PSP.

Crossover Operators: The crossover operators are applied on two selected
parent conformations to exchange their parts to generate child conformations.
In a single-point crossover, both parents are splitted at a single point (Fig. 3
a) while in a multi-point crossover they are splitted at more than one point.
Nevertheless, the crossover operations succeed if they produce conformations
that satisfy the self-avoiding walk constraint.



110 M.A. Rashid et al.

(a) Crossover (b) Mutation

Fig. 2. Typical (a) crossover and (b) mutation operators

Mutation Operators: The mutation operators are applied on a single confor-
mation. The operators can perform single-point change or multi-point changes.
The mutation operations succeed if the resultant conformation remains a self-
avoiding walk on the lattice. The primitive mutation operators (as shown in Fig
3 (b-e)) are described below:

1. Rotation: One part of a given conformation is rotated around a selected
point (Fig 3 b). This move is mostly effective at the begining of the search.

2. Diagonal Move:Given three consecutive amino acids at lattice points A,B,
and C, a diagonal move at position B takes the corresponding amino acid
diagonally to a free position (Fig 3 c). Diagonal moves are very effective on
FCC lattice [5,9] points.

3. Pull Moves: The amino acids at points A and B are pulled to the free
points (Fig 3 d) and the connected amino acids are pulled as well to get a
valid conformation. Pull moves [18] are local, complete and reversible. Pull
moves are very effective especially when the conformation is compact.

4. Tilt Moves: Two or more consecutive amino acids connected in a straight
line are moved by a tilt move to immediately parallel lattice positions [12].
Tilt-moves pull the conformation from both sides until a valid conformation
is found. In Fig. 3 e), the amino acids at points C and D are moved and
subsequently other amino acids from both sides are moved as well.

Crossover Mutation

A

B C
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B
C

A

BC A
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D
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G
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BC
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A B

C

A

BC B C
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FG

A

a) single-point crossover b) rotation c) diagonal d) pull e) tilt

Fig. 3. The primitive operators that are used in our GAs on 3D FCC lattice space.
For easy comprehension, the figures are presented in 2D space.
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3 Related Work

Different types of metaheuristic have been used in solving the simplified PSP
problem. These include Monte Carlo Simulation [23], Simulated Annealing [22],
Genetic Algorithms [25,12], Tabu Search with GA [3], Tabu Search with Hill
Climbing [15], Ant Colony Optimisation [2], Immune Algorithms [6], Tabu based
Stochastic Local Search [5], and Constraint Programming [9]. Below we describe
PSP methods that are based on local search and genetic algorithms.

Local Search: Starting from an initial solution, local search algorithms move
from one solution to another to find a better solution. Local search algorithms
are well known for efficiently producing high quality solutions, which are difficult
for systematic search approaches. However, they are incomplete [1], and suffer
from revisitation and stagnation. Restarting the whole or parts of a solution
remains the typical approach to deal with such situations. In PSP problem,
Cebrian et al. [5] used a local search algorithm combined with tabu heuristic.
They implemented their method for the 3D FCC lattice and the HP model,
and tested its effectiveness on Harvard instances [28]. Later, Dotu et al. [9]
extended the work in [5] by using a hybrid method that combines local search
and constraint programming together. Overall, these two methods have produced
the current state-of-the art results for PSP on FCC lattice and HP energy model.

Genetic Algorithms: Unger and Moult [25] first applied GA to PSP and found
their method to be more promising than the Monte Carlo based methods. They
used absolute encodings on the square and cubic lattices, and the HP energy
model. They only applied single point crossovers, and discarded infeasible solu-
tions. Later, Patton [20] used relative encodings to represent conformations and
a penalty method to enforce the self-avoiding walk constraint. In [14], GAs have
been used by Hoque et al. for cubic, and 3D HCP lattices. They also introduced
a twin-removal operator [13] to remove duplicates from the population and to
prevent premature convergence.

4 Our Algorithms

Fig. 4 presents our GA+. The algorithm initialises the current population and
evaluates them. At each generation, it selects a genetic operator based on a
given probability distribution to use through the generation. This operator is
used in an exhaustive way to obtain all conformations in the new population.
We ensure that no duplicate conformation is added to the new population. For
a given number of generations, if the best conformation in the new population
is not better than the best in the current population, our algorithm then resorts
to a random-walk procedure to diversify the new population. Nevertheless, after
each generation, the new population becomes the current population; and the
search continues. Finally, the best conformation found so far is returned.
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]

Procedure gaPlus(opR,rwT)
1 op: Operators, c, c′: Conformations
2 opR: Operator selection probabilities
3 curP,newP: Current and new populations
4 rwT: Number of non-improving
5 generations before random walk.
6 //======================
7 initPopulation(curP)
8 foreach Generation until timeout do
9 selectOperator(op, opR)

10 if mutation(op) then
11 foreach c ∈ curP do
12 newP.add(mutConf(c))

13 else //crossover(op)
14 while ¬full(newP) do
15 c, c′ ← randomConfs(curP)

16 newP.add(crsConfs(c, c′))
17 if ¬improved(newP, rwT) then
18 rndWalk(newP)
19 curP ← newP

20 return bestConformation(curP)

Procedure mutConf(conf)
1 mutants.add(conf)
2 foreach 1 ≤ pos ≤ conf.length() do
3 c ← applyOperator(conf, pos)
4 mutants.add(c)

5 return bestConformation(mutants)

Procedure crsConfs(conf,conf′)
1 N: Number of iteration
2 // typically N = conf.length()/10

3 crossbred.add(conf, conf′)
4 for i = 1 to N do
5 pos ← random(1, conf.length())

6 c, c′ ← applyOperator(conf, conf′, pos)
7 crossbred.add(c, c′)
8 return best2Conformations(crossbred)

Fig. 4. Our new genetic algorithms for PSP

Note that our GA is different from a typical GA in a number of ways. A typical
GA i) randomly selects an operator every time before generating a new solution;
ii) selects parent solutions randomly; iii) applies the operators on randomly
selected points; iv) generates only one (for mutation) or two (for crossover)
solutions; v) does not use any macro-move; vi) does not use a random-walk in
stagnant situation; and vii) does not remove duplicate conformations.

4.1 Exhaustive Generation

For mutation operators, our algorithm adds one resultant conformation to the
new population for each conformation in the current population. In Fig. 4 Pro-
cedure mutConf, notice that the child conformations are generated by applying
the genetic operator at each position of the parent conformation. The resultant
conformation of a mutation operation is either the parent conformation itself or
a child depending on the quality of the conformations.

For crossover operators, two resultant conformations are added to the new
population from each application of the operator on two randomly selected con-
formations in the current population. Crossover operators (Procedure crsConfs)
generate child conformations by randomly selecting the crossover points on the
parent conformations. Note that the child generation method is not strictly ex-
haustive in crossovers. However, unlike typical GAs, a number of child confor-
mations are generated by our algorithm. The best two conformations from the
parents and the children then become the resultant conformations.

4.2 Macro-Move Operator

Protein structures have hydrophobic cores (H-core) that hide the hydrophobic
amino acids from water and expose the polar amino acids to the surface to
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Fig. 5. A macro move operator comprising a series of diagonal moves. For easy under-
standing, the figures are presented in 2D space. The solid-black circles represent the
hydrophobic amino acids and the hollow ones the hydrophilic.

Procedure macroMove(conf)
1 for i = 1 to Repeat do
2 T = P if bernoulii(p), else H
3 A[j] : jth amino acid in conf.
4 foreach j : type(A[j]) = T do
5 apply diagonal move at j, if T = P
6 or dist(A[j],hcc) is non-increaseing.
7 break on first success.

8 return conf

Procedure rndWalk(pop)

1 foreach conf ∈ pop do
2 for i = 1 to Repeat do
3 A[j] : jth amino acid in conf.

4 foreach A[j] do
5 apply pull-move move at j.
6 break on first success.

7 return pop

Fig. 6. Our macro move and random walk algorithms

be in contact with the surrounding water molecules [27]. H-core formation is
the main objective of HP based PSP. To achieve this, the total distance of all
H-H pairs is minimised in [5]. A predefined motif based segment replacement
strategy is applied in [14]. In this paper, we present a macro-move operator to
aid forming the H-core. Our macro move performs a series of diagonal-moves on
a given conformation to build the H-core around the hydrophobic core centre
(HCC). See Fig. 5 for an example. The macro-move squeezes the conformation
and quickly forms the H-core. In our implementation, the macro-move is used
like any other mutation operators.

In the macro-move (Fig. 6 Procedure macroMove), the HCC is calculated by
finding arithmetic means of x, y, and z coordinates of all hydrophobic amino
acids. The macro-move for a given number of iterations repeatedly applies the
diagonal move either at each P- or at each H-type amino acid positions. Whether
to apply the diagonal move on P- or H-type amino acids is determined by using
a Bernoulii distribution with probability p (typically p = 20% for P-type amino
acids). For a P-type amino acid, we consider the first successful diagonal move.
For a H-type amino acid, we take the first successful diagonal move that does
not increase the distance of the amino acids from the HCC. Note that a large
number of iterations would prematurely squeeze the conformation to a great
extent while a small number of iterations could allow other genetic operators
to play their roles in the search. We typically use 10 iterations for the first few
hundreds of generations, later we use 5 iterations as the search progresses.

4.3 Stagnation Recovery by Random Walk

When the best conformation found so far remains the same for a number of
generations (Fig. 4 Procedure gaPlus Line 14), we term this as a stagnation.
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In a stagnation, a random-walk algorithm (Fig. 6 Procedure rndWalk) applies
unconditional pull moves on each conformation of the new population. We repeat
the process for a number of iterations. A large number of iterations would greatly
diversify the population. We typically use a number between 5 to 10 for this.

4.4 Further Implementation Details

Below we describe the other implementation choices of our algorithm in details.

Conformation Representation: We represent conformations by 3D coordi-
nates and relative encodings. While coordinates help us determine whether a
point on the lattice is free, relative encodings help apply genetic operators in
generating conformations and then eliminate duplicate conformations.

Conformation Generation: For conformation generation, we use the genetic
operators listed in Sect. 2 as well as the macro-move operator.

Conformation Evaluation: The fitness function we use in our algorithm to
evaluate conformations is the exact energy function for the HP energy model
(see Sec. 2). We do not use any other fitness functions such as sum of all H-H
pair distances as is used in [5].

Operator Selection: The probability distribution to select operators is chosen
intuitively. The single- and multi-point crossovers are selected with 15% and
5% probabilities giving 20% chance to crossovers. The rotation, diagonal-move,
pull-move, tilt-move, and macro-move are selected respectively with probabilities
20%, 10%, 30%, 10%, and 10%. For experiments, when macro-moves are not
used, diagonal moves are alone given 20% chance. Pull moves are given more
chance than tilt moves as the latter tends to make more changes (in both sides)
to the conformation than the former (in one side).

Population Size: The number of conformations explored in each generation
should be more for a large protein than for a small one. In our algorithm, the
number of such conformations are O(n× l) where n is the population size and l
is the protein length. This is because we apply mutation operators at each amino
acid position of each conformation in the population. For crossovers, the case is
slightly different, but they are selected only with 20% probability. For the time
being, we use n = 100, 80, 60, 50 for l >= 50, 100, 200, 400 respectively.

Population Initialisation: We generate the initial population by randomly se-
lecting the basis vectors between each consecutive pair of amino acids. The gen-
erated conformations are all valid and satisfy the self-avoiding walk constraint.

5 Experimental Results

Among the protein instances (Table 1) used in our experiment, the H instances
are taken from Harvard benchmarks [28]; F, S, and R instances are taken from
Peter Clote laboratory website1. Cebrian et al. [5] and Dotu et al. [9] used
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these instances to test their algorithms. We also use three more large sequences,
which are taken from the CASP2 competition having CASP target IDs: T0516,
T0570, and T0563. The CASP targets are converted to HP sequences based
on the hydrophobic and polar properties of the constituent amino acids. The
lower bounds of free energy (in Column LB-FE of Table 1) are obtained from [5]
and also by using the CPSP tool [19]; however, there are some unknown values
because CPSP tool cannot find lower bounds of free energy for large sequences.

The main goal of the experiment is to compare the result of our final algo-
rithm GA+ with the state-of-the-art result obtained by LS [5,9]. However, to
prove the effectiveness of our new enhancement techniques, we implemented a
baseline genetic algorithm denoted by BGA. In BGA, we select one operator for
each generation based on the given probability distribution. However, like other
typical genetic algorithms, we select parents in BGA by using a Roulette Wheel
based on the quality of conformations in the current population. Also, we gen-
erate only one (for mutations) or two (for crossovers) child conformations from
each application of the genetic operators. The points on the conformations, to
apply the operators to, are selected randomly as well. Further, inspired by the
results of twin-removal in [13], we discard duplicate solutions from new genera-
tions. Notice that BGA does not use any of the macro-move, random-walk, and
exhaustive generation approaches.

We ran experiments with our algorithm denoted by GA+ and three of its other
variants. These variants and BGA all are implemented in Java2 programming
language. Nevertheless, these variants allow us to investigate the effect of each

Table 1. Experimental results of GA+, different GA variants, and the local search
algorithm in [5]. Column LB-FE presents the lower bound of free energies.

Protein Energy Values (-ve) Achieved by Different Algorithms

Info BGA RGA WGA MGA GA+ LS [5] T

Seq Size LB-FE Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg mins

H1 69 65 58 = 67 = 68 = 67 = 69 68 66

H2 48 69 63 57 = 67 = 68 = 68 = 69 = 65 30

H3 72 64 57 71 69 = 70 = 71 = 72 69 66

F90 1 168 133 119.5 159 144 165 161 165 159 = 166 164 160

F90 2 91 168 132 123.5 155 142 166 161 164 158 = 165 165 158 120

F90 3 167 138 124.4 158 146 165 161 163 158 = 164 165 159

S1 135 357 300 279.0 332 313 352 342 344 336 355 348 351 341

S2 151 360 298 258.2 332 301 351 339 346 335 356 349 355 343 120

S3 162 367 290 250.4 322 297 347 336 347 334 361 349 355 340

R1 384 249 221.6 295 274 353 331 345 327 355 346 332 318

R2 200 383 262 219.4 302 277 351 334 345 327 360 346 337 324 300

R3 385 250 220.8 299 274 344 331 340 323 363 344 339 323

T0516 229 455 274 251.2 340 310 399 384 395 373 423 402 390 373

T0570 258 494 288 250.9 359 317 406 388 394 376 421 404 388 359 480

T0563 279 ? 359 315.5 428 390 494 474 482 459 519 490 491 461

= denotes the lower bound of free energy is found. ? denotes unknown.

1 Peter Clote Lab:
http://bioinformatics.bc.edu/clotelab/FCCproteinStructure/

2 CASP website: http://predictioncenter.org/casp9/targetlist.cgi
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new aspect of GA+ individually and in a combined way. RGA adds exhaustive
generation in the genetic operators (as described in Sect. 4) to BGA. Variants
WGA and MGA respectively add random-walk and macro-move methods to
RGA. Thus, variants WGA and MGA respectively exclude macro-move and
random-walk methods from GA+ while RGA excludes both methods. For the
time being, we do not consider other possible combinations that include adding
macro-move or random-walk, or their combinations to the BGA.

We also ran the local search algorithm in [5], which is developed in COMET
[11]. This algorithm [5] helps us compare our results with the state-of-the-art
results of PSP on FCC lattice and HP energy model. We tried to run the al-
gorithm in [9], but unfortunately for most of the proteins, the program aborted
on exhausting the memory available. Any effective comparison in this case is
therefore not possible.

We ran the experiments on the NICTA3 cluster. The cluster consists of a
number of identical Dell PowerEdge R415 computers, each equipped with 2
x AMD 6-Core Opteron 4184 processors, 2.8GHz clock speed, 3M L2/6M L3
Cache, 64 GB memory and running Rocks OS (a Linux variant for cluster).
For each protein, we ran each algorithm 50 times with a time limit specified in
Table 1 Column T. In the same table Columns Best and Avg, we report the
best and average energy values obtained over 50 runs. Due to space limits, only
the magnitudes of the energy values (ignoring the minus signs in all) are shown.
Therefore, the larger the number in the table, the better the performance.

From the results in Table 1, we see that the energy values obtained in small
proteins by all algorithms are close to the lower bounds. For better comparison,
we therefore consider the large proteins, where our RGA significantly outper-
forms BGA. The differences between RGA and BGA are in the application of
the genetic operators. In BGA, genetic operators generate one (for mutations)
or two (for crossovers) random conformations. In RGA, an exhaustive genera-
tion is used and the best children are returned. These results clearly show the
effectiveness of the exhaustive generation.

The results in Table 1 also show that WGA and MGA clearly outperform
RGA. These results indicate the importance of our random-walk based stagna-
tion recovery approach and the macro-move operator. Notice that when WGA
is compared with MGA, the former significantly outperforms the latter; which
means the random walk alone is more effective than the macro-move. This fur-
ther suggests that given an exhaustive generation approach accompanied by a
greedy best child selection method as in RGA, recovery from stagnations is more
crucial than intensifying the search.

As noted before, GA+ is the final version of our algorithm. GA+ combines
both macro-move and random-walk with RGA. Notice that GA+, benefited from
our all three techniques, clearly outperforms BGA, RGA, MGA and WGA.
Nevertheless, we observe that the results obtained by GA+ are better than that
of LS with wide margins. LS is also outperformed by WGA, but it outperforms
RGA and BGA; the results of LS and MGA are very close.

3 NICTA website: www.nicta.com.au
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a) by LS, E=-333 b) by GA+, E=-355 c) LB-FE=-384

Fig. 7. 3D structures of Protein R1 obtained by a) LS and b) GA+, and c) the structure
with the lower bound free energy

Relative Improvement: In Table 2, we present a comparison of (%) improve-
ments in average conformation quality. We compare GA+ (target) with BGA
and LS (references). For each protein, the relative improvement of the target t
w.r.t. reference r is (Et−Er)/(Elb−Er)× 100; where Et and Er denote the av-
erage energy value achieved by t and r respectively, and Elb is the lower bounds
of free energy for the protein in the HP model. We present the relative improve-
ments only for the proteins having known lower bounds of free energy. Further,
we show the best structures found by GA+ and LS for protein R1 in Fig. 7; the
figure also shows the structure of R1 with the lower bound free energy.

Search Progress: We compare the search progresses of different variants of
GA and LS over time. Fig. 8 shows the average energy values obtained with
times by the algorithms for Protein R1. We observe that MGA achieves very
good progress initially, but almost becomes flat later on. WGA and LS perform
equally initially but later WGA makes more progress than LS. GA+ combines
the positive aspects of MGA and WGA. Initially, it achieves the same progress
as MGA does and later it is mostly benefited by random-walk as WGA is.

Table 2. Relative improvements (RI columns) of GA+ over BGA and LS. The values
are calculated using the formula explained in Relative Improvement subsection. Column
LB-FE presents the lower bound of free energies.

Relative improvements of GA+ w.r.t. BGA and LS
Protein info GA+ BGA LS

Seq Size LB-FE Avg Avg RI Avg RI
H1 -69 -69 -58 100% -66 100%
H2 48 -69 -69 -57 100% -65 100%
H3 -72 -72 -57 100% -66 100%

F90 1 -168 -166 -120 96% -160 75%
F90 2 91 -168 -165 -124 93% -158 70%
F90 3 -167 -164 -125 93% -159 63%
S1 135 -357 -348 -279 88% -341 44%
S2 151 -360 -349 -268 88% -343 35%
S3 162 -367 -349 -250 85% -340 33%
R1 -384 -346 -223 76% -318 42%
R2 200 -383 -346 -219 77% -324 37%
R3 -385 -344 -221 75% -323 34%

T0516 229 -258 -402 -251 74% -373 35%
T0570 258 -494 -404 -251 63% -359 33%
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Fig. 8. Search progress of different approaches for Protein R1

The difference between performances of WGA and GA+ roughly remains in the
initial boosted progress made by the macro-move i.e. MGA.

6 Conclusion and Future Work

In this paper, we presented five variants of genetic algorithms that individually
and in a combined way use three different enhancement techniques: i) an exhaus-
tive conformation generation approach; ii) a novel hydrophobic-core directed
macro-move; and iii) a random-walk based stagnanation recovery technique. We
compared our results with the state-of-the-art local search algorithm for sim-
plified PSP. We found that our final algorithm GA+ that use a combination of
all the three enhancements significantly outperforms all current approaches of
simplified PSP. In future, we intend to apply GA+ in high resolution PSP.

Acknowledgments. NICTA is funded by the Australian Government as
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Abstract. To combat online auction fraud, researchers have developed fraud de-
tection and prevention methods. However, it is difficult to effectively evaluate
these methods using commercial or synthetic auction data. For commercial data,
it is not possible to accurately identify cases of fraud. For synthetic auction data,
the conclusions drawn may not extend to the real world. The availability of re-
alistic synthetic auction data, which models real auction data, will be invaluable
for effective evaluation of fraud detection algorithms. We present an agent-based
simulator that is capable of generating realistic English auction data. The agents
and model are based on data collected from the TradeMe online auction site. We
evaluate the generated data in two ways to show that it is similar to the TradeMe
data. Evaluation of individual features show that correlation is greater than 0.9
for 8 of the 10 features, and evaluation using multiple features gives a median
accuracy of 0.87.

1 Introduction

Over a three-month period in 2011, 37% of New Zealanders have purchased at least
one item from an online auction site based in New Zealand called TradeMe [1]. The
popularity of online auction sites such as TradeMe has made them a lucrative target
for dishonest users to commit fraud. There have been several methods proposed by
researchers to identify different types of online auction fraud [2–6]. These methods are
evaluated using synthetic data, or using data collected from commercial sites such as
eBay.

There are disadvantages to using both types of data. One of the drawbacks of syn-
thetic auction data is that it may be dissimilar to data in the real world. Evaluation
performed using this data will be less reliable, since results obtained may not extend to
real auction data. Though it is possible to modify the synthetic data to simulate the real
world, it is difficult to model bidding and selling behaviour because of the large range
of possible actions. This is shown by Shah et al. [7], who found that 88% of users do
not frequently use any of the five bidding strategies described: evaluate, skeptic, snipe,
late bidder and unmask. The advantage of using synthetic data is that the instances and
types of fraud can be controlled.

Evaluation using auction data from commercial sites may give results that are more
representative of the real world than synthetic data. However, it is difficult and time
consuming to manually classify data, in the case of fraud detection, into fraudulent and
non-fraudulent users or auctions. For larger datasets, manual classification is infeasible.
In addition, it is often time-consuming to gather and process data from auction sites, as

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 120–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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seen in [3] which used an elaborate system to gather auction data from eBay. Also, data
may be selectively missing or removed by operators of the auction site, such as profiles
of users that have been identified as fraudsters, or auctions that have been identified
afterwards as fraudulent. This complicates the evaluations done using this data.

In this paper, we present an agent-based simulator of an online auction site where
agents are modelled on users in real auction data. The resulting simulation can be used
to quickly generate realistic auction data. We then validate our simulator by perform-
ing quantitative evaluations comparing the generated data to commercial TradeMe auc-
tion data, and show that the generated and commercial data shows a high degree of
similarity.

The simulator can be easily extended in the future with additional agents to inject
fraudulent behaviour. Since the simulator is modelled on a per-user basis, the synthetic
data with injected fraud will be valuable for effective evaluation of fraud detection
algorithms which often focus on per-user features.

2 Existing Work

Agent-based simulation and modelling has been used in a wide range of complex sys-
tems. Macal and North [8] list nine different areas in which agent-based modelling has
been applied, including air traffic control, anthropology, and energy analysis. Macal and
North propose possible reasons for the widespread use of agent-based modelling. They
state that agent-based modelling allows assumptions used in the past for modelling com-
plex systems to be relaxed, such as perfect market or homogeneous agents in economic
markets. Collection of data at finer levels of granularity also supports individual-based
simulations. We list three reasons that they presented that apply to our work here. First,
previous work on formal auction analysis used assumptions such as perfect rationality,
perfect market and homogeneous agents, which can be removed in agent-based models.
Second, there exists precise bidding and auction information for modelling of individual
users. Third, auction users are suitably modelled by agents since they share many simi-
larities; they are both self-contained, autonomous, and have defined ways of interacting
with other users.

One of the earliest works in agent-based simulation in auctions was done by Mizuta
and Steiglitz [9], who modelled agents of two types: early bidders and snipers, and
investigated the effects of the strategies on the probability of winning, auction price
increment, and final auction price. More recently, agent-based modelling of bidders has
been used to perform evaluations of fraud related algorithms [2, 6], or to investigate the
effects of modifying different aspects of the model, such as changing the bid increment
[10]. In both [2] and [6], the authors do not evaluate their models against reality.

In [10], Bapna et al. constructed a simulation model of Yankee auctions. They iden-
tified three broad types of bidders according to their bidding strategies: evaluators, par-
ticipators, and opportunists, and created agents that used each strategy. The simulation
model is validated by comparing the simulated revenue with the observed revenue from
data collected from real auctions. Using this model, they altered the auction bid incre-
ment to optimise seller revenue.
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We know of no previous work that attempts to accurately model bidder and seller
behaviour in commercial online English auctions using agent-based methods without
having previously classified bidders.

3 Data Generator Overview

Our data generator is an agent-based simulation of online English auctions, the auction
type used in online auction sites such as eBay and TradeMe. For more details on the
English auction and other auction types, see [11]. Auction data can be generated by
running the simulation and recording the actions of all of the agents, such as auctions
submitted and bids made. By carefully specifying the behaviour of the agents, we can
generate synthetic auction data that closely approximates real auction data.

The decision to use user-level features instead of auction-level features is because
in the future, we plan to inject fraud into the data and use it to evaluate fraud related
algorithms which tend to use per-user features instead of per-auction features [2, 3, 6].

We start by giving a brief overview of the stages involved in the implementation of
the generator:

Stage 1. Auction and User data is gathered from TradeMe in October 2011 using a
web crawler, and stored in a database. A total of 93,179 users and 161,895 auctions
were collected.

Stage 2. An agent-based simulator is built in Java with the following characteristics:
1. Each agent corresponds to a bidder or seller.
2. Agents communicate with an Auctioneer entity to submit bids or auctions. The

Auctioneer also maintains the state of all current auctions and bids and ensures
that they conform to the auction rules.

Stage 3. We define the rules that each auction and bid must follow, which are then
enforced by the Auctioneer. E.g., auction starting prices must be greater than zero.
These rules can be easily changed to model other auction sites, such as eBay.

Stage 4. We specify the behaviour of bidder-agents according to the bidding patterns
seen in the TradeMe users. This is done by representing bidders in TradeMe as a
set of features, and defining agent rules that gives similar values for those features.
Examples of rules is given in Section 4.4.

Stage 5. Next we specify the rules for seller-agents. The two main parameters are rate
of auction submission and auction starting price. We match the average rate and
distribution of auction submission of the seller-agents to TradeMe users.

Stage 6. We evaluate the synthetic auction data generated using the bidder- and seller-
agents by comparing them with the TradeMe user data we have collected. If the
synthetic and real data are not sufficiently similar, we modify the agent behaviour,
then re-evaluate.

3.1 Generated Auction Example

Table 1 gives an example of an auction generated by the generator. Table 1a lists the
bids made for that auction. Table 1b gives information about the auction. Bid Time,
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Start Time, and End Time represent time units since the beginning of the simulator
execution, with each unit representing five minutes. Duration is the number of time
units the auction runs for.

There are 8 bids made for this auction, and User 2285 wins the item for $40.61 at
time 2026. Note that Duration is less than the difference between the start and end times
because the auction was extended due to a bid submission in the last 3 time units.

Table 1. Example of a generated auction

(a) Auction Bids

BidID UserID BidTime BidAmount (cents)
1 801 871 250
2 1,820 1,710 2,361
3 801 1,735 2,661
4 2,910 1,963 2,761
5 1,820 1,998 3,761
6 2,285 2,014 3,861
7 801 2,025 3,961
8 2,285 2,026 4,061

(b) Auction Information

ListingID 0

StartTime 11

EndTime 2,029

Duration 2,016

ItemValuation (cents) 3,935

itemTypeId 1

startPrice (cents) 100

4 Implementation

In the following section we describe some of the details and difficulties of implementing
the generator. First, we describe the method and type of information collected from
TradeMe. Second, how this information is represented using a collection of features.
Third, how agents were designed using this information. Fourth, what happens during
the simulator’s execution. And fifth, the limitations of the simulator.

4.1 Data Collection

Data is collected from the TradeMe website [12] using the web crawler Scrapy and
stored in a database. Crawling begins at one user’s auction history page which contains
a list of completed auctions. Completed auctions contain a list of bids which link to the
auction history of each bidder. Unvisited pages are placed into a FIFO queue, so that
the available auction history for users will be completely collected in the order they
were discovered. This is important because the crawler only visits a small percentage
of the existing user and auction pages. Using a FILO (first in last out) queue will result
in incomplete auction histories for a large number of users.

From user pages, we extracted the number of positive, neutral and negative feed-
backs they received, and the number of auctions they participated in. From completed
auctions, we extracted bid times and amounts, the winning bid and bidder, item name,
seller name and reputation. After cleaning, 56,256 auctions and 53,951 user profiles
remained.

There are several limits to the information that cxan be collected. Firstly, only the
most recent 20 bids are viewable for a completed auction. Secondly, bid histories for
auctions are available only for 60 days after it has completed. Thirdly, some user pages
are unavailable. The reason is not given, but one possibility is that those pages belong
to identified fraudsters. The last limitation may be an advantage since we currently only
wish to simulate legitimate users; removal of suspicious users will improve data quality.
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4.2 User Features

It is difficult to identify patterns in bidder behaviour from lists of bids. Therefore, we
represent bidders using a set of features that are easier to visualise and interpret. The
set of user features used while developing the bidder agents are:

a. Auction Count the number of auctions in which the bidder made one or more bids
b. Reputation the difference between the number of positive and negative feedback
c. Bid Amount the average bid value for all bids the user made
d. Excess Bid Increment the average increment over the preceding bid, minus the

required minimum increment
e. Bids Per Auction the average number of bids made per auction
f . First Bid Time the average number of minutes the first bid is made before the end

of the auction
g. Bid Time the average bid time as a fraction of the auction time that has elapsed
h. Win Proportion the number of auctions won divided by Auction Count
i. Bid Amount Proportion the average bid value of all bids, with each bid scaled as a

proportion of the winning bid
j. Bid Proportion the average fraction of bids that are made by this user in an auction

Features a-f are log-transformed so that values are spread out more evenly for cluster-
ing, since many values are very similar for some features.

Some features, such as Auction Count, Bids Per Auction, and First Bid Time, can be
directly used in rules for bidder-agents. Other features, such as Bid Amount Proportion,
Win Proportion, and Bid Proportion, cannot, since their values depend on the behaviour
of other agents. However, those features can be used to determine whether synthetic
data from the generator is sufficiently similar to the TradeMe data.

4.3 Simulation Execution during 1 Time Unit

Figure 1 shows what happens during one time unit in the simulator. The time unit is split
into two stages; the Auctioneer phase (A), and the Agent phase (B). During the Auc-
tioneer phase, only the Auctioneer sends or receives messages, and performs actions;
all other agents are inactive. During the Agent phase, this is reversed, and only agents
perform actions. Agent actions can be performed in parallel using multiple threads. The
Message Store for Agents is simply a hash map, where the key is the agent ID, and the
value is the message. The Message Store for Auctioneer is a list.

4.4 Bidder-Agent Behaviour

The TradeMe users are clustered using the features listed in Section 4.2 using the sim-
ple k-means algorithm. To select the optimum number of clusters, we use the method
proposed by Lange et al. [13] to find the number of clusters that gives the lowest sta-
bility value, where a lower value represents a better clustering solution. Stability was
calculated for two to ten clusters, and stability was lowest when the number of clusters
was four. Therefore, we used four centroids during simple k-means clustering.



Generating Realistic Online Auction Data 125

A. Beginning of Auctioneer phase
1. Retrieve messages from Agents
2. Process messages

a. update auction states, terminate finished auctions
b. ensure auctions and bids have valid states before and after update

3. Send messages (current time, new auction, end of auction, price change messages)
B. Beginning of Agent phase

4. Retrieve messages from Auctioneer
5. Decide on what actions to take, if any
6. Send messages (new auction, bid messages)

Fig. 1. Events during the execution of the simulator in one time unit

From the clusters we identified patterns, for example: a significant number of users
only bid close to the end of the auction and rebid quickly after they have been outbid;
users who bid close to the end win more often; and users who bid early and win are
often the only bidder in an auction. Bidder agents are given behaviours that allow the
synthetic data to contain these same patterns. For example, for the last pattern, the rule
may be to increase the likelihood of entering a bid as the number of existing bids in
the auction increases, which leaves a fraction of auctions to have only 1 participating
bidder.

There are additional rules that determine other aspects of behaviour: the moment a
bidder-agent should begin bidding; how often and how much to bid above the minimum
required bid; when to stop bidding, etc. These rules generally provide probabilities of
whether an action should be taken, and a decision is made using a random number. For
instance, an agent will bid, with 10% probability, on an item whose price has reached
the agent’s perceived value.

4.5 Limitations

A known limitation of this simulator is that it is unable to accurately model the bidding
times of bids made close to the end of the auction. This is because the simulator uses
time units of five minutes, which means that the fastest speed that an agent can respond
to another bid is five minutes. The choice of five minute time units was a calculated
trade-off between the simulation performance and precision: it allowed us to quickly
generate data while retaining sufficient simulation precision.
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As a result, a bidding war close to the auction end time may occur over 30 minutes
or more, instead of within minutes. Thus, while the simulator can accurately models
user bidding time patterns earlier in the auction, it cannot do so close to the end of the
auction and distribution of values for features i and j in Section 4.2 from the simulator
will not closely match those from the TradeMe data.

5 Evaluation

In this section we present the method and results for two evaluation techniques to
validate our simulation. The method and results for the first evaluation are given
Sections 5.1 and 5.2; and those for the second evaluation in Sections 5.3 and 5.4.

5.1 Evaluation Method Using Individual Features

We compared the similarity in the distribution of per-user values, for each feature de-
scribed in Section 4.2, between the generated and TradeMe data. If the distribution of
values from the generated data match those from the TradeMe data, then our model is
more likely to be valid. The comparison is done using two correlation measures: Pear-
son’s correlation coefficient and Spearman’s rank correlation coefficient [14]. Pearson’s
correlation is a parametric test, while Spearman’s rank correlation is a non-parametric
test. The correlation measures are calculated individually for each feature.

For Pearson’s correlation coefficient, a value of +1 or−1 indicates that a linear equa-
tion describes the relationship between the two variables perfectly. For Spearman’s rank
correlation coefficient, +1 or −1 occurs when each of the variables is a perfect mono-
tone function of the other. A value close to +1 shows that the TradeMe and synthetic
data are similar.

5.2 Evaluation Results Using Individual Features

Figure 2 shows the distribution of values for six features for both the synthetic and
TradeMe datasets. To construct the figures, all values from the 30 synthetic datasets
were used, giving 111,677 values for each feature. Values are split into 20 equidistant
bins using the maximum and minimum values for that feature. The plots reflect the pro-
portion of users that have a value that falls into a particular bin. We see that distribution
of values for the 30 synthetic datasets generally match those from the TradeMe dataset.

Table 2 shows the correlation between synthetic and TradeMe data for each feature
as measured by Pearson’s correlation coefficient and Spearman’s rank correlation co-
efficient. The correlation values for both measures are greater than 0.9 for all features,
with the exception of Bid Amount, with a Pearson’s correlation of 0.53 and Excess Bid
Increment with 0.86. The low similarity for Bid Amounts, and to a lesser extent, Excess
Bid Increment, is due to the lack of information on the perceived and actual value of
items, making it more difficult to accurately model bid values.

As a whole, the high correlation values show that the value distribution of features
from our generated data is similar to TradeMe data.
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Fig. 2. Value distributions of features
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Table 2. Correlation results for all features

Feature
Pearson’s Correlation Spearman’s Rank
95% CI Correlation ρ

Auction Count 0.9468 - 0.9485 0.9476 0.9625
Reputation 0.9379 - 0.9399 0.9389 0.99997

Bid Amount 0.5207 - 0.5329 0.5269 0.9999
Excess Bid Increment 0.8545 - 0.8590 0.8567 0.8497

Bids Per Auction 0.9702 - 0.9711 0.9706 0.9930
First Bid Time 0.9889 - 0.9892 0.9890 0.99998

Bid Time 0.9701 - 0.9710 0.9706 0.9967
Win Proportion 0.9752 - 0.9760 0.9756 0.9515

Bid Amount Proportion 0.9873 - 0.9877 0.9875 0.9987
Bid Proportion 0.9841 - 0.9846 0.9844 0.9981

5.3 Evaluation Method Using Multiple Features

Lange et al. proposed a method to solve the model order selection problem in cluster
analysis; that is, to find a suitable number of clusters k. They state that a cluster solution
should be robust: that the cluster analysis should be reproducible using other datasets
drawn from the same source, and not depend on the particular sample [13]. The degree
to which the cluster solution is reproducible can be used to determine the number of
clusters k that should be inferred from a dataset. However, since only one dataset is
usually available, the dataset is split into two, and treated as two samples.

Conversely, if the number of clusters for a dataset is given, the degree of reproducibil-
ity gives an indication of the similarity of the second dataset to the first. We adapt the
method proposed by Lange et al. to evaluate the similarity of TradeMe data with synthetic
data. There are two main changes to the method; (1) there is no need to normalise results
according to the number of clusters inferred since the number remains unchanged, and
(2) two different datasets are used: the TradeMe dataset, and a synthetic dataset.

For evaluating the similarity between datasets, the equation for measuring the nor-
malised Hamming distance between two labelling vectors (in [13]) can be slightly
modified to:

d(φ(X ′), Y ′) =
1

n

n∑
i=1

1{φ(X ′
i) = Y ′

i } (1)
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where 1{φ(X ′
i = Y ′

i )} = 1, if φ(X ′
i) = Y ′

i . This gives the proportion of instances that
are given the same labelling via the classifier trained on X (which in our case is the
TradeMe dataset) and the clustering solution Y ′ for X ′ (the synthetic dataset). Since
the corresponding clusters may be assigned different labels in two different clustering
solutions even if the datasets are the same, agreement is maximised using the Hungarian
method as suggested by Lange et al.

We used the simple k-means algorithm for clustering the TradeMe and synthetic data
into four clusters. Clustering the TradeMe dataset X , gives a set of labels Y , one for
each instance. Together, (X,Y ) is used to construct a closest neighbour classifier φ.
Clustering the synthetic dataset X ′ gives a set of labels Y ′. The classifier φ is then
used to classify instances in X ′, giving the labels φ(X ′). With Y ′ and φ(X ′) we can
calculate the accuracy using Equation 1.

Features Used. We used four features for evaluating the similarity between the syn-
thetic and TradeMe data: Proportion of Max Bid, Win Proportion, Bids Per Auction,
Bid Proportion. These four features were chosen because the others:

1. Have almost the same values for all users, e.g. excess bid increment as shown in
Figure 2(d), and are less useful for clustering.

2. Are identically distributed regardless of their cluster assignments, e.g. reputation,
bid amount, and are not useful for clustering.

3. Are known not to closely approximate real data (features i and j), as discussed in
Section 4.5.

5.4 Evaluation Results Using Multiple Features

We evaluated our simulator using 30 synthetic datasets, each with roughly 3,700 users.
We report the results for evaluations using random starting centroids for simple k-
means, and using manually defined centroids.

Using 50 sets of random initial centroids for evaluating each synthetic dataset, the
average accuracy is 0.745 with a standard deviation of 0.0957. Using the first set of
centroids shown in Table 3, the average accuracy is 0.878, an increase of 0.143, with a
standard deviation of 0.0282.

Centroid Selection. The k-means algorithm is sensitive to the centroids chosen during
initialisation [15], which in turn heavily influences the result given by Equation 1. In
our case, this problem may be worsened by characteristics of our dataset. First, clusters
are not well defined in the Trade Me data, which means clusters will tend to grow
from their initial position. Secondly, the Win Proportion feature is almost binary, where
the majority of users have a value of zero or one. Given four initial centroids, there
are five configurations the centroids could take for Win Proportion, e.g., all centroids
have a Win Proportion of zero. If the configuration of centroids were different for two
datasets, the accuracy value will be very low even though the datasets may be very
similar. Therefore, it is necessary to manually define the initial centroids so that two
will have a value of one, and two with zero. This is similar to the method by Fang et al.
[15] to select centroids that maximise inter-centroid distance.



130 S. Tsang, G. Dobbie, and Y.S. Koh

Table 3. Selected centroid centers

Centroid ID Bid Amount Proportion Win Proportion Bids Per Auction Bid Proportion

Appropriate
Centroids

1 0.8 0.0 0.0 0.2
2 0.8 0.0 0.0 0.2
3 1.0 1.0 0.0 0.5
4 1.0 1.0 0.0 1.0

Inappropriate
Centroids

1 0.8 0.0 0.0 0.2
2 0.8 0.0 0.0 0.2
3 1.0 0.0 0.0 0.5
4 1.0 1.0 0.0 1.0

Fig. 3. Accuracy using different centroids for clustering using four features: Bid Amount Propor-
tion, Win Proportion, Bids Per Auction, Bid Proportion

We give evidence of this in Table 3 and Figure 3. Table 3 shows two sets of centroids.
The set named “appropriate centroids” have two centroids with the value of 0, and two
centroids with the value of 1 for Win Proportion. For the set named “inappropriate
centroids”, the difference is that the third centroid has as value 0 of instead of 1 as
Win Proportion. Figure 3 shows that this change reduces median accuracy by 0.203 and
mean accuracy by 0.192.

6 Conclusion

We successfully implemented a agent-based simulator for online auctions. We evalu-
ated the quality of data generated by our simulator in two ways; using two correlation
measures, and a modified version of the Stability measure proposed by Lange et al. [13].
The results show that our synthetic data closely matches the TradeMe data. Correlation
of individual features compared to TradeMe data exceeds 0.9 for 8 out of 10 features
for both measures, and median accuracy as calculated by Equation 1 is 0.87 for user
defined centroids.

In the future, we intend to reduce the time unit length from five minutes, so that we
can better model bidding at the end of auctions. In addition, we intend to implement
additional agents to add fraudulent bids into the auctions. This will allow us to recreate
various types of fraud, and test fraud detection algorithms using the generated synthetic
data.
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Abstract. This paper proposes a global motion estimation method to
remove unintentional camera motions which degrade the visual quality of
image sequences. The proposed approach is based on combination of 2D
Radon transform, 1D Fourier transform and 1D Scale transform which
can accurately estimate scale, rotational and translational distortions of
camera motion and is robust to internal moving objects. Our experimen-
tal results with real and synthesized videos indicate the effectiveness of
our proposed method.

Keywords: Global Motion Estimation, Radon Transform, Fourier Trans-
form, Scale Transform, Similarity Motion Model.

1 Introduction

Digital video stabilization methods try to eliminate unwanted camera motions.
These typical high frequency motions such as pan, and jitter, degrade visual ap-
pearance quality of videos. Digital video stabilization algorithms can be divided
into two main steps, Motion Estimation, and Motion Correction. In motion es-
timation step, the global motion between consecutive frames is determined. The
motion estimation algorithms can be categorized into three main classes, Block
matching based methods, Transform domain based methods, and Feature match-
ing based methods. In the block matching based approaches [1,2], the current
frame is divided into several blocks. Then, the motion for each block is esti-
mated. Finally, the global motion is calculated using estimated block motions.
The main disadvantage of this category is that local movement of internal ob-
jects degrades the accuracy of block motion estimation. High time complexity
is another problem with this class of algorithms which is due to the exhaustive
search for block matching. Feature matching based methods [3,4,5] extract suit-
able features such as SIFT [6], and SURF [7] from both current and reference
frames. After determining the corresponding features, the parameters of global
motion is estimated using matched features. Because of handling motions such
as rotation and zooming in addition to translational motions, algorithms of this
class are more accurate and flexible than block matching approaches which can

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 132–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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only deal with translational motions. However, feature based methods have lim-
itation by occlusion which is due to the moving objects. High computational
load for feature detection and matching is another drawback of these methods.
The algorithms of the last category transform the frames into a new domain and
estimate the motion parameters using the information in the transform domain.
In phase correlation technique [8], the translation property of Discrete Fourier
Transform (DFT) is used in order to obtain the translational motion parame-
ters. Although this method is very fast and is robust to local motion of moving
objects, it is not able to estimate rotational motion which is frequent in most
shaky videos. Hong et al. [9] utilized polar transform in order to estimate rotation
in addition to translation parameter of motion. Although the accuracy of this
method is satisfactory, polar transform suffers from nonuniform sampling which
makes it unsuitable for videos with moving objects. Being unable to handle scale
distortion is another drawback of this algorithm.

The second part of a video stabilization system is motion correction where
estimated global motion is filtered to remove unwanted camera movements such
that the desired camera motion remains intact. Several techniques [10,11,12] have
been proposed to smooth the estimated global motion. Although these methods
can fulfill efficient smoothness, sometimes they may have an degrading affect on
the intentional motion because of inaccurate tuning of the free parameters of the
methods.

In this paper, to improve the accuracy, flexibility, and robustness of the mo-
tion estimation, we propose a novel transform domain motion estimation based
on combination of 2D Radon transform, 1D Fourier and Scale transforms which
can accurately estimate scaling factor in addition to rotation and translation
parameters of motion. Since the Radon transform can be computed through 2D
Fourier transform with the same complexity by means of the projection-slice
theorem [13], and because of calculating motion parameters using 1D projec-
tions instead of 2D gray level images, our method is also applicable to realtime
applications.

2 Proposed Method

As mentioned in previous section, commonly used motion estimation methods
such as block matching, and transform domain based algorithms, can only deal
with translational and rotational distortions. These approaches produce poor
performance when the image fluctuation contains scale distortion as well as
translational and rotational distortions. Although feature based methods can
estimate scale parameter in addition to translation and rotation parameters of
motion, these approaches are prone to feature mismatching which is due to the
internal moving objects or occlusion. So, in this paper, a novel global motion
estimation method based on combination of 2D Radon transform, 1D Fourier
transform and 1D Scale transform is presented which can estimate the similarity
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motion model parameters accurately and is robust to internal moving objects
and occlusion. The similarity motion model is defined as(

xit
yit

)
= s

[
cos θ − sin θ
sin θ cos θ

](
xir
yir

)
+

(
Δx
Δy

)
, (1)

where s is the scale factor, θ is the rotation angle between two correspond-
ing points (xir, y

i
r) and (xit, y

i
t) in reference and target frame respectively, and

(Δx,Δy) denotes the displacement in x and y directions respectively.
In this section, we first describe the Radon, Fourier and Scale transforms and

their useful properties, then we present our motion estimation algorithm based
on combination of these transforms.

Fig. 1. Geometric illustration of the Radon transform of a 2D function

2.1 Radon Transform

Let f(x,y) be a 2D image. Its Radon transform, denoted �f is a 2D function of
the real spatial variable ρ and the angular variable θ defined by

�f(ρ, θ) =
∫ +∞

−∞
f
(
ρcos(θ)− tsin(θ), ρsin(θ) + tcos(θ)

)
dt. (2)

Geometrically, �f(ρ, θ) is equal to the integral of the function f on the straight
line passing through ρ and of direction perpendicular to θ [14]. Figure 1, illus-
trates the geometry of the Radon transform. The Radon transform has some
properties which is useful for motion estimation. These properties are as follows.

Translation: If we denote the image translated by a vector
→
t with components

(tx, ty) using f(
→
t )

we have

f
(
→
t )
(x, y) = f(x+ tx, y + ty). (3)

The Radon transform of the translated image becomes

�f
(
→
t )
(ρ, θ) = �f(ρ+ txcos(θ) + tysin(θ), θ). (4)
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Translating an image in Cartesian domain shifts the spatial variable of its Radon
transform. The amount of displacement depends on both translation vector and
angular variable. However for a given θ, the Radon transform of the translated
image is simply equal to the translation of the Radon transform of the image
with respect to the spatial variable [14].

Rotation: Denoting the rotated version of image f by angle ψ using fψ, we have

fψ(x, y) = f(xcos(ψ)− ysin(ψ), xsin(ψ) + ycos(ψ)). (5)

Since the integrand of Equation (2), can be expressed using a rotation matrix,
the Radon transform of the rotated image becomes

�fψ(ρ, θ) = �f(ρ, θ − ψ). (6)

It is clear that a rotation in an arbitrary image in the Cartesian domain corre-
sponds to a translation in the angular variable of its Radon transform.

Scale: let fs be the scaled version of image f with a factor s. Then we have

fs(x, y) = f(sx, sy). (7)

The Radon transform of the scaled image is

�fs(ρ, θ) = 1

s
�f(sρ, θ). (8)

Scaling an image by a factor s corresponds to scaling of its Radon transform and
the angular variable ρ by 1

s and s respectively.

2.2 Fourier Transform

Let f(x) be a 1D function, its Fourier transform denoted by Ff (ω) defined as

Ff (ω) =
1√
2π

∫ +∞

−∞
f(x)e−2jπxω . (9)

This transform has many properties [15], among which the translation invariance
property is suitable for motion estimation. This property can be described as
follows.

if we shift a 1D function f(x) by x0 (displacement value) and denote it by
g(x), then we have

g(x) = f(x+ x0). (10)

If we take the Fourier transform of both sides of above equation, we have

Fg(ω) =
1√
2π

∫ +∞

−∞
f(x+ x0)e

−2jπxωdx = e2jπx0ωFf (ω). (11)

By taking the magnitude of two sides of equation (11), we have

|Fg(ω)| = |Ff (ω)|. (12)

In other words, the magnitude of Fourier transform of a 1D function is translation
invariant.
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2.3 Scale Transform

The Scale transform of a 1D function f(x) is defined as

Df (p) =
1√
2π

∫ +∞

0

f(x)x−jp− 1
2 dx, (13)

where p ∈ R is the Scale transform parameter. The key property of the Scale
transform is the scale invariance. In other words, if we define g(x) =

√
αf(αx)

a scaled version of 1D function f(x) with scale factor α, then,

Dg(p) =
1√
2π

∫ +∞

0

g(x)x−jp− 1
2 dx =

1√
2π

∫ +∞

0

√
αf(αx)x−jp− 1

2 dx. (14)

By setting y = αx,

Dg(p) =
1√
2π

∫ +∞

0

αjpf(y)y−jp− 1
2 dy = αjpDf (p). (15)

If we take the magnitude of both sides of above equation, we have

|Dg(p)| = |Df (p)|. (16)

We can see from above equation that the magnitude of Scale transform is scale
invariant.

2.4 Parameter Estimation

In this section we propose our motion estimation algorithm base on similarity
motion model which is shown in equation (1). Consider fr(x, y) and ft(x, y)
be the reference frame and target frame respectively and we assume that the
target frame is transformed version of the reference frame using similarity motion
model. By this assumption, the mathematical relationship between fr(x, y) and
ft(x, y) is

ft(x, y) = fr(α0cos(θ0)x−α0sin(θ0)y+ tx, α0sin(θ0)x+α0cos(θ0)y+ ty), (17)

where α0, θ0, and (tx, ty) are scale, rotation, and translation distortions. By
taking the Radon transform of both sides of equation (17), we obtain

�ft(ρ, θ) =
1

α0
�fr
(
α0ρ+ txcos(θ − θ0) + tysin(θ − θ0), θ − θ0

)
. (18)

From equation (18), it can be seen that for every 1D radial slice �ft(., θ) of
the Radon transform of target frame ft, there is a corresponding radial slice
�fr(., θ) of the Radon transform of reference frame fr. Hence, for every constant
θ′ ∈ [0, π], if we define gt,θ′(ρ) = �ft(ρ, θ′) and gr,θ′(ρ) = �fr(ρ, θ′ − θ0), we
have

gt,θ′(ρ) =
1

α0
gr,θ′(α0ρ+ d0), (19)
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where d0 = txcos(θ
′ − θ0) + tysin(θ

′ − θ0) is the amount of displacement in
variable ρ. Now, if we take the 1D Fourier transform of both sides of equation
(19), we obtain

Fgt,θ′ (ω) =
1√
2π

∫ +∞

−∞

1

α0
gr,θ′(α0ρ+ d0)e

−2jπρωdρ. (20)

By seting t = α0ρ+ d0,

Fgt,θ′ (ω) =
1√
2πα2

0

e
2π
α0

jωd0

∫ +∞

−∞
gr,θ′(t)e

−2 π
α0

jtω
dt =

1

α2
0

e
2π
α0

jωd0Fgr,θ′ (
ω

α0
).

(21)
Taking the magnitude of both side of above equation results in

|Fgt,θ′ (ω)| =
1

α2
0

|Fgr,θ′ (
ω

α0
)|. (22)

By applying the Scale transform on the two sides of above equation we have

D|Fg
t,θ′ |

(p) =
1√
2π

∫ +∞

0

1

α2
0

|Fgr,θ′ (
ω

α0
)|ω−jp− 1

2 dω = α
−jp− 3

2

0 D|Fg
r,θ′ |

(p), (23)

or
|D|Fg

t,θ′ |
(p)| = α

− 3
2

0 |D|Fg
r,θ′ |

(p)|. (24)

To remove the constant multiplicative factor α
− 3

2

0 , we normalize |D|Fg
t,θ′ |

(p)| and
|D|Fg

r,θ′ |
(p)| by dividing each element of these 1D functions by |D|Fg

t,θ′ |
(0)| and

|D|Fg
r,θ′ |

(0)| respectively. In other words, if we define NFDk(p) =
|D|Fk|(p)|
|D|Fk|(0)| , we

obtain
NFDgt,θ′ (p) = NFDgr,θ′ (p), (25)

or in general,

NFDft(ρ,θ)(p) = NFDfr(ρ,θ−θ0)(p) ∀θ ∈ [0, π]. (26)

In other words, after transforming an image using similarity model, a radial slice
of the Radon transform of the original image corresponds to a radial slice of the
Radon transform of the transformed image, if the NFD of those radial slices
are equal (Figure 2). Using that information, we are able to estimate rotation,
scale, and translation parameters of motion with high accuracy. The procedure of
estimating motion parameters consists of five steps which are going as followes.

1. The images �Ir(ρ, θ) and �It(ρ, θ) are computed by applying Radon trans-
form on reference frame Ir(x, y) and target frame It(x, y) for angles between
0◦ and 180◦ respectively.

2. Assuming that the rotational distortion is between −θmax and +θmax, for
each radial slice of {�Ir(ρ, θr)|θr = 70, 80, 90, 100, 110}, its corresponding
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Fig. 2. Illustration of equality between NFD of the two corresponding radial slices of
reference and distorted images : (a) reference image; (b) distorted image (α0 = 4/3,
θ0 = 12o , (tx, ty) = (25, 15)); (c) Radon transform of reference image; (d) Radon
transform of distorted image; (e) radial slice �(ρ, θ = 100) of the reference image
(blue color) and its corresponding radial slice �T (ρ, θ = 112) of the distorted image
(red color); (f) Fourier Magnitude of two corresponding radial slices; (g) NFD of two
corresponding radial slices

radial slice in the range of {�It(ρ, θt)|θr − θmax ≤ θt ≤ θr + θmax} is ob-
tained using Mean Square Error (MSE) criteria. For instance, the proce-
dure for determining the corresponding radial slice of �It(., θ) to radial slice
�Ir(., θ = 70) is

θ̂t = argminθ∈[70−θmax,70+θmax]

l∑
p=0

(
NFDfr (ρ,θ)

(p)−NFDft (ρ,θ=70)(p)
)2
,

(27)
where l is the length of 1D functionsNFDfr (ρ,θ)

(p), andNFDft (ρ,θ=70)(p).
After determining the pairs of corresponding radial slices, the mean of dif-
ference values (θt − θr) is returned as estimated rotation parameter.

3. for estimating scale factor we utilize equation (22). From that equation we
know that the relation between magnitude of Fourier transform of two cor-
responding radial slices �r(ρ, θ − θ0) and �t(ρ, θ) is

|Ft(ρ, θ)| =
1

α2
0

|Fr (
ρ

α0
, θ − θ0)|. (28)

Having normalized both sides of above equation by dividing by element zero
(DC component), we convert axis to logarithmic scale. Using this, scale factor
is reduced to a translational displacement,

NFt(logρ, θ) = NFr (logρ− logα0, θ − θ0), (29)
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Fig. 3. estimating scale distortion (α0) using a pair of corresponding radial slices: (a)
radial slice �(ρ, θ = 45) of the reference image (purpel color) and its corresponding
radial slice �T (ρ, θ = 57) of the distorted image (green color); (b) NF of two corre-
sponding radial slices

where NF(ρ, θ) = |F�(ρ,θ)|
|F�(0,θ)| (Figure 3). Hence, the scale factor α0 can be

found by a simple cross correlation technique. Since in step 2, we have de-
termined the corresponding radial slices �ft(ρ, θ) to radial slices �fr (ρ, θ =
70, 80, 90, 100, 110), we estimate the scale factor using these five correspond-
ing pairs and return the mean of these five estimations as scale distortion
parameter.

4. For calculating the translation parameters, if we replace θ with θ̂ + 90 and
replace α with α̂ (θ̂ is estimated rotation parameter and α̂ is estimated scale
factor) in Equation (18), then we have

�ft(ρ, 90 + θ̂) =
1

α̂
�fr(α̂ρ+ ty, 90). (30)

Similarly, if we replace θ with θ̂ and θ̂+ 180 in Equation (18), then we have

�ft(ρ, θ̂) =
1

α̂
�fr(α̂ρ+ tx, 0), (31)

�ft(ρ, 180 + θ̂) =
1

α̂
�fr(α̂ρ− tx, 180). (32)

For estimating vertical displacement ty, between reference and target frame,

we choose radial slices �fr(ρ, 90) and �ft(ρ, 90 + θ̂) and after multiplying

and scaling radial slice �ft(ρ, 90 + θ̂) by α̂ and 1
α̂ respectively, the location

of the maximum cross correlation of these two radial slices is returned as
vertical displacement (Figure 4).

5. In the same way, to estimate the horizontal translation parameter, if θ̂ ≥ 0
then the algorithm selects radial slices �fr(ρ, 0) and �ft(ρ, θ̂), otherwise,
the algorithm uses radial slices �fr(ρ, 180) and �ft(ρ, 180+ θ̂) and does the
same cross correlation procedure to estimate the horizontal displacement
(Figure 4).
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Fig. 4. estimating translational distortions (tx, ty): (a) estimation of vertical displace-
ment using radial slice �(ρ, θ = 90) of the original image (red color) and radial slice
�T (ρ, θ = 102) of the distorted image (black color); (b) estimation of horizontal dis-
placement using radial slice �(ρ, θ = 0) of the original image (red color) and radial
slice �T (ρ, θ = 12) of the distorted image (black color)

3 Exprimental Results

In this section, robustness of the proposed algorithm is compared to two different
methods in spatial and transform domains. We used a Sift based method [16]
in spatial domain and a polar transform based method [9] in transform domain.
Note that the polar transformmethod only estimates translational and rotational
parameters of camera motion.

3.1 Exprimental Setup

The proposed algorithm is tested against scale, rotational and translational dis-
tortions in some videos. We have used one synthesized video where we added
random distortion to some of the frames of the video, and one real video where
the distortion was due to the camera shake during capturing the video. In syn-
thesized distortions, we have restricted the scale factor to the range of [0.5, 1.5]
and rotational distortion to the range of −15◦ to +15◦. The translational dis-
tortion is also restricted to 30 pixels in both horizontal and vertical direction.
The frame resolutions of the synthesized and real sequences are 280× 340 and
260× 320 respectively.

3.2 Results and Discussion

Figures 5, and 7, show some frames from our test synthesized and real videos
before and after stabilization. In this figures we observe that polar based method
fails to estimate scale distortion for all sequences. Moreover, due to the large
moving objects, the Sift results are not as accurate as our results.
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Fig. 5. Stabilization results on some frames of the test synthesized video by different
methods: (a) Original frames, (b) Proposed Method, (c) Sift Method, (d) polar based
method

Fig. 6. The graph of PSNR according to equation 33 of the synthesized video

The fidelity of our algorithm is evaluated by the Peak Signal To Noise Ratio
(PSNR) between stabilized frames which is defined as

PSNR(I1, I0) = 10Log
2552

MSE(I1, I0)
, (33)

MSE(I1, I0) =
1

wh

h∑
x=1

w∑
y=1

[I1(x, y)− I0(x, y)]2, (34)

where h, and w are the height and width of the image respectively. PSNR quanti-
fies the deviation between the stabilized frame and optimum stabilization result
which can be due to various reasons such as inaccurate estimated motion, in-
correct motion model, etc. The higher is the PSNR between two frames, the
better is their correspondence. Figures 6, and 8, depict the PSNR curves of the
sequences. It can be seen from the PSNR curves that the performance of polar
transform method is poor due to the scale distortions of the some of the frames.
Moreover, the performance of Sift based method is not as well as performance
of our method because of existance of large moving objects in videos.
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Fig. 7. Stabilization results on some frames of the real video by different methods: (a)
Original frames, (b) Proposed Method, (c) Sift Method, (d) polar based method

Fig. 8. The graph of PSNR according to equation 33 of the real video

4 Conclusion

In this paper, we have proposed a new transform based global motion estimation
method for digital video stabilization. Our method is based on combination of
Radon, Fourier and, Scale transforms which can achieve successful stabilization
result in the presence of large moving objects which is a big challenge in sta-
bilization framework. Future work will be directed to deal with more complex
motion models such as affine and bilinear motion models.
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Abstract. This paper investigates automatic construction of invariant
features using Genetic Programming (GP) for edge detection. Generally,
basic features for edge detection, such as gradients, are further manip-
ulated to improve detection performance. In order to improve detection
performance, new features are constructed from different local features.
In this study, GP is proposed to automatically construct invariant fea-
tures based on basic invariant features from gradients, image quality
(means and standard deviations), and histograms of images. The ex-
perimental results show that the invariant features constructed by GP
combine advantages from the basic features, reduce drawbacks from basic
features alone, and also improve the detection performance.

Keywords: Genetic Programming, Edge Detection, Image Analysis,
Feature Construction.

1 Introduction

Edge detection is a well developed area of image analysis, but it is a subjective
task [16,19]. Features in edge detection are functions of raw pixel values in an
image relative to a local point and are used in the process of classifying pixels as
edge points or not. Since there are no formulae to definitely describe the problem
of edge detection, various approaches have been developed to extract features
for detecting edges [16,4,19].

Generally, one feature for edge detection is not sufficient to fully identify the
edges in an image, and multiple features are useful to improve detection perfor-
mance. For instance, features based on image gradients are not good to detect
texture edges [1,16,19]. Since different advantages exist in different features [19],
a combination of features may possibly bring the advantages of each basic feature
together. Two ways of combining a set of features for edge detection are: (1) to
combine different edge detectors to construct features using a fixed model, such
as a logistic regression model [16] or the combination of voting consensus ground
truth based on a set of features [6]; or (2) to discriminate edge points based on
different responses on different parameters in a method, such as multi-scale ap-
proaches [1,18]. From these methods, a set of features can improve detection
performance [1,16,18,19], but, e.g., the performance of Boosted Edge Learning
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using approximately 50000 features for natural images is only close to a contour
detector Pb proposed in [16] with nine local features [4]. In [16], different learned
models present very similar detection performance. Therefore, how to efficiently
and effectively combine features still needs to be investigated.

Genetic Programming (GP) has been employed for edge detection since at
least 1996 [20,12]. In our previous work, GP is employed to evolve low-level edge
detectors (based on raw pixels selected automatically with their graylevels) [8,9].
The existing work for constructing edge detectors mainly focuses on low-level
edge detectors via choosing raw pixels [24], or a combination of image opera-
tors [14]. The work on GP for edge detection for constructing low-level edge
detectors shows that GP can evolve good edge detectors [24,14,8], and it is
promising to use GP for automatically constructing features for edge detection
based on existing features.

Goals. The overall goal of this paper is to investigate automatically constructing
invariant features for edge detection using GP from a set of basic features so that
the constructed features improve the detection accuracy. Here, invariant features
mean that they are not affected by image rotation. The image gradients and
histogram gradients [16] are popularly used to train learning contour detectors,
so they are used as basic features. In order to enrich the set of features for edge
detection, a measure of image quality is also used as a basic feature; it is the first
time to use this measure for edge detection. Based on these three basic features,
composite features will be constructed automatically by GP. Since invariant
features can be directly evaluated, this study is an initial investigation on the
construction of invariant features. Specifically, we would like to investigate the
following research objectives.

• Whether the features constructed by GP can improve the detection perfor-
mance, compared with each basic invariant feature alone.
• Whether the constructed features are better than the features constructed
by a simple Bayes model.
• What differences between the features constructed by GP and the basic
features exist, from an analysis of the characteristics of the detected images.

In the remainder of thepaper, Section2 brieflydescribes some relevantbackground.
Section 3 presents how GP can be used to construct invariant features for edge de-
tection. After presenting the experimental design in Section 4, Section 5 describes
the results with discussion. Section 6 gives conclusions and future work directions.

2 Background

2.1 Edge Detection

Edge detection usually contains three stages: pre-processing, feature extraction
and post-processing [17,19]. The pre-processing stage mainly focuses on noise
reduction and texture suppression while preserving edges and not blurring bound-
aries between different areas. The feature extraction stage is the main and neces-
sary stage in edge detection. The purpose of extracting features is to use them
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Fig. 1. General edge detection flow

to classify pixels as edge points or not. Post-processing mainly focuses on mark-
ing edge points, thinning edges and linking broken edges points. In general, the
post-processing techniques can usefully followmost feature extraction approaches.
Therefore, the estimation of edge responses is sensitive to the detection perfor-
mance. The evaluation of the features in edge detection is also important [17] al-
though the performance evaluation usually focuses on final edge maps.

Feature extraction mainly works on local features for the sake of simplicity and
ease of implementation. Local features mainly come from gradient computation,
such as image gradient [3,11] or local histogram gradient [16]. Based on the
difference from different directions, local features are categorised as invariant
features and variant features. Variant features are related to a direction, such as
the horizontal and vertical derivatives. Invariant features are not affected when
the image rotates, such as the outputs of the Laplacian edge detector. However,
the local features from gradient computation contain high responses on non-
edge points affected by noise or textures. Techniques for manipulating these
local features are useful to improve the detection performance. For instance,
surround suppression can reduce some texture responses on image gradients [11].
In [11], the features based on gradients and differences of Gaussian filters are
used to construct a new feature that suppresses texture responses. Therefore,
construction of features from local features has shown promise in improving the
detection performance.

Figure 1 shows a general edge detection process flow. For an image I, an
intermediate result I ′ will be obtained after pre-processing. The feature extrac-
tion stage is divided into two phases, namely response computation and feature
manipulation. In the response phase, the computation can come from gradients,
and also statistics [15], and a set of features F is obtained. Note that, some edge
detectors combine the pre-processing and response computation together, such
as the image gradients after filtering noise by a Gaussian filter in the Canny
detector [3]. In the feature manipulation phase, feature selection [4] and further
feature construction [16,11] are included, and the output is a set of features F ′.
After post-processing, a final edge map B is obtained.

2.2 Related Work to GP for Edge Detection

There has not been much previous work done using GP for edge detection. Harris
and Buxton [12] designed approximate response detectors in one-dimensional
signals by GP, but this is based on a theoretical analysis of the ideal edge detector
with raw pixels and the corresponding properties. Poli [20] suggested to use
four macros for searching a pixel’s neighbours in image process using GP, and
Ebner [5] used four shift functions and other functions to approximate the Canny
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detector. The Sobel detector was approximated by hardware design [13] with the
relationship between a pixel and its neighbourhood as terminals. Bolis et al [2]
simulated an artificial ant to search edges in image. Zhang and Rockett [24]
evolved a 13 × 13 window filter for comparison with the Canny edge detector.
A 4× 4 window was employed to evolve digital transfer functions (combination
of bit operators or gates) for edge detection by GP [10]. Our previous work [8,9]
used GP for edge detection based on ground truth and without using windows.
All these GP edge detectors are based on raw pixels and their output can be
considered as F in Figure 1.

Also, some image operators have been used to extract features in GP. Wang
and Tan [23] used linear GP to find binary image edges, inspired by morpholog-
ical operators (erosion and dilation) as terminals [21] for binary images. Variant
features constructed by image filters with different directions using GP and tex-
ture gradients are combined to train a logistic regression classifier for boundary
detection [14]. However, only one solution (combined with texture gradients) in
their work was presented to compete with other edge and contour detectors.
Therefore, their work belongs to the response computation phase, and the de-
tection performance is also dependent on the texture gradients.

To sum up, the existing work has little research for constructing further fea-
tures based on existing features. Although only one solution in [14] is found in
the response computation phase, it still makes automatic feature construction
in the feature manipulation phase appealing for edge detection.

3 Constructing Invariant Features Using GP

3.1 Terminal Set

Variant features are dependent on the direction to do extraction, and the number
of features are generally large. For further constructing features by GP, the basic
features in the terminal set of a GP system only contain invariant features, so
that the GP system can easily choose these features to construct a new invariant
feature. In this study, only three invariant features are used to construct new
features. The three features are image Gaussian filter gradients Tgg (approxi-
mated by the horizontal and vertical derivatives [3]), a new invariant feature Tsd
based on image quality (normalised standard deviations [22]), and histogram
gradients Thg [16]. Since the three features are totally different, it is possible
to construct new features for improving detection performance. Therefore, the
terminal set only contains Tgg, Tsd, Thg, and random constants rnd in the range
of [−100, 100]. Here, only image grayscales are used.

Image Gaussian Filter Gradients Tgg. The Canny edge detector [3] is a very
popular edge detector. The features extracted in the Canny edge detector can be
represented by the horizontal and vertical derivatives. The Canny detector puts
the pre-processing and feature extraction stages together, so the horizontal and
vertical derivatives for a Gaussian filter are described in formulae (1) and (2),
and the Gaussian filter gradient is defined in formula (3), where u and v are the
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position relative to a center pixel, and σ is the parameter for Gaussian filter.
After doing convolution (�) between image I(x, y) with the Gaussian gradient
∇g(u, v), the image Gaussian filter gradients are obtained (see formula (4)).

gu(u, v) = −
u

2πσ4
exp

(
−u

2 + v2

2σ2

)
(1)

gv(u, v) = −
v

2πσ4
exp

(
−u

2 + v2

2σ2

)
(2)

∇g(u, v) =
√
g2u(u, v) + g2v(u, v) (3)

Tgg(x, y) = ∇g(u, v)� I(x, y) (4)

Local Normalised Standard Deviations Tsd. Normalised standard devia-
tions are useful for image quality [22], but the normalised standard deviation
is seldom used as a feature for edge detection in the literature. The local nor-
malised standard deviation is introduced in this paper, and it is extracted based
on a small window as a local invariant feature. The local normalised standard
deviation Tsd is defined in formula (5), where SD(x, y) and Mean(x, y) are the
standard deviation and mean of the pixel (x, y) intensities in a local area around,
respectively.

Tsd(x, y) =
SD(x, y)

Mean(x, y)
(5)

Image Local Histogram Gradients Thg. Local image histogram gradients
have shown good performance for detecting edges [16]. The image local histogram
gradients are extracted based on different directions. In this paper, the local
histogram gradients Thg are combined with the two direction local histogram
gradients as one invariant feature. The local histogram gradient in the direction
θ is defined in Equation (6), where pixels around pixel (x, y) in a local area
are divided into two groups based on the boundary with direction θ, and lθ,i
and rθ,i are the occurrences for the pixels located in the bin i from the two
groups, respectively. Since hθ(x, y) ≥ 0, the local histogram gradient Thg based
on all possible directions θ is defined in Equation (7). Being different from Tgg
(constructed based on the horizontal and vertical directions), Thg is constructed
based on θ = 45◦, 135◦. The other reason for only using the two directions is that
our previous work [7] showed that the diagonal derivatives are better than the
horizontal and vertical derivatives for detecting edges. For the test image dataset
in the Berkeley Segmentation Dataset (BSD) [16], the performance based on Thg
with θ = 45◦, 135◦ is almost the same as Thg based on θ = 0◦, 45◦, 90◦, 135◦.

hθ(x, y) =
1
2

∑ (lθ,i − rθ,i)2
lθ,i + rθ,i

(6)

Thg =
∑
θ

hθ(x, y) (7)
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3.2 Primitive Functions

The function set contains the four algebraic functions {+,−,×,÷} and three
logical operators {IF,<,>}. Here, ÷ is protected division, producing a result of
1 for a 0 divisor. IF contains three arguments, the first one is a boolean. IF will
return the second argument with a real number when the first is true, otherwise
will return the third argument with a real number. It is possible that a feature is
better than another feature for some edge responses, but worse than the latter
for other responses. Based on the logical operators, two features are combined
together, and GP will automatically choose partial responses from one feature.
That is why the logical operators are used.

3.3 Fitness Function

We treat the edge detection task as a balanced binary classification task (with
the edge pixels as the main class) in the evolutionary training process. For the
output (o) of a program, we do not use a threshold for marking edge points,
but instead the output is directly evaluated by a simple Bayes model. Since the
prior probabilities for the distribution of edge points and non-edge points are the
same, the Bayes model is simplified, and formula (8) presents the weight value
pj for each class (j = 0 for non-edge points, and j = 1 for edge points) based
on the output o, the estimated mean(s) μ̂j and estimated standard deviation(s)
σ̂j . When p1 is larger than p0, the output is considered as an edge point (in a
soft edge map), otherwise, a non-edge point. The fitness function is based on the
output TGP without post-processing, following the suggestion from [17].

pj =
1

σ̂ j
exp

(
− (o− μ̂j)

2

2σ̂2
j

)
(8)

TGP =

{
p1

p0+p1
if p1 > p0

0 otherwise
(9)

The aim of new features constructed by GP is that they should detect the number
of true edge points as much as possible, so recall r (the number of pixels on the
edges correctly detected as a proportion of the total number of pixels on the
edges) is a very important indicator. When p1 is larger than p0, the discriminated
pixel is considered as an edge point (TGP > 0). When p1 is not larger than p0,
the output TGP is considered as very unlikely to be an edge point (TGP = 0).
However, it is possible that non-edge points are incorrectly detected as edge
points, therefore, specificity s (the number of pixels not on the edges correctly
detected as a proportion of the total number of pixels not on the edges) is also
considered in the fitness function. Therefore, we adopt the fitness function Fit
as defined in formula (10) in the training phase.

Fit =
2rs

r + s
(10)
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(a)78004.jpg (b)23080.jpg (c)216053.jpg

Fig. 2. Training images from BSD dataset and their ground truth

4 Experimental Design

The BSD consists of natural images (of size 481× 321 pixels) with ground truth
provided. All images are independent and are taken throughout the world. The
training dataset contains 200 images and test dataset has 100 images. For fair-
ness of judgement of edges, the ground truth are combined from five to ten
persons as graylevel images. Fig. 2 shows three training images and their ground
truth. For simplicity, we sample image pixels with the same number of edge
points and non-edge points as our training data. Approximately 250 edge points
and 250 non-edge points are randomly sampled from each training image. There-
fore, the training data is a balanced binary classification dataset, including ap-
proximately 100, 000 cases and the three invariant features. The window sizes
for Tgg, Tsd and Thg are 7× 7, 3× 3 and 13× 13, respectively.

The parameter values for GP are: population size 200; maximum generations
200; maximum depth (of a program) 7; and probabilities for mutation 0.15,
crossover 0.80 and elitism 0.05. These values are chosen based on common set-
tings and initial experiments. There are 30 independent runs.

The evaluation is directly based on one feature, without post-processing. To
measure the performance of these features constructed by GP, the F -measure is
used in the testing phase [16,4]. The F -measure (used in [16,4] as F = 2rp

r+p ) is the

combination of recall r and precision p (the number of pixels on the edges cor-
rectly detected as a proportion of the total number of pixels detected as edges).
In the F -measure evaluation system, pixels are discriminated as edge points
based on the value of their features larger than a threshold, and the predicted
edges are simply thinned by the thinning operator [16]. After obtaining thinned
prediction, an optimal matching operator will be used to match the prediction
and the ground truth. Based on different threshold level indices k = 0, 1, ..., 51, a
maximum Fmax (Fmax = max{Fk}) will be considered as the measurement for
the feature, where Fk is the F value when the threshold level index k is used.

For fair comparison, the Fmax values of the three basic features (Tgg, Tsd,
Thg) also are given without post-processing, so their values are different from
the final performance evaluation in [16]. In the feature performance evaluation,
the Sobel edge detector is the same result as the final detection result evaluated
in [16], because the Sobel edge detector does not contain special post-processing
techniques.
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Table 1. Comparison of Fmax values among constructed features by GP, Image Gaus-
sian Gradients Tgg, Normalised Standard Deviations Tsd, Histogram Gradients Thg,
Sobel Edge Detector and a Bayes Model for the BSD Test Images

Fmax

GP 0.5728± 0.0292
Tgg 0.5153
Tsd 0.4968
Thg 0.5434
Sobel 0.4832
Bayes 0.5302
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Fig. 3. Fmax values for the 30 features constructed by GP

5 Results and Discussion

5.1 Overall Results

Table 1 presents the mean and standard deviation of Fmax values from the 30
features constructed by GP, and Fmax values from Tgg, Tsd, Thg and the Sobel
edge detector. The training time for each constructed feature is around 3 hours,
but the test time can be ignored because the time to extract histogram gradients
is far longer than executing a program. Also, an estimated Bayes model based
on the sampling dataset is used to extract features (using formulae (8) and (9))
for the test images when Tgg, Tsd, Thg are considered as independent variables.
The bold font means that the results from GP are significantly better than the
others using the one sample t -test with significance level 0.05. From the test
results, it shows that the features constructed by GP significantly improve the
detection performance. However, the combination of the three features by the
Bayes model does not improve the detection performance. Therefore, we can see
that GP is effective for automatic construction of invariant features.

5.2 Comparison among GP, Tgg, Tsd and Thg

Figure 3 shows the Fmax values of the 30 features constructed by GP. The
maximum Fmax is 0.6009, and the lowest Fmax is 0.5037. From Figure 3, the
worst feature in the 30 features is an outlier, and it is worse than Tgg and Thg (see
Table 1). The number of the 30 features with higher Fmax than Thg is 24, and
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Fig. 4. Details for r and p of Tgg, Tsd, Thg and the best feature constructed by GP

two thirds of these features are higher than 0.58. Therefore, most of the features
constructed by GP are better than the basic features although the training data
is not large.

Figure 4 shows the details for r and p with different threshold levels. Here,
“@” is the position for the Fmax. Compared with the three basic features Tgg,
Tsd and Thg, the curve for the best feature constructed by GP (TGP ) is obviously
better than the three basic curves from Tgg, Tsd and Thg. Therefore, the r vs p
curves also show that GP can construct good features.

5.3 Detected Images

Figure 5 shows four detected images from the BSD test image dataset by Tgg, Tsd,
Thg, the best constructed feature TGP , the Sobel edge detector, and the feature
constructed by the simple Bayes model (see formulae (8) and (9)), where “GT”
is ground truth. The detected images from Tgg, Tsd, Thg might be hard to read
in print version because of low contrast edge responses. The reason for selecting
the four images is that they have edges which are difficult to detect: the graylevels
of the top of sail in the first image are similar to the background (dark sky); the
texture of the body in the second image is similar to the background (grass covered
ground); the middle of the background in the third image has plants with slightly
irregular texture in different spaces and their reflection in the water; and the last
image includes clouds in different spaces, the graylevels of the left middle of the
animal body are almost the same as the clouds, and irregular stone textures.

There are interesting observations from the three basic features. From the
detected images, Tgg is very good at finding obvious edges without textures, but
has only a weak response in low contrast areas, such as the top of the sail in the
first image. Tsd improves the responses on the edges in low contrast areas (see the
detected edges from the sail in the first image), but gives stronger responses on
the irregular textures, such as the stone area in the fourth image, compared with
Tgg. Compared with Tgg and Tsd, Thg suppresses the responses in the texture
areas, however it gives too stronger responses on the discontinuities, such as the
responses on the edges for the clouds in different spaces, even the water wave.

The detected images by GP in Figure 5 reveal that the feature constructed by
GP weakens the response problems (in Tgg, Tsd and Thg for some non-edge areas)
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Fig. 5. Detected images based on the different features

and gives clear responses on edges. From the four detected images, it seems that
the constructed feature suppresses most of the textures in the four images. From
the first image and fourth image, the constructed feature has a good ability
to detect edges in low contrast areas, such as the edges of the sail, and the
response magnitudes for the boundaries of the clouds (weaker than the response
for the contour of the animal). From the third image, the constructed feature
avoids the strong response on the water wave. Therefore, the constructed feature
combines the advantages from image Gaussian gradients Tgg, local normalised
standard deviations Tsd and image local histogram gradients Thg, and weakens
the inappropriate responses existing in the three basic features.

The detected results by the simple Bayes model still have the problem of high
responses on low contrast areas, such as the water waves in both sides of the
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third image and the boundaries of the clouds in the fourth image. The feature
constructed by the Bayes model is still not good for texture suppression, such as
the water surface in the first image and the grass in the second image. Therefore,
these examples confirm the effectiveness of the GP method.

6 Conclusions

The goal of this paper was to investigate using GP to construct invariant fea-
tures for edge detection to improve the detection performance. Based on the
experimental results of the features constructed by GP with three basic fea-
tures, namely image Gaussian gradients, local normalised standard deviations
and image local histogram gradients, the goal was successfully achieved. The
constructed features combine the advantages from the three basic features, and
reduces their disadvantages. Also, the comparison between GP and a simple
Bayes model shows that GP has ability to find a way of efficiently combining
different features together.

For future work, we will test this technique on various features and anal-
yse constructed features in order to find useful rules (functions) for combining
features to improve detection performance. In addition, other machine learning
algorithms will be used to compare with GP. Post-processing techniques will be
employed to obtain the final solutions, and the final edge maps will be compared
to state of the art edge and contour detectors.
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Abstract. In order to allow more flexible and general learning, it is an
advantage for artificial systems to be able to discover re-usable features
that capture structure in the environment, known as Deep Learning.
Techniques have been shown based on convolutional neural networks
and stacked Restricted Boltzmann Machines, which are related to some
degree with neural processes. An alternative approach using abstract
representations, the ARCS Learning Classifier System, has been shown
to build feature hierarchies based on reinforcement, providing a different
perspective, however with limited classification performance compared
to Artificial Neural Network systems. An Abstract Deep Network is pre-
sented that is based on ARCS for building the feature network, and
introduces gradient descent to allow improved results on an image clas-
sification task. A number of implementations are examined, comparing
the use of back-propagation at various depths of the system. The ADN
system is able to produce classification error of 1.18% on the MNIST
dataset, comparable with the most established general learning systems
on this task. The system shows strong reliability in constructing features,
and the abstract representation provides a good platform for studying
further effects such as as top-down influences.

1 Introduction

Deep Learning has recently become a significant area of study in machine learn-
ing, particularly related to computer vision [1]. The main object of this approach
is the discovery of intermediate features that capture structure in the environ-
ment being observed. These features can be re-used and incorporated into other
features, and allow learning based on a deeper network structure than was possi-
ble with previous neural network approaches. Deep networks do not always pro-
vide better performance than shallow classification techniques, but their ability
to combine and re-use elements in a compositional hierarchy makes them well
suited to certain kinds of tasks, such as object and digit recognition, and gives
them a lot in common with various models of cognitive processing [2–4]. They
may also offer new insights into the functioning of certain learning mechanisms
within the cerebral cortex (although the relationship with cortical structures has
been called into question, and alternative models have been suggested [5]).

One of the established approaches is the use of stacked Restricted Boltzmann
Machines (RBM) [6], which are trained in an unsupervised manner before the
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task-specific training is applied. This allows the system to capture features of
the observed environment, and is an important design philosophy as it forces the
system to capture structure, rather than just finding the minimal set of features
relevant for classification.

One limitation of traditional Artificial Neural Networks (ANN), particularly
those with increasing depth, is they can become stuck in local minima, where
training ceases to improve performance even though better solutions are avail-
able [7]. Neural networks can give very precise solutions, however this depends
on the network being initialised in a suitable area of the search space. RBM tech-
niques address this problem, using unsupervised learning to initialise the net-
work according to significant features of the environment, followed by a method
to fine-tune performance according to the task, which can be done using back-
propagation [6]. This allows initialisation of a deep network that is not likely to
give adequate behaviour from random initialisation of weights. However, RBM
networks have shown limitations in terms of reliability [8, 9], and a number of
attempts have been made to improve discovery of features.

Evolutionary Computation provides an alternative approach to machine learn-
ing, usually based on genetic algorithms and reinforcement techniques. Evolu-
tionary systems tend to be very reliable at finding a good solution, however the
use of random variation, rather than gradient descent used in ANNs, often does
not provide the same precision found with neural networks or kernel methods.

Learning Classifier Systems (LCS) are an evolutionary technique that com-
bine evolutionary processes with reinforcement learning, to maintain a popula-
tion of classifiers that collectively model the observed system [10]. The Genetic
Algorithm used by many LCS approaches follows an evolutionary analogy, how-
ever the process of capturing a population of rules based on reinforcement can
be viewed as an analogy of cognitive learning processes, with a greater degree
of generalisation than Reinforcement Learning. The Activation-Reinforcement
Classifier System (ARCS) [11] is a recent LCS approach that bases the design
on abstract cognitive features, such as reinforcement of memory traces through
use, as seen in cognitive models such as ACT-R [12]. This process is used as
a basis for maintaining the rule and feature population. An implementation of
this system [13] provides a method for building a feature hierarchy of re-used el-
ements, rather than using a population of discrete rules with redundant building
blocks typical of Genetic Algorithm systems. In this feature hierarchy elements
are constructed from combinations of other features, producing a deep network
related to that found in Deep Learning neural networks.

ARCS has shown reliability in constructing a feature hierarchy on the MNIST
visual classification task [13], however the performance level reached is far outside
that found by neural networks (10% vs 1% error). Another LCS technique based
on Haar-like features has shown better performance, reaching 4% error with the
aid of confusion matrices [14], however this is based on pre-defined features and
does not build a deep feature hierarchy, and again is well outside the performance
level seen by the best neural network and kernel systems.
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The principles used for building a feature hierarchy in ARCS are very dif-
ferent to that used in RBM and convolutional neural network systems. ARCS
uses an abstract representation, borrowing principles from behavioural psychol-
ogy which deals with abstract cognitive phenomena. In contrast neural networks
relate to localized phenomena such as the interconnection and behaviour of neu-
rons, identified from studies in neuroscience [15]. Providing a different angle on
a common problem can be useful for giving a broader perspective. The broader
aim of studying the development of a feature hierarchy based on abstract repre-
sentations, is to use the model to incorporate other important effects in visual
perception, such as the role of context in the activation process and related top-
down influences. As an example the model by Bar [16, 17] describes a process
where the general context of the scene is interpreted first, largely from low spatial
frequency information, and this provides a top-down influence on the activation
of lower level features that capture details. The use of a more abstract model,
which employs a hierarchical part-based representation built in a self-organising
manner, gives a good platform for introducing and studying these kinds of effects.

Hinton’s model [18] uses unsupervised learning to build the feature network,
followed by a fine tuning process to improve classification. ARCS uses a different
approach and builds a feature network based on random creation from observa-
tions, modified according to reinforcement and selection. This may also benefit
from a related fine tuning approach to improve performance. With certain mod-
ifications it is possible to introduce back-propagation into the feature network
constructed by ARCS, allowing an alternative and reliable manner for construct-
ing features, along with a gradient descent technique to improve performance.

2 Connecting the Reinforcement-Based Feature Network
with Gradient Descent

The features used in ARCS are abstract and do not have a direct relationship
with individual neurons, but rather represent features that may be captured by
a group of neurons or connection weights. The feature network used in ARCS
consists of a population of low level atomic features, which can be directly com-
pared with observations, and a network of composite features, that represent
common combinations of smaller features. This produces a network of features
of increasing field size, each constructed from lower level elements, producing a
network related to that in models of the human visual system [3].

Atomic features are represented using a sum of weighted values, created to
respond to a section of an observation. Composite features are constructed from
approximately 2-8 other features, which may include other composites, and vec-
tors representing the relative positions of the features. When an observation is
made, each atomic fragment is tested at each position, producing a map of match
values, and each composite is tested according to the match values of each child
at their respective positions, producing a match map. Activation values are sim-
plified as binary values according to a threshold, and a composite is activated
at a given position if each child is also active.
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Fig. 1. (L) Connections between atomic and composite fragments, and maps repre-
senting match positions of each relative to the observation. (R) Histogram of depth of
network produced with the ADN system (Top-BP).

A representation of the connections between fragments and respective match
maps used by ARCS is given in Fig. 1(L).

Learning Classifier Systems act by identifying the set of classifiers, or rules,
that match the current observation, and each classifier defines an action or clas-
sification, along with a value representing the accuracy or expected reward when
the classifier matches. In the ARCS system composite features are connected to
classifications, using a weight reflecting the probability P (class|feature). Note
that this description is a simplification of that used in [13]1. For each observa-
tion a set of active composite fragments is determined, which acts in a similar
manner to the set of active rules used in standard LCS systems. From this set
the classification is chosen according to the set of Q values captured in the
P (class|feature) weights. In exploration/exploitation paradigms this is chosen
probabilistically using the Boltzmann distribution eqi∑

j eqj
, however in a classifi-

cation task the maximum value can be used. According to the result the Q value
is updated for each class for each active composite feature.

Each fragment also maintains an accessibility value, reflecting scalar rein-
forcement through use, which is used to maintain the feature population. At
each time step a value of 1 is distributed amongst the fragments connected to
the composite with the highest association with the correct class. This value is
derived from models of reinforcement of memory traces such as ACT-R, using
a decay function ft = α(ft−1 + r), and provides a ranking amongst features
in the population according to the frequency that the feature is significant for
classification. This has been modified to use an average function so there is less
variation over time for each, while providing ranking amongst the population:
ft = ft−1 + α(r − ft−1).

1 The previous implementation uses a separate population of rule features to connect
composites to classifications, which has the advantage of allowing further sparseness
as not all connections between composites and classes are represented, but requires
maintenance of another population. This has been removed to reduce complexity,
and shows the same performance.



160 A. Knittel and A.D. Blair

Performance of the feature-based ARCS system reaches approximately 10%
error on MNIST [13]. This shows an ability to construct a feature hierarchy using
reinforcement methods, and runs with stability and reliability, however classifi-
cation performance is limited compared to neural network or kernel methods.

2.1 Combining the Feature Network with Neural Network
Techniques

While ARCS is able to find a rough solution reliably, back-propagation has
many advantages in finding a more precise solution, and can be introduced with
appropriate modifications.

ARCS chooses a classification according to the feature with the highest asso-
ciation probability with a class. The classification decision is based on individual
features rather than combinations, although combinations can be constructed as
new features. One limitation of this approach is that features represent combined
positive activation of child elements, and negative weights are not used. Intro-
ducing negative weights does not fit the design of the creation process well, as
currently new features are constructed from the set of features currently active,
emphasising relevance between the features, whereas negative weights would be
randomly sampled from the set of all features currently inactive. Introducing
this did not improve performance.

The classification step can be modified such that the relationship between
composite features and classes acts as a Multi-layered Perceptron (MLP) [15],
based on a weighted sum and activation function, modified through back-
propagation, along with bias values. These weights replace the P (class|feature)
values in the previous design. Given a set of activation values of composite frag-
ments, activation of each class can be determined, and modified according to
back-propagation. This only acts on the connections between composites and
classes at this stage, not on connections between composites. As the compos-
ite network is dynamic, and connections exist between many composites and
classification nodes, the network does not have a clear layered structure, but
rather contains random or fully connected links between composite fragments at
different depths and the classification nodes. This is shown in Fig. 1. The back-
propagation method is given in the following equations [15], using a learning rate
of 0.01 and no momentum:

δk = Ok(1 −Ok)(Ok − tk) (1)

Δw(j,k) = −ηδkOj (2)

Δθk = −ηδk (3)

δj = Oj(1−Oj)
∑
k∈K

δkw(j,k) (4)

where Ox is the activation value, tx the classification target, w(x,y) the weight,
θx the bias and k ∈ K the set of parents of j.
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It would be more consistent with the Deep Belief Network model [18] to
perform the feature discovery process first and run fine tuning such as back-
propagation afterwards, however in ARCS the links between features and clas-
sifications use a method based on argmax, rather than summation and sigmoid
activation function common in back-propagation systems. As such it is more
suitable to change to a system based on summed activation, during the feature
discovery process as well as during fine tuning. This requires a modification to
the reinforcement method used to maintain the feature population. The impor-
tant principle followed is allocation of a fixed resource at each time step, which is
allocated to features significant to the decision made. This process has shown to
be effective in balancing general and specialised rules [11], and ensuring coverage
of observations. Instead of reinforcing the feature with highest Q value, the rein-
forcement is distributed amongst those (top-level) features that are significant in
activation of the correct class, as given in Equation 6. As such the reinforcement
of the feature population is integrated with the back-propagation process and
both are active at the same time, rather than as two separate phases.

rj = e
∑

k∈K w(j,k)xk (5)

fj = fj + α(R
rj∑
i∈I ri

− fj) (6)

where xk is 1 for the correct class and -1 for incorrect, R is the reinforcement to
be distributed (value 1), and fj is the accessibility reinforcement for the feature.

To distinguish this design from the Learning Classifier System approach, this
system is referred to as an Abstract Deep Network. In summary the first im-
plementation of this system, referred to as Top-BP, uses random creation of
atomic and composite fragments, and atom fragments use a weighted product-
sum method with sigmoid activation, and a threshold to give a binary activation
value, for each position. Composites are active at each position if all child ele-
ments are active at their respective positions. The classification layer is a fully
interlayer connected network between each composite and each classification
node, and back-propagation acts only on the classification layer connections.

2.2 Training and Evaluation on MNIST

The MNIST dataset of handwritten digits [19] is a standard test used by many
image classification techniques. The best performing systems are kernel methods
and convolutional neural networks using a range of pre-processing and specific
transformation techniques [19, 20], and the RBM based Deep Belief Network [18]
is one of the best generalised learning systems. A convolutional RBMmethod [21]
provides another approach that captures some of the advantages of both, using
unsupervised learning in a convolutional max-pooling based architecture.

Selective training regimes are sometimes used on MNIST, such as training
individual classes before introducing wider selections of the training set [18].
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Table 1. Summary of results for ARCS and ADN systems, and comparison with
existing systems

System Features Fine tuning Error

ARCS Convolved 10.0%
ADN Convolved Top BP 1.57%
ARCS Full size 12.5%
ADN Full size Network BP 2.72%
ADN Convolved Network BP 1.39%
ADN Convolved Atom BP 1.47%
ADN Convolved Top BP, Freeze 1.23%
ADN Convolved Atom BP, Freeze 1.18% *
ADN Convolved, 100 Atom BP, Freeze 1.78%

Ebadi 12 Haar features XCS 4.0%
Hinton 06 Full size RBM 1.25%
Ranzato 07 Convolved NN 0.64%
Lee 09 Convolved RBM 0.82%

To train ARCS and the ADN system a simpler process is used, for each training
step a random image is chosen from the MNIST training set (60,000 images).
After every 100,000 training steps an evaluation is performed using each of the
10,000 test images, with no adjustments to weights or the population.

Performance of ARCS and the Top-BP implementation of the Abstract Deep
Network are shown in Table 1. The use of back-propagation gives greatly im-
proved performance, reaching a level of 1.57% (vs 10%). Analysis of the network
topology shows the number of nodes at each depth, approximately half of the
5000 composite nodes are at depth 4 or below, while the network has a maximum
depth of 10. The higher depth does not seem necessary for this problem, however
analysing the connectivity of the network shows most nodes (4571) have only 2
child elements, and as such the network is very sparse, in a sense representing
a clustering representation. The distribution of nodes with 2 children is higher
than the creation distribution, indicating a self-organising preference for nodes
with limited connectivity.

3 Gradient Descent of the Feature Network

A further advantage may be found by allowing fine tuning to influence the
weights of the composite feature network, as well as the classification stage.
This however requires a continuous activation function for composite features
rather than the existing binary approach. A softer activation function may also
handle partial activations in noisy or occluded images in a more reliable way.

A continuous approximation of the AND function used by composites can
be found by using a weighted summation method with a sigmoid activation
function, and setting the bias such that the feature is ‘active’ only when each
child is also activated. Composite features are created from observations by
selecting a number of currently active features. New composites can be created
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using the continuous activation function by setting the bias of the new composite
as θ = −

∑
i ai+ε, where ai is the current activation of each feature at the chosen

position, ε is a margin of tolerance, and it is assumed weights wi,j are initially
set to 1.

Using this method the network produced is similar to that of MLPs [15], and
the delta values from the classification layer may be passed down through the
network. There are however a number of considerations, a) the network is not
arranged in fixed layers, which complicates the process of passing delta values
through the network, b) the external (classification) layer is connected to nodes
at different depths, and c) each feature does not have a single activation value,
but rather maintains a map of activation values at various positions.

3.1 Full-Size Features

The evolutionary ARCS system and the Abstract Deep Network described ear-
lier use atomic features with a small receptive field, that are convolved on the
observation. In contrast Hinton’s RBM method [18] uses features that match
the full-size of the image, removing translation invariance but allowing position
specific information in the features. Full-size features, which respond to a single
position, require less complexity to implement as each feature has a single acti-
vation value rather than a map, simplifying the activation process as well as the
back-propagation procedure.

An implementation is described that is based on the ARCS system, but uses
full-size features, to allow the use of gradient descent with minimum complexity.
This is done by generating atomic features that have the same dimensions as the
input image, however are defined only in a small region, using the same method
used to define the smaller size features. Potential advantages of full-size features
are position specificity and reduced processing, however disadvantages are lack
of translational invariance, such that a given feature must be identified in each
position it is to be used.

The gradient descent algorithm is slightly different to the standard approach
used in MLPs, as the network is not defined in fixed layers, and connections
between active fragments and the classification layer occur at multiple depths.

The error signal produced from the classification nodes provides a delta value
for each top-level feature, as described in Equation 1, and using these values
gradient descent can be applied to lower features with a variation of the standard
approach. Firstly, from the set of active top-level fragments and all associated
child elements, an ordering is constructed such that each child fragment occurs
after its parent. Examining each fragment (k) in turn , for each child (j) the
respective delta value is adjusted according to Equation 7 below, and the weight
of the connection with the parent and bias are modified according to the previous
Equations 2 and 3, updating the weights and biases in the feature network.

Δδj = Oj(1 −Oj)δkw(j,k) (7)
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3.2 Behaviour with Continuous Feature Activation and Gradient
Descent

Behaviour was tested for a number of methods, using full-size features with
ARCS, using the continuous-valued feature activation method with full-size fea-
tures, and using back-propagation, referred to as Network-BP (full-size). Results
are given in Table 1. Full-size features show a slightly worse result than convolved
features with ARCS of 12.5%, while full-size features using the continuous-
valued activation method alone is significantly poorer at 17% error. When back-
propagation is used along with continuous-value activation, passing gradient
descent adjustments through the weights of the feature network, performance
is improved to 2.72%, significantly better than the full-size feature approaches
without gradient descent, however with higher error than the convolved system
with back-propagation of the top layer.

The continuous activation function operates slightly differently to the AND
function previously used by ARCS, and on its own does not support the ac-
tivation process as effectively, however allows effective learning with gradient
descent. Full-size features are not shown to perform as well as convolved fea-
tures in this domain, however are useful for comparison as they have reduced
design complexity and require less processing time.

3.3 Gradient Descent with Convolved Features

Full-size features reduce complexity and processing, however there are concep-
tual and practical advantages with the convolved method, as individual features
can be matched in multiple positions, providing translational invariance. Convo-
lutional methods are also able to scale to larger and more realistic image sizes,
and have been shown to be a successful approach [21].

In the convolved system, each feature has a range of activation values ac-
cording to match positions, however classification nodes are activated from a
single value for each connected feature. As such the classification step acts as a
bag-of-words model according to the top-most features, while the composition
network acts as a part-based model [22]. Back-propagation from classification
provides a well defined delta value for each top-level feature, however handling
back-propagation through the network must handle a distribution of values for
each feature for various match positions.

The activation value of each top-level composite is given by the max value
over its match positions, and refers to a single location. Back-propagation can
be performed according to the value at this position, and applied to the match
position of each child that contributes to this value.

Passing delta values through the network without clearly defined layers, when
updates are applied sparsely, would require a complex procedure to combine
delta updates according to different match positions of each feature, while at
the same time identifying dependencies between nodes to ensure all parents of
a given node are updated before its children. For simplification update values
can be applied in a distributed manner, at the cost of multiple passes through
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the network. A distributed approach allows delta updates to refer to different
positions of a given node in different passes, as required when receiving back-
propagation signals from a number of parent features, which may each relate to
different match positions.

The distributed update procedure acts using the delta value of each active top-
level fragment, given in Equation 4. The activation value for the fragment is given
by its match position with the highest value. For each fragment a distributed
top-down pass is run on each child, setting the delta to be used for each child,
and subsequently updating the weight to the child, according to Equation 8. The
operation recurses to each child, using the activation value at the appropriate
position for the child relative to the chosen position in the top level fragment.
The weights between composite fragments and between atomic fragments and
composites are updated in this manner using a depth-first process.

δj = Oj(1−Oj)w(j,k)δk (8)

note that the δj value update is not added, but is set once and proceeds in
a depth-first pass, with the weight and bias values updated in each pass. In
contrast the full-size feature method is breadth-first.

Implementing convolved features with back-propagation (Network-BP) gives
improvement over the system based on full-size features, and is comparable to
the Top-BP system based on gradient descent of only the top layer, reaching
an error rate of 1.39%. Advantages over the Top-BP method are minor in this
domain, however it also allows greater flexibility of learning the structure of the
feature network.

3.4 Adjustment of Atomic Fragments

Atomic features are created from an observation and remain fixed. Passing the
BP updates to the atomic fragments allows them to be modified to better suit
the observations matched by the feature, and greater sensitivity. The BP pro-
cess described previously passes a delta value to each atomic fragment, which
can be used to alter the feature. The top-down operation also passes position
information about where the feature matches the observation. Adjustment to
the feature is performed according to: ΔF(x,y) = −ηδjI(x′,y′), where F(x,y) is the
weight value of the feature at a given position, and I(x′,y′) is the respective ob-
served value. Behaviour (Atom-BP shown in Table 1) shows similar performance
on MNIST as with the Network-BP and Top-BP methods of 1.47%, and offers
further flexibility with adjusting the feature network to fit observations.

3.5 Fine Tuning

Each of the described approaches act in an online manner, continuously updating
the feature population and the weights between features with each new training
example. More detailed fine tuning can be performed by freezing the feature
population, and allowing the back-propagation to continue independently. This
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was carried out by running the online system for 106 examples, before halting
population updates and continuing training of the network weights.

Operation using this approach shows less variation in the result, and gives an
improved classification level of 2.26% (vs 2.72%) for full-size features, of 1.23%
for convolved features (Top-BP), and 1.18% (vs 1.49%) for convolved features
(Atom-BP), taken as the average over four runs. This result shows classification
performance equivalent to that shown by the Deep Belief Network used in [18].

3.6 Reduced Feature Set

In the previously described runs, 1000 atomic fragments and 5000 composites
have been used. In order to test the influence of a reduced feature set, a popu-
lation of 100 atoms is used, as shown in Table 1. The full-size system showed a
significantly increased error level of 13.53% (from 2.26%), while with convolved
features it is able to maintain a level of 1.78% (compared to 1.18% with 1000
atoms). For the convolved system, using a reduced population gives a good com-
promise, maintaining good performance while reducing processing time.

Fig. 2. Example of atomic features produced in the Atom-BP Abstract Deep Network

4 Discussion and Conclusions

We have described the use of an Abstract Deep Network, that builds a feature
network using reinforcement related to Evolutionary Computing, along with a
fine tuning step similar to that used by MLPs. This has been applied to the
MNIST dataset without pre-processing, and only using spatial assumptions, us-
ing vectors to describe relationships between features. In general the system has
shown strong reliability, producing similar behaviour with each run and robust-
ness to parameter value changes.
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The feature network is self-organising rather than pre-defined. A hierarchical
feature network with a depth of 11 was able to be maintained and used for clas-
sification, the number of nodes at each depth is shown in Figure 1(R). The large
depth is due to the sparseness of the network, with approximately 2-6 child ele-
ments for each feature, dominated by 2-child connections, far fewer weights than
an equivalent fully connected network. Gradient descent updates were passed
through this network to perform fine tuning.

Classification performance is comparable with existing deep learning tech-
niques [18], giving an equivalent classification error rate of 1.18% compared to
1.25%. A careful training routine is not needed, training is performed simply by
selecting random examples from the training set, and is able to act in a contin-
uous online manner, without separate feature training and fine-tuning regimes,
although a slight improvement to results was produced after freezing the feature
population. Specialised approaches have shown lower error rates on MNIST, such
as using specific convolutional neural nets [19, 20], although the ADN system is
arguably a more general machine learning approach. Convolutional DBNs [21]
capture some advantages of both, allowing scalability, accuracy and unsupervised
learning, however our approach provides a different design angle, with likely ad-
vantages in terms of reliability, and the abstract nature allows more flexibility
to capture more complex processes seen in visual perception.

One of the important principles of Deep Learning methods is the use of unsu-
pervised learning [1, 2], as this allows the structure of the observed environment
to be captured without training examples. The ADN does not directly follow this
approach, as the feature population is modified according to reinforcement. The
unsupervised aspect of this system occurs in feature generation, as new atomic
features are constructed statistically related to the presence of a feature in ob-
servations, and composites are created from features activated from observation.
As features are reinforced through use the population becomes biased towards
useful features however, diverging from unsupervised learning.

The Abstract Deep Network system produces a sparse neural network based
on features found from observations. The abstract representation enables func-
tions such as convolution to be introduced, which allows translation invariance,
and activation of a feature in multiple positions. The design also allows further
processes to be introduced such as top-down influences resulting from context,
which may be more easily incorporated than in systems based on RBMs or con-
volutional neural nets. In human visual processing, a number of influences can
be seen in behavioural and neuroscience studies that play an important role in
visual perception, and capturing these effects is important for artificial object
recognition and understanding visual cognition. The use of an Abstract Deep
Network allows these effects to be explored in a self-organising manner, and
provides more freedom to study the big picture of processes involved in visual
perception, and their benefits for artificial systems.
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Abstract. Significant progress has been made in automatic facial expression 
analysis using facial images and videos. The recognition reliability of most cur-
rent approaches is still poor in naturalistic expressions compared to acted ones. 
Most of these methods use a static image of each expression that captures the 
characteristic image at the apex. However, according to psychologists, analyz-
ing a sequence of images in a dynamic manner produces more accurate and  
robust recognition of facial affect expressions. In this paper, a new dynamic 
model is proposed for detecting naturalistic affect expressions. The Local Bi-
nary Pattern in Three Orthogonal Planes (LBP-TOP) is considered for modeling 
appearance and motion of facial features. The International Affective Picture 
System (IAPS) collection was used as stimulus for triggering naturalistic affec-
tive states. The dynamic approach produced an improvement of 16% for  
valence classification and 22% for arousal classification over previous studies.  

Keywords: Affective computing, dynamic texture, facial expression recognition. 

1 Introduction 

It is generally accepted that computing is part of the fabric of our everyday living. We 
are being increasingly surrounded by cameras, recording our expressions during eve-
ryday interactions, whether on a mobile phone, a tablet or a PC. In order to offer the 
most effective interactions between human and machine, these devices with cameras 
will need the capacity to perceive and understand human expressions of emotion in 
realistic scenarios. Facial expression is one of the most cogent, naturally preeminent 
means for human beings to express emotions, comprehension, agreement or disa-
greement, and intentions, which regulate interactions with the environment and the 
people in it [1]. Particularly for the recognition of affective states, humans rely heavi-
ly on analyzing facial expressions [2]. While humans routinely extract much of this 
information automatically in real life situations, the systematic classification and ex-
traction of facial expression information in the laboratory settings has proven to be 
very challenging. Facial Expression Recognition (FER) systems  have been proposed 
for addressing these challenges [3], [4]. 

Until not long ago, the most commonly used labels in affect detection were the six 
basic emotions (fear, sadness, happiness, anger, disgust, and surprise), proposed by 
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Ekman [5], who suggested that these emotions are universally displayed and recog-
nized from facial expressions. He also proposed the Facial Action Coding System 
(FACS) [6] which is a widely used method for describing facial muscle actions and 
corresponding expressions.  

One of the inherent difficulties with the FACS coding scheme is that it requires a 
highly trained human expert to manually score each frame of a video. The develop-
ment of a system that automatically detects the action units (AUs) is a challenging 
task because the coding system was originally created for static pictures rather than 
changing expressions over time. Although there has been remarkable progress in this 
area, the reliability of current automatic AU detection systems do not match the  
accuracy of humans [7]. This problem is more challenging in spontaneous expression 
recognition [8]. 

Two main analytic approaches in FER research considered static images and con-
sequence of images. Most of the research on this area has been based on static images 
[9] or individual frames of an image sequence [10] and some research efforts toward 
using temporal models for facial expression recognition [11]. Psychological studies 
have suggested that facial motion is fundamental clue to the recognition of facial ex-
pressions. In addition, Bassili [12] demonstrated that humans are better at recognizing 
expressions from dynamic images compared to static ones. Few systems attempt to 
recognize fine-grained changes in the facial expression using dynamic information 
 to analyze facial expression. In the simplest case, the change over consecutive frames 
or the change with respect to a neutral frame is used to determine the underlying  
expression [13]. 

On the other hand, most of the existing datasets focused on posed emotion rather 
than spontaneous ones [3]. Posed expressions are typically exaggerated and their dy-
namics are generally much stronger than in spontaneous day-to-day facial expres-
sions, which make them a natural place to start training expression recognition  
systems. While FER systems should ideally consider spontaneous natural emotion for 
affect analysis, such approaches have rarely been explored [14]. 

In our previous study [15], we implemented a geometric-based system to detect va-
lence and arousal through head movement and changes in skin color. Reasonable 
accuracy was achieved for user-independent analysis. In this study, we have used the 
same dataset that is used in [15] to compare the performance of our new proposed 
model. Here, we propose a dynamic texture-based model, which considers the  
appearance and motion of facial displays simultaneously. The appearance and the 
motion of facial objects like eyes, eyebrows and mouth during a certain period of time 
can be valuable sources for detecting spontaneous affective states. These dynamic 
facial features have been extracted using local binary patterns in three orthogonal 
planes (XY, XT and YT). The XY plane provides information related to appearance 
and the XT and YT planes contain the information related to the motion of facial ob-
jects. Another novelty of this work is automatic alignment of facial objects. In a  
similar work [16], the position of eyes had been used for alignment which were set 
manually. According to the nature of our dataset, which contains rigid head motions, 
we have implemented an automatic facial object tracker for extracting the facial  
features.  
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2 Related Research 

Two main approaches have been followed in the area of facial expression analysis; 
geometric-based and appearance-based approaches. Geometric features include 
shapes and positions of face components, and the location of fixed facial points [9] 
such as the corners of the eyes, eyebrows, etc. In most cases, the position of these 
components and fixed points are detected in the first frame, and motion of these  
objects are tracked throughout the sequence. A geometric approach that attempts to 
automatically detect temporal segments of AUs was used by Pantic et al. [17], [18]. 

Appearance-based methods analyze the deformations of the face skin in both static 
and dynamic space for recognizing facial expression. Dynamic texture-based method 
can be seen as a generalization of appearance-based approaches. FER systems which 
use appearance-based features have been proposed in [10]. Several researchers have 
used Gabor wavelet coefficients as features [19]. Bartlett et al. [10] have tried differ-
ent methods, such as explicit feature measurement, Independent Component Analysis 
(ICA), and Gabor wavelets. Finally they reported that Gabor wavelets provide the 
best results [20]. Other techniques explored in this field include optical flow [21] and 
Active Appearance Models [22].  

Both geometric-based and appearance-based approaches have advantages and dis-
advantages. Geometric-based methods mostly rely on the motion of a number of 
points, and ignore much of the information related to skin texture changes. In con-
trast, appearance-based methods may be more susceptible to changes in illumination, 
rigid head motions and differences between individuals [3]. Tian et al. [23]used a 
combination of geometric-based and appearance-based features (Gabor wavelets) for 
recognizing facial AUs. They claimed that the former features outperform the latter 
ones, yet using both yields the best result. 

2.1 Dynamic Texture Approach 

Dynamic Texture (DT) recognition is an emerging new method of appearance-based 
activity recognition. Dynamic or temporal textures refer to textures with motion. A 
DT can be defined as a "spatially repetitive, time-varying visual pattern that forms an 
image sequence with certain temporal stationarity" [24]. Typical examples of DTs are 
smoke, fire, sea waves, and talking faces. Many existing approaches for recognition 
of DTs are based on optical flow [25]. A different approach can be seen in [26], 
where the system identification techniques are used to learn generative models. 

Facial expression recognition can also be defined as one of the most suitable appli-
cation for the DT recognition techniques. Zhao and Pietikäinen [16] used Volume 
Local Binary Patterns (VLBPs) for facial expression recognition. VLBPs are a tem-
poral extension of local binary patterns often used in 2-dimentional texture analysis 
for recognizing facial expressions. In the study [16], the face was divided into over-
lapping blocks and the extracted features in each block were concatenated into a sin-
gle feature vector for classification (with SVM). The approach showed promising 
results, although only the six prototypic emotions were recognized and no temporal 
segmentation was performed. They normalized the face using the eye position in the 
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first frame, but they ignore any rigid head movement that may occur during the se-
quence. In addition, they used fixed overlapping blocks distributed evenly over the 
face instead of focusing on specific regions of the face such as mouth, eyes and eye-
brows, which include valuable information about facial expressions. The second at-
tempt at using DT in facial expression analysis was performed by Koelstra et al. [27]. 
They estimated non-rigid motion between consecutive frames by applying either non-
rigid registration using Free-form Deformations (FFDs) or Motion History Images 
(MHIs). For each AU, a quad-tree decomposition was defined to identify face regions 
related to the AU. In these regions, orientation histogram feature descriptors were 
extracted. Finally, a combined Gentle-Boost classifier and a Hidden Markov Model 
(HMM) were used to classify the sequence in terms of AUs and their temporal seg-
ments. However, increasing evidence suggests that deliberate behavior differs in visu-
al appearance, audio profile, and timing from spontaneously occurring behavior. 

3 Methodology 

3.1 LBP-TOP 

The LBP proposed by Ojala et al. [28] is one of the powerful methods for texture 
description.  The LBP operator labels the neighborhood region of each pixel of an 
image by thresholding the pixels with the central value. Considering P neighborhood-
pixels, 2P different micro-patterns could be addressed. By calculating LBP for all 
pixels in an image and calculating the distribution of each pattern, a specific histo-
gram could be extracted for each image. This LBP histogram is a powerful indicator 
of the image, which has been proved to be successful in different pattern recognition 
applications. By defining different radius (R) and number of neighboring points (P), 
several types of LBP could be extracted. The best values for R and P depends on the 
application and general characteristics of image sets. An example of circular 8 
neighboring pixels with R=1 is presented in Figure 1.  

The LBP operator was originally designed for static images. Recently, Zhao and 
Pietikäinen [16] proposed an extended version of LBP to describe dynamic textures. 
Usually, a video sequence is thought of as a stack of XY planes in axis T, but it is 
easy to ignore that a video sequence can also be seen as a stack of XT planes in axis Y 
and YT planes in axis X, respectively. They divided each video sequence into three 
orthogonal sets of 2-dimentional planes. The LBP could be computed for each set of 
planes separately. The Local Binary Pattern in Three Orthogonal Planes (LBP-TOP) 
[16] descriptor for each video clip is calculated by concatenating three LBP histo-
grams. Figure 2, shows the LBP-TOP procedure. In such a representation, DT is en-
coded by the XY-LBP, XT-LBP, and YT-LBP, whereas the appearance and motion in 
three directions of DT are considered, incorporating spatial domain information (XY-
LBP) and two spatial temporal co-occurrence statistics (XT-LBP and YT-LBP). 

With this approach, the number of bins is only 3×2P, which makes the extension to 
many neighboring points easier and also reduces the computational complexity com-
pare with volume-based LBP (VLBP) method [16].  
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Fig. 1. An example of LBP operator (P=8, R=1) 

 

Fig. 2. LBP-TOP procedure: Extracting LBP features from each set of planes and concatenating 
to a single histogram [16] 

Like the LBP representation, the radius in axes X, Y, and T and the number of 
neighboring points in the XY, XT, and YT planes can also be different, which can be 
marked as RX, RY , and RT , PXY , PXT, and PYT. The corresponding feature is denoted 
as LBP-TOPPXY ;PXT ;PYT ;RX;RY ;RT. 

3.2 Feature Extraction 

An LBP description computed over the whole facial expression sequence encodes 
only the occurrences of the micro-patterns without any indication about their loca-
tions. One solution for this effect is dividing an image to several blocks. The LBP 
histograms for each block are calculated and concatenated to a single histogram. If the 
image divides into N blocks, the number of bins in final histogram would be N×3×2P. 
In our proposed model, three fixed blocks correspond to left-eye, right-eye and mouth 
were considered for each image sequence. So, for each video clip, 3×3×2P features 
were extracted. These regions were detected and extracted automatically using an 
extended boosted cascade classifier [29]. Then, deformation of eyes and mouth were 
monitored during expression of an affective state. In order to have the same size of 
blocks in each image, the detected objects were resized to fixed sizes. In this study, 
the size was same for all video clips (10 seconds). 

Three variations of LBP-TOP method were used for feature extraction which  
were different in the radius and the number of neighbor points (LBP-TOP8,8,8,1,1,1, 



 A Dynamic Approach for Detecting Naturalistic Affective States from Facial Videos 175 

LBP-TOP6,6,6,2,2,2 and LBP-TOP8,8,8,3,3,3 ). The classification results for each set of 
features are shown in the section 5. A total of 2304 features were extracted by LBP-
TOP8,8,8,1,1,1 and LBP-TOP8,8,8,3,3,3 while 576 features were extracted by LBP-
TOP6,6,6,2,2,2  operator. 

Feature selection techniques were applied prior to classification to reduce dimen-
sionality, which automatically removed unnecessary features. To serve the purpose, 
the correlation based feature selection (CFS) method was used for choosing the best 
subset of features. This technique evaluates the worth of a subset of attributes by con-
sidering the individual predictive ability of each feature along with the degree of re-
dundancy between them [30]. 

3.3 Classification 

All videos were synchronized with time stamps corresponding to the presented IAPS 
images and their normative ratings. The features extracted from videos for each 10-
second widows were labeled using the normative ratings and self-reports (three levels 
of valence and arousal). A Matlab based computational framework as part of the Sien-
to framework [31], was used for feature selection and classification. The feature se-
lection was implemented in Matlab using the DMML1 wrapper for Weka. The classi-
fication was performed in Matlab using MatlabArsenal2, a wrapper for the classifiers 
in Weka. Three machine learning algorithms; k-nearest neighbor (k=1), linear support 
vector machine (SVM) and J48 decision tree were selected for classification. Then, a 
vote classifier with the average probability rule for combining the classifiers was 
applied [32]. The training and testing for both types of classes (valence and arousal) 
was performed separately with a 10-fold cross validation. The classification accuracy 
was used as the overall classification performance metric. In addition, the F-measure 
(from precision and recall) was calculated as an indication of how well each affective 
state was classified. For the classification scores of precision (P) and recall (R), the F-
measure (F1) is calculated by; F1=2((P×R)/(P+R)). 

4 Experiment 

4.1 Participants and Materials 

The participants were 20 undergraduate/postgraduate engineering students at the Uni-
versity of Sydney. The participants’ age ranged from 18 to 30 years and there were 8 
males and 12 females. Due to major eye occlusion caused by eyeglasses from 7 sub-
jects, results are presented for 13 subjects. This study was approved by the University 
of Sydney's Human Ethics Research Committee prior to data collection. The partici-
pants signed an informed consent prior to the experiment. The experiment, which 
took approximately an hour was conducted indoors with a varying amount of ambient 
sunlight entering through windows in combination with normal artificial fluorescent 

                                                           
1 DMML: featureselection.asu.edu/software.php 
2 MatlabArsenal: cs.siu.edu/~qcheng/featureselection/index.html 
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light. Participants were asked to sit in front of a computer and interact normally while 
their video was recorded by an ordinary webcam (Logitech Webcam Pro 9000). All 
videos were recorded in color (24-bit RGB with 3 channels, 8 bits/channel) at 15 
frames per seconds (fps) with pixel resolution of 640×480 pixels and saved in AVI 
format. 

4.2 Procedure 

The participants viewed emotionally charged photos from the IAPS collection. A total 
of 90 images (three blocks of 30 images each) for 10 seconds each were presented, 
followed by 6 seconds pauses between the images. The images were selected so that 
the IAPS valence and arousal scores for the stimuli spanned a 3×3 valence/arousal 
space (IAPS normative ratings). Participants also self-reported their emotions by 
clicking radio buttons on the appropriate location of 3×3 valence/arousal grid after 
viewing each image. In this paper, results are presented using the normative ratings 
instead of self-reports. Therefore, the computational model was trained and tested 
using a balanced class distribution, which could be suitable for evaluating accuracies 
of classification without applying any up or down sampling techniques. The norma-
tive ratings are useful because they are standardized scientifically for assessing basic 
and applied problems in psychology [33]. Moreover, many people do not know how 
to recognize, express and label/scale their own feelings, therefore self reports some-
times can be unreliable [34]. However, self-reports provide important information and 
should not be ignored; therefore the collected self ratings will be used as an extension 
of this work in future studies. 

5 Results 

The classification for detecting 3-degrees of valence (positive, neutral and negative) 
and arousal (low, medium, high) are presented in two user models: user-dependent 
models and combined model. For each set of model, the extracted features from the 
three methods (LBP-TOP8,8,8,1,1,1, LBP-TOP6,6,6,2,2,2 and LBP-TOP8,8,8,3,3,3) are eva-
luated and discussed in the following subsections. 

5.1 User-Dependent Models 

The subsequent analysis focuses on developing user-dependent models. Distinct mod-
els were developed and validated for each participant. Figure 3 presents the mean and 
standard deviation of classification accuracies assessing the overall performance of 
discriminating 3-degrees of valence and arousal using three proposed methods (LBP-
TOP8,8,8,1,1,1, LBP-TOP6,6,6,2,2,2 and LBP-TOP8,8,8,3,3,3 ). The last set of bars, indicate the 
best result achieved from our recent method for detecting valence and arousal levels 
[15]. The new results indicate that the classifier was more accurate in discriminating 
three levels of valence and arousal for all three dynamic texture-based methods  
compared to [15]. The accuracy of valence detection was improved by 16% using 
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LBP-TOP8,8,8,3,3,3 features. The 22% improvement was also achieved by LBP-
TOP8,8,8,3,3,3 features for arousal detection. This finding demonstrate the power of the 
proposed dynamic texture method in detecting user's affective states compare with the 
geometric-based method in [15].  

According to the results, the number of neighboring points influence the perform-
ance of affect detection. LBP-TOP8,8,8,1,1,1 and LBP-TOP8,8,8,3,3,3 produced almost the 
same results whereas LBP-TOP6,6,6,2,2,2 failed to improve the performance of the clas-
sification. This might indicate the importance of the considering number of neighbor-
hood points compare with the radius in the circular LBP-TOP operator. However, 
considering more neighboring points would increase the computational complexity.  

 

Fig. 3. The mean and standard deviation of the classification accuracy for detecting 3 levels of 
valence and arousal (User-dependent models) 

Next we investigate the classification accuracy of the individual degrees of valence 
and arousal. Table 1 shows the mean and standard deviation of F1 as per valence and 
arousal category across the 13 subjects for the vote classifier.  

Table 1. The mean and standard deviation of F1 values for detecting 1-3 degrees of valence 
and arousal (user-dependent models) 

 Valence Arousal 

Low Medium High Low Medium High 

LBP-TOP8,8,8,1,1,1 Mean 0.76 0.62 0.72 0.75 0.66 0.76 

Std 0.10 0.11 0.15 0.11 0.11 0.10 

LBP-TOP6,6,6,2,2,2 Mean 0.72 0.57 0.65 0.66 0.53 0.70 

Std 0.14 0.09 0.17 0.16 0.12 0.10 

LBP-TOP8,8,8,3,3,3 Mean 0.79 0.64 0.76 0.76 0.68 0.78 

Std 0.10 0.11 0.12 0.09 0.10 0.11 

 
The LBP-TOP8,8,8,3,3,3 had the highest accuracy for detecting all three degrees of 

valence and arousal. Among the 3-dergees of valence, low-valence was more predict-
able followed by high-valence and medium-valence respectively. The same pattern  
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was seen for arousal classification. The performance of all proposed methods for de-
tecting high-arousal showed the best result whereas medium-arousal could not predict 
well enough using DT based methods.  

5.2 Combined Model 

Data from individual participants was first standardized (converted to z-scores) to 
address individual variations of features caused by differences in skin colors or envi-
ronmental illumination. Then the standardized instances were combined to yield one 
large data set with 1154 instances. The dimensionality of the data was also reduced by 
selecting the best features prior to each classification task by using CFS. Figure 4 
shows the classification results for 3-degrees of valence and arousal using three varia-
tions of LBP-TOP operators for feature extraction. The set of last bars, indicate the 
best result achieved for the combined model from [15]. The LBP-TOP methods 
showed better performance than our previous method [15]. The accuracy of three 
levels of valence detection was raised by increasing the radius (R) of circular LBP-
TOP operator. The LBP-TOP8,8,8,3,3,3 showed the best performance in detecting va-
lence and arousal. Accordingly for general model we can argue that besides increas-
ing number of neighboring points (P), increasing the radius (R) of the LBP-TOP cir-
cular operator could improve the accuracy of affect detection. Achieving the lower 
accuracy compared to user-dependent models was expected, because there is a mix-
ture of instances from different participants in combined model. This model could be 
extended to a general (user-independent) model. 
 

 

Fig. 4. The classification accuracy for detecting three levels of valence and arousal (Combined 
model) 

Feature Selection Analysis. Analyzing the selected features using CFS gives us a 
better insight about the important features for detecting affect. Therefore, we investi-
gate the selected features from the combined model. The selected features were di-
vided into two groups; appearance-based features, which were selected from XY 
planes and motion-based features, which were selected from XT and YT planes.  



 A Dynamic Approach for Detecting Naturalistic Affective States from Facial Videos 179 

Figure 5 gives the proportion of features that contribute from each group (appearance-
based and motion-based) for valence and arousal. Almost the same proportion of ap-
pearance-based features and motion-based features were observed for valence in all 
three methods. As for arousal, appearance-based features had very high contribution 
using LBP-TOP8,8,8,3,3,3 and motion-based features had very high contribution using 
LBP-TOP8,8,8,1,1,1. Despite the differences in valence and arousal, this analysis reflects 
that both appearance-based and motion-based features are essential for detecting af-
fective states in naturalistic HCI. 

 

Fig. 5. The percentage of selected features in valence and arousal analysis 

6 Conclusion 

This study investigated dynamic features of facial expressions for the detection of 
affective states during naturalistic interactions. Both the user-independent model and 
a combined model have been evaluated for classifying 3-degeees of valence and 
arousal.  

Results indicate that the best method for extracting dynamic features (LBP-
TOP8,8,8,3,3,3) can achieve 73% and 74% accuracies for detecting degrees of valence 
and arousal respectively with the user-dependent model. As for the combined model, 
57% and 53% accuracies were achieved valence and arousal respectively. For both 
models, the dynamic features have shown improvement over our previous study using 
chromatic and movement features [15].  

In this study the correlation based feature selection algorithm and a vote classifier 
was used. In future work, other machine learning techniques along with other video 
based or multimodal features can be investigated to improve the accuracy.  
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Abstract. Constrained optimization is an active area of research where attempts
are being regularly made to improve the efficiency of the underlying optimization
algorithms. While population based stochastic algorithms such as evolutionary al-
gorithms, differential evolution (DE), particle swarm optimization etc. have been
the popular choice as the underlying optimization scheme, adaptive strategies
are usually employed to deal with constraints. Most of such approaches adopt a
complete evaluation policy, i.e., all constraints and objectives corresponding to a
solution is always evaluated for every solution under consideration. However, in a
typical constrained optimization problem, one or more constraints are often diffi-
cult to satisfy and it might be beneficial to evaluate the constraints in a sequence.
Evaluation of subsequent constraints and objective function can be skipped when-
ever a constraint is violated. In this paper, a self adaptive differential evolution
algorithm is introduced which maintains multiple subpopulations, each of which
is assigned a prescribed constraint sequence based on a ring topology. Solutions
are ranked in each subpopulation and a migration scheme is employed to transfer
feasible solutions to a subpopulation of feasible individuals. The performance of
the proposed scheme is compared with a single sequence approach and other state
of the art DE forms using the standard g-series test functions having inequality
constraints. The results clearly indicate the potential savings in the computational
cost. Apart from savings in computational cost, the paper also makes an impor-
tant contribution as it provides useful physical insights on the search trajectories
and their effect in various forms of constrained optimization problems.

Keywords: differential evolution, constraint sequencing, sequence sorting,
self-adaptive.

1 Introduction

The performance of all population based stochastic optimization algorithms are affected
by the presence of constraints. The nonlinearity, multi-modality and the feasibility as-
sociated with each constraint is likely to be different and would vary in different regions
of the search space. Various forms of constraint handling schemes have been proposed
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in literature. Such methods can be broadly categorized in four different types [10,2] i.e.
use of penalty functions [3], repair schemes [4], use of decoders [7] and the separation
of objective function and constraints [11,5,13]. More recent methods on the other hand,
maintain infeasible solutions via stochastic ranking [9], ε based comparisons [14] and
adaptive penalty function formulations [12]. However, in all such formulations a full
evaluation policy is adopted wherein for an infeasible solution, its constraint violation
measure is computed. The term constraint violation (CV ) is defined as follows:

CV =
p

∑
i=1

|min(gi,0)|+
q

∑
i=1

max(|hi− ε|,0) (1)

where g and h are the inequality and equality constraints and p is the number of in-
equality constraints and q is the number of equality constraints. In this work, we have
suggested a multi-population based algorithm in the framework of DE where, the pop-
ulation is divided into multiple subpopulations and follow the prescribed constraint
sequences. The choice of DE as the underlying optimizer in this work is based on DE’s
recent success in the winning entries for CEC-2011 competition problems. The perfor-
mance of the algorithm is subsequently compared with four top performing algorithms
include ε-DE [14], JDE [1], COPSO [15] and SaDE [6] in well known g-series [8] test
problems for inequalities.

Furthermore, since the performance of DE is known to be affected by the choice
of its user defined parameters, a self adaptive scheme is employed. The rest of the
paper is organized as follows. The proposed approach with an illustrative example is
presented in Section 2 while the details of the algorithm is presented in Section 3. The
performance of the algorithm is presented in Section 4. The final section summarizes
the findings.

2 Proposed Approach

In this work, a population is divided into p+ q subpopulations where p and q denotes
the number of inequality and equality constraints of the problem. Each subpopulation is
assigned a constraint sequence and solutions in the subpopulation are evaluated follow-
ing the prescribed sequence until it encounters a constraint violation. For any solution
in a given subpopulation, the objective function is only computed when it satisfies all
its constraints. The solutions are sorted in its subpopulation following a constraint se-
quence and feasible solutions migrate to a feasible subpopulation. The sequences in
each subpopulation follow a ring topology wherein in each subpopulation, solutions
tend to approach feasibility from different search directions. Such an approach could
be beneficial in two ways i.e. (a) less likely to be trapped at a local optima and (b) save
computational cost by avoiding evaluation of infeasible solutions whenever infeasibil-
ity is detected. A simple two variable constrained optimization problem is formulated
to illustrate the principle.
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2.1 An Illustrative Example

To demonstrate the proposed constraint handling method, a simple two variable opti-
mization problem (T 1) involving three constraints is presented below. The problem has
a feasible region bounded by three linear constraints. Since our focus is on
handling constraints, our attempt is to show the trajectory of solutions in different
subpopulations.

Minimize f1(x) = x2
1 + x2

2 + 2 ∗ x1∗ x2

Subject to

g1(x)≡ x1 + 2 ∗ x2≥ 0,

g2(x)≡ 10 ∗ x1− 8 ∗ x2− 15≥ 0,

g3(x)≡−10 ∗ x1+ 2 ∗ x2− 2≥ 0,

(2)

In the proposed approach, three constraint sequences have been considered each of
which is assigned to a subpopulation i.e. constraints (g1, g2, g3), (g2, g3, g1) and (g3,
g1, g2) are the prescribed sequences for subpopulation, 1, 2 and 3. As an example, let us
consider subpopulation 1, containing 4 solutions (S1, S2, S3, S4). The constraint viola-
tion matrix would assume a form illustrated in Table 1. Since the prescribed sequence
for this subpopulation is (g1, g2, g3), the solutions are sequentially sorted to yield (S3,
S2, S4, S1) where S3 is deemed the best and S1 the worst.

Table 1. An example of sequence sorting

Initial order Final order
g1 g2 g3 g1 g2 g3

S1 5 inf inf 0 0 1 S3
S2 0 3 inf 0 3 inf S2
S3 0 0 1 2 inf inf S4
S4 2 inf inf 5 inf inf S1

A small population size of 30 is used to illustrate the behavior. Presented in Fig. 1 is
the trajectory followed by the infeasible solutions, if a CV based scheme is employed.
A CV based scheme is often used for population based stochastic algorithms. It is in-
teresting to observe that the solutions tend to be located in a small region of the space
satisfying g2 and g3 constraints. With such infeasible solutions, the CV based approach
will be effective if the optimal feasible solution is close to such infeasible solutions and
will be ineffective if the feasible solution is away from such regions.

Presented in Fig. 2, is the same trajectory of the solutions in subpopulations 1, 2
and 3. One can clearly observe that the infeasible solutions in subpopulations clearly
are in different regions of the search space and solutions in each subpopulation tend to
approach the feasible region from different directions. Such an approach is thus likely to
locate optimal solutions as they attempt to enter the feasible search space from different
directions.
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Fig. 1. Progress plots for test problem T 1 using DE algorithm with constraint violation (DEACV)
at generation 5, 10 and 20
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Fig. 2. Progress plots for test problem T 1 of multiple subpopulations using DE algorithm with
constraint sequencing (DEACS) at generation 5, 10 and 20
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3 Self-adaptive Differential Evolution Algorithm with Constraint
Sequencing (DEACS)

The pseudocode of the proposed algorithm is presented below. A population of N in-
dividuals and an archive of N ∗ 2 are initialized. For each individual in the population
the parameters regarding the crossover rate (CR) and mutation factor (F) are assigned
randomly in the bounded of [0,1]. The population is divided into p+ q subpopulations
with a prescribed constraint sequence for each subpopulation. In each subpopulation the
solutions are ranked using a sequence sort. In order to create a new candidate solution,
first parent is selected from the subpopulation itself, the second parent is selected from
the entire population and the third parent is selected from the archive.

Algorithm 1. DEACS
SET: NTmax{Total number of constraints and objective function evaluation}, M{Size of elite
archive}, N{Size of population}, FeasibleSet = {}, Evalcount = 0

1: Pop = initialize();Archive = initialize()
2: Assign a random CR and F values from [0,1] for all the individuals
3: Distribute individuals to (p+q+1) subpopulations
4: Assign constraint sequences to subpopulations
5: Evaluate solutions in the subpopulations; U pdate(Evalcount)
6: Rank solutions in each subpopulation using sequence sort
7: Migrate feasible solutions from all the subpopulations to FeasibleSet
8: while (((Evalcount ≤ NTmax)) do
9: for i=1:p+q+1 do

10: if !isempty(Subpopi) then
11: for j=1:size(Subpopi) do
12: p1 = i, p2 = rand(M), p3 = rand(N), p1 �= p2 �= p3
13: O = DEevolve(p1, p2, p3)
14: Evaluate(O);U pdate(Evalcount)
15: Temp = Merge(O,Subpopi j )
16: Rank = SequenceSort(Temp)
17: Select best individual from Temp and replace Subpopi j

18: end for
19: end if
20: end for
21: Migrate feasible solutions from all the subpopulations to FeasibleSet
22: end while
*Evalcount denotes the sum of objective and all individual constraint evaluations

In the DE evolve process, a binomial crossover [6] has been used with the crossover
and mutation parameters (i.e. CR and F) from the first parent (i.e. base parent). The new
candidate solution is then evaluated and compared with the base parent via sequence
sort. If the candidate solution replaces the parent solution, the crossover and mutation
parameters of the base parent are retained by the candidate solution else new parameters
are randomly assigned to the base parent and candidate solution is moved to archive.
In the event a feasible solution is uncovered in any subpopulation, it migrates to the
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feasible subpopulation. In the event all the infeasible subpopulations are empty, three
parents are chosen from the feasible subpopulation.

4 Numerical Experiments

The performance of the algorithm is evaluated using the widely used benchmark prob-
lems Table 2 [8]. The selected test problems involve quadratic, nonlinear, cubic, and
polynomial objective functions with a number of inequality constraints. For compari-
son, we have selected five algorithms including the proposed DEACS. These five algo-
rithms are listed as follows: The proposed algorithm (DEACS), ε−DE [14], JDE [1],
COPSO [15] ,SaDE [6].

Table 2. Summary of test problems

Problem D Search Range f type No. of Inequality Feasibility (ρ)
g01 13 [0,1]9 [0,100]3[0,1](D−12) quadratic 6 0.0111%
g02 20 [0,10]D nonlinear 2 99.971%
g04 5 [78,102][33,45][27,45](D−2) quadratic 6 52.1230%
g06 2 [13,100][0,100] cubic 2 0.0066%
g07 10 [−10,10]D quadratic 8 0.0003%
g08 2 [0,10]D nonlinear 2 0.8560%
g09 7 [−10,10]D polynomial 4 0.5121%
g10 8 − linear 6 0.0010%
g12 3 [0,10]D quadratic 1 4.7713%
g18 9 [−10,10]8 [0,20](D−8) quadratic 13 0.000%
g24 2 [0,3][0,4] linear 2 79.6556%

4.1 Experimental Setup

A population size of 50 is used for the proposed algorithm which is the same used in
previous studies. Results of all the problems are computed using 25 independent runs.
An archive size of 100 is used for the proposed algorithm across all problems. A self-
adaptive approach is used to determine the set of parameters (i.e. CR and F). We also
include the results of two other adaptive DE algorithms for a fair comparison.

4.2 Computational Complexity

The algorithm complexity is computed for the selected 11 test problems of CEC-2006
according to [8]. Table 3 shows the complexity of the algorithm by T1, T 2 and (T 2−
T 1)/T1 where, T 1 is the average computing time of 10000 evaluations for all the prob-
lems and T 2 is the average complete computing time for the algorithm with 10000
evaluations for all the problems. We have used Matlab 7.8 to implement the algorithm
and the system configuration is as follows: Intel(R) Core(TM)2 Duo 3.00 GHZ, 3.49
GB of RAM, Windows XP Professional Version 2002.

Table 3. Computational Complexity

T1 T2 (T2-T1)/T1
4.8602 5.3359 0.0979
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4.3 Results Comparison

One can observe from Table 4 that the proposed algorithm required significantly less
number of constraint and objective function evaluations for problems g01, g04, g07, g09,
g10, g12 and g18 as compared to the method proposed by Takahama and Sakai [14].
When compared with ε−DE, the proposed algorithm is better in 7 out of 11 test prob-
lems using 1e-4 as the measure of merit.

Table 4. Comparison of function evaluations is used by the proposed method, DEACS with other
best known algorithms with an accuracy level of ( f (x)− f ∗(x)) ≤ 0.0001 and feasible solution,
the lowest evaluation in total of function and constraints are in bold face

Proposed Method, DEACS Function eval.

Prob.
Best Median Worst

#func. #const. #func. #const. #func. #const.
g01 6,847 10,537 11,699 16,787 16,613 22,163
g02 49,176 71,438 105,373 152,686 108,302 154,151
g04 3,691 4,857 4,234 5,592 4,777 6,110
g06 2,426 6,057 2,626 7,820 4,162 9,214
g07 12,652 26,790 17,891 37,084 47,587 87,334
g08 138 900 557 1,537 812 1,960
g09 6,608 9,291 7,418 10,547 8,109 11,931
g10 13,849 32,364 20,954 46,230 38,609 77,123
g12 450 450 1,000 1,000 1,200 1,200
g18 5,674 13,206 7,554 18,240 34,839 57,641
g24 1,584 2,454 1,867 2,948 2,143 3,559

ε−DE Function eval.

Prob.
Best Median Worst

#func. #const. #func. #const. #func. #const.
g01 18,594 18,594 19,502 19,502 19,971 19,971
g02 108,303 108,303 114,347 114,347 129,255 129,255
g04 12,771 12,771 13,719 13,719 14,466 14,466
g06 5,037 5,037 5,733 5,733 6,243 6,243
g07 60,873 60,873 67,946 67,946 75,569 75,569
g08 621 621 881 881 1,173 1,173
g09 19,234 19,234 21,080 21,080 21,987 21,987
g10 87,848 87,848 92,807 92,807 107,794 107,794
g12 2,901 2,901 4,269 4,269 5,620 5,620
g18 46,856 46,856 57,910 57,910 60,108 60,108
g24 1,959 1,959 2,451 2,451 2,739 2,739

The proposed algorithm is also compared against other adaptive DEs (i.e. JDE and
SaDE). Table 5 shows the comparison among three different algorithms. Here, the pro-
posed algorithm also shows better result when compared with COPSO, JDE and SaDE
for most of the problems. Table 6 shows a one to one comparison with ε−DE including
the obtained results. Successful run is shown within 0.1% of the best-known optimum
and is feasible.

4.4 Performance Comparison

The same set of problems are used to compare the performance of constraint sequenc-
ing. The proposed algorithm is applied with its two variants i.e. with and without con-
straint sequencing (full evaluation policy). One can see from Fig. 3, that the mean of
total number of function evaluations (i.e. summation of number of constraints function
evaluations and the number of objective function evaluations) is less when constraint
sequencing is used.
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Table 5. Comparison of function evaluations is used by the proposed method, DEACS with other
best known algorithms with an accuracy level of ( f (x)− f ∗(x))≤ 0.0001 and feasible solution

COPSO Function eval.

Prob.
Best Median Worst

#func. #const. #func. #const. #func. #const.
g01 80,776 80,776 90,343 90,343 96,669 96,669
g02 87,419 87,419 93,359 93,359 99,654 99,654
g04 3,147 3,147 103,308 103,308 110,915 110,915
g06 95,944 95,944 109,765 109,765 130,293 130,293
g07 114,709 114,709 138,767 138,767 208,751 208,751
g08 2,270 2,270 4,282 4,282 5,433 5,433
g09 94,593 94,593 103,857 103,857 119,718 119,718
g10 109,243 109,243 135,735 135,735 193,426 193,426
g12 482 482 6,158 6,158 9,928 9,928
g18 97,157 97,157 107,690 107,690 124,217 124,217
g24 11,081 11,081 18,278 18,278 633,378 633,378
JDE Function eval.

Prob.
Best Median Worst

#func. #const. #func. #const. #func. #const.
g01 46,559 46,559 50,354 50,354 56,968 56,968
g02 101,201 101,201 138,102 138,102 173,964 173,964
g04 38,288 38,288 40,958 40,958 42,880 42,880
g06 26,830 26,830 29,844 29,844 31,299 31,299
g07 114,899 114,899 126,637 126,637 141,847 141,847
g08 1,567 1,567 3,564 3,564 4,485 4,485
g09 49,118 49,118 55,515 55,515 58,230 58,230
g10 139,095 139,095 144,247 144,247 165,498 165,498
g12 1,820 1,820 6,684 6,684 9,693 9,693
g18 91,049 91,049 101,076 101,076 142,674 142,674
g24 7,587 7,587 10,354 10,354 11,550 11,550

SaDE Function eval.

Prob.
Best Median Worst

#func. #const. #func. #const. #func. #const.
g01 25,115 25,115 25,115 25,115 25,115 25,115
g02 76,915 76,915 128,970 128,970 − −
g04 25,107 25,107 25,107 25,107 25,113 25,113
g06 12,546 12,546 14,404 14,404 18,347 18,347
g07 25,195 25,195 101,240 101,240 422,860 422,860
g08 782 782 1,272 1,272 1,775 1,775
g09 12,960 12,960 16,787 16,787 33,166 33,166
g10 26,000 26,000 52,000 52,000 153,000 153,000
g12 463 463 1717 1717 2,576 2,576
g18 26,000 26,000 26,000 26,000 − −
g24 4,280 4,280 4,843 4,843 5,657 5,657
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In an another experiment, the comparison is made between the use of a single con-
straint sequence and multiple constraint sequences following a ring topology. For sin-
gle constraint sequence, a predefined sequence is assigned to all the subpopulations
whereas for the later, different constraint sequences are assigned to each subpopulation.
The results in figure 4 illustrate the benefits of multiple sequencing across the subpop-
ulations.

5 Conclusion

In this paper, a novel constraint handling scheme has been introduced within a frame-
work of a self adaptive DE using a scheme of constraint sequencing. The paper presents
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the idea of constraint sequencing and using a simple example illustrates why such a
scheme is likely to improve the efficiency of the search. The study also provides an-
swers to important questions, i.e. when is such a scheme beneficial. The performance
of the algorithm is subsequently assessed on 11 well known constrained single objec-
tive optimization benchmarks. The results clearly indicate that the approach is efficient
when compared with the state of the art algorithms and their underlying schemes for
constraint handling. The scheme is generic and can be embedded within other forms
of population based stochastic optimization algorithms. The approach is likely to pro-
vide significant computational benefits for problems when each of such constraint or
objective function evaluation is computationally expensive and can be computed inde-
pendently. The approach is also efficient for problems where the CV function is highly
multi-modal where the proposed scheme is less likely to be trapped in local optima.
Since the efficiency of the algorithm stems from handling constraints, the approach is
likely to be ineffective for some problems with high feasibility ratio as observed for
problems g2 and g24.
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Abstract. Local Search approaches to constraint satisfaction are based
on the ability to compute violation scores. These estimate ’how far’ a
given assignment is from satisfying the constraints, and aim at guiding
the search towards assignments whose violation will, ultimately, be null.
We study the computation of violation functions for Boolean predicates
encoded in Decomposable Negation Normal Form, an important class
of logical circuits that encode interesting constraints. We show that for
these circuits an elegant and efficient violation function first proposed by
Z. Stachniak is ”ideal” in a certain sense. We discuss more broadly the
notion of ”ideal” violation and discuss the implications of this result.

1 Context and Summary of the Results

Local Search. Local Search (LS) is one of the most useful components in every
constraint satisfaction and optimization toolbox. Two recent developments in
stochastic local search that relate to this paper are the following:

– In the Constraint Programming (CP) community, Constraint-Based Local
Search [19] has emerged as a formalism that integrates LS within a CP
approach, clearly separating the modeling of a problem from its resolution.

– In the SAT community, most of the recent work on stochastic local search
[17,13,14,18,7,8,15,2,3] is based on circuits, as opposed to the traditional
Conjunctive Normal Form (CNF) representation. This is based on the belief
that CNF somehow loses ’structure’ compared to a natural modeling with
circuits, and that this structure may be needed by the Local Search.

Common to both approaches is the idea to compute, for any assignment, a
violation (a.k.a. penalty, a.k.a. clash function) that estimates ’by how much’ it
violates the constraint.

Violations in SAT. In SAT, the question is to assign a violation to arbitrary
Boolean circuits. An elegant scheme for doing so was proposed by [13], following
ideas initially proposed by [17] and used futher in e.g. [18,2,3]. The basic idea of
[17] is that the violation of an And gate is the sum of the violations of its inputs,
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while for an Or gate it is their minimum. This follows the obvious intuition,
e.g. to satisfy an And gate we have to cumulate the work needed to make both
inputs true. To find the violation value of a Boolean circuit we start from the
inputs of the circuit and compute the value of the output gate using the sum and
minimum rules for And and Or gates, respectively. [13] modified this definition
to make it fully symmetric1: the trick is to use an integer violation score that
goes strictly positive if the constraint is unsatisfied, and strictly negative if it
is satisfied (i.e. the violation is always non-zero). The violation of a Not gate is
now defined as −[violation of the input].

+1 +1 -1

-1
-1

+1

-1+1

+2 +1

+1

And-gate

Or-gate

Not-gate
-1 -1 +1

-1

+1

+1

+2

+1

Fig. 1. Violations of circuits, arbitrary (left) and in Negation Normal Form (right)

Fig. 1 illustrates the computation of this violation; the exact definition of the
rules we apply for each gate are given in Section 3. In the left-hand side example,
the current assignment gives the values true, true, and false, respectively, to the
inputs A, B and C. Seen as violations true translates to -1 and false to +1.

In this paper, our motivation is to better understand violation functions.
These functions are usually seen as purely heuristic indicators in the literature,
and little is said about the properties they should respect. For instance, the lit-
erature usually defines the violation of a constraint AllDifferent(x1, . . . , xn)
as
∑

a∈D max(0, �{h : v(xh) = a}− 1), where D is the domain of the variables,
v(xh) is the value assigned in the current state v to variable xh, and �S denotes
the cardinality of set S. This definition seems sensible and satisfies the basic
correctness property of being > 0 iff the constraint is indeed violated, but so
do many alternative definitions—why this one? In the Constraint Programming
literature we have a good answer to the question what is the ideal propagation
that can be reached for a constraint? through the notion of domain-consistency
(or ”Generalized Arc-Consistency”). From the OR literature, we have a good
answer to the question what is the ideal relaxation of a constraint? through the
notion of convex Hull. We are looking for a similar notion for the third class of
constraint solving represented by local search:

What is an ideal violation function for a constraint?

1 This definition is better-behaved, in particular w.r.t. duality: for instance the vio-
lations of ¬(A ∧ B) and of ¬A ∨ ¬B are the same. For NNF formulae the initial
formulation [17] and the symmetric one [13] are essentially equivalent.
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Section 3 proposes an answer to this question. To be fair, although the literature
has not asked the question explicitly, partial answers have been pointed to by
some authors. We identify ’ideal’ properties of violation functions, and observe
that it is NP-complete to compute an ideal violation for arbitrary predicates.

Our main contribution is to show that such ideal violation functions can indeed
be obtained, in a generic way, for an important class of Boolean circuits. Specif-
ically the violation function described before is shown to be ideal for circuits
in Negation Normal Form that have the well-known Decomposability property
[4]. (Such a circuit is given in Fig. 1, right-hand side). Circuits in Decomposable
NNF, or DNNF, are one of the most powerful ’knowledge compilation languages’
[5] used in AI. Some properties of this language are: (1) it is complete in that it
can represent any Boolean function (as for any class of circuits, most Boolean
functions nevertheless have an exponential size representation); (2) important
reasoning tasks including clausal entailment and model enumeration can be per-
formed in time polynomial in the DNNF size; (3) it generalizes other widely
used representations such as OBDDs; (4) it allows to concisely represent a large
number of constraints, in particular grammar constraints [16,11].

The violation function of [17,13] seems like a ”good” definition of violation
for circuits but its properties were not previously well-understood. Our contri-
bution, on the SAT side, is to show that it has indeed strong properties w.r.t.
an important and natural class of circuits. We also discuss how, on the CP side,
this result gives ideal representations of a number of constraints.

2 Basic Material

Local Minima. We denote by {0, 1}n the set of Boolean tuples of dimension
n. The n components of a tuple t are written 〈t1 . . . tn〉. We denote by D(t, t′)
the Hamming distance between two tuples t, t′ ∈ {0, 1}n, which is equal to
the number of positions at which the corresponding symbols in these tuples
are distinct. We consider functions of signature {0, 1}n �→ Z or occasionally
{0, 1}n �→ {0, 1}, in which case the function is called predicate. A key LS notion
is:

Definition 1. (Local Minimum) A tuple t is a local minimum of a function
F if any tuple t′ at Hamming distance 1 from t is such that F(t′) ≥ F(t).

A straightforward greedy minimization algorithm2 converges to a local minimum
of any function F in time O(n2KR), where R is the range of F , defined as
maxt∈{0,1}n F(t)−mint∈{0,1}n F(t), andK is the cost of evaluating the violation.
It is important to note that the rangeR can be exponentially large w.r.t. n. There
exists no local minimization algorithm of complexity directly polynomial in n
and m unless the complexity class PLS is equal to P [10,9].

2 A precise description of this algorithm is found in the Appendix.
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Circuits. We focus on circuits with binary gates for notational simplicity (the
definitions, techniques and results can be easily adapted to arbitrary gates):

Definition 2. (Circuit) A circuit with n inputs x1 . . . xn is an ordered sequence
of gates 〈g1 . . . gm〉 such that m ≥ n and:

– The n first gates are the inputs: gk := xk, for k ∈ 1 . . . n;
– Each gate gk with k > n is either:
• A negation gate of the form ¬gi with i < k;
• A conjunction gate of the form gi ∧ gj with i, j < k;
• A disjunction gate of the form gi ∨ gj with i, j < k.

– The last gate gm is called output gate.

The predicate encoded by a circuit is noted E (for Boolean evaluation) is defined
as follows. Given a tuple of Boolean values t = 〈t1 . . . tn〉 for the inputs, a value
Egk(t) is assigned to each gate gk: for each input k ∈ 1 . . . n, Egk(t) := tk; for
non-input gates we apply the definition of the gate, for instance Egi∧gj (t) :=
Egi(t)∧Egj (t). The value E(t) of the circuit is defined as the value of the output
gate Egm(t). A tuple t is a solution if E(t) = 1.

Definition 3. (Dependencies) When we have a gate gk of the form ¬gi, gi∧gj
or gi ∨ gj, we say that gk directly depends on gi and gj, which we note gi � gk.
We say that gk depends on gi if there is a chain of direct dependencies gi �
· · ·� gk. The set of inputs a gate gk depends on is called Vars(gk).

Definition 4. (Special Forms of Circuit) The circuit is:

– in Negation Normal Form (NNF) if any negation ¬gi is such that gi is
directly an input, i.e. i ∈ 1 . . . n.

– in Decomposable NNF (DNNF) if it is in NNF and if every conjunction
node gi ∧ gj of the circuit is such that Vars(gi) ∩ Vars(gj) = ∅.

3 Good Violation Functions

Throughout this section E denotes a predicate of n variables representing a non-
empty relation, i.e. if there exists a tuple t that satisfies the relation E so that
E(t) = 1.

Basic Correctness Condition. Following a basic definition, used by e.g. [1],
a violation is any poly-time computable function F that respects the condition:

F(t) > 0 iff E(t) = 0 (1)

This minimal requirement is needed for correctness. It is weak because it is sat-
isfied by functions that are hard to minimize. For instance a straightforward
violation function would define F(t) as 1 − E(t). It is a correct function in the
sense that minimizing this function will lead us to solutions; however the min-
imization in question won’t be easy: if we are not within distance ≤ 1 of a
solution, we have strictly no information on where to move.
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What is a ”ideal” Violation Function? Two basic desirable features of a
good violation function are the following:

Definition 5. (Properties of Violation Functions) A function F is:

– plateau-free if all local minima are solutions: whenever we have a non-
solution t, there exists a tuple t′ at distance 1 from t such that F(t′) < F(t).

– c-bounded if F(t) ≤ c, for all tuples t.

Functions that have plateaus are not ideal because search can get stuck into local
minima, where there is no information on where to move next. Functions that
are bounded by a c that grows exponentially with the number of variables of the
predicate are not ideal because in this case the number of moves needed to reach
a local minimum grows exponentially3. Functions that are both plateau-free and
c-bounded for a polynomially-bounded c are obviously ideal:

Observation 1. If we have a violation function F : {0, 1}n �→ Z that is plateau-
free and c-bounded for a predicate E, then we can find a solution to E in time
O(n2cK), where K is the cost of evaluating F .

We argue that being (1) efficiently computable, (2) plateau-free, and (3)
polynomially-bounded are the properties that characterize an ideal violation
function. In fact most definitions of violation function in the constraint-based
literature follow this ideal, without necessarily making it clear (see e.g. [6,1,19]).
Some remarks:

– This definition basically means that an ideal violation for a constraint should
allow a trivial LS (and indeed greedy) search algorithm to find a solution
quickly. This is reasonable and follows the approach used for propagation and
relaxation: we cannot in general find an ideal propagation / relaxation / vio-
lation for an arbitrarily large system of constraints; but reasoning constraint
by constraint allows us to do ”the best work possible” for each constraint.

– For simplicity our definition is based on the Hamming distance, which is the
natural distance for SAT. The notions of local minima and plateau-freeness
can obviously be adapted to other distances (e.g. Euclidian distances or
distances based on numbers of swaps rather than flips). This captures other
notions of ”neighborhood”.

It is clear that ideal violation functions cannot be defined for all Boolean pred-
icates: notably this cannot be done for some global constraints that are NP-
complete, like the Cumulative constraint, that schedules a set of tasks with
release times and deadlines so that resource capacity constraints are satisfied.
For such predicates the best we can do is to use less-than-ideal violation functions

3 There are well-known optimization problems that are plateau-free but whose viola-
tion function has an exponential range, and for which no known method can reach a
local minimum in (strongly) polynomial time: some examples are the computation
of a stable state in a neural network and other PLS-complete problems [10,9].
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that satisfy the correctness requirement of Eq. 1 and are ’as close as possible’
to the ideal. This is, again, similar to what we do with other constraint process-
ing techniques: propagation methods weaker than arc-consistency, relaxed LP
representation.

Distance-Based Violation Functions. An important particular case of ideal
violation function is the following:

Definition 6. The Hamming Violation Function H is the distance from the
current tuple t to the closest solution :

H(t) = min
t′∈{0,1}n

{D(t, t′) : E(t′) = 1}

In particular H(t) = 0 for any solution. By convention H(t) = ∞ for every t
when the circuit is unsatisfiable. This definition clearly relates to the literature
on over-constrained problems, where notions of violation based on (Hamming)
distances have been considered, see [20]. The Hamming violation function clearly
has ideal properties: it is obviously plateau-free and n-bounded, which means
that a local minimum can be found by a greedy algorithm in time O(n3K); and
is faithful to the intuition that ”the higher the violation, the further-off we are
from satisfying the constraint”. Unfortunately for general circuits it is easy to
see that H(t) cannot be computed efficiently.

Observation 2. Given a predicate E(t) computing H is NP-hard.

Proof. Follows from a reduction from the circuit satisfiability problem. We pick
an arbitrary point t and ask to compute H(t). If H(t) = ∞ then the circuit
satisfiability problem is unsatisfiable, otherwise it is satisfiable. ��

A Practical Violation Function. Since we cannot in general produce the
Hamming violation function or another plateau-free violation for all circuits,
it is natural to consider alternatives that are less-than-ideal. We consider the
violation function of [13], which generalizes for arbitrary circuits the definition
proposed by [17] for NNF and makes it symmetric. We call this function sym-
metric violation function.

Definition 7. (Symmetric Violation) Given a tuple of Boolean values t =
〈t1 . . . tn〉 , the symmetric violation Vgk of every gate gk of the circuit is defined
by induction on k as follows:

– If k ≤ n (input gate): Vgk(t) := +1 if tk = 0; Vgk(t) := −1 if tk = 1.
– For a non-input gate, i.e. if k > n: the definition is by case depending on

whether gk is of the form ¬gi, or gi ∧ gj, or gi ∨ gj:
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V¬gi(t) = −Vgi(t)

Vgi∧gj (t) =

{
Vgi(t) + Vgj (t) if Vgi(t) > 0 and Vgj (t) > 0

max(Vgi(t),Vgj (t)) otherwise

Vgi∨gj (t) =

{
Vgi(t) + Vgj (t) if Vgi(t) < 0 and Vgj (t) < 0

min(Vgi(t),Vgj (t)) otherwise

– The violation of the circuit is noted V(t) and is defined as the violation of
the output gate: V(t) = Vgm(t).

A straightforward induction shows that for every gate gk, Vgk(t) �= 0, and the
violation Vgk(t) is positive iff the evaluation of Egk(t) is false.

4 Our Main Result and Its Implications

The Symmetric Violation is Ideal for DNNF Circuits. With the context
and all required material introduced it is now easy to state our result. The full
proof is given in the Appendix.

Proposition 1. If the circuit is in Decomposable Negation Normal Form
(DNNF), the symmetric violation function of Def. 7 is such that, for all t ∈
{0, 1}n:

if t is not a solution then V(t) = H(t)

This result implies that when the considered circuit is in DNNF, (1) H(t) is
equal to max(0,V(t)) and can be computed in linear time; and (2) the symmetric
violation is ideal. In other words: when we have a circuit in DNNF, the violation
score used in papers such as [13] is guaranteed to lead greedy or local search
algorithms directly to a solution.

Example 1. Consider a Boolean formula B that is represented by DNNF in Fig-
ure 2 (borrowed from [5]). An assignment of A,B,C and D to false does not
satisfy the Boolean formula B. Fig. 2 shows the computation of the violation
function V(t). The value of V(t) is 1.

A closest assignment by Hamming distance is A,B,C are false and D is true.
The Hamming distance between these two assignments is one which is the value
of the computed violation function V(t) .

We note that for general circuits the symmetric violation is incomparable with
the Hamming violation: i.e. can be higher or lower depending on cases. This im-
plies that in this case the violation is a purely heuristic indicator respecting only
the weak correctness property. It would be interesting to have useful violation
functions that provably under-approximate the Hamming distance since these
would be admissible heuristics in the classical A	 sense.
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Fig. 2. Computation of the violation function V(t) for the assignment [A,B,C,D] =
[F, F, F, F ]

Ideal Violation Functions for Global Constraints. The main use of Prop.
1 is that it shows how good violation functions can be defined for a large class of
tractable predicates. It has been shown in recent CP work that a large class of
constraints can be encoded in DNNF. An example is theTable constraint, whose
natural Boolean encoding as a disjunction of conjunctions (lines of the tables)
is directly in DNNF. A more complex example is the Grammar constraint, for
which violation functions were only hinted at in [6]. From these decompositions
it is easy to see that Prop. 1 guarantees that the symmetric violation is ideal.

Violation Functions and Weighted Propagators. To conclude on the com-
putation of ideal violation functions for complex constraints, we note that an
efficient computation of the Hamming violation for a constraint is implied by
the existence of an efficient propagator for the weighted version of the constraint,
in the sense used by e.g. [12]. In this framework, a function associates a weight
to every variable/value pair. A variable is introduced to capture the weight of
the assignment, defined as the sum of the weights of the values assigned to all
variables. The propagator removes values that are not supported by any assign-
ment with a weight that is less than the cost variable. While initially introduced
for SAT, the symmetric violation algorithm can in the case of DNNF be thought
of as a specialization of the weighted DNNF constraint propagator of [12]. Be-
ing specialized for violations (one value as opposed to two bounds) and purely
’bottom-up’, the algorithm is slightly more efficient and incremental.

Proposition 2. If a constraint has a (polynomially computable) weighted prop-
agator, then its Hamming distance violation can be computed in polynomial time.

Consider an application of Prop. 2 to the AllDiff constraint.

Example 2. Consider AllDifferent[x1, . . . , x4] with the following domains:
D(x1) = [2, 3], D(x2) = [2, 3], D(x3) = [1, 4] and D(X4) = [1, 4]. Finding a
solution of the AllDifferent constraint corresponds to finding a matching in
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Fig. 3. Computation of Hamming distance violation for theAllDifferent(x1, . . . , x4)
constraint and the assignment x = [x1, x2, x3, x4] = [2, 2, 3, 4]

a bipartite variable-value graph G. To build the graph G we introduce a vertex
for each variable [x1, . . . , x4] and for each value v ∈ [1, . . . , 4]. We connect a
variable-vertex xi to the value-vertex v iff v ∈ D(xi). Fig. 3(left) shows graph G
that corresponds to the AllDifferent constraint.

Consider an assignment x = [x1, x2, x3, x4] = [2, 2, 3, 4]. This assignment does
not satisfy the constraint. Hence, it does not correspond to a matching. The set
of edges that correspond to the assignment are shown in red dashed line.

To find a solution that has the minimum Hamming distance violation to x
we can use the variable-value graph G. We transform G into a weighted graph.
We assign cost 0 to all edges that correspond to the assignment and 1 to the
remaining edges (Fig. 3, right). The minimum cost matching corresponds to the
solution x = [2, 3, 1, 4] that minimizes Hamming distance violation.

5 Future Works

Our main result shows a new facet of the versatile DNNF class of tractable
circuits. It was known that any constraint expressible in this language auto-
matically benefits from ideal propagators, a meta-result that informs their in-
tegration in CP solvers. We showed that predicates expressible in DNNF also
benefit from ideal violation functions, providing a meta-result that can now be
used in constraint-based local search solvers. A third major class of constraint
satisfaction tools is Linear Programming, and it would be interesting to study
in a similar spirit ideal (convex Hull) LP relaxations of DNNF circuits. Another
important open question left for future work is the empirical aspect: can we
design an efficient circuit-based local search solver in which global constraints
are effectively treated by an encoding to DNNF circuits? Lastly, a key question
for all solvers is the combination of multiple constraints: problems can often be
expressed using constraints that have, independently, good propagators / viola-
tion functions / relaxations; however by combining these constraints we lose the
desired property. For local search it would be interesting to design schemas for
combining constraints that are less naive than just summing violations.

Acknowledgements. This work benefitted from discussions with Matthew
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t ← (an arbitrary value)
optimal ← false
while ¬ optimal do

n ← t
foreach t′ at distance 1 from t do

if F(t′) < F(t) then {n ← t′;break}
done
optimal ← (n = t)

done

Fig. 4. Greedy local minimization algorithm

A Appendix

A.1 Greedy Local Minimization Algorithm

A.2 Proof of Proposition 1

Proposition 1. If the circuit is in Decomposable Negation Normal Form
(DNNF), the symmetric violation function of Def. 7 is such that, for all t ∈
{0, 1}n:

if t is not a solution then V(t) = H(t)

Proof. Note that a DNNF is always satisfiable, i.e. represents a non-empty
Boolean relation; so we don’t have to deal with the case where H(t) = ∞.
Given an assignment t we prove by induction on k for all gates gk that:

if Egk(t) = 0 then Vgk(t) = min{D(t, t′) : Egk(t′) = 1}

– if k ≤ n, i.e. the gate gk is an input. If gk is violated by the assignment t
then Vgk(t) = 1; the closest tuple t′ that satisfies gk is obtained by flipping
the value assigned by t to gk, and D(t, t′) = 1.

– if k > n, the proof is by case on the type of gate gk (In all cases the induction
hypothesis holds for the inputs gi, gj since i, j < k):
• Negation of the form ¬gi. The Negation Normal Form means that gi is
an input. If Egk(t) = 0 then Vgk(t) = −Vgi(t) = +1. The closest tuple t′

that satisfies gk is obtained by flipping the value on gi, and D(t, t′) = 1.
• Conjunction of the form gi ∧ gj . The decomposability property applies,
i.e. we have Vars(gi)∩Vars(gj) = ∅. If Egk(t) = 0, we have the following
cases:
Case 1: Vgi(t) > 0 and Vgj (t) > 0. Both inputs are violated and Vgk(t) =
Vgi(t) + Vgj (t).

By the induction hypothesis there exist (1) a tuple u such that Egi(u) =
1 and D(t, u) = Vgi(t); and (2) a tuple w such that Egj (w) = 1 and
D(t, w) = Vgj (t). Consider now the tuple t′ whose value on every input
l ∈ 1 . . . n is defined as follows:

t′l =

⎧⎨
⎩
ul if l ∈ Vars(gi)
wl if l ∈ Vars(gj)
tl otherwise
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(This is well-defined since Vars(gi) and Vars(gj) are disjoint.) It is easy to
show that (1) Egk(t′) = 1; (2) t′ is at distance Vgk(t) = Vgi(t)+Vgj (t) from
t; (3) any tuple τ at distance D(t, τ) < Vgk(t) is such that Egk(τ) = 0.
This shows that Vgk(t) = min{D(t, t′) : Egk(t′) = 1}.
Case 2: Vgi(t) > 0 and Vgj (t) < 0. (TheCase 3: Vgj (t) > 0 and Vgi(t) <
0 is symmetric.) gi is the only input that is violated and Vgk(t) = Vgi(t).

There exists a tuple u such that Egi(u) = 1 and D(t, u) = Vgi(t).
Consider the tuple t′ defined for all inputs l ∈ 1 . . . n by: t′l = ul if
l ∈ Vars(gi); otherwise: t

′
l = tl. The tuple t′ is at distance Vgk(t) from t

and is the closest tuple that satisfies gk.
• Disjunction of the form gi ∨ gj . If Egk(t) = 0, then we have Vgi(t) > 0
and Vgj (t) > 0. W.l.o.g. let gi be the input that is ”less violated”, i.e.
let us assume that Vgi(t) ≤ Vgj (t). Then Vgk(t) = Vgi(t).

By the induction hypothesis there exists a tuple u such that Egi(u) = 1
and D(t, u) = Vgi(t) = Vgk(t). It is clear that Egk(u) = 1. Additionally
no tuple t′ with D(t, t′) < Vgk(t) satisfies gk: if such a tuple did exist
it would either satisfy gi and be at distance < Vgi(t) from t; or satisfy
gj and be at distance < Vgj (t). Both cases are contradictory to the
induction hypothesis.

A.3 Proof of Proposition 2

Proposition 2. If a constraint has a (polynomially computable) weighted prop-
agator, then its Hamming distance violation can be computed in polynomial time.

Proof. We show that it is possible to compute the Hamming violation function
for many useful global constraints C. Let C(X), X = [X1, . . . , Xn] be a global
constraint and C(X,W, z) be the weighted version of the constraint C(X). The
weight matrix W (Xi, tj), tj ∈ D(Xi) i = 1, . . . , n of integer values specifies
the weight of each variable-value pair, and the cost variable z restricts possible
weights of a solution to be less than or equal to z. The weight of a solution X = t
is W (X, t) =

∑n
i=1W (Xi, ti). C(X,W, z) holds iff C(X) holds and W (X, t) ≤ z.

We assume that C(X,W, z) admits a polynomial time propagator that
achieves domain consistency on the variables X and bounds consistency on the
cost variable z. This is the case for many important global constraints, like
AllDifferent or Regular constraints.

We show that we can use C(X,W, z) to compute the Hamming distance func-
tion. Suppose t′ is the current assignment that violates the constraint C(X). We
construct C(X,W, z) in the following way:

W (Xi, tk) =

{
0 if tk = t′i
1 otherwise

for tk ∈ D(Xi), i = 1, . . . , n and D(z) = [0, n]. As the propagator for C(X,W, z)
enforces bounds consistency on z, the lower bound of z gives the value of H
and its support X = t, such that W (X, t) = lb(z), is the closest, by Hamming
distance, solution to t′. This follows from the correctness of the propagator for
C(X,W, z).
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Abstract. We study propagation of a global constraint that ensures
that each row of a matrix of decision variables satisfies a Regular con-
straint, and each column satisfies a Gcc constraint. On the negative side,
we prove that propagation is NP-hard even under some strong restric-
tions (e.g. just 2 values, just 4 states in the automaton, just 5 columns to
the matrix, or restricting to limited classes of automata). We also prove
that propagation is W[2]-hard when the problem is parameterized by the
number of rows in the matrix. On the positive side, we identify several
cases where propagation is fixed parameter tractable.

1 Introduction

Constraints are often applied to the rows and columns of a matrix of decision
variables [6–8, 17]. For example, the RegularGcc constraint posts a Regu-

lar constraint on each row of such a matrix, and a Gcc constraint on each
column [1]. The Regular constraints ensure that each row is a sequence of val-
ues accepted by a deterministic finite automaton (DFA). The Gcc constraints
enforce upper and lower bound on the occurrences of given values down each
column. This modelling pattern occurs in nurse scheduling problems. The row
constraints ensure shift rules (e.g. two days off after a night shift) whilst the
column constraints ensure that sufficient staff are on duty in each shift. This
modelling pattern also occurs in call center rostering and related problems.

In this paper, we investigate the computational complexity of propagating the
RegularGcc constraint. We provide a detailed picture of the conditions under
which propagation is (in)tractable [2–4]. The RegularGcc constraint imposes
a special structure on the problem. Such structure in constraints can have a
positive impact on the complexity of propagation (e.g. by using the structure
of the automaton, the Regular constraint can be propagated in linear time
[14, 16]). In our investigation of the complexity of propagating RegularGcc,
we will make use of structural properties of the constraint. In particular, we will
identify tractable cases by bounding certain structural properties.

2 Background

Constraint Satisfaction Problem A constraint satisfaction problem consists of a
set of variablesX = (x1, . . . , xn), each with a domain of valuesD = (D1, . . . , Dn),
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and a set of constraints specifying allowed combinations of values for given sub-
sets of variables. A solution is an assignment of values to the variables satisfying
the constraints. A common method to find a solution of a constraint satisfaction
problem is backtracking search. Constraint solvers typically prune the backtrack-
ing search space by enforcing a local consistency property like domain consis-
tency. A constraint is domain consistent (DC ) iff when a variable is assigned
any of the values in its domain, there exist compatible values in the domains of
all the other variables of the constraint. Such combination of values is called a
support. A constraint is bound consistent (BC ) iff when a variable is assigned
the minimum or maximum value in its domain, there exist compatible values
between the minimum and maximum domain value for all the other variables.
Such combination of values is called a bound support.

Global Constraints. An automaton A = 〈Σ,Q, q0, F, δ〉 consists of an alphabet
Σ, a set of statesQ, an initial state q0, a set of accepting states F , and a transition
relation δ defining the possible next states from a state given a symbol.A is deter-
ministic (DFA) if there is only one possible next state, non-deterministic (NFA)
otherwise. A string s is recognized by A iff starting from the state q0 we can reach
an accepting state using the transition relation δ. Both DFAs and NFAs recog-
nize precisely regular languages. The constraint Regular(A, (X1, . . . , Xn)) is
satisfied iff X1 to Xn is a string accepted by A [14].

The Stretch((x1, . . . , xn),A, [ls1 , . . . , l|Σ|], [us1 , . . . , u|Σ|]) constraint, where
si ∈ Σ, is a special case of the Regular constraint [9]. The automaton A
defines possible combinations of two consecutive symbols. Parameters lsi and
usi restrict the length of a stretch of symbol si in a sequence from below and
from above, respectively. The Gcc((x1, . . . , xn), [l1, . . . , lm], [u1, . . . , um]) con-
straint ensures that the value i, i = 1, . . . ,m occurs between li and ui times
in x1 to xn. The Sequence constraint is a conjunction of overlapping Among

constraints. The Among(l, u, (x1, . . . , xk), v) constraint holds iff l ≤ |{i|xi ∈
v}| ≤ u. Sequence(l, u, k, (x1, x2, . . . , xn), v) holds iff for 1 ≤ i ≤ n − k + 1,
Among(l, u, (Xi, Xi+1, . . . , Xi+k−1), v) holds.

We define the XY constraint over a matrix of variablesM with R rows and
C columns where X and Y are two global constraints. XY(M) holds iff X holds
on each row of M and Y holds on each column of M .

Parameterized Complexity. A problem is fixed parameter tractable (FPT) to
compute in a parameter k if it can be solved in O(f(k)nc) time where f is
any computable function, c is a constant, and n is the size of the input. Above
FPT, there exists a hierarchy of fixed-parameter intractable problem classes:
FPT ⊆W[1] ⊆W[2] ⊆ . . .. The clique problem is W[1]-complete with respect
to the size of the clique, whilst the dominating set problem is W[2]-complete
with respect to the size of the dominating set. W[t] is characterized by the depth
t of unbounded fan-in gates in a Boolean circuit specifying the problem. There is
considerable evidence to suggest that such problem classes are intractable. For
example, the halting problem for non-deterministic Turing machines is W[1]-
complete with respect to the length of the accepting computation.
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3 Intractable Cases

We first prove that propagating the RegularGcc matrix constraint is NP-hard
even under strong conditions. For example, it is NP-hard to enforce even a weak
level of local consistency like bound consistency with just a few values.

Theorem 1. Enforcing BC on RegularGcc is NP-hard with just 3 values,
Regular constraints given by a DFA of size 4, and Gcc constraints specifying
only an upper bound on the number of occurrences of one particular value.

Proof: Reduction from 3-SAT. Let ϕ = γ1 ∧ · · · ∧ γC be a 3-CNF formula over
Boolean variables p1, . . . , pR. We construct an R×C matrixM of decision vari-
ables taking their values from {−1, 0, 1}, where each row 1 ≤ r ≤ R corresponds
to a propositional variable pr and each column 1 ≤ c ≤ C corresponds to a clause
γc. To initialize the domain of variables in the matrix, we do the following for
each clause γi = li1∨ li2∨ li3. We setMr,i = 0 for all propositions pr not occurring
in γi. For j ∈ {1, 2, 3} we setMi,k ∈ {0, 1} if lij = pk and we setMi,k ∈ {0,−1}
if lij = ¬pk. On each column we put the Gcc constraint that states that the value
0 occurs at most R− 1 times. On each row we put the Regular constraint that
states that besides 0’s either only 1’s or only −1’s occur. Figure 1 demonstrates
that this Regular constraint can be enforced by a DFA of size 4. This instance
of RegularGcc has a solution iff ϕ is satisfiable.

q0

start

q1

q2 q3

0
1

−1

0, 1
−1

−1, 0
1

−1, 0, 1

Fig. 1. Deterministic finite automaton used in the proof of Theorem 1

(⇒) We create a satisfying assignment I for ϕ as follows. For each pr, if in
row r occurs at least one 1, we let I(pr) = �, otherwise we let I(pr) = ⊥ (the
choice of I(pr) when only 0’s occur in row r is arbitrary). Since in each column
c there occur only R− 1 many 0’s, we know that there exists some pi for which
Mi,c �= 0. By construction of M, this can only happen if I(lcj) = � for some
j ∈ {1, 2, 3}. Therefore I satisfies γc.

(⇐) Let I be an assignment satisfying ϕ. We can instantiate M as follows.
For each clause γc = lc1 ∨ lc2 ∨ lc3, for j ∈ {1, 2, 3} we do the following. If lcj = pk
and I(pk) = �, we letMk,c = 1. If lcj = ¬pk and I(pk) = ⊥, we letMk,c = −1.
Otherwise, we letMk,c = 0. Since I is functional each Regular constraint on
the rows is satisfied. Also, since at least one literal is satisfied in each clause,
each column contains at least one value that is not 0, so the Gcc constraints
are satisfied. �
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In fact, we can strengthen the first condition to show that enforcing BC on
RegularGcc is intractable with a matrix containing just 2 values.

Theorem 2. Enforcing BC on RegularGcc is NP-hard with just 2 values.

Proof: Reduction from the Exact Cover By 3-Set problem. We are given F =
{S1, . . . , Sn} with |Si| = 3,

⋃
i Si = U , |U | = 3m. We ask if there exists some

subset C ⊆ F with |C| = m and U =
⋃

c∈C c. W.l.o.g. we assume U contains
the integers 1 to 3m. We construct a n× (n + 3m) matrix of decision variables
ranging over {0, 1}. The first n columns will indicate which Sj is included in
the cover. The first n columns have a Gcc constraint to ensures at most one
1 in each column. The next 3m columns represent the elements of the chosen
set Sj . The Regular constraint on each row reads in the first n values. It only
accepts those sequences that contain a single 1 in the first n values. Suppose
there is a 1 at the jth position for j ≤ n. Then this row represents the set Sj .
Suppose Sj = {p, q, r}. Then the automaton only accepts those sequences with 1
at positions j, n+p, n+q and n+r and 0 everywhere else. To ensure that the m
sets form a cover, we have aGcc constraint on the final 3m columns that ensures
that it contains exactly one occurrence of 1. A solution of this RegularGcc

constraint represents an exact cover. �
These NP-hardness results hold for very restricted cases, involving only few

values or automata with only a few states.

4 Special Cases

We will consider three special cases of the RegularGcc constraint which turn
up frequently in scheduling and rostering problems. These three special cases
restrict the Regular constraints to a limited class of automaton. We con-
sider these special cases of the RegularGcc constraint in an attempt to find
tractable cases. As we will see, however, just restricting the Regular constraints
on the rows to these special cases does not yield tractability.

The first special case is the StretchGcc constraint in which the Regular

constraint on each row encodes a Stretch constraint [9]. This constrains the
length of any sequence of consecutive values (e.g. no more than 3 night shifts in a
row), as well as the permitted transitions (e.g. a night shift can only be followed
by a rest period). Unfortunately, propagation of StretchGcc is intractable
even under strong conditions. For example, it is NP-hard to enforce a weak level
of local consistency like bound consistency with just 3 values.

Theorem 3. Enforcing BC on StretchGcc is NP-hard with just 3 values.

Proof: Reduction from the Exact Cover problem. We are given F =
{S1, . . . , Sn} with

⋃
i Si = U . We ask if there is some subset C ⊆ F with⋃

c∈C c = U and c ∩ c′ = ∅ for all distinct c, c′ ∈ C. W.l.o.g. we assume that U
contains the integers 1 to |U |. We construct a |F | × |U | matrixM, of decision
variables taking their value in {−1, 0, 1}. For each row 1 ≤ r ≤ |F | and each
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value 1 ≤ i ≤ |U | we do the following. If i ∈ Sr, we letMr,i ∈ {0, 1}. If i �∈ Sr, we
letMr,i ∈ {−1, 0}. On each column we put the Gcc constraint that states that
the value 1 occurs exactly once. On each row we put the Stretch constraint
stating that each stretch of 0’s must have a length of at least |U |. We show that
this instance of StretchGcc has a solution iff there exists an exact cover.

(⇒) Take a solution for our instance. We let C be the set of all Ur for which
row r in the solution contains only −1’s and 1’s. Obviously C ⊆ F . In order
to show that

⋃
c∈C = U , it suffices to show that U ⊆

⋃
c∈C . Take an arbitrary

i ∈ U . Since our solution contains at least one 1 in each column, we know there
is some c ∈ C such that i ∈ c. We also show that all distinct c, c′ ∈ C are
disjoint. Take arbitrary c, c′ ∈ C such that c �= c′. Assume j ∈ c∩ c′. This means
that column j in the solution would contain two 1’s, which contradicts the Gcc

constraints on the columns.
(⇐) Let C ⊆ F be an exact cover. We fill M as follows. For each row 1 ≤

r ≤ |F |, we do the following. If Sr ∈ C, fill the row with −1’s and 1’s (this can
be done only in one way). Otherwise, fill row r with only 0’s. Obviously, the
Stretch constraints on the rows are satisfied. Also, since C is an exact cover,
we know that for each 1 ≤ i ≤ |U | there is exactly one row r such thatMr,i = 1.
Thus the Gcc constraints on the columns are satisfied. �
The second special case we consider is the SlideGcc constraint, in which the
Regular row constraints encode Slide meta constraints [2]. This constrains
all subwords of a particular length k to instances of a given k-ary constraint
(e.g. directly after two night shifts there must be either a small shift or a rest
period). Such Slide constraints can be encoded using Regular constraints with
automata whose number of states depends only on k. Unfortunately, SlideGcc

propagation is again intractable even under strong conditions.

Corollary 1. Enforcing BC on SlideGcc is NP-hard, already for Slide con-
straints based on constraints of arity 2 and just 3 values.

Proof: (Sketch.) The reduction from the proof of Theorem 3 can be adapted for
SlideGcc by putting on each row a Regular constraint accepting only words
that contain either only 0’s or only −1’s and 1’s. This can be expressed using a
Slide constraint with arity 2. �
The third special case of RegularGcc we consider is the SequenceGcc con-
straint in which the Regular constraint on each row encodes a Sequence

constraint [13]. This constrains the repetition of values within a sliding window
(e.g. there are at least 2 days off in any 7 day period, and at most 3 night
shifts in any 7 day period). Enforcing domain or bound consistency on the Se-

quenceGcc constraint is NP-hard even if the matrix has just a few columns.
For the sake of presentation, we firstly give an intractability proof for domain
consistency, and then extend this proof to bound consistency.

Theorem 4. Enforcing DC on SequenceGcc is NP-hard with just 5 columns.

Proof: Reduction from the 3D Matching problem. Given three pair-wise disjoint
sets W , Z, Y of equal size q and a set M ⊆W ×Z×Y , |M | = m, we ask if there
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exists M ′ ⊆ M such that |M ′| = q and no two different elements of M ′ agree
in any coordinate. Assume M = {s1, . . . , sm}. We create a m × 5 matrix M
of decision variables taking their value in {0, t, w1, . . . , wq, z1, . . . , zq, y1, . . . , yq}.
For each (wi, zi, yi) = si we let Mi,1 ∈ {0, wi}, Mi,2 ∈ {0, t}, Mi,3 ∈ {0, zi},
Mi,4 ∈ {0, t}, and Mi,5 ∈ {0, yi}. We constrain each row i with the constraint
Sequence(Mi, 1, 2, 2, {0}), stating that in each sequence of length 2, at least
one 0 occurs. On columns 1 (resp. 3 and 5) we put the Gcc constraint stating
that each value in W (resp. Z and Y ) occurs at least once, and that at least
m− q many 0’s occur. On columns 2 and 4 we put the Gcc constraint stating
that at least q many t’s occur, and at least m − q many 0’s. This instance of
SequenceGcc has a solution iff there exists a matching.

(⇒) Take a solution for SequenceGcc. We know column 2 contains exactly
m− q many t’s, and q many 0’s. For each occurrence of a t in column 2 at row
i, columns 1 and 3 contain a 0 at row i (by the Sequence constraint). Then,
by the Gcc constraint, for all rows j where column 2 contains a 0, columns 1
and 3 contain a non-0 at row j, and thus (by Sequence) column 4 contains a
0 at row j. By a similar argument, we know that in the remaining rows column
4 contains t’s. Continuing this argument for column 5, we know that in the
solution there are q many rows taking values (wi, 0, zi, 0, yi) and m − q rows
taking values (0, t, 0, t, 0). By the Gcc constraints, we know that each value
w ∈ W occurs exactly once, as well as each value z ∈ Z and each y ∈ Y .
Since the possible values were chosen by taking elements from M , we know that
M ′ = {si | Mi �= (0, t, 0, t, 0)} is a 3D matching.

(⇐) Let M ′ ⊆ M be a 3D matching. We can fill M as follows. For each
(wi, zi, yi) = si ∈ M ′, we letMi = (wi, 0, zi, 0, yi). For each si ∈ M\M ′ we let
Mi = (0, t, 0, t, 0). Obviously each row satisfies the Sequence constraint. Since
|M ′| = q and each value w ∈ W occurs exactly once in the first coordinate of
M ′ (and similarly for values z ∈ Z and the second coordinate, and y ∈ Y and
the third coordinate), we have that each column satisfies the corresponding Gcc

constraint. �

Theorem 5. Enforcing BC on SequenceGcc is NP-hard with just 5 columns.

Proof: The proof is similar to the proof of Theorem 4. Let cwi (resp.
czi, cyi) be the number of occurrences of the value wi (resp. zi, yi) in
M . For each value wi (resp. zi, yi) we create cwi − 1 (resp. czi − 1,
cyi − 1) clones of it. We now define the total order on values as U =

[−w1
q , . . . ,−w

cwq−1
q , . . . ,−w1

1, . . . ,−wcw1−1
1 ,−z1q , . . . ,−z

czq−1
q , . . . ,−z11 , . . . ,

−zcz1−1
1 ,−y1q , . . . ,−y

cyq−1
q , . . . ,−y11, . . . ,−y

cy1−1
1 , 0, t, y1, . . . , yq, z1, . . . , zq, w1,

. . . , wq]. We create the matrix M in a similar fashion as in the proof
for Theorem 4, with the difference that for each (wi, zi, yi) = si we let
Mi,1 ∈ [−w1

i , . . . ,−wcwi−1
i , . . . , wi], Mi,3 ∈ [−z1i , . . . ,−zczi−1

i , . . . , zi],

Mi,5 ∈ [−y1i , . . . ,−y
cyi−1
i , . . . , yi], and Mi,2 ∈ [0, t] and Mi,4 ∈ [0, t]. We

adapt the constraint on rows to Sequence(Mi, 1, 2, 2, [−w1
q , 0]), stating

that in each sequence of length 2, at least one value in [−w1
q , 0] occurs.

On columns 1 (resp. 3 and 5) we replace the Gcc constraint with one
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stating that each value in {−w1
q , . . . ,−w

cwq−1
q , . . . ,−w1

1, . . . ,−wcw1−1
1 } ∪

W (resp. {−z1q , . . . ,−z
czq−1
q , . . . ,−z11 , . . . ,−zcz1−1

1 } ∪ Z and

{−y1q , . . . ,−y
cyq−1
q , . . . ,−y11, . . . ,−y

cy1−1
1 } ∪ Y ) occurs at least once. We

do not change the Gcc constraints on columns 2 and 4. We show that this
instance of SequenceGcc has a solution iff there exists a 3D matching.

(⇒) By reasoning similar to the proof of Theorem 4 (replacing ‘0’ with ‘a
value in [−w1

q , 0]’ when reasoning about columns 1, 3 and 5), we know that in the
solution there are q many rows taking values (wi, 0, zi, 0, yi), possibly containing
clones, and m−q rows taking values (n, t, n′, t, n′′) where n, n′, n′′ are either 0 or
some clone w′

i, z
′
i, or y

′
i (respectively). Furthermore, by theGcc constraint on the

odd columns, we know that each value in {−w1
q , . . . ,−w

cwq−1
q , wq} must occur

exactly once. Since these values occur only in the domains ofMi,1 for the cwq

many si ∈M that contain wq, we know that each of theseMi,1 must take a value

in {−w1
q , . . . ,−w

cwq−1
q , wq}. Then, by the Gcc constraint on the odd columns,

we know that each value in {−w1
q−1, . . . ,−w

cwq−1−1
q−1 , wq−1} must occur exactly

once. These values occur only in the domains ofMi,1 for the si ∈M that contain
wq−1 or wq. However, theMi,1 for the si ∈M that containwq must take values in

{−w1
q , . . . ,−w

cwq−1
q , wq}. Therefore, theMi,1 for the si ∈M that contain wq−1

must take a value in {−w1
q−1, . . . ,−w

cwq−1−1
q−1 , wq−1}. Repeating this argument

recursively until reaching the value t, we can restrict the effective domain of the
odd positions ofMi for si = (wi, zi, yi) ∈M toMi,1 ∈ {−w1

i , . . . ,−wcwi−1
i , wi},

Mi,3 ∈ {−z1i , . . . ,−zczi−1
i , zi}, and Mi,5 ∈ {−y1i , . . . ,−y

cyi−1
i , yi}. Therefore,

we know that each row Mi for si = (wi, zi, yi) ∈ M either has the values
(wi, 0, zi, 0, yi) or the values (w′

i, t, z
′
i, t, y

′
i) for some clones w′

i, z
′
i, y

′
i of wi, zi, yi.

Now, by the Gcc constraints, we know that each value w ∈ W occurs exactly
once, as well as each value z ∈ Z and each y ∈ Y . Since the possible values
were chosen by taking elements from M , we know that M ′ = {si | Mi =
(w, 0, z, 0, y), w ∈ W, z ∈ Z, y ∈ Y } is a 3D matching.

(⇐) Let M ′ ⊆ M be a 3D matching. We can fill M as follows. For each
(wi, zi, yi) = si ∈ M ′, we let Mi = (wi, 0, zi, 0, yi). For each (wi, zi, yi) = si ∈
M\M ′ we let Mi = (w′

i, t, z
′
i, t, y

′
i) for some clones w′

i, z
′
i, y

′
i of wi, zi, yi that

have not been used before in the process of fillingM. We know there are enough
different clones for this procedure. It is easy to verify that this instantiation of
M satisfies all the constraints. �

5 Fixed Parameter Tractable Cases

We have seen that propagating the RegularGcc matrix constraint is NP-hard
even under the strong restriction that either the number of values or the number
of columns is bounded. We now identify three cases where we obtain tractability
by bounding two parameters simultaneously. The three cases bound either the
number of rows and the size of the automaton, or the number of columns and the
product of the upper or lower bounds on the occurrences of values on a column.
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Theorem 6. Enforcing DC on RegularGcc is fixed parameter tractable in
k = R + |Q|, where R is the number of rows and |Q| the maximum number of
states in any row automaton.

Proof: This follows observing that Gcc over a sequence of a fixed size can be
encoded in a DFA with polynomially many states, then swapping the rows with
the columns, and appealing to Lemma 1 in the Appendix. �

Theorem 7. Enforcing DC on RegularGcc is fixed parameter tractable in
k = C +B, where C is the number of columns, and B is the maximum product
of upper bounds specified on one column.

Proof: Let u1, . . . , uk be the upper bounds enforced in a given column on values
v1, . . . , vk. Note that in the column constraints, for each value either both a
lower and upper bound is specified, or neither. We can enforce the cardinality
constraints consisting of the lower and upper bounds with a Regular constraint
of size u1 · . . . ·uk = O(B). The result now follows directly from Lemma 1 in the
Appendix. �

Theorem 8. Enforcing DC on RegularGcc is fixed parameter tractable in
k = C+B, where C is the number of columns, and B is the maximum product of
lower bounds specified on one column, and the Gcc constraints in RegularGcc

only have lower bounds.

Proof: Let l1, . . . , lk be the lower bounds enforced in a given column on values
v1, . . . , vk. We can enforce the cardinality constraints consisting of only these
lower bounds with a Regular constraint of size l1 · . . . · lk = O(B). The result
now follows directly from Lemma 1 in the Appendix. �

We have shown that propagation of RegularGcc is tractable if certain com-
binations of parameters of the problem are bounded like the number of rows and
the size of the automaton. On the other hand, just bounding the number of rows
on its own does not ensure tractability.

Theorem 9. Enforcing BC on RegularGcc is W[2]-hard in k = R the num-
ber of rows with just 2 values.

Proof: We reduce from p-Hitting-Set. Let H = (V,E) a hypergraph, where
V = {v1, . . . , v|V |} and E = {e1, . . . , e|E|}. We ask if there is a hitting set
S ⊆ V in H of cardinality k. We construct an instanceM of RegularGcc with
|V |+ |E| columns and k rows on the alphabet {0, 1}. The Regular constraint
accepts |V | different words w1, . . . , w|V | of length |V |+ |E|. For any word wv, the
vth value is 1, and the remainder of the first |V | values is 0. Also, for any word
wv and any 1 ≤ j ≤ |E|, the jth value of wv is 1 if v ∈ ej , and is 0 otherwise. The
Gcc constraints we put on the columns are as follows. In the first |V | columns
we require exactly one 1. In the remaining columns, we require at least one 1.
In this reduction, each row corresponds to one vertex that is being chosen for
inclusion in the hitting set, and each column after the first |V | to one hyperedge.
The Gcc constraints on the first |V | columns ensure that no vertex is chosen in
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two rows. The constraints on the last |E| columns ensure that each hyperedge
contains a vertex chosen for the hitting set. If there is a hyperedge all vertices
of which are not included in the hitting set, the column corresponding to this
hyperedge will contain 0’s only, violating the Gcc constraint of that column. We
show that there exists a hitting set S in H of cardinality k iff the RegularGcc

matrix constraint has a solution.
(⇒) Assume there exists a hitting set S in H of size k. We construct an

assignment to RegularGcc by matching one vertex v ∈ S with each row (in
any manner). If row i is matched to vertex v, we assign word wv to row i. The
fact that S contains k different vertices v ensures that k different words wv are
used. Also, since S is a hitting set, we know that for each hyperedge ej there is
at least one v ∈ ej ∩S, and so each of the last |E| columns contains at least one
1. Thus the Gcc constraints are satisfied.

(⇐) Suppose the RegularGcc matrix constraint has a solution. We con-
struct a hitting set S by taking all v such that wv is a row in the solution. By
the Gcc constraints we know that the solution contains k different words wv, so
S is of size k. Now, to derive the contrary, assume there exists a hyperedge ej ∈ E
such that S ∩ ej = ∅. Then the column corresponding to ej (column |V | + j)
contains only 0’s. This violates Gcc on this column, which is a contradiction. �

6 A Practical Application

We illustrate the usefulness of the tractable cases identified here. In order to do
so, we will describe a nurse scheduling problem that can be modelled (partially)
using one of the identified tractable cases of RegularGcc constraints.

Often, medical staff in a hospital are divided into different departments of
some bounded size. The schedules of individual departments are mainly con-
strained by factors independent of other departments (e.g. the minimum number
of staff on duty during different time shifts). Of course, there might be constraints
expressing dependencies between schedules of different departments. Such con-
straints, however, are often more complicated than simple number restrictions
on the staff on duty (e.g. for certain interdepartmental tasks, staff of different
departments with particular skills needs to be on duty at the same time). As a
result, these additional constraints need to be expressed by means of constraints
separate to the RegularGcc constraints anyway.

Concretely, we describe an example that corresponds to the result in Theorem
6, where the number of rows and the size of the row automata are bounded.
Consider a hospital that can grow arbitrarily large in size, but where the different
departments have a fixed maximum size. Since the departments typically have
independent requirements on the number of staff on duty, the nurse scheduling
problem can be divided into subproblems for every department, expressible by
separate RegularGcc constraints with a bounded number of rows. Also, shift
rules typically express constraints on a bounded time window of n days (e.g.
weekly or monthly requirements). Then, with row automata of size O(n · s), for
s the number of different shifts, we can express any requirement on (fixed or
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moving) time windows of n (or less) days, (e.g. minimum and maximum number
of working shifts in each calender month, a day off after two night shifts in a
row, never more than 5 working days in a row, for every 3 consecutive weekends
at least one should be off duty).

Because the maximum time window n and the number of shifts s are typically
fixed, we can use instances of the RegularGcc constraint with bounded row
automaton size and a bounded number of rows to solve rostering problems like
the example sketched above. Theorem 6 then tells us that propagation for such
instances of the RegularGcc constraint is tractable.

7 Symmetry Breaking

A technique often used to reduce the number of isomorphic solutions and to
increase propagation for a given constraint satisfaction problem is the introduc-
tion of symmetry breaking constraints [5, 15, 18]. Such constraints eliminate
symmetrical solutions. One symmetry breaking constraint that is useful in the
case of RegularGcc requires the rows of the matrix to be lexicographically
ordered (with respect to a given ordering on the domain values). Since the col-
umn constraints only impose bounds on the number of occurrences of values,
swapping rows in any solution results in another solution, symmetric to the first
solution. Additional symmetric solutions are often irrelevant, for instance when
modelling nurse scheduling problems. Requiring the rows to be ordered elimi-
nates such symmetric solutions, and the constraints that impose this requirement
can increase propagation.

The complexity analysis of propagation of the RegularGcc constraint pre-
sented above can be extended to the case where one constraint enforces simulta-
neously the RegularGcc constraint and such symmetry breaking constraints
[11]. The general NP-hardness and the W[2]-hardness results above can di-
rectly be extended to hold for this combined setting as well. The fixed-parameter
tractability results can also be extended to the symmetry breaking setting. For
the result of Theorem 6, this can be done without modifying the parameter,
by constructing an automaton, enforcing lexicographic row ordering, running
over the matrix column per column. For the other fixed-parameter tractability
results, this can be done when the parameter also includes the maximum do-
main size, by constructing such an automaton running over the matrix row per
row. Further research is needed to extend the complexity analysis of propagating
RegularGcc for combinations with other symmetry breaking constraints.

8 Conclusions

The RegularGcc constraint is useful to model a range of scheduling and ros-
tering problems. We have provided a detailed picture of the conditions under
which propagation of the RegularGcc constraint on a matrix of decision vari-
ables is tractable. On the negative side, we proved that it is NP-hard to enforce
even a weak level of consistency like bound consistency with just 2 values, just
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4 states in the automaton, or just 5 columns to the matrix. On the positive
side, we proved that it is fixed parameter tractable to enforce domain consis-
tency when we bound the number of rows and the size of the automaton, or
the number of columns and the product of the upper or lower bounds on the
occurrences of values on a column. We note that such FPT results have found
practical application recently. For example, Katsirelos, Narodytska and Walsh
recently used such a FPT result to break all row and column symmetry [12].
Even more recently, Yip and Van Hentenryck have converted such a FPT result
into an effective constraint propagator [19]. In future work, we therefore intend
to convert the FPT results identified here into practical algorithms for solving
rostering and scheduling problems.

Appendix: Regular2 Constraint

Some of our fixed parameter tractability results exploit a mapping the Reg-

ularGcc constraint onto a closely related global constraint. The Regular
2

constraint posts Regular constraints on every row and column of a matrix
model. When we bound the number of columns and the number of states in the
column automaton of such a constraint, propagation is polynomial.

Lemma 1. Enforcing DC on Regular
2 is fixed parameter tractable in k =

C + |Q′|, where C is the number of columns, and |Q′| is the (maximum) size of
the column automata.

Proof: This proof is similar to Observation 2 in [10]. W.l.o.g. we assume that all
row constraints are the same, and all column constraints are the same. Let |Q|
be the size of the row automaton. We can encode the matrix constraint on an
R×C matrixM in a single DFA on the matrix stretched out to a single sequence
of variablesM1,1, . . . ,M1,C ,M2,1, . . . ,MR,C . The state set of the automaton is
{1, . . . , C}×Q× (Q′)C . In each state, the automaton keeps track of the column
it is in, the current state q′ ∈ Q′ for each column c, and the current state q ∈ Q
in the current row. The size of the automaton is O(C · |Q| ·2C·log |Q′|). Enforcing
DC on a Regular constraint takes time polynomial in the size of the automaton
[14, 16], so our algorithm runs in fixed parameter tractable time. �
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Abstract. Stochastic perturbation on variable flipping is the key idea of
local search for SAT. Observing that variables are flipped several times in
an attempt to escape from a local minimum, this paper presents a dupli-
cation learning mechanism in stagnation stages to minimise duplicative
variable flipping. The heuristic incorporates the learned knowledge into a
variable weighting scheme to effectively prevent the search from selecting
duplicative variables. Additionally, probability-based and time window
smoothing techniques are adopted to eliminate the effects of redundant
information. The integration of the heuristic and gNovelty+ was com-
pared with the original solvers and other state-of-the-art local search
solvers. The experimental results showed that the new solver outper-
formed other solvers on the full set of SAT 2011 competition instances
and three sets of real-world verification problems.

1 Introduction

Stochastic local search (SLS) for Satisfiability (SAT) problems is currently a
well-studied and developed research field. Many practical problems (e.g. hard-
ware verification, planning, circuit design) modeled under SAT format have been
efficiently solved by local search. Since the prior work of GSAT algorithm [13],
there has been a tremendous research on improving local search for SAT such
as AdaptNovelty+[3], G2WSAT [6], VW2 [10], gNovelty+ [9], Hybrid [18], TNM
[17], Sparrow [1]. While local search is an emerging approach for solving large
random instances, it still struggles to solve structured problems because it is
mainly based on perturbation and stochastic process of variable flipping [19].
Therefore, minimising duplicative flipping is an important and a challenging
issue that need to be addressed.

There are some techniques to improve the performance of local search such
as random walk, noise scheme and clause weighting. Random walk technique
[8] randomly selects a variable in an unsatisfied clause to escape local min-
ima. This method is significantly developed to the well-known Novelty+ and
AdaptNovelty+ [3] methods, which controlled by a probability noise. The prob-
ability noise scheme of Novelty+ improves the diversification of the search pro-
cess by preferring the second best variable within a diversification noise. While
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Novelty+ retains a constant diversification noise, AdaptNovelty+ adjusts the
noise automatically during the search. Clause weighting schemes originated from
the work of [12] and have been developed substantially though a series of clause
weighting local search algorithms (e.g. DLM [19], SAPS [5], PAWS [15]). In re-
cent SAT competitions, gNovelty+, TNM and Sparrow2011 were respectively the
winners of the Random category in 2007, 2009, and 2011. gNovelty+ is a hybrid
of a clause weighting scheme from PAWS, Tabu heuristic and AdaptNovelty+.
TNM is a combination of G2WSAT and two trap escape heuristics switched
by a variable weighting scheme. Sparrow2011 is based on gNovelty+ framework
and utilizes its own probability-based scoring function in the stagnation stages
instead of applying AdaptNovelty+.

Due to the fact that local search is based on the perturbation of flipping
variables to find solutions, flipping the same variables several times in a short
period of search steps especially at stagnation stages is a critical drawback of
local search. Especially during stagnation stages, some variables are flipped sev-
eral times in order to escape local minima. This situation is redundant and
time-consuming. We call the circumstance that a variable is flipped more than
once within a short period at stagnation stages duplicative flipping. Currently,
there are some methods to reduce duplicative flipping (e.g. Tabu and variable
weighting [10]). Tabu search [14] prevents the search from selecting recent vari-
ables within a particular tenure. It strictly prohibits duplicative flipping within
a given tenure. In addition, variable weighting schemes are used in VW2 [11],
Hybrid [18] and TNM [17] for diversification boosting. VW2 employs variable
weights to count the number a variable flipped. By preferring the least often
selected variables, it aims to minimize duplicative flipping for better diversifica-
tion in the entire search process. In contemporary local search methods, there is
an absence of study on repetitively flipping variables during stagnation stages.

This paper presents a method to minimise duplicative flipping at stagnation
stages during the search procedure. The structure of this paper is divided into
4 parts. The introduction provides an overview of contemporary local search
methods and their issues. In section two, the approach of duplication avoid-
ance strategy and forgetting techniques are presented. Forgetting techniques (e.g.
probability-based smoothing and time window release) are applied to enhance
the performance of the heuristic. Afterwards, gNovelty+DL, the integration of
the heuristic and the gNovelty+ framework, is clearly explained. Section three
reports experiments on some structure test suite and SAT 2011 competition
dataset. Finally, section four sums up our conclusions and future work.

2 Duplication Learning Strategy

2.1 Motivation

Avoidance of duplicative flipping is one important issue in local search algo-
rithms for SAT. To investigate duplicative flipping on structured and random
instances, we conducted an experiment to compute the duplication ratio in stag-
nation paths. We define a stagnation path as a sequence of consecutively flipped
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variables back-tracking from a local minimum, and duplicative variables are vari-
ables that appear more than once within a stagnation path. The duplication ratio
is the fraction of the number of duplicative variables over the number of vari-
ables in stagnation paths. In order to limit collective data for study, a parameter
tenure k specifies the length of a stagnation path.

Table 1. Average of duplication ratios on verification benchmarks and SAT
2011 Competition dataset. Stagnation paths have the same length of k=20.

Instances vw2 gNovelty+ Sparrow2011

cbmc.test (39) 7% 38% 27%

swv.test (75) 4% 18% 16%

sss-sat-1.0 (100) 11% 50% 74%

Application (149) 2% 14% 4%

Crafted (150) 24% 30% 22%

Random Large (200) 3% 38% 6%

Random Medium (400) 20% 68% 29%

Table 1 shows the average of duplication ratios of VW2, gNovelty+ and Spar-
row2011. Experiments were conducted on the verification benchmarks : cbmc,
swv, sss-sat-1.0 and the SAT 2011 competition dataset. The experiments on
verification benchmarks were conducted 50 times for each instance. SAT 2011
competition dataset experiments were run 10 times for each instance. As seen in
Table 1, VW2 had the least duplication ratio compared to gNovelty+ and Spar-
row2011. This was because VW2 employed variable weighting schemes to avoid
duplicative flipping. However, variable weights accumulate information of flip-
ping frequencies during the entire search process rather than specifically during
stagnation stages.

According to Table 1, the duplication ratios were high during stagnation
stages. This phenomenon increases the duration of the search process by se-
lecting the same variables several times. Additionally, duplicative flipping prob-
ably leads to previous local minima or previously visited areas. We hypothesize
that variables occurring repeatedly in stagnation paths are sensitive and critical.
These variables should not be selected as they are likely to cause stagnation and
duplicative flipping in the future. In contemporary literature, there are a few
methods that have exploited the duplication information at visited stagnation
areas when selecting variables for the next steps. Although Tabu search and
variable weighting are methods to minimise duplicative flipping, they do not
have a learning mechanism to learn from duplicative variables leading to local
minima. In our opinion, there remains a need for an efficient method for learning
about duplication in stagnation stages and actively preventing the search from
selecting these variables. From that point of view, in the following section we
propose a heuristic that combines the advantages of the variable weighting and
the duplication learning heuristic.
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2.2 Duplication Avoidance Heuristics

As described in the previous section, variables that appear in the bounded stag-
nation paths are considered important to the learning mechanism. The proposed
duplication learning (DL) aims to assist local search algorithms in intelligently
avoiding variables that are highly potential to cause duplication in the future by
exploiting duplication information at previous stagnations. We associate a du-
plication weight to each variable and these weights are initially set to 0. At each
local minimum, duplication weights of duplicative variables in the stagnation
paths are increased by one. Hence, a high value of duplication weight indicates
potential likelihood of causing duplicative flipping in trap areas if the variable
is chosen to be flipped. In other words, variables whose duplication weight are
high have more conflicts with the current solution assignment. For that reason,
variables having low duplication weights are preferred to be selected in the next
steps. The use of duplication weights and tenure k are inspired by the VW2
algorithm [10] and Tabu search [14]. Compared to VW2, however the weight
updating procedure is applied at the stagnation stages and the heuristic does
not completely forbid variables in the tenure like Tabu heuristic.

Algorithm 1 describes the proposed duplication learning heuristic in combi-
nation with two forgetting techniques. The history of flipped variables during
search progress are stored in stack H . Lines 3 - 5 of Algorithm 1 describe the
way the stagnation paths are popped from the stack of flipped variables H . At a
stagnation stage, variables duplicately flipped in the stagnation path have their
weights increased by one (lines 7 - 9). In order to investigate the effectiveness
of the learning mechanism, the two forgetting techniques (e.g. the time window
release and probability-based smoothing techniques) are applied in duplication
prevention heuristic (lines 11 - 19 Alg. 1). These two techniques are explained
clearly in the following sections. The parameters time window queue W and its
size T are used for time window release strategy; and the duplication smooth
probability dp is used for probability-based smoothing mechanism.

2.3 Techniques to Forget Learned Information

As the search visits a large number of local minima, duplication weights may
not correctly reflect the duplicative scenarios that are relevant to the current
location. It is necessary to apply a mechanism to reduce over-learned duplication
weights. For that reason, we integrate a probability-based smoothing technique
and a time window mechanism to the heuristic.

Probability-Based Smoothing. The probability-based smoothing mechanism
is a simple smoothing technique controlled by a probability parameter dp. Within
the smoothing probability dp, duplication weights are reduced by one (Alg. 1
lines 11 - 16). The aim of the probability-based smoothing technique is to re-
duce over-valued duplication weights which are mostly irrelevant information for
selecting variables.



222 T.-T. Duong, D.N. Pham, and A. Sattar

Algorithm 1: Duplication Learning Strategy DL(k,T ,dp,H ,W )
Input : tenure k, flipped variable history stack H, time window queue W , time window size

T , duplication smooth probability dp

1 stagnation path = � ;
2 duplication list = � ;
3 for i ← 1 to T do
4 var ← pop stack(H) ;
5 stagnation path ← var ;

6 end
7 for all var appears more than one time in stagnation path do
8 duplication weight[var] + +;
9 duplication list ← var ;

10 end
11 if T > 0 then

// Using time window release
12 if Size(W ) == T then
13 further duplication list = pop queue(W );
14 for all var in further duplication list do duplication weight[var] − −;
15 remove further duplication list from W ;

16 W ← push queue(W, duplication list);

17 if dp > 0 then
// Probability-based Smoothing

18 if within probability of dp then
19 for all var if duplication weight[var] > 1 do duplication weight[var] − −;
20 end

21 end

Time Window Release. The time window release technique (lines 17 - 19 Alg.
1) resembles a window that moves along-side the search in progress. The aim of
this technique is to restrict effects of the duplication weights into limited recent
stagnation times. To elaborate, the learned information within the window area
is accumulated in duplication weights while the information outside the window
is discarded. We define a duplication list as a list of duplicative variables occurred
in a stagnation path. The time window queue W is an ordered queue of T most
recent duplication lists. The size of W are bounded by parameter T . Once a
stagnation path is released from the window view, its learned experience has
elapsed. In other words, the duplication weights of variables in the corresponding
duplication list are decreased by one. The further duplication list is removed from
the window and a newly encountered duplication list is pushed into the queue.

2.4 gNovelty+DL: Integration of Duplication Learning into
gNovelty+

This section describes the integration of duplication learning heuristic into the
gNovelty+ algorithm. gNovelty+ uses a clause weighting scheme while duplica-
tion learning employs a variable weighting mechanism. Therefore, gNovelty+DL,
an integration of duplication learning into gNovelty+, is a combination of clause
weighting and variable weighting focused on duplication avoidance. Algorithm
17 presents the pseudo-code of gNovelty+DL.
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As described in [9], gNovelty+ has two parameters: a random walk probability
wp and a smooth probability sp. The DL strategy requires three more parameters
which are the tenure k, the time window size T and the duplication smoothing
probability dp. The parameter dp is used for the probability-based smoothing
strategy described in section 2.3. In the initialization phase, duplication weights
of variables are set to zero. The variable history H and the time window W are
initialized empty. Because gNovelty+ is a clause weighting local search in which
the score function is computed based on clause weights, local minima are con-
sidered at the steps when there is no promising variable 1. In this circumstance,
the DL strategy is applied (line 11). The criteria of selecting variables is slightly
different to gNovelty+. Instead of breaking tie the least recent flipped variable,
the heuristic breaks tie by the lowest duplication weight. In lines 8 and 12, the
algorithm selects the most promising variable in terms of score value, and then
breaks tie by lowest duplication weights. Finally, the selected variable is pushed
into the history stack H .

Algorithm 2: gNovelty+DL(k,T ,dp,sp)
Input : A formula Θ, random walk probability wp = 0.01, smooth probability sp, tenure k,

time window size T , duplication smoothing probability dp
Output: Solution α (if found) or TIMEOUT

1 randomly generate a candidate solution α;
2 W = �; H = �;
3 initialize duplication weights to 0;
4 while not time out do
5 if α satisfies the formula Θ then return α ;
6 if within the probability wp then Random walk;
7 else if there are promising variables then
8 select the most promising variable, breaking tie by lowest duplication weight;
9 else

10 update (and smooth in probability sp) clause weights;
// Stagnation happens: perform duplication learning

11 DL(k,T ,dp,H,W);

12 AdaptNovelty+: (breaks tie by lowest duplication weight);

13 end
14 flip variable var;
15 H ← push stack(H, var);

16 end
17 return TIMEOUT;

3 Experiments

In these experiments, gNovelty+DL was dispersed into 4 variants differenti-
ated by the combination use of the time window release and probability-based
smoothing. The list of gNovelty+ variants is shown in Table 2. The intention of
these variants was to examine the feasibility of DL heuristic as well as effects
of forgetting techniques. By adding both time window release and probability-
based smoothing in gNovelty+Rws, we aim to investigate the capabilities of the
two forgetting techniques. In the preliminary experiment, the performance of

1 A promising variable is one that improves the objective score [9].
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gNovelty+Rp is examined against some common SLS solvers on ternary chains
to test the diversification capability. Further experiments were conducted on
structured verification benchmarks and the full SAT 2011 competition dataset
and compared gNovelty+DL with gNovelty+ (uses clause weighting), VW2 (uses
variable weighting), and Sparrow2011 (the winner of the latest SAT competi-
tion). Table 5 presents the parameter settings for gNovelty+DL variants. These
parameter configurations were optimized by ParamILS [4], a local search opti-
mization tool for parameterized algorithms. The experiments were conducted on
the Griffith University’s Gowonda HPC Cluster Intel(R) Xeon(R) CPU X5650
2.67GHz.

Table 2. Variants of gNovelty+DL heuristic

Probability-based smoothing
Time window release No Yes

No Rp Rps
Yes Rw Rws

3.1 Preliminary Experiments on Ternary Chains

Ternary chain is an artificial problem that deliberately simulates chains of vari-
able dependency in structure problems. It is employed to study the diversification
capability of local search algorithms in [10], due to the fact that it has only one
solution that assigns all variables to true. Therefore, flipping any variable from
true to false is likely to move away from the solution. Given these character-
istics, local search algorithms will easily become trapped. The following is the
formulation of a ternary chain with N variables.

(x1) (x2) (x1 ∧ x2 → x3) . . . (xN−2 ∧ xN−1 → xN )

Fig 1 depicts a comparison between gNovelty+DL with some popular solvers
(e.g. rots - Tabu search [14], adaptG2WSAT [7], PAWS [15], VW2 [11], TNM
[17], gNovelty+ [9], Sparrow2011 [1]). It was apparent that VW2, gNovelty+

and gNovelty+Rp performed strikingly better than other solvers. gNovelty+ and
VW2 could solve ternary chains successfully due to variable weighting and clause
weighting respectively. As a result, gNovelty+DL, which took advantage of both
gNovelty+ and VW2, was an improvement over these two algorithms. This indi-
cated that gNovelty+Rp had better diversification than the other solvers in this
experiments.

3.2 Experiments on Structural Benchmarks

The real-world problem sets we selected for this experiment are cbmc, swv and
sss-sat-1.0. The first two instance sets were software verification problems: (i)
39 cbmc instances generated by a bounded model checking tool and (ii) 75 swv
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Fig. 1. Experiments on Ternary Chains: size ranging from [10,100]. Based on 100
runs where each run had a 20-second timeout. Methods are compared in terms of success
rate, CPU time, the number of local minima and the number of flips. gNovelty+Rp
used tenure k = 20.

instances generated by the CALYSTO checker 2. The third one was Velev’s sss-
sat-1.0 containing 100 instances of encoding verification of super-scalar micro-
processors 3. Even though these instance sets can be easily solved by PICOSAT
[2] (a systematic search algorithm), they are currently a remarkable challenges
for SLS solvers. Table 3 shows the evaluation of gNovelty+DL variants with
gNovelty+, VW2 and Sparrow2011 in terms of success rates, average of median
CPU times and number of duplication flipping in thousands of stagnation paths.

Generally speaking, all gNovelty+DL variants performed consistently better
than other solvers across the three instance sets. Especially on cbmc and sss-
sat-1.0 dataset, the success rate of gNovelty+DL was raised to 100%, which was
a significant improvement over the other algorithms. Furthermore, the success
rate of swv instances was doubled to 48% compared with other solvers. It was
discovered that 50% of swv instances have not been solved consistently by SLS-
based solvers [16]. Moreover, all gNovelty+DL variants significantly decreased

2 The test instances of cbmc and swv are available at
http://people.cs.ubc.ca/davet/papers/sat10-dave-instances.zip

3 Available at http://www.miroslav-velev.com/sat benchmarks.html
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Table 3. Experiments on cbmc, swv, sss-sat-1.0: based on 50 runs with a timeout
of 600 seconds per run. Each cell presents the success rate, the average of median CPU
times in seconds and the average of duplication times in thousands.

Instances VW2 Sparrow2011 gNovelty+ gNovelty+DL

Rp Rps Rw Rws

cbmc 31% 51% 85% 100% 100% 100% 100%

(39) 439.128 384.359 247.997 1.659 2.343 1.452 1.774

6, 845 231 3, 886 74 69 40 72

swv 23% 21% 25% 48% 47% 48% 44%

(75) 466.002 486.949 459.097 335.343 348.875 327.477 350.927

280 59 1, 995 6, 036 232 1, 023 2, 903

sss-sat-1.0 24% 7% 50% 100% 100% 100% 100%

(100) 481.357 572.993 348.512 2.409 2.729 2.241 4.376

6, 700 1, 065 2, 177 293 139 212 522

duplication flipping times in stagnation paths compared with other algorithms.
However, there is no clear difference in terms of success rate and CPU times
among gNovelty+DL variants.

3.3 Experiments on the SAT 2011 Competition Dataset

The experiment on the SAT 2011 competition dataset was a comparison be-
tween gNovelty+DL, Sparrow2011, gNovelty+ and VW2. Figure 2 plots the per-
formance of the best gNovelty+DL variant with Sparrow2011 in 3 categories :
Application & Crafted (the structure instances), Random (problems created by
randomization), and All (the full SAT 2011 competition dataset). As illustrated
in Figure 2, gNovelty+ did not perform as well as Sparrow2011 on the Ran-
dom category, but it was slightly better than Sparrow2011 in the Application
& Crafted category. With the boost from the DL heuristic, gNovelty+DL im-
proved the performance of gNovelty+ on both the Application & Crafted and
Random categories. It is evident that the duplication learning heuristic assisted
the gNovelty+ in overcoming the limitations on both structure instances and
random instances.

Table 4 shows the performance of the algorithms in terms of the success
rates and the averages of the minimum, median, maximum CPU times. The
data were split into 4 groups 4: (i) Application: 8 instances; (ii) Crafted: 82 in-
stances; (iii) Random Large: 64 instances (iv) Random Medium: 201 instances.
For all categories, most gNovelty+DL variants performed better than other
solvers. There were exceptions in the case of Random Large, e.g. gNovelty+Rp
(9%) and gNovelty+Rps (17%) had worse results than Sparrow2011 (20%).

4 Because there were many instances cannot be solved at any run, we decided to report
instances solved in least one run by any solver. Therefore, the number of instances
in Table 4 does not reflect the real number of instances in the original SAT 2011
competition data set.
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Fig. 2. Experiments on SAT 2011 Competition Benchmark: a comparison of
CPU run times between gNovelty+DL and Sparrow2011

Table 4. Experiments on SAT 2011 Competition dataset: based on 10 runs and
a timeout of 600 seconds per run. The reported rows are success rates, the averages of
the minimum, median, and maximum CPU times (in seconds).

Instances VW2 Sparrow2011 gNovelty+ gNovelty+DL

Rp Rps Rw Rws

Application 12% 25% 12% 62% 38% 38% 62%

(8) 526.239 461.824 464.149 131.018 130.770 55.882 183.981

526.838 515.799 527.431 298.067 397.774 389.998 333.106

527.603 543.695 527.503 426.520 463.189 483.426 456.875

Crafted 37% 56% 62% 87% 82% 87% 82%

(82) 373.386 237.720 202.872 71.112 53.848 62.977 82.665

390.427 285.159 251.332 111.388 128.326 110.367 129.848

402.716 338.434 285.784 157.880 170.066 146.968 161.738

Random 0% 20% 0% 9% 27% 31% 17%

Large 600.007 437.202 576.600 426.179 384.403 334.614 417.429

(64) 600.010 509.487 600.000 566.617 525.684 509.716 550.516

600.010 555.076 600.000 594.413 591.152 579.286 589.425

Random 19% 100% 75% 96% 99% 100% 99%

Medium 428.007 5.049 130.371 4.017 4.655 2.169 2.427

(201) 499.761 40.671 184.698 38.837 21.945 13.392 21.432

527.371 99.540 241.121 102.376 55.434 48.654 68.034

Comparing amongst gNovelty+DL variants, gNovelty+Rp was the best per-
former in the Application & Crafted category while gNovelty+Rw performed
best in Random category.

In Random categories (both medium and large), applying at least one forget-
ting technique improved the performance. For example, in terms of success rate,
gNovelty+Rws performed better than gNovelty+Rp in Random Medium cate-
gories. However, utilizing both probability-based smoothing and time window
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Table 5. gNovelty+DL parameters settings

Dataset Rp Rw Rps Rws

k sp k T sp k dp sp k T dp sp

cbmc 30 0.4 15 100 0.4 30 0.25 0.4 20 300 0.05 0.4

swv 30 0 15 250 0.05 20 0.2 0.2 30 250 0.4 0.05

sss-sat-1.0 10 0.05 20 200 0.05 10 0.1 0.05 25 200 0.05 0.05

SAT 2011 30 0 25 250 0 10 0.25 0 15 200 0.25 0

release degraded the performance (e.g gNovelty+Rws did not perform as good
as gNovelty+Rw and gNovelty+Rs). On large random and medium random,
using probability-based smoothing alone improved the results (e.g in Random
Large category gNovelty+Rps boosted gNovelty+Rp from 9% to 26%). However,
probability-based smoothing combined with time window decreased the results
of time window (for instance in Random Large category, gNovelty+Rws degraded
the performance of gNovelty+Rw from 31% to 17%).

In contrast with Random categories, applying only one forgetting technique
did not improve performance in the Application category. For example, the suc-
cess rates of gNovelty+ Rps and gNovelty+ Rw were just 38% compared with
62% for gNovelty+Rp. In the Crafted category, the results of gNovelty+DL vari-
ants were not significantly different and they all gained better performance than
the other algorithms.

Overall, for structured instances, using forgetting techniques is not recom-
mended because it reduces learned information. In contrast, applying time win-
dow release (e.g gNovelty+Rw) performed best for random instances. This is due
to random instances being more loosely constrained than structure instances.
Hence, it is necessary to retain learned information over a limited period of
stagnation times for random instances.

4 Conclusion and Future Work

In summary, the duplication learning was feasible and robust for the considered
benchmarks when applied to the gNovelty+ framework. gNovelty+DL performed
well on both structured and random instances compared with contemporary SLS
solvers. In addition, it was proved to reduce duplication and help search converged
quickly to solutions. It can be concluded that duplication learning is a reasonably
alternative guidance for local search for the purpose of duplication avoidance.

In addition, the effect of forgetting techniques were examined. Generally, for-
getting techniques should not be applied to structured instances. In contrast,
to solve random instances efficiently, it is better to adopt forgetting techniques
to reduce over-learned stagnation information. To further clarify, gNovelty+Rp
was a good choice for structured benchmarks while the gNovelty+Rw was a
good choice for random instances. However, applying both probability-based
smoothing and a time window mechanism degraded the performance. Evidently,
forgetting techniques are efficient on loosely constrained problems.

According to these results, a further investigation into duplication avoidance
using learning mechanisms is worthwhile. Indeed, it is necessary to develop a
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more intelligent learning strategy and parameter adaptation mechanism. More-
over, in order to examine the generalization of the heuristic, its integration into
different SLS solvers should be carefully studied.
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Abstract. Heuristic search algorithms (MOA*, NAMOA* etc) for multiobjec-
tive optimization problems, when run with admissible heuristics, typically spend
a lot of time and require huge amount of memory for generating the Pareto opti-
mal solution frontier due to the fact that these algorithms expand all nodes/paths
whose cost is not dominated by any other optimal solution. In this paper, we
present an anytime heuristic search framework for biobjective optimization prob-
lems named “Anytime Biobjective Search (ABS)” which quickly finds a set of
nondominated solutions and keeps on improving the solution frontier with time.
The proposed framework uses the upper and lower limit estimates on one of the
objectives to split the search space into a given number of segments and indepen-
dently runs a particular search algorithm (branch-and-bound, beam search etc.)
within each of the segments. In this paper, we present how existing search strate-
gies, branch-and-bound, beam, and beam-stack, can be used within the proposed
framework. Experimental results reveal that our proposed framework achieves
good anytime performance.

1 Introduction

A large set of optimization problems encountered in real-life applications involve two
non commensurate objectives where one typically strives to reach a suitable trade-off
between the conflicting objectives. We briefly mention some of the problems below.
The operator scheduling problem [1] which is encountered during high level synthesis
of digital designs involves two independent objectives – (a) delay, and (b) total number
of resources. For example, with 5 resources the minimum delay schedule may need 8
time units, whereas increasing the number of resources to 7 may allow to have the mini-
mum delay schedule with 6 time units. In finance, a common problem that involves two
conflicting objectives are to choose a portfolio [2] where the non commensurate objec-
tives are – (a) the expected value of portfolio returns (should be as high as possible),
and (b) the risk factor (should be as low as possible). Another similar problem arises
in connection with macro-economic policy making for central banks [3], where the de-
sired solution tries to achieve a balance between two independent objectives, namely,
inflation and balance of trade deficit. For the domain of traffic/transport information
systems, similar problems often arise [4]. For example, in individual route planning
for vehicles, fuel cost and delay, are two conflicting objectives. In the route guidance
problem, the system optimal routing and user constraint in the form of delay, form two
conflicting objectives [5].

Heuristic search [6] is often considered for determining optimal/near-optimal solu-
tions for single as well as multiobjective optimization problems [7–9]. The best first

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 230–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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heuristic search algorithms, namely, A*, MOA*, and NAMOA* etc., when run with an
admissible heuristic, typically spend a considerable amount of time for selecting the
best node/path to be explored next. Often the techniques that quickly generate near op-
timal solutions are preferred. In the context of single objective optimization problems,
several such techniques [10–12] are developed. Also combining multiple heuristics [13]
and simultaneously searching with multiple setting [14] are studied for the single ob-
jective optimization problems. Another popular alternative is to use anytime algorithms
which start with generating some sub-optimal solution and keep on generating better
quality solution over time [15–19]. However, anytime algorithms are only studied for
single objective optimization problems.

For multiobjective optimization problems, several techniques [20–25] have been de-
veloped for finding near optimal solutions. These methods typically aim to find a so-
lution frontier which is within a factor of the optimal solution. Several approximation
schemes (PTAS, FPTAS, etc.) for multiobjective optimization problems have been pro-
posed [20, 22–24]. In [26], a branch-and-bound based method is presented which uses
the notion of separating hypersurface for pruning. However, all of these methods work
on explicit graphs except the method in [21]. Perny et al. [21] presents an MOA* based
ε-admissible algorithm for multiobjective search. Although this method works on im-
plicit representation, the proposed algorithm is not an anytime algorithm. There is a sig-
nificant body of literature [27, 28] on applying evolutionary computing based methods
for multiobjective optimization problems for finding near optimal solutions. However,
these methods are not evaluated in anytime setting.

In this paper, we present an anytime heuristic search framework named “Anytime
Biobjective Search (ABS)” that works on problems with biobjective cost criterion. To
the best of our knowledge, this is the first attempt to develop anytime algorithms for
optimization problems with more than one objectives. So far, anytime algorithms has
been developed for single objective optimization problems only. Our proposed algo-
rithm is particularly useful for biobjective optimization problems whose search space
are implicit in nature and typically described using a set of state transformation rules.
The proposed framework quickly finds an initial nondominated solution frontier and
keeps on improving the solution frontier with time.

We use the idea of splitting the search space using the upper and lower limit esti-
mates on one of the objectives into a given number of non-overlapping segments. Using
multiple stacks to expedite the branch-and-bound search for single objective optimiza-
tion problems had been proposed in [29]. Within each of the segments, ABS inde-
pendently runs a specific search algorithm (branch-and-bound, beam etc.) and tries to
balance the search effort over the segments. We present how existing search strategies,
namely, branch-and-bound, beam, and beam-stack etc., can be used within the proposed
framework. While using running ABS, the solution found in a particular sub-range is
used for further pruning of the other sub-ranges. Experimental results reveal that our
proposed framework achieves good anytime performances and sometimes outperforms
NAMOA* in terms of finding the optimal solution frontier. In this paper, at first we
present the necessary formalisms and definitions required for discussing the proposed
method. The proposed algorithm, ABS, is presented in the following section. Then, we
present the experimental results followed by the concluding remarks.
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2 Definitions

Let G = 〈V,E〉 be a locally finite directed graph, where V is the set of nodes, Γ ⊆ V
is the set of goal nodes, and E ⊆ V × V is the set of directed edges. Every edge
eij = (vi, vj) ∈ E is labeled with a positive 2-dimensional vector, c(eij) ∈ R+ × R+,
where c1 and c2 are the two cost-components of vector, c. A path in G is a sequence
of nodes, p = 〈v1, · · · , vk〉, such that (∀i, 1 ≤ i < k), (vi, vi+1) ∈ E. The path
cost g(p) =

(∑k−1
i=1 c1(c(ei,i+1)),

∑k−1
i=1 c2(c(ei,i+1))

)
, is the sum of the cost vec-

tors of its component edges. For a path p, we use c1(g(p)) and c2(g(p)) to denote∑k−1
i=1 c1(c(ei,i+1)) and

∑k−1
i=1 c2(c(ei,i+1)), respectively. A solution is a path in G

from start node vs to a goal node vt ∈ Γ . Since the edge costs are 2-dimensional vec-
tors, a set of Pareto optimal solutions can be computed forG. Without loss of generality,
we assume that both objectives are to be minimized.

Definition 1. [Dominance] We define two types of dominance relations, simple domi-
nance, denoted using ‘�’, and strict dominance, denoted using ‘≺’ as follows.
1. ∀gi, gj ∈ R

2, [gi � gj ] ⇔ [(c1(gi) ≤ c1(gj)) ∧ (c2(gi) ≤ c2(gj))]
2. ∀gi, gj ∈ R

2, [gi ≺ gj ] ⇔ [gi � gj ] ∧ (gi �= gj)] ��
Definition 2. [Nondominated Set] For a set of vectors, U , we define the set of non-
dominated vectors in U as nd(U) = {gi ∈ U | �gj ∈ U , gj ≺ gi}. ��

We also use two lexicographical orderings (L1-order and L2-order) which induce a
total order among the cost vectors.

Definition 3. [L-ordering] Let gi and gj be two 2-dimensional vectors. Then, based
on L1-ordering, gi < gj , if either c1(gi) < c1(gj) or [c1(gi) = c1(gj)] ∧ [c2(gi) <
c2(gj)]. Based on L2-ordering, gi < gj , if either c2(gi) < c2(gj) or [c2(gi) =
c2(gj)] ∧ [c1(gi) < c1(gj)]. The other relational operators (= and >) based on L1-
ordering and L2-ordering can be defined in a likewise manner. ��

For each node vi in a graph G, H(vi), denotes the set of nondominated heuristic cost
vectors at node vi such that every vector h(vi) ∈ H(vi) denotes the estimate of cost
vector of one or more solution paths from vi to goal nodes in Γ . Clearly for each goal
node, vt ∈ Γ ,H(vt) = {(0, 0)}.

Definition 4. [Heuristic Evaluation Vector] For every path, p, in G starting from vs
to a node vi, with cost g(p), the set of heuristic evaluation vectors is denoted by F(p) =

F(vi, gi) = nd
({

f | [f = g(p) + h] ∧ [h ∈ H(vi)]
})

��

Definition 5. [Admissible Heuristics] A heuristic function is said to be admissible if
the setH(vi) of heuristic vectors computed using that function for each node vi satisfies
that for every solution path, p, from vi to a goal node having nondominated cost, h∗(p),
∃h(vi) ∈ H(vi) such that h(vi) � h∗(p). ��

In the rest of the paper we use cl1 and cu1 to denote the lower bound and upper bound
estimates of the c1 cost-components of the solutions. Suppose, Σ represents the set of
all solutions. Clearly, (∀p ∈ Σ),

[
c1(g(p)) ≥ cl1

]
∧
[
c2(g(p)) ≤ cu1

]
. Such estimates

can be computed upfront using some approximate method.
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3 Proposed Algorithmic Framework

In this section we present a generic anytime heuristic search framework for biobjec-
tive optimization problems named, “Anytime Biobjective Search” (ABS). Our proposed
framework uses the lower and upper bound estimates on one of the objectives and di-
vides the entire value range of that objective into a given number of sub-ranges to add
a breadth first component to the search effort. Without loss of generality we assume
that the lower and upper bound estimate is provided for the first objective function,
i.e., cl1 and cu1 are given as inputs. The entire range of values, cu1 − cl1, is divided into
a given number, k, of sub-ranges. The sub-ranges may or may not be equal to each
other. Several popular anytime strategies, like branch-and-bound etc. can be used on
top of our framework. We denote the ith subrange as an interval Ji = [ri, ri+1) where
1 ≤ i ≤ k − 1. Since rk+1 = cu1 the last subrange is Jk = [rk, rk + 1]. Each sub-
range is searched independently using a particular search method and the subrange to
be searched next is selected using a given selection policy.

Algorithm 1. Anytime Biobjective Search(ABS)

input : The start node vs, cl1, cu1 , the number of ranges k, and strategy σ
output : Pareto optimal solution frontier
Construct the root node of the explicit graph G with vs;1

Invoke strategy specific initialization function, Init-σ;2

while ∃i, such that 1 ≤ i ≤ k and δσi �= ∅ do3

Use a given policy to determine the value of i such that (1 ≤ i ≤ k) and δσi �= ∅;4

Start/Resume the search σ on δσi using SearchRange-σ;5

end6

Report the solutions in S ;7

In this paper, we investigate three strategies, namely, (a) Branch-and-bound (denoted
as BB) (b) Beam search (denoted as BM ), and (c) Beam-stack search (denoted as
BmS) on our proposed framework. For each sub-range, Ji (1 ≤ i ≤ k), ABS main-
tains a separate data-structure δσi . The data-structures depend on the underlying strategy
σ ∈ {BB,BM,BmS}. For example, δBB

i can be implemented as a queue or stack de-
pending on whether breadth first or depth first variation of branch-and-bound is used.
The major steps of the proposed framework are shown in Algorithm 1.

ABS expands the given implicit graph,G, repeatedly over iterations using state trans-
formation rules to construct and grow the explicit graph, G. A solution frontier, S, con-
taining the set of nondominated solutions is maintained throughout the course of the
algorithm. ABS uses path selection and path expansion as the basic operations. At any
point of time ABS maintains the set of potential solution paths (the paths that may be
extended to reach a solution) corresponding to ith sub-range in δσi . ABS selects a par-
ticular sub-range, say the jth one, using the given selection policy and invokes the strat-
egy specific search routine, SearchRange-σ on δσj . For our experimentation, we use
round-robin selection policy. However, ABS can work with any other selection policies.

We maintain the paths to every node vd of the explicit graph G using a list, P(vd).
Every element ofP(vd) is a triplet, 〈vq, j, g(p)〉, representing a distinct path, p, to node,
vd, where triplet 〈vq , j, g(p)〉 denotes that path p is an extension of the jth path to the
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parent vq of vd and have cost g(p). Every potential solution path is also represented
using a triplet, 〈vd, gd, ptr〉, which denotes that the corresponding potential solution
path ends at node vd and have cost gd. ‘ptr’ stores the pointer to the entry representing
the corresponding path in P(vd).

The individual strategy specific steps are carried out in two different subroutines,
namely Initialize(σ) and SearchRange-σ(δσi ). However, all the search strategies
use the following routine, UpdateSolutions, to maintain the current solution frontier
S. Whenever a new solution path is found, UpdateSolutions checks whether the new
solution, p, is dominated by any of the existing solutions in S and if the p is a nondom-
inated one, then all the existing solutions in S that are dominated by p is removed from
S. Next, we explain the working of beam search, branch-and-bound, and beam-stack
search within ABS framework.

Function UpdateSolutions(S, 〈vq, gq, ptrq〉)
/* Suppose, for goal vq , pq is the corresponding solution path */
foreach pi ∈ S do if g(pi) ≺ gq then return;1

foreach pj ∈ S do2

if gq ≺ g(pj) then Remove pj from S;3

end4

Add pq to S ;5

[Branch-and-bound Search] The traditional branch-and-bound strategy performs an
ordered traversal of a given search space where the pruning is performed based on
the cost of current best solution. The traversal is depth-first when the underlying list
of nodes is implemented as a stack and breadth-first when that list is implemented
as queue. In the multiobjective setting, the pruning is performed when the cost of a
potential solution is dominated by one of the solutions found so far. ABS framework is
used to implement a multiple-list variation of the traditional branch-and-bound search,
called multiple-list branch-and-bound (MLBB) in the context of biobjective costs in the
following way. The entire search space is split into a given number of non-overlapping
segments based on the value of the c1 cost-component. Within each of the segments
branch-and-bound search is run independently. The entire range of values of c1 cost-
component, (cu1 − cl1), is divided into a given number, k, of equal sub-ranges and for
each sub-range a separate list is maintained. δBB

i denotes the list for ith sub-range.
In each round of the multiple-list branch-and-bound, the lists are selected one by one

starting from the first list. If the selected list is non-empty, function SearchRange-BB
is invoked on that list. In SearchRange-BB, the list is popped/dequeued (depending
on whether the list is implemented as stack or queue respectively) to select the next
entry (a potential solution path in the explicit graph G) to be expanded. If a solution is
found, function UpdateSolutions is used to update the current solution frontier and
the function SearchRange-BB returns to the main driver function (Algorithm 1) to
allow the search to proceed in other segments. Otherwise, SearchRange-BB expands
the selected entry to generate only those successors whose costs are not dominated by
the cost of the solutions in the current solution frontier and which are not a candidate
for pruning. Each of the generated successors is inserted into the appropriate list (δBB

i )
according to the range to which its c1 cost-component of the path cost vector g belongs.
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We have shown the SearchRange-BB function for the depth-first version of multi-
ple list branch-and-bound. For implementing the breadth-first version of multiple-list
branch-and-bound each list δBB

i has to implemented using queue.
It may be noted that whenever a new nondominated solution is found, the stacks are

pruned using the cost vector of that new solution. Also while generating the successors,
it may happen that the cost vector of the newly found path might dominate the cost vec-
tor of some of the paths generated earlier. In this case those paths which are dominated
are pruned along with their corresponding stack entries.

Function Initialize-BB(k)
∀i, 1 ≤ i ≤ k, Initialize δBB

i ;1

Insert 〈vs,0, null〉 to δBB
1 ;2

Function SearchRange-BB(δBB
i )

pδ ← Pop(δBB
i ) ; /* Suppose pδ = 〈vq, gq, ptrq〉 */1

if vq ∈ Γ then2

UpdateSolutions(S , 〈vq, gq, ptrq〉);3

∀j, i ≤ j ≤ k, prune δBB
j , using gq;4

return;5

end6

Expand pδ and generate the set of valid successors δBB
succ which represent potential7

solution paths;
foreach element p′δ in δBB

succ do8

Suppose p′δ = 〈vd, gd, ptrd〉;9

idx ← �(cu1 − c1(gd))/k�;10

Push(δBB
idx , p′δ);11

end12

goto Line-1;13

[Beam Search] Typically beam-search works with a given beam-width, b. In the ABS
framework in the initialization phase (function Initialize-BM ), NAMOA* is run until
the size of δBM

open reaches k×b where k and b are two parameters of the algorithm. Here,
k represents the number of beams to be used and b is the size of an individual beam.

Function Initialize-BM(k, b)

Construct an empty list δBM
open;1

Insert 〈vs,0, null〉 to δBM
open;2

Continue NAMOA* search using δBM
open as OPEN list till |δBmS

open | ≤ k × b;3

Order the elements of δBM
open according to the c1 cost component;4

Split δBM
open into k consecutive sublists where each sublist has no more than b entries;5

for j ← 1 to k do6

δBM
j ← tth sublist of δBM

open;7

rj ← the c1 cost component of the first element of δBM
j ;8

end9

rk+1 ← cu1 ;10
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The contents of δBM
open is sorted in L1-order and split into k sublists. We maintain k

beams parallelly and function SearchRange-BM starts beam search on a given beam
δBM
i . It returns whenever a new solution is found. It may be noted that the k ranges

obtained after splitting the contents of δBM
open may not be equal and primarily depends

on the search space. Also this method is not complete due to the fact that beam search
itself is not complete.

Function SearchRange-BM(δBM
i )

Expand the deepest layer d of δBM
i and generate the set of valid successors δBM

succ where1

each successor represents a potential solution path;
if a solution 〈vq , gq, ptrq〉 is generated in the last step then2

UpdateSolutions(S , 〈vq, gq, ptrq〉);3

return;4

end5

if δBM
succ = ∅ then6

Remove the contents of the all layers of δBM
i ;7

return;8

end9

Sort the elements of δBM
succ in the non-decreasing order the c1 cost component;10

Add the first b elements of δBM
succ to the (d+ 1)th layer of δBM

i ;11

goto Line-1;12

[Beam-stack Search] In order to make the beam search complete, beam-stack search
was proposed by Zhou et al. in [10]. The beam-stack search can be applied within our
proposed ABS framework in the following way. The initialization phase is identical to
beam search and in this phase a heuristic breadth first search is run till the size of δBmS

open

reaches k × b where k and b are the same two parameters of the algorithm that are
used in beam search. Then the contents of δBM

open is sorted in L1-order and split into k
sublists. In the ABS framework k beam-stacks are maintained in parallel where each
beam-stack, δBmS

i (1 ≤ i ≤ k), consists of multiple layers of maximum width b. A
〈level-range, slice-index〉 pair is maintained for each layer. For the layer with depth d
of ith beam-stack the level-range is denoted as [τmin

i,d , τmax
i,d ) which denotes the range

of the values of c1 cost-components of successors in the next layer. The successors of a
layer are sorted in L1-order for ordered traversal of the search space. Since the width
of each layer is limited by the beam-width b, the successors of a layer are explored in an
ordered fashion by keeping a slice of b successors only. When the search backtracks to
the current layer the next slice of successors (containing at most b elements) is explored.
Since the beam-stack search strategy is complete, it is guaranteed to generate optimal
solution frontier given sufficient time. However experimental results show that such
time for finding the optimal solution frontier may be very large.

4 Experimental Results

Since NAMOA* [9] uses the same underlying path selection and expansion policy and
the overall performance of NAMOA* is better than that of MOA* [30], we compare the
performance of ABS framework with NAMOA*. Also the the same problem domain
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name t1 t2 t3 t4 t5
dim. 61 × 61 71 × 71 81 × 81 91 × 91 101 × 101
#S 61 84 92 98 106

T (θ100) 21.94 63.87 113.26 178.85 219.41

name t6 t7 t8 t9 tA
dim. 111 × 111121 × 121131 × 131141 × 141151 × 151
#S 118 134 146 154 167

T (θ100) 362.40 743.82 1869.44 2673.13 4289.72

Fig. 1. Average running time (in seconds) for NAMOA*
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Fig. 2. Hypervolume

which was used in [30, 31], namely randomly constructed N ×N square grids is used
for comparison. We have conducted the experiments using a machine with Intel Core
i3-2100 cpu, 4GB RAM, running Ubuntu Linux 10.10.

We have constructed 25 grid instances for each N . The average time required
for computing the optimal solution frontier for grids with different dimensions using
NAMOA* are reported in Table 1. The cost of each edge in a N × N grid is a two
dimensional vector, c, where both the c1 and c2 components of c are chosen randomly
between 1 and 5. The node at position (0, 0) is the source and the node at position
(N,N) is the destination. The Manhattan distance heuristic function was used in this
problem. We used the hypervolume metric [27] to determine the quality of the solution
frontier. In Figure 2 the area of shaded region is the hyper volume of the Pareto frontier
{(2, 4), (4, 1)} with respect to the point (5, 5). The hypervolume is computed with re-
spect to the point (cu1 , c

u
2 ), where cu1 and cu2 are the upper bound estimates of the c1 and

c2 cost-component respectively. The optimality of a solution frontier is defined as :

θ =
hypervolume of the solution frontier

hypervolume of the optimal solution frontier
× 100

The time required in seconds for reaching x% optimality is denoted using T (θx). Also
we use θi to denote the optimality measure of the first solution returned by an anytime
algorithm. We have deliberately used very large time-out value (5000 seconds) while
running NAMOA* in order to generate the actual Pareto optimal frontier so that the
anytime performance of the different search strategies under ABS framework can be
compared with respect to the exact Pareto optimal frontier.

For evaluating the performance of multiple list branch-and-bound using ABS frame-
work, the number of lists, i.e., the value of k is chosen in such a way that the width
of the interval represented by an individual subrange does not exceed a certain value,
denoted using m, i.e., ri+1 − ri ≤ m where 1 ≤ i ≤ k. Table 1 and Table 2 re-
port the average running time required for reaching different levels of optimality for
the depth-first and breadth-first versions of multiple list branch and bound using ABS
framework respectively. We have used a time-limit of 600 seconds in order to compare
the anytime performance of different search strategies under ABS framework. We have
experimented with different values of m (10, 15, 20, 25) and we report the result for
m = 10 which is the best among the lot. We choose this value based on the results Be-
tween the depth-first and breadth-first version of MLBB on ABS, the depth-first version
is the clear winner. Also it is interesting to observe that the performance of depth-first
MLBB on ABS often beats the performance of NAMOA* for certain valuations of k.

The average running time required for beam search on ABS framework is reported
in Table 3 for square grids with different dimensions. For experimentation we have
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Table 1. Running time (in seconds) of depth-first MLBB on ABS framework (‘*’ denotes timeout
after 600 seconds) for different dimensions of grids

θi T (θi) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
t1 76.127% 2.258 4.142 5.375 6.063 7.035 8.677
t2 75.363% 5.836 9.441 14.384 15.525 16.443 18.142
t3 76.537% 11.233 18.664 25.457 28.316 31.566 34.480
t4 74.913% 18.786 31.861 42.193 46.484 53.737 58.871
t5 76.773% 31.237 52.972 72.567 85.654 96.649 105.565
t6 75.241% 50.174 83.832 106.852 139.355 158.316 176.789
t7 74.871% 79.286 121.243 188.393 216.746 244.948 266.635
t8 77.227% 116.741 187.549 274.408 310.888 338.776 363.426
t9 75.732% 173.255 303.122 395.732 465.256 512.963 553.989
tA 76.479% 242.459 442.198 485.941 498.296 * *

Table 2. Running time (in seconds) of breadth-first MLBB on ABS framework (‘*’ denotes time-
out after 600 seconds) for different dimensions of grids

θi T (θi) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
t1 68.610% 5.634 33.762 52.722 61.048 66.842 72.893
t2 50.844% 8.040 129.840 184.408 220.631 237.398 258.468
t3 65.827% 19.602 240.028 290.514 434.276 465.715 480.692
t4 66.840% 28.326 151.222 330.203 551.338 * *
t5 60.499% 48.182 382.505 476.866 * * *
t6 63.124% 75.083 315.121 545.938 * * *
t7 65.058% 126.612 322.617 * * * *
t8 61.583% 182.997 345.139 * * * *
t9 67.104% 249.657 344.915 * * * *
tA 62.441% 348.272 355.810 * * * *

Table 3. Running time (in seconds) of ABS with beam search strategy (‘-’ denotes that the target
value of optimality not reached) for different dimensions of grids

θi T (θi) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
t1 73.545% 0.873 0.655 1.379 3.342 4.723 -
t2 71.020% 1.072 1.080 3.648 8.572 - -
t3 74.363% 1.488 2.472 6.326 12.048 - -
t4 72.829% 2.034 4.587 10.707 11.322 - -
t5 72.886% 2.537 5.923 12.289 29.034 - -
t6 69.072% 3.872 7.241 25.776 - - -
t7 73.666% 3.824 14.655 35.451 - - -
t8 71.922% 5.303 15.818 44.723 - - -
t9 70.554% 6.028 26.375 85.089 - - -
tA 71.802% 7.241 35.893 109.074 - - -

Table 4. Running time (in seconds) of ABS with beam-stack search strategy (‘*’ denotes timeout
after 600 seconds) for different dimensions of grids

θi T (θi) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
t1 73.545% 0.429 0.015 2.924 4.533 8.431 272.342
t2 71.020% 1.465 1.932 5.990 10.092 86.574 287.048
t3 74.363% 1.273 3.939 7.407 15.319 244.771 482.726
t4 72.829% 2.031 4.832 12.383 16.877 425.720 *
t5 72.886% 2.847 5.313 13.827 31.503 * *
t6 69.072% 3.587 7.260 27.963 * * *
t7 73.666% 4.098 15.029 36.197 * * *
t8 71.922% 5.829 17.886 45.615 * * *
t9 70.554% 6.357 30.812 88.198 * * *
tA 71.802% 7.290 33.489 112.175 * * *
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chosen the value of k to be equal to N for an N ×N grid. The value of beam width, b,
is taken as 20. Table 4 reports the average running time requred for beam-stack search
on ABS framework for square grids with various dimensions. Here also we have chosen
the value of k to be equal to the N for an N ×N grid while running the experiments.

Table 5. Running time (in seconds) of depth-first MLBB on ABS framework for different dimen-
sions of knapsacks

#items θi T (θi) T (θ75) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
50 81.640% 0.001 0.001 0.001 0.002 0.010 0.046 0.816
52 81.253% 0.001 0.001 0.001 0.004 0.015 0.085 1.221
54 82.170% 0.001 0.001 0.001 0.003 0.015 0.093 1.519
56 81.091% 0.001 0.001 0.002 0.005 0.020 0.095 1.732
58 82.994% 0.001 0.001 0.001 0.003 0.015 0.120 2.638
60 81.918% 0.001 0.001 0.001 0.004 0.017 0.099 2.303

Table 6. Running time (in seconds) of breadth-first MLBB on ABS framework for different
dimensions of knapsacks

#items θi T (θi) T (θ75) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
50 74.069% 0.009 0.075 0.162 0.484 1.481 4.408 5.651
52 70.215% 0.014 0.105 0.238 0.695 2.720 8.574 11.603
54 68.271% 0.019 0.152 0.234 0.725 2.509 8.815 15.382
56 67.938% 0.021 0.202 0.424 1.326 4.275 9.141 16.024
58 64.251% 0.035 0.181 0.231 0.811 4.446 14.359 23.550
60 63.994% 0.038 0.293 0.519 1.686 6.171 12.677 20.279

Table 7. Running time (in seconds) of ABS with beam search strategy (‘-’ denotes that the target
value of optimality not reached) for different dimensions of knapsacks

#items θi T (θi) T (θ75) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
50 92.057% 0.074 0.074 0.074 0.075 0.086 0.109 -
52 90.588% 0.069 0.069 0.069 0.071 0.089 0.129 -
54 90.939% 0.073 0.073 0.073 0.076 0.086 0.148 -
56 90.300% 0.070 0.070 0.070 0.073 0.103 - -
58 90.090% 0.074 0.074 0.074 0.074 0.109 - -
60 89.879% 0.073 0.073 0.073 0.074 0.106 - -

Table 8. Running time (in seconds) of ABS with beam-stack search strategy for different dimen-
sions of knapsacks

θi T (θi) T (θ75) T (θ80) T (θ85) T (θ90) T (θ95) T (θ100)
50 92.057% 0.075 0.075 0.075 0.075 0.086 0.328 1.429
52 90.588% 0.070 0.070 0.070 0.075 0.296 1.193 3.591
54 90.939% 0.070 0.070 0.070 0.071 0.175 0.981 3.893
56 90.300% 0.070 0.070 0.071 0.072 0.123 1.489 4.663
58 90.090% 0.075 0.075 0.075 0.075 0.147 1.852 7.537
60 89.879% 0.072 0.072 0.072 0.072 0.124 1.149 4.625

The value of beam-stack width, b, is also taken as 20. On ABS framework, the ini-
tial anytime performance of beam-stack search is identical to the performance of beam
search. However after a reaching certain level of optimality, beam-stack takes signifi-
cant time to find the optimal solution. For most of the cases the algorithm encountered
time-out after 600 seconds without finding the optimal solution. The overall perfor-
mance of the depth-first version of MLBB on ABS is better than other strategies.
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Apart from the two dimensional grids, we have also experimented with biobjective
knapsack problems. We experimented with different number of items (50, 52, · · · , 60)
and randomly constructed 50 instances of knapsacks for each item-count. The capacity
of the knapsack is maintained as the half of the total weight of the items. The weights
and the profits are chosen as random number between 50 and 100. We report the result
for m = 10 for ABS with multiple list branch and bound. We use 100 as beam-width
and the number of beams used is 10. Table 5 - 8 reports the anytime performance of dif-
ferent strategies on ABS framework. In this test domain the performance of beam-stack
search is much better compared to the performance in the grid domain and comparable
with the performance of the depth-first version of MLBB on ABS. However the overall
performance of the depth-first version of MLBB on ABS is better than other strategies.

5 Conclusion

In this paper, we presented a general anytime framework, ABS, for finding the Pareto
optimal solution frontier problems with a biobjective cost criterion. The class of opti-
mization problems considered in this paper is of practical significance and has possible
application in problems like operator scheduling, route planning, portfolio selection
etc., where two non commensurate objectives are involved and one typically strives to
reach a suitable trade-off between the conflicting objectives.
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Abstract. Constraint satisfaction problem (CSP) is a subset of optimization 
problem where at least one solution is sought that satisfies all the given con-
straints. Presently, evolutionary algorithms (EAs) have become standard opti-
mization techniques for solving unconstrained optimization problems where the 
problem is formalized for discrete or continuous domains. However, traditional 
EAs are considered ‘blind’ to constraint as they do not extract and exploit in-
formation from the constraints. A variation of EA – intelligent constraint  
handling for EA (ICHEA) proposed earlier models constraints to guide the evo-
lutionary search to get improved and efficient solutions for continuous CSPs. 
As many real world CSPs have constraints defined in the form of discrete func-
tions, this paper serves as an extension to ICHEA that reports its applicability 
for solving discrete CSPs. The experiment has been carried on a classic discrete 
CSP – the N-Queens problem. The experimental results show that extracting in-
formation from constraints and exploiting it in the evolutionary search makes 
the search more efficient. This provision is a problem independent formulation 
in ICHEA. 

Keywords: Constraints, constraint satisfaction problem (CSP), optimization 
problem, evolutionary algorithm (EA), intelligent constraint handling evolutio-
nary algorithm (ICHEA), N-Queens problem. 

1 Introduction 

Many engineering problems ranging from resource allocation and scheduling to fault 
diagnosis and design involve constraint satisfaction as an essential component that 
require finding solutions to satisfy a set of constraints over real numbers or discrete 
representation of constraints [4, 5, 21]. EAs are used to solve optimization problem 
from 1960s. It produces very efficient and robust solutions for unconstrained optimi-
zation problems. Even though CSPs are integral part of computer science, little re-
search have been reported on the development of efficient and effective constraint-
handling techniques – as compared with a plethora of new methods developed for 
unconstrained optimization [12]. Traditional EAs are ‘blind’ towards CSPs as they do 
not take into account the information from constraints which can reduce the search 
space; but only heuristically search for the solution in the vast search space. Generally 
objective functions are designed to use problem dependent penalty functions but some 
uses error measurements like distance from constraint regions that is applicable to 



 ICHEA for Discrete Constraint Satisfaction Problems 243 

continuous CSPs only. This has been a motivating factor in developing a novel varia-
tion of EAs that can extract and exploit information from constraints to produce more 
efficient solutions for CSPs irrespective of their problem domains. Intelligent con-
straint handling for EA (ICHEA) has been introduced in [24] to solve continuous CSP 
that shows promising results when information from constraints are extracted and 
exploited. In this paper ICHEA is enhanced to solve discrete CSP. Constraint prob-
lems are divided into two classes: Constrained Optimizing Problems (COPs) and con-
straint satisfaction problems (CSPs). The difference between these classes is that in 
COPs an optimal solution that satisfies all constraints should be found, while for 
CSPs any solution as long as all the constraints are satisfied is acceptable [9]. This 
paper has been confined to CSPs only. 

Characteristically, CSPs solved by EAs use penalty based functions. A penalty 
function updates the fitness of chromosomes in EA. A penalty term is used in general 
for reward and punishment for satisfying and/or violating the constraints [3]. Howev-
er, its main shortcoming is that penalty factors which determine the severity of the 
punishment, must be set by the user and their values are problem dependent [16]. 
Some other constraint handling approaches include expensive repair algorithms that 
promote the local search to transform infeasible solutions to feasible solutions be-
cause the feasible parents not necessarily produce feasible progenies [3]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives. 
Pareto-based selection approaches are currently the most popular multi-objective 
evolutionary algorithm (MOEA) solution technique. In a typical MOO problem there 
exists a set of solutions which are superior to the rest of the solution in the search 
space when all objectives are considered but are inferior to other solutions in the 
space in one or more objectives. These solutions are known as pareto-optimal solu-
tions or non-dominated solutions [25]. (Definition of pareto concepts can be found in 
[26]). There are many established MOO algorithms like MOGA [10], VEGA [20], 
NSGA and NSGAII [6]. Generally, this type of algorithm requires inequality con-
straints that can be transformed into many objective functions to be optimized simul-
taneously. Paredis in [18] has used co-evolution strategies that utilizes predator-prey 
model to keep two populations – one population represents solutions that satisfies 
many constraints while other population represents those individuals whose con-
straint(s) is violated by lots of individuals in the first population. This strategy re-
quires extra computational effort to find the intersection of a line with the boundary of 
the feasible region 

The main focus of this paper is to enhance ICHEA to solve CSPs for discrete do-
mains by exploiting information from constraints without making the algorithm prob-
lem dependent. The paper is organized as follows: Section 2 briefly discusses the EA 
techniques used in handling constraints and formalization of discrete CSPs. Section 3 
describes changes made in ICHEA to make it compatible for discrete CSPs. Section 4 
shows experimental results on N-Queens problems followed by discussion on  
Section 5. Section 6 concludes the paper by summarizing the results and proposing 
some further extensions to the research. 



244 A. Sharma and D. Sharma 

2 Constraint Handling through EAs 

Traditional EAs are ‘blind’ to constraint as they do not extract the information from 
the constraints but search the solution through random heuristic greedy approach [4, 
9]. This causes the search engine to spent extra computational effort in searching for 
the solution into the wider search space without only concentrating in the restricted 
smaller feasible search space. Constraints can reduce the search space and it can make 
the heuristic search more efficient by harnessing information from constraint to guide 
the search engine, search in feasible search space only. 

Generally violation count is used as a fitness function for CSPs for discrete do-
mains. Depending on the strengths of constraints, individual weights can be assigned 
to constraints in a penalty function to calculate the fitness value. To avoid problem 
dependent penalty functions and to utilize some information from constraints to guide 
the evolutionary search a distance function is used instead of violation count to indi-
cate how far an individual is from the feasible regions [17]. However this is generally 
limited to continuous domain only. The main motivation behind developing a novel 
variation of EA is to avoid using problem dependent penalty based functions for CSPs 
that can be used for both continuous and discrete domains utilizing only the informa-
tion from constraints.  

ICHEA attempts to solve CSPs by utilizing information from constraints to guide 
the evolutionary search whether the constraints are given in the form of continuous or 
discrete functions. It does not use penalty functions, problem dependent formulations 
or error functions which all of the current EAs do. It does not disregard the informa-
tion from constraints to produce more efficient results. ICHEA also does not require 
initial feasible solution and it is also not restricted to produce feasible progenies from 
feasible parents. 

CSP is defined by an input vector  , , …  of size  in a finite space S 
where each variable  has a finite domain . A set of  constraints , , …  
is defined in the form of functions: 

 , , …  1         ,  0         ,    (1) 

Constraint satisfaction sets or feasible regions  , , . .  can also be defined 
where: 

   ∈  | 1, 1 , ∈    (2) 

The fitness function of any CSP can be given as: 

 ∑  (3) 

To incorporate the weighted penalty function Eq. (3) can be redefined as: 

 ∑  (4) 

where 0 are the weighted coefficients representing the relative importance of 
the constraints. Its main weakness is the difficulty to determine the appropriate 
weights when there is not enough information about the problem [2]. The solution of 
a CSP is ∈  when all the constraints  are satisfied.  
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Constraint 
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Parent P1

Parent P2Offspring  O1

Offspring O2

Fig. 2. Intermarriage crossover for discrete CSPs 

 
Fig. 1. Intermarriage crossover for continuous CSPs 

3 ICHEA for Discrete Data 

ICHEA is a variation of EA that solves CSPs by extracting information from con-
straints as described in [24] for continuous domain by realizing intermarriage cros-
sover. Intermarriage crossover 
selects two parents from different 
constraint satisfaction sets to make 
them come closer iteratively to-
wards their corresponding feasible 
boundary because the CSP solu-
tions lie in the overlapping bound-
ary region of feasible regions that 
satisfy different constraints. The 
iterative move for parent  and  to produce offspring  is given as: 

   (5) 

where  is a coefficient in the range 0,1  which is generally 0.5. Variable  gets 
incremented from 1 to a threshold value  in the sequence 1, 2, … , . The inter-
marriage crossover process is 
shown in the Fig. 1 where  mark 
indicates possible placement for 
an offspring and × mark indicate 
the offspring vector is unaccepta-
ble in that particular position. An 
offspring is accepted if it satisfies 
equal or more constraints than its 
corresponding parent. Correspond-
ing parent for offspring  is . 
So using the Eq. (5) the next  
value is used until the offspring 
finds an acceptable place or a threshold value  is reached. This greedy approach of 
crossover might result in generating no offspring at all. 

Favouring individuals that satisfy higher number of constraints and the use of fea-
sible regions in intermarriage crossover guides the evolutionary search in finding the 
solution space quickly [24]. When constraint regions are discrete then the intermar-
riage crossover for continuous CSP cannot be used directly to generate progenies as 
its formulation is based on real numbers for continuous domain. The concept of in-
termarriage crossover is to fuse feasible solutions from two different constraint satis-
faction sets together that makes the offspring “generic” that satisfy more constraints 
because its parents are from two different constraint satisfaction sets. If the fusion of 
two discrete feasible solutions is represented by  then the intermarriage crossover 
of two parents for discrete CSP transformed from Eq. (5) can be given as: 

      (6) 
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Fig. 3. Variable length intermarriage crossover 

For discrete intermarriage crossover value of  and  is 1 because fusion is non-
iterative as shown in Fig. 2 where offspring are accepted if fusion results better chro-
mosome(s). ICHEA uses variable length chromosomes (partial solutions) to accom-
plish discrete valued intermarriage crossover where genotype is used as phenotypes. 
Variable length chromosome has been used in many applications like [1, 23, 27]. 
Partial solutions  , , …  where  are chromosomes that satisfy all 
the constraints partially i.e. ∑ . Its fitness can be given as:  

  | | (7) 

The partial solutions are fused incrementally considering all constraints at once. For 
example a CSP problem of size  has parents  and  with partial solutions 1, 2  
and 1, 5, 6  respectively. The generated offspring from these parents either satisfy 
equal or more constraints as shown in Fig. 3. Each offspring has traits from both par-
ents. The intermarriage crossover only tries to append the allele values of other 
chromosome as shown in Fig. 3. All the allele values that violate the constraints are 
dropped so the offspring are also feasible chromosomes. An advantage of using varia-
ble length chromosome in this manner is reduction in computational time. Intermar-
riage crossover avoids recalculation of objective function because it only requires 
allele values to be appended. For example an N-Queens problem on chess board of 
size  requires 1 2⁄  operations on a single function call and for one com-
plete crossover it requires 1  operations every time. Its time complexity of 
Big-O order is . On the other hand, the intermarriage crossover only checks 
the violation of appended allele value with all other existing feasible values that re-
quires 2  operations where  and  are the lengths of partial 
solutions of the parents and  and  are length of their non-duplicate allele values. 
The first expression of time complexity  indicates number of operations 
required to find the duplicate values. The second expression 2   indicates the op-
erations required to append the non-duplicate allele values to each other parents. The 
best time complexity is 2 2  4 operations when lengths of both parents 
are 1 and the worst time complexity is 2⁄ 2⁄ 2 /2 /20.5 2 . It is observed that ICHEA’s partial solutions quickly attain the size of 1 or close to it. So two parents with chromosomes of length 1 is taken for 
average time complexity which can be calculated as 1 12 1 1 3 . Hence the average time complexity has the Big-O order of O(N). The 
algorithmic description of ICHEA is given in Appendix (A). 
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4 Experiments 

The motivation behind this research is to show the information extraction and exploi-
tation from constraints can produce the evolutionary solutions more efficiently. We 
used a toy problem namely N-Queens problem that serves as a classic CSP. Basically, 
the N-Queens problem can be expressed as placing N queens on N x N chessboard 
such that no queen is attacked by one another [13]. The first part of the experiment 
tries to solve N-Queens problem without using any sort of constraints related informa-
tion/heuristics from the problem. The second part of the experiment does the prepro-
cessing of the chromosomes to work on unique allele values only because same allele 
value refers to the queens that are in the same row which is a violation of one of the 
constraints. The idea is to provide as much information about the constraints as possi-
ble to the evolutionary search. 

4.1 No Exploitation of Information from the Problem 

For this test case we compared ICHEA with Differential Evolution (DE), Covariance 
Matrix Adaptation Evolution Strategy (CMA-ES), standard Genetic Algorithms 
(GAs) and Non-dominated Sorting GA-II (NSGA-II) [6] that do not use any sort of 
information from the problem domain. GA is taken from Genetic Algorithms toolbox  
 

Table 1. Comparative test results on no problem specific information extraction 

N CMA-ES [25] DE [25] GA NSGA II ICHEA 
4 456 NFC 

(SR = 1.00) 
134 NFC 

(SR = 1.00) 
367 NFC 

(SR = 1.00) 
93 NFC 

(SR= 1.00) 
39 NFC 

(SR = 1.00) 
5 656 NFC 

(SR = 1.00) 
254 NFC 

(SR = 1.00) 
750 NFC 

(SR = 1.00) 
217 NFC 

(SR = 1.00) 
37 NFC 

(SR = 1.00) 
6 22,013 NFC 

(SR = 1.00) 
1,11,136 NFC 
(SR = 0.65) 

30,086 NFC 
(SR = 0.75) 

694 NFC 
(SR = 1.00) 

51 NFC 
(SR = 1.00) 

7 9,964 NFC 
(SR = 1.00) 

24,338 NFC 
(SR = 0.95) 

1,400 NFC 
(SR = 1.00) 

2631 NFC 
(SR = 1.00) 

34 NFC 
(SR = 1.00) 

8 84,962 NFC 
(SR = 1.00) 

7,576 NFC 
(SR = 0.75) 

3,786 NFC 
(SR = 0.80) 

1273 NFC 
(SR = 1.00) 

41 NFC 
(SR = 1.00) 

9 133,628 NFC 
(SR = 1.00) 

19,296 NFC 
(SR = 0.50) 

18,333 NFC 
(SR = 0.80) 

27,852 NFC 
(SR = 1.00) 

72 NFC 
(SR = 1.00) 

10 263,572 NFC 
(SR = 0.95) 

286,208 NFC 
(SR = 0.30) 

3,300 NFC 
(SR = 0.30) 

1,737 NFC 
(SR = 1.00) 

83 NFC 
(SR = 1.00) 

11 284,382 NFC 
(SR = 0.95) 

68,255 NFC 
(SR = 0.10) 

15,550 NFC 
(SR = 0.40) 

SR = 0.00 132 NFC 
(SR = 1.00) 

12 295,740 NFC 
(SR = 0.75) 

99,120 NFC 
(SR = 0.25) 

23,000 NFC 
(SR = 0.70) 

SR = 0.00 122 NFC 
(SR = 1.00) 

13 376,631 NFC 
(SR = 0.85) 

95,485 NFC 
(SR = 0.15) 

3,400 NFC 
(SR = 0.10) 

SR = 0.00 293 NFC 
(SR = 1.00) 

14 450,654 NFC 
(SR = 0.85) 

160,475 NFC 
(SR = 0.10) 

47,350 NFC 
(SR = 0.40) 

SR = 0.00 308 NFC 
(SR = 1.00) 

15 627,391 NFC 
(SR = 0.50) 

223,425 NFC 
(SR = 0.10) 

95,625 NFC 
(SR = 0.40) 

SR = 0.00 381 NFC 
(SR = 1.00) 
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Revision: 1.1.4.2, 2004 available in Matlab 7.0.1 and NSGA II written in C language 
is taken from [7]. ICHEA has been developed in Java language. The test results for 
DE and CMA-ES have been taken from [19] where 20 trials for each problem have 
been taken into account. The test results are based on number of function calls (NFC) 
and success rate (SR). If the NFC ≥ 2x106 then it is considered that the solution is not 
found. The experimental set up is discussed below. 

─ Fitness Function: the fitness function is the total violation count and the chromo-
somes are ranked based on this fitness function. The solution for CSP is to find at 
least one chromosome with no violation i.e. 0.  

─ Allele Values: DE, CMA-ES and GA generate real numbers for allele values but in 
case of N-queens problem the real numbers are converted into integer values by 
taking the round off value to calculate the fitness. NSGA II uses binary string re-
presentation and ICHEA uses integer values. Candidates can have duplicate allele 
values. 

─ Efficiency Measures: NFC and SR are used to compare the performance of differ-
ent algorithms. NFC is simply the total count of objective function invoked by the 
algorithm. SR is the rate of successful trials for each problem i.e.    ⁄ . 

─ Parameters: for all the algorithms population size of 100 is used. Scattered cros-
sover is used for GAs. Mutation rate of 0.1 is used for ICHEA and GAs. All de-
fault parametric values are used for NSGA-II.  

Table 1 shows the comparative results based on NFC and SR to solve N-queens prob-
lem. N denotes the size of the chessboard. It can be observed as the problem size in-
creases the solution quality decreases for all the algorithms except ICHEA. The out-
come of the test results clearly shows that ICHEA produces consistent results and 
dominates other EAs. ICHEA is the most efficient algorithm by getting the lowest 
NFC and highest success rate (SR = 1.00) for all the problems. GA shows unpredicta-
ble results where it usually finds the solution in very few evaluations but if it is stuck 
in local minima then it is generally not able to find the optimum solution.  

Table 2. Comparative test results on after information extraction from the problem 

N  
SA [19] TS [19] GA [19] GA [10] PSO 

[14] 
ICHEA 
(best) 

ICHEA 
(median)

ICHEA 
(mean) 

8  493  182 400  100 - 84 119 115 

10  948  472 4910  266 - 97 162 176 
20  - - - 2000 5669.7 279 698 898 
30  2160 4655  91790  2300 - 301 538 970 
50  2849 22663 1759230 5660 14991.4 729 1190 2257 
75  6091 81030  571170 6300 - 380 2568 3393 

100  7873 206910  887770 15600 36199.4 1977 3702 7595 
200  21708 2399940 2287960 460475 934399 7360 14533 15489 
300  24636 9382620 2774820 - - 6767 34043 37730 
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4.2 Information Extraction and Exploitation 

The second test case involves utilization of information extraction and exploitation 
from the N-Queens problem in evolutionary search. Here problem specific chromo-
somes have been used where only unique integer values are taken into account for 
chromosomes’ allele values. Unique integers ensure that queens are at least in differ-
ent rows which satisfy a part of constraint for this problem. All the parameter remains 
same as of the previous experiment. We used Simulated Annealing (SA), Tabu Search 
(TS), Particle Swarm Optimization (PSO) and GA along with ICHEA for the experi-
ment. The test results of SA, TS and GA is taken from [15] and test results for PSO is 
taken from [11]. ICHEA does not need to be modified as it has problem independent 
formulation for its intermarriage crossover. Appended allele values are not necessari-
ly unique. 

Table 2 shows the comparative test results based on NFC only when some problem 
specific information has been extracted from the problem. The best, median and mean 
results for ICHEA have also been shown. There is no changes done in ICHEA and it 
still performs best in most of the problems (shown in bold). The test results obtained 
by [8] is also impressive where the authors uses partially matched crossover (PMX) 
and an unusual selection process where only top two candidates are selected for mat-
ing in each generation and rest of the population is replaced by making duplicates of 
this pair.  

5 Discussion 

The test results show that EAs can be significantly improved if the chromosomes are 
designed to be problem specific. The experiment in Section 4.2 shows if only the 
unique integer value is taken into account for allele values then the solution is con-
verged much earlier for N-Queens problem. Considerable improvement has been seen 
in GA. The objective here is not to get the best results for N-Queens problem but to 
show how intelligent an algorithm is. The results in Section 4.1 shows that tested 
optimization algorithm (DE, CMA-ES, GA and NSGA II) blindly searches for the 
optimum solution through greedy heuristic search manner without extracting the in-
formation from constraints while ICHEA utilizes the information from constraints 
through its intermarriage crossover operator and gets the best results. Test results in 
Section 4.2 again favor ICHEA. The advantage of ICHEA is that its formulation is 
problem independent which still extracts enough information from the constraint to 
solve the problems efficiently. It can be argued that ICHEA also uses problem depen-
dent integer values for N-Queens problem. The novel formulation of ICHEA does not 
require the generated integer values to be unique. ICHEA works with allele coupling 
only. So only the definition of constraints and the rules for coupling of two allele 
values to partially satisfy the constraints need to be provided. It only maintains the 
population of feasible solutions that drastically reduces the size of the search space.  
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6 Conclusion 

This paper has modeled ICHEA to handle discrete CSPs. It has been demonstrated 
through N-Queens problem that it outperforms other EAs because it makes use of 
information from the problems and constraints. The search mechanism of ICHEA is 
guided by constraints where it concentrates in the feasible regions of constraint satis-
faction sets to get the solution without putting extra computational effort in searching 
through the whole search space. N-Queens is a toy problem that does not have com-
plex constraints structure as in some real world problems like university time tabling, 
vehicle routing etc. Future work consists of modeling ICHEA to provide problem 
independent solution for problems that have different constraint strengths. ICHEA 
will be further tested on mixed CSP where problem domain constitutes both conti-
nuous and discrete constraints. 
 
Acknowledgment. We would like to thank Dr. Cecil Schmidt of Washburn Universi-
ty, Topeka for providing the code for GA to solve N-Queens problem from his work 
in [8]. 
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Appendix 

A) ICHEA Algorithm 

ICHEA is another variation of EA that has been introduced in [24] adds constraint 
handling features for continuous CSPs to the standard GAs. Because of space limita-
tions we are only describing the changes in ICHEA accommodated to make it com-
patible for discrete CSPs. The pseudocode can be given as: 

  chromosomes  = initializeChromosomes(); 

  for each generation 

  parents = TournamentSelection(); 

  offspring = interMarriageCrossover(parents); 

  Mutation(offspring); 

  chromosomes = chromosomes + offspring; 

  SortAndReplace();                 

  CheckTerminationCriteria(); 

  End for loop; 

The description of changed subroutines is given below: 

InitializeChromosomes: The population of chromosomes is generated using se-
quence of integer values 1, 2, … , | |  with the modulus operator ( ) as shown 
below: 
 , | | 1 (8) 

where  is initialized with 0 that is always incremented by 1 for each chromo-
some and | | is the population size. The length of initialized chromosome is 1.  

TournamentSelection: Here novelty selection is incorporated along with fitness 
based selection as described in [24] but the selection of chromosomes is based on the 
following order of preference: 
1. Its fitness in the search space 
2. If fitness is same then higher novelty value 
3. If novelty is same then a chromosome is picked randomly 

InterMarriageCrossover: The crossover techniques have been described in Section 3. 

Mutation: ICHEA uses swap mutation for permutations.  

SortAndReplace: According to [14] the lower the individuals’ degree of constraint 
violation, the higher the probability that it clusters together around the current best 
solution and individuals with lower degrees of constraint violations are very difficult 
to jump out of current best individual’s adjacent region. This may cause the current 
best individual to stay on the same position for a long time leading to loss of diversity 
in the population. To avoid this scenario the ICHEA keeps the fair share of all levels 
of fitness in the population. If the population  of size | | has  constraints in 
the problem of size  then the whole population is divided into equal sized  
slots where  is in the range of (0.1 1.0).  = 0.1 is used in the experiments. Slot  
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is allocated to individuals based on its fitness value | | from Eq. 
(7) where | | 1. If slot  remains empty then its allocated space is 
evenly distributed to other slots. Let  indicate the population of individuals that 
belong to slot  so the total population is: 

 ∑   

Then  is sorted according to the fitness and the best | |⁄  is selected for 
subpopulation . max | | | |⁄  

If after allocation,  slots have | | < | |⁄ , then unallocated population of 
individuals  is: | |⁄ | |,     | |   | |⁄  0                               ,                            

This unallocated population  needs to be allocated evenly in the slots that 
have | | > | |⁄ .  

Once the chromosomes are sorted a random death concept is used defined in [22] 
to delete some predefined number of chromosomes randomly from the population. 
The certain top percentage of the population is spared to control the search focus.  

CheckTerminationCriteria: The iteration is stopped when: 

1. The maximum number of generation is reached or 
2. The CSP solution is found or 
3. The process is stalled by no improvement in the solution for some generations. 
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Abstract. Anytime heuristic search algorithms are widely applied where
best-first search algorithms such as A* require large or often unaccept-
able amounts of time and memory. Anytime algorithms produce a solu-
tion quickly and iteratively improve the solution quality. In this paper, we
propose novel anytime heuristic search algorithms with a common under-
lying strategy called Column Search. The proposed algorithms are com-
plete and guarantee to produce an optimal solution. Experimental results
on sliding-tile puzzle problem, traveling salesman problem, and robotic
arm trajectory planning problem show the efficacy of proposed methods
compared to state-of-the-art anytime heuristic search algorithms.

Keywords: problem solving, heuristic search, anytime algorithms.

1 Introduction

Heuristic search is a generic problem solving technique studied in Artificial Intel-
ligence (AI). A* [8] is the most well-known heuristic search algorithm which has
been widely used to solve several problems involving path planning and com-
binatorial optimization. It explores the state space with the help of two lists:
OpenList and ClosedList which contain the nodes to be expanded and the nodes
that are already expanded respectively. Initially, OpenList comprises of the start
node. Each node has a g-value denoting its distance from the start node and an
h-value that estimates its distance to a goal node. The promise of a node n called
as f -value equals g(n) + h(n). Most promising node from the OpenList is ex-
panded and added to ClosedList by A* till a goal node is found. A* is an optimal
algorithm that expands minimum number of nodes to find an optimal solution,
when admissible heuristics are used. However, on large problems, the number of
nodes which need to be expanded may be exponential in nature, which makes
A* ineffective to use in such cases.

Anytime search algorithms are pursued to address this issue. They quickly gen-
erate a solution and then produce improved quality solutions with the progress of
time. Several anytime algorithms were proposed based on A*. Anytime Weighted
A* [6,7] uses weighted heuristics while evaluating f-values of nodes, which helps in
converging to suboptimal solutions quickly, and the search is continued to produce
results in an anytime manner. Anytime Restricted A* (ARA*) [11] follows simi-
lar concept but decreases weights after each iteration to improve the performance.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 254–265, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Anytime Nonparametric A* (ANA*) [15] improvises on ARA* by analyzing the
theory behind the greedy approach followed by ARA* and gets rid of the weight-
parameter tuning.

On the other hand, algorithms that do not rely on heuristic manipulation
(via weights, like above) such as depth-first branch and bound (DFBB) [10]
are also used as anytime algorithms. Beam search [4] is another such simple
algorithm that is widely used which gives an approximate solution. It expands
beam-width number of most promising nodes at each level (depth of the search
tree) until a solution is found or the depth limit of the search tree is reached,
where beam-width is taken as the input parameter. However, it is not complete.
Beam-stack search [17] is proposed to complete beam search which also gives
anytime performance. It uses a novel data structure called beam-stack to keep
track of the nodes being expanded and the ones to be expanded by chronological
backtracking, and also works within the given beam-width.

Anytime Window A* (AWA*) [2] is another recent anytime algorithm which
uses a window based cutoff for the nodes to be present in open list. It ensures
completeness by maintaining a suspend list for nodes that are being removed
from open list which are considered for expansion (brought back to open list) at a
later point in time. Later, Memory-bounded Anytime Window A* (MAWA*) [14]
was proposed based on AWA* and Memory-bounded A* (MA*) [5] to be able
to work in restricted memory conditions.

In this paper, we propose a novel yet simple anytime heuristic search algo-
rithm called Anytime Column Search (ACS) that is complete, which takes the
column-width as parameter. We also explore several non-parametric versions of
the proposed algorithm. The basic idea is to explore column-width number of
most promising nodes at each level and put them in closed list, and repeat this
until the open lists of all levels become empty. The concept is intuitive and au-
gurs well with anytime objectives such as finding initial solution quickly and
improving it with the progress of time.

ACS is similar to beam search up-to an extent, however, we choose a dif-
ferent name from ‘beam’ as it is traditionally related (and hence expected) to
be working within the given beam-width. While beam search can be highly
non-monotonic [1], ACS promises to recover from such effect faced in its first
iteration as it continues the search in an admissible manner. Most importantly,
it does not involve any re-expansions of the same node, which distinguishes it
from algorithms such as naive iterative beam search and complete anytime beam
search. For example, complete anytime beam search [16] adopts iterative weaken-
ing strategy, restarting beam search with weaker pruning rules in each iteration,
which results in node re-expansions.

Apart from the anytime performance, ACS also has an unique ability of re-
porting solutions at regular intervals (due to bounded number of node expansions
in each iteration). This feature can also be exploited for using it in a contract
search environment [3]. Since it looks at nodes at all levels in each iteration, it
can be expected to return best possible solution in a given iteration with the
corresponding bound on the number of node expansions.
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The rest of thepaper is organizedas follows: InSection2,wepresent theproposed
methods which includes Anytime Column Search and its non-parametric variants.
In Section 3, we present the experimental results of proposed algorithms obtained
on thebenchmarkproblemsof threedifferentdomains comparedwithvarious state-
of-the-art anytime heuristic search algorithms. We conclude in Section 4.

2 Proposed Methods

In this section, we present the proposed anytime heuristic search algorithms.
Firstly, we present the Anytime Column Search (ACS) algorithm which takes
column-width w as parameter. Later, we describe its non-parametric variants.

2.1 Anytime Column Search (ACS)

Anytime Column Search is a simple and complete anytime heuristic search al-
gorithm. It takes column-width w as parameter and expands w most promising
nodes of OpenList at each level in each iteration and puts them in ClosedList
until a goal node is found. Visually, the set of nodes expanded in each iteration
form a column (see Figure 1). One may also look at it as a sliding window moving
from left to right.

Fig. 1. Progress of ACS2 on a typical search tree

When using admissible heuristics, the best solution obtained in anytime man-
ner can be used as cutoff as the search progresses (admissible pruning). We de-
note ACS instance with column-width w as ACSw. Figure 1 shows the progress
of ACS2 on a typical search tree. Four columns, each of width 2, are shown which
are explored from left to right. No edge goes from a given column to any column
on its left side on a search tree as the right-side columns appear only after the
complete exploration of the left-side columns and no node is re-expanded.

ACS1 is particularly interesting for the following reason: Anytime algorithms
are aimed at achieving two main targets, a quick solution, and frequent improved
solutions with the progress of time. In this scenario, ACS1 appears to be a simple
base level anytime algorithm which promises both the initial quick solution and
frequent solution improvements (even attempted to be regular in time) which
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looks at the states of all levels in each iteration (hence appearing to be more
informed and calculated while trying to produce the next solution in anytime
manner).

Algorithm 1. Anytime Column Search (ACS)
1: INPUT :: A search graph G, a start node s, and column-width w.
2: BestSol ← ∞; g(s) ← 0; Calculate f(s);Level(s) ← 0;

OpenList(0) ← {s}; OpenList(i) ← φ,∀i(0 < i < MAX_DEPTH);
ClosedList ← φ;

3: while ∃i OpenList(i) �= φ do
4: for i = 0 to MAX_DEPTH − 1 do
5: for w number of times do
6: if OpenList(i) = φ then
7: break;
8: end if
9: n ← least f-valued node from OpenList(i); (for minimization problem)

10: if IsGoal(n) then
11: if BestSol > f(n) then
12: BestSol ← f(n);Goal ← n;
13: end if
14: Move n from OpenList(i) to ClosedList;
15: continue;
16: end if
17: GenerateChildren(n);
18: Move n from OpenList(i) to ClosedList;
19: end for
20: end for
21: end while
22: return BestSol,Goal;

ACS Details: Algorithm 1 presents the proposed method ACS. It maintains
different OpenLists for nodes at different levels. As long as there exists a non-
empty list, it expands w most promising nodes at each level from depth 0 till
the maximum allowed depth. It does not assume that the heuristic being used is
admissible. When admissible heuristics are being used, one can perform a check
after line 9 as to whether the f-value of node being explored is less than the
best solution or not. If the f-value is greater than or equal to that of current best
solution (in case of a minimization problem), the node can be pruned admissibly,
and the search can be moved to next level.

GenerateChildren routine (Algorithm 2) generates all successors of the input
node and checks for their existence already in doing so. If a successor exists
with a better path from start node already, then it is not disturbed. When using
admissible heuristics, f-value of a child can be checked against BestSol before it
is inserted into the corresponding OpenList and the child node can be pruned
admissibly if the f-value exceeds BestSol.
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Algorithm 2. GenerateChildren
1: INPUT :: Node n whose children are to be generated, and the lists.
2: if Level(n) = MAX_DEPTH − 1 then
3: return;
4: end if
5: for each successor n′ of n do
6: if n′ is not OpenLists and ClosedLists then
7: Level(n′) ← Level(n) + 1;
8: Insert n′ to OpenList(Level(n′));
9: else if g(n′) < its previous g-value then

10: Update Level(n′), g(n′), f(n′);
11: Insert n′ to OpenList(Level(n′));
12: end if
13: end for

Theorem 1. ACS is complete and guarantees terminating with an optimal so-
lution, provided MAX_DEPTH is at least as large as the number of nodes on
a minimum-length optimal solution path and the search is not constrained by the
memory available.

Proof. The complete search graph is explored in a column by column manner
up-to the maximum depth limit given. Pruning of nodes is only done when using
admissible heuristics where the f-values of corresponding nodes are found out to
be greater than or equal to that of best solution obtained, which is admissible.
Therefore, no potential node exists which is left unexpanded, that can lead to a
better solution than that of the final solution. ��

Lemma 1. ACS does not re-expand any node unless a better path has been found
from the start node to that node.

Note that, the node expansions in the first iteration are same as that of beam
search with beam-width w. In that sense, the ACS algorithm can be viewed as
another way of making beam search anytime and complete.

Another point to note is that, the ACS algorithm takes column-width w as
parameter, and its anytime performance will depend on this input parameter.
We present the comparison of ACS instances with different column-widths in
Section 3. Column-width can be chosen such that the solutions are reported
at required intervals (assuming that goal nodes are found as higher depths are
explored, an estimate of the intervals at which a better solution can be expected
may be calculated for a particular column-width).

In this paper, we also present non-parametric versions of ACS using simple
modifications which are explained next.

2.2 Anytime Column Progressive Search (ACPS)

ACS algorithm expands w nodes from OpenList at each level in each iteration,
where w is taken as input parameter. The idea in Anytime Column Progressive
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Search (ACPS) is to progressively increase w from an initial value of 1 by a value
of 1 in each iteration. It means that the column-width in ith iteration in case
of ACPS is i (in contrast to column-width being w in all iterations in case of
ACS). The algorithm is clearly a non-parametric version of ACS.

2.3 Anytime Column Scaling Search (ACSS)

Instead of increasing column-width by 1 in each iteration, one may greedily reset
the column-width to 1 whenever a solution is found, in the hope of obtaining
a better solution with lower number of node expansions next time. We call the
algorithm with this idea as Anytime Column Scaling Search (ACSS). It increases
its column-width by 1 in each iteration as long as better solution is not obtained
and resets the column-width to 1 whenever a better solution is found. Such a
reset technique was also used in [13] on top of Anytime Window A*.

2.4 Anytime Column Adaptive Search (ACAS)

Another way of handling column-width is as follows: Initialize column-width to
1; do not change the column-width as long as better solutions are found with
that column-width; when a better solution is not found in an iteration using
the column-width, increase it by 1. We call the algorithm with this strategy as
Anytime Column Adaptive Search (ACAS). The motivation is that, perhaps it is
necessary to expand at-least the current number of nodes to get an improved so-
lution, while also hoping that it is sufficient. When it is found to be not sufficient
(better solution is not found), the column-width is increased.

Next, we present the experimental analysis of proposed methods and their
comparison with some of the state-of-the-art anytime heuristic search algorithms.

3 Experimental Results

In this section, we present the experimental results comparing the proposed
algorithms against several existing anytime algorithms, namely, Depth-first
Branch and Bound (DFBB) [10], Beam-Stack search [17], Anytime Window A*
(AWA*) [2], Anytime Repairing A* (ARA*) [11], and Anytime Non-parametric
A* (ANA*) [15]. All the experiments have been performed on a Dell Precision
T7500 Tower Workstation with Intel Xeon 5600 Series at 3.47-GHz × 12 and
192-GB RAM. We display the results in terms of a metric called % Optimal
Closeness, which is defined as (for a minimization problem, this metric suggests
how close the obtained solution is to an optimal solution):

% Optimal Closeness = (Optimal sol./Obtained sol.)× 100.

3.1 Sliding-Tile Puzzle Problem

For our experiments, we have considered all 50 24-puzzle instances from Korf
et al. [9, Table II] which are referred to with the same index number by which
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they were presented, prefixed with K. Manhattan distance heuristic is used as
the heuristic estimation function (which underestimates the actual distance to
goal). All algorithms are allowed to explore up-to a maximum depth of 1000.
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Fig. 2. Comparison of anytime performance of proposed algorithms against each other
on the (Sliding-tile) 24-Puzzle instances

Figure 2 presents the comparison of anytime performances of proposed algo-
rithms against each other on the 24-Puzzle instances. This is presented to show
the effect of column-width parameter on the performance of ACS as well as to
find the best working algorithm for the 24-puzzle domain. From the plots, one
can see that ACS100 outperforms the other instances. Also note that, perfor-
mances with column-widths ≥ 10 are very similar which may be due to the low
branching factor of the puzzle problem.
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Fig. 3. Comparison of anytime performance of ACS100 with some of the existing any-
time algorithms on the (Sliding-tile) 24-Puzzle instances. DFBB could not come up
with any solution on any of the instances.
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Figure 3 presents the comparison of anytime performance of ACS100 with
some of the state-of-the-art anytime algorithms on the (Sliding-tile) 24-Puzzle
instances. At initial stages, ACS outperforms beam stack search and is com-
parable to AWA* (up-to 1000 Sec.), and at the later stages beam stack search
becomes good but ACS remains comparable. Note that, beam stack search is
affected by the initial lag due to time taken by beam search with such large
beam-width, which is the first step of beam-stack search. When lower beam-
widths are used to plug the initial lag of Beam-stack search, it resulted in the
degradation of its anytime performance through out the 1 hour window.

Table 1. Comparison of different algorithms on the 50 (Sliding-tile) 24-Puzzle
benchmarks

Top Count vs. Time (Mins.)
Algorithm 1 2 4 8 12 16 24 32 48 64
ACS100 22 25 22 18 11 9 10 14 19 17
BeamStack-500 0 0 1 19 30 34 33 29 23 24
ANA* 7 6 4 3 1 0 0 0 2 1
AWA* 19 19 23 12 11 10 10 11 12 14
DFBB 0 0 0 0 0 0 0 0 0 0

Table 1 presents the comparison of different algorithms on Puzzle problem
based on the Top count. Top count indicates the number of times an algorithm
has produced the best solution in the corresponding column (time) over all 50
24-Puzzle benchmarks of [9]. This measure gives a complementary picture to the
plots showing the average values by showing the number of instances on which
an algorithm has been found better than others (at different time instants). Note
that, the average value of an algorithm may become high if it outperforms other
algorithms significantly on a corner case whereas it may be bad in a number
of other cases. Such cases can be detected via Top Count. Note that, on any
instance, multiple algorithms may produce the best solution in a given time.
On two instances, none of the algorithms could produce a solution in 1 Minute
within the depth of 1000. Clearly, beam stack search outperforms all the other
algorithms in this domain once it starts producing the solutions (after 4 Mins.).
However, using lower beam-width values to produce the first solution quickly
has degraded its anytime performance over the whole window, in which cases
ACS came out on top.

3.2 Traveling Salesman Problem

We chose the first 50 symmetric TSPs (when sorted in increasing order of their
sizes) from the traveling salesman problem library (TSPLIB) [12] for our ex-
periments. These range from burma14 to gr202 where the numerical postfixes
denote the size of the TSPs. Minimum spanning tree (MST) heuristic is used as
the heuristic estimation function (which is an under-estimating heuristic). In the
initial state, some city c is chosen as the starting point and in each successive
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state the next city n to be visited is chosen (which is not already visited) till all
cities are visited.

TSP was often looked as a tree search problem, however, careful examination
suggests that if two states denote paths from c to n through a same set of cities
S, then only the best of the two need to be pursued further and the other one
can be admissibly pruned. This change resulted in tremendous improvement in
terms of search state space as well as the anytime performance and the time
taken for termination for all heuristic search algorithms. The results obtained
with this procedure are presented here. Note that, this may also be looked as
a graph search state-space with the state being represented by {c, n, S} rather
than the traditional way of using the path as the signature of a state (which can
just be maintained as an attribute in the current states).
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Fig. 4. Comparison of anytime performance of proposed algorithms against each other
on various TSP instances

Figure 4 presents the comparison of anytime performance of proposed algo-
rithms against each other on various TSP instances. This is presented to show
the effect of column-width parameter on the performance of ACS as well as to
find the best working algorithm for the TSP domain. It is interesting to note
that ACS1 outperforms the instances with greater column-widths which shows
that in certain cases it is indeed sufficient to expand one column at a time to
achieve good anytime performance. From the plots, one can see that all the al-
gorithms are quite effective, and hence we choose ACPS which is the simplest
non-parametric algorithm for comparison with the other algorithms.

Figure 5 presents the comparison of anytime performance of ACPS with some
of the state-of-the-art anytime algorithms on the TSP instances. Note that,
its performance is superior than that of the other algorithms. Only AWA* and
Beam-stack search give comparable performances of which Beam-stack algorithm
suffers from the initial lag which is explained in Section 3.1. Note that, using
larger beam-width for beam-stack algorithm resulted in unacceptable amount of
lag at the beginning (delay in producing its first solution).

Table 2 presents the comparison of different algorithms on TSP instances
based on the Top count. Top count (whose significance is explained in Section 3.1)
indicates the number of times an algorithm has produced the best solution in
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Fig. 5. Comparison of anytime performance of ACPS and the existing search algo-
rithms on various TSP instances

Table 2. Comparison of different algorithms on the 50 TSP benchmarks

Top Count vs. Time (Mins.)
Algorithm 1 2 4 8 12 16 24 32 48 64
ACPS 35 32 35 36 40 41 41 41 42 42
BeamStack-100 21 22 26 26 26 27 28 27 27 27
ANA* 13 11 13 13 12 12 12 13 13 13
AWA* 28 32 27 29 29 28 27 27 31 30
DFBB 8 10 10 11 11 11 11 11 11 12

the corresponding column (time) over the 50 TSP benchmarks considered. Note
that, on any instance, multiple algorithms may produce the best solution in a
given time. Performance of ACPS is clearly better than that of all the other
algorithms.

3.3 Robotic-Arm Trajectory Planning

We consider both the 6-degree-of-freedom (DOF) arm instances and the 20-
DOF arm instances which are available in Likhachev’s software library1, with
fixed base in a 2D environment with obstacles. The objective is to move the
end-effector from its initial location to a goal location while avoiding obstacles.
An action is defined as a change of a global angle of any particular joint. Cost
of each action is taken as one. The environment is discretized into a 50x50 2D
grid. Joint angles are discretized so as to never move the end-effector by more
than one cell on the 50x50 grid in a single action. The heuristic is calculated as
the shortest distance from the current location of the end-effector to the goal
location that avoids obstacles (which is an underestimating heuristic).
1 http://www.cs.cmu.edu/~maxim/software.html

http://www.cs.cmu.edu/~maxim/software.html
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Fig. 6. Comparison of anytime performance of ACPS and the existing search algo-
rithms on various robotic-arm trajectory planning benchmarks

We compared our algorithm ACPS (which gave the best performance in ACS
family methods) with the anytime algorithms: ARA*, ANA*, and AWA*, of
which ARA* and ANA* implementations came with the software to which we
added our implementations of ACS family algorithms and AWA* for comparison.
Figure 6 shows the results obtained on the four robotic-arm instances considered
(a total of only 5 benchmarks were available out of which the results of a 6-DOF
instance are not presented here due to space constraints, which were observed to
be similar). Here, the actual cost of the solution is used in the plots instead of
% Optimal Closeness as the optimal solutions are not available for all instances
to compute the closeness. The parameters of ARA*: ε0 and Δε are tuned for
best performance. Δε is set to 0.2 as recommended in [11] and ε0 is tested with
various values ∈ [2, 100], out of which the best performance was found at 5, which
is used in the plots. Clearly, the performance of ACPS is either comparable or
better than that of the other algorithms in this case as well.

4 Conclusion

In this paper, we present a simple and efficient anytime heuristic search algorithm
called Anytime Column Search (ACS). ACS takes column-width as parameter
for its working and guarantees to find optimal solution. Non-parametric versions
of ACS are also presented which also demonstrates how it can be easily tuned
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as per the working domain. Experimental results on Sliding-tile puzzle problem,
Traveling salesman problem (TSP), and Robotic arm trajectory planning demon-
strate that the anytime performance of the proposed methods is either superior
or comparable to that of state-of-the-art anytime heuristic search algorithms.

Acknowledgement. S. G. Vadlamudi thanks SAP Labs India for their support
through Doctoral Fellowship.
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Abstract. Classification of mass spectrometry (MS) data is an essential
step for biomarker detection which can help in diagnosis and prognosis
of diseases. However, due to the high dimensionality and the small sam-
ple size, classification of MS data is very challenging. The process of
biomarker detection can be referred to as feature selection and classifica-
tion in terms of machine learning. Genetic programming (GP) has been
widely used for classification and feature selection, but it has not been
effectively applied to biomarker detection in the MS data. In this study
we develop a GP based approach to feature selection, feature extraction
and classification of mass spectrometry data for biomarker detection. In
this approach, we firstly use GP to reduce the “redundant” features by
selecting a small number of important features and constructing high-
level features, then we use GP to classify the data based on selected
features and constructed features. This approach is examined and com-
pared with three well known machine learning methods namely decision
trees, naive Bayes and support vector machines on two biomarker de-
tection data sets. The results show that the proposed GP method can
effectively select a small number of important features from thousands of
original features for these problems, the constructed high-level features
can further improve the classification performance, and the GP method
outperforms the three existing methods, namely naive Bayes, SVMs and
J48, on these problems.

1 Introduction

Mass spectrometry (MS) is a method that measures the mass-to-charge ratio
(m/z) of charged particles or ions [4]. It is used for the identification of com-
pounds such as peptides and other chemical compounds. The MS main schema
works by ionizing chemical compounds to generate charged molecules or molecule
fragments and measures their m/z ratios. MS also enables large-scale discovery
of candidates for biomarkers which are in terms of machine learning the features
selected to discriminate between different categories which indicate biological
processes and pharmaceutical or abnormal changes. However, the high dimen-
sionality and small sample size of the data produced by the mass spectrometer
make biomarker detection a very challenging task.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 266–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Many machine learning techniques have been used for classification of mass
spectrometry data. For example, the random forest algorithm [16], principal
component analysis and linear discriminant analysis (LDA) [13] are used to
classify mass spectrometry data. In [18], k-nearest-neighbour, support vector
machines (SVMs) with linear kernel, quadric discriminant analysis are used for
classification. Genetic algorithms and t-test in conjunction with SVMs [12] are
used to select 10 m/z values as features for classification using SVMs. However,
most of these machine learning techniques for classification cannot effectively
handle a huge number (i.e. thousands) of features, and feature selection and
dimensionality reduction of data must take place in advance.

Genetic programming (GP) is an evolutionary algorithm in which computer
programs (or functions) are automatically evolved to solve given problems. GP
first starts with randomly chosen programs which are modified subsequently by
genetic operators such as sexual recombination (crossover) and mutation based
on Darwinian natural selection and gene theory [11]. A main advantage of GP is
that it is capable of handling a very large number of features as GP has a built-in
capability to select features automatically [15]. Therefore GP can be categorized
as an embedded approach to feature selection.

Since very recently, there has been a small number of works only using GP for
feature selection and classification on bio-data. For example, GP has been used
for classifying 1H-NMR data [7] and achieved good results. GP has also been
recently used for peptide quantification of MS data and measurement of protein
quantities within biological samples [19]. However, GP has been rarely used in
the area of biomarker detection in MS data.

Goals. The overall goal of the study is to develop a GP based method for
biomarker detection and classification in the very high dimensional MS data.
This method has three steps: we first use GP with two fitness functions for
feature selection, then develop a fitness function for feature construction, and
finally the selected and constructed features are used for classification. This
new GP method will be examined and compared with naive Bayes, SVMs, J48
decision trees on two data sets, a full scan MS data set and a tandem LC/MS/MS
data set. Specifically, we will investigate:

1. what terminals and functions can be used to construct programs;
2. what measures can be used as fitness functions for feature selection, con-

struction and classification;
3. whether the proposed GP method can do a good enough job for biomarker

detection in the MS data and;
4. whether the new GP method can outperform naive Bayes, SVMs and J48

for these problems.

Organisation. The rest of the paper is organised as follows. Section 2 describes
the data sets and preprocessing. Section 3 describes the new GP approach. Sec-
tion 4 presents the experimental results with discussions. Section 5 concludes
the paper with future work directions.
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2 Data Sets and Preprocessing

2.1 Data Sets

The first benchmark data set used here is the premalignant pancreatic cancer
MS data, which has 181 samples. 101 of them are control samples (class 1) and
the other 80 samples form the PanIN (pancreatic intraepithelial neoplasias) class
(class 2). Control samples are normal cases while PanIN samples are the diseased
cases. This data set was obtained from the FDA-NCI Clinical Proteomics Pro-
gram1. The MS spectra were generated in SELSI-TOF and QSTAR Plusar i
systems, which are composed of m/z values on the x axis and the correspond-
ing intensities on the y axis. The number of attributes/features was originally
350,000 for each sample [8], after binning the data the number of features became
6771 per sample.

The second benchmark data set2 is a liquid chromatography tandem MS
(LC/MS/MS) generated from the hybrid Q-TOF mass spectrometer [17]. It con-
sists of the serum of 5 healthy individuals (class 1) and the serum of the same 5
healthy individuals mixed with known concentration of spike-in peptides (class
2). The total number of original features in this dataset is 10,411. Note that
human experts found 13 known features (biomarkers) for this data set.

2.2 Preprocessing

The MS data usually consists of two columns which are the m/z and the corre-
sponding intensity or relative abundance of this ion in the sample. Due to the
high amount of noise which occurs due to the system measurement errors, pre-
processing of such data is an essential step for successfully analyzing the data.
There are two levels of preprocessing for the MS data [14], either low level pre-
processing which involves baseline adjustment, filtering and normalization, or
the high level preprocessing. The high level proprecessing includes peak extrac-
tion, peaks identification or extraction in each of the samples; filtering of peak,
removing of noisy peaks; retention time alignment, matching peaks with similar
retention times across multiple scans, and using the groups of the matched peaks
for time alignment; peak list deisotoping, converting the data to the ground truth
data; baseline adjustment, removal of low intensity peaks; gap filling, when peak
identification initially fails to recognize some peaks, filling in missing peaks or
filling in data for peaks that are genuinely missing from a sample, by matching
the raw data at the suitable retention time.

Not all steps of preprocessing are compensatory, and some of these steps are
chosen according to the kind of the application [14]. However, steps like peak ex-
traction and alignment should be made on raw data for successful interpretation
of the results, and other steps can be chosen by the analyst. It is very impor-
tant to perform these first steps diligently since the accuracy and reproducibility
of results from analyzing LC/MS/MS data sets depend in part on careful data
preprocessing [6].

1 Available at: http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
2 Available at: http://omics.georgetown.edu/massprep.html

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://omics.georgetown.edu/massprep.html
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2.2.1 Preprocessing of Premalignant Pancreatic Cancer Data
This data set is a binned MS data so it requires low level preprocessing. Based on
the framework in [8] which consists of baseline adjustment, filtering and normal-
ization are used here. Baseline adjustment is useful for removal of low intensity
peaks, where the baseline was estimated by segmenting the whole spectra into
windows with a size of 200 m/z ratio intensities. The mean values of these win-
dows were then used as the estimate of baseline value at that intensity. To perform
regression, a piecewise cubic interpolationmethod is used. After this step, filtering
of noise was done using Gaussian kernel filter. Normalization was done to remove
the systematic differences between replicates, which was performed using area un-
der curve where the maximum value of intensity for each m/z ratio is rescaled to
100. Figure 1 shows the original spectrogram and the preprocessed one.

Fig. 1. Premalignant pancreatic cancer data set preprocessing result.Spectrogram 2 is
used as an example of the preprocessing. (a) the original spectrogram; (b) the spectro-
gram after baseline adjustment, noise removal using Gaussian Kernel smoothing and
normalization using area under the curve.

2.2.2 Preprocessing of Spike-In Data set
The data set is in its raw form, where the full MS spectra consists of table of
values of scan number, LC retention time, ion m/z value and ion intensity. It
requires the high level of preprocessing. The first step needed is to extract peaks
from the data which is one of the most important steps in MS data analysis.
Peptide signals usually appear as local maxima (i.e. peaks) in MS spectra, hence
an efficient approach to extracting significant peaks is needed to get meaning-
ful and interpretable results. The peak extraction approach is used based on
clustering significant peaks and noisy peaks and removing the noisy peaks. The
second step was to filter the peaks to remove noise from each scan, using a per-
centile of the base peak intensity the filtering is performed, where the base peak
is the most intense peak found in each scan. In order to produce the centroid
data instead of the raw signal, the peak preserving resampling method is used.
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Fig. 2. Spike-in Data set preprocessing. An example of the preprocessing on one of the
spectrograms. (a) the original spectrogram; (b) the spectrogram after peak extraction,
filtering of peaks, resampling and alignment of peaks.

Finally the alignment of the peaks is used to remove fluctuation of data. The
total number of features (scan) was 10,411 and it was reduced to 1252 features
per sample after preprocessing. Figure 2 shows an example of the data before
and after preprocessing.

3 The GP Method

Although the preprocessing stage has already significantly reduced the number
of features, the number of features in MS data sets is still typically very large
(too large for most machine learning algorithms to easily cope [8]). So further
selection of the important features and construction or generation of new high-
level features are still necessary for classification.

In this paper, we use the common tree-based GP [2] for this task. The proposed
method has three steps: (1) we use GP’s built-in capability for feature selection
with the development of two fitness functions; (2) we develop a fitness function
for new feature generation/construction; and (3) the selected and constructed
features are used in GP for classification. In the rest of this section, we will
describe the terminal set, function set, fitness functions, genetic operators and
parameter settings for the proposed method.

3.1 Terminal and Function Sets

For n samples, the MS data is typically represented by a k ∗ (n + 1) matrix:
(m/z, Int) = (m/z, Int1, ..., Intn), where k is the number of m/z ratios (features)
observed, m/z is a vector of the measured m/z ratios, and the Inti are the cor-
responding intensities for the ith sample. There is also a vector Y = (y1, ..., yn)
to denote the class label. The main goal is to predict yi based on the intensity
profile Inti = (Int1i, Int2i, ..., Intki ) [21]. For the two data sets in this study,
there are two classes, and the class labels yi can be defined as class1 or class2,
respectively.
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We used tree based genetic programs [3], each of which is constructed using
a terminal set and a function set. The terminal set consists of the features of a
data set, plus a randomly generated constant number. The values of the feature
terminals are the intensity values of the corresponding features.

The function set consists of the four mathematical operations, the min, max
functions, and a conditional operator ifte:

FuncSet = {+,−,×,%,min,max, ifte}

where +,− and × have the usual meanings while % is the protected division
which is the same division operation except that the result of division by zero
returns zero. max and min return the greater and the smaller of the two argu-
ments, respectively. The ifte takes three arguments, and returns the value of
the second argument if the first is negative; otherwise it returns the value of
third argument. The use of ifte function aims to evolve complex and non-linear
functions for feature selection and classification.

3.2 Fitness Functions

To deal with feature selection, construction, and classification, we design three
fitness functions as described below.

1. Standard Classification Accuracy: The first fitness function uses the
standard classification accuracy on the training set. The classification accuracy
is the percentage ratio of the number of examples correctly classified by an
evolved genetic program to the total number of examples in the training set.

Fit1 =
#Correctly Classified Examples

Total Number of Examples
(1)

For a particular sample (example), an evolved genetic program will return a
single floating point value. If the value is less than or equal to zero (single
threshold), then the example is classified as class1; otherwise it is classified as
class2. This fitness function will be used for feature selection in the first step
and also classification in the third step.

2. Area Under ROC Curve: The first fitness function is generally effective for
simple tasks of binary classification. However, it often cannot cope with difficult
cases. As the biomarker detection and classification on MS data is a difficult
task, we hypothesise that the simple fitness function might not work well. So
we use the area under ROC curve (AUC) as the second fitness function. Since
accurately calculating the AUC of a program is difficult and time consuming,
we approximate this value following the approach proposed in [2]. Here multiple
threshold values are used, where the program outputs are sorted in ascending
order and used as threshold values for classification. Each time the TP (true
positive), TN (true negative), FP (false positive), and FN (false negative) values
are calculated. The maximum of TP and TN for all thresholds are selected. The
fitness function is calculated by the sum of the trapezoids fitted under the ROC
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points, where the each point of ROC represents the classification accuracy of
the two classes at each threshold value [2]. This function will also be used for
feature selection and classification.

Fit2 =

N−1∑
i=1

0.5(TPRi+1 + TPRi)(FPRi+1 − FPRi) (2)

Where the TPR and the FPR are the true positive and false positive rates
respectively.

TPR =
TP

TP + FN
and FPR =

FP

FP + TN
(3)

3. Linear Discriminant Analysis: Linear discriminant analysis (LDA) and
the related Fisher’s linear discriminant are methods to find a linear combination
of features which separates two or more classes of objects [22]. This measure is
used as the third fitness function of GP, which aims to further reduce the number
of features by combining the original low-level features into a single high-level
feature, as shown below:

Fit3 =
| μi − μj |√
V ari + V arj

(4)

The high-level feature is actually the entire genetic program. The means and
standard deviations of the program output values with all training examples for
a particular class will be calculated. The “middle point” of the means for the
two classes normalised by the standard deviations will be used as the threshold
value to determine whether an example should be classified as class1 or class2.
If the program output value for a given example is less than or equal to this
threshold value, this example will be classified as class1; otherwise class2.

This fitness function is used for construction/generation of brand new, high-
level features and provides a solution to dimensionality reduction. We expect this
fitness function can further improve classification performance for some machine
learning algorithms.

3.3 Genetic Operators and Parameters

For generating the programs in the initial population and for the mutation oper-
ator, the ramped half and half method [1] is used. The standard subtree crossover
and mutation [3] are applied to this method. Elitism is also used here to make
sure the best program in the next generation will not be worse than that in the
current generation. For feature selection and feature generation/construction,
the population size used is 1024, crossover, mutation and elitisim rates are 80%,
19% and 1% respectively. The tournament selection size used is 7. The max-
imum number of generations is set to 50 or it is terminated if ideal fitness is
reached. This number is chosen to avoid overfitting as it can occur if the number
of generations is increased. The maximum depth of the tree is set to 8.
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For evaluation of the selected and the generated features using GP, some of
the parameters selected are changed as the search space is less than the original
one. The number of generations is set to 30, the tournament selection size is set
to 4, and the maximum depth of the tree is set to 7. All other parameters are
kept the same.

4 Results

4.1 Results on Premalignant Pancreatic Cancer Data Set

All the preprocessing framework is done using bioinformatics toolbox in Matlab
[5]. ECJ package [20] is used for genetic programming, Weka library [10] is used
for classification and evaluation.

4.1.1 Feature Selection
The data set consists of 181 samples with 101 belonging to class Control and
80 samples to class Case. Each sample contains 6771 features. The data set
is divided into 50% as a training set and 50% as a test set. Each experiment
is repeated 30 independent runs, and the mean and standard deviation of the
results, the best result and the number of features selected are shown in Table
1. The number of features are selected from the best evolved program.

Table 1. Test set classification accuracy and the number of selected features by GP
the first two fitness functions (STD and AUC). SD: standard deviation.

Fitness Function Best (%) Mean±SD (%) # Features Selected

STD-GP 67.78 53.37± 5.69 367

AUC-GP 71.04 57.52± 6.79 100

As shown in Table 1, GP can at best achieve around 70% of accuracy on the
test set using both fitness functions since this problem is difficult. Although the
GP results are not as good as expected, the common machine learning algorithms
such as decision trees (J48), support vector machines (SVM) and naive Bayes
from Weka [10] cannot directly run the experiments since the number of features
is too large. Due to the implicitly feature selection capability, the proposed GP
method successfully runs the experiments and automatically select a small num-
ber from the original 6771 features. While 367 features are selected using the first
fitness function (standard accuracy), only 100 features are selected using AUC
as the fitness function. Of course, if we increase the search space (population
size, number of generations, etc.), we might obtain better results, but the main
goal here is to select a small number of features from the huge number (6771)
to be used for classification. So we will investigate whether the selected features
can be used by GP and other machine learning methods for classification.
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4.1.2 Feature Generation/Construction
In the above feature selection stage, GP uses its built-in feature selection abil-
ity to significantly reduce the number of features/dimensions over an order of
magnitude. However, the number of features is generally over 100, which might
still be difficult for common machine learning algorithms. Using the third fitness
function, the number of features is further reduced to only a single feature, which
is the program output with the largest fitness values among all individuals. The
individual with the highest fitness value indicates that the difference between
the two classes is large since the magnitude of the Fisher criterion value deter-
mines the degree of separation of two classes [9]. The newly generated features
for different examples will be tested using GP and compared with naive Bayes,
SVMs, J48 algorithms for final classification, which is reported below.

4.1.3 Evaluation and Discussions
Table 2 shows the classification results of GP on the test set using the selected
features (by the first two fitness functions) and new constructed features (the
third fitness function) with a comparison of Naive Bayes, SVMs and J48. The
first line of the table shows the accuracy of different methods using the 367
features selected by GP with the first fitness function (standard accuracy), the
second line uses the 100 features selected by GP with the second fitness function
(AUC), and the third line uses the constructed feature by GP with the third
fitness function (LDA).

Table 2. Test set accuracy of GP and SVM, naive Bayes, J48 tree algorithms using
selected and constructed features

Fitness Accuracy (%) Best(%) Mean ±SD (%)
Naive Bayes SVM J48 AUC-GP STD-GP AUC-GP STD-GP

STD-GP 51.38 56.91 55.80 78.19 72.22 70.05±4.89 62.59±5.05

AUC-GP 54.70 55.80 55.80 69.44 63.33 58.71±6.03 55.59±4.20

LDA-GP 62.64 62.64 64.84 68.89 65.93 66.82±1.51 62.20±2.43

According to Table 2, the features selected and constructed by GP with dif-
ferent fitness functions can be used by the common machine learning algorithms
NB, SVM and J48 and lead to comparable or even better results than the origi-
nal accuracy GP achieved when it was used for feature selection (Table 1). These
results suggest that GP can effectively select a small number of features from
a huge number of features in MS data for classification. For the three common
machine learning methods, the 367 features selected by GP with the first fitness
function and the 100 features selected by GP with the second fitness function
achieved very similar results. However, the single feature constructed by GP with
the third fitness function by the three learning methods achieved considerably
better (7-9%) results. This suggests that the single high-level feature (genetic
program) captured the regularities for this problem and can be effectively used
by all the three learning methods.

For the single constructed feature as input to the GP classifier (line 3),
GP with the first fitness function (STD-GP) on average achieved very similar
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performance(62.20%) to the NB and SVM methods, but 2% worse than J48
(64.84%). GP with the second fitness function (AUC-GP) on average still achieved
better results than all the three commonly learning methods. The best GP run
with both STD and AUC as the fitness functions achieved better results than
the three commonly used machine learning methods. One noticeable character-
istic for the GP method with both fitness functions is that using the 367 or
100 selected features achieved better results than using the single constructed
features. This suggests that GP has very strong ability for constructing good
classifiers using different combinations of low-level or medium level features, but
cannot do much if the feature level is very high and the number of such features
is too small (in this case only one).

4.2 Results on Spike-In Data set

This data set has 10 examples each with 1252 features. The small sample size
and the huge number of features makes this problem extremely challenging. As
the number of examples is so small, we use the one-leave-out cross validation
method in our experiments.

4.2.1 Biomaker Detection
On this data set, human experts identified 13 features (biomarkers) that can
successfully describe the classification problem. In this subsection, we would like
to investigate how many of these 13 features can be detected by GP.

As the AUC fitness function consistently achieved better performance than the
standard accuracy fitness function in GP for all the machine learning methods for
the first data set, we use the AUC fitness function for feature selection (biomarker
detection) and run 30 independent times. The results in Table 3 shows that
GP successfully detected 5 of the 13 biomarkers. Using only the 5 detected
biomarkers and other features selected by AUC-GP, the proposed GP method
achieved 100% accuracy. This suggests that the 13 biomarkers identified by
human experts are not the only best features in the data set, and there exist
other combinations of features that should also be considered as biomarkers as
they can achieve perfect results. Note that using standard classification accuracy
as the fitness function, GP can only detect one of the 13 biomarkers, which
suggests that AUC is better than the standard accuracy as the fitness function
for feature selection and biomarker detection on this data set.

4.2.2 Classification Results
Table 4 shows the classification results of GP and the three common existing
learning algorithms (NB, SVM and J48) using the features selected and con-
structed by GP with the three fitness functions. Again, the features selected and
constructed by GP can be used by these learning algorithms, and all the four
methods achieved better results than the first data set, suggesting that the clas-
sification task in this data set is easier than that in the first set. In particular,
GP with AUC as the fitness function has the potential to achieve 100% accuracy



276 S. Ahmed, M. Zhang, and L. Peng

Table 3. Biomarkers detected by AUC-GP. The highlighted features are the biomarkers
successfully detected by GP.

Feature No. m/z

1 501.25

2 450.23

3a 530.78

3b 354.19

4 523.77

5a 648.84

5b 432.89

6 586.98

7a 624.99

7b 630.35

8 943.43

9a 712.43

9b 570

(the best run), which will open the door of GP to be applied to biomarker de-
tection and classification in MS data. Although GP with the single constructed
features achieved a higher average accuracy, the result is not significantly better
(by a T-test) than using the selected features.

Table 4. Test set accuracy of GP and SVM, naive Bayes, J48 tree algorithms using
selected and constructed features on second data set

Fitness Accuracy (%) Best (%) Mean ± SD (%)
Naive Bayes SVM J48 AUC-GP STD-GP AUC-GP STD-GP

STD-GP 60.00 70.00 70.00 100.00 100.00 72.66±13.46 63.88±17.87

AUC-GP 50.00 60.00 70.00 100.00 100.00 80.66±3.65 58.33±14.34

LDA-GP 66.67 66.67 100.00 100.00 100.00 86.67±20.57 74±26.34

5 Conclusions

Detection of biomarkers in MS data is a challenge due to the high dimensionality
of the data and the small sample size. Selecting the right preprocessing steps of
MS data is essential for successful classification and detection of biomarkers. In
this study we used GP on two kinds of MS data; the first is a full scan MS data
and the second is the tandem LC/MS/MS data. Since GP has a built-in feature
selection capability, we used GP for selecting features using two different fitness
functions. The first is the standard classification accuracy and the second is the
AUC as the fitness function. The results show that GP can be successfully used
for feature selection in classification of MS data, and construction of high-level
features from low-level existing features can further improve the classification
performance. The results also suggest that GP as a classifier outperformed the
three common machine learning algorithms on the two data sets.
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The results on the second data set show that GP can successfully detect 5
out of 13 biomarkers identified by human experts, and the 5 detected features
(with other features selected) can lead to perfect classification accuracy (100%),
suggesting that there are far more groups of features that can classify the data.
This potential of GP will be further investigated in the future.

Although very preliminary, this paper represents a very first work of GP
in biomarker detection, feature selection/construction and classification in MS
data. Further investigation in this direction will be carried out in the future.
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Abstract. Autonomous underwater vehicles (AUVs) are becoming an
attractive option for increasingly complex and challenging underwater
search and survey operations. To meet the emerging demands of AUV
mission requirements, design and tradeoff complexities, there is an in-
creasing interest in the use of multidisciplinary design optimization
(MDO) strategies. While optimization techniques have been applied suc-
cessfully to a wide range of applications spanning various fields of sci-
ence and engineering, there is very limited literature on optimization of
AUV designs. Presented in this paper is an evolutionary approach for
the design optimization of AUVs using two stochastic, population based
optimization algorithms. The proposed approach is capable of modelling
and solving single and multi-objective constrained formulations of the
AUV design problems based on different user and mission requirements.
Two formulations of the AUV design problem are considered to iden-
tify designs with minimum drag and internal clash-free assembly. The
flexibility of the proposed scheme and its ability to identify optimum
preliminary designs are highlighted in this paper.

Keywords: AUV, MDO, evolutionary algorithm.

1 Introduction

Autonomous underwater vehicles (AUVs) are robotic mobile instrument carriers
that have self-contained propulsion, sensors, and ‘intelligence’, allowing them to
successfully complete sampling and survey tasks with little or no human inter-
vention. With significant developments in artificial intelligence, control theory,
and computer hardware, totally autonomous underwater vehicles have become
a reality [6]. Being untethered and independent, AUVs provide a platform for
ocean exploration and fill in the gap left by existing manned submersibles and
remotely operated vehicles (ROVs) [14].

Hundreds of different AUVs have been designed over the past 50 or so years [3]
to meet the challenges of oceanographic exploration and exploitation programs,
but to the best of our knowledge, very limited in-depth systematic study has been
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done with regards to optimum design, or to use any evolutionary algorithm(s)
to find the optimum design of an AUV for specific mission requirements. Most
of the previous attempts on AUV designs have focused primarily on functional
designs with limited attention directed towards identifying optimum designs.

State-of-the-art evolutionary algorithms for design optimization of AUVs are
rarely used in naval architecture because existing design tools are not sufficiently
robust and/or fast to be used within an optimization scheme [2]. For this reason,
the AUV design process is typically based on previous experience non-optimal
designs are often adopted and accepted as an option. However, some recent works
have considered the problem of finding the optimum hull form for AUVs that
include the works of [2, 5, 11, 12] to minimize drag. Small improvement in drag
can result in a substantial saving in thrust requirement. Therefore, much work
still needs to be done in terms of optimizing the hull form design to minimize
drag and increase propulsion efficiency [10].

While hydrodynamic hull optimization has gained momentum over the years,
there is very limited literature on the arrangement strategies within the hull
items, i.e. how to optimally place the internal on-board components in a ‘clash-
free’ state while maintaining appropriate clearance among them, and other fac-
tors that affect controllability, like the centre of gravity (CG) and the centre of
buoyancy (CB) effects. This establishes the need for the development of a frame-
work that is capable of generating optimum design of AUVs by simultaneously
considering both internal clash-free arrangement of components and external
size and shape for a given design requirements.

This paper presents an optimization framework that is capable of modelling
and solving single and multi-objective constrained formulations of the AUV de-
sign problems based on user requirements through the use of two population
based evolutionary algorithms. Subsequently the algorithms are used to iden-
tify optimal AUV designs. The proposed optimization framework is described in
Section 2 where the aspects of geometry representation, arrangement strategy,
optimization algorithms and hydrodynamic performance estimation methods are
discussed. In Section 3, the details of the numerical experiments are given, fol-
lowed by a discussion of results (optimum designs) obtained. Finally, the findings
of this study are summarized in Section 4.

2 Optimization Framework

This work presents an optimization framework for the design of AUVs with min-
imum drag consideration. The framework incorporates geometry and configura-
tion modules, a hydrodynamics module, several accepted maritime performance
and characteristics estimation methods of AUVs and a suite of optimization al-
gorithms. Shown in Fig. 1 is the flowchart of the optimization framework. The
framework facilitates the communication of data from one application to the
next, producing an automated multidisciplinary design environment.
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Design Requirements
for an AUV

Internal Arrangement
Clash resolution
Placement strategy
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External Geometry
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Reached termination
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Fig. 1. Detail flowchart of the optimization
framework
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2.1 Design Requirements

The basic design concept of the AUV employed herein is based on the devel-
opment of a small vehicle that can be easily launched, recovered and operated
without special handling equipments capable of working at shallow water depth
and relies heavily on the use of commercial-off-the-shelf components in an at-
tempt to contain cost. The design requirements used in this study are:

• Operating speed of the AUV is 1 m/s;
• AUV should be able to house a 150 mm cube payload of weighing 10 kg;
• Length of the AUV must be no more than 1.3 m;
• Total weight (including payload) must be less than or equal to 30 kg;
• The AUV is to be propelled by 3 rear jets and 2 jets each for vertical and
lateral movements.

2.2 Geometry and Configuration Module

Hull Geometry. The hull size of an AUV is constrained by the space for the on-
board instruments that need to be carried, while the hull shape is constrained by
the hydrodynamic characteristics. A ‘torpedo body’ that has a nose cone followed
by a parallel cylindrical mid-section and a tapered tail section is considered in
this study. The torpedo body exhibits low drag compared to other geometries of
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similar length to diameter ratios [16]. Illustrations of the family chosen for this
study are presented in Fig. 2, where the body is seen to comprise a nose-section
of variable length ln, a mid-section of variable length lm, and a tail-section of
variable length lt, making up the total body length of l units.

The curve shape of the nose is determined from the Eq. (1).

rn =
1

2
d

[
1−
(
ln − xn
ln

)n]
(1)

where rn is the nose radius in m, d is the maximum body diameter in m, which
may be varied, and n is the shape variation coefficient of the nose which may
also be varied to give different shapes, as shown in Fig. 3.

When it comes to maximizing thrust, there is a requirement to optimize a
tail cone shape to direct the three pump nozzle outflows into one single mass
flow. While shaped tail cones are a possibility, for ease of fabrication and to
direct the three pump nozzle outflows into one single mass flow, a tapered tail
cone is more suitable and therefore used in this study. The illustration of the
parameterization for the tail geometry is also shown in Fig. 2, where dt is the
smaller diameter of the tail in m and lt is the length of the tail in m.

Geometry of the Payload Section. The AUVs use on-board computers,
power packs, sensors and vehicle payloads for automatic control, navigation and
guidance. Therefore, adequate free space should be allocated while designing
the AUV hull form. Figure 4 shows the parameterization of the payload section,
where a is the edge width and height, and b is the length of the payload box.

Subject to preliminary design requirements, the optimization framework de-
veloped herein produces AUV hull shape in a way that can accommodate a
variable position payload. Being a relatively heavy system, the capability of
adjusting the position of the payload is an important design consideration to
account for CG-CB distance manipulations.

lm

d

ba

Fig. 4. Parameterization of the payload
section

Two bilge pumps
for vertical
movement

Two bilge pumps for
lateral movement

Three bilge pumps
for forward motion

Flow direction

Fig. 5. Configuration of the propulsion
system

Propulsion System. Currently available AUVs are predominately propelled
by three means: propeller, jet-pump and buoyancy driven (glider) propulsion
systems. Although a majority of the current AUVs are equipped with a pro-
peller and rudder mounted at the tail for propulsion and steering, a jet based



An Evolutionary Approach for the Design of AUVs 283

propulsion system is used in this study. Jet-pumps are more beneficial than pro-
pellers in terms of mechanical design, cost realization, robustness with respect
to transportation and safety for occasional swimmers.

The propulsion of the AUV under consideration is achieved through the use
of bilge pumps. There are seven pumps of three different types mounted inside
the vehicle, three of which are used to propel the vehicle forward in the water.
The remaining four pumps are used to steer the vehicle left and right, as well as
up and down, as illustrated in Fig. 5.

The positions of the bilge pumps for lateral and vertical movements as shown
in Fig. 5, are not fixed, but are rather free to move within the entire mid-
section. During the optimization process, the optimizer chooses these pumps
from a catalogue of ten off-the-shelf different pumps commonly available and
also the optimal positions of those pumps while designing the AUV.

Power Source. Unlike tethered vehicles, AUV operations are limited by the
on board power they can carry [14]. The power determines the endurance and
operating range, and the mission characteristics of the AUV accordingly. The
rechargeable high performance Lithium Polymer (LiPo) batteries with nominal
cell voltage 3.8 V and energy density of 193 Whr/kg have been selected in this
study. These batteries are attractive as they are light and small.

Placement Strategy for the Internal Components. The design optimiza-
tion framework presented in this paper not only optimizes the hull shape but also
arranges its contents avoiding interference while maintaining workable spaces
around the components using ‘clash-free mechanism’. For efficient utilization of
the available internal volume, a careful arrangement needs to be achieved. As the
current approach utilizes the optimization modules to iterate, the use of clash-
free mechanism is an essential part to obtain a clash-free arrangement of the
internal components for every valid design. Details of the clash-free mechanism
appear in the authors’ earlier work [1].

2.3 Optimization Module

The framework developed here uses two state-of-the-art evolutionary algorithms,
NSGA-II and IDEA. It is worth mentioning that any optimization algorithm ca-
pable of solving single and multi-objective optimization problems can be used
within the framework. The chosen algorithms are written in Matlab and are in-
tegrated with CATIA along with VBScript to automate the whole AUV design
process. CATIA (Computer Aided Three-dimensional Interactive Application)
is a multi-platform computer-aided design (CAD) commercial software suite and
widely used for design purposes. VBScript (Visual Basic Scripting Edition) is a
tool for scripting the design process of CATIA.

NSGA-II.Non-dominated sorting genetic algorithm II (NSGA-II) was proposed
by Deb et al. [7], and remains one of the most widely used population based algo-
rithms for evolutionary optimization. It uses Simulated Binary Crossover (SBX)
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and polynomial mutation for generating off-spring. The ranking of solutions is
first done based on non-dominance, followed by the crowding distance. While
non-dominance based rank drives the population towards the Pareto Optimal
Front, crowding distance based rank aims to preserve the diversity among so-
lutions. For problems with constraints, the feasible solutions are ranked above
infeasible solutions. The infeasible solutions are ranked based on their constraint
violations. For the single objective formulation, NSGA-II assumes the form of a
real coded EA with SBX and polynomial mutation.

IDEA. Infeasibility Driven Evolutionary Algorithm (IDEA) was recently pro-
posed by Singh et al. [15]. Since the Pareto optimal solution for a constrained
problem usually lies on a constraint boundary, IDEA tries to focus the search
near the constraint boundaries by maintaining a set of infeasible solutions (in ad-
dition to feasible solutions). During the ranking process, a few marginally infeasi-
ble solutions (based on their constraint violations) are ranked above the feasible
solutions. The presence of infeasible solutions effectively translates to approach-
ing the constraint boundary from both feasible and infeasible search spaces,
which helps in faster convergence, as demonstrated in the earlier study [15].

2.4 Hydrodynamics Module: Drag Estimation

A fundamental interest in the field of hydrodynamics is the reduction of sub-
merged vehicle power requirements and drag minimization is one of the most
effective means of achieving this. For drag estimation, the following formula has
been used:

D =
1

2
ρV 2CV S (2)

where ρ is the density of the fluid in kg/m3, V is the velocity in m/s, S is the
wetted surface area of the vehicle in m2, and CV is the coefficient of viscous
resistance for the smooth bare hull and D is the vehicle drag in N.

Three methods: Virginia Tech (VT) [13], MIT [9] and G&J method [8] are
employed in this study to measure the coefficient of viscous resistance (CV ) in
three different ways to ensure uniformity in drag estimation of the design vehicle.

3 Numerical Experiments

3.1 Problem Formulations

While satisfying the design requirements, optimization of two kinds of objectives
are sought. First is the minimization of drag, which is important because mini-
mum drag leads to least power consumption for propulsion, and corresponding
savings in the operating costs. Second is to maximize one of the lever arms, as
a longer lever arm assists in better diving and turning of the vehicle. The term
‘lever arm (LA)’ defined here as the longitudinal distance of the pump from the
centre of buoyancy of the vehicle. To this effect, two formulations are studied in
this paper as described below.
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Single Objective Formulation. The single objective optimization problem is
posed as the identification of an AUV hull form with minimum drag as well as
clash-free optimal placement of the internal objects subject to the constraints
on payload (Pl), CG-CB separation (s), length (l) and weight (w) of the vehicle.
The objective function, constraints and design variables are listed in the Eq. (3)
as Formulation 1.

Minimize:
f (1) = D

Constraints:
g (1) = Pl ≥ 15 kg; g (2) = Pl ≤ 18 kg;
g (3) = a ≥ 150 mm; g (4) = b ≥ 200 mm; g (5) = s ≤ 10 mm;
g (6) = l ≤ 1300 mm; g (7) = w ≤ 30 kg

Design variables:
1 ≤ P1 ≤ 10; 1 ≤ P2 ≤ 10; 1 ≤ P3 ≤ 10
1 ≤ O1 ≤ 4; 1 ≤ O2 ≤ 4; 1 ≤ O3 ≤ 4
0 ≤ XV 1 ≤ 1 mm; 0 ≤ XV 2 ≤ 1 mm
0 ≤ XL1 ≤ 1 mm; 0 ≤ XL2 ≤ 1 mm
0 ≤ XF1 ≤ 1 mm; 0 ≤ XF2 ≤ 1 mm; 0 ≤ XF3 ≤ 1 mm
0 ≤ YV 1 ≤ 1 mm; 0 ≤ YV 2 ≤ 1 mm
0 ≤ YL1 ≤ 1 mm; 0 ≤ YL2 ≤ 1 mm
0 ≤ YF1 ≤ 1 mm; 0 ≤ YF2 ≤ 1 mm; 0 ≤ YF3 ≤ 1 mm
0 ≤ ZV ≤ 600 mm; 0 ≤ ZL ≤ 600 mm; 650 ≤ ZF ≤ 1000 mm
75 ≤ rt ≤ 350 mm; 100 ≤ lt ≤ 200 mm
2 ≤ n ≤ 3; 200 ≤ ln ≤ 400 mm

(3)

The constraints and the design variables for the problem formulations are illus-
trated in Fig. 6 showing exactly which parts of the AUV geometry they define.
The design variables are: the type of pump selections for vertical, lateral and
forward movements from available catalogue pumps respectively (P1, P2, P3),
orientation of the selected pumps for respective movements (O1, O2, O3), posi-
tion of the selected pumps along X axis (XV , XL, XF ), along Y axis (YV , YL,
YF ) and along Z axis (ZV , ZL, ZF ) for respective movements, and the tail and
nose parameters.

Multi-objective Formulation. The multi-objective optimization problem is
posed as the identification of an AUV hull form with minimum drag and maxi-
mum length of one of the lever arms as well as clash-free optimal placement of
the internal objects. The objective functions are listed in the Eq. (4) as Formula-
tion 2, while the constraints and variables are the same as in the single objective
case.

Minimize:
f (1) = D; f (2) = −LA (4)

where LA = min (LA1, LA2).
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Fig. 6. The constraints and design variables for problem formulations

It can be noted that the optimization algorithms employed in this study are
formulated to minimize the objective functions of a problem. Therefore, to max-
imize the length of lever arm in the Formulation 2, a negative sign has been
placed; thereby formulating both the objectives as a minimization problem.

3.2 Computational Setup and Results

For each formulation, thirty independent runs of NSGA-II and IDEA are per-
formed. A crossover probability of 0.9, mutation probability of 0.1, crossover
distribution index of 10, mutation distribution index of 20 and an infeasibility
ratio (for IDEA) of 0.2 has been used for the algorithms. The number of function
evaluations used by each algorithm is kept equal at 40000 for a fair comparison.
A population size of 200 has been used for both algorithms. The computing time
per evaluation is about 0.05 s on a Intel Xeon processor machine of 3.33 GHz
with 6.00 GB memory.

Single Objective Optimization Results. Shown in Fig. 7a is the result of
the best run for the single objective drag minimization problem using NSGA-II
and IDEA. It is observed that both optimization algorithms are able to minimize
the drag in around 30000 function evaluations. The statistics of results computed
across 30 runs for each algorithm is reported in Table 1. It is seen that the best,
median and the average objective values obtained by IDEA are better than
NSGA-II. In addition, the standard deviation across the multiple runs is much
less than NSGA-II, indicating that it is able to achieve better objective values
more consistently. This is also reflected in the median runs as shown in Fig. 7b,
where IDEA is seen to converge faster than NSGA-II.

Results of Optimum AUV Design. Based on the results obtained by car-
rying out optimization of drag, Fig. 8 shows the optimal shape and internal
configuration of the optimized AUV. The resulting performance criteria of the
optimized AUV as listed in Table 2, clearly indicate that the design constraints
are satisfied while achieving minimum drag.
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Fig. 7. Progress plots of the best and median designs using NSGA-II and IDEA

Table 1. Single objective drag minimization results

Design NSGA-II IDEA

Best (N) 2.70443 2.70424
Mean (N) 3.05906 2.87254
Median (N) 2.94658 2.87850
Worst (N) 5.65062 2.99905
SD (N) 0.50019 0.05839
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Fig. 8. Hull shape and configuration of the resulting optimized AUV

Table 2. Performance criteria of the resulting optimized AUV

Vehicle particulars Value Vehicle particulars Value

Nose length 294 mm Length of the second lever arm 155.77 mm
Parallel mid-body length 716 mm Length of the payload compartment 282 mm
Tail length 100 mm Length of the buoyant chamber 247 mm
Overall length of the AUV 1110 mm X-coordinate of CG 0.01254 mm
Outer diameter of the AUV 223 mm Y-coordinate of CG 0.03201 mm
Length to diameter ratio 4.98 Z-coordinate of CG 524.775 mm
Max. size of the inner square 150 mm X-coordinate of CB 0
Wetted surface area 0.9897 m2 Y-coordinate of CB 0
Displacement volume 0.0256 m3 Z-coordinate of CB 517.162 mm
Mass of the displaced water 25 kg CG-CB separation 7.613 mm
Mass of the AUV 9 kg Nominal speed 1 m/s
Payload capacity including batteries 16 kg Drag (VT method) 2.50177 N
Total mass of the AUV 25 kg Drag (G&J method) 2.55203 N
Length of the first lever arm 95.44 mm Drag (MIT method) 2.70424 N



288 K. Alam, T. Ray, and S.G. Anavatti

Multi-objective Optimization Results. Multi-objective optimization i.e.
minimization of drag and maximization of one of the lever arms is performed
using NSGA-II and IDEA. The parameters used are kept the same as that for
single objective formulation. Since multi-objective optimization yields a set of
non-dominated solutions, the results can not be compared based on objective
values obtained (as in single objective optimization). Therefore, a number of
performance metrics have been developed in literature to evaluate the quality
of the non-dominated set obtained, and to compare the performance of two or
more sets. These performance metrics attempt to quantify the convergence and
diversity of the obtained non-dominated set. In the present study, two commonly
used performance metrics have been used to compare the results obtained using
NSGA-II and IDEA: displacement [4] and hypervolume [17] metrics. A lower
value of displacement metric indicates a better non-dominated set. On the other
hand, the larger the value of hypervolume, the better is the non-dominated set.

The performance metrics averaged over multiple runs of final solutions ob-
tained using NSGA-II and IDEA are listed in Table 3. It is seen that on average,
IDEA is able to achieve lower values of displacement and higher values of hyper-
volume as compared to NSGA-II. This indicates that IDEA is able to achieve
comparatively better non-dominated sets. The best values obtained using IDEA
are also better than NSGA-II. The best front (based on displacement metric)
obtained using the two algorithms is shown in Fig. 9.

Table 3. Performance metrics for two objectives for-
mulation

NSGA-II results
Best Mean Median Worst

Displacement 0.623945 3.11685 2.39152 7.91698
Hypervolume 772.847 499.548 592.241 58.3212

IDEA results
Best Mean Median Worst

Displacement 0.358976 1.90145 1.57697 5.60445
Hypervolume 715.755 604.82 642.521 265.639
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Fig. 9. Best results of the two
objectives optimization problem
using NSGA-II and IDEA

Once the optimization process is done, then the non-dominated set of solutions
can be presented to the decision maker (end user), who can choose a design
most suited to his/her needs. For example, in this case the decision maker can
choose from a set of optimal designs with minimum drag, or maximum lever arm
length, or an intermediate value of both the objectives. Thus the multi-objective
formulation can cater to a number of end users, while ensuring that all the basic
design criteria are met.
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4 Conclusions

In this paper an evolutionary approach for the concept and preliminary design
of AUVs is presented. The modular design optimization framework is embedded
with a geometry/configuration representation/manipulation module, standard
marine performance analysis methods and efficient optimization methods. The
seamless integration of the modules allows the designer to identify optimum AUV
designs based on a set of user requirements. Both single and multi-objective con-
strained optimization formulation of the AUV design problems are considered in
this paper and solved using two state-of-the-art evolutionary algorithms, NSGA-
II and IDEA. The studies highlight the benefits of preserving marginally infeasi-
ble solutions in IDEA that accounts for its superior performance over NSGA-II
for constrained optimization problems. The modularity and the catalogue driven
structure adopted in the framework allows for the design of AUVs for various
design requirements and/or with different propulsion and power system options.

The preliminary design obtained from the framework can be further analyzed
using a computational fluid dynamics (CFD) tool for more accurate estimates
of drag, dynamic performance and controllability. It is also worth highlighting
that such performance estimation modules can be easily integrated into the
framework and used during the course of optimization.
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Abstract. The importance of selecting relevant features for data modeling has 
been recognized already in machine learning. This paper discusses the applica-
tion of an evolutionary-based feature selection method in order to generate in-
put data for unsupervised learning in DARA (Dynamic Aggregation of Rela-
tional Attributes). The feature selection process which is based on the evolutio-
nary algorithm is applied in order to improve the descriptive accuracy of the 
DARA (Dynamic Aggregation of Relational Attributes) algorithm. The DARA 
algorithm is designed to summarize data stored in the non-target tables by clus-
tering them into groups, where multiple records stored in non-target tables cor-
respond to a single record stored in a target table. This paper addresses the issue 
of optimizing the feature selection process to select relevant set of features for 
the DARA algorithm by using an evolutionary algorithm, which includes the 
evaluation of several scoring measures used as fitness functions to find the best 
set of relevant features. The results show the unsupervised learning in DARA 
can be improved by selecting a set of relevant features based on the specified 
fitness function which includes the measures of the dispersion and purity of the 
clusters produced.  

Keywords: Feature Selection, Data Summarization, Clustering, Genetic Algo-
rithm, Data Reduction. 

1 Introduction 

Learning relational data is difficult due to the existence of one-to-many relationships 
between records stored in multiple tables. Structured data such as data stored in a 
relational database that have one-to-many relationships between records stored in the 
target and non-target tables can be transformed into a single table. This process is 
known as propositionalization [1]. DARA (Dynamic Aggregation of Relational 
Attributes) algorithm is capable to transform relational data that have one-to-many 
relationships between records stored in the target and non-target tables, into vectors of 
features [2]. In order to assist the clustering process, a technique borrowed from in-
formation retrieval theory has been used to construct vectors of features that represent 
records stored in non-target tables (see Fig. 1). The approach is based on the idea that, 
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for each unique record stored in non-target tables, there is a vector of patterns that 
represents this record. With this representation of data, it is possible to compare 
records in order to cluster them. As a result, clustering can then be applied to summar-
ize data stored in a relational database following the principles of information retriev-
al theory [3].  

The application of feature construction has proved an improvement in the descrip-
tive accuracy of the summarized data from relational domain [22]. However, in this 
paper, we apply a genetic based feature selection as a pre-processing step in order to 
further enhance our data summarization method called DARA [2, 23]. It is expected 
that the predictive accuracy of the classification task for data stored in the target table 
can be improved by improving the descriptive accuracy of the data summarization for 
the data stored in the non-target tables, as shown in Fig. 1. We propose that the sum-
marized data to be appended into the list of attributes in the target table as one of the 
features considered for the classification task as shown in Fig. 1. 

 

 

Fig. 1. A data transformation process for data stored in multiple tables with one-to-many rela-
tions into a vector space data representation 

Section 2 describes the process of transforming a relational data into a vector re-
presentation by using the DARA algorithm. Section 3 provides an overview of the 
more general concept of feature selection that can be applied to improve the accuracy 
estimations of learning tasks. Section 4 describes a genetic-based (i.e., evolutionary) 
feature selection algorithm that is applied to reduce the dimensionality of the data for 
the purpose of summarizing data stored in the non-target tables using the DARA algo-
rithm. This genetic-based feature selection algorithm selects features to characterize 
each unique object stored in the non-target table. The performance accuracy of the 
J48 classifier for the classification tasks using these summarized data will be pre-
sented in Section 5. Finally, this paper is concluded in Section 6 by presenting some 
of the findings obtained from the experiments performed in this study. 
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2 Data Transformation Using DARA 

In this section, we first describe the concept of multi-relational setting for data stored 
in a relational database. Then, we describe how a single object stored in a target table 
that is associated with many objects stored in a non-target table can be represented in 
a vector space model. 

2.1 Multi-relational Setting  

In a relational database, a single record, Ri, stored in the target table can be associated 
with other records stored in the non-target table, as shown in Fig. 1. Let R denote a set 
of m records stored in the target table and let S denote a set of n records (T1, T2, T3, ..., 
Tn), stored in the non-target table. Let Si be a subset of S, Si ⊆ S, associated through a 
foreign key with a single record Ra stored in the target table, where Ra ∈ R. Thus, the 
association of these records can be described as Ra ← Si. In this case, we have a single 
record stored in the target table that is associated with multiple records stored in the 
non-target table. The records stored in the non-target table that correspond to a partic-
ular record stored in the target table can be represented as vectors of features. As a 
result, based on the vector space model [4], a unique record stored in non-target table 
can be represented as a vector of features. In other words, a particular record stored in 
the target table that is related to several records stored in the non-target table can be 
represented as a bag of patterns, i.e., by the patterns it contains and their frequency, 
regardless of their order. The bag of patterns is defined as follows: 

 
Definition 1. In a bag of patterns representation, each unique record stored in the non-
target table is represented by the set of its pattern and the pattern frequencies. 
 
This definition states that a single record data in a multi-relational setting can be de-
scribed as a collection of individuals and the induced rules generalize over the indi-
viduals, mapping them to a class. For instance, individual-centered domains include 
classification problems in molecular biology where the individuals are molecules. 

2.2 Relational Data Representation in a Vector Space Model  

In this subsection, we describe the representation of data for objects stored in multiple 
tables with one-to-many relations. Let DB be a database consisting of n objects. Let R 
:= {R1,…,Rm} be the set of different representations existing for objects in DB and 
each object may have zero or more than one representation of each Ri, such that |Ri| ≥ 
0, where i = 1,…,m. Each object Oi ∈ DB, where i = 1,⁄,n can be described by 
maximally m different representations with each representation has its frequency,  
 

Oi := {R1(Oi):|R1(Oi)|:|Ob(R1)|,…,Rm(Oi):|Rm(Oi)|:|Ob(Rm)| }                 (1) 
 
where Rj(Oi) represents the j-th representation in the i-th object and |Rj(Oi)| represents 
the frequency of the j-th representation in the i-th object, and finally |Ob(Rj)| represents 
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the frequency of object with j-th representation. If all different representations exist for 
Oi, then the total different representations for Oi is |Oi| = m else |Oi| < m.  

In relational instance-based learning, the distance measures are defined based on 
the attribute’s type [5] and the distance between two objects is based on the minimum 
distance between pair of instances from the two objects. In our approach, we apply 
the vector-space model [6] to represent each object. In this model, each object Oi is 
considered as a vector in the representation-space. In particular, we employed the rf-
iof term weighting model borrowed from [6], where in which each object Oi, i = 
1,⁄,n can be represented as 

 
(rf1·log(n/of1), rf2·log(n/of2), . . . , rfm·log(n/ofm))                  (2).

 
where rfj is the frequency of the j-th representation in the object, ofj is the number of 
objects that contain the j-th representation and n is the number of objects. To account 
for objects of different lengths, the length of each object vector is normalized so that 
it is of unit length (||orfiof||= 1), that is each object is a vector on the unit hypersphere. 
In this experiment, we will assume that the vector representation for each object has 
been weighted using rf-iof and it has been normalized so that it is of unit length. In the 
vector-space model, the cosine similarity is the most commonly used method to com-
pute the similarity between two objects Oi and Oj, sim(Oi,Oj), which is defined as 
cos(Oi,Oj) = Oi·Oj/(||Oi||·|||Oj||). The cosine formula can be simplified to cos(Oi,Oj) = 
Oi·Oj, when the record vectors are of unit length. This measure becomes one if the 
records are identical, and zero if there is nothing in common between them. The idea 
of our approach is to transform the data representation for all objects in a multi-
relational environment into a vector space model and find the similarity distance 
measures for all objects to cluster them. These objects then are grouped based on the 
similarity of their characteristics, taking into account all possible representations and 
the frequency of each representation for all objects. 

3 Feature Selection in DARA 

Features used to describe instances are not necessarily all relevant and beneficial for 
inductive learning. In fact, a large number of features may slow down the induction 
process while giving similar results as obtained with a selected feature subset. The 
problem of feature subset selection can be considered as an optimization problem, in 
which the whole search space for optimization contains 2F possible subsets of fea-
tures, where F is the number of features. 

3.1 Approaches to Feature Subset Selection  

There are two main approaches to feature subset selection used in machine learning: 
the Filtering approach [7] and Wrapper approach [8]. Filtering approaches for feature 
subset selection attempt to assess the features and their merits using the data available 
independently of the learning method that will use the selected features. The decision 
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tree filter, FOCUS, RELIEF and its variants are some of the widely known Filtering 
algorithms. The main objective of the decision tree filter and FOCUS filter is to find 
the minimum number of features that can effectively categorize the given objects. The 
RELIEF algorithm is an instance-based filter that handles instance spaces with no 
more than two class labels. All these filtering algorithms evaluate the features inde-
pendently of the classifiers that use them. Some of the statistical and information 
theoretic measures used such as information gain and cross-entropy can be used to 
weigh the relevance of the features [9]. Other measures that capture the relationship 
of a feature with the target concept include probabilistic distance measure, probabilis-
tic dependence measures, inter-class measures and information theoretic measures 
such as the entropy measure [10]. 

On the other hand, wrapper approaches for feature subset selection attempt to se-
lect a feature subset using the evaluation function based on the same learning algo-
rithm that will be used for learning the domain represented with the selected features. 
The process is repeated until no improvement is made or addition/deletion of new 
features reduces the accuracy of the target learner. 

3.2 Search Techniques  

In the context of search techniques, feature selection algorithms can be divided into 
two categories: sequential algorithms and randomized algorithms. The sequential 
algorithm was first introduced by Devijver and Kitler [9] and this algorithm either 
starts with the full or empty feature set, and proceeds by greedily adding or removing 
features. Sequential backward elimination (SBE) starts with the full set of n features, 
and considers each of the n subsets of n − 1 features by removing each feature once. 
From these n subsets, the one giving the highest classification performance is chosen. 
The process is then repeated for the set of n − 1 remaining features and so on until 
some termination criterion is fulfilled. Similarly, sequential forward selection (SFS) 
can be defined, where the initial state is the empty set of features, and features are 
greedily added. The feature is added at each step that most increases the performance 
of the learner. It is not clear whether backward elimination or forward selection will 
perform better on a data set with no prior information on feature correlation. 

On the other hand, randomized search algorithms differ from sequential algorithms 
in several aspects. Instead of starting with the full or empty set of features, these algo-
rithms generally start somewhere in between, by generating a random subset of the 
features. The search then proceeds by randomly adapting the initial solution until a 
stopping criterion is fulfilled. Techniques based on simulated annealing or hill-
climbing start from an initial guess and apply random changes until the solution does 
not change any more, or a fixed number of iterations have elapsed [11]. However, 
these methods are prone to getting stuck in local extrema. To solve this disadvantage, 
Holland [12] introduced population-based techniques, such as genetic algorithms 
(GA). GA operates on a whole set of possible solutions that are selected from the 
population instead of one solution. Using an iterative approach that mimics nature’s 
evolutionary principle, new generations of the initial population are created using a 
set of three operators: 
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a) Selection: A number of good individuals is chosen and copied from one genera-
tion into the next (survival) 

b) Crossover: The parameters of two individuals are combined, to produce a new 
individual that is copied to the next generation. 

c) Mutation: A certain parameter of a chosen individual is adapted (mutated) and 
the resulting individual is copied to the next generation 
 

In this way, a GA can be viewed as a stochastic iterative sampling procedure. GAs 
have been particularly useful when faced with complex optimization problems. In the 
original GA, individuals were represented as a string of bits, yet later on strings 
representing any kind of parameter type have been used [13, 14]. In this paper, we 
apply the genetic based filtering approach to select relevant features for the DARA 
algorithm to summarize data stored in a relational database. 

4 A Genetic Based Feature Selection for Data Summarization 

A Genetic Algorithm (GA) is generally a computational abstraction of biological 
evolution approach that can be very useful to solve some searching and optimization 
problems [12, 15].  GA process applies a series of biological genetic operators such 
as selection, crossover and mutation to a population of elements called chromosome. 
Chromosomes represent possible solutions to the searching and optimization problem. 
Firstly, a random population which represents different points in the search space is 
created. An objective and fitness function will be associated with each chromosome 
that represents the level of quality of the chromosome. Based on the principle of the 
survival of the fittest, several chromosomes are selected and each is assigned a num-
ber of copies which will be put into the mating pool. Crossover and mutation which 
are biologically inspired operators are applied to these strings to produce a new gen-
eration of strings. The combined process of selection, crossover and mutation re-
peated continuously for a fixed number of generations or till a termination condition 
is satisfied.  

One of the ways to improve the data summarization results using clustering method 
is by identifying and removing the less important features in the dataset. In this paper 
we apply the string of bits to represent individual solution for our data summarization 
technique. As mentioned in Section 2, DARA algorithm transforms relational data 
into vectors of features as shown in Fig. 2.  In Fig. 2, Wif represents the fth feature for 
the ith record. For instance, suppose we have 10 features, p=10, for record R1 as 
{W11, W12, W13, W14, W15, W16, W17, W18, W19, W110}. Then, the possible chromo-
some that we can have will be {1,1,1,1,1,1,1,1,1,1} in order to include all features for 
the clustering purposes. However, in case we have a chromosome with a string of bits 
as {0,1,1,0,1,1,1,0,1,1}, then only features  W12, W13, W15, W16, W17, W19 and W110 
will be used for clustering purposes.  
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Fig. 2. Relational data represented as vectors of features 

The genetic algorithm will be used to get the best subset of features based on the 
cluster’s dispersion and purity. In other words, cluster dispersion (e.g., Davies-
Boulding Index, DBI [16]) and cluster purity (e.g., Gini Index [17,18]) are used as the 
fitness function in order to evaluate individual chromosome. 

5 Experimental Setup and Results 

In this experiment, we employ an algorithm, called DARA that converts the dataset 
representation in relational model into a space vector model and use a distanced-based 
method to group objects with multiple representations occurrence. With DARA algo-
rithm, all representations of two objects are taken into consideration in measuring the 
similarity between these two objects. The DARA algorithm can also be seen as an 
aggregation function for multiple instances of an object, and is coupled with a few 
classifiers obtained from WEKA [19] that includes the C4.5 classifier (J48 in 
WEKA), RandomForest, HyperPipes, LogitBoost and SMO, as induction algorithms 
that are run on the DARA’s transformed data representation. We then evaluate the 
effectiveness of each data transformation with respect to these classifiers. All experi-
ments with DARA and classifiers were performed using a leave-one-out cross valida-
tion estimation. We chose well-known dataset, Mutagenesis [21].   

The mutagenesis data [21] describes 188 molecules falling in two classes, muta-
genic (active) and non-mutagenic (inactive); 125 of these molecules are mutagenic. 
The description consists of the atoms and bonds that make up the compound. Thus, a 
molecule is described by listing its atoms atom(AtomID, Element, Type, Charge), and 
the bonds bond(Atom1, Atom2, BondType) between atoms. In this experiment, we use 
only one set of background knowledge: B1. In B1, the atoms in the molecule are giv-
en, as well as the bonds between them; the type of each bond is given as well as the 
element and type of each atom. The table for B1 has the schema Molecule(ID, 
ATOM1, ATOM2, TYPE_ATOM1, TYPE_ATOM2, BOND_TYPE), where each 
molecule is described over several rows, listing all pairs of atoms with a bond, and the 
type of each atom, and the type of bond between them. 

In the selection process, we apply the roulette-wheel selection in order to select 
chromosomes which will be used to generate a new population. Other parameters 
include crossover probability, pc = 0.25, mutation probability, pm = 0.10, population 
size is set to 20 and the number of generations is set to 50. Table 1 shows the  
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predictive accuracies for J48, RandomForest and LogitBoost classifiers for the trans-
formed data with genetic based feature selection method are higher compared to the 
transformed data without feature selection.  

Table 1. Predictive accuracy results based on 10-fold cross-validation 

Classifier Without Clustering Clustering Without 
Feature Selection 

Clustering with Genetic 
Based Feature Selection  

J48 78.2 % 80.3 % 84.0% 
RandomForest 80.9 % 82.4 % 84.6 % 

HyperPipes 77.1 % 77.7 % 77.7 % 
LogitBoost 83.5 % 83.5 % 84.6 % 

SMO 84.0 % 84.6 % 84.6 % 

6 Conclusion 

In the process of learning a given target table that has a one-to-many relationship with 
another non-target table, a data summarization process can be performed to summar-
ize records stored in the non-target table that correspond to records stored in the target 
table. In the case of a classification task, part of the data stored in the non-target table 
can be summarized based on the class label or without the class label. To summarize 
the non-target table, a record can be represented as a vector of features. In order to get 
a better clustering result, a genetic based feature selection method is applied. These 
objects are then clustered or summarized based on the basis of those selected features. 
In this work, a genetic-based feature selection algorithm has been proposed to select 
features that best represent the characteristics of records that have multiple instances 
stored in the non-target table. 

Unlike other approaches to feature selection, this paper has outlined the usage of 
feature selection to improve the descriptive accuracy of the proposed data summariza-
tion approach (DARA). Most feature selection methods deal with problems to find the 
best set of selected features that can improve the predictive accuracy of a classifica-
tion task. This paper has described how feature selection can be used in the data 
summarization process for relational data to get better descriptive accuracy, and indi-
rectly improve the predictive accuracy of a classification task. It is shown in the expe-
rimental results that the quality of summarized data is directly influenced by the se-
lected features used to characterize individual record. The results of the evaluation of 
the genetic-based feature selection algorithm show that the data summarization results 
can be improved by selecting relevant features. 
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Abstract. This paper compares the implementations and performance of two 
computational methods, hierarchical clustering and a genetic algorithm, for 
inference of phylogenetic trees in the context of the artificial organism 
Caminalcules. Although these techniques have a superficial similarity, in that 
they both use agglomeration as their construction method, their origin and 
approaches are antithetical. For a small problem space of the original species 
proposed by Camin (1965) the genetic algorithm was able to produce a solution 
which had a lower Fitch cost and was closer to the theoretical evolution of 
Caminalcules. Unfortunately for larger problem sizes its time cost increased 
exponentially making the greedy directed search of the agglomerative 
clustering algorithm a more efficient approach. 

Keywords: phylogenetics, genetic algorithm, agglomerative clustering, Caminalcules. 

1 Introduction 

Phylogenetic trees are a diagrammatic representation of the evolutionary relationships 
between taxonomic units (TU). They can be inferred using a variety of methods (Cotta 
2002, Felsenstein 2004): supervised optimization methods based on cost (Guindon 
2003), unsupervised distance methods (Russo 1996) and probability models of evolution.  

Recent research has centered on probability models (Sullivan 2005) and clustering. 
Tamura (2004) has encouraged the use of clustering algorithms even for large 
taxonomies and these neighbour-joining methods form the basis of an integrated software 
package ‘MEGA’ (Tamura 1994). By contrast, genetic algorithms seem to have been 
neglected or only implemented for small problems (Lewis 1989). Moreover, Hudson and 
Bryant (2006) have suggested that tree structures do not have the flexibility required to 
represent complex phylogenies and that networks are better suited. 

Joseph Camin invented the Caminalcules species in 1965 as a means of evaluating 
phylogenetic inference methods (Camin 1965). They are used in many universities for 
teaching phylogenetics (Gendron 2011, Ausich 2011). There are 29 ‘currently existing’ 
species and 48 ‘fossil’ species. Each individual has 85 morphological characteristics: a 
variety of Boolean, nominal and ordered numeric attributes. Sokal published an 
extensive four-part article on the Caminalcules in 1983 (Sokal 1983). A cladistic 
approach to phylogenetic analysis is usually based on evolutionary relationships, 
which include idiosyncratic heuristic information from the ‘fossil’ records. However, a 
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strict computational approach to the phylogenetic analysis can be applied using just 
morphological differences (phenetics) between the ‘existing’ species. 

This paper aims to directly compare two different computational methods of 
inference in the construction of a phylogenetic tree for the Caminalcules species. 
Although other authors have considered which varieties of genetic algorithm are best 
suited for phylogenetic inference (Cotta 2002), as far as we are aware this is the first 
direct comparison of a clustering and a genetic algorithm approach for inference of the 
same Caminalcules phylogeny. 

2 Implementations 

Agglomerative hierarchical clustering was chosen as a distance method and a genetic 
algorithm as an optimization method. Both applications were implemented using 
object-oriented design in C++ and share support classes representing a phylogenetic 
(binary) tree: an abstract parent TU_Node class that is extended in its children 
OTU_Node (observed taxonomic unit) and HTU_Node (hypothetical taxonomic unit). 
The data members for each of the Node classes include: an identifier and the three 
tree pointers (parent, left and right child). 

The Caminalcules data vectors were initially read from a text file of character 
vectors into bit fields. Non-applicable characteristics ‘x’ were represented as binary 
0001, ‘0’ was represented as binary 0010, ‘1’ was represented as binary 0100, ‘2’ was 
represented as binary 1000, and so on. 

Two methods were implemented for calculating the tree cost metric: the 
Fitch/Hamming distance and a combined Fitch/Manhattan distance to better adjust for 
continuous characteristics. The former method measures the minimum number of 
substitutions required to change one string into the other. The later method finds the 
difference between two bit fields using intersection and converts the difference into a 
scaled ordinal distance. The result is a semi-quantitative cost. The advantage of this 
metric is that continuous measurements such as ‘flange-length’ are treated as ordinals. 
The disadvantage is that nominal characteristics such as ‘top-of-head’ (depressed, flat 
or crested) may be treated incorrectly if there are more than two values. The cost 
metric was converted to a fitness metric: fitness = constant – cost. The range of values 
for the Fitch costing was experimentally determined and a constant value sufficient to 
maintain a positive value for the fitness was used. 

The phylogenetic trees produced by the applications were output in two standard 
formats: Newick format (wikipedia.org 2012) as text and GraphViz Dot format 
(graphviz.org 2011) for a diagrammatic tree. 

2.1 Agglomerative Clustering 

The implementation of bottom-up agglomerative clustering is from O’Keefe [2006]. 
The algorithm is deceptively simple: starting with the matrix for distances between 
single OTU clusters it successively merges the closest clusters by forming a tree with 
an HTU node as the new root, it re-calculates the distances from the new cluster to all  
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the existing clusters and reduces the matrix by moving the last cluster (row/column) up 
until all the clusters are included in a single tree. The matrix is symmetric around the 
diagonal, so only one half of the matrix needs to be calculated. 

O’Keefe recommends using an average linkage criterion, since this includes a 
contribution from each of the vectors within a cluster. The maximal and minimal 
linkage criteria use only one vector difference, which may not be representative of the 
overall inter-cluster distance. The basis of the clustering algorithm is reported in Sokal 
[1983] and Murtagh [1984]. A segment of pseudo-code for the clustering 
agglomeration is shown in Figure 1. 

 
Find the two closest existing clusters a & b 

size ab = size a + size b 
//Calculate all distances to the new cluster 
for every existing cluster x { 

calculate its distance to the new cluster 
based on average linkage: distance ab-x = 
(dist a-x * size a + dist b-x * size b) / size ab 

} 
//Make new tree from cluster - join a & b with an HTU 
tree a = new HTU_Node (HTU_node, tree a, tree b); 
//Move last cluster up the matrix, last row/col -> 

row/col b 
 
for every column in the matrix { 

make the distance at [col][b] & [b][col] = 
the distance at [col][last] 
and then clear the distance at [col][last] 

} 
tree b = tree last; 

size b = size last; 

Fig. 1. Pseudo-code for the Clustering Algorithm agglomeration 

2.2 Genetic Algorithm 

The base process of any genetic algorithm is identical, it repetitively selects and breeds 
individuals within the population. Only the individual chromosome representation, 
which underlies breeding and the fitness/selection metric, are specific to the particular 
problem.  

In this case a chromosome representation outlined by O’Keefe [2009] was used. 
Here, the chromosome consists of pairs of sub-tree indices. The agglomerative process 
for building the new subtrees is very similar to the clustering algorithm. Initially Pairs 
of OTUs are successively merged with a new HTU at the root to form the new sub-
trees, as the process continues the indices in the chromosome will apply to 
progressively larger trees until a single tree is formed. The difference between the 
algorithms is that the sub-tree indices for agglomeration by the genetic algorithm are  
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chosen randomly on creation of the chromosome, whereas the clustering algorithm 
chooses clusters dynamically based on shortest distance. A segment of pseudo-code for 
the tree building is shown in Figure 2. Both the clustering algorithm and the genetic 
algorithm use the same overloaded constructor in the support class. 
 

tree_build() { //method in Phylogeny Class 

//using an array of sub-trees 

//start at the bottom, from the leaves 

bottom = number of OTUs - 1 

for each allele in the chromosome { 

//get the pair of node indices p & q 

p = chromosome->x 

q = chromosome->y 

//combine these as a new sub-tree 

tree p = new HTU_Node (bottom, tree p, tree q) 

//reduce the array 

bottom – 1 

} 

//make a new node at the root 

tree 0 = new HTU_Node (bottom, tree 0, tree 1); 
} 

Fig. 2. Pseudo-code for the Genetic Algorithm agglomeration 

The chromosomal representation used is robust and has closure because:  

• It is able to represent every tree in the problem space,  
• It is well formed and does not require any correction to the chromosome after 

crossover or mutation 
• And it is modular in that changes produced by crossover or mutation are locally 

limited. 

The framework of the genetic algorithm itself is more complex than a single 
execution of clustering; it requires a separate support class to manage the individuals 
within the population. The Phylogeny class keeps track of the raw and scaled fitness 
of each individual and its chromosome representation. 

Two different selection methods were tried. The more complex method, 
proportional selection based on scaled fitness over the whole population was not a 
very strong driver for selection. Most of the random trees created were in the same 
fitness range, 400 – 800. The simpler method of just sorting the population by fitness 
and transfering a proportion into the next generation (truncation selection) was more 
effective. This is a common lay-person’s (or ‘breeder’) method but suffers from the 
impurity of the attribute selection (Voigt & Muhlenbein, 1996), ie. it may reduce the 
fitness for some attributes. 

Most of the methods in the Phylogeny class are just wrappers for methods within 
the Node classes: Newick and GraphViz Dot print methods and Fitch costing methods 
are shared with the clustering algorithm. However, the crossover and mutation 
methods are only required for the genetic algorithm and use an iterative loop to permit 



304 G. Blanchette, R. O’

multiple crossover or mu
chromosome, they do not i
conserve the chromosome
representation (O’Keefe 20

3 Results 

3.1 Agglomerative Clu

Agglomerative clustering u
produced a constant result, 
291 by the combined metri
format, in Figure 3. 

Fig. 3. Phylog

Agglomerative clustering u
improvement. There were f
OTUs, which were identical

Group AB: ((((6, (10,
(((8, 13), 

Group C: ((1, 17), (
Group DE:  (((2, 12), 
Group F: ((29, (19, 

The groups are labeled in 
(1983). 

Keefe, and L. Benuskova 

utation. Both of these methods operate directly on 
involve any re-arrangement of the constructed trees. T
e structure because of the sound original choice 
09). 

stering 

using the Fitch metric and the average linkage criteri
which appeared to have an optimal cost, 277 by Fitch, 
ic. The tree is given in Newick format and GraphViz D

genetic tree infered by clustering. Fitch Cost 277 

using the combined metric did not produce any mar
four major branch groups (Figure 3) as illustrated by th
l in both trees. 

, 11)), 9), 21),  
(14, 28)), 25)), (7, 15)) 

(24, (16, 27))) 
5), (22, (18, 23)), (3, 4)) 
26)), 20) 

this way to match the classification published by So

the 
hey 

of 

ion, 
but 
Dot 

 

rked 
heir 

okal 



 Inference of a Phylogenetic 

3.2  Genetic Algorithm

One of the time-consuming 
of trials for tuning the param
values (and range) were: 

• Generations: 900
• Population size: 4
• Selection proport
• Crossover rate: >
• Mutation rate: >0

The low crossover and hig
propagation of ‘beneficial
crossover rate. A high mut
theoretical trees of Sokal 
influenced the high mutatio
was independent of the othe
(1965) have not explicitl
dependencies are present in 

Experiments with two-p
larger number of runs bein
clustering. So most of th
mutations and single crosso

 
 

Fig. 4. Phylogene

 

Tree: Hierarchical Clustering versus Genetic Algorithm 

m 

phases of using any genetic algorithm is tuning. The res
meters are not presented. However, in summary the optim

0 (100 – 18,000) 
40 individual trees (20 – 100) 
tion: 50% (20 – 60) 

> 0.25 (0.2 – 0.8) 
0.35 (0.1 – 0.5) 

gh mutation rates are unusual. However, there was go
l’ chromosomes in early generations even at this l
tation rate was required to achieve solutions close to 

(1983) and of lowest Fitch cost. Epistasis may h
on rate. Our mutation algorithm assumed that each attrib
ers; this was in fact not the case. Although Camin and So
ly defined dependencies within the attributes, impl
the morphological drawings. 

point crossover and mutation were not beneficial, wit
ng required to reach a result close to that of agglomerat
e experimental testing was done with just single po
vers. 

etic tree infered by genetic algorithm. Fitch Cost 266 

305 

ults 
mal 

ood 
low 
the 

have 
bute 
okal 
licit 

th a 
tive 
oint 

 



306 G. Blanchette, R. O’

After much trial and e
discovered; see Figure 4. T
algorithm. In terms of the 
identical for groups C, DE a

Group A: ((8, 13), (
Group B: ((((6, 9), 1
Group C: (((1, 17), 
Group DE:  (((2, 12), 
Group F: (29, (19, (

Fig. 5. ‘Evolu

It is interesting to look at
data collected from the 
agglomerative clustering. I
quickly spread through the
improvement plateaus at som
there is a further smaller ch
algorithm are worse than for

4 Discussion 

Even for this artificial biolo
number of different approa
likely to be perfect. A ‘hi
(1983), which includes the c

Keefe, and L. Benuskova 

error, a phylogenetic tree with a Fitch cost of 266 w
his tree was superior to the tree produced by the cluster
previously identified tertiary level branch groupings i

and F but group BA is divided into two subtrees: 

(25, 28), 14) 
10), (11, 21)), (7, 15)) 
(16, 24)), 27) 
5), ((3, 4), 22), (18, 23)) 
(20, 26))) 

ution’ of a phylogeny using the genetic algorithm 

t the evolution of this solution over time. Figure 5 shows 
genetic algorithm compared to the static cost of 

Initially it can be seen that the fittest chromosomes 
e whole population by crossover and then the process
me steady state. Over time ‘beneficial’ mutations occur 
hange in the population. Average solutions for the gen
r clustering but the best genetic solution had a lower cost.

ogical problem: that phylogenetic trees can be inferred b
aches, phenetic and cladistic, suggests that no single tre
istory’ of the Caminalcules has been published by So
complete cladistic classification. 

was 
ring 
it is 

 

the 
the 
are 

s of 
and 

netic 
. 

by a 
ee is 
okal 



 Inference of a Phylogenetic 

According to Sokal the
four lines terminating in fos

Group A: (((14, (25
Group B: ((((6, 21),
Group C: ((1, 17), (
Group DE:  (((2, 12), 
Group F: (20, (29, (

A binary phylogenetic tree 
taxonomic units to represe
Figure 6. 

Fig. 6. Phylo

It should be noted that 
phylogeny are quite differe
original phylogeny is not a 
a common HTU ancestor. In
points and their own leav
computational they have be
and HTUs as internal nodes

If Sokal’s classification 
algorithm (Figure 4), the 
Considering the very dif
implementation did not hav
from the genetic algorithm
clustering algorithm fail to

Tree: Hierarchical Clustering versus Genetic Algorithm 

e Caminalcules evolved into five genera over 19 perio
ssils. The current genera are: 

, 28)), (18, 13)), (17, 15)) 
, 9), 10), 11) 
((16, 27), 24)) 
5), (((3, 4), 22), (18, 23))) 
(26, 19))) 

was adapted from Sokal’s classification using hypothet
ent the fossil species and internal node branch points, 

ogenetic tree adapted from Sokal. Fitch Cost 270 

the heuristics Sokal used for construction of his cladi
ent to those used for the current implementations. Sok
binary tree; it does not require that each pair of OTUs h
n addition Sokal’s cladistic tree has current OTUs as bra
ves. Because the implementations presented are pur
en strictly constructed; as binary trees, with OTUs as lea

s. 
is compared to the phenetic tree produced by the gen
distribution of species within each genus is identi

fferent construction of the trees and that the curr
ve the evidence of the 48 ‘fossils’ to work with, the res
m seem very respectable. Why does the agglomerat
o find the best solution? One answer could be that it i

307 

ods, 

tical 
see 

 

istic 
kal’s 
have 
anch 
rely 
aves 

netic 
ical. 
rent 
ults 
tive 
is a 



308 G. Blanchette, R. O’Keefe, and L. Benuskova 

greedy algorithm; it chooses only the best current subtrees (at the lower levels). It 
misses the optimization that occurs at a higher level in the phylogeny.  

These two implementations of a phenetic classification (clustering and genetic 
algorithm) may seem similar, they both construct trees by aggregation of subtrees, but 
the similarity is superficial because most trees are commonly constructed by 
aggregation. In fact, the approaches come from entirely different branches of science. 
Agglomerative clustering is an engineering approach. It aims to provide a single fast 
concise solution based on an exact as possible mathematical measurement of distance. 
This exact measurement intentionally drives the process of construction. The genetic 
algorithm comes from biology. It is inexact; most of its ‘solutions’ are poor. No plan is 
applied during construction of the trees. In fact, it is not aiming to find a solution, only 
explore the problem space. There is no driving force, except chance. It is only after 
construction that selection and time filter the results; by its nature it is a slow process. 

After testing the algorithms on the base Caminalcules phylogeny, four ideas 
emerged for further investigation and comparison of these phylogenetic inference 
methods. 

4.1 Including the Fossil Evidence 

The first idea was: could the algorithms be extended to produce a cladistically based 
phylogenetic tree? Given all the available fossil evidence (48 additional taxons) could 
the tree published by Sokal (1983) be duplicated exactly? It is perhaps easier to see 
how the genetic algorithm could be adapted to use this additional information. A 
separate randomly shuffled array of fossil HTUs could be added to the implementation. 
As each chromosome pair is aggregated, the next of these random HTUs would be 
used as the parent node. This would leave 20 terminating fossil lines but still might 
achieve a result close to Sokal’s. Crossover of the chromosome representation would 
require some structural fix. However, for the agglomerative clustering algorithm, 
adaption would be more difficult. The fossil HTUs could not just be added to the 
original distance matrix, as there has to be some distinction between them and the 
OTUs which cannot be parent nodes. A separate distance matrix for the HTUs as a 
mid-point between clusters might be needed, but this would greatly increase the 
complexity of the algorithm. 

4.2 Extending the Time for Evolution 

The second idea was hinted at previously, in Section 3 Results. If the genetic algorithm 
was given sufficient time would mutation produce further improvement in the 
phylogenetic tree? This idea was interesting enough to check immediately. A change 
was made in the statistical sampling, to look for a particularly ‘lucky’ run of the 
algorithm (Fitch cost <= 270) and to continue it for up to 18,000 generations. After 
hundreds of runs the tree in Figure 7 was discovered. It had a Fitch cost of only 262, 
thus confirming our hypothesis. The last reduction in the cost of this tree was produced 
by a mutation after 10,000 generations. 
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genetic algorithm solutions were deteriorating in comparison to those of the clustering 
algorithm because the algorithm was not optimally tuned for these larger problems. 
Satisfactory tuning of the genetic algorithm for some of these larger problem sizes was 
attempted, by for example proportionately increasing the population size, in addition to 
experimenting with the other parameters. This experimentation was unable to improve 
the quality of the genetic algorithm solutions but did result in an exponential increase 
in the time cost. 

 

Fig. 8. Comparison of real time costs for the genetic and clustering algorithms 

 

 

Fig. 9. Comparison of solution quality for the genetic and clustering algorithms 
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4.4 Extending the Comparisons 

If space permitted, it would have been possible to include the results of comparisons 
for other data sets. However, based on our current experiments, we felt these were 
likely to show the same difficulties with scaling of the genetic algorithm and would 
not have altered the conclusion. 

Currently, the more modern approaches to phylogenetic inference are based on 
probabilistic models of evolution; see Ronquist & Huelsenbeck (2003) and 
Drummond & Rambaut (2007) implemented in the software "MrBayes" and "Beast", 
respectively. It would be very interesting and informative to compare the phylogeny 
trees for Caminalcules inferred based on a probabilistic model of their evolution, but 
this work is beyond the scope of the present article. 

5 Conclusion 

Although these techniques have a superficial similarity, in that they both use 
agglomeration as their construction method, their origins and approaches are antithetical. 
The genetic algorithm permits more thorough exploration and for a small problem space, 
such as the 29 original Caminalcules species, it achieves a solution which has a lower 
Fitch cost and is closer to the theoretical evolution proposed by Sokal (1983). However 
there is a time cost for this exploration and tuning the algorithm for larger problems is 
exponentially less efficient than agglomerative clustering. A directed search even though 
greedy and unable to guarantee an optimal solution, may be advantageous. 
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Abstract. Dimension reduction aims to remove unnecessary attributes
from datasets to overcome the problem of “the curse of dimensional-
ity”, which is an obstacle in classification. Based on the analysis of the
limitations of the standard rough set theory, we propose a new dimen-
sion reduction approach based on binary particle swarm optimisation
(BPSO) and probabilistic rough set theory. The new approach includes
two new specific algorithms, which are PSOPRS using only the prob-
abilistic rough set in the fitness function and PSOPRSN adding the
number of attributes in the fitness function. Decision trees, naive Bayes
and nearest neighbour algorithms are employed to evaluate the classifi-
cation accuracy of the reduct achieved by the proposed algorithms on
five datasets. Experimental results show that the two new algorithms
outperform the algorithm using BPSO with standard rough set and two
traditional dimension reduction algorithms. PSOPRSN obtains a smaller
number of attributes than PSOPRS with the same or slightly worse clas-
sification performance. This work represents the first study on probabilis-
tic rough set for for filter dimension reduction in classification problems.

Keywords: Dimension reduction, Particle Swarm Optimisation, Filter
Approaches, Classification.

1 Introduction

Classification is an important task in machine learning and data mining. How-
ever, it often involves a large number of attributes in the datasets. The large
attribute dimension causes the problem of “the curse of dimensionality” [1].
Dimension reduction, also called attribute reduction, aims to reduce the unnec-
essary attributes to reduce the attribute dimension while preserving the classi-
fication power of original attributes to maintain the classification performance
[2]. By removing the unnecessary attributes, dimension reduction can reduce the
training time of a learning algorithm and simplify the learnt classifier [3,4].

Existing dimension reduction algorithms can be broadly classified into two
categories: wrapper approaches and filter approaches [3,5]. Wrapper approaches
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include a learning algorithm as part of the evaluation function to determine the
goodness of the reduct. Therefore, wrappers can often achieve better results than
filters [6]. Filter approaches are independent of a learning algorithm. Therefore,
they are argued to be computationally cheaper and more general than wrappers.

Dimension reduction is a difficult task, where the size of the search space grows
exponentially along with the number of attributes in the dataset. Although many
different search techniques have been applied to dimension reduction, most of
these algorithms suffer from the problems of stagnation in local optima or being
computationally expensive [3,7]. In order to better address dimension reduction
problems, an efficient global search technique is needed. Evolutionary compu-
tation (EC) techniques are well-known for their global search ability. Particle
swarm optimisation (PSO) [8,9] is a relatively recent EC technique, which is
computationally less expensive than other EC algorithms. Therefore, PSO has
been used as an effective technique in dimension reduction [4,10,11].

EC algorithms (including PSO) have been successfully applied to address di-
mension reduction problems. However, most of the existing EC based dimension
reduction algorithms are wrapper approaches. Although wrappers can achieve
better classification performance, the use of wrappers is limited in real-world ap-
plications because of the high computational cost. The development of EC based
filter dimension reduction approaches still remains an open issue. On the other
hand, rough set theory has been applied to attribute reduction [12]. However,
standard rough set has limitations [13]. Probabilistic rough set can overcome
such limitations and from a theoretical point of view, Yao and Zhao [13] have
shown that probabilistic rough set can be a good measure in dimension reduc-
tion, but its performance has not been reported by experiments.

1.1 Goals

The overall goal of this paper is to develop a PSO based filter dimension reduc-
tion approach to classification to reduce the number of attributes and achieve
similar classification performance to that of using all original attributes. To
achieve this goal, we develop a new filter dimension reduction approach (with
three new algorithms) based on PSO and probabilistic rough set theory. The
proposed two dimension reduction algorithms will be examined and compared
with a filter algorithm using standard rough set theory and two traditional al-
gorithms on five different benchmark datasets. Specifically, we will investigate

– whether using PSO and standard rough set theory can reduce the number
of attributes and maintain the classification performance,

– whether using PSO and probabilistic rough set theory can further reduce the
number of attributes without decreasing the classification performance,

– whether considering the number of attributes in the fitness function can
further reduce the number of attributes and maintain the classification
performance.
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2 Background

2.1 Particle Swarm Optimisation (PSO)

PSO is an evolutionary computation technique inspired by social behaviours
of birds flocking and fish schooling [8,9]. In PSO, each candidate solution is
represented as a particle in the swarm and PSO starts with a number of randomly
generated particles. All the particles move in the search space to find the optimal
solutions. During the movement, each particle (i.e., particle i) has a position
and velocity, which are represented by vectors xi = (xi1, xi2, ..., xiD) and vi =
(vi1, vi2, ..., viD), respectively, where D is the dimensionality of the search space.
A particle can remember the best positions it visits so far, which is called personal
best pbest. The best position obtained by the population thus far is called gbest,
based on which a particle can share information with its neighbours. A particle
iteratively updates its position and velocity to search for the optimal solutions
based on pbest and gbest according to the following equations:

xt+1
id = xt

id + vt+1
id (1)

vt+1
id = w ∗ vtid + c1 ∗ r1 ∗ (pid − xt

id) + c2 ∗ r2 ∗ (pgd − xt
id) (2)

where t represents the tth iteration in the evolutionary process. d ∈ D represents
the dth dimension in the search space. w is the inertia weight, which can balance
the local search and global search abilities of the algorithm. c1 and c2 are accel-
eration constants. r1 and r2 are random constants uniformly distributed in [0,
1]. pid and pgd denote the values of pbest and gbest in the dth dimension. vt+1

id

is limited by a predefined maximum velocity, vmax and vt+1
id ∈ [−vmax, vmax].

In order to extend PSO to address discrete problems. Kennedy and Eberhart
[14] developed a binary particle swarm optimisation (BPSO). In BPSO, xid,
pid and pgd are restricted to 1 or 0. The velocity is still updated according to
Equation (2), but it indicates the probability of the position in the corresponding
dimension taking value 1. BPSO updates the position of each particle according
to the following formula:

xid =

{
1, if rand() <= 1

1+e−vid

0, otherwise
(3)

where rand() is a random number selected from a uniform distribution in [0,1].

2.2 Rough Set Theory

Rough set theory developed by Pawlak [15] is a mathematical tool, which is
able to deal with uncertainty, imprecision and vagueness. The main advantage
of rough set theory is that it does not need any prior knowledge about the data.

In rough set theory, an information system can be denoted as I = (U,A),
where U is the universe of objects in the system and A is the set of attributes
that describe each object. Equivalence relation is a relation that partitions a
set so that every element of the set is a member of one and only one cell of
the partition. Based on all equivalence relations described by A, the equivalence
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class relation partitions of U is U1, U2, U3, ..., Un, where n is the number of classes
that objects in U may belong to.

For any P ⊆ A and X ⊆ U , the equivalence relation is defined as IND(P ) =
{(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)}. An equivalence class of IND(P ) is denoted
as [x]P , which means that ∀y ∈ [x]P (x, y) are indiscernible with regards to
P . Based on the equivalent classes described by P , rough set theory defines a
lower approximation (PX) and an upper approximation (PX) of X [15], where
PX = {x ∈ U |[x]P ⊆ X} and PX = {x ∈ U |[x]P ∩ X �= ∅}. PX contains all
the objects, which can be surely classified to the target set X . PX contains the
objects, which probably belong to the target set X .

An ordered pair (PX,PX) is called a rough set. The concept of the reduct
is fundamental for rough sets theory. A reduct is the essential part of an in-
formation system (related to a subset of attributes), which can achieve similar
approximation power of classification as all the original attributes A. There can
be many different reducts in a rough set and attribute reduction aims to search
for the smallest reduct.

In the standard rough set theory [15], PX and PX were defined as two ex-
treme cases in terms of the relationships between an equivalence class defined
by P and the target set X . PX requires that the equivalence class is a subset
of X while PX requires the equivalence class must have a non-empty overlap
with X . However, the degree of their overlap is not taken into account, which
will limit its applications. Therefore, researchers investigate probabilistic rough
set theory to relax the definitions of the lower and upper approximations [13].

In probabilistic rough set theory, μP [x] (See Equation 4) is defined as a way
to measure the fitness of a given instance x ∈ X .

μP [x] =
|[x]P ∩X|

|[x]P | (4)

The lower approximation is defined as Equation 5.

apr
P
X = {x|μP [x] ≥ α} (5)

where α can be adjusted to restrict or relax the lower and upper approximations.
Note that apr

P
X = PX when α = 1. apr

P
X loosens the boundaries of the rough

set. In a given equivalence class, if a large number of instances are in the target
set X , but a small number of instances are not, apr

P
X will include them in the

lower approximation.
From theoretical point of view, Yao and Zhao have claimed that probabilistic

rough set can be a good way for attribute reduction problems [13]. However, it
has not been analysed well by experiments.

2.3 Related Work on Dimension Reduction

A number of dimension reduction algorithms have been proposed in recent years
[3,1,10]. Typical dimension reduction algorithms are reviewed in this section.
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Traditional Dimension Reduction Approaches. A traditional filter dimen-
sion reduction approach is principal components analysis (PCA), which con-
structs a low-dimensional representation of the data by finding a few orthogonal
linear combinations of the original variables with the largest variance [16]. Due to
its conceptual simplicity and being relatively efficient, PCA has been widely used
in practice. However, PCA increases the dimensionality of the data in some cases.
Decision trees (DT) use only relevant attributes that are required to completely
classify the training set and remove all other attributes. Cardie [17] proposes a
filter based dimension reduction algorithm that uses a decision tree algorithm
to remove unnecessary attributes for a nearest neighbourhood algorithm.

Two commonly used wrapper methods are SFS [18] and SBS [19]. SFS (SBS)
starts with no attributes (all attributes), then candidate attributes are sequen-
tially added to (removed from) the initial attribute subset until the further ad-
dition (removal) does not increase the classification performance. However, both
SFS and SBS suffer from the problem of nesting effect, because an attribute is
selected (eliminated) it cannot be eliminated (selected) later, which is so-called
nesting effect [7]. The “plus-l-take away-r” method proposed by Stearns [20]
could overcome this limitation by performing l times forward selection followed
by r times backward elimination. However, the determination of the optimal
values of (l, r) is a difficult problem.

EC Algorithms for Dimension Reduction. Evolutionary computation tech-
niques have been applied to address dimension reduction problems, such as GAs,
GP, ant colony optimisation (ACO) and PSO.

Based on GAs, Chakraborty [21] proposes a dimension reduction algorithm us-
ing a fuzzy sets based fitness function. However, PSO with the same fitness func-
tion in [22] achieve better performance than this GA based algorithm. Kourosh
and Zhang [23] propose a dimension reduction algorithm using GP and näıve
bayes (NB), where GP is used to combine attribute subsets and a set of operators
together to find the optimal attribute subset. Ming [24] proposes a dimension re-
duction method based on ACO and rough set theory. Experimental results show
that the proposed algorithm achieves better classification performance with fewer
attributes than a C4.5 based dimension reduction algorithm.

As an EC technique, PSO has recently gained more attention for solving
dimension reduction problems. Wang et al. [12] propose a filter dimension re-
duction algorithm based on an improved BPSO and rough set. However, the
classification performance of the reduct was only tested on one learning algo-
rithm, the LEM2 algorithm, which originally is specific used for rough set and
has some bias for the proposed algorithm. Meanwhile, only using one learning
algorithm can not show the advantage that filter algorithms is more general.
Mohemmed et al. [11] propose a hybrid method (PSOAdaBoost) that incorpo-
rates PSO with an AdaBoost framework for face detection. PSOAdaBoost aims
to search for the best attribute subset and determine the decision threshold of
AdaBoost simultaneously, which speeds up the training process and increase the
accuracy of weak classifiers in AdaBoost.
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Chuang et al. [5] apply the so-called catfish effect to PSO for dimension re-
duction, which is to introduce new particles into the swarm by re-initialising
the worst particles when gbest has not improved for a number of iterations. The
introduced catfish particles could help PSO avoid premature convergence. Liu
et al. [10] introduce a multi-swarm PSO (MSPSO) algorithm to search for the
optimal attribute subset and optimise the parameters of SVM simultaneously.
Experiments show that MSPSO could achieve higher classification accuracy than
grid search, standard PSO and GA. However, MSPSO is computationally more
expensive than the other three methods because of the large population size and
complicated communication rules between different subswarms. Based on PSO,
Unler and Murat [4] propose a dimension reduction algorithm with an adaptive
selection strategy, where an attribute is chosen not only according to the likeli-
hood calculated by PSO, but also to its contribution to the attributes already
selected. Experiments suggest that the proposed method outperforms the tabu
search and scatter search algorithms.

PSO has been shown to be an efficient search technique for dimension re-
duction by many existing studies. However, most of the existing approaches are
wrappers, which are computationally more expensive and less general than filter
approaches. Therefore, investigation of an effective PSO based filter dimension
reduction algorithm is still an open issue. Probabilistic rough set was claimed to
be a good way for dimension reduction problems [13], but its real performance
has not been investigated. Therefore, it is thought to investigate the performance
of probabilistic rough set and PSO for filter dimension reduction.

3 Proposed Filter Based Methods

Base on rough set theory and BPSO, we will propose a filter dimension reduction
approach. Firstly, we use standard rough set theory and BPSO for dimension
reduction to see whether it can achieve good results. Then, we will develop a new
approach based on probabilistic rough set theory and BPSO to further reduce
the dimensionality.

3.1 BPSO and Standard Rough Set Theory for Dimension
Reduction(PSORS)

When using rough set theory for dimension reduction, the datasets for a classifi-
cation problem can be regarded as an information system I = (U,A), where all
available attributes can be considered as A in the rough set theory. Based on the
equivalence described by A, U can be partitioned to U1, U2, U3, ..., Un, where n
is the number of classes in the dataset. After dimension reduction, the achieved
reduct can be considered as P ∈ A. Therefore, the fitness of P can be evaluated
by how well P represents each target set in U , which is a class in the dataset.

For U1 ∈ U , let PU1 = {x ∈ U |[x]P ⊆ U1} be the lower approximation
of P according to U1 if [x]P only contains instances in U1. Let PU1 = {x ∈
U |[x]P ∩ U1 �= ∅} be the upper approximation of P according to U1 if [x]P
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contains at least one element not in U1. The rough set, PU1 − PU1, contains
every instance in U1, but PU1 contains instances from other classes that are
indiscernible with instances in U1. Therefore, the purity of [x]P according to U1

can be measured by PU1

PU1
, which shows how well P represents the target set U1.

Therefore, how well P describe each target in U can be calculated by Equation
6, which is the fitness function in PSORS:

Fitness1(P ) =

∑
Ui∈U |PUi|

|U| (6)

If the dimension reduction algorithm achieves a reduct with Fitness1(P ) = 1.0,
it means the reduct can completely separate each class from other classes.

3.2 New Dimension Reduction Algorithm 1 (PSOPRS): Based on
Probabilistic Rough Set Theory

As discussed in Section 2.2, the definitions of lower approximation and upper ap-
proximation limit the application of rough set theory. In classification problems,
it may happen that two or more instances might have the same attribute values
but be classified in different classes. This is possibly because incorrect values are
entered or one instance is an exception to a class. Therefore, it is impossible to
achieve the Fitness1(P ) = 1.0 in Equation 6. A set of attributes could be ade-
quate, but erroneous or unusual values prevent these attributes being included
in a reduct. This problem can be addressed by relaxing the definitions of lower
and upper approximations in probabilistic rough set theory. Therefore, we pro-
pose a new filter attributes reduction algorithm (PSOPRS) based on BPSO and
probabilistic rough set theory [25].

In PSOPRS, for the target set U1, μP [x] =
|[x]P∩U1|

|[x]P | , which quantifies the

proportion of [x]P is in U1. Here [x]P does not have to be completely contained
in U1. aprPU1 = {x|μP [x] ≥ α} defines the lower approximation of P according
to U1, where α can be adjusted to restrict or relax the lower or upper approx-
imations. When α = 1.0, apr

P
U1 = PU1. The fitness function of PSOPRS is

shown by Equation 7.

Fitness2(P ) =

∑n
x=1 |aprPXi|

|U| (7)

3.3 New Dimension Reduction Algorithms 2 (PSOPRSN): Based
on Probabilistic Rough Set Theory and Size of the Reduct

In PSOPRS, although the use of probabilistic rough can avoid the problems
caused by standard rough set, the number of attributes is not considered in
the fitness function (Equation 7). For the same α value, if there are more than
one reducts that have the same value of Fitness2(P ), PSOPRS will not have
the intention to search for the smaller reduct. Therefore, we propose a new
algorithm, which searches for a reduct with the two objectives of maximising the
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Table 1. Datasets

Dataset #Attributes #Classes #Instances

Lymphography (Lymph) 18 4 148
Spect 22 2 267
Dermatology 33 6 366
Soybean Large 35 19 307
Chess 36 2 3196

representation power of the reduct (represented by Fitness2(P )) and minimising
the number of attributes in the reduct. A straightforward way to achieve this
goal would be adding one component in fitness function Fitness2(P ) to represent
the number of attributes of the reduct, which is shown as Equation 8 and this
method is called PSOPRSN:

Fitness3(P ) = γ ∗
∑n

x=1 |aprPXi|
|U| + (1− γ) ∗ (1− #attributes

#totalAttributes
) (8)

where γ ∈ (0, 1] shows the relative importance of the representation power of the
reduct while (1− γ) shows the relative importance of the number of attributes.

As the range of
∑n

x=1
|apr

P
Xi|

|U| is in [0, 1], the number of attributes is converted

to (1 − #attributes
#totalAttributes ) to make sure the two components in the same ranges.

In PSORS and the two newly proposed algorithms, PSOPRS and PSOPRSN,
the dimensionality of the search space is the number of attributes included in
the dataset. Each particle is encoded in a binary string, where the “1” means
the corresponding attribute is included in the reduct while “0” means the cor-
responding attribute is removed.

4 Experimental Design

Five datasets in Table 1 are used in the experiments, which were chosen from
UCI machine learning repository [26]. They have different numbers of attributes,
classes and instances, which are used as representative samples of the problems
that the proposed algorithms will address. Note that all the five datasets are
categorical data because rough set theory only works on discrete values.

In the experiments, the instances in each dataset are randomly divided into
two sets: 70% as the training set and 30% as the test set. The proposed al-
gorithms firstly run on the training set to obtain a reduct. The classification
performance of the achieved reduct will be evaluated by a learning algorithm
on the unseen test set. As filter algorithms, the learning algorithm only runs
on the test set. Almost all learning algorithms can be used here. In order to
test the claim that filter dimension reduction methods are general, three differ-
ent learning algorithms, decision trees (DT), naive Bayes (NB) and K-nearest
neighbor algorithms with K=5 (5NN), are used in the experiments to evaluate
the classification performance of the achieved reduct on the test set.
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In all algorithms, the fully connected topology is used in BPSO, vmax = 6.0,
the population size is 30 and the maximum iteration is 100. w = 0.7298, c1 =
c2 = 1.49618. These values are chosen based on the common settings in the
literature [9]. Each algorithm has been conducted for 30 independent runs.

In PSOPRS, in order to test how the value of α influence the dimension
reduction performance, four different α values are used in the experiments, which
are 1.0, 0.9, 0.8, and 0.75. All the α values are larger than 0.5, because the
lower approximation in probabilistic rough set should have the majority (at
least have half) of the instances that belong to the target set. In PSOPRSN,
α is set as 0.75 and five different γ values are used in the experiments, which
are 1.0, 0.9, 0.8, 0.75, 0.5, to represent the different relative importance of the
number of attributes in the fitness function. When α = 1 in PSOPRS and
γ = 1 in PSOPRSN, PSOPRS and PSOPRSN become the same as PSORS.
Therefore, the results of PSOPRS α = 1 and PSOPRSN with γ = 1 are not
presented in the next section. In order to further examine the performance of
the proposed algorithms, two conventional filter feature selection methods (CfsF
and CfsB) in Weka [27] are used for comparison purposes in the experiments
and the classification performance is calculated by DT.

5 Experimental Results and Discussions

5.1 Experimental Results of PSORS

Tables 2 shows the experimental results of PSOPRS and PSOPRS on the five
datasets and DT, NB and 5NN were used for classification. Due to page limit,
only the results of using DT for classification are presented here. In Table 2, “All”
means that all of the available attributes are used for classification. “AveSize”
means the average number of attributes selected in the 30 independent runs.
“Ave”, “Std” and “Best” represent the mean, the standard deviation and the
best classification accuracy achieved by DT across the 30 independent runs.

Table 2. Results of PSORS and PSOPRS with DT as the learning algorithm

Dataset Chess Dermatology Lymph
Method AveSize Ave±Std(Best) AveSize Ave±Std(Best) AveSize Ave±Std(Best)

All 36 0.985 33 0.828 18 0.755
PSORS 30.70 0.983±0.003(0.987) 21.00 0.860±0.048(0.975) 11.73 0.724±0.068(0.796)
PSOPRS
α = 0.9 30.70 0.984±0.002(0.987) 21.00 0.860±0.048(0.975) 11.73 0.724±0.068(0.796)
α = 0.8 29.97 0.983±0.003(0.985) 21.00 0.860±0.048(0.975) 11.77 0.723±0.068(0.796)
α = 0.75 30.30 0.985±0.001(0.987) 21.00 0.860±0.048(0.975) 11.77 0.723±0.068(0.796)

Dataset Soybean Spect
Method AveSize Ave±Std(Best) AveSize Ave±Std(Best)

All 35 0.819 22 0.809
PSORS 21.53 0.803±0.046(0.872) 21.00 0.860±0.048(0.975)
PSOPRS
α = 0.9 21.60 0.805±0.044(0.872) 17.30 0.806±0.022(0.843)
α = 0.8 21.67 0.805±0.044(0.872) 17.50 0.800±0.020(0.820)
α = 0.75 21.63 0.804±0.043(0.872) 15.57 0.818±0.008(0.820)
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According to Table 2, it can be seen that in most cases, PSORS reduced
around one third of the available attributes. After dimension reduction, the
classification performance achieved by DT is still the similar to that of using all
attributes. In almost all datasets, the best classification performance achieved by
three learning algorithms using the reduct are the better than using all available
attributes. The results suggestion that PSORS based on BPSO and standard
rough set theory can be successfully used to reduce the dimensionality and also
improve the classification performance in many cases.

5.2 Experimental Results of PSOPRS

According to Table 2, it can be seen that in most cases, the number of re-
mained attributes decreases when α in PSOPRS reduces. In terms of the clas-
sification performance, for DT, all the reducts can achieve similar classification
performance to using all attributes. Although the mean classification accuracy is
slightly worse than using all attributes in some cases, the best accuracy is better
than using all attributes in all cases. Compared with PSORS, PSOPRS can fur-
ther reduce the number of attributes and maintain the classification performance,
especially when α = 0.75. The results suggests that by using probabilistic rough
set to evaluate the fitness of the attributes, the algorithm can further reducing
the number of remained attributes without reduce its classification performance.
A smaller α means more relax on the lower and upper approximations, which
usually can slightly remove more unnecessary attributes to further reduce di-
mensionality of the datasets.

5.3 Experimental Results of PSOPRSN

According to Table 3, with a smaller γ can reduce can achieve a smaller the
number of attributes. The reason is that a smaller γ means the number of at-
tributes in PSOPRSN is more important than a relatively large γ. Compared
with PSORS and PSOPRS, PSOPRSN can significantly reduce the number of
attributes although the classification performance is slightly worse in some cases.

The results also show that when the number of attributes is reduced, the
classification performance also decreases in most cases. The reason could be that
Fitness3 does not consider the number of equivalence classes in the dataset. In
rough set, a small number of attributes (e.g. 12) can describe a large number (212)
of equivalence classes. The problem here is that there could be thousands of small
equivalence classes, which only contain one or two instances. If there is another
equivalence class, which has slightly more instances, this class will dominate
others and the obtained reduct will only contain information that can identify
this particular class. Therefore, without considering the size of the equivalence
classes, Fitness3 may achieve a small reduct, but it will loss generality and
performs badly on unseen test data.
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Table 3. PSOPRSN with α = 0.75

Dataset γ AveSize
DT NB 5NN

Ave±Std(Best) Ave±Std(Best) Ave±Std(Best)

Chess

0.9 12.63 0.977±0.001(0.979) 0.927±0.009(0.945) 0.872±0.054(0.953)
0.8 8.97 0.972±0.013(0.977) 0.929±0.010(0.953) 0.846±0.062(0.925)
0.75 7.73 0.961±0.019(0.977) 0.932±0.009(0.953) 0.821±0.114(0.921)
0.5 4.93 0.931±0.013(0.938) 0.931±0.013(0.941) 0.602±0.198(0.892)

Dermatology

0.9 8.17 0.757±0.068(0.918) 0.816±0.056(0.943) 0.787±0.058(0.877)
0.8 8.07 0.775±0.078(0.967) 0.799±0.056(0.959) 0.784±0.060(0.918)
0.75 7.73 0.743±0.085(0.926) 0.786±0.064(0.910) 0.766±0.073(0.893)
0.5 6.43 0.752±0.093(0.951) 0.783±0.075(0.959) 0.725±0.083(0.943)

Lymph

0.9 5.03 0.667±0.033(0.673) 0.776±0.004(0.796) 0.753±0.011(0.755)
0.8 5.00 0.661±0.046(0.673) 0.777±0.005(0.796) 0.752±0.010(0.755)
0.75 5.00 0.673±0.000(0.673) 0.776±0.000(0.776) 0.755±0.000(0.755)
0.5 4.00 0.714±0.000(0.714) 0.816±0.000(0.816) 0.796±0.000(0.796)

Soybean

0.9 9.70 0.714±0.031(0.767) 0.756±0.036(0.824) 0.675±0.037(0.749)
0.8 9.00 0.705±0.038(0.780) 0.745±0.041(0.846) 0.665±0.039(0.749)
0.75 8.77 0.713±0.043(0.775) 0.747±0.031(0.811) 0.668±0.033(0.749)
0.5 7.47 0.713±0.039(0.802) 0.761±0.042(0.833) 0.670±0.033(0.727)

Spect

0.9 13.97 0.820±0.000(0.820) 0.767±0.010(0.775) 0.818±0.010(0.831)
0.8 8.97 0.799±0.017(0.820) 0.783±0.024(0.820) 0.834±0.021(0.843)
0.75 7.07 0.798±0.012(0.831) 0.797±0.029(0.843) 0.805±0.040(0.843)
0.5 4.63 0.786±0.026(0.843) 0.796±0.025(0.843) 0.739±0.248(0.843)

Table 4. Results of CfsF and CfsB with DT as the learning algorithm

Dataset Chess Dermatology Lymph Soybean Spect
Method Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy
CfsF 5 0.781 17 0.873 8 0.733 12 0.805 4 0.70
CfsB 5 0.781 17 0.873 8 0.733 14 0.854 4 0.70

5.4 Comparisons with Two Traditional Algorithms

Experiments using CfsF and CfsB for dimension reduction have been conducted
using Weka and DT was used for classification. The results are shown in Table 4.
Comparing the experimental results of the four rough set theory based algorithm
in Tables 2 and 3 with the two traditional algorithms, it can be seen that in
almost all cases, although CfsF and CfsB can achieve a smaller size of attributes,
the classification performance of CfsF and CfsB are smaller or much smaller
than the rough set theory based algorithms, PSORS, PSOPRS and PSOPRSN.
In terms of the computational time, both our proposed algorithms and two
traditional algorithms used a relatively short time (less than 5 minutes in most
cases).

6 Conclusions

This paper developed a new approach using probabilistic rough set theory and
BPSO to remove irrelevant and redundant features and maintain the classifi-
cation performance achieved by using all features. This new approach includes
two new algorithms, which are BPSO and probabilistic rough set theory (PSO-
PRS ) and BPSO with probabilistic rough set theory by adding the number of
attributes in the fitness function (PSOPRSN ). The performance of three new
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algorithms were examined and compared to BPSO with original rough set the-
ory (PSORS ) and two traditional methods, CfsF and CfsB, on five datasets. In
order to test the generality of the proposed algorithms, the achieved reduct was
evaluated by three different learning algorithms for classification on the unseen
test sets. Experimental results show that in most cases, the three proposed algo-
rithms can be successfully used for dimension reduction and outperform PSORS
and the two traditional algorithms. PSOPRSN can significantly reduce the num-
ber of attributes in the reduct although the classification performance is slightly
reduced in many cases. The reason might be that PSOPRSN does not consider
the number of equivalence classes in the dataset.

This work represents the first study that successfully uses BPSO with proba-
bilistic rough set for dimension reduction. In future, we will consider the number
of equivalence classes in the dataset to further reduce the number of attributes
without decreasing the classification performance and investigate its performance
for dimension reduction and attribute selection problems on more datasets with
a larger number of attributes. We also intend to investigate multi-objective PSO
and rough set based filter algorithms to better explore the Pareto front of non-
dominated solutions in dimension reduction and attribute selection to provide
more informative solutions for users.

Acknowledgments. This work is supported in part by the National Science
Foundation of China (NSFC No. 61170180,61035003), the Key Program of Natu-
ral Science Foundation of Jiangsu Province, China (Grant No. BK2011005) and
the Marsden Fund of New Zealand (VUW0806) and the University Research
Fund of Victoria University of Wellington (200457/3230).

References

1. Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains.
Pattern Recognition 43(1), 5–13 (2010)

2. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3, 1157–1182 (2003)

3. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analy-
sis 1(4), 131–156 (1997)

4. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature
selection in binary classification problems. European Journal of Operational Re-
search 206(3), 528–539 (2010)

5. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Improved binary particle swarm optimiza-
tion using catfish effect for feature selection. Expert Systems with Applications 38,
12699–12707 (2011)

6. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence 97, 273–324 (1997)

7. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection prob-
lem. Pattern Recognition Letters 30, 525–534 (2009)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)



A Dimension Reduction Approach to Classification 325

9. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE International
Conference on Evolutionary Computation (CEC 1998), pp. 69–73 (1998)

10. Liu, Y., Wang, G., Chen, H., Dong, H.: An improved particle swarm optimization
for feature selection. Journal of Bionic Engineering 8(2), 191–200 (2011)

11. Mohemmed, A., Zhang, M., Johnston, M.: Particle swarm optimization based
adaboost for face detection. In: IEEE Congress on Evolutionary Computation
(CEC 2009), pp. 2494–2501 (2009)

12. Wang, X., Yang, J., Teng, X., Xia, W.: Feature selection based on rough sets and
particle swarm optimization. Pattern Recognition Letters 28(4), 459–471 (2007)

13. Yao, Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. In-
formation Sciences 178(17), 3356–3373 (2008)

14. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm al-
gorithm. In: IEEE International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108 (1997)

15. Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11, 341–356
(1982)

16. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics 2(4), 433–459 (2010)

17. Cardie, C.: Using decision trees to improve case-based learning. In: Proceedings
of the Tenth International Conference on Machine Learning (ICML), pp. 25–32
(1993)

18. Whitney, A.: A direct method of nonparametric measurement selection. IEEE
Transactions on Computers C-20(9), 1100–1103 (1971)

19. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1), 11–17 (1963)

20. Stearns, S.: On selecting features for pattern classifier. In: Proceedings of the 3rd
International Conference on Pattern Recognition, Coronado, CA, pp. 71–75 (1976)

21. Chakraborty, B.: Genetic algorithm with fuzzy fitness function for feature selection.
In: ISIE 2002, vol. 1, pp. 315–319 (2002)

22. Chakraborty, B.: Feature subset selection by particle swarm optimization with
fuzzy fitness function. In: ISKE 2008, vol. 1, pp. 1038–1042 (2008)

23. Neshatian, K., Zhang, M.: Dimensionality reduction in face detection: A genetic
programming approach. In: 24th International Conference Image and Vision Com-
puting New Zealand (IVCNZ 2009), pp. 391–396 (2009)

24. Ming, H.: A rough set based hybrid method to feature selection. In: International
Symposium on Knowledge Acquisition and Modeling (KAM 2008), pp. 585–588
(2008)

25. Yao, Y.: Probabilistic rough set approximations. Int. J. Approx. Reasoning 49(2),
255–271 (2008)

26. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques, 2nd edn. Morgan Kaufmann (2005)



Evolving Plastic Neural Networks for Online Learning:
Review and Future Directions

Oliver J. Coleman and Alan D. Blair

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia
{ocoleman,blair}@cse.unsw.edu.au

Abstract. Recent years have seen a resurgence of interest in evolving plastic
neural networks for online learning. These approaches have an intrinsic appeal
– since, to date, the only working example of general intelligence is the human
brain, which has developed through evolution, and exhibits a great capacity to
adapt to unfamiliar environments. In this paper we review prior work in this
area – including problem domains and tasks, fitness functions, synaptic plasticity
models and neural network encoding schemes. We conclude with a discussion of
current findings and promising future directions, including incorporation of func-
tional properties observed in biological neural networks which appear to play a
role in learning processes, and addressing the “general” in general intelligence by
the introduction of previously unseen tasks during the evolution process.

Keywords: plastic neural networks, evolution, online learning, meta-learning.

1 Introduction

Recent years have seen a resurgence of interest in evolving plastic neural networks
for online learning. These approaches have an intrinsic appeal – since, to date, the
only working example of general intelligence is the human brain, which has developed
through evolution, and exhibits a great capacity to adapt to unfamiliar environments. In
this paper we review prior work in this area – including problem domains and tasks,
fitness functions, synaptic plasticity models and neural network encoding schemes. We
conclude with a discussion of current findings and possible future directions.

In this review, a plastic neural network is one in which the strengths of synapses
may change during the networks operational life. Online learning refers to the ability
of an agent to discover or learn about some property of its environment, typically by
exploration, which it has not been exposed to previously or which changes during its
life time, and then exploit this knowledge in order to achieve a goal. Online adaptation
refers to a robustness or ability to adapt to internal or external perturbations or changes
in input and output ranges; in other words, the ability to maintain homeostasis. These
latter two definitions are very similar to terms defined by Mouret and Tonelli [19]: an
agent is said to possess behavioural robustness, which is akin to online adaptation,
when it can maintain the same qualitative behaviour despite environmental or morpho-
logical changes; and an agent is said to exhibit behavioural change, which is akin to
online learning, when in a reward-based environment a change in reward causes it to
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adopt qualitatively new behaviours until a new optimal behaviour has been found. While
this review describes progress in evolving plastic neural networks for online learning,
work on evolving plastic neural networks for online adaptation has enough similarit-
ies to provide useful insights. We include work on online adaptation in the sections on
synaptic plasticity, scaling/competition and neuronal excitability regulation. Finally, it
should be noted that “adaptive network” is not synonymous with “plastic network”: a
network may be adaptive without having plastic synapses [11, 18, 25].

2 Problem Domains, Tasks and Fitness Functions

In the evolution of neural networks for online learning, evaluating the fitness of a can-
didate requires testing the ability of the neural network to learn something about its
environment and to then exploit that knowledge to achieve one or more goals. This
requires producing environments that are different in some way for each generation
and/or change in some way during a fitness evaluation [4, 20, 25, 27].

Initial work on online learning, carried out in the early 1990s, focused on a super-
vised learning paradigm [3, 4, 13]. Fitness evaluation typically took the form of a train-
ing phase during which sets of exemplars are presented to the network, and then an
evaluation phase where the network is presented all the input vectors from the training
set and the fitness is the percentage of correct corresponding output vectors produced
by the network [3, 4]. These studies were largely proof-of-concept in nature and used
simple network models and simple, for example single-bit or linearly-separable, binary
training examples. The main limitation with this method is that the generalisation per-
formance of the evolved learning algorithms is not tested (not to be confused with the
ability to learn all the members of any particular set of exemplars).

Research on evolving neural networks for online learning re-emerged in the early
2000’s – this time focusing on reinforcement learning domains. In most reinforcement
learning experiments the fitness of an agent has been the amount of reward it received
during its lifetime [20,25,27] or is at least strongly correlated with the reward received
[15, 23]. Use of multiple reward signals, corresponding to multiple goals, has not been
explored.

Most tasks studied to date have been designed to provide a simple reinforcement
learning environment in order to evaluate the ability of an agent to perform learning.
They have required learning a simple association that changes during the agents life
time, such as which type of flower provides the most reward in a simple bee foraging
task [20, 21, 26], which object types are food or poison in a slightly more complex
foraging task [27], or which arm of a T-maze contains a high-value reward [21, 22, 25].
Variations to increase the difficultly of the T-maze task include use of a double T-maze,
which has four arms instead of two, or requiring the agent to learn a possibly non-
linear association between the perception of objects and their reward value [22]. Risi
and Stanley [23] studied a significantly more difficult version of the T-maze task in
wihch the environment was continuous rather than discrete and the controller takes as
input only raw output from 5 rangefinder sensors (as well as a reward signal) rather than
signals from special sensors indicating arrival at key locations.
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Tonelli and Mouret [28, 29] studied a purely associative task, similar to those us-
ing a supervised learning paradigm, in which an agent is required to learn associations
between each possible input and output pattern. The input and output were vectors of
binary values, with a reward signal added to the input. To simplify the task only one
bit of the input and output vector each has value 1 while all others have value 0. The
difficulty of the task was increased by increasing the size of the vectors. This problem
domain is interesting because the number of associations that must be learned can be
large, while other problem domains studied have required only learning one or a few
associations, and also because it does not require simulation of an environment or learn-
ing fixed behaviours for invariant properties of the environment (other than the ability
to determine which output to set high for which input, of course). A much more com-
plex task in this problem domain would be to allow arbitrary input and output patterns,
instead of setting only one bit high per pattern.

Khan and Miller [15] introduced a modified version of Wumpus world, where pits
and the Wumpus only harm rather than kill the agent, as well as a competitive version
of Wumpus world where the Wumpus acts as a predator. Rather than a reinforcement
signal being provided, the agent can perceive its “energy” level, which is affected by
environmental factors and achieving goals.

It has been noted by several authors that most tasks requiring online learning also
require some fixed behaviours, and that often the fixed behaviours can be evolved much
more easily than the learning behaviours [20,21]. Indeed, if the goal is to test the ability
of an agent to perform online learning, then the experimenter must take care to ensure
that the task cannot be solved with purely fixed behaviours [3]. Preventing the evolution-
ary process from becoming stuck on the local optima of fixed behaviours has typically
been addressed by employing specially designed environments and fitness evaluation
functions that minimise the advantage of purely fixed behaviours and that strongly fa-
vour learning behaviour [3, 21, 23, 29]. In order for the approach of evolving neural
networks for online learning to be practical for a wider range of problem domains –
where a large number of behaviours may need to be fixed for a successful agent – the
minimisation of this requirement represents a significant future challenge.

One novel approach to alleviating the problem of local optima in evolutionary al-
gorithms is novelty search. Novelty search replaces the objective or goal-based fitness
function in an evolutionary algorithm with a function that measures the behavioural
novelty of an individual with respect to the behaviours exhibited by other individuals in
the current and all preceding generations. The main idea behind novelty search is that
behaviours that are different in interesting ways from other behaviours collapse to the
same objective-based fitness, so objective-based search essentially ignores them even
though they may be pathways to a solution. This method has shown promising results in
evolving neural networks for online learning [21], where it was able to evolve solutions
more quickly than objective-based search on two common benchmark tasks. It has also
been used successfully in conjunction with a traditional objective-based fitness function
using a multi-objective evolutionary algorithm [29]. However, some studies suggest that
novelty search may not scale well to more complex problems [6] and that in some cases
it is just as hard to find a good novelty metric as it is to find a good objective-based
fitness function [16].
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3 Synaptic Plasticity Models

The most common approach to synaptic plasticity in evolved neural networks thus far
has been to define either one or four plasticity rules. These may be applied to some
or all connections in the network. In the case of a single rule type, this rule has either
been evolved [3] or fixed [21]. Floreano and Mondada introduced a set of four rules
in 1996 which were then adopted by several subsequent authors [14, 18], with the gen-
ome encoding which of the rules is to be used by each connection. From Floreano and
Mondada, 1996 [10, pg. 3]: “The four types of synaptic change are as follows ... The
simplest learning mechanism is plain Hebb, whereby synapses can only be strengthened
... The postsynaptic rule is similar to the plain Hebbian rule, but also decreases the
synaptic efficacy when the postsynaptic unit is active and the presynaptic unit is not ...
in the presynaptic learning rule the decrement takes place when the presynaptic unit
is active, but the postsynaptic unit is inactive ... The covariance rule here takes the
form of a synchronous-activation detector: if the presynaptic and postsynaptic activity
levels differ by more than half the maximum node activation, the synaptic efficacy is
reduced in proportion to that difference, otherwise it is increased in proportion to the
difference.”

The second most common approach is to use a parameterised weight update rule
where the parameters are evolved either for a globally applied rule [25, 26, 30], for a
fixed number of rules [27], for each modular grouping of neurons [20], or per con-
nection [8, 9, 22, 23]. No work has compared the effects of these different levels of
granularity.

One of the first parameterised rules was introduced by Niv et al. in 2002 [20] and
has been used by several subsequent authors [22, 23, 25, 26, 28, 29]. It consists of a
correlation term, pre- and post-synaptic terms and a constant term for heterosynaptic
updates, with evolved coefficients for each term:

Δw = η(Axy +Bx+ Cy +D) (1)

where η is the learning rate and x and y are the pre- and post-synaptic activation.
Di Paolo et al. [8, 9] studied spike-timing dependent plasticity (STDP) models. The

weight update rule was asymmetric such that if a pre-synaptic spike occurred before
a post-synaptic spike then the weight is increased (potentiated), and conversely if a
pre-synaptic spike occurred after a post-synaptic spike then the weight is decreased
(depressed). Parameters for the time-window and amount of change were evolved per
connection.

Di Paolo [8] performed a direct comparison between rate-based and spiking models.
It is noted that a direct and fair comparison is not simple; efforts were made to make
the comparison as fair as possible, for example by modifying the weight update rule
such that the initial direction of weight change in the rate-based model is unbiased by
the initial random activation values of neurons, as it is in the spiking model. Evolved
rate-based networks had significantly lower performance than spiking networks in the
photo-taxis task studied. This was due to the rate-based networks being much slower to
converge to the required weight values: “STDP controllers are rapidly able to define a
direction of weight change depending on the relation between the plastic rules and the
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neural properties . . . whereas rate-based plastic controllers take much longer to settle
into a given range.” The practical significance of this result could be questioned: it
would be simple to encode initial weight values to overcome this problem. However, in
some cases (perhaps developmental network models), such encoding of initial weights
may not be possible, thus making the rapid convergence of the spiking networks desir-
able. Additionally, the STDP rule employed was found to produce more stable networks
even in the presence of noise introduced into neuronal activation.

The above approaches all use some kind of relatively fixed rule or rules to change
synaptic efficacy, albeit with some evolvable parameters. In contrast there have been
two proposed approaches to evolving arbitrary plasticity rules. Khan and Miller [15]
evolved genetic programs that controlled changes to synaptic efficacy, as well as sev-
eral other functional aspects of neurons. While this work is intriguing, and the model
developed was demonstrated to be able to evolve solutions to complex tasks, it is not
clear to what extent evolving arbitrary rules contributed to the results, positively or
negatively. The model developed was very complex and a significant departure from
anything that had gone before. The tasks chosen were different from any others used in
similar work. The rules that evolved have not been analysed in any studies to date.

Risi and Stanley [22] also developed a novel synaptic plasticity system able to evolve
arbitrarily complex rules. They performed a comparison between it and two paramet-
erised rules similar to that introduced by Niv et al. [20] (described above). These models
employed the HyperNEAT encoding scheme (see Section 5). The three models of syn-
aptic plasticity compared were:

Plain Hebbian: the update rule is
Δw = ηxy (2)

where η is the learning rate. The genome function has an output for a synapses
existence and for the plasticity learning rate if it exists.

Hebbian ABC: the update rule is

Δw = η(Axy +Bx+ Cy) (3)

The genome function has an output for each of a synapses existence, the learning
rate and the coefficients A, B and C.

Iterated: in this model the genome function is queried throughout the networks life
time for each synaptic weight value, instead of only for the initial synapse paramet-
ers, and has three inputs additional to the coordinates of the pre- and post-synaptic
neurons: the pre- and post-synaptic activation and the current weight value. Thus
instead of a fixed Hebbian-type rule, arbitrarily complex weight update rules can
be evolved based on location, activation levels and current weight value.

Risi and Stanley tested the networks on a double T-maze task where the complexity
of the task could be increased by introducing a non-linearly separable perception and
reward value mapping. Evolution using the Plain Hebbian rule could not find solutions
for the task at any complexity level, evolution using the Hebbian ABC and Iterated
models could find optimal solutions for the linearly separable reward signals task, but
only by using the Iterated model could optimal solutions be found for the non-linearly
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separable reward signals task. For the higher complexity task an optimal solution re-
quired a non-linear learning rule which could not be encoded by the Hebbian ABC
model. They conclude that although a different network topology may have allowed a
less general plasticity rule to solve the non-linear problem in this instance, it is never-
theless risky to make a priori assumptions about which plasticity rules will be suitable.
The rules that were evolved with the Iterated model were not analysed.

Both the evolved genetic program and evolved function plasticity rules developed by
Khan and Miller and Risi and Stanley, respectively, required significantly more com-
putation time than models using fixed rules, demonstrating a trade-off between compu-
tational requirements and generality. While Risi and Stanley demonstrate that in some
cases more generality may be required, it is not clear (nor necessarily suggested by the
authors) that the level of generality provided by these systems is necessary, or desirable,
due to the computational considerations and increased search space in an evolutionary
context. Indeed, Risi and Stanley found that the more general model took much longer
to find nearly optimal solutions than a parameterised fixed rule model.

Most studies have used either relatively fixed rules, for example the set of four fixed
rules popularised by Floreano and Mondada [10] and the parameterised rule introduced
by Niv et al. [20], or arbitrarily flexible rules such as the genetic programs introduced by
Khan and Miller [15] and the evolved functions studied by Risi and Stanley [22]. While
the study performed by Risi and Stanley directly compares simple parameterised rules
with arbitrarily flexible rules, a possibly interesting research direction could be to com-
pare plasticity rules that fall between these two extremes. This could especially be the
case in plasticity models such as STDP, where evolved parameters could control aspects
such as asymmetry, timing-direction, time-frames, plasticity modulation dependent on
pre- and post-synaptic firing rates, etc.

Another interesting question is what sorts of synaptic plasticity rules were evolved
by the models allowing arbitrary complexity. As noted, the studies performed by Khan
and Miller, and Risi and Stanley, did not analyse the evolved rules. Did the same sorts of
rules evolve many times? Were there any general properties of these rules that emerged?
Did they tend towards simple rules, or unique and/or complex rules for every evolution-
ary run and/or relatively fit individual in a run? How does modifying the complexity or
other properties of the task affect the kinds of rules evolved?

3.1 Synaptic Plasticity Neuromodulation Models

The first model of neuromodulation of synaptic plasticity was introduced by Niv et
al. [20]. The topology of the network was fixed and divided up into several modules.
The plasticity of synapses between these modules and an output neuron could be gated
by evolved dependencies on some of the other modules. If a module had a dependency
on another module then synaptic plasticity was only enabled when neurons in the latter
fired. They found that this gating of synaptic plasticity was required to evolve networks
able to perform a simple reinforcement learning task. While this result is interesting its
general applicability is not clear as the allowable dependencies were hand-crafted along
with the network topology.
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A more general model of neuromodulation of synaptic plasticity was introduced by
Soltoggio et al. [26]. In this model there are two neuron types, standard and modulatory.
Each neuron maintains values for both standard and modulatory activation, which are
the weighted sums of all inputs from the two respective subsets of neurons in the net-
work. Unlike a standard neuron model, the modulatory activation level modulates the
plasticity of all synapses leading into the neuron by being used as an overall multiplic-
ative term in the plasticity rule. Evolved solutions using this model outperformed, and
could handle more complex environments than, solutions using the model developed by
Niv et al. Additionally, solutions using models where neuromodulation was disabled or
fixed weights were used either performed very poorly or could not be found at all. Later
work showed similar results with a different task (double T-maze with reward moved at
random points during trials) [25]: evolution produced solutions with much higher aver-
age performance using models incorporating neuromodulation of plasticity compared
to models without this neuromodulation.

Similar to the model introduced by Soltoggio, Risi and Stanley [23] developed a
model in which some connections, rather than neurons, are modulatory. In this model
every neuron has a neuromodulatory activation level (as well as the standard activation)
which modulates the plasticity of all synapses leading into the neuron. This model could
be considered to more closely mimic biological networks as the same neuron can emit
standard signals as well as modulatory signals.

Similar to synaptic plasticity models in general, an open question is what impact
more flexible or complex neuromodulation properties would have on the evolution of
plastic neural networks for online learning. For example it is known that in biological
neural networks neuromodulators can invert the timing-dependency of STDP rules.
Specifically, other avenues of potential inquiry include studying the use of multiple
neuromodulators affecting different aspects of plasticity, less targeted neuromodulation
models such as a neuromodulator that can be dispersed into a region of a network that
is defined in some space, and the generation of modulation signals as a by-product of
any neuron rather than designated modulatory neurons, similar to the operation of those
in biological neural networks.

4 Synaptic Scaling/Competition Models and Neuronal Excitability
Regulation Models

Di Paolo [8] studied the effect of explicit activity-dependent synaptic scaling (ADS) and
“directional damping” applied to synaptic strength updates (DD). ADS induces homeo-
stasis by actively scaling synaptic strengths in order to maintain post-synaptic firing
rates within a pre-defined range. This is achieved by multiplying all weight values by
the same factor, introducing heterosynaptic competition. DD adds a factor to the syn-
aptic update rule such that if a change in strength of a synapse that is already near the
limit would push the strength closer to the limit then the change is dampened, whereas
a change that moves the strength away from the limit is not dampened. This type
of damping was chosen for two reasons: it tends to produce a uni-modal distribution
of weights centred around the point where potentiation and depression equilibrate, as
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opposed to other methods that either apply a simple hard limit or non-directional damp-
ing and which produce a bimodal distribution where most synapses either become fully
potentiated or depressed; and because this model is supported by empirical evidence
from studies of biological networks. The study compared the performance of evolved
solutions incorporating ADS and/or DD. It was found that DD made no observable dif-
ference in the final performance achieved, but that ADS slightly increased it. It is not
clear if the difference may have been reduced with longer evolutionary runs as only final
performance rather than plots of performance over generations are indicated. Addition-
ally, the reliability of the solutions using different models was assessed by introducing
relatively rapid synaptic strength decay factors. Only solutions using ADS were able to
perform reliably in this scenario; it is argued that this is a “consequence of the compens-
atory nature of the ADS mechanism, which is able to alter synapses as a consequence
of longer term changes in neural activity in ways that tend to maintain this activity.”

In later work Di Paolo [30] used another active neuronal excitability regulation mech-
anism to induce homeostatic firing rates. This mechanism enables synaptic plasticity
when neurons are firing outside two pre-defined ranges and modifies the plasticity rule
to push the firing rates back into the correct range by modifying the sign of plasticity
rule parameters. It was found that non-homeostatic networks made more errors, and
that the errors did not follow a predictable pattern, as compared to homeostatic net-
works which exhibited fewer errors, and for which the errors were more predictable.

Hoinville et al. [14] studied a method of heterosynaptic competition that keeps the
squared sum of synaptic strengths equal to unity. Additionally, a symmetric odd ac-
tivation function – which satisfies the centre-crossing condition and ensures that the
operating range of each neuron is centred on the most sensitive region of its activation
function [17] – was used to help induce neuronal excitability regulation. The aim was to
achieve homeostasis without using active parameter manipulation, that is “the neuronal
activity is not monitored and there is no mechanism that dynamically corrects any para-
meter. In fact, homeostasis is not ensured to be maintained in the short- or long-term.
However ... the chosen constraints would make homeostasis more likely ...” Unlike the
models introduced by Di Paolo, this approach avoids defining ranges for firing rates a
priori. Either of these mechanisms in isolation was found to improve the final perform-
ance of solutions and the convergence rate during evolution, and especially so when
used in tandem. Behavioural stability and robustness, measured by increasing the dur-
ation of the task to ten times longer than that used during evolution, was also found to
be improved by use of the heterosynaptic competition mechanism and again especially
so with both mechanisms. It is concluded that synaptic normalisation supports multi-
stability by “contributing to a global self-organization of individual plastic rules” and
that “homeostasis can evolve implicitly without any active homeostatic mechanisms
and be implemented through constrained hebbian plasticity.”

Di Paolo and Hoinville et al. have explored several synaptic scaling/competition and
neuronal excitability regulation mechanisms in the context of online adaptation. Future
research could study these mechanisms in the context of online learning, and explore
other mechanisms found in biological neural networks, such as spike adaptation, where
the firing threshold of a neuron is increased if high firing rates are maintained.
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5 Encoding of Neural Networks in Evolved Genomes

Methods to encode neural networks into genomes for evolution can be broadly categor-
ised into direct and indirect schemes. Direct encoding schemes employ a one-to-one
mapping from elements in the genome to components in the phenotype, and include
bit-string representations [3, 4, 10], vector-of-values [8, 9, 14, 20, 25, 26, 30], and graph-
based schemes [21,27,29], where vertices in the graph correspond to neurons and edges
to connections between them.

Indirect encoding schemes include a cellular encoding/grammar tree system [13], a
matrix rewriting system [11], a “neural map” scheme where a vertex can either become
a single neuron or a set of neurons and edges on the map vertex type may describe a
one-to-one connection or one-to-all connections [29], HyperNEAT [22] and Evolvable-
Substrate-HyperNEAT (ES-HyperNEAT) [23]. In HyperNEAT neurons exist in a geo-
metric space, and a function, which is the genome, maps from the coordinates of a pair
of neurons to the parameters of the synapse between them (including whether or not it
exists). Thus to decode a network the coordinates of each and every pair of neurons is
fed into the function and the outputs are used to determine the properties of the synapse
between each pair. In this way the evolved genome function can encode the parameters
of the network with respect to the geometry of the network, which can be advantage-
ous when the input and/or output of the network contain geometrically encoded regu-
larities [22, 23]. In ES-HyperNEAT the density and placement of connections, and so
neurons, is determined by the amount of information encoded in each region of the
hypercube represented by the genome function. Indirect encoding schemes can allow
searching a smaller genome space while still creating complex networks [23].

Two developmental schemes have been used to evolve neural networks with plastic
synapses. Gruau [13] developed a grammar tree system where the values of weights as
determined by plasticity rules could be passed onto new connections created by recurs-
ive expansion of the grammar tree during an individuals life. Khan and Miller [15] de-
vised a system where neurons, axons and dendrites situated in a Cartesian space could
replicate, migrate, grow/shrink and terminate during an individuals life, partially de-
pendent on environmental input. Each of these developmental functions was controlled
by programs evolved using Cartesian genetic programming.

Evolution is the method of choice, and perhaps the only known method, for gener-
ating artificial neural networks based on models other than the traditional rate-based,
fixed-weight variety (for which there are many methods, the most well known of which
is likely back-propagation). There is a wide variety of encoding schemes described here,
but relatively little information on the impact of using different encoding schemes on
evolving neural networks for online learning.

6 Discussion and Future Directions

While relatively little research has been performed in total over the last couple of dec-
ades, advances have been made in tackling increasingly difficult online learning prob-
lem domains, by way of increasing the functional capabilities of neural network models
and via improvements in methods of artificial evolution as a vehicle to generate neural
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networks for online learning. Of course, in the context of the goal of creating an agent
capable of general intelligence, there is still a long way to go.

Problem domains studied to date have been relatively simple, as compared to many
studied in the field of reinforcement learning, and also with respect to the goal of creat-
ing agents with some form of general intelligence. The environments typically represent
a small state-, percept- and action space, with a small change occurring in the environ-
ment during an agents life time (for example, the location of a reward occasionally
switches between two places in a fixed maze layout, or stimulus/reward associations
are modified). Significantly, this small change is the only kind of change that occurs
throughout an entire evolutionary run, and typically an entire set of experiments. These
kinds of simple dynamic tasks require evolving a specialised exploration strategy and
a specialised memory system to remember which fixed behaviour pattern is the current
correct one or to remember a few simple associations. Additionally, all of the studied
problem domains using a reinforcement learning paradigm have very clear exploration
and exploitation phases: it is clear when exploration can cease and exploitation begin,
either initially or upon the environment having changed; thus the specialised exploration
strategy is invoked only when the expected reward for the current behaviour pattern or
stimulus is not met. These have probably been desirable features, given available com-
putational resources or a focus on other aspects of evolving plastic networks. However,
an important question is whether plastic networks can be evolved to operate in more
complex environments and, perhaps more importantly, to operate in environments that
are significantly different to those seen at any other time during an evolutionary run. In
other words, is it possible to evolve plastic neural networks that implement more gen-
eral exploration strategies and can form and exploit internal models of more complex
environments which have not previously been encountered?

As far as the authors are aware there have been no comparative studies on encoding
schemes for plastic networks. An open question is what impact encoding schemes have
on the ability to evolve plastic networks for the task of online learning.

Several studies have found that introducing functional properties observed in
biological neural networks into the neural network models employed for online learn-
ing or adaptation, even in a very simplified form, has produced higher quality solu-
tions, enabled new capabilities, and/or improved evolvability in terms of speed and
reducing variance in performance. Examples include neuromodulation of synaptic
plasticity [25, 26], synaptic scaling/competition [8, 14] and spike-timing-dependent
plasticity [8].

Given these findings, and the many functional properties of biological neurons and
synapses that have been implicated in learning, memory and information processing,
an important question is what functional properties can be introduced to positive effect,
particularly in the domain of online learning, for which only a relatively simple form of
plasticity neuromodulation has been studied to date. Examples of functional properties
for which there is evidence of a role in performing various kinds or aspects of online
learning in biological neural networks include spike-timing-dependent synaptic plasti-
city [2, 5], synaptic scaling and competition [1], stochastic synaptic transmission [24],
meta-plasticity [2], and synapto- and neuro-genesis [7].
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On a similar note, both the neural map and the HyperNEAT-based schemes aim to
allow generating regular structures in the network that map to certain kinds of regu-
larities over multiple inputs and/or outputs [22, 23, 29]. Biological networks achieve
this goal by self-organisation processes [7, 12] which can continue to operate through-
out the networks life. Thus another interesting open question is whether emulations of
these life-time plasticity processes in evolved artificial neural networks can facilitate
online learning for such input or output spaces.

A factor of the success in tackling increasingly difficult online learning problem
domains is the availability of computational power. Specifically, the availability of in-
creasing computational power has made it possible to simulate more complex neural
network models, perform longer evolutionary runs, and simulate more complex envir-
onments that require online learning. This factor should not be underestimated: evolu-
tion of artificial neural network models can be particularly computationally intensive,
especially so for the task of online learning, which by its nature tends to require long
fitness evaluation times in the evolutionary algorithm and the simulation of neural net-
work models that are more complex than typical models. We are entering a period where
this approach is becoming increasingly practical.
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Abstract. Coevolutionary algorithms are a special kind of evolutionary
algorithm with advantages in solving certain specific kinds of problems.
In particular, competitive coevolutionary algorithms can be used to study
problems in which two sides compete against each other and must choose
a suitable strategy. Often these problems are multimodal — there is more
than one strong strategy for each side. In this paper, we introduce a
scalable multimodal test problem for competitive coevolution, and use it
to investigate the effectiveness of some common coevolutionary algorithm
enhancement techniques.

Keywords: coevolution, multimodal, diversity.

1 Introduction

Competitive coevolutionary algorithms are an important class of evolutionary
algorithm, in which there is no externally defined objective fitness function.
Instead, fitness is defined in a relative way, based on interactions between several
coevolving populations. For this reason, competitive coevolutionary algorithms
can suffer convergence “pathologies”, and techniques have been developed to
address these. In this paper, we focus on multimodality in coevolution, a problem
feature that is known to cause convergence problems in evolutionary algorithms.

Coevolutionary algorithms may be either cooperative, in which members of
each population combine to solve a problem, or competitive, in which members
of each population compete against each other. One class of problem for which
coevolutionary algorithms seem especially suited is the problem of determining
good strategies for the opposing parties in an adversarial situation. There is one
population for each party, in which each member of the population represents
a possible strategy for that party. The relative fitness of each strategy in the
population depends on the outcomes of conflicts with strategies from the other
population(s). Examples of problems that can be approached in this way are
games, negotiations and tactical planning. Often these problems appear to be
multimodal, i.e. there is more than one strong strategy for each side.

In order to study the effects of multimodality in coevolution, we introduce a
scalable multimodal test problem, and use it to investigate the effectiveness of
some common coevolutionary algorithm enhancement techniques in improving
an algorithm’s ability to solve multimodal problems.
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In the next section, we briefly review related work, before introducing our
test problem. We then describe a simple coevolutionary algorithm and some
commonly used enhancement techniques. In the following section, we describe
our experiments, in which we test the simple version of the algorithm as well
as variations that use these enhancements. Finally, we present a series of plots
summarising the results of our experimentation and draw our conclusions.

2 Related Work

With regard to evolutionary algorithms, multimodality has long been recognised
as an important issue, and something that often occurs in real world problems.
Accordingly, there have been many studies testing various evolutionary algo-
rithms on a range of multimodal test problems (e.g. [9,17,13,22,18,28,29]). Tech-
niques have been developed to enhance evolutionary algorithms for multimodal
problems, such as crowding [25], fitness sharing [23], derating [2] and specia-
tion [15]. However, we have been unable to locate any similar work on multimodal
test problems for competitive coevolution, or on testing the effectiveness of these
special techniques in the context of competitive coevolution.

Coevolutionary algorithms have been used to solve multimodal function opti-
misation problems (e.g. [10,16,27]), generally by subdividing the problem, assign-
ing subpopulations to different subproblems. Our interest here is different – there
is no external objective function to optimise, instead, the multimodality arises
from the interaction between two competing, coevolving populations. There are
many examples of competitive coevolution being used to solve such problems,
for example in game playing (e.g. [20,12,5]) and red teaming (e.g. [24,14]), but
we have not located any work specifically addressing multimodality in these
applications.

3 A Multimodal Test Problem

In this section, we introduce a multimodal test problem for coevolutionary al-
gorithms with two competing sides. What does multimodality mean in an ad-
versarial problem? Intuitively, the idea is that a problem is multimodal if there
is more than one strong strategy for each side, but how can this idea be oper-
ationalised? For an evolutionary algorithm, multimodalty means that there is
more than one local optimum in the fitness landscape. But in a coevolutionary
algorithm, fitness landscapes are constantly changing as the compositions of the
populations change.

For the purposes of this study, we replace the usual fitness landscape with
what we will call a generalisation landscape. The generalisation performance of
a solution is based on its expected performance against a randomly selected
opponent. This notion has been formalised by Chong et al. [6,7], who proposed
a suitable set of related measures for generalisation performance, and provided
methods to estimate the values of these measures. We discuss these measures
in more detail in Section 5. A generalisation landscape is then defined as the
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surface generated by mapping generalisation performance over a search space.
We will consider a problem to be multimodal if its generalisation surface has
multiple local optima.

We will call our multimodal test problem an n-peaks problem, as there are
n equally good strategies (corresponding to n peaks in the generalisation land-
scape) for each side. The challenge for a coevolutionary algorithm is to locate as
many of these peaks as possible.
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Fig. 1. Mean payoffs against random opponents for solutions to the 5-peaks problem
with H= 1 and L = 1. An individual near 0, for example, will get a payoff of H (i.e. 1)
against most opponents in the first interval (0 to 0.2), the third interval (0.4 to 0.6),
and the fifth interval (0.8 to 1.0), and a payoff of L (i.e. also 1) against only a few
opponents, in the second and fourth intervals, giving a mean payoff of nearly 0.6.

The problem is symmetric (the domain and task are the same for both sides).
The domain for each side is the interval [0, 1]. The problem is parameterised by
n, and by two payoff values H > 0 and L > 0. When two individuals x and y
compete, the outcome is determined as in Equations (1)–(6).

ix = "(x× n)# (1)

iy = "(y × n)# (2)

vx = |0.5− (x × n) + ix| (3)

vy = |0.5− (y × n) + iy| (4)

gap = mod(ix − iy, n) (5)

score(x, y) =

⎧⎨
⎩
H, if gap%2 = 0 and vx > vy
L, if gap%2 = 1 and vx < vy
0 otherwise

(6)

Intuitively, we picture the domain as divided into n equal intervals. Figure 1
illustrates the case n = 5, H = L = 1. When x and y compete, the outcome
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depends on which intervals they belong to (Equations 1 and 2), and on the
distances from the centres of their intervals (Equations 3 and 4). If x and y are
in the same interval, then x gets a payoff of H if it is further from the centre of
the interval than y is (otherwise 0). If y is in the next interval to the right of
x, then x gets a payoff of L if it is closer to the centre of its interval than y is
to the centre of its interval. For this purpose, the “next interval to the right” of
the rightmost interval is considered to be the leftmost interval - i.e. the domain
wraps around. If y is two intervals to the right of x, then x gets a payoff if it is
furthest from the centre of its interval. This pattern continues, with wrapping
if necessary, so that the domain is actually circular, rather than linear. If y is
an even number of intervals to the right of x, then it is good for x to be nearer
its boundary (for a payoff of H), while if y is an odd number of intervals to the
right, then it is good for x to be nearer the centre of its interval (for a payoff
of L).

In the case of the problem in Figure 1, those individuals close to the interval
boundaries get a high payoff against about 60% of opponents randomly selected
from the domain (for an average payoff of 0.6), while those near the middle of
their interval only get a high payoff against about 40% of opponents (average
payoff 0.4). Thus, there are n local optima or peaks in the generalisation land-
scape (counting 0 and 1 as the same individual, so that there is half a peak near
0 and the other half of it is near 1).

Although, in this paper, we study only the 5-peaks problem in Figure 1, the
picture is similar for other values of n. By setting the values of H and L, the
difference between peak and trough values can be manipulated. By changing
the definition slghtly and using more than one H and/or L value, the heights
of individual peaks could also be controlled. It is also straightforward to extend
the idea to higher dimensions, by subdividing a hypercube into cells, and using
a kind of Manhatten distance between cells in place of the gap value.

4 Algorithm and Variations

In order to illustrate the difficulties posed by multimodality, we carried out
experiments to test the performance of a simple competitive coevolutionary al-
gorithm, along with some popular variations, on an n-peaks problem. In this
section we describe the algorithm and variations that we used.

4.1 CEAN - A Näıve Coevolutionary Algorithm

As a base case, we use a simple, näıve, competitive coevolutionary algorithm
which we call CEAN. We then define variations on CEAN which include a fitness
sharing mechanism, or a Hall of Fame, or both, and we also vary the mutation
rate. Algorithm 1 describes the algorithm in pseudocode. Note that we have not
included crossover (but it could easily be added) – we don’t use crossover here
because the genome for our problem is a single real number. The parameter μ is
the mutation rate and the procedure Mutate mutates an individual population
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member. The procedure Select selects one individual from a population, based
on the fitness values of the population members. Finally, the procedure Calcu-
lateFitness assigns fitness values to the members of both populations, based on
competition between members of the two populations.

Input: Two initial populations P 0
1 and P 0

2

Output: Two final populations P f
1 and P f

2

1 begin
2 t ← 0;
3 while t < f do
4 CalculateFitness(P t

1 , P
t
2);

5 for i ∈ 1..2 do
6 P t+1

i ← {};
7 while P t+1

i is not full do
8 s ← Select(P t+1

i );
9 with probability μ, s ← Mutate(s);

10 P t+1
i ← P t+1

i ∪ {s};
11 end

12 end
13 t ← t+ 1;

14 end

15 end
Algorithm 1: CEAN

For the näıve algorithm, CalculateFitness assigns a fitness value for each pop-
ulation member as the mean payoff achieved in competition with the members
of the other population. This is presented in pseudocode in Algorithm 2.

4.2 Variants

Even when solving unimodal problems, we know that coevolutionary algorithms
often need special care to avoid coevolutionary pathologies such as cycling, loss of
gradient, and so on [1,11,23,8,3]. Two common remedies are the use of an archive
(to prevent evolutionary forgetting), and diversity maintenance techniques (to
prevent loss of diversity). We therefore created variations on CEAN that include
an archive and/or a diversity maintenance mechanism.

First let us consider diversity maintenance. A simple, explicit way to main-
tain diversity is to use a high mutation rate, but this also has the disadvantage
of disrupting evolutionary learning in a random, uncontrolled way. Among the
available implicit diversity maintenance techniques, we chose to use competitive
fitness sharing [23]. This works by penalising population members that are sim-
ilar to others in the population. The simple fitness of an individual is calculated
in the normal way, and is then divided by a quantity called the niche count
to determine its shared fitness. Selection is then carried out using shared fitness
rather than simple fitness. Modifying CEAN to use this selection procedure gives
an algorithm variant we call CEAFS.
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Input: Two populations P1 and P2

1 begin
2 for x ∈ P1 do
3 f ← 0;
4 for y ∈ P2 do
5 f ← f + score(x, y);
6 end

7 fitness(x) = f
|P2| ;

8 end
9 for y ∈ P2 do

10 f ← 0;
11 for x ∈ P1 do
12 f ← f + score(y, x);
13 end

14 fitness(y) = f
|P1| ;

15 end

16 end

Algorithm 2: Calculating fitness for CEAN

Equations 7 and 8 are used to calculate the niche count, where xi is the ith

individual in the population, and u is the genome length (so di,j is the Euclidean
distance between xi and xj). ci is the niche count for xi, τ is a constant that
determines the shape of the sharing function, nr is a constant (niche radius) and
N is the population size.

ci =

N∑
j=1

{
1− (

di,j

nr
)τ if di,j ≤ nr

0 otherwise
(7)

di,j =

√√√√ u∑
m=1

(xi,m − xj,m)2 (8)

As an archive mechanism, we implemented a Hall of Fame (HOF) [23]. For
each population, we maintain an archive, known as a Hall of Fame, consisting
of fittest individuals from each earlier generation. In this CEAHOF variant of
CEAN, the fitness calculation given in Algorithm 2 is modified to calculate the
average payoff of the individual in question against members of the opposing
population as well as the members of the archive. After each generation, the
fittest individual from each population is added to the archive.

Thus we have three variants: the näıve algorithm, CEAN, a variant that uses
fitness sharing, CEAFS, and a variant that uses a Hall of Fame, CEAHOF.
Finally, we also created a fourth variant which uses both fitness sharing and a
Hall of Fame, CEACFH. In this variant, fitness values are calculated using the
Hall of Fame as for CEAHOF, and then these values are adjusted to obtain
shared fitness values as for CEAFS.
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5 Performance Measures

One aspect of performance is generalisation performance - that is, how well do
solutions found for one side in a contest, learned via a coevolutionary algorithm,
generalise to compete well against arbitrary strategies for the other side?

We use Chong et al.’s notion of generalisation performance [6,7]. They describe
their methods in terms of a population attempting to learn general solutions to
perform well against a large space of test cases. They begin by defining gener-
alization performance as the mean score of a solution in all possible test cases.
This intuitively appealing definition poses several practical difficulties. First, for
many problems of interest, the space of possible test cases could be very large,
or even infinite, and there may be no way to compute a mean score analytically.
Therefore, they propose a statistical approximation approach, in which a mean
score is computed for a suitable sample of test cases. The second difficulty is to
decide what probability distribution should be used over the space of test cases.
In many cases, scores against “high quality” test cases might be considered more
important, as they would be more likely to be chosen by an opponent, for exam-
ple. Chong et al. therefore propose two different methods for sampling the space
of test cases: unbiased sampling (which is purely random) and biased sampling
(which favours higher quality test cases). In this paper, we use biased sampling
to measure algorithm performance. The procedure to obtain a biased sample for
testing is described in detail in [6,7].

In addition, they consider several different summary values to describe the
overall generalisation performance of a population of solutions: average, best
and ensemble. We consider only the “best” figure. Equations 9 and 10 describe
how this is calculated. Here TestSet is a biased sample of test cases, P is a
population of solutions, and best(P, k) is the set consisting of the k members
of P with the highest simple fitness values. Intuitively, best(P, k) is what the
coevolutionary algorithm “thinks” is the best k solutions found, and BestGP (P )
is the generalisation performance of the best generaliser amongst them.

GP (x) =
1

|TestSet|
∑

y∈TestSet

score(x, y) (9)

BestGP (P ) = max
x∈best(P,k)

GP (x) (10)

In the case of a multimodal problem, another relevant aspect of performance is
how well an algorithm does at locating as many peaks as possible – that is, can the
algorithm locate many different representative solutions with high generalisation
performance, rather than simply any of them.

One way to quantify this aspect of performance is to calculate what proportion
of peaks the algorithm finds on average, and how often it succeeds in finding all
peaks. These are summarised by the two measures peak ratio (Equation 11) and
success ratio (Equation 12) [26].

peak ratio =
total peaks found

number of peaks× number of runs
(11)
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success ratio =
number of times all peaks found

number of runs
(12)

In addition to these ratios, we also calculated the circular earth mover’s dis-
tance (CEMD). CEMD was introduced by Rabin et al. [21] for comparing two
histograms, and has been widely used in image processing for comparing im-
ages. Since we know the true location of the peaks in our test problem, we can
construct an “ideal” distribution for an evolved population, in the form of a
histogram in which all buckets not containing a peak are empty, and all buckets
containing a peak contain equal numbers of solutions. We can then compare
the actual histogram with this ideal histogram. Earth mover’s distance is the
minimum total amount of movement that would be required to make the two
histograms identical. For the case of a circular domain, there is a simple way to
calculate this, given in Equation 13.

Here the two histograms are F and G, and N is the number of buckets. Fk is
the cumulative histogram derived from F , starting at bucket k and wrapping at
the right hand edge of the domain (and likewise for Gk). In our experiments we
used 40 equally spaced buckets for this calculation.

CEMD = min
k∈{1,2,...,N}

{ 1
N

N∑
i=1

|Fk[i]−Gk[i]|} (13)

6 Experiments and Results

To investigate the effects of diversity maintenance via fitness sharing and/or
mutation, and of an archive in the form of a Hall of Fame, on the 5-peaks
problem, we executed each algorithm 60 times for each mutation rate from 2.5%
to 100% in steps of 2.5%. In each case we used the fixed parameter settings as
in Table 1. The values of niche radius and τ were set on the basis of preliminary
empirical tests. For each execution, in each generation, we recorded diversity
(genotypic diversity), generalisation performance (best GP), and peak finding
ability (CEMD, peak ratio and success ratio).

Table 1. Fixed Algorithm Parameters

Parameter Value

Mutation Gaussian, with wrapping, σ = 0.1

Selection Stochastic universal sampling

Population size 50 in each population

Generations 300

Niche radius 0.2

τ 1.0

HOF size 50
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Figures 2 to 4 present the results in the form of a series of profile plots. Each
data point is an average over 60 executions of the mean value for the figure in
question over the final 60 generations. There is a data point for each algorithm
variant and mutation rate. (Here we report data for the first side, but the problem
is symmetric and the data for the other side is entirely similar, as expected.)

For example, in terms of diversity, in Figure 2(a), we see that the variants
that use fitness sharing have the highest diversity, and that this diversity is not
sensitive to the mutation rate (with a slight peak at a mutation rate of about
12.5%). The two variants without fitness sharing have lower diversity, increasing
with mutation rate, with CEAHOF performing worst in terms of diversity.

Turning next to generalisation performance, Figure 2(b) shows the equiva-
lent plot for best generalisation performance. For reference, assuming that both
populations are reasonably diverse, generalisation performance should be in the
range 0.4 to 0.6. We can see from the figure that CEAN, the näıve algorithm,
is the worst performer, with a maximum of only about 0.56, for mutation rates
above 27.5%. Fitness sharing improves performance to about 0.58 for CEAFS
with mutation rates between about 7.5% and 12.5%, which is also the range that
gives slightly better diversity with this variation. CEAHOF achieves almost the
same level for mutation rates between about 17.5% and 57.5%. But the best per-
formance is for the combined variant CEACFH, with above 0.59 for mutation
rates between 5% and 12.5%.

(a) diversity (b) generalisation

Fig. 2. Profile plots of diversity and best generalisation performance (mean over the
final 60 generations) versus mutation rate for each of the 4 algorithm variants.

From this, we draw a tentative conclusion that Hall of Fame provides a benefit
to generalisation performance, but this may be limited by the drawback that it
reduces diversity. Combining a Hall of Fame with a diversity mechanism solves
the diversity loss problem, and fitness sharing is a more effective mechanism for
this than simply increasing the mutation rate.
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The last three plots address the question of the ability of the algorithm vari-
ants to find the multiple peaks of our multimodal problem. Figure 3 shows this
in terms of the circular earth mover’s distance. Recall that this measures how
similar the distribution of the population is to an ‘ideal’ distribution, so smaller
values are considered better. Clearly the minimum value is achieved by the com-
bined variant (closely followed by the fitness sharing one), with low mutation
rates of about 2.5% to 12.5%. This picture is confirmed by the results for peak ra-
tio (Figure 4(a)) and success ratio (Figure 4(b)). The two fitness sharing variants
with low mutation rates are clearly superior, with the combined variant slightly
shading the plain fitness sharing variant. For mutation rates above about 35%,
all the variants perform equally poorly.

Fig. 3. Profile plot of the circular earth mover’s distance (mean over the final 60
generations) versus mutation rate for each of the 4 algorithm variants

(a) peak ratio (b) success ratio

Fig. 4. Profile plots for peak finding performance (mean over the final 60 generations)
versus mutation rate for each of the 4 algorithm variants
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7 Conclusion

In this paper, we have examined the performance of a competitive coevolutionary
algorithm on a multimodal problem. We created the n-peaks problem, a scalable
multimodal test problem in which the number and amplitude of the peaks in the
fitness landscape can be manipulated.

We then used an instance of the problem to test a näıve competitive coevo-
lutionary algorithm, as well as several variants incorporating an archive (Hall
of Fame) and a diversity maintenance mechanism (competitive fitness sharing),
in terms of their generalisation ability, and peak finding ability. We found that,
for this problem, best results in terms of both criteria were obtained with the
combination of an archive and diversity maintenance, with a moderately low
level of mutation.

In future work, it remains to investigate other instances of the problem with
different generalisation landscapes, and in higher dimensions. In addition, other
methods for handling multimodality can be tested.
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Abstract. Wilson extended XCS with interval based conditions to
XCSR to handle real valued inputs. However, the possible actions must
always be determined in advance. Yet domains such as robot control
require numerical actions, so that neither XCS nor XCSR with their dis-
crete actions can yield high performance. In the work presented here,
genetic programming-based representation is used for the first time to
compute continuous action in XCSR. This XCSR version has been ex-
amined on a simple one-dimensional but non-linear testbed problem –
the “frog” problem – and compared with two continuous action based
systems, GCS and XCSFCA. The proposed approach has consistently
solved the frog problem and outperformed GCS and XCSFCA.

Keywords: Learning Classifier Systems, XCS, XCSR, Code Fragment,
Computed Action, Continuous Action.

1 Introduction

A learning classifier system (LCS) represents a rule-based agent that incorpo-
rates evolutionary computing and machine learning to solve a given task by
interacting with the environment. The rules are of the form “if state then ac-
tion”. Usually the possible number of actions are known in a learning classifier
system, but for problems requiring continuous real valued outputs, it is not pos-
sible. Therefore discrete action based systems like XCS and XCSR show some
limits. A solution is to use a generalized classifier system (GCS) [20] in which the
input x is linked to the action a in the process of matching the environmental
instance. The difficulty of GCS is to evolve a condition form t(x, a) so that the
action is continuous. Tran et al. [14] implemented XCSF [19] having computed
continuous actions, named as XCSFCA, where the action is computed directly
as a linear combination of the input state and a vector of action weights. XCS-
FCA has outperformed GCS and produced very promising results for the frog
problem, but could not achieve the 100% performance.

In this paper, a new approach will be investigated in which the discrete action
in XCSR is replaced by a code fragment. A code fragment is a tree-expression,
similar to a tree generated in genetic programming. The action value is deter-
mined using the input state values as terminals of the code fragmented action.
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Thus the action is continuous with respect to the input state in this version of
XCSR, named XCSRCFA (XCSR with Code Fragmented Action). The proposed
approach will be examined and compared with GCS and XCSFCA on the frog
problem described in [20].

The rest of the paper is organised as follows. Section 2 describes genetic pro-
gramming, learning classifier systems, accuracy based learning classifier systems
(XCS), and real valued XCS (XCSR). In section 3 the novel implementation of
XCSR using code fragmented actions is detailed. Section 4 describes the frog
problem and experimental setup used in the experimentation. In section 5 ex-
perimental results are presented and compared with GCS and XCSFCA. In the
last section this work is concluded and the future work is outlined.

2 Background

2.1 Genetic Programming

Commonly, genetic programming (GP) uses a rich alphabet to encode the so-
lution, i.e. symbols that can express functions as well as numbers. A GP like
alphabet to describe the problem is used in the LCS developed here, so the GP
technique is described to aid understanding.

GP is an evolutionary approach to generating computer programs for solving
a given problem automatically [10]. The task to be solved is represented by a
primitive set of operations, known as the function set, and a set of operands,
known as the terminal set.

The GP generated computer program is normally represented as a tree, which
may contain unnecessary terms (bloat). The bloat problem in GP is usually ad-
dressed by limiting maximal allowed depth for an individual tree and/or using
a fitness measure that punishes excess sized individuals [12], or using specific
bloat control operators [2]. LCSs are a well structured rule-based learning tech-
nique that have various evolutionary pressures [4] to produce maximally general,
optimal and accurate classifier rules, implicitly avoiding bloat.

A GP system produces a tree as a ‘single’ solution, rather than a co-operative
set of rules as in an LCS. It generally requires supervised learning with the whole
training set, rather than on-line, reinforcement learning as in LCS.

2.2 Learning Classifier Systems

Traditionally, an LCS represents a rule-based agent that incorporates evolu-
tionary computing and machine learning to solve a given task, enacting in an
unknown environment via a set of sensors for input and a set of effectors for
actions. The rules are of the form “if state then action”. After observing the
current state of the environment, the agent performs an action, and the envi-
ronment provides a reward, as depicted in Figure 1.
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Fig. 1. Schematic depiction of a learning classifier system. In the proposed approach
of computed continuous action, a classifier will become a member of M if its condition
part matches the input as usual and its action belongs to the allowed action range. The
action set [A] is governed by the classifiers in [M ] that have the highest fitness-weighted
average prediction value, see section 3.

Accuracy Based Learning Classifier System. XCS is a formulation of LCS
that uses accuracy-based fitness to learn the problem by forming a complete
mapping of states and actions to rewards.1 In XCS, the learning agent evolves a
population [P ] of classifiers, where each classifier consists of a rule and a set of
associated parameters estimating the quality of the rule. Each rule is of the form
‘if condition then action’, having two parts: a condition and the corresponding
action. Commonly, the condition is represented by a fixed length bitstring defined
over the ternary alphabet {0, 1,#}, and the action is represented by a numeric
constant.

Each classifier has three main parameters: (1) prediction p, an estimate of the
payoff that the classifier will receive if its action is selected, (2) prediction error
ε, which estimates the error between the classifier’s prediction and the received
payoff, and (3) fitness F , computed as an inverse function of the prediction error.
In addition, each classifier keeps an experience parameter exp, which is a count
of the number of times it has been updated, and a numerosity parameter n,
which is a count of the number of copies of each unique classifier.

1 For a detailed review of different types and approaches in LCS refer to [15].
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The agent has two modes of operation, explore (training) and exploit (appli-
cation). In the following, XCS operation is concisely described. For a complete
description, the interested reader is referred to the original XCS paper by Wilson
[16], and to the algorithmic details by Butz et al. [5].

In the explore mode the agent attempts to obtain information about the
environment and describe it by creating the decision rules:

1. observes the current state of the environment, s ∈ S where S is the set of
all possible environmental states. The current state s is usually represented
by a fixed length bitstring defined over the binary alphabet {0, 1}.

2. selects classifiers from the classifier population [P ] that have conditions
matching the state s, to form the match set [M ].

3. performs covering: for every action ai ∈ A in the set of all possible actions,
if ai is not represented in [M ] then a random classifier is generated with
a given generalization probability such that it matches s and advocates ai,
and added to the population (termed covering)2.

4. forms a system prediction array P (ai) for every ai ∈ A that represents the
system’s best estimate of the payoff should the action ai be performed in the
current state s. Commonly, P (ai) is a fitness weighted average of the payoff
predictions of all classifiers advocating ai.

5. selects an action a to explore (probabilistically or randomly) and selects all
the classifiers in [M ] that advocated a to form the action set [A].

6. performs the action a, records the reward r from the environment, and uses
r to update the associated parameters of all classifiers in [A].

7. when appropriate, implements rule discovery by applying an evolutionary
mechanism, commonly a genetic algorithm (GA), in the action set [A] to
introduce new classifiers to the population.

Additionally, the explore mode may perform subsumption, to merge specific
classifiers into any more general and accurate classifiers.

In contrast to the explore mode, in the exploit mode the agent does not
attempt to discover new information and simply performs the action with the
best predicted payoff. The exploit mode is also used to test learning performance
of the agent in the application.

Various GP-based representations have been investigated to represent high
level knowledge in LCS in an attempt to obtain compact classifier rules [6], to
reach the optimal performance faster [11], to develop useful feature extractors
[1], and to extract building blocks of knowledge [8,7]. In the work presented here,
GP-based representation is used for the first time to compute continuous action
in LCS.

Real Valued XCS (XCSR). The changes to XCS for real inputs were as fol-
lows [17,18]. The classifier condition was changed from a string from {0, 1, #}
2 If the classifier population size grows larger than the specified limit, then one of the
classifier rules has to be deleted so that the new rule can be inserted.
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to a concatenation of interval predicates, inti = (li, ui), where li(“lower”) and
ui(“upper”) are real values. A classifier matches an input message x if each ele-
ment xi belongs to the corresponding interval predicate, i.e. li ≤ xi ≤ ui. When a
new covered classifier is created, each interval predicate inti = (li, ui) is generated
as li = xi − rand(r0) and ui = xi + rand(r0), where rand(r0) is a value uniform
randomly from [0, r0] and r0 is a real constant.

The GA works as in XCS. Crossover (with probability χ) permutes alleles
of two parents between two crossover points. Since an allele is a real value, a
new mutation operator is introduced. Mutation (with probability μ) modifies an
allele by adding an amount ±rand(m0) where m0 is a real constant. A classifier
clfr1 can subsume another classifier clfr2 if every interval predicate in clfr1 ’s
condition is more general than the corresponding predicate in clfr2 ’s condition.

Covering and mutation operators can generate intervals out of the condition
range. If it happens, li and ui of an interval predicate inti are brought back to
the extremes of the condition range and they are possibly permuted in order to
respect the predicate constraint li ≤ ui.

XCSR can handle real valued inputs using interval based conditions, but the
possible actions still need to be determined in advance. Yet domains such as
robot control require numerical actions, so that neither XCS nor XCSR with
their discrete actions can yield high performance. In the work presented here,
the discrete action in XCSR is replaced by a continuous action represented as
a genetic programming-tree like code fragment. We have also implemented a
discrete code fragmented action in XCS (while using the ternary alphabet based
conditions in the classifier rules), to successfully evolve compact and optimal
populations for multiplexer domain problems [6].

3 XCSR with Code Fragmented Action (XCSRCFA)

In the work presented here, the discrete action in XCSR is replaced by a con-
tinuous action represented as a code fragment while using the interval based
conditions in the classifier rules. Each code fragment is a binary tree of depth up
to two, which was set to limit the tree size. A binary tree of depth two can have
maximum seven nodes. The function set for the tree is problem dependent such as
{+,−, ∗, /...} for linear regression problems, and {AND,OR,NAND,NOR...}
for binary classification problems as is the simple standard set in GP domain [10].
The terminal set is {ERC,D0, D1, D2, ..., Dn− 1} where ERC is an ephemeral
random constant and n is the length of condition in a classifier rule.

The action value of a classifier is determined by evaluating the action code
tree. The action code tree is evaluated by replacing the terminal symbols with
the corresponding environmental instances’ values. Thus the action is continuous
with respect to the input state in XCSRCFA. For example, consider the code
fragmented action shown in Figure 2. The internal nodes of the tree are functions
and leaves are the terminals. In this action tree, 1.0 is an ERC and D0 is the
environmental input. If the input value is 0.4 then the action value will be 0.6
for this code fragmented action.
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1.0

D0 1.0

/

-

Fig. 2. A sample code fragmented action. Here 1.0 is an ERC and D0 is the environ-
mental input. If the input value is 0.4 then the action value will be 0.6 for this code
fragmented action.

A classifier will become a member of the match set [M ] if its condition part
matches the input as usual and its computed action belongs to the allowed action
range. A pure random exploration is usually used for exploring actions of the
environment, but in XCSRCFA it is replaced by a deterministic strategy, i.e. the
action with the highest fitness-weighted average prediction value is selected. The
classifiers advocating the best action will survive while GP-based crossover and
mutation operations will allow the system to explore actions.

If the match set [M ] is empty then a new covered classifier is generated with
a random code fragmented action that outputs an allowed action value against
the current environmental input state s.

When the GA is applied in the action set [A] to produce two offspring, action
trees of the offspring are generated by crossing over the action trees of the par-
ents. Then the action trees of the offspring are mutated with a given probability,
to replace a subtree of the action with a randomly generated subtree of depth
up to 1. The prediction of the offspring is set to the average of the parents’
values whereas the prediction error and fitness of the offspring are set to the av-
erage of the parents’ values reduced by constants predictionErrorReduction and
fitnessReduction respectively, as in [3].

As the frog problem is one-dimensional, therefore the recombination of alle-
les of two parents does not generate new values of alleles. The system cannot
explore values near the parents values, and thus appropriate conditions are not
generated. To solve this problem, a mix crossover [14] is used.

It is to be noted that advantages of subsumption deletion are lost due to geno-
typic differences resulting in subsumption not occurring despite phenotypically
similar behaviour. Subsumption deletion is made possible, albeit still problem-
atic, by matching the action code on a character by character base.

4 The Problem Domain and Experimental Setup

4.1 The Frog Problem

In the frog problem, a system (frog) senses an object (fly) via a signal that
monotonically decreases with the distance between them [20]. The frog should
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learn to catch the fly in one jump. Let d (0.0 ≤ d ≤ 1.0) be the frog’s distance
from the fly. For simplicity, it is assumed that the frog’s sensory input x, falls
linearly with distance d, as given in Equation 1:

x(d) = 1− d (1)

On receiving the signal input x, the frog jumps a certain distance a as an action.
A jump can be over or under the fly. Then the frog receives a payoff related to
the remaining distance, as given in Equation 2:

P (x, a) =

{
x+ a if x+ a ≤ 1

2− (x + a) otherwise
(2)

It is to be noted that the payoff function is continuous and nonlinear – albeit
composed of two linear planes. To solve the frog problem, a system must learn
to choose, given x, the value of a corresponding to maximum payoff.

4.2 Experimental Setup

The system uses the following, commonly used in the literature, parameter val-
ues as suggested by Butz et al. in [3,5]: fitness fall-off rate α = 0.1; predic-
tion error threshold ε0 = 0.01; fitness exponent ν = 5; learning rate β = 0.2;
threshold for GA application in the action set θGA = 25; experience threshold
for classifier deletion θdel = 20; fraction of mean fitness for deletion δ = 0.1;
classifier experience threshold for subsumption θsub = 20; crossover probability
χ = 0.8; mutation probability μ = 0.04; r0 = 0.1; m0 = 0.1; initial prediction
pI = 0.01; initial prediction error εI = 0.0; initial fitness FI = 0.01; reduction
of the prediction error predictionErrorReduction = 0.25; reduction of the fit-
ness fitnessReduction = 0.1; and the selection method is tournament selection
with tournament size ratio 0.4. The action of a newly created classifier by GA
invocation is mutated with probability 0.2. Both GA-subsumption and action
set subsumption are activated. The range of ERC is [-2, 2] and the function set
is {+, -, *, /}. The allowed action range is [0, 1]. The number of micro classifiers
used is N = 2000. Explore and exploit problems are alternated with probability
0.5. All the experiments have been repeated 30 times with a known different
seed in each run. One run is stopped after 100, 000 explore problems.

5 Results

5.1 Performance

The results of the frog problem using GCS, XCSFCA, and the proposed approach
XCSRCFA are shown in Figure 33. The system error measures the difference
between the prediction of the expected payoff and the payoff received. The payoff
and system error curves are plotted by using a 50-point running average from
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(a) from one run in GCS [20] (b) averaged over ten runs in XCS-
FCA [14]

(c) averaged over thirty runs in the
proposed approach XCSRCFA

Fig. 3. Results of the frog problem in terms of payoff, system error, and population
size using GCS, XCSFCA, and the proposed approach XCSRCFA (curve order same
as in legend). (a) one run in GCS [20], (b) averaged over ten runs in XCSFCA [14],
and (c)averaged over thirty runs in XCSRCFA.

exploit problems. In each problem of an experiment, the fly was placed at a
random distance d (0.0 ≤ d ≤ 1.0) from the frog.

The payoff curve in Figure 3(a) shows that the performance of GCS was
volatile. Although the performance did rise quickly to receive payoff greater
than 0.95, it did not reach optimal performance (payoff 1.0). The system error
curve approximately complements the payoff curve, so the system error for GCS
is approximately 0.05 throughout the learning process. The population size curve
for GCS rises to about 70% of N and then declines very gradually. The payoff
curve in Figure 3(b) shows that the performance of XCSFCA is greater than 99%
after an averaged number of 30, 000 problems, but could not acheive stabilized

3 The results of GCS and XCSFCA were taken from [20] and [14] respectively, with
permission from authors and copyright holders.
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100% performance. The system error drops to smaller than 1%. The population
size of classifiers is about 37% of N . The payoff curve in Figure 3(c) shows
that the performance of the proposed approach XCSRCFA reached 100% after
an averaged number of 18, 000 problems and did not decline after that. The
population size of classifiers is about 37% of N .

Preen et al. [13] conducted experimentation on the frog problem using fuzzy
dynamical genetic programming in XCSF and reported greater than 99% perfor-
mance after an averaged number of 4, 000 problems, but could not acheive sta-
bilized 100% performance. The reported population size of classifiers is around
0.08% of N .

5.2 Best Action

If the frog wants to catch the fly at d, it must jump a distance a = d = 1−x. Since
d is generated randomly from [0, 1], the sensory input x received by Equation 1
gives the value from [0, 1]. As a direct indication of the system’s ability to choose
the best action a∗ and to gauge a∗’s continuity with respect to x, at the end of
each run x was scanned from 0 to 1 with increment 0.001 and the resulting a∗

plotted in Figure 44. The plot for GCS, Figure 4(a), lies close to the diagonal
but has discontinuities. The plot for XCSFCA, Figure 4(b), is nearly coincident
with the diagonal ‘1 − x’, but is slightly broken at some inputs x. The plot for
the proposed approach XCSRCFA, Figure 4(c), is exactly the diagonal with no
broken points.

5.3 Analysis of Evolved Rules

The proposed approach evolved maximally general and accurate classifiers by
exploiting the generalization ability of LCS (to create a maximally general con-
dition) and the rich GP-based representation (to create the corresponding accu-
rate action in the classifier). The experienced (i.e. exp ≥ 1/β) and accurate (i.e.
ε ≤ ε0) classifier rules from the final population of a run are shown in Table 1.
The code fragmented action is shown in postfix form, where D0 represents the
sensory input x. Here F , n, p, ε, and exp denote fitness, numerosity, prediction,
prediction error, and experience of a classifier respectively, and as denotes the
average size of the action sets this classifier has belonged to.

The proposed XCSRCFA has successfully solved the frog problem evolving
maximally general and accurate classifier rules like 9 − 16 and 19 − 23, shown
in Table 1, that have the optimal payoff value of 1.0. Each of these maximally
general classifier covers the whole input space ranging from 0.0 to 1.0 and has
the accurate action that is equivalent to the diagonal ‘1 − x’, therefore each of
them is able to solve the frog problem individually.

Subsumption deletion was made possible by comparing the code fragmented
action on a character by character base, but due to the multiple genotypes to a

4 The results of GCS and XCSFCA were taken from [20] and [14] respectively, with
permission from authors and copyright holders.
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(a) from one run in GCS [20] (b) averaged over ten runs in XCS-
FCA [14]

(c) averaged over thirty runs in the
proposed approach XCSRCFA

Fig. 4. Best action a∗ of the frog problem is plotted by scanning the values of x from 0
to 1 increased by 0.001 using GCS, XCSFCA, and the proposed approach XCSRCFA.
(a) The plot for GCS [20] has discontinuities. (b) The plot for XCSFCA [14] is nearly
coincident with the diagonal ‘1 − x’, but is slightly broken at some inputs x. (c) The
plot for the proposed approach is coincident with the diagonal and have no broken
points.

single phenotype issue code fragmented XCSR could not combine the phenotypi-
cally similar classifiers, like 9−16 and 19−23, into a single macro-classifier while
evolving the population. So, the final population contains redundant classifier
rules.

The average size of the action sets as classifiers 1−8 and 17−18 have belonged
to is very small as compared with that of classifiers 9 − 16 and 19 − 23 due to
the corresponding range of input space covered by them. As as is smaller for
classifiers 1−8 and 17−18 so higher proportionate fitness F , but low numerosity
n and experience exp highlight lack of worth.
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Table 1. The experienced (i.e. exp ≥ 1/β) and accurate (i.e. ε ≤ ε0) classifier rules,
obtained in a typical run for the frog problem, using XCSR with code fragmented
actions. The code fragmented action is shown in postfix form, where D0 represents
the sensory input x. Here F , n, p, ε, and exp denote fitness, numerosity, prediction,
prediction error, and experience of a classifier respectively, and as denotes the average
size of the action sets this classifier has belonged to.

Sr. No. Condition Action F n p ε exp as
1 0.465356, 0.595225 D0 D0 * 0.907365 10 0.921854 0.006570 52 63.282196
2 0.000000, 0.064200 D0 2.0 / 0.893442 4 0.022754 0.005511 10 3.148032
3 0.133880, 0.279742 D0 D0 / 0.614114 10 0.834261 0.005719 72 41.985043
4 0.610654, 0.820274 D0 D0 * 0.612922 12 0.987231 0.009383 43 35.619358
5 0.673753, 0.881177 D0 2.0 / 0.0 -2.0 * + 0.498389 6 0.977880 0.008186 288 78.365341
6 0.891880, 0.943779 D0 D0 0.0 - - 0.497211 3 0.907607 0.003826 128 51.026615
7 0.891880, 0.943779 0.0 0.390534 3 0.907607 0.003826 128 51.026615
8 0.374393, 0.380699 D0 0.0 + 2.0 D0 * / 0.245285 1 0.877544 0.007733 5 22.799999
9 0.000000, 1.000000 D0 D0 / D0 - 0.153247 59 1.0 0.0 62585 384.999939
10 0.000000, 1.000000 0.0 -1.0 - D0 - 0.135065 52 1.0 0.0 58435 384.999939
11 0.000000, 1.000000 1.0 1.0 D0 * - 0.122078 47 1.0 0.0 50335 384.999939
12 0.000000, 1.000000 -2.0 -2.0 / D0 - 0.119481 46 1.0 0.0 67660 384.999939
13 0.000000, 1.000000 1.0 D0 0.0 + - 0.116883 45 1.0 0.0 49710 384.999939
14 0.000000, 1.000000 1.0 D0 - 0.111689 43 1.0 0.0 71558 384.999939
15 0.000000, 1.000000 -2.0 -2.0 / 1.0 D0 * - 0.100853 39 1.0 0.0 62710 384.999939
16 0.000000, 1.000000 -2.0 -2.0 / D0 0.0 + - 0.096548 37 1.0 0.0 53760 384.999939
17 0.680369, 0.895523 0.0 -2.0 * 0.0 D0 / + 0.052886 1 0.884182 0.006870 20 43.390942
18 0.641876, 0.825135 D0 2.0 / 0.0 D0 / + 0.037919 1 0.985085 0.006275 5 64.599998
19 0.000000, 1.000000 2.0 1.0 - D0 1.0 / - 0.033766 13 1.0 0.0 28460 384.999939
20 0.000000, 1.000000 -2.0 -2.0 / D0 1.0 / - 0.002597 1 1.0 0.0 736 384.999939
21 0.000000, 1.000000 1.0 0.0 - D0 0.0 + - 0.002597 1 1.0 0.0 5161 384.999939
22 0.000000, 1.000000 1.0 0.0 - D0 - 0.002597 1 1.0 0.0 12761 384.999939
23 0.000000, 1.000000 -2.0 -2.0 / 0.0 D0 + - 0.002597 1 1.0 0.0 34235 384.999939

6 Conclusions

This paper presented an extension to XCSR in which the discrete action has
been replaced by a code fragmented action that is continuous with respect to the
input state. The proposed XCSRCFA has successfully solved the frog problem,
consistently producing the optimum rules with the maximum predicted payoff.

The investigation of code fragments shows that the multiple genotypes to a
single phenotype issue in XCSRCFA disables the subsumption deletion function.
Due to this loss of subsumption deletion, the final population contains optimal,
but redundant classifier rules.

The next stage is to introduce a mechanism for treating two phenotypically
similar code fragments as a single code fragment during the learning process, by
simplifying the code fragment trees using algebraic and numerical simplification
methods [9], in an attempt to reduce the number of classifiers in the final popu-
lation. The XCSRCFA will be tested for more continuous state space problems
from the reinforcement learning domain.

Acknowledgments. We would like to thank the authors and copyright holders
of [20] and [14] for granting permission to re-use the figures.
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Abstract. Shape representation and the associated morphing (repair) operators
play a vital role in any shape optimization exercise. This paper presents a novel
and an efficient methodology for morphing via smart repair of control points,
wherein a repaired sequence of control points are generated. The repaired set of
control points are then used to define the curve or the surface using a B-spline rep-
resentation, while the control points themselves are optimized using a memetic
algorithm. While the authors have already proposed the approach for 2D shape
matching, this paper extends the approach to deal with 3D shape matching prob-
lems. Two 2D and one 3D examples have been presented to illustrate the perfor-
mance of the proposed approach.

Keywords: shape representation, design optimization, shape matching.

1 Introduction

Shape representation and optimization is a key element in any product design process.
Shape representation schemes are required for the generation of shapes which in turn fa-
cilitates the design of functional articles. For example, aerofoils, converging-diverging
nozzles, ship-hulls, medical prosthesis, structural elements, and many other functional
articles require shape generation and shape modification to achieve the desired perfor-
mance. The performance parameters may vary from an application to another depend-
ing on the intended use of the object. In a shape optimization exercise, the shapes are
generally modified using an optimization algorithm. Efficiency of the optimization pro-
cess and flexibility of shape representation scheme are the two major issues requiring
serious attention. A lack of flexibility in shape representation will limit the evolution
of various shapes whilst an inefficient optimization algorithm will require evaluation
of numerous shapes prior to its convergence, both of which are not desirable. Several
methods for shape representation have been proposed over the years such as implicit
polynomials [9,16], cubic splines [26,28], Bezier curves [26,31] and B-splines [5,25].
A B-spline representation has been used in the present study wherein the control points
of the curve or surface are identified through an optimization algorithm. In a B-spline
representation, a small number of control points are able to represent a wide variety
of complex geometries and a change in the position of the control points are known to
affect the shape locally. The B-spline basis also allows the order of the basis function
and hence the degree of the resulting curve to be changed without changing the number

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 362–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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of defining polygon vertices [26]. Its strong convex-hull property, variation diminishing
and affine invariance properties are also attractive in the realm of shape optimization.

Evolutionary design optimization has been an active area of research in the last two
decades [1–3, 8, 12, 13, 15]. Several applications span across a range of domains such
as aerodynamic design [27], hydrodynamic design [3], structural design [13, 19, 21],
and electromagnetic component design [2,17,32]. Shape matching is often a pre-cursor
to a shape optimization exercise, where the efficiencies of the underlying shape repre-
sentation scheme and the performance of the optimization algorithm is investigated in
depth. An efficient optimization algorithm coupled with a flexible and effective shape
representation scheme is the key to a successful approach that requires limited number
of design evaluations to arrive at the optimum shape [14].

A number of approaches have also been reported in literature that attempts to solve
2D and 3D shape matching problems [4,18,20,29,30,34–37]. A genetic algorithm with
multi-parent recombination using latin square crossover operator was adopted in [35],
whereas an individual mutative evolution strategy (iES) with covariance matrix adap-
tation evolution strategy (CMA) was used over a B-spline representation in [36]. An
effective genetic algorithm with an enhanced geometry representation scheme was also
presented by Wang in [34] and an adaptive constraint concept was used to direct search
in regions of interest. A mixed integer quadratic approach was suggested using 3D
shape constraints to guide shape matching [30] whereas, an unconstrained quadratic
optimization problem formulation was proposed instead of handling a large set of com-
plicated SOCP constraints by Zhu in [37] for 3D deformable surface tracking. Three
different morphing methods were introduced and employed within a standard evolu-
tion strategy in [20]. A method for the automatic construction of control volumes was
proposed in [18] based on the concept of evolvability as a potential capacity of represen-
tations. In [4], an incremental abstraction of control points was embodied into evolution
strategies with a modified 1/5 rule. It is important to highlight that the computational
cost involved in the above studies are still significant and often restricted bounds were
used to limit the search space.

In summary, population based optimization algorithms have had limited success for
2D shape matching problems and their performance for 3D shape matching problems
were far from satisfactory. Such approaches in principle allowed the connectivity and
location of control points to evolve within the course of optimization. Such an attempt
is likely to yield a number of impractical shapes with crossings which in turn results
in a significant computational cost. In this paper, we alleviate the problem via repair,
wherein the set of control points are repaired and sorted. While the sequence of control
points are generated via repair, their locations are evolved using the memetic algorithm.

Rest of the paper is organized as follows. Aspects of shape matching metrics and the
proposed method are discussed in Section 2 and 3 respectively. The results are reported
in Section 4. Finally Section 5 concludes the paper.

2 Shape Matching Metrics

Shape matching usually refers to transforming a shape, and measuring its resemblance
with a target shape using some similarity measures. In the present study, we assume
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that the length, width and height of the box enclosing the target shape is known along
with its location of centroid. Two commonly used shape matching metrics include Eu-
clidean distance and Hausdorff distance. For two finite point setsA = {a1, a2, · · · , am}
and B = {b1, b2, · · · , bm} (where, m indicates the total number of points in a par-
ticular point set), the distance is defined as Lj(A,B) = (

∑m
i=0 |ai − bi|j)

1
j . For

j = 2, this yields the Euclidean distance L2 [24]. Hausdorff distance is a classical
non correspondence-based shape matching metric [10, 11, 33]. The Hausdorff distance
between A and B is defined as

H(A,B) = max {h(A,B), h(B,A)} (1)

where,

h(A,B) =
max

a ∈ A
min

b ∈ B ‖a− b‖ (2)

and ‖.‖ is the underlying norm on the points of A and B, usually Euclidean distance.
h(A,B) in effect ranks each point of A based on its distance to the nearest point of
B and then uses the largest ranked of such point as the distance (the most mismatched
point of A) [10]. The Hausdorff distance H(A,B) is the maximum of h(A,B) and
h(B,A).

3 Proposed Method

In the proposed method, the number of control points required to represent the shape,
the dimensions of the box enclosing the shape and the centroid of the shape are as-
sumed to be known. The variables of the optimization problem are the x, y and z
coordinates of the control points, the range of which are the same as the dimensions
of the enclosing box. Every solution generated through the process of initialization or
recombination is repaired, wherein the sequence of the control points are changed to
obtain a non-intersecting control polygon net while maintaining the specific values of
its coordinates. The concept is illustrated using Fig. 1a, 1b and 1c, where the original
randomly generated control polygon net and the convex-hull are presented alongside its
repaired form. The repaired solution (ordered set of vertices in the control polygon net)
is used to create the shape using B-splines and compared with the target shape based
on the metrics described above. For the 3D shape optimization problem, the shape is
assumed to be disintegrated to several 2D shape optimization problems (cross-sections
of 3D shape) termed as stations, wherein the set of control points representing the 2D
shape in each station are repaired.

3.1 Initialization and Repair Strategy

The number of control points (N ) used to describe a shape is a user defined parame-
ter. Since the limits of x, y and z coordinates i.e. the space enclosing the target shape
is known, a random solution is created and repaired during the phase of initialization
of 2D shape. Firstly, a convex-hull is generated using a set of control points (Fig. 1b).
Thereafter, the points (lying inside the convex-hull) nearest to their adjacent edges are
inserted to generate the non-intersecting control polygon net (Fig. 1c). In order to avoid
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Fig. 1. Effect of repair scheme on the position of initial control points
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Fig. 2. Effect of sorting on the position of control points

entangling or crossings of control points between two neighbouring stations, every set
of x coordinates of control points spanning the shape in x direction is sorted in as-
cending order during the optimization process. The effect of sorting on the position of
control points is illustrated in Figure 2a and Figure 2b.

3.2 Matching Error

Since the centroid of the target shape is known, the shape generated using the repaired
solution (reordered set of control points) is shifted such that its centroid matches the
centroid of the target shape. The maximum of Euclidean and Hausdorff distance is
computed using the generated shape and the target shape.

3.3 Optimization Algorithm

Evolution: The pseudo-code of the proposed optimization is presented in Algorithm 1.
In the proposed algorithm, two different evolution strategies are used for generating the
offspring population. These are:

1. EA-like evolution – This includes simulated binary (SBX) crossover and polyno-
mial mutation [7].
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Algorithm 1. Proposed Algorithm
Require: Population size (S), Number of generations (Sg), Crossover and mutation parameters,

Target shape (sT )
1: Initialize (pop1) {Assumed number of control points}
2: Repair (pop1) {Create the sequence of control points}
3: CSpop1 = Centroid Shift (pop1, sT ) {Shift all pop1 solutions such that the centroids of those

solutions match the centroid of the target shape}
4: Matching Errorpop1 = Max (E dist,H dist) {For all pop1 evaluate the maximum of

Euclidean and Hausdorff distances as matching error between target and generated shape}
5: for i = 2 to Sg do
6: if rand (0,1) ≤ 0.5 then
7: childpopi = Evolve EA (popi−1)
8: else
9: childpopi = Evolve DE (popi−1)

10: end if
11: childpopi = Repair (childpopi)
12: CSchildpopi = Centroid Shift (childpopi, sT )
13: Evaluate (childpopi)
14: R = Rank (popi−1 + childpopi)
15: popi = Reduce (R) {Selecting best S solutions for the next generation}
16: xbest ← Local search (x) {xbest is the best solution found using local search from x}
17: Replace worst solution in popi with xbest

18: popi = Rank (popi) {Rank the solutions again in popi}
19: end for

2. DE-like evolution – This includes the DE exponential crossover and mutation, as
described in [6, 23].

Ranking and Reduction: Since the test problems studied in the paper are formu-
lated as single-objective, unconstrained minimization problems, the ranking is done by
sorting the objective values in ascending order. The best N solutions from the (par-
ent+child) population form the population for the next generation.

Local Search: At each generation, in addition to generation of new solutions using
recombination and mutation, a local search is used for further improvement. Sequential
quadratic programming (SQP) [22] is used for the local search in the present study.
After performing the local search, the worst solution in the population is replaced by
the best solution found from the local search.

4 Results

Two 2D shape and one 3D shape examples have been used to test the performance of
the proposed approach. The parameters used for the algorithm are the same for each
shape matching exercise and listed in Table 1.
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4.1 2D Shape Example

From the two 2D examples, the target shapes i,e the damselfly-wing data contains 516
points whereas the stingray data contains 740 points. A population size of 40 and a
maximum of 5,000 function evaluations are set for both the examples. For both the
problems, we have assumed that the shapes can be represented using 16 control points
which render to a 32 variable optimization problem. The results after 5,000 function
evaluations for both examples are shown in Table 2.

4.2 3D Shape Example

A flower vase shape (or a converging-diverging nozzle) is considered for the 3D case.
The target flower vase data consists of 676 points. A population size 400 and a maxi-
mum of 100,000 function evaluations are set for this problem. The flower vase shape
has been assumed to be represented using 10X8 control polygon net (a total 80 con-
trol points) which translates to a 240 (3X80) variable optimization problem. The results
after 100,000 function evaluations for the flower vase shape example are reported in
Table 2.

For all the problems the best and worst values are reported as the minimum and
maximum errors across 20 runs, respectively. The median value reported is the average
of 10th and 11th values in the sorted list of matching errors obtained across 20 runs.
The small values of standard deviations of all the shape examples reflect the consis-
tency in terms of convergence of the algorithm. Various states of evolution of generated
shape towards the target or original shape are shown in Fig. 4, 5 and 6. The average
computational time for repairing a solution is around 0.0014 seconds (averaged over
1000 solutions) whereas the average computational cost of computing shape match-
ing error is 0.0053 seconds (averaged over 1000 instances) for a problem involving 16
control points. In case of 3D flower vase problem, the average computational cost of
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Table 1. Parameters used for the proposed algorithm

Parameter Value

Population size 40/400
Max. function evaluations 5000/100000
Crossover probability (for both SBX/exponential) 1.0
Crossover index 10
Mutation probability 0.05
Mutation index (polynomial) 20
Scale factor F (for DE mutation) 0.9

Table 2. Results with repair and centroid shift using hybrid evolutionary algorithm

Shapes Error Best Worst Mean Median Std.

Damselfly-wing Max(Eucli,HD) 1.4e-05 3.2e-04 8.3e-05 6.1e-05 8.1e-05

Stingray Max(Eucli,HD) 0.067 1.863 0.706 0.589 0.518

Flower vase Max(Eucli,HD) 0.848 1.553 1.244 1.264 0.166

Table 3. Results without repair and centroid shift using hybrid evolutionary algorithm

Shapes Error Best Worst Mean Median Std.

Damselfly-wing Max(Eucli,HD) 4.6e-03 7.6e-03 5.1e-03 4.8e-03 7.1e-04

Stingray Max(Eucli,HD) 2.578 11.668 4.947 4.590 2.176

Flower vase Max(Eucli,HD) 2.367 3.817 3.091 3.081 0.333

Table 4. Results without repair and centroid shift using real-coded evolutionary algorithm

Shapes Error Best Worst Mean Median Std.

Damselfly-wing Max(Eucli,HD) 3.026 6.958 5.132 5.202 1.210

Stingray Max(Eucli,HD) 24.665 50.710 40.771 42.092 6.677

Flower vase Max(Eucli,HD) 44.694 51.002 48.324 48.043 1.627

computing its error is 0.0820 seconds and the average computational cost of repairing a
solution is 0.0066 seconds. All the computations are performed on a computer with the
following configuration.

• Processor - Intel Core2Duo E8400 @ 3.00GHz, 2.99GHz.
• RAM - 4GB.
• Operating System - Microsoft Windows XP .
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Fig. 4. Evolutions of generated damselfly-wing (red) towards the target damselfly-wing (blue) for
matching
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Fig. 5. Evolutions of generated stingray (red) towards the target stingray (blue) for matching

In an attempt to observe the performance of the repair scheme and the centroid shift
mechanism, the same exercise was conducted with the same parameter setting without
the reordering of the control points (without repair) and centroid shift. The performance
statistics are presented in Table 3. It is clear from Table 2 and Table 3, that a significant
improvement in performance has been achieved through the use of repair and centroid
shift strategy. For the sake of comparison, results of using a real-coded evolutionary
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Fig. 6. Evolutions of generated flower vase (evolving surface) towards the target flower vase
(point cloud) for matching

algorithm without repair and centroid shift are also presented in Table 4. The parameter
setting for the runs are the same as listed in Table 1. Progress plot of the best shape of
stingray shape example is presented in Figure 3, where the results for the three different
cases are compared. It is interesting to observe that the best results of the proposed
algorithm for the two shape examples are more than 100 times better than the results of
the real-coded evolutionary algorithm.

5 Conclusion

In the present paper, an efficient method is introduced that is capable of solving 2D and
3D shape matching problems. The control points of the underlying B-spline representa-
tion are optimized using a memetic algorithm, while the presence of repair or morphing
operation ensures generation of valid shapes. The memetic algorithm is embedded with
multiple recombination strategies (EA and DE) and a local search to improve its effi-
ciency. Two commonly used measures (Euclidean and Hausdorff distance) have been
considered as the measure of similarity between the generated and the target shape. The
proposed method has been tested using two 2D examples of varying complexity, each
of which was solved to desired accuracy within 5,000 evaluations, while for the com-
plex 3D example, 100,000 evaluations were required. The performance of the repair
strategy has been studied for both 2D and 3D examples to highlight the benefits. Such
a capability is the first step towards a cutting edge shape optimization approach, where
one is interested to uncover novel shapes with extreme performance characteristics.
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Abstract. Parallel Linear Genetic Programming (PLGP) is an archi-
tecture that addresses instruction dependencies in Linear Genetic Pro-
gramming (LGP). The Co-operative Coevolution (CC) methodology has
previously been applied to PLGP but implementations have not been
able to improve performance over vanilla PLGP. In this paper we present
Hill Climbing Parallel Linear Genetic Programming (HC-PLGP) which
uses a local search to discover effective combinations (blueprints) of
partial solutions that are evolved in subpopulations. By introducing a
new caching technique we can efficiently search over the subpopula-
tions, and our improved fitness function combined with normalisation
and blueprint elitism address some of the weaknesses of the previous ap-
proaches. HC-PLGP is compared to three PLGP architectures over six
datasets, and significantly outperforms them on two datasets, is compa-
rable on three, and is slightly worse on one dataset.

1 Introduction

Classification tasks involve classifying a set of instances as one of a number of
potential classes. Each instance is typically represented by a set of features, and
a machine learning classifier will use the features as input and attempt to learn
some relationship between them that allows it to correctly classify each instance.
The classifier is first fed training data in which each item is already labeled with
the correct class, and creates models that can then be used to classify similar,
previously unseen, data.

Genetic Programming (GP) seeks to evolve useful programs in a population
which evolves over a number of generations by applying evolutionary opera-
tions analogous to those found in nature [12][13]. Individual programs have their
fitness measured to determine their suitability as donors for the next genera-
tion. Mutation and crossover operations are performed, and elitism preserves
the best solutions. The original and most widely used form of GP is Tree Based
GP (TGP) [12] where operations are performed on subtrees of operations.

Linear Genetic Programming (LGP) uses a linear sequence of instructions
using a set of registers that are re-used during execution of the program and
give multiple outputs upon completion [1]. Similar to assembly language, each
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instruction may use up to two registers as input, and a single register as output.
The strength of LGP is that values that have been computed by one instruction
can be used by another instruction later in the program execution. This makes
LGP a powerful problem solving technique that has been shown to outperform
TGP in multiclass classification [15][6]. However, every time a result is reused
an instruction dependency is introduced, which means that a relatively minor
modification to one instruction may then cascade throughout the program by
altering the value in a register that is used by multiple subsequent instructions.
As large and random changes are known to disrupt the performance of GP,
the strength of LGP is also a potential shortcoming. To reduce the effect of
instruction dependencies, Downey and Zhang [4] proposed the Parallel Linear
Genetic Programming (PLGP) architecture, in which a program is separated
into independent sub-programs, or factors. Each factor is executed with its own
set of registers, and the register values from all factors are summed to give an
overall result vector.

LGP can easily be applied to classification problems by providing an output
register for each of the class labels. When execution is complete, the register
with the highest value is selected as the result of classification. For example, the
highest value in a result vector of [−1, 4, 0] for a three class problem is that of
the second register, so the instance is classified as class two.

Co-operative Coevolution (CC) considers several subpopulations, each of which
evolves in parallel and optimises one aspect of the final solution [17][16][18]. This
technique is applied in Downey and Zhang’s Co-operative Coevolution Parallel
Linear Genetic Programming (CC-PLGP) and Blueprint Search Parallel Linear
Genetic Programming (BS-PLGP) which introduce a two level solution into the
PLGP architecture. The CC architecture is implemented by first evolving indi-
vidual factors in subpopulations, and then searching for the best combinations
of those factors [3].

CC-PLGP has not so far proven to be as effective as PLGP or the state-of-
the-art BS-PLGP. The goal of this paper is to refine CC-PLGP to further exploit
caching techniques, as well as introducing a new approach to blueprint evolution
using local search. We discuss some of the obstacles to effective evolution when
using a CC design, and propose solutions to them.

The rest of the paper is organised as follows. Section 2 provides some back-
ground, and Section 3 describes our approach to addressing some of the short-
comings of current solutions. Section 4 describes our experimental setup, and
Section 5 provides results and analysis. Conclusions are presented in Section 6.

2 Background

2.1 Classification

Supervised learning methods, such as GP, require a labelled data set, in which
each instance consists of a set of features that describe the real-world object as
well as a class label which denotes the desired output from the classifier for that
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instance [12]. The data set is divided into three subsets: training, validation, and
testing.

A GP program iterates through each instance in the training set, using fea-
tures as input, and produces an output which represents the classification that
has been made. The fitness of that program is typically calculated from the num-
ber of correct classifications. Programs are checked periodically (every few gener-
ations) by executing them on the validation set so that the problem of overfitting
is addressed, i.e., where programs fail to generalise by memorising the training
set rather than learning how to identify them. Finally, after a predefined number
of generations, the best program that has been evolved is executed on the test
set, which is an entirely unseen set of instances, and the true effectiveness of the
best program is evaluated.

2.2 Linear Genetic Programming

The use of registers is the key motivation behind LGP, as it allows the reuse
of computational results by instruction sequences later in the program [1]. This
makes it possible to express complicated solutions, but a genetic operation may
be propagated throughout the program by making even a small modification. If
an instruction is modified and that changes the value in a register that is sub-
sequently reused many times, the result may be much larger and less controlled
than was intended. The value in the register r that holds the output from an
instruction i may be modified if instruction i is altered by genetic operations,
and any subsequent instruction that uses register r as input is said to have an
instruction dependency on instruction i.

line instruction depends on
1 r[1] = 3.1 + f1; –
2 r[3] = f2/r[1]; 1
3 r[2] = r[1] ∗ r[1]; 1
4 r[1] = f1− f1; –
5 r[1] = r[1]− 1.5; 4
6 r[2] = r[2] + r[1]; 3,5

Fig. 1. An example of instruction dependency, adapted from [3]

An example of instruction dependencies is given in Figure 1. The registers are
denoted as r[i] , and the features are denoted as fi. Here, e.g., instructions 2
and 3 will both read from r[1], so they have a dependency on instruction 1.

2.3 Parallel Linear Genetic Programming

Downey and Zhang [4] developed PLGP to limit instruction dependencies be-
tween instructions by controlling the interaction between them. Here, n instruc-
tion sequences, called factors, are evaluated independently to give n register



376 A. Scoble, M. Johnston, and M. Zhang

vectors which are then summed to give a single result vector. Each program fac-
tor has its own set of registers which are initialised to zero before execution and
are not passed to the following factor. This prevents instruction dependencies
between factors, and limits the potential number of instruction dependencies
to the number of instructions in each factor. Each generation, evolutionary op-
erations are applied to a single program factor, and mutation is restricted to
operate on instructions within a single factor. By regarding each program as
an ordered list of factors, crossover is limited to equivalent factors, i.e., those
that occupy the same list position in both programs. Crossover is performed by
exchanging contiguous blocks of instructions between equivalent factors. This
creates Enforced Sub-Populations (ESP) [8] where genetic material may flow
within subpopulations but not between them.

A PLGP program topology specifies the number of factors in a program and
the number of instructions in each of those factors. A large number of small
factors will allow few dependencies and produce simple solutions, while a small
number of large factors may produce a large number of dependencies, although
allow for greater complexity.

The structure of PLGP makes it possible to exploit caching of registers, and
difference caching [5][3] significantly reduces execution time. The evolutionary
process is faster when three or more factors are used, and efficiency improves as
the number of factors increases. In PLGP, program result vectors are retained
from one generation to the next, and when a factor is selected for modification,
the difference in output for that factor before and after modification is simply
added to the overall evaluation.

2.4 Co-operative Coevolution

A CC framework consists of n subpopulations where each individual is a par-
tial solution. A complete solution will consist of n partial solutions, with one
candidate from each subpopulation. Each subpopulation performs evolutionary
operations in isolation and components are encouraged to specialise and evolve
within a niche consisting of similar individuals.

Symbiotic Adaptive Neuroevolution (SANE) applies this approach to evolv-
ing neural networks [14] and describes complete solutions as blueprints, which
contain pointers to neurons (partial solutions) and act as a mechanism for dis-
covering and remembering high quality combinations of neurons. In CC-PLGP,
the principles of SANE are applied to the PLGP architecture [3][14]. The notion
of equivalent factors is extended to the creation of subpopulations, and a PLGP
program is replaced by a list of pointers, or blueprint. After the factor subpop-
ulations perform their evolutionary operations, the blueprints undergo a further
evolutionary process to create new combinations of factors.

In the first phase of a generation, factors are executed against all instances
and their register values are cached. A blueprint is evaluated by summing the
register values for each factor that contributes to that blueprint, relative to
each instance. The index of the register with the highest value for each instance
is compared to the class label for that instance, and the number of incorrect
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classifications is assigned as that blueprint’s fitness value. The fitness measure
of a factor is calculated as the average fitness of all the blueprints that factor
contributes to. If a factor does not contribute to any blueprint, it is assigned a
No Fitness Information (NFI) fitness value which is the average fitness of all
blueprints. Blueprint evolution in CC-PLGP is performed by applying a set of
evolutionary operations to the blueprints. Mutation changes a pointer into a new
random pointer, and crossover exchanges randomly selected pointers between
two blueprints.

Using outdated factor information when selecting combinations for blueprints
is a flawed approach to fitness evaluation [3]. In CC-PLGPs factor evolution
phase, factors may be modified by evolutionary operations regardless of whether
they contributed to blueprints. Any assumptions made in finding effective blue-
prints based on improving existing blueprints are therefore undermined. A
blueprint that had high fitness in generation g could conceivably have every
factor modified in generation g + 1, making the search for solutions through
gradual modification more difficult. The ability of a blueprint to make changes
to several pointers in the same generation may also have presented problems, as
blueprints quickly attained a reasonable fitness in early generations, but seemed
unable to be refined in sufficiently accurate steps during later generations.

BS-PLGP is another approach to CC, but with a different approach to
blueprint evolution. Particle Swarm Optimisation (PSO) [11] is used to select
combinations of factors [3].

The improved accuracy attained by BS-PLGP suggests that the CC concept
has its merits in PLGP, but the evolutionary operations CC-PLGP applies to
blueprints are ineffective. Although BS-PLGP and CC-PLGP have not provided
significant improvement over PLGP with regard to classification accuracy, it is
suggested that a more thorough investigation of the interaction and cooperation
between subpopulations could enable further improvements.

3 Hill Climbing Parallel Linear Genetic Programming

We propose Hill Climbing Parallel Linear Genetic Programming (HC-PLGP) as
a CC framework where factors are evolved in subpopulations and hill climbing
search is used for blueprint evolution. We extend the use of register caches to
enable a complete search through the factor combinations, allowing us to develop
a fitness function that is not dependent on the NFI values. The hill climbing
blueprint search searches for a better candidate from each subpopulation in turn
while the rest of the blueprint remains unchanged, to find the best candidate
factor to cooperate with the existing factor combination, if one can be found in
the current generation. The goal is to develop a method that is comparable to
PLGP in accuracy and efficiency, while strengthening the CC architecture.

Overview of HC-PLGP

A Register Vector rvi is a set of registers that are used to store the output for a
factor after it has been executed on an instance i. A register vector will contain c
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registers, where c is the number of classes in the classification problem. A Register
Collection rcj is a set of k register vectors, one for each of the k instances in
the dataset. Each factor j will have a register collection that stores the register
vector after execution on each instance, i.e., rcj will contain rv0, rv1, . . . , rvk
which are the results for executing factor j on instances 0, 1, . . . , k.

In the same manner as the previous CC designs, n subpopulations are evolved
in isolation from each other. In addition to this, a blueprint population undergoes
a separate process in which combinations of factors are selected and evaluated.

At the beginning of each generation, factors are evolved within their subpop-
ulations using standard evolutionary operations. Any factors that contribute to
blueprints will be retained in the child population, and the remaining child fac-
tors are generated. Once factor evolution is complete, the factors are executed on
all training examples. The Training Register Cache (TRC) is filled with a set of
register collections, one for each factor. Factor combinations are then searched
using the TRC, giving a value for classification fitness for every combination
of factors, which are stored in the Fitness Cache (FC). Once the classifications
have been made, the hill climbing blueprint search will determine whether the
replacement of any single factor can improve that blueprint’s fitness by searching
through the FC. The algorithm is divided into four main stages as follows.

Execution. Here, factor output is calculated, similar to the execution stage in
CC-PLGP, i.e., every instance is presented in turn and executed by all factors.
Register vectors for each instance are stored as the register collection of each
factor.

Classification. For each training instance i, we consider every blueprint b in
turn. We sum the register vectors rvi for each factor that contributes to this
blueprint b, giving the reference vector for b. Classification accuracy can be ob-
served here by comparing the index of the highest register value against the class
label for i. Iterate through each subpopulation s to cache the classification accu-
racy for each factor in the subpopulation, with the other factors in b remaining
unchanged. To achieve this, subtract the output vector rvi of the factor that
currently represents subpopulation s in blueprint b to obtain a base vector, or a
result vector for b that does not include a factor from s. Then iterate through s
and test the other factors in turn by adding their register vector rvi to the base
vector, and comparing the index of the highest register value against the class
label for instance i. An incorrect classification will result in the FC for that com-
bination being incremented, and after all instances have been presented the FC
will represent the classification accuracy for that combination over all instances.
Of note here is that only the factors being searched are assigned classification
accuracies in the FC, not the ‘locked’ factors that the search aims to compliment
when searching for replacement factors. Also of importance is that the order of
execution specifies that all factor combinations are checked against each instance
before moving on to the next.

Hill Climbing Blueprint Search. The hill climbing blueprint search is performed
by searching through the FC to find the best single modification for each blueprint,
if an improvement is possible. The FC is used for these calculations, and by
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adding the errors for all the factors that contribute to b, we can search each sub-
population for a viable replacement for any of them. We record the best factor
for each subpopulation with the other pointers locked, and after all subpopula-
tions have been investigated the best overall improvement is selected. If that will
give an improvement over the original combination, a single factor is exchanged.

To help prevent the search from becoming trapped in local optima, Blueprint
mutation provides a stochastic element to HC-PLGP. With a probability p one
of the following types of mutation are applied. Micro mutation chooses a sub-
population at random and then searches it in the normal way, and macro mu-
tation selects a random subpopulation and then a random factor from that
subpopulation.

Conditional Validation. The final step is to execute the newly selected blueprints
on the validation dataset. By performing this step after blueprint combinations
have been finalised, we avoid executing redundant factors, or those that will not
contribute to any blueprints. If 5 blueprints are used with a subpopulation size
of 100 (10× 10 topology), at least 95 factors per subpopulation will not need to
be validated.

Factor r1 r2 r3 r4

1 0.3 0.5 −1.2 3.4
2 −0.8 −2.4 1.1 2.2
3 1.2 40 −5.2 −0.3
4 4.6 0.8 −1.2 0.1

Total 5.3 [38.9] −6.5 5.4

(a) non-normalised registers

Factor r1 r2 r3 r4

1 0.23 0.33 −0.54 0.77
2 −0.44 −0.70 0.52 0.68
3 0.54 0.97 −0.83 −0.23
4 0.82 0.44 −0.54 0.09

Total 1.15 1.04 −1.39 [1.31]

(b) h(x) normalised registers

Fig. 2. Normalisation of registers

Register Normalisation. Figure 3 represents a blueprint that consists of four
factors, each with four registers. In Figure 3(a) the registers have not been nor-
malised, and in (b) they have been normalised with the function h(x) = x

1+|x| .

It can clearly be seen that in (a) factor 3 has greatly influenced the classification
from the blueprint with a single large value for register r2. In (b), we can see that
normalisation has mitigated this effect by reducing the range of register values
to [−1, 1]. This normalisation may encourage factor specialisation by preventing
a single large register value from dominating factors that may otherwise have
combined to form an effective classifier.

Improved Fitness Function. A new fitness function is derived from the values
retained in the FC and does not distinguish between factors that contribute to a
blueprint and those that do not. As each factor is checked once for every blueprint
during the classification phase, the FC will hold a number of classification values
for that factor. The average of those classification values is assigned as the fitness
for that factor, providing a function with a much better ability to discern between
factors than one that assigns an NFI fitness value.
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Factor Elitism. A critical shortcoming of CC-PLGP was the problem of factor
evolution undermining blueprint composition by modifying the components that
had been selected during the blueprint evolution phase. To address this, any
factors that are selected to contribute to a blueprint are added to a set of elite
factors that are preserved during the evolutionary process, where they are eligible
as parents but will not be replaced.

4 Experimental Setup

A series of experiments were performed and results were averaged over 30 repli-
cations. Execution time and classification accuracy of HC-PLGP were compared
with PLGP, CC-PLGP, and BS-PLGP using six datasets. Eight program topolo-
gies were used, although space limitations have necessitated that comparisons
from only one topology are presented here. PLGP, CC-PLGP, and BS-PLGP
were run with 500 blueprints, and HC-PLGP was run with 5. Preliminary ex-
perimentation was performed with the number of HC-PLGP blueprints ranging
from 1 to 40, and although reducing the number of blueprints to less that 5 had a
negative effect on accuracy, increasing to more than 5 did not improve accuracy
sufficiently to justify the extended execution time.

Datasets. Six data sets are used that provide classification problems of varying
complexity. Artificial Characters, Hand Written Digits, and Yeast were used in
order to compare directly with [4][3], and the others were chosen so that their
characteristics would give a good range of observations. The large number of
classes was the selection criterion for Letters, and USPS was introduced due to
the large number of features. The datasets are summarised in Table 1, and were
divided equally into training, validation, and test sets.

The following datasets are from the UCI machine learning repository [7]. Hand
written digits consists of 3750 hand written digits with added noise. There are
10 classes of 64 attributes. Artificial characters consists of vector representa-
tions of the English letters {A,C,D,E,F,G,H,L,P,R}. There are 5000 instances,
10 classes, and 56 features. The Yeast dataset represents protein localisation sites
and has 1484 instances, 10 classes and 8 attributes. USPS contains alphanumeric
characters and codes extracted from handwritten addresses, gathered as part of
a research project sponsored by the United States Postal Service [10]. It has
4863 instances, 10 classes, and 256 features. Cardiotocography contains 2126 in-
stances where diagnostic features processed from foetal cardiograms. There are
10 classes, and 22 features. It was obtained from [2]. Letters consists of all 26 En-
glish capital letters using different fonts on black and white rectangular displays.
There are 2126 instances, 26 classes, and 16 features, also obtained from [2].

GP Parameters. The GP parameters are constant across all experiments. We
use terminal constants in the range [−1, 1], and a function set that consists of
addition, subtraction, multiplication, protected division, and if < 0. Protected
division returns a value of one if the denominator is zero. if < 0 takes three
arguments and returns the second if the first is negative, otherwise it returns the
third. Population size is 1000 and evolution is performed over 400 generations.
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Table 1. Datasets

Dataset type instances features classes

(a) Artificial Characters real 5000 56 10
(b) Cardiotocography real 2126 22 10
(c) Letters real 2226 16 26
(d) Hand Written Digits real 3750 64 10
(e) USPS real 4863 256 10
(f) Yeast real,binary 1484 8 10

The parameters for factor evolution are as follows: mutation 30% crossover 60%,
elitism 10%. Tournament size is 5. Of note here is the elitism parameter, which
in the case of HC-PLGP, is equal to the number the blueprints, and is therefore
set at a constant 5 for all experiments. For CC-PLGP, blueprint evolution is
performed with equal weighting to the operators mutation, crossover, and new
random blueprint. HC-PLGP blueprint mutation probability p was set to 0.30.

Table 2. Program topologies

2x5 4x5 5x7 5x10 10x10 10x20 20x20 30x20

Instructions 10 20 35 50 100 200 400 600
Factors 2 4 5 5 10 10 20 30
Instructions per factor 5 5 7 10 10 20 20 20

PLGP Program Topologies. Program topologies are selected to give a reasonable
diversity of factor sizes and number of factors. Table 2 shows the eight program
topologies that were used to evaluate the methods. Due to space constraints,
we have only included results for the 10x10 program topology. This particular
topology was overall the most effective for all methods and has therefore been
selected as the best representative topology.

5 Results and Analysis

Table 3 shows the classification accuracy of the four methods for each problem.
The results are averaged over 30 replications and are as follows: Fac and Ins are
the number of factors in a program and the number of instructions in a factor,
respectively; Time is the total execution time, in seconds, for 400 generations;
BstGen is the generation at which the best validation accuracy was achieved, and
at which point the best program was selected to perform the test; Train and Test
represent the classification accuracies for the different procedures; and standard
deviations of training and test accuracy are given inTrainSD and TestSD.

In general, PLGP and BS-PLGP have similar test accuracy over all the prob-
lems, and CC-PLGP does not perform as well. Although the execution time of
HC-PLGP is longer than that of CC-PLGP, it is much faster than BS-PLGP
and comparable to that of PLGP, being faster on (c),(e), and (f) but slower
in (a),(b), and (d). The Test SD for HC-PLGP is the lowest of all the architec-
tures in (a),(b),(d),and (e). Performance in (f) is much worse for HC-PLGP, and
although the SD is high for both training and testing, it has been consistently
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Table 3. Experiment Results for 10x10 topology

(a) Artificial Characters
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 6148.22 322.43 95.30 94.60 2.71 2.64
CC-PLGP 10 10 983.17 333.67 85.44 84.54 5.81 5.93
PLGP 10 10 1348.15 311.10 95.46 94.56 2.89 2.90

HC-PLGP 10 10 1556.97 260.430 96.74 97.16 4.20 1.76

(b) Cardiotocography
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 2137.54 265.30 58.54 40.12 4.49 9.07
CC-PLGP 10 10 491.40 253.13 53.39 38.82 5.27 9.61
PLGP 10 10 713.16 276.07 62.94 46.05 4.99 6.96

HC-PLGP 10 10 781.67 276.74 60.11 37.46 8.27 4.80

(c) Letters
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 3800.41 359.53 36.59 30.72 2.67 2.35
CC-PLGP 10 10 1440.35 326.63 31.19 26.27 2.25 2.13
PLGP 10 10 1578.88 353.00 40.44 31.72 2.77 3.10

HC-PLGP 10 10 1312.09 347.20 41.30 34.66 3.57 2.93

(d) Hand Written Digits
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 3928.20 372.60 82.40 80.07 3.56 3.87
CC-PLGP 10 10 783.03 359.37 71.04 69.33 2.89 2.98
PLGP 10 10 1155.97 374.70 85.68 81.61 2.55 3.00

HC-PLGP 10 10 1499.29 355.55 84.22 82.17 1.87 1.79

(e) USPS
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 3777.47 374.43 80.09 78.49 3.78 3.93
CC-PLGP 10 10 982.70 356.93 69.01 68.03 6.47 6.40
PLGP 10 10 2131.17 346.93 82.59 79.20 3.81 3.77

HC-PLGP 10 10 1958.34 357.40 84.52 78.10 2.10 2.15

(f) Yeast
Method Fac Ins Time BstGen Train Test TrainSD TestSD

BS-PLGP 10 10 1277.93 300.20 56.03 56.07 2.38 2.87
CC-PLGP 10 10 371.01 268.27 50.45 50.82 4.71 4.74
PLGP 10 10 591.68 242.40 58.77 55.61 2.96 3.54

HC-PLGP 10 10 521.65 287.10 52.64 48.57 5.46 4.14

outperformed across all experiment replications. Of note with this dataset is that
it has the least number of both instances and classes. There is very pronounced
overfitting apparent on (b) for all architectures, and the SD for HC-PLGP here
is much higher for training than the other methods, yet lower for testing.

Test accuracy of HC-PLGP was compared to that of all other methods. Signif-
icance testing was performed using two-sided t-tests and summarised in Table 4.
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Table 4. Significance of results : HC-PLGP vs PLGP, CC-PLGP, and BS-PLGP

PGLP CC-PLGP BS-PLGP
(a) Artificial Characters 0.00002% 0.00000 % 0.00004 %
(b) Cardiotocography 0.00000 • 0.49458 0.13854
(c) Letters 0.00318% 0.00000 % 0.00002 %
(d) Hand Written Digits 0.37313 0.00000 % 0.02032 %
(e) USPS 0.16684 0.00000 % 0.68146
(f) Yeast 0.00000 • 0.07793 0.00000 •

The columns represent the p-values of the comparisonbetweenHC-PLGPand each
method in turn, where the p-values are corrected using Holm’s method with an
overall significance level of 0.05 for each row [9]. Here,% denotes that the perfor-
mance of HC-PLGP is significantly better, while • indicates that it is significantly
worse. The results show that HC-PLGP significantly outperforms all methods on
(a) and (c), and outperforms CC-PLGP and BS-PLGP on (d). However, it is out-
performed by PLGP on (b), and by both BS-PLGP and PLGP on (f).

6 Conclusions

Hill Climbing Parallel Linear Genetic Programming (HC-PLGP) has been im-
plemented as a complete search through the subpopulations where all factors are
examined, and the best improvement is selected. Blueprint mutation provides a
stochastic element to help prevent the search from becoming trapped in local op-
tima. Five blueprints was found to be effective, providing a good balance between
execution time and classification accuracy. This number was small enough to re-
tain factor diversity in the subpopulations once elitism had prevented selected
factors from being modified by evolution. Output registers were normalised and
a new fitness function was used that exploited existing classification information
from the Fitness Cache (FC). Classification accuracy of HC-PLGP compares
well against the existing Parallel Linear Genetic Programming (PLGP) archi-
tectures, significantly outperforming them all on a number of datasets, with a
comparable execution time.

Future work. In general, all implementations of the PLGP architecture per-
formed best with the 10x10 topology. It is not clear whether the difference in
performance has been affected directly by the structure of the complete program,
or the effect on diversity by a changing subpopulation size. A set of experiments
where the subpopulation size remains constant and the number of factors and
instructions changes will be performed to investigate this further.

There are three datasets, Cardiotocography, Letters, and Yeast, where none
of the PLGP methods were very effective and some overfitting was apparent.
As these are the datasets with the least number of instances, cross-validation
will be used to re-evaluate performance of these methods. The vast difference in
training and test accuracy in the Cardiotocography dataset for all architectures is
certainly a subject for closer investigation. Simple metaheuristics, e.g., Iterated
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Local Search, may be used to prevent becoming stuck in local optimum, so
HC-PLGP is potentially very promising as an architecture.
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Abstract. In a real poker game, one player can take actions of different
styles in different situations. In this paper, a novel method is proposed
to quantify and model the opponent’s style in corresponding situation of
a hand. Based on the proposed representation of Action Pair, the value
of the style can be calculated and stored as “experience”. When making
a decision, the specific style will be obtained from the “experience”.
The style and the observable information will be used to estimate the
value of the opponent’s hand. In experiments, the obtained “experience”
validates the correctness of our assumption that a player does not show
an invariable style in all situations. The experimental results show that
the agent player using our method can predict the value of the opponent’s
hand and earn more money in fixed hands comparing with the original
agent.

Keywords: Style Modeling, Bayesian Poker, Hold’em Poker.

1 Introduction

Poker is essentially a process of reasoning under uncertainty. It provides a good
platform for testing new ideas and approaches to dealing with uncertainty. In
a poker game, the opponent’s cards are unobservable. Thus, the value of the
opponent’s hand is unknown. The information which can be obtained from the
opponent is only his action. If the opponent’s style or other useful features can
be effectively modeled, we will have a better understanding of the opponent’s
action. If we want to win more money in a poker game, we have to model the
opponent’s style, habits, characters or other features. These hidden information
can help us better grasp the opponent’s motivation. The opponent may show
an obvious tendency in a number of hands. However, specific to each decision, a
good player is likely to be inconsistent with his style. For example, a player may
bluff in order to disrupt his opponent’s thinking and make himself unpredictable.
Thus, there is a strong need to adapt to the opponent well. Opponent modeling
is then considered important in poker [1,2,3]. Researchers have been committed
to find a reasonable and effective model to adapt poker agents to its opponents.
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Opponent modeling in poker is mainly led by two ideas in current research [4].
In essential, both ideas are based on analyzing the opponent’s action.

The first idea aims to classify the opponent into one of styles. As we know
from [5], there are four recognized styles which are conservative-loose, conservative-
tight, aggressive-loose and aggressive-tight in poker.

– Conservative-Loose. Players who over value their hands, but rarely raise,
being fearful of large pots.

– Conservative-Tight. Players who play few hands, usually with a high prob-
ability of winning, but rarely raise, being fearful of large pots.

– Aggressive-Loose. Players who over value their hands, and who often raise
to increase potential winnings.

– Aggressive-Tight. Players who play few hands, usually with a high prob-
ability of winning, and often raise to increase potential winnings.

Baker defines the opponents as above four distinctive styles and develops cus-
tomized tactics to defeat each of the styles [6]. By analyzing the opponent’s past
actions, he classifies the opponent’s style into one of four styles. After that, he
chooses the most threatening opponent to play against and adopt that corre-
sponding tactic when facing all the opponents of other styles. However, a player
with a determinate style may act with an inconsistent style in a certain situation.
Then the single style will be ineffective.

The second idea aims to model the distribution over the opponent’s future
actions or current state. The predictive model can be used to estimate hidden
state in situations where the opponent has access to information only available
to the observer through his actions.

Some researchers count the times of each player folded, called, or raised [7,8].
Then the distribution of the opponent’s actions is constructed. Given the ob-
served action and the board cards, the obtained distribution can be used to
estimate the value of the opponent’s hand.

Researchers have also studied on modeling the opponent’s next actions.
Billings [9,10] creates a statistics-based opponent modeling system. In this sys-
tem, a probability distribution of actions is generated with each of the opponent’s
action. The opponent’s next action is then predicted. The question is that the
predictions of the next action are not so accurate in particular situations.

Most existing contributions of above two ideas are giving a representation
of style and revealing the relation between the action and style. However, it is
insufficient to represent the opponent’s styles in all situations. There has been
no work conducted to consider the diverse styles showed by opponents in various
situations of a hand. In this paper, we work on 2 Players Limit Texas Hold’Em.
Bets are predefined at a fixed size in this form. Therefore, we can be focused
on opponent’s style modeling in this form of Texas Hold’Em Poker. We propose
a novel method aiming to model the opponents style based on situations. We
first propose Action Pair to describe the relation between actions and styles.
Based on Action Pair, we will define some formulas to quantify and determine
the opponent’s style in various situations of a hand. The style model will then
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be used to estimate the opponent’s hidden information, which plays the decisive
role in playing poker. Specifically, we intend to investigate:

– properly provide an objective and exact perception of the value of a hand,
– accurately model the style of the opponent in all situations,
– effectively use the modeled style of opponent.

The remainder of the paper is organized as follows. Section 2 introduces the
new method. Section 3 describes the experiments and results with discussions.
Section 4 presents the conclusions and future work.

2 The New Method

Understanding the opponent is the key to win in poker game. In order to make
our agent better adapt to the opponent, we propose a method to quantify and
determine the opponent’s style based on situations. With the modeled style, the
value of the opponent’s full hand can be estimated.

The flow chart of the method is shown in Fig. 1, which has three modules.
The first module is Inference. Bayesian network [11,12] is used to model the

probability distribution of win, lose and tie in this module. The distribution will
provide us an objective and exact understanding of a hand. Korb has done much
work in this field [9].

The second module is Learning . In this module, the opponent’s style will be
modeled for each situation of a hand.

The third module is Tactic. The modeled style will be used in the Learning
module to help make decisions.

Fig. 1. The flow chart of the method

When a human player is dealing with a hand, he probably has two problems
to consider: One is what the real value of a hand is, at least a relatively accurate
estimate given observable information. The other problem is how to understand
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the opponent’s last action given the history of the opponent’s actions. When a
hand is over, he will start thinking again how the opponent plays. Reviewing
last hand will provide experience for his future playing. The method we propose
in this paper will follow such process.

In our method, Bayesian network is used to construct the probability distri-
bution of win, lose and tie of a hand. After each showdown hand, Action Pair
and the probability of winning are employed to calculate the style based on
situations. The new style value is then merged with the historical data of the
style. Style functions are designed to accomplish the style calculation. Then the
decisions are made according to the opponent’s style value. The details will be
presented in the following subsections.

2.1 The Probability Distribution of Win, Lose and Tie

Firstly, we will model the probability distribution of win, lose and tie given the
current information of a hand. With the observable information such as round,
board cards and our hole cards, although it is possible to compute the probability
distribution exactly under the assumption of a uniform probability over the
cards on a fair deck, the high computational cost is still unbearable [13]. So the
distribution can only be estimated. The distribution in this paper is inferred by
a Bayesian network. It is the Inference module in Fig. 2.

Fig. 2. The structure of the Bayesian network which is used to infer the probability
distribution of win, lose and tie

Based on previous research [9], we refine the factors that remarkably influence
the probability distribution of win, lose and tie given each hand. These factors
are used to construct the Bayesian network. OurCurrentWithBoard, OppFinal,
OurFinal and Board are the nodes which represent the types of corresponding
hand. All the hand types are refined into 22 types as the nodes’ states which are
shown in Table 1.

The nodes Round, OurCurrentWithBoard and Board in Bayesian network are
observed in Fig. 2. Round indicates the current round in a hand. Board indi-
cates the current board cards on the table. OurCurrentWithBoard indicates the
type of our hand including the board cards. OurFinal indicates our probability
distribution of hand types inferred by Round and OurCurrentWithBoard. Opp-
Final indicates the opponent’s probability distribution of hand types inferred by
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Table 1. The 22 Types of Hand Cards. Low means the top rank 2 ∼ 8(in Busted Low
means lower than Q). Medium means top rank 9 ∼ J . High means top rank Q ∼ A. L
is short for Low. M for Medium and H for High.

Type Example Type Example

Busted Low ♦J ♥10 ♠8 ♣4 ♥2 Pair H Second M ♦K ♥K ♠J ♣4 ♥2

Busted Q ♣Q ♦2 ♥10 ♠7 ♦4 Pair H Second H ♣A ♦A ♥K ♠7 ♦4

Busted K ♠K ♣4 ♥7 ♣Q ♦6 Two Pair Low ♠7 ♣7 ♥6 ♣6 ♦3

Busted A ♥A ♠K ♣10 ♥8 ♣2 Two Pair Medium ♥J ♠J ♣8 ♥8 ♣2

Pair L Second L ♠6 ♣6 ♥3 ♦7 ♣5 Two Pair High ♠A ♣A ♥7 ♦7 ♣K

Pair L Second M ♠5 ♥5 ♦2 ♣10 ♦9 Triple ♠5 ♥5 ♦5 ♣10 ♦9

Pair L Second H ♣3 ♥3 ♠A ♣10 ♠9 Straight ♣K ♥Q ♠J ♣10 ♠9

Pair M Second L ♥J ♣J ♥8 ♠3 ♦2 Flush ♥K ♥10 ♥8 ♥3 ♥2

Pair M Second M ♥J ♠J ♣10 ♣9 ♦3 Full House ♥K ♠K ♣K ♣9 ♦9

Pair M Second H ♥10 ♠10 ♣K ♦6 ♣5 Four of a Kind ♥6 ♠6 ♣6 ♦6 ♣K

Pair H Second L ♦A ♠A ♣3 ♠5 ♥6 Straight Flush ♠A ♠K ♠Q ♠J ♠10

Round and Board. Winning indicates the probability distribution of win, lose
and tie. It is inferred by OppFinal, OurFinal and Board together.

To obtain the conditional probability table, 100,000,000 hands are randomly
generated to be used to conduct statistics.

2.2 Model the Opponent’s Style Based on Situations

Poker does not merely concern the probability of which hand can win. It is
psychological warfare between players. The better we know the opponent, the
more money we win. Different from existing work [7], it is limited to classify an
opponent into one of styles. A player will not always take actions of an invariable
style. Having studied match logs of some players of different styles, we find that a
player will show different styles in different situations. While in similar situations
the player will show a similar style. We assume that the player’s style will be
consistent in a similar situation. Then there comes two problems: we need a
method to quantify the style; we need to define what “a similar situation” is.

As mentioned in Section I, there are four main styles of players which are rec-
ognized: conservative-loose, conservative-tight, aggressive-loose and aggressive-
tight. In order to get rid of the constraints of limited style, we quantify the style
and map them to a continuous interval [0, 1]. When the value of the style tends
to be 0, the style tends to be aggressive. When the value of the style tends to be
1, the style tends to be conservative. Of course, when the value of style tends to
be 0.5, the middle of [0, 1], the style tends to be normal.

When analyzing the opponent’s style, we are finding the opponent’s moti-
vation behind his actions. We generalize the factors related with opponents’
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actions: our action before the opponent, the opponent’s hand(hole cards and
board cards) and round. These factors together form the opponent’s style. We
call the process Learning .

In this module, we propose the notion Action Pair. It consists of our agent’s
action and the opponent’s action, which are contextual. For example, “rc” means
the opponent checks after our agent’s raise action. Leaving aside the hand, we
can intuitively find interesting information hidden in the Action Pair.

If the opponent raises after our agent’s raise action, we assume that the op-
ponent has a strong tendency of aggressiveness. If the opponent checks after our
agent’s check action, we assume that the opponent has no particular tendency.
Following this principle, we sort all types of Action Pair according to the or-
der which is from “Aggressive” to “Conservative”. We conclude the Action Pair
order in Fig. 3.

Fig. 3. The Action Pairs in the order of the style

We assume that if the opponent’s hole cards are unobservable, any analysis
of the opponent’s style is unconvincing because we do not have enough exact in-
formation to infer the opponent’s motivation behind. Therefore, we only analyze
the opponent’s style after a showdown hand when the opponent’s hole cards are
observable.

In addition, Round is an important factor, which affects the thinking of an
opponent. A player will have different considerations in different rounds. It can
be easily understood that it is totally different when we have one pair in the first
round from the last round.

With the three factorsAction Pair, Opponent’s Hand Cards and Round above,
the opponent’s style can be modeled.

We propose a method to compute the value of the opponent’s style. The
Action Pair and the probability distribution of win, lose and tie are used to map
the value of the style to the a continuous interval [0, 1] as shown in Fig. 4.

Fig. 4. The graphical representation of the mapping process

Corresponding to each Action Pair, a function Style(WinP ) is defined as
follows to compute the value of the style:
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– For Action Pair “rr” : Style(winP ) = 0.5× winP
1
3 , winP ∈ [

0, 1
]
.

– For Action Pair “cr” : Style(winP ) = 0.5× winP
1
2 , winP ∈ [

0, 1
]
.

– For Action Pair “cc” : Style(winP ) = winP, winP ∈ [
0, 1

]
.

– For Action Pair “rc” : Style(winP ) = 1

1+e−8×(−winP+0.5) , winP ∈ [
0, 1

]
.

It can be deduced that if the opponent has a high probability of winning, but
he chooses to check, there is a good reason to assign a value representing a
conservative tendency as his style. There are still some rules in defining style
functions:

– If the opponent has a high probability to win and he raises, the value of style
should be tended to be Normal.

– A small probability of winning and a nonconservative Action Pair produce
aggressive style. This aggressiveness will be intensified as the Action Pair
tends to be more aggressive.

– A big probability of winning and a nonaggressive Action Pair produce con-
servative style. This conservativeness will be intensified as the Action Pair
tends to be more conservative.

When the opponent folds, his hole cards will be unobservable. Then such case
of fold will not be considered.

Given the style functions, the calculations will only be operated after show-
down. Such information for each style calculation should be ready: Action Pair,
Current Round, Opponent’s Hole Cards, Board Cards. Style(winP ) can be cal-
culated by above information. E.g., winP (the probability of winning) can be
obtained in previous Inference module using Round, Opponent’s Hole cards
and Board cards. Then we can calculate the style of the opponent according to
Style(winP ). This style is what the opponent shows in the current situation of a
hand. It satisfies the distribution of the current information of a hand. The cur-
rent situation consists of information which are observable by both the opponent
and ourselves. Round and Board cards are obviously the most appropriate infor-
mation within the situation. The table StyleTable, which is indexed by Round
and BoardCardsType, is created to store the values of styles as “experience”.
Each obtained value will be put in the position where is indexed by the com-
bination of corresponding Round and Board cards type and calculated with the
historical data together in a statistical way. The greatest advantage is that it’s
an online learning which can learn the opponent’s style while in the play.

2.3 Make Decisions with Modeled Style

We call this process the Tactic module in Fig. 1. When estimating the value
of the opponent’s hand cards in a certain stage of a hand, information such
as Round, Board cards should be first observed. Meanwhile, the historical style
will be obtained from StyleTable. The style is what the opponent shows in the
similar situation based on “experience”. Given the latest Action Pair in the
same round, we can restore the opponent’s approximate probability of winning.
The approach is almost the inverse process of obtaining the style of opponent.
Following functions are designed to map the style to the probability of winning:
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– For Action Pair “rr” or “cr” : EWinP (style) = style
2
3 , style ∈ [

0, 1
]

– For Action Pair “cc” : EWinP (style) = style, style ∈ [
0, 1

]
– For Action Pair “rc” : EWinP (style) = 4× (x− 0.5)3 + 0.5, , style ∈ [

0, 1
]

Note that all the calculations can only be operated when all the required infor-
mation comes from the same round of a hand. This is consistent with what we
have always emphasized that the opponent will show a similar style in a similar
situation.

After having obtained the estimated opponent’s probability of winning, we
can have many ways to adaptively change our action. The simplest way is that
if the estimated value is very high, the opponent may have a very good hand.
Because the value of the style is an average calculated in a number of hands, we
do not need to consider whether the opponent is bluffing this time.

3 Experiments and Analysis

There are two issues to be verified in the experiments. The first is whether the
style shows a significant difference in different situations. The second is whether
style modeling can improve the performance of an agent. These two issues guide
the experiments. To compare the results, we use three agents as opponents with
different styles, which will be described in the following section.

3.1 Contrast Agents and Opponents

Contrast agents. The contrast agent bases on previous Inference module.
100,000,000 hands are randomly generated to train its Bayesian network. It raises
when its probability of winning is over 0.6 and folds when its probability of losing
is over 0.6. It is designed to carry normal style.

Rule-Based Opponents. By adjusting the threshold of the probability of
winning to take actions, we simulate the aggressive and conservative opponents
based on previous Inference module. The aggressive agent raises when its prob-
ability of winning is over 0.4 and folds when its probability of losing is over 0.8.
The conservative agent raises when its probability of winning is over 0.8 and
folds when its probability of losing is over 0.4.

Monash BPP(Bayesian Poker Player) Opponent. We introduce the
Monash BPP of ACPC (Annual Computer Poker Competition) 2006 version as
another opponent [14]. Its complete version got the third prize in the competi-
tion. For simplification, we do not include its opponent modeling part.

3.2 Results and Analysis

Each experiment is performed in 100, 200, 500 and 1,000 hands. The perfor-
mance of the agents with and without style modeling are compared by the
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winning money after each experiment. After each opponent’s experiments, the
corresponding StyleTable will be analyzed. The experiments are carried on the
ACPC Server.

The Opponent with Aggressive Style. As mentioned before, the threshold
adjustment will make the opponent tend to take more risks to play more hands.
Thus, the opponent will act aggressively even if it has no big hand in many
situations of a hand. The performances of the agent with and without style
modeling are then observed. A tactic is tried so that if the estimated opponent’s
probability of winning is larger than the agent’s, we assume that the opponent
has a larger hand than our agent and it will not raise in any way.

Note that the value of the style is 0.5 in some situations. The reason is that,
in the first round, two board cards cannot form the combination of some hand
types. In the following round, some hand types with a low probability cannot
appear. Thus, a priori value 0.5 has to be assigned to this situation.

(a) The StyleTable for the aggressive opponent.
The vertical axis indicates the scale of the style.

(b) The result of comparison
with style modeling against the
aggressive opponent.

Fig. 5. Experiments for the aggressive opponent. In (b), the vertical axis indicates
the scale of money won by the agents. The abscissa indicates the scale of the number
of hands the agents play.

In Fig.5(a), the opponent shows an obvious aggressive style in most of situ-
ations. The values of styles are generally less than 0.5. In addition, the style is
variable in all situations. It can be justified by the experiments that the opponent
shows various styles in different situations.

According to Fig.5(b), a big advantage is shown to the aggressive opponent.
Although the aggressive opponent loses money more easily, the agent with style
modeling wins averagely more than 50% of the agent without style modeling in
each match. By analyzing the log of matches, we find that the agent with style
modeling does well in reducing its threshold of raising to adjust itself to the
opponent’s aggressive style and win more.
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(a) The StyleTable for the conservative opponent. (b) The result of comparison
with style modeling against the
conservative opponent.

Fig. 6. Experiments for the conservative opponent

The Opponent with Conservative Style. The conservative opponent tends
to take fewer risks so that it will play only sure hands and raise only when it has
a greater assurance. We make slight adjustment that if the estimated opponent’s
probability of winning is larger than the agent’s, the agent will directly fold.

In Fig.6(a), the conservative opponent clearly shows the opposite tendency
from aggressive opponent. The values of styles are generally greater than 0.5.
It indicates that the opponent shows an obvious conservative style in most of
situations. The obtained style from the style model is able to reasonably demon-
strate the tendency of the opponent. Furthermore, we find that again the style
in different situations of a hand is variable as in last experiment.

In Fig.6(b), the compared agent loses all the matches. In contrast, the agent
with style modeling wins money at a steady rate along with the increase of the
hands. By analyzing the log, we conclude that the conservative opponent gives
no chance to us since it only plays a good hand. So the compared agent with
no style modeling has no advantages. When it raises, the opponent either folds
or has a greater hand. However the agent with style modeling will fold once the
estimated opponent’s probability of winning is greater than its hand. Thus, it is
not difficult to explain why the agent with style modeling performs better.

The Opponent Monash BPP. Based on Bayesian network, it first infers the
probability of winning through belief propagation. Combining the probability
and its next action, the final decision is made. In addition, it adds randomization
to make itself unpredictable.

In Fig.7(a), the opponent shows no clear general style. In this case, a single
style modeling will not work. Considering that the styles in different situations
are variable, style modeling will take effect.

In Fig.7(b), the agent with style modeling begins to show significant advan-
tage from 500 hands match. Based on the analysis of the log of matches, the
“experience” StyleTable does not help much in the first 200 hands. Since the
statistical effect is not obvious at the very beginning. After that, the agent with
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(a) The StyleTable for the Monash BPP opponent. (b) The result of comparison
with style modeling against the
Monash BPP opponent.

Fig. 7. Experiments for the Monash BPP opponent

style modeling successfully avoids to raise when facing the Monash BPP’s larger
hand. Meanwhile, it succeeds in finding the opponent’s poor hand and stays close
to it even if the hand of the agent with style modeling is also poor.

3.3 Discussion

Even if the opponent has a distinct style, it is hard for him to avoid showing
inconsistent styles in different situations of a hand. As a result, we cannot use
his single style to guide all of our actions. This is why we propose the method
to model the style in all situations. The obtained StyleTable and the estimated
opponent’s probability of winning effectively help the agent improve the perfor-
mance. The improved agent adapts to the opponent and performs better than
its original version, which is very encouraging.

Additionally, the agent with style modeling will adjust with the increase of
the hands. We find that the StyleTable tends to be a stable distribution after
1000 hands. It indicates that the opponent’s style modeling based on situations
will not change much after that.

4 Conclusions and Future Work

This paper proposed a novel method to model the opponent’s style based on
situations and a detailed procedure centered at the modeled style. In order to
achieve this goal, a notion of Action Pair and a calculation method are first given
to obtain the value of the style and known as “experience”. The specific style
will be obtained from the “experience” according to the current situation of the
hand. Then the style was used to help estimate the value of the opponent’s hand.
In this way, the final decision can be made by some tactics.

The experimental results show that the modeled style validates the correct-
ness of our assumption that a player does not always show an invariable style
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in situations. This style modeling subdivides the style into different situations.
Having obtained the style values in all situations, we can have an insight into the
opponent’s style in detail, which cannot be easily observed by existing methods.
It’s encouraging to find that the obtained style and the estimated opponent’s
probability of winning can effectively improve the performance of the original
agent. They jointly help the agent predict the hidden information of the oppo-
nent’s hand and earn more money in fixed hands.

Future work will pay attention to building the style quantifying process more
accurately. The method will also be extended to No-Limit Hold’Em Poker where
the pot is an important factor which has a great impact on player’s decision.
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Abstract. Interactive training is well suited to computer games as it allows 
game designers to interact with otherwise autonomous learning algorithms.  
This paper investigates the outcome of a group of five commercial first person 
shooter game designers using a custom built interactive training tool to train 
first person shooter bots.  The designers are asked to train a bot using the tool, 
and then comment on their experiences.  The five trained bots are then pitted 
against each other in a deathmatch scenario.  The results show that the training 
tool has potential to be used in a commercial environment. 

Keywords: Reinforcement learning, interactive training, first person shooters, 
game artificial intelligence. 

1 Introduction 

Over the past decade there has been a dramatic increase in using computer games for 
Artificial Intelligence (AI) research. In particular, first person shooter (FPS) games 
are an increasing popular environment in which to test traditional machine learning 
techniques due to their similarities to robotics and multi-agent systems (MAS). For 
example, FPS game agents, termed bots, are able to sense and act in their environ-
ment, and have complex, continuous movement spaces. FPS bot AI generally consists 
of hard-coded techniques such as finite state machines, rule-based systems, and be-
haviour trees [1][2]. These techniques are generally associated with drawbacks such 
as predictable behaviours [3] and time consuming tuning of parameters [4]. 

Reinforcement Learning (RL) is a class of machine learning algorithms which al-
low the agent to build a map of behaviours by sensing and receiving rewards from the 
environment.  An extension to the standard RL algorithm is interactive RL, or interac-
tive training, a method that allows human users to interact with the learning algorithm 
by providing rewards or punishments instead of using a fixed reward function. 

While there is an increasing amount of research into using machine learning  
techniques for FPS bot AI [5-7], this research removes the game designers from the 
development loop.  While automating the learning of AIs may appear to be an advan-
tage, it is hard to control the direction the algorithm learns in [8], and is also hard to 
fine tune to commercial standards. This research attempts to bridge this gap by  
allowing game designers to interact with the underlying learning algorithm in order to 
direct what behaviours the bot learns. There are a number of advantages of using  
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interactive training for FPS bot AI.  It gives designers control over the types of bots 
that are made.  The underlying code of the behaviours can be modularised and reused 
thereby decreasing bugs and coding time.  Finally, iteration time designing bots is 
decreased as the designers can see in real-time the effects of the bot behaviours while 
the game is being played. 

This paper extends previous work in interactive training [9] with the aim of further 
investigating its suitability for commercial first person shooter games.  The research is 
continued through experiments involving commercial computer game designers using 
the tool to train a bot.  This aim will be achieved by examining the results from the 
training session, to see if they match the intention of the designers.  The secondary 
aim is to prove that diverse types of bots can be created by different users. 

The contribution of this paper is twofold.  Investigating how human users interact 
with learning algorithms is an interesting and novel idea, and may provide insight into 
the underlying algorithm itself.  The results from the paper also benefit the game in-
dustry as a new method for designing and training bot AIs may be established. 

This paper is organized as follows.  Section 2 will provide background on FPS 
games and relevant research.  An introduction to RL and interactive training will then 
be given.  Section 3 will outline the game test bed used for the research, including the 
interactive training tool interface.  Section 4 presents the data gathered from game 
designers’ training sessions and results from playing the trained bots against each 
other.  The final section concludes the paper with ideas on future work. 

2 Background 

FPS games are one of the most popular types of game being played in the current 
market [10].  FPSs are categorized for their combat nature and fast paced action. 
These games are generally made up of bots that navigate the environment, shoot at 
enemies, and pick up items of interest.  AI research using FPS games has gained con-
siderable attention in the research [6][11]. 

During the last decade, research into FPS games has continued to increase. A Neural 
Network (NN) was used to train the weapon selection module of Unreal Tournament 
bots [5].  The results showed that the bots trained against the base AI had improved 
performance, and the bots trained against the harder AI were not as competitive, but 
had improved slightly.  In a similar environment an evolutionary NN was used to train 
hierarchical controllers for FPS bots [6].  Three controllers for shooting, exploring and 
path following were evolved individually, and then an evolutionary algorithm (EA) 
was trained to decide when to use each of the controllers.  The results showed that bots 
using the evolved controllers were not able to outperform the hard-coded full knowl-
edge bots, but they were able to play the game quite well.  A NN was also used to  
learn sub-controllers for the movement of an FPS bot and found that it was able to 
outperform controllers using decision trees and Naïve Bayes classifiers [11]. 

Game AI has many parameters which are usually balanced or fine tuned by devel-
opers once all the features of the game are complete. The job of tuning parameters can 
be time consuming due to the large number of them. Some researchers have attempted 
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to tune these parameters using genetic algorithms [4][7][12][13].  An FPS environ-
ment was used with the parameters being the behaviour of the bots [12][13][4].  Bots 
were tuned from Unreal Tournament (Epic Games) and found the tuned bots were 
better, in terms of kills, than the standard AI in the game [12].  The popular Counter 
Strike (Valve) game has been used as a test bed for FPS research [13].  They found 
that evaluation times were extremely long as the rendering could not be “turned off”, 
and therefore only 50 generations were completed.  Results showed that after only 50 
generations the evolved bots had a slight advantage.  Other research evolved the be-
haviour of bots in an open sourced FPS engine called Cube [4].  Evaluation was per-
formed by the author manually playing against the bots with an evaluation function 
consisting of the bots health, kills and deaths.  Results showed that the bots evolved 
into capable enemies from initial useless ones. 

Reinforcement learning (RL) is a type of action selection mechanism where an 
agent learns through experience interacting with the environment [14]. The field of 
RL is widespread but is mainly focused in robotics and multi agent systems [15][16]. 
Sarsa(λ) is a type of RL algorithm where the policy is updated after the next action is 
selected using the rewards obtained from the current and next action. The Sarsa(λ) 
algorithm has been successfully applied to multi-agent systems using a computer 
game environment [17][18]. 

Previous work has been performed in using RL for learning individual bot beha-
viors in a shooter style environment [8][19].  Both of these research papers show that 
RL can successfully be used to learn navigation, item collection and combat beha-
viors.  A simplified FPS test bed has also been used in other research, where the map 
was broken into square areas, and each area represented one of the states, along with 
enemy visible and a set of plans which denoted a planned path through the areas [19].  
This work looked at using RL for learning bot behaviours in FPS team scenarios. 

Interactive RL is an extension to the standard RL algorithm as it allows a human 
user to interact with the reward process and the action selection process.  There is 
little research in the literature on interactive RL, and none in an FPS environment.  An 
interactive RL algorithm was used in a simple 2d environment to train a synthetic dog 
how to behave [20].  The user was able to guide the dog by using the mouse to lure 
the dog into positions such as sitting or begging.  An extension to this work is seen in 
[21] which used a more complex environment to teach a virtual character how to 
make a cake.  Reward values were represented with a sliding bar, and guide actions 
were used in the form of clicking an object in the environment.  The research pre-
sented here extends previous work on interactive RL [9], which performed a prelimi-
nary investigation into using the algorithm in an FPS environment.  From the success 
of the previous work, this paper will test the interactive training tool on five commer-
cial game designers, and will compare the results of the trained bots. 

3 Method 

A purpose built FPS game environment was used for the interactive training experi-
ments as full control was needed over the game update loop, the user interface and the 
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CPU cycles. The game environment consisted of the basic components of an FPS 
game: bots that can navigate the environment at different speeds, shoot weapons, pick 
up items, strafe, and duck behind cover. See Figure 1 for a screenshot of the game 
environment with four bots currently in combat.  For more details on the game  
environment refer to [9]. 
 

 

Fig. 1. Screenshot of game environment with bots playing against each other 

The state sensors of the bot were designed to capture local information that the bot 
can use to sense the environment. The input states for the bot are as follows: 

• Health: Low (0), Medium (1), High (2) 
• Ammo: Low (0), Medium (1), High (2) 
• Enemy: NoEnemy (0), Melee Range (1), Ranged (2), Out of Attack Range (3) 
• Item: None (0), Health (1), Ammo (2) 

The output states were the actions the bot can perform in the world as follows: Melee 
(0), Ranged (1), Wander (2), Health Item (3), Ammo Item (4), Dodge (5), and Hide 
(6).  Therefore the number of state action pairs in the policy table is 756. 

The ITRL algorithm used in this paper was loosely based on the work on interac-
tive synthetic dog [20], and human training [21].  The algorithm runs as normal when 
no human input is recorded using a pre-defined reward function.  The reward function 
can be modified by the user at any stage of the training through edit boxes in the User 
Interface (UI) (see Figure 2).  A button was also available to clear all reward values, 
which will disable the pre-defined reward function and only user rewards are used. 

 

Fig. 2. User Interface design for the interactive training tool 
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Table 1 lists the steps of the interactive training algorithm.  If the user selected a 
guide action, the algorithm will use this input to override the RL action selection 
method.  For a complete description of the algorithm and user interface design see [9].  
The learning rate was represented by α = 0.1, reduced over time to 0.05. The decay 
factor was γ = 0.4, the eligibility trace was λ = 0.8, and the exploration rate was ε = 
0.2. The end game condition is the terminal state which was decided by the designers 
at any point during the training.  Trained bots can be saved and loaded for continua-
tion of training as well. 

Table 1. Interactive Sarsa(λ) Algorithm 

1: Initialize Q(s,a) arbitrarily, set e(s,a)=0 for all s, a 

4: Repeat for each update step t in the game 

5:  g ← guidance object 
6:  If guidance received then 

7:   a ← g 

8:  Else 

9:   a ← action select a from policy, Q, using ε-greedy selection 

10:  End if 

11:  Execute a 

12:  hr ← user reward or penalty 

13:  If user reward received then 

14:   r ← g 

15:  Else 

16:   Observe r 

17:  End if 

18:  δ ← r + γQ(s’,a’) - Q(s,a) 

19:  e(s,a) ← 1 

20:  For all s, a: 

21:   Q(s,a) ← Q(s,a) + αδe(s,a) 

22:   e(s,a) ← γλe(s,a) 

23:  s←s’, a←a’ 

24: Until s is terminal 

 
The interactive training algorithm updates when a state change occurs and when 

the user has selected a guide action or reward.  When the user selects a guide action, it 
immediately overrides the current action.  The user chosen action continues until it 
either succeeds or fails, or the user selects another action. 

Emails were sent to five game designers working in the computer games industry 
that have worked on commercial shooter games. The designers were asked to train a 
bot using the supplied training tool, and to email the results back along with answers 
to some questions regarding their training experience. Data was recorded for all user 
actions, including reward and penalty frequencies, and whether the guide actions 
failed or succeeded after the action was pressed. 
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4 Results 

This section looks at the results from the five game designers using the interactive 
training tool to train bots to play a first person shooter game.  Feedback was gathered 
from the users to find out what type of bot they tried to train.  The first section will 
compare the feedback with the data from the training phase.  The second section will 
investigate the results from the five user trained bots playing against each other. 

4.1 Training Phase 

Figure 3 displays the state-action value functions represented by a colour scale visu-
alisation to show the similarities and differences between the trained bots.  User 3 
clearly has the most active policy with the majority of states having adjusted values, 
and very few areas where the state action pairs have not been visited. This activity  
 

 

 

 

 

Fig. 3. Clockwise from top left to bottom right, the state-action value functions represented 
with a colour scale for user 1, user 2, user 3, user 4 and user 5 
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indicates that user 3 spent a lot of time training the bot and therefore the bot, in the-
ory, should be more experienced at playing the game than the other bots.  The next 
most active landscape is from user 5, although this is not immediately clear from Fig-
ure 3 as it appears very flat all over.  The reason for the decrease in values is that user 
5 turned off the automatic reward distribution at the beginning of the training session.  
Therefore all reward values were manually given by the user causing the smaller val-
ues.  However, despite the small values, a good spread of clusters are seen in the land-
scape, with some flat areas but less than seen in the policies of users 1, 2 and 4. 

Users 1, 2 and 4 have similar clusters; although their values are varied over the 
three users.  For example, user 2 has higher peaks in the states over 100, and very low 
peaks in the states less than 20.  Whereas, user 1 had high values in states less then 
20, and small peaks in the ones greater than 100.  User 4 generally had lower values, 
but across more state-actions, indicating a broader training experience with less repe-
tition on similar states than other uses. 

Table 2. Guide actions successes (S) and failures (F) for user training 

Action S1 F1 S2 F2 S3 F3 S4 F4 S5 F5 
Melee 6 1 3 21 15 13 4 2 9 0 
Ranged 2 8 2 3 3 1 3 5 6 15 
Wander 0 0 0 0 0 0 1 0 0 0 
Health Item 11 1 16 5 64 6 9 0 31 0 
Ammo Item 6 0 1 3 0 0 2 2 14 0 
Dodge 8 0 0 0 0 0 3 0 0 0 
Hide 1 2 0 0 0 0 0 1 6 2 
TOTAL 34 12 22 32 82 20 22 10 66 17 
 
User 1 tried to create an item collecting bot that shot at range then moved into me-

lee. Table 2 shows an even number of ranged and melee actions being used, with 
melee (six actions) being more successful than the ranged action (two successes). The 
health and ammo item actions were also evenly used with 11 health and six ammo 
item successes.  Therefore, overall a general type bot was attempted to be trained. 

User 2 tried to create an aggressive melee combatant and this can clearly be seen 
by the number of melee actions that were selected.  Unfortunately a very high number 
of these guide actions failed, indicating that either the failure condition for the melee 
action was unreasonable (i.e. having to kill the opponent), or that the range for using 
the melee action was not clear to the user. 

User 3 attempted a health collecting ranged/melee combination bot that favoured 
melee.  The figures in Table 2 reflect what the user attempted to do.  The melee action 
was focussed on with 15 successes and 13 failures, and the ranged action was selected 
less frequently with three successes and one failure.  The health item action was used 
as a guide 64 times successfully, and six times unsuccessfully.  These figures show 
that user 3 performed more interactive training than all the other users, which were 
also seen by the height field representation of the policy in Figure 3 as the landscape 
was more active, compared to the others. 

User 4 aimed to create a bot that fled the stronger enemies but attacked the weak 
ones.  The data does not reflect this training as the hide action was only selected once 
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by the user.  However, this failure may be an indication of why the user felt the train-
ing did not work well for them.  Improvements need to be made on the hide behaviour 
so that it is useful for the intended purpose as user 4 assumed. 

The user with the second most active training session was user 5.  Their feedback 
quoted them trying to create a bot that was primarily ranged but also used melee at-
tacks, and attempted to collect health and ammo items.  The guide action data back up 
this statement as the ranged attack was focused on with nine successes and 15 fail-
ures, while the melee attack was used nine times successfully.  Health and ammo 
items were selected 31 and 14 times successfully successively.  User 5 tried training 
the hide action more than the rest of the users with six successful attempts and two 
failures. 

This section has shown that the users were able to use the interactive training tool 
to train the types of bots they wanted.  The policy visualisations showed that there 
were three distinct types of bots that were trained, where user 1, 2 and 4 had similar 
trends, and user 3 and 5 had distinctly different trends.  The next section will continue 
investigating the varied nature of the bots from the different users. 

4.2 Simulation Phase 

This section looks at the results from a game played with five trained bots, one from 
each user, fighting against each other. No AI controlled bots were included in the 
games. The simulations were run for 12000 game ticks or iterations. An iteration was 
a complete update cycle of the game and was used to be consistent over all replays. 
Due to there being multiple RL bots, using RL iterations would only be relevant to 
one of the five bots.  50 games were played and the results averaged.  Figure 1 shows 
the five user trained bots playing against each other. 
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Figure 4 maps the number of kills versus deaths to represent an overall combat 
strategy based on maximising kills and minimising deaths.  The number of deaths 
scale on the Y axis was reversed as the best strategy has the lowest death count.  The 
figure indicates that user 5 has the best combat strategy bot, being the only one in the 
first wave on the Pareto front.  User 5 had the highest number of average kills of 4.8, 
and although they did not have the lowest number of deaths of 3.5, they were still able 
to dominate the other bots in combat.  The next front had user 3 in it with an average 
of 3.9 kills and 3.7 deaths, with user 1 in the next front with 2.7 kills and the lowest 
number of deaths of 2.2.  Users 2 and 4 were dominated by the other three bots with 
average kills of 1.8 and 2.8, and deaths of 3.0 and 3.5 respectively. 

Observation of the games showed that user 1 was extremely competent in health 
item collection, and often avoided ammo items in favour of health.  This behaviour is 
also reflected in the values recorded for health and ammo collection.  User 1 was the 
second best at collecting health items with an average of 18.0 health items per game, 
whereas they were the second lowest in ammo collection at 8.7 items per game (see 
Figure 5a).  This bot rarely used the wander behaviour, which corresponds to feed-
back from user 1 that they wanted their bot to always try to move with an intention. 

User 3 followed a similar strategy to user 1 of favouring health items over ammo 
items. They were successful in this goal, and achieved the highest health collecting bot 
with an average of 23.0 health items per game. User 3 not only trained a very good 
health item collecting bot, but also a competitive combat bot, proving that the exten-
sive training they did produced a bot that was well rounded in all the game objectives. 

Users 2, 4 and 5 produced bots with a similar health collecting ability with aver-
ages of 6.0, 10.7 and 7.7 respectively.  While these bots were capable at health item 
collection, they frequently chose different actions during non-combat states such as 
wander, and ammo collection. 
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Fig. 5. (a) Average health items collected for user trained bots and (b) Average ammo items 
collected for user trained bots 

Although user 2 had the lowest health collection rate, they scored extremely high 
in the ammo item collection task with an average of 38.1, almost double that of the 
next highest scoring bot from user 5 who had an average of 19.9 (see Figure 5b).  
Observation of one game showed user 2 spending a lot of time wandering around an 
area of the map with number of ammo items, which could be attributed to this very 
high number. 
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The increased activity seen in the policy height field representations of user 3 and 
5, seemed to have paid off as these bots stood out in combat.  Observation of the 
combat strategy of user 3 and 5’s bots showed intelligible behaviours, and they would 
only break out of combat to collect health items.  Bots from users 1, 2 and 4 had more 
erratic behaviour with rapid state changes and selection of strange actions during 
combat.  For example, in the replay, user 1 is fighting user 2 and user 1 breaks out of 
the combat and wanders away even though the enemy is still in sight.  They re-engage 
in combat after a time, but the behaviour looks erratic and is not what would be ex-
pected of a commercial FPS bot. 

5 Discussion 

The user trained bots have shown greater diversity in their policy landscapes and be-
haviours than in previous research of automatically trained bots [8].  The policy land-
scapes were especially varied in user 3 and 5’s bots, both of which spent more time 
training than the other three users. The bots produced from the varied policies  
appeared better in their behaviours than the other three bots.  An example of the di-
versity in bots can be seen by the bot user 1 trained, which was very good at health 
collection but not as competitive in combat, whereas user 3 also produced a very good 
health collecting bot and was also very good in combat. 

One of the major concerns with the combat system was that the bots did not have 
the ability to shoot and move to a designated position at the same time.  User 4 was 
not able to train the type of bot that they wanted to due to this restriction and the lim-
ited actions that could be performed in combat.  A solution to this issue is to add 
guide actions which are able to add to the combat experience.  These actions could 
include a flee to health item action, an action which allowed the bot to kite by staying 
in ranged attack distance, and a separate ranged action which moved into melee range. 

The results showed that user 5 only using manual rewards seemed to perform bet-
ter than using the automatic reward function in regards to training the bot that they 
wanted and seeing immediate feedback during the training session.  Forcing manual 
rewards only should improve some of the issues with training not seeming to be 
working for some types of bots, especially those that differ from the path the auto-
matic reward system steered them towards.  This issue is clearly seen in the policy 
landscapes of the trained bots. Users 1, 2 and 4 did the least amount of training (as 
seen in the training results listed in Table 2) and the policy landscapes were all very 
similar. User 3 performed extensive training using automatic rewards, and was able to 
produce a more varied landscape for their trained bot.  User 5 had an extremely dif-
ferent policy landscape to the other users due to only manual rewards being used, and 
they were the most successful in creating a bot that they wanted in accordance to their 
feedback.  These results imply that the automatic training reward feature is too force-
ful for allowing full customisation for user guided training. 
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6 Conclusion 

This paper has clearly shown that interactive training is a viable option for designing 
bots in an FPS game.  All the users, who have experience working on big budget, high 
quality FPS games, felt that the tool had potential to be used during the development 
of a FPS game.  The secondary aim of this paper was to show that a diverse set of bot 
types could be trained by different users.  The results showed that the bots were all 
different from each other, and particularly the bot which was trained with manual 
rewards only was unique from the others and performed well in the game objectives. 

A number of improvements have been identified based on the feedback from the 
users which will make the tool more suitable for commercial FPS game needs. A 
number of the users made points about the inadequacy of the wander behaviour, and 
commented on how it is not what bots should be doing, rather they should be moving 
with intention around the level to known item positions and known pathways.  To 
address this issue bot patrol paths will replace the wander behaviour. 

The difference between what the bot knows and what the user knows caused some 
frustration with one of the users. To address this issue, items and enemies that are 
visible will be marked so that the user can immediately see what the bot can see.  
Also the bot’s vision will be modified from a distance based system to a line of sight 
based system to be closer to what a human player could see.  Similarly the ranges for 
the ranged and melee attack behaviours were not obvious.  Some of the users failed 
the melee action many times during training and this could be improved by having 
clear ranges visible on screen.  In addition to this visual feedback, the actions that are 
not available (i.e. would fail due to parameter constraints) will be disabled on the UI.  
Further improvements will also be made to allow the designers to hand initialise the 
policy before training commences. 
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Abstract. In real life games, a player’s belief about the consequence
of a strategy is often ambiguous due to out-of-control factors in the
environment where the games are played. However, existing work cannot
handle this situation. To address the issue, we introduce a new kind of
games, called ambiguous games, and incorporate human cognitive factors
of ambiguity aversion and minimising regret to propose a concept of
solution to such a game. Moreover, we also study how ambiguity degrees
of belief about payoffs impact the outcomes of a game, and find the
condition under which a player should release more or less ambiguous
information to his opponents.

1 Introduction

Game theory is a powerful tool for analysing the interactions between decision-
makers in many domains, such as voting, biology, economics, management sci-
ence, and artificial intelligence [5,18]. In game theory, it is assumed that a player’s
belief about the consequences of a strategy taken is accurate. However, in real
world, it is not always the case [2,10]. For example, two competitive cell phone
retailers can choose two different brands, which are their pure strategies. In real
llife, the payoffs of each retailer are often impacted by some uncontrol and uncer-
tain factors [14], such as buyers’ tastes and economical environments, and so it is
impossible to assign a precise payoff to a single consequence of a strategy profile.
This kind of uncertainty about consequence of a strategy is so called ambiguity.
That is, in a game the possible consequence of each strategy profile is in a set,
and we do not have a precise probability for each of all possible consequences of
a strategy but could have for their subsets [14,22,24].

Although the ambiguity cannot be avoidable in games played in real world,
existing work cannot handle properly the situation. In fact, there are mainly two
kinds of games (the more detailed discussion can be founded in related the work
section). One is based on the assumption that the precise probabilities can be
estimated for each single possibility of the consequences of a strategy, including
Bayesian games [8] as well as the concepts of trembling hand perfect equilibrium
[20] and proper equilibrium [16]. The another is fuzzy game [2,10,12,13], which
assumes that the payoffs are fuzzy. However, it is also assumed each possibility
of a fuzzy payoff can be estimated accurately.
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The aim of this paper is to address the problem. The main tool to handle am-
biguity is D-S theory [21]. In [24], based on the theory we construct a decision
model, in which we use cognitive factors of ambiguity-avoiding and regret min-
imising to set a proper preference ordering over strategies with interval-valued
expected utilities. In [24], we show that our model can solve classic Ellsberg
paradox [4] under ambiguity, and the preference ordering is a pre-order (i.e.,
complete and transitive). So, it is proper to employ the model for choosing the
best response problem of games under ambiguity.

The main contributions of this paper are: (i) we can solve games with am-
biguous payoffs; and (ii) we discover the rule of how ambiguity degrees of the
players’ beliefs about consequences impact the outcome of an ambiguous game.

The remainder of this paper is organized as follows. Section 2 briefs D-S
theory and our ambiguity decision model. Section 3 defines static games under
ambiguity and introduces the solution concept to the games. Section 4 studies
how the ambiguity degrees of belief about possible consequences influence the
outcome of an ambiguous game. Section 5 relates our work to others’. Finally,
Section 6 concludes the paper and points out the future work.

2 Preliminaries

This section recaps D-S theory [21] and our decision model under ambiguity [24].

2.1 Basics of D-S Theory

Definition 1. Let Θ be a frame of discernment. (i) Function m : 2Θ → [0, 1] is
called a basic probability assignment or a mass function over Θ if m(∅) = 0 and∑

A⊆Θm(A) = 1. (ii) Let A ⊆ Θ, mass function m is called a simple support
function if m(A) = s, and m(Θ) = 1−s; we also say the mass function is focused
on A, and s is the focused mass.

D-S theory is different from probability theory. For example, a student lost his
keys. Unfortunately, he has no ideas where he lost exactly, and locations a, b,
and c are all possible. In D-S theory, it can be modeled by a mass function:
m(A) = 0 if A �= Θ, and m(Θ) = 1, where Θ = {a, b, c}. While in probability
theory, we have to find a probability function p such that p(a) = s1, p(b) = s2,
and p(c) = s3, where s1+s2+s3 = 1. And this probability function p needs to be
justified by lots of evidence. Obviously, this is much harder than the treatment
of D-S theory. Another difference between D-S theory and probability theory
is that mass function does not have to be additive, while probability one has
to. Actually, probability function is a special case of mass function. In fact, if
m(A) > 0 and

∑
m(A) = 1, where A is a singleton (i.e., |A| = 1), then m is a

probability function.
Generally speaking, a mass function represents a piece of ambiguous evidence.

Intuitively, the bigger the cardinality of set A the more ambiguous in a simple
support function focused on A. The concept of ambiguity degree of a mass func-
tion is formally defined as follows [3]:
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Definition 2. Let m be a mass function over Θ and |A| be the cardinality of
set A. Then the ambiguity degree of m, denoted as δm, is given by

δm =

∑
A⊆Θ

m(A) log2 |A|

log2 |Θ|
. (1)

For the key missing example that we mentioned above, a mass function can
model complete ignorance (absolute ambiguity), i.e., m(A) = 0 if A �= Θ, and
m(Θ) = 1. By Definition 2, we have δm = 1. On the other side, if we have
sufficient evidence to obtain a mass function, denoted as m, such that m({a}) =
s1, m({b}) = s2, and m({c}) = s3, where s1 + s2 + s3 = 1. In this case, m is a
probability function and by formula (1) we have ambiguity degree δm = 0.

2.2 The Ambiguity and Regret Aversion Model

Given a decision problem, assume that the decision maker knows the utility
of each single consequence, but he is unsure which consequence that an action
could cause. In other words, he only knows a mass function over the power set
of consequences. Formally, such a problem can be defined as follows [24]:

Definition 3. A decision problem under uncertainty of ambiguity (or call an
ambiguity decision problem) is a 4-tuple of (C, S, U,M), where:

(i) C is the set of all choices;
(ii) S is the set of all consequences of choices;
(iii) U = {uc | c ∈ C, ∀s ∈ S, uc(s) ∈ R}, i.e., the utility of consequence s ∈ S

that be caused by strategy choice c ∈ C is uc(s) ∈ R (real number); and
(iv) M = {mc | c ∈ C}, i.e., the decision maker’s uncertainty about the conse-

quences that strategy choice c could cause is represented by mass function
mc over the discernment frame Θ = {s1, . . . , sn}, where s1, . . . , sn ∈ S.

Based on the concept of mass function, the point-valued expected utility formula
can be extended to the expected utility interval [23]:

Definition 4. Given ambiguity decision problem (C, S, U,M), for choice c that
is specified by mass function mc over Θ, its expected utility interval is EUI(c) =
[U(c), U(c)], where:

U(c) =
∑
A⊆Θ

mc(A)min{uc(s) | s ∈ A}, (2)

U(c) =
∑
A⊆Θ

mc(A)max{uc(s) | s ∈ A}. (3)

Let EUI(c1) = [U(c1), U(c1)] and EUI(c2) = [U(c2), U(c2)] be the expected
utility intervals, then according to [13],

EUI(c1) + EUI(c2) = [U(c1) + U(c1), U(c1) + U(c2)]. (4)

Then, how to make a choice with interval-valued expected utility? We have the
following [24]:
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Definition 5. Let EUI(x) = [U(x), U(x)] be the expected utility interval of
choice x ∈ {c1, c2}, and δm′ be the ambiguity degree of mass function m′ corre-
sponding to c2. Then the ambiguity-avoiding maximum regret of choice c1 against
choice c2 is

�c2
c1 = ε(c2)− U(c1), (5)

where
ε(c2) = U(c2) + (1− δm′)(U(c2)− U(c2)), (6)

called the ambiguity-discounted upper bound of the expected utility of choice a′.
The preference ordering & over choices is defined as follow:

c1 & c2 ⇔ �c2
c1 ≤ �

c1
c2 . (7)

By Definition 5, we have

c1 & c2 ⇔ ε(c2)− U(c1) ≤ ε(c1)− U(c2)⇔ U(c1) + ε(c1) ≥ U(c2) + ε(c2). (8)

3 Game Definition

This section will define the ambiguous game and its solution concept.

Definition 6. An ambiguous game G is a 5-tupe of (N,S,Θ,M,U), where:

(i) N is a set of natural numbers, to denote the set of players of the game;
(ii) S = {Si}i∈N , where Si is the finite set of all pure strategies of player i;
(iii) Θ is the set of all possible consequences for all strategy profiles.
(iv) M = {Mi}i∈N , where Mi = {mi,j | ∀ρj ∈ ×k∈NSk,mi,j(Bi,j) = ξ,mi,j(Θ)

= 1− ξ, Bi,j ⊂ Θ};
(v) U = {ui}i∈N , where ui is the payoff function from the set of consequences

to the set of real numbers.

In the above definition, item (iv) means that for a pure-strategy profile each
player has a simple support function over the power set of the consequence set.

Given an ambiguous game, suppose each player calculates the expected payoff
interval of a pure-strategy profile by formulas (2) and (3). Then we can transfer
it to a normal static game in classic game theory [5,17]. In particular, we have
the following theorem, which provides the way to calculate the sum, denoted
as Ξi(ρj), of the lower and ambiguity-discounted upper expected payoffs (see
Definition 5) to any pure-strategy profile ρj for a specific ambiguous game.

Theorem 1. Given game (N,S,Θ,M,U), suppose for any pure-strategy profile
ρj, mi,j(Bi,j) = ξi,j , and mi,j(Θ) = 1 − ξi,j , Bi,j ⊂ Θ, j = 1, 2, . . . , n (n =
| ×k∈N Sk|). Let ti,j = min{ui(si), . . . , ui(sj)}, Ti,j = max{ui(si), . . . , ui(sj)},
si, . . . , sj ∈ Bi,j, y = min{ui(s1), . . . , ui(sn)}, and Y = max{ui(s1), . . . , ui(sn)},
s1, . . . , sn ∈ Θ. Then

Ξi(ρj) = U i(ρj) + εi(ρj), (9)
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where

U i(ρj) = ξi,jti,j + (1− ξi,j)y, (10)

εi(ρj)=ξi,jti,j+(1−ξi,j)y+ξi,j(1−log|Θ||Bi,j|)((Ti,j−ti,j)ξi,j+(1−ξi,j)(Y − y)).(11)

Proof. Since player i has simple support function mi,j , by formulas (2) and (3),
for player i the lower and upper expected payoffs of profile ρj to mass function
mi,j are as follows:

U i(ρj) = ξi,jti,j + (1− ξi,j)y, U i(ρj) = ξi,jTi,j + (1− ξi,j)Y.

By formula (1), discounting factor δi,j to the upper expected payoff of profile ρj
is

δi,j =
ξi,j log2|Bi,j |+ (1− ξi,j)log2|Θ|

log2|Θ|
.

Thus, by formula (6), we can obtain the ambiguity-discounted upper expected
payoff of profile ρj for player i as formula (11). Then, the expected payoff interval
of profile ρj is [U i(ρj), εi(ρj)]. So, we have Ξi(ρj) = U i(ρj) + εi(ρj). ��

Theorem 1 shows that a point-valued Ξi(ρj) can be derived given any pure-
strategy profile ρj by formula (9). So, we can obtain a normal game matrix with
precise numbers. That is, we can obtain a traditional static game [5,17].

Definition 7. Given ambiguous game G = (N,S,Θ,M,U), a static game, de-
noted by G′ = (N,S, U ′), is called an induced game of G if the element of its
payoff matrix is obtained by using formula (9) from game G.

A mixed strategy αi for player i is a probability distribution over set Si. Let
Ξi(αi, α−i) be the sum of the lower expected payoff and ambiguity-discounted
upper expected payoff to mixed-strategy profile α = (αi, α−i).

Given an ambiguous game, the following lemma provides the way to calculate
the sum of the lower and ambiguity-discounted upper expected payoffs to any
mixed-strategy profile of α.

Lemma 1. Given game (N,S,Θ,M,U) and its mixed-strategy profile α, suppose
for any pure-strategy profile ρj, mi,j(Bi,j) = ξi,j , and mi,j(Θ) = 1− ξi,j, Bi,j ⊂
Θ, j = 1, 2, . . . , n (n = | ×k∈N Sk|). Let ti,j = min{ui(si), . . . , ui(sj)}, Ti,j =
max{ui(si), . . . , ui(sj)}, si, . . . , sj ∈ Bi,j, y = min{ui(s1), . . . , ui(sn)}, and Y =
max{ui(s1), . . . , ui(sn)}, s1, . . . , sn ∈ Θ. Then

Ξi(α) =
∑
j

(∏
i

αi(ρj)

)
ϕ(ξi,j), (12)

where

ϕ(ξi,j)=2ξi,jti,j+2(1−ξi,j)y+ξi,j(1−log|Θ||Bi,j|)((Ti,j−ti,j)ξi,j+(1−ξi,j)(Y −y)).(13)
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Proof. By Theorem 1, the expected payoff interval of profile ρj is [U i(ρj), εi(ρj)].
So, by formula (4), we have

Ξi(α) =
∑
j

(∏
i

αi(ρj)

)
(U i(ρj) + εi(ρj)) =

∑
j

(∏
i

αi(ρj)

)
ϕ(ξi,j),

where ϕ(ξi,j) is given by (13). ��

Definition 8. Mixed-strategy profile α∗ in game G = (N,S,Θ,M,U) is an am-
biguous equilibrium of mixed strategy if ∀i ∈ N , for every mixed-strategy αi of
player i, Ξi(α

∗
i , α

∗
−i) ≥ Ξi(αi, α

∗
−i), where (α∗

i , α
∗
−i) = α∗.

Given game G = (N,S,Θ,M,U), suppose G′ = (N,S, U ′) is its induced game.
By Definitions 7 and 8, we have Ei(α

∗
i , α

∗
−i) ≥ Ei(αi, α

∗
−i) ⇔ Ξi(α

∗
i , α

∗
−i) ≥

Ξi(αi, α
∗
−i). So, mixed-strategy profile α∗ is an ambiguous equilibrium of G if

and only if it is a mixed-strategy Nash equilibrium of G′. However, it should be
noted that our model does not assume that we could have that all the payoffs
are precise under ambiguity, and the point-valued payoffs in the induced game
in our model is calculated from an interval that carries the factor of ambiguity.

In the following, we will give an example to illustrate our model. Suppose two
competitive retailers 1 and 2 sell cell phones and can choose two different brands,
C and D, which are their pure strategies. Since buyers’ tastes, economical envi-
ronments, and other factors are often uncertain and out of sellers’ control, sellers’
belief about the consequences of their choices are ambiguous. For example, they
can only know that the possible consequence of each pure-strategy profile is: bad
sales and high costs (s1), bad sales and low costs (s2), good sales and high costs
(s3), or good sales and low costs (s4). Then, what is the outcome of this game?

Then this game can be modeled as G = (N,S,Θ,M,U), where N = {1, 2},
S = {S1, S2}, S1 = S2 = {C,D}, Θ = {s1, s2, s3, s4} and u1(si) = u2(si) = i
(i = 1, 2, 3, 4). Since the players are ambiguous about the payoffs of pure-strategy
profiles, for retailer 1, with respect to four pure-strategy profiles ρ1, . . . , ρ4, sup-
pose there are four simple support functions over Θ,1 respectively, as follows:

ρ1 = (C,C) : m1,1(B1,1) = m1,1({s4}) = 0.7, m1,1(Θ) = 0.3;

ρ2 = (C,D) : m1,2(B1,2) = m1,2({s1}) = 0.6, m1,2(Θ) = 0.4;

ρ3 = (D,C) : m1,3(B1,3) = m1,3({s1}) = 0.5, m1,3(Θ) = 0.5;

ρ4 = (D,D) : m1,4(B1,4) = m1,4({s2}) = 0.6, m1,4(Θ) = 0.4.

Similarly, for retailer 2, with respect to four pure-strategy profiles, suppose there
are four simple support functions over Θ, respectively, as follows:

ρ1 = (C,C) : m2,1(B2,1) = m2,1({s1}) = 0.8, m2,1(Θ) = 0.2;

1 The mass function of m1,1(B1,1) = 0.7 and m1,1(Θ) = 0.3 implies Bel(B1,1) = 0.7
and P l(B1,1) = 1 according to [21]. In other words, since Bel(B1,1) ≤ P (B1,1) ≤
P l(B1,1) = 1, actually the mass function means that we can only estimate the
lower bound probability of B1,1 (a kind of imprecise probability). Similarly, we can
understand other similar mass functions in this paper.
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ρ2 = (C,D) : m2,2(B2,2) = m2,2({s2}) = 0.6, m2,2(Θ) = 0.4;

ρ3 = (D,C) : m2,3(B2,3) = m2,3({s3}) = 0.8, m2,3(Θ) = 0.2;

ρ4 = (D,D) : m2,4(B2,4) = m2,4({s1}) = 0.5, m2,4(Θ) = 0.5.

Let ((p, 1− p), (q, 1− q)) be a mixed-strategy profile. By formula (12), we have

Ξ1 = 3.1pq + 3.73pq + p(1− q) + 1.72p(1− q) + q(1− p)
+1.75q(1− p) + 1.6(1− p)(1− q) + 2.32(1− p)(1− q); (14)

Ξ2 = pq + 1.48pq+ 1.6p(1− q) + 2.32p(1− q) + 2.60q(1− p)
+3.08q(1− p) + (1 − p)(1− q) + 1.75(1− p)(1− q). (15)

Thus, we have ∂Ξ1

∂p = 5.28q−1.2 and ∂Ξ2

∂q = 2.93−4.37p. Let ∂Ξ1

∂p = 0 and ∂Ξ2

∂q =

0, then we obtain p = 0.6705 and q = 0.2273. Thus, α∗ = ((0.6705, 0.3295),
(0.2273, 0.7727)) is the ambiguous equilibrium of mixed strategy of the game.
And at this equilibrium point, by formulas (14) and (15) we can obtain Ξ1(α

∗) =
3.6541 and Ξ2(α

∗) = 3.5345.

4 Properties

In above example, each focused mass ξi,j is a constant. This section will discuss
what if the focused masses are variables. Then we study how the ambiguity de-
grees in beliefs about possible consequences affect the outcome of an ambiguous
game.

The following theorem studies the monotonicity of function Ξi(ξi,1, . . . , ξi,m),
and finds the maximum value of this function.

Theorem 2. Given game (N,S,Θ,M,U), suppose α is a mixed-strategy profile,
and mi,j(Bi,j) = ξi,j, and mi,j(Θ) = 1 − ξi,j , Bi,j ⊂ Θ, j = 1, 2, . . . , n (n =
| ×k∈N Sk|). Let ti,j = min{ui(si), . . . , ui(sj)}, Ti,j = max{ui(si), . . . , ui(sj)},
si, . . . , sj ∈ Bi,j, y = min{ui(s1), . . . , ui(sn)}, Y = max{ui(s1), . . . , ui(sn)},
s1, . . . , sn ∈ Θ, and

ai,j =
2ti,j − 2y + (1− log|Θ||Bi,j |)(Y − y)
2(1− log|Θ||Bi,j |)(Y − y − Ti,j + ti,j)

.

Then player i has the maximum value of Ξi(ξi,1, . . . , ξi,m) at (ξ̂i,1, . . . , ξ̂i,m),
where

ξ̂i,j =

{
ai,j if ai,j < 1,
1 if ai,j ≥ 1.

Proof. Let focused masses ξi,1, . . . , ξi,m be variables in the assumption of Lemma
1. Then for any mixed-strategy profile α, by formula (12) we have

∂Ξi

∂ξi,j
=
∑
j

(∏
i

αi(ρj)

)
dϕ

dξi,j
, (16)
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where

dϕ

dξi,j
=2ti,j−2y+2ξi,j(1−log|Θ||Bi,j|)((Ti,j−ti,j−Y +y)+(1−log|Θ||Bi,j|)(Y −y)).

Let ∂Ξi

∂ξi,j
= 0, by formula (16), dϕ

dξi,j
= 0. Then we have ξi,j = ξ̂i,j = ai,j .

Since Bi,j ⊂ Θ, we have y ≤ ti,j ≤ Ti,j < Y and 1 ≤ |Bi,j | < |Θ|. Thus,

0 < 1− log|Θ||Bi,j | ≤ 1. So, ξ̂i,j > 0, and by the definition of mass function, ξ̂i,j

should be in (0, 1]. For any ξ̂i,j , if 0 < ξ̂i,j < 1, then (ξ̂i,1, . . . , ξ̂i,m) is a critical
point.

Further, we have

∂2Ξi

∂2ξi,j
(ξ̂i,1, . . . , ξ̂i,m) = 2(1− log|Θ|Bi,j |)(Ti,j − ti,j − Y + y),

∂2Ξi

∂ξi,j∂ξi,k
(ξ̂i,1, . . . , ξ̂i,m) = 0, j �= k.

Let ri,j = 2(1−log|Θ||Bi,j |)(Ti,j−ti,j−Y +y) < 0. So, the Hessian of function Ξi

at the critical point, the matrix formed from the second-order partial derivatives
of the function [25], is a diagonal matrix as follows:

Am =

⎛
⎜⎜⎜⎝

2ri,1 0 · · · 0
0 2ri,2 0 0
...

...
. . .

...
0 0 · · · 2ri,m

⎞
⎟⎟⎟⎠ .

Since for any ri,j , 2ri,j < 0, the characteristic value of Am is negative, which
means Am is negative definitely. Consequently, player i has an extremum of
Ξi(ξi,1, . . . , ξi,m) at the critical point.

For any ξ̃i,j , if 0 ≤ ξ̃i,j < ξ̂i,j , since Ξi is differentiable at point (ξ̃i,1, . . . , ξ̃i,m),
we have

∂Ξi

∂v
(ξ̃i,1, . . . , ξ̃i,m) =

∑
j

∂Ξi

∂ξ̃i,j
cosβi,j ,

where v = (vi,1, . . . ,vi,m) is a direction, vi,j = cosβi,j is the angle between v
and the positive direction of coordinate ξi,j in a Cartesian coordinate system,
and ∂Ξi

∂v is the directional derivative in direction v. So, we have

∂Ξi

∂v
(ξ̃i,1, . . . , ξ̃i,m) =

∑
j

(∏
i

αi(ρj)

)
ϕ′(ξ̃i,j) cosβi,j

>
∑
j

(∏
i

αi(ρj)

)
ϕ′(ξ̂i,j) cosβi,j = 0.

Similarly, for any ξ̃i,j , if ξ̂i,j ≤ ξ̃i,j ≤ 1, then we have ∂Ξi

∂v (ξ̃i,1, . . . , ξ̃i,m) < 0.

Thus, function Ξi(ξ̃i,1, . . . , ξ̃i,m) is strictly increasing on the any direction v if
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ξ̃i,j ∈ [0, ξ̂i,j), and is strictly decreasing on the any direction v if ξ̃i,j ∈ [ξ̂i,j , 1].
Hence, for any ai,j , ai,j < 1, player i has the maximum value of Ξi(ξi,1, . . . , ξi,m)

at point (ξ̂i,1, . . . , ξ̂i,m), i.e., (ai,1, . . . , ai,m).

If ξ̂i,j ≥ 1, as shown as above, function Ξi is strictly increasing on the any

direction if ξ̃i,j ∈ [0, ξ̂i,j), and so the function is also strictly increasing on ξ̃i,j ∈
[0, 1]. Hence, the function has the maximum value at point (ξ̂i,1, . . . , ξ̂i,m), where

ξ̂i,j = ai,j if ai,j < 1, or ξ̂i,j = 1 if ai,j ≥ 1. ��

If function Ξ is a univariate function, then we can derive the following corollary
by Theorem 2.

Corollary 1. Under the assumption of Theorem 2, let ξi,j be a variable, and
any ξi,k (j �= k) a constant. Then,

(i) Player i has the maximum value of Ξi under the following condition:

ξi,j =

{
ξ̂i,j =

2ti,j−2y+(1−log|Θ||Bi,j |)(Y−y)

2(1−log|Θ| |Bi,j |)(Y−y−Ti,j+ti,j)
if ξ̂i,j < 1,

1 if ξ̂i,j ≥ 1.

(ii) If Bi,j = {bi,j} (bi,j ∈ Θ), then player i has the maximum value of Ξi under
the following condition:

ξi,j =

{
ξ̂i,j =

2ui(bi,j)+Y−3y
2(Y −y) ≥ 1

2 if ui(bi,j) <
Y+y
2 ,

1 if ui(bi,j) ≥ Y+y
2 .

Proof. Item (i) of this corollary can be derived by Theorem 2 directly. Now we
check item (ii) of the corollary. Since |{bi,j}| = 1, we have log|Θ||Bi,j | = 0 and
ti,j = Ti,j = ui(bi,j). So, we have

ξ̂i,j =
2ti,j − 2y + (1− log|Θ||Bi,j |)(Y − y)
2(1− log|Θ||Bi,j |)(Y − y − Ti,j + ti,j)

=
2ui(bi,j) + Y − 3y

2(Y − y) .

Since ui(bi,j) ≥ y, we have 2ui(bi,j)+Y − 3y ≥ Y − y. Thus, ξ̂i,j ≥ 1
2 . If ξ̂i,j < 1,

that is, Y +y
2 > ui(bi,j). In this case, by the first part of this corollary, Ξi has the

maximum at point ξ̂i,j ∈ [ 12 , 1). If ξ̂i,j ≥ 1, that is, Y +y
2 ≤ ui(bi,j). So, Ξi has

the maximum at point ξ̂i,j = 1. ��

Corollary 1 explores the maximum of function Ξi in the case of if focused mass
ξi,j is the only one variable. In particular, item (ii) of Corollary 1 shows that for

any player i if ui(bi,j) ≥ Y+y
2 , the bigger the focused mass ξi,j the bigger the

sum of the lower and ambiguity-discounted upper payoffs. So, the less ambiguity
degree the better for player i. In this case, function Ξi has a maximum if ξi,j = 1

(the degree of ambiguity is zero). If ui(bi,j) <
Y +y
2 , Ξi is strictly increasing when

ξi,j is in [0, ξ̂i,j ], and is strictly decreasing when ξi,j is in (ξ̂i,j , 1]. That is, if ξ is

in [0, ξ̂i,j ], the bigger ambiguity degree the better for player i; if ξi,j is in (ξ̂i,j , 1],
the smaller ambiguity degree the better for player i.
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Fig. 1. Ambiguity degree and Sum of Interval

The concept of equilibrium is one of the most important concepts in game the-
ory. Since Theorem 2 and its corollary hold for any mixed-strategy profile, they
hold also for the ambiguous equilibrium profile of mixed strategy particularly.

Now we return to that selling cell-phone example. For mass function m1,1, let
m1,1({b1,1}) = m1,1({s4}) = ξ, where ξ be a variable (by formula (1), the ambi-
guity degree of function m1,1, δm1,1 = 1−ξ), and other focused masses remain as
the forenamed. Then similarly we can obtain the ambiguous equilibrium of mixed
strategy α∗ and Ξ1(α

∗). The latter is a function of variable ξ. Noting u1(si) = i,
y = min{u1(s1), . . . , u1(s4)} = 1, and Y = max{u1(s1), . . . , u1(s4)} = 4, and
thus we have Y +y

2 = 2.5. So, u1(b1,1) = u1(s4) = 4 > Y+y
2 , by Corollary

1, retailer 1 has the maximum value of Ξ1 at point ξ = 1 (δm1,1 = 0). Fig.
1(a) shows that relation between the ambiguity degree of m1,1 and Ξ1(α

∗).
Again, let m1,2({b1,2}) = m1,1({s1}) = ξ′, where ξ′ is a variable, then u1(b1,2) =

u1(s1) <
Y+y
2 . By Corollary 1, retailer 1 has the maximum value of Ξ1 at point

ξ′ =
2u1(b1,2)+Y −3y

2(Y −y) = 2×1+4−3×1
2(4−1) = 0.5 (by formula (1), δm1,2 = 0.5). Fig.

1(b) shows that relation between the ambiguity degree of m1,2 and Ξ1(α
∗). The

calculation and Fig. 1 illustrate under which condition the smaller degree of
ambiguity the better for a player, and under which condition it is not.

5 Related Work

Harsanyi [8] is the first person who studied games played under uncertainty.
He defined Bayesian games, which are played by different types of players with
a probability distribution over the type set. Using expected utility method, a
Bayesian game can be solved by the idea of Nash equilibrium. Clearly, it as-
sumes that precise probabilities are available and a strategy taking is accurate.
However, in real world, it is not always the case [11,21,22]. This problem does
not exist in our model.

To handle uncertainty of strategy taking in games, the concepts of trembling
hand perfect equilibrium [20] and proper equilibrium [16] are also introduced.
Unfortunately, these two concepts also assume the probability of taking each
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single strategy can be accurately estimated. And the main concern of the two
concepts is the probability of strategy mistaking. This is not our concern. Ours
is the uncertainty about the consequences of strategies. A stochastic game [15]
is a dynamic game with probabilistic transitions, which also assumes the prob-
abilities of the moves to a new random state are precise. Similarly, in [6], the
uncertainty on the consequences of strategy is dealt with. However, these are just
precise probabilities of each single consequence, and no ambiguity is involved like
we did in this paper.

Currently, fuzzy games are analysed [2,10,12,13]. In these games, the fuzziness
is mainly concerned with fuzzy payoffs. However, its meaning is different from
that of ambiguity. In fact, for each possibility of a fuzzy payoff, it is assigned
an accurate value in [0, 1], indicating how possible it is in the fuzzy payoff set.
While the meaning of ambiguity is that we are uncertain about the probability
of each possibility, but we know probabilities of some subsets of possibilities [22].
So, fuzzy games cannot deal with the ambiguity that we did in this paper.

Choquet expected utility theory is another kind of a non-expected utility the-
ory. In [1,9,19], the expected payoff of a strategy is calculated by the Choquet
expected utility theory, and some solution concepts of games are discussed. More
recently, Halpern [7] studied strategic games with a new decision rule of iterated
regret minimization to reflect how people actually play games with regret atti-
tude. However, these two kinds of work still assume that the consequences in a
game are sure, but we relax the assumption.

6 Conclusion

This paper provides a model of static games played by players with ambiguous
beliefs about consequences of their strategies. To solve this kind of games, we
introduce a new solution concept. Moreover, we reveal how ambiguity degrees
of players’ belief about consequences impact the outcomes of a game. We find
a turning point that the smaller or bigger degree of ambiguity the better for a
player. In the future, it is interesting to extend our theory to extensive games.
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Abstract. This research introduces a new query expansion method that
uses Wikipedia and its hyperlink structure to find related terms for re-
formulating a query. Queries are first understood better by splitting into
query aspects. Further understanding is gained through measuring how
well each aspect is represented in the original search results. Poorly repre-
sented aspects are found to be an excellent source of query improvement.
Our main contribution is the way of using Wikipedia to identify aspects
and underrepresented aspects, and to weight the expansion terms. Re-
sults have shown that our approach improves the original query and
search results, and outperforms two existing query expansion methods.

1 Introduction

Search engines enable us to sift through billions of web pages allowing us to
find required information over a manageable list of documents ordered by their
relevance to the query. Translation from a search goal to a search query is a
difficult task for the user, requiring a specialized understanding of the search
engine’s mechanism coupled with a strong linguistic proficiency to best express
the search goal. Search engines treat a query as a character string to be compared
with character strings in the searched document set. This interpretation of a
query is limited in light of the original information need of the user, resulting in
a semantic gap between the search query and the search goal. Query Expansion
(QE) is a solution that addresses this problem. The idea is to reformulate a
query by adding new terms to the query so that more relevant documents can
be retrieved.

Wikipedia has become the largest and most accessed web-based encyclope-
dia with 19.8 million articles (3.7 million in the English Wikipedia). Each article
contains information relevant to a focused concept. Within each article are hyper-
links, 60 million of them in total, referencing other article concepts to support its
own contents. Through these hyperlinks, each Wikipedia article is heavily linked
with other articles, resulting in a huge hyperlink structure. These hyperlinks
contain useful information in the form of anchor text – the terms or phrases in
the article to which hyperlinks are attached. These features make Wikipedia a
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promising lexical resource for the problem of query expansion. The main focus
of our research is to use Wikipedia as a knowledge source for supporting query
interpretation and reformulation.

Section 2 of the paper discusses related research on query expansion. Section 3
describes our proposed query expansion approach. Section 4 explains our method
of evaluation along with the results and discussion and section 5 summarizes the
outcomes of this research, possible limitations and the future work directions.

2 Related Work

Web users that have used a search engine are likely to have been exposed to
some form of query expansion system operating at the back end or providing
visible suggestions for users to reformulate their queries manually. There is a
large set of query expansion solutions summarized through multiple information
retrieval surveys [2, 11, 18].

2.1 WordNet and Wikipedia Based Query Expansion

Many query expansion systems [10, 9, 1, 19] utilize WordNet [8], a lexical
database for the English language, to find query expansion terms. WordNet
resembles a thesaurus, classifying words into sets of cognitive synonyms. This
classification can be used to find the synonyms of terms within a query. By us-
ing these synonyms to reformulate a query has shown to be effective to improve
recall, but sometimes hurt precision.

The works of [15, 12, 16, 22, 1, 9, 19, 10] focus on using Wikipedia as its
source for finding and weighing terms. This has values over WordNet and other
web source as the Wikipedia source is large, dynamic, clean, objective, and is
revolved around articles focused upon single concepts. A single article provides
a valuable source of terms so long as the concept expressed in the article holds
relevance to the sense of the query. These works concluded that a key to success
is to use Wikipedia as a source for selecting articles most closely related to the
query.

Koru [15], a knowledge-based web search engine, uses Wikipedia Link based
Measure [13] for query expansion. Wikipedia Link-based Measure is a method of
measuring semantic relatedness between two words. Suppose each word is linked
to a Wikipedia article, it uses the hyperlinks shared between the two Wikipedia
articles to find the semantic similarity between the two terms, as shown by the
formula below:

sr(a, b) =
log(max(|A|, |B|)) − log(|A ∩B|)
log(|W |)− log(min(|A|, |B|)) (1)

In the above equation, A and B are the set of articles that link to articles a
and b, and W is the entire Wikipedia. Koru’s search was based on an interac-
tive query expansion system which identified related Wikipedia topics that users
could select after finishing their queries. These selected topics mapped to article
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concepts are used to identify candidate terms for the expansion. This interactive
application is valuable in that it allows direct feedback from the user to be used
to disambiguate the query often seen as providing an optimal query expansion
solution [18]. Limitations come in the behavior of the users, very rarely tak-
ing the effort to provide relevance feedback to the system, preferring to simply
reformulate their own queries alone [21, 3].

Our research is a Wikipedia-based approach and we also use Wikipedia Link
based Measure [13] in our system. Our system is unique in that it is based on
an idea of identifying underrepresented aspect of a query for query extension,
which is introduced in our previous research on AbraQ [17, 7]. The rest of this
section details AbraQ.

2.2 Aspect-Based Query Expansion: AbraQ

AbraQ [17, 7], is a query expansion system using a unique step named query
aspect identification in their solution. This step divides a query into various term
combinations that represent individual concepts contained. These combinations
are termed Query Aspects. For example, a query ”black bear attacks” has two
aspects: ”black bear” and ”attacks”. This step creates additional meta-data,
providing a greater source of information for the expansion system to understand
the query.

The AbraQ system can be divided into three distinct stages. First, the query
is split into aspects based on global document analysis. This is done in two
steps: subsequences of the query are executed as queries to retrieve their hit
counts (total respective document number); the count of the focused aspect is
measured relative to the counts of the individual terms of the aspect and the
counts of the possible permutations of the aspect.

With the aspects defined, AbraQ looks to identify how well the aspects are
represented in the original search results so it is able to identify the most under-
represented aspect. Identifying the underrepresented aspects is done by building
and comparing vocabulary models for each of the aspects and for the entire
query. The vocabulary is generated from the initial results retrieved by the as-
pects (for aspect vocabulary) and query (for query vocabulary), counting the
frequencies of the terms appearing in the documents. A strong similarity be-
tween the query vocabulary and a single aspects vocabulary suggests that the
aspect is already well represented in the search results. The focus of the second
phase is to find out the biggest difference in vocabulary models for identifying
the most underrepresented aspect of the query.

The final step of the AbraQ method is the term selection for query refinement.
The vocabulary model of the underrepresented aspect is used as a source of terms
to extend the original query. The new query is then re-evaluated to see if the
aspect representation is improved. The goal of this step is to generate a query
whose aspects are all equally represented.

The AbraQ system uses web documents retrieved through web search engines
as its source for aspect identification, vocabulary building, and term weight-
ing functions. This has its limitations as the document results can be noisy,
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populated with messy spam and advertising advocating individual companies.
This research chose to use Wikipedia as a better alternative.

3 Query Expansion Method

This section will first detail our core method (Aspect Representation), and then
outline its three variations (Relatedness, TFIDF, Combined).

3.1 Core Method: Aspect Representation

Aspect Representation is our core method further divided into four major steps.
Figure 1. explains these four steps along with the supporting measurements used
in each of them.

Supporting Measurements 
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Fig. 1. Overview of Aspect Representation method along with the supporting
measurements

An example of the whole QE process taking raw query “Discovery Channel
Store” as input and generating reformulated query “Discovery Channel Store
History” is shown in the Table 1.

Table 1. Process overview with an example query

Step Output

1. Query “Discovery Channel Store”
2. Aspect Identification “Discovery Channel” + “Store”
3. Wikipedia Article Selection [“Discovery Channel”, “Store”]
4. Aspect Vocabulary Construction “history(Discovery Channel)”, “shops(Store)”
5. Finding Underrepresented Aspects 0.4(Discovery Channel), 0.6(Store)
6. Query Expansion “Discovery Channel Store History”
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Step 1: Aspect Identification. An aspect is a topic or concept which is
a term or phrase appearing in the query that preserves the original ordering.
Aspect Identification is the initial stage of our method, taking the original query
as its input to give a set of query aspects. This added information helps support
all subsequent stages of the system aiming to put boundaries between the single
concepts that may exist in a multi-concept query. A query term can be used in
more than one aspect. Identifying aspects within the query allows us to better
source articles for our expansion terms than trying to source articles from the
whole query alone.

We identify aspects based on their Link Probability [14] weighting. Link Prob-
ability is a proved feature for measuring ’keyphraseness’. It estimates the prob-
ability of a term to be selected as a hyperlink in a new document by counting
the number of documents where the term was already selected as a hyperlink
divided by the total number of documents where the term appeared. This prob-
ability can be interpreted as, the more often a term is selected as a hyperlink
among its total number of occurrences, the more likely it will be selected again.
We first identify each possible aspect of our query and list them in order of link
probability weight. From this list we finalize a set of query aspects by following
a set of selection rules:

– Aspects are selected from highest value through to the lowest.
– An aspect is ignored if it is a subset of an already selected aspect.
– No aspects with a weighting of 0 should be added unless they contain terms

that are yet to be covered by the selected aspects.
– Aspect Identification is complete when each term of the query has been

covered by an aspect.

Step 2: Wikipedia Article Selection. This phase creates a single set of
Wikipedia articles with close connection to our query and its aspects defined
by the previous stage. This article set is used as a source for extracting terms
for query reformulation and building aspect vocabularies used in the following
stage. Wikipedia structure continues to help us through this stage with each
aspect likely to map to a single Wikipedia article. For each aspect we aim to add
at least one article to our set. Each aspect is disambiguated individually using
Link Probability measure, giving a list of possible articles and their weights
of disambiguation confidence. We introduce a cut-off threshold to our selection
criteria relative to the highest confidence appearing over all the query aspects.
All articles that have a confidence greater than half of the maximum measure
are included in our article set.

We also utilize the ability to disambiguate aspects in pairs through the
Wikipedia Link Based measure [13] providing added context for better disam-
biguation relative to the other query aspects. The same threshold mechanics
are applied to the Wikipedia Link based measurement and its disambiguation
confidences.

Step 3: Aspect Vocabulary Construction. This stage aims to build a
weighted vocabulary for each aspect using the article set produced during the
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previous stage. All terms appearing in the selected articles are vocabulary candi-
dates weighted by their relation to their corresponding aspects. For each aspect,
a vocabulary is produced by adding to it each candidate term from the arti-
cle set along with the score based on Wikipedia Link Based Measure [13]. This
produces a weighted list of terms, named an aspects vocabulary, sorted by their
semantic relation to the aspect.

Step 4: Finding Underrepresented Aspects. The final step is to select the
best expansion term by supporting the least represented aspect of the query.
We build the vocabulary of the entire query by counting term frequencies of
all terms in the first 10 documents of the initial Bing search results. We select
first 50 highest weighted terms and normalize them so the weights of each term
add to give 1. Then the vocabulary of each aspect is compared with the query
vocabulary. Each aspect is given a score by multiplying the terms weightings in
the aspect vocabulary by their frequency weighting in the query vocabulary. The
aspect that produces the lowest score is determined to be the least represented
with its highly weighted terms in this aspect’s vocabulary assigned as the final
output for query expansion.

3.2 Variations to Core Method

The following three methods are devised to deviate in some way from the core
method for performance comparison. The three methods share the same Aspect
Identification step (Step 1) and Wikipedia Article Selection step (Step 2) with
the Core, but their step 3 is changed and they don’t have step 4. Their Aspect
Vocabulary Construction step (Step 3) changes its priorities from creating a
vocabulary for each of the aspects to creating a complete vocabulary for the
entire query that provides an output of weighted terms to conclude the query
expansion method. In other words, they only build the query vocabulary and
weight the terms in the vocabulary for output. The difference between the three
methods is the way they weight the terms in the vocabulary.

Relatedness. This method differs the least from the core method. The query
vocabulary is built by taking each term existing in the article selection and
weighting it equally against all the query aspects. The weighting measure is
found by taking the dot product of the terms semantic relation to each of the
aspects using the Wikipedia Link Based Measure (WLM) [13], as shown below,

w(t) =

n∏
x=1

(WLM(t, Ax)) (2)

where n represents the number of query aspects and WLM is the way of assigning
scores to a term based on its relatedness to the corresponding aspect.
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TF.IDF This method uses the TF.IDF weighting to build a vocabulary that
represents the entire query. Term frequencies are taken from the Wikipedia Arti-
cle Selection step (Step 2) with term document occurrences based upon the total
collection of Wikipedia articles. The formula used to calculate TF.IDF weight-
ing is given by: The inverse documents frequency is used to measure the general
importance of a term to the entire documents collection.

Combined. Combined method involves intersecting our Relatedness and TF.IDF
methods where vocabulary construction is determined by terms Relatedness
(WLM) and TF.IDF weightings as shown below.

combined(t) = w(t) × tfidf(t) (3)

4 Evaluation

For evaluation, we compared the performance of our query expansion core method
with that of alternate query expansion methods. Each system processed a set
of 150 queries producing a reformulated query. This query is then searched over
a web collection to retrieve a ranked set of documents. The retrieval lists for
each query are compared with a set of relevance judgments allowing us to cal-
culate evaluation measures. Averages of system queries give the grounds for us
to compare the query expansion methods and validate our own.

4.1 Test Data

Three main elements for the performance evaluation of our query expansion
method are: the set of queries, a static web document collection and the set of
relevance judgment. We use all the 150 testing queries from 2009, 2010, and 2011
TREC Web Track [4, 5, 6], each containing a brief topic and subtopics descrip-
tion. Queries from the 2011 TREC Web Track were aimed to be harder than the
previous year’s queries, providing our evaluation with a range of query difficul-
ties. The ClueWeb09 dataset at http://www.lemurproject.org/clueweb09.php/
is our static web collection containing over 1 billion web pages.

Relevance judgments were taken from the TREC Web Track workshop, con-
sisting of manually labeled document set for each query by a panel of experts
from their respective years. Judgments were based on the topics of the query.
Indri search engine [20] is used to retrieve the documents.

4.2 Measurements

Traditional measures such as Precision and Recall are not suitable for our task.
For example, an extended query which increases the first relevant judgement
from rank 5 to rank 1, does not change precision or recall, but is understood to
be an improvement of retrieval. We develop our own evaluating criteria which
consider the ranking/index of each retrieved document.

The documents retrieved by each query expansion method for each query are
classified under one of three categories: Relevant, Non-Relevant, or Non-Judged.
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Relevant documents indicate that the retrieval fits the description of the queries
topic or subtopic, with Non-Relevant documents straying from the query sense.
Non-Judged documents are documents that have neither label nor part of the
judgments of the Web Track workshops. We can not ignore these Non-Judged
documents because they change the ranking of other relevant or non-relevant
documents. It is too harsh to treat them as Non-relevant because that is not true.
So we value these Non-Judged documents higher than Non-Relevant documents
and give them a weighting based upon the fraction of relevant judgments to total
judgments existing for that query.

We created two metrics to evaluate our systems, the first describes the per-
formance of a query (original query or an extended query using a single system)
and the second describes the performance of an extended query using a sin-
gle system relative to the performance of the original query. Results will focus
on the second metric where we are able to compare the improvements between
systems. The first single query measurement is scored with a maximum value
of 5050, evaluating the first 100 documents retrieved. Each document is scored
based on its index in the retrieval and its label. A documents index score begins
at a value of 100 for the first document down to a value of 1 for the hundredth
document. This index score is multiplied by its label score to give the document
score as shown below. Label scores range in values from 0 to 1 with Relevant
documents getting a score of 1 and Non-Relevant documents a score of 0. The
Non-Judged documents get a label score relative to the ratio of total relevant to
total judgments that exist for the query. This measurement combines a sense of
precision and recall measurements. Adding all the document scores of a query
together gives the system its query score.

queryScore(|D|) =
99∑

idx=0

(100− idx)× labelScore(didx)

The second metric presents the performance of the target system relative to the
performance of the unaltered query. For each system we select query pairs with
the original query and its extended query and both queries have to be meaning-
ful. Meaningfulness is enforced by a threshold to include the query based on the
number of Non-Judged document labels of a query. For a query to be included its
retrieved document set is required to have at least 25 of the first 50 documents to
have a Relevant or Non-Relevant judgment. Using the meaningful query pairs, we
can define the performance of an entire system being the average ratio of change
of the system relative to the original queries, defined as follows.

relativePerformance(extended|Q|, original|Q|) =
1
n

n∑
x=0

100× 2× queryScore(extended[Qx])

queryScore(original[Qx]) + queryScore(extended[Qx])
− 1

4.3 Results and Discussion

This section presents the comparison results of our four methods introduced
in this paper and two exiting solutions based on previous research in query
expansion. The two alternative solutions are outlined as follows:
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Wikipedia Local TF.IDF. Uses the default Wikipedia search interface to
retrieve a list of 10 articles to build a query vocabulary. Candidate terms come
from the contents of the articles using a TF.IDF measurement to weight them,
selecting the highest weighted terms for expansion.

Bing Local TF.IDF. Uses the Bing web search to retrieve a list of 10 doc-
uments to build a query vocabulary. Candidate terms come from the contents
of the documents using a TF.IDF measurement to weight them, selecting the
highest weighted terms for expansion.

Because AbraQ doesn’t handle single aspect queries, we are unable to compare
the performance of our system with it.

Table 2. Number of queries tested per system

System
Number of Querys evaluated
1 Term 2 Terms 5 Terms

Aspect Representation 34 26 16
Combined 31 23 19
TF.IDF 29 27 13
Relatedness 33 23 19
Web Local TF.IDF 43 33 27
Wikipedia Local TF.IDF 33 30 25

We computed relative performance metric over all query expansion solutions
posed with the 150 queries from TREC 2009, 2010, and 2011. Each of the six
systems, four introduced in this paper and two comparison solutions emulating
previous work, is measured through three different sizes of expansion terms. The
three sizes are a single term, two terms, and five terms resulting in a total of
18 systems. Table 2 shows the number of queries tested with each expansion
size. They are grouped by the number of terms added by the method. With
our relative performance metric resulting in varying sizes of query test sets, the
average number of queries tested for each system was 26.9 with a maximum of
43 and a minimum of 13, as shown in Table 2.

The following three figures show the comparison results. The y-axis gives the
values of our performance metric for each of the methods of the x-axis. Results
across the single term expansion, as shown in Figure 2, are in a similar range
with the highest performance coming from the Aspect Representation method
at 8.6% and the lowest from the Web TF.IDF method at 5.4%.

Increasing the number of terms from one to two reveals a reduced performance
to all methods except two, the Combined and Web TF.IDF methods, indicated
by Figure 3. The performance of the Combined method at 11.3% comes close to
doubling the next method of Wikipedia TF.IDF at 6.8%. This is unexpected as
the Combined method is basically a concatenation of the TF.IDF and Related-
ness methods which are the two lowest performing.

The general reduction in performance when expanding a query with two terms,
contrasted with the Combined methods best performance coming from the two
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Fig. 2. Performance comparison of six QE methods on one term query expansion

Fig. 3. Performance comparison of six QE methods on two term query expansion

term expansion, highlights the influence of the expansion term quantities. Anal-
ysis of a few method expansions shows growing the number of terms steers the
retrieval to either provide more matches or produce one of two forms of drifting.
The first kind of drift involves the change of topic to something completely de-
tached from the original sense. The second form of drift involves the query sense
narrowing too finely on a subset of the query sense. With a lower number of
query terms present, their weighting effect on the query is greater, as more are
added, their presence reduces. This, coupled with the two forms of drifting, could
account for the inconsistent results occurring through the two term expansion
evaluation. Our core method could have utilised a dynamic number of expansion
terms by re-evaluating the representations of aspects through alternate numbers
of expansion terms to search for an optimal number of terms.

Extending the number of terms to 5, in figure 4, shows the largest performance
jumps. Aspect Representation at 5 terms performs better than all other meth-
ods at 23.6%. The Relatedness method is similar to the Aspect Representation
method and trails closely at 21.7%. The third performer of the 5 term methods
is the Web TF.IDF method with a strong performance of 17.7% doubling the
fourth equal methods of Combined and Wikipedia TF.IDF at 8.3%.
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Fig. 4. Performance comparison of six QE methods on five term query expansion

5 Conclusion

This paper presented a query expansion system with Wikipedia as the source
for finding related terms. Our system is tested on a large dataset and all four
methods show performance improvements. The experiments show that the As-
pect Presentation method outperforms other methods. When the aspects of a
query are identified well, the vocabularies produced by our Aspect Representa-
tion method provide strong candidate terms for a query expansion system.

The limitations of Wikipedia as a sole knowledge base have become apparent
through this research. Wikipedia’s ability to identify query aspects is powerful
because of the close similarities between Wikipedia articles and query aspects
although its encyclopedic style is not broad enough to platform the diversity of
web search goals. Future work would focus on complementing Wikipedia with
alternative sources and forming methods to evaluate each source’s performance
relative to the query so to avoid the limitations of individual sources.
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[19] Santamaŕıa, C., Gonzalo, J., Artiles, J.: Wikipedia as sense inventory to improve
diversity in web search results. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL 2010, pp. 1357–1366. Association
for Computational Linguistics, Stroudsburg (2010)

[20] Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based
search engine for complex queries. In: Proceedings of the International Conference
on Intelligent Analysis, Technical report (2005)

[21] White, R.W., Marchionini, G.: Examining the effectiveness of real-time query
expansion. Inf. Process. Manage. 43, 685–704 (2007)

[22] Xu, Y., Jones, G.J., Wang, B.: Query dependent pseudo-relevance feedback based
on wikipedia. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2009, pp. 59–66.
ACM, New York (2009)



Constrained Grouped Sparsity

Yi Guo1,	, Junbin Gao2, and Xia Hong3

1 CSIRO Mathematics and Information Sciences
North Ryde, NSW 1670, Australia

yi.guo@csiro.au
2 School of Computing and Mathematics,

Charles Sturt University, Bathurst, NSW 2795, Australia
jbgao@csu.edu.au

3 School of Systems Engineering, University of Reading, Reading, RG6 6AY,UK
x.hong@reading.ac.uk

Abstract. In this paper, we propose an algorithm encouraging group
sparsity under some convex constraint. It stems from some applications
where the regression coefficients are subject to constraints, for exam-
ple nonnegativity and the explanatory variables are not suitable to be
orthogonalized within groups. It takes the form of the group LASSO
based on linear regression model where a L1/L2 norm is imposed on
group coefficients to achieve group sparsity. It differs from the original
group LASSO in the following ways. First, the regression coefficients
must obey some convex constraints. Second, there is no requirement for
orthogonality of the variables within individual groups. For these rea-
sons, the simple blockwise coordinate descent for all group coefficients is
no longer applicable and a special treatment for the constraint is neces-
sary. The algorithm we proposed in this paper is an alternating direction
method, and both exact and inexact solutions are provided. The inexact
version simplifies the computation while retaining practical convergence.
As an approximation to group L0, it can be applied to data analysis
where group fitting is essential and the coefficients are constrained. It
may serve as a screening procedure to reduce the number of the groups
when the number of total groups is prohibitively high.

1 Introduction

In this paper, we consider the variable selection problem for the following linear
regression model

y =

M∑
i=1

xiβi + ε (1)

where y ∈ RD is the dependent variable, xi ∈ RD are the explanatory variables
(the ith column from the full explanatory matrix X), βi ∈ R are corresponding
coefficients, and ε is an error term. The variable selection problem in this setting
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means to choose M from N total explanatory variables for (1) to achieve some
optimum. For a set of indices A = {a1, . . . , aM}, let XA = [xa1

, . . . ,xaM ] be the
D ×M submatrix of X and βA = [βa1

, . . . , βaM ]T the corresponding subvector
of β (β = [β1, . . . , βN ]T ). The problem is usually formulated as the following
least squares problem

min
A,βA

||y −XAβA||22 (2)

s.t. |A| =M

so that the optimum is described by the least residuals sum of squares (RSS).
If M is unknown, which is usually the case, there is a further problem of model
selection.

In some real world applications such as spectroscopy, it is often the case that
the variables have some group structure. For example, in the unmixing problem
[1] for mineral composition analysis, variables (typical mineral spectra) having
very high correlations are often from the same group. It is desirable to fit those
groups instead of individual variables, i.e. in the regression model, the variables
in a group either stay or leave altogether. Formally, we rewrite the model as
follows

y =

M∑
g=1

Ng∑
i=1

xgiβgi + ε, (3)

where Ng is the number of variables in group g. Accordingly the group wise least
square regression becomes

min
βgi

||y −
M∑
g=1

Ng∑
i=1

xgiβgi ||22, (4)

and subset selection takes the same form of (2) but each element in A is now
a set, i.e. ag = {ag1 , . . . , agNg

} corresponding to indices of variables in group g.
In other words, the subset selection is performed in a group fashion, that is to
select M out of total G groups that minimizes the RSS in (4).

Subset selection is a combinatorial optimization problem in essence and hence
has NP complexity. There are quite a few of methods trying to solve (2) heuris-
tically [2,3,4]. Full subset selection [5], a fast exhaustive search based on QR
decomposition and branch-and-bound techniques, guarantees the best subset of
given size, i.e. M , is found. Its extension, called grouped subset selection (GSS)
[6], finds M groups minimising RSS in (4). However it only works for moder-
ate size problems, e.g. less than 200 groups with half a dozen variables in each
group on average in a space with several hundred dimensions depending on the
computer system.

2 Sparse Models for Variable Selection

To solve the variable selection efficiently, there is a recent trend of using sparse
approximation to solve this problem which has attracted attention in statistics,
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machine learning and other disciplines. The earliest work is from [7] called the
LASSO. By adding an L1 constraint on the coefficients to (2), the original com-
binatorial optimization problem is converted to a convex optimization problem
as follows

min
βi

||y −
N∑
i=1

xiβi||22 (5)

s.t.

N∑
i=1

|βi| < t. (6)

Note that in the LASSO, it fits all explanatory variables in the model but forces
some of their coefficients to be zero to implement subset selection. The parameter
t is the handle for controlling how many variables are actually included in the
model. It is normally reformulated as L1 regularization in practice

min
βi

||y −
N∑
i=1

xiβi||22 + λ

N∑
i=1

|βi|, (7)

where λ has the same function as t in (5). The LASSO has several advantages.
Firstly, it is a convex optimization problem and hence has a global minimum
which can be found by efficient algorithms such as coordinate descent [8], and
iterative shrinkage-thresholding [9]. The entire regularization path [10] can also
be found by various algorithms such as LARS [11], and GPS [12]. Secondly, it is
easy to group variables under this framework. For example, the group LASSO
[13] has the group selection property by applying the L1/L2 norm to the group
coefficients. The optimization is almost the same as that for the LASSO under
certain conditions. Coordinate descent type of search e.g blockwise coordinate
descent [14] is still applicable in this case with some limitation. It can also be
extended to the online learning setting [15] for a continuously growing training
data set.

The group LASSO [13] minimizes the following objective function

min.
1

2
||y −

G∑
g=1

Xgβg||22 + λ

G∑
g=1

√
Ng||βg||2 (8)

where Xg is the submatrix of group g and βg is the vector of corresponding
coefficients. It resembles the normal LASSO in Eq. (7) by using a sparse penalty
to implement group selection. It differs in replacing the L1 norm with the L2
norm on the group coefficients to impose group sparsity.

There are two limitations in the original group LASSO implementation. First,
the regression coefficients are supposed to be free, i.e. no constraints on them.
Second, it is required that the variables within individual group are orthornomal,
i.e. XT

g Xg = I and I is the identity matrix of compatible size. Under these as-
sumptions, the blockwise coordinate descent for all group coefficients is appli-
cable and conveniently derived from the subgradient of βg which is separable.
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However, the assumptions do not always hold. The physics in some real world
applications require some constraints such as nonnegativity. Furthermore, it is
more appropriate to maintain the original form of the group variables than to
orthogonalise them.

To tackle these problems, we propose a fast algorithm in this paper based on
the alternating direction multiplier method. Both exact and inexact solutions are
provided. The inexact solution simplifies the computation while retaining conver-
gence in practice. As an approximation to the group L0 (GSS), it can be applied to
data analysis where group fitting is essential and the coefficients are constrained.
It has the potential to be employed as a screening tool to eliminate redundant
groups so that GSS can work on a reduced problem to find the optimal solution.

The next section introduces the constrained group LASSO algorithms. It is
followed by a section which compares the constrained group LASSO and GSS
using spectral unmixing in the setting of multiple PC regression. We summarize
the paper in the last section.

3 The Constrained Group LASSO Algorithm

As mentioned earlier, in some applications, it is desirable to constrain the regres-
sion coefficients, e.g. nonnegativity. Also it has some fixed variables which must
be in the model. For example, a vector of all 1 can be used to model the intercept.
More generally, fixed variables are used to model the common features of all data,
for instance, the background in spectroscopy. So it takes the following form

min.
1

2
||y −Bα−

G∑
g=1

Xgβg||22 + λ

G∑
g=1

√
Ng||βg||2 (9)

s.t. {α,β} ∈ C

whereB = [b1, . . . ,bNb
] is the matrix of given fixed variables,α = [α1, . . . , αNb

]T

is the vector of corresponding weights, β = [βT
1 , . . . ,β

T
G]

T , and C is some convex
set. For example, for the nonnegativity constraint, it is βg ≥ 0. We call this con-
strained group LASSO, or CGL for short. Note that requiring C to be a convex
set is to make the whole optimization problem convex. If C is not a convex set,
we must seek nonconvex optimization.

The algorithm in [13] does not handle constraints such as the one in (9). More-
over, it requires the variables in one group to be orthonormal as mentioned before.
To handle the convex constraint, we introduce an indicator function attached to
the objective function. We put a coordinate descent for coefficients within a group
to drop the orthonormal condition which is similar to the work in [16].

We write θ = {α,β} the set of all the regression coefficients, and

f(θ) =
1

2
||y −Bα−

G∑
g=1

Xgβg||22 + λ

G∑
g=1

√
Ng||βg||2
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to avoid cluttered notation. We minimize the following equivalent target

min
θ,z

. f(θ) + I(z) (10)

s.t. z = θ

where I(x) is an indicator function associated with the convex set C correspond-
ing to the constraint. It returns 1 if x ∈ C and 0 otherwise. Douglas-Rachford
splitting with the promixal operator of (10) gives us the so-called alternating
direction multiplier method (ADMM) [17] with a feasible set projection. It is
equivalent to minimizing the following

min
θ,z

. f(θ) + I(z) + aT (z− θ) +
ρ

2
||z− θ||22

where a is the dual variable from the equality condition in (10) and ρ
2 ||z−θ||22 is

from the augmented Lagrange multiplier method for better stability. It can be
shown that this is equivalent to minimizing the final scaled dual variable form

min
θ,z,u

. f(θ) + I(z) + ρ

2
||z− θ + u||22

where u is the scaled dual variable a absorbed inside of the quadratic form. We
alternatively optimize θ, z, u with other parameters fixed until the objective
function converges. The detailed algorithm is shown in Table 1 and Table 2

Table 1. Constrained Grouped LASSO algorithm. PC(x) is the Euclidean projection
of x on to the convex set C. For a nonnegativity constraint, it is as simple as setting

βgi =
1+sign(βgi

)

2
βgi meaning if βgi is negative then set it to be zero and just leave it

otherwise.

Constrained grouped LASSO for (9) - exact solution

Input: y, X, B, λ and group information
Output: α, β (regression coefficients)

{α0,β0} = argminα,β
1
2
||y −Bα−∑G

g=1 Xgβg ||22
z0 = u0 = β0, k = 0.
Loop if convergence is not reached
1. θk+1 = argminθ f(θ) +

ρ
2
||θ − zk + uk||22

2. zk+1 = PC(θk+1 + uk)
3. uk+1 = uk + θk+1 − zk+1

4. k = k + 1
End loop

In Tables 1 and 2, the skeleton of the algorithm is the alternating direction
method. ρ is the augmented Lagrange multiplier which is typically set to 1. It
is possible to apply some penalty rules for ρ to accelerate the computation [18].
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Table 2. Block coordinate descent for solving step 1 in Table 1. zg and ug are sub-
vectors of z and u corresponding to βg. See the text about Line 6 for details.

Solve step 1 in Table 1 - Block coordinate descent

Input: y, X, B, λ and group information
Output: β, α (regression coefficients)

Loop until β and α converge
1. For g = 1 to G

2. if ||X
T
g r+ρ(zkg−uk

g)

λ
√

Ng
||2 ≤ 1 then βk+1

g = 0 (r = y −∑
s�=g Xsβ

k
s −Bαk)

3. else
4. loop until βg converge (coordinate descent within βg)
5. For i = 1 to Ng

6. βk+1
gi

= argminβgi

1
2
||r−Xgβg||22 + λ

√
Ng||βg||2 + ρ

2
||βg − zkg + uk

g ||22
7. End for
8. end loop
9. End for
10. αk+1 = VD−1UT (y −Xβ) and (B = UDVT )
End loop

Line 1 of Table 1 is implemented by block coordinate descent, as detailed in Table
2. Line 2 in Table 2 is group wise soft thresholding resembling the soft threshold
operator in [19]. It sets the coefficients of a whole group to 0 if the 2-norm of the
rescaled biased correlation between group variables and residuals from fitting
other groups is less than 1. It comes from the fact that the subgradient of ||βg||2
is ||βg||2 ≤ 1 when βg = 0 . When βg �= 0, we have to estimate each individual
coefficient in βg because Xg is not necessarily assumed to be orthonormal. It
is another coordinate descent process (Line 4 to Line 8 in Table 2) and each
element in βg is searched by a one dimensional optimization, i.e.

βk+1
gi = argmin

βgi

1

2
||r−Xgβg||22 + λ

√
Ng||βg||2 +

ρ

2
||βg − zkg + uk

g ||22

with some abuse of notation. We minimize βgi with other elements in βg fixed
and the new version of βgi will be used to estimate the next ones immediately
after it becomes available. So once we have βk+1

g1 which is estimated by using βk
gj

for j �= 1, we use it to optimize the next element in βg, that is β
k+1
g2 and so on.

After we obtain a new β, we update α. Note that in Table 2 Line 10, we use SVD
which is a numerically stable solution of (BTB)−1B(y −Xβ). What follows is
the update of z by feasible set projection and then an update of u. Updating
z is by Euclidean projection of the estimated coefficients to the feasible set C
which is derived from the proximal operator on the indicator function I(x). This
originates from optimizing z while fixing other variables.
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The algorithm converges very quickly typically. The stopping criterion could
be the difference between adjacent updates of the objective function being less
than a threshold. Note that for λ = 0 or some values close to 0, we can simply
obtain β by normal least squares replacing Line 1 to Line 9 in Table 2. This
algorithm can certainly handle various constraints as long as they are convex.
What we need to do is to use a suitable feasible set projection PC in Table 1
Line 2.

A very interesting observation inspired by the work in [20] is that the solution
of βk+1 and αk+1 in Table 1 Line 1 implemented in Table 2 does not need to
be exact. The algorithm in Table 2 is dedicated to finding the exact minimum
subject to a small tolerance for numerical implementation. There are two loops
there to drive the solution towards the descent direction, one for α and β and
the other for βg in Table 2 Line 4-8. It turns out that both of these loops can
be skipped. The result is that the algorithm still converges but more quickly.
The revised algorithm is shown in Table 3 which we call the inexact solution for
constrained group LASSO.

Table 3. Inexact algorithm for constrained grouped LASSO

Constrained grouped LASSO for (9) - inexact solution

Input: y, X, B, λ and group information
Output: α, β (regression coefficients)

{α0,β0} = argminθ
1
2
||y −Bα−∑G

g=1 Xgβg ||22
z0 = u0 = β0, k = 0.
Loop until α and β converge
1. For g = 1 to G

2. if ||X
T
g r+ρ(zkg−uk

g )

λ
√

Ng
||2 ≤ 1 then βk+1

g = 0 (r = y −∑
s�=g Xsβ

k
s −Bαk)

3. else
4. For i = 1 to Ng

5. βk+1
gi = argminβgi

1
2
||r−Xgβg ||22 +λ

√
Ng||βg||2 + ρ

2
||βg − zkg +uk

g ||22
6. End for
7. End for
8. αk+1 = VD−1UT (y −Xβk+1) and (B = UDVT )
9. zk+1 = PC(βk+1 + uk)
10. uk+1 = uk + βk+1 − zk+1

11. k = k + 1
End loop

As we can see from Table 3, there is only one iteration for βk+1 and αk+1

and the same for βk+1
g . This inexact solution saves several iterations required

in the original algorithm. It updates the introduced variable z and scaled dual
variable u more frequently than the original version does, which ensures that
the algorithm is heading towards the right direction and hence convergence. It
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makes sense because both the exact and inexact solutions of βk+1 and αk+1

are only suboptimum along the optimization path. Since they both guarantee to
find the optimum, the faster algorithm is preferable in practice.

4 Experimental Results

4.1 Simulation

We performed a simulation to test CGL to see how well it can approach the
correct group sparsity. The baseline is provided by GSS. We simply sampled 60
groups of various randomly chosen sizes from 1 to 4 from a standard normal dis-
tributionN (0, I). y is generated by adding randomly chosen groups with positive
weights sampled from a uniform distribution on [0, 1]. We added Gaussian noise
from N (0, σI) to y and varied σ to see the influence of this particular noise. We
ran this simulation 1000 times for each value of σ to collect the correct rate. In
the noise free case (σ = 0), CGL performed very well with 97.7% correct rate.
CGL has some noise resistance as shown in Table 4 as its correct rate isstable
when σ < 0.01. When the noise level increases, the correct rates of both CGL
and GSS degenerate. Interestingly, when σ = 1, it turns out that CGL is even
better than GSS. In this case, y is almost overwhelmed by noise. Since GSS is
RSS driven exhaustive search, it is guaranteed to find the groups with minimum
RSS, which is 0 in this simulation. However, when the noise level is high, it
deviates from the truth. On the other hand, CGL needs to balance RSS and
regularization which provides CGL some robustness.

Table 4. Simulation on CGL and GSS. When σ = 0, it is noise free

σ 0 0.0001 0.001 0.01 0.1 1

CGL 97.7% 97.2% 97.2% 97.5% 94.5% 61.1%

GSS 100.0% 100.0% 100.0% 100.0% 95.5% 55.8%

4.2 Experiments on Spectral Unmixing

The Data and Model. We applied the fast constrained group LASSO algo-
rithm to a spectral unmixing problem with a reference library [21,22] which is a
typical subset selection problem based on linear regression model. Grouped level
fitting is of important interest. It can be used in two ways. First is to fit a group
of variables (typical spectra of materials) as a bundle since the materials in the
group are similar and highly correlated. Second is to apply multiple principal
components regression where a group is a bunch of PC’s extracted from training
samples of some material. Please refer to [23] for details.

We started with a library with 493 spectra from 60 classes. We used the
following rules to determine how many PC’s were used for each class: a. at least
95% of the variation should be explained by the PC’s used; b. If the first PC
explains at least 95% of the variation and the first two PC’s explain at least 98%
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of the variation, then the second PC should be included; c. The total number
of PC’s for a class should be no more than 2. The purpose of these rules is to
include PC’s conservatively. We only model a class with two PC’s when it is
necessary in terms of capturing enough variation. Note that the rules are not
optimized yet. We will optimize the number of PC’s chosen for each class in our
future work. There are 7 fixed variables which must be fitted in the model. So
the multiple PC regression model is similar to (3) as

y =

Nb∑
i=1

biαi +

M∑
g=1

Ng∑
i=1

xgiβgi + ε (11)

and in this case each group is one or two principal components associated with
a class. The task is to find M out of a total of G groups that best fit the
above model regarding the overall error described by RSS. Because the first PC
is associated with a particular material and therefore its weight has physical
meaning, it is natural that the weights for all first PC’s should be non-negative.
So in our experiment the optimization problem becomes

min
S,α,βg

1

2
||y −Bα−

∑
g∈S

Xgβg||22 (12)

s.t. βg1 ≥ 0, |S| =M.

The test data are from 4 fully characterized evaluation data sets [22]. So we have
ground truth for each sample in these data sets to evaluate different methods.
The ground truth tells us how many groups are in a certain sample and what
they are, but no proportions are given, which is less important than getting the
groups correct. This also frees us from model selection. KnowingM for each test
sample, we can focus on the group selection which will make the comparison
more informative.

The Results. The method we compared with is GSS. We used bisection to
choose a suitable λ which retains only M groups in each case for CGL. Note
that it is also possible to use variable (group) screening procedures such as the
sequential strong rules in [24]. However, it is necessary to work out the right
form of the rules in the circumstances with constrained variables.

We applied two methods to the evaluation data sets. Sine GSS is exhaustive
search which guarantees finding the solution of M groups with minimum RSS
and CGL is only an approximation, we should expect that CGL’s performance
to be bounded by GSS. However, the ground truth is not always the combination
of groups with minimum RSS because the mixing process is not fully understood
and/or not perfectly modeled.

We summarise the number of incorrectly unmixed samples in Table 5. CGL
has comparable performance with GSS on one data sets but is significantly worse
on the other three. It is not surprising that GSS outperforms CGL in general
because CGL is a convex relaxation of the cardinality minimization or L0 norm
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Table 5. Comparison of CGL and GSS on four evaluation data sets

Data set No. of Method No. (%)
Names. Samples Incorrect

Dobbyn1 88
GSS 37 (42.0%)
CGL 65 (77.3%)

GL14 88
GSS 34 (38.6%)
CGL 44 (50%)

Sasha 81
GSS 15 (18.5%)
CGL 36 (44.4%)

BEU162 82
GSS 25 (30.5%)
CGL 24 (29.3%)

in group fashion. Nevertheless, the combinations with the lowest RSS may not be
the right answers to the samples for noise or model inadequacy. CGL is slightly
better than GSS on the BEU162 data set. This suggests that the noise level may
be a bit high for this data set on which a more robust method is preferable.

An advantage of CGL is that it is much faster than GSS given a suitable λ.
Based on the comparison in Table 5, CGL may be a fast approximation to give a
crude interpretation to the data. It is very useful in the cases where there are too
many groups such that GSS is no longer applicable. Furthermore, it is possible
that we use CGL as a screening tool to remove groups that can never get into
the model [22].

Figure 1 shows the fitting of GSS and CGL for sample No. 53 in the Dobbyn1
data set which is a mixture of Kaolinites, and Gypsum. GSS correctly identified
all materials while CGL substituted Gypsum by White Micas. Both fitted curves
follow the main features of the original spectrum largely. GSS captured the
doublet at 1900nm reasonably well while CGL missed it because of the incorrect
substitution of White Micas for Gypsum. As we can see that the visual fits
of these two methods are very similar. This reveals that CGL approximates
the optimum to some extent. There are quite a lot of cases like this in this
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Fig. 1. The fitting of GSS and CGL for sample No. 53 in Dobbyn1 data set
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experiment where CGL missed subtle features such as the little doublet which
is a compromise between RSS and regularisation.

5 Discussion

As a convex approximation to GSS, constrained group LASSO uses L1/L2 norm∑G
g=1

√
Ng||βg||2 to encourage group sparsity under some convex constraints on

regression coefficients. We have proposed the constrained group LASSO (CGL)
algorithm in the form of (9) for some real world applications e.g. spectral un-
mixing. CGL does not require the variables within a group to be orthonor-
mal which simplifies the problem in some applications. The algorithm converges
very quickly. The inexact algorithm is even faster while maintaining the same
convergence.

Although CGL is only an approximation to the optimum and therefore its
performance is inferior to GSS in this sense, an attractive advantage of CGL is
that it is much faster than GSS. As an exhaustive search algorithm in essence,
GSS is not suitable for large scale problems where CGL is applicable. Another
promising method for problems with thousands of groups/variables is to screen
groups/variables [25,24] to about 100 or less and then apply GSS to find the ac-
curate solution. CGL, smoothed L0 [26] and some other approximation methods
may be good candidates.
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Abstract. When processing a noisy corpus such as clinical texts, the
corpus usually contains a large number of misspelt words, abbreviations
and acronyms while many ambiguous and irregular language usages can
also be found in training data needed for supervised learning. These are
two frequent kinds of noise that can affect the overall performance of
machine learning process. The first noise is usually filtered by the proof
reading process. This paper proposes an algorithm to deal with noisy
training data problem, for a method we call reverse active learning to
improve performance of supervised machine learning on clinical corpora.
The effects of reverse active learning are shown to produce results on
the i2b2 clinical corpus that are state-of-the-art of supervised learning
method and offer a means of improving all processing strategies in clinical
language processing.

Keywords: Active Learning, Clinical, Information extraction.

1 Introduction

1.1 Learning from Noisy Gold-Standard

Clinical notes contain valuable information about a patient’s health status, how-
ever, retrieving information from them is challenging. The popular challenge to
supervised machine learning approaches in clinical domain is the level of noise
that arises in training data, even if tagging is created by human experts, they
may not always be reliable because some instances are implicitly difficult for
annotators and them becoming distracted or fatigued over time, introduces vari-
ability in the quality of their annotations [1].

The process of removing noisy training data is conventionally known as data
selection and data reduction for machine learning [2,3]. The work nearest to
our problem with noisy training data is estimating the quality of annotators
and then only querying the more reliable annotators in subsequent iterations
of active learning (AL) [4]. However, this method only works with an online
annotation process and does not analyse the performance of annotators over
time. Furthermore, in the case where the gold-standard instances are available
but they do not contain any information about the authors, the method of
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estimating the performance of annotators is not applicable. Other similar idea
come from the Corrective Active Learning which try to clean up the noisy labeled
data through human interaction [5]. But using human resources is always costly
and this method is only practical when the correctors have intensive knowledge
and familiar with the training data. This is not the case when training data
usually come from different sources and organizations. Our filtering methods for
classification task does not require any human involvement and will work for any
source of noisy training data without information about annotators.

1.2 Active Learning

Active learning (AL) is a subfield of machine learning where the learner is allowed
to query the most informative instances to retrain the model instead of making
a random selection. Based on this approach, with the same number of sample
selections, the performance of active learners dominates random learners in most
cases. There are three main scenarios for AL: (i) membership query synthesis,
(ii) stream-based selective sampling, and (iii) pool-based sampling [1].

All AL scenarios involve evaluating the informativeness of unlabelled in-
stances. There are several strategies to estimate the value of information for
each instance. The simplest and most popular strategy is uncertainty sampling
which selects the instances that it is least certain to label [6]. Some variations
to this query framework used margin and entropy as uncertainty measures [7,8].
Query-by-committee method maintains a list of models trained on the same la-
belled data but with competing hypotheses and query the instance with lowest
agreement [9,10]. The important research question in AL is when to stop query-
ing. Several stopping criteria have been introduced and are based on measures
of stability or self-confidence within the learner [11,12].

1.3 The Active Learning’s Sampling Bias Problem

A well-known problem with many AL algorithms, especially at the early steps
of learning is that they are prone to generate a biased training set rather than
be representative of the true underlying data distribution. This is due to the
limitations in model initialization and the selection strategy. Many algorithms
just randomly select a few instances to train the first model which is usually not
a good starting point for the real data distribution. Experiments with various
text data sets have shown that an active learner starting from a better initial
training set such as clustered-based sampling has better uncertainty estimation
than one starting from a randomly generated initial training set [13].

The selection strategies which focus on individual instances (Uncertainty sam-
pling or Query-by-Committee) have a high chance of querying the outliers in
the data. To overcome this problem, some algorithms such as Density-Weighted
Methods and Balance Exploration and Exploitation are designed based on the
main idea that informative instances should not only be those which are uncer-
tain, but also those which are “representative” of the underlying distribution
[8]. Expected model change approach has higher priority for instances that will
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impact the greatest change to the current model [8]. By focusing on the en-
tire input space rather than individual instances, expected error reduction and
variance reduction AL try to minimise the estimated future error and output
variance of the model respectively [14]. However, all of these methods are just
the approximations of the data distribution over each AL iteration and these
approximations are only close to the real distribution when we have enough
“representative” in the training set. Before reaching that state, the model is still
an approximation and easy to query some outliers.

In our new approach of applying AL in reverse order, the model initialization
and sampling bias problems is no longer need to be considered during the AL
querying process and the model is guaranteed to be the best representation of
underlying data rather than just the approximation. The detailed explanation
is given in section 5.

1.4 Contributions

In this paper, we introduce one new practical consideration of AL that we call
Reverse Active Learning (RAL), that is, the use of AL evaluation methods to re-
move the less informative instances and inconsistencies in the available training
data to improve the best performance of supervised machine learning. The qual-
ity of the gold-standard and individual instances are evaluated by the system
regardless of who annotated them. This approach is time efficient to normal AL
especially when we need to select the large amount of training data to guarantee
a better performance. More importantly, RAL can overcome the main obsta-
cles in traditional AL: model initialization and biased training subset. These
advantages of RAL are discussed in section 5 of this paper.

In much AL research, the experiments are set up by a set of training instances
and a test set used to evaluate the performance achieved. The savings estima-
tion are commonly computed as the percentage of the training instances selected
during AL to achieve the same performance compared to using all the available
training instances, or, as the difference in performance between AL and random
selection for a given amount of annotation. This however implies that all the
candidate training instances are annotated in advance. The more practical ex-
periment when the annotations are available is how to select the best subset of
the training data to build the model.

The traditional AL approach is based on using a small set of training data to
build the initial model, and then using the model to query the most informative
unlabelled instances to get their labels then retrain the current model. The
central idea of RAL is to make use of available training data to generate better
performance by removing less informative or inconsistent instances. The noisier
the gold-standard is the better improvement the RAL can achieve.

2 Materials and Methods

Figure 1 shows the system architecture. The processing pipeline is described by
an Experiment Descriptive Language (EDL) and executed by the Experiment
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Fig. 1. System Architecture

Management System (EMS). The EMS ensures that a series of experiments and
results are described, executed and compared in an expeditious and reusable
way. An experiment is the execution of modules in a certain order. Experiment
management is primarily the storage of an experiment in a deterministically re-
producible form, as well as the storage of results associated with an experiment.
A series of experiments need to be executed to compare the results. Instead of
manually running the same modules on the original and refined corpora with
different tags then comparing the results, using the EMS makes this process au-
tomatic and efficient. Using the EDL to describe an experiment allows a flexible
execution order of modules within the same program as well as across multiple
programs.

The Lexicon Management System (LMS) supports automated and manual
resolution of unknown tokens. The LMS is a system developed to store the
accumulated lexical knowledge and contains categorizations of spelling errors,
abbreviations, acronyms and a variety of non-word tokens. It also has a web
interface that supports rapid manual correction of unknown words with a high
accuracy clinical spelling suggestor plus the addition of grammatical informa-
tion and the categorization of such words into gazetteers [15]. The method of
the clinical spelling suggestor is based on combining heuristic-based sugges-
tion generation and ranking algorithms based on word frequencies and trigram
probabilities. This approach achieved high accuracies on test data sets with
over 93.5%.

The proof reading process can be applied directly or indirectly to improve
performance of the text extraction system. Firstly, for the available annotation
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tools, the proof correcting process is applied directly to the corpus with the
expectation of finding more concepts from misspelling corrections, abbreviations
and acronym expansions. However, during supervised learning experiments, this
transformation should not be made in the original corpus because it would affect
the offsets of tokens which in turn will lead to retrieval of incorrect annotations.
Consequently, these corrections can be used indirectly as features which will
support the model in learning the correct form of misspelt words (“medicla”
and “medcial” refer to the same word “medical”) and variations of abbreviations
(“amnt” and “amt” are both “amount”), and multiple acronyms of the same term
(“ABG”, “ABGs” are both “arterial blood gases”).

The automated proof reading process is applied to clean the noisy corpus while
RAL is used for removing less informative or inconsistencies in gold-standard
training data. Traditional supervised learning generates the model based on
training data with the best feature set. The popular methods to achieve the
best feature set is by running experiments with n-fold cross-validation on train-
ing data with different feature sets and select the model with highest perfor-
mance. In our method, active de-sampling is applied after the best feature sets
are selected to refine the gold-standard and improve the best performance on the
current training data. Two different refining strategies for two popular annota-
tion tasks are developed and evaluated; these are self-validation for Named-entity
Recognition (NER) and RAL for relationship classification.

3 Methods

3.1 Named-Entity Recognition Self Validation

Conditional Random Fields (CRFs) have been used to recognize clinical entities
[16]. In clinical NER, the gold standard was created by manual annotation, which
usually contains minor errors and inconsistencies. The self-validation (or reflexive
validation) process can estimate the level of these inconsistencies in training
data and extract them for further analysis and correction. The gold standard
can be corrected for inconsistencies between annotations by using this process,
which we also denote as “100% train and test”. This involves using 100% of the
training set to build a model and then testing on the same set. As theoretically
all data items used for training should be correctly identifiable by the model,
any errors represent either inconsistencies in annotations or weaknesses in the
computational linguistic processing. The former faults identify training items
that are rejected, and the latter faults identify where to concentrate efforts to
improve the preprocessing system. The self-validation is an automated process
to identify inconsistent candidates and these candidates are then reviewed by
human to remove noise that come from the training data.

3.2 Text and Relationship Classification

The base learner used in AL for text classification is a support vector machine
(SVM) [17]. We have developed the AL framework for clinical data on top of the
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Algorithm 1. Algorithm MCAL

Input

- A pool U = {u1, u2, ... un}.
- randomly selected training set L (at least one instance for each of m classes).
- number of query q for each iteration.

For each class c in m classes:

1. Init:
- Set class value of c in L as 1 (positive).
- Set all other classes in L as -1 (negative).
- Using L to train the model M.

2. For t = 1, 2 ... q
- Get label v for the most informative instance ui from U.
- If ui not in S: add ui to S with value v.
- If v == c: Add instance ui to L with value of 1.

Else: Add instance ui to L with value of -1.
- Retrain model with L.
- Remove ui from U.

Return: Selected instances list S.

choice of the online AL algorithm (COMB) which contains 4 AL algorithms (Sim-
ple, Self confident, KFF and Balanced EE) [18]. Two enhancements of COMB
have been implemented: (i) multi-class AL from COMB’s AL binary classifier,
(ii) Reverse Active Learning (RAL).

The “one versus the rest” method to build multi-class classifier (MCAL) is
applied and can be executed in a parallel environment. The main purpose of AL
is to select the most informative instances to train the model. In our method,
by obtaining the union of selected instances over binary active learners, the best
training set for multi-class text classification are generated so that the available
multi-class SVMs tool such as libsvm can be used to build the final model [19].
This process is simpler than normal binary SVM AL combinations which usually
require an additional probabilistic comparison step to resolve inconsistencies
between different predictions on the same instance. The pseudo code for multi-
class AL is illustrated in algorithm 1.

The m-class initial training data must have at least one instance for each
class. Because the selection step for each class is independent, this process can
be executed concurrently so that the nary AL will have similar running time
to binary AL. The pseudo code for the RAL is presented in algorithm 2. The
RAL algorithm follows similar steps in AL but shows modifications in the initial
configuration and output selection strategy. The RAL starts with a large training
data and outputs the list of instances that should be removed to achieve a better
gold-standard to train the model.
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Algorithm 2. Algorithm Reverse Active Learning

Input

- m-class full training set L = x1, x2, ... xn.
- number of query q for each iteration.

Init

- Build index on L to store original class value.

For each class c in m classes:

1. Init:
- Set class value of class c in L as 1 (positive).
- Set all other classes in L as -1 (negative).
- Using L to train the model M.

2. For t = 1, 2 ... q.
- Get the least informative instance xi from L.
- Remove instance xi from L.
- If value(xi) == 1: original class value = c.

Else: original class value = get original class(xi).
- If xi not in S: add xi to S with original class value.
- Retrain model with L.

Return: Removed instances list S.

4 Results

4.1 Clinical Concept Recognition

The experiments in this section were conducted to attempt the Clinical Concept
Recognition task in the i2b2 2010 challenge on Clinical Information Extraction
and CRF++ toolkit1 was used to build the NER model [20]. During the training
experiment, the best feature sets were selected after many cycles of n-fold cross
validation. This section focuses on evaluate the effect of Self-validation process
for refining the training data in order to boost up performance of supervised
NER even when the best feature sets were decided.

With a self-validation process, approximately 150 errors in the training data
were recognized and manually corrected. The three most frequent error types
in concept annotation were: (1) missing modifier (any, some) within the noun
phrase; (2) including punctuation at the end of concepts (full stop, comma, and
hyphen); (3) missing annotation (false negative). When the model is trained
with both correct and incorrect examples on some concepts, the probability of
identifying the correct instances is definitely reduced and this might lead to series
of wrong annotations on these concepts. Thus, automated detection and manual
correction of errors in the training data contributed to improve the consistency
and overall performance of the current model.

1 CRF++. Yet another CRF toolkit. Software. Http://crfpp.sourceforge.net

Http://crfpp.sourceforge.net
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Proof reading and self-validation of the gold-standard brought approximately
1.5% improvement to the overall F-score of concept annotation supervised learn-
ing. This contribution was significant to make our result attain the state of the
art of supervised learning method at i2b2 2010 challenge which was evaluated
and reported by the organizers. Because the training and testing data come from
the same source of corpora and annotators, the same kind of noise on testing
data is unavoidable. Based on this assumption, we executed the same process on
released testing data and over 200 similar errors were discovered. After correct-
ing all of these errors for a better testing set, our system performance increased
another 0.5%. Overall, the improvement of RAL for NER is approximately 2.0%
as recorded in Table 1.

Table 1. System performance before and after Self-validation process

CONCEPT TP FP FN P R F

Problem 14423 2896 4127 83.28% 77.75% 80.42%
14486 2752 3664 84.40% 80.25% 82.27%

Test 9945 1629 2954 85.93% 77.10% 81.27%
10233 1504 2666 87.19% 79.33% 83.07%

Treatment 10134 1877 3426 84.37% 74.73% 79.26%
10542 1722 3018 85.96% 77.74% 81.64%

OVERALL 34502 6402 10507 84.35% 76.66% 80.32%
35661 5978 9348 85.64% 79.23% 82.31%

4.2 Text Classification

A multi-class AL algorithm was tested on the i2b2 2010 9-class relationship
classification test data (no-relation is treated as one class). The simple Libsvm
classifier is built mainly based on local context features (bag of words) and
semantic features (concept and assertion type from the ground truth) supplied
by the organizer. With these minimal and simple features, the classifier achieved
an F-score of 68.86% test accuracy by using all 16475 instances of the training
data (including no-relation instances). After adding proof reading as features,
the result increased to 70.02% which was reported as equal second performance
for relationship classification task at the challenge.

For a large-scale classification problem with many thousands instances and
features as in i2b2 relationship classification task, linear kernel is usually a
promising learning technique for this data [21]. Because of this assumption, fur-
ther experiments are taken with the use of Liblinear as a base classifier rather
than Libsvm with non-linear kernels [22]. Liblinear is an open source library
for large-scale linear classification with ease of solvers and parameters selection.
The use of Liblinear classifier improved the F-score by 1.5%. Three of the 4 AL
algorithms that have high performance on the i2b2 clinical data set are Simple,
Self confidence and Balance EE while the KFF algorithm returns a significantly
lower result. Table 2 shows the comparisons of the AL algorithms with a maxi-
mum of 500 queries for each class. The combined training data is a union of all
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Table 2. Performance of multi-class AL

Method Training size(AL instances) Training percent F-Score

Simple 2076 12.60% 66.25%

Self-confidence 1900 11.53% 64.58%

Balance EE 2069 12.56% 65.76%

Combined 4361 26.47% 68.03%

Fig. 2. The distribution of selected instances over 3 AL algorithms: Simple, Self Con-
fidence and Balance EE

Fig. 3. Active desampling and random desampling on test data

instances selected by three AL algorithms. The overlapping selected instances
between the 3 algorithms are shown in Figure 2 where Simple and Balance EE
show the greatest overlap in selected instances.

RAL applied with the Simple method can improve the best result on super-
vised learning (1.5%) by removing over 1500 less informative instances. The final
result after using Liblinear and applied RAL is comparable to the current state
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of the art of the dataset who also using Liblinear as base classifier. Further-
more, the i2B2 challenge papers have been studied and there is no AL approach
for relationship classification used in any of the top submitted processing sys-
tems. Figure 3 shows that the F-scores of active desampling dominates random
desampling with the same number of removed instances.

5 Discussion

Our methods of applying RAL can improve the supervised learning performance
from 1.5% to 2% on two popular clinical information extraction tasks: clinical
NER and relationship classification. These improvement may not be significant
in general, but these are the additional improvements to the best performance
of the available training data. In supervised learning, experiments are set up in
order to select the best feature sets to build the model. The closer a model is to
the best possible performance, the harder (or smaller) is the improvement that
can be made. In our experience, after the best feature sets are determined for the
available training data, the contribution of 1.5% to 2% is remarkable. Further-
more, the improvement of one percent and above was considered as statistical
difference in the i2b2 challenge’s ranking system [20].

From the experiment’s results, with equivalent number of selected instances
during AL processes (approximately 2000 instances), the performance of RAL
is at least 4.84% higher than any single AL setting and 3% higher than the
union of all three popular AL methods with double selected instances (table
2). The most important aspect is RAL can produce a better result than using
all available training data right at the very first removing instances as seen in
Figure 3. In order to normal AL to achieve the same performance with this
clinical dataset, the number of data evaluation and selection process might be
up to 14,000 cycles which will take much more time to complete.

For the relationship classification, our classifier is only based on very sim-
ple, easy implemented feature sets and mainly using resources supplied by the
organizer while the winner used a wide range of complicated features from ex-
ternal syntactic (chunking and parsing) tools; medical ontology and Wikipedia
knowledge [23]. Without using any external and huge resources as features,
our classifiers is more practical to be installed and evaluated in real clinical
environment.

RAL starts with a full training set which is best in initial model representa-
tion and informativeness for instance evaluation. Then the model sequentially
removes small portions of less useful instances which causes minor impact on
the data distribution. Consequently, the initial model building and training bias
are no longer considered as obstacle to RAL. In this situation, complicated algo-
rithms to deal with these problems are also no longer needed. The original and
“Simple” AL method based on Uncertainty estimation is a reasonable choice in
the RAL setting. As shown in the result, with a noisy gold standard such as
in clinical domain, application of RAL is preferred to normal AL because the
simple RAL can generate better results than supervised learning right from the
first steps of removal.
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6 Conclusions

In this study, a general system architecture for refining the training data is
developed and evaluated. RAL is used as a final step to improve the quality of
training data after the best feature sets are decided. Our work focuses on the
clinical domain which suffers from a high level of noise in both the corpus and
training data. However, our method and system architecture are easy to adapt
to any domain with modification of resources and feature sets for supervised
learning.

We also introduce and illustrate a simple combination of binary active learners
into multi-class AL as well as the application of AL in reverse order to improve
the best performance of supervised learning. To sum up, we recommend the
use of proof reading and RAL in supervised learning for a noisy domain such
as clinical natural language processing. RAL is not only simple and suitable
but also can generate better performance and is less prone to biased training
problem.
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Abstract. Relevance feature and ontology are two core components to
learn personalized ontologies for concept-based retrievals. However, how
to associate user native information with common knowledge is an urgent
issue. This paper proposes a sound solution by matching relevance feature
mined from local instances with concepts existing in a global knowledge
base. The matched concepts and their relations are used to learn per-
sonalized ontologies. The proposed method is evaluated elaborately by
comparing it against three benchmark models. The evaluation demon-
strates the matching is successful by achieving remarkable improvements
in information filtering measurements.

Keywords: Relevance Feature, Specificity Term, Ontology, Local
Instance, Global Knowledge Base, Concept Matching.

1 Introduction

Information overload is continuously a hard problem for Information Retrieval
(IR). Current retrieval methods acquire a precise query upfront to express search
intents, which is fairly difficult for any user who has no background knowledge
or past experience. Relevance Feature (RF) has been alternatively taken into
account to indicate user needs in data mining methods [1] [2]. Generally, it
comprises of patterns, terms and their weights while the weights are used to
measure relevance. The feature extractions are mainly based on two aspects:
1) relevance feedback, where a user judges the results from previous retrieval
and tells the system which documents are relevant or not [3]; and 2) pattern
mining, which is an efficient technique against previous retrievals to filter out
noisy by studying frequent, closed, and closed sequential patterns. Note that the
extracted features are useful to point out user preferences.

Ontology-based technique has been recognized as a critical part of advanced
search over last decade. It assists to refine search intents within specific do-
mains and access new knowledge by tracking semantic relations. Recently, some
researchers [4] have attempted to build ontological user profiles according to dis-
covered user background knowledge. Some of the knowledge is integrated by both
global and local analyses [5]. The global employs a global knowledge base (on-
tologies, thesauruses, or online knowledge bases) that mirrors the content of the
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world wide web for common knowledge representation, whereas the local investi-
gates native information or observes user behaviours from local instances [6]. A
same motivation is to produce personalized ontologies so as to better understand
user needs by concepts.

A key challenge here is how to accurately match local information and global
knowledge. The basic idea of existing method [6] is to use a conditional probabil-
ity to determine relevant concepts for describing a theme of local instances. How-
ever, this technique usually obtains a low performance because of the mismatch
problem [4]. Mismatch means some relevant specific concepts have been omit-
ted. The problem of mismatch occurs when the popular features (useful or high
frequent features) match many relevant but general concepts (usually appear in
the top of the ontology); but do not match some relevant specific concepts (usu-
ally appear at the bottom of the ontology). This paper presents an alternative
method to address the mismatch problem. The solution aims to learn personal-
ized ontologies for user knowledge understanding. A pattern mining method is
developed to discover RF from local instances automatically. All extracted terms
in the RF are classified into three groups: Positive specific (SPE), General, and
Negative specific respectively. Library of Congress Subject Headings (LCSH)
is learned as a global knowledge base. The SPE terms are selected to match
subject headings in the LCSH. The attempt-to-proposed approach is evaluated
by comparing against three benchmark models with a standard Reuters Cor-
pus Volume 1 (RCV1) testing set. The experimental results show the proposed
matching is successful and achieve significant improvements in information fil-
tering measurements. This research contributes to ontological user profiling and
knowledge engineering. The related outputs are critical when systems expect to
return proper search results and provide personalized services.

The rest of the paper is organized as below. Section 2, significant related work
is involved; Section 3 outlines an overview of proposed approach, and requisite
definitions are provided; Section 4 describes the extraction of RF; Section 5
introduces concept matching method; Section 6 shows conducted experiments
and results; The paper is concluded by Section 7.

2 Related Work

2.1 Relevance Feature Extraction

Feature extraction is a fundamental stage for the majority of IR models. One of
the most popular methods is TF*IDF. It uses keywords as elements in the vector
of the feature space. The bag of words can be obtained by diverse term weighting
approaches. However, these approaches struggle against the problem of selecting
appropriate number of features among an enormous set of terms to guarantee
the retrieval efficiency [7], or said over-fitting. In addition, the corresponding
approaches are restricted on term statistics in the entire collection, but do not
take relevance information (e.g. user feedback) into account. As an extension of
term-based methods, pattern mining techniques are investigated by data mining
communities for many years. These techniques extract useful patterns from large
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data collections instead of terms. Some studies categorize patterns into frequent,
closed, and closed sequential. Simultaneously, they measure the specificity of
pattens explicitly according to relevance feedback from human beings. Pattern
taxonomy model (PTM) was first introduced by Wu et al. [1]. It improves search
performance by using both frequent and closed patterns. Later on, it has been
further researched by [2] to develop a two-stage model for irrelevant information
filtering. Li et al. [3] build the Relevance Feature Discovery (RFD) model by
mining patterns from positive and negative documents respectively. The related
output shows potentials for enhancing information filtering and user profiling.

2.2 Ontology-Based Techniques

Since ontology-based techniques can bring more discriminative and arguably
capabilities by carrying “semantics”, people commenced to build user profiles by
accessing common knowledge. Li and Zhong [8] develop a term-based ontology
leaning method to automatically discover ontologies from data sets in order to
understand user information needs by concepts. Gauch et al. [9] use ontology
references based on the categorization of online portals and propose to learn
personalized ontologies for users. Developed by King et al. [4], IntelliOnto is
built based on the Dewey Decimal Classification (DDC) system and attempt to
describe the background knowledge. Sieg et al. [5] utilize ontological user profile
on the basis of the user’s interaction with a concept hierarchy which aims to
extract the domain knowledge. More recently, Tao et al. [6] propose an ontology-
based knowledge retrieval framework, namely ONTO model, to capture user
information needs by analyzing general knowledge and local instance repository.
However, they disregard the work of matching and assume the local information
can be ideally referred to the proper concepts in a global knowledge base.

Of all related work, the process in [6] seems the most similar to ours but two
differences are: 1) our study adopts relevance feedback as user information needs
rather than asking users to specify their needs manually, and 2) provides a sound
solution to cope with local information and global knowledge mismatch.

3 Design and Definitions

Figure 1 illustrates a design of the proposed approach. Local instances as input
consist of two parts: relevance feedback and a set of training documents. The rel-
evance feedback is initialized as positive and negative. The positive indicates the
document is relevant to user interests, whereas the negative is irrelevant. By ap-
plying the following method discussed in subsection 4.1, the extracted relevance
features can be categorized into three groups: SPE, General, and Negative. Here,
the approach only selects terms in the SPE group as candidates because they
contain more topic-related interests rather than other groups [3]. LCSH, which
is a thesaurus of subject headings, is chosen to be the global knowledge repre-
sentation. Each subject heading denotes a concept among the knowledge base.
The concept is a short phase where contains one or couple of terms. We match
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Fig. 1. Overview for the Entire Approach

the SPE terms to the subject headings, and personalized ontologies learning will
eventually take advantage of the matched concepts and their original relations
in the LCSH.

3.1 Definitions about Patterns and Closed Patterns

Relevance feature discovery is to find useful features, including patterns, terms
and their weights, in a training set D, which consists of a set of positive docu-
ments, D+, and a set of negative documents, D−. In this paper, we assume that
all documents are split into paragraphs. So a given document d yields a set of
paragraphs PS(d).

Let T = {t1, t2, . . . , tm} be a set of terms which are extracted from D+. Given
a termset X , a set of terms, in document d, coverset(X) = {dp|dp ∈ PS(d), X ⊆
dp}. Its absolute support

supa(X) = |coverset(X)|;

and its relative support

supr(X) =
|coverset(X)|
|PS(d)| .

A termset X is called frequent pattern if its supa (or supr) ≥ min sup, a mini-
mum support. Given a set of paragraphs Y ⊆ PS(d), we can define its termset,
which satisfies

termset(Y ) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

Let Cls(X) = termset(coverset(X)) be the closure of X . We call X closed if
and only if X = Cls(X). Let X be a closed pattern. We have

supa(X1) < supa(X) (1)
for all pattern X1 ⊃ X .

Closed Sequential Patterns. A sequential pattern s =< t1, . . . , tr > (ti ∈ T )
is an ordered list of terms. A sequence s1 =< x1, . . . , xi > is a sub-sequence of
another sequence s2 =< y1, . . . , yj >, denoted by s1 ) s2, iff ∃j1, . . . , ji such
that 1 ≤ j1 < j2 . . . < ji ≤ j and x1 = yj1 , x2 = yj2 , . . . , xi = yji . Given s1 ) s2,
we usually say s1 is a sub-pattern of s2, and s2 is a super-pattern of s1. In the
following, we refer to sequential patterns as patterns.
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Given a sequential pattern X in document d, coverset(X) is still used to
denote the covering set of X , which includes all paragraphs ps ∈ PS(d) such
that X ) ps, i.e., coverset(X) = {ps|ps ∈ PS(d), X ) ps}. Its absolute support
and relative support are defined as the same as for the normal patterns.

A sequential pattern X is called a frequent pattern if its relative support ≥
min sup, a minimum support. The property of closed patterns (see Eq. (1)) can
be used to define closed sequential patterns. A frequent sequential pattern X is
called closed if not ∃ any super-pattern X1 of X such that supa(X1) = supa(X).

3.2 Global Knowledge Base: LCSH

Global knowledge is the common-sense knowledge acquired by people based on
their experience and education. LCSH is an ideal global knowledge representa-
tion because of a rich vocabulary is used to cover all subject areas. In the LCSH,
subject headings are basic elements to convey knowledge in the format of con-
cept, they have three main types of references: Broader Term (BT), Narrower
Term (NT) and Related Term (RT). Related definitions are clarified as follows.
Definition of Subject headings: Let C denote a set of subject headings in LCSH,
a subject s ∈ C is formalized as a pair (label, reference), where

– label is the heading of s in LCSH thesaurus;
– reference is a statement regarding all references that the subject c has.

The LCSH world knowledge base can be formalized as:
Definition of World Knowledge Base: A world knowledge base ontology is a
directed acyclic graph structure defined as a pair Θ := (C,R), consisting of

– C is a set of subjects in LCSH C = {s1, s2, ..., sn};
– R is the semantic relations R = {ref1, ref2, ..., refn} existing among the

subjects in C.

4 Relevance Feature Acquisition

In general, the concept of relevance is subjective. People can easily determine
the relevance of a topic (or document) in specificity or generality. However, it is
hard to use these concepts for interpreting relevance features in text documents.
This section first discusses how to use the concepts for understanding the differ-
ent roles of the low-level feature terms for answering what users want. We also
present the ideas for accurately weighting terms based on their specificity and
distributions in the discovered higher level features. Finally, we describe algo-
rithms for both the discovery of higher level features and the revision of weights
of low-level terms.

4.1 Specificity of Low-Level Features

A term’s specificity describes the extent of the term to which the topic focuses on
what users want. It is very difficult to measure the specificity of terms because a
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term’s specificity depends on users’ perspectives for their information needs [6].
The paper discusses how terms are grouped into three groups (SPE, general,
and negative specific terms) based on their appearances in a training set. Given
a term t ∈ T , its coverage+ is the set of positive documents that contain t, and
its coverage− is the set of negative documents that contain t. We assume that
terms frequently used in both positive documents and negative documents are
general terms. Therefore, we want to classify terms that are more frequently used
in the positive documents into the positive specific category; and the terms that
are more frequently used in the negative documents into the negative specific
category. Based on the above analysis, we define the specificity of a given term
t in the training set D = D+ ∪D− as follows:

spe(t) =
|coverage+(t)| − |coverage−(t)|

n

where coverage+(t) = {d ∈ D+|t ∈ d}, coverage−(t) = {d ∈ D−|t ∈ d}, and
n = |D+|. spe(t) > 0 means that term t is used more frequently in positive
documents than in negative documents. We present the following classification
rules for determining the general terms G, the SPE terms T+, and the negative
specific terms T−:

G = {t ∈ T |θ1 ≤ spe(t) ≤ θ2},
T+ = {t ∈ T |spe(t) > θ2}, and
T− = {t ∈ T |spe(t) < θ1}.

where θ2 is an experimental coefficient, the maximum bound of the specificity for
the general terms, and θ1 is also an experimental coefficient, the minimum bound
of the specificity for the general terms. We assume that θ2 > 0 and θ2 ≥ θ1. It is
easy to verify that G∩T+ ∩T− = ∅. Therefore, {G, T+, T−} is a partition of all
terms. To describe relevance features for a given topic, we believe that specific
terms are very useful for the topic in order to distinguish it from other topics.

4.2 Term Weighting

In Pattern Taxonomy Model (PTM), relevance features are discovered from a
set of positive documents. To improve the efficiency of the PTM, an algorithm,
SPMining(D+,min sup) [10], was proposed (also used in [1]) to find closed se-
quential patterns for all documents ∈ D+, which used the well-known Apri-
ori property in order to reduce the searching space. For all positive documents
di ∈ D+, the SPMining algorithm can discover all closed sequential patterns,
SPi, based on a given min sup. (We omit this algorithm to save space.)

Let SP1, SP2, ..., SPn be the sets of discovered closed sequential patterns for
all documents di ∈ D+(i = 1, · · · , n), where n = |D+|. For a given term t, its
support (or called weight) in discovered patterns can be described as follows:

support(t,D+) =

n∑
i=1

|{p|p ∈ SPi, t ∈ p}|∑
p∈SPi

|p| (2)
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where |p| is the number of terms in p. After the supports of terms have been
computed from the training set, the following rank will be assigned to every
incoming document d to decide its relevance:

rank(d) =
∑
t∈T

weight(t)τ(t, d) (3)

where weight(t) = support(t,D+); and τ(t, d) = 1 if t ∈ d; otherwise τ(t, d) = 0.
Because of many noises in the discovered patterns (an inherent disadvantage

of data mining), the evaluated supports are not accurate enough. To improve the
effectiveness of PTM, we use negative documents in the training set in order to
remove the noises. If a document’s rank (see Eq. (3)) is less than or equals to zero,
this document is clearly negative to the system. If a negative document has a high
rank, the document is called an offender [8] because it forces the system to make a
mistake. The offenders are normally defined as the top-K negative documents in a
ranked set of negative documents, D−. The basic hypothesis is that the relevance
features should be mainly discovered from the positive documents. Therefore, in
our experiments, we setK = n

2 , the half of the number of positive documents.
Once we select the top-K negative documents, the set of negative document

D− will be reduced to include only K offenders (negative documents). The next
step is to classify terms into three categories, G, T+, and T−, based on D+ and
the updated D−. We can easily verify that the experimental coefficients θ1 and
θ2 satisfy the following properties if K = n

2 :

0 ≤ θ2 ≤ 1, and − 1

2
≤ θ1 ≤ θ2.

Here, we show the basic process of revising discovered features in a training
set. This process can help readers to understand the proposed strategies for
revising weights of low-level terms in different categories. Formally, let DP+ be
the union of all discovered closed sequential patterns in D+, DP− be the union
of all discovered closed sequential patterns in D− and T be the set of terms that
appear in DP+ or DP−, where a closed sequential pattern of D+ (or D−) is
called a positive pattern (or negative pattern).

It is obviously that ∃d ∈ D+ such that t ∈ d for all t ∈ T+ since spe(t) >
θ2 ≥ 0 for all t ∈ T+. Therefore, for each t ∈ T+, it can obtain an initial weight
by the deploying method on D+ (using the higher level features, see Eq. (2)).

For the term in (T− ∪ G), there are two cases. If ∃d ∈ D+ such that t ∈ d,
t will get its initial weight by using the deploying method on D+; otherwise it
will get a negative weight by using the deploying methods on D−.

The initial weights of terms finally are revised according to the following
principles: increment the weights of the SPE terms, decline the weights of the
negative specific terms, and do not update the weights of the general terms. The
details are described as follows:

weight(t) =

{
w(t) + w(t)× spe(t), if t ∈ T+

w(t), if t ∈ G
w(t) − |w(t) × spe(t)|, if t ∈ T−

(4)

where w is the initial weight(or the support in Eq. (2)).
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5 Concept Matching Method

The matching occurs between terms mined from previous sections and subjects
appearing s ∈ C in LCSH. Note that the mined terms are distinguished into three
groups and their values can be calculated by the weight function in Eq. (4). In
this method, we use only terms in the first scenario where t ∈ T+ for matching
the concepts among the LCSH. The SPE terms are sufficient and indispensable to
represent user desired information according to our prior testing. The matching
method is divided into several steps below:

1) To gather the importance of terms in T+, we first sort them based on
weight values from Eq. (4). The action aims to identify the significant terms
from text mining perspective and highlight them.

2) The second step consists of two phases. At phase one, we get the top 25%
terms in T+ based on their values. They are considered as the core portion of
local information. Consequently, four most relevant subjects s ∈ C are referred
to each of the top 25% terms. Phase two, the relevance of subjects is computed
by rel(s) = |T+ ∩ s|/|s|, where |T+ ∩ s| denotes the number of overlapped
terms between T+ and subject s, |s| stands for the total number of terms in
the subject s. According to the rel values, four subjects can be confirmed. The
idea of choosing 25% and 4 parameters is supported by empirical experiments.
The matching performance can be impacted while modifying these parameters.
A comparison of using other parameters will be shown in evaluation.

Algorithm 1. Concept Matching Algorithm

Input:
A set of SPE terms T+; weight(t) from Eq. (4); a set of LCSH subjects C.

Output:
A set of matched concepts SC.

1: Let SC = ∅;
2: Sort T+ using weight(t) as descendant order;
3: Let K = |T+|/4, Let T+

1 be the top-K terms in T+;
4: for each t ∈ T+

1 {
5: Let s1 = s2 = s3 = s4 = t;
6: Let c(t) = {s ∈ C|t ∈ s};
7: Select the top-4 relevant concepts in c(t) using rel(s), and let s1, s2, s3, s4 be

the subjects; //if |c(t)| < 4, t will be the default value of si because of step 5
8: Let SC = SC ∪ {s1, s2, s3, s4} }
9: for each t ∈ (T+ − T+

1 ) {
10: Let s1 = t, rel(s1) = 0;
11: for each (s ∈ C&t ∈ s)

12: if |s∩T+|
|s| > rel(s1) then

13: Let s1 = s, rel(s1) =
|s∩T+|

|s| ;

14: Let SC = SC ∪ {s1} }

3) This step is for the rest of terms (75%) in T+. To find out accurate subject
for each of these terms, we select the most relevant one based on rel value instead
of four.
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4) A set of specified concepts and their references existing in the LCSH can be
obtained to form a personalized ontology. By taking advantage of the ontology,
a scope of user background knowledge can be defined, and search systems can
offer tailoring results after understanding precise user preferences.

In most cases, a term t ∈ T+ can successfully find a subject or a set of subjects
s = {s|s ∈ C} in the LCSH. It is a hard issue when a term cannot match concepts
in the global knowledge base. For example, “dutroux” is not a valid word/term
in vocabulary but appears frequently in the training documents. It should be
important to describe user needs. However, no subject can be matched by the
proposed method. To overcome this issue, we count the term itself as a subject
directly as if c(t) = {s ∈ C|t ∈ s} = ∅.

Algorithm 1 illustrates an entire process for our concept matching method,
which facilitates to repeat and optimize the work. Note that the output is a set
of specific concepts SC, the process can be also understand as a transition of
informative descriptor and conceptional descriptor. These acquired concepts and
their semantic relations in LCSH are used to construct personalized ontologies.

6 Evaluation

The hypothesis in this paper is that the SPE terms extracted from RF con-
tain user focusing needs. By adopting the RF for ontology matching, gathered
concepts should be helpful to improve search effectiveness. Related experiments
were conducted to support this hypothesis. This section states data collections,
baseline models, information filtering measurements, and results.

6.1 Data Collections

A LCSH database was selected to build the world knowledge base. Its size is 719
mega bytes stored in Microsoft Office Access. Initially, 491,250 subject headings
and their internal references between the headings were extracted.

RCV1 corpus consists of all and only English language stories produced by
Reuter’s journalists between August 20, 1996, and August 19, 1997, a total of
806,791 documents that cover very large topics and information. TREC (2002)
has developed and provided 50 assessor topics [11] for the filtering track, aiming
at building a robust filtering system. The relevance judgements on RCV1 have
also been made by the assessors. The assessor topics are more reliable than any
artificially constructed topics [12]. For each topic, some documents in RCV1
are divided into a training set and a testing set. According to Buckley and
others [13], first 50 topics are stable and enough for high quality experiments.
This research uses RCV1 and the first 50 assessor topics to evaluate the proposed
model. Documents in RCV1 are marked in XML. To avoid bias in experiments,
all the documents have been preprocessed by stemming and stop-words removal.

6.2 Baseline Models and Measurements

For evaluation, we employed three baseline models: 1) PTM, is the up-to-date
pattern mining based model. It discovers sequential closed patterns from positive
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documents, deploys discovered patterns on their terms using Eq. (2) and ranks
documents using Eq. (3). For the pattern-based models, we rank a document
based on the total relative supports of discovered patterns that appear in the
document. We also set min sup = 0.2 (relative support) for PTM; 2) TF*IDF,
is a term-based model for comparison with new retrieval models. For each topic,
we sorted terms in the positive documents according to original TF*IDF values
and chose first 150 terms; 3) ONTO, is a ontology-based model developed by
Tao et al. in 2011 [6]. The idea of the model is to use a similarity to determine
relevant concepts c for describing the themes of the local instances, P (c|F ) =
P (c ∩ F )/P (F ), where F is a set of features discovered in the local instances.
The comparison is worth to indicate our discovered concepts are more specific for
user requisitions. The proposed model named POM is estimated by five state-of-
the art IR measuring metrics, including top 20 precision based on the relevance
judgement in RCV1 (top@20), the precision averages at 11 standard recall levels
(11 − points), the Mean Average Precision (MAP ), the F1-measure (F1), and
the breakeven point (b/p).

Table 1. Comparison Results for Different Parameter Settings. (Refer to Section 5,
the table shows the reason to predefine parameters as top 25% terms with 4 subjects
and 1 for the rest. A number of combination settings like 50% 33%, and 25% with
different numbers of subject have been tested but omitted here for space.)

#subjects % top@20 MAP F1 b/p

50 0.43 0.3967 0.4103 0.3880
4 33 0.42 0.3941 0.4084 0.3855

25 0.46 0.4124 0.4195 0.4042

50 0.44 0.4029 0.4141 0.3968
3 33 0.44 0.4008 0.4125 0.4001

25 0.45 0.4053 0.4157 0.3971

2 ......

6.3 Experiment Design and Results

To prove that our matched concepts can truly contain user information needs,
all terms in the concepts are deployed to revise a new weight as follows:

weight(t, Θ) =
∑

t∈s,s∈SC

rel(s)/|s|

For the POM, we use the revised weights computed by Eq. (3) to rank documents
for each topic in the RCV1 testing set. For the baseline models, we apply features
extracted by their methods, and then keep their original term weight pairs to
implement our matching process. After that, the matched concepts are collected
and deployed by the same formula upon. To indicate the influences affected, the
percentage change in performance is used to compute the difference, which is
formulated as:

%chg = ResultPOM−Resultbaseline

Resultbaseline
× 100
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The lager %chg is, the more significant improvement it achieves.
As shown in Table 2, POM achieves excellent performance with 16.12% (max

25.13% and min 9.7%) in percentage change on average for all four measures.
Another big different is the number of extracted terms by different techniques.
There are 23.12 SPE terms in average, which is approximately 7 times less than
the number of terms extracted by TF*IDF (147.32) and PTM (154.82). This
demonstrates that SPE terms are quantitatively enough to summarize all user
needs with a few number of words. The matched concepts should capture all
concrete user knowledge. Fig. 2 shows the 11 − points comparison where the
POM model distinctly outperforms than others.

Table 2. Comparison Results for All Models in First 50 Topics

#terms top@20 MAP F1 b/p

POM 23.12 0.46 0.4124 0.4195 0.4042
TF*IDF 147.32 0.391 0.35 0.378 0.3536
PTM 154.82 0.382 0.3649 0.3915 0.3652
ONTO 75.96 0.335 0.3403 0.3787 0.3355

%cha +25.13% +17.3% +9.7% +15.16%

In sum, to address the problem local instances and global knowledge mis-
match, the proposed solution has been demonstrated successfully based on the
evaluation. The substantial results indicate our method can effectively discover
desired concepts to represent user specific needs by adopting RF. The dramatical
improvements are significant after comparing with three classic baseline models.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pr
ec

is
io

n

recall

POM
PTM

TF-IDF
ONTO

Fig. 2. 11 Points Result in First 50 Topics

7 Conclusion

This paper proposes a systematic method to build personalized ontologies by
adopting relevance feature. The user orientated feature is used to represent user
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information need and match concepts appearing in global knowledge base. It
is an effective solution to solve the problem of local informative references and
common knowledge mismatch. In evaluation, the standard topics and a huge
testbed were employed for scientific experiments. The substantial results prove
that the proposed model is reliable after comparing with baseline models.

In future, we plan to investigate the usage of learned ontologies by utiliz-
ing abundant semantic relations among concepts. Note that ontologies play an
important role as a backbone to facilitate accessing information in knowledge
management systems. The present work aims to define user wants in terms of
extensive concepts in world knowledge. Besides, we are also interested in weight
revising methods for performance enhancement. The investigation will extend
the applicability for the majority of existing Web documents, and maximum the
contribution of the present work.
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Abstract. Increased attention has been focused on question answering (QA) 
technology as next generation search since it improves the usability of informa-
tion acquisition from web. However, not much research has been conducted on 
“non-factoid-QA”, especially on Why Question Answering (Why-QA). In this 
paper, we introduce a machine learning approach to automatically construct a 
classifier with function words as features to perform Why Text Segments Classi-
fication (WTS classification) by using SVM. It is a process of detecting text 
segments describing “reasons-causes” and is a subtask of Why-QA mainly re-
lated to an answer extraction part. We argue that function words are a strong 
discriminator for WTS classification. Furthermore, since function words appear 
in almost all text segments regardless of the domain of the topic, it also enables 
construction of a domain independent classifier. The experimental results 
showed significant improvement over state-of-the-art results in terms of accura-
cy of WTS classification as well as domain independent capability.  

Keywords: Non-Factoid QA, Classification, Machine Learning. 

1 Introduction 

The recent progression of internet technology has increased with the number of inter-
net users. Trends such as the development of online knowledge bases like Wikipedia 
and community portal sites such as Yahoo!Answers have emerged, and the diversity 
of information now available on the internet has increased. That has lead to the 
dramatic growth of information availability on the internet, and as such it has become 
increasingly difficult for users to acquire the information that they really need. It 
requires changes to the way of obtaining information, from simple knowledge 
acquisition to complicated or deeper knowledge acquisition.  

Increased attention has been focused on the question answering (QA) technology 
as next generation search. This is because QA systems return a list of exact answers 
as search results while most of the commercial information retrievers, such as Google, 
return a list of documents. Returning the list of exact answers reduces the labour in-
tensive filtering process to obtain information since it does not need to look into each 
document to find chunks of information from the lists of retrieved documents, which 
are often very large.  
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A significant amount of literature on QA has reported on “factoid-QA”, which 
deals with a question asking for a fact that can be answered by few words (what is the 
height of Mt. Everest?), and achieved high performance in terms of the answer acqui-
sition [3, 8, 9]. However, not much research has been conducted on “non-factoid-
QA”, which requires more complicated question answering mechanisms to obtain the 
answers (what is non-factoid question answering? or why is the sky blue?). Especially 
Why Question Answering (Why-QA) is not a very active area of research on non-
factoid-QA field. Why-QA is a process of finding answers describing “reasons-
causes” (why-answer) for a question asking the “reasons-causes” for some facts 
(why-question). The main obstacles of under-developed Why-QA techniques are that it 
becomes increasingly difficult to obtain why-answers since it requires deeper under-
standing of text content than that of factoid-QA. 

Among the several recent works explored on Why-QA methods, the most popular 
method is a rule based method (RB method) [6, 16, 18]. RB method detects why-
answer by referring to a manually predefined list of keyword cues or patterns based 
on “reasons-causes” characteristics, which are called ‘rule dictionary’. However, the 
rule dictionary construction is laborious and the performance of RB method is not 
very stable in terms of why-answer extraction accuracy. 

As a subtask of Why-QA, Tanaka [4] developed a machine learning approach to 
detect a group of sentences, a text segments (TS), describing “reasons-causes” based 
on “bag-of-words (BOW)” representation. Even though BOW effective representation 
of text to deal with topic classification, since the vocabulary size of nouns is very large 
and they carry domain dependent information, they increase the computation of build-
ing a classifier while decreasing the domain independency of the classifier. Moreover, 
most of the nouns are not effective discriminators to detect TS describing “reasons-
causes” hence BOW may not be an optimal representation to apply in such a task. 

The objective of our research is to introduce the methodology of automatically 
building a highly discriminative classifier to detect TS indicating “reasons-causes” 
regardless of the domain of TS. The classifier is constructed by making use of func-
tion words, which are usually ignored by most of the BOW based information retriev-
al research, as bases of feature space for machine learning. We call such TS describ-
ing “reasons-causes” as “Why Text Segment (WTS)” and TS that is not WTS as 
“NotWhy Text Segment (NWTS)”. We define the process of detecting WTS as WTS 
classification and the classifier to perform such a classification as WTS classifier. WTS 
classification is a subtask of Why-QA mainly related to Answer Extraction part of QA 
system. Here, TS could be some answers on an online forum or community portal or 
chunks of sentences extracted from any web page. Domain means a group of words or 
terms share the same concept such as sports, science, finance, and so forth.  

As an example of WTS classification, consider the following three TS extracted 
from Wikipedia1 and one of its reference links2 related to the topic of the sky. It is 
clear that 1 is an explanation of “sky” while 2 and 3 state the reason why the sky is 
blue or yellow (red). 

                                                           
1 http://en.wikipedia.org/wiki/Sky 
2 http://math.ucr.edu/home/baez/physics/General/BlueSky/blue_sky.html  
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1. “The sky is the part of the atmosphere or of outer space visible from the surface of 
any astronomical object.” 

2. “The light from the sky is a result of the scattering of sunlight, which results in a 
light blue colour perceived by the human eye. On a sunny day Rayleigh Scattering 
gives the sky a blue gradient - dark in the zenith, light near the horizon.” 

3. “When the air is clear the sunset will appear yellow, because the light from the sun 
has passed a long distance through air and some of the blue light has been scattered 
away. If the air is polluted with small particles, natural or otherwise, the sunset will 
be more red. 

Applying WTS classification on these TS means to classify 2 and 3 as WTS and 1 as 
NWTS. 

Like BOW, we call bag representation of function words “bag-of-function-words 
(BOFW)”, therefore, we refer to our proposed method as BOFW method. In this 
paper, WTS classification is considered as a binary classification into binary classes, 
WTS and NWTS as binary classes and we use SVM [15] to build the classifier. 

Our research is similar to existing literature [5, 13, 14] in terms of utilizing func-
tion words, but our approach differs in the way of utilizing the function words. Our 
method only uses morpheme based function word as a unit for a machine learning 
feature whereas [5] use structured clause with function words as a feature and [13], 
[14] use more than function words. Moreover, we propose machine learning frame 
work as classification to discriminate WTS rather than ranker learning to re-rank TS 
according to WTS [5]. The proposed BOFW method does not require laboriously 
labelled training data [5], or deep language analyses [21] to choose features.  

Even though BOFW provides limited contribution in terms of topic classification 
(BOW is more useful for topic classification), the focus of this research is not about 
classification based on topic, but it is classification of WTS. Consequently, the essence 
of the proposed BOFW methodology is that despite its simplicity, it provides a strong 
discriminative power for WTS classification regardless of domain of TS. Hence it 
could provide a simple yet effective way of boosting the performance of QA system 
to build finer Why-QA technology. Moreover, even though this research is conducted 
on Japanese, it is adaptable to different languages by simply changing the BOFW 
definitions as we have proved in [11]. In this paper, we describe the details of BOFW 
methods and its set up in Japanese. In addition we discuss the domain independent 
issues of WTS classification based on BOFW method which has not stated in [11]. In 
summary, the main contributions of this paper are as follows: 

• Classification performance issue: We experimentally show that BOFW method 
boosts the performance of WTS classification, yielding performance of prior works. 

• Domain independent issue: WTS classifier with BOFW method provides stable 
classification performance regardless of the domain of TS than any prior works. 

The rest of this paper is organised as follows. Section 2 describes the related work 
done on Why-QA. Section 3 states our proposed BOFW approaches to construct WTS 
classifier. Finally, Section 4 discusses the experiment. 
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2 Related Work 

Shibusawa [16] proposed a method to extract the location of a sentence with “rea-
sons-causes” as why-answer with respect to the contiguous “fact sentence”, which 
defines a sentence including all keywords on a question. Shibusawa defines four poss-
ible locations of the why-answer, 1) pre Case, 2) and 3) post Case, and 4) within Case 
regard with the “fact sentence”. A location of why-answer is determined by appear-
ance patterns of rules with respect to “fact sentence” by refering to manually con-
structed rule dictionary. Rule dictionary contains the list of rules such as the reason 
keywords (“kara”, “karakoso”, etc) and reference terms (such as “ikano”, “tsugi”, 
etc). This is a typical RB method as it defines such rules manually from manually 
extracted terms which characterises “reasons-causes”. The problem with a RB me-
thod is that it is a very troublesome and labour-intensive task to produce a rule dictio-
nary. Besides, it may not be possible to find all rules to define “reasons-causes” 
characteristics. Hence the lack of rule coverage causes an inaccuracy of why-answers 
detection from corpus. 

Instead of building a rule dictionary manually, Higashinaka and Isozaki [5] pro-
posed automatic rule extraction methods to overcome the rule coverage problem in 
RB method by exploiting Japanese EDR dictionary. EDR dictionary is a collection of 
Japanese sentences, in which terms or phrases are labelled with its semantic role to 
represent semantic relations. Labelling is maintained by linguists manually. Higashi-
naka extracted sentences labelled with “reason” from EDR and decomposed all the 
sentences into clauses. Then, all content words in each clause were replaced by “*” to 
form a clause structured with function words (we call it a “structured clause with 
function words”). Higashinaka then trained SVM ranker based on these structured 
clauses with function words as well as manually extracted “reasons-causes” terms. 
They considered the Why-QA as ranking problem to boost WTS in higher ranking. 
Although the EDR approach may be able to construct why-type rules efficiently, the 
accessibility of such a commercial dictionary is not easy and costly. Besides, this 
method requires training dataset labelled with ranking according with WTS, which is 
not easy to obtain. 

Intensive studies on Why-QA have been undertaken by Verberne [19, 20, 21]. Ver-
berne [21] regarded Why-QA as re-ranking of TS retrieved by Wumps Search Engine. 
Verberne carried out deep natural language analysis on English sentence structure and 
utilised syntactically analysed information of TS to re-rank in the order of WTS. How-
ever, since it requires heavy language analysis and deep natural language processing 
skill, it is not easily adaptable to different languages. 

Tanaka [4] proposed a machine learning [1, 2] method based on BOW to perform 
WTS classification. However, this method has a domain dependency problem on the 
produced classifier. This is because BOW representations of TS include noun informa-
tion, and nouns are very domain specific information. Therefore, trained classifier has 
a bias towards the training data and it is not suitable for a domain independent classi-
fication. It also requires a re-collecting of training data and re-training to build 
classifier for different task and it is a troublesome for a large data set. 
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Brill [17] proposed a statistical translation technique to answer various types of 
non-factoid questions. Brill produced language model based on large sets of parallel 
corpus. However, the performance of the model is highly dependent on the quality of 
the word translation probabilities. It requires a large amount of semantically similar 
yet lexically different data for training the model to capture better correlations of 
words and such corpus is not easily available. Moreover, most of non-factoid type QA 
research is not specialised in Why-QA [14, 17] and some of them suffer from accuracy 
of the results on Why-QA. This may be due to the adaptation of factoid-QA frame-
work into non-factoid-QA even though the representation of answers is different 
between factoid-QA and non-factoid-QA. 

3 Domain Independent Why Text Segment Classifier Based on 
Bag of Function Words 

In order to build WTS classifier with SVM, it is necessary to collect labelled data, 
define representations of TS, choose appropriate bases for features space, and build 
the classifier by learning patterns from training data. These are important processes 
not only to construct a classifier with good performance, but also to decide the task of 
classification. In this paper, we introduce the method of domain independent WTS 
classifier construction by clarifying these points. 

In this paper, the task is clearly WTS classification that discriminates WTS or 
NWTS of TS input. We consider WTS classification as binary classification problem 
with WTS/NWTS as its classes. We used Yahoo!Answer to automatically collect and 
label datasets for training and testing. We trained WTS classifiers with SVM with 
function words as features. Figure1 describes the overview of BOFW method. 

3.1 Collecting Data 

Manual data labelling [4, 5, 16] is laborious and causes a problem of collecting large 
number of data. To overcome such shortcomings, we introduce the automatic as well 
as systematic way of collecting and labelling of data using Yahoo!Answer (known as 
Yahoo!Chiebukuro3 in Japanese). To retain the quality and reliability of answers, we 
only used answers from best-answer-corpus and we used each answer as TS. The 
processes of collecting TS from Yahoo!Answer corpus are as follows. 

Firstly, why-questions were collected from question-corpus. We defined why-
questions as the questions containing keywords with typical question style of seeking 
for why-answers. We choose “naze (why…)”, “doushite (why…)” and “no riyuu ha 
nani (what is the reason…)” as such keywords. Subsequently, we collected an answer 
paired with each why-question as why-answer from best-answer-corpus. The group of 
collected why-answers is called WTS dataset. 

Similarly, we defined questions with keywords, such as “no houhou ha nani (what 
is the methods of….)” and “no chigai ha (what is the difference between…)”, which  

                                                           
3 http://chiebukuro.yahoo.co.jp/ 
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[5, 16], different evaluation method [5], or different experimental setup. Therefore, 
we adapt baseline methods into machine learning classification framework by 
defining features mainly based on their rule dictionary so that we can conduct the 
evaluation smoothly and fairly. 

Baseline.1 (RB method) : Among the rules in rule dictionary on Table.1 of [16], we 
defined each rule under “reference terms with reason-cause” and “reason-cause 
terms” as rule-based-feature (RB-feature). We collected 83 such RB-features and 
all of them are used as bases of feature space. RB-feature is a binary feature 
indicating 1 if it exists in TS and 0 otherwise and. RB-features are typical terms in-
dicate “reasons-causes” such as “dakara (because)”, “riyuu (reason)” and 
“genninn (cause)” etc. 

Baseline.2 (EDR+RB method) : In [5], 399 features (f1-f399) are used to as bases of 
feature space to train a SVM ranker. Among the features defined in [5], f1-f394 are 
rules, indicating “reasons-causes”, extracted from EDR, f395 is a feature with a 
list of manually extracted rules, f396-f398 are related to topic information, and 
f399 is related to question. We defined features for baseline.2 method as combina-
tion of automatically and manually extracted rules indicating “reasons-causes”. 
Since features f396-f398 and f399 are not directly related to our scope of WTS 
classification they were discarded. By referring to the method of rules extraction 
[5], we collected sentences labelled with “reason” from EDR, and they were trans-
formed into a structured clause with function words as it is described in Section 2. 
We obtained 593 most frequently occurred such structure as EDR-features. Ele-
ment of EDR-features are binary indicating the existence of the attributes in TS as 
0/1. As for manual rules for f395, we used RB-features from baseline.1. We de-
fined a binary feature representing the existence of any rules matched with RB-
features in TS by 0/1. The bases of feature space for EDR+RB method, therefore, is 
594 dimensional features with 593 binary EDR-features and 1 binary feature with a 
list of RB-features. 

Baseline.3 (EDR method) : This baseline only use 593 EDR-features stated above. 
Baseline.4 (BOW method) : By following the experimental setup of [4], we extracted 

words from all TS in training dataset and use BOW as bases of feature space. As for 
an element of BOW-feature, we obtained tf-idf according with the BOW-feature’s 
term frequencies and TS frequencies. 

Baseline.5 (BOW-BOFW method) : This feature space is formed by subtracting 
BOFW-features from BOW-features in BOW method. 

We conducted two experiments to evaluate the effectiveness of BOFW method. The 
first experiment shows the effectiveness of on BOFW method in term of comparative 
accuracy of WTS classification against baselines. The purpose of the second experi-
ment is to evaluate domain independent classification ability of WTS classifier con-
structed by BOFW method. All evaluations were done by comparing F-Score and the 
rate of correctly classified TS of proposed method and baselines. We used SMO [10], 
provided in data mining software Weka [7], with the first order of polynomial kernel 
(K(xi,xj)=(xTx+1)) to train five WTS classifiers. We also performed paired-t-test to 
show the statistical significance of the experimental results. 
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4.2 Effectiveness on WTS Classification Accuracy 

To train WTS classifier, we produced five datasets for each containing randomly se-
lected 5000 WTS and NWTS from WTS and NWTS datasets collected in 3.1 respective-
ly (they are called D10k.[1..5]). To record F-Score and classification accuracy, we used 
one dataset of D10k.[1..5] to train WTS classifier and others as test dataset. We repeated 
this process 5 times and take the macro-averages of F-score and the rate of correctly 
classified TS for each method. Table1 shows the results of evaluations. A value of 
inside the bracket on each baseline shows the difference of BOFW method and 
baseline method. 

It was found that it is possible to construct WTS classifier with F-Score=0.661 with 
63.25% of WTS classification accuracy by using BOFW method. The results show 
that the performance of WTS classifier produced by BOFW method outperforms base-
line methods (RB, EDR+RB, EDR, BOW) by 4.5%~16.3% on F-Score and 
1.8%~5.3% on classification accuracy. 

To check the statistical significance of the results, we performed paired-t-test on 
both F-Scores and classification accuracies. All results on paired-t-test against 
baselines showed significant difference of the results at the level of 0.01. 

One of the reasons why the results of the BOFW method outweigh baseline me-
thods is that BOFW-features work more effectively to form hyper-plane that separates 
WTS and NWTS class on SVM learning process. This can be explained by comparing 
the results of BOFW method, BOW method, and BOW-BOFW method. 

As it is stated in 4.2, BOW method construct the classifier with both content words 
and function words, while BOW-BOFW method only use content words. Now the 
results on BOW method and BOW-BOFW method showed that it is possible to per-
form WTS classification with F-Score=0.617 with 60.20% of classification accuracy 
and F-Score=0.56 with 57.95% classification accuracy respectively. Clearly, the per-
formance of WTS classification dropped significantly by discarding BOFW-features 
from BOW-features. This indicates the BOFW-features provide a significant contribu-
tion in order to form an effective decision boundary to distinguish WTS and NWTS 
classes. This also can be supported by the results of BOFW method, only using 
BOFW-features provides higher discriminative WTS classifier than BOW method and 
BOW-BOFW method. 

Table 1. Average F-Score and Correctly Classified Rate of WTS classifiers using D10k.[1..5] 

 BOFW RB EDR+RB EDR BOW 
BOW-
BOFW 

F-Score 0.661 
0.499 

(-0.163)* 

0.605 

(-0.056)* 

0.584 

(-0.077)* 

0.617 

(-0.045)* 

0.596 

(-0.065)* 

Correct 
Classified 

63.25 
60.57 

(-2.68)* 

61.43 

(-1.82)* 

59.11 

(-4.14)* 

60.20 

(-3.05)* 

57.95 

(-5.30)* 

*paired-t test with significance at a level of 0.01. 
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4.3 Capability of BOFW Method as Domain Independent WTS Classification 

Yahoo!Answer provides various topics in answers and it can be considered as open 
domain corpus. Therefore, from the experimental results in 4.2, it is possible to say 
that BOFW method is capable of classifying any TS regardless of its domain. We 
conducted further experiment to test the effectiveness of the proposed method as a 
domain independent classifier. Evaluation of this experiment is conducted by creating 
WTS classifier with training dataset containing only one domain and test the classifier 
by test dataset not containing the domain. Since Yahoo!Answer provides various 
categories sharing the same topic, we define a category as a domain and created 
datasets with/without domain as follow. 

First, we extracted WTS and NWTS only belonging to one category to form a data-
set Dcat and TS not belonging to the category to form a dataset Dnocat. In order to ob-
tain enough data, we only used categories provides more than 3000 WTS and NWTS 
on WTS datasets and NWTS datasets to create Dcat There were 4 such categories. From 
Dnocat we randomly selected 5000 WTS and NWTS each and created 5 datasets Dno-

cat[1..5]. In effect, we have 4pairs of Dcat and Dnocat[1..5]. 
Evaluation method is the same as 4.2, we compared the performance of WTS clas-

sifier by comparing F-Score and classification accuracy of BOFW method with base-
lines. F-Score and classification accuracy were recorded by testing each Dnocat[1..5] on 
WTS classifier build by Dcat as training dataset. Similarly, we recorded F-Score and 
classification accuracy of 5 WTS classifier trained by Dnocat.[1..5] tested by Dcat. Table2 
shows F-Score and classification accuracy macro-average of evaluation results of 4 
categories (4 Dcat x Dnocat.[1..5]  = 20 results per each evaluation) and its total average. 

Table 2. Average F-Score and Correctly Classified Rate Experimental Results of WTS 
classifiers using Dcat and Dnocat.[1..5] 

 BOFW RB EDR+RB EDR BOW 
BOW-
BOFW 

 Dcat classifier vs Dnocat.[1..5] test datasets 

F-Score 0.636 
0.487 

(-0.149)* 

0.568 

(-0.068)* 

0.567 

(-0.069)* 

0.591 

(-0.045)* 

0.563 

(-0.072)* 

Correctly 
Classified 

61.99 
60.20 

(-1.79)* 

59.09 

(-2.90)* 

57.60 

(-4.38)* 

58.41 

(-3.58)* 

55.34 

(-6.65)* 

 Dnocat.[1..5] classifiers vs Dcat test dataset 

F-Score 0.626 
0.475 

(-0.151)* 

0.574 

(-0.053)* 

0.562 

(-0.063)* 

0.577 

(-0.048)* 

0.555 

(-0.070)* 

Correctly 
Classified 

61.01 
58.11 

(-2.90)* 

59.07 

(-1.94)** 

58.15 

(-2.86)* 

58.38 

(-2.63)* 

56.17 

(-4.84)* 

 Average Results 

F-Score 0.632 0.481* 0.571* 0.565* 0.585* 0.632 

Correctly 
Classified 

61.50 59.16* 59.08* 57.88* 58.40* 61.50 

*, ** paired-t test with significance at a level of 0.01 and 0.005. 



 Towards Domain Independent Why Text Segment Classification Based on Bag 479 

The results shows that proposed method performed WTS classification with aver-
age F-Score=0.632 and average classification accuracy=61.50%, it was found BOFW 
method outperformed all baselines methods. 

A pair-t-test showed that the results of BOFW method significantly differed at the 
level of 0.05 on the classification accuracy of ERD+RB method (Dnocat.[1..5] classifiers 
vs Dcat test dataset) and the rest at the level of 0.01. 

5 Conclusions 

In this paper, we proposed new methodologies to construct domain independent WTS 
classifiers based on function words as features. Experimental results showed that the 
proposed method provides higher WTS classification capability than previous me-
thods. The proposed method also provides a simple way to build the WTS classifier 
hence it reduces the labour required for manually defining a rule dictionary. It also 
showed that the BOFW method provides the more stable WTS classification perfor-
mance regardless of the domain of training dataset and test dataset. Consequently, we 
accomplished our aim to introduce a simple yet effective way to build a domain 
independent WTS classifier to perform accurate WTS classification. 

In the future, we are interested in building a non-factoid based QA system by ex-
tending the BOFW method to develop automated non-factoid TS classification of 
answers describing “definition” and “method”. We believe that these technologies 
greatly contribute to developing next generation searching techniques which will 
improve the information retrieval on the web. 

Acknowledgements. This research is supported by Yahoo!Answer. We would like to 
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Abstract. Meaning-preserving Skolemization is essential for develop-
ment of a correct and efficient method of solving query-answering prob-
lems. It requires global existential quantifications of function variables,
which in turn require an extended space of logical formulas. This pa-
per proposes a bottom-up procedure for computing a set of models that
sufficiently represents the set of all models of a given clause set in the ex-
tended formula space. Instantiations of function variables often result in
generation of infinitely many models. To overcome the difficulty, a model-
making pattern is introduced for representing a possibly infinite number
of models, and such a pattern is split as late as possible. The proposed
procedure provides a method for solving query-answering problems that
include unrestricted use of universal and existential quantifications.

Keywords: Query-answering problems, automated reasoning, bottom-
up computation, meaning-preserving Skolemization.

1 Introduction

A query-answering problem (QA problem) [6,8] is a pair 〈K, a〉, where K is a
logical formula, representing background knowledge, and a is an atomic formula
(atom), representing a query. The answer to a QA problem 〈K, a〉 is the set of all
ground instances of a that are logical consequences of K. According to the types
of background knowledge, QA problems can be classified into several subclasses,
e.g., QA problems on definite clauses, where background knowledge is a set of
definite clauses, QA problems on description logics (DLs), where background
knowledge is a conjunction of axioms and assertions in DLs. QA problems on
definite clauses have been extensively discussed in logic programming [4]. QA
problems on DLs have been discussed in [8]. Answering queries in deductive
databases [5] can be regarded as solving QA problems on a restricted form of
definite clauses.

Given a set K of definite clauses, since K has a unique minimal model, the
answer set of a QA problem 〈K, a〉 becomes the intersection of the minimal model
of K and rep(a), where rep(a) is the set of all ground instances of a. When K
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is an arbitrary first-order formula, determining the answer set of a QA problem
〈K, a〉 is more complicated since K possibly has multiple minimal models, none
of which is included by the others.

We aim at dealing with QA problems on full first-order logic, where back-
ground knowledge can be any arbitrary first-order formula, without any restric-
tion on its form. Let 〈K, a〉 be a QA problem in this class. The answer to 〈K, a〉
can be equivalently formulated as (

⋂
Models(K)) ∩ rep(a), where

⋂
Models(K)

is the intersection of all models of K. We adopt the following three computa-
tion phases for computing the answer to 〈K, a〉: (i) convert K into a set Cs of
clauses using Skolemization, (ii) use bottom-up computation to construct a set
of models that sufficiently represents the set of all models of Cs, and (iii) find
the intersection of the obtained models and rep(a). The following fundamental
issues need to be addressed:

1. How to preserve the meaning of a logical formula in a Skolemization process?
Conventional Skolemization does not preserve the meaning of a formula [2].
In order to obtain meaning-preserving Skolemization, an extended formula
space that allows existential quantifications of function variables is required.

2. How to compute models of an extended clause set? A clause set in the ex-
tended space contains existentially quantified global function variables. How
to compute models of such an extended clause set has not been discussed in
the literature.

A solution to the first problem has been provided by our recent work [1], in which
a theory for extending a space of logical formulas by incorporation of function
variables was developed and how meaning-preserving Skolemization could be
achieved in the obtained extended space was shown. A procedure for converting
a logical formula into a set of extended clauses on the extended space was also
given in [1].

This paper addresses the second problem. A set of extended clauses may con-
tain occurrences of function variables, which can be instantiated into infinitely
many functions. Instantiations of function variables therefore often result in in-
finitely many models. Instead of generating models themselves, patterns of model
construction, called model-making patterns , are generated. A model-making pat-
tern is represented by a set of atoms with parameters. In bottom-up model gener-
ation, some model-making patterns may need to be split. To reduce the number
of model-making patterns to be considered, a pattern is split only when nec-
essary. A procedure for bottom-up generation of models based on such delayed
pattern splitting is proposed in this paper.

To begin with, Section 2 explains the basic idea of meaning-preserving
Skolemization and introduces the extended clause space. Section 3 presents
our delayed splitting bottom-up procedure for model generation. Section 4 il-
lustrates how the procedure works. Section 5 describes fundamental differ-
ences between this work and existing approaches. Section 6 provides concluding
remarks.
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2 Meaning-Preserving Skolemization on an Extended
Clause Space

2.1 Need for Meaning-Preserving Skolemization

To solve a QA problem 〈K, a〉 on first-order logic, the first-order formula K
is usually converted into a conjunctive normal form. The conversion involves
removal of existential quantifications by Skolemization, i.e., by replacement of
an existentially quantified variable with a Skolem term determined by a relevant
part of a formula prenex. Classical Skolemization, however, does not preserve
the logical meaning of a formula—the formula resulting from Skolemization is
not necessarily equivalent to the original one [2].

In [1], we developed a theory for extending the space of first-order logical for-
mulas and showed how meaning-preserving Skolemization can be achieved in the
obtained extended space. The basic idea of meaning-preserving Skolemization is
to use existentially quantified function variables instead of usual Skolem func-
tions. Function variables and extended conjunctive normal forms are introduced
below.

2.2 Function Constants, Function Variables and func-Atoms

A usual function symbol in first-order logic denotes an unevaluated function; it
is used for constructing a syntactically new term from existing terms (possibly
recursively) without evaluating those existing terms. A different class of functions
is used in the extended space. A function in this class is an actual mathematical
function; it takes ground terms as input, and associates with them an output
ground term. The input ground terms are evaluated for determining the output.
We called a function in this class a function constant . Variables of a new type,
called function variables , are introduced; each of them can be instantiated into
a function constant or a function variable, but not into a usual term.

In order to clearly separate function constants and function variables from
usual function symbols and usual terms, a new built-in predicate func is in-
troduced. Given any n-ary function constant or n-ary function variable f̄ , an
expression

func(f̄ , t1, . . . , tn, tn+1),

where the ti are usual terms, is considered as an atom of a new type, called a
func-atom. When f̄ is a function constant and the ti are all ground, the truth
value of this atom is evaluated as follows: it is true iff f̄(t1, . . . , tn) = tn+1.

2.3 An Extended Clause Space

A procedure for converting a first-order logical formula into an equivalent for-
mula in an extended conjunctive normal form, called an existentially quantified
conjunctive normal form (ECNF), is given in [1]. To define an ECNF, an ex-
tended clause is introduced.
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Extended Clauses. An extended clause C is an extended formula of the form

∀v1, . . . , ∀vm : (a1 ∨ · · · ∨ an ∨ ¬b1 ∨ · · · ∨ ¬bp ∨ ¬f1 ∨ · · · ∨ ¬fq),

where v1, . . . , vm are usual variables, each of a1, . . . , an, b1, . . . , bp is a usual atom
or a constraint atom, and f1, . . . , fq are func-atoms. It is often written simply as

a1, . . . , an ← b1, . . . , bp, f1, . . . , fq.

The sets {a1, . . . , an} and {b1, . . . , bp, f1, . . . , fq} are called the left-hand side and
the right-hand side, respectively, of the extended clause C, denoted by lhs(C)
and rhs(C), respectively. When n = 0, C is called a negative extended clause.
When n = 1, C is called an extended definite clause, the only atom in lhs(C) is
called the head of C, denoted by head(C), and the set rhs(C) is also called the
body of C, denoted by body(C). When n > 1, C is called a multi-head extended
clause. All usual variables in an extended clause are universally quantified and
their scope is restricted to the clause itself. When no confusion is caused, an
extended clause, a negative extended clause, an extended definite clause and
a multi-head extended clause will also be called a clause, a negative clause, a
definite clause and a multi-head clause, respectively.

Existentially Quantified Conjunctive Normal Forms. A formula in an
existentially quantified conjunctive normal form (ECNF) is an extended formula
of the form

∃vh1, . . . , ∃vhm : (C1 ∧ · · · ∧Cn),

where vh1, . . . , vhm are function variables and C1, . . . , Cn are extended clauses.
It is often identified with the set {C1, . . . , Cn}, with implicit existential quan-
tifications of function variables and implicit clause conjunction. Each function
variable occurring in such a clause set is existentially quantified and its scope
covers all clauses in the set.

An Extended Clause Space and QA Problems Thereon. The set of
all ECNFs is referred to as the extended clause space (ECLSF). By the above
identification of an ECNF with a clause set, we often regard an element of ECLSF
as a set of (extended) clauses. Given a QA problem 〈K, a〉 on first-order logic,
the first-order formula K is converted by meaning-preserving Skolemization [1]
into a clause set Cs in the ECLSF space. A QA problem 〈Cs, a〉 such that Cs is
a clause set in ECLSF and a is a usual atom is called a QA problem on ECLSF.

3 A Bottom-Up Procedure for Model Generation

After introducing the notions of parameterized terms and parameterized atoms
(Section 3.1), how to split a pattern of ground atom sets by parameter splitting
is described (Section 3.2). Solving equalities and inequalities with occurrences
of parameterized terms is presented (Section 3.3). It is followed by a one-step
bottom-up inference procedure (Section 3.4), which is used in our main procedure
for model generation (Section 3.5).
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3.1 Parameterized Terms and Parameterized Atoms

A parameter ρ takes the form p : except(E), where p is a marker and E is a set
of ground usual terms. It represents any arbitrary ground usual term that does
not belong to E. When E = ∅, it represents any arbitrary ground usual term
and the expression p : except(E) is also written simply as p.

A parameterized term (for short, P-term) is defined as follows: (i) constants,
usual variables, and parameters are P-terms, and (ii) if f is an m-ary function
symbol and t1, . . . , tm are P-terms, then f(t1, . . . , tm) is a P-term. A ground
P-term is a P-term with no occurrence of any usual variable. A parameterized
atom (for short, P-atom) is an expression of the form p(t1, . . . , tn), where p is an
n-ary predicate symbol and t1, . . . , tn are P-terms. It is called a ground P-atom
when t1, . . . , tn are ground P-terms. Let GP denote the set of all ground P-atoms
and pow(GP) the power set of GP.

3.2 Splitting Ground P-Atom Sets by Parameter Splitting

Assume that ρ is a parameter p : except(E) and t is a ground term such that
t /∈ E. A set of ground P-terms with occurrence of ρ may be split by splitting
the parameter ρ into two cases: (i) the case when ρ represents t, and (ii) the case
when it represents a usual ground term that does not belong to E ∪ {t}.

Given M ⊆ pow(GP), a parameter ρ = p : except(E), and a ground term
t /∈ E, Split(M,ρ, t) is defined as the subset of pow(GP) obtained from M by
splitting ρ with respect to t as follows:

1. Let Mρ = {m | (m ∈M) & (ρ occurs in m)}.
2. Let ρnew be a new parameter pnew : except(E ∪ {t}), where pnew is a new

marker.
3. Let σ = {ρ/t} and σ′ = {ρ/ρnew}.
4. Let Split(M,ρ, t) = (M −Mρ) ∪Mρσ ∪Mρσ

′.

3.3 Solving Equalities and Inequalities

Let Es be a set of equalities and inequalities, with occurrences of P-terms.
Solve(Es) is defined by

Solve(Es) = Solve(∅,Es),

where for any set S of bindings and any set Ês of equalities and inequalities,
Solve(S, Ês) is defined as follows:

1. If Ês = ∅, then Solve(S, Ês) = S.
2. Assume that f and g are function symbols and t1, . . . , tm, t

′
1, . . . , tn are P-

terms.

(a) If Ês = {(f(t1, . . . , tm) = g(t′1, . . . , t
′
n))} ∪ Ẽs, then:

i. If f = g and m = n, then

Solve(S, Ês) = Solve(S, {(t1 = t′1), . . . , (tm = t′m)} ∪ Ẽs).
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ii. If f �= g or m �= n, then Solve(S, Ês) = 〈Fail〉.
(b) If Ês = {(f(t1, . . . , tm) �= g(t′1, . . . , t

′
n))} ∪ Ẽs, then:

i. If f = g and m = n, then

Solve(S, Ês) = Solve(S, {(ti �= t′i)} ∪ Ẽs),

where i is a selected index in {1, . . . ,m}.
ii. If f �= g or m �= n, then Solve(S, Ês) = Solve(S, Ẽs).

3. If Ês = {(t1 = t2)} ∪ Ẽs, where t1, t2 are usual terms, then:

(a) If t1 and t2 are unifiable, then Solve(S, Ês) = Solve(S∪σ, Ẽsσ), where
σ is the most general unifier of t1 and t2.

(b) If they are not unifiable, then Solve(S, Ês) = 〈Fail〉.
4. If Ês = {(t1 �= t2)} ∪ Ẽs, where t1, t2 are usual terms, then:

(a) If t1 and t2 are not unifiable, then Solve(S, Ês) = Solve(S, Ẽs).
(b) If t1 and t2 are equal, then Solve(S, Ês) = 〈Fail〉.
(c) If t1 and t2 are not equal but they are unifiable, then Solve(S, Ês) =
〈OutRange〉.

5. If ρ is a parameter p : except(E) and Ês = {(ρ = t̂)} ∪ Ẽs, then:

(a) If t̂ is the parameter ρ itself, then Solve(S, Ês) = Solve(S, Ẽs).
(b) If t̂ is a usual variable v, then Solve(S, Ês) = Solve(S ∪
{v/ρ}, Ẽs{v/ρ}).

(c) If t̂ is a ground term in E, then Solve(S, Ês) = 〈Fail〉.
(d) If t̂ is a ground term and t̂ /∈ E, then Solve(S, Ês) = 〈SplitReq, ρ, t〉.
(e) Otherwise Solve(S, Ês) = 〈OutRange〉.

6. If ρ is a parameter p : except(E) and Ês = {(ρ �= t̂)} ∪ Ẽs, then:

(a) If t̂ is a ground term in E, then Solve(S, Ês) = Solve(S, Ẽs).
(b) If t̂ is a ground term and t̂ /∈ E, then Solve(S, Ês) = 〈SplitReq, ρ, t〉.
(c) Otherwise Solve(S, Ês) = 〈OutRange〉.

Note that Solve(S, Ês) is not uniquely determined, owing to nondeterministic
selection of the index i in Case 2(b)i.

3.4 A One-Step Bottom-Up Inference Procedure

Next, a one-step bottom-up inference procedure is presented. It takes a subset
M of pow(GP) as input, and nondeterministically outputs one of the following
results: (i) a set M ′ of ground atom sets with parameters, (ii) 〈NoChange〉,
(iii) 〈OutRange〉. The procedure works as follows:

1. Select m ∈M .
2. Select a clause C in Cs.
3. Let A be the set of all usual atoms in rhs(C). Assuming that A =
{a1, . . . , an}, where n ≥ 0, perform the following steps:

(a) Select A′ = {a′1, . . . , a′n} ⊆ m.
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(b) Let EQ be the set of equalities and inequalities constructed from all
eq-atoms and neq-atoms in rhs(C).

(c) Let U = Solve({(a1 = a′1), . . . , (an = a′n)} ∪ EQ). Then:

i. If U is a substitution, then let θ = U .
ii. If U = 〈SplitReq, ρ, t〉, then let M ′ = Split(M,ρ, t) and stop with

the output M ′.
iii. If U = 〈Fail〉, then stop with the output 〈NoChange〉.
iv. If U = 〈OutRange〉, then stop with the output 〈OutRange〉.

4. Let F be the set of all func-atoms in rhs(C).
5. While F �= ∅, perform the following steps:

(a) Select a func-atom f = func(f, t1, . . . , tn, tn+1) ∈ F , where n ≥ 0, such
that t1θ, . . . , tnθ are ground terms. If there is no such func-atom in F ,
then stop with the output 〈OutRange〉.

(b) Select a func-atom f(t1θ, . . . , tnθ, t
′) ∈ m. If there is no such func-atom

in m, then let

M ′ = (M − {m}) ∪ {m ∪ {f(t1θ, . . . , tnθ, ρnew)}},

where ρnew is a new parameter pnew : except(∅) with a new marker pnew,
and stop with the output M ′.

(c) Let U = Solve({(tn+1θ = t′}). Then:
i. If U is a substitution σ, then let θ′ = θ ◦ σ.
ii. If U = 〈SplitReq, ρ, t〉, then let M ′ = Split(M,ρ, t) and stop with

the output M ′.
iii. If U = 〈Fail〉, then stop with the output 〈NoChange〉.
iv. If U = 〈OutRange〉, then stop with the output 〈OutRange〉.

(d) Remove f from F .

6. If lhs(Cθ′) ∩m �= ∅, then stop with the output 〈NoChange〉.
7. Assume that lhs(Cθ′) = {b1, . . . , bn′}, where n′ ≥ 0. Then let

M ′ = (M − {m}) ∪ {m ∪ {b1}} ∪ · · · ∪ {m ∪ {bn′}}

and stop with the output M ′.

3.5 A Delayed Splitting Bottom-Up Procedure

For any given subset M of pow(GP), let Poss(M) and Done(M) be defined as
follows: (i) Poss(M) is the set of all sets M ′ of ground atom sets with parame-
ters possibly obtained when applying the above procedure to the input M ; (ii)
Done(M) = 〈Succ〉 if 〈NoChange〉 is the only possible output when applying
the above procedure to the input M . Given a clause set Cs in ECLSF, models
of Cs, represented by a subset M of pow(GP), are generated using a delayed
splitting bottom-up procedure described below.

1. Initially, let M = {m0}, where m0 = ∅.
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2. While Poss(M) �= ∅, perform the following two steps:

(a) Select M ′ ∈ Poss(M).
(b) M :=M ′.

3. If Done(M) = 〈Succ〉, then stop with M being the output, otherwise stop
with a failure.

Now let 〈Cs, a〉 be a given QA problem on ECLSF. To compute the answer
to 〈Cs, a〉, we first compute a subset M of pow(GP) using the delayed splitting
bottom-up procedure above. Then the computed answer to 〈Cs, a〉 is the set
(
⋂
M) ∩ rep(a). Note that although P-atoms may occur in the set M obtained

from the delayed splitting bottom-up procedure, they do not belong to rep(a)
and therefore do not occur in the computed answer.

4 Examples

Three examples illustrating application of the presented bottom-up procedure
are given below. It is assumed that a usual variable as well as a function variable
begins with an asterisk.

Example 1. Let Cs consist of the following five clauses, where ∗h is a 0-ary
function variable and neq stands for “not equal”:

C1 : q(∗x)← r(∗x) C2: r(∗x)← func(∗h, ∗x)
C3: s(∗x)← func(∗h, ∗x) C4: ← s(∗x), neq(∗x,A), neq(∗x,B)
C5: ← s(B)

Assume that q-, r-, and s-atoms are usual atoms and neq-atoms are constraint
atoms. Consider a QA problem prb1 = 〈Cs, q(∗x)〉. Let M0 = {m0}, where
m0 = ∅. The one-step inference procedure in Section 3.4 is applied successively
with M0 being the first input as follows:

1. M0 is input to the procedure. The set m0 is selected at Step 1. Suppose
that C3 is selected at Step 2. At Step 3, Solve(∅) is called and it returns
the identity substitution. At Step 5b, the procedure constructs m1 = m0 ∪
{∗h(p1)} = {∗h(p1)}, where p1 is a parameter marker, and outputs M1 =
{m1}.

2. M1 is input to the procedure. The set m1 is selected at Step 1. Suppose that
C3 is selected at Step 2. At Step 5c, Solve({(∗x = p1)}) is called, with the
output substitution being σ = {∗x/p1}. At Step 7, the procedure constructs
m2 = m1 ∪ {s(∗x)σ} = {∗h(p1), s(p1)} and outputs M2 = {m2}.

3. M2 is input to the procedure. The set m2 is selected at Step 1. Suppose that
C4 is selected at Step 2. At Step 3, Solve({(∗x = p1), (∗x �= A), (∗x �= B)})
is called and it returns 〈SplitReq, p1, A〉; accordingly, m2 is split into
– m3 = {∗h(A), s(A)}, and
– m4 = {∗h(p2 : except({A})), s(p2 : except({A}))},

where p2 is a new marker. The procedure outputs M3 = {m3,m4}.
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4. M3 is input to the procedure. Suppose that m4 is selected at Step 1 and
C4 is selected at Step 2. At Step 3, Solve({(∗x = p2 : except({A})), (∗x �=
A), (∗x �= B)}) is called, with 〈SplitReq, p2 : except({A}), B〉 being re-
turned. So m4 is split into
– m5 = {∗h(B), s(B)}, and
– m6 = {∗h(p3 : except({A,B})), s(p3 : except({A,B}))},

where p3 is a new marker, and the procedure outputs M4 = {m3,m5,m6}.
5. M4 is input to the procedure. Suppose that m6 is selected at Step 1 and C4

is selected at Step 2. At Step 3, Solve({(∗x = p3 : except({A,B})), (∗x �=
A), (∗x �= B)}) is called and it returns the identity substitution (since the
possibility of splitting the parameter p3 : except({A,B}) is excluded by the
inequalities (∗x �= A) and (∗x �= B)). At Step 7, since C4 is a negative clause,
m6 is removed from M4 and the procedure outputs M5 = {m3,m5}.

6. M5 is input to the procedure. Suppose that m5 is selected at Step 1 and C5 is
selected at Step 2. At Step 3, Solve({(B = B)}) is called and it returns the
identity substitution. At Step 7, since C5 is a negative clause, m5 is removed
from M5 and the procedure outputs M6 = {m3}.

7. M6 is input to the procedure. The set m3 is selected at Step 1. Suppose
that C2 is selected at Step 2. At Step 3, Solve(∅) is called and it returns
the identity substitution. At Step 5c, Solve({(∗x = A)}) is called and it
returns the substitution σ = {∗x/A}. At Step 7, the procedure constructs
m7 = m3 ∪ {r(∗x)σ} = {∗h(A), s(A), r(A)} and outputs M7 = {m7}.

8. M7 is input to the procedure. The set m7 is selected at Step 1. Suppose
that C1 is selected at Step 2. At Step 3, Solve({(∗x = A)}) is called and
it returns the substitution θ = {∗x/A}. At Step 7, the procedure constructs
m8 = m7 ∪ {q(∗x)θ} = {∗h(A), s(A), r(A), q(A)} and outputs M8 = {m8}.

Since Poss(M8) = ∅ and Done(M8) = 〈Succ〉, the main algorithm stops with
M8 being the output. The answer to prb1 is (

⋂
M8) ∩ rep(q(∗x)) = {q(A)}. ��

Example 2. Consider a QA problem prb2 = 〈Cs, q(∗x)〉, where Cs consists of the
following four clauses, assuming that ∗h is a 0-ary function variable:

C1 : q(∗x), r(∗x)← s(∗x), func(∗h, ∗x) C2: s(1)←
C3: s(2)← C4: ← q(1)

Note that C1 is a multi-head clause. Again assume that q-, r-, and s-atoms are
usual atoms. Let M0 = {m0}, where m0 = ∅. The one-step bottom-up inference
procedure is applied successively with M0 being the first input as follows:

1. M0 is input to the procedure. Suppose that C2 is selected. The procedure
constructs m1 = m0 ∪ {s(1)} = {s(1)} and outputs M1 = {m1}.

2. M1 is input to the procedure. Suppose that C3 is selected. The procedure
constructs m2 = m1 ∪ {s(2)} = {s(1), s(2)} and outputs M2 = {m2}.

3. M2 is input to the procedure. Suppose that C1 is selected. At Step 3,
supposing that s(1) is selected, Solve({(∗x = 1)}) is called and it re-
turns the substitution {∗x/1}. At Step 5b, the procedure constructs m3 =
m2 ∪ {∗h(p1)} = {s(1), s(2), ∗h(p1)}, where p1 is a parameter marker, and
outputs M3 = {m3}.
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4. M3 is input to the procedure. Suppose that C1 is selected. At Step 3, sup-
posing that s(1) is selected, Solve({(∗x = 1)}) is called and it returns the
substitution {∗x/1}. At Step 5c, Solve({(1 = p1)}) is called and it returns
〈SplitReq, p1, 1〉. As a result, m3 is split into
– m4 = {s(1), s(2), ∗h(1)}, and
– m5 = {s(1), s(2), ∗h(p2 : except({1}))},

where p2 is a new marker. The procedure outputs M4 = {m4,m5}.
5. M4 is input to the procedure. Suppose that m4 and C1 are selected. At

Step 3, supposing that s(1) is selected, Solve({(∗x = 1)}) is called and it
returns the substitution {∗x/1}. At Step 5c, Solve({(1 = 1)}) is called and
it returns the identity substitution. At Step 7, the procedure construct
– m6 = m4 ∪ {q(1)} = {s(1), s(2), ∗h(1), q(1)}, and
– m7 = m4 ∪ {r(1)} = {s(1), s(2), ∗h(1), r(1)},

and outputs M5 = {m6,m7,m5}.
6. M5 is input to the procedure. Suppose that m6 and C4 are selected. Since

C4 is a negative clause, m6 is removed at Step 7. The procedure outputs
M6 = {m7,m5}.

7. M6 is input to the procedure. Suppose that m5 and C1 are selected. At
Step 3, supposing that s(2) is selected, Solve({(∗x = 2)}) is called and it
returns the substitution {∗x/2}. At Step 5c, Solve({(2 = p2 : except({1}))})
is called and it returns 〈SplitReq, p2 : except({1}), 2〉. Then m5 is split into
– m8 = {s(1), s(2), ∗h(2)}, and
– m9 = {s(1), s(2), ∗h(p3 : except({1, 2}))},

where p3 is a new marker. The procedure outputs M7 = {m7,m8,m9}.
8. M7 is input to the procedure. Suppose that m8 and C1 are selected. At

Step 3, supposing that s(2) is selected, Solve({(∗x = 2)}) is called and it
returns the substitution {∗x/2}. At Step 5c, Solve({(2 = 2)}) is called and
it returns the identity substitution. At Step 7, the procedure construct
– m10 = m8 ∪ {q(2)} = {s(1), s(2), ∗h(2), q(2)}, and
– m11 = m8 ∪ {r(2)} = {s(1), s(2), ∗h(2), r(2)},

and outputs M8 = {m7,m10,m11,m9}.

Since Poss(M8) = ∅ and Done(M8) = 〈Succ〉, the main algorithm stops with
the output M8. The answer to prb2 is (

⋂
M8) ∩ rep(q(∗x)) = ∅. ��

Example 3. Next, consider the “Tax-cut” problem discussed in [6]. This problem
is to find all persons who can have discounted tax, with the knowledge consisting
of the following statements: (i) Any person who has two children or more can get
discounted tax. (ii) Men and women are not the same. (iii) A person’s mother is
always a woman. (iv) Peter has a child, who is someone’s mother. (v) Peter has
a child named Paul. (vi) Paul is a man. These six statements are represented by
the following extended clauses:

C1: TaxCut(∗x)← hasChild(∗x, ∗y), hasChild(∗x, ∗z), notSame(∗y, ∗z)
C2: notSame(∗x, ∗y)← Man(∗x),Woman(∗y)
C3: ← notSame(∗x, ∗x)
C4: Woman(∗x)← motherOf(∗x, ∗y)
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C5: hasChild(Peter, ∗x)← func(∗h1, ∗x)
C6: motherOf(∗x, ∗y)← func(∗h1, ∗x), func(∗h2, ∗y)
C7: hasChild(Peter,Paul)←
C8: Man(Paul)←

The clauses C5 and C6 together represent the fourth statement (i.e., “Peter
has a child, who is someone’s mother”), where ∗h1 and ∗h2 are 0-ary function
variables. The “Tax-cut” problem is then formulated as a QA problem prb3 =
〈Cs,TaxCut(∗x)〉, where Cs consists of the clauses C1–C8 above.

Let M0 = {m0}, where m0 = ∅. Taking M0 as the first input, the one-step
inference procedure is applied successively as follows:

1. In the first two application of the procedure, suppose that C6 is selected.
The obtained output is M1 = {m1}, where m1 = {∗h1(p1), ∗h2(p2)} and p1
and p2 are parameter markers.

2. In the next six application of the procedure, suppose that the clauses C5, C6,
C7, C8, C4, and C2 are selected successively. The obtained output is M2 =
{m2}, where m2 = {hasChild(Peter, p1),motherOf(p1, p2), hasChild(Peter,
Paul),Man(Paul),Woman(p1), notSame(Paul, p1)}.

3. M2 is input to the procedure. Suppose that C3 is selected. At
Step 3, Solve({(∗x = Paul), (∗x = p1)}) is called and it returns
〈SplitReq, p1,Paul〉. Accordingly, m2 is split into
– m3 = m2σ, where σ = {p1/Paul}, and
– m4 = m2σ

′, where σ′ = {p1/p3 : except({Paul})} and p3 is a new marker.
The procedure outputs M3 = {m3,m4}.

4. M3 is input to the procedure. Suppose thatm3 and C3 are selected. At Step 3,
Solve({(∗x = Paul)}) is called and it returns the substitution {∗x/Paul}.
Since C3 is a negative clause,m3 is removed at Step 7. The procedure outputs
M4 = {m4}.

5. M4 is input to the procedure. Suppose that C1 is selected. The procedure
outputs M5 = {m5}, where m5 = m4 ∪ {TaxCut(Peter)}.

Now Poss(M5) = ∅ and Done(M5) = 〈Succ〉. The main algorithm then stops
with the output M5. The answer to the “Tax-cut” problem is thus (

⋂
M5) ∩

rep(TaxCut(∗x)) = {TaxCut(Peter)}. ��

5 Fundamental Differences from Existing Approaches

This work differs from existing approaches for model generation, e.g., [3,7], and
those for solving QA problems, e.g., [4,6,8], in the following main points:

1. Use of meaning-preserving Skolemization: Existing theories do not use mean-
ing-preserving Skolemization. They use usual Skolemization, which does not
preserve the meaning of a logical formula [2]. A model of a given formula
is not necessarily a model of the formula obtained from it by usual Skolem-
ization. Without meaning-preserving Skolemization, the range of possible
processing methods is restricted, making it difficult to devise an effective
solution for dealing with QA problems.
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2. Bottom-up computation with existentially quantified function variables: Since
usual Skolemization results in clauses with usual terms, previously existing
theories do not use function variables. Resolution is used for usual proof
methods [2,4], which deal with usual clauses without function variables. The
use of function variables presents a new challenge to bottom-up computa-
tion. A fundamental distinction between our proposed algorithm and usual
bottom-up proof methods is that our algorithm deals with instantiations of
function variables whose scope covers an entire clause set, while the usual
methods consider only instantiations of usual variables within an individual
clause.

3. Use of model-making patterns: Instantiations of a function variable yield
infinitely many potential model-generation cases to be considered, making it
impossible to examine all cases individually. Model-making patterns classify
an infinite number of model-generation cases, allowing one to handle all those
cases using finite representation.

6 Concluding Remarks

This paper has proposed a bottom-up model-generation procedure in the ex-
tended space with function variables. To solve infiniteness caused by the instan-
tiation of function variables, model-making patterns are used for model repre-
sentation. Such patterns classify an infinite number of model-generation cases,
making it possible to examine all those cases using finite representation. To re-
duce the number of model-making patterns to be considered, a pattern is split
only when needed. The work provides a basis for construction of QA-problem
solvers.
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Abstract. Unification in Description Logics (DLs) has been proposed as
an inference service that can, for example, be used to detect redundancies
in ontologies. For the DL EL, which is used to define several large biomed-
ical ontologies, unification is NP-complete. A goal-oriented NP unifica-
tion algorithm for EL that uses nondeterministic rules to transform a
given unification problem into solved form has recently been presented.
In this paper, we extend this goal-oriented algorithm in two directions:
on the one hand, we add general concept inclusion axioms (GCIs), and
on the other hand, we add role hierarchies (H) and transitive roles (R+).
For the algorithm to be complete, however, the ontology consisting of
the GCIs and role axioms needs to satisfy a certain cycle restriction.

1 Introduction

The DL EL, which offers the constructors conjunction (�), existential restric-
tion (∃r.C), and the top concept (�), has recently drawn considerable attention
since, on the one hand, important inference problems such as the subsumption
problem are polynomial in EL, even in the presence of general concept inclusions
(GCIs) [12]. On the other hand, though quite inexpressive, EL can be used to
define biomedical ontologies, such as the large medical ontology SNOMEDCT.1
A tractable extension of EL [7], which includes role hierarchy and transitivity
axioms, is the basis of the OWL 2 EL profile of the new Web Ontology Language
OWL 2.2

Unification in DLs has been proposed in [11] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example,
assume that one developer of a medical ontology defines the concept of a patient
with severe injury of the frontal lobe as

∃finding.(Frontal_lobe_injury � ∃severity.Severe), (1)

whereas another one represents it as

∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe). (2)
� Supported by DFG under grant BA 1122/14-1.
1 see http://www.ihtsdo.org/snomed-ct/
2 See http://www.w3.org/TR/owl2-profiles/

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 493–504, 2012.
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These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent by
treating the concept names Frontal_lobe_injury and Severe_injury as variables,
and substituting the first one by Injury � ∃finding_site.∃part_of.Frontal_lobe
and the second one by Injury � ∃severity.Severe. In this case, we say that the
descriptions are unifiable, and call the substitution that makes them equivalent
a unifier.

Our interest in unification w.r.t. GCIs, role hierarchies, and transitive roles
stems from the fact that these features are important for expressing medical
knowledge. For example, assume that the developers use the descriptions (3)
and (4) instead of (1) and (2):

∃finding.∃finding_site.∃part_of.Brain �
∃finding.(Frontal_lobe_injury � ∃severity.Severe) (3)

∃status.Emergency �
∃finding.(Severe_injury � ∃finding_site.∃part_of.Frontal_lobe) (4)

The descriptions (3) and (4) are not unifiable without additional background
knowledge, but they are unifiable, with the same unifier as above, if the GCIs

∃finding.∃severity.Severe ) ∃status.Emergency,

Frontal_lobe ) ∃proper_part_of.Brain

are present in a background ontology and this ontology additionally states that
part_of is transitive and proper_part_of is a subrole of part_of.

In [8], we were able to show that unification in the DL EL (without GCIs and
role axioms) is NP-complete. In addition to a brute-force “guess and then test”
NP-algorithm [8], we have developed a goal-oriented unification algorithm for
EL, in which nondeterministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem [10], and an algorithm that is based
on a reduction to satisfiability in propositional logic (SAT) [9], which enables the
use of highly-optimized SAT solvers [14]. Whereas both approaches are clearly
better than the brute-force algorithm, none of them is uniformly better than the
other. First experiments with our system UEL [1] show that the SAT translation
is usually faster in deciding unifiability, but it needs more space than the goal-
oriented algorithm and it produces more uninteresting and large unifiers. In
fact, the SAT translation generates all so-called local unifiers, whereas the goal-
oriented algorithm produces all so-called minimal unifiers, though it may also
produce some non-minimal ones. The set of minimal unifiers is a subset of the
set of local unifiers, and in our experiments the minimal unifiers usually made
more sense in the application.

In [10] it was shown that the approaches for unification of EL-concept de-
scriptions (without any background ontology) mentioned above can easily be
extended to the case of a so-called acyclic TBox (a simple form of GCIs, which
basically introduce abbreviations for concept descriptions) as background on-
tology without really changing the algorithms or increasing their complexity.
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For more general GCIs, such a simple solution is no longer possible. In [2],
we extended the brute-force “guess and then test” NP-algorithm from [8] to
the case of GCIs, which required the development of a new characterization of
subsumption w.r.t. GCIs in EL. Unfortunately, the algorithm is complete only
for general TBoxes (i.e., finite sets of GCIs) that satisfy a certain restriction
on cycles, which, however, does not prevent all cycles. For example, the cyclic
GCI ∃child.Human ) Human satisfies this restriction, whereas the cyclic GCI
Human ) ∃parent.Human does not. In [5] we provide a more practical unification
algorithm that is based on a translation into SAT, and can also deal with role
hierarchies and transitive roles, but still needs the ontology (now consisting of
GCIs and role axioms) to be cycle-restricted. In the presence of role hierarchies
(H) and transitive roles (R+), we use the name ELHR+ rather than EL for
the logic.

Motivated by our experience that, for the case of EL without background
ontology, the goal-oriented algorithm sometimes behaves better than the one
based on a translation into SAT, we introduce in this paper a goal-oriented
algorithm for unification in ELHR+ w.r.t. cycle-restricted ontologies.3 Full proofs
of the presented results can be found in [3].

2 The Description Logics EL and ELHR+

The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,
which can be used to state additional constraints on the interpretation of con-
cepts and roles in a so-called ontology.

The concept description language considered in this paper is called EL. Start-
ing with a finite set NC of concept names and a finite set NR of role names,
EL-concept descriptions are built from concept names using the constructors
conjunction (C � D), existential restriction (∃r.C for every r ∈ NR), and top
(�). Since in this paper we only consider EL-concept descriptions, we will some-
times dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is inductively extended to
concept descriptions as follows:

�I := ΔI , (C �D)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C ) D for concept
descriptions C,D, a role hierarchy axiom is of the form r ) s for role names

3 A previous version of this paper, which considers unification in EL w.r.t. cycle-
restricted ontologies, but without role hierarchies and transitive roles, has been pre-
sented in 2012 at the Description Logic workshop (see [4]).
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r, s, and a transitivity axiom is of the form r ◦ r ) r for a role name r. An
interpretation I satisfies such an axiom C ) D, r ) s, r ◦ r ) r, respectively, iff

CI ⊆ DI , rI ⊆ sI , and rI ◦ rI ⊆ rI ,

where ◦ stands for composition of binary relations. An ELHR+-ontology is a
finite set of such axioms. It is an EL-ontology if it contains only GCIs. An
interpretation is a model of an ontology if it satisfies all its axioms.

A concept description C is subsumed by a concept description D w.r.t. an
ontology O (written C )O D) if every model of O satisfies the GCI C ) D. We
say that C is equivalent to D w.r.t. O (C ≡O D) if C )O D and D )O C. If
O is empty, we also write C ) D and C ≡ D instead of C )O D and C ≡O D,
respectively. As shown in [12,7], subsumption w.r.t. ELHR+-ontologies (and thus
also w.r.t. EL-ontologies) is decidable in polynomial time.

Since conjunction is interpreted as intersection, the concept descriptions (C �
D)�E and C�(D�E) are always equivalent. Thus, we dispense with parentheses
and write nested conjunctions in flat form C1 � · · · � Cn. Nested existential
restrictions ∃r1.∃r2. . . . ∃rn.C will sometimes also be written as ∃r1r2 . . . rn.C,
where r1r2 . . . rn is viewed as a word over the alphabet of role names, i.e. an
element of N∗

R.
The role hierarchy induced by O is a binary relation �O on NR, which is

defined as the reflexive-transitive closure of the relation {(r, s) | r ) s ∈ O}.
Using elementary reachability algorithms, the role hierarchy can be computed
in polynomial time in the size of O. It is easy to see that r �O s implies that
rI ⊆ sI for all models I of O. Given an ELHR+ -ontology O, we call the role
t transitive w.r.t. O if O contains the axiom t ◦ t ) t. If O is clear from the
context, we often omit the suffix “w.r.t. O” and call t a transitive role.

An EL-concept description is an atom if it is an existential restriction or a
concept name. The atoms of an EL-concept descriptionC are the subdescriptions
of C that are atoms, and the top-level atoms of C are the atoms occurring in
the top-level conjunction of C. Obviously, any EL-concept description is the
conjunction of its top-level atoms, where the empty conjunction corresponds
to �. The atoms of an ELHR+ -ontology O are the atoms of all the concept
descriptions occurring in GCIs of O.

We say that a subsumption between two atoms is structural if their top-level
structure is compatible. To be more precise, following [5] we define structural
subsumption between atoms as follows: the atom C is structurally subsumed by
the atom D w.r.t. O (C )s

O D) iff one of the following holds:

1. C = D is a concept name,
2. C = ∃r.C′, D = ∃s.D′, r �O s, and C′ )O D′.
3. C = ∃r.C′, D = ∃s.D′, and C′ )O ∃t.D′ for a transitive role t such that

r �O t�O s.

It is easy to see that subsumption w.r.t. ∅ between two atoms implies struc-
tural subsumption w.r.t. O, which in turn implies subsumption w.r.t. O. The
unification algorithm presented below crucially depends on the following char-
acterization of subsumption:
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Lemma 1. Let O be an ELHR+-ontology and C1, . . . , Cn, D1, . . . , Dm be atoms.
Then C1 � · · · � Cn )O D1 � · · · �Dm iff for every j ∈ {1, . . . ,m}

1. there is an index i ∈ {1, . . . , n} such that Ci )s
O Dj or

2. there are atoms A1, . . . , Ak, B of O (k ≥ 0) such that
(a) A1 � · · · � Ak )O B,
(b) for every η ∈ {1, . . . , k} there is i ∈ {1, . . . , n} with Ci )s

O Aη, and
(c) B )s

O Dj.

Our proof of this lemma in [3] is based on a Gentzen-style proof calculus for
subsumption w.r.t. ELHR+-ontologies, which is similar to the one developed in
[15] for subsumption w.r.t. EL-ontologies. Although this characterization looks
identical to the one given in [2] for the case of EL-ontologies it differs from that
characterization in that it uses a more general notion of structural subsumption.
Also note that the characterization of subsumption w.r.t. ELHR+-ontologies
employed in [5] to show correctness of the the SAT translation is different from
the one given above, and it is proved using a rewriting approach rather than a
Gentzen-style proof calculus.

As mentioned in the introduction, our unification algorithm is complete only
for ELHR+ -ontologies that satisfy a certain restriction on cycles.

Definition 2. The ELHR+-ontology O is called cycle-restricted iff there is no
nonempty word w ∈ N+

R and EL-concept description C such that C )O ∃w.C.

In [5] we show that a given ELHR+ -ontology can be tested for cycle-restrictedness
in polynomial time. The main idea is that it is sufficient to consider the cases
where C is a concept name or �.

3 Unification in ELHR+

We partition the set NC into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not be
replaced by substitutions). A substitution σ maps every concept variable to an
EL-concept description. It is extended to concept descriptions in the usual way:

– σ(A) := A for all A ∈ Nc ∪ {�},
– σ(C �D) := σ(C) � σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept descriptionC is ground if it does not contain variables. Obviously,
a ground concept description is not modified by applying a substitution. An
ELHR+ -ontology is ground if it does not contain variables.

Definition 3. Let O be an ELHR+-ontology that is ground. An ELHR+-uni-
fication problem w.r.t. O is a finite set Γ = {C1 )? D1, . . . , Cn )? Dn}
of subsumptions between EL-concept descriptions. A substitution σ is a uni-
fier of Γ w.r.t. O if σ solves all the subsumptions in Γ , i.e. if σ(C1) )O
σ(D1), . . . , σ(Cn) )O σ(Dn). We say that Γ is unifiable w.r.t. O if it has a
unifier.
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Note that some of the previous papers on unification in DLs use equivalences
C ≡? D instead of subsumptions C )? D. This difference is, however, irrelevant
since C ≡? D can be seen as a shorthand for the two subsumptions C )? D and
D )? C, and C )? D has the same unifiers as C �D ≡? C. Also note that we
have restricted the background ontology O to be ground. This is not without
loss of generality. If O contained variables, then we would need to apply the
substitution also to its GCIs, and instead of requiring σ(Ci) )O σ(Di) we would
thus need to require σ(Ci) )σ(O) σ(Di), which would change the nature of the
problem considerably (see [6] for a more detailed discussion).

Preprocessing. To simplify the description of the algorithm, it is convenient
to first normalize the ontology and the unification problem appropriately. An
atom is called flat if it is a concept name or an existential restriction of the
form ∃r.A for a concept name A. The ELHR+-ontology O is called flat if it
contains only GCIs of the form A �B ) C, where A,B are flat atoms or � and
C is a flat atom. The unification problem Γ is called flat if it contains only flat
subsumptions of the form C1 � · · · � Cn )? D, where n ≥ 0 and C1, . . . , Cn, D
are flat atoms.4 Let Γ be a unification problem and O an ELHR+-ontology. By
introducing auxiliary variables and concept names, respectively, Γ and O can
be transformed in polynomial time into a flat unification problem Γ ′ and a flat
ELHR+ -ontology O′ such that the unifiability status remains unchanged, i.e., Γ
has a unifier w.r.t. O iff Γ ′ has a unifier w.r.t. O′. In addition, if O was cycle-
restricted, then so is O′ (see [6] for details). Thus, we can assume without loss
of generality that the input unification problem and ontology are flat.

Local Unifiers. The main idea underlying the “in NP” results in [8,2] is to
show that any unification problem that is unifiable has a so-called local unifier.

We denote by At the set of atoms occurring as subdescriptions in subsump-
tions in Γ or axioms in O and define

Attr := At ∪ {∃t.D′ | ∃s.D′ ∈ At, t�O s, t transitive}.

Furthermore, we define the set of non-variable atoms by Atnv := Attr \ Nv.
Though the elements of Atnv cannot be variables, they may contain variables if
they are of the form ∃r.X for some role r and a variable X .

We call a function S that associates every variable X ∈ Nv with a set SX ⊆
Atnv an assignment. Such an assignment induces the following relation >S on
Nv: >S is the transitive closure of

{(X,Y ) ∈ Nv ×Nv | Y occurs in an element of SX}.

We call the assignment S acyclic if >S is irreflexive (and thus a strict partial
order). Any acyclic assignment S induces a unique substitution σS , which can
be defined by induction along >S :
4 If n = 0, then we have an empty conjunction on the left-hand side, which as usual

stands for !.
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– If X ∈ Nv is minimal w.r.t. >S , then we define σS(X) :=
�

D∈SX
D.

– Assume that σ(Y ) is already defined for all Y such that X >S Y . Then we
define σS(X) :=

�
D∈SX

σS(D).

We call a substitution σ local if it is of this form, i.e., if there is an acyclic assign-
ment S such that σ = σS . If the unifier σ of Γ w.r.t. O is a local substitution,
then we call it a local unifier of Γ w.r.t. O.

The main technical result shown in [2] is that any unifiable EL-unification
problem w.r.t. a cycle-restricted ontology has a local unifier. This yields the fol-
lowing brute-force unification algorithm for EL w.r.t. cycle-restricted ontologies:
first guess an acyclic assignment S, and then check whether the induced local
substitution σS solves Γ . As shown in [2], this algorithm runs in nondeterminis-
tic polynomial time. NP-hardness follows from the fact that already unification
in EL w.r.t. the empty ontology is NP-hard [8]. In [2] it is also shown why cycle-
restrictedness is needed: there is a non-cycle-restricted EL-ontology O and an
EL-unification problem Γ such that Γ has a unifier w.r.t. O, but it does not
have a local unifier.

4 A Goal-Oriented Unification Algorithm

The brute-force algorithm is not practical since it blindly guesses an acyclic as-
signment and only afterwards checks whether the guessed assignment induces a
unifier. We now introduce a more goal-oriented unification algorithm, in which
nondeterministic decisions are only made if they are triggered by “unsolved parts”
of the unification problem. In addition, failure due to wrong guesses can be de-
tected early. Any non-failing run of the algorithm produces a unifier, i.e., there is
no need for checking whether the assignment computed by this run really induces
a unifier. This goal-oriented algorithm generalizes the algorithm for unification
in EL (without background ontology) introduced in [10], though the rules look
quite different because in the present paper we consider unification problems that
consist of subsumptions whereas in [10] we considered equivalences. We assume
without loss of generality that the cycle-restricted ELHR+ -ontology O and the
unification problem Γ0 are flat. Given O and Γ0, the sets At,Attr, and Atnv are
defined as above. Starting with Γ0, the algorithm maintains a current unification
problem Γ and a current acyclic assignment S, which initially assigns the empty
set to all variables. In addition, for each subsumption in Γ it maintains the in-
formation on whether it is solved or not. Initially, all subsumptions are unsolved,
except those with a variable on the right-hand side. Rules are applied only to
unsolved subsumptions. A (non-failing) rule application does the following:

– it solves exactly one unsolved subsumption,
– it may extend the current assignment S, and
– it may introduce new flat subsumptions built from elements of Attr.

Each rule application that extends SX additionally expands Γ w.r.t. X as follows:
every subsumption s ∈ Γ of the form C1 � · · · �Cn )? X is expanded by adding
the subsumption C1 � · · · �Cn )? A to Γ for every A ∈ SX .
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Eager Ground Solving:

Condition: This rule applies to s = C1 � · · · � Cn "? D if it is ground.
Action: If C1 � · · · � Cn "O D does not hold, the rule application fails. Oth-
erwise, s is marked as solved.

Eager Solving:

Condition: This rule applies to s = C1 � · · · � Cn "? D if either
– there is i ∈ {1, . . . , n} such that Ci = D or Ci = X ∈ Nv and D ∈ SX , or
– D is ground and

�G "O D holds, where G is the set of all ground atoms
in {C1, . . . , Cn} ∪⋃

X∈{C1,...,Cn}∩Nv
SX .

Action: Its application marks s as solved.

Eager Extension:

Condition: This rule applies to s = C1�· · ·�Cn "? D if there is i ∈ {1, . . . , n}
with Ci = X ∈ Nv and {C1, . . . , Cn} \ {X} ⊆ SX .
Action: Its application adds D to SX . If this makes S cyclic, the rule appli-
cation fails. Otherwise, Γ is expanded w.r.t. X and s is marked as solved.

Fig. 1. The eager rules of the unification algorithm

Subsumptions are only added if they are not already present in Γ . If a new
subsumption is added to Γ , either by a rule application or by expansion of Γ ,
then it is initially designated unsolved, except if it has a variable on the right-
hand side. Once a subsumption is in Γ , it will not be removed. Likewise, if a
subsumption in Γ is marked as solved, then it will not become unsolved later.

If a subsumption is marked as solved, this does not mean that it is already
solved by the substitution induced by the current assignment. It may be the
case that the task of satisfying the subsumption was deferred to solving other
subsumptions which are “smaller” than the given subsumption in a well-defined
sense. The task of solving a subsumption whose right-hand side is a variable is
deferred to solving the subsumptions introduced by expansion.

The rules of the algorithm consist of the three eager rules Eager Ground Solv-
ing, Eager Solving, and Eager Extension (see Figure 1), and several nondeter-
ministic rules (see Figures 2 and 3). Eager rules are applied with higher priority
than nondeterministic rules. Among the eager rules, Eager Ground Solving has
the highest priority, then comes Eager Solving, and then Eager Extension.

Algorithm 4. Let Γ0 be a flat EL-unification problem. We set Γ := Γ0 and
SX := ∅ for all X ∈ Nv. While Γ contains an unsolved subsumption, apply the
steps (1), (2), and (3).

(1) Eager rule application: If some eager rules apply to an unsolved sub-
sumption s in Γ , apply one of highest priority. If the rule application fails,
then return “not unifiable”.

(2) Nondeterministic rule application: If no eager rule is applicable, let s be
an unsolved subsumption in Γ . If one of the nondeterministic rules applies
to s, nondeterministically choose one of these rules and apply it. If none of
these rules apply to s or the rule application fails, then return “not unifiable”.
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Decomposition 1:

Condition: This rule applies to s = C1�· · ·�Cn "? ∃s.D′ if there is an index
i ∈ {1, . . . , n} with Ci = ∃r.C′ and r �O s.
Action: Its application chooses such an index i, adds the subsumption C′ "?

D′ to Γ , expands it w.r.t. D′ if D′ is a variable, and marks s as solved.

Decomposition 2:

Condition: This rule applies to s = C1�· · ·�Cn "? ∃s.D′ if there is an index
i ∈ {1, . . . , n} and a transitive role t with Ci = ∃r.C′ and r �O t�O s.
Action: Its application chooses such an index i, adds the subsumption C′ "?

∃t.D′ to Γ and marks s as solved.

Extension:
Condition: This rule applies to s = C1 � · · · � Cn "? D if there is an index
i ∈ {1, . . . , n} with Ci ∈ Nv .
Action: Its application chooses such an i and adds D to SCi . If this makes S
cyclic, the rule application fails. Otherwise, Γ is expanded w.r.t. Ci and s is
marked as solved.

Fig. 2. The nondeterministic rules Decomposition 1 and 2 and Extension

(3) Eager application of Decomposition: If in the previous step one of the
rules Mutation 2 or 3 was applied, do the following for all subsumptions s′

added to Γ by this rule application: If one of the rules Decomposition 1 or 2
applies to s′, nondeterministically choose one of the applicable decomposition
rules and apply it to s′.5

Once all subsumptions are solved, return the substitution σ induced by the
current assignment.

In step (2), the choice which unsolved subsumption to consider next is don’t
care nondeterministic. However, choosing which rule to apply to the chosen sub-
sumption is don’t know nondeterministic. Additionally, the application of non-
deterministic rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid
nondeterministic choices if a deterministic decision can be made. For example,
a ground subsumption, as considered in the Eager Ground Solving rule, either
follows from the ontology, in which case any substitution solves it, or it does
not, in which case it does not have a solution. This condition can be checked in
polynomial time using the polynomial time subsumption algorithm for ELHR+

[7]. In the case considered in the Eager Solving rule, the substitution induced
by the current assignment obviously already solves the subsumption. The Eager
Extension rule solves a subsumption that contains only a variable X and some
elements of SX on the left-hand side. The rule is motivated by the following
observation: for any assignment S′ extending the current assignment, the induced
5 Note that Decomposition 1 always applies to the new subsumptions. Whether De-

composition 2 is also applicable depends on the existence of an appropriate transitive
role t.
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Mutation 1:
Condition: This rule applies to s = C1 � · · · �Cn "? D if n > 1 and there are
atoms A1, . . . , Ak, B of O such that A1 � · · · �Ak "O B holds.
Action: Its application chooses such atoms, marks s as solved, and generates
the following subsumptions:

– it chooses for each η ∈ {1, . . . , k} an i ∈ {1, . . . , n} and adds the subsump-
tion Ci "? Aη to Γ ,

– it adds the subsumption B "? D to Γ .

Mutation 2:
Condition: This rule applies to s = ∃r.X "? D if X is a variable, D is ground,
and there are atoms ∃r1.A1, . . . ,∃rk.Ak of O such that r �O r1, . . . , r �O rk,
and ∃r1.A1 � · · · � ∃rk.Ak "O D hold.
Action: Its application chooses such atoms, adds the subsumptions ∃r.X "?

∃r1.A1, . . . , ∃r.X "? ∃rk.Ak to Γ , and marks s as solved.

Mutation 3:
Condition: This rule applies to s = ∃r.X "? ∃s.Y if X and Y are variables,
and there are atoms ∃r1.A1, . . . , ∃rk.Ak,∃u.B of O such that r �O r1, . . . ,
r �O rk, u �O s, and ∃r1.A1 � · · · � ∃rk.Ak "O ∃u.B hold.
Action: Its application chooses such atoms, adds the subsumptions ∃r.X "?

∃r1.A1, . . . , ∃r.X "? ∃rk.Ak, ∃u.B "? ∃s.Y to Γ , and marks s as solved.

Mutation 4:
Condition: This rule applies to s = C "? ∃s.Y if C is a ground atom or !,
Y is a variable, and there is an atom ∃u.B of O such that either

– C "O ∃u.B and u�O s, or
– C "O ∃t.B for a transitive role t with u �O t�O s.

Action: Its application chooses such an atom, adds the subsumption B "? Y
to Γ , and marks s as solved.

Fig. 3. The nondeterministic Mutation rules of the unification algorithm

substitution σ′ satisfies σ′(X) ≡ σ′(C1) � . . . � σ′(Cn). Thus, if S′
X contains D,

then σ′(X) )O σ′(D), and σ′ solves the subsumption. Conversely, if σ′ solves
the subsumption, then σ′(X) )O σ′(D), and thus adding D to S′

X yields an
equivalent induced substitution.

The nondeterministic rules only come into play if no eager rules can be ap-
plied. In order to solve an unsolved subsumption s = C1 � · · · � Cn )? D, we
consider the two conditions of Lemma 1. Regarding the first condition, which
is addressed by the rules Decomposition 1 and 2 and Extension, assume that
γ is induced by an acyclic assignment S. To satisfy the first condition of the
lemma with γ, the atom γ(D) must structurally subsume a top-level atom in
γ(C1)�· · ·�γ(Cn). This atom can either be of the form γ(Ci) for an atom Ci, or
it can be of the form γ(C) for an atom C ∈ SCi and a variable Ci. In the second
case, the atom C can either already be in SCi or it can be put into SCi by an
application of the Extension rule. The two versions of Decomposition correspond
to the cases (2) and (3) in the definition of structural subsumption.
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The Mutation rules cover the second condition in Lemma 1. For example, let
us analyze how Mutation 1 ensures that all the requirements of this condition
are satisfied. The rule guesses atoms A1, . . . , Ak, B such that A1�· · ·�Ak )O B
holds. This can be checked using the polynomial-time subsumption algorithm
for ELHR+ . Whenever the second condition of Lemma 1 requires a structural
subsumption γ(E) )s

O γ(F ) to hold for a (hypothetical) unifier γ of Γ , the rule
creates the new subsumption E )? F , which has to be solved later on. This way,
the rule ensures that the substitution built by the algorithm actually satisfies
the conditions of the lemma. The other mutation rules follow the same idea, but
they consider cases where only a single atom occurs on the left-hand side of the
subsumption to be solved. The reason for considering these cases separately is
that in the proof of soundness we need the newly introduced subsumptions to be
“smaller” than the subsumption that triggered their introduction. For Mutation
1 this is the case due to the smaller left-hand side (only one atom), whereas for
the other mutation rules this is not so clear. Actually, for Mutation 2 and 3, the
new subsumptions turn out to be smaller only after Decomposition is applied to
them. Mutation 4 implicitly applies a form of decomposition.

Due to the space restrictions, we cannot give more details on how to prove
that the algorithm is correct. Complete proofs of soundness, completeness and
termination can be found in [3].

Theorem 5. Algorithm 4 is an NP-decision procedure for testing solvability of
ELHR+-unification problems w.r.t. cycle-restricted ontologies.

5 Conclusions

Above, we have presented a goal-oriented NP-algorithm for unification in ELHR+

w.r.t. cycle-restricted ontologies. In [5], we have developed a reduction of this
problem to SAT, which is based on a characterization of subsumption different
from the one in Lemma 1. Though clearly better than the brute-force algorithm
introduced in [2], both algorithms suffer from a high degree of nondeterminism
due to having to guess true subsumptions between concepts built from atoms of
the background cycle-restricted ontology. We must find optimizations to tackle
this problem before an implementation becomes feasible.

On the theoretical side, the main topic for future research is to consider uni-
fication w.r.t. unrestricted ELHR+-ontologies. In order to generalize the brute-
force algorithm in this direction, we need to find a more general notion of locality.
Starting with the goal-oriented algorithm, one idea could be not to fail when a
cyclic assignment is generated, but rather to add rules that can break such cycles,
similar to what is done in procedures for general E-unification [16].

Another idea could be to use just the rules of our goal-oriented algorithm, and
not fail when a cyclic assignment S is generated. Our conjecture is that then the
background ontology O together with the cyclic TBox TS := {X ≡

�
C∈SX

C |
X ∈ Nv} induced by S satisfies C )O∪TS D for all subsumptions C )? D in
Γ0 if an appropriate hybrid semantics [13] for the combined ontology O ∪ TS
is used.
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All the results on unification in Description Logics mentioned in this paper
are restricted to relatively inexpressive logics that do not support all Boolean
operators. If we close EL under negation, then we obtain the DL ALC, which
corresponds to the modal logic K [17]. Whether unification in K is decidable is
a long-standing open problem. It is only known that relatively minor extensions
of K have an undecidable unification problem [18].

References

1. Baader, F., Borgwardt, S., Mendez, J., Morawska, B.: UEL: Unification solver for
EL. In: Proc. DL 2012. CEUR Workshop Proceedings, vol. 846 (2012)

2. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. KR 2012, pp. 568–572. AAAI Press (2012) (short paper)

3. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in ELHR+ w.r.t. cycle-restricted ontologies. LTCS-Report 12-05, TU Dresden,
Germany (2012), http://lat.inf.tu-dresden.de/research/reports.html

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unifica-
tion in EL w.r.t. cycle-restricted TBoxes. In: Proc. DL 2012. CEUR Workshop
Proceedings, vol. 846 (2012)

5. Baader, F., Borgwardt, S., Morawska, B.: SAT Encoding of Unification in ELHR+

w.r.t. Cycle-Restricted Ontologies. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS, vol. 7364, pp. 30–44. Springer, Heidelberg (2012)

6. Baader, F., Borgwardt, S., Morawska, B.: SAT encoding of unification in ELHR+

w.r.t. cycle-restricted ontologies. LTCS-Report 12-02, TU Dresden, Germany
(2012), http://lat.inf.tu-dresden.de/research/reports.html

7. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005,
pp. 364–369. Morgan Kaufmann (2005)

8. Baader, F., Morawska, B.: Unification in the Description Logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

9. Baader, F., Morawska, B.: SAT Encoding of Unification in EL. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 97–111. Springer, Heidelberg
(2010)

10. Baader, F., Morawska, B.: Unification in the description logic EL. Log. Meth.
Comput. Sci. 6(3) (2010)

11. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

12. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAI 2004, pp. 298–302 (2004)

13. Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid TBoxes. In: Furbach, U.
(ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 34–48. Springer, Heidelberg (2005)

14. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Hand-
book of Knowledge Representation, pp. 89–134. Elsevier (2008)

15. Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS 2005.
pp. 229–237. IEEE Press (2005)

16. Morawska, B.: General E-unification with eager variable elimination and a nice
cycle rule. J. Autom. Reasoning 39(1), 77–106 (2007)

17. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. IJCAI 1991, pp. 466–471 (1991)

18. Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Trans. Comput. Log. 9(4) (2008)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html


Normal Modal Preferential Consequence

Katarina Britz, Thomas Meyer, and Ivan Varzinczak

Centre for Artificial Intelligence Research
CSIR Meraka Institute and UKZN, South Africa

{arina.britz,tommie.meyer,ivan.varzinczak}@meraka.org.za

Abstract. One of the most successful approaches to the formalization of
commonsense reasoning is the work by Lehmann and colleagues, known
as the KLM approach, in which defeasible consequence relations with a
preferential semantics are studied. In spite of its success, KLM is limited
to propositional logic. In recent work we provided the semantic founda-
tion for extending defeasible consequence relations to modal logics and
description logics. In this paper we continue that line of investigation by
going beyond the basic (propositional) KLM postulates, thereby making
use of the additional expressivity provided by modal logic. In particular,
we show that the additional constraints we impose on the preferential se-
mantics ensure that the rule of necessitation holds for the corresponding
consequence relations, as one would expect it to. We present a represen-
tation result for this tightened framework, and investigate appropriate
notions of entailment in this context — normal entailment, and a rational
version thereof.

Keywords: Non-monotonic reasoning, preferential consequence, modal
logic.

1 Introduction and Motivation

The formalization of commonsense reasoning, as usually studied in the AI tradi-
tion, depends crucially on the eschewal of the monotonicity property of classical
logic, or, at the very least, on a careful neutralization thereof. This issue has been
dealt with in a variety of ways in the non-monotonic literature. One particular
approach that has been quite successful is the one by Lehmann and colleagues.
In their seminal papers [12,14], the authors consolidated what became known as
the KLM approach, in which (propositional) defeasible consequence relations |∼
with a preferential semantics are studied. In this setting, α |∼ β is given the
meaning that “all normal (i.e., most preferred) α-worlds are β-worlds”, leaving
it open for α-worlds that are exceptional (or less preferred) not to satisfy β. The
theory that has been developed around this notion allows us to cope with ex-
ceptionality when performing reasoning. Besides its simplicity and elegance, the
type of consequence relations studied by Lehmann and colleagues has also played
an important role in the formalization of commonsense reasoning in providing
the foundation for the important notion of rational closure [14].

Notwithstanding its fruitfulness, the KLM approach is limited to proposi-
tional logic and so it remained until recently despite some attempts to recast it
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in more expressive formalisms [5,9,11,13,15,16]. Indeed, many scenarios that are
interesting from the standpoint of modern AI cannot be satisfactorily formal-
ized in a propositional language. Extensions of the KLM approach have therefore
been driven by either extending the syntax [9,11,16] or the underlying prefer-
ential semantics [5,13] to logics with more expressivity. A unifying semantics,
with a corresponding representation result, was nevertheless still missing until
a recent work by the present authors [6,7] provided the semantic foundation for
extending defeasible consequence relations to modal logics [2] and description
logics (DLs) [1]. In the referred papers we lifted the notion of rational closure
as defined by Lehmann and Magidor in the propositional case [14] to modal and
description logics, thereby providing a preliminary account of this construction
in logics with more structure than the propositional one.

It turns out that the aforementioned approach, although counting as a true
extension of the KLM framework to non-propositional languages, is still limited
in the sense that it does not make use of the additional expressivity of e.g. modal
languages. To make this more precise, one can state defeasible statements of the
form α |∼ β, where α and β now can be any modal sentence; however the syn-
tactic characterization of defeasible consequence (i.e., the set of Gentzen-style
properties specifying the expected behavior of |∼) is confined to the original
Boolean postulates proposed by Kraus et al. In other words, the additional ex-
pressivity of modal logic is not reflected in terms of new properties, which means
that modal sentences are basically opaque to the postulates. Moreover, despite
the underlying modal formalism, some inference rules that are seen as important
in a modal context such as the necessitation rule behave in an unexpected way.

In this paper we analyze these issues and address them by proposing additional
properties that a truly modal-based defeasible consequence relation |∼ ought to
satisfy. In particular, we study what semantic constraints should be added to
the original preferential semantics for the new properties to hold.

The remainder of the present paper is organized as follows: After some logi-
cal preliminaries (Section 2), we recap our preferential semantics for defeasible
modal logic (Section 3). We then motivate the need for KLM-style properties
reflecting the additional expressivity of modal languages (Section 4). In partic-
ular, we define appropriate semantic constraints warranting the new postulates
and establish the corresponding representation result. In Section 5 we define
entailment from defeasible knowledge bases and motivate the need to move be-
yond rational closure. We conclude with a summary of our contributions and
directions for future research.

2 Modal Logic

We work in a (finite) set of atomic propositions P , using the logical connectives
∧ (conjunction), ¬ (negation), and a set of modal operators �i, 1 ≤ i ≤ n.
Propositions are denoted by p, q, . . ., and formulas by α, β, . . ., built up in the
usual way according to the rule: α ::= p | ¬α | α ∧ α | �iα. All the other
truth functional connectives (∨, →, ↔, . . . ) are defined in terms of ¬ and ∧ in
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the usual way. Given �i, with �i we denote its dual operator, i.e., for any α,
�iα ≡def ¬�i¬α. We use � as an abbreviation for p ∨ ¬p and ⊥ for p ∧ ¬p, for
some p ∈ P . With L we denote the set of all formulas of the modal language.

As for the semantics, we assume the standard possible-worlds one:

Definition 1. A Kripke model is a tuple M = 〈W,R,V〉 where W is a set of
possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆ W ×W is an accessibility
relation on W, 1 ≤ i ≤ n, and V : W× P −→ {0, 1} is a valuation function.

Figure 1 depicts two examples of Kripke models for P = {p, q}.

M1 :

qw1,2 p, q w1,3

w1,1 p w1,4

M2 :

qw2,2 p, q w2,3

w2,1 p w2,4

Fig. 1. Examples of Kripke models

Sometimes it is convenient to talk about possible worlds in the context of their
respective Kripke models. Given M = 〈W,R,V〉 and w ∈W, a pair (M , w) is a
pointed Kripke model. Pointed Kripke models are not to be viewed as objects, as
variables are commonly regarded in first-order contexts. A set of pointed Kripke
models describes the intention of a modal statement — cf. Definition 2 below.

Formulas of our modal language are true or false relative to a possible world
in a Kripke model. This is formalized by the following truth conditions:

Definition 2. Given M = 〈W,R,V〉 and w ∈W:

• M , w � p if and only if V(w, p) = 1;
• M , w � ¬α if and only if M , w �� α;
• M , w � α ∧ β if and only if M , w � α and M , w � β;
• M , w � �iα if and only if M , w′ � α for all w′ such that (w,w′) ∈ Ri.

Given α ∈ L and M = 〈W,R,V〉, M satisfies α if there is w ∈ W such that
M , w � α. We say that α is true in M (alias M is a model of α) if M , w � α for
every w ∈W. For a given system of modal logic, we say that α is valid (denoted
|= α) if α is true in every model of the underlying system. Here we shall assume
the system of normal modal logic K, of which all the other normal modal logics
are extensions. Semantically, K is characterized by the class of all Kripke models
(Definition 1). We say that α locally entails β in the system K (denoted α |= β)
if for every model M and every w in M , M , w � α implies M , w,� β.

Syntactically, K corresponds to the smallest set of sentences containing all
propositional tautologies, all instances of the axiom schema K : �i(α → β) →
(�iα→ �iβ), 1 ≤ i ≤ n, and closed under the rule of necessitation below:

(RN)
α

�iα
(1)
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The following are derived rules in the system K:

(RK)
α1 ∧ . . . ∧ αk → β

�iα1 ∧ . . . ∧�iαk → �iβ
(Mon)

α→ β

�iα→ �iβ
(Cgr)

α↔ β

�iα↔ �iβ

Given a system of modal logic, from a knowledge representation perspective it is
convenient to be able to work within a class of modelsM of the corresponding
system, representing e.g. some background knowledge of relevance for a given
application domain.

3 Modal Defeasible Consequence

A modal defeasible consequence relation |∼ is defined as a binary relation on
formulas of our underlying modal logic, i.e., |∼ ⊆ L × L. We say that |∼ is a
preferential consequence relation [6] if it satisfies the following set of properties
(alias postulates or Gentzen-style rules, as they are sometimes referred to):

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ

α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(RW)

α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

The semantics of preferential consequence relations is in terms of modal preferen-
tial models; these are partially ordered structures with states labeled by pointed
Kripke models (cf. Section 2):

Definition 3. Let M be a class of Kripke models. UM := {(M , w) | M =
〈W,R,V〉 ∈ M and w ∈W}.

Let S be a set and ≺ ⊆ S× S be a strict partial order on S, i.e., ≺ is irreflexive
and transitive. Given S′ ⊆ S, we say that s ∈ S′ is minimal in S′ if there is no
s′ ∈ S′ such that s′ ≺ s. With min≺ S′ we denote the minimal elements of S′ ⊆ S.
We say that S′ ⊆ S is smooth [12] if for every s ∈ S′ either s is minimal in S′ or
there is s′ ∈ S′ such that s′ is minimal in S′ and s′ ≺ s.

Definition 4 (Preferential Model). A preferential model is a tuple P =
〈S, �,≺〉 where S is a set of states; � : S −→ UM is a labeling function; ≺ ⊆ S×S
is a strict partial order on S satisfying the smoothness condition.1

Given a preferential model P = 〈S, �,≺〉 and α ∈ L, with �α� we denote the set
of states satisfying α (α-states for short) according to the following definition:

Definition 5. Let P = 〈S, �,≺〉 and let α ∈ L. Then �α� := {s ∈ S | �(s) � α}.

States lower down in the order are more preferred (or more normal) than those
higher up. As an example, let M be the class of K-models depicted in Fig-
ure 1. Then UM = {(Mi, wi,j) | i = 1, 2 and 1 ≤ j ≤ 4}. Figure 2 below

1 That is, for every α ∈ L, the set �α� (cf. Definition 5) is smooth.
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depicts the preferential model P = 〈S, �,≺〉 where S = {si | 1 ≤ i ≤ 8}, � is
such that �(s1) = (M1, w1,1), �(s2) = (M2, w2,1), �(s3) = (M1, w1,2), �(s4) =
(M1, w1,3), �(s5) = (M2, w2,3), �(s6) = (M2, w2,2), �(s7) = (M1, w1,4), and
�(s8) = (M2, w2,4), and ≺ is the transitive closure of {(s1, s3), (s2, s3), (s3, s4),
(s3, s5), (s4, s6), (s5, s6), (s6, s7), (s6, s8)}.

P :

• s2 (M2, w2,1)•(M1, w1,1) s1

•(M1, w1,2) s3

• s5 (M2, w2,3)•(M1, w1,3) s4

•(M2, w2,2) s6

• s8 (M2, w2,4)•(M1, w1,4) s7

m
o
st

p
re
fe
rr
ed

st
a
te
s

←−
−−
−−
−−
−−
−−
−−
−−

Fig. 2. A preferential model for M = {M1,M2}, with M1 and M2 as in Figure 1

Given P = 〈S, �,≺〉 and α ∈ L, α is satisfiable in P if �α� �= ∅, otherwise α
is unsatisfiable in P. We say that α is true in P (denoted P � α) if �α� = S.

From the definition of a preferential model one can see that a class M of
Kripke models determines a class of preferential models. We denote the class of
preferential models based onM withMP . We say that α is valid inMP if α
is true in every preferential model P ofMP , i.e., P � α for every P ∈MP .

Given P = 〈S, �,≺〉, the defeasible statement α |∼P β holds in P if and only
if min≺�α� ⊆ �β�, i.e., every ≺-minimal α-state is a β-state. As an example, in
the model P of Figure 2, we have ¬q |∼P �¬p and also q |∼P �(¬p ∧ ¬q).

The representation theorem for preferential consequence relations then states:

Theorem 1 (Britz et al. [6]). A modal defeasible consequence relation is a
preferential consequence relation if and only if it is defined by some preferential
model, i.e., |∼ is preferential if and only if there exists P such that |∼ = |∼P .

If, in addition to the preferential properties, the defeasible consequence relation
|∼ also satisfies the following Rational Monotonicity property [14], it is said to
be a rational consequence relation:

(RM)
α |∼ β, α �|∼ ¬γ

α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked models,
i.e., preferential models in which the preference order is modular:

Definition 6 (Modular Order). Given a set S, ≺ ⊆ S× S is modular if and
only if there is a ranking function rk : S −→ N such that for every s, s′ ∈ S,
s ≺ s′ if and only if rk(s) < rk(s′).
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Definition 7 (Ranked Model). A ranked model R = 〈S, �,≺〉 is a preferential
model such that ≺ is modular.

The preferential model in Figure 2 is also an example of a ranked model.

Theorem 2 (Britz et al. [6]). A modal defeasible consequence relation is a
rational consequence relation if and only if it is defined by some ranked model,
i.e., |∼ is rational if and only if there exists R such that |∼ = |∼R.

4 Beyond the KLM Postulates

Britz et al.’s constructions and representation results are with respect to the
same set of properties used to characterize propositional rational consequence.
This has the advantage that methods employed in a propositional non-monotonic
setting translate seamlessly to a modal context. This includes reasoning tasks
such as computing the rational closure of defeasible knowledge bases [6,7]. In that
respect, the definitions in Section 3 provide a good starting point for investigating
more elaborated versions of modal rational consequence. Here we are interested
in doing precisely this and we start by making an important observation:

Proposition 1. Let α ∈ L and let M be a class of Kripke models. Then α is
valid in M if and only if α is valid in MP .

That is, all the validities of the underlying system of modal logic (or of the
specific class of models we are working with) remain valid with respect to our
preferential semantics. An immediate consequence of this is the following result:

Corollary 1. All inference rules of the underlying modal logic are sound with
respect to the preferential semantics.

It is easy to see why: given a rule ρ which is sound in the respective system
of modal logic and of which the premise α is preferentially valid, from Propo-
sition 1 follows that α is (modally) valid, from which follows the validity of ρ’s
consequent β, which, by Proposition 1 again, must be preferentially valid.

In spite of preserving all modal validities and rules of inference, the current
preferential semantics gives rise to a rather odd phenomenon: Contrary to the
classical possible worlds semantics, in the preferential semantics some inference
rules need not be satisfied by individual (preferential or ranked) models. To make
this more precise, one can devise models in which the rule of necessitation (RN)
does not hold. Indeed, the current preferential semantics is too liberal in the
sense that it allows for legitimate models in which α is true (i.e., �α� = S) but
in which �iα fails to hold (i.e., ��iα� �= S), for some 1 ≤ i ≤ n. To witness,
let M1 be as in Figure 1, and let S = {s1}, �(s1) = (M1, w1,4), and ≺= ∅. It
is easy to check that P = 〈S, �,≺〉 is a preferential model and that P � p but
P �� �p. Hence the preferential semantics for modal consequence is not, strictly
speaking, truly normal in the modal sense.

It should not be that hard to see that this is not an inoffensive feature: In a
given P one is told that every state is an α-state, but at the same time it is
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possible to refer to a ¬α-world that is part of the structure of P. It sounds as
though P is not particularly accurate in the knowledge it conveys. The conse-
quences of this become apparent when considering specific application domains.
For instance, in an action context, this could mean that there is a possible execu-
tion of tossing a coin having as outcome “not-heads and not-tails”, even though
there is no configuration of states other than “heads or tails”.

With a similar argument we can also show that the rule of congruence (Cgr)
in general is not satisfied ‘locally’, i.e., in an arbitrary model: Let M1 be as in
Figure 1, and let S = {s1}, �(s1) = (M1, w1,1), and ≺= ∅. Then P = 〈S, �,≺〉 is
a preferential model and P � ¬p↔ ¬q but P �� �¬p↔ �¬q. (That this is not
particularly desirable should not be that hard to see.) The same counter-example
applies to Rules RK and Mon.

Surely all of this has to do with the extra richness of modal structures when
compared to the propositional ones, but also, as alluded to above, to the rather
liberal character of our original preferential semantics and its interplay with the
corresponding syntactic characterization.

The obvious direction to follow in tackling the above issues is through the
requirement of additional restrictions in the semantics with appropriate postu-
lates characterizing them. Indeed, the rationality properties from Section 3 seem
too weak in a modal context, as they do not really make use of the full expres-
siveness of modal logic. Without properties referring directly to the extra opera-
tor �, modal formulas are treated in a completely opaque way by the remaining
Boolean postulates. Hence we shall investigate extra KLM-style properties that
do make use of the non-Boolean connectives of the underlying language.

The requirement that every preferential model also satisfy the rule of necessi-
tation provides us with insights towards our stated aim. In what follows we shall
have a closer look at it.

Proposition 2. Let α ∈ L and P be a preferential model. Then P � α if and
only if ¬α |∼P ⊥ holds in P.

‘Local’ (i.e., model-wise) satisfaction of the rule of necessitation amounts to
having �α true in a model whenever α is true in the same model. That is to say,
RN holds in P if P � α implies P � �iα, for every 1 ≤ i ≤ n. Given this and
Proposition 2, we obtain the following KLM-style version of RN:

(Norm)
α |∼ ⊥

�iα |∼ ⊥
, for 1 ≤ i ≤ n (2)

We call Property (2) Normality, as it is the KLM version of a fundamental
property of normal modal logics, namely the rule of necessitation. Intuitively it
says that what is inconsistent should not be possible.

The result in Proposition 2 also allows us to derive a KLM-style version of
the rule of congruence. Cgr holds in P if P � α↔ β implies P � �iα↔ �iβ,
for every 1 ≤ i ≤ n, that is, if the following rule holds in P :

(Equiv)
¬(α↔ β) |∼ ⊥

¬(�iα↔ �iβ) |∼ ⊥
, for 1 ≤ i ≤ n (3)
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With an analogous argument one can derive the following properties ensuring,
respectively, Mon and RK:

(Imp)
¬(α→ β) |∼ ⊥

¬(�iα→ �iβ) |∼ ⊥
, for 1 ≤ i ≤ n (4)

(RK|∼)
¬(α1 ∧ . . . ∧ αk → β) |∼ ⊥

¬(�iα1 ∧ . . . ∧ �iαk → �iβ) |∼ ⊥
, for 1 ≤ i ≤ n (5)

Being derived from inference rules that hold in every system of classical normal
modal logics, the postulates in (2)–(5) stand as reasonable properties to have in
modal preferential reasoning. As we have seen, none of them hold in the standard
preferential semantics.

New postulates are usually captured in the semantics by means of additional
restrictions on the preferential models. For instance, in the evolution from prefer-
ential consequence relations to rational ones, the rational monotonicity property
became warranted by requiring the partial order ≺ to be a modular ordering [14].
As we shall see, it turns out that one can also force extra properties (as the ones
we stated above) by imposing additional restrictions on the set of states and on
the labeling function, a route that seems not to have been explored so far.

Looking back at the counter-examples to local satisfaction of the inference
rules, a common pattern emerges: a given rule is violated because of a pointed
Kripke model acting “behind the curtain”, i.e., a pointed model labeling no state
whatsoever but which (implicitly) still interferes with states that are labeled with
pointed models it relates to. We call these pointed models occurring implicitly
in a preferential model spurious models.2

We claim that a modal preferential semantics should not allow for spurious
models. The set of states and the labeling function must be disciplined in such
a way as to prevent a pointed model from determining the truth of formulas
without being itself associated with any state. We make this more precise now.

Definition 8 (Non-Spuriousness). A pair (S, �) is non-spurious if and only
if, for all s ∈ S with �(s) = (M , w) for some M = 〈W,R,V〉, and for all w′ ∈W
such that (w,w′) ∈ Ri for some i, there exists s′ ∈ S with �(s′) = (M , w′).

The non-spuriousness condition requires that whenever a possible world can be
referred to indirectly, then it is indeed a world that can be accessed directly.

Definition 9 (Non-Spurious Model). A non-spurious model N = 〈S, �,≺〉
is a preferential model such that (S, �) is non-spurious.

Given a non-spurious model N = 〈S, �,≺〉 and a formula α ∈ L, as before
with �α� we denote the set of elements of S satisfying α (cf. Definition 5). The
model depicted in Figure 2 is also an example of a non-spurious (ranked) model.

The definition of non-spurious model puts us in a position to state the first
of the results leading us to the realization of our stated aims:

2 Note that requiring the labeling function to be surjective would be too strong as it
would require the cardinality of S to be at least that of UM.
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Lemma 1 (Soundness). Let N = 〈S, �,≺〉 be a non-spurious model and
let |∼N be the defeasible consequence relation it defines. Then |∼N satisfies the
preferential properties (Ref), (LLE), (And), (Or), (RW) and (CM), as well as
the properties (Norm), (Equiv), (Imp) and (RK|∼). If N is moreover a ranked
model, then |∼N also satisfies (RM).

Before we address completeness, it is worth making an observation:

Proposition 3. Let |∼ be a preferential consequence relation. If |∼ satisfies
(Norm), then it satisfies (Equiv), (Imp) and (RK|∼).

The proof of Proposition 3 relies on Propositions 1 and 2 and on the fact that
Rules RK, Mon and Cgr can be derived from RN and the modal validities in the
classical case. From the result above we conclude that it is enough to restrict
our attention to those consequence relations satisfying (Norm).

Definition 10 (Normal Consequence). A modal consequence relation |∼ is
a normal consequence relation if it satisfies all the preferential properties from
Section 3 together with (Norm).

Lemma 2 (Completeness). Let |∼ ⊆ L×L be a normal consequence relation.
Then there exists a non-spurious ranked model N such that |∼N = |∼.

We are now ready to state one of the main results of the present paper:

Theorem 3. A defeasible consequence relation is a normal consequence relation
if and only if it is defined by some non-spurious model.

If |∼ is a normal consequence relation also satisfying RM, we call |∼ a rational
normal consequence relation. This leads us to our second representation result:

Theorem 4. A defeasible consequence relation is a rational normal consequence
relation if and only if it is defined by some non-spurious ranked model.

5 Normal Entailment

So far we have assessed |∼ from the perspective of consequence relations. Fol-
lowing Lehmann and Magidor [14], one can also view |∼ as a connective in an
enriched modal language, which allows us to write down defeasible statements (or
‘conditionals’, as they are also referred to). Given a set of defeasible statements
of the form α |∼ β, from a knowledge representation and reasoning perspective
it becomes important to address the question of what it means for a defeasible
statement to be entailed by others [14].

A defeasible knowledge base K|∼ is a finite set of statements α |∼ β, where
α, β ∈ L [6]. Given a non-spurious model N , we extend the notion of satisfaction
to knowledge bases in the obvious way: N � K|∼ if α |∼N β for every α |∼ β ∈
K|∼. This leads us to an obvious definition of entailment:

Definition 11 (Normal Entailment). K|∼ normally entails α |∼ β if and
only if for every non-spurious model N , if N � K|∼, then α |∼N β.
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On a related note, the normal closure of K|∼ is defined as the intersection of all
the normal consequence relations containing K|∼.

Theorem 5. Let K|∼ be a defeasible knowledge base. Then (i) the set of all
sentences normally entailed by K|∼ is a Tarskian consequence relation; (ii) it is
a normal consequence relation; (iii) it coincides with the normal closure of K|∼.

In the context of normal consequence, normal entailment is therefore the ap-
propriate notion of entailment for defeasible knowledge bases. However, if we
shift our focus to the class of rational normal consequence relations, the obvious
definition of rational normal entailment does not provide a desirable result.

Definition 12 (Rational Normal Entailment). K|∼ rationally normally en-
tails α |∼ β if and only if for every non-spurious ranked model N , if N � K|∼,
then α |∼N β.

Theorem 6. Given a defeasible knowledge base K|∼, the set of defeasible state-
ments rationally normally entailed by K|∼ is exactly the normal closure of K|∼.

So from Theorem 6 it follows that rational normal entailment generates a con-
sequence relation that is normal, but is not always rational. This is similar to
a result obtained for rational consequence relations [6]. The following proposal
to define and construct a viable notion of rational normal closure is analogous
to that proposed by Britz et al. [6] which, in turn, is based on the proposal by
Lehmann and Magidor [14].

Definition 13. Let K|∼ be a defeasible knowledge base. The preference order .
generated by K|∼ is a binary relation on the set of rational normal consequence
relations containing K|∼, defined as follows: |∼0 is preferable to |∼1 (written
|∼0 . |∼1) if and only if

• there is an α |∼ β ∈ |∼1 \ |∼0 such that for all γ such that γ ∨ α |∼0 ¬α and
for all δ such that γ |∼0 δ, we also have γ |∼1 δ, and

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion ρ |∼ ν
in |∼1 \ |∼0 such that ρ ∨ γ |∼1 ¬γ.

The idea is to define rational normal closure as the most preferred (with respect
to .) of all the rational normal consequence relations containing K|∼.

Definition 14. Let K|∼ be a defeasible knowledge base, let KR be the class of ra-
tional normal consequence relations containing K|∼, and let . be the preference
ordering on KR generated by K|∼. If . has a (unique) minimum element |∼,
then the rational normal closure of K|∼ is defined as |∼.

In order to provide the conditions for the existence of rational normal closure,
we first need to define a ranking of formulas with respect to K|∼ which, in turn,
is based on a notion of exceptionality. A formula α is said to be exceptional for
a defeasible knowledge base K|∼ if and only if K|∼ normally entails � |∼ ¬α. A
defeasible statement α |∼ β is exceptional for K|∼ if and only if its antecedent α
is exceptional for K|∼.
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Let E(K|∼) denote the subset of K|∼ containing statements that are excep-
tional for K|∼. We define a non-increasing sequence of subsets of K|∼ as follows:
E0 = K|∼, and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k
such that for all j ≥ k, Ej = Ej+1. From this we define the rank of a formula
with respect to K|∼ as follows:3 rK|∼(α) is the smallest integer i such that α is
not exceptional for Ei. If α is exceptional for Ek (and therefore exceptional for
all Es), then α does not have a rank (denoted as rK|∼(α) =∞). Intuitively, the
higher the rank of a formula, the more exceptional it is with respect to K|∼.

Theorem 7. Let K|∼ be a defeasible knowledge base. The rational normal clo-
sure of K|∼ exists and is the set R|∼ of defeasible statements α |∼ β such that
either rK|∼(α) < rK|∼(α∧¬β), or rK|∼(α) =∞ (in which case rK|∼(α∧¬β) =∞).

We conclude this section by observing that exceptionality checking for normal
entailment cannot be reduced to (local) classical entailment, as is the case for
preferential entailment. More precisely, given a defeasible knowledge base K|∼,
let K→ be its classical counterpart in which every defeasible statement of the
form γ |∼ δ in K|∼ is replaced by γ → δ. It can be shown that K|∼ preferentially
entails ¬α if and only if ¬α is (locally) entailed by K→ [6]. And while it is easy to
show that ¬α being (locally) entailed by K→ implies thatK|∼ normally entails ¬α
(i.e., α is exceptional for K|∼), it is just as easy to construct a counterexample
which shows that the converse does not always hold.

On the one hand the result above is a negative one as it rules out a reduction to
classical entailment for computing rational normal closure. On the other hand it
is of theoretical importance since it is a concrete indication that normal rational
consequence is a true extension of propositional defeasible consequence.

6 Concluding Remarks

Recapitulating the main contributions of this paper, they can be summarized
as follows: (i) We have provided concrete evidence that the move from propo-
sitional to modal-based defeasible consequence relations bring about gaps that
the original KLM postulates are not able to cope with; (ii) We have tightened
our preferential semantics for modal logic by motivating and defining additional
constraints on preferential models; (iii) We have motivated extra KLM-style pos-
tulates that do make use of the additional expressiveness of modal logic; (iv) We
have proved new representation theorems establishing the link between the se-
mantic constraints and the new set of postulates, and (v) We have extended the
notion of rational closure for the case of normal consequence relations.

Crocco and Lamarre [10] as well as Boutilier [4] have also investigated de-
feasible consequence in a modal context. In particular, Boutilier showed that
(propositional) nonmonotonic consequence can be embedded in conditional log-
ics via a binary modality ⇒. The links between our richer framework and the
conditional ⇒ remain to be explored in more detail, though.

3 Observe that our terminology differs from that of Britz et al. [6], but is consistent
with that of Lehmann and Magidor [14].



516 K. Britz, T. Meyer, and I. Varzinczak

Our representation result paves the way for both the investigation into further
modal properties and the definition of effective decision procedures for modal
preferential reasoning. Another avenue for future research is the integration of
the refined approach here presented with notions of typicality [3] and defeasible
modalities [8], thereby establishing the foundation of a general framework for
modal defeasible reasoning.
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Abstract. This paper examines how Spohn’s Ordinal Conditional Functions,
which are used to model belief dynamics, when appropriately adapted and in-
terpreted, can fruitfully model the dynamics of trust. In this framework, trust is
defined in terms of lack of trust (trust deficit) which is taken to be a primitive no-
tion. It explores the notion of context sensitive trust, i.e., how in different domains
of human interaction, one agent might trust another agent in varying degrees, and
suggests the dynamics of such trust.

One can judge a man by the company he keeps.
Euripides (480 – 406 A.D.)

1 Introduction

The concept of trust is playing an increasingly important role in different fields related to
information technology [13], such as multi agent systems [21], communication networks
[15], and social networks [9]. Given the similarity between trust and belief, as betrayed
by the words used in many languages to denote them, such as in Hebrew (emun/emunah),
Latin (credo) and Sanskrit (bishwas), one would expect that the approaches adopted to
model beliefs can be easily adapted to represent trust and reason with it. In fact, some
existing approaches have already done it. In some accounts, this acknowledgement is
only implicit. For instance, Yu and Singh [23] employ a Dempster-Shafer belief functions
[17] with respect to every agent a telling to what extent a is to be trusted, and to what
extent distrusted, and use Dempster Rules of combination to process recommendations
about an agent. Similarly Colin Tan’s approach to trust computation [20] also uses belief
functions. In some other approaches, such as Demolombe’s account of graded trust [4],
the connection between belief and trust is made quite explicit.

Both belief and trust are mental attitudes; nonetheless there is a crucial difference.
Belief is a propositional attitude, but trust is not. In the sentence John believes X, the
place holder X is more likely than not to be a proposition, as in, “John believes that
dragons breath fire”. On the other hand, in the sentence John trusts Y, the place holder
Y is more likely than not to be a person (or agent), as in “John trusts Betty but not
Adam” which says something akin to: John trusts (can count on) what Betty will do,
but not on what Adam will. Hence, while as an attitude, belief is propositional, trust
is actional. Thus a thorough investigation into the foundation of trust must take into
account not only the agents, but also their ability to perform different actions, their
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intention behind performing (or not performing) some action, as well as the relevant
speech acts [14]. Literature in the area [3,8,18] indicates support for such a view point.

In an earlier work [11] I proposed an alternative framework for reasoning about trust,
inspired by Wolfgang Spohn’s account of ordinal conditional functions [19] that is used
to model belief dynamics. In this work, invoking political realism, I took distrust or trust
deficit to be a more basic notion, and defined trust via distrust, and proposed how the
statics and dynamics of trust can be represented. The notion of trust in this account is
also graded trust as in Demolombe’s account [4]; however it is also unqualified trust. It
is as if, if I were to trust John more than I trust Jack, I must trust John more in every con-
text. It is possible that John is better at writing programs and Jack at proof reading; so
depending upon the context I might trust Jack more than John, or the other way around.
Hence, the notion of trust must not only be graded, but also be contextualised. The basic
sentences in the language of trust would have the form somewhat along the line: (agent)
A trusts (agent) B in the context (of carrying out the task) C to the degree D. Ungraded
trust as well as unqualified (bare) trust should be reducible to such fine-grained trust.
The aim of this paper is to develop the semantic framework for such an account. For the
sake of simplicity, the framework does not take into account the intentions and plans
of agents, and the proposal is primarily semantic. Since the framework for trust being
developed is very new, not much can be assumed as background knowledge. Hence I
will need to introduce a relatively large number of concepts.

In the section Bare Trust we summarise and expand upon the account of the statics
of trust developed in [11]. This accounts for graded, but unqualified trust. In the next
section, Trust Contextualized, we examine a qualified notion of trust. The account of
how the trustworthiness of different agents are updated is developed in the section Trust
Dynamics. In the final section we conclude with a brief outline of some related issues
that we will take up in our future work.

2 Bare Trust

In a Hobbesian state of nature, there is “continuall feare, and danger of violent death;
And the life of man, solitary, poore, nasty, brutish, and short” [7]. If we assume that
trust and cooperation must emerge out of human behaviour in such a state of nature [2],
then it is not trust but rather its deficit, distrust that should be taken to be a more basic
concept, and trust be defined in terms of it. However, trust is more than just the absence
of distrust. We define trust in terms of suspicion in the following manner:

Definition 1. An agent a trusts b iff a distrusts (suspicious of) the “enemies” of b.

This definition of trust via suspicion or distrust raises two immediate questions.

1. Why should an agent a’s trust in b depend on a’s attitude towards the enemies
of b at all? After all it is conceivable that a distrusts (or, for that matter trusts)
both b and the enemies of b!1 In response, we note that there is no mathematical
compulsion to define a’s trust in b in terms of a’s attitude towards the enemies of
b. However, as the Euripidean saying (quoted on the title page) implies, a person’s

1 I am thankful to Professor David Makinson for raising this issue in a private communication.
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character may be judged based on the character of their friends. By the same token,
a person’s character may also be judged based on the character of their enemies.
As we would see later, we are advocating that a’s assessment of both the enemies
as well as friends of b should be taken into account in order to judge a’s trust in b.
The scene of a (dis-)trusting both b and the enemies of b is a special case; and in
our model it will correspond to the situation where a suspends making any “trust
judgment” on b.

2. What will happen if the agent b does not have any enemy at all? Would it then mean
that a cannot trust b? This is a special case, and it is not really that important how
we deal with it. We can avoid the problem by assuming that avery agent has at least
one enemy. It is a fair assumption since (a) in general, by eliminating enemies, an
agent creates more enemies, and (b) success of an agent creates envy and enemity.

Accordingly, we make the following two assumptions, while Definition 2 provides an
operational (but very informal) definition of suspicion.

Assumption 1. Every agent a has at least one enemy b.

Assumption 2. No agent is paranoid; i.e., for every agent a there is an agent b (differ-
ent from a) such that a is not suspicious of b.

Definition 2. An agent a is suspicious of b just in case a expects to be surprised or
disappointed by b’s behaviour at some point.

Agent a is suspicious of b just in case a expects that b may disappoint a at any moment.
Thus a’s trust in b is reducible to b’s potential for disappointing/surprising a. In this
context Shackle’s concept of degree of potential surprise [16] that is similar to Wolf-
gang Spohn’s notion of ordinal conditional functions [19] is very pertinent, considering
its role in the development of the logic of belief change [1,5,12]. The framework devel-
oped below is inspired by Spohn’s account of belief change.

We will assume a pre-theoretic notion of agent. Let A + = {a0,a1, . . . ,an} be the
set of all agents. We use a with possible decoration to denote individual agents. Pre-
sumably, members of A + observe each other’s behaviour, manipulate them, trust them,
distrust them, and what have you. We are not going to deal with most of those issues.
We will, instead, assume a contextually fixed, prominent member, say a0, and develop
an account of how the trust of a0 in other members of A +, namely A = {a1, . . . ,an}, is
defined and maintained. So although a0 is a member of the agent-system, and is subject
to all the systemic constraints that other members of are subject to, and members of A
trust/distrust a0 just as a0 does to them, we will abstract away most of those things. In
particular, we will assume that a0 has the ability to distinguish itself from the rest of
A +, and primarily deals with the members of A in its “model of the world”.

Suspicion Directed Toward an Individual
We assume that a0 has views as to which members of A are friends (resp. foes) of
which members. Hence, a0 assigns to each member ai of A a set of members of A that
it considers are friends of ai, and another set of members that it considers are foes of
ai. Hence we assume two unary functions: f riendsa0(·) and f oesa0(·) as defined below.
Since the agent a0 is contextually fixed, we will drop the subscripts for readability.
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Definition 3

1. The function f riends : A −→ 2A maps an agent a ∈ A to the set of agents
f riends(a) that are considered (by a0) to be a’s friends.

2. The function f oes : A −→ 2A maps an agent a ∈A to the set of agents f oes(a)
that are considered (by a0) to be a’s enemies.

3. The sets f riends(a) and f oes(a) are mutually disjoint for every agent a ∈A .

We leave open many issues including where a0 obtains these two functions from, and
whether, the Friend and Foe relations corresponding to the f riends(·) and f oes(·) func-
tions are reflexive, symmetric or transitive. We can graphically illustrate who is whose
friend (or enemy) by drawing different types of arrows. In Fig. 1 below, we take A
to be composed of agents a1. . . a10. We identify the sets f riends(a1) = {a4,a9} and
f oes(a1) = {a7,a10} by drawing appropriate solid and broken arrows respectively. The
friends and enemies of other agents are not being shown to avoid clutter.

a6

0

5

12

15

a3

Friend

Foe

a5

a2a1

a4

a8

a10a9

a7

Fig. 1. The trustworthiness of agent a1 is 12 since its suspicion index is 0 and the least degree of
suspicion directed toward its foes is 12

Apart from keeping information as to who is whose friend or enemy, agent a0 also
has its opinion on who is likely to disappoint it how much. We do this by assigning
another function suspa0(·) to it, which, for each agent a in A , gives a non-negative
integer indicating a’s degree of suspicion (trust deficit, or potential disappointment). As
before, we will drop the subscript a0 for readability.

Definition 4. The suspicion function susp : A −→N maps an agent a ∈A to a non-
negative integer susp(a) which indicates how disappointing a could be.

If susp(a) is 0, it indicates that the agent a0 is not suspicious of a at all. On the other
hand, an inequality such as susp(ai) < susp(a j) would indicate that the agent a0 is
more suspicious of a j than of ai. For all practical purpose, these values are ordinal
numbers, and we use them by and large for comparison. It immediately follows from
Assumption 2 that agent a0 is not paranoid if and only if susp(a) = 0 for some agent
a ∈ A . Accordingly, in Fig. 1, there are some agents (namely, a1,a2, and a3) that are
assigned the degree of potential suspicion 0. In fact, Assumption 2 leads to a more
general constraint on the functions susp(·) as follows:
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Observation 1. In presence of Assumption 2, given an arbitrary agent ai, there exists
some agent a j ∈A + \ {ai} such that suspai(a j) = 0.

This observation states that since the agents we are dealing with are not paranoid, each
of them places the minimum possible degree of distrust, 0, on at least one agent.

Suspicion Directed Toward a Group
Suspicion is often directed toward a group of individuals. For instance, during an elec-
tion, one might have strong suspicion against a particular interest groups. In principle,
any subset A ′ ⊆ A could constitute an interest group; and hence we should be able
to discuss the degree to which a0 suspects A ′. In general, a group of individuals will
have an underlying power structure which will play a crucial role in determining an
individual’s attitude towards it. If the group leader is not trustworthy, individuals will
have little trust in the group itself. However, we do not assume any power structure for
the groups. In absence of such a structure it is not quite clear how suspicion directed
towards a group can be reduced to suspicion directed towards its members. Analogous
to the weakest link principle, we postulate that a group is only as bad as its least bad
member, implying that no better person could have survived as a member of the group.2

Accordingly we generalize the definition of the function susp(·) as follows:

Definition 5. susp(A ′) = mina∈A ′susp(a) for any group of agents A ′ ⊆A .

Note that this general definition of susp(·) gracefully deals with the special case when
A ′ is a singleton set in that susp({a}) = susp(a) for any a ∈A . Going back to Fig. 1,
of particular interest would be the calculation of the degree to which agent a0 would
be suspicious of the friends of a1 and of the enemies of a1, that is, calculation of the
values of susp( f riends(a1)) and of susp( f oes(a1)). Note that in this figure the set A
is partitioned into equivalence classes modulo the susp-rank of its members, and the
ranks (0, 5, 12 and 15) of different agents are indicated on the left. It is easily verified
that these two values are respectively 5 and 12.

From Suspicion to Trust
As noted earlier as a rationale behind Definition 1, trust is more than simply the lack
of suspicion or distrust. In order that agent a0 positively trust some agent a, it is a
necessary condition that a0 bears no suspicion toward a; but that does not constitute a
sufficient condition. Although I have no reason to be suspicious of a perfect stranger, I
have no reason to trust them either. We can now offer a more formal definition of trust.
As before, the reference to the agent a0 is being dropped for readability.

Definition 6

1. An agent a is trusted (by a0) if and only if both susp(a) = 0 and susp( f oes(a))> 0
for all a ∈A .

2. Given an agent a ∈A trusted by a0, the degree of trust that a0 places on a is given
by trust(a) = susp( f oes(a)).

2 Indeed, as an image building exercise, often “bad” groups enrol “good” individuals, intending
to mislead others. This deceit works precisely because there is a presumption that the group
could not be worse then its least bad member.
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Thus, going back to Fig. 1, the degree of trust that a0 places on the agent a1 is 12
since susp(a1) = 0 and susp( f oes(a1)) = susp({a7,a10}) = 12. On the other hand,
since susp(a5) = 5, it follows that a0 does not trust a5 at all. In fact, a0 distrusts (is
suspicious of) a5 to the degree 5.

Now we are in a position to define trust in a group. Trusting a set of agents A ′ entails
trusting every member of that group. The degree of that trust is the minimal trust earned
by members of that group in the relevant manner.3

Definition 7

1. Given any A ′ ⊆A , agent a0 trusts A ′ if and only if a0 trusts every agent a ∈A ′.
2. Given that agent a0 trusts some A ′ ⊆A , the degree of trust that a0 places on A ′

is given by trust(A ′) = mina∈A ′trust(a).

Referring back to Fig. 1, we easily verify that trust({a1,a5,a6}) is undefined since
the agents a5 and a6 are not trusted. On the other hand, trust({a1,a2,a3}) cannot be
evaluated at this point since the values of f oes(a2) and f oes(a3) are not available.

3 Trust Contextualised

The account we provided of trust above pretends that trust is not context-sensitive.
However, trust is an actional attitude – it is sensitive to the action at hand, and per-
haps to other contextual factors. We will assume that there are certain things called
contexts, and actions are part of the relevant contexts. We will not investigate into the
inner mechanism of contexts, but assume that a context encodes such information as the
relevant action, and the agent’s plan, ability, and intention. Our purpose here is simply
to generalize the account of bare trust presented earlier in order that contexts can be
incorporated into the accounts of trust. Accordingly, we assume that there is a fixed set
of contexts, C , and we denote the member contexts by c with possible decorations.

From the Section Bare Trust it is clear that the two central notions used here are the
functions f riends(·) vs. f oes(·) on the one hand and the function susp(·) on the other.
The concept of trust is defined in terms of them. We will need to consider which of
these primary notions need to be parametrized by a context argument.

Let us first examine if the functions f riends(·) and f oes(·) should be contextualised.
We note that the words “friend” and “foe” as used here are convenient labels standing
for similar clusters of properties as the concepts friend and enemy. In a certain sense,
one might take the concept friends to denote a cohort group; thus, for instance, the set
of agents that a hangs around with in a fishing trip could be very different from the
set of agents it accompanies in a shopping expedition. We can similarly argue that one’s
set of enemies can change from context to context. Note that letting these functions ac-
cept the context as a parameter will not force us to change the output of the functions as
the context changes. Accordingly we introduce two corresponding functions as follows:

3 It is not always correct. I might trust a company because its CEO is my trusted friend, even if
I don’t trust many employees of this company. But such power relations cannot be captured in
our framework without adding further structure to it.
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Definition 8

1. The function f riendscon : A ×C −→ 2A maps an agent a ∈A in a context c ∈ C
to the set f riendscon(a,c) considered by a0 to be a’s friends in the context c.

2. The function f oescon : A ×C −→ 2A maps an agent a ∈A in a context c ∈ C to
the set f oescon(a,c) considered by a0 to be a’s enemies in the context c.

It is very natural to assume that distrust is context sensitive. Accordingly:

Definition 9. The function suspcon : A ×C −→N maps a ∈ A in c ∈ C to a non-
negative integer suspcon(a,c) telling how disappointing a could be to a0 in that context.

Definition 10. suspcon(A ′,c) =mina∈A ′suspcon(a,c) for any group of agents A ′ ⊆A
and context c ∈ C .

We again refer to the figure Fig. 1 which can be taken to illustrate the the notion of
suspicion or distrust in a given context c. Finally, we contextualize the notions of trust
(directed towards an individual as well as at a group) in the obvious fashion.

Definition 11

1. An agent a is trusted (by a0) in context c if and only if both suspcon(a,c) = 0 and
suspcon( f oescon(a,c))> 0 for all a ∈A .

2. Given an agent a ∈A trusted by a0, the degree of trust that a0 places on a in c is
given by trustcon(a,c) = suspcon( f oescon(a,c)).

Definition 12

1. Given any A ′ ⊆A and context c ∈ C , agent a0 trusts A ′ in context c if and only
if a0 trusts every agent a ∈A ′ in context c.

2. Given that agent a0 trusts some A ′ ⊆ A in context c, the degree of trust that a0

places on A ′ in c is given by trustcon(A ′,c) = mina∈A ′trustcon(a,c).

Thus we see that the concept of bare trust is naturally generalised to a more notion of
trust that is context sensitive, and hence is a more appropriate model of trust.

4 The Dynamics of Trust

In the section Bare Trust we outlined the basic framework to describe a trust state that
is in equilibrium. In the subsequent section Trust Contextualised we generalised this
framework to reflect that trust is a context-sensitive notion. Apart from context, trust
also changes over time subject to an agent making new observations, receiving new
information, and even receiving recommendations from others. For instance, if agent a0

were to receive a recommendation from a reputable source that a5 is very trustworthy,
a0’s evaulation of the trustworthiness of a5 will change. How this change is effected
– the dynamics of trust – is the topic of this section. Without any loss of generality,
we take it to be the study of how the function susp(·) [resp. suspcon(·)] changes in
response to relevant triggers. We will restrict the discussion of trust dynamics to how
susp(·) responds to received recommendations of the appropriate sort.
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Let us first note that who makes the recommendation makes a difference. If the rec-
ommendation comes from someone that a0 considers to be completely unreliable, a0 is
likely to ignore the recommendation. On the other hand, if the recommendation comes
from someone whose judgment a0 trusts, then it will take up the recommendation seri-
ously and “update” its trust values in different agents. There are other relevant factors
as well. If the recommendation regarding a j comes from ai, and a0 “knows” that a j is a
friend of ai, then chances are a0 would take the recommendation not as seriously as it
normally would; it might in fact “discount” the recommendation to some extent. On the
other hand, if a j is believed to be an enemy of ai, then it would have the opposite effect.
The framework developed here can deal with these variations in a judicious manner. In
this paper we will make many simplifying assumptions. In particular, we will assume
that the agent a0 considers the recommendation received to be practically infallible, the
recommending agent has no (relevant) conflict of interest, and means what she says –
in other words, no special speech acts [14] and conversational implicature [6] are be-
ing employed. We will first recapitulate the account of (bare) trust dynamics proposed
in [11], and then outline a more general dynamics for contextual trust.

4.1 Bare Trust Dynamics

In this section we discuss how bare trust, represented in terms of the un-contextualised
functions susp(·), f oes(· · · ), etc., gets updated in light of received recommendations.
Let us assume that agent a0 has received a recommendation from an infallible source to
trust agent a5 to degree 3. This recommendation has the general form new trust(agent
a, value x). In response, agent a0 will update its function susp(·) to, say, susp′(·) =
susp(· | 〈a,x〉) such that when the trust value of agent a is computed modulo susp′(·),
we will get the result x. Borrowing terminology from probability theory, we will term
susp(·) to be the prior suspicion function of the agent a0, and susp′(·) = susp(· | 〈a,x〉)
to be its posterior suspicion function. When no confusion is imminent, we will repre-
sent the posterior susp′(·) = susp(· | 〈a,x〉) simply as susp〈a,x〉(·).

Definition 13

1. A trust recommendation is denoted by a pair 〈a,x〉 where a ∈ A is an agent, and
x ∈N is the recommended trust-value of a.

2. susp(· | 〈a,x〉) represents the “posterior suspicion function”, also denoted
susp〈a,x〉(·), after the prior susp(·) has been updated in light of the trust recom-
mendation 〈a,x〉.

Since the recommendation is accepted as is, the posterior suspicion function susp〈a,x〉(·)
should be so constructed that the trust value for the agent a generated from it as per
Definition 6 should be x. This naturally leads to the following two constraints:

Assumption 3

1. susp〈a,x〉(a) = 0
2. susp〈a,x〉( f oes(a)) = x
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Fig. 2. Agent a5 who was distrusted to degree 5, is now trusted to degree 3

Let us consider the prior suspicion function susp(·) represented by the left rectangle
in Fig. 2. The agent a0 distrusts a5 to degree 5; the friends of a5 are two, namely a8 and
a10; and a5 also has two enemies: a1 and a6. Suppose also that the agent a0 receives a
recommendation 〈a5,3〉 that it must accept at face value. Given Assumption 3, it then
follows that susp〈a5,3〉(a5) = 0, and susp〈a5,3〉({a1,a6}) = 3. This raises three questions.

1. Clearly the posterior suspicion function susp′(·) = susp〈a5,3〉(·) will assign a5 the
value 0. What would it do to the friends of a5? For instance, should susp(a8) be left
untouched in this updating process? If not, what would be the correct value?

2. Since susp〈a5,3〉({a1,a6}) = 3, the minimum of the values assigned by susp〈a5,3〉(·)
to a1 and a6 is 3. But which of them should receive this minimum value?

3. As in the case (1) above, given that in this trust updating process, the susp(·) value
of a1 is changed from 0 to 3, should that of a6 be left unchanged?

Each of these issues admits multiple, even bizarre solutions such as:

Proposal 1. For all a′ ∈A ,

susp〈a5,3〉(a
′) =

{
0 if either a′ = a5 or a′ ∈ f riends(a5)

3 otherwise

In order to block such solutions, we propose trust adjustment and trust shift, two pro-
posals that are inspired by work in iterated belief revision [10, 22].

Trust Adjustment. This approach strictly follows the principle of minimal repair. We
may assume that agent a0’s function susp(·) summarizes a lot of valuable, historical
information. that should not be lost without very good reason. However, Proposal 1 will
obliterate such distinction, even when the trust recommendation, 〈a5,3〉 has nothing
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to do, directly or indirectly, either with a2 or with a9. It is guilty of over repair. We
should not rectify the susp(·) function more than necessary. The changes that are really
necessary are explicitly identified in Assumption 3. If we follow this recipe, then, in the
context of Fig.2, the following modification in susp(·) would appear to be appropriate:

Proposal 2. For all a′ ∈A ,

susp〈a5,3〉(a
′) =

⎧⎪⎨
⎪⎩

0 if a′ = a5

3 if a′ is susp-minimalin f oes(a5)

susp(a′) otherwise.

According to this proposal, the susp-value of a5 will be reduced to 0, and that of a1

will be increased to 3. The susp-value of every other agent in A will be left as is,
ensuring that the a5 will be trusted to degree 3 with minimal repair to the function
susp(·). However, in general this approach will not work. In particular, suppose that the
agent a5 had one more enemy, say a4 with susp(a4) = 2. In such a case, after susp(·)
was updated to susp〈a5,3〉(·) in response to the received trust-recommendation 〈a5,3〉
following the procedure specified in Proposal 2, the agent will be trusted to the degree
2 instead of the desired degree 3. Hence a slight correction in Proposal 2 is due:

Definition 14 (Trust Adjustment). Let a, a′ ∈A and x ∈N . The updated suspicion
function is given by:

suspad just
〈a,x〉 (a′) =

⎧⎪⎨
⎪⎩

0 if a = a′

x if both a′ ∈ f oes(a), and susp(a′)< x

susp(a′) otherwise.

The figure Fig. 2 (top-right) graphically illustrates how the susp-values of different
agents get adjusted in this process.

Trust Shift. Although trust adjustment satisfies both Assumption 3, and the principle
of minimal repair, the way it distorts the relationship between different friends (or en-
emies) of the agent a is debatable. Consider again Fig. 2. All the three friends, a5,a8

and a10 were distrusted to various degrees, ranging from 5 to 15. A recommendation
was received that the agent a5 is fairly trust worthy, and should be trusted to degree
3, and a0 accordingly trusted a5. It is only rational to expect that agent a0 would now
distrust a8 and a10 less than it did before. But that does not happen. Similarly, this rec-
ommendation “taints” a5’s enemy a1, who was not distrusted before. However, there is
no corresponding loss of trust in a6, the other enemy of a5. It will be more appropriate
to shift en bloc the suspicion values of a5’s friends (or enemies), up or down as the case
may be, by the same magnitude. This is captured as follows:

Proposal 3. For all a′ ∈A ,

susp〈a5,3〉(a
′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a′ = a5

max(0,(susp(a′)− 5)) if a′ ∈ f riends(a5)

susp(a′)+ 3 if a′ ∈ f oes(a5)

susp(a′) otherwise.
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The result of such uniform shift is illustrated in the figure Fig.2 (bottom-right). It is
easily verified that the relative trust deficit between different friends (or enemies) of a5

is not affected in this process. Definition 15 generalises this proposal.

Definition 15 (Trust Shift). Let a, a′ ∈A , x∈N , and y denote susp( f oes(a)). Then,
the new (updated) suspicion function is given by:

suspshi f t
〈a,x〉(a

′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a = a′

max(0,(susp(a′)− susp(a))) if a′ ∈ f riends(a)

susp(a′)− y+ x if both a′ ∈ f oes(a) and x �= y

susp(a′) otherwise.

The first clause in this definition ensures that a is not distrusted. This reduces the susp-
value of a by susp(a); and that is the magnitude by which we would like to reduce the
susp-value of all its friends. This is done in the second clause, with the proviso that
the revised susp-value has a floor value of 0. The more interesting case is captured by
the third clause. Note that y, defined as susp( f oes(a)), is really, as per Definition 5,
the minimal susp-value associated with any enemy of a. Since a′ is an enemy of a, it
follows that y will never exceed susp(a′), and hence susp(a′)− y+ x will always be
non-negative, and the susp-value of all enemies of a will be uniformly shifted by the
same magnitude |x− y|, as desired. The last clause effectly says that agents that are
neither friends nor enemies of a are not affected.

4.2 Dynamics of Contextual Trust

Since trust is an actional attitude, one’s trust towards a person could fluctuate depend-
ing on the action being considered to be carried out. While in the section Bare Trust
we ignored this aspect of trust, in the section Trust Contextualised we sensitized our
notion of trust by introducing context as an extra parameter to the relevant functions,
f riendscon, f oescon and suspcon being the primary ones. In the current section, The Dy-
namics of Trust, so far we have looked at the dynamics of bare trust. We now consider
the dynamics of trust that is sensitive to context.

We assume that the current trust state of the agent a0 is given by a function suspcon(·)
that accepts two parameters, namely, an agent a and a context c, and returns a suspicion
value. Since the recommendation of the form new trust(agent a,value x) does not tell
in which context the recommendation is being made, the only reasonable thing the
agent a0 can do with it is to discard it altogether, or to revise all the trust values it has
for a. The first option wastes a recommendation, the second results in serious loss of
information.Hence it is appropriate to assume that that the recommendation will have
the general form new trust(agent a,value x,context c). The intended reading is that
agent a0’s trust in a should be left unchanged in all contexts except c where the new
trust value should be x. Accordingly, we generalise Definitions 14 and 15.

Definition 16 (Contextual Trust Adjustment). Let a, a′ ∈ A , x ∈ N , and c ∈ C .
Let the (contexualized) trust state of an agent a0 be given by the suspicion function
suspcon(·). Then, the revised suspicion function is given by:
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suspcon
ad just
〈a,x,c〉(a

′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

suspcon(a′,c′) if c �= c′

ELSE (i.e. if c = c′)

0 if a = a′

x if both a′ ∈ f oescon(a,c),

and suspcon(a′,c)< x

suspcon(a′,c) otherwise.

It is easily verified that the Definition 16 leaves the trust state unchanged when the input
context is different from the context in which the agent a is being “assessed”, and in the
relevant context c it changes as does bare trust adjustment defined by Definition 14.

Definition 17 (Contextual Trust Shift). Let a, a′ ∈A , x∈N , and and c∈C . Let the
(contexualized) trust state of an agent a0 be given by the suspicion function suspcon(·).
Also, let y denote suspcon( f oescon(a)). Then, the revised suspicion function is given by:

suspcon
shi f t
〈a,x,c〉(a

′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

suspcon(a′,c′) if c �= c′

ELSE (i.e. if c = c′)

0 if a = a′

max(0,(suspcon(a′,c)−
suspcon(a,c))) if a′ ∈ f riendscon(a,c)

suspcon(a′,c)− y+ x if both a′ ∈ f oescon(a,c) and x �= y

suspcon(a′,c) otherwise.

As in the case of the Definition 16, the trust state is left unchanged when the input
context is different from the context in which the agent a is being “assessed”, otherwise
it behaves like bare trust shift defined by Definition 15.

We end this section making an important but obvious point, that the definitions of
trust adjustment and trust shift, be it for the bare version (Definitions 14 and 15) or the
contextualised version (Definitions 16 and 17), indeed define how the appropriate susp
functions change, and the change in the corresponding trust functions, defined in terms
of the susp functions, is made is only implicitly defined.

5 Discussion and Future Work

In this paper we developed a simple framework for representing the statics of trust –
both bare and contextualized – and provided two reasonable mechanisms for managing
its dynamics. There are many issues that we will address in future work:

1. We intend to re-interpret less informative recommendations such as “trust a” as:
〈a,susp( f oes(a))〉 (or as 〈a,suspcon( f oes(a)), c〉), and investigate its consequences.

2. This framework can be enhanced to deal with recommendations about a group, or
originating from a group.

3. The current trust-value (reputation) of the recommender is not taken into account
while processing a reputation. This can be used to further fine-tune this framework.
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4. Apart from the dynamics of the suspicion functions, we also need to investigate the
dynamics of friendship and enmity (the functions f riends and f oes)

5. The account we provided is semantic. We need to devise an appropriate language of
trust, and syntactically characterise the trust shift and trust adjustment operations.

6. Finally, it will be important to examine how it fares against existing relevant ap-
proaches such as [8], and how it can be practically validated.
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Abstract. After an introduction to Heuristic-Driven Theory Projection (HDTP)
as framework for computational analogy-making, and a compact primer on para-
metrized complexity theory, we provide a complexity analysis of the key mech-
anisms underlying HDTP, together with a short discussion of and reflection on
the obtained results. Amongst others, we show that restricted higher-order anti-
unification as currently used in HDTP is W [1]-hard (and thus NP-hard) already
for quite simple cases. Also, we obtain W[2]-hardness, and NP-completeness,
for the original mechanism used for reducing second-order to first-order anti-
unifications in the basic version of the HDTP system.

1 Introduction and Preliminaries

During the course of a day, we use different kinds of reasoning processes: We solve
puzzles, play instruments, or discuss problems. Often we will find ourselves in situa-
tions in which we apply our knowledge of a familiar situation to the structurally similar
novel one. Today it is undoubted that one of the basic elements of human cognition is
the ability to see two a priori distinct domains as similar based on their shared relational
structure (i.e., analogy-making). Key abilities within everyday life, such as communi-
cation, social interaction, tool use and the handling of previously unseen situations cru-
cially rely on the use of analogy-based strategies and procedures. Relational matching,
one of the key mechanisms underlying analogy-making, is also the basis of percep-
tion, language, learning, memory and thinking, i.e., the constituent elements of most
conceptions of cognition [1].

Since the advent of computer systems, researchers in cognitive science and artificial
intelligence have been trying to create computational models of analogy-making. This
line of work has resulted in several different frameworks for computational analogical
reasoning, starting with Reitman’s ARGUS [2] and Evan’s ANALOGY engine [3] and
featuring systems as prominent as Hofstadter’s Copycat [4] or the famous Structure-
Mapping Engine (SME) [5] and MAC/FAC [6]. Whilst the latter two systems imple-
ment a version of Gentner’s Structure-Mapping Theory (SMT) [7], more recently a dif-
ferent, generalization-based approach has been proposed: Heuristic-Driven Theory Pro-
jection (HDTP) [8,9]. Since its presentation, HDTP has continuously been refined and
applied to different scenarios and domains, most prominently to mathematical reason-
ing [10] and conceptual blending in mathematics [11]. Still, except for a few accidental
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observations, this far no formal analysis of the computational complexity of HDTP on a
systematic basis has been provided. In this paper, we present several results concerning
the computational complexity of HDTP and the corresponding anti-unification formal-
ism for analogy-making.

The paper is structured as follows: Sect. 1.1 presents a short introduction to the
Heuristic-Driven Theory Projection framework, followed by necessary preliminaries of
parametrized complexity theory in Sect. 1.2. Then, Sect. 2 initially gives the definitions
on the basic mechanisms of anti-unification, before Sect. 2.1 provides a complexity
analysis of several forms of restricted higher-order anti-unification as applied in HDTP.
Sect. 3 contains a complexity analysis of the use of equational theories in HDTP to
simplify higher-order anti-unifications. Sect. 4 offers an interpretation of and reflection
on the given complexity results, and Sect. 5 concludes the paper.

1.1 HDTP: Heuristic-Driven Theory Projection

The Heuristic-Driven Theory Projection (HDTP) framework [8] has been conceived as
a mathematically sound framework for analogy-making. HDTP has been created for
computing analogical relations and inferences for domains which are given in form of
a many-sorted first-order logic representation [11]. Source and target of the analogy-
making process are defined in terms of axiomatisations, i.e., given by a finite set of
formulae. From there, HDTP tries to align pairs of formulae from the two domains by
means of anti-unification (as firstly studied by Plotkin [12,13]): Anti-unification tries
to solve the problem of generalizing terms in a meaningful way, yielding for each term
an anti-instance, in which distinct subterms have been replaced by variables (which in
turn would allow for a retrieval of the original terms by a substitution of the variables
by appropriate subterms).1 In it’s present form, HDTP extends Plotkin’s classical first-
order anti-unification to a restricted form of higher-order anti-unification, as mere first-
order structures have shown to be too weak for the purpose of analogy-making [9].

Restricted higher-order anti-unification as presently used in HDTP was introduced
in [14]. In order to restrain generalizations from becoming arbitrarily complex, a new
notion of substitution is introduced. Classical first-order terms are extended by the in-
troduction of variables which may take arguments (where classical first-order variables
correspond to variables with arity 0), making a term either a first-order or a higher-
order term. Then, anti-unification can be applied analogously to the original first-order
case, yielding a generalization subsuming the specific terms. As already indicated by the
naming, the class of substitutions which are applicable in HDTP is restricted to (compo-
sitions of) the following four cases: renamings, fixations, argument insertions, and per-
mutations (cf. Sect. 2.1). Unfortunately, in the higher-order case, the least general gen-
eralization loses its uniqueness. Therefore, the current implementation of HDTP ranks
generalizations according to a complexity measure on generalizations and chooses the
least complex generalizations as preferred ones [9,15].

From a practical point of view, it is also necessary to anti-unify not only terms,
but formulae. Therefore, HDTP extends the notion of generalization also to formulae

1 In [12], Plotkin demonstrated that for a proper definition of generalization, for a given pair of
terms there always is a generalization, and that there is exactly one least general generalization
(up to renaming of variables).
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by basically treating formulae in clause form and terms alike (as positive literals are
structurally equal to function expressions, and complex clauses in normal form may
be treated component wise). Furthermore, analogies do in general not only rely on an
isolated pair of formulae from source and target, but on two sets of formulae. Here,
heuristics are applied when iteratively selecting pairs of formulae to be generalized:
Coherent mappings outmatch incoherent ones, i.e., mappings in which substitutions
can be reused are preferred over isolated substitutions, as they are assumed to be better
suited to induce the analogical relation. Once obtained, the generalized theory and the
substitutions specify the analogical relation, and formulae of the source for which no
correspondence in the target domain can be found may be transferred, constituting a
process of analogical transfer between the domains.

The HDTP framework has successfully been tested in different application scenarios,
and its use in several others has been proposed and theoretically grounded. [10] shows a
way how HDTP can be applied to model analogical reasoning in mathematics by a case
study on the inductive analogy-making process involved in establishing the fundamental
concepts of arithmetic, [11] applies HDTP to conceptual blending in the mathematics
domain by providing an account of a process by which different conceptualizations of
number can be blended together to form new conceptualizations via recognition of com-
mon features, and judicious combination of distinctive ones. In [16], HDTP has been
used in the context of solving geometric analogies. On the more theoretical side, [17]
considers how the framework could fruitfully be applied to modeling human decision-
making and rational behaviour, [18] elaborates on how to expand HDTP into a domain-
independent framework for conceptual blending, and [19] provides considerations on
the applicability of HDTP in a computational creativity context.

1.2 (Parameterized) Complexity Theory Preliminaries

As usual, P denotes the class of decision problems solvable in deterministic polyno-
mial time, and NP denotes the class of decision problems solvable in non-deterministic
polynomial time. We assume familiarity with the basic concepts of the theory of NP-
completeness: NP-hardness, polynomial-time reductions, etc.

We briefly describe the basics of parameterized complexity theory. An instance of
a parameterized decision problem P is a tuple (x,k), where x ∈ {0,1}∗ is a string de-
scribing the problem and k∈Z, which is called the parameter of the problem (codifying
other aspects of the problem besides n). We say a parameterized decision problem P
is fixed parameter tractable, written P ∈ FPT, if it is solvable in time bounded by
f (k) · |x|O(1), where f (k) is some computable function of the parameters and |x|O(1)

denotes a polynomial of the length of the input. As suggested by notation, we let FPT
denote the class of all fixed parameter tractable problems.

Given two parameterized problems P ,Q , a parameterized reduction is a function φ
from P to Q such that the following holds, for an instance (x,k) ∈ P :

1. φ(x) is computable in time f (k) · |x|O(1), where f is a computable function of the
parameter,

2. x ∈ P iff φ(x) ∈ Q, and
3. If k′ is the parameter of φ(x), then k′ = g(k) for some function g.
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Let the weft of a boolean circuit (containing only NOT gates, small AND and OR gates
of fan-in ≤ 2 and large AND or OR gates of arbitrary finite fan-in) be the maximum
number of large gates on any path from an input to the output, and let the depth be the
maximum number of all gates on a path. Let C[t,d] be the set of all circuits of weft at
most t and depth at most d. Finally, define the (Hamming) weight of an assignment of
truth values to the input variables of the circuit as the number of variables set to 1.

Problem 1. Weighted Circuit Satisfiability[t,d]
Input: A circuit C of depth d and weft t, a natural k ∈ N.
Problem: Is there a satisfying assignment to C with weight k?

We say a parameterized problem P is in W[i] if it is reducible by a parameterized
reduction to Weighted Circuit Satisfiability[i,d] for some constant d, and is W[i]-hard
if every problem in W [i] is reducible to P under a parameterized reduction. The as-
sumption that W[1] �= FPT can be seen as analogous to the assumption that P �= NP in
classical complexity, although it is indeed conjectured that W[i] ⊂W [ j] for any i < j.
For a more in-depth introduction to parameterized complexity, see for instance [20,21].

2 Anti-unification: Initial Considerations

We begin our considerations on the complexity of anti-unification with some requi-
site definitions. HDTP uses many-sorted term algebras to define the input conceptual
domains. A term algebra requires two ingredients: a signature and a set of variables.

Definition 1. A many-sorted signature Σ = 〈Sort,Func〉 is a tuple containing a finite
set Sort of sorts, and a finite set Func of function symbols. An n-ary function symbol
f ∈ Func is specified by f : s1× s2× ·· · × sn → s, where s,s1, . . . ,sn ∈ Sort. We will
consider function symbols of any non-negative arity, and we will use 0-ary function
symbols to represent constants.

Definition 2. Let Σ= 〈Sort,Func〉 be a many-sorted signature, and let V = {x1 : s1,x2 :
s2, . . .} be an infinite set of sorted variables, where the sorts are chosen from Sort. As-
sociated with each variable xi : si is an arity, analogous to the arity of function symbols
above. For any i≥ 0, we let Vi be the variables of arity i. The set Term(Σ,V ) and the
function sort : Term(Σ,V )→ Sort are defined inductively as follows:

1. If x : s ∈ V , then x ∈ Term(Σ,V ) and sort(x) = s.
2. If f : s1×s2×·· ·×sn→ s is a function symbol in Σ, and t1, . . . , tn ∈Term(Σ,V ) with

sort(ti) = si for each i, then f (t1, . . . , tn) ∈ Term(Σ,V ) with sort( f (t1, . . . , tn)) = s.

We refer to the structure 〈Term(Σ,V ),sort〉 as a term algebra, often suppressing sort.
If t ∈ Term(Σ,V ) then we define |t| to be the number of variables appearing in t.

From here on out, we will fix a term algebra Term(Σ,V ). In the next sections we
will be considering several different forms of restricted higher-order anti-unification.
First we introduce the term substitutions and generalizations allowed in first-order anti-
unification.
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Definition 3. A term substitution is a partial function σ : V0→ Term(Σ,V ) mapping
0-ary variables to terms. An application of a term substitution σ on a term is defined
inductively by:

1. apply(x,σ) =

{
t x→ t ∈ σ
x otherwise.

2. apply( f (t1, . . . , tn),σ) = f (apply(t1,σ), . . . ,apply(tn,σ)).

Given two terms t, t ′ and a substitution σ such that apply(t,σ) = t ′, then we call t ′ an

instance of t and t an anti-instance of t ′. We will often shorten apply(t,σ) = t ′ to t
σ−→ t ′,

or t → t ′ if the substitution is clear from context.
Let f ,g be terms from a term algebra Term(Σ,V ). A generalization of f and g is

a triple 〈h,σ,τ〉 where h ∈ Term(Σ,V ) and σ,τ are substitutions such that h
σ−→ f and

h
τ−→ g. The generalization 〈h,σ,τ〉 is called the least general generalization (lgg) if for

any generalization 〈h′,σ′,τ′〉 of f ,g, there exists a substitution φ such that h′
φ−→ h.

As mentioned earlier, the lgg is unique when considering only term substitutions. We
can thus state the first-order anti-unification problem as follows:

Problem 2. First Order Anti-Unification
Input: Two terms f ,g from a term algebra Term(Σ,V )
Problem: Find the least general generalization 〈h,σ,τ〉 of f and g.

While this simple anti-unification problem has many efficient algorithms (see, for
example, [12,22]), we will recall one algorithm which will form the basis of an efficient
method for one of the forms of restricted higher-order anti-unification we consider. The
algorithm will not operate on the terms themselves, per say, but rather rooted trees
which can be naturally associated with each term.

Definition 4. Let f be a term in Term(Σ,V ). The tree form of f , denoted Tf , is a rooted
labelled tree defined inductively as follows.

If f is a 0-ary (constant) term, then Tf consists of a single node r, labelled with
( f ,0). If f is an n-ary term, denote it as f (t1, . . . , tn). Then the root of Tf is a node r,
labelled with ( f ,n), which has n ordered children c1, . . . ,cn. The child ci is the root of
Tti , the tree form of the term ti.

Algorithm 1. FO-AntiUnify. Input: The tree forms Tf ,Tg of two terms f ,g with re-
spective roots r f ,rg. Output: An anti-unifier h of f and g, with two substitutions σ,τ.

Let ( f ,n) be the label of r f and (g,m) be the label of rg.
if f or g is a 0-ary term or n �= m then return h = X ,σ = {X �→ f },τ = {X �→ g}
end if
Let h be the empty term, and σ,τ be empty substitutions.
Let a1, . . . ,an be the children of r f , and b1, . . . ,bn be the children of rg.
for i = 1, . . .n do 〈y,α,β〉 = FO-AntiUnify(ai,bi); Merge 〈y,α,β〉 with 〈h,σ,τ〉.
end for; return 〈h,σ,τ〉.
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This algorithm performs a depth-first search of the two input trees, replacing subtrees
with variables if they do not match structurally. It plainly runs in time linear in the size
of the two input terms. We will return to this algorithm shortly, as it also efficiently
solves a slightly more general anti-unification problem.

2.1 Restricted Higher-Order Anti-unification

In [14], a restricted form of higher-order anti-unification was presented for use in HDTP,
defined as any composition of a certain set of unit substitutions.

Definition 5. The following are the types of unit substitutions allowed in restricted
higher-order anti-unification.

1. A renaming ρ(F,F′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:

F(t1, . . . , tn)
ρ(F,F ′)−−−−→ F ′(t1, . . . , tn).

2. A fixation φ(F, f ) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:

F(t1, . . . , tn)
φ(F, f )−−−−→ f (t1, . . . , tn).

3. An argument insertion ι(F,F ′,V, i) is defined as follows, where F ∈ Vn,F ′ ∈ Vn−k+1,V ∈
Vk, i ∈ [n]:

F(t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−→ F ′(t1, . . . , ti−1,V (ti, . . . , ti+k), ti+k+1, . . . , tn).

It “wraps” k of the subterms in a term using a k-ary variable, or can be used to insert a
0-ary variable.

4. A permutation π(F,τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n] a
bijection:

F(t1, . . . , tn)
π(F,τ)−−−→ F(tπ(1), . . . , tπ(n)).

A restricted substitution is a substitution which results from the composition of any
sequence of unit substitutions.

Clearly, restricted substitutions are strictly more general than term substitutions. By
considering different combinations of restricted substitutions we can define several dif-
ferent forms of higher-order anti-unification. Unfortunately, the lgg is no longer nec-
essarily unique [14], and so we will instead consider decision version of the prob-
lems parameterized by the number of substitutions, variables, and types of variables
used.

Problem 3. F Anti-Unification
Input: Two terms f ,g, and a natural k ∈ N
Problem: Is there an anti-unifier h, containing at least k variables, using only renamings and
fixations?

Problem 4. FP Anti-Unification
Input: Two terms f ,g, and naturals l,m, p ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables and at least m higher
arity variables, and two substitutions σ,τ using only renamings, fixations, and at most p

permutations such that h
σ−→ f and h

τ−→ g?
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Problem 5. FPA Anti-Unification
Input: Two terms f ,g and naturals l,m, p,a ∈ N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables, at least m higher arity
variables, and two substitutions σ,τ using renamings, fixations, at most p permutations, and
at most a argument insertions such that h

σ−→ f and h
τ−→ g?

We summarize our (parameterized) complexity-theoretic results of higher-order anti-
unification in the following theorem, which will be our next focus.

Theorem 1

1. F Anti-Unification is solvable in polynomial time.
2. FP Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {h, p}.
3. Let r be the maximum arity and s be the maximum number of subterms of the input

terms. Then FP Anti-Unification is in FPT w.r.t. parameter set {r, p}.
4. FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p,a}.

F Anti-Unification. The F Anti-Unification problem can easily be seen to be solvable in
linear time by a simple modification of Algorithm 1. When we consider the roots of two
subtrees labelled with f ,g, if the arities of the terms (i.e. the number of children) match
(say, they are both n) we can add a new fixation using an n-ary variable. Moreover, up to
renaming, this implies that when considering the F Anti-Unification problem the least
general generalization is unique, just like First-Order Anti-Unification.

FP Anti-Unification

Theorem 2. FP Anti-Unification is W[1]-hard w.r.t. parameter set {h, p}, and NP-
complete.

Proof. FP Anti-Unification is clearly in NP, by just non-deterministically guessing a
generalization 〈h,σ,τ〉 and applying the substitutions σ and τ to h. We will show W[1]-
hardness and NP-completeness by reduction from the well-known W[1]-hard problem
k-Clique.

Problem 6. Clique
Input: A graph G and a natural k ∈ N
Problem: Does G contain a clique, that is a complete induced subgraph, of size k?

The theorem follows by the well-known reduction between Subgraph Isomorphism
and Clique. Let G, k be an instance of Clique, and let E = {ei = (ui,vi)}e

i=1 be the set
of edges in G. Set n = k(k+ 1)/2, the number of edges in a k-clique. Define the term g
using G as follows. We will begin with an e-ary term gr, which contains terms ei(ui,vi),
one for each edge in E .

We define f in the same way using Kk, the complete graph on k vertices. That is
we start with the term gr, which contains a term ai(bi,ci) for each edge (bi,ci) in Kk.
However, we will pad f using m−n ternary terms ti(xi,yi,zi), with unique symbols used
for each term. Therefore, both terms will look like so:

g = gr(e1(u1,v1), . . . ,ee(ue,ve))

f = gr(a1(b1,c1), . . . ,an(bn,cn), t1(x1,y1,z1), . . . , te−n(xe−n,ye−n,ze−n))

Set l = e− n+ k,m = k, p = 1.
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Suppose that G contains a k-clique, denote P⊆ G. Then clearly there exists an isomor-
phism φ from Kk to P, and so there exists a bijection between the edges of P and Kk.
Using a single permutation, if necessary, move the edges in the terms f ,g to occupy
the first k arguments of gr, lining up the edges that are in correspondence under φ. We
define the anti-unifier h of f and g like so:

h = gr(E1(U1,V1), . . . ,En(UN ,VN),X1, . . . ,Xm−n),

using k 0-ary variables (corresponding to the vertices) for the terms inside the Ei vari-
ables, and using the Ei variables (corresponding to the edges), and define the fixation
substitutions accordingly. Finally, use n− k 0-ary variables to anti-unify the ternary
terms at the end of f with the edges of g not occurring in the clique.

The reverse direction is simple, but technically tedious. One simply has to show that
the term h described above is the only anti-unifier of f and g satisfying the values of
the parameters (up to a renaming of the variables and a permutation of the subterms of
gr). Once this is shown, it is simple to pull out a k-Clique in G, using the corresponding
edge terms Ei(Ui,Vi) occurring in the anti-unifier.

It seems that determining how to use permutations to order the subterms of f and g
to maximize structural similarity is a quite difficult problem since even allowing sin-
gle permutation implies computational hardness. On the tractability side, we can get a
simple FPT result from restricting the arity and number of subterms of f and g.

Proposition 1. FP Anti-Unification is in FPT w.r.t. parameter set {s, p,r}, where r is
maximum arity and s is the maximum number of subterms of the input terms.

Proof. Clearly, there are at most
(s

p

)
ways to apply permutations in any FP Anti Unifi-

cation of f and g, and there will be at most r! ways to apply each permutation. Running
the algorithm for F Anti-Unification on each possible set of subterms gives an algo-
rithm which runs in time at most O(

(s
p

)
r! ·n), where n is the number of symbols in the

input.

FPA Anti-Unification We can get a parameterized hardness result for FPA Anti-Unifi-
cation as a corollary of the above proof.

Theorem 3. FPA Higher-Order Anti-Unification is W[1]-hard with respect to parame-
ter set {m, p,a}, and NP-complete.

Proof. This result follows from the reduction above, where we can additionally set
a = 0.

3 Equational Theories and HDTP

HDTP uses equational theories, which are conjunctions of first-order formulae with
equality over a term algebra, to describe the input analogical domains. In certain cases,
we can reduce a higher-order anti-unification to a first-order anti-unification by intro-
ducing new terms constructed from the terms in input theories. In this section we will
show that finding such an expansion of the input theories is computationally intractable.
We begin with some definitions.
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Definition 6. Let Term(Σ,V ) be a term algebra. An equational theory E is a conjunc-
tion of statements of the form t1 = t2, where t1, t2 are first order formulae over terms
from Term(Σ,V ). Given an equational theory E and an equation t1 = t2, we say that
E implies t1 = t2, written E 1 t1 = t2, if t1 = t2 can be proven from the input formulae,
using any complete and sound proof system.

Given a term t we denote the set of all subterms of t as st(t) and the set of variables in
t as var(t).

Definition 7. Let X be a set of terms. A set {t1, . . . , tn} ⊆ X is called admissible relative
to X if

⋃n
i=1 var(ti) =

⋃
t∈X var(t).

We can simplify some higher-order anti-unifications to first-order anti-unifications by
introducing subterms built from the admissible sequences from the terms (for a descrip-
tion of how this reduces higher-order anti-unifications to first-order, see [8]).

Definition 8. Let Term(Σ,V ) be a term algebra, let E be an equational theory de-
fined w.r.t. this algebra, and let f (t1, . . . , tn) ∈ Term(Σ,V ) be a term. An expansion
of Σ and E relative to f (t1, . . . , tn) is constructed as follows: for each admissible se-
quence {u1, . . . ,uk} relative to st( f (t1, . . . , tn)), a new function symbol h and an equa-
tion h(u1, . . . ,uk) = f (t1, . . . , tn) are added to Σ and E, respectively.

As shown in [8], the expanded equational theory can be used to reduce a selected class
of higher-order anti-unifications to first-order anti-unifications. Now, confronted with
the computational hardness results from Sect. 2.1, a naive attempt at dealing with the
high complexity of higher-order anti-unification might be based on this seemingly sim-
pler approach. Unfortunately, intuition here goes astray, and finding an admissible sub-
set is actually quite a difficult problem by itself.

Problem 7. Function Admissible-Sequence
Input: A term f (t1, t2, . . . , tn) ∈ Term(Σ,V ), a natural k < |st( f (t1, t2, . . . , tn))|
Problem: Is there a set X ⊆ st( f (t1, t2, . . . , tn)) such that |X | ≤ k and X is admissible relative
to st( f (t1, t2, . . . , tn))?

Theorem 4. Function Admissible-Sequence is W[2]-Hard (and NP-Complete) w.r.t.
parameter k.

Proof. Function Admissible Sequence is clearly in NP, by guessing a set X ⊆ st( f (t1, t2,
. . . , tn)), and checking in polynomial time if

⋃n
i=1 var(t ′i ) =

⋃
x∈X var( f (t1, t2, . . . , tn).

We will perform a reduction from the W[2]-Hard problem Set Cover [23]:

Problem 8. Set Cover
Input: A finite family of sets S = {S1, . . . ,Sn}, a natural k ∈ N.
Problem: Is there a subset R⊆ S with |R| ≤ k whose union is all elements in the union of S?

Let S = {S1, . . . ,Sn}, be a family of sets and k′ be a natural. Then it’s straightforward
to create a term f (t1, . . . , tn), where each subterm ti is a |Si|-ary term containing the
elements of Si as 0-ary terms. Finish by setting k = k′ in the definition of Function
Admissible Sequence. In any solution of Set Cover or Function Admissible Sequence,
the sets R and X are in direct correspondence with each other.
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4 Interpretation of the Results

We want to provide some thoughts on the impact and the consequences of the complex-
ity results from the previous sections, putting the obtained insights into a (cognitive) AI
context. Presented with the complexity theoretic results, a critic may wonder why these
results even matter for HDTP, for which undecidability follows quite straightforwardly
from the undecidability of first-order logic. However it is important to note that HDTP is
naturally split into two mechanisms: one which performs analogical matching of input
theories, and one which performs re-representation of the input theories by deduction
in first-order logic. It is the re-representational mechanism which is undecidable, where
our above results apply solely to the analogical matching mechanism.

We focus on two results directly affecting HDTP. The W[2]-hardness of the function
admissible-sequence problem (cf. Theorem 4) deserves special attention, as this clearly
shows that problems can already arise when only treating with reductions from higher-
order to first-order anti-unification. Here it should be kept in mind that this was HDTP’s
original mechanism for anti-unification, and thus was frequently used on a basic level
when, in order to reduce a higher-order anti-unification to a first order anti-unification,
expanding the theory by including first-order projections of any higher-order terms. The
result showing that FP higher-order anti-unification is W[1]-hard (cf. Theorem 2) gives a
hint at the difficulty introduced by the operations admissible within the restricted higher-
order anti-unification on the complexity of the analogy-making process. Indeed, the
only way that FP anti-unification can restructure the order of the terms is by argument
permutations, and our results show that even allowing a single permutation is enough
to imply computational hardness. If we contrast this result against the polynomial-time
algorithm for F anti-unification, we have evidence that even a slight ability to restructure
the input terms makes higher-order anti-unification a difficult problem to solve.

We now want to also present some remarks from a more integrated perspective.
Mostly originating from within cognitive science, the recognition that human minds
or brains are finite systems with limited resources for computation has led some re-
searchers to advance the thesis that human cognitive capacities are constrained by com-
putational tractability. This Tractable Cognition Thesis [24], if true, amongst others can
serve researchers by limiting and narrowing down the space of computational-level the-
ories of cognition. But this thesis can also have ramifications for work in AI, namely
for the branch following the original artificial general intelligence (AGI) tradition in try-
ing to create a system with human-like intelligence capacities. Adapting the Tractable
Cognition Thesis to the new setting, converting it into a Tractable AGI Thesis, it seems
recommendable to demand for computer models of artificial general intelligence to also
be of the tractable type (i.e. polynomially-solvable) – as also all of the currently avail-
able computing systems are ultimately finite systems with limited resources, in this
respect being very similar to the aforementioned human minds or brains.

Taking this stance, and additionally assuming that P �=NP (and FPT �=W[1]) holds,
the classical and parameterized hardness results presented in this paper cast a shadow on
the suitability of the HDTP framework in its present state as basis for a general model
for high-level cognitive capacities or a general cognitive architecture. Still, it should be
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noticed that the mere fact that HDTP in its present state is basically intractable does
not mean that future versions cannot be made tractable: One of the main questions
for future theoretical research in relation to HDTP will have to address the question
of how HDTP’s version of computing generalizations via restricted higher-order anti-
unification can be further constrained in a meaningful way as to obtain maximal expres-
sivity and applicability whilst still staying within the domain of polynomial solvability.
Also, more parametrized analysis will be needed, showing which are the factors that re-
ally impact complexity, and which are aspects of a problem that are not really harmful.
Secondly, even when being intractable, HDTP can still be put to good use, serving as a
testbed for possible uses of analogy-making engines. Coming back to the AGI setting,
although it might not be held likely that an intractable system will grow into a general
architecture providing artificial intelligence at a human level, it can still be used for ex-
ploring the possibilities and limitations of theories and paradigms incorporating analogy
as a cognitive function (as, e.g., in the context of the already mentioned cognitive ca-
pacities conceptual blending, creativity, and rationality), and thus finally also contribute
on a theoretical level to the development of a generally intelligent system. Even though
HDTP in its current form might not scale to applications to real-world problems under
real-world constraints, when relaxing these constraints the system might still fruitfully
be applied to proof-of-concept scenarios.

5 Conclusion and Future Work

In this paper, after a compact introduction to the overall Heuristic-Driven Theory Pro-
jection framework for computational analogy-making, we provided a complexity anal-
ysis of the key mechanisms underlying HDTP, together with a short reflection on the
obtained results. The obtained classical and parameterized complexity results do not
affect the overall usefulness and functionality of HDTP as a computational tool for im-
plementing an analogy-making mechanism, but currently do set limits to HDTP’s status
as a cognitive system: Although analogy-making as cognitive capacity can be modelled,
tractability of the system can in general not be assumed.

With respect to future work, the main task is in searching for possibilities to reduce
the complexity whilst still maintaining the functionality of HDTP. Besides further in-
vestigations into the complexity-relevant parameters within the setting, we see three
possible lines of work. First, a study of the true power of argument insertion from a
complexity theoretic perspective. Using argument insertion in it’s full generality, one
can build any term incrementally by a sequence of argument insertions and fixations,
which implies that it could be a source of much additional complexity. Next, a study
searching possible restrictions on the representation language underlying HDTP, so as
to limit complexity whilst still staying as expressive as possible (i.e. taking a step back
from first-order logic into a less expressive but still suitable formalism). Finally, and per-
haps most importantly, a direct address to the undecidability of the re-representational
mechanism of the basic HDTP problem.
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Kühnberger, K.U.: Theory Blending as a Framework for Creativity in Systems for General
Intelligence. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of AGI. Atlantis Press
(in press, 2012)

20. Jörg Flum, M.G.: Parameterized Complexity Theory. Springer (2006)
21. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
22. Kuper, G.M., McAloon, K.W., Palem, K.V., Perry, K.J.: Efficient parallel algorithms for anti-

unification and relative complement (1988)
23. Cesati, M.: Compendium of parameterized problems,

http://www.sprg.uniroma2.it/home/cesati/research/compendium/
24. van Rooij, I.: The tractable cognition thesis. Cognitive Science 32, 939–984 (2008)

http://www.sprg.uniroma2.it/home/cesati/research/compendium/


A General Representation and Approximate

Inference Algorithm for Sensing Actions

Hanne Vlaeminck1,	, Joost Vennekens1,2, and Marc Denecker1

1 Department of Computer Science, KU Leuven
2 Campus De Nayer, Lessius Mechelen, Sint-Katelijne-Waver

Abstract. Sensing actions, which allow an agent to increase its knowl-
edge about the environment, are problematic for traditional planning
languages. In this paper we propose a very general framework for rep-
resenting both changes to the real world and to the knowledge of an
agent, based on a first order linear time calculus. Our framework is more
general than most existing approaches, because our semantics explicitly
represents, for each point in time, not only the agent’s knowledge about
that timepoint, but also about the past and the future. By applying a
general approximation method for classical logic to this framework, we
obtain an efficient and sound but incomplete reasoning method.

1 Introduction

Classical planning assumes that agents have complete information about the
world. A more realistic assumption, however, is that they only partially know
their environment, and must use sensing actions to gain additional knowledge.
Several approaches exist that formalize such reasoning [9,12,14,7,13,4,5]. One
thing that is lacking from these approaches, however, is that their semantics
do not (explicitly) model that, at every point in time, an agent can also have
knowledge about both the past and the future, and not just about the current
time point itself. For example, an agent might initially already know that he will
never be able to do a certain action and that he therefore will not be able to reach
a certain state. Conversely, by observing the effects of one of its past actions,
the agent might learn that some property held at the time of this action, even if
it currently no longer does. In this paper, we propose a more general semantic
framework, based on a linear time calculus, which supports this.

The aforementioned approaches, as well as ours, all use a Kripke-style repre-
sentation of the agent’s knowledge. While this is semantically the right way of
doing it, it is also computationally quite challenging. Therefore, several other
approaches use more limited representations of knowledge with better compu-
tational properties [1,8,10,15]. Ideally, it would be possible to view such an ap-
proach as an incomplete approximation, in some sense, of a semantically correct
approach. However, proving such a connection is often non-trivial [11]. An inter-
esting property of our framework is that it allows us to apply a general approx-
imation method for first-order logic (FO) [17] to obtain an incomplete method
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for solving the projection problem in polynomial time. The soundness of this
method follows immediately from the fact that this approximation is sound for
FO in general. Even though the method is incomplete, it is able to reach con-
clusions about properties that must have held at an earlier point in time, even
if they no longer hold now. This is something that other incomplete reasoning
methods either cannot do [15,8,1], or can only do in an ad-hoc way [10].

2 Preliminaries

We assume familiarity with first order logic (FO). For simplicity, we consider
only relational vocabularies (no function symbols of arity > 0). As usual, an in-
terpretation S for a vocabulary Σ consists of a non-empty domain D, a mapping
from each constant symbol c to a domain element d ∈ D, and a mapping from
each predicate symbol P/n to a relation R ⊆ Dn.

Definition 1. A Linear Time Calculus vocabulary Σltc consists of

– a set of types, including a type T ime,
– for every type S, a set of constants ΣS of type S,
– a set Σstat of static predicate symbols without an argument of type T ime,
– a set Σdyn of dynamic predicate symbols that have exactly one temporal ar-

gument; Σdyn is divided into a set Σact of actions and Σflu of fluents,
– a set Σinit containing for every predicate P/n ∈ Σflu a predicate Init P/n–1

having only the non-temporal arguments of P .

Throughout this paper, we assume that every type S apart from T ime has only a
finite number of constants and restrict attention to Herbrand interpretations of S,
i.e., each constant is interpreted by itself. We will fix the interpretation of T ime
to the natural numbers N, and use constants 0, 1, . . ., the arithmetic functions +,
and the comparison operator ≤, also all fixed to their usual interpretation in N.

This paper uses the logic FO(ID) [3], an extension of FO with a construct
to represent common forms of inductive definitions, such as monotone induction
and induction over a well-founded order. Such a definition is represented by a set
of logic programming-style rules of the form P (t̄) ← ϕ, with ϕ an FO formula.
The semantics of such a definition is given by a parametrized version of the
well-founded semantics for logic programs, which construct an interpretation for
the defined predicates (those that appear in the head of a rule) given an input
interpretation for the open predicates (those that do not), by applying the rules
in appropriate way. Due to space restrictions, we refer to [3] for details.

To represent a dynamic domain, one of the central problems is to define the
values of the fluents at different points in time, in terms of their initial values
and the actions that happen. The inductive definition construct of FO(ID) allows
this to be done in a natural and elegant way [2].

Example 1. An agent has a glass, which can be clean or not. A glass can be used
for drinking, which makes the glass dirty, and it can be cleaned by wiping it.
The agent’s room has a light, which can be switched on and off.
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This domain can be represented in FO(ID) by the following inductive defini-
tion Δflu, which defines fluents Clean(t) and Light(t) in terms of their initial
values Init Clean and Init Light, and of the actions Wipe(t), Drink(t) and
Switch(t).

Δflu =

⎧⎪⎪⎨
⎪⎪⎩
Clean(t+ 1)← (Clean(t) ∧ ¬Drink(t)) ∨Wipe(t).
Clean(0) ← Init Clean.
Light(t+ 1) ← (¬Switch(t)∧ Light(t))∨ (Switch(t) ∧ ¬Light(t)).
Light(0) ← Init Light.

⎫⎪⎪⎬
⎪⎪⎭.

3 Representing Knowledge and Sensing Actions

When an agent operates in a partially known environment, its actions will be
constrained by its knowledge of the world. At the same time, its knowledge may
also evolve through sensing actions. Let us extend Example 1 as follows.

Example 2. The agent may only drink if it knows the glass to be clean. If the
light is on, then the sensing action of inspecting the glass will reveal if it is clean.

To handle such examples, we introduce two new language constructs. The first is
a dynamic modal operator K(·, t) that refers to the agent’s knowledge at time t.

Definition 2. For a LTC signature Σltc, a modal atom is an expression of the
form K(ϕ[x̄], t), where ϕ[x̄] is a formula in Σltc and t ∈ N. We define LK as
the language that extends FO by allowing both atoms and modal atoms as base
cases and closing under the usual operators ∧,∨,¬, ∀, ∃. An LK-formula is called
objective if no modal operator K(·, t) occurs in it and subjective if every atom
occurs in the scope of such a modal operator.

We will use formulas of LK to express that an agent may perform certain actions
only if it knows that its preconditions are satisfied.

Definition 3. For a LTC vocabulary Σltc, a knowledge precondition is a for-
mula ∀x̄t (A(x̄, t)⇒ ϕ), where A is an action and ϕ a subjective LK-formula.

The precondition that an agent may drink from a glass only if he knows that it
is clean can now be expressed by the LK-formula ∀tDrink(t)⇒ K(Clean(t), t).
Note that the formula ϕ in a modal atom K(ϕ, t) may contain its own temporal
argument, not necessary equal to t. For example, if the agent only wants to
drink from a glass that has never been used before, this can be expressed as:
∀tDrink(t)⇒ K(∀t′ (t′ < t ⇒ ¬Drink(t′)), t). This is more general than most
existing approaches, in which it is typically not even syntactically possible to
refer to the knowledge in one situation about another situation.

These knowledge preconditions will actually be the only place in which we
allow the modal operators K(·, t). On the one hand, this is motivated by the
fact that the agent has no direct access to the real world, i.e., it can use only
its own knowledge to decide upon its actions. On the other hand, the agent also
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only affects the state of the world through its actions: the real world does not
respond to what the agent knows but only to what it does. For instance, if the
agent enters the correct code into a safe, this will open regardless of whether the
agent actually knew the code or was just guessing.

To represent the effects of sensing actions, we introduce the following construct.

Definition 4. For a LTC signature Σltc, a sensing definition is of the form:

A(x̄, t) senses ξ[x̄, ȳ, t+ 1] if γ[x̄, ȳ, t+ 1], (1)

where A ∈ Σact, and both ξ[x̄, ȳ, t+1] and γ[x̄, ȳ, t+1] are FO formulas in which
t + 1 is the only term of type T ime. The action A is called a sensing action.
When γ = t, the sensing action is called unconditional.

Note that a sensing action performed at time t yields information about the
state of the world at the next timepoint t + 1. For our running example, the
Inspect action is described by the following sensing definition.

Inspect(t) senses Clean(t+ 1) if Light(t+ 1). (2)

Putting this all together, we now arrive at the following.

Definition 5. Let Σltc be an LTC vocabulary. An LTCK,S theory consist of

– a inductive definition Δflu of the fluents,
– a constraint theory Tconstr of FO formulas over Σact ∪ Σstat in which the

action predicates appear only negatively,
– an FO theory Tinit over Σinit about the initial state of the fluents,
– a precondition theory Tprec, consisting of knowledge preconditions
– a set of sensing definitions, denoted by Tsense .

The purpose of the theory Tconstr is to express constraints on the occurrences
of actions. However, we only allow to specify that actions cannot occur in cer-
tain circumstances, and not that they must sometimes occur. This will make
it easier to define the semantics. The theory Tinit specifies all that is known
about the initial situation. In our running example, we take Tinit to be empty,
meaning that the agent knows nothing about the initial situation. Our Δflu

is as in Example 1, Tconstr is also empty, Tprec consists of the single formula
∀tDrink(t)⇒ K(Clean(t), t) and Tsense contains expression (2).

3.1 Semantics

Our semantics needs to consider both the real world I and the agent’s knowledge
about I. To represent this knowledge, we use a set of interpretations K, which we
refer to as possible worlds. Since each possible world K ∈ K interprets the entire
vocabulary, it specifies the value of all actions and fluents at each point in time.

Definition 6. A knowledge structure S is a pair (I,K) of an interpretation I
and a set of interpretations K, such that all these interpretations have the same
vocabulary (and therefore also the same domain).
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Because we only care about knowledge, and not beliefs that might be false, we
often require that knowledge structures be consistent, in the sense that I ∈ K.

We first focus on the semantics of the sensing definitions. The purpose of
these is to allow the agent to increase its knowledge. For a set Ψ of sentences, we
denote by K◦Ψ the set of all J ∈ K for which J |= Ψ . The smaller set of possible
worlds K ◦ Ψ now describes the agent’s knowledge after it has learned Ψ in a
situation where it already knew K. We will now define a set of formulas Ψ that
captures precisely what the agent learns from a sensing action. Without loss of
generality, we assume that the theory T contains at most one sensing definition
for each action A ∈ Σact. If the unique sensing definition for A(x̄, t) is of form
(1), then we denote the formula ξ as ξA and the formula γ as γA.

Definition 7. Given an interpretation I, a sensing action A(x̄, t) and a time
point i ∈ N, the scope of A(x̄, i) in I is defined as the set of all tuples (d̄, ē) of
constants such that I |= γA[d̄, ē, i+ 1].

For the sensing action Inspect(t) in our running example, a timepoint i and
an interpretation I, the scope is either the empty tuple {()} (i.e., “true”) I |=
Light(i) or the empty set ∅ (i.e., “false”) if I �|= Light(i).

Definition 8. For a sensing action A(x̄, t), an interpretation I, a tuple d̄ of con-
stants, and a time point i, the effect of A(d̄, i) given I is denoted as EffI(A(d̄, i))
and defined as the set of all formulas ϕ[d̄, ē, i + 1] such that ϕ is either ξA or
¬ξA, the tuple (d̄, ē) is in the scope of A(x̄, i), and I |= ϕ[d̄, ē, i+ 1].

Intuitively, the set EffI(A(d̄, i)) contains all ground formulas that the agent
learns by performing the sensing action A(d̄, i) in the real world I. To illustrate
with our running example, consider an interpretation I such that LightI = N,
CleanI = {} and InspectI = {0}. Then EffI(Inspect(0)) = {¬Clean(1)}.

In addition to the results of its sensing actions, the agent also has a second
source of information, namely, it will also know its own actions at each timepoint.
Thus, in total, the agent gains the following information at timepoint i.

Definition 9. For a time point i ≥ 0 and an interpretation I, the action in-
formation at i, denoted ActI(i), is defined as the set of all literals L(d̄, i) such
that I |= L(d̄, i) and L(d̄, i) is either A(d̄, i) or ¬A(d̄, i) with A ∈ Σact. The
ith update of I, denoted UpdI(i), is defined as the union of ActI(i) and all sets
EffI(A(d̄, i)) for which I |= A(d̄, i) and A(x̄, t) is a sensing action.

Note that this definition assumes that an agent knows its actions and its
effects the next timepoint after performing them. For our running example,
we have that UpdI(0) = {¬Wipe(0),¬Switch(0), Inspect(0),¬Clean(1)}, and
UpdI(1) = {¬Wipe(1),¬Switch(1), ¬Inspect(1)}. We now arrive at the follow-
ing update operation.

Definition 10. For a knowledge structure S = (I,K), the i-update of S, de-
noted by S ◦ i, is defined as (I,K ◦ UpdI(i)).
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After performing such an update, the agent’s new knowledge K ◦ UpdI(i) will
contain all the information that was obtained as a direct result of its sensing
actions at time i − 1. However, by reflecting on the difference between K and
K ◦ UpdI(i), the agent may be able to deduce more information. For instance,
if in our running example an Inspect action fails to produce knowledge about
whether the glass is clean, the agent could deduce that the light must be switched
off. So, in addition to ruling out all worlds J ��|= UpdI(i), the agent could also
rule out all worlds J ∈ K in which the knowledge contained in K◦UpdJ (i) would
not have been the same as the knowledge K ◦ UpdI(i) that the agent actually
gained in the real world. Let us define that two knowledge structures S = (I,K)
and S ′ = (I ′,K′) are epistemically equal, denoted S =k S ′, if K = K′. We now
define a second-order update operator (I,K) ◦2 i as follows.

Definition 11. For a knowledge structure S = (I,K), if S ◦ i = (I,K′), then
(I,K) ◦2 i is defined as (I,K′′) with K′′ = {J ∈ K′ | (I,K) ◦ i =k (J,K) ◦ i}.

Based on this principle, we can define an infinite sequence (◦n)n∈N of ever more
introspective update operators.

Definition 12. For a knowledge structure S = (I,K), if S ◦n i = (I,Kn), then
(I,K) ◦n+1 i = (I,Kn+1) with Kn+1 = {J ∈ Kn | (I,K) ◦n i =k (J,K) ◦n i}. We
define • as the limit of this sequence, i.e., S • i =

⋂
n∈N
S ◦n i.

The limit • is a strong operator, which allows the agent to reason about its
knowledge of its knowledge of its knowledge of . . . of its knowledge of the world.
Luckily, however, it is never necessary to go more than two levels deep.

Proposition 1. For any set of sensing definitions, • = ◦2. Moreover, if all of
the sensing actions are unconditional, then even • = ◦.

This operator • now allows us to define how the agent’s knowledge will evolve
over time, starting from an initial knowledge structure S0 = (I,K).

Definition 13. A knowledge line K is a function that maps each time point i ∈
N to a set K(i) of possible worlds. For an initial knowledge structure S0 = (I,K),
we construct the sequence (Si)i≥0 such that Si+1 = Si • i. By S0, we denote the
associated knowledge line K, i.e., for each i, K(i) is such that Si = (I,K(i)).

If K represents the agent’s initial knowledge (note again that K may contain
knowledge about any point in time), then a knowledge line (I,K) represents
how this knowledge evolves over time according to the real world I. A knowledge
line structure is now a pair (I,K) of an interpretation I and a knowledge line K.
Since I |= UpdI(i), ∀i, we have that for a consistent knowledge structure (I,K),
for each i, I ∈ K(i), where K = (I,K). It is now straightforward to evaluate
formulas of LK in a knowledge line structure (I,K).

Definition 14. For a formula ϕ of LK , a knowledge line structure (I,K) and a
variable assignment θ, we inductively define the relation (I,K), θ |= ϕ as follows:

– For an atom P (t̄), we define (I,K), θ |= P (t̄) iff I, θ |= P (t̄);
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– For K(ϕ, t), we define (I,K), θ |= K(ϕ, t) iff for each J ∈ K(t), J, θ |= ϕ;
– The cases for ¬,∧,∨, ∀, ∃ are defined as usual.

For sentences, the variable assignment θ is irrelevant and we omit it from
notation.

This evaluation is a multi-modal extension of the standard Kripke evaluation,
since each K(·, t) is evaluated w.r.t. the set K(t) of possible worlds. We now have
the following obvious way of defining the semantics of a LTCK,S theory T .

Definition 15. A knowledge structure S = (I,K) is a weak model of T if (I,K)
is consistent, and for each J ∈ K, it holds that (J,S) |= T .

Every possible world in K represents a world such that with K as initial knowl-
edge, the theory (that is, both non-epistemic and epistemic constraints) are
satisfied. Note that this definition of weak model is completely symmetric in the
sense that each J ∈ K is just as plausible for the agent, i.e., if (I,K) is a weak
model of T , then (J,K) is a weak model for each J ∈ K.

A limitation of weak models is that they do not restrict the agent’s knowledge
about the initial situation: the agent must know at least the theory Tinit, but is
not prevented from arbitrarily knowing more. In our running example, the theory
Tinit is empty, so the agent cannot know whether the light is initially on or off
(or, to be more precise, the agent initially does not know this, even though it is
possible that later sensing actions will reveal that the light was actually on or off
all along). Our theory now indeed correctly has a weak model (I,K) in which K is
simply the set of all possible interpretations in which Inspect(0) holds. However,
there is also a weak model (I,K′) where K′ contains only interpretations J in
which the light is always on, even though the agent should not know this.

As a final step, our semantics will therefore select precisely those weak models
in which the agent knows only what it should, and nothing more. The agent’s
initial knowledge about the initial situation should consist of all models of Tinit.
Of course, the agent initially also has knowledge about the future timepoint 1.
This should consist of all that is possible given the agent’s initial knowledge about
timepoint 0 and the theories Δflu, Tconstr and Tprec. And so on for the initial
knowledge about the next timepoints i ≥ 2. To define our semantics properly, we
first define when two sets of possible worlds contain the same knowledge about
the time points up to some i ∈ N.

Definition 16. We write I
f∼i J if I and J coincide on the static predicates

(i.e., for each static predicate P , P I = P J) and on the fluents for all t ≤ i
(i.e., for each fluent predicate P and each correctly typed tuple d̄ whose temporal
argument t is such that t ≤ i, it holds that d̄ ∈ P I iff d̄ ∈ P J ). Similarly, we

write I
a∼ J if I and J coincide on the static predicates and on the actions for

all t ≤ i. Given two possible world sets K1 and K2, we write K1 ∼i K2 iff for

each I ∈ K1 there is a J ∈ K2 such that I
f∼i J and I

a∼i−1, and vice versa.

We now define a sequence of ever smaller possible world sets, in which we gradu-
ally eliminate the weak models in which the agent has unwarranted knowledge.
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Definition 17. We define a sequence (Ki)i≥0 as follows:

– K0 = {I | ∃K such that (I,K) is a weak model.}
– Ki+1 = {I | ∃K ∼i Ki such that (I,K) is a weak model.}

The limit of this sequence can now be used for the agent’s initial knowledge.

Proposition 2. For a theory T , the sequence (Ki)i≥0 defined above is descend-
ing, and thus has a limit, which we will denote by K∞. Given an interpretation
I, if the knowledge structure (I,K∞) is consistent, then it is a weak model.

This now leads to the following definition of our semantics.

Definition 18. A weak model (I,K) is a model of T if K is the limit of the
sequence (Ki)i≥0 (as defined in Definition 17).

The question that remains now is whether models of a theory T indeed know
nothing more about time 0 then specified by Tinit. First let us look at the simple
case where Tprec is empty. A weak model (I,K) is a model iff K = {J |J |= Δfu∧
Tconstr∧Tinit}. It is clear that this K indeed has minimal knowledge about t = 0.
In its full generality, LTCK,S allows some unintuitive constraints to be expressed,
such as stating that an agent’s current action depends on its future knowledge.
It turns out that such theories can lead to models that not always have minimal
knowledge. We therefore restrict attention to a more sensible fragment, in which
the agent’s current actions depend only on its current knowledge about current
or past events.

Definition 19. An LTCK,S theory T is called a basic action theory if all of its
knowledge preconditions are of the form ∀x̄t A(x̄, t)⇒ K(ϕ[x̄, t′], t), where t′ ≤ t.

It is possible to define a concept of ‘minimal initial knowledge’, that formalizes
our informal description on the previous page. Because of space constraints we
refrain from giving it here, but it turns out that with this formal definition, one
can prove that basic action theories indeed have minimal initial knowledge.

4 AnApproximativeAlgorithm for theProjectionProblem

A basic reasoning problem in temporal systems is the projection problem: given
an action theory that formalizes the temporal domain, determine whether a for-
mula holds after a sequence of actions is performed. In the context of incomplete
information, we typically want to know whether the agent knows that a certain
formula holds, since this will allow us to determine whether the preconditions to
its actions are satisfied as well as whether it knows that it has reached its goal.
Up to timepoint i, the information that the agent has so far learned about the
real world I is precisely Upd<I (i) =

⋃
j<i UpdI(j). We write I ∼i J to say that

J coincides with I on these formulas Upd<I (i), i.e., for each ϕ ∈ Upd<I (i), I |= ϕ
iff J |= ϕ. The projection problem can now be defined as follows.

Definition 20. Given a LTCK,S theory T , an interpretation I, a timepoint i
and a formula ϕ, the projection problem is the problem of deciding whether for
all models (J,K) of T such that J ∼i I, it holds that (J,K) |= K(ϕ, i).
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Typically, this problem is only of interest for interpretations I in which the
agent does not perform impossible actions (i.e., there exists some K such that
(I,K) |= T ), so we will assume this is the case. We can therefore forget about
the knowledge preconditions. Once we know the information that the agent has
sensed, as it is recorded in Upd<I (i), also the sensing definitions become irrelevant.
Our method will therefore only look at the following theory.

Definition 21. For an LK,S theory T , an interpretation I such that

(I,K) |= T for some K, and a timepoint i, let T I,i
proj be the theory

{Δflu, Tinit, Tconstr, Upd
<
I (i)}.

As the following proposition shows, we can use the set of all models of T I,i
proj as

a sound approximation of the agent’s real knowledge at timepoint i.

Proposition 3. Given a model (I,K) of a basic action theory T , let M be the

set of all models (in the classical FO sense) of T I,i
proj. Then M is a superset of

the agent’s knowledge at time i according to K = (I,K), i.e., M⊇ K(i).

The theory T I,i
proj incorporates the knowledge that the agent has gained through

his sensing actions by simply including Upd<I (i). However, knowledge that the
agent might gain through introspection is therefore not taken into account. In
other words, this theory represents the ◦ operator instead of •, and this is what
accounts for its possible incompleteness. As shown earlier, however, these two
operators are identical for theories containing only unconditional sensing actions.

Proposition 4. Given a basic action theory T that contains only unconditional
sensing actions, let (I,K) be a model of T andM the set of all models of T I,i

proj.
Then M and K(i) have the same knowledge about all timepoints j ≤ i, i.e.,
for each formula ϕ[j] with j ≤ i, we have: ∀J ∈ M, J |= ϕ[j] iff ∀J ∈
K(i), J |= ϕ[j].

Finding out whether a formula holds in all models of a first order theory is co-
NP complete. Since applications such as planning need to solve the projection
problem as an atomic step, a direct application of the above proposition would
be infeasible in practice. However, it is possible to efficiently approximate the
set of all models of a theory. We will use here a general approximation method
for FO(ID), that efficiently allows us to detect that a formula holds in all models
of a theory [17,16]. While we lack space to recall this method in detail, the
essence is as follows. An FO(ID) theory T over a vocabulary Σ is syntactically
transformed into an inductive definition Approx(T ) over a new vocabulary that
contains, for every predicate P/n ∈ Σ, two predicates P ct/n and P cf/n that
represent whether P is certainly true (i.e., true in all models of T ) or certainly
false (i.e., false in all models of T ). The definition Appox(T ) has the property that
if Approx(T ) |= P ct(d̄), then T |= P (d̄) (see [16], proposition 5.4) and similar for
P cf . In addition, Approx(T ) also defines a number of predicates Act

ϕ and Acf
ϕ that

tell us whether certain non-atomic formulas ϕ (or their negations, respectively)
are entailed by T . In a finite domain, the model of an inductive definition can
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be computed in polynomial time. Since we only need natural numbers up to i to
solve the projection problem, Approx(T I,i

proj) therefore offers a polynomial time
approximate solution to the projection problem.

Example 3. We have a gun that can be loaded or not, and a turkey, which can be
alive or dead. Shooting kills the turkey if the gun was loaded, and also unloads
the gun. Finally, the agent can inspect the turkey to see whether it is dead.

Δflu =

⎧⎪⎪⎨
⎪⎪⎩
Alive(t+ 1) ← Alive(t) ∧ ¬(Shoot(t) ∧ Loaded(t)).
Alive(0) ← Init Alive.
Loaded(t+ 1)← Loaded(t) ∧ Shoot(t).
Loaded(0) ← Init Loaded.

⎫⎪⎪⎬
⎪⎪⎭

Tsense = {CheckAlive(t) senses Alive(t+ 1) if t.}
Tinit = {Init Alive.}

If, after shooting a turkey that was known to be alive, the agent discovers that
the turkey is dead, it should be able to conclude that the gun was previously
loaded, even though it also knows that it is currently no longer loaded. We
consider the real world I in which ShootI = {0}, CheckAliveI = {1}, AliveI =
{0}, LoadedI = {0}, Init AliveI = t and Init LoadedI = t. Let us define
ψ1 = Alive(t), ψ2 = ¬Shoot(t) ∨ ¬Loaded(t), ϕ = ψ1 ∧ ψ2. The definition

Approx(T I,3
proj) now contains, among others, the following rules.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Alivect(t+ 1)← Act
ϕ (t).

Acf
ϕ (t) ← Alivecf(t+ 1).

Act
ψ2
(t) ← Shootcf(t) ∨ Loadedcf(t).

Acf
ψ2
(t) ← Acf

ϕ (t) ∧ Alivect(t).
Alivecf(t) ← Acf

ϕ (t) ∧ Act
ψ2
(t).

Loadedct(t) ← Acf
ψ2
(t).

. . .
Init Alivect ←
Shootct(t) ← t = 0.
Shootcf(t) ← t = 1 ∨ t = 2.
Alivecf(t) ← t = 2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This definition is able to derive that, because the turkey is certainly not alive
at 2, the conjunction ϕ(1) cannot hold. Since there is no Shoot at timepoint
1, the second disjunct ψ2(1) is certainly true and so the first disjunct Alive(1)
must be false. Again, this means that the disjunction ϕ(0) must be false. Now,
it is the first disjunct Alive(0) that is certainly true, since Init Alive is true.
Hence, the second disjunct ψ2(1) cannot hold. Since ψ2(1) is itself again a dis-
junction, neither of its disjuncts hold, and one of these is ¬Loaded(0). Therefore,
this approximation is indeed able to reason backwards in time to conclude that
initially the gun must have been loaded. Moreover, it will also be able to con-
clude that, because of the Shoot(0) action, Loaded(1) and Loaded(2) no longer
hold.
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5 Discussion and Related Work

Knowledge and sensing actions were first investigated in [9], and combined with
a solution for the frame problem in [12]. Since then many other approaches
have been developed. A large number of these cannot handle the postdiction
reasoning of Example 3, i.e., they cannot draw the conclusion that at time point
2 the agent knows that the gun was initially loaded, but not anymore. To handle
such examples, it must be possible to trace back the current objective state of the
world to the state from which it originated. This is not possible in the approaches
to sensing that were developed in the context of the action language A [13,15],
since they only allow forward reasoning. An interesting feature of this approach,
however, is that they also develop an approximation method, which transforms
an A specification into an answer set program. This method has a very similar
flavour to ours, and also to that of [8], which defines a three-valued progression
operator. Again, since only progression is considered, postdiction is not possible
here. The approach of [5] uses epistemic logic and has both progression and
regression operations. However, the regression operator cannot take into account
current knowledge about previous points in time, and therefore this semantics
is also unable to handle our Example 3.

Some approaches do have the necessary semantic machinery in place, but
simply lack the syntax to refer to knowledge about past or future events. This is
the case for several approaches based on situation calculus or similar formalisms
[12,14,7], where the structure of the situation terms tracks the history of each
state. While it would therefore be less problematic to extend these formalisms
to handle postdiction, this has, as far as we know, not yet been done. The same
can be said about the dynamic epistemic logic of [4].

Rather than extend an existing approach, however, we have chosen to develop
a new framework. The main motivation for this was to be able to apply the ap-
proximation method of Section 3.1 to obtain an efficient but incomplete solution
to the projection problem. The approaches of [1,10] try to achieve the same goal
by abandoning a Kripke-style semantics in favour of a a more limited concept
of knowledge. This is done by introducing, for every original fluent F , a new
“knowledge fluent” KF . The way in which such a KF changes over time is then
explicitly modeled by separate update axioms.The approach of [10] is also able
to handle knowledge about past or future events, and do postdiction reasoning.
However, this is done in an algorithmic way, through a syntactical analysis of
the specification. A disadvantage of these approaches in general is that it takes
a substantial amount of work to prove a semantic connection between the knowl-
edge fluents and the actual knowledge of that fluent [11]. The semantics of our
approach allowed us to apply a general approximation method for FO, which
means that soundness follows almost immediately.

Finally, [6] focuses mainly on belief change due to actions and observations
where the agents may have erroneous beliefs. This is more general than our
setting, since we assume that the agent’s beliefs are always correct. As we do, they
also allow beliefs about previous timepoints to change as a result of later (sensing)
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actions. However, their work does not focus on the knowledge representation side,
assuming a given transition system instead of a logical representation.

In summary, this paper introduces a general framework for representing sens-
ing actions, knowledge preconditions, conditional action effects, and knowledge
about the past or the future. We also present a polynomial, sound but incomplete
inference method for solving the projection problem, that we obtain directly by
making use of a general approximation method for FO(ID). Even though this is
an incomplete method, it still is capable to reach conclusions about properties
that must have held at an earlier point in time, which is something that typical
progression based reasoning methods cannot do.
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Abstract. Human cognition is a mixture of the systematic and the
non-systematic. One thing we can do systematically can be described
as follows. If we know about multiplication, and the facts of basic multi-
plication, and we know conceptually what division is, then we can utilise
the facts of multiplication that we know in order to solve division prob-
lems that correspond to those facts. For example, once children know
that 4×7 = 28, and once they understand about division, they can work
out that 28/4 = 7. Aizawa has defined standards for what counts as an
explanation of systematicity. In this paper, in accordance with Aizawa’s
framework, we apply concepts from category theory to this problem, and
resolve it by identifying the unique natural transformation that under-
pins this example of systematicity, and others in the same class.

1 Introduction

Systematicity is a property of cognitive systems whereby the capacity for certain
cognitive abilities implies that capacity for certain other cognitive abilities. In
their seminal paper [1], Fodor and Pylyshyn introduced systematicity to cogni-
tive science/artificial intelligence as something that needed to be explained to
have a theory of cognition. As the title of their article suggests, the authors
emphasised the problem that systematicity poses for connectionism, in particu-
lar. So what is systematicity? The usual way of describing it is by example: if
a person has the capacity to infer John as the lover from the statement John
loves Mary then they will also have the capacity to infer Mary as the lover from
the statement Mary loves John, and conversely. There are many other examples.
This type of phenomenon is termed systematicity.

Naturally, connectionists responded to the explanatory challenge raised by [1],
an early and prominent instance being [2]. Systematicity grew into an industry,
initially focusing on whether connectionist architectures could be devised that
met the systematicity requirements posed by Fodor and Pylyshyn. Yet, despite
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numerous attempts at addressing the systematicity problem in a way that did not
simply implement a classical theory, no consensus was reached on a explanation
(see [5]). Perhaps most interestingly, although connectionism has generally failed
to provide an explanation for systematicity, so too has the classical approach
(again, see [5]).

1.1 Characterising Systematicity

Before exploring the reasons why connectionism (and classicism) have not pro-
vided a complete explanation for systematicity, we give more detail how sys-
tematicity can be characterised. McLaughlin [3] noted that although there had
been no clear, non-circular definition (as classes of examples) of systematicity,
one can nonetheless provide useful schemas characterising instances of system-
aticity. McLaughlin provided five such schemas, all of which are of the form:
Ceteris paribus, a cognizer is able to mentally represent that P if and only if the
cognizer is able to mentally represent that τ(P ), where τ is some transforma-
tion of propositions P . In McLaughlin’s first collection of systematic schemata
(which he calls SG1), P is aRb, where R is a relational predicate, and τ(P ) is
bRa. McLaughlin’s SG1 takes in the John loves Mary example.

One could go a little further with McLaughlin [3], as in [4], and formulate
a characterisation of systematicity: in general, an instance of systematicity is
when a cognizer has cognitive capacity c1 if and only if the cognizer has cognitive
capacity c2. In such a case, c1 and c2 are systematically related. This character-
isation admits another type of systematicity, which we address in this paper.

1.2 Explaining Systematicity: Are Classical Systems Systematic?

The essential aspect of the systematicity problem is to provide an account
whereby systematicity entails as a necessary, not just possible consequence of
the assumptions and principles of the theory. So, although it is possible to de-
vise a connectionist network that can represent John loves Mary if and only if it
can represent Mary loves John, it is also possible to devise a connectionist net-
work that can represent John loves Mary without being able to represent Mary
loves John. So, without some principled reason for preferring the systematic over
the non-systematic network, connectionism fails to explain systematicity [1].

Importantly, the classical explanation for systematicity also falls short in the
same way, as analysed by Aizawa in great detail [5]. The ins and outs of his analy-
sis are lengthy, but perhaps it can be summarised as follows. Aizawa argued that
classicism failed to fully explain systematicity, because it is possible to design
classical systems that will, for example, generate (or make inferences about) John
loves Mary without being able to generate/infer about Mary loves John. Thus,
context-free grammars, viewed as a way of producing sentences with composi-
tional structure are normally chosen with grammar rules that support composi-
tionality: S → Person loves Person and Person→ John|Mary generate both
John loves Mary and Mary loves John, and so on [6]. However, this does involve
choices. If we had chosen S → Person1 loves Person2, Person1→ John|Mary
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and Person2 → Mary then Mary loves John is no longer generated. Arguing
along these lines, Aizawa inferred that systematicity is not a necessary property
of classical systems, either. He characterised the problem by noting that the
choice of grammar rules is ad hoc—the classical AI approach does not provide
a principled way to choose between the alternative grammar rule sets. One rule
set “works” and one doesn’t, but that is not principle, it’s model-fitting.

So now we are facing a problem: neither connectionism nor classicism pro-
vides a complete explanation for systematicity. Note that dynamic systems and
Bayesian approaches suffer the same shortcoming. Like connectionism and clas-
sicism, dynamic systems and Bayesian models could be devised with the sys-
tematicity property, but equally dynamic systems and Bayesian models can also
be devised without the systematicity property. What is required is an explana-
tion that produces only the systematic models, and none has been forthcoming
classicists, connectionists, Bayesian or dynamic systems modellers.

1.3 A Category Theory Explanation: Synopsis

In the face of this problem, we turned to an alternative approach that uses a
branch of mathematics called Category Theory to explain systematicity without
the need to introduce additional assumptions [6,16,4]. In Section 2, we provide
some formal background to our category theory explanation; here, we summarise
the general form of our explanation, as we will use it later in explaining yet
another type of systematicity.

Category theory provides a formal notion of a universal construction: a con-
struction that is a component of all constructions within the context of interest.
For example, suppose we need a construction for representing John loves Mary,
and inferring John as the lover. Connectionist and classical frameworks provide
many constructions for this purpose. The problem with these methods is that
there is no guarantee that the method for representing John loves Mary is the
same as that for Mary loves John. A universal construction (in this case a cate-
gorical product), by contrast, means that there is exactly one way each instance
is constructed, i.e., via that universal construction. Thus, all capacities within a
systematically related group are connected via that arrow in a unique way.

We used the notion of universal construction to account for systematicity with
regard to the capacity to represent and infer from relationally and recursively
definable capacities [6,16,4]. In this paper, we sketch how our explanation also
extends to another form of systematicity, called accessibility (introduced next), in
terms of universal constructions. For reasons of space, we omit some background
category theory relating to systematicity, (see [6,16,4]).

1.4 Accessibility

First, we characterise accessibility. When a child learns multiplication of small
natural numbers, they (eventually) learn a largish set of facts like 9 × 7 = 63.
Just as with the pizza example (above), not only can they make the required
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inference given 9× 7 = � (i.e., fill in the empty square), but they can also make
related inferences given �× 7 = 63, 9×� = 63, and 9 � 7 = 63.

Once they are familiar with the concept of division of natural numbers, chil-
dren can access these facts without further memorisation in order to do divi-
sion of natural numbers, at least where the quotient is again a whole number:
63/7 = 9 and 63/9 = 7. Again, we are accessing the data via multiple routes.

We originally termed this phenomenon omni-directional access, but later
adopted the less cumbersome term accessibility to refer to the same phenomenon.
A fuller description of this cognitive phenomenon can be found in [7].

It is easy to see that accessibility is an instance of systematicity, in the broad
sense defined by McLaughlin [3] and outlined above. We are saying, for example,
that, given an suitable set of facts, one can answer questions likeWho ate a pizza?
if and only if they can answer questions like What did Fred eat? This fits the
template definition of systematicity: i.e. when a cognizer has cognitive capacity
c1 if and only if the cognizer has cognitive capacity c2.

Our aim in this paper is to outline a theory of accessibility that meets the
requirements of systematicity. In Section 2, we give category theory background
for our explanation of accessibility, which follows in Section 3. Our explanation
has general implications for supposedly alternative notions of (connectionist)
compositionality, presented in Section 4. Discussion is provided in Section 5.

2 Category Theory and Universality

In this section we will introduce enough category theory to provide a mathe-
matical framework for our theory of accessibility and to allow us to demonstrate
systematicity for this theory.

Category theory is a branch, or maybe an arch, of mathematics that deals
with structure. It has previously been applied in a number of areas of com-
puter science, though more scantily in cognitive science. In computer science, it
is conspicuous in the design of aspects of modern functional programming lan-
guages, e.g. [8], but it has long been known in connection with automata theory
e.g, [9], and it is relevant in standard and non-standard logics [10]. In cognitive
science, while some of the fundamental ideas had been mentioned in the cogni-
tive psychology literature as early as 1963 [11], the first detailed application of
categorical ideas (commutative diagrams) appears to have been [12].

2.1 Categories: States and Transitions

Category theory in mathematics deals with common structures. It has been ap-
plied in theoretical physics (string theory) and in functional programming. From
a computational perspective, a cognitive system is often regarded as a collection
of cognitive states together with cognitive processes realising transitions between
those states. In category theory, formal constructions reside in a category of some
description, which consists of a collection of objects and a collection of maps be-
tween objects obeying certain rules. To help ground category theory concepts
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for the purposes of explaining systematicity, we will often interpret objects as
sets of states and arrows as functions mapping states to states.

Definitions of basic category theory are available in a range of introductory
texts on the subject, e.g. [13,14,15], but are recalled here for convenience.

Definition. A category C consists of a set of objects and a set of arrows, with
the following properties: (i) every arrow f is associated with two objects, its
domain, say a, and codomain, say b. This is usually written as f : a → b; (ii)
Given two arrows f : a → b and g : b → c, where the codomain of f is the
domain of g, we can form the composition g ◦ f : a → c; (iii) This composition
is associative: if f : a→ b, g : b→ c, and h : c→ d are composable arrows, then
h ◦ (g ◦ f) = (h ◦ g) ◦ f . (iv) For every object a ∈ C there is an identity arrow
1a. For identity arrows 1a and 1b and any arrow f : a→ b, 1b ◦ f = f = f ◦ 1a.

Examples. 1. Set, the category of sets and functions: composition is composi-
tion of functions and identity arrows are identity functions from a set to itself.

2. Vect, the category of vector spaces and linear mappings: composition is
composition of linear mappings and identity arrows are identity linear mappings
from a vector space to itself.

3. A partially ordered set (P,≤) is a category, with objects the elements of
the set P . Each relation p ≤ q is a unique arrow between p, q. Since p ≤ p, there
are identity arrows. Since ≤ is transitive, composition is defined.

4. Poset, the collection of partially ordered sets, is a category, with posets as
objects and order-preserving maps as arrows.

5. A monoid M (that is, a set closed under an associative binary operation
and possessing an identity element) is a category. There is a single object, and
the arrows are the members of the monoid. The identity element is the identity
arrow. (A familiar monoid is the set of all strings over an alphabet A.)

6. Mon, the collection of monoids, is a category, with monoids as objects and
monoid homomorphisms as arrows.
Arrows are also often referred to as maps or morphisms (from homomorphism),
typically in categories like Set, Vect, Poset and Mon where they are realised
as functions between (structured) sets.

An arrow f : a → b is called an isomorphism if there is an arrow g : b → a
such that f ◦ g = 1b and g ◦ f = 1a.

2.2 Functors and Natural Transformations: Natural Constructions

If we regard categories as cognitive (sub)systems, then we can regard functors
as relations between cognitive systems, possibly constructing cognitive processes
from the components of other systems, and natural transformations as relations
between such constructions. Functors preserve structure from one category to
another, suggesting that they are important for an explanation of systematic-
ity over structurally-related cognitive capacities. Natural transformations are
important because they provide a formal basis for distinguishing constructions
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that are “natural” in a principled (rather than some arbitrary informal) way,
suggesting that they are important for meeting Aizawa’s explanatory standard.

Definition. If C and D are categories, then a functor F : C→ D maps objects
of a, b of C to objects Fa, Fb of D and also maps arrows f : a → b of C to
arrows Ff : fa → Fb of D, in a way preserves identity arrows and respects
composition of arrows: that is (i) for c ∈ C, F1c = 1Fc and (ii) given f : a→ b,
g : b→ c, F (g ◦ f) = Fg ◦ Ff .

Examples. One functor from Vect to Set is the forgetful functor that maps
the vector space to its underlying set, and linear maps to functions. A functor
from Set to Vect is the free vector space functor which maps a set to a vector
space with the members of that set as the basis, and maps a function between
sets to a linear map that maps the basis vectors as indicated by the function.
We’ll have more relevant examples of functors later.

The functors from C→ D actually form the objects of a category. The arrows
of this category are called natural transformations.

Definition. Given two functors F,G : C → D, a natural transformation η :
F

.→ G is a collection of arrows (“components”) in D: one for every object c ∈ C:
ηc : Fc → Gc such that for every arrow f : c1 → c2 in C, Gf ◦ ηc1 = ηc2 ◦ Ff .
This is summarised in a commutative diagram, in which compositions of arrows
indicated by paths with the same start point and same end point are equal:

Fc1
ηc1 ��

Ff

��

Gc1

Gf

��
Fc2 ηc2

�� Gc2

(1)

Since natural transformations are to be arrows, they must be composable: if
η : F

.→ G and μ : G
.→ H are natural transformations, then μ ◦ η : F

.→ H
has components (μ ◦ η)c : Fc → Hc for each c ∈ C. The identity natural
transformation 1F : F

.→ F has components 1c : Fc→ Fc.
Hopefully, we’ve made it fairly clear why natural transformations are rea-

sonable as morphisms of functors. Examples of natural transformations can be
found in [13,14,15], and also in [6] (list reversal example) and [16] (in attached
Text S2: clock example). This is addressed further in Section 4.

2.3 Universal Constructions

The final concept we need, which is central to our explanation of systematicity, is
universal construction. A universal construction is a construction that captures
an essential property shared by all instances in the category (system) of interest.
In terms of cognitive processes, a universal construction is a process common to
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all processes, suggesting how systematically-related capacities are intrinsically
connected. Moreover, all processes are composed of the universal process in a
unique way, so no further assumptions are needed to guarantee systematicity,
meeting Aizawa’s explanatory standard.

The most general definition of universal properties is not very transparent,
and goes beyond our current needs; it can be found in [13,16,4]. Here we shall
describe the universality property of the more-familiar Cartesian products (and
of categorical products in general). A Cartesian product is an instance of the
more general categorical product, which we employed to explain systematicity
with regard to particular relations (e.g., John loves Mary) in [6]. Here, we show
how this construct is used to explain systematic connections between relations
such as multiplication and division.

Definition. cf. [13,18]. A product of two objects a, b in a category C is a triple
〈p, π1, π2〉 where π1 : p → a and π2 : p → b, such that for any triple 〈r, ρ1, ρ2〉
with ρ1 : r → a and ρ2 : r → b, there is a unique arrow u : r → p such that
π1 ◦ u = ρ1 and π2 ◦ u = ρ2. ρ1, ρ1 are called projections onto the factors a, b.

A categorical product is an instance of a universal construction, which we
will use later to address accessibility. In the category Set, the Cartesian product
a × b of two sets a, b has this property, with π1 and π2 being the projections
π1(x, y) = x and π2(x, y) = y. The product object, in any category, is often
written as a × b, rather than p. With this convention, the product condition is
that there is a unique arrow u such that the following diagram commutes:

r
ρ1

�����
���

���
���

��
ρ2

����
���

���
���

���

u

���
�
�

a a× bπ1

��
π2

�� b

(2)

It is easy to check that if 〈r, ρ1, ρ2〉 is also a product, then u is the unique
isomorphism between r and a× b (that makes the diagram commute)—that is,
products are unique up to a unique isomorphism. This uniqueness property is a
feature of all universal constructions.

The Cartesian product of two categories can easily be checked to be a category,
and we will use such constructions later in this paper.

3 A Uniqueness Property for Multiplication-Division

In order to meet Aizawa’s requirement, we need to show why there is a unique
correspondence multiplication and division. In fact, multiplication and division
of natural numbers can be viewed as relations - for example, (8, 3, 24) belongs to
the multiplication relation because 8×3 = 24. If F1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}= F2

are the sets of factors for multiplication of digits, and P = {a× b|a ∈ F1, b ∈ F2}
is the set of products of digits, then the multiplication relation is a subset of the
product F1×F2×P , and similarly the division relation (for the sets of numbers) is
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a subset of the product P ×F1×F2. The correspondence between these products
is the function τ : F1 × F1 × P → P × F1 × F2 : (f1, f2, p) �→ (p, f1, f2) (the
notation �→ (maps to) is a way that is sometimes convenient for expressing the
action of a function: h : x �→ y means h(x) = y. Our aim is to show that this
function is natural and unique.

We’ll do this in a more general setting, so that our argument can be applied
to this transformation of other ternary relations. Given sets (or objects in any
category with products) A, B, and C, we can form their product A × B ×
C. Technically, this product will, by a slight elaboration of the definition of
product above, be a quadruple 〈A × B × C, π1, π2, π3〉, where π1 : A × B ×
C → A : (a, b, c) �→ a is the projection onto A, and similarly π2, π3 are the
projections onto B,C. This triple product has a uniqueness property like that
of the product of two objects: given another such quadruple 〈R, ρ1, ρ2, ρ3〉, there
is a unique arrow u : R→ A×B × C such that π1 ◦ u = ρ1, π2 ◦ u = ρ2 and π3
◦ u = ρ3.

We shall use a construction analogous to one in [15]: we can also form the
product (C ×A×B, σ1, σ2, σ3), where σ1, σ2, σ3 are respectively the projections
onto C,A, and B. Since C×A×B is a product of A,B, and C, there is a unique
map v : A×B×C → C×A×B such that σ2◦v = π1, σ3◦v = π2 and σ1◦v = π3.
Note the cross-over of subscripts. In the same way, since A × B × C is also a
product of A,B, and C, there is a unique map w : C×A×B → A×B×C such
that π3 ◦ w = σ1, π1 ◦ w = σ2 and π2 ◦ w = σ3.

Since σ1 ◦ v = π3 and π3 ◦w = σ1, σ1 ◦ v ◦w = σ1 and similarly σ2 ◦ v ◦w = σ2
and σ3 ◦v◦w = σ3, so by the uniqueness property of C×A×B, v◦w = 1C×A×B.
A similar argument shows that w ◦ v = 1A×B×C . Thus u is an isomorphism, and
so it is the unique isomorphism A × B × C → C × A × B satisfying π3 ◦ w =
σ1, π1 ◦ w = σ2 and π2 ◦ w = σ3.

Thus there is a unique correspondence between the two products. In fact, this
correspondence is natural in A,B, and C as well. To see this, we have to set
up functors and a natural transformation between them. If C is the category,
then the two functors are × : C ×C ×C → C : (A,B,C) �→ A × B × C and
×̂ : C×C ×C → C : (A,B,C) �→ C × A × B. The transformation τ : × .→ ×̂
that we are going to show is natural, has components τA,B,C : ×(A,B,C) →
×̂(A,B,C), i.e. τA,B,C : A × B × C → C × A × B. These components are of
course chosen to be the map that we have just shown is a unique isomorphism for
each A,B, and C. In a category where objects have elements, these components
are given by τA,B,C(a, b, c) = (c, a, b). To prove naturality, we need to show that
for arrows α : A → A1, β : B → B1, and γ : C → C1, the following diagram
commutes:

A×B × C
τA,B,C ��

α×β×γ

��

C ×A×B

γ×α×β

��
A1 ×B1 × C1 τA1,B1,C1

�� C1 ×A1 ×B1

(3)
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In a category where objects have elements, we assume a ∈ A, b ∈ B, c ∈ C:

(γ × α× β) ◦ τA,B,C(a, b, c) = γ × α× β(c, a, b)
= (γ(c), α(a), β(b))

= τA1,B1,C1
(α(a), β(b), γ(c))

= τA1,B1,C1
◦ (α × β × γ)(a, b, c)

That is, (γ×α×β)◦ τA,B,C = τA1,B1,C1
◦ (α×β×γ), so the diagram commutes,

and τ is natural in A,B, and C. Thus we have shown:

Proposition. The map τA,B,C : A×B×C → C×A×B is a unique isomorphism
natural in A,B, and C. It is unique with respect to the product structures of its
domain and codomain.

A Cartesian product of two sets consists of all pairwise combinations of ele-
ments the two sets. Thus multiplication (as a relation) is not a whole Cartesian
product: e.g. 1×2 �= 3, but triple (1, 2, 3) ∈ A×B×C. Restriction to a subset of
the Cartesian product is achieved by using a pullback (or constrained product),
where additional morphisms restrict the construction to a subset of the Carte-
sian product. Pullbacks are a further instance of a universal construction, and
their role in explaining systematicity parallels that of products. For reasons of
space, we omit the details here. A detailed explanation of pullbacks, pullback
functors and their roles in explaining (quasi-)systematicity, where some but not
all possible combinations of constituents are systematically related, is in [16].

4 Natural Constructions

The argument against the classical explanation for systematicity is that it re-
lies on stipulating specific modes of classical compositionality (i.e., grammars),
since not all modes account for systematicity [5]. The general retort is to appeal
to “canonical” constructions. But classicism has no principle that dictates such
constructions, whatever they may be [5]. In this section, we show how the cate-
gory theory notion of a natural transformation provides this principle, and how
constructions that are not natural transformations do not support systematicity.

Some constructions seem more intuitively “natural” than others. To illus-
trate, suppose we have pairs of ordered blocks. A “natural” construction is to
compose a representation of each pair of blocks from symbols representing each
block, such that the first symbol in the representation of the pair corresponds
to the first block and the second symbol corresponds to the second block. For
example, the composition ab represents the pair of blocks (a, b). An alternative
construction is to compose a representation of each pair as a number constructed
from numbers representing each block. Godel numbering is one possibility, pro-
posed as an alternative non-classical form of compositionality [17]. For example,
2n3m represents the pair (n,m). Given that the numbers representing pairs of
blocks are composed from prime powers (where each unique exponent n, m,
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corresponds to a unique block, and the prime numbers 2, 3, correspond to the
first and second positions in the pair), we know from the fundamental theorem
of arithmetic that the numbers corresponding to the individual blocks are re-
coverable by a prime decomposition procedure. Although both constructions are
isomorphisms, there is a sense in which the second construction is less “natural”
than the first. A Godel numbering scheme provides a unique way of getting from
the object represented (such as the pair (n,m)) to the representation (2n3m).

To illustrate, consider an instance of Diagram 1, involving Godel numbers:

A×B
gA,B ��

1A×i

��

G(A×B)

G(1A×i)

��
A×B′

gA,B′
�� G(A×B′)

(4)

where F (in Diagram 1) is instantiated as the functor Set×Set→ Set that maps
pairs of sets (A,B) to A×B and pairs of arrows (functions in this case) p : A→
A′ and q : B → B′ to p× q : A×B → A′×B′, where (p× q)(a, b) = (p(a), q(b)).
In our case, B ⊂ B′, and we have the inclusion map i : B → B′ : b �→ b, and in
the vertical arrows in Diagram 4, (1A, i) is mapped to 1A× i : A×B → A×B′.

The functor G : Set×Set→ Set is a “change of basis” functor whereby maps
between sets of elements become maps between sets of corresponding Godel
numbers, where each unique element has a unique Godel number. For example,
suppose A and B are sets of people’s names (e.g., John and Mary), so that A×B
is a Cartesian product that includes pairs of names, e.g., (John, Mary). Each
name is assigned a unique number j, e.g., John is 1,Mary is 2, and so on. Functor
G constructs a set of Godel numbers for each argument set by using the number
assigned to each name (j) as the exponent to a prime number assigned to each
tuple position: e.g., the first tuple position is 2, the second is 3, the third is 5, and
so on. Thus, the pair (aj , bk) ∈ A×B is assigned the unique Godel number 2j3k,
from which j and k are recoverable by prime number decomposition. As each
element is assigned a unique Godel number, the action of functor G on arrows
is essentially a change of basis. So identities and compositions are preserved.

Transformation g is a family of maps, one for each set, sending each element
(a, b) ∈ A×B to a corresponding Godel number. The critical point here is that
each map in g is only locally-consistent: i.e., as already noted, we are guaranteed
to have a bijection gA,B : A × B → G(A × B), but this bijection is generally
not unique. Another map gA,B′ : A × B′ → G(A × B′), where B′ ⊃ B, is also
a bijection, yet together they do not necessarily make Diagram 4 commute (i.e.,
they do not necessarily constitute a natural transformation).

To see why, suppose we have sets A = {John}, and B = {Mary}, so that
gA×B : (John,Mary) �→ 2132 = 18. Now, we introduce a new name Akiko,
which is an element of the set B′ = B ∪ {Akiko}, which is assigned 3 for the
purpose of constructing Godel numbers via G. Suppose, however, that g as-
signs elements to the available indices (j) based on local information only (e.g.,
within-set lexical order, not the globally assigned index used by G). In this
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case, we have for map gA,B′ , Akiko < John < Mary , where Akiko is assigned
1, and John and Mary are assigned 2 and 3 respectively. Although this locally
defined ordering scheme affords the needed bijections, these bijections are not
consistent across objects. We have the mapping gA,B′ : (John ,Akiko) �→ 2231 =
24, (John,Mary) �→ 2233 = 108. However, Diagram 4 does not commute for i,
since G(i) ◦ gA,B(John,Mary) = G(i)(6) = 18 �= 108 = gA,B′(John ,Mary) =
gA×B′ ◦ i(John ,Mary).

We can, of course, modify the Godel numbering scheme above to make Di-
agram 4 commute by reordering the new element Akiko: e.g., assign the order
John < Mary < Akiko to set B′. To do so, however, requires prior knowledge
of all possible elements in all possible sets, which the cognitive system cannot
have in general. Or, conversely, upon knowing the existence of a new element,
the cognitive system must update all construction schemes involving the new el-
ement, clearly violating the systematicity requirement: i.e., prior to the update
the cognitive system is in a state whereby it has the capacity for some but all
related instances. Hence, such a scheme fails to explain systematicity.

Characteristically, natural constructions make no reference to an object’s con-
tents; constructions that are not natural do. Also, the specific assignment of ele-
ments to (in this case) numbers is arbitrary: while the Godel numbering scheme
maps items uniquely, we could easily provide an alternative mapping, such as
the function (j, k) �→ 5j7k, thus the mapping is ad hoc.

5 Discussion and Conclusions

Our argument in section 3 was expressed in terms of (Cartesian) products, be-
cause they are somewhat familiar and have the needed universal mapping prop-
erty. As already noted, though, where the relations in question involve a subset of
the Cartesian product, a pullback can be employed and the explanation parallels
the explanation using products. In some cases, however, the form of accessibility
in question is not a function. For example, in the presence of other facts such as
John ate ice-cream, the link from person to what they ate is no longer a function,
in the usual sense, since John is now associated with both pizza and ice-cream.
One possible way of addressing such cases is to consider another kind a universal
construction, called an adjunction (see [6,16]), that connects the category Set
of sets with functions as arrows, and the category Rel of sets with relations as
arrows.

Accessibility is a property of human cognition that we believe is important
in itself, but also in distinguishing between the capabilities of different theories
and classes of cognitive models. It may also be important to bear in mind when
designing human-computer interfaces as well as intelligent tutoring systems, etc.
Systematicity is interesting as a frequent property of cognitive systems and mod-
els, and also as a desirable property for AI applications. We have shown in this
paper that accessibility can be analysed in terms of systematicity by means of a
simple construction that is natural and universal in the category-theoretic sense
of these terms. This provides guidelines for determining, for a given model, in
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principle, whether it meets the standard of systematicity of accessibility. Not all
cognitive models will specifically draw on accessibility, but those that do should
benefit from our contribution.

Systematicity (hence accessibility) is important for AI and cognitive science:
the advantage of a systematicity property is that one gets a collection of intelli-
gent capacities for free once one has a universal construction. Naturality provides
a general, formal category-theory-based notion of content independence in cogni-
tive science and artificial intelligence, where mental capacity extends to a variety
of situations that have a common form, despite their specific differences.
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Abstract. In this paper, we propose Rule Description Logic (RDL) for enhanc-
ing Description Logic (DL) with nonmonotonic recursive rules, like those in An-
swer Set Programming (ASP). We define the world view semantics for RDL and
show that it is faithful with respect to both DL and ASP. More importantly, we
show that the full language of RDL is decidable.

1 Introduction

In the last two decades, the integration of Description Logics (DL) and nonmonotonic
formalisms and/or rule-based formalisms has been one of the major challenging tasks
in the area of knowledge representation [1–11]. Recently, research on this topic has be-
come even more attractive due to the success of applying description logics to Semantic
Web [12] and the urgent task in it of adding rules onto the ontology layer.

Meanwhile, Answer Set Programming (ASP) has emerged as a promising paradigm
for nonmonotonic rule-based reasoning due to its declarative semantics and compu-
tational advantages [13–15]. In fact, ASP is exactly a representative approach that
combines nonmonotonic reasoning and recursive rule-based reasoning in a simple and
natural way.

Under this backdrop, we consider the task of enhancing Description Logics with non-
monotonic recursive rules, like those in Answer Set Programming. By nonmonotonic,
we mean, syntactically, the negation-as-failure operator might be used in rules, and se-
mantically, some consequences might not be preserved when adding new knowledge.
By recursive, we mean iterative reasoning procedure will be applied on rules.

As argued in [7], work in this aspect should satisfy the following criteria:

– Faithfulness. The integration of DL and ASP should preserve the semantics of both
formalisms.

– Tightness. Both the DL and the ASP component should be able to contribute to the
consequences of the other.

– Flexibility. The integration should be flexible to the Closed/Open World Assump-
tion.

– Decidability. The integration should be decidable.

In addition, we believe that a direct semantics is essential for the integration (of DL and
ASP) in order to capture its underlying intuitions.
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Although it looks natural, these criteria are hard to be achieved at the same time.
As far as we know, none of the existing work satisfies all the above criteria. For in-
stance, some of them are not tight as one component is building upon another. More
importantly, many of the existing approaches are not decidable for their full language.
Usually, a strong syntactic condition called safety needs to be assumed in order to obtain
decidability. This, indeed, loses the most favorable feature of Description Logic.

In this paper, we propose a novel formalism, called Rule Description Logic (RDL
for short), whose syntax is extended from description logic with the rules of the form

C0 ← C1, . . . , Cm, notCm+1, . . . , notCn,

where 0 ≤ m ≤ n, and all Ci(0 ≤ i ≤ n) are ⊥ or concepts in description logic.
We define a world view semantics for RDL based on a fixed-point definition, similar to
Reiter’s default logic [16]. Roughly speaking, a world view of an RDL rule base is a
collection of interpretations, representing a possible set of models that an agent believes
by the given rule base.

We show that RDL satisfies all the criteria mentioned previously. We prove that the
world view semantics is faithful in the sense that restricting an RDL rule base to a
knowledge base in DL (a logic program in ASP), the world views of the rule base
coincide with the models of the knowledge base (the answer sets of the program, resp.).
More importantly, we prove the bounded model property for RDL. As a consequence,
the full language of RDL (i.e., no further syntactic restriction required) is decidable.

The rest of the paper is organized as follows. The following section briefly introduces
the basic description logic ALC. Next, section 3 presents the syntax as well as the
semantics of RDL and addresses some basic related issues. Section 4 proves that RDL is
faithful with respect to both DL and ASP, while section 5 proves that RDL is decidable.
Then, section 6 discusses some related works. Finally, section 7 concludes the paper
with some remarks.

2 The Description Logic ALC
In this paper, we focus on the basic description logic ALC, which includes and only
includes the basic concept constructors of conjunction, disjunction, negation and exis-
tential and universal quantifications [17]. The syntax ofALC is defined over a set NC of
concept names, a set NR of role names, a set NI of individual names and the connectives
� (tautology),⊥ (falsity), ¬ (negation), � (conjunction), � (disjunction), ∃ (existential
quantification) and ∀ (universal quantification). In ALC, concepts are defined recur-
sively as follows:

� | ⊥ | A | ¬C | C �D | C �D | ∀R.C | ∃R.C,

where A ∈ NC and R ∈ NR.
The semantics of ALC is defined in terms of an interpretation I = (ΔI , .I), where

ΔI is the domain that contains a non-empty set of elements, and .I is the interpretation
function that maps each concept name A ∈ NC to a subset AI of ΔI , each role name
R ∈ NR to a binary relation RI on ΔI , and each individual name a ∈ NI to an element
aI in ΔI . The interpretation function is extended to all concepts recursively as follows:
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– �I = ΔI .
– ⊥I = ∅.
– (¬C)I = ΔI \CI .
– (C �D)I = CI ∩DI .
– (C �D)I = CI ∪DI .
– (∀R.C)I = {a ∈ ΔI | ∀b. if (a, b) ∈ RI , then b ∈ CI}.
– (∃R.C)I = {a ∈ ΔI | ∃b.(a, b) ∈ RI and b ∈ CI}.

We say that an interpretation I satisfies a concept C, or I is a model of C, iff CI �= ∅.
A TBox is a finite set of general concept implications of the form C ) D, where C

andD are concepts. In addition, we writeC ≡ D as a shorthand ofC ) D andD ) C.
An ABox is a finite set of concept assertions of the formC(a) and role assertions of the
form R(a, b), where a and b are individual names, R is a role name and C is a concept.
A (DL) knowledge base (KB) is a pair (T ,A), where T is a TBox and A is an ABox.

An interpretation I satisfies a general concept implication C ) D if CI ⊆ DI ;
I satisfies a concept assertion C(a) if a ∈ CI ; I satisfies a role assertion R(a, b) if
(a, b) ∈ RI . Then, I satisfies, or I is a model of, a TBox T if it satisfies all general
concept implications in T , an ABox A if it satisfies all (concept and role) assertions in
A and a DL knowledge base (T ,A) if it satisfies both T and A.

3 RDL: Syntax and Semantics

This section presents the syntax as well as the semantics of RDL, which can be re-
garded as an integration of Description Logic and Answer Set Programming. However,
although Description Logic (i.e. ALC) is fully embraced, RDL only contains a frag-
ment of Answer Set Programming. Nevertheless, as we will argue later, this fragment
is indeed adequate for the task of enhancing DL with rules.

The syntax of RDL is extended fromALC by adding rules of the form

C0 ← C1, . . . , Cm, notCm+1, . . . , notCn, (1)

where 0 ≤ m ≤ n, and Ci(0 ≤ i ≤ n) is a concept or ⊥. Roughly speaking, this
represents a nonmonotonic recursive rule that applies on all individuals.

An RBox1 is a finite set of rules of form (1). An (RDL) rule base (RB) is a triple
(R, T ,A), where R is an RBox and (T ,A) is a standard DL knowledge base. In par-
ticular, a knowledge base can be considered as a rule base with empty RBox.

The semantics of RDL is defined in terms of collections of interpretations instead
of interpretations by fixing a domain and the interpretations on individuals. Let Δ be
a non-empty set of elements, called a domain. A collection of interpretations on Δ
(collection for short if clear from the context) is a non-empty set of interpretations that
share the same domain Δ and map each individual a ∈ NI to the same element in Δ.
In other words, each collection W is associated with a domain Δ and a mapping M
from all individuals to elements in Δ, which are recognized by all interpretations in the

1 Although this term appeared elsewhere in the literature, we use it in RDL for convenience. The
syntactic and semantic meanings are different from other approaches.
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collection. For convenience, we use ΔW to denote the domain and MW to denote the
individual mapping.

Let Γ = (R, T ,A) be a rule base and W a collection. We define an operator
Γ (W) by the maximal collection (in the sense of set inclusion) satisfying the following
conditions.

1. Γ (W) has the same domain and the same individual mapping asW .
2. Every interpretation in Γ (W) is a model of the knowledge base (T ,A).
3. For each rule r in R of the form (1) and each d in ΔW , if

(a) for all i(1 ≤ i ≤ m), and all I ∈ Γ (W), d ∈ CI
i and

(b) for all j, (m+ 1 ≤ j ≤ n), there exists J ∈ W such that d �∈ CJ
j ,

then d ∈ CI
0 for all I ∈ Γ (W).

We say that a collectionW is a world view2 of a rule base Γ iffW is a fixed point of
the operator Γ , i.e. Γ (W) =W . In this case, we say thatW is a world view of Γ with
respect to ΔW and MW .

The world view semantics for RDL follows some basic ideas of the well-known
semantics for default logic [16]. First of all, both semantics define an operator Γ , and
take the fixed point of Γ into account. Secondly, all the (nonmonotonic recursive) rules
need to be satisfied by fixing their negation-as-failure part with the original candidate.
However, in Reiter’s semantics [16], Γ is defined on propositional deductive closures,
while in the world view semantics, it is defined on collections of interpretations.

Similar to ASP, a rule base may have zero, one or more world views. Intuitively, each
world view represents an agent’s view of all the possible models by given the rule base.
A world view of a rule base may consist of a single or multiple interpretations. Each
interpretation represents a possible world that the agent believes in this view.

Example 1. (Originated from [2]) Consider the following example of reasoning about
exceptions: “Usually, mammals live on lands. However, whales are mammals but not
living on lands.” Formalized in RDL, this can be represented as

∃live.Land←Mammal, not¬∃live.Land, (2)

Whale )Mammal � ¬∃live.Land, (3)

where (2) forms the RBox, and (3) forms the TBox of this rule base.
Suppose that the ABox is

{Mammal(snoopy)}. (4)

Fix a domain Δ = {d1} and an individual mapping M such that M(snoopy) = d1.
Then, the rule base Γ1 = {(2), (3), (4)} has the following world view with respect to
Δ and M :

W1 = {{Mammal(d1), Land(d1), live(d1, d1)}}.3

2 This term is borrowed from [18].
3 Note that Mammal(d1) and Land(d1) appear at the same time since there is no common-

sense restriction in the rule base that these two concepts are disjoint.
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To verify this, firstly it is obvious that the interpretation inW1 satisfies the knowledge
base {(3), (4)}. Secondly,W1 itself satisfies condition 3 in the definition of the operator
Γ . Hence,W1 ⊆ Γ (W1). To showW1 = Γ (W1), it suffices to prove that for anyW ′

1

such thatW1 ⊂ W ′
1, if all the interpretations in it satisfy the knowledge base {(3), (4)},

then it does not satisfy condition 3. This is indeed the case since ∃live.Land(d1) must
hold according to condition 3.

It can be checked thatW1 is the unique world view of Γ1 w.r.tΔ andM . For instance,
consider the collection

{{Whale(d1),Mammal(d1)}}.

Although the interpretation in this collection satisfies the TBox, and itself satisfies con-
dition 1-3 of the operator Γ , it is not a maximal one since

{{Whale(d1),Mammal(d1)},
{Whale(d1),Mammal(d1), Land(d1)}}

also satisfies conditions 1-3 of the operator Γ .
Now, suppose that the ABox is

{Whale(mobydick)}. (5)

Fix a domain Δ′ = {d2} and an individual mapping M ′ such that M ′(mobydick) =
d2. It can be checked that the unique extension of {(2), (3), (5)} with respect to Δ′ and
M ′ is

{{Whale(d2),Mammal(d2), Land(d2)},
{Whale(d2),Mammal(d2)},
{Whale(d2),Mammal(d2), live(d2, d2)}}.

Semantically, a major difference between Description Logic (DL) and Rule Description
Logic (RDL) is that the semantics for former is defined in terms of interpretations, while
the semantics for the latter is defined in terms of collections (of interpretations). It is
necessary to consider collections instead of interpretations for RDL. Consider a simple
rule base Γ , whose RBox consists of the following two rules:

A1 �A2 ← notB

B ← notA1 � A2.

Given a domain Δ = {d}, Γ has two world views with respect to Δ:

{{A1(d)}, {A2(d)}, {A1(d), A2(d)}},
{{B(d)}},

where the first world view contains three interpretations and the second one contains
only a unique interpretation. One can observe that the relationship between {A1(d)}
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and {A2(d)} is different from the relationship between {A1(d)} and {B(d)}. To con-
clude, {A1(d)} and {A2(d)} are complementary in the sense that these two interpreta-
tions complement each other according to the rule base, while {A1(d)} and {B(d)} are
contradictory in the sense that one contradicts to another according to the rule base.

The reason why collections are needed instead of interpretations can also be evi-
denced from propositional default logic [16], which can be regarded as a natural com-
bination of classical logic and answer set programming in the propositional case. Notice
that the extensions in default logic are propositional theories, which indeed correspond
to a collection of propositional interpretations (assignments) but not merely interpreta-
tions (assignments). Lifting this idea for integrating DL and ASP, it is natural to consider
world views in our task as collections rather than interpretations.

4 RDL vs DL/ASP

Since RDL claims to be an approach to enhance Description Logics with rules in An-
swer Set Programming, it is important to investigate the relationship between RDL
and DL as well as the relationship between RDL and ASP. One important measure is
so-called faithfulness [7]. That is, when restricting the syntax of RDL with DL (ASP
resp.), does the semantics of RDL coincide with the semantics of DL (ASP resp.)? An-
other measure is expressiveness, i.e., does RDL have the full expressive power of DL
(ASP resp.)?

This section answers the first question positively. We show that RDL is indeed faith-
ful with respect to both DL and ASP. For the second question, it can be observed that
RDL embraces the full expressive power of DL, but only contains a conservative frag-
ment of ASP.

The relationship between RDL and DL is illustrated by the following theorem.

Theorem 1 (RDL vs DL). Let Γ be a rule base with empty RBox, i.e. Γ = (R, T ,A),
where R = ∅. Let Δ be a domain and M an individual mapping on Δ. Then, Γ has a
unique world view with respect to Δ and M , which is the collection of all models of the
knowledge base (T ,A) sharing the domain Δ and the individual mapping M .

Theorem 1 shows that, fixing a domain and an individual mapping, the unique world
view of a knowledge base contains and only contains all models of it. Hence, RDL is
faithful with respect to DL. On the other hand, from Theorem 1, it can be observed that
RDL embraces the full expressive power of DL in the sense that, given any knowledge
base, its models (under the context of DL) are exactly captured by its unique world view
(under the context of RDL).

To compare RDL and ASP,4 we need to figure out the syntactic intersection of these
two approaches. A simple idea is to eliminate all the compositional connectives¬, �, �,
∃ and ∀ and to eliminate TBox in RDL. In fact, this fragment of RDL only allows atomic
concepts; it allows neither roles nor compounded concepts. Moreover, TBox assertions
are forbidden. This fragment can be straightforwardly transformed to a fragment of
first-order ASP, which only allows unary predicates and rules of the following form.

4 In this paper, we consider the recent generalization of the first-order answer set semantics
[14, 15], which is defined over arbitrary structures rather than the Herbrand structure [13].
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A0(x)← A1(x), . . . , Am(x), notAm+1(x), . . . , notAn(x), (6)

where 0 ≤ m ≤ n, x is a variable and Ai(0 ≤ i ≤ n) is a unary predicate or ⊥. This
fragment of ASP is indeed a very small fragment of ASP since it only allows unary
predicates and all atoms in a rule must share the same variable.

Theorem 2 (RDL vs. ASP). Let Γ be a rule base that only allows atomic concepts
and has no TBox. Let ΠΓ be the answer set program obtained from Γ by translating
each rule r in Γ of form (1) to a rule of form (6). Then, every world view of Π has and
only has a unique interpretation, which is an answer set of ΠΓ . Conversely, an answer
set of ΠΓ itself composes a world view of Γ .

Theorem 2 shows that, by restricting to the common syntax of RDL and ASP, the world
views (under the context of RDL) exactly correspond to the answer sets (under the
context of ASP) in the sense that every world view contains and only contains a unique
interpretation, which corresponds to an answer set. Hence, RDL is faithful with respect
to ASP.

It can be observed that RDL does not fully embrace the expressive power of ASP.
A simple observation is that roles (i.e. binary predicates) cannot be minimized in RDL,
i.e., the head of all rules cannot be roles. Also, RDL does not allow predicates with arity
more than 2.

However, we argue that rules of the form (1) in RDL are adequate enough from a
Description Logic point of view. This is due to the fact that DLs only allow assertions
like C ) D in TBox. More expressive forms of assertions, e.g. R1 ) R2, are not
allowed in DLs either. In fact, syntactically, the rule form in RDL (i.e. form (1)) is very
similar to a general concept implication in standard DL, except that the negation-as-
failure operator is introduced. Nevertheless, their semantically meanings are essentially
different.

Also, it can be observed from Theorems 1 and 2 that, semantically, the DL and the
ASP components are actually corresponding to two dimensions of RDL. More pre-
cisely, the DL component is corresponding to the interrelationships among interpre-
tations in a particular world view, while the ASP component is corresponding to the
interrelationships among different world views.

5 Decidability of RDL

Different from standard DLs, there are more typical decision problems in RDL as mod-
els are generalized to world views. For instance, the problem of checking whether a
concept is satisfiable by all interpretations in some world views of an RDL rule base is
different from the problem of checking whether it is satisfiable by some interpretations
in all world views.

The decidability of all kinds of decision problems follows from the bounded model
property of RDL.

Theorem 3 (Bounded model property). If a rule base has a world view, then it has a
world view whose domain size is bounded.
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Proof. In particular, we show that there is a world view whose domain size is less than
O(22

n

), where n is the length of the rule base. As the full proof is rather tedious, here
we only outline the basic ideas due to a space limit.

We can assume that the individual set is empty and all the rules in RBox only contain
atomic concepts. Suppose that Γ = (R, T , ∅), whereR only contains atomic concepts.
Let cl(Γ ) be the smallest set of concepts that contains all sub-concepts occurring in Γ ,
and is closed under single negation. Given a subset S ⊆ cl(Γ ), we use iS to denote the
index of S, and Ind to denote the set of all indices (with respect to Γ ).

Suppose that I is an interpretation whose domain isΔ. Construct a mapping fI from
Δ to Ind (with respect to I) such that for all d ∈ Δ, fI(d) = iS , where S = {C | C ∈
cl(Γ ), d ∈ CI}. By f(I), we denote the set of indices mapped from all elements in Δ,
i.e., f(I) = {fI(d) | d ∈ Δ}.

LetW be a collection with the domainΔ. LetF be a set of indices and i an index. By
P(W), we denote the set {(F, i) |∃I ∈ W , d ∈ Δ such that f(I) = F and fI(d) = i}.
Then,P(W) is a finite set of pairs of the form (F, i). By Ind(W), we denote the power
set of P(W). We construct a mapping f (with respect toW) from Δ to Ind(W) that
for all d ∈ Δ, f(d) = {(F, i) | I ∈ W , f(I) = F, fI(d) = i}.

Let Δ′ = {f(d) | d ∈ Δ}. Clearly, for every d′ ∈ Δ′, there exists d ∈ Δ such
that f(d) = d′. Given an interpretation I ∈ W , construct a new interpretation I ′ (with
respect toW) as follows:

– the domain of I ′ is Δ′;
– for each atomic concept A and each d ∈ Δ, if d ∈ AI , then f(d) ∈ AI′

;
– for each atomic role R and each two d1, d2 ∈ Δ, if (d1, d2) ∈ RI , then (f(d1),
f(d2)) ∈ RI′

.

By induction on the structure of C, it can be proved that:

Claim. For any d ∈ Δ, I ∈ W and C ∈ cl(Γ ), d ∈ CI iff f(d) ∈ CI′
.

Now suppose that a collectionW is a world view of Γ . Then, we show that the collec-
tionW ′ = {I ′ | I ∈ W} is a world view of Γ as well. Firstly,W ′ ⊆ Γ (W ′) sinceW ′

itself satisfies conditions 1-3 in the definition of the operator Γ according to Claim 1.
Hence, Γ (W ′) = W ′. Otherwise,W ′ ⊂ Γ (W ′). Suppose that J ′ is in Γ (W ′) but

not inW ′. We construct a new interpretation J as follows:

– the domain of J is Δ,
– for each atomic concept A and each d ∈ Δ, if f(d) ∈ AJ ′

, then d ∈ AJ .
– for each atomic role R and each pair (d1, d2) ∈ Δ ×Δ, if (f(d1), f(d2)) ∈ RJ ′

,
then (d1, d2) ∈ RJ .

Again, by induction, it can be proved that:

Claim. For any d ∈ Δ, J ∈ W∗ \W and C ∈ cl(Γ ), d ∈ CJ iff f(d) ∈ CJ ′
.

Let W∗ = W ∪ {J | J ′ ∈ Γ (W ′) \ W ′}. Then, W ⊂ W∗. Clearly, W∗ satisfies
conditions 1-2 in the definition of the operator Γ with respect toW . We now show that
it satisfies condition 3 as well. Let d ∈ Δ and r a rule in Γ of form (1). Suppose that
d ∈ CI

i for all i(1 ≤ i ≤ m) and all I ∈ W∗, and d �∈ CJ
j for all j(m + 1 ≤ j ≤ n)
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and all J ∈ W . Then, by Claims 1 and 2, f(d) ∈ CI′
i for all i(1 ≤ i ≤ m) and

all I ′ ∈ Γ (W ′), and d �∈ CJ ′
j for all j(m + 1 ≤ j ≤ n) and all J ′ ∈ W ′. Hence,

f(d) ∈ CI′
0 for all I ′ ∈ Γ (W ′). Again, by Claims 1 and 2, d ∈ CI

0 for all I ∈ W∗.
This shows thatW∗ ⊆ Γ (W). Therefore,W ⊂W∗ ⊆ Γ (W), a contradiction.

We end up this proof by noticing that Δ′ is bounded since the sizes of cl(Γ ), P (W)
and Ind(W) are no more than O(n), O(2n) and O(22

n

), respectively.

As a consequence, the decidability of the existence checking problem follows directly
from Theorem 3.

Corollary 1. Checking whether a rule base has a world view is decidable.

6 Discussions and Related Work

Discussions. The criteria mentioned in the introduction section are regarded to be im-
portant for the task of integrating DL and ASP. RDL indeed satisfies all these criteria.
First of all, the world view semantics for RDL is a direct semantics, which is very
similar to Reiter’s semantics for default logic. Also, RDL is highly tight since con-
cepts (predicates) in the DL component and those in the ASP component are not distin-
guished. Thirdly, RDL is faithful with respect to both DL and ASP, as shown in Section
4. Also, as proved in Section 5, the full language of RDL is decidable.

Finally, it can be observed that RDL is flexible to the Closed/Open World Assump-
tion. The world view semantics for RDL does not force the Closed World Assumption.
For instance, only from the rule base with a single concept assertion Person(Mike),
one cannot derive that Mike is innocent. For employing Closed world Assumption
for a particular concept C, one can simply add a rule C ← not¬C to the RBox. For
instance, together with the Closed World Assumption on the concept Innocent (i.e.
Innocent ← not¬Innocent), from the concept assertion Person(Mike), one can
actually derive thatMike is innocent since the unique world view (w.r.t. a domain d and
an individual mapping fromMike to d) of the rule base is {Person(d), Innocent(d)}.

Related Work. As mentioned in the introduction section, the tasks of enhancing de-
scription logics with nonmonotonic formalisms and/or with rules have attracted many
attentions in the literature. In this section, we briefly review some of the related work.
Due to a space limit, we are not able to discuss all in very detail, and we leave this task
to our full version.

Perhaps the closest work to RDL is other approaches of integrating DL and ASP.
As far as we are concerned, there are five representative approaches in this category,
the tight hybrid approach DL+log [8], the loose hybrid approach DL-programs [9], the
embedding approach to MKNF+ [7], the embedding approach to QEL [10], and the
grounding approach disjunctive DL-programs [11].

Rosati [8] proposed a hybrid approach, called DL+log, which is extended from DL
by adding disjunctive rules of the following form

p1; . . . ; pn ← pn+1, . . . , pm, not pm+1, . . . , not pl,

where pi(1 ≤ i ≤ l) is a first-order atom. Predicates in DL+log are distinguished by
DL-predicates and non-DL-predicates, and the former cannot occur in the scope of not .
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DL+log is a tight and faithful integration. However, it is not flexible since the Closed
World Assumption cannot be applied on DL-predicates. In addition, the full language of
DL+log is not decidable. In order to achieve decidability, a notion called weak-safety,
similar to safety, is required.

Different from the above, Eiter et al. [9] proposed another hybrid approach, called dl-
programs. The key idea is to allow the query results of DL knowledge bases as so-called
dl-atoms in the bodies of a standard rule in ASP. The semantics is then defined based
on grounding on the Herbrand base. This approach is faithful, flexible and decidable.
However, it is not tight since the ASP component is building upon the DL component.
This approach is significantly different from RDL. Firstly, RDL does not distinguish DL
predicates and ASP predicates, which are indeed highly interactive in RDL. Secondly,
the semantics of RDL is defined not only on Herbrand structures but, in general, on
arbitrary ones. Last but not least, the elements in an RDL rule are regular concepts in
DL but not atoms/literals.

An alternative direction of combing DLs and ASP is to define a “indirect” semantics
of the integration by embedding it into another host language. One predominant work
in this category is to use MKNF+ as the host langauge [7]. The rules are of the form

Kh1 ∨ . . . ∨ Khl ← Kb1, . . . , Kbm, not bm+1, . . . , not bn,

where all hi, bj are first-order atoms. The semantics is defined via an embedding to
the logic of MKNF [19]. As shown in [7], this approach is faithful, tight and flexible.
However, its full language is not decidable. Again, a similar notion of safety is required
to obtain decidability.

Another embedding approach is to use Quantified Equilibrium Logic (QEL) as the
host language [10], which is demonstrated to be powerful enough to capture some other
integrations, such as DL+log [8]. However, more detailed analysis, e.g. the decidability
issue, are missing.

Lukasiewicz [11] proposed an alternative approach, called disjunctive dl-programs,
by grounding on finite domains. However, as pointed out in [7], although this approach
is faithful w.r.t. ASP, it seems not faithful w.r.t. the standard semantics of DL, and it
seems only capable of reasoning about positive atoms. Moreover, the grounding-based
semantics is defined only over Herbrand structures rather than arbitrary ones.

To conclude, comparing RDL with the above approaches for enhancing DLs with
rules in ASP, there are several major issues worthy to be highlighted. Syntactically,
RDL uses concepts instead of atoms/literals in the rules. Semantically, RDL employs
collections instead of interpretations. Most importantly, the full language of RDL is
decidable, and no strong syntactic restrictions (e.g. safety) are forced. To sum up, RDL
satisfies all the desirable criteria as listed in the introduction section.

7 Conclusion

In this paper, we introduced a novel formalism, called Rule Description Logic (RDL), to
enhance Description Logic with nonmonotonic recursive rules in Answer Set
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Programming. RDL embraces the full expressive power of DL as well as a conservative
but powerful fragment of ASP. We showed that RDL is faithful w.r.t. both DL and ASP
(see Theorems 1 and 2). Moreover, we proved the bounded model property of RDL
(see Theorem 3), which indicates that RDL, not only its subclasses but its full language,
preserves the most important feature of Description Logic - decidability. To the best of
our knowledge, RDL is the first approach that meets all the criteria mentioned in the
introduction section for the promising task of integrating DLs and ASP.

This work is only a first step. For future work, one task is to consider alternative
Description Logics, such as SHIQ and DL-lite. Another task worth pursuing is to
further extend the syntax as well as the semantics of RDL, e.g. to disjunctive rules.
Certainly, it is also important to work out the exact upper/lower bounds of the related
decision problems in RDL. Last but not least, the implementation task of RDL is crucial
for its applications.
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Abstract. Outlier detection is an important process for text document
collections, but as the collection grows, the detection process becomes a
computationally expensive task. Random projection has shown to pro-
vide a good fast approximation of sparse data, such as document vectors,
for outlier detection. The random samples of Fourier and cosine spectrum
have shown to provide good approximations of sparse data when perform-
ing document clustering. In this article, we investigate the utility of using
these random Fourier and cosine spectral projections for document out-
lier detection. We show that random samples of the Fourier spectrum for
outlier detection provides better accuracy and requires less storage when
compared with random projection. We also show that random samples
of the cosine spectrum for outlier detection provides similar accuracy
and computational time when compared with random projection, but
requires much less storage.

1 Introduction

To perform outlier detection is to examine a data set for items that are dissimilar
to the majority of the set. Outlier detection has been used for tasks such as
computer network intrusion detection, medical fraud detection and credit card
fraud detection, and novelty detection. It is also useful in finding clusters in
highly imbalanced data sets.

The use of computers to automate tasks and communicate through the In-
ternet, has led to the generation and storage of large amounts of information
that must be processed for each outlier detection task. Therefore, we must be
able to efficiently and effectively perform outlier detection on a large scale. Most
recorded human interaction is in the form of free text (e.g. email, wikis, blogs,
social network posts), therefore identifying outliers in large text document collec-
tions is a relevant problem that is useful for finding interesting items or suspicious
documents that do not belong.

The definition of outlier detection implies that the data must be thoroughly
examined to find the small set of outliers. Therefore, outlier detection is a compu-
tationally expensive task. It has been recently shown [1] that random projection
can be used to project sparse data sets, such as text documents, into a lower
dimensional space and approximately preserve the distances between all of the
data objects. It has also been shown [2] that random samples of the Fourier
and cosine spectrum provide us with a good lower dimensional approximation

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 579–590, 2012.
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of sparse data sets for effectively and efficiently identifying clusters. In this ar-
ticle, we will investigate the utility (in terms of accuracy, efficiency and storage
required) of these random spectral projections for outlier detection on large text
document collections.

The contributions of this article are:

– A description of random spectral projection using the Fourier and cosine
transforms (Section 3).

– A comparison of the speed and accuracy of random spectral projection and
random projection for outlier detection (Section 4.4).

– An examination of the storage, speed and accuracy of random spectral pro-
jection and random projection when performing outlier detection on a large
document set (Section 4.6).

The article will proceed as follows: Section 2 describes the current methods
used for text document outlier detection. Section 3 describes the theory behind
compressive sampling and shows how we will apply this to outlier detection.
Section 4 contains the experimental method, results and discussion.

2 Text Document Outlier Detection

In this section we will examine how to perform outlier detection on a collection of
text documents. Text document sets exist in high dimensional spaces, therefore,
we require a simple method for detecting outliers. We first present the outlier
detection method that we will be using and then describe how we will compute
the similarity of each document during the outlier detection process.

2.1 Outlier Detection

An outlier is an element of a set that has different qualities in some respect to
the majority of the set. Identifying an outlier may be subjective and therefore
requires a clear definition in order for detection to take place. In this article, we
are focusing on text documents, so an outlier document is one that is written on a
different topic to the majority of the document collection. We will be representing
each text document as a vector in a high dimensional space, implying that we
need an efficient and effective outlier detection method that can be used on high
dimensional vector spaces.

A simple outlier detection method examines the similarity of each document
to its neighbours [3]. If a document is similar to many documents then it is
considered an inlier, if a document is similar to only a few other documents,
then it may be an outlier. This simple distance based outlier detection method
has order O(TN2) where N is the number of documents in the collection and
T is the dimensionality of the document space. The computational complexity
comes from us having to compute the distance of each document from a given
document to obtain its outlier likelihood score. An advancement on the distance
based method is to also examine the density of the document distributions. If a
region in the vector space is densely populated, while another is more spread out,
the simple method may wrongly detect a document in the latter region of the
vector space as an outlier. Local Outlier Factor (LOF) [4] is an outlier detection
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method that examines the local data distribution, and computes the outlier
likelihood score based on the density around the point. Unfortunately the LOF
method requires us to store the identity of each of document’s k neighbours and
the distances to these neighbours. The computation of the LOF scores requires
a scan of the complete set of document vectors to compute the neighbours,
having order O(TN2), then a scan of each point’s neighbours to compute the
document density, having order O(Nk), and a final scan of the density scores
and neighbours, also having order O(Nk), where k is the number of neighbours
chosen.

We are not investigating the accuracy of the outlier detection method itself,
but we are interested in how the choice of random projection type affects the
accuracy of the outlier detection. To simplify our experiments so that they focus
on the effect of the projection, we will use simple distance based outlier detection.

2.2 Comparing Documents

A text document is a sequence of terms, where the terms describe the content
of the document. Each document can be represented as a vector in a vector
space, where the vector space has one dimension for each unique term in the
document collection. Within this T dimensional space (where T is the number
of unique terms in the collection), we can construct a document vector by using
the frequency of each term in a document as the corresponding value of each
element in the document vector. Doing this, we have:

d =
[
fd,t0 fd,t1 . . . fd,tT−1

]
where fd,tj is the frequency of term tj in document d. There has been many
similarity functions developed to compare document vectors to queries for infor-
mation retrieval (vector space methods [5], probabilistic methods [6], language
models [7]), but when comparing documents to documents, it has been found
that the TF-IDF weighting with cosine similarity is the most appropriate [8].
The TF-IDF weighting we use in this article is of the form:

wd,t = w(fd,t) = log

(
N

ft
+ 1

)
fd,t

where wd,t is the weight of term t in document d, ft is the number of documents
term t appears in, and N is the number of documents in the collection. We
can see that if the term t is common, meaning that ft is large, then N

ft
will be

close to 1 and log
(

N
ft

+ 1
)
will be close to log (2) = 0.6931. If term t is rare,

meaning that ft is small, then N
ft

will be close to N and log
(

N
ft

+ 1
)
will be close

to log (N + 1). Therefore, the TF-IDF weighting gives less weight to common
terms and more weight to rare terms that define the document. The weighted
document vector is given as:

δ =
[
wd,t0 wd,t1 . . . wd,tT−1

]
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The document similarity function is given as:

S(di, dj) =
δi · δj
‖δi‖‖δj‖

where δi is the ith weighted document vector, the inner product δi · δj =∑T
k=i wdi,tkwdj ,tk and the vector norm ‖δi‖ is

√
δi · δi. We can see that this doc-

ument similarity function measures the cosine of the angle between the weighted
document vectors. If both vectors are the same, the similarity is 1; as the doc-
uments become more different, the similarity approaches 0. Note that also the
denominator of the similarity function normalises the document lengths, mean-
ing that the weight of a word in a long document will be less than the weight of
the same word in a smaller document.

2.3 Random Projection

Outlier detection is dependent on the vector space dimensionality. As the dimen-
sionality of the space increases, so does the time required to compute the outliers.
Methods of dimension reduction (such as PCA, NMF and PLSA [9,10,11]) can
be used to map the vector space into a smaller space, where each vector in the
smaller space is an approximation of the vectors in the original space. Unfor-
tunately, these methods are computationally expensive and therefore many not
be feasible for high dimensional spaces. In this section we will examine a simple
method that has been used for dimension reduction as a preprocessing step for
outlier detection.

Random projection is the act of projecting a vector space to a lower dimen-
sional space using a randomly generated mapping. It has been shown [1] that
a random projection of sparse data that approximately preserves the similarity
between vectors can computed using the mapping where each element is sampled
from a random variable X having the distribution:

x -1 0 1
P (X = x) 1/6 2/3 1/6

To map the document vector space from a T dimensional space to an S dimen-
sional space, we generate an S×T matrix PR containing values randomly sampled
from X . We can then project the weighted document matrix D (containing the
weighted document vectors as its columns) using:

DR = PRD

where DR is an S × N matrix containing the projected document vectors as
columns.

3 Random Spectral Projection

Compressive sampling [12,13] is a sampling and reconstruction theory that has
popularity in the image processing field [14] but has found its way into machine
learning [2]. The idea is that if we are able to represent our data in a sparse
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vector space though the linear transformation Ψ−1, then we are able to spread
the information in our data set throughout the dimensions of the vector space
using an linear transformation Φ that is maximally incoherent to Ψ . Using this
knowledge, we are able to sample at a rate less than given by the Nyquist theorem
and still be able to perfectly reconstruct the original signal from the sample. In
our case, we have:

x = min ‖z‖1, s.t. ξ = ΦΨz

where d = Ψx is our document vector, x is sparse, Φ is the sampling function,
ξ is the sample of d, and ‖ · ‖1 is the l1 norm. The coherence of a pair of basis
vectors is a measure of how similar they are. Coherence is given as:

μ(Φ, Ψ) =
√
N max

1≤i,j≤N
|〈φi,ψj〉|

where φi and ψj are basis vectors of the linear functions Φ and Ψ respectively,

and μ(Φ, Ψ) ∈ [1,
√
N ]. Therefore if two isometric transformations are maximally

incoherent, μ(Φ, Ψ) = 1.
For outlier detection, we do not need to reconstruct the document vectors, but

we do require a method of projecting most of the information in the document
collection into a smaller vector space. By performing the projection, we are able
to reduce the computation time required, and by preserving most of the data,
we will be able to maintain the accuracy of the outlier detection method.

In this article, our data consists of document vectors, which are sparse, there-
fore, the transformation Ψ−1 required to map our document vectors to a sparse
set of vectors is simply the identity matrix; we choose Ψ = I. Our choice of Φ
must be maximally incoherent to Ψ = I, therefore, we use Φ = ΣPDFT, where
PDFT is the discrete Fourier transform projection, and the matrix Σ selects a
sample of s rows from PDFT.

In this section, we will examine the discrete Fourier transform and the discrete
cosine transform (a real approximation to the discrete Fourier transform) and
how sampling is performed.

3.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is an isometric transformation that de-
composes a vector into its various frequency components. The DFT used in this
article has the form:

Wd,f =

T−1∑
t=0

wd,t exp

(
−2iπft

T

)

where i =
√
−1 and Wd,f is the fth Fourier coefficient of document d. The DFT

can also be given as a matrix multiplication:

DDFT = PDFTD

where PDFT contains the elements exp (−2iπft/T ) and D is the matrix con-
taining the set of weighted document vectors as columns. To sample from the
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transformed vector, we randomly take s coefficients of the DFT. This can be
accomplished by randomly selecting s rows of PDFT and the applying the trans-
formation. The sample vectors (the columns of DDFT) now become our repre-
sentation of the document d to compute outliers from.

The sample vector contains complex elements, therefore we must ensure that
the document similarity function S(di, dj) is modified to reflect this. We must
ensure that the we take the complex conjugate of one of the document vectors
being compared (for use in the inner product), and that we take the real portion
of the inner product.

3.2 Discrete Cosine Transform

Use of the Fourier transform requires us to work in the complex domain, in
which tools may not be readily available to many readers. Therefore, we will also
examine the discrete cosine transform (DCT), which is a close approximation to
the DFT, but its coefficients are real. The DCT used in this article has the form:

Wd,c =

⎧⎪⎨
⎪⎩

1√
T

∑T−1
t=0 wd,t cos

[(
t+ 1

2

)
cπ
T

]
if c = 0√

2
T

∑T−1
t=0 wd,t cos

[(
t+ 1

2

)
cπ
T

]
if c �= 0

whereWd,c is the cth cosine coefficient, The DCT can be represented as a matrix
multiplication, in the same fashion as the DFT. We also randomly sample s
coefficients from the DCT spectrum to use as our document vector representation
in the s dimensional space.

4 Experiments

We will now compare the effects, in terms of accuracy, time and storage required,
for outlier detection when using random projection and the DFT and DCT
random projections.

4.1 Experimental Environment

Our initial experimental environment consisted of a document set with ten artifi-
cially inserted documents from another document collection. For this we used two
document sets from the SMART collection1. The first document set we used con-
tained all documents from the CRAN document set (aerodynamics documents)
and the first ten documents from the MED document set (medical abstracts),
giving us 1408 documents and 4589 unique terms. We called this document set
CRAN+10MED. The second document set we used contained all of the docu-
ments from the CISI document set (information science abstracts) and the first
ten documents from the CRAN document set, giving us 1470 documents con-
taining 5676 unique terms. We called this collection CISI+10CRAN. Note that
each of the documents sets were parsed and converted into matrices using the
textIR indexing software2. This software removes a predefined set of stopwords
and performs stemming using the Lovins stemmer.

1 Available from: ftp://ftp.cs.cornell.edu/pub/smart
2 Available from: http://staff.scm.uws.edu.au/~lapark/textIR/

ftp://ftp.cs.cornell.edu/pub/smart
http://staff.scm.uws.edu.au/~lapark/textIR/
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4.2 Evaluation

Rather than examine the number of outliers predicted correctly, we instead ex-
amined the likelihood of a document being an outlier, allowing us to obtain
a finer scale for accuracy measurement. Our experiments involved ranking all
points in terms of their distance based outlier likelihood score. The ranked lists
were then examined and the ranks of the true outliers were found. A method
that provides all of the outliers higher in the ranked list is evaluated as being
more accurate than a method where the outliers are found in the lower ranks of
the ranked list.

To evaluate each outlier detection method’s outlier ranked list, we used Av-
erage Precision. Average precision uses r, the rank of each true outlier in the
outlier ranked list, where ri is the rank of the ith outlier provided by the method
under evaluation, and ri is ordered from highest rank to lowest rank. For exam-
ple, if r3 = 10, it means that the outlier detection method ranked an outlier as
the 10th most likely outlier, and two other outliers were ranked somewhere from
rank 1 to 9. Average precision is defined as:

AP(r) =
1

O

O∑
i=1

i

ri

where O is the number of outliers. If there were three outliers and an outlier
detection method ranked the outliers in positions r = {1, 3, 6}, the Average
Precision would be (1/1 + 2/3 + 3/6)/3 = 0.72. We can see that if all of the
outliers were ranked above all non-outliers, the Average Precision would be 1.

4.3 Procedure

The outlier likelihood score computation requires the parameter k (the number
of neighbours to consider). We computed outlier likelihood scores using neigh-
bour distance of k = 10, 20, 50, 100, 200 and 500. Each of the sampling methods
requires the parameter s (the number of coefficients to sample). We computed
outlier likelihood scores using sample sizes s = 32, 64, 128, 256, 512, 1024 and
2048. Each trial of the experiment involves random sampling, therefore we re-
peated each trial ten times to take into account the variability. The mean speed
and average precision of the ten trials is reported as the expected value.

4.4 Results

Analysis of the results showed us that similar trends were displayed for each
value of k, therefore we will only present the results for k = 100 but use the
entire set of results in later significance tests. Figures 1 and 2 present the mean
AP versus computation time plots for the CISI+10CRAN and CRAN+10MED
document sets respectively. It should be noted that the plots show that as s
increases, so does the computation time. For the majority of the cases, we see
that the mean AP increases as s increases. The Raw result, is the AP obtained
when no projection is used. If we examine the vertical alignment of each of the
plots, we see that the RP and DCTP times closely match, meaning that for a
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Fig. 1. The mean AP and computation time for outlier detection in the original space
(Raw), and for random projection (RP), DFT projection (DFTP), and DCT projection
(DCTP) for k = 100 on the CISI+10CRAN data set. The results for each projection
method have been recorded for projections into 32, 64, 128, 256, 512, 1024 and 2048
dimensions. Note that the time axis is presented in a log scale.

given s, we expect them to complete in the same time. If we examine the times
for each DFTP point, we see that they almost match the times of the RP and
DCTP methods for the previous s values. Therefore the DFTP method is slower
than the DCT and RP; this is likely to be due to the DFTP method producing
complex values.

We can compare the mean AP for a given s by examining the horizontal
alignment of the points, It can be seen that the DCTP mean AP is greater than
RP for Figure 1, but less for Figure 2. We can also see that the mean AP of
DFTP for a given s is greater than RP for both plots.

4.5 Significance of Results

We have generated 10 results for each s,k pair for each method. To test the hy-
pothesis that the DFT and DCT spectral random projection provides a greater
mean AP for a given s,k pair when compared to random projection, we used
bootstrap sampling to generate the distribution of the increase in the mean AP
of the DFTP and DCTP outlier detection over RP outlier detection. We can
test for a significant increase in mean AP for each of the methods, using the
bootstrap distribution. The resulting distributions were approximately Normal
for each method on each document set. We obtain p values of 0.060 and 0.0001
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Fig. 2. The mean AP and computation time for outlier detection in the original space
(Raw), and for random projection (RP), DFT projection (DFTP), and DCT projection
(DCTP) for k = 100 on the CRAN+10MED data set. The results for each projection
method have been recorded for projections into 32, 64, 128, 256, 512, 1024 and 2048
dimensions. Note that the time axis is presented in a log scale.

for the DFT projection on the CISI+10CRAN and CRAN+10MED collections
respectively. This shows that the DFT random spectral projection provides a sig-
nificant increase in mean AP over random projection. For DCT projection, we
obtained p values of 0.398 and 0.995 on the CISI+10CRAN and CRAN+10MED
collections respectively. This implies that we have no evidence of the DCT pro-
jection providing a significant increase in mean AP over random projection.

From these results, we can see that using DFTP produced more accurate re-
sults than when using RP for both document sets. But we must ask what caused
the change in accuracy of the DCTP method across document sets? If we exam-
ine the Raw scores for each document set, we see 0.48 for the CISI+10CRAN set
and 0.92 for the CRAN+10MED set, meaning that the outliers had more sepa-
ration in the CRAN+10MED set, but were harder to find in the CISI+10CRAN
set. From this, we can make the hypothesis that the separation of the RP and
DCTP methods grow as the difficulty in detecting the outliers increases. Testing
this hypothesis will be left for future work.

4.6 Large Document Collection

To examine the benefit of using the DFTP and DCTP methods on large
documents sets, we combined the 56920 articles from the TREC3 Disk 2 Ziff

3 http://trec.nist.gov/

http://trec.nist.gov/
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Publishing collection (computing articles) and the first 10 newspaper articles
from the TRECDisk 2 Financial Review collection (finance articles). This formed
a document collection with 56930 documents and 82295 unique terms; we call
this document set ZIFF+10FR. Using a sparse matrix format, we were able to
store the term frequency matrix in 83.93 megabytes.

We then ran the outlier detection method on the weighted term frequency
matrix, and on random projections of the matrix using RP, DFTP and DCTP.
Each method projected the matrix to s = 512 sample features and we computed
the k = 5, 10, 20, 50, 100, 200 and 500 neighbour distances. The memory con-
sumption and timing results are presented in Table 1, while the accuracy results
are in Table 2.

We can see that even though the random projection and both spectral random
projections required more storage than the sparse raw data, the computation
time for the projected data was much faster, allowing us to obtain results. DCTP
required the least storage and computation time, while RP required the most
storage (due to it needing storage for its projection matrix), and DFTP required
the most time (due to it using complex numbers). The accuracy results show us
that the outlier detection task was difficult (shown by the low AP scores). We
can see that for each k the DFTP AP is the greatest (for some values of k it is

Table 1. The memory used for the projection function (Function) and the projected
matrix (Projection), and the time taken to perform the projection (Projection) and
compute the outliers (Outlier) when using no projection (Raw), random projection
(RP), DCT projection (DCTP), and DFT projection (DFTP) on the ZIFF+10FR
document collection. Note that the Raw completion time of 3.4 years was extrapolated.

Method
Memory Time

Function Projection Projection Outlier

Raw NA NA NA 3.4 years
RP 321.4 MiB 222.3 MiB 16.6 sec 2.6 days
DCTP NA 222.3 MiB 38.2 min 2.4 days
DFTP NA 444.7 MiB 38.6 min 4.4 days

Table 2. Accuracy results for outlier detection on each projection method using the
ZIFF+10FR document collection. The average precision (AP) for k = 5, 10, 20, 50,
100, 200 and 500 is shown.

Method
AP

5 10 20 50 100 200 500

RP 0.0001 0.0016 0.0029 0.0027 0.0022 0.0017 0.0011
DCTP 0.0001 0.0016 0.0036 0.0034 0.0025 0.0019 0.0013
DFTP 0.0001 0.0021 0.0107 0.0209 0.0303 0.0290 0.0196
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at least 10 times greater than the RP and DCTP AP). We can also see that the
DCTP AP is either greater than or equal to the RP AP.

4.7 Discussion

This work shows the potential of the DFT and DCT projections when compared
to random projection, but is only one component in high dimensional outlier
detection. There have been other methods proposed in the literature to increase
the speed of distance based outlier detection, but they were not used in this
analysis. We kept this analysis as simple as possible, to examine the effect of the
sample projection only.

The findings from this work can be combined with existing methods of approx-
imation to increase speed. For example, neighbour distances can be computed
on a random sample of documents rather than the whole set [15]. This approxi-
mation can also be applied to increase the speed of a DFT or DCT projection.
LOF [4] can be used in place of the distance based outlier detection method.
Methods of increasing the speed of distance based outlier detection method are
given in [3]. These may be directly applied to the projected document space to
further reduce the computation time of the DFTP and DCTP methods.

Rather than using random projection to compute the distances, it can be used
to select a candidate set of neighbours [16]. The distances to all candidates may
then be computed in the original space. The analysis in this article has shown
that the DCT or DFT can also be used in place of random projection in this
case.

5 Conclusion

Outlier detection is an important process that allows us to automatically iden-
tify objects that are different from the majority of the data. When examining
text, we can use outlier detection to identify documents that are interesting
or out of place. Random projection is used in outlier detection to obtain a
lower dimensional approximation of the data, in order to speed up the detection
process.

In this article, we presented the concept of spectral random projection, using
the discrete Fourier transform (DFT) and the discrete cosine transform (DCT),
and we examined its utility for outlier detection on a text document collection.

We showed that using the DFT projection provides significantly greater accu-
racy than when using random projection and requires less storage, but requires
additional time. We also showed that the DCT projection provides similar ac-
curacy and computation time as random projection, but it requires much less
storage (60% less for the large document set).
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Abstract. The contextual bandit problem has been studied in the recommender 
system community, but without paying much attention to the contextual aspect 
of the recommendation. We introduce in this paper an algorithm that tackles 
this problem by modeling the Mobile Context-Aware Recommender Systems 
(MCRS) as a contextual bandit algorithm and it is based on dynamic explora-
tion/exploitation. Within a deliberately designed offline simulation framework, 
we conduct extensive evaluations with real online event log data. The experi-
mental results and detailed analysis demonstrate that our algorithm outperforms 
surveyed algorithms. 

Keywords: recommender system, machine learning, exploration/exploitation 
dilemma, artificial intelligence. 

1 Introduction  

A considerable amount of research has been done in recommending interesting con-
tent for mobile users. Earlier techniques in Mobile Context-Aware Recommender 
Systems (MCRS) [3, 6, 12, 5, 22] are based solely on the computational behavior of 
the user to model his interests regarding his surrounding environment like location, 
time and near people (the user’s situation).  

The main limitation of such approaches is that they do not take into account the 
dynamicity of the user’s content. This gives rise to another category of recommenda-
tion techniques that try to tackle this limitation by using collaborative, content-based 
or hybrid filtering techniques. 

Collaborative filtering, by finding similarities through the users’ history, gives an 
interesting recommendation only if the overlap between users’ history is high and the 
user’s content is static[18]. Content-based filtering, identify new documents which 
match with an existing user’s profile, however, the recommended documents are al-
ways similar to the documents previously selected by the user [15]. 

Hybrid approaches have been developed by combining the two latest techniques; 
so that, the inability of collaborative filtering to recommend new documents is re-
duced by combining it with content-based filtering [13]. However, the user’s content 
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in mobile undergoes frequent changes. These issues make content-based and colla-
borative filtering approaches difficult to apply [8].  

The bandit algorithm is a well-known solution that has the advantage of following 
the evolution of the user’s content and addresses this problem as a need for balancing 
exploration/exploitation (exr/exp) tradeoff.  

One classical solution to the multi-armed bandit problem is the ε-greedy strategy 
[9]. With the probability 1-ε, this algorithm chooses the best documents based on 
current knowledge; and with the probability ε, it uniformly chooses any other docu-
ments uniformly.  

The ε parameter controls essentially the exp/exr tradeoff between exploitation and 
exploration. One drawback of this algorithm is that it is difficult to decide the optimal 
value in advance. Instead, we extend the ε-greedy strategy with an update of the ε 
value by doing an exr/exp-tradeoff using a finite set of ε candidates.  

The rest of the paper is organized as follows. Section 2 gives the key notions used 
throughout this paper. Section 3 reviews some related works. Section 4 presents our 
MCRS model and Section 5 describes the algorithms involved in the proposed ap-
proach. The experimental evaluation is illustrated in Section 6. The last section  
concludes the paper and points out possible directions for future work. 

2 Key Notions 

In this section, we sketch briefly the key notions that will be of use in the remainder 
of this paper.  

2.1 The User’s Model  

The user’s model is structured as a case based, which is composed of a set of situa-
tions with their corresponding user’s preferences, denoted U = {(Si; UPi)}, where Si is 
the user’s situation and UPi its corresponding user’s preferences. 

2.2 The User’s Preferences 

The user’s preferences are deduced during the user’s navigation activities. A naviga-
tion activity expresses the following sequence of events: 

• The user’s logs in the system and navigates across documents to get the desired 
information; 

• The user expresses his preferences on the visited documents. 

We assume that the preference is the information that we extract from the user’s sys-
tem interaction, for example the number of clicks on the visited documents or the time 
spent on a document.  

Let UP be the preferences submitted by a specific user in the system at a given sit-
uation. Each document in UP is represented as a single vector d=(c1,...,cn), where ci 
(i=1, .., n) is the value of a component characterizing the preferences of d. We  
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consider the following components: the total number of clicks on d, the total time 
spent reading d and the number of times d was recommended. 

2.3 Context 

A user’s context C is a multi-ontology representation where each ontology corresponds 
to a context dimension C=(OLocation, OTime, OSocial).  

Each dimension models and manages a context information type. We focus on 
these three dimensions since they cover all needed information. These ontologies are 
described in [6] and are not developed in this paper. 

2.4 Situation 

A situation is an instantiation of the user’s context. We consider a situation as a triple S 
= (OLocation.xi, OTime.xj, OSocial.xk) where xi, xj and xk are ontology concepts or instances. 
Suppose the following data are sensed from the user’s mobile phone: the GPS shows 
the latitude and longitude of a point "48.8925349, 2.2367939"; the local time is "Mon 
Oct 3 12:10:00 2011" and the calendar states "meeting with Paul Gerard". The corres-
ponding situation is:  
S=(OLocation."48.89, 2.23",OTime."Mon_Oct_3_12:10:00_2011",OSocial. "Paul_Gerard").  

To build a more abstracted situation, we interpret the user’s behavior from this 
low-level multimodal sensor data using ontologies reasoning means. For example, 
from S, we obtain the following situation: 
MeetingAtRestaurant=(OLocation.Restaurant, OTime.Work_day,  OSocial.Financial_client).  

For simplification reasons, we adopt in the rest of the paper the following notation:   
S = (xi, xj, xk). The previous example situation became thus: 
MeetingAtRestaurant=(Restaurant, Work_day, Financial_client).  

Among the set of captured situations, some of them are characterized as high-level 
critical situations. 

3 Related Work 

We refer, in the following, recent recommendation techniques that tackle both making 
dynamic exr/exp (bandit algorithm) and considering the user’s situation in recom-
mendation. 

3.1 Bandit Algorithms Overview (ε-greedy) 

The (exr/exp) tradeoff was firstly studied in reinforcement learning in 1980's, and later 
flourished in other fields of machine learning [16, 19]. Very frequently used in rein-
forcement learning to study the (exr/exp) tradeoff, the multi-armed bandit problem was 
originally described by Robbins [16].   

The ε-greedy is the one of the most used strategy to solve the bandit problem and 
was first described in [20]. The ε-greedy strategy choose a random document with 
epsilon-frequency (ε), and choose otherwise the document with the highest estimated 
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mean, the estimation is based on the rewards observed thus far. ε must be in the open 
interval [0, 1] and its choice is left to the user.  

The first variant of the ε-greedy strategy is what [9, 2] refer to as the ε-beginning 
strategy. This strategy makes exploration all at once at the beginning. For a given 
number I ∈ N of iterations, the documents are randomly pulled during the εI first itera-
tions. During the remaining (1−ε)I iterations, the document  of highest estimated mean 
is pulled.  

Another variant of the ε-greedy strategy is what Cesa-Bianchi and Fisher [2] call the 
ε-decreasing strategy. In this strategy, the document with the highest estimated mean is 
always pulled except when a random document is pulled instead with an εi frequency, 
where n is the index of the current round. The value of the decreasing εi is given by  
εi = {ε0/ i} where ε0 ∈ ]0, 1].  

Besides ε-decreasing, four other strategies are presented in [14]. Those strategies are 
not described here because the experiments done by [14] seem to show that, with care-
fully chosen parameters, ε-decreasing is always as good as the other strategies.  

Compared to the standard multi-armed bandit problem with a fixed set of possible 
actions, in MCRS, old documents may expire and new documents may frequently 
emerge. Therefore it may not be desirable to perform the exploration all at once at the 
beginning as in [9] or to decrease monotonically the effort on exploration as the  
decreasing strategy in [2]. 

Few research works are dedicated to study the contextual bandit problem on Re-
commender System, where they consider user’s behavior as the context of the bandit 
problem.  

In [10], authors extend the ε-greedy strategy by updating the exploration value ε dy-
namically. At each iteration, they run a sampling procedure to select a new ε from a 
finite set of candidates. The probabilities associated to the candidates are uniformly 
initialized and updated with the Exponentiated Gradient (EG) [10]. This updating rule 
increases the probability of a candidate ε if it leads to a user’s click. Compared to both 
ε-beginning and decreasing strategy, this technique improves the results.  

In [21], authors model the recommendation as a contextual bandit problem. They 
propose an approach in which a learning algorithm selects sequentially documents to 
serve users based on contextual information about the users and the documents. To 
maximize the total number of user’s clicks, this work proposes the LINUCB algorithm 
that is computationally efficient. 

The authors in [2, 4, 9, 14, 21] describe a smart way to balance exploration  
and exploitation. However, none of them consider the user’s situation during the  
recommendation. 

3.2 Managing the User’s Situation 

Few research works are dedicated to manage the user’s situation on recommendation. 
In [7, 17] the authors propose a method which consists of building a dynamic user’s 
profile based on time and user’s experience. The user’s preferences in the user’s profile 
are weighted according to the situation (time, location) and the user’s behavior.  

To model the evolution on the user’s preferences according to his temporal situa-
tion in different periods, (like workday or vacations), the weighted association for the 
concepts in the user’s profile is established for every new experience of the user. The 
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user’s activity combined with the user's profile are used together to filter and recom-
mend relevant content.  

Another work [12] describes a MCRS operating on three dimensions of context 
that complement each other to get highly targeted. First, the MCRS analyzes informa-
tion such as clients’ address books to estimate the level of social affinity among the 
users. Second, it combines social affinity with the spatiotemporal dimensions and the 
user’s history in order to improve the quality of the recommendations. 

In [3], the authors present a technique to perform user-based collaborative filtering. 
Each user’s mobile device stores all explicit ratings made by its owner as well as rat-
ings received from other users. Only users in spatiotemporal proximity are able to 
exchange ratings and they show how this provides a natural filtering based on social 
contexts. 

Each work cited above tries to recommend interesting information to users on con-
textual situation; however they do not consider the evolution of the user’s content. As 
shown above, none of the mentioned works tackles both problems of exr/exp dynamic-
ity and user’s situation consideration in the exr/exp strategy. This is precisely what we 
intend to do with our approach. 

We propose for exr/exp-tradeoff a calibration, which consists in updating the value 
of ε dynamically. At each iteration, we run the ε-decreasing algorithm to select a new ε 
from a finite set of candidates. The weight associated to the candidates increases if it 
leads to a user click.  

4 MCRS Model 

In our recommender system, the recommendation of documents is modeled as a con-
textual bandit problem including the user’s situation information.  Formally, a bandit 
algorithm proceeds in discrete trials t = 1…T. For each trial t, the algorithm performs 
the following tasks:  

4.1 Task 1 

Let St be the current user’s situation, and PS the set of past situations. The system com-
pares St with the situations in PS in order to choose the most similar Sp using the fol-
lowing semantic similarity metric: 

          ( )arg max
cs  

p t cS = α sim x ,xj j j jjPS

 
⋅ 

 ∈

                                  
(1)

 

In Eq.1, simj is the similarity metric related to dimension j between two concepts xt and 
xc and αj the weight associated to dimension j. This similarity depends on how closely 
xt and xc are related in the corresponding ontology (location, time or social). We use 
the same similarity measure as [24] defined by Eq. 2:  

             ( )
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In Eq. 2, LCS is the Least Common Subsumer of xj

t and xj
c, and deph is the number of 

nodes in the path from the node to the ontology root.  
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4.2 Task 2 

Let D be the document collection and Dp D the set of documents recommended in 
situation Sp. After retrieving Sp

, the system observes the user’s behavior when reading 
each document dt Dp. Based on observed rewards, the algorithm chooses the docu-
ment dp with the greater reward rt,. 

4.3 Task 3 

The algorithm improves its arm-selection strategy with the new observation: in situa-
tion St, document dp obtained a reward rt.  

In the field of document recommendation, when a document is presented to the user 
and this one selects it by a click, a reward of 1 is incurred; otherwise, the reward is 0. 
With this definition of reward, the expected reward of a document is precisely its Click 
Through Rate (CTR). The CTR is the average number of clicks on a recommended 
document, computed dividing the total number of clicks on it by the number of times it 
was recommended.  

5 Exploration/Exploitation Tradeoff  

In this section, we firstly present the ε-greedy algorithm (sub-section 5.1) and our pro-
posed exr/exp-tradeoff algorithm named decreasing-ε-greedy (sub-section 5.2).  

5.1 The ε-Greedy() Algorithm  

The ε-greedy strategy is sketched in Algorithm 1. For a given user’s situation, the algo-
rithm recommends a predefined number of documents, specified by parameter N. In 
this algorithm, UP={d1,…,dP} is the set of documents corresponding to the current 
user’s preferences; D={d1,….,dN} is the set of documents to recommend; getCTR (Alg. 
1) is the function which estimates the CTR of a given document; Random (Alg. 1) is 
the function returning a random element from a given set; q is a random value uniform-
ly distributed over [0, 1] which defines the exploration/exploitation tradeoff; ε is the 
probability of recommending a random exploratory document. 

Algorithm 1 The ε-greedy algorithm 
Input: ε, UP, D = Ø, N    
Output:  D 
For i = 1 to i = N do  
q = Random({0,1})          
     argmaxUP(getCTR(d)) if  q > ε  
di = 
     Random(UP)         otherwise                        
     D = D ∪ di  
Endfor 

5.2 The Decreasing-ε-Greedy 

To improve exploitation of the ε-greedy algorithm, we propose to extend it with set-
ting out the optimal trade-off value ε. We iteratively update it by the method (decreas-
ing-ε-greedy (Alg.2).  

∈

∈
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First we assume that we have a finite number of candidate values for ε, denoted by 
Hε= (ε1, ... , εT). Our goal is to select the optimal ε from Hε.  

To this end, we apply the ε-decreasing strategy to propose an εi, and then we use a 
set of weights w = (w1,...,wT) to keep track of the feedback of each εi, wi is increased if 
we receive a number of clicks li from the user when we use εi. 

Algorithm 2 decreasing-ε-greedy () 
Input: Hε, N, St, UP, n    
Output: D 
εε = Ø,  = 0, wi = 1, i = 1,…,T 
For t = 1 to n do 
     = 0.01* t  
    q = Random ([0,1]) 
      argmax(i)(wi)                  if q ≤    
εi = 
      Random(Hε-εε)                 otherwise       
D = ε-greedy(εi, UP, D = Ø, N);       
Receive a click feedback li from the user 
wi = wi+ li; εε = εε ∪ εi;  
Endfor 

In Alg. 2. εε is the set of ε that have been previously selected, n is the number of itera-
tion of the learning algorithm, i is the identifier of ε and   is the probability of propos-
ing the argmaxi (wi), this parameter starts at low value and iteratively increases  until 
the end of the learning (   =1). 

6 Experimental Evaluation 

In order to evaluate empirically the performance of our approach, and in the absence 
of a standard evaluation framework, we propose an evaluation framework based on a 
diary set of study entries. The main objectives of the experimental evaluation are: to 
evaluate the performance of the proposed algorithms (Alg. 2).  

In the following, we describe our experimental datasets and then present and  
discuss the obtained results. 

6.1 Evaluation Framework 

We have conducted a diary study with the collaboration of the French software company 
Nomalys1. This company provides a history application, which records the time, current 
location, social and navigation information of its users during their application use.  

The diary study has taken 18 months and has generated 178 369 diary situation en-
tries. Each diary situation entry represents the capture, of contextual time, location  
 

                                                           
1 Nomalys is a company that provides a graphical application on Smartphones allowing users to 

access their company’s data. 
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and social information. For each entry, the captured data are replaced with more ab-
stracted information using time, spatial and social ontologies.  

From the diary study, we have obtained a total of 2 759 283 entries concerning the 
user’s navigation, expressed with an average of 15.47 entries per situation.  

6.2 Experimental Results 

In our experiments, we firstly have collected the 3000 situations with an occurrence 
greater than 100 to be statistically meaningful. Then, we have sampled 10000 docu-
ments that have been shown on any of these situations.  

The testing step consists of evaluating the algorithms for each testing situation us-
ing the average CTR. The average CTR for a particular iteration is the ratio between 
the total number of clicks and the total number of displays. Then, we calculate the 
average CTR every 1000  iterations.  

We have run the simulation until the number of iterations reaches 10000 and the 
number of documents (n) returned by the recommender system for each situation  
is 10.  

In the first experiment, we have evaluated the two exr/exp algorithms described in 
section 5. In addition to a pure exploitation baseline, we have compared our algo-
rithms (decreasing-ε-greedy) to the algorithms described in section 3: ε-greedy;  
ε-beginning, ε-decreasing and EG. In Fig. 1, the horizontal axis is the number of itera-
tions and the vertical axis is the performance metric. 

 

 

Fig. 1. Average CTR for different exr/exp algorithms 

We have parametered the different algorithms as follows: For the ε-greedy algo-
rithm, we experiment with two parameter values: 0.5 and 0.9. The ε-decreasing, EG, 
decreasing-ε-greedy share the same set of candidates {εi = 1-0.01 * i,  i = 1,...,100}.  

The ε-decreasing starts with the largest value and reduces it by 0.01 every 100 ite-
rations until ε reaches the smallest value.  
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Overall exr/exp algorithms have better performance than the baseline. However, 
for the first 2000 iterations, with pure exploitation the exploitation baseline achieves a 
faster increase convergence. But in the long run, all exr/exp algorithms improve the 
average CTR at convergence.  

We have several interesting observations regarding the behaviors of the different 
exr/exp algorithms. The EG algorithm has a similar convergence threshold than de-
creasing-ε-greedy.  

The decreasing-ε-greedy method effectively learns the optimal ε and its conver-
gence rate is close to the best setting. But for EG algorithm, it is only after the 6000 
iterations that, the algorithm begins to show its advantage. For the ε-decreasing algo-
rithm, the converged CTR increases as ε decreases.  

Even after convergence, the 0.9-greedy and 0.5-greedy algorithms still give respec-
tively 90% and 50% of the opportunities to documents with low average CTR, which 
decreases significantly their average CTR.  

While the ε-decreasing algorithm converges to a higher CTR, its overall perfor-
mance is not as good as 0.5-greedy. Its CTR drops a lot at the early stage because of 
more exploration but does not converge faster.  

The decreasing-ε-greedy algorithm has the best convergence rate, and increases 
CTR by a factor of 1.5 over the baseline and outperforms over all other exr/exp algo-
rithms. The improvement comes from a dynamic tradeoff between exr/exp, controlled 
by reinforcement learning (ε-decreasing). 

6.3 Size of Data 

To compare the algorithms when data is sparse in our experiments, we reduce data 
sizes of 30%, 20%, 10%, 5%, and 1%, respectively. To better visualize the compari-
son results, figure 2 shows algorithms’ average CTR graphs with the previous referred 
data sparseness levels.  

 

 

Fig. 2. Average CTR for different data size 
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Our main observation is that, Although very different from the EG algorithms, the 
Decreasing-ε-greedy tends to very similar results. 

Except for exploitation baseline the ε-beginning seems to have a rather poor per-
formance, its results are worse than any other strategy independently of the chosen 
parameters. The reason probably lies in the fact that the ε-beginning makes the explo-
ration only at the beginning. 

7 Conclusion 

In this paper, we study the exploitation and exploration in mobile context-aware re-
commender systems and propose a novel approach that balances adaptively exr/exp. 

We have evaluated our approach according to the proposed evaluation protocol and 
show that it is effective. In order to evaluate the performance of the proposed algo-
rithm, we compare it with other standard exr/exp strategies.  

The experimental results demonstrate that our algorithm performs better on CTR in 
various configurations. In the future, we plan to evaluate the scalability of the algo-
rithm on-board a mobile device. 
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Abstract. In some regression problems, it may be more reasonable to
predict intervals rather than precise values. We are interested in finding
intervals which simultaneously for all input instances x ∈ X contain a β
proportion of the response values. We name this problem simultaneous
interval regression. This is similar to simultaneous tolerance intervals for
regression with a high confidence level γ ≈ 1 and several authors have
already treated this problem for linear regression. Such intervals could
be seen as a form of confidence envelop for the prediction variable given
any value of predictor variables in their domain. Tolerance intervals and
simultaneous tolerance intervals have not yet been treated for the K-
nearest neighbor (KNN) regression method. The goal of this paper is
to consider the simultaneous interval regression problem for KNN and
this is done without the homoscedasticity assumption. In this scope, we
propose a new interval regression method based on KNN which takes
advantage of tolerance intervals in order to choose, for each instance,
the value of the hyper-parameter K which will be a good trade-off be-
tween the precision and the uncertainty due to the limited sample size
of the neighborhood around each instance. In the experiment part, our
proposed interval construction method is compared with a more conven-
tional interval approximation method on six benchmark regression data
sets.

1 Introduction

When dealing with regression problems, it may be risky to predict a point which
may be illusionary precise. Due to the existence of learning biases, especially
the limited amount of available data and the necessarily incomplete language
used for describing them, the obtained model does not describe exactly the
true unknown model. In situations with lack of sufficient observations to obtain
precise results or when the considered model is too complex, one may rather want
to find intervals which are the most likely to contain a desired proportion of the
population of the response values. Such intervals are mostly used in application
demanding a high level of confidence, like aircraft trajectory prediction, security
systems. The most common approach to estimate these prediction intervals is to
use statistical inference to calculate confidence intervals on the error’s variable.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 602–613, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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However, this corresponds to a confidence interval about the error and not about
the real prediction value. Another disadvantage of this approach is to assume that
the prediction interval sizes are constant and so independent of the considered
instance.

It is known that taking a quantile of an estimated distribution using a sample
set having a limited number of instance is not a statistically approved way to
infer an interval that must contain a desired proportion of the true unknown
distribution that might have generated this sample set. This is because the esti-
mation procedure did not take into account the uncertainty related due to the
limited sample size used for estimating the distribution. In statistics, there are
already many ways to build confidence intervals around a prediction variable like
prediction intervals, tolerance intervals, confidence intervals of quantiles and si-
multaneous confidence intervals of quantiles, etc. and each of them has its own
properties. In this work, we are interested in intervals which have similar proper-
ties to the simultaneous tolerance intervals for regression. Simultaneous interval
regression, introduced in this paper, could be seen as a form of confidence en-
velop for the real value of the prediction variable Y given any value of predictor
variables in their domain x ∈ X . This concept is similar to simultaneous toler-
ance interval for regression with an high confidence level γ ≈ 1. This type of
approach is different to quantile regression introduced by Koenker and Bassett
(1978) [8] in which conditional quantile of the response variable Y given the
predictor values X = x is calculated. Quantile regression is much more flexible
than least square regression when dealing with heterogeneous conditional dis-
tributions, because it makes no distributional assumption about the error term
in the model and just provide a conditional distribution of the prediction given
the predictor values [9]. Quantile regression focus on the direct estimation of
regression quantile and ignores the uncertainty related to the limited number
of observations. Some authors have already treated the problem of confidence
intervals for regression quantiles [7,2,6], however they always focus to find confi-
dence interval on the regression parameters and not on the prediction variable.
One might think to use the confidence interval on the regression parameters in
quantile regression to derive intervals on the conditional quantile. However, The
major difference of these derived confidence intervals with tolerance intervals
in least square regression is that they are not two-sided, but just a one-sided
confidence interval on the prediction variable. Another fundamental difference
with simultaneous tolerance interval in least square regression is that they are
confidence intervals of regression quantiles given X = x and not simultaneous
on the entire domain of independent variables.

Simultaneous tolerance intervals have already been treated by several authors
[11,19,12] for linear regression. These works are based on three assumptions.
First, the error follows a normal distribution. Second, the mean is linear with
respect to the input variable. Finally, the standard deviation around the mean
is constant and independent with respect to the input variables (homoscedastic-
ity assumption). This paper tries to overcome the last two limitations by using
tolerance interval and a non parametric regression method, however we still
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assume that the error distribution is normal. Thus, we define simultaneous in-
terval regression for K-nearest neighbor. In simultaneous interval regression for
KNN, the local tolerance interval is used in order to find the value of the param-
eter K that has the better trade-off between the precision and the uncertainty.
Given a dataset and a desired proportion of response value β, the goal is to
find the optimal combination of hyper-parameters (MINK ,MAXK and γ), for
which the simultaneous condition on the obtained intervals of the underlying
data set is satisfied. The interval construction approach is proposed for KNN
in general. This method exploits the local density of the neighborhood to find
the most appropriate intervals to contain the desired proportion of response val-
ues, so the proposed interval construction method may be more effective with
heterogeneous data set with heteroscedastic error.

This paper is organized as follows: section 2 is a brief introduction of tolerance
interval and simultaneous tolerance interval for least square regression. Section 3
is devoted to the description of our approach with KNN and in the last section,
we apply our method on six benchmark regression databases.

2 Tolerance Interval and Least Square Regression

2.1 Tolerance Interval

Let X1, · · · , Xn denote a random sample from a continuous probability distri-
bution and let X = (X1, · · · , Xn) . A tolerance interval is an interval which
guarantees with a specified confidence level γ, to contain a specified proportion
β of the population. The ITγ,β sign, is used to refer to a β-content γ-coverage
tolerance interval [1]. Then, we have:

∀β ∈ (0, 1), PX(P (X ∈ ITγ,β|X) ≥ β) = γ (1)

By making the assumption that our sample set comes from a univariate normal
distribution, then the lower and the upper bound of the tolerance interval ITγ,β =
[Xl, Xu] for a sample of size n is obtained as follows :

Xl = θ̂ − kσ̂, Xu = θ̂ + kσ̂ (2)

k =

√√√√ (n− 1)(1 + 1
n )Z

2
1− 1−β

2

χ2
1−γ,n−1

(3)

where θ̂ is the sample mean of the distribution, σ̂ its sample standard deviation,
χ2
1−γ,n−1 represents the 1− γ quantile of the chi-square distribution with n− 1

degree of freedom and Z2
1− 1−β

2

is the squared of (1− 1−β
2 ) quantile value of the

standard normal distribution [5]. For more details on tolerance intervals see [1].
Regression is the process of creating an approximating function that looks

for capturing relevant patterns in the data. In a classical fixed design regression
problem (parametric or nonparametric), there are m pairs (xi, y(xi)) of observa-
tion where xi is a vector of input variables and y(xi) is the observed value of the
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response variable. It is usually supposed that the mean of the random variable
Y (xi) follows an unknown function f∗ with a random error term εi defined as:

Y (xi) = f∗(xi) + εi, where E(εi) = 0. (4)

Thus, the goal of regression is to learn from data a function f that is as close
as possible to the unknown function f∗. In least square regression, it results to
find the function that minimize the mean square of the error (MSE), i.e. find f
that minimize :

MSE(f) =
1

m

m∑
1

(y(xi)− f(xi))2 (5)

In the following, we will always assume that the error follows a normal distribu-
tion. A conventional approach employed by some practitioners is to assume that
f is a non-biased estimator of f∗ with V ar(εi) = σ2 being constant which means
that it does not depends of the input vector (homoscedasticity assumption), and
to use the MSE of the found f as an estimation of σ2 (i.e. MSE(f) = σ̂2).
Thus the conventional approach assumes that the error distribution normal and
homoscedastic. In this approach inter-quantiles of the estimated normal distribu-
tion are used, as an approximate solution to find intervals that contain a chosen
proportion of the underlying distribution for a given value of dependent variables
or intervals that contain a chosen amount of underlying distribution for all the
possible values of dependent variables, (respectively similar to tolerance inter-
vals and simultaneous tolerance intervals). For instance, the 0.95 inter-quantile
[f(x)− 1.96σ̂, f(x) + 1.96σ̂] is often used as an interval that will contain 95% of
the distribution of Y (x) (i. e. as a regression tolerance interval). As shown by
Wallis [17], this statement is not true since σ̂ and f(x) are only estimations of the
true standard deviation σ and the true mean function f∗. These estimations are
usually made on a finite sample and are then pervaded with uncertainty. Thus,
tolerance intervals for least square regression have been introduced in order to
take into account this uncertainty. These intervals are described formally by (6).
We name such intervals, β-content γ-coverage regression tolerance intervals and
they are represented by I(x)Tγ,β .

∀x, P
(∫ Uβ,γ(x)

Lβ,γ(x)

px(t)dt ≥ β

)
≥ γ where Y (x) = f∗(x) + εi (6)

Where px(t) represents the the probability density function of Y (x) for an spec-
ified value of predictor variable x. It is important to observe that tolerance
intervals in regression are defined separately for each input vector x. Therefore,
for two different input vectors x1 and x2, I(x1)

T
γ,β and I(x2)

T
γ,β are different and

the event of Y (x1) ∈ I(x1)Tγ,β is independent of Y (x2) ∈ I(x2)Tγ,β.

2.2 Difference between Tolerance and Prediction Intervals

One might think to use prediction intervals instead of tolerance intervals. Note
that in terms of prediction, tolerance intervals are not the same as prediction
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intervals. For a given x, tolerance intervals contain at least 100β% of the popu-
lation of Y (x), however a β prediction interval contains in mean 100β% of the
distribution of Y (x). In other words, the expected percentage of the popula-
tion of Y (x) contained in its β prediction interval I(x)Pred

β is β. This is stated
formally as follows:

∀x,E(P (Y (x) ∈ I(x)Pred
β )) = β where Y (x) = f∗(x) + εi (7)

For a detailed discussion about the differences between prediction and tolerance
intervals, the reader can find more in [4].

2.3 Simultaneous Tolerance Intervals for Least Square Regression

As seen above, tolerance intervals for least square regression are point-wise in-
tervals which are obtained separately for each vector of x. Lieberman and Miller
[11] extended the Wallis [17] idea to the simultaneous case. Simultaneous tol-
erance intervals are constructed so that with confidence level γ, simultaneously
for all possible values of input vector x, at least β proportion of the whole pop-
ulation of the response variable Y is contained in the obtained intervals. In fact
simultaneous tolerance interval for least square regression [LSβ,γ(x), USβ,γ(x)]
create an envelope around the entire mean regression function f(·) such that
for all x ∈ X , the probability that Y (x) is contained in [LSβ,γ(x), USβ,γ(x)]
is simultaneously β, and this coverage is guaranteed with a confidence level γ.
We name such intervals, β-content γ-coverage simultaneous regression tolerance
intervals, we represent them by I(x)TS

γ,β and they are described formally by Equa-
tion (8), where px(t) represents the the probability density function of Y (x) for
an specified value of predictor variable x.

P

(
min
x∈X

(∫ USβ,γ (x)

LSβ,γ(x)

px(t)dt

)
≥ β

)
≥ γ where Y (x) = f∗(x) + εi (8)

These intervals have been studied for the linear regression by several authors
[11,19,12]. For an introduction to the subject, the reader can see Lieberman and
Miller [11]. They explained the problem in details and presented four different
methods to construct such intervals for linear regression. For more information
about simultaneous inference, see [1,13].

3 Simultaneous Interval Regression for K-Nearest
Neighbor (KNN)

3.1 K-Nearest Neighbor (KNN)

Non-parametric regression is a type of regression analysis in which the response
value is not a predefined function of the predictor variables and vector of param-
eter θ which must be estimated form data. In contrary to parametric regression,
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which is based on the construction on a model based on a training set, the
prediction for a vector x is made by a local estimation inside the training set.
The motivation of non-parametric methods is their utility when dealing with too
complex models or when having non-linear or linear with heteroscedastic data.
Therefore, in such situations, exploiting the neighborhood of the input data to
estimate the local distribution of response value may be justified. KNN uses the
distribution of response values in the neighborhood of the input vector x to find
its unknown response value. In this work, we assume that the local distributions
are normal, and we will use tolerance intervals of normal distribution to obtain
the required intervals. This section, makes also the general assumptions of fixed
regression design described in the previous section. With KNN, which are linear
smoothers, the estimated function for the input vector x, f(x) will be defined
as:

f(x) =

n∑
i=1

liy(xi). (9)

where li, is the weight associated to the observation y(xi). The computation of
these weights, requires an unknown hyper-parameter named as the bandwidth.
The bandwidth is the size of the neighborhood (K) around the considered input
vector which is used to compute these weights. Then, KNN which is a kernel
smoother is defined as follows :

f(x) =

∑n
i=1Kerb(d(x, xi))y(xi)∑n

i=1Kerb(d(x, xi))
(10)

where

Kerb(u) =
1

b
Ker(

u

b
),

Ker(·) is an a kernel function, d(·) is a distance function and b is the distance
between the input vector x and its furthest K-nearest neighbor. In fact KNN is a
specialized form of Nadaraya-Watson (NW) [14,18] kernel estimator in which the
bandwidth b is not constant and depends on the distance between input vector
x and its furthest K-nearest neighbor. Usually, The size of the neighborhood,
K, has to be fixed before the learning phase and it will be constant for all the
input vectors. In the following, the neighborhood of x is denoted as :

Ksetx = {(xi, y(xi)), d(x, xi) ≤ b}.

Some of the common kernel functions are defined as belows [10] where I(·) is the
indicator function:
Tricube: K(u) = 70

81 (1− |u|
3
)3 I(|u| ≤ 1),

Gaussian : K(u) = 1√
2π
e−

1
2
u2

, I(|u| ≤ 1),

Epanechnikov: K(u) = 3
4 (1 − u2) I(|u| ≤ 1),

Uniform: K(u) = 1
2 I(|u| ≤ 1).
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3.2 KNN Simultaneous Interval Regression

Our goal is to find intervals which contain simultaneously a proportion of the
response values for all input instances x ∈ X . We name the problem stated just
above as simultaneous interval regression. This is similar to consider simulta-
neous tolerance interval for regression with a high confidence level γ ≈ 1. The
goal of this paper is to consider the simultaneous interval regression problem
for KNN. The interval construction approach is proposed for KNN in general.
This method exploits the local density of the neighborhood to find the most
appropriate intervals to contain the desired proportion of response values, so
the proposed interval construction method may be more effective with heteroge-
neous data set with heteroscedastic error. Note that, tolerance and simultaneous
tolerance intervals have not yet been treated for non-parametric methods. Thus,
given an input vector x, K, β, and γ, the tolerance interval for the response
variable is computed by using Equation (2) with

θ̂ = f(x), n = K

and

σ = (K − 1)−1
∑

y(xi)∈Ksetx

(y(xi)− ȳ)2, where ȳ = K−1
∑

y(xi)∈Ksetx

y(xi).

Note that, in contrary to the sample mean, the sample standard deviation does
not take into account the distance between the considered input vector and its
neighbors. Indeed, if the weights li was embedded in the computation of σ, K
would overestimate the amount of information used for the estimation of the
standard derivation.

As pointed out previously, it is common to fix K and use a general KNN
estimator. These settings are denoted as “KNN regression with fixed K”. The
fixed K idea in KNN regression comes from the assumption which suppose that
the data are homogeneously distributed in the feature space. In this section
tolerance intervals are used to find the “best” K for each input vector x. Let
the sample set containing the response values of the K-nearest neighbors of x
be Ksetx. For a fixed value of β, and for each input vector x, the computation
begins by an initial value of K, then the β-content γ-coverage normal tolerance
interval ofKsetx is calculated. This process is repeated for the same input vector
x but different values of K,MINK ≤ K ≤ MAXK . Finally, for a given x, the
interval having the smallest size between other tolerance intervals resulted by
different Ksetx for MINK ≤ K ≤MAXK is chosen as the desired interval.

This leads us to choose the interval that has the best trade-off between the
precision and the uncertainty to contain the response value. Indeed, when K
decreases the neighborhood considered is more faithful but it increases the un-
certainty of the estimation. On the contrary, whenK increases, the neighborhood
becomes less faithful but the size of the tolerance intervals decreases. In fact the
mentioned intervals take into account the number of instances in the neighbor-
hood, and their size reflects also the neighborhood’s density . Thus, choosing the
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K that minimizes a fixed β-content γ-coverage normal tolerance ensures to have
the best trade off between the faithfulness of the neighborhood and the uncer-
tainty of the prediction due to the sample size. This is summarized in Algorithm
1. For the case of the computational complexity, the computation process of
KNN simultaneous interval regression is (MAXK −MINK) times higher than
the complexity of KNN regression with fixed K. Because from the beginning to
the Ksetx finding step, everything remains the same for both of the regression
methods, then in the interval calculation phase, KNN regression with fixed K
computes just one interval and instead our method computes MAXK ones. For
more detail on the complexity of KNN see [15].

Algorithm 1. Simultaneous interval regression with KNN

1: for all x ∈ testSet do
2: IntervalSizemin ← Inf
3: for all i ∈ MINK , . . . ,MAXK do
4: Ksetx ← response value of the K nearest instances to x
5: Interval ← β-content γ-coverage normal tolerance interval of Ksetx
6: if size(Interval) ≤ IntervalSizemin then
7: K ← i
8: foundInterval ← Interval
9: IntervalSizemin ← size(Interval)
10: end if
11: end for
12: Intervalx ← foundInterval
13: end for

3.3 Tunning MINK , MAXK and γ

MINK and MAXK are global limits that stop the search if the best K value is
not before . This may occur when in some part of the data set, the local density
of the response variable is relatively high. In practice, it is known that this kind
of local density is not always a sign of similarity, therefore these two bounds serve
to restrict the search process in a region where it is most likely to contain the
best neighborhood of x. MINK ,MAXK and γ are algorithms hyper-parameter
and they can be found by evaluating the effectiveness of the algorithm on the
training set.

Our goal is to find an envelop that gives β proportion of all the predictions.
In this scope β is chosen with respect to the user expectation. Given a KNN
function f and a validation set that contains m pairs (xi, y(xi)) the proportion
of data inside the tolerance envelope is computed by the MIP function (Mean
Inclusion Percentage) :

MIP =

∑
I(y(xi) ∈ ITf(x))

m
(11)

where I is the indicator function and ITf(x) is the interval found by the algorithm
above. The process of finding the optimal value of γ is more tricky. Indeed,
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The choice of a good value γ is crucial in order to have simultaneous tolerance
intervals that guarantee the expected value of MIP (i.e. MIP ≥ β). High values
of γ will guarantee that MIP ≥ β but the computed intervals can become
very large. Thus,we experimentally search for the smallest value of γ that makes
MIP ≥ β. Note that, with this approach, the value of γ can be much lower that
β and this may happen when the local density of the response values is quite
dense.

4 Experiments

4.1 The Experiment’s Approach

We compare the effectiveness of our methods based on tolerance intervals with
the conventional interval construction approach described in section 2.1 (repre-
sented by “Conv.”) for a given β proportion of the response values . Thus, the
conventional approach is the computation of inter-quantile of population based
on the classical KNN algorithm with a fixed K. The goal is to find simultaneous
β-content regression intervals where β = 0.9, 0.95 and 0.99. The motivation of
this choice of β is that these inter-quantiles are the most used ones in machine-
learning and statistical hypothesis-testing. Another reason justifying our choice
is that they are harder to approximate.

When considering the simultaneous interval regression, it is expected for the
fraction of prediction values inside the envelope, for each of the 10 models in
cross validation, to be greater or equal to β. For example, for β = 0.95 in a
10-fold cross validation, it is expected for each of the 10 built model to have
a Mean Inclusion Percentage (MIP) greater or equal to 0.95 (MIP ≥ β). In
our experiments part, we are interested to compare the obtained intervals by
the mentioned methods regardless to any variable selection or outliers detection
preprocessing. The mentioned results are the mean inclusion percentages and the
Mean of Interval Size (MIS) in each of the 10-fold in the cross validation scheme.
The MIP (see Equation (11)) and MIS over all the 10-fold cross validation is also
contained in the results.

In a first attempt, data set is divided into two parts of 2
3n and 1

3n, where
n represents the data set size. The part containing 2

3 of instances are used to
tune the hyper-parameters. The hyper-parameters areMINK ,MAXK and γ for
our proposed interval regression method and just K value for the Fixed KNN
(denoted as Conv.). For the classical KNN, the fixed K maximizing the Root
Mean Squared Error (RMSE) of response variable is chosen. For our proposed
method, the hyper-parameters having the smallest MIS and also satisfying the
simultaneous β-inclusion constraint (see Section 3.3) are selected. Finally, all of
the instances will serve to validate the results using a 10-cross validation scheme.

4.2 Results

For this purpose the following six well known regression data sets are used
: “Auto MPG” (Auto) [3] , “Concrete Compressive Strength” (Concrete) [3],
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Table 1. Comparing the interval construction approachs proposed to perform simul-
taneous interval regression for KNN

Dataset Algo.

90% 95% 99%

Min(MFIP) MIS (σis) Min(MFIP) MIS (σis) Min(MFIP) MIS (σis)

Parkinson1

(n=5875,

p=25)

Conv. 94.54 * 6.62 94.55 7.88 95.4 10.36

Var. K 90.98 * 5.01 (6.92) 95.23 * 6.38 (8.75) 99.14 * 11.19 (14.47)

Hyper.

params.

(MINK,MAXK, γ) =

(5, 40, 0.25)
(MINK,MAXK, γ) =

(5, 40, 0.35)
(MINK,MAXK, γ) = (5, 40, 0.8)

Parkinson2

(n=5875,

p=25)

Conv. 94.04 * 4.73 94.55 5.64 95.57 7.41

Var. K 92.34 * 3.97 (5.37) 95.23 * 5.06 (6.77) 99.14 * 9.37 (11.85)

Hyper.

params.

(MINK,MAXK, γ) =

(5, 25, 0.3)
(MINK,MAXK, γ) =

(5, 25, 0.4)
(MINK,MAXK, γ) = (5, 25, 0.87)

Wine

(n=4898,

p=12)

Conv. 78.93 1.84 90.59 2.19 93.46 2.88

Var. K 90.2 * 2.5 (0.55) 95.71 * 3.51 (1.48) 98.77 5.04 (1.05)

Hyper.

params.

(MINK,MAXK, γ) =

(20, 50, 0.9)
(MINK,MAXK, γ) =

(5, 25, 0.99)
(MINK,MAXK, γ) = (20, 50, 0.999)

Concrete

(n=1030,

p=9)

Conv. 80.58 25.58 86.4 30.48 94.17 40.05

Var. K 91.26 * 33.29 (11.86) 95.14 * 41.91 (14.8) 99.02 * 80.72 (26.47)

Hyper.

params.

(MINK,MAXK, γ) =

(10, 25, 0.6)
(MINK,MAXK, γ) =

(10, 25, 0.7)
(MINK,MAXK, γ) = (10, 25, 0.99)

Auto

(n=398,

p=8)

Conv. 87.17 9.96 90 11.87 94.87 15.6

Var. K 94.87 * 12.57 (6.48) 95 * 14.98 (7.72) 97.43 23.54 (11.98)

Hyper.

params.

(MINK,MAXK, γ) =

(7, 20, 0.95)
(MINK,MAXK, γ) =

(7, 20, 0.95)
(MINK,MAXK, γ) = (7, 20, 0.99)

Housing

(n=506,

p=14)

Conv. 84.31 14.23 90.19 16.96 94 22.29

Var. K 92.15 * 22.9 (13.09) 96 * 27.28 (15.6) 98 43.45 (24.44)

Hyper.

params.

(MINK,MAXK, γ) =

(10, 20, 0.99)
(MINK,MAXK, γ) =

(10, 20, 0.99)
(MINK,MAXK, γ) = (10, 20, 0.999)

Slump

(n=103,

p=10)

Conv. 80 12.73 80 15.16 80 19.93

Var. K 90 * 29.58 (9.83) 90 35.25 (11.71) 100 * 46.32 (15.4)

Hyper.

params.

(MINK,MAXK, γ) =

(5, 15, 0.99)
(MINK,MAXK, γ) =

(5, 15, 0.99)
(MINK,MAXK, γ) = (5, 15, 0.99)

“Concrete Slump Test” [3] (Slump),“Housing” [3],“Wine Quality” [3] (Wine)
(the red wine) and “Parkinsons Telemonitoring” [16]. “Parkinsons Telemonitor-
ing” data set contains two regression variable named as “motor UPDRS” and
“total UPDRS”, so we consider it as two distinct datasets named respectively as
“Parkinson1” (containing “total UPDRS” values without “motor UPDRS”) and
“Parkinson2” (containing “motor UPDRS” values without “total UPDRS”).
Table 1 summarizes the application of the algorithm 1 (“Var. K”) and the con-
ventional interval construction approach combined with KNN (“Conv.”) to the
seven datasets seen above. For each 10-fold cross validation scheme, the following
quality measures are computed:

• MFIP: Mean Fold Inclusion Percentage (value of the MIP for one fold). It
must be greater or equal to the desired β for each of the 10 models build in
the cross validation phase.
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• Min(MFIP): minimum value of MFIP between all the 10 models. If we have
min(MFIP ) < β, that represents the failures of the approach to cover the
required β proportion of the response values .

The column MIS is the Mean of Interval Size for all the 10 models and σis is
the standard deviation of the interval size over the whole dataset. Note that σis
is not defined for the conventional method because its interval size is constant
over the entire data set. The star * sign appears when Min(MFIP) satisfies
the requirement (i.e. Min(MFIP ) ≥ β). When only one of the two compared
methods satisfies this requirement, the result is put in bold.

For β = 0.9 β = 0.95 and for the data sets Parkinson1 and Parkinson2 in table
1, we can see that our method gives smaller intervals than the Conv. approach.
However in contrary to the Conv. approach, the mentioned intervals contain the
required β proportion of the response values. It is usually, a difficult task to
satisfy the requirement for β = 0.99 and it becomes even harder for small data
sets. Because each fold contains n

10 of total instances, so one percent is equals
to n

1000 . It means that the constructed intervals must miss at max n
1000 of total

instances and this is a quite hard task for small and even medium data sets. But
we can see that our method satisfies this condition for half of datasets and the
mean of inferred intervals has not a big size compared to the required constraint.
It is also interesting to note that our proposed method performs better in general
for bigger datasets. This is because, our method is based on the local density of
the data.

5 Conclusion

In this work, we have defined the idea of simultaneous interval regression for
K-Nearest Neighbor (KNN). In simultaneous interval regression, the goal is to
find intervals which simultaneously contain a required proportion of the response
values for all input instances. We have introduced one approach to build such
intervals which can be applied to KNN. Since tolerance intervals take into ac-
count the neighborhood size, it allows us to automatically find the best value
of K for each example rather than using a fixed K for all the test set. This
can be useful in presence of heterogeneous data. In the experiments part, the
introduced methods and its conventional versions are applied on six different
regression data sets. The results show that our approach performs very well on
dense datasets. In the case of dataset with small sample sizes compared to their
number of variables, our method is less reliable, but it is still better than the
conventional interval construction method in KNN.

Predicting simultaneous confidence intervals may be useful when we are in-
terested in the combination of predictions. For instance, in the wine database,
the computation of simultaneous interval ensures that for a set of ”m” bottles,
”m ∗ β” of the bottles will have simultaneously their score in their predicted in-
terval. This can become more important in safety and security applications. As
another example, let us take the aircraft trajectory prediction using a regression



Simultaneous Interval Regression for K-Nearest Neighbor 613

model. A warning occurs when the prediction intervals of two or more aircraft
overlap. In this case, intervals found using simultaneous interval regression guar-
antee the safety measure of the collision detection approach.

As future work, we will focus on different non-parametric estimators such as
Locally Weighed Scatter-plot Smoothing as well as regression cases where the
error’s distribution are not normal.
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Abstract. Although frequent pattern mining techniques have been ex-
tensively studied, the extension of their application onto data streams has
been challenging. Due to data streams being continuous and unbounded,
an efficient algorithm that avoids multiple scans of data is needed. In
this paper we propose Kernel-Tree (KerTree), a single pass tree struc-
tured technique that mines frequent patterns in a data stream based on
forecasting the support of current items in the future state. Unlike pre-
vious techniques that build a tree based on the support of items in the
previous block, KerTree performs an estimation of item support in the
next block and builds the tree based on the estimation. By building the
tree on an estimated future state, KerTree effectively reduces the need
to restructure for every block and thus results in a better performance
and mines the complete set of frequent patterns from the stream while
maintaining a compact structure.

Keywords: Data Streams, Kernel Regression, Frequent Pattern Mining.

1 Introduction

The introduction of FP-Tree by Han et al. [1] directed focus in frequent pattern
mining from the traditional Apriori-like candidate generation-and-test approach
to tree structured approaches. Most of the tree-based frequent pattern mining
techniques are designed to work in static databases which only provides snap-
shots in time of the patterns found. As the generation of data streams increases,
the ability to derive useful information in an efficient manner becomes more
necessary.

Ever since its inception, data stream mining has remained one of the challeng-
ing problems in data mining. This is mainly due to the nature of data streams
being continuous and unbounded in data flow as opposed to traditional databases
where data is static and stable. Examples of situations where streams of data
can be generated range from online retail such as auctions, book stores, telecom-
munications calling data to credit card transactions and weather/climate data.
Because these data arrive at a fast rate and in a continuous manner, traditional
techniques designed for databases which perform multiple scans on the data are
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not suitable for mining these streams of data. The other issue is with memory
usage during mining of such unbounded data. The capability of any technique
that mines a stream is bounded by the memory space (buffer) available for stor-
ing the most recent transactions in order to update item support. If the data
stream miner cannot process the data fast enough, the buffer will eventually be
filled and data from the stream will inevitably be lost. This restriction requires
that the mining of data streams be single pass and as fast as possible.

Techniques that mine data streams based on a tree structure have been stud-
ied recently. An example is CPS-Tree [2], which builds its tree based on the
frequency-descending order of items from the previous block and thus maintains
a compact tree and is an ideal single scan approach. A disadvantage of CPS-Tree
is that it assumes that the state of the data stream in the next block is the same
as the current block and that there is minimal to no concept drift in item sup-
port. In this paper we propose an approach called KerTree where we implement
a concept drift detection mechanism to signal when item support changes from
one block to the next and present an inexpensive but accurate extrapolation
function that is capable of estimating item support in the future states of the
data stream. An accurate assessment of the next state has a flow-on effect on
subsequent states, minimizing the changes required to the tree, thus improving
the overall tree maintenance time.

The key contribution of this paper is a tree structure mining technique called
the KerTree that finds the complete set of frequent patterns in a data stream
using a sliding window. Specifically in our approach, we use an extrapolation
function to estimate the state (support) of items in a future block; thus, our
extrapolation function allows us to compensate for the concept change (i.e. shifts
in the pattern of support amongst items) in incoming transactions while keeping
a compact tree structure.

The paper is organized as follows. In Section 2 we discuss related work. Sec-
tion 3 presents the preliminaries and the detail of our proposed algorithm. Our
experimentation and evaluation of KerTree and comparison with CPS-Tree is
presented in Section 4. Finally in Section 5 we conclude our work and discuss
future directions.

2 Related Work

In this section, we discuss some previous work that is relevant to our work. FP-
Tree [1] is a widely known frequent pattern mining technique that uses a tree
structure. Prior to FP-Tree, most approaches adopt an Apriori-like candidate
generation-and-test approach which is usually costly and less efficient. FP-Tree
is efficient at finding the complete set of frequent patterns in a database, but its
multi-pass approach is unfavorable and considered too memory intensive to be
used in a data stream environment.

To resolve this, Giannella et al. [3] proposed a technique called FP-Stream
which adapts the FP-Tree for mining data streams. The major disadvantage of
the FP-Stream approach is that it finds an approximate set of frequent patterns
instead of the complete set of frequent patterns.
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A tree structure that is developed by Leung et al. [4] called DSTree is a
technique that finds the complete set of frequent patterns in a data stream. This
particular structure is adapted from CanTree [5] which is a technique that is
designed for incremental mining. DSTree, like CanTree, builds its tree structure
based on a canonical-ordering of items that is determined by the user prior to
the mining process or at runtime during mining.

Tanbeer et al. [2] proposed a tree structure called CPS-Tree that builds a
compact tree and mines the complete set of frequent patterns. CPS-Tree has a
frequency descending structure that captures data from the dataset and dynam-
ically restructures itself. The tree construction of the CPS-Tree has two phases:
insertion phase and restructure phase. In the insertion phase, the items in the
currently processed transaction are inserted into the tree based on the current
sorted order of the item list and the frequency counts of the items are updated.
During the restructure phase, the item list is sorted based on frequency descend-
ing order and the tree is reorganized based on the newly sorted item list. The
two phases are executed consecutively. CPS-Tree works under the assumption
that drift within the stream remains fairly constant, an assumption which is not
always true in practice. The relaxation of this assumption requires both a drift
detection mechanism as well as an estimation mechanism which our proposed
approach implements.

Koh et al. [6] proposed the Extrap-Tree, which builds the prefix tree based
on a forecast support, like that of KerTree. However, Extrap-Tree uses a land-
mark model where linear interpolation is used as the estimation mechanism. In a
landmark model, the support of items increases monotonically with time, mak-
ing linear interpolation the suitable estimation function whereas the KerTree
introduced in this paper assumes a sliding window approach where the support
of items can both increase and decrease with time.

3 Kernel-Tree (KerTree)

In this section we will first give the general framework of KerTree then later in
the section we will detail each of the steps taken to construct KerTree for mining
frequent patterns.

3.1 Preliminaries

In this section we provide definitions of key terms that explain the concepts of
frequent pattern mining in a data stream. A transaction data stream S can be
formally defined as an infinite sequence of transactions, S = [t1, t2, t3, . . . , tm],
where ti is the ith transaction in the data stream and i ∈ [1,m]. A window W
is a set of all transactions between the ith and jth (where j > i) transactions
and the size of W is |W | calculated by j − i. The frequency of an itemset X
denoted as countW (X) in a window W , is the number of transactions in W
that contain X . The support of X in W , denoted as suppW (X), is defined as
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countW (X)
|W | , where |W | is the size of the window W . X is a frequent itemset in

W if suppW (X) ≥ minsup where minsup is the minimum support threshold.
Given a transaction data stream and a minsup, the problem of frequent item-

set mining over a window W in the transaction data stream S, is to find the
set of all itemsets whose support is greater than minsup. A block B is a set
of transactions with the size of |B|. A data stream is consisted of a continuous
sequence of blocks, S = [B1, B2, . . .).

3.2 Framework and Overview of KerTree

KerTree, like many other tree structured pattern mining techniques, goes through
two phases: construction phase and mining phase. During the construction phase,
a tree is storing the items in the transactions is built. The mining phase follows
the construction phase where FP-Growth proposed in the FP-Tree [1] is used
to mine the tree for frequent itemsets. FP-Growth is also used in some previous
work [5,2,7,6].

The construction of KerTree consists of several steps. First, an initial tree
is built as transactions are read from the stream. At the end of each block,
KerTree uses a delay condition to determine whether the initial tree built re-
quires re-structuring. If re-structuring is deemed unnecessary, all following con-
struction steps are skipped and KerTree goes into mining phase. If re-structuring
is deemed necessary, KerTree continues with the construction phase by deter-
mining whether there is drift in the support of items from the previous block to
the current block. Then, the ordering of items in the tree is adjusted based on
the results using kernel regression. Lastly, the tree is re-structured based on the
adjusted ordering.

Figure 1 is an example of KerTree showing the construction of the tree in
the first block. Shown in Figure 1 (a) is the result of the inital tree built at the
end of the block. Because this is an example of the first block, items are initially
ordered in the canonical ordering (alphabetical). For all blocks after the first, the
initial tree is built using the forecast ordering of items from the previous block.
This ordering is determined using kernel regression. Using kernel regression as
the extrapolation function to forecast item supports in the future is also one of
the major contributions of this paper. The actual technique on how we perform
kernel regression is detailed in Section 3.3. For the first block of the stream,
we always deem the tree needing re-structuring. After the first block, whether
we decide to re-structure and continue with construction is determined by the
delay condition presented in Section 3.4. If re-structuring is needed, KerTree
first uses a dirft detection mechanism to detect changes in item supports. The
details of this mechanism is presented in Section 3.5. After determining drift and
forecasting item supports using kernel regression, we continue with re-structuring
the tree based on the forecast order and the resulting tree is shown in Figure 1
(b). Notice that the re-structured tree is more compact (fewer nodes). When
the second block of transactions come in, the tree will be updated and built
according to the forecast order determined in block one. At the end of block
two, KerTree will then go through the same procedures as presented above.



618 D.T.J. Huang et al.

Transactions for the first block
tid transactions tid transactions

1 a d e g i 6 d e i
2 a d e h i 7 c d e h
3 b c d e i 8 d e f i
4 b d e f 9 d e i
5 c d e g i 10 c d e f

Canonical Order Forecast Order
a d
b e
c i
d a
e c
f g
g b
h h
i f

(b) Reorganization based on forecast order
{}
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h:1 f:1
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(a) Initial tree based on canonical order
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d:3

e:3

i:2 f:1

i:1

Fig. 1. Example of KerTree

3.3 Kernel Regression

Kernel regression is a non-parametric regression technique. Unlike linear regres-
sion or polynomial regression, the underlying distribution to estimate the kernel
function is not assumed.

The problem is: given a set of data points (t, yt) where t indicates a time point
in the stream and yt the support of a given item, we find a regression function
that best fits the given data. Given the best fit function, we can determine the
estimated support ŷt+1 at time t+1. The set of data points (t, yt) used in KerTree
is obtained through tracking the support of items in the current block at various
points. The amount of points tracked is user defined and can be increased to
improve estimating accuracy (but reducing efficiency). The points are assigned
in a manner where the distance from one point to the next is uniform. For
example, given a block B of 10 transactions with 5 points defined, the support
of an item would be tracked at transactions 2, 4, 6, 8, and 10. Generally about
five to ten points is enough to provide the regression technique with sufficient
data for an accurate estimation.

In kernel regression, a weight function called a kernel is first associated at
each time point, t. The kernel then estimates the probability of point x occurring
based on the weight function of the kernel (ie. Radial Basis Kernel estimates the
probability using a Gaussian function). Apart from the probability calculated
at each kernel, a weight is also assigned to each kernel. In our implementation
we used the KRLS algorithm [8] to calculate the optimal weight vector α. The
optimal weight vector is obtained through minimizing the sum of the squared
errors calculated as the difference between the estimated and actual support
values. The estimated value ŷt+1 at the (t+ 1)

th
observation is given by:
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ŷt+1 =

∑
j∈s

wjyj∑
j∈s

yj

where s is the set of data points or kernels; wj is the kernel weight of the jth

kernel data point . Each ŷj is fitted by the Polynomial kernel function of degree
2: (z · yj + 1)2, where z takes values in the range [0, 1, 2, ..., ( s

dX + 1)] ; dy is the
sampling rate for each observation yj in the current block t.

Thus in KerTree, by calculating the estimated support for each item at a
future block, we can generate a forecast order of items at which the tree in the
next block can be built from.

3.4 Delay Condition

The reason that sometimes restructuring of the tree could be delayed at some
blocks is because we are constructing the tree based on forecast support of items
from the previous block; therefore, if the prediction is accurate, the initial tree
built would already have been representative of the state of items in the current
block and is usually a compact tree. However, even though our proposed kernel
regression extrapolation function is capable of predicting the support of items
in the near future, the estimation function will eventually lose its predicting
strength as time progresses and a tree reorganization will be inevitable at some
stage. We deem whether reorganization of the tree is necessary based on a tree
growth threshold (γ). The growth threshold is measured using the number of
nodes in the tree at the previous block and comparing it with the number of
nodes in the tree at the current block. We then calculate the percentage of
increased nodes which we call percentage of growth. If the percentage of growth
is less than γ, then we delay reorganization at the current block and skip drift
detection and extrapolation in the rest of the construction phase.

3.5 Drift Detection

After deciding to re-structure the tree based on growth threshold γ, we go into
drift detection where we determine whether a drift in the support of items is
present or absent. We then use the extrapolation function (kernel regression) to
forecast the support of items if a drift is deemed present. A drift is a change in the
support of an item from the previous block to the current block. For example, if
item X is seen with a support of 0.8 in the previous block and 0.2 in the current,
then we say that there is a drift. We use the drift detection mechanism proposed
in Extrap-Tree called the Hoeffding Bound [9] in KerTree.

In order to determine whether there is a concept drift in the support of items
from the previous block to the current block, we utilize the change in support
of an item from the previous block to the current block given by:

Δsupp(X) = suppBn−1
(X)− suppBn(X) (1)
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We use the Hoeffding Bound to determine whether a drift is present. The Ho-
effding bound states that, with probability 1 − δ, the true mean of a random
variable r is at least r − ε when the mean is estimated over t samples, where

ε =

√
R2 ln(1/δ)

2t

R is the range of r. In our case the variable r is denoted by |Δsupp(X)|, which has
a range value R of 1, and the number of samples t = |B|, the block size. There
are two possible scenarios that we need to consider when using |Δsupp(X)|
to determine drift. In the first scenario, we assume that there is no concept
drift when |Δsupp(X)| ≤ ε and the previously forecasted support holds the
same and we do not need to re-calculate the support of item X using kernel
regression. In the second scenrio, we assume that concept drift is present when
|ΔsuppBn(X)| > ε and we need to re-calculate and forecast the support of
item X .

To obtain suppextrapBn+1
(X) when concept drift is assumed present, we use kernel

regression to estimate and extrapolate item support at the next block as specified
earlier in Section 3.3.

4 Experimental Results

We have conducted various experiments on both real-world and synthetic
datasets to test the efficiency and efficacy of our proposed technique. The al-
gorithms are all coded in Microsoft Visual C++ and run on a Intel Core i5-2400
CPU @ 3.10 GHz with 4GB of RAM running Windows 7 x64. In all experiments,
runtime excludes I/O costs.

4.1 Synthetic Data Generator

In order to evaluate the performance of KerTree with relation to the effects of
concept drift, we modified the IBM synthetic data generator to inject drift pat-
terns into the generated datasets based on known polynomial equations shown
in Table 1. These equations allow us to model and control different item dis-
tributions and produce different datasets of varying characteristics. The stream
is based on a Gaussian distribution with the polynomial equations giving the
probability at which we introduce or remove itemsets. The generator produces
large and small itemsets with the items in the large set having higher support
than those in the small set. We select x random points at which we introduce
or remove large itemsets. Through introducing and removing these itemsets at
these points, we are able to simulate drifts in patterns in the dataset. The in-
troduction of large itemsets at a drift point corresponds to the simulation of
emerging frequent patterns in the dataset whereas the removal of large itemsets
corresponds to the simulation of disappearing patterns in the dataset.

The eight synthetic datasets generated in our experiments used the same
parameters where the average transaction length was 10, the number of frequent
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Table 1. Kernel equations

Dataset Equation Dataset Equation

Synthetic 1 x2 Synthetic 5 −4x3 − 3x2 + 5x − 10
Synthetic 2 3x2 − 4x+ 10 Synthetic 6 −3x2 + x
Synthetic 3 −2x2 + 10x − 4 Synthetic 7 4x3 − 4x + 4
Synthetic 4 3x3 + 4x2 − x + 1 Synthetic 8 3x2 − 4x − 10

items was 100, the average length of a large item was 4, the number of drift
points is 50,000 and the number of transactions was 1 million using 1000 unique
items.

4.2 Experimentation on Synthetic Data

In this section we present our experimentation and evaluation on the eight syn-
thetic datasets. We evaluate our approach against CPS-Tree based on the fol-
lowing features: (1) Overall execution time, (2) Average number of nodes in tree,
and (3) Correlation of the extrapolated support vs. the actual support. In the
first evaluation, we primarily look at the performance of KerTree against the
CPS-Tree through comparing the execution time. In the second evaluation, we
aim at comparing the compactness of the trees built between KerTree and the
CPS-Tree by looking at the average number of nodes in the trees built by the
two techniques. In the third evaluation, we particularly wanted to look at the
accuracy of our kernel extrapolation function through the correlation measure
of the extrapolated support vs the actual observed support.

For all the synthetic dataset experiments we used varying block sizes of 50K,
100K, 150K and 200K, minsup of 0.1, tree growth threshold (γ) of 0.01, Hoeffding
bound (δ) of 0.001, and a polynomial kernel of degree 2. Table 2 reports the
comparison based on execution time. For ease of comparison, we have included
the relative time measure of KerTree vs. CPS-Tree, which is calculated as follows:

Relative Time (Rel. Time) =
Time taken by KerTree

Time taken by CPS-Tree

Table 2. Comparison based on Execution Time

Dataset 50K 100K 150K 200K
Ker-
Tree

CPS-
Tree

Rel.
Time

Ker-
Tree

CPS-
Tree

Rel.
Time

Ker-
Tree

CPS-
Tree

Rel.
Time

Ker-
Tree

CPS-
Tree

Rel.
Time

Synthetic 1 14.57 18.24 0.8 13.73 17.16 0.8 13.45 16.07 0.84 13.43 15.94 0.84
Synthetic 2 13.67 16.88 0.81 13.26 15.79 0.84 13.2 15.01 0.88 13.04 14.96 0.87
Synthetic 3 13.85 16.77 0.83 13.48 15.79 0.85 12.93 14.96 0.86 12.87 14.87 0.87
Synthetic 4 13.85 17.32 0.8 13.31 16.47 0.81 13.14 15.51 0.85 13.1 15.69 0.83
Synthetic 5 14.87 17.32 0.86 13.67 16.33 0.84 13.57 15.59 0.87 13.67 15.69 0.87
Synthetic 6 14.24 16.6 0.86 13.21 15.76 0.84 12.84 14.91 0.86 12.92 14.99 0.86
Synthetic 7 13.56 16.65 0.81 13.37 15.68 0.85 12.82 14.79 0.87 12.82 14.79 0.87
Synthetic 8 14.42 17.3 0.83 13.71 16.43 0.83 13.78 15.8 0.87 13.68 15.51 0.88



622 D.T.J. Huang et al.

Looking at Table 2 we can see that KerTree is about 12%-20% faster for all
experiments against CPS-Tree. This is shown in Figure 2 where the execution
time for KerTree is plotted against the execution time of CPS-Tree to show a
comparison. The reduction in execution time is due to the ability of KerTree
to delay the reorganization phase in a majority of the blocks by accurately
predicting the future support of items.

Fig. 2. Execution Time

For the comparison based on the average number of nodes in tree, we calculate
the percentage variance of the trees constructed by KerTree and CPS-Tree. We
observed that the percentage variance ranges from 0.001% to 0.261%. This shows
that the two techniques end up with tree structures that are similar in the
number of nodes and therefore similar in compactness.

Table 3 shows the comparison of KerTree against the CPS-Tree based on the
number of nodes in the tree constructed for each block for synthetic dataset 6.
The table also presents whether our KerTree delays reorganization and the cor-
relation associated with the actual and forecasted support of items in the block.
We can see that our technique is capable of delaying a majority of the reorga-
nization phase which contributes to the faster execution time. The correlation
of the forecasted supports and actual supports of items observed ranges from
0.9995 to 0.9997 which signifies that the predictions based on our kernel regres-
sion extrapolation is accurate at predicting item supports in future blocks. Note
that the first block has no associated correlation value because the item support
in the first block is not extrapolated prior to that and the tree is constructed
based on canonical ordering.
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Table 3. Number of Nodes from Synthetic Dataset 6

Window KerTree CPS-Tree Correlation
After Reorganization Current Nodes in Tree After Reorganization

50000 80301 80358 -
100000 Delayed 78196 77790 0.9997
150000 Delayed 77146 77054 0.9996
200000 78607 78527 0.9995
250000 Delayed 77713 77593 0.9997
300000 Delayed 77886 77894 0.9996
350000 Delayed 77663 77366 0.9996
400000 Delayed 77385 77358 0.9996
450000 Delayed 78073 78100 0.9996
500000 Delayed 77400 77450 0.9995
550000 Delayed 76736 76798 0.9996
600000 78436 78254 0.9995
650000 Delayed 77797 77491 0.9997
700000 Delayed 78315 77909 0.9996
750000 Delayed 77858 77831 0.9996
800000 Delayed 77024 77093 0.9996
850000 78305 78214 0.9995
900000 Delayed 77834 77732 0.9997
950000 Delayed 77867 77462 0.9996
1000000 Delayed 77667 77585 0.9995

4.3 Experimentation on Real World Data

This section presents the results of comparing our KerTree to CPS-Tree on
real world datasets from the FIMI repository (http://fimi.ua.ac.be/) and
UCI repository (http://archive.ics.uci.edu/ml/). Table 4 shows the results
based on execution time and relative time and Table 5 and Table 6 shows the
number of nodes in the tree at each block and the correlation of forecasted
supports and actual supports of items.

The table also identifies blocks at which KerTree decides to delay the reor-
ganization phase. The results produced by these datasets follow the same trend
as the results produced by the synthetic datasets. Both KerTree and CPS-Tree
produce a similar number of nodes, whereas the total time taken by KerTree
remains lower than that of CPS-Tree. A graph representation of the execution
time for the real world datasets is shown in Figure 3.

From Table 5 and Table 6 we can see that for real world datasets, the cor-
relation values we observed are still very promising with lowest in BMS-POS
being 0.9634 and Kosarak being 0.9941. This signifies that our kernel regression
estimation function is capable of predicting item supports in these real-world
datasets.

Table 4. Results based on Real-World Dataset

Dataset Block Size KerTree CPS-Tree
Avg. Nodes Time(s) Avg. Nodes Time(s) Rel. Time

BMS-POS 25K 177575 6.63 177247 8.00 0.83
Kosarak 25K 271999 26.57 271667 29.47 0.90
Poker-hand-testing 25K 241894 15.04 242045 22.07 0.68
T10I4D100K 10K 79536 2.20 79501 2.76 0.80
T40I10D100K 10K 365386 7.41 365380 9.92 0.75

http://fimi.ua.ac.be/
http://archive.ics.uci.edu/ml/
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Fig. 3. Real World Dataset Execution Time

Table 5. Number of Nodes from BMS-POS

Window KerTree CPS-Tree Correlation
After Reorganization Current Nodes in Tree After Reorganization

50000 206419 206440 -
100000 Delayed 187126 186689 0.9978
150000 Delayed 178284 178091 0.9936
200000 Delayed 171222 171095 0.9943
250000 Delayed 139596 138964 0.9939
300000 Delayed 129738 129128 0.9766
350000 Delayed 119447 118496 0.9820
400000 199553 199488 0.9634
450000 224030 223989 0.9971
500000 Delayed 220338 220085 0.9969

Table 6. Number of Nodes from Kosarak

Window KerTree CPS-Tree Correlation
After Reorganization Current Nodes in Tree After Reorganization

50000 268589 268456 -
100000 272690 272580 0.9949
150000 Delayed 269602 269421 0.9946
200000 274966 274818 0.9946
250000 282401 282285 0.9946
300000 Delayed 280351 280242 0.9942
350000 Delayed 278955 278740 0.9942
400000 Delayed 278764 278681 0.9945
450000 Delayed 280405 280317 0.9943
500000 Delayed 266822 266717 0.9941
550000 272464 272283 0.9945
600000 Delayed 269292 269216 0.9944
650000 274358 274216 0.9945
700000 Delayed 276249 276100 0.9944
750000 Delayed 276956 276827 0.9944
800000 282049 281936 0.9943
850000 Delayed 269211 269169 0.9942
900000 Delayed 270788 270657 0.9945
950000 275478 275392 0.9945
1000000 Delayed 215350 215253 0.9941
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5 Conclusions and Future Work

In this paper we have proposed the Kernel-Tree algorithm that mines frequent
patterns from a data stream based on forecast support of items. From the results
of our experiments we have shown that kernel regression is a suitable technique
that is capable of accurately predicting item supports in a data stream at a
future time. Because KerTree can preemptively build trees based on a predicted
future state, the need to restructure the tree is largely reduced resulting in a
faster run-time. KerTree also maintains a similar level of tree compactness as
the CPS-Tree while capable of achieving a faster overall run-time. Our future
work includes testing the effectiveness of kernel regression using different types
of kernels (weight functions) and also looking at cost functions.
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Abstract. In this paper we provide empirical data of the performance of the two 
most commonly used multiobjective reinforcement learning algorithms against 
a set of benchmarks. First, we describe a methodology that was used in this pa-
per. Then, we carefully describe the details and properties of the proposed  
problems and how those properties influence the behavior of tested algorithms. 
We also introduce a testing framework that will significantly improve future 
empirical comparisons of multiobjective reinforcement learning algorithms. We 
hope this testing environment eventually becomes a central repository of test 
problems and algorithms The empirical results clearly identify features of the 
test problems which impact on the performance of each algorithm, demonstrat-
ing the utility of empirical testing of algorithms on problems with known  
characteristics. 

1 Introduction 

Reinforcement learning (RL) has primarily been limited in its applicability to solving 
only single objective problems. However, many industrial and scientific problems are 
inherently complex and cannot be expressed in terms of just a single objective. This 
has motivated a spike in multiobjective optimization research which in turn gave birth 
to multiobjective reinforcement learning (MORL). MORL combines advances in 
multiobjective optimization and techniques from reinforcement learning, thus extend-
ing RL techniques into the realms of multiobjective problems. A number of MORL 
algorithms were proposed in [1, 3, 5, and 6]. 

However, as was outlined in [8] currently there is a need for empirical comparison 
of these proposed algorithms to provide detailed guidance about each algorithm’s 
strengths and weaknesses. [8] motivated this need of guidance with the following 
arguments: 

• Most of the proposed algorithms were tested in isolation, with only a small number 
of tested problems. This leads to the uncertainty about algorithm’s performance 
under a variety of problems with different natures. 

• Different testing methodologies and test problems have been used in different pa-
pers. This leads to the inability to perform direct comparison of algorithms. 
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This paper will provide an empirical comparison of two of the most commonly used 
ways to provide preferences over objectives. One way, called weighted scalarization 
(WS), assigns weight to each objective and forms a scalar reward based on weighted 
sum of individual objectives. The WS essentially turns the problem into a single ob-
jective RL task. This approach was used in [2,6]. Another way, called threshold lex-
icographic ordering (TLO), assigns thresholds to objectives, i.e. minimum acceptable 
value reward. This approach was used in [3,4]. 

2 Testing Framework 

The introduction section showed why we are motivated to provide much needed guid-
ance based on empirical analysis. This section will briefly explain why it was difficult 
to provide such guidance before. 

One of the features of the reinforcement learning process is the dynamic nature of 
the test problem – it is a multistep decision making process, where the next state and 
reward depend on the currently applied action. This dynamic nature implies an inte-
raction of the test problem and an action provider (learning algorithm). So rather than 
being able to use common test datasets as in other research fields such as supervised 
learning, RL researchers must rely on implementations of dynamic test environments. 
Issues then arise in terms of ensuring consistency between different implementations 
of the same test, and ensuring compatibility between the interfaces used for test and 
the varying implementations of learning algorithms created by different researchers. 

In single objective reinforcement learning these issues were tackled in [7], with 
their software called RL-Glue. RL-Glue consists of standard application programming 
interfaces for problems, learning algorithms, experiments and server software that 
connects all them together. RL-Glue lays a solid foundation for empirical analysis in 
reinforcement learning. RL-Glue is very good and very useful software but is re-
stricted to single objective reinforcement learning. In this paper we present a modified 
version of RL-Glue (which we call MORL-Glue) that was extended to cope with mul-
tiple number of objectives. First application programming interfaces were changed, 
and then server software and Java codec were altered to reflect changes in those pro-
gramming interfaces. 

To support the evaluation methodology proposed in [8] we also integrated hyper-
volume calculation code into the framework. Currently the leading algorithm for cal-
culation of hypervolume is the one provided by the Walking Fish Group from the 
University of Western Australia [9]. Walking Fish Group distributes their algorithm 
as program written in C language. As MORL-Glue is implemented in the Java pro-
gramming language, as part of its development we have ported their algorithm to 
Java. The MORL-Glue server’s source code is available through SVN repository at 
http://subversion.assembla.com/svn/mo-rl-glue/. All the benchmarks and the algo-
rithms that were used in this paper along with compiled Java code are available 
through SVN repository at https://subversion.assembla.com/svn/rl-glue-plugins/. Use 
phrase “mo-rl-glue” without quotes as a username and password, if required. 
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3 Methodology 

Because we deal with multiple numbers of objectives we need to define the notion of 
dominant policy. We use the notion of Pareto dominance, which allows us to compare 
a pair of policies when a number of objectives is greater than one. According to the 
Pareto dominance, a policy A strongly dominates a policy B if it is superior on all 
objectives. If the policy A is equal to the policy B on at least one objective and supe-
rior on all other objectives then we say that the policy A weakly dominates the policy 
B. We say that the policy A is not comparable to the policy B if they dominate each 
other on at least one objective.   

In this paper the hypervolume indicator [11] is used to measure the quality of a Pa-
reto front approximation produced by a learning algorithm. Given a frontal set and a 
reference point (which is dominated by all members of the frontal set) we can calcu-
late the hypervolume of the objective space region which is formed by the frontal set 
and the reference point, as shown in Figure 1. Each black dot on the figure represents 
a single non-dominated solution and all black dots represent an approximation to the 
Pareto front. Reference point is represented as a red dot. The hypervolume is the area 
of the shaded region, bounded by the black dots and the red dot. Improvement in any 
of the main characteristics of a Pareto front (accuracy, extent, diversity) translates into 
a higher value of the hypervolume. The meaningful interpretation of an experiment’s 
results requires a consistency of a reference point between those experiments. 

 

 
Fig. 1. An example hypervolume: The shaded area, bounded by the prevailing front(black dots) 
and the reference point r (red dot), represents the region from which the hypervolume is derived 

Our goal is to measure the hypervolume of the Pareto front produced by given al-
gorithms: Weighted Scalarization(WS) and Threshold Lexicographic ordering(TLO), 
on a variety of problems. Both of these algorithms, given a weight for each objective 
or a threshold for the first n-1 objectives, will converge to a single point in an objec-
tive space. Thus any given run of the algorithm will produce only one member of the 
Pareto front. To overcome this limitation the following approach was used. 
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3.1 Weighted Scalarization 

It is well known that using the WS algorithm we can point the algorithm to a specific 
part of the objective space by favoring one objective over another. Thus we can target 
points in all regions of the objective space by gradually changing weights on all ob-
jectives. This method leads to a set of policies found using different weight combina-
tions - each of them is only a member of the Pareto front, but all of them together 
approximate the Pareto front.  

To summarize, first we prepare a set of weight combinations that will target points 
all over objective space, then we run WS algorithm on each weight combination in 
that set and observe a point to which algorithm converged. Eventually we will have a 
set of optimal points, which will be a suitable approximation of the Pareto front. The 
following pseudo code describes an action selection mechanism for the WS  
algorithm.  

bestAction = argmax_a getWeightedSum(state, a) 

We assume that information about number of objectives, weights assigned to these 
objectives and value function for each objective is provided in getWeighted-
Sum() function. For each action we calculate a weighted sum and we pick an action 
with maximum value of the weighted sum. In this paper we use Q-learning version of 
the WS algorithm across all tested problems. 

3.2 Threshold Lexicographic Ordering 

TLO, due to its nature, requires some knowledge about the problem under considera-
tion. Namely, thresholds should be provided for the first n-1 objectives, which clearly 
require some prior knowledge of the range of values expected for each objective. One 
way to obtain the required knowledge is to observe the results produced by the WS 
algorithm. The WS produced approximation to the Pareto front and by observing the 
actual points from that approximated front we can identify the region of objective 
space in which all points fell. Thus we can find min and max value for first n-1 objec-
tives. Then we can use that information to tell TLO to look in the specific objective 
space region. Effectively we bound first n-1 objectives and leave the last objective 
unbound to see whether TLO can produce better results than WS. The following 
pseudo code sketches an action selection mechanism for the TLO algorithm.  

chooseGreedyAction(state) { 
 actions = { all available actions }; 
 bestActions = { }; 
 for(int i = 1; i <= numOfObjectives ; i++) { 
  if( i < numOfObjectives  ) { 
   bestActions=getAboveThreshold(state,i,actions); 
   if(bestActions is empty) { 
    bestActions = getMaximum(state,actions,i); 
    break; 
   } else { 
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    actions = bestActions; 
   } 
  } else { 
   bestActions = getMaximum(state,actions,i); 
  } 
 } 
 return bestActions; 
} 

We assume that an array of thresholds is provided and is accessible in the getAbo-
veOrEqualThreshold() function. Also we assume that the first n-1 objectives 
are to be thresholded and the last objective is to be maximized. As we run through the 
first n-1 objectives we leave only the actions that are in compliance with provided 
threholds and when we reach our final objective we just pick a greedy action. In this 
paper we use Q-learning version of the TLO algorithm across all tested problems. 

3.3 Hypervolume Sampling 

To better understand the behavior of a learning algorithm we measure the hypervo-
lume not only after convergence but also periodically during the exploration phase. 
To make that hypvervolume sample we turn off exploration and make one run 
through the environment picking only greedy actions in every state, after that we turn 
back exploration and proceed normally.  

This intermediate sampling allows us to understand a lifetime performance of a 
learning algorithm and compare it with other algorithms. This can be important if we 
are interested in good performance from the start of the problem. 

4 Benchmarks 

As was mentioned in first two chapters of this paper MORL-Glue facilitates the crea-
tion of a central repository of test problems. This central repository should have a 
wide variety of test problems each of which subjects a learning algorithm to a particu-
lar property which is found in real life problems. All these properties should be well 
documented to facilitate exchange of the test problems. 

An example of such property is the type of rewards being used in a test problem. 
There are two types of rewards: extrinsic and intrinsic [10]. Intrinsic rewards are non-
zero most of the time (like time penalty applied every time step), extrinsic rewards are 
non-zero only at special moments (like reaching a goal state). This is an important 
property as the algorithms may behave differently depending on the type of rewards. 
Another important property is the shape of the Pareto front. Research in multiobjec-
tive optimization has shown that frontal properties such as the presence of concave 
regions, discontinuities or uneven distribution of frontal points can significantly affect 
the performance of some algorithms. 

In this paper we will examine three benchmarks that were presented in [8]. Further 
details of these benchmarks are available at http://uob-community.ballarat.edu.au/ 
~pvamplew/MORL.html 
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4.1 Deep Sea Treasure 

Deep Sea Treasure is a two-dimensional environment. The environment represents an 
undersea world with multiple numbers of treasure locations with varying values. The 
agent controls a submarine, four actions are available: left, right, up, down. The agent 
faces two objectives: maximizing found treasure value and minimizing time penalty.  

Deep Sea Treasure is an interesting problem because of the fact that one of the ob-
jectives, treasure, is extrinsic and the second one, time, is intrinsic. In addition the 
Pareto front for this problem is globally concave. This structure of rewards is really 
suitable for showcasing advantages of TLO algorithm over WS. 

Table 1 shows the results of WS and TLO runs on the Deep Sea Treasure. As was 
expected the WS algorithm was not able to find concave Pareto front members. Con-
trary to the WS, the TLO algorithm was able to locate concave Pareto front members. 
So the TLO was able to find extreme members of the Pareto front as well as interme-
diate, this leads to higher hypervolume values. 

Table 1. TLO and WS algorithms tested on Deap Sea Treasure. Reference point is (0,-20). 
Epsilon is 0.17, alpha is 0.9, gamma is 1.0. Step limit is 200 per episode. 

 10k 20k 30k 40k 50k 

WS 388 292 462 288 142 

TLO 460 510 510 510 510 

 
 

 

Fig. 2. WS vs TLO tested on Deep Sea Treasure. Reference point is (0;-20). Epsilon is 0.17, 
alpha is 0.9, gamma is 1.0. 
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Figure 2 summarizes the difference in performance between the TLO and the WS. 
The WS line on the graph is erratic due to the fact that between 10k and 40k episodes 
the WS algorithm was able to temporarily find concave members of the Pareto front 
but these members are merely a milestone and the algorithm has not yet converged. 
As the state-action values converge to their true values, the weighted sum approach to 
action selection is unable to produce any policies other than those corresponding to 
the extremes of the front. 

4.2 MO-PuddleWorld 

MO-PuddleWorld is a two-dimensional environment with puddles located at different 
places. The agent starts at a random location and must reach a goal state at the top-
right corner. A time penalty is applied at every state except the goal state and another 
penalty is applied when the agent steps into the puddles.  

The reward structure for MO-PuddleWorld has one intrinsic reward, namely the 
time penalty, which is -1 on all steps except goal state, when penalty is 0. The second 
reward, namely puddle penalty, is extrinsic. The MO-PuddleWorld test problem 
represents a state as a combination of two continuous variables: x position and y posi-
tion. A 20 by 20 discretization was used in case of both the TLO and the WS algo-
rithms.  Tables 2 and 3 provide details of WS and TLO algorithms ran from 5 differ-
ent starting positions. Fixed positions were used to remove the effects of noise due to 
random starting positions. 

The results of the two algorithms are very similar. This can be explained by the na-
ture of the problem itself. In the deep sea treasure problem the shape of the Pareto front 
provides a number of concave solutions and the TLO algorithm can converge to any 
point in that front, which increases the hypervolume. Contrary, the MO-PuddleWorld’s 
Pareto front from most of the starting points is primarily convex in shape, and when 
concave solutions are available, a number of those solutions is very small and they 
contribute only slightly to the overall hypervolume attainable. So the TLO algorithm 
never receives a chance to showcase its benefits over the WS algorithm. 

 

Table 2. WS algorithm tested on MO-PuddleWorld problem with 5 different starting positions. 
Reference point is (-100,-100). Epsion is 0.15, alpha is 0.9, gamma is 1.0. Step limit is 100 
steps per episode. 

 (0.25;0.6) (0.35;0.55) (0.3;0.55) (0.3;0.7) (0.2;0.7) 

0 1084 988 99 99 99 

500 7998 8084 7984 8287 8087 

1000 7998 8084 7998 8297 8098 
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Table 3. TLO algorithm tested on MO-PuddleWorld problem with 5 different starting 
positions. Reference point is (-100,-100). Epsion is 0.15, alpha is 0.9, gamma is 1.0. Step limit 
is 100 steps per episode. 

 (0.25;0.6) (0.35;0.55) (0.3;0.55) (0.3;0.7) (0.2;0.7) 

0 99 100 99 99 99 

500 7984 8083 7984 8287 8087 

1000 7984 8083 7984 8287 8087 

4.3 MO-MountainCar  

Mountain car is a well known reinforcement learning benchmark. Original version of 
the benchmark is single objective. To create the MO-MountainCar test the reward 
structure was modified from one objective to three. 

The reward structure for mountain car problem consists of 3 intrinsic rewards. The 
first is a penalty of -1 applied each time step, the second is a penalty of -1 applied at 
every backward acceleration and the third one is a penalty of -1 applied at every for-
ward acceleration. The MO-MountainCar test problem represents a state as a combi-
nation of two continuous variables: a position and a velocity. A 170(position) by 
140(velocity) discretization was used in case of both the TLO and the WS algorithms. 

Table 4. WS algorithm results on MO-MountainCar problem over 5 runs. Starting position is 
always fixed and is -0.5. Reference point is (-300;-300;-300). Epsilon is 0.0, alpha is 0.9, 
gamma is 1.0. 

 5k 15k 25k 35k 40k 

1 6,065,247 11,819,348 15,175,815 15,322,349 15,322,597 

2 5,357,800 10,926,832 15,137,425 15,417,314 15,416,766 

3 5,785,239 11,629,691 14,865,468 15,302,728 15,303,667 

4 6,786,636 10,713,965 15,068,736 15,442,287 15,443,135 

5 7,870,923 10,963,501 14,941,997 15,270,617 15,326,463 

AVG 6,373,169 11,210,667 15,037,888 15,351,059 15,362,525 

 
Tables 4 and 5 show results of the WS and the TLO algorithms. As you can see the 

WS algorithm outperformed the TLO algorithm. This can be explained by the intrin-
sic rewards. The linear combination of objectives used to perform action-selection in 
the WS algorithm is compatible with both intrinsic and extrinsic rewards. However 
TLO’s non-linear action selection mechanism performs poorly when thresholding is 
applied to intrinsic rewards, as it fails to account for the rewards already received 
earlier in the episode. Thus TLO was heavily impacted by the intrinsic rewards, which 
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resulted in poor figures of hypervolume. This observation is compatible with the pre-
liminary results reported in [8], who noted TLO performs poorly on the Deep Sea 
Treasure task if the ordering of the objectives is changed such that the intrinsic reward 
is being thresholded. 

Table 5. TLO algorithm results on MO-MountainCar problem over 5 runs. Starting position is 
always fixed and is -0.5. Reference point is (-300;-300;-300). Epsilon is 0.0, alpha is 0.9, 
gamma is 1.0. 

 5k 25k 40k 55k 65k 

1 85,349 9,315,462 11,798,739 11,925,448 11,942,691 

2 85,591 9,970,806 12,590,952 12,883,731 12,879,446 

3 85,528 8,483,264 12,282,405 12,386,070 12,465,344 

4 85,460 10,951,818 12,525,832 12,549,660 12,549,715 

5 87,309 9,206,131 12,509,929 12,617,007 12,623,177 

AVG 85,847 9,585,496 12,341,571 12,472,383 12,492,074 

 

  

Fig. 3. WS vs TLO hypervolume growth on MO-MountainCar problem. Starting position is 
always fixed and is -0.5. Reference point is (-300;-300;-300). Epsilon is 0.0, alpha is 0.9,  
gamma is 1.0. 
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5 Conclusion and Future Work 

Three different problems were presented. Deep Sea Treasure and MO-PuddleWorld 
has similar reward structure. In that one of the objectives is extrinsic and the other one 
is intrinsic. Meanwhile the MO-MountainCar has all of its objectives being intrinsic. 

Deep Sea Treasure has a number of concavities in Pareto front. The TLO algorithm 
clearly benefited from its ability to locate those concavities. The WS algorithm 
doesn’t have this ability and this leads to a situation where the WS algorithm was 
dominated by the TLO algorithm. The MO-PuddleWorld’s reward structure is similar 
to the one of Deep Sea Treasure but this doesn’t lead to similar dominance. This can 
be explained by the nature of the MO-PuddleWorld problem. The MO-PuddleWorld’s 
Pareto front from any starting position has concavities, but the number of those con-
cavities is not comparable to Deep Sea Treasure and for some starting positions there 
are no concavities at all. This lead to a situation where the TLO algorithm was not 
able to benefit from its main strength and showed similar results as the WS algorithm. 
The MO-MountainCar benchmark highlighted the dominance of the WS algorithm 
over the TLO in problems with intrinsic rewards.  

In summary this paper demonstrates the importance of empirical studies on 
benchmark problems with known characteristics in establishing the conditions under 
which different MORL algorithms will work effectively. Clearly the TLO algorithm 
can only be used reliably on problems with no more than one intrinsic reward. How-
ever where the reward structure of an environment does meet this criteria, TLO is 
likely to outperform WS due to its capacity to discover policies which lie in concave 
regions of the Pareto front which cannot be found by the WS algorithm. In the future 
we will expand upon these results by extending the number and range of benchmarks 
to include other important characteristics such as larger numbers of objectives, par-
tial-observability and non-episodic environments. We will also extend the number of 
MORL algorithms included in the comparison, to provide the first comprehensive 
comparison of a wide assortment of MORL methods. 
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Abstract. Mining time series data and imbalanced data are two of
ten challenging problems in data mining research. Imbalanced time se-
ries classification (ITSC) involves these two challenging problems, which
take place in many real world applications. In the existing research, the
structure-preserving over-sampling (SOP) method has been proposed for
solving the ITSC problems. It is claimed by its authors to achieve bet-
ter performance than other over-sampling and state-of-the-art methods
in time series classification (TSC). However, it is unclear whether an
under-sampling method with various learning algorithms is more effec-
tive than over-sampling methods, e.g., SPO for ITSC, because research
has shown that under-sampling methods are more effective and efficient
than over-sampling methods. We propose a comparative study between
an under-sampling method with various learning algorithms and over-
sampling methods, e.g. SPO. Statistical tests, the Friedman test and
post-hoc test are applied to determine whether there is a statistically
significant difference between methods. The experimental results demon-
strate that the under-sampling technique with KNN is the most effec-
tive method and can achieve results that are superior to the existing
complicated SPO method for ITSC.

Keywords: Imbalanced Time Series Classification, Supervised Learning
Algorithms, Under-sampling, Over-sampling

1 Introduction

The problems of mining time series data and imbalanced data are two of ten chal-
lenging problems in data mining research [1], which have captured the interest and
attention of the data mining and machine learning communities for almost two
decades. Imbalanced time series classification (ITSC) involving these two prob-
lems can be widely observed in many real-world applications in various domains.

ITSC refers to training examples of time series classification (TSC) which are
unevenly distributed with unequal cost among classes [2]. ITSC involves many
real world applications, such as ECG beats classification [3, 4]. The various chal-
lenges, i.e., high dimensionality, large scale, uneven distribution with different
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costs for mis-classification errors between different classes, and the nature of
numerical attributes considered as a whole instead of individual numerical at-
tributes, such as the sequence of attributes carrying information with a special
connection between them [5], mean that many supervised learning algorithms
are not effective for ITSC [2]. Many techniques have been proposed for TSC,
such as one-nearest-neighbor (1NN) with Dynamic Time Warping (DTW) [6]
because the distance measure has proven “exceptionally difficult to beat” [7],
but the drawback is that the computational cost is too high [7, 8].

Research into imbalanced data has attracted growing attention in several com-
munities, particularly two major workshops on Learning from Imbalanced Data
Sets, AAAI’00 [9] and ICML’03 [10], and a special issue in ACM SIGKDD Ex-
plorations’04 [11]. Imbalanced class distribution refers to the numbers of training
instances and/or the costs of mis-classification errors are unevenly distributed
among different classes [12]. Most traditional supervised learning algorithms
have drawbacks with regard to highly imbalanced class distribution. In addi-
tion, the overall accuracy/misclassification error rate is an ineffective evaluation
metric for imbalanced class distribution data, because it cannot represent the
accuracy of minority class, which is the users interested class [2, 12–16]. Many
researchers have attempted a number of ways to improve the performance of the
prediction model for the imbalanced class distribution problem, at data level,
algorithm level, in cost-sensitive learning and ensemble learning. Re-sampling
techniques have been the most commonly used techniques to solve imbalanced
classification problems at data level, from the simple random under-sampling
and over-sampling methods to advanced sampling techniques such as SMOTE
[17], SMOTEBoost [18], and Borderline SMOTE [19]. The main advantage of
under-sampling methods is that they significantly reduce the computational cost
of training a classification model, because only a proportion of majority class in-
stances are selected to train a classification model. Previous works comparing
under-sampling and over-sampling methods with Decision Tree learner C4.5 in-
dicate that under-sampling is more effective than over-sampling [20–22].

In the existing research, a structure-preserving over-sampling (SPO) method
with support vector machines (SVM) has been proposed for solving the ITSC
problem. Its authors claim that it achieves better performance than other over-
sampling methods and state-of-the-art methods in TSC [23]. However, the au-
thors have not compared it with under-sampling methods for ITSC; their claim is
based on a comparison of the average values of two evaluation metrics, F −value
and Geometric mean (G −mean), without statistical analysis to support their
conclusion. In addition, evaluating the performance of multiple methods over
multiple data-sets to draw valid conclusions is a challenging issue in analyzing
experimental results in data mining research.

Our previous work proposed an under-sampling technique integrated with
SVM; we observed that our previous proposed method is more efficient than
other more complicated approaches, such as SPO with SVM for ITSC [2]. How-
ever, it is unclear whether the under-sampling method with various supervised
learning algorithms is more effective than over-sampling methods, SPO, and the
under-sampling technique integrated with SVM for ITSC.
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These issues have motivated us to conduct a comparative evaluation of the
performance of over-sampling methods (e.g., the complex SPO [23]) and under-
sampling with different supervised learning algorithms for ITSC. Statistical tests
are adopted to validate our conclusions; moreover, it provides a correction of
the claim for the SPO method by using statistical analysis. As the overall
accuracy/mis-classification error rate is ineffective for imbalanced classification,
this work adopts two evaluation metrics: F − value and G−mean. The experi-
mental results demonstrate that the under-sampling technique with KNN is the
most effective method and can achieve results that are superior to the existing
complicated SPO method for ITSC.

The paper is organized as follows. Section 2 presents an outline of the designed
framework. Section 3 presents the evaluation metrics. Sections 4 and 5 provide
the experimental setting and experimental analysis. Section 6 concludes this
work.

2 Designed Framework

Fig. 1 presents the designed framework. The comparative study is evaluated as
follows:

1. For each imbalanced binary class data-set, the random under-sampling
method is used to alter the levels of class distribution:

– Firstly, all the positive examples are distributed equally to a set of five
subsets.

– Secondly, negative examples are randomly allocated to each subset accord-
ing to the ratio of positive and negative examples (positive:negative) as
follows: (30%:70%), (40%:60%), (50%:50%), (60%:40%), and (70%:30%).

A Comparative Study of Sampling Methods and Algorithms for ITSC

Random under-sampling method is used to alter the class distribution

The number of positive examples of training-set is same as the existing work, SPO 

Comparison of the over-sampling and

under-sampling with different algorithms for ITSC

Comparison of the learning methods and 

different algorithms for ITSC

Fig. 1. Designed framework
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As a result, each original imbalanced data-set is altered to become five sub-
sets with the same number of positive examples and five different ratios of
negative examples.

2. The number of positive and negative examples in the altered data-sets in
Table 2, which are the same as those in the data-sets of the existing work
[23], are used for the evaluation of the performance of each learning algorithm
on each subset, based on two evaluation metrics, F−value and G−mean. As
a result, each learning algorithm has the outputs of five pairs of F − value
and G − mean on each original data-set. Only the output pair with the
maximum G−mean is selected for reporting.

3. A comparison is made of the performance of the over-sampling methods,
SPO, and under-sampling method with five learning algorithms.

4. A comparison is made of the performance of the state-of-the-art learning
methods, SPO, and under-sampling with five learning algorithms.

5. Statistical tests, the Friedman test and post-hoc Nemenyi test are applied
to determine whether there is a statistically significant difference between
methods.

3 Evaluation Metrics

The estimated misclassification error rate/overall accuracy is commonly used as
an evaluation metric to assess the performance of a learning algorithm, but it
is an ineffective evaluation metric for the imbalanced classification task. This
is especially true for ITSC, because it cannot present a true prediction for the
minority class, which normally has a higher misclassification error cost than the
majority class. Therefore, we have adopted two evaluation metrics for this study
as follows: F − value and G−mean.

Table 1 presents a confusion matrix, which is used to evaluate the performance
of machine learning algorithms; the columns represent the predicted class, and
the rows represent the actual class. In the confusion matrix, True Positives (TP )
and True Negatives (TN) denote the number of examples correctly classified as
positive and negative, respectively. False Positives (FP ) and False Negatives
(FN) denote the number of misclassified negative examples and positive exam-
ples, respectively.

True Positive Rate (TPR) and True Negative Rate (TNR) refer to the pro-
portion of the positive samples and negative samples that have been correctly
classified as a positive class and negative class, respectively.

Table 1. Confusion matrix for a binary classification problem

Predicted Positives Predicted Negatives

Actual Positives (P ) True Positive (TP ) False Negative (FN)
Actual Negatives (N) False Positive(FP ) True Negative (TN)
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F − value is integrated from both recall and precision into a single number,
and represents a harmonic mean between recall and precision [24]. As a result,
it is closed to one of the smaller number of two (recall and precision). This
measure is concerned with the performance of the positive class, so a high F-
value indicates that high results in both precision and recall are achieved. On
the other hand, the G−mean measure considers the performance of a learning
algorithm between two classes to monitor TPR and TNR. The formulas of the
evaluation metrics are as follows:

TPR =
TP

TP + FN
(1)

TNR =
TN

TN + FP
(2)

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

F − value = 2recall ∗ precision
recall+ precision

(5)

G−mean =
√
TPR ∗ TNR (6)

4 Experimental Setup

This section includes data-set characteristics and the selection of the five learning
algorithms. Java platform is used to implement the under-sampling technique to
alter the ratio between the positive samples and negative samples. SPSS software
is used for the calculation of the Friedman test.

4.1 Data-Sets

Table 2 displays a summary of the characteristics of the five time series data-sets
from the public UCR time series repository [25], which were used as the bench-
mark data-sets of SPO [23]. The first column indicates the index and name of
each data-set; the second column presents the data information of the original
data-sets, and the altered data-sets (with the number of positive, negative ex-
amples, and the ratio between the positive and negative classes), which has the
same setting as the existing work [23]; and the last column indicates the class
information of the original and the altered data-sets. We also alter three out of
five data-sets from multi-class change to binary-class, as follows. For the Adiac
data-set, the second class with 23 samples is considered as a positive class, and
the remaining samples are considered as a negative class. For FaceAll and S-
Leaf data-sets, the first class is considered as the positive class with 112 and 75
samples, respectively.
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Table 2. Time series data-sets

Data-sets Data Information Class Information

TS Instances Ratio Previous Altered
Index Name Length (P+&N−) P+ N− P+/N− Class class

1 Adiac 176 781 23 758 0.0303 37 2
2 S-Leaf 128 1125 75 1050 0.0714 15 2
3 Wafer 152 7164 762 6402 0.0119 2 2
4 FaceAll 131 2250 112 2138 0.0524 14 2
5 Yoga 426 3300 1530 1770 0.8644 2 2

4.2 Selection of Learning Algorithms

Five learning algorithms are selected from WEKA [26] for this study: Sequen-
tial Minimal Optimization (SMO) of SVM, Decision Tree (J48), Random Tree
(RTree), KNN, and Multi-layer Proceptron (MLP).

5 Experimental Results Analysis

This section contains two subsections: 5.1 comparison of the performance of over-
sampling methods, SPO, and the under-sampling method with different learning
algorithms on ITSC; and 5.2 comparison of the performance of other learning
methods, SPO, and under-sampling methods with different algorithms for ITSC.

Demar [27] suggests that it is inappropriate to validate the conclusions by
using the averaged results over multiple data-sets when the performances of
multi-methods are compared. The main reason is that the averages are sus-
ceptible to outliers. For example, the KNN algorithm with the under-sampling
method has an excellent F − value performance (0.999 on one data-set, wafer)
to compensate for other bad F − value performances. It is preferable for the
classifiers to perform well on as many problems as possible, which is why it is
inappropriate to draw conclusions by averaging the results over multiple data-
sets. Previous authors [23] have based their conclusions on the averaged results
of the F −value and G−mean; thus, their conclusions cannot be validated. This
work therefore utilizes statistical tests, the Friedman test and post-hoc Nemenyi
test to compare the performance of the multiple learning methods on multiple
data-sets, as suggested by [27].

5.1 Comparison of the Performance of Over-Sampling Methods
and Different Learning Algorithms with the Under-Sampling
Method

Table 3 presents a comparison of the performance of over-sampling methods and
five learning algorithms with the under-sampling method based on the F −value
and G − mean metrics. The experimental results indicate that KNN with the
under-sampling method achieves better performance with F − value than all
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Table 3. Comparison of the performance of over-sampling and under-sampling meth-
ods with different learning algorithms based on the evaluation metrics F − value and
G−mean

Metrics
Data-set Results from Previous Research [23] Results from This Work

Over-sampling Methods Under-sampling

Name REP SMO BoS ADA DB SPO SVM J48 RTree KNN MLP

F − value

Adiac 0.375 0.783 0.783 0.783 0.136 0.963 0.967 0.883 0.903 0.918 0.947
S-Leaf 0.761 0.764 0.764 0.759 0.796 0.796 0.841 0.820 0.849 0.836 0.786
Wafer 0.962 0.968 0.968 0.967 0.977 0.982 0.891 0.929 0.956 0.999 0.933
FaceAll 0.935 0.935 0.935 0.935 0.890 0.936 0.957 0.876 0.863 0.909 0.919
Yoga 0.710 0.729 0.721 0.727 0.689 0.702 0.744 0.771 0.811 0.807 0.780

AverageValue 0.740 0.836 0.834 0.834 0.698 0.876 0.880 0.856 0.876 0.894 0.873

AverageRank 8.3 6.3 6.7 7.1 7.9 4.3 4 6.8 5.2 3.6 5.8

G−mean

Adiac 0.480 0.831 0.831 0.831 0.748 0.999 0.957 0.910 0.920 0.958 0.975
S-Leaf 0.800 0.861 0.861 0.849 0.898 0.898 0.902 0.809 0.812 0.887 0.856
Wafer 0.965 0.969 0.970 0.970 0.980 0.984 0.903 0.907 0.956 0.998 0.937
FaceAll 0.950 0.950 0.950 0.950 0.948 0.957 0.966 0.870 0.860 0.929 0.925
Yoga 0.741 0.756 0.750 0.755 0.724 0.735 0.630 0.807 0.803 0.808 0.774

AverageValue 0.787 0.783 0.872 0.871 0.860 0.915 0.872 0.861 0.870 0.916 0.893

AverageRank 8.3 5.8 5.9 6.2 6.5 3.3 5.6 7.6 7.2 3.4 6.2

over-sampling methods and other learning algorithms with the under-sampling
method on average value and average rank of F − value; while KNN achieves
0.894 and 3.6, respectively, which is better than all over-sampling methods and
all learning algorithms with the under-sampling method.

On average value and average rank of the G − mean metric, however, the
SPO over-sampling method achieves 0.915 and 3.3, respectively, which is the best
among all the over-sampling and under-sampling methods on average rank of the
G−mean metric, whereas KNN with the under-sampling method achieves 0.916
and 3.4, respectively, which is the best among all algorithms with the under-
sampling method and all over-sampling methods on average of the G −mean
metric. The results highlighted in red indicate the correction of the previous
work [23].

Figs 2 and 3 present a comparison of over-sampling and under-sampling meth-
ods with the Nemenyi test, where the x-axis indicates the ranking order of the
sampling methods; the y-axis indicates the average rank of the F − value and
G −mean performance, respectively, and the vertical bars indicate the “Criti-
cal Difference”. Groups of sampling methods that are not significantly different
at a 95% confidence interval are indicated when the vertical bars overlap. The
results indicate that there is no statistically significant difference between the
over-sampling method and the under-sampling method, based on both F−value
and G −mean metrics, even though KNN and SPO show better average rank
in F − value and G−mean, respectively.
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Fig. 2. Comparison of average rank of the F − value with the Nemenyi test for the
over-sampling and under-sampling methods, where the x-axis indicates the ranking
order of all the sampling methods and learning algorithms, the y-axis indicates the
average rank of the F − value, and the vertical bars indicate the “Critical Difference”
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Fig. 3. Comparison of average rank of the G−mean with the Nemenyi test for all the
over-sampling and under-sampling methods, where the x-axis indicates the ranking
order of all the sampling methods and learning algorithms, the y-axis indicates the
average rank of the G−mean, and the vertical bars indicate the “Critical Difference”

Comparing SPO, KNN, and the other over-sampling and under-sampling
methods, the complex over-sampling method SPO, and simple under-sampling
method KNN are not statistically significantly better than any over-sampling
methods and learning algorithms with the under-sampling method based on both
F − value and G−mean. Therefore, the statistical tests demonstrate that there
is no statistically significant difference between SPO, KNN and the other over-
sampling methods and learning algorithms with under-sampling, even though
SPO and KNN have the best average rank in G−mean or F − value.

5.2 Comparison of the Performance Learning Methods,
Over-Sampling SPO, and Under-Sampling Method with Five
Learning Algorithms

Table 4 presents a comparison of the performance of learning methods
(results from previous research [23]) and five learning algorithms using the
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Table 4. Comparison of the performance of learning methods from previous research
[23] and five learning algorithms using the under-sampling method from this work
based on evaluation metrics: F − value and G −mean

Metrics
Data-set Results from Previous Research [23] Results from This Work

Learning Methods Under-sampling

Name Easy Bal. 1NN 1NN DW SPO SVM J48 RTree KNN MLP

F − value

Adiac 0.534 0.348 0.800 0.917 0.963 0.967 0.883 0.903 0.918 0.947
S-Leaf 0.521 0.578 0.716 0.429 0.796 0.841 0.820 0.849 0.836 0.786
Wafer 0.795 0.954 0.949 0.857 0.982 0.891 0.929 0.956 0.999 0.933
FaceAll 0.741 0.625 0.802 0.959 0.936 0.957 0.876 0.863 0.909 0.919
Yoga 0.356 0.689 0.652 0.710 0.702 0.744 0.771 0.811 0.807 0.780

AverageValue 0.589 0.639 0.784 0.774 0.876 0.880 0.856 0.876 0.894 0.873

AverageRank 9.4 8 7.4 6.2 3.8 3.6 5.6 3.6 3 4.4

G−mean

Adiac 0.782 0.897 0.875 0.920 0.999 0.957 0.910 0.920 0.958 0.975
S-Leaf 0.721 0.898 0.798 0.572 0.898 0.902 0.809 0.812 0.887 0.856
Wafer 0.817 0.970 0.953 0.870 0.984 0.903 0.907 0.956 0.998 0.937
FaceAll 0.792 0.918 0.983 0.985 0.957 0.966 0.870 0.860 0.929 0.925
Yoga 0.464 0.688 0.695 0.741 0.735 0.630 0.807 0.803 0.808 0.774

AverageValue 0.713 0.874 0.861 0.818 0.915 0.872 0.861 0.870 0.916 0.893

AverageRank 9.8 5.5 6.2 6.1 2.7 6.1 6.2 5.5 2.4 4.5

under-sampling method (results from this work) based on F − value and G −
mean evaluation metrics. The experimental results indicate that KNN using the
under-sampling method achieves better performance of F −value and G−mean
than the remaining learning methods and learning algorithms using the under-
sampling method on average value and average rank of F −value and G−mean.
For F − value and G−mean metrics, KNN achieves an average value of 0.894
and 0.916, and an average rank of 3.0 and 2.4, respectively, which is the best
among all the remaining learning methods and learning algorithms using the
under-sampling method.The results highlighted in red indicate the correction of
the previous work [23].

Figs 4 and 5 present a comparison of learning methods (results from previous
research) and five learning algorithms using the under-sampling method with
the Nemenyi test, where the x-axis indicates the ranking order of the learning
methods and learning algorithms; the y-axis indicates the average rank of F −
value and G−mean performance, respectively, and the vertical bars indicate the
“Critical Difference”. Groups of learning methods and learning algorithms that
are not significantly different at a 95% confidence interval are indicated when the
vertical bars overlap. The statistical test results demonstrate that over-sampling
SPO and under-sampling KNN are statistically significantly better than the
learning method, Easy; however, there is no statistically significant difference
between over-sampling SPO, under-sampling KNN, and the remaining learning
methods and algorithms based on the average rank of both the F − value and
G−mean metrics.
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Fig. 4. Comparison of average rank of the F − value metric with the Nemenyi test for
the learning methods and five learning algorithms using the under-sampling method,
where the x-axis indicates the ranking order of all the learning methods and learning
algorithms, the y-axis indicates the average rank of F − value, and the vertical bars
indicate the “Critical Difference”
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Fig. 5. Comparison of average rank of the G−mean metric with the Nemenyi test for
the learning methods and five learning algorithms using the under-sampling method,
where the x-axis indicates the ranking order of all the learning methods and learning
algorithms, the y-axis indicates the average rank of G − mean, and the vertical bars
indicate the “Critical Difference”

6 Conclusion

This study empirically evaluates the performance of complex over-sampling SPO
and simple under-sampling with five learning algorithms for ITSC, based on
two evaluation metrics, F − value and G −mean. The existing over-sampling
techniques generate more synthetic samples to balance training sets to improve
prediction models, while the under-sampling method selects a part of negative
samples for training. The drawback of the over-sampling method is that it is
considered to increase computational cost in training classifiers. The advantages
of the under-sampling method is that it is considered to be faster and to have
less computational cost than the over-sampling method for training the pre-
diction model. These issues have motivated us to investigate whether different
learning algorithms combining a random under-sampling method with different
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ratios between positive samples and negative samples in the training set outper-
form the complex over-sampling SPO. The experimental results indicate that
simple under-sampling KNN achieves better results on average for both evalu-
ation metrics F − value and G −mean, and achieves better results in average
rank for the G − mean metric. However, when we apply statistical tests to
analyze the results, we find that there is no statistically significant difference
between the complex over-sampling SPO and the simple under-sampling KNN;
the over-sampling SPO and under-sampling KNN are statistically significantly
better than the learning method, Easy; and there is no statistically significant
difference between the remaining learning methods and algorithms for ITSC.
Therefore, the experimental results demonstrate that the simple under-sampling
KNN can achieve results that compare favorably with the existing complicated
SPO method for ITSC.
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Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp.
107–119. Springer, Heidelberg (2003)

19. Han, H., Wang, W., Mao, B.: Borderline-SMOTE: A New Over-Sampling Method
in Imbalanced Data Sets Learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B.
(eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

20. Drummond, C., Holte, R., et al.: C4.5, class imbalance, and cost sensitivity: Why
under-sampling beats over-sampling. In: Proceedings of the ICML 2003 Workshop
on Learning from Imbalanced Datasets II (2003)

21. Liu, X., Wu, J., Zhou, Z.: Exploratory undersampling for class-imbalance learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(2),
539–550 (2009)

22. Ling, C., Li, C.: Data mining for direct marketing: Problems and solutions. In:
Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining, pp. 73–79 (1998)

23. Cao, H., Li, X., Woon, Y., Ng, S.: SPO: Structure preserving oversampling for im-
balanced time series classification. In: : Proceedings of the IEEE 11th International
Conference on Data Mining, ICDM 2011, pp. 1008–1013 (2011)

24. Tan, P., Steinbach, M., Kumar, V., et al.: Introduction to data mining. Pearson,
Addison Wesley (2006)

25. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana,
C.A.: UCR Repository of time series classification/clustering homepage,
http://www.cs.ucr.edu/~eamonn/time_series_data/ (2011)

26. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tool and Tech-
niques. Morgan Kaufmann (2005)
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Abstract. Traditional classification methods assume that the training
and the test data arise from the same underlying distribution. However
in some adversarial settings, the test set can be deliberately constructed
in order to increase the error rates of a classifier. A prominent example
is email spam where words are transformed to avoid word-based features
embedded in a spam filter. Recent research has modeled interactions be-
tween a data miner and an adversary as a sequential Stackelberg game,
and solved its Nash equilibrium to build classifiers that are more robust
to subsequent manipulations on training data sets. However in this pa-
per we argue that the iterative algorithm used in the Stackelberg game,
which solves an optimization problem at each step of play, is sufficient
but not necessary for achieving Nash equilibria in classification prob-
lems. Instead, we propose a method that transforms singular vectors of
a training data matrix to simulate manipulations by an adversary, and
from that perspective a Nash equilibrium can be obtained by solving a
novel optimization problem only once. We show that compared with the
iterative algorithm used in recent literature, our one-step game signif-
icantly reduces computing time while still being able to produce good
Nash equilibria results.

1 Introduction

Conventional supervised learning algorithms build classification models by learn-
ing relationships between independent variables (features) and dependent vari-
ables (classes) from given input data. Typically, the often unstated underlying
assumption is that the relationship between the features and the class remain
unchanged over time. However in many real world applications, such as email
spam detection systems, there often exist adversaries who are continuously mod-
ifying the underlying relationships in order to avoid detection by the classifier.
Therefore, in order to minimize the effects of the adversaries, data miners should
not only learn from data in the past, but also from potential data manipulations
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that adversaries are likely to make in future. As a result, the problem of “ad-
versarial learning” has attracted significant interest in the machine learning and
data mining community[1–7].

Dalvi et al. [1] modeled adversarial scenarios under the assumption that both
the adversary and the data miner have perfect information of each other. In their
formulation, the adversary is fully aware of the parameter settings of the classi-
fier, and uses the classifier’s decision boundary to undermine the classifier. In [2]
the perfect knowledge assumption is relaxed by assuming that the adversary has
the ability to issue a polynomial number of membership queries to the classifier
in the form of data instances which in turn will report their labels. Globerson
et al. [3] use deletions of features at test time to approximate the strategies of
adversaries. However, a disadvantage of this feature deletion algorithm is that
it fails to simulate scenarios where the adversary is more interested in adding
features, or more generally applying a linear transformation of the features.

In addition, Kantarcioglu et al. [5] and Liu et al. [6] have proposed approaches
that model the competing behavior between the adversary and the data miner
as a sequential Stackelberg game. They use simulated annealing and genetic
algorithms respectively to search for a Nash equilibrium as the final state of
play. While [5] assumes the two players know each other’s payoff function, [6]
relaxes this assumption and only the adversary’s payoff is required in achieving
the equilibrium. But a common problem for [5] and [6] is that the strategies of
the adversary are stochastically sampled (e.g., Monte Carlo integration in [5])
and then among the samples the best fit is selected (e.g., genetic algorithm in
[6]). This stochastic optimization process is not realistic for rational adversaries
in practice, since rational adversaries rarely make “random” moves, but instead
always try to optimize their payoff at each step of play.

More recently, Liu et al. [7] formulate the adversarial learning problem into a
maxmin problem where they relaxed the assumption of a normal distribution and
forced adversarial transformations to be rational. Similarly, Bruckner et al. [8]
formulate the maxmin problem by a different ordering of the players’ movements.
However, to solve these maximin problems the authors have to use an iterative
algorithm that solves a convex optimization problem in every iteration of their
algorithms, which is computationally very expensive. We refer to these existing
maxmin optimization based methods (i.e., [7]) the “iterative methods”.

In this study, we assert that simulations of adversarial transformations and
solutions of Nash equilibria do not have to be modeled as an expensive iterative
optimization process, and it is possible to discover the equilibrium state signifi-
cantly quicker and cheaper by solving one optimization problem only. In contrast
to the existing “iterative method”, we call the method proposed in this paper
the “one-step method”. More specifically, the innovations and contributions we
make in this paper are as follows:

1. We model malicious manipulations of an adversary as transformations on
singular vectors of the training data matrix, and these transformed singular
vectors determine distributions of subsequent malicious training samples.
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2. We propose a novel payoff function for the adversary, which leads to an
optimization problem whose solution achieves the final game state of Nash
equilibrium.

3. We perform comprehensive empirical evaluations on spam email and hand-
written digit data sets, and demonstrate that our method is able to produce
comparative Nash equilibrium results while using significantly less compu-
tation time compared to the previous iterative maxmin approach.

2 Game Theory and Nash Equilibrium

In this paper we model the interactions between data miners and adversaries
in Stackelberg games. In a Stackelberg game, two players are distinguished as
a leader (L) and a follower (F ), and it is the leader who makes the first move.
In our case the adversary is the leader and the data miner is the follower, since
it is always the adversary who proactively attacks her1 opponent. We call an
“attack” from the adversary and “defence” from the data miner as plays/moves
of the game.

Each player is associated with a set of strategies, U and V for L and F
respectively, where a strategy means a choice of moves available to each player.
In this paper, strategy spaces U and V are finite dimensional vector spaces. The
outcome from a certain combination of strategies of a player is determined by
that player’s payoff function, JL and JF . Rational players aim to maximize their
corresponding payoff functions using their strategy sets. So given an observation
v the best strategy of L is

u∗ = argmax
u∈U

JL(u, v) (1)

Similarly, if L’s previous move is u, the reaction of F is

v∗ = argmax
v∈V

JF (u, v) (2)

As each player seeks to achieve as high a payoff as possible in each of their moves,
they will arrive in a state of Nash equilibrium when their rational strategies
interact: the state of Nash equilibrium means that simultaneously each player
is using the strategy that is the best response to the strategies of the other player,
so that no player can benefit from changing his/her strategy unilaterally [9]. Thus
the problem reduces to efficiently determining the state of the Nash equilibrium.

2.1 The Maxmin Problem

In the formulation of the sequential Stackelberg game proposed in [7], a Nash
equilibrium is the strategy pair (u∗, v∗) that simultaneously solves the opti-
mization problems in Eq. 1 and 2. Because this Stackelberg game is also a

1 For ease of interpretation, in this paper we call the data miner a male (i.e. “he/his”)
player, and the adversary a female (i.e. “she/her”) player.
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“constant-sum” game, we have JF = φ – JL, where φ is a constant number
standing for the total profit in the game. Then Eq. 2 can be rewritten as:

v∗ = argmax
v∈V

φ− JL(u, v) = argmax
v∈V

− JL(u, v)

= argmin
v∈V

JL(u, v)
(3)

where the constant number φ is ignored, and the equation is transformed into
a minimization problem which removes the negative sign. By combining Eq. 3
with Eq. 1, the following maxmin problem is obtained:

Maxmin: (u∗, v∗) = argmax
u∈U

JL(u, argmin
v∈V

JL(u, v)) (4)

The solution to the maxmin problem maximizes the leader’s profit under the
worst possible move of her opponent. To solve this maxmin optimization prob-
lem, the authors in [7] simulate two players of the data miner and the adversary
iteratively, and solve one optimization problem (either the “minimization” or
the “maximization”) at a time. They discover Nash equilibrium when the adver-
sary’s payoff stops increasing through the iterating process. Since this iterative
algorithm has to solve an optimization problem at every play of the game, it can
be computationally expensive to find the final state of Nash equilibrium (which
we show in the experiment section).

3 One-Step Method for Finding the Nash Equilibrium

We derive our efficient one-step equilibrium searching method by utilizing sin-
gular value decomposition (SVD) on the training data. Among many kinds of
matrix factorization methods, SVD has the property that it gives bases for both
the row and the column space of a matrix simultaneously. It also “orders” the
information contained in a matrix so that it is possible to spot the “principle
components” of that matrix. Given a m× n matrix A, it can be factorized such
that

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices whose columns are
(left and right) singular vectors of A, and Σ ∈ Rm×n is an diagonal matrix whose
diagonal entries Σi,i specify singular values of A.

In binary-class classification problems, given training data of positive in-
stances X+ ∈ Rm+×n and negative instances X− ∈ Rm−×n, where m+, m−

are the numbers of positive and negative instances, and n is the number of fea-
tures, the label of a new instance xnew can be determined by using orthogonal
basis vectors from SVD as follows.

We compute the SVD of each class of the instance matrix:

X+ = S+Σ+(V +)T ; X− = S−Σ−(V −)T .
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(c) The data miner reacts.

Fig. 1. An example of the interactions between a data miner and an adversary. The
line in the middle of the data clouds represents the classification boundary. Based on
the initial state of the game (subfig. a), the adversary moves positive instances towards
negative samples and produces more false detections (subfig. b); the data miner then
reacts by re-constructing (shifting) the classification boundary (subfig. c).

The instances of X+ and X− both span a linear space of Rn, so their right
singular vectors (i.e. column vectors of V + ∈ Rn×n and V − ∈ Rn×n) form an
orthogonal basis of their corresponding type of class.

We characterize each type of class by the first k singular vectors of that class.
If the new class-unknown instance x can be better represented in the basis of
singular vectors of one class (e.g., the positive class) than in those of the opposite
class, then x is more likely to belong to the former class (i.e., positive class).
Then the classification process is equivalent to choosing the smaller residual
vector generated from the representations of the two classes:

Label of xnew = argmin
c∈{+,−}

||
k∑

i=1

(
vci × ((vci )

T × xnew)
)
− xnew|| (5)

where vi is the ith column vector in V c, c ∈ {+,−}, || · || is the Euclidean
norm, and we assume xnew and vci are column vectors. This classification strat-
egy forms the fundamental basis of many practical classifiers (e.g., [10, 11]).
Now we proceed to analyze how manipulations from adversaries can degrade the
performance of this SVD classification model.

3.1 Formulation of Adversarial Manipulations

The data miner’s classification strategy in Eq. 5 (i.e., on the original data)
constitutes the initial state of our game theoretical model when there are no
moves made by the adversary. Fig. 1a shows an example of such an initial state:
without malicious modifications on positive samples (blue asterisks), the (solid
red) boundary line learned from Eq. 5 separates the two classes of data samples
and defines the optimal initial classification boundary.

Although data miners are able to obtain correct singular vectors from solving
Eq. 5, these initial singular vectors become ineffective when adversaries change
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the distribution of their input feature vectors. We assume the adversaries mod-
ify feature vectors by introducing a transformation vector α, so that positive
instances “X+” in the training phase are shifted to “α + X+” during the test
phase. Moreover, in order to decrease the data miner’s classification accuracy, a
rational adversary will transfer positive instances2 in a way that makes its dis-
tribution similar to that of the negative class, as shown in Fig. 1b. By denoting

α+X+ = SαΣα(V α)T

as the SVD of the positive instances transformed by an adversary, and vαi ∈ V α

as the transformed positive singular vectors, the payoff function of an adversary
can be stated as

J(α) =
k∑

i=1

||vαi − v−i || , (6)

whose aim is to minimize the difference between the singular vectors of the
negative instances and those of the (transformed) positive instances.

However, the further the original positive instances are transformed the higher
the cost the adversary has to pay, and when positive instances are transformed
to the same as negatives the adversary pays the highest cost, since such positive
instances bring no profit to the adversary even if they are undetected by the
classifier. For example, when the pattern of words in spams is modified such
that it is the same to legitimate emails, these spams might not be detected by
a spam filter but they also bring no profit at all to the spammer. Therefore at
the same time of maximizing her payoff, a rational adversary also attempts to
minimize the step size of transformations. So we propose that the adversary’s
optimal movement α∗ is determined by the following optimization problem:

α∗ = argmin
α

J(α) + λ||α||2

= argmin
α

k∑
i=1

||vαi − v−i ||+ λ||α||2
(7)

Eq. 7 is our overall objective function. It reflects that a rational adversary wants
to not only minimize the distance between distributions of negative instances and
transformed positive instances (i.e., the first term of Eq. 7), but also minimize the
transformation itself (i.e., the second term of Eq. 7). In contrast to the iterative
method that solves Eq. 4, we aim to find the final equilibrium state of the
players by solving one optimization problem, and hence we call the minimization
problem in Eq. 7 the “one-step” method.

3.2 Solving the Minimization Problem

In this section, we describe how we solve the minimization problem in Eq. 7
via trust region methods – a powerful yet simple technique for solving convex

2 In this paper, we assume it is the positive class which is of value to an adversary. For
example, in spam filtering domain, we assume spam emails belong to the positive
class, and legitimate emails belong to the negative class.
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optimization problems[12]. The following unconstrained minimization problem
is an abstraction of Eq. 7:

α∗ = argmin
α

f(α) (8)

Suppose we are at the point α0 of function f , and we want to move to another
point with a lower value of f . The main idea of the trust region method is to
approximate f with a simpler function q, which mirrors the behavior of function
f in a neighborhood Ω around the point α0. This neighborhood is the so-called
trust region [13]. Then instead of minimizing f on the unconstrained range as in
Eq. 8, the trust region method minimizes q in the constrained neighborhood Ω:

s∗ = argmin
s∈Ω

q(s) (9)

and the next point is determined as α0 + s∗ if it has a lower f value. The ap-
proximation function q by convention is defined though the second order Taylor
expansion of f at α0, and the neighborhood Ω is usually a spherical or ellipsoidal
in shape [12]. So the problem in Eq. 9 is reduced to:

s∗ = argmin
s

1

2
sTHs+ sT g

subject to ||Ds|| ≤ %
(10)

where g and H are the gradient and the Hessian matrix of f , D is a diagonal
scaling matrix, and 4 is a positive number. The problem in Eq. 10 is also known
as the trust region sub-problem. While there are many ways to avoid the expensive
computation on H , we reuse the straightforward subspace approximation [14],
which restricts the problem in Eq. 10 to a two-dimensional subspace S. In this
subspace, the first dimension s1 is in the direction of the gradient g, and the
second dimension s2 is an approximated Newton direction (i.e., the solution to
H · s2 = −g). Within the subspace S, Eq. 10 becomes easy and efficient to solve
since it is always in a two-dimensional space.

4 Experiments and Analysis

We focus on comparing the difference between the equilibrium states generated
from our one-step model, and the ones from the iterative process proposed in [7],
in terms of their efficiency and the accuracy of the classifiers at equilibrium. Our
experiments are carried out on a real email spam data set and a handwritten
digit data set. To balance the two terms in our objective function (Eq. 7), we
set λ to the number of singular vectors (i.e., k) used in each experiment.

4.1 Rational Behavior on Synthetic Data

We first carry out experiments on synthetic data, and examine whether the data
miner and the adversary do behave in a rational manner under our one-step game
model. We generated positive and negative class data from multivariate normal
distributions with mean [μp

1, μ
p
2] = [4, 1] and [μn

1 , μ
n
2 ] = [1, 4] respectively, and a



656 W. Liu et al.

common standard deviation I (the identity matrix). Note that the multivariate
normal distribution has been used only to generate the data and not for the
purpose of solving for the Nash equilibrium. We expect a rational adversary
to transform the data so that the positive class elements are displaced towards
the negative class, and at the same time to try to prevent the two classes from
completely overlapping. Thus we expect that the transformation in the first
dimension (f1) to be in the range of (−3, 0) and second dimension (f1) in the
range (0, 3).

We put the synthetic data into our objective function with k = 2 (the data
has only two features/dimensions), and obtain equilibrium transformation α∗ =
[1.67, -1.91]. In Fig. 2 we show the value of the objective function with respect
to different settings of the transformation α on f1 and f2. As we can visually
inspect from the figure, the obtained equilibrium transformation α∗ is an effective
minimizer of the objective function. This visualization of the objective function
also confirms our expectations that a rational adversary would transform the
first dimension by a value in the range (−3, 0) and second dimension in (0, 3).

Fig. 2. Values of the adversary’s objec-
tive function (Eq. 7), with respect to dif-
ferent setting of transformations (α) on
the two-dimension synthetic data. The
arrow in the figure points to a minimizer
of the objective function, generated by
our one-step method.
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4.2 Email Spam Filtering

The objective of this experiment is to compare the performance of classifiers built
on a normal training data set and on a training data set obtained at equilibrium
after the application of an adversary’s final optimal manipulation.

The spam data set consists of fifteen months of emails obtained from an
anonymous individual’s mailbox [15]. The first three months of data was used
for training and the remaining twelve months for testing. We further split the
test data into twelve bins - one for each month. Since at any given time spam can
be received from diverse sources and spammers have different goals, the intrinsic
nature of spam evolves over time. The data has 166,000 unique features. A
feature ranking process using information gain was carried out and we selected
the top 20 features to build the classifier.

To test the influence of k in terms of classification, we control k and vary it
from 1 through 20, in testing all the twelve months’ test data with 5-fold cross
validation. With spam emails belonging to the positive class, the true positive
rate (TPR), true negative rate (TNR) and overall accuracy is illustrated in
Figure 3a. The overall accuracy stops increasing at around 16, which means the
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Fig. 3. Subfig.(a): Accuracy of SVD classifications on all test data with varying k.
Subfig.(b): Comparisons on time (in seconds) between iterative processes and our one-
step processes in finding Nash equilibria. To compare these two methods, in (b) we
used varying amounts of training data indicated on the x-axis. We find that the one-
step process substantially reduces computation time in searching for Nash equilibria,
especially when the total amount of data is large.

Table 1. Comparisons on classification accuracy on spam data between iterative pro-
cesses and our one-step processes, by using the data at Nash equilibria. Although the
one-step method needs much less time compared against the iterative method, it is still
capable of producing comparable equilibrium classification results.

Months M1 M2 M3 Months M1 M2 M3 Months M1 M2 M3

Jan .7686 .9179 .9195 May .6803 .7655 .7439 Sep .7648 .8277 .8187
Feb .6256 .7258 .6817 Jun .9249 .9671 .9882 Oct .5169 .6046 .6490
Mar .9071 1 .9991 Jul .9384 1 1 Nov .5915 .6597 .6946
Apr .9150 .9892 .9534 Aug .5527 .6032 .6795 Dec .7950 .9323 .9146

Friedman test (M1 vs. M2): 5×10−4

Friedman test (M1 vs. M3): 8×10−5

Friedman test (M2 vs. M3): 0.7630

training data can be well represented by the first 16 singular vectors. We choose
16 as the value of k in our following experiments on spam emails.

We first test the difference on time used in achieving Nash equilibrium between
the previous iterative method and our one-step method. Since there are fifteen
months of data available to us, we test the total time used in training one
month, two months, ..., until all fifteen months. The total running time is shown
in Figure 3b, where we can see that the one-step process has substantial savings
in computation time on searching for Nash equilibrium, especially when the size
of data set is large.

We then compared the one-step method with the iterative method on clas-
sification accuracy, where we used the first three months of data for training
and the other twelve for test. We perform Friedman tests on the classification
accuracy across all data sets, where p–values that are lower than 0.05 reject the



658 W. Liu et al.

hypothesis with 95% confidence that the classifiers in the comparison are not
statistically different. The Friedman test is reported as the most appropriate
method for validating multiple classifiers among multiple data sets [16]. In Ta-
ble 1, “M1” uses the original data (i.e., X+ and X−), “M2” uses the equilibrium
data generated by the iterative method (i.e., X+ + α∗ and X−, where α∗ is
from the iterative method [7]), and “M3” uses the equilibrium data generated
by our one-step method (i.e., X++α∗ and X−, where α∗ is from solving Eq. 7).
As shown by the Friedman tests in Table 1, although one-step processes save a
great amount of time in finding the Nash equilibrium, it can still generate com-
parable classification results compared against the iterative method (i.e., not
significantly different under the Friedman test).

4.3 Handwritten Digit Recognition

In this section we examine the influence of equilibrium feature weights on the
problem of feature selection. We use the classic US Postal Service (USPS) data
set which was created for distinguishing handwritten digits on envelopes [17].
This data set consists of gray-scale images of digit “0” through “9” where each
image consists of 16 × 16 = 256 pixels or features in the classification problem.
We assume that the data was independent and identically distributed, and the
objective of the data miner is to separate the digits while that of the adversary
is to transform an image so that one digit can be confused with another.

Each digit has 2200 images, and we divide them equally into training and
test sets. All combinations of pairs of digits from “0” to “9” are tested and we
select the ones whose false positive rates are higher than 0.02 in the initial game
state. The selected pairs are (2,6), (2,8), (3,8), (4,1), (5,8), (7,9), where we use
the first digit of a pair as the class of interest for the adversary (i.e., the positive
instances that the adversary manipulates).

Fig. 4. Comparisons on time (in sec-
onds) between iterative processes and
our one-step processes in finding Nash
equilibria. Numbers on the x-axis rep-
resent indexes of selected digits pairs
in the order of (2,6), (2,8), (3,8), (4,1),
(5,8), (7,9). Similar to experiments on
spam emails, here we also can see that
the one-step process used much less
computing time compared against the
iterative method. 1 2 3 4 5 6
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We first compare the total amount of time (in seconds) used for finding Nash
equilibrium of these digit pairs, as shown in Figure 4. As expected, we can see
from the figure that the one-step process used much less computation time com-
pared to the iterative method in each of the six pairs of digits. More importantly,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. Some example comparisons of transformed images in digit pair “3” vs. “8”, “7”
vs. “9”, and “5” vs. “8”, with the first digit being positive class. Subfig. (a), (f) and (k)
show the original digit “3”, “7” and “5”; (b), (g) and (l) show these digits transformed
by the iterative method; (c), (h) and (m) are these digits transformed by our one-step
method; (d), (i) and (n) are the equilibrium transformations generated by the iterative
method; (e), (j) and (o) are the equilibrium transformations generated by our one-step
method. Although our one-step method require much less computational time, it can
still produce comparable equilibria results compared with the iterative method.

although the one-step method requires much less time, Nash equilibrium results
obtained from the one-step method can still reasonably approximate adversarial
manipulations on positive training data. As shown by some examples of our digit
pairs in Figure 5, the adversary simulated by our one-step method increases or
decreases values on some specific pixels on the positive images (i.e., digits “3”,
“7” and “5”), so that they look more like negative images (i.e., digits “8”, “9”
and “8”) after the equilibrium play. Moreover, the close similarities of the final
equilibrium adversarial transformations between the interactive method and the
one-step method further confirm that the one-step model can perform compara-
bly to iterative models in terms of finding correct Nash equilibria.

5 Conclusions and Future Research

In this paper we have studied the classification problem in the presence of adver-
saries. In this scenario data miners produce classification models and adversaries
transform the data to deceive the classifier. We have modeled the interaction of a
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data miner and an adversary using a one-step game theoretical model, where the
adversary aims to minimize both the difference between distributions of positive
and negative classes and the adversarial movement itself. The solution to the
minimization problem unveils the state of Nash equilibrium in the interactions
between the data miner and the adversary. We have also demonstrated that our
one-shot game significantly reduces computation time compared with iterative
process used in the previous literature, while it can still generate comparable
results in searching for Nash equilibria.

In the future we plan to investigate the use of coalition games to model sce-
narios where multiple adversaries exist and collaborate against the data miner.
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Abstract. This paper presents a method for signals and features selection when 
classifying sleep apnea. This study uses a novel hierarchical parallel particle 
swarm optimization structure as proposed by the authors previously. In this 
structure, the swarms are separated into ‘masters’ and ‘slaves’ and access to 
global information is restricted according to their types. This method is used to 
classify sleep apneic events into apnea or hypopnea. In this study, ten different 
biosignals are used as the inputs for the system albeit with different features. 
The most important signals are subsequently determined based on their contri-
bution to classification of the sleep apneic events. The classification method 
consists of three main parts which are: feature generation, signal selection, and 
data reduction based on PSO-SVM, and the final classifier. This study can be 
useful for selecting the best subset of input signals for classification of sleep 
apneic events, by attention to the trade of between more accuracy of higher 
number of input signals and more comfortable of less signals for the patient. 

Keywords: Sleep apnea, Particle swarm optimization, Support vector  
machines, Parallel processing. 

1 Introduction 

Sleep Apnea (SA) is one of the most common and critical components of sleep disord-
ers. SA is characterized by the repeated temporary cessation of breathing during sleep 
[1]. Clinically, apnea is defined as the total or near-total absence of airflow. This be-
comes significant once the reduction of the breathing signal amplitude is at least 
around 75% with respect to the normal respiration and occurs for a period of 10 
seconds or longer. A hypopnea is an event of comparatively less intensity; it is defined 
as a reduction in baseline of the breathing signal amplitude to around 30–50%, also 
lasting 10 seconds in adults [2].  

The SA has several short term and long term side effects[3]. Short-term effects lead 
to impaired attention and concentration, reduce quality of life, increased rates of absen-
teeism with reduced productivity, and increased the possibility of accidents at work, 
home or on the road. Long-term consequences of sleep deprivation include increased 
morbidity and mortality from increasing automobile accidents, coronary artery disease, 
heart failure, high blood pressure, obesity, type 2 diabetes mellitus, stroke and memory 
impairment as well as depression. Long-term consequences, however, remain open[4]. 

Unfortunately, as many patients are asymptomatic, sleep apnea may go undiagnosed 
for years [5, 6]. Usually it is patients’ spouses, roommates, or family members who 
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report the apnea periods alternating with arousals and accompanied by loud snoring [7, 
8]. Symptomatic patients with SA are usually assessed by Sleep Medicine Specialists 
and diagnosed through an overnight sleep study in a sleep clinic. SA is diagnosed by a 
manual analysis of a polysomnographic record, an integrated device comprising of the 
EEG, EMG, EOG, ECG, and oxygen saturation (SPO2) [9]. The polysomnography 
also records the airflow through the mouth and nose, along with the thoracic and ab-
dominal effort signals [10], and the position of the body during sleep. A sleep apnea 
event can also be classified into three groups as: central sleep apnea, obstructive sleep 
apnea, and mixed sleep apnea. In case of the first, sleep apnea is originated by the cen-
tral nervous system. In the case of the second, the reason for the pauses in the breath-
ing lie in a respiratory tract obstruction, while in the third case, both of these reasons 
may be present. 

The conventional scoring of the polysomnographic recording is costly and time-
consuming. Therefore, many efforts have been made to develop systems that score the 
records automatically [11-13]. For this reason several Artificial Intelligent (AI) algo-
rithms are used in this area such as; fuzzy rule-based system [14], genetic SVM [15], 
and PSO-SVM [16] which have been proposed in our previous works. 

Classification of apneic events to apnea or hypopnea is also so important for sever-
ity calculation of the sleep disorder. The classification of apneic events is also consi-
dered in many studies, such as [17-19]. But, up to the authors’ knowledge, there has 
no publish work on impact and importance of different signals in sleep apnea classifi-
cation. In this paper, we rank most important signals for the classification of sleep 
disorder events into apnea or hypopnea by a hierarchical parallel PSO-SVM[16]. The 
second section of this work covers details of the parallel model. We also introduce the 
PSO-SVM model in the third section of this paper, which is followed by experimental 
results in section four, and the conclusion in section five. 

2 Parallel PSO 

Particle Swarm Optimization (PSO), was introduced by Kennedy and Eberhart in 
1995 [20, 21] based on the movement of swarms and inspired by the social behaviors 
of birds or fishes. Similar to the genetic algorithm, PSO is a population-based stochas-
tic optimization technique. In the PSO, each member is named particle, and each par-
ticle is a potential solution to the problem. In comparison with the genetic algorithms, 
PSO updates the population of particles by considering their internal velocity and 
position, which are obtained by the experience of all the particles.   

2.1 Proposed Parallel Structure 

In this work, given the enormous size of the search space, a single PSO cannot per-
form well and may lead to the local optimum with low accuracy. Therefore, we have 
used a new PSO parallel structure[16], to perform better explorations and exploita-
tions in the search space. 

In the traditional multi-PSO models, all of the swarms are at the same level and ex-
changing information is just based on the definition of neighborhood [22]. But, in this 



 Signal Selection for Sleep Apnea Classification 663 

 

structure, swarms are classified at two different levels as ‘masters’ and one (or more) 
‘slave(s)’. Master swarms have access to the best particle of other swarms but the 
slave swarms have no access to others’ information, and actually just provide infor-
mation for others. Sending the best local particle information among the masters and 
from the slave(s) to the masters can entail performing each iteration by a specified 
frequency.  

In this hierarchical model, one of the master swarms is considered to be the centre 
swarm. All of the swarms, masters or slaves, send the local best particle to the centre 
swarm. The centre swarm computes the global best particle and sends it to the other 
master swarms. So all of the master swarms update their particles using the global 
best particle, but the slave swarms only use their own local best particles for updating 
themselves. The pseudo code for the hierarchical multi-swarm PSO is as follows. 

 
Begin 

Select the number of master and slave swarms, number of the particles for each sub-
warm along with the frequency for the sending of the information. Select one of the 
master swarms as the centre. 

 Initialize the position and velocity of each particle  

Do in parallel until the maximum number of iterations has reached {  

Evaluate the fitness value of each particle  

Find out the local best particle in each sub-swarm 

If meet sending condition  

Sending the local best particle ( ) from each swarm to the centre 
swarm. 

Updating global best particle ( ) in the centre swarm. 

Sending the global best particle to the master swarms. 

End If 

Calculate the new velocity of each particle in each sub-swarm  

Update the position of each particle in each swarm 

 End Do} 

Return the best solution (the global best particle) of the algorithm 

End 

To provide more information how the model work; figure 1 illustrate a sample of 
the proposed parallel structure with 4 masters and 2 slave swarm. In this implementa-
tion, master 1 is selected as the center swarm, so all of the swarms send their local  
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best particles to this swarm. After computing the global best swarm, center swarm 
sends it to all of the master swarms. So in this structure, slave swarm provides infor-
mation for other swarms, but not gets benefit from the other’s information. 

 

 

Fig. 1. Proposed parallel structure with 4 masters and two slaves 

Indeed, fast convergence is one of the disadvantages of the PSO, which is heigh-
tened in the parallel structure. This hierarchical model tries to expand both of the 
exploration and exploitation abilities of the parallel PSO, by integrating the isolated 
swarms and the linked swarms. Slave swarm(s) in this model help prevent premature 
convergence. PSO parameters for the slaves and masters can be different. Therefore, 
it helps to have greater exploration abilities for the slaves and a greater local search 
for the masters. 

3 Approach and Method 

In this section, we present the proposed algorithm for the ranking of input signals by 
attention to their impact on classification of the sleep apneic events into apnea or 
hypopnea. The proposed methodology is as follows: 

• Feature generation: this stage generates several statistical features for each event 
from the wavelet packet coefficients. 

• Parallel PSO-SVM: this stage uses the PSO algorithm to select a best signal and 
features subset interactively with the SVM. PSO also is used for tuning the para-
meters of the SVM. In the process, SVM is used as the fitness evaluator. This PSO-
SVM combination is applied in parallel by the new architecture to achieve better 
performance and avoid of the local optimal solutions.  

• Final classification: the selected pattern is used for classification of the unseen 
validation data in this stage. The accuracy of this step is assumed as the final per-
formance of the algorithm. 

The details of these steps are as follows: 

3.1 Features Generation 

As mentioned previously, we used 10 biosignal from the polysomnographic record. 
Table 1 lists these signals and their frequencies. 

Master 4 

Master 2 

Slave 1 

 
Master 1 

Master 3 

 

 
Slave 2 
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Table 1. List of signals that are used in this study 

 Signal Frequency 

#1 EEG C3A2 100 

#2 EEG C4A1 100 

#3 EEG A1A2 100 

#4 EOG 100 

#5 EMG chin 200 

#6 ECG 200 

#7 Air flow 10 

#8 Thoracic movement 10 

#9 Abdominal movement 10 

#10 SPO2 1 

 
For feature generation, First of all, 10 seconds after of each apneic event is selected 

from each signal. Then, we used wavelet package coefficients to generate features for 
each of these signals. For example for airflow, abdominal, thoracic movement, and 
SPO2, we generated the features by applying statistical measures from Table 2 to 
each coefficient of the 4 levels Daubechies wavelet packet with order 3 [23]. 
 

Table 2. List of statistical features, x is coefficients of wavelet packet 

log mean x  kurtosis x  geomean |x|  

std x  var x  mad x  

skewness x  mean |x|  mean x  

skewness x  kurtosis x  var x  

geomean x  mad x  
std x  

The details of feature generation for other signals are as follows: 
 
A. EEG 
Based on [24], we applied the Daubechies order 2 (db2) wavelet transform. The fre-
quency ranges of the EEG signal are broken down into Delta (below 3.5 Hz), Theta 
(4-7 Hz), Alpha (8-13 Hz), and Beta (14-30 Hz) bands [24]. Then, the following  
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statistical features were used to represent the time–frequency distribution of the EEG 
signals: 
1. Mean quadratic value or Energy of wavelet packet (WP) coefficients for each of the 
sub bands, 
2. Total Energy,  
3. Ratio of different Energy values, 
4. Mean of the absolute values of the coefficients in each sub band, and 
5. Standard deviation of the coefficients in each sub band. 
Also more features are generated for EEG signals based on [25]. Given this reason, 
we apply a level 4 wavelet packet of Daubechies by order 20 and then, generate the 
features for each coefficient displayed in Table 2. 
 
B. EOG 
To generate the features from the EOG signal, we apply an 8 level Daubechies with 
order 3 wavelet packet. Then, we generate the features for each coefficient according 
to Table 2, for each of the left and right EOG signals. Also, we calculate the norma-
lized correlation coefficient between the two EOG channels [26]. 
 
C. EMG 
For the EMG signal based on [23], we generate features by applying statistical meas-
ures from Table 2 to the coefficients of  level 2 Daubechies with the order 2. 
 
D. ECG 
For feature generation of ECG signals based on [27], first of all we apply an order 3 
Daubechies wavelet packet with 8 level. Then, for each event by attention to the 
wavelet coefficients features are generated by the statistical measures from table 2. 

By attention to these ten signals and described features, 205 features are generated 
for each apneic event. In next step the parallel PSO-SVM is used for feature selection 
to eliminate the irrelevant features and therefore improving the accuracy of the  
classification. 

3.2 Parallel PSO-SVM Algorithm 

After generating the features, we need to classify events as apnea or hypopnea. For 
this reason, we use the described hierarchical parallel PSO-SVM algorithm to initiate 
pattern selection and tune the parameters of the SVM.  

SVM is used to evaluate each particle of the PSO. The fitness of each particle is 
computed as the accuracy of the SVM when classifying the test set with the selected 
pattern related to the particle.  

In the first step, total data from all of the samples are integrated as Meta data. 
Then, the Meta data is separated into the train and the validation. The hierarchical 
parallel PSO-SVM is used using the 5*10 CV paradigms to select the best signals and 
features sets from the training data. Then, the selected signals and features are used to 
classify the validation set. Accuracy of classification of validation set by the tuned 
SVM and selected patters is considered as performance of the system.  
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3.3 PSO Structure 

In this study, we use the constriction coefficient PSO [28]. In this approach, the veloc-
ity update equation is as (1), 1  ,    1  

 
where  is the particle best and  is the global best particles. And, 

 2|2 4 |  ,                                                 2  

with, ,        1,2. 
 

Equation (2) is used under the constraints that 4  and , ∈ 0,1 . 
The parameter  in the equation (2) controls the exploration and exploitation. For ~0, fast convergence is expected and for ~1 we can expect slow convergence 

with a high degree of exploration [28].   
The constriction approach has several advantages over traditional PSO model such 

as; we do not need velocity clamping for constriction model and this model guaran-
tees convergence under the given constraints[29]. 

By paying attention to the proposed parallel structure, for the slave swarms,  con-
sidered as 0.8 and 2, 4, and for the master swarms  considered as 0.2 and 4, 2.  

3.4 Particle Representation 

In this study, each particle consists of three arrays; the length of the first array is equal 
to the number of signals, which equal ten. Each cell can get a real number between 0 
and 1 as importance of the relevant signal. Rank of each signal is computed by the rank 
of the corresponding cell. 

The length of the second array is equal to the number of the features. Again each 
cell can get a real number between 0 and 1. Features, which their corresponding cells 
have values higher than 0.5, are selected for classification. The third array is related to 
the gamma and cost as parameters of the SVM, which can get a value between 2   
to 2 .  

4 Results and Discussion 

Experimental data consist of polysomnographic records from 20 subjects, which 
events of them are annotated by experts were provided by concord hospital in Sydney. 
In the parallel structure, 4 slaves and two masters are selected and each swarm contain 
20 particles. The RBF kernel is selected for the SVM in both of the master and slave 
swarms. Frequency for changing information between swarms is set as 5 iterations. 
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Table 3. Diversity of classes in different runs 

 Validation Training 

 Apnea Hypopnea Apnea Hypopnea 

#1 833 636 1632 1309 

#2 780 683 1685 1262 

#3 865 701 1600 1244 

#4 874 610 1591 1335 

#5 787 601 1678 1344 

 

Fig. 2. Classification error curve using the signal selection method 

 
In this experiment records from 5 subjects are considered as the validation and 

records from 15 subjects make the training data. It also take in consideration to over-
come the impact of the validation sets on the final result, 5 independent experiments 
had validated. Table 3 tabulates the number of sleep apnea or hypopnea events in each 
of the validation set and the training in these 5 runs. 

We investigated whether the best way to select signals for apnea or hypopnea clas-
sification. First we consider the best size for the input signals’ set. The results are 
depicted in Figure 2. The first five plots, A to E, show the individual classification 
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error for the five validations against the different numbers of signals chosen. The 
sixth plot, figure F, shows the classification error averaged over the five validations. 

As can be seen in Figure 2, using irrelevant signals increased the classification er-
ror. For example, using 3 channels for validation 1, figure A, yields the least error. 
The result averaged over the five validations plotted in the last figure, figure F. This 
figure also shows that when removing channels iteratively the classification error 
decreases slightly until all irrelevant channels are removed. The average error rate 
(taken over all validations) of 7.84% using 3 signals is very close to the error of the 
baseline which is 7.74% using 5 signals. This can show that increasing the number of 
input signals from 3 to 5 has not high impact on the performance. Therefore, by atten-
tion to the cost of using more signals and on the other side slight improvement in the 
performance we can decide the preferred size of the input signals. 

Table 4. Ranking of 10 signals 

 Validations 

Rank 1 2 3 4 5 

1 Airflow Airflow Airflow Airflow Airflow 

2 Abdominal Abdominal Abdominal Abdominal Abdominal 

3 Thoracic EMG chin Thoracic Thoracic Thoracic 

4 EMG chin Thoracic EMG chin EMG chin EMG chin 

5 EEG C4A2 ECG EEG C4A2 ECG EEG C4A2 

6 EEG C4A1 EEG C4A2 ECG EEG C4A1 ECG 

7 ECG EEG C4A1 EEG C4A1 EEG C4A2 EEG C4A1 

8 EOG EOG SPO2 SPO2 EOG 

9 SPO2 SPO2 EOG EOG SPO2 

10 EEG C3A2 EEG C3A2 EEG C3A2 EEG C3A2 EEG C3A2 

 
Table 4 contains signal rankings; as we have the three most common signals are 

airflow, abdominal and thoracic movement. For each validation we can obtain a heu-
ristic estimate on the number of irrelevant signals from the classification error curves 
in Figure 1. We underlined one entry in each column of Table 4. The row number of 
that entry is an estimate for the ranks position of the best set of signals for classifica-
tion of that validation set. For example in validation 4, the local minimum of the clas-
sification error happened by 4 signals. Thus, the best 4 selected signals can be used 
instead of the full data without increasing the error. Selecting 4 signals instead of the 
whole polysomnographic records is important because less signals means less record-
ing cost and also more comfortable for the patients. 

5 Conclusion 

In this study we ranked the polysomnographic signals by attention to their impact on 
classification of sleep apneic events into apnea or hypopnea. We used a hierarchical 
parallel PSO-SVM for the signal selection. This study shows that it is possible  
to reduce the number of signals for a robust classification without an increase of  
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classification error. Average of results from 4 different experiments shows, using 4 
signals can provide the least classification error. But, the different between classifica-
tion error of the best 3 signals and the best 4 signals is less than 0.10%. This compari-
son is important as using less signals means more comfortable for the patients. There-
fore, trade-off between selecting more signals and it cost must be considered. The 
same study for detecting apnea events and also classification of apnea events to cen-
tral, obstructive or mixed will be subject to future research. 
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Abstract. This paper examines the problem of modelling continuous,
positive data by finite mixtures of inverse Gaussian distributions using
the minimum message length (MML) principle. We derive a message
length expression for the inverse Gaussian distribution, and prove that
the parameter estimator obtained by minimising this message length
is superior to the regular maximum likelihood estimator in terms of
Kullback–Leibler divergence. Experiments on real data demonstrate the
potential benefits of using inverse Gaussian mixture models for modelling
continuous, positive data, particularly when the data is concentrated
close to the origin or exhibits a strong positive skew.

1 Introduction

A common approach to learning structure in complex data is through clustering,
or more generally, finite mixture modelling. A finite mixture model with K
classes models a probability distribution as

p(yi;α, θ1, . . . , θK) =

K∑
k=1

αkpk(yi; θk), (1)

where α are the K mixing weights and θi are the vectors of parameters that
define the component distributions pi(·). In general, α, K and θi are all un-
known and we are required to learn an appropriate mixture model using only
the observed data. Unsupervised learning of finite mixture models has been one
of the most successful applications of the information theoretic minimum mes-
sage length (MML) [1–3] principle of inductive inference. Over the past forty
years this work has been continuously improved, with refinements to the coding
schemes and the addition of new distributions. This paper extends MML mix-
ture modelling further by the inclusion of the inverse Gaussian distribution for
positive, continuous data. We say that a variable Yi ∼ IG(μ, λ) if the probability
density function for Yi = y is given by

p(yi;μ, λ) =

(
1

2πλy3i

) 1
2

exp

(
− (yi − μ)2

2μ2λyi

)
, (2)
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where μ > 0, λ > 0. The inverse Gaussian is a flexible distribution for modelling
continuous, positive data. This work therefore helps to fill a hole in the current
MML mixture modelling literature. Previous work [4] has examined modelling
this type of data using the gamma distribution. Unfortunately, the treatment
of the prior distributions used in [4] is somewhat superficial, and the resulting
criterion depends on arbitrarily chosen hyperparameters, which have a crucial
effect on the estimation of the number of classes. This paper offers an alterna-
tive distribution modelling for continuous, positive data, and uses sensible, data
driven choices for the necessary prior distributions. These ideas could easily be
further adapted to alternative distributions such as the gamma and Weibull.

2 The Minimum Message Length Principle

Minimum message length (MML) [1, 3] is an information theoretic Bayesian
principle for inductive inference. The fundamental idea is that compressing data
equates to learning the structure in the data. Theoretical results support the
argument that if we can substantially compress the data, then there is a high
probability we have learned something about the underlying process that pro-
duced the data [5]. In contrast to more traditional statistical procedures for
learning, such as those based on hypothesis testing, the MML principle gen-
eralises in a straightforward manner to cover estimation of both conventional
continuous model parameters in addition to structural parameters, such as the
number of components in a mixture model [3].

To learn a model from data y using MML, we must first posit a countable
set of candidate models γ ∈ Γ , each with associated parameters θγ ∈ Θγ . We
then compare the models in terms of their ability to compress the data. To do
this, we view the compressed data as a message composed of two components.
The first component, or assertion, encodes the details of the model, such as
the structural and continuous parameters; the length of the assertion, in base-e
digits, is I(γ)+I(θγ |γ). The second component, or detail, encodes the data with
the aid of the previously stated model, and is of length I(y|γ, θγ). The total
message length may then be used as a measure of quality of fit of a model to
the data, which automatically takes into account the complexity of the model as
well as its ability to explain the data. To estimate a model, including structural
parameters, from observed data using MML, we solve{

γ̂MML(y), θ̂MML(y)
}
= argmin

γ∈Γ,θ∈Θγ

{I(γ) + I(θγ |γ) + I(y|θγ , γ)} . (3)

Coding of the structural parameters is straightforward due to the equivalence
of discrete codewords and probability mass functions, i.e., I(γ) = − log πγ(γ),
where πγ(·) is a suitable prior distribution over Γ . The coding of the continuous
parameters assertion is more problematic, as any single point of a probabil-
ity density function has measure zero. It is therefore necessary to quantise the
continuous parameters, rendering them essentially discrete. While there are a
variety of ways in which the resulting codelengths can be computed [6–8], if the
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model is sufficiently regular it is most convenient to use the Wallace–Freeman
(MML87) codelength approximation [7] for models with continuous parame-
ters. For a model with k continuous parameters θγ , the MML87 codelength for
I87(y, θγ , γ) ≈ I(γ) + I(θγ |γ) + I(y|θγ , γ) is

− logπγ(γ)− log p(y|θγ , γ)− log πθ(θ|γ) +
1

2
log |Jn(θ; γ)|+ c(k), (4)

with

c(k) = −k
2
log 2π +

1

2
log kπ + ψ(1),

where p(·) is the probability density function for the model, πθ(·) is the prior
distribution for θγ ∈ Θγ , Jn(·) is the Fisher information matrix for n samples,
and ψ(·) denotes the digamma function. Under suitable regularity conditions,
the MML87 approximation is within a term of order on(1) of the exact message
length. An extensive discussion of the MML principle, along with the associated
coding procedures, can be found in the excellent book by C. S. Wallace [3].

2.1 Message Lengths of Mixture Models

This section summarises the message length expressions for general finite mix-
ture models. For the purposes of simplicity, we restrict our discussion to the
case of univariate data, though the ideas extend in a straightforward manner to
the multivariate case. The treatment is necessarily brief, and for a much more
complete discussion of the message lengths of mixture models in general, the
reader is referred to [3], pp. 275–297.

From (1) it is clear that a mixture model consists of K classes, and models the
probability density function of the observed data as a weighted sum of these K
classes. We first require some notation. Let y = (y1, . . . , yn) denote the observed
data, let θ1, . . . , θK denote the parameters of the distributions associated with
each of the K classes, and recall that α = (α1, . . . , αK) denotes the mixing
weights. An important quantity is the degree of membership of each datum to
each class. Let R ∈ (0, 1)n×K denote the matrix of class memberships. The
entries of this matrix are given by

ri,k =
αk p(yi; θk)∑K
j=1 αj p(yi; θj)

, (5)

which can be interpreted as the posterior probability of data yi belonging to
class k, treating the mixing weights as a priori probabilities of belonging to the
K classes. From this quantity we can derive the effective sample sizes associated
with each class as

nk =

n∑
i=1

ri,k. (6)

The totality of parameters for a mixture model of inverse Gaussian distributions
is then Φ = {K,α, θ1, . . . , θK}. The length of a message that encodes both the
data given the mixture model parameters Φ, and the mixture model parameters
themselves may be found using the lengths of the following message components:
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1. A codeword for K. We chose a uniform distribution over {1, . . . ,K1} so that
I(K) = logK1, with the choice of K1 being essentially irrelevant.

2. A statement of the parameters α. This is done by treating these as the pa-
rameters of a multinomial distribution with cell counts nk, yielding a code-
word of length

I(α) =

(
K − 1

2

)
logn− 1

2

K∑
k=1

logαk − logΓ (K).

3. A statement of the model parameters θk for each class and variable. Appeal-
ing to the independence arguments in [3] (pp. 291–293) we can decompose
the statement of this parameters into a sum of components of length I(θk),
the details of which depend on the particular distribution in question. For
the inverse Gaussian, these are detailed in Section 3.2.

4. The data, given the previously stated mixture model parameters, which is
given by

I(y|Φ) = −
n∑

i=1

log

K∑
k=1

αkp(yi; θk). (7)

One of the most interesting aspects of MML mixture modelling is that the
above codelength of the data can be itself be broken down into two parts: a
first part, stating which class each data point belongs to, and a second part
in which the data is coded using that particular class. Due to the clever way
in which the assignment to classes is coded the joint codelength for these
two components reduces to (7).

Using these components, the total codelength for the mixture model with pa-
rameters Φ is given by

I(y,Φ) = I(K) + I(α) + I(y|Φ) +

K∑
k=1

I(θk) + c(d), (8)

where d = (K − 1)+
∑K

k=1 |θk| is the total number of continuous parameters in
the mixture model. To estimate a mixture model using MML we seek the values
ofΦ that minimise (8), which is usually done using the expectation-maximisation
algorithm coupled with a suitable non-linear search for the structural compo-
nents, the details of which lie outside the scope of this paper.

3 MML Inference of Inverse Gaussian Models

To compute message lengths for inverse Gaussian models, and therefore find
MML estimates for the parameters μ and λ, we use the MML87 approximation
(4). This requires the following ingredients: (i) a likelihood function, (ii) the
Fisher information matrix and (iii) appropriate prior distributions. From (2)
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it is straightforward to see that the negative log-likelihood of data under an
IG(μ, λ) model can be compactly written as

− log p(y;μ, λ) =
n

2
log(2πλ) +

3

2

n∑
i=1

log yi −
n

μλ
+

S1

2μ2λ
+
S2

2λ
(9)

where

S1 =
n∑

i=1

yi, S2 =
n∑

i=1

1

yi
,

are minimal sufficient statistics for the inverse Gaussian distribution. The max-
imum likelihood estimates for μ and λ are given by

μ̂ML(y) =
S1

n
,

λ̂ML(y) =
S1S2 − n2

nS1
.

The entries of the Fisher information can be found by noting that E [S1] = nμ
and E [S2] = n(1/μ+ λ). We then have

Jn(μ, λ) =

⎛
⎝ n

μ3λ
0

0
n

2λ2

⎞
⎠,

and thus

|Jn(μ, λ)| =
n2

2μ3λ3
. (10)

To performMML inference we need priors on μ and λ. We assume the two param-
eters are a priori independent. We could use the conjugate priors (half-normal
for μ, inverse-gamma for λ) [9], but instead choose to use simpler component-
wise Jeffreys’ priors (i.e., Jeffreys’ priors for each parameter, assuming that all
other parameters are known). This is the same procedure as is done in the MML
treatment of the standard univariate Gaussian distribution. We then have

πμ,λ(μ, λ) = πμ(μ)πλ(λ) (11)

πμ(μ) =

√
μ0

2μ
3
2

, μ ∈ (μ0,∞),

πλ(λ) =
1

log(λ1/λ0)λ
, λ ∈ (λ0, λ1)

where sensible, data-driven choices for μ0, λ0 and λ1 will be discussed later.
Substituting (9), (10) and (11) into (4), and minimising for μ and λ yields the

MML87 estimates

μ̂87(y) =
S1

n
, (12)

λ̂87(y) =
S1S2 − n2

(n− 1)S1
.
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It is clear that μ̂87(y) = μ̂ML(y), and λ̂87(y) = (n/(n− 1))λ̂ML(y). Substituting
these estimates into the message length yields the minimised message length,
I87(y, μ̂87(y), λ̂87(y)):(

n− 1

2

)
log
(
2πeλ̂87(y)

)
+

3

2

n∑
i=1

log yi + log

(√
2n log(λ1/λ0)√

μ0

)
+ψ(1). (13)

It is clear that the choice of the prior hyperparameters (λ0, λ1, μ0) has no effect
on the MML estimators of the μ and λ parameters. However, in the setting of
mixture modelling, in which a model can potentially comprise several inverse
Gaussian distributions, the choice of these hyperparameters will have a crucial
effect on the message length. Section 3.2 addresses the use of inverse Gaussian
distributions in the mixture modelling setting, and details a data driven way of
selecting these hyperparameters.

3.1 Behaviour of the MML Estimates

Let μ∗ and λ∗ denote the true parameter values, i.e., y1, . . . , yn ∼ IG(μ∗, λ∗). It
is well known that

μ̂ML(y) ∼ IG
(
μ∗,

n

λ∗

)
, (14)

and it follows immediately that E [μ̂ML(y)] = E [μ̂87(y)] = μ∗, i.e., both ML and
MML87 yield unbiased estimates of μ∗. To explore the behaviour of estimates
of λ∗ we use the fact that ( n

λ∗

)
λ̂ML(y) ∼ χ2

n−1, (15)

where χ2
ν denotes a chi-squared distribution with ν degrees of freedom. Using this

result, along with the fact that λ̂87(y) = (n/(n−1))λ̂ML(y), it is straightforward
to show that

E
[
λ̂ML(y)

]
=

(
n− 1

n

)
λ∗, E

[
λ̂87(y)

]
= λ∗. (16)

The maximum likelihood estimator exhibits a downward bias, while the MML87
estimator is unbiased. These results closely parallel those found in the case of
the usual univariate Gaussian distribution.

Measures of estimator quality such as bias and expected squared error suf-
fer from the fact that they are parameterisation dependent. This issue can be
circumvented by examining the behaviour of the estimators in terms of mea-
sures that are invariant under reparameterisations. A common choice is the
Kullback–Leibler (KL) [10] divergence. The KL divergence from the true, gen-

erating IG(μ∗, λ∗) to an approximating IG(μ̂, λ̂) is

Δ(μ∗, λ∗||μ̂, λ̂) = 1

2
log

(
λ̂

λ∗

)
+

(
1

λ̂

)(
λ∗

2
+

1

2μ∗ +
μ∗

2μ̂2
− 1

μ̂

)
− 1

2
. (17)
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Estimators may be assessed in terms of their expected KL divergence, orKL risk,
for a particular sample size n. Let Rn(μ̂, λ̂) ≡ E[Δ(μ∗, λ∗||μ̂(y), λ̂(y))] denote
the KL risk for sample size n, the expectation being taken with respect to the
generating model IG(μ∗, λ∗). It is of interest to compare the KL risks of the ML
and MML87 estimators. This is done by examining the difference in KL risks.
The risk difference is given by

Rn(μ̂ML, λ̂ML)−Rn(μ̂87, λ̂87) =

(
3μ∗λ∗ + n2 + n

2(n− 3)n2

)
+

1

2
log

(
n− 1

n

)
,

which is strictly greater than zero for all n > 3. This shows that for all n > 3,
the MML87 estimator has strictly lower KL risk than the maximum likelihood
estimator, irrespective of the model (μ∗, λ∗) that generated the data. In the case
that the sample size n ≤ 3, it turns out that both MML87 and ML estimators
have infinite KL risk, and neither is demonstrably more accurate in terms of KL
divergence.

3.2 Inverse Gaussian Distributions in MML Mixture Models

The minimised message length for inverse Gaussian models given by (13) is
not exactly appropriate for the mixture model case, as it is based on complete
membership of all the data to a single inverse Gaussian model. It is, however,
straightforward to adapt the message length expressions to the mixture setting
by appealing to the independence arguments outlined by Wallace in [3]. It can be
shown that the appropriate negative log-likelihood for the k-th inverse Gaussian
component in a mixture model is

nk

2
log(2πλ) +

3

2

n∑
i=1

ri,k log yi −
nk

μλ
+

Sk,1

2μ2λ
+
Sk,2

2λ
(18)

where

Sk,1 =

n∑
i=1

ri,k yi, Sk,2 =

n∑
i=1

ri,k
yi

,

are the appropriately weighted sufficient statistics. Due to the form of (18), the
Fisher information is simply given by Jnk

(μk, λk), with nk being the effective
sample size for class k given by (6). The prior distributions remained unchanged,
and the MML estimates become

μ̂k(y) =
Sk,1

nk
,

λ̂k(y) =
Sk,1Sk,2 − n2

k

(nk − 1)Sk,1
.

As was previously noted, the choice of the prior hyperparameters μ0, λ0 and λ1
becomes an issue in the mixture model setting, as the particular values chosen
will have a crucial effect on the estimate of the number of classes unless the
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sample size is very large. To solve this problem, we use two simple, data driven
choices for the hyperparameters. The μ0 hyperparameter sets the lower-bound
on the prior density for μ. From the form of the MML estimator μ̂k(y) we can
easily determine that the smallest value the estimate may assume is equal to the
smallest data point in y. Therefore, we have

μ̂0 = min
i
{yi} .

The form of the estimate for λ̂k(y) is complex, and determination of the smallest
and largest values it may assume, given a particular dataset y is computationally
intensive. To avoid this problem, we instead use the simple idea proposed by
Rissanen to deal with the similar problem of infinite parametric complexity [11].
This involves setting λ0 = e−a, λ1 = ea, with a ∈ {1, 2, . . .} the smallest positive
integer such that

e−a ≤ λk ≤ ea, k = 1, . . . ,K.

Using this choice of priors, the quantity needed for mixture modelling is

I(μk, λk) = log nk −
1

2
log λ̂k(y) + log

(
2
√
2a√
μ̂0

)
. (19)

For the resulting codelength of the entire mixture model to be valid it must also
include the length of the codewords needed to state the hyperparameters μ̂0 and
a. The total codelength of a mixture model for inverse Gaussian distributions,
using these empirical priors, then becomes

I(y,Φ, a, μ̂0) = I(y,Φ) + I(μ̂0) + I(a).

where I(y,Φ) is given by (8). We note that μ̂0 is a continuous parameter, and
may be stated with a codelength of I(μ̂0) ≈ (1/2) logn. The hyperparameter
a is a positive integer, and following [11], we code this using the log-star code
for integers, yielding a codelength of I(a) ≈ log∗(a) + 2.86, where log∗(x) =
log x+ log log x+ . . ., the logarithms iterating until they become negative.

4 Experiments

There have been a large number of previous simulation studies conducted demon-
strating that MML is, in general, superior to commonly used asymptotic tech-
niques such as Akaike’s information criterion (AIC) [12] or the Bayesian informa-
tion criterion (BIC) [13] in the context of estimating a finite mixture model (for
example, [4, 14]). Given that the inverse Gaussian model satisfies the conditions
for the MML87 approximation, and therefore yields sensible codelengths, there
is no compelling reason to expect any significant departure from this trend.

Therefore, we conclude the paper by comparing MML inverse Gaussian mix-
ture modelling against regular MML univariate Gaussian mixture modelling on
the three real datasets: (i) “Enzyme”, (ii) “Acidity”, and (iii) “Galaxy” (see [15]).
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Fig. 1. Mixture Modelling using Inverse Gaussian (IG) and Normal Distributions

All three datasets are composed of non-negative data, and their histograms sug-
gest that multiple modes are a possibility. For each dataset, two mixture models
were estimated, one using inverse Gaussian distributions, and a second using
univariate Gaussian distributions, univariate Gaussian mixture modelling being
the standard approach to clustering of continuous variables used by most soft-
ware packages. The histograms of the datasets, along with plots of the estimated
Gaussian and inverse Gaussian mixture models are presented in Figure 1. The
differences between the estimated models for each of the datasets are summarised
below:

– “Enzyme”: For this dataset the advantage obtained by using a positively
skewed distribution for positive, continuous data was substantial. The es-
timated Gaussian mixture model was composed of two classes and had a
total message length of 86.19 nits (base-e digits), while the inverse Gaussian
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mixture model was composed of three classes with a total message length of
69.34 nits. The large difference in message lengths suggests that the inverse
Gaussian model offers a significantly better fit to the data than the regular
Gaussian model; this is primarily due to the clustering of data near the ori-
gin, as well as the positively skewed nature of the data further away from
the origin, both of which cause problems for Gaussian distributions.

– “Galaxy”: The estimated Gaussian mixture model contained four classes
with a total message length of 236.16 nits, and the inverse Gaussian model
was composed of 3 classes, with a message length of 235.5 nits. Both mix-
ture models identify the small peak around y = 10 as a separate class, but
differ in the way that they model the large cluster from y = 15 to y = 30.
The inverse Gaussian mixture model has identified this cluster as unimodal,
while the Gaussian mixture model has split the cluster into two separate
classes. The difference in message lengths indicates a slight preference for
the inverse Gaussian explanation, but it is not great enough to make any
conclusive decision.

– “Acidity”: The estimated Gaussian mixture model was composed of two
classes with a total message length of 209.4 nits, and the estimated inverse
Gaussian mixture model also contained two classes, with a total message
length of 210.57 nits. From Figure 1 we can see that the data is not close
to the origin and appears to be reasonably tightly clustered around y = 3
through y = 7. Both mixture models are very similar, the primary difference
being the height and width of the first peak. This similarity is also mirrored
in the message lengths of the two models, which are very close, the Gaussian
mixture model being slightly preferred.

The above analyses suggest that the mixture modelling with inverse Gaussian
distributions can lead to big improvements over regular Gaussian mixture mod-
elling if the data exhibit positive skewness or are clustered close to the origin. In
both of these cases, the regular Gaussian distribution, being symmetric and de-
fined over the entire real line, will be unable to provide an excellent fit to the data.
Of course, the strength of MML mixture modelling is that the message length
is comparable between mixture models of different distributions. This highlights
an important property of MML mixture modelling: for a given dataset, we may
use the message length to not only to select the number of classes, but also to
select an an appropriate distribution for the classes themselves.
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Abstract. This paper proposes a novel approach to solve the ordinal
regression problem using Gaussian processes. The proposed approach,
probabilistic least squares ordinal regression (PLSOR), obtains the prob-
ability distribution over ordinal labels using a particular likelihood func-
tion. It performs model selection (hyperparameter optimization) using
the leave-one-out cross-validation (LOO-CV) technique. PLSOR has con-
ceptual simplicity and ease of implementation of least squares approach.
Unlike the existing Gaussian process ordinal regression (GPOR) ap-
proaches, PLSOR does not use any approximation techniques for in-
ference. We compare the proposed approach with the state-of-the-art
GPOR approaches on some synthetic and benchmark data sets. Experi-
mental results show the competitiveness of the proposed approach.

Keywords: Gaussian processes, ordinal regression, probabilistic least
squares, cross-validation.

1 Introduction

Most of the works in machine learning have focused on the standard problems
of classification and regression. Classification problems aim to label examples
from a discrete unordered set, while regression problems aim to label examples
from a real valued set. Recently some new classes of learning problems started
emerging and the prominent among them is the ordinal regression problem [1].
This problem aims to provide labels to the examples from a discrete but ordered
set. It differs from a multi-class classification problem in that the labels are
ordered, and from a regression problem in that the labels are discrete. The
problem arises in social sciences and information retrieval, where humans rate
an item on an ordinal scale. In information retrieval, a user may grade the
retrieved documents as highly relevant, relevant, irrelevant or highly irrelevant.

Formally, we define the ordinal regression problem as follows. We are given a
sample of n labeled independent training examples, D = {(xi, yi)}ni=1, where xi
is an element of a d dimensional input space X (X ⊆ Rd) and yi is an element of
output space Y . The output space Y = {r1, r2, . . . , rq} is a discrete set with an
order among its elements, say r1 < r2 < . . . < rq . Our goal is to learn a decision
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function h : X → Y , such that it generalizes well. We consider an ordinal regres-
sion problem with r ordered categories and without loss of generality, we denote
them by r consecutive integers {1, 2, . . . , r}. Ordinal regression problems have
the property that the penalty for an incorrect prediction should be proportional
to the deviation of the predicted label from the true label.

Most of the works on ordinal regression problems are based on the large mar-
gin framework [1,2,3]. A distribution independent learning approach based on a
loss function between pairs of examples was used in [1] to perform ordinal regres-
sion. Fixed margin and sums of margin approaches [2] used the support vector
machine framework to solve the ordinal regression problem. They learn r − 1
thresholds that divide the real line into r consecutive intervals for r ordered
categories. However the thresholds learnt with this approach need not be or-
dered. Support vector ordinal regression [3] approach corrected this problem by
explicitly specifying the ordering constraint on the thresholds. It also proposed
a new formulation which implicitly takes into account the ordering constraint on
the thresholds. Kernel discriminant ordinal regression [4] extended the Kernel
discriminant learning for classification to the ordinal regression setting. In sparse
Bayesian ordinal regression [5], the proportional odds model [6] for ordinal re-
gression is extended using kernel methods, and a sparse solution is obtained by
imposing a zero-mean Gaussian prior distribution over the weight vector.

Gaussian processes (GP) are non parametric Bayesian models which provide
a probabilistic approach to learning in a kernel based framework [7]. The exist-
ing Gaussian process approaches for ordinal regression [8] use a non Gaussian
likelihood function for modeling the ordinal labels. The use of non Gaussian
likelihood forces it to use approximation methods like Laplace approximation
[7] or expectation propagation [9] to obtain an approximate Gaussian posterior.
The approach performs model selection by maximizing the marginal likelihood
using either a maximum a posteriori approach (MAP-GPOR) or expectation
propagation approach (EP-GPOR). MAP-GPOR and EP-GPOR are among the
state-of-the-art approaches for ordinal regression.

In this work, we propose a simple approach, probabilistic least squares ordinal
regression (PLSOR), to perform ordinal regression using Gaussian processes. In
PLSOR, the predictive distribution of the latent functions is learnt as a Gaus-
sian process regression (GPR) on ordinal variables. This results in a Gaussian
distributed posterior which avoids the use of any approximation methods. The
predictive distribution of ordinal targets is obtained by using a likelihood func-
tion which takes care of the regression nature of the latent function. In PLSOR,
the model parameters are estimated using leave-one-out cross-validation (LOO-
CV) [7]. The experiments on synthetic and benchmark data sets showed that the
performance of the PLSOR approach is comparable with that of the MAP-GPOR
and EP-GPOR approaches. This is also validated using a statistical significance
test.

The rest of the paper is organized as follows. In Section 2, we discuss Gaus-
sian process regression. The MAP-GPOR and EP-GPOR approaches are sum-
marized in Section 3. Section 4 discusses the proposed approach, probabilistic
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least squares ordinal regression (PLSOR), in detail. Comparison of PLSOR with
the MAP-GPOR and EP-GPOR approaches on synthetic and benchmark data
sets is presented in Section 5. Finally, some conclusions are drawn in Section 6.

2 Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of which is a Gaussian [7]. It gen-
eralizes Gaussian distribution to infinitely many random variables. The GP is
completely specified by a mean function and a covariance function. The covari-
ance function is defined over function values of a pair of input and is evaluated
using the Mercer kernel function over the pair of inputs. The covariance func-
tion expresses some general properties of functions such as their smoothness,
and length-scale. A commonly used covariance function is squared exponential
(SE) or Gaussian kernel

cov
(
f(xi), f(xj)

)
= K(xi, xj) = σ2

f exp(−
κ

2
||xi − xj ||2). (1)

Here f(xi) and f(xj) are function values associated with the inputs xi and xj
respectively. σ2

f and κ > 0 are hyperparameters associated with the covariance
function.

In a regression problem the output space Y is real valued, i.e. Y ⊆ R. We as-
sume a noisy Gaussian process regression (GPR) approach in which the outputs
lie around a latent function f(x) with an additive, independently and identi-
cally distributed (i.i.d.) Gaussian noise ε with mean 0 and variance σ2

n, i.e.
y = f(x) + ε. The likelihood function for the noisy GPR approach follows a
Gaussian distribution

p(y|f(x)) = N (f(x), σ2
n). (2)

Let D be the set consisting of n training data points X, the corresponding out-
puts y and n∗ test data points X∗. Let K = K(X,X), K∗ = K(X,X∗) and
K∗∗ = K(X∗,X∗). Here K(X,X∗) is an n× n∗ matrix of covariances evaluated
at all pairs of training and test input data. The matrices K(X,X), K(X∗,X)
and K(X∗,X∗) are also defined similarly. The GPR approach imposes a zero
mean GP prior over the training latent functions f and test latent functions f∗.
The predictive distribution for the test latent functions, p(f∗|D), is obtained by
integrating the conditional distribution p(f∗|f ,D) over the posterior distribution
p(f |D), i.e. p(f∗|D) =

∫
p(f∗|f ,D)p(f |D)df . In GPR, both the conditional dis-

tribution and the posterior distribution are multivariate Gaussians. Hence the
predictive distribution of the test latent functions is a multivariate Gaussian
with mean (4) and covariance (5),

p(f∗|D) = N (̄f∗, cov(f∗)),where (3)

f̄∗ = K�
∗ (K+ σ2

nI)
−1y, (4)

cov(f∗) = K∗∗ −K�
∗ (K+ σ2

nI)
−1K∗. (5)
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The predictive distribution of the test outputs y∗ is obtained by averaging the
likelihood (2) over predictive distribution of f∗, p(y∗|D) =

∫
p(y∗|f∗)p(f∗|D)df∗.

It is also a multivariate Gaussian with the mean same as that of f∗ while the
covariance is obtained by adding σ2

nI to the variance of f∗. Model selection
(hyperparameter optimization) is done using either Bayesian techniques or cross-
validation techniques [7].

Performing ordinal regression using GPR is simple and straightforward. It
treats the ordinal outputs as real numbers and perform regression on the ordinal
outputs. However, such an approach does not provide a valid probability distribu-
tion over the ordinal outputs. The Gaussian process ordinal regression (GPOR)
approaches [8], maximum a posteriori GPOR (MAP-GPOR) and expectation
propagation GPOR (EP-GPOR), provide a valid probability distribution over
the ordinal outputs. The following section briefly summarizes the MAP-GPOR
and EP-GPOR approaches.

3 Gaussian Process Ordinal Regression Approaches

MAP-GPOR and EP-GPOR use a zero mean Gaussian process prior. Under
noisy observations, for an input x and the latent function f , the likelihood func-
tion for an ordinal output y is defined as [8]

p(y|f) = Φ

(
by − f
σ

)
− Φ
(
by−1 − f

σ

)
(6)

where σ is the standard deviation of the Gaussian noise and Φ is the Gaussian
cumulative distribution function i.e. Φ(z) =

∫ z

−∞N (δ; 0, 1)dδ. The thresholds
b0, b1, . . . , br ∈ R (b0 ≤ b1 ≤ . . . ≤ br where b0 = −∞ and br =∞) are fixed so
that the likelihood function represents a valid probability distribution over the
ordinal outputs. The thresholds b1 ≤ b2 ≤ . . . ≤ br−1 divide a real line into r
contiguous intervals. A real latent function value is mapped to a discrete ordinal
output based on the interval in which it lies. The likelihood (6) is not a Gaussian
and therefore the posterior, p(f |D), is also not a Gaussian. MAP-GPORworks by
approximating the posterior as a Gaussian distribution using Laplace approxima-
tion while EP-GPOR uses expectation propagation (EP) [9]. The MAP-GPOR
and EP-GPOR approaches perform model selection by maximizing the evidence
p(D|θ), where θ is the model parameter vector which includes the kernel pa-
rameter κ in the covariance function1, the threshold parameters(b1, b2, . . . , br−1)
and the noise parameter σ in the likelihood function. In MAP-GPOR, model
selection is done using maximum a posteriori approach with Laplace approxi-
mation while in EP-GPOR, it is done using expectation propagation approach
with variational methods. Both MAP-GPOR and EP-GPOR take O(n3) time
for model selection as the optimization method requires inversion of an n × n
matrix.
1 GPOR approach uses a squared exponential covariance function with a single hy-
perparameter κ. cov(f(xi), f(xj)) = K(xi, xj) = exp(−κ

2
||xi − xj ||2), where f(xi)

and f(xj) are function values associated with the inputs xi and xj respectively.
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Performing ordinal regression using MAP-GPOR and EP-GPOR is compli-
cated since they use a non Gaussian likelihood. They have to use approxima-
tion methods like Laplace approximation or expectation propagation to obtain
a Gaussian posterior. We propose a new approach, probabilistic least squares
ordinal regression (PLSOR), which provides a simple and exact way to perform
ordinal regression using Gaussian processes.

4 Probabilistic Least Squares Ordinal Regression

PLSOR extends probabilistic least squares approach for classification [7] to the
ordinal regression setting. In PLSOR, the predictive distribution of test latent
functions is learnt using Gaussian process regression on ordinal outputs. The
predictive distribution of the test outputs is learnt by squashing a linear function
of test latent function predictive probability through a sigmoid. Since the test
latent function f∗ is learnt using GPR on ordinal outputs it takes real values
ranging from 1 to r (number of ordinal categories). We map f∗ to a real line

by using a linear map (α̂f∗ + β̂), where α̂, β̂ ∈ R. The real line is divided
into r contiguous segments using thresholds b1 ≤ b2 ≤ . . . ≤ br−1. The segment
(by∗−1, by∗) is associated with the ordinal category y∗ and maps the scaled latent
function value to that category. In PLSOR, the following likelihood function is
used to estimate the probability of an ordinal category y∗ for the test data x∗ :

p(y∗|f∗) = Φ(by∗ − (α̂f∗ + β̂))− Φ(by∗−1 − (α̂f∗ + β̂)). (7)

Here y∗ ∈ {1, 2, . . . , r}, b0, . . . , br ∈ R such that b0 ≤ b1 . . . ≤ br and Φ denotes
the Gaussian cumulative distribution function i.e. Φ(z) =

∫ z

−∞N (δ; 0, 1)dδ. We
fix b0 = −∞ and br = ∞, so that the likelihood function is a valid probability
distribution. The predictive distribution of the test latent function f∗ is Gaussian
with mean μ∗ and variance σ2

∗ given by (4) and (5) respectively. The predictive
distribution of the test ordinal category y∗ is obtained by averaging the likelihood
(7) over the test latent function predictive distribution:

p(y∗|x∗,X,y, θ) =
∫
Φ(by∗ − (α̂f∗ + β̂))N (f∗|μ∗, σ

2
∗)df∗

−
∫
Φ(by∗−1 − (α̂f∗ + β̂))N (f∗|μ∗, σ

2
∗)df∗

= Φ

(
by∗ − (α̂μ∗ + β̂)√

1 + α̂2σ2
∗

)
− Φ
(
by∗−1 − (α̂μ∗ + β̂)√

1 + α̂2σ2
∗

)
. (8)

The predictive distribution (8) is redefined as

p(y∗|x∗,X,y, θ) = Φ

(
αμ∗ + βy∗√
1 + α2σ2

∗

)
− Φ
(
αμ∗ + βy∗−1√

1 + α2σ2
∗

)
(9)

where α ∈ R, β0 = −∞, βr = ∞, β1, β2, . . . , βr−1 ∈ R such that β1 ≤ β2 ≤
. . . ≤ βr−1. Here we have redefined the variables as α = −α̂ and βi = bi − β̂. θ
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is a vector of model parameters which include α, thresholds (β1, β2, . . . , βr−1),
kernel parameters (σ2

f and κ), and noise parameter (σ2
n). The parameters σ2

f ,

κ, and σ2
n appear in (9) through the expressions for mean (μ∗) and variance

(σ2
∗). Estimating the optimal model parameters (θ∗) (model selection) can be

done using the leave-one-out cross-validation (LOO-CV) technique which we will
discuss in Section 4.1. The prediction is made by selecting the ordinal category
with highest probability, i.e. argmax

1≤k≤r
p(y∗ = k|x∗,X,y, θ∗).

4.1 Model Selection Using Leave-One-Out Cross-Validation

Model selection for the PLSOR approach is done using the leave-one-out cross-
validation (LOO-CV) [7] technique. The log predictive probability of the ith

training example xi, when learnt using the remaining training examples, is

log p(yi|X,y−i, θ) = log

(
Φ

(
αμ−i + βyi√
1 + α2σ2

−i

)
− Φ
(
αμ−i + βyi−1√

1 + α2σ2
−i

))
(10)

where yi ∈ {1, 2, . . . , r} is the output of ith training example xi and y−i is the
output vector of the remaining training examples. The predictive distribution
mean μ−i and variance σ2

−i for the training example xi are obtained by per-
forming a Gaussian process regression on all training examples except xi and
are given by (4) and (5) respectively. Model parameters (θ) are estimated by
optimizing the sum of the log leave-one-out (LOO) predictive probability (10)
over all the training examples. The optimization problem is defined as follows

(θ∗) = argmin
θ
L(θ) = argmin

θ
−

n∑
i=1

log p(yi|X,y−i, θ) =

argmin
α,β1,Δ2,...,Δr−1,κ,σ2

f ,σ
2
n

−
n∑

i=1

log

(
Φ

(
αμ−i + βyi√
1 + α2σ2

−i

)
− Φ
(
αμ−i + βyi−1√

1 + α2σ2
−i

))

subject to β1 ∈ R,

βj = β1 +

j∑
l=2

Δl ∀j = 2, . . . , r − 1 , Δl ≥ 0 ∀l = 2, . . . , r − 1. (11)

This problem minimizes the negative log predictive probability (NLP) measure
over all the training examples. Note that the constraint, β1 ≤ β2 ≤ . . . ≤ βr−1,
is imposed by redefining the threshold variables as βj = β1 +

∑j
l=2Δl using

positive padding variables Δl. The optimal model parameter values are obtained
by solving the optimization problem (11). The optimal model parameter values
are used to make prediction using (9).

The proposed approach requires the computation of predictive mean and vari-
ance for n training examples. Computation of the predictive mean and variance
for each training example involves inversion of an (n − 1) × (n − 1) covariance
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matrix which requires O(n3) time. Therefore the complete LOO-CV procedure
takes O(n4) time which makes the method computationally expensive. But we
get around this problem by noting that we need to perform inversion of only
one covariance matrix, covariance matrix K, formed by all training examples.
It is then used to compute the predictive mean μ−i and variance σ2

−i for each
leave-one-out case as [10]

μ−i = yi −
[
K−1y

]
i
/
[
K−1

]
ii

(12)

σ2
−i = 1/

[
K−1

]
ii
. (13)

To evaluate the expressions for μ−i and σ
2
−i, we need to perform inversion of the

covariance matrixK and it takesO(n3) time. Once we haveK−1, we precompute
K−1y and the computation of μ−i and σ

2
−i for the leave-one-out case i is done in

constant time using (12) and (13) respectively. The computational complexity of
the entire LOO-CV procedure is dominated by the covariance matrix inversion
and it is O(n3).

The proposed approach, PLSOR, provides a simple and straightforward way
to perform ordinal regression using Gaussian processes. In PLSOR, the model
parameters are learnt using LOO-CV technique which is easier to implement
than the Bayesian techniques employed in MAP-GPOR or EP-GPOR. The entire
LOO-CV procedure takes O(n3) time, and hence the computational complexity
of PLSOR is the same as that of MAP-GPOR or EP-GPOR. In PLSOR, the
predictive distribution of test latent functions is learnt using GPR, which in turn
uses the likelihood (2) for the training outputs, while the predictive distribution
of the test outputs is learnt using the likelihood (7). We call the former likelihood
as the training likelihood and the latter as the test likelihood. PLSOR differs
from MAP-GPOR or EP-GPOR in using distinct training and test likelihoods.
Further PLSOR does not use any approximations unlike MAP-GPOR or EP-
GPOR. A summary of the Gaussian process approaches to ordinal regression,
MAP-GPOR, EP-GPOR and PLSOR, is given in Table 1.

Table 1. A Summary of the properties of the Gaussian process approaches to ordinal
regression, MAP-GPOR, EP-GPOR and PLSOR

Property MAP-GPOR EP-GPOR PLSOR

Training
likelihood

Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
N (f, σ2

n)

Test
likelihood

Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ

(
by−f

σ

)
− Φ

(
by−1−f

σ

)
Φ(by − (αf + β))−
Φ(by−1 − (αf + β))

Inference Laplace approximation Expectation propagation
approximation

Exact, no approximation

Model
selection

Evidence maximization Evidence maximization NLP minimization

Computational
complexity

O(n3) O(n3) O(n3)
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5 Experimental Results

We perform the experiments on synthetic and benchmark data sets to compare
the performance of the proposed PLSOR approach with MAP-GPOR and EP-
GPOR approaches. First, we conduct experiments on the synthetic data set to
visualize the behavior of the approaches and then, we study their generalization
performance on several benchmark data sets.

5.1 Synthetic Data

We conduct experiments on a 1-dimensional synthetic data set with five ordinal
categories. The training data set contains 20 points (marked by pluses in Fig.1)
with two training data points in the interval [2, 4] belonging to category 1, three
in the interval [4, 6] belonging to category 2, ten in the interval [8, 14] belonging
to category 3, five in the interval [14, 18] belonging to category 4, and one in the
interval [18, 20] belonging to category 5. The test data consists of 200 points in
the interval [0, 20], each separated by a distance of 0.1. Fig.1(a) shows the mean
and the confidence bound of the output predictive distribution for EP-GPOR
on the synthetic data set. Similar plot for PLSOR is depicted in Fig.1(b). From
Fig.1, we observe that the performance of both the approaches is similar.

5.2 Benchmark Data

We report the experimental results of our approach on 9 benchmark data sets
[8]. Properties of these benchmark data sets are summarized in Table 2. These
are regression data sets. The continuous target values are discretized into ordinal
values using equal frequency binning. Here, we divide the range of target values
into intervals of the same length. Target values are then relabeled according to
the interval in which they fall. The ordinal target values thus obtained range
from 1 to r, where r denotes the number of intervals. For each data set, we
generate two versions, 5 bins and 10 bins, obtained by discretizing the target
values in the original data set into 5 and 10 intervals respectively. We conduct
experiments on both the versions of the data sets. Each data set is randomly

Table 2. Benchmark data sets and their properties

Data set AttributesTraining InstancesTest Instances

Diabetes 2 30 13

Pyrimidine 27 50 24

Triazines 60 100 86

Wisconsin 32 130 64

Machine 6 150 59

AutoMPG 7 200 192

Boston 13 300 206

Stocks 9 600 350

Abalone 8 1000 3177
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(a) EP-GPOR

(b) PLSOR

Fig. 1. The mean value and the confidence bound of the output predictive distribution
for EP-GPOR and PLSOR on an 1-dimensional synthetic data set
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Table 3. Comparison of the results of PLSOR with MAP-GPOR and EP-GPOR
on benchmark data sets for the 5 bins version. Mean zero-one errors are reported in
percentage. Mean absolute errors are rounded off to 2 decimal places. Values in bold
letters denote the lowest mean value among the three approaches.

Mean zero-one error(%) Mean absolute error

Data MAP-GPOR EP-GPOR PLSOR MAP-GPOR EP- GPOR PLSOR

Diabetes 54.23±13.78 54.23±13.78 48.46±11.2 0.66±0.14 0.67±0.14 0.62±0.16

Pyrimidine 39.79±7.21 36.46±6.47 39.37±9.41 0.43±0.09 0.39±0.07 0.46±0.19

Triazines 52.91±2.15 52.62±2.66 54.42±3.43 0.69±0.02 0.69±0.03 0.74±0.063

Wisconsin 65.00±4.71 65.16±4.65 65.70±3.23 1.01±0.09 1.01±0.09 1.24±0.10

Machine 16.53±3.56 16.78±3.88 18.39±3.45 0.19±0.04 0.19±0.04 0.21±0.05

AutoMPG 23.78±1.85 23.75±1.74 25.76±2.19 0.24±0.02 0.24±0.02 0.26±0.02

Boston 24.88±2.02 24.49±1.85 24.59±2.57 0.26±0.02 0.26±0.02 0.26±0.02

Stocks 11.99±2.34 12.00±2.06 10.70±1.66 0.12±0.02 0.12±0.02 0.11±0.02

Abalone 21.50±0.22 21.56±0.36 22.05±0.30 0.23±0.00 0.23±0.00 0.24±0.00

partitioned into training and test data sets and 20 such training and test data
set instances are generated by repeated independent partitioning. We use the
Gaussian kernel (1) in all our experiments.

The model parameter values are obtained by solving the optimization problem
(11). The optimization is run with random as well as fixed1 initialization of
optimization variables; we report the result for which the objective function
value is the least.

We compare the generalization performance of PLSOR with MAP-GPOR
and EP-GPOR on the benchmark datasets. We use two evaluation metrics to
compare the performance, zero-one error and absolute error [8]. Let the actual
test outputs be {y1, . . . , yn∗} and the predicted test outputs be {ŷ1, . . . , ˆyn∗}.
Then the zero-one error and absolute error are defined as follows.

zero-one error. gives the fraction of incorrect predictions on test data i.e.
1
n∗

∑n∗
i=1 I(ŷi �= yi), where I(·) is an indicator function which gives 1 when

the argument is true and 0 otherwise.
absolute error. gives the average deviation of predicted test outputs from the

actual test outputs i.e. 1
n∗

∑n∗
i=1 |ŷi − yi|.

For each data set, zero-one and absolute errors for the proposed approach is
obtained on all the 20 instances of training and test data sets. The mean of the
zero-one and absolute errors, along with their standard deviation, are used to
compare the performance of various approaches. We prefer methods with low
mean zero-one and mean absolute errors. Tables 3 and 4 compare PLSOR with
MAP-GPOR and EP-GPOR for the 5 bins and 10 bins cases respectively.

We observe from Tables 3 and 4 that the results obtained with the PLSOR ap-
proach are comparable with those obtained with the MAP-GPOR and

1 Fixed initialization is done as given in [8] where we choose σ2
f = 1, κ = 1/d, d

being the dimension of the data set, β1 = −1, Δl = 2/r, r being number of ordinal
categories.
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Table 4. Comparison of the results of PLSOR with MAP-GPOR and EP-GPOR on
benchmark data sets for the 10 bins version. Mean zero-one errors are reported in
percentage. Mean absolute errors are rounded off to 2 decimal places. Values in bold
letters denote the lowest mean value among the three approaches.

Mean zero-one error(%) Mean absolute error

Data MAP-GPOR EP-GPOR PLSOR MAP-GPOR EP-GPOR PLSOR

Diabetes 83.46±5.73 83.08±5.91 76.92±9.98 2.14±0.33 2.14±0.33 1.50±0.37

Pyrimidine 55.42±8.01 54.38±7.70 55.63±8.47 0.88±0.18 0.83±0.13 0.89±0.18

Triazines 63.72±4.34 64.01±3.78 69.88±4.97 1.20±0.07 1.20±0.07 1.37±0.20

Wisconsin 78.52±3.58 78.52±3.51 75.94±1.86 2.14±0.18 2.14±0.18 2.94±0.13

Machine 33.81±3.91 33.73±3.64 35.17±3.64 0.48±0.07 0.47±0.08 0.53±0.08

Auto MPG 43.96±2.81 43.88±2.60 46.35±2.48 0.50±0.03 0.50±0.03 0.56±0.04

Boston 41.53±2.77 41.26±2.86 41.99±2.82 0.49±0.03 0.49±0.03 0.51±0.04

Stocks 19.90±1.72 19.44±1.91 18.17±1.79 0.20±0.02 0.20±0.02 0.19±0.02

Abalone 42.60±0.91 42.27±0.46 44.24±0.68 0.51±0.01 0.51±0.01 0.55±0.01

Table 5. Average rank of each of the ordinal regression approaches, MAP-GPOR,
EP-GPOR and PLSOR, over all the data sets and the Friedman statistic computed
over all the approaches

5 bins 10 bins

zero-one absolute zero-one absolute

MAP-GPOR 1.944 1.778 2.167 1.833

EP-GPOR 1.722 1.778 1.500 1.611

PLSOR 2.333 2.444 2.333 2.556

FF 0.8266 1.3880 1.8449 2.5841

EP-GPOR approaches. PLSOR is found to perform better than MAP-GPOR
and EP-GPOR on two data sets, Diabetes and Stocks. On other data sets, the
PLSOR results are close to the MAP-GPOR and EP-GPOR results.

We use the Friedman test [11] to check if the performance of the proposed
approach differs significantly from the existing GPOR approaches. Here we com-
pare 3 approaches on 9 data sets. Therefore, the F distribution has 2 and 16
degrees of freedom2. For the level of significance α = 0.05, the critical F value
is 3.63. Table 5 reports the average rank of the ordinal regression approaches,
MAP-GPOR, EP-GPOR and PLSOR, over all the data sets. It also reports
the Friedman statistic FF [11] computed over all approaches for 5 bins and 10
bins cases with respect to zero-one and absolute errors. In all the cases, the
computed FF values are less than the critical F value (due to the ranks being
similar). Hence there does not exist any significance differences between various
approaches. Thus, the proposed PLSOR approach is simple, easy to implement
and gives competitive performance compared to the existing state-of-the-art GP
based approaches for ordinal regression.

2 For K approaches and N data sets, F distribution has K − 1 and (K − 1)(N − 1)
degrees of freedom.
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6 Conclusion

In this work, we proposed a novel approach to solve the ordinal regression prob-
lem using Gaussian processes. The proposed approach, probabilistic least squares
ordinal regression (PLSOR), provided an easy and exact way to perform ordinal
regression using Gaussian processes. Here model selection is performed using
leave-one-out cross-validation technique. Experiments on synthetic and bench-
mark data sets showed that the proposed approach is competitive with the state-
of-the-art GPOR approach. In future, we would like to develop sparse models
for the Gaussian process ordinal regression approaches so that the training time
and inference time could be reduced considerably.
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Abstract. Bagging ensemble selection (BES) is a relatively new en-
semble learning strategy. The strategy can be seen as an ensemble of the
ensemble selection from libraries of models (ES) strategy. Previous exper-
imental results on binary classification problems have shown that using
random trees as base classifiers, BES-OOB (the most successful variant of
BES) is competitive with (and in many cases, superior to) other ensemble
learning strategies, for instance, the original ES algorithm, stacking with
linear regression, random forests or boosting. Motivated by the promising
results in classification, this paper examines the predictive performance
of the BES-OOB strategy for regression problems. Our results show that
the BES-OOB strategy outperforms Stochastic Gradient Boosting and
Bagging when using regression trees as the base learners. Our results also
suggest that the advantage of using a diverse model library becomes clear
when the model library size is relatively large. We also present encour-
aging results indicating that the non-negative least squares algorithm is
a viable approach for pruning an ensemble of ensembles.

1 Introduction

The problem of constructing an ensemble from a library of base learners has
always been of interest to the data mining community. Usually, compared with
individual learners, ensemble strategies are more accurate and stable. In a typical
regression setting, a given training set D consists of m instances, such as D =
{(x1, y1), ..., (xm, ym)}, where xi is an instance and yi is a target, the task is
to learn an approximate function f : X → R of the true function f0 from D.
Let fj, j = 1...k, be a set of base regression learners that output predictions
fj(xi). The output of a simple regression ensemble F (xi) for instance xi can be
expressed as:

F (xi) =

k∑
j=1

wjfj(xi), (1)

where wj is the weight of base learner fj . In this particular form, ensemble learn-
ing strategies can be seen as methods for calculating optimal weights for each
base learner in terms of a regression goal. Since the mid-70s, many ensemble
strategies have been proposed. We first review a few state-of-the-art ensemble

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 695–706, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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strategies for regression. Gradient Boosting [9] is a classical ensemble learning
algorithm. It produces an ensemble of base learners (e.g., decision trees) based
on a stage-wise procedure to optimise an arbitrary differentiable loss function.
Stochastic Gradient Boosting [8] is an extension of the Gradient Boosting algo-
rithm, where at each iteration, a base learner trains on a subset of the training
set drawn at random without replacement. Bagging (bootstrap aggregating) [2]
is based on the instability of base learners, which can be exploited to improve
the predictive performance of such unstable base learners. The basic idea is that,
given a training set T of size n and a learner A, bagging generatesm new training
sets with replacement, Ti. Then, bagging applies A to each Ti to build m models.
The final output of bagging is based on simple averaging [2]. For instance, in
a regression setting using Eq. 1, the weight wj for fj is 1

k . MultiBoosting [16]
is an ensemble algorithm designed to reduce both variance and bias simultane-
ously, in which Boosting is used as the base learner for Bagging. For a more
detailed review of recent developments on ensemble learning strategies please
refer to [14,19]. Next, we discuss the motivations for proposing and studying the
bagging ensemble selection (BES) strategy.

Before introducing the BES strategy, we briefly review the ensemble selection
(ES) algorithm proposed in [6]. ES is a method for constructing ensembles from
a library of base learners. Firstly, base models are built using many different
machine-learning algorithms. Then a construction strategy such as forward step-
wise selection, guided by some scoring function, extracts a well performing subset
of all models. The simple forward step-wise model selection based procedure
proposed in [6] works as follows: (1) start with an empty ensemble; (2) add to
the ensemble the model in the library that maximizes the ensemble’s performance
using some given error metric on a hillclimb set; (3) repeat Step 2 until all models
have been examined; (4) return that subset of models that yields maximum
performance on the hillclimb set. One advantage of ES is that it can be optimised
for many common performance metrics or even a combination of metrics. To
exemplify this ability, a number of different metrics including mean absolute
error, correlation coefficients, root mean squared error, and relative root squared
error, will be used to present results in the graphs and tables of this paper. For
variants of the ES algorithm, the reader is referred to [5,6].

Experimental results in [6,15] show that in the classification setting, the simple
ES strategy sometimes overfits the hillclimb set, reducing its predictive perfor-
mance. Our preliminary experimental results for employing ES on regression
problems also identified a similar phenomenon. Figure 1 (a) shows an example
of the hillclimb set overfitting problem of ES on the Boston housing price data.
The red curve (top) is the hillclimb set performance; the blue curve (bottom)
is the test set performance. We can see that as the size of the model library in-
creases, the hillclimb set performance also improves gradually. However, the test
set performance does not always improve. In this case, the local optimal perfor-
mance is achieved when the model library size is about 700. Another practical
issue is that users have to estimate the optimal hillclimb set ratio for a given data
set. Figure 1 (b) shows an example on the CPU data based on cross-validation
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(a) Boston housing-price data (b) CPU performance data

Fig. 1. Examples of the hillclimb set overfitting and the hillclimb set ratio problems
of the Ensemble Selection strategy

based performance estimation. We can see that the local optimal performance
is achieved when the hillclimb ratio is about 0.35; after that, the performance
starts to drop. Although we could use cross-validation to estimate the hillclimb
set ratio, this would substantially increase the practical training cost of ES.
To overcome these problems and improve the predictive performance of the ES
strategy, three BES strategies have been proposed in [15]. Experimental results
show that, under the classification setting, the BES-OOB strategy is the most
successful variant in terms of predictive performance. In this paper, we focus on
examining the predictive performance of the BES-OOB strategy for regression
problems.

2 The BES-OOB Strategy

TheBES-OOB strategy uses the full bootstrap sample as the build set for model
generation, and the respective out-of-bag sample as the hillclimb set for ensemble
construction. The bootstrap sample is expected to contain about 1 − 1/e ≈
63.2% of the unique examples of the training set [1,2]. Therefore the hillclimb
set (out-of-bag sample) is expected to have about 1/e ≈ 36.8% unique examples
of the training set for each bagging iteration. Figure 2 shows the pseudocode
for training the BES-OOB strategy. Please note that the term “classifier” in the
pseudocode is used to refer to both classification and regression classifiers. An
advantage of BES-OOB is that the user does not need to choose the size of the
hillclimb set as in the ES algorithm. Bagging and ES are both generic strategies
for supervised learning. When they are used for the regression setting, we can
simply use regression algorithms as the base classifiers. BES-OOB combines the
two strategies, therefore it is also a generic ensemble learning strategy for both
classification and regression.

In the original ES algorithm, Step 6 in Figure 2 uses the forward step-wise
selection method for ensemble construction. For the details of the method, we
refer readers to [6]. In this paper, we also use the same method. Our emphasis
here is to show that any “greedy” (active set) ensemble construction method that
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BES-OOB(S, E, T )
S is the training set
E is the Ensemble Selection classifier
T is the number of bootstrap samples

1: H ← empty ensemble
2: for i ← 1 to T {
3: Sb ← bootstrap sample from S
4: Soob ← out of bag sample
5: train base classifiers in E on Sb

6: Ei ← do ensemble selection based on
base classifiers’ performance on Soob

7: add Ei to H
8: }
9: return H

Fig. 2. Pseudocode of the BES-OOB algorithm

utilizes the out-of-bag sample for performance estimation can be used in Step 6
of BES-OOB. Although in recent years, the ES algorithm has been highlighted in
winning solutions of many data mining competitions [15], there is no theoretical
work on explicitly examining the convergence property of the ES algorithm. Here
we attempt to give a brief discussion on the theoretical aspect. If we see the
forward step-wise method used in ES as a “greedy” feature selection algorithm,
then the predictions of each base regression classifier can be seen as the “feature”
values. Based on the theoretical work on forward feature selection [4], when
certain conditions are met, such as sufficient conditions for convex optimization,
use of squared error loss and in absence of noise, the theoretical convergence
rate of the forward step-wise method used in ES is sublinear at m− 1

2 , where m
is the number of base classifiers. A comprehensive theoretical analysis of the ES
algorithm is beyond the scope of this paper and we leave it for future research.

3 Experiments

In this section, we conduct a series of experiments and statistical tests to examine
the performance of the BES-OOB ensemble strategy for regression.

3.1 Comparison to Other Ensemble Strategies

Firstly we compare BES-OOB to three state-of-the-art ensemble strategies for re-
gression: Stochastic Gradient Boosting (SGB) [8], standard Bagging (BG) [2] and
an ensemble of Bagging and Stochastic Gradient Boosting, denoted by BSGB.
BSGB can be seen as a variant of the MultiBoosting algorithm [16], in which
SGB is used as a base learner for Bagging. The experiments are based on 42
regression data sets from UCI repository1 and StatLib2. We use 10 times 10-fold
cross-validation to estimate the performance of each strategy. Then, several sta-
tistical significance tests are conducted, including the non-parametric Friedman-
test and the Bonferroni-Dunn test as described in [7]. This approach utilises the

1 http://archive.ics.uci.edu/ml
2 http://lib.stat.cmu.edu
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Table 1. Estimated correlation coefficients of BES-OOB, SGB, BG, and BSGB; and
Win/tie/loss counts of paired t-test

Dataset BES-OOB SGB BG BSGB

quake 0.12 0.06 • 0.12 0.12

cholesterol 0.19 0.07 • 0.18 0.19

detroit 0.22 0.03 • 0.24 0.24

breastTumor 0.22 0.16 • 0.22 0.22

meta 0.38 0.14 • 0.36 • 0.38

veteran 0.42 0.26 • 0.42 0.42

schlvote 0.45 0.10 • 0.46 0.43

sensory 0.53 0.48 • 0.53 0.52

longley 0.54 0.43 • 0.54 • 0.50 •
strike 0.55 0.41 • 0.55 0.55

kidney 0.55 0.38 • 0.53 • 0.58 ◦
baskball 0.55 0.43 • 0.55 0.56

newton-hema 0.57 0.54 0.58 ◦ 0.59 ◦
pbc 0.57 0.52 • 0.56 • 0.58 ◦
stanford 0.60 0.43 • 0.63 0.63

sleep 0.64 0.52 • 0.64 0.62

hungarian 0.65 0.63 • 0.65 • 0.66 ◦
winequality-red 0.66 0.61 • 0.66 • 0.68 ◦
echoMonths 0.67 0.69 ◦ 0.69 ◦ 0.68

winequality-white 0.68 0.62 • 0.67 • 0.70 ◦
cleveland 0.69 0.63 • 0.69 0.70 ◦
pollution 0.75 0.51 • 0.73 • 0.75

vineyard 0.76 0.67 • 0.75 • 0.76

lowbwt 0.79 0.78 • 0.79 0.79

elusage 0.82 0.81 0.82 0.84 ◦
vinnie 0.86 0.85 • 0.86 ◦ 0.86 ◦
bolts 0.86 0.83 0.83 • 0.86

gascons 0.88 0.76 • 0.84 0.83

cloud 0.91 0.84 • 0.90 • 0.91

autoMpg 0.91 0.92 0.91 • 0.93 ◦
servo 0.92 0.91 0.91 • 0.93 ◦
pwLinear 0.92 0.92 0.92 0.93 ◦
housing 0.92 0.90 • 0.91 • 0.93 ◦
boston 0.92 0.91 • 0.92 • 0.93 ◦
socmob 0.92 0.92 0.91 • 0.94 ◦
autoHorse 0.93 0.91 • 0.90 • 0.93

autoPrice 0.93 0.92 • 0.93 • 0.94 ◦
cpu 0.97 0.93 • 0.96 • 0.98

strikes 0.98 0.97 • 0.96 • 0.98 •
fishcatch 0.98 0.96 • 0.97 • 0.97 •
visualizing-galaxy 0.99 0.98 • 0.98 • 0.99 ◦
bodyfat 0.99 0.98 • 0.98 • 0.98 •

• ◦, BES-OOB is significantly better or worse

BES-OOB against

SGB BG BSGB

win/tie/loss 34/7/1 23/16/3 4/21/17

ranking information of each learner in comparison, which is suitable for compar-
ing multiple learners on multiple data sets. The total numbers of win, tie and
loss for the paired t-test (with significance level 0.05) are also recorded. To fairly
compare the four strategies, REPTree (a CART-like regression tree) [10] is used
as the base learner. The ensemble size is set to 1,500 for all these strategies. For
SGB, the shrinkage parameter is set to 0.5 and the subsample size parameter
is set to 50%. For BES-OOB, the number of base learners per “bag” is set to
30, and the number of bagging iterations is set to 50. Also, BES-OOB is set
to optimise the correlation coefficient metric. For BSGB, the number of base
learners for SGB (shrinkage is set to 0.5; subsample size is 50%) is set to 30, and
the number of bagging iterations is set to 50. Table 1 presents the paired t-test
results. Correlation coefficient scores are reported. Figure 3 is the graphical rep-
resentation of the Friedman-test for the four strategies. We can see that both
BES-OOB and BSGB significantly outperform BG and SGB, and BG signifi-
cantly outperforms SGB. There is no significant difference between BES-OOB
and BSGB’s performance over the 42 data sets.
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Fig. 3. Visualization of the Friedman-test results for BES-OOS, SGB, BG, and BSGB
with REPTree as base learners over 42 data sets. The middle point of each bar indicates
the average rankings, and the bars indicate the critical values of the Bonferroni-Dunn
test (two-tailed test at significance level 0.05). Strategies having non-overlapped bars
are significantly different.

3.2 Diverse Model Libraries

In the previous experiments, we have been testing on a single type base learner.
However, one distinguishing feature of BES-OOB is that it can use different
types of base learners. In this section, BES-OOB with a diverse model library
consisting of three types of base learners (REPTree, SVM regression and M5P
model tree [13]), denoted by BES-diverse, is compared to BES-OOB with only
one of the three base learners, denoted by BES-reptree, BES-svm, and BES-m5p,
respectively. Three different model library sizes are tested: 3, 30 and 300. The
experimental setup is as follows: the number of bagging iterations for all BES
strategies in comparison is set to 30; for BES-diverse, when the model library
size is 3, only one of each type of base learners is used; when the model library
size is 30, 10 of each type of base learners are used; so 100 of each type of the
base learners are used for a model library size of 300. The correlation coefficient
is set as the goal metric for all strategies.

Diversity is one of the key factors for ensemble learning. To simplify the
procedure for generating diverse base learners, we adopt the “random subspace”
idea [3] for each base learner in the library. That is, each base learner trains
on a random subset (33% is used for all experiments) of the original variables.
For REPTree, Weka default parameters are used, and we also randomly set its
random seed; for SVM regression, we use the LibSVM default parameters for
epsilon-SVM regression and RBF kernel, except the gamma value is randomly
set to be between 0 and 1. We use the Weka default parameters for M5P model
tree. Table 2 shows the paired t-test results of BES-OOB-diverse against BES-
OOB-reptree, BES-OOB-svm and BES-OOB-m5p under three different model
library sizes: 3, 30, and 300, respectively. Please note that the number of bagging
iterations is set to 30. Therefore, the numbers of base learners that are allowed
to be built for the three model library sizes are: 90, 900, and 9,000, respectively.

Figure 4 shows the average Friedman-test rankings of each strategy under
the three model library sizes. We can see that the ranking of BES-OOB-diverse
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Table 2. Win/tie/loss counts of paired t-test for BES-OOB-diverse against BES-OOB-
reptree (A1), BES-OOB-svm (A2) and BES-OOB-m5p(A3).

Model library size = 3

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 4/20/18 32/8/2 5/13/24

Model library size = 30

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 19/15/8 34/6/2 9/20/13

Model library size = 300

BES-OOB-diverse against

A1 A2 A3

win/tie/loss 5/37/0 14/28/0 4/38/0

Fig. 4. Friedman average rankings under different model library sizes

improves (from the third to the second, and finally to the first) when the model
library size increases. The result implies that the advantage of using a diverse
model library becomes clear when the model library size is relatively large. To
the best of our knowledge, this is a novel result in the regression setting.

3.3 Pruning an Ensemble of ES Ensembles

Until now, we have been using the standard output aggregation method for
BES-OOB. That is, the final prediction of BES-OOB is simply the average of
all individual ES learners. The final ensemble size of BES-OOB is therefore the
number of bagging iterations. In this section, we consider methods for ensemble
pruning. Usually, there are two main reasons for doing ensemble pruning. The
first is to reduce the prediction cost (e.g., runtime or memory requirements)
without sacrificing too much predictive performance. The second is to obtain a
more accurate model. Based on the theoretical work of [20] in the study of neu-
ral networks, we know that theoretically “many could be better than all”. This
implies that the performance of an optimal subset of base learners may outper-
form the population average. Since the default BES-OOB strategy uses simple
averaging, appropriate ensemble pruning may improve BES-OOB’s performance
in terms of both accuracy and prediction cost. We compare simple averaging to
two pruning methods: pruning with the cocktail ensemble (CE) algorithm, and
pruning with the stacking strategy using the non-negative least-squares (NNLS)
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BES-OOB-CE(S, E, T )
S is the training set
E is the Ensemble Selection (ES) learner
T is the number of bootstrap samples

1: H ← BES-OOB(S,E,T) // an ensemble of T ES
ensembles

2: fc
1 ← the ensemble in H with the smallest out-of-bag

estimate of error
3: emin = +∞
4: for i ← 2 to T
5: fi ← null
6: for each f ∈ H
7: e ← estimated error of combing f and fc

i−1

8: if e < emin then fi ← f and emin ← e
9: }
10: if fi is null then fc

N ← fc
i−1 and break

11: fc
i ← pif

c
i−1 + (1 − pi)fi, where pi is obtained by
Eq.2 for the mean squared error

12: }
13: return fc

N

Fig. 5. Pseudocode of the CE method for BES-OOB ensemble pruning

algorithm as the meta-level learner. The three methods in this comparison are de-
noted by BES-OOB-avg, BES-OOB-ce, and BES-OOB-nnls, respectively. Next,
we briefly introduce the BES-OOB-ce and the BES-OOB-nnls methods.

Cocktail ensemble (CE) [18], is a novel method of ensemble learning. One
reason for using CE as an ensemble pruning method for BES-OOB is that the
authors explicitly mentioned that the method is proposed for learning ensem-
ble of ensembles. Since combination of multiple ensembles (equivalent to finding
the optimal weights for each base learner) is an NP-hard problem [11], the au-
thors of [18] proposed using the pair-wise combination for multiple ensembles. In
addition, CE has an appealing mathematical foundation, which we will briefly
discuss here. For a full account of the method, we refer readers to [18]. The basic
idea is that, given two ensembles f1 and f2, a linear ensemble of ensembles f1
and f2 can be expressed as:

f c = pf1 + (1− p)f2, wrt p ∈ [0, 1]

where p is the weight for f1 and 1 − p is the weight for f2. Then, the optimal
weight of f1 is:

p∗ =
E2 − E1

2% + 0.5, (2)

where E1 and E2 are the generalization errors of f1 and f2, and % = Ex[(f1 −
f2)

2] is the squared output difference of the two ensembles. Here E1, E2 and
% can be estimated from data (in BES-OOB, we use the out-of-bag sample).
Figure 5 shows the pseudocode for the CE method, which has been adapted for
BES-OOB pruning.

Stacking, or stacked generalisation [17], is a popular ensemble learning strat-
egy, where the weights of the base classifiers are the regression coefficients of the
meta-level regressor. Usually linear regression (LR) is used at the meta-level.
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Since our goal is to prune an ensemble, simply using LR would not reduce the
ensemble size. Here, we propose using stacking with the NNLS algorithm. To
the best of our knowledge, this is the first time that stacking with NNLS is
considered as an ensemble pruning approach. Eq. 5 shows the basic form of the
NNLS optimisation problem.

min
w≥0
‖Xw − y‖22. (3)

Here, X is the data matrix, w is the regression coefficient vector, and y is the
target matrix. We can see that it is the same as the linear least-squares regression
form, but with extra constraints on the values of the coefficient vector. For
our experiment, we use the NNLS algorithm proposed in [12]. The BES-OOB
ensemble strategy constructs an ensemble of ES ensembles. Each individual ES
is trained on a corresponding bootstrap sample, and its ensemble selection is
guided by its performance on the out-of-bag sample. The basic steps of using
stacking with NNLS for BES-OOB pruning are as follows: Suppose S is the
training set, and H is an ensemble of ES ensembles (same as line 1 in Figure 5).
A meta-dataset can be constructed by using the predictions of each ES in H on
S. The targets in S are used as the targets of the meta-dataset. Then, we use
NNLS to build a model on the meta-dataset. The NNLS regression coefficients
are used as the weights for each ES. Therefore, the final ensemble consists only
of ES ensembles with greater than zero weight.

The experimental setup is as follows: the number of bagging iterations is set
to 30 for all three methods (BES-OOB-avg/ce/nnls). For each bagging iteration,
one REPTree-based ES learner is trained. The number of trees used for each ES
is 10. As in the previous experiment, each REPTree is built using a random 33%
of the original attributes. So in total 300 REPTree learners are built for each of
the three methods in the comparison. At the individual bagging iteration level,
all three BES-OOB methods are set to optimise the mean squared error (MSE)
metric. At the pruning level, BES-OOB-ce is also set to optimise the MSE metric
based on Eq. 2. Also, based on Eq. 5, we know that BES-OOB-nnls optimises
square error by default. In total 42 data sets are used for this experiment.

Table 3 shows the corrected paired t-test results. The reported root relative
squared errors are estimated from 10 times 10-fold cross-validation. The final
ensemble sizes, and the final number of trees, are also reported. Figure 6 shows
the Friedman-test results. Based on the corrected paired t-test results, we can
see that both of the two pruning methods, BES-OOB-ce and BES-OOB-nnls,
show competitive predictive performance compared to BES-OOB-avg, but with
smaller final ensemble sizes and final number of trees. There are no significant t-
test -based performance differences between BES-OOB-avg and the two pruning
methods on most of the 42 data sets (39 for BES-OOB-ce; 37 for BES-OOB-
nnls) in this experiment. Based on the Friedman-test and the Bonferroni-test,
we can see that the performance of BES-OOB-avg and BES-OOB-nnls has no
significant differences over the 42 data sets.
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Table 3. The Root Relative Squared Error values, the ensemble sizes, and the number
of trees in the final ensemble for BES-OOB-avg, BES-OOB-ce and BES-OOB-nnls,
over 42 data sets

Data set
Root Relative Squared Error Ensemble Size Number of Trees

nnls ce avg nnls ce avg nnls ce avg

autoHorse 34.60 36.87 34.78 5.7 5.6 30 22.0 22.2 118.8

autoMpg 37.53 38.48 37.58 8.7 4.6 30 38.4 21.3 138.6

autoPrice 34.99 38.52 35.91 6.2 4.3 30 23.3 17.2 114.1

baskball 84.46 85.26 83.69 4.9 4.2 30 15.0 12.5 98.2

bodyfat 14.79 ◦ 27.53 17.13 5.3 3.4 30 13.3 9.7 75.2

bolts 31.39 36.12 35.50 5.4 4.5 30 14.7 14.4 91.0

boston 41.85 44.99 43.02 7.4 5.3 30 28.7 23.4 124.9

breastTumor 97.40 97.75 96.50 4.5 4.1 30 15.9 15.7 104.2

cholesterol 101.31 100.47 99.15 3.7 3.9 30 13.6 15.0 108.1

cleveland 74.15 75.01 73.78 5.9 4.0 30 22.0 17.0 119.0

cloud 44.80 47.19 44.09 5.6 5.3 30 20.3 19.5 109.5

cpu 19.46 ◦ 29.41 22.10 4.8 4.1 30 21.3 16.7 115.0

detroit 151.11 283.02 151.73 3.6 19.3 30 11.5 61.9 94.2

echoMonths 72.99 71.40 70.55 3.8 3.8 30 11.7 10.9 89.3

elusage 49.91 49.52 48.76 6.0 7.2 30 16.0 21.0 83.2

fishcatch 19.84 24.40 21.24 7.5 3.7 30 26.9 13.0 106.7

gascons 25.50 30.09 25.24 5.2 9.1 30 19.5 35.8 115.2

housing 41.57 45.03 43.16 7.3 5.2 30 28.5 21.2 123.7

hungarian 74.99 75.10 74.36 4.7 5.2 30 15.3 17.8 102.2

kidney 78.38 82.08 81.29 4.6 5.2 30 12.9 16.0 91.2

longley 47.35 61.70 49.97 5.0 12.5 30 16.4 39.8 102.1

lowbwt 63.02 64.00 61.62 4.4 3.9 30 13.8 11.6 92.3

meta 149.15 147.21 112.30 1.6 3.9 30 4.8 14.3 94.2

newton-hema 85.56 85.20 82.78 3.9 5.4 30 13.2 17.4 97.1

pbc 84.45 85.07 84.24 4.9 6.1 30 18.2 24.5 116.6

pollution 71.70 77.01 72.06 5.8 4.6 30 18.8 16.2 101.5

pwLinear • 48.92 55.53 53.93 5.0 3.8 30 14.0 12.9 96.8

quake 100.00 99.78 99.54 3.5 6.2 30 18.0 28.3 132.6

schlvote 84.32 ◦ 110.16 79.01 2.9 12.6 30 8.4 36.4 84.8

sensory • 84.82 86.99 86.97 5.4 5.8 30 16.7 20.7 103.7

servo 37.66 44.59 43.44 3.9 7.0 30 10.9 23.3 94.0

sleep 82.01 80.57 77.49 4.3 4.5 30 11.9 13.3 90.0

socmob • 37.24 41.23 39.81 6.5 4.4 30 19.9 15.7 100.0

stanford 92.16 95.82 88.37 4.1 6.9 30 12.6 21.8 91.7

strike 88.44 87.79 80.79 3.3 4.8 30 11.8 16.9 111.8

strikes • 0.41 8.95 4.42 1.4 10.0 30 2.9 21.9 66.0

veteran 97.46 93.98 91.51 3.3 4.3 30 10.3 13.5 94.8

vineyard 62.82 63.97 62.57 4.5 8.1 30 14.2 24.1 95.1

vinnie • 50.89 52.39 51.30 7.7 4.5 30 23.5 13.3 88.4

visualizing-galaxy 15.60 16.31 15.65 10.5 5.7 30 42.7 23.6 126.0

winequality-red 77.08 77.98 77.39 7.4 9.8 30 40.2 57.8 166.1

winequality-white 76.13 76.75 76.39 9.0 15.4 30 63.4 106.1 215.1

Average 63.53 69.79 62.65 5.2 6.2 30 19.0 23.2 106.7

(win/tie/loss); avg vs. nnls: 0/37/5; avg vs. ce: 3/39/0;

• ◦, BES-OOB-avg is significantly worse or better, respectively; at significance level 0.05

The final ensemble size for BES-OOB-avg is 30 (equal to the number of bag-
ging iterations). Over the 42 data sets, the average final ensemble size of BES-
OOB-ce is 6.2, corresponding to a 70% reduction in terms of ensemble size; the
average final ensemble size of BES-OOB-nnls is 5.2, corresponding to a 83%
reduction in terms of ensemble size. The average final number of trees of BES-
OOB-avg is 106.7, which is about 36% of the total 300 trees. The average fi-
nal number of trees of BES-OOB-ce is 23.2, corresponding to a 78% ((106.7 -
23.2)/106.7) reduction in terms of number of trees; the average final number of
trees of BES-OOB-nnls is 19.0, corresponding to a 82% reduction in terms of
number of trees. Figure 7 shows the boxplot visualization for the ensemble sizes
and the numbers of trees of BES-OOB-avg, BES-OOB-ce and BES-OOB-nnls.
Notably, the BES-OOB-nnls method significantly outperforms the BES-OOB-
avg method on 5 data sets (about 12% of the 42 data sets). This is a significant
empirical result indicating that BES-OOB-nnls not only works well for ensemble
pruning, but also could be used for further improving the predictive performance
of the BES-OOB strategy.
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Fig. 6. The result of the Friedman-test over 42 data sets with two-tailed Bonferroni-
Dunn test at significance level 0.05. Strategies having non-overlapped bars are signifi-
cantly different.

(a) Final Ensemble Size (b) Number of trees

Fig. 7. The boxplot visualization for the final average ensemble sizes and the final
average tree sizes

4 Conclusions

Bagging ensemble selection using the out-of-bag sample for hillclimbing (BES-
OOB), is a relatively new ensemble learning strategy. In this paper, we studied
the predictive performance of BES-OOB in the regression setting. The main
contributions of this paper are:

– Previous studies focused on using BES-OOB for classification problems only.
In this paper, through a series of experiments and statistical tests, we have
shown that, in the regression setting, the BES-OOB strategy is competi-
tive to MultiBoosting, and is superior to Bagging and Stochastic Gradient
Boosting when using CART-like regression trees as the base learners.

– We have shown that using a diverse model library could further boost BES-
OOB’s predictive performance when the model library size is relatively large.

– Our results also have shown that both the cocktail ensemble and the stacking
with NNLS methods work well for BES-OOB ensemble pruning. Particularly,
the latter method can be also used to improve the predictive performance of
the BES-OOB strategy.

One reason for the good predictive performance of the BES-OOB strategy is
that it can optimise a user-specified error metric directly in the base learner
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selection stage. Out-of-bag samples seem to work well for ES’s ensemble selection
in practice. Another notable feature of BES-OOB is its simplicity and ease of
implementation. The success of the BES-OOB ensemble strategy over a broad
range of data sets examined in this study strongly suggests the applicability of
the method to a wide range of problems.
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Abstract. Applications of unsupervised learning techniques to action
recognition have proved highly competitive in comparison to supervised
and hand-crafted approaches, despite not being designed to handle im-
age processing problems. Many of these techniques are either based on
biological models of cognition or have responses that correlate to those
observed in biological systems. In this study we apply (for the first time)
an adaptation of the latest hierarchical temporal memory (HTM) cor-
tical learning algorithms (CLAs) to the problem of action recognition.
These HTM algorithms are both unsupervised and represent one of the
most complete high-level syntheses available of the current neuroscien-
tific understanding of the functioning of neocortex.

Specifically, we extend the latest HTM work on augmented spatial
pooling, to produce a fixed frame temporal pooler (FFTP). This pooler
is evaluated on the well-known KTH action recognition data set and in
comparison with the best performing unsupervised learning algorithm for
bag-of-features classification in the area: independent subspace analysis
(ISA). Our results show FFTP comes within 2% of ISA’s performance
and outperforms other comparable techniques on this data set. We take
these results to be promising, given the preliminary nature of the research
and that the FFTP algorithm is only a partial implementation of the
proposed HTM architecture.

1 Introduction

Recent work on action recognition has shown that general purpose unsuper-
vised learning techniques can outperform more specialised approaches that rely
on hand-crafted feature detectors. In particular, Le et al. [9] used independent
subspace analysis (ISA) to learn invariant spatio-temporal features for action
recognition, and produced the best pre-2012 bag-of-features recognition rates on
a range of well-known benchmark datasets. Subsequently, several more sophisti-
cated hand-crafted and supervised learning approaches have outperformed ISA
on two of these datasets (e.g. see [16]). Nevertheless, ISA remains the state-of-
the-art within the class of unsupervised learning algorithms that do not rely on
additional higher-level information concerning the form of the input.

ISA is an extension of independent components analysis (ICA), and, like ICA,
is able to learn receptive fields similar to those found in the V1 and MT areas
of visual cortex [6]. This makes ISA a significant benchmark for the evaluation
of any pattern recognition system that attempts to model the functioning of

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 707–718, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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visual cortex. One such system is the hierarchical temporal memory (HTM)
architecture, originally proposed by Jeff Hawkins [4] and subsequently developed
into a set of cortical learning algorithms (CLAs) [3].

In this paper we compare the performance of ISA with an adaptation of the
latest version of the CLA spatial pooler. This pooler differs from ISA and ICA in
being directly based on a biologically plausible learning model. The overall ap-
proach involves learning sparse distributed representations of the input by form-
ing dendritic connections between functional units that model the minicolumns
observed in human neocortex. These connections form in such a way that the
column responses self-organise to produce sparse representations that have sta-
tistically interesting properties. A recent study has shown that an augmented
CLA spatial pooler produces representations with significantly higher kurtosis
values than those achieved by ICA on a well-known benchmark of greyscale im-
ages [15]. These higher values indicate a more evenly distributed response to
the input data and a greater degree of statistical independence between the re-
sponses. Encouraging as such results are, they do not necessarily translate into
better recognition rates. We therefore decided to compare this augmented spa-
tial pooler with the state-of-the-art in the family of ICA algorithms: the ISA
implementation of Le et al. [9].

To the best of our knowledge, no similar comparisons of the latest HTM cor-
tical learning algorithms have been published. Instead, the majority of recent
HTM papers still use the original NuPic implementation (e.g. [12]) made freely
available by Numenta [2]. While some work has evaluated the question of paral-
lelising the latest spatial and temporal pooler algorithms [11], there is no work
we know of that tests these algorithms on standard vision processing tasks, such
as action recognition.

The research here extends the previous statistical evaluation of the spatial
pooler in [15], by adapting it to represent sequences of frames from movies. This
is achieved by means of additively superimposing the responses to individual
frames. Following the evaluation methodology used by Le et al., we limited this
superimposition to sequences of ten frames, producing a fixed frame temporal
pooling (FFTP) algorithm that is considerably simpler than the temporal pooler
proposed in [3]. We then compared the performance of FFTP to ISA on the well-
known KTH action recognition data set. Our results show that FFTP comes
within 2% of ISA’s performance and outperforms the other directly comparable
algorithms. We take this as a promising result given this is the first application
of an HTM spatial pooler to the domain of moving images, and also given that
the spatial pooler is only a single component within the HTM architecture.
This means that the study is only a preliminary indication of the potential
performance of a complete HTM implementation.

In the remainder of the paper we provide background on the original HTM
spatial pooler and describe the enhancements proposed in [15]. We then intro-
duce the fixed frame temporal pooling algorithm and evaluate its performance
compared to ISA on the KTH dataset. These experiments follow the protocols
developed by Wang et al. [17] that were used in the original ISA study [9].
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2 Spatial Pooling

2.1 The HTM Architecture

The HTM model was originally introduced by Jeff Hawkins [4,5] and provides a
framework within which the functioning of mammalian neocortex is understood
in terms of a single algorithmic process. That process is a form of hierarchically-
structured Bayesian-like predictive inference. The hierarchy itself consists of a
set of regions, where each region consists of a set of columns. These columns
correspond to the mini-columns observed within neocortex that Mountcastle
identified as the basic functional units of neocortical processing [10]. Each column
in turn consists of a set of neurons and their associated dendrites and synapses.
According to HTM theory, these neurons control which columns in a region are
currently active, and which columns are currently predicting they will become
active.

Within each region, two functions are combined: a spatial pooler to form
sparse representations of input, and a temporal pooler to learn temporal se-
quences. The two pooling functions form a single processing unit which is then
replicated and arranged in a hierarchical structure. In this way, the HTM archi-
tecture is able to learn and exchange inferences about temporal sequences rather
than just spatial patterns.

2.2 HTM Spatial Pooling

From the perspective of spatial pooling, a column can be considered as a uni-
fied entity with an associated set of proximal dendrites that synapse directly
with the input (see [3]). These synapses are not associated with weights that
multiplicatively determine the strength of the signal. Instead, each dendrite is
associated with a potential synapse and each synapse is associated with a per-
manence value. If the permanence value of a synapse passes a certain threshold
then the synapse is connected and the dendrite will directly relay the input to
which it is connected, otherwise the synapse remains potential and inactive. The
column then sums the inputs from all its connected synapses to determine its
level of activity.

A spatial pooler learns on the basis of how well the synapses from a partic-
ular column match (or overlap) the input to which the synapses are connected.
Instead of altering the relative weights of the synapses of neighbouring columns,
a strongly activated column will compete with and inhibit its less active neigh-
bours, implementing the function of short-range inter-columnar inhibition neu-
rons [14]. At the end of this process, only the potential synapses belonging to
the winning columns that best represent the current input will be able to learn.
Here learning entails increasing the permanence values of potential synapses
that are connected to active input and decreasing the permanence values of
those connected to inactive input. This implements the forming and un-forming
of synaptic connections discussed above.
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2.3 Augmented Spatial Pooling

The augmented spatial pooler (ASP) introduced in [15] alters the learning al-
gorithm of the original HTM spatial pooler in order that stable representations
of greyscale images can be formed. The original spatial pooler was designed to
encode binary input and failed to reliably converge on greyscale input. This orig-
inal learning algorithm additively boosts the response of columns whose average
activity falls below a predefined threshold (otherwise the boost value is set to
one) and increases the permanence values of all potential synapses of columns
whose response falls below the same threshold. The augmented spatial pooler
will similarly boost the output of all columns whose activity falls below the
threshold but only up to a predefined maximum boost value. Once that value is
reached, the column boost is reset to one, and the closest disconnected column
synapse with the largest permanence value has that value increased to the point
where it becomes connected. This forcing of a connection significantly improves
the convergence behaviour of the pooler on both binary and greyscale input.

Figure 1 shows a matrix of 16×16 ASP columns and their associated synapse
connections after training on a set of grayscale images (see [15] for details).
Here each of the 256 squares represents a column, and each of the 256 pixels in
an individual square represents a synapse belonging to the associated column.

Fig. 1. Image filters for 256 ASP columns after training on a set of greyscale pho-
tographs of natural scenes (taken from [15]). Each square represents a column and
each dot within a square represents a connected synapse.
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Fig. 2. Top left: Graph showing the number of active spatial pooler columns per
unit time as the pooler processes a movie of a man jogging back and forth across a
field. Top right: A full frame from the movie, showing the three patches from which
the graph data is collected. Second row from bottom: a sequence of ten image
patches taken from the left-hand patch position of the full frame image. Bottom
row: Column responses of the FFTP algorithm where each response corresponds to
the image immediately above the response. Bottom right: The superimposed stacked
code produced from the ten preceding responses (this is the final output of the FFTP
algorithm).

A disconnected synapse is represented by a black pixel, otherwise all non-black
pixels represent connected synapses, where the intensity of a pixel represents
the boost value of the associated column. This diagram illustrates the relative
sparsity and simplicity of the image filters produced by a set of columns and
should be contrasted with the correspondingly more complex filters produced by
ISA (for example see Figure 2 from [9]).

3 Fixed Frame Temporal Pooling

The temporal pooler proposed in the most recent HTM technical report [3] imple-
ments a new column structure consisting of four cells, where each cell is laterally
connected to other cells within the same region. These connections again consist
of synapses whose permanence values are learnt according to the responses of
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the spatial pooler and the subsequent activity of the temporal pooler. The task
of the temporal pooler is to predict the sequence of columns that will become
active in the immediate future, according to the current and past activity of the
columns. This prediction produces a pattern of responses where the currently ac-
tive columns are co-active with the columns that are expected to become active
in succeeding time intervals (see [3] for details).

In the current study we are interested in a direct comparison between the
sparse representations produced by ASP and the responses of the ISA filters.
Originally ISA was developed to handle static images, and was converted to
handle moving images by altering the form of the input. This involved taking
static image patches (typically 16 × 16 pixels) and arranging them in temporal
stacks. These stacks consist of ten patches that represent a time ‘tunnel’ through
a video, where the first patch is taken from location x1, y1 of the first video frame,
the second patch is taken from location x1, y1 of the second video frame, and so
on. These ten patches are then ‘flattened’ to form a single image that becomes
the input to an ISA unit. The units themselves are convolved to overlap the
entire video frame (see [9] for full details).

This means that ISA does not predict a particular action as the action un-
folds. Instead it computes its responses retrospectively. In order to compute a
comparable representation using ASP, rather than flattening a temporal input
stack to form a single image, we decided to additively superimpose the ASP re-
sponses to each image patch in a ten patch stack, producing a single response for
the entire stack (see the bottom right of Figure 2 below). This form of temporal
pooling thereby combines the ASP responses to a fixed sequence of temporally
ordered video frame patches (hence the name Fixed Frame Temporal Pooling or
FFTP).

The FFTP algorithm is of a different and lower order of complexity compared
to the full temporal pooler, in that FFTP performs no further learning, and
simply combines the outputs of the spatial pooler in the temporal dimension.
However, the representations of the two temporal poolers will still be similar.
The main differences are that the full temporal pooler will dynamically predict
a future sequence of frames and that the number of frames encompassed in
that prediction will vary according to the strength of the learned connections.
In contrast, FFTP firstly has the future data already available and so is not
required to predict future input, and secondly, it has the time dimension of its
representation fixed in advance (in this case to ten consecutive frames).

However, in combining the responses of the spatial pooler to form a temporal
representation there are several possibilities in terms of how the column outputs
are measured. Firstly, consider a spatial pooler comprising 16 × 16 columns
arranged in a two-dimensional grid that corresponds to a 16 × 16 pixel input
patch. Once the spatial pooler has converged it will produce stable responses to
given input patches (i.e. the same set of columns will become active given the
same input pattern). This response forms a sparse distributed representation of
the original patch that then becomes the input for the temporal pooler. Given
ten input patches we obtain ten corresponding sparse representations that are
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then combined to form a single 16× 16 temporally pooled response (as per the
diagram on the bottom right of Figure 2). There are now three possible ways we
can combine these column activities:

1. Each column is represented using a binary code, where 0 indicates the column
has been inactive during the entire ten frame sequence, and 1 indicates the
column has been active at least once. We term this the Binary code.

2. Each column is represented according to a 0− 10 count of how many times
it has been active during the entire ten frame sequence. We term this the
Count code.

3. Each column is represented according to the Count code multiplied by the
boost value for that column. We term this the Boost code.1

The pseudocode detailing the calculation of these three measures is shown in
Algorithm 1. Here code specifies the measure and pooledOutput specifies the
temporally pooled column outputs that form the input to Wang et al.’s pipeline
(described in Section 4).

Algorithm 1 FixedFrameTemporalPooler(columns, stacks, code, boost)

for each c in columns do pooledOutput(c) = 0
for each s in stacks do

for each patch in s do
for each c in columns do

if c is active in patch then
if code is Binary then pooledOutput(c) = 1
else pooledOutput(c) = pooledOutput(c) + 1

end if
end for

end for
if code is Boost then

for each c in columns do pooledOutput(c) = pooledOutput(c)× boost(c)
end if

end for
return pooledOutput

Figure 2 gives a pictorial illustration of the functioning of FFTP. The first ten
images on the bottom row show the augmented spatial pooler’s response to the
static image patch appearing immediately above each response. For example, the
bottom left response represents the outputs of the 256 columns, arranged in a
16×16 matrix. If a column is inactive it is represented as a black pixel, otherwise
the boost activity is represented by the lightness of the pixel intensity. Note that

1 The boost value for the column represents the amount the output of the column needs
to be increased in order for it to exceed the activity threshold described earlier. It
is this boost value in combination with the growth of new synapses that ensures the
spatial pooler representations are distributed relatively evenly across all columns.
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these images differ from those in Figure 1, in that now each pixel represents
whether or not a column is active, whereas in Figure 1 each pixel represented
whether or not a synapse for a particular column is connected.

The ten images on the second row up from the bottom of the figure form
a stack of temporally consecutive instants taken from a KTH movie of a man
jogging. A complete frame from this movie is shown in the top right of the figure.
The ten images themselves show the man jogging through the patch appearing
immediately to his left in the complete frame. The overall output of the FFTP
algorithm for this image stack is represented in the eleventh image at the bottom
right of the figure. This shows the summed value of the ten responses (using the
Boost code). It is these summed values that become the input to Wang et al.’s
pipeline in the experimental study.

The graph in the top left of Figure 2 shows how the number of active columns
varies in proportion to the amount of activity that is occurring in the image. Here
each point in the graph represents a count of the number of columns that respond
to a particular stack of image patches. The stacks are ordered consecutively
in time and represent what occurs in each of the three patches shown in the
complete frame, i.e. as the man jogs across the field. Note the borders of the
patches on the complete frame are the key to the graph plots. For example,
the patch appearing at the bottom of the complete frame is represented by the
dotted line in the graph that has the lowest column counts. These low counts
show that very little change occurs in the corresponding patch as the man jogs
across the field. In contrast, the peaks on the other two plots correspond to those
portions of the movie where the man jogs through the patches that the plots are
representing. More specifically, the plot shows the man jogging across the field
four times, first from right to left, then left to right, and so on. The first graph
peak therefore corresponds to the man first passing through the right patch,
the second to his passing through the left patch, the third to his running back
and passing through the left patch, then the right, and so on. This shows how
the number of active columns is correlated to the number and degree of change
occurring in the image pixels.

4 Experimental Study

In order to make direct comparisons between our FFTP encodings and previ-
ous work in the area, we decided to use Wang et al.’s pipeline [17]2 (the same
pipeline is reported in the Le et al. ISA study). This pipeline takes the features
determined by an external feature detection algorithm (e.g. ISA or FFTP), per-
forms K-means vector quantisation, and finally classifies using a χ2 kernel SVM
for each action category.

2 Available at http://au.stanford.edu/~wzou/

http://au.stanford.edu/~wzou/
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We further decided to evaluate our algorithm on the widely studied KTH
dataset [13].3 This set contains greyscale videos of six human action types (walk-
ing, jogging, running, boxing, handwaving and handclapping). The actions are
performed several times by 25 different people, and recorded in four different
settings; three outdoors and one indoors, making an approximate total of 600
videos, each containing an average of 484 frames. The videos are divided into a
test set: (persons 2, 3, 5, 6, 7, 8, 9, 10, and 12) and a training set (the remaining
16 people).4 We chose this dataset because it is one of the most widely reported
in the literature and, as it is encoded in greyscale, it did not require any modi-
fications to the existing augmented spatial pooler (see Figure 2 for an example
KTH movie image).

Following the protocol used in [9] and [17], we trained the augmented spatial
pooler on 200,000 randomly selected stacks of ten 16× 16 pixel patches, densely
sampled with a 50% overlap horizontally, vertically, and temporally (note: sam-
pling was set to avoid selecting sequences that went over the end of a movie
clip). The trained spatial pooler was then used to generate stacked responses
to the full set of image patches, and these stacked codes became the input for
Wang at al.’s pipeline. Within the pipeline, the K-means clustering algorithm
was trained on 3,000,000 of the ASP stacked codes (generated from the original
training split) to form 3,000 centroids (identical settings were used to generate
the ISA results). Mean accuracy was then calculated by averaging the accuracy
of six SVM classifiers (one for each action class), over three runs of K-means, us-
ing stacked codes generated on the original test set (again following the protocol
used in [9] and [17]).

Table 1 presents the accuracy results for the three versions of FFTP tested, for
ISA, and for the four other comparable techniques reported in Wang et al.’s study
[17]. These results firstly show that FFTP (using Boost) comes close to matching
ISA’s performance (falling short by 1.7%). To verify this difference we performed
a one-tailed independent two-sample t-test on the three accuracy results for
FFTP Boost and for the three ISA results.5 This confirmed the hypothesis that
the mean accuracy of ISA is greater than the mean accuracy of FFTP Boost at
a 1.5% level of significance.

It should be noted that in order to make a direct comparison between FFTP
and ISA we did not test the second level hierarchy developed by Le et al. or use
their norm-thresholding heuristic (see [9] for details). Nevertheless, we obtained
slightly better results for ISA (94.5% versus 93.9%) in comparison to those re-
ported in [9] (where both the hierarchy and the thresholding were employed).

Table 1 also shows that, of the three FFTP coding methods tested, Boost
has the slightly better performance, followed by Count, with Binary coming
third. This indicates that more fine grained information concerning the level
of activity in each column provides useful information to the classifiers and
contributes to better recognition rates. However, given the small sample sizes on

3 Available at http://www.nada.kth.se/cvap/actions/
4 This training/test set split follows the protocol defined in the Appendix of [9].
5 FFTP Boost accuracy standard deviation was 0.3086 and ISA was 0.1782.

http://www.nada.kth.se/cvap/actions/
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Table 1. Average accuracy on the KTH data set. The FFTP and ISA results were
produced by us using Wang et al.’s pipeline. The other results (HOG3D [7], HOF and
HOG [8]) were the comparable algorithms with dense sampling produced by Wang et
al. in [17].

FFTP Dense
Algorithm Boost Count Binary HOG3D HOG/HOF HOG HOF ISA

Accuracy % 92.8 92.7 92.4 85.3 86.1 79.0 88.0 94.5

which the average accuracy is based, these relative differences did not turn out
to be statistically significant.

Lastly, FFTP shows notably improved performance over the four other com-
parable techniques that use dense sampling, reported in the Wang et al. study
(HOG3D [7], HOG/HOF, HOG and HOF [8]). However, if we widen our con-
sideration to include supervised learning techniques and techniques that employ
interest point detectors, there have been some notable developments since the
publication of Le et al.’s 2011 study. For example, Wang et al. [16] have devel-
oped a new supervised dictionary learning technique that outperforms ISA by
0.27%, meaning ISA is no longer the state-of-the-art on KTH. Nevertheless, it
remains the best unsupervised learning technique that does not use interest point
detectors, and so remains the most relevant technique for an evaluation of FFTP.
This is because FFTP is also a pure unsupervised learning technique that plays
the role of a component within an HTM architecture. The HTM architecture
itself is designed to learn higher level features (without supervision) and then to
feedback this higher level contextual information to the lower level spatial and
temporal pooler representations. Following the principle of comparing like with
like, it would not be equitable to compare an HTM component with Wang et
al.’s new supervised learning architecture. Instead, it is the aim of this study to
evaluate FFTP as a way of encoding image patches for subsequent recognition
(hence the use of Wang et al.’s pipeline), rather than evaluate the recognition
performance of an entire HTM. That task we leave for future work.

5 Discussion and Conclusions

The fact that FFTP produces results that are closely comparable with ISA is
encouraging. Firstly, we should consider that this is the first application and
evaluation of the new HTM spatial pooler on action recognition in the litera-
ture. FFTP is also unusual in not using a mathematical technique to optimise
an objective function. It rather distributes the codes across columns according
to a biologically inspired procedure of lateral inhibition and competition. This
makes the system more adaptable than an optimiser, as it can adjust its repre-
sentations in real time according to the input it receives (this kind of flexibility
is also observed in the neurodynamics of natural systems [1]). In addition, unlike
standard neural network algorithms, FFTP learns by forming and un-forming
synaptic connections instead of adjusting the weights of those connections. This
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procedure receives support from the the observation that real synaptic transmis-
sion is too stochastic to provide the kind of fine distinction that many artificial
neural network algorithms require [14].

It should also be remembered that the ISA algorithm is the result of nearly
two decades of intensive research into the development of ICA related techniques.
In contrast, the HTM spatial pooler was proposed in 2010 and is only now being
applied to action recognition. We therefore have a reasonable expectation that
the performance of the family of HTM poolers will improve over time.

Next, we should emphasise that FFTP is a partial implementation of the
full temporal pooler proposed in [3]. As such it only combines the output of the
spatial pooler according to an artificial boundary of ten frames. The full temporal
pooler is designed to learn common sequences of actions of variable length, and
thereby discover for itself when a particular sequence starts and stops (according
to how often such sequences are repeated as input). This more natural encoding
should be more efficient and more representative of the underlying structure of
action events. If such encodings can be produced, it is again reasonable to expect
a positive effect on event recognition rates.

In conclusion, the current study represents a preliminary evaluation of a
promising new technology. In that context, our having nearly matched the per-
formance of the state-of-the-art in general purpose unsupervised learning is a
strong indication that it is worth developing the technology further. Clearly, the
next step is to develop and test a full (non-fixed frame) temporal pooler on the
action recognition data sets and, if that proves successful, to build a hierarchy
of such poolers.
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14. Stuart, G., Spruston, N., Häusser, M.: Dendrites. Oxford University Press, New
York (2008)

15. Thornton, J., Srbic, A.: Spatial pooling for greyscale images. International Journal
of Machine Learning and Cybernetics 2, 1–10 (2012)

16. Wang, H., Yuan, C., Hu, W., Sun, C.: Supervised class-specific dictionary learning
for sparse modeling in action recognition. Pattern Recognition 45, 3902–3911 (2012)

17. Wang, H., Ulla, M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-
temporal features for action recognition. In: British Machine Vision Conference,
BMVC 2009, pp. 127–138 (2009)



DIKEA: Domain-Independent Keyphrase

Extraction Algorithm

David X. Wang, Xiaoying Gao, and Peter Andreae

School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

{david.wang,xiaoying.gao,peter.andreae}@ecs.vuw.ac.nz

Abstract. This paper introduces a new domain-independent keyphrase
extraction system (DIKEA). Keyphrase extraction is a challenging prob-
lem that automatically extracts or assigns keyphrases to documents and
it can benefit many research areas such as information retrieval, par-
ticularly indexing, clustering, and summarization. A landmark research
KEA (Keyphrase Extraction Algorithm) formulated the problem as a
supervised machine learning problem and successfully applied a Näıve
Bayes model to it, which showed great promise but the performance
is not satisfactory. Its state-of-the-art extension KEA++ has a signif-
icantly improved performance but relies on a domain specific vocab-
ulary which is often not available or not complete. This paper intro-
duces a novel domain-independent approach and has three main con-
tributions: utilising the largest online knowledge source—Wikipedia—
for keyphrase candidate selection; presenting new features for keyphrase
evaluation, including a Wikipedia-based feature–link probability; and
evaluating a number of different learning algorithms, including multi-
layer perceptrons, for keyphrase selection. Experiments show that our
system clearly outperforms KEA and closely matches the performance
of KEA++, without requiring any domain-specific knowledge such as
KEA++’s vocabulary list.

1 Introduction

Keyphrases provide insight into the contents of a document. Similar in purpose
to an abstract, they introduce the topic of the document but more concisely, and
can be easily indexed. Such keyphrases are highly beneficial for large document
collections such as the ACM Digital Library. They are also particularly useful for
document retrieval systems, where they can be used as the basis for documents
indexing; collection browsing, by creating a hierarchical structure of keyphrases;
and document clustering, by representing documents as a weighted vector of
keyphrases.

Usually, keyphrases are assigned manually by either the authors themselves or
by professional indexers. The problem is that producing high-quality keyphrases
manually is expensive and time-consuming as it requires individuals with knowl-
edge of a document’s subject matter. As a result, the great majority of
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documents such as web pages come without keyphrases, putting automatic
keyphrase extraction techniques in great demand.

Automatic keyphrase extraction is a very challenging task. In fact, research
has found that the agreement between even human labelling is low [1]. Many
research fields are related to keyphrase extraction; for example, information re-
trieval systems typically weight all terms using TF.IDF, many feature selection
methods such as Information Gain and Chi-square can be applied to select key
terms for document representation, and keyphrase extraction may be considered
as a kind of information extraction. However, keyphrase extraction as a sepa-
rate field is not very well studied, probably due to the lack of testing data. In
1999, a landmark research KEA (Keyphrase extraction algorithm) [1] formulated
keyphrase extraction as a supervised machine learning algorithm and success-
fully applied Näıve Bayes learning to this problem and provided the benchmark
testing data. There has been much research to further improve KEA [2,3,4] and
its state-of-the-art extension KEA++ [5,6] significantly improve its performance.
However, KEA++ relies on a domain specific vocabulary which is supposed to
include all the descriptive phrases for a particular domain. In reality, such a
vocabulary is often either unavailable or incomplete, and in those cases where a
vocabulary is available, it may not be updated with time.

Our research aims to introduce a new domain-independent approach to the
problem that does not require a domain specific vocabulary. We have chosen to
use Wikipedia as an external, domain-independent resource because it is cur-
rently the largest, reliable and keep growing source available online. Our main
goal is to develop an efficient and effective system to exploit the knowledge in
Wikipedia for domain-independent keyphrase extraction. Previously KEA and
KEA++ used features such as Tf.Idf and phrase length, and applied a Näıve
Bayes learning model. We investigate new features especially Wikipedia-based
features, and apply a number of learning algorithms including linear regression
and neural networks.

The rest of this paper is organised as follows. Section 2 outlines related
work and details two existing systems KEA and KEA++. Section 3 provides
an overview of our domain independent approach, while Section 4 provides de-
tails regarding the new features introduced and other learning algorithms ap-
plied. Methods for empirical evaluation and results are presented and analysed in
Section 5. Finally, Section 6 concludes and discusses future work.

2 Related work

Wikipedia as one of the largest online information resource has been found help-
ful for query expansion[7], semantic relatedness analysis [8], document cluster-
ing [9], and information retrieval [10] and many other areas. Our research is
motivated by Huang et al. [9] which introduces a Wikipedia-based concept rep-
resentation for documents and shows it improves document clustering perfor-
mance. It matches terms in a document with Wikipedia anchor texts to identify
the concepts and then represents each document as a weighted vector of con-
cepts. Our system is similar in that we use Wikipedia anchor texts to select
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the candidate keyphrases from a document. Giving the big size and great cov-
erage of the vocabulary of Wikipedia anchor texts and its expanding nature,
our Wikipedia-based approach is domain independent and it works uniformly
for different domains.

There have been a number different approaches to automatic keyphrase ex-
traction [11]. [12] is an early machine learning approach for keyword extraction.
Liu et al. [13] uses clustering to find exemplar terms and it shows clustering is
helpful to identify good phrases that is the centre of a group of terms. [14] is
another statistical based approach that can extract keywords from each single
document without a corpus, and its performance is comparable to TF.IDF. Our
approach is a supervised machine learning approach and the most closely related
systems are KEA [1] and KEA++ [5].

KEA (Keyphrase Extraction Algorithm) [1] formulates keyphrase extraction
as a supervised machine learning problem, and it does not require any prior
knowledge of the document’s domain. KEA++ [5] is the current state-of-the-art
version of KEA, but it does so at a cost to domain-independence.

The rest of this section will detail KEA and KEA++. The following three
subsections will briefly cover the three key steps of both KEA and KEA++ and
identify rooms for further improvements. The comparison results between our
system and the two systems are given in section 5.

2.1 Candidate Identification

The Candidate Identification step extracts candidate keyphrases from the docu-
ment being summarised. The original KEA algorithm simply extracts all possi-
ble unigrams, bigrams and trigrams within phrase boundaries that occur at least
twice in the document. Phrase boundaries are defined to be brackets, punctua-
tion marks or numbers. After this, candidates which start or end with a stopword
are removed and those that only contain a single proper noun are also removed.
Finally, candidates are converted to lower case and stemmed using a Lovins
Stemmer [15].

KEA++ improves on this by comparing candidate phrases with a controlled
vocabulary in the domain of the document which is known to be descriptive.

KEA’s solution to this step is very simple, but will produce a huge number of
candidate keyphrases (usually many times the amount of words there are in the
document) and assumes that a descriptive keyphrase appears in the document
as a consecutive sequence of words. KEA++ does much better, significantly
reducing the number of extracted candidates. However, the controlled vocabulary
used has to be tailored to the document’s domain, which means the overall
solution becomes domain-dependent.

2.2 Feature Calculation

Once candidate keyphrases have been selected, a series of features will be calcu-
lated for each candidate. KEA used two such features as follows.
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TF.IDF – Term frequency multiplied by inverse document frequency. This mea-
sure gives an indication as to how often a term/phrase appears in the current
document as well as how unique the term is among all documents.

First Occurrence – This measures when a candidate first appears in the cur-
rent document. It is calculated as a ratio of how many words precede the
candidate’s first occurrence vs. how many words are in the entire document.

KEA++ introduces two additional features as follows.

Candidate Length – The length of a candidate in terms of number of words.
Node Degree – Represents the number of thesaurus links that connect a can-

didate to other candidates. If a document is on a particular topic, then it
will likely cover most of the thesaurus terms from that topic. Therefore,
candidates with higher node degree may be more significant.

There are several issues with the above features. The TF.IDF value is calculated
based on documents in the training corpus, which may not work well if the corpus
is not representative of the domain. Furthermore, TF.IDF is a product of two
separate features – term frequency (TF) and inverse document frequency (IDF).
We would like to explore whether more interesting results might be obtained
by separating these features. Finally, the Node Degree feature uses the domain-
specific vocabulary, again making the overall solution domain-dependent.

2.3 Training Model

The final step of KEA involves feeding all of this information (the features)
into a Näıve Bayes model to learn a classifier. The trained model outputs the
goodness of a particular candidate keyphrase from a previously unseen document.
Candidates are then ranked by this value and a certain number of candidates
are chosen from the top of the list to be the final extracted keyphrases.

Näıve Bayes assumes that each feature is independent from the rest, which
we don’t believe is true. We would like to investigate other learning algorithms,
especially the algorithms that can directly use continuous data.

3 Domain Independent Approach

KEA++ outperforms KEA by over a factor of two in terms of both precision
and recall [5]. However, it does so by sacrificing the domain-independent nature
of KEA. Our aim is to create a new system which can match KEA++’s perfor-
mance, while avoiding the need for anything domain-specific. To do so, we need
to identify the key differences between KEA and KEA++.

One such key difference is the use of a controlled vocabulary to narrow down
the number of candidates extracted in the initial step of the algorithm. Using
the FAO dataset mentioned in Section 5.1, KEA++ extracts five times less can-
didates than KEA on average (2491 vs. 463). It does this with a minimal loss
in candidate recall, which is the maximum recall obtained if all candidates
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are classified as keyphrases, in other words, the recall before machine learning
is applied. This is achieved by only extracting candidates that are matched to
a controlled vocabulary of approximately 27,000 terms which are known to be
good descriptors of agricultural documents. Classifiers trained using this con-
densed set of candidates perform significantly better, because of the reduction
in misleading non-sense phrases which are an artefact of extracting overlapping
n-grams. Precision is also increased as a direct result of only having to filter a
much smaller subset of candidates.

However, the KEA++ system will breakdown if it is supplied with a con-
trolled vocabulary which does not represent a particular document’s domain, or
is only partially representative. This could happen if a document covers a topic
that is broader than the vocabulary’s domain, or there is simply no suitable vo-
cabulary in existence. In the first scenario, candidate recall will be significantly
lowered as a result of potentially good keyphrases being filtered out by the non-
representative vocabulary. For the second scenario, the system will just revert
back to KEA.

What we require is a vocabulary of phrases that do not conform to any par-
ticular domain, but rather represent descriptors of all topics known to humanity.
DIKEA utilises Wikipedia to obtain this data, more specifically, it matches can-
didates to a vocabulary of Wikipedia anchor texts (with millions of terms). An-
chor texts are internal hypertexts that link to Wikipedia articles, which is what
makes them great descriptors for documents. Wikipedia Miner[16,17] is used to
speed up this process, such that it barely slow down the system at all. While
a broad vocabulary does not reduce the number of candidates as aggressively
as one that is more specific, it still prunes out most non-sense phrases. Unlike
KEA++, DIKEA treats documents from different domains in a uniform way.
Furthermore, as new anchor texts are introduced to Wikipedia, our system will
be able to update itself alongside the natural progression of human knowledge.

Another key difference between KEA++ and KEA is the addition of two
candidate features – candidate length and node degree. The extra values gained
from these features improve the trained classifier by 4 to 5 percent[5]. Node
degree, while useful, relies on domain-specific data. Therefore, DIKEA will use
all other candidate features from KEA++ except node degree, as well as a couple
of new ones.

Standard deviation will be one of the new features. It measures the spread
of a candidate phrase within the document. The motivation behind this is that
a phrase which appears evenly throughout a document may hold a different
significance (in terms of being a keyphrase) to a phrase which only appears in a
single paragraph or section. Link probability [18] is the other new feature, which
we use to measures the uniqueness of a phrase – in other words, how well a
phrase can distinguish different documents. Link probability [18] is defined as
the probability of a phrase being used as a link in all Wikipedia documents with
the phrase. Equation (1) shows how link probability is calculated for a given
phrase P.
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LP (P ) =
|{doc|doc ∈Wikipedia, P ∈ doc, isLink(P )}|

|{doc|doc ∈Wikipedia, P ∈ doc}| (1)

In a way, link probability is similar to inverse document frequency. Both mea-
sure how well a phrase can distinguish different documents, but link probability
is obtained through a corpus of all Wikipedia articles while inverse document
frequency (at least in KEA’s case) is calculated based on a much smaller training
corpus.

The final set of candidate features are: Term Frequency, Inverse Document
Frequency, Candidate Length, First Occurrence, Standard Deviation and Link
Probability. Note how term frequency is separated from inverse document fre-
quency, the reason behind this is discussed in Section 2.2.

The final improvement we made to KEA is to use a different classifier than
simple Näıve Bayes. Two other classifier models, linear regression and multilayer
perceptron network are tried and see Section 5.3 for experimental results.

4 DIKEA Details

This section introduces the implementation details of our system.

4.1 Obtaining Vocabulary and Link Probability

To be of any use, DIKEA needed to perform two aspects efficiently – matching
candidate phrases to a vocabulary of Wikipedia anchor texts and calculating link
probabilities. For both these steps, we employed a toolkit known as Wikipedia
Miner[16,17] along with a data dump of Wikipedia as of 22nd July, 2011. A
summary of the same data dump was also obtained from Wikipedia Miner’s
website. With both of these, the toolkit can then quickly match any given phrase
to a known Wikipedia anchor text. If a match is found, the result is returned as
a Wikipedia Label object, which contains a multitude of statistical data. One of
which is conveniently link probability.

4.2 Candidate Pruning and Calculating New Features

After performing the initial candidate identification step using the original KEA
system (see Section 2.1), Wikipedia Miner is used to attempt to match each
candidate with a known Wikipedia anchor text. Those that fail to match are
removed from the list of candidates. Link probabilities are calculated for the
remaining candidates. At first, candidates with link probabilities less than a
specified threshold (i.e. 0.005) were also removed in an attempt to further boost
precision. While this method worked, the negative impact to recall was too great
to justify its use.

When this step is performed on a large dataset of documents, the extra pro-
cessing time taken by Wikipedia Miner is noticeable (See Section 5.3). However,
we believe the slight sacrifice in speed is worth the increase in the quality of
keyphrases extracted.
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4.3 Calculating New Features and Training

When it comes to feature calculation, the four old features are done using the
same method as KEA and KEA++. Link probabality is done in the first step. To
calculate standard deviation, the different positions where a term occurs (number
of words from the beginning) in the document is recorded during candidate
identification. Each position is divided by the total document length and then
the population standard deviation is calculated.

Using these six features, we trained a variety of classifiers to rank candidates in
terms of their keyphrase-worthiness. These include the Näıve Bayes model used
by both KEA and KEA++, linear regression and multilayer perceptron network.
Since regression models readily accepts continuous data, the raw feature values
could be used where Näıve Bayes requires an extra discretisation step. For the
multilayer perceptron network, we tried many different number of layers and
different number of hidden nodes. Our best multilayer perceptron network as
shown in Figure 1 contains a single hidden layer and is trained for 250 epochs at
a learning rate of 0.15. All training was done with the help of the Weka 3 data
mining package[19].

Fig. 1. Multilayer Perceptron Network model used by DIKEA

5 Evaluation

This section details our dataset, evaluation parameters and experimental results.
Our results include a comparison of three different versions of our system with
two existing systems KEA and KEA++, and an comparison of the contributions
of different features.
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5.1 Dataset

The data sets for evaluating keyword extraction are usually small and very hard
to find because each document may contain hundreds to thousands of keyphrases
which have to be manually labelled by professional indexers. Our dataset consists
of 622 documents from the Food and Agriculture Organization of the United Na-
tions (FAO), which are obtained from the Maui Indexer[20] project website. The
original KEA and KEA++ papers test their system on a subset of this dataset
with 25 and 200 documents respectively. We implemented the two existing
systems and tested them on this relatively larger dataset.

These documents come with descriptive keyphrases which were manually as-
signed by professional indexers. All the assigned keyphrases are taken from a
standardised vocabulary know as AGROVOC [21], which is the vocabulary given
to KEA++.

Candidate keyphrases will then be extracted from these documents and their
features calculated (see Section 4.3). Finally, each feature value will be either
discretised or normalised (depending on the training model) and each candidate
will be converted to a vector of either discreet integer or floating point values –
each labelled as either a keyphrase or non-keyphrase according to the manually
assigned keyphrases provided for each document.

The above steps are done for KEA, KEA++ and DIKEA. The vectors gener-
ated from each one is used to perform a 10-fold validation on a set of classifier
models. Näıve Bayes (NB) is used on all systems; while a linear regression model
(LR) and multilayer perceptron network (MLP) is also used for DIKEA.

5.2 Evaluation Parameters

In order to measure the performance of the trained classifier, the instances from
each of the testing documents are fed into the classifier and a ranking of the
phrase is calculated based on the output of the classifier, for example, the ranking
of a phrase is the probability of a phrase being a keyphrase in the case of Näıve
Bayes. Next, the top N instances are chosen by rank to be analysed. If two
instances share the same rank (which can easily happen due to discretised feature
values), the term frequency feature value will be used as a tie-breaker. Precision
and recall is then calculated for each document and repeated for each fold to
obtain an average.

Naturally, as N increases, precision will drop while recall rises. So in order
to get a sense of the system’s overall performance, N is tested at various values
and a curve of precision and recall is plotted. We used two metrics to judge the
performance. The first is the maximum F-Score over all recall intervals along
the curve. The second metric involves plotting the best-fit curve of precision and
recall on a graph and then taking the area under the curve.

We also consider three additional evolution criteria: Average Candidate Re-
call (Avg. C. R.) which is the maximum recall when all candidates are considered
keyphrases;AverageCandidates extracted per Document (AvgC/Doc) andTime.
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5.3 Results and Analysis

The comparison results of KEA, KEA++ and three different versions of our
system with Linear regression DIKEA(LR), Näıve Bayes DIKEA(NB) and mul-
tilayer perceptron networks DIKEA(MLP) are presented in Table 1.

Table 1. DIKEA’s performance compared to KEA and KEA++

KEA KEA++ DIKEA(LR) DIKEA(NB) DIKEA(MLP)
Max. F-Score 0.210 0.301 0.267 0.273 0.281
Area 0.102 0.211 0.147 0.173 0.192
Avg. C.R. 0.671 0.629 0.619
Avg. C/Doc 2491 463 1382
Prep. Time 60 sec 116 sec 135 sec

Our tests demonstrate clearly the significant improvement that DIKEA makes
over KEA and how it comes close to matching the performance of KEA++ (as
shown in Table 1). The first two rows are results gathered using the two metrics
outlined in Section 5.2 – maximum F-Score and area under the curve. Both
metrics reveal that DIKEA can closely match the performance of KEA++ (over
90%) when using a multilayer perceptron network for classification. By looking
at Figure 2, which is the precision vs. recall plot for each system, it’s even more
apparent how similar DIKEA(MLP) performs to KEA++.

The next two rows of the table are the values for average candidate recall (Avg
C. R.) and average candidates extracted per document (Avg C/Doc. As you can
see, DIKEA can filter out a large number of candidate keyphrases while still
maintaining almost the exact same candidate recall as KEA++. Also it is able
to do so without having to know a document’s domain. It is also obvious that
DIKEA is much more conservative about which phrases are filtered out when
compared to KEA++. This is expected as KEA++ knows beforehand exactly
which phrases should be kept, thus making it perform slightly better than our
system. It is also interesting to note that candidate recall(Maximum Recall) is
only 0.671 for KEA, which doesn’t filter candidates at all. The reason this value
isn’t simply 1.0 is because numerous documents in the dataset had manually
labelled keyphrases that never appeared in the document.

The final row of the table presents the amount of time each system took to
preprocess all 622 documents in the dataset. By using Wikipedia Miner and an
efficient use of caching link probabilities, we were able to make our system run
reasonably fast considering the heavy amount of processing that needs to be
done – only 16% slower than KEA++.

We also wanted to know the exact contribution made by each of our cho-
sen candidate features. The test was rerun on DIKEA system six times, with
one of the six features excluded per run. By measuring the difference in perfor-
mance with exclusion of each feature, we were able to determine their relative
importance to the overall system – as shown in Figure 3. Our results reveals
that term frequency and link probability contributes the majority of DIKEA’s
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Fig. 2. Precision vs. Recall plot for KEA, KEA++ and DIKEA. Baseline only uses
TFxIDF with no training.

Fig. 3. Performance contribution of each candidate feature relative to each other

performance, at 54.9% and 30.3% respectively (relative to other features). Inverse
document frequency only contributes a mere 5.3%, which confirms our theory
that link probability is a much better alternative. What’s surprising is the lack
of importance from the standard deviation feature along with first occurrence.
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This could either be an artefact of the dataset, or most likely, knowing the posi-
tion and spread of a candidate within a document is of little use in determining
its importance as a keyphrase.

6 Concluding Remarks and Future Work

Utilising Wikipedia, our DIKEA system provides a domain-independent solu-
tion to keyphrase extraction by processing all documents in a unified manner.
Our system is able to closely match the performance of KEA++ without losing
its domain independence. This is achieved by replacing the domain-specific vo-
cabulary used by KEA++ with a vocabulary of Wikipedia anchor texts, adding
new features and applying different learning algorithms. A further advantage of
using our method is that our vocabulary can adapt to the natural evolution of
human knowledge, as Wikipedia develops over time.

Although our approach is domain independent, out system is tested on domain-
specific data. We will further evaluate our system on other datasets, for example,
the recent datasets outlined in [11]. With the success of including link probabil-
ity as a candidate feature (contributing over 30% of the performance in relation
to other features), we intend to explore even more features to further improve
DIKEA for future work. Another aspect of the system that can be improved is its
low Candidate Recall: at just 62%, over one-third of human-labelled keyphrases
could not possibly be identified by our system as they simply did not appear in
the document. This is a problem common to KEA and KEA++ also, whose can-
didate recall is limited to 67% and 63% respectively. We will explore technologies
to improve Candidate Recall. Another future work is to improve precision when
only taking a relatively small portion of ranked candidates to be keyphrases (i.e.
top ten to fifteen).
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Abstract. Detecting events of interest in sensor data is crucial in many
areas such as medical monitoring by body sensors. Current methods often
require prior domain knowledge to be available. Moreover, it is difficult
for them to find complex temporal patterns existing in multi-channel
data. To overcome these drawbacks, we propose a Genetic Programming
(GP) based event detection methodology which can directly take raw
multi-channel data as input. By applying it to three event detection tasks
with various event sizes and comparing with four typical classification
methods, we can see that those detectors evolved by GP can handle raw
data much better than other methods. With features manually defined
based on domain knowledge, our method can also be comparable with
others. The analysis of evolved detectors demonstrates that distinctive
characteristics of the target events are captured by these GP detectors.

1 Introduction

In a dynamic environment sensors continuously produce data when monitoring
objects. The sequences of data can be viewed as time series. As the state of
an object changes, certain variations would occur in this temporal space. For
instance, heart failure may be reflected as a sudden decrease of blood pressure,
a feeling of fear may be shown due to intensive muscle contractions. In reality
multiple channels of sensors are often used, each being a time series of its own.
For example in the field of Activity Recognition(AR), human locomotion, e.g.
walking, sitting and standing, and gestures, e.g. drinking water and closing a
door, can be identified by the fluctuations in a group of sensor readings. These
temporal variations of interest can be viewed as events of which the duration
is the event size. Detection of these events in time series input from sensors is
obviously important in many areas, and it is also the goal of this study.

The interest in detecting patterns from sequential recordings has been in-
creasing in the past few years. A common approach is to extract distinctive
features of an event and then to “query” matching subsequences from incoming
input stream. In domains that the features are well established, this approach is
widely adopted due to its effectiveness and simplicity in implementation [17,18].
However when the underlying knowledge of an event remains unknown, finding
good features for that event would be a challenge. Furthermore features suitable

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 731–742, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www.rmit.edu.au/compsci


732 F. Xie, A. Song, and V. Ciesielski

for one problem may not be appropriate for another problem since the knowledge
is often domain dependent. There are no universal features.

In order to eliminate the requirements of priori knowledge, some researchers
proposed to construct mathematical models based on original data. The objec-
tive then becomes detecting any significant changes of the model or the pa-
rameters of that model, therefore, it is also known as change detection problem
[13,14]. This approach is highly effective for fields in which significant changes
are unusual, for example astronomy. These change point detection techniques
tend to use relatively simple models, for example linear models. It would be
very difficult for such techniques to handle complex events which consist of not
just a single changing point but a series of changing points. Moreover, this ap-
proach mainly aims at solving univariate time series problems and consequently
not suitable for events occurring in multiple channels, for example a single sensor
can hardly contain the information for recognizing a gesture.

To address the issues in these existing works, we propose a GP-based method
that is capable of detecting events directly from raw time series data. The event
can be simple as a change between two adjacent points or complex as variation in
multiple variables during a period of time. The data we investigated in this study
is time series stream. Each time step is labelled positive or negative indicating
whether the event of interest occurred or not. Therefore, it is reasonable to use
a supervised learning method. This approach seems similar to two-class time
series classification [16]. However in time series classification the data has to be
segmented into non-overlapped, fixed-length vectors in advance. On the contrary,
our method receives continuous streaming input so it has to determine at which
point an event occurs. The particular research questions are addressed here:

1. How can a suitable GP representation be established so event detectors for
multi-sensor input can be evovled when features are not available?

2. How does the performance of GP working on raw data compare to typical
classification algorithms when features are available?

3. How would GP-evolved programs detect events? Are there any insight to
reveal their behaviours?

The performance of the proposed method is evaluated on three tasks, including
both synthetic and real world data sets. Additionally, J48 decision tree classifier,
Näıve Bayes classifier, IB1 nearest neighbour classifier and AdaBoost meta clas-
sifier are used for comparison due to their popularity in the area of classification.

2 Related Work

GP has been proven to be a powerful problem solving mechanism in many do-
mains, especially in those where human knowledge is limited [1,2,3]. It is not
surprising that GP has a long history of being adopted to handle time series
data. A great number of works are devoted to prediction based on past observa-
tions [4,6,7], but few studies are on time series detection.
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Previous work has shown that GP is capable of working on raw data, even in
sophisticated domains such as Computer Vision, for example, texture segmen-
tation [19], video shot detection [8,22] and motion detection [5].

Another related area is novelty detection [15] which is to find unseen time
sequences. It uses a sliding window to examine through all the possible subse-
quences to identify the most distinctive ones from the rest of time series. It has
some overlaps with our work since it essentially considers an abnormality as an
event. Unfortunately, all novelty detection algorithms require parameters to be
known beforehand, at least the length of a subsequence. Furthermore, only very
limited of them are working on multi-channel time series.

3 GP Representations

We use tree-based GP in our study which requires a primary set of nodes in-
cluding functions and terminals. Table 1 presents functions in GP representa-
tion. Apart from four basic mathematical operations, three extra functions are
introduced to handle multi-channel sensor data. The two functions proposed for
exploring temporal relationships are discussed in Section 3.1 and Section 3.2.
Section 3.3 describes how to deal with multiple variables in time series. Termi-
nals are listed in Table 2, each row presenting one terminal including its name,
value ranges, return type and the specified functions it can be attached to. It
should be noted that each terminal “Variable m” corresponds to one variable in
time series, representing one channel input. The value of m is the index of that
channel, which is within the range from 0 to total channel numbers minus 1.

Table 1. Function Set of GP

Function Parameters Return Type

+ Double, Double Double
+ Double, Double Double
∗ Double, Double Double
/ Double, Double Double

Window
Double i,
Int operation,
Int temporal-index

Double

Temporal Diff Double i Double

Multi-Variable
Int multivariable-operation,
Int variable-index

Double

3.1 Window Function

A function named “Window” is defined to cover and analyse a collection of points
as it moves along the stream data or data stream passes through it. The window
size S determines the maximum number of data points within that window.
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Table 2. Terminal Set

Terminal Value Return Type Function

Variable m Current value of channel m Double General
Random A random value Double General
Operation AVG,STD,DIF,SKEWNESS Integer Window

Temporal Index [1, 2window−size − 1] Integer Window
Variable Index [1, 2num−of−variables − 1] Integer Multi-Variable
Multivariable Operation MED,AVG,STD,RANGE Integer Multi-Variable

This “Window” function takes three parameters. The first one is “i”, the
input of this function. Either a function or a terminal can be attached here as
long as it returns a double value. The latest historical values of this input is
stored in the function, denoted as t0, t1, ..., tS−1 from the earliest value to the
current one. The value of S is set to 8 in this study.

The second parameter is “Temporal Index” which returns a random integer
falling in the range from 1 to 2S−1. The binary equivalent of this decimal number
is mapped to the window, one bit to one data point. A data point will be selected
only when its corresponding bit is “1”. Assume the value of “temporal index”
is 11, of which the equivalent binary string is 00001011, it will select points t4,
t6 and t7 since bits at these three positions are “1”. Similarly, a value of 255 will
take in all 8 points in that window. This mapping mechanism enables flexible
point selection within the window and consequently helps to find the event size.

The third parameter “operation” randomly applies one operation on values
selected by the second parameter. It is assigned to an integer value from 1 to
4 inclusively. Each value corresponds one of four operations: AVG, STD, DIF and
SKEWNESS. These operations calculate the average value, the standard deviation,
sum of absolute differences and skewness of the selected points respectively.

3.2 Temporal Diff Function

It is not difficult to see that temporal changes between two consecutive points
are important to characterise an event. Function “Temporal Diff” is proposed
to capture such temporal information. It takes one parameter as its input and
returns the difference between the last value and the current value, therefore it
essentially behaves as a sliding window of size 2.

3.3 Functions for Multiple-variable Time Series

“Window” function is capable to handle the temporal relationships in one se-
quence of values, however, it is infeasible to capture events occurring in multiple
variables. To address this issue, function “Multi-Variable” is introduced to select
arbitrary variables and summarise characteristics of these variables. It takes two
parameters: variable index and multiple-variable operation. The first pa-
rameter works similarly as temporal index in “Window” function, the only dif-
ference is the range of variable index is within the range of [1,2M − 1](M is
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the total number of variables). The value of second parameter can be any inte-
ger value from 1 to 4, corresponding to four multiple-variable operations: MED,
AVG, STD and RANGE which return the middle value, the average, the stan-
dard derivation, and the distance between the maximum and minimum values
of the selected variables.

4 Experiments

As shown in Table 3, a standard GP setting was used in the experiments. More-
over, dynamic range selection [20] was adopted to help GP process classification
problems. We applied GP on three event detection tasks including both syn-
thetic and real world data, which are described in Section 4.1. We are interested
in the best solution that can be found. Therefore, for each task, GP was run for
ten times and the best result among these runs was then considered as the final
outcome. In Section 4.2, We compare the performance of GP to four traditional
classifiers.

Table 3. GP Runtime Parameters

Population 30
Generation 300
Maximum Depth 8
Minimum Depth 2
Mutation Rate 5%
Crossover Rate 85%
Elitism Rate 10%
Number of Runs 10

4.1 Data Set

One simulated and two real world data sets were investigated in this study. All
of these problems are with multiple variables and varying event sizes. Table 4
presents numbers of positive instances, numbers of negative instances in both
training and testing phases. As shown in this table, the number of instances
used for training is twice than the number used for test. In the first data set
the number of positives and negatives are close while the last two data sets are
unbalanced.

Synthetic Data: Changes in Any Four out of Six. In many real world
situations, it is expected that sensor data will be smooth and any temporal
change beyond a normal range should raise an alarm. The task is to simulate such
situation, of which the objective is to detect noticeable changes in a six-variable
time series. A noticeable change occurs when the absolute difference between two
adjacent points is larger than 5. The current time point is considered as positive
when such a change just occurred in any four variables simultaneously. Therefore,
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Table 4. Training and Testing Data of Three Data Sets(%)

Data Set Training Test

total positives negatives total positives negatives

1. Synthetic Data:
Changes in Any Four out of Six

400 206 194 200 108 92

2.Activity Recognition: Walking 11368 1322 10046 5647 855 4792

3.Activity Recognition: Lying Still 11368 229 11139 5647 147 5500

concurrent changes happened in more than four variables are positive as well.
Otherwise, it should be negative. Since two consecutive time points defines the
event, the time span of this event is 2. To produce the artificial time stream,
first each variable is initialised with a random value. Then, six values for next
time point are generated randomly. For each variable, the probability of a notice
change occurring at next time stamp is 0.9.

Activity Recognition: Walking and Lying Still. As mentioned is Section
1, human locomotion can be detected in wearable sensor data. The data we used
in experiment comes from OPPORTUNITY data set [23]. The data set contains
recordings of four healthy subjects, two male and two female; for each subject,
six daily activity sessions were recorded. Over one hundred sensors were located
on the jacket, limbs and feet of the subjects. Four locomotion, including walking,
standing, lying still and sitting, are manually labelled by at least two researchers
and further validated by video-recordings. Beyond these four classes, there is a
none class indicating any other locomotions, for example, running.

There are two tasks for this data set: walking detection and lying still de-
tection. To simplify the problem, it is sensible that only data obtained from
accelerometers located on feet are considered since movements of both feet are
enough to distinguish the two actions from others. Finally, six channels are in-
vestigated in this study. The original data is sampled every 33 milliseconds.
Considering that walking and lying are high level locomotion, a lower sample
rate is suitable. Therefore, we take data every 0.1 second as inputs. It should
be noted that neither cross-session nor cross-subject validation are studied in
this research. We only use the data of the first session of one subject, two third
for training and the rest for testing. It should be noted that the event size and
optimal features are unknown in these two tasks.

4.2 Results

Four conventional classifiers were applied to each task. The first three are IB1
[11], Näıve Bayes [10] and J48 [9]. The best one among these classifiers was then
selected as the base classifier for the ensemble classifier AdaBoost [12]. Since
conventional classifiers have no built-in sliding window mechanism, we manually
segment raw data according to the event size. Since in Task 2 and Task 3 the
event sizes are not available, we use 8, which is the max window size of GP, to
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Fig. 1. Converting Raw Data Streams to Vectors for Conventional Classifiers

ensure that traditional classifiers receive the same amount of information as GP.
Figure 1 illustrates the process of converting a two-variable time series stream
into a six-attribute vectors, assuming an event size of 3.

Another group of experiments were conducted by applying the traditional
classifiers to manually construct features. The features for all three data sets are
the differences between two consecutive points of all variables. Given the same
conditions in Figure 1, the extracted features can be shown in Figure 2.

Fig. 2. Extracting Features for Conventional Classifiers

The results are presented in Table 5 and Table 6 which show the accuracies,
true positive rates and true negative rates from test as test results are much
more meaningful. With pre-defined features GP was slightly less effective but
still comparable to other methods on Task 1. However, in the other two tasks
GP can achieve better performance. As shown in Table 6, if the manually con-
structed features were not available, traditional classifiers suffered badly. On
Task 1, J48 and Näıve Bayes classified all instances to be positive while IB1 and
AdaBoost were not much better than random guessing (around 50%). In lying
still detection task, traditional classifiers seemed to achieve similar accuracy as
GP. However, it was because of the imbalance of the data that J48 and Näıve
Bayes could appear accurate. The true positive rate were as low as 68.7% and
8.2% respectively. Only IB1 and Adaboost performed as good as GP. On Task
3, GP achieved the best performance as well. It should be noted here, in walking
detection task, traditional classifiers gained benefits from features while in lying
still detection task it was the contrary. With given features, classical classifiers
can not successfully identify any positive instances except Näıve Bayes of which,
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unfortunately, the overall accuracy was only around 31%. The same set of fea-
tures giving opposite results in two tasks further proves that an appropriate
feature set are highly problem dependent.

Table 5. Comparing with Conventional Methods on Pre-defined Features(%)

Tasks J48 Näıve Bayes IB1 AdaBoost GP

1. Changes in
Any Four out of Six

89.95
TP : 91.7
TN : 87.9

92.46
TP : 90.7
TN : 94.5

97.99
TP : 100
TN : 95.6

97.49
TP : 99.1
TN : 95.6

95.34
TP : 95.28
TN : 95.4

2. Lying Still
97.4

TP : 0
TN : 100

31.27
TP : 83.7
TN : 29.9

96.97
TP : 0.7
TN : 99.5

96.97
TP : 0

TN : 99.5

99.72
TP : 99.32
TN : 99.73

3. Walking
88.05

TP : 48.7
TN : 95.1

86.08
TP : 51.3
TN : 92.3

89.08
TP : 53.1
TN : 95.5

88.16
TP : 53.2
TN : 94.4

90.49
TP : 52.28
TN : 97.31

Table 6. Comparing with Conventional Methods on Raw Data(%)

Tasks J48 Näıve Bayes IB1 AdaBoost GP

1. Changes in
Any Four out of Six

54.27
TP : 100
TN : 0

54.27
TP : 100
TN : 0

53.27
TP : 63
TN : 41.8

52.76
TP : 65.7
TN : 37.4

95.34
TP : 95.28
TN : 95.4

2. Lying Still
98.81

TP : 68.7
TN : 99.6

97.43
TP : 8.2
TN : 99.8

99.79
TP : 94.6
TN : 99.9

99.79
TP : 94.6
TN : 99.9

99.72
TP : 99.32
TN : 99.73

3. Walking
78.6

TP : 52.3
TN : 83.3

55.89
TP : 75.2
TN : 52.4

70.82
TP : 53.9
TN : 73.8

60.1
TP : 53
TN : 61.4

90.49
TP : 52.28
TN : 97.31

5 Discussion and Analysis

Some of the evolved detectors have been analysed to give us more understanding
of the problem and of GP itself. Based on this analysis we discuss the aspects
of GP on building reusable blocks, reducing dimensionality, and deciding event
size.

It has been found that GP tend to build common blocks which can be reused
in other parts of the same tree. We give two program trees as examples. The
best individuals in Task 1 and Task 3 are shown in Figure 3 and Figure 4
respectively. The identical sub-trees are enclosed by dashed lines in the figures.
The values of these repeated components are actually important to characterise
events; therefore they can be considered as genuine features for those events.

In Task 1, the variable index 63 can be converted to binary string “111111”,
meaning that all variables should be taken into account. It is sensible since the
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Fig. 3. Envolved Program(Task1)

changes may happen in sensor 1,2,3 and 4 as well as in sensor 1,3,5 and 6 or any
combination of four. So no single sensor shall be ignored.

On detecting walking event, GP program took only 2 sensors among all six
ones, the fourth and the sixth. However J48 classifier required all sensor inputs.
Although only two channels were selected the performance of GP did not de-
teriorate. To verify the significance of these two channels of input, we applied
feature extraction only on these two channels and fed the features to the tradi-
tional classifiers. The results are shown in Table 7. Comparing to all six features
included, these two features still provided reasonable performance. It verifies
that GP did find important inputs and was selective. It did not simply use all
channels as other methods did.

Table 7. Conventional Methods on Dimensionality-Reduced Data of Task 3(%)

J48 Näıve Bayes IB1 AdaBoost

Num of Channels 6 2 6 2 6 2 6 2

Accuracy 88.05 86.97 86.08 86.81 89.08 84.83 88.16 84.7

TP Rate 48.7 35.6 51.3 36.3 53.1 41.1 53.2 43.2

TN Rate 95.1 96.1 92.3 95.8 95.5 92.6 94.4 92.1

In addition, GP tries to identify the event duration as well. For example
in Task 1, it is obvious that the event size of 2 was successfully captured by
temporal function “Temporal Diff” (see Figure 3). While in Task 3, “Window”
functions were nested, suggesting data points more than the 8-point limit of a
single window are needed (see Figure 4). GP found a way to go beyond that
limit.

GP shows its flexibility on the choice of window size. To verify that, we applied
GP to each task with different window size: 4,8,12 and 16. The results show that
the performance deteriorated with a window size smaller than 8 while window
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Fig. 4. Envolved Program(Task3)

sizes larger than 8 did not bring significant benefits in accuracy. GP is capable
to find reasonable solutions with these window sizes. However, how to find the
optimal window size is still an open question.

6 Conclusions and Future Work

In this study, we present a GP-based methodology for detecting event of interest
in multi-channel sensor data. A number of specialised representations are intro-
duced to process multi-variable time series. The method was applied to a range
of detection tasks from changes in synthetic data to activity recognition problem
to verify its performance. The experimental results show that on manually con-
structed features GP can achieve comparable or even better performance when
comparing to the four traditional classifiers. Moreover when manually defined
features are unavailable, GP is far superior to the others. The analysis on evolved
event detectors demonstrates that GP successfully selected and extracted dis-
tinctive characteristics of the target events. On the synthetic data which is the
only case that we know the event size, GP evolved programs determined the
event size accurately.

At current stage, although intuitive analysis gives us some insights about
the behaviour of GP detectors, however, they can not be fully understood. On
the other hand, explanation of these models can be meaningful to the domain.
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Therefore, in near future, we will further analyse the evolved programs. Another
limitation of our work is that for window containing event boundaries, GP prob-
ably will make wrong decisions. In the next stage, we will try to address that
issue. Additionally, as mentioned above, the system can be enhanced by enabling
GP to search for the optimal window size in future.
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Abstract. We study the problem of classification on uncertain objects
whose locations are uncertain and described by probability density func-
tions (pdf). Though there exist some classification algorithms proposed
to handle uncertain objects, all existing algorithms are complex and time
consuming. Thus, a novel supervised UK-means algorithm is proposed
to classify uncertain objects more efficiently. Supervised UK-means as-
sumes the classes are well separated. However, in real data, subsets of
objects of the same class are usually interspersed among (disconnected
by) other classes. Thus, we proposed a new algorithm Supervised UK-
means with Multiple Subclasses (SUMS) which considers the objects in
the same class can be further divided into several groups (subclasses)
within the class and tries to learn the subclass representatives to classify
objects more accurately.

Keywords: classification, supervised UK-means, multiple subclasses,
uncertain objects.

1 Introduction

While there has been a large amount of research on mining and queries on
relational databases [15], the focus has been on databases that store data in
exact values. In many real-life applications, however, the raw data (for example,
in the case of sensor data) are not precise or accurate when they were collected
or produced. Data uncertainty are classified into two types. One is existential
uncertainty caused by not sure the existence of an object or a data tuple [1, 4,
5,14]; The other is value uncertainty caused by not knowing the value precisely.
In this paper, we focus on the second case (value uncertainty).

Classification is an important task in machine learning. [18,19] shows that the
learning based similarity metrics can perform better in multimedia data classi-
fication and retrieval. Similarly to [18, 19], we learn model based expected Eu-
clidean distance used in UK-means. In previous work, we modified UK-means to
supervised UK-means to classify uncertain objects in [21]. We considers the prob-
lem of classifying objects as a multi-dimensional uncertainty where an object is
represented by an uncertain region over which a discrete probability distribution
function (PDF), or a probability density function (pdf), is defined. Formally, we
consider a training set of N labeled objects oi, 1 ≤ i ≤ N in an m-dimensional
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Fig. 1. (a) An example of one class (‘x’) divided by another class (‘+’) (b) Another
example of one class (‘+’) divided by another class (‘x’)

space. An object oi is represented by a pdf fi: IR
m → IR (IR represents real

number space) that specifies the probability density of each possible location
of object oi

1. Thus, each object can be bounded by a finite bounding box. This
assumption is reasonable because in practice the probability density of an object
is high only within a very small region of concentration. oi is associated with a
class label cj(cj ∈ L), where L is a class label set.

Supervised UK-means assumes the classes are well separated. However, in
classification, the classes are often in arbitrary shape which makes the bound-
ary between classes concave or convex but not a single line. In some cases, a
class’s objects are separated (disconnected) by objects of other classes. As Fig-
ure 1(a) shows one class (represented by ‘x’) is divided by another class (‘+’).
Figure 1(b) is another example showing that each class is divided by other classes
and the boundary between classes is concave and convex. For the above cases,
our solution is using a few class representatives to represent a class. We con-
sider the problem as the estimation of the number of groups or subclasses (k)
in each class. The key idea of estimation of k is to use splitting and/or merging
methods to increase and/or decrease the number of clusters, which makes the
model fit the data. Each subclass (cluster belonging to a class) can be considered
as a Gaussian mixture model. Several algorithms have been proposed to deter-
mine k automatically [7, 8, 11, 20]. Most of them wrap around either K-means
or Expectation-Maximization for fixed k. In a classification problem, training
objects are labeled by class labels. When we consider objects from a class and
further divide them into subclasses, we ignore their labels. In other words, ob-
jects are labeled during inter-class training, and in the process of the estimation
of k (the number of subclasses in a class) during intra-class training, the labels
of objects from the same class are ignored.

1 The methods to be discussed in this paper require that for each object oi, the
uncertain region UD(oi) of each object oi is finite, i.e. ∀x �∈ UD(oi), fi(x) = 0.
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2 Related Work

A large number of classification models have been proposed in the literature.
However, few research focuses on the problem of classification handling uncer-
tain data caused by value uncertainty. In [2], support vector machine is used
to classify uncertain data. In this method, an uncertain object is assumed as a
simple bounded geometric model. Support vector machine creates margins by
using uncertain objects which lie on the boundary. In this model, the uncer-
tainty (domain of uncertain objects) of objects are estimated. In our model, the
maximum boundary of objects is fixed.

In [16, 17], an uncertain object is associated with a probability density func-
tion (pdf) and a finite region. The decision tree classifier is extended to handle
uncertain data by using averaging or distribution-based approach. To improve
the efficiency, some pruning techniques were proposed without affecting the re-
sults of decision tree. In [13], the uncertain model is the same as that in [16,17].
In [13], Naive Bayes is used to classify uncertain data. Three approaches are
proposed (averaging, formula-based, and sample-based) to calculate the proba-
bility of object label and assign it to the class with highest probability. In [12],
uRule is proposed based on Rule-based algorithm to classify uncertain infor-
mation. The difference between Rule-based and uRule is that the instances are
partly covered by the rule in uRule. The key idea in uRule is that the algorithm
computes which proportion of the instances is covered by a rule based on the un-
certain attribute interval and probabilistic function. uRule considers to classify
uncertain numerical and categorical data. Though some algorithms have been
extended to classify uncertain information, the problem of building classifiers
on uncertain data is still a challenge. The algorithms take quite a long time to
classify uncertain objects because they are too complex.

Some work has been proposed to estimate the number of clusters during data
clustering. X-means [11] is a regularization framework for learning k with K-
means. X-means tries many values of k and obtains a model for each k value.
Then X-means uses the Bayesian Information Criterion (BIC) to score each
model and chooses the model with the highest BIC score. Other scoring crite-
ria are also used in X-means. The drawback of X-means is that the algorithm
assumes the cluster covariances are all spherical with the same width. X-means
is likely to overfit the data when the clusters are non-spherical. Bayesian K-
means [20] uses Maximization-Expectation (ME) to learn a mixture model. ME
maximizes over the hidden variables (assignment of examples to clusters), and
computes an expectation over model parameters (center location and covari-
ances). The algorithm works well but it is time consuming. G-means (Gaussian
means) [8] is a wrapper around the K-means algorithm. G-means uses projection
and a statistical test for the hypothesis that the data in a cluster come from a
Gaussian distribution. The algorithm grows k with a small number of centers.
It applies a statistical test to each cluster and those which are not accepted as
Gaussian are split into two clusters. Interleaved with K-means, this procedure
repeats until every cluster’s data are accepted as Gaussian. The method does not
assume spherical clusters, but it works well when true clusters are well-separated.
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It has difficulty when true clusters overlap since the hard assignment of K-means
can clip data into subsets that look non-Gaussian. PG-means (Projected Gaus-
sian means) [7] is proposed to handle difficult cases, such as non-Gaussian data,
overlapping clusters, eccentric clusters, high dimension. Moreover, PG-means is
faster than variational Bayesian K-means. PG-means is based on projections and
statistical tests to determine whether a whole mixture model fits the data well.
PG-means cannot been directly used in our UK-means classification, because
PG-means is used to handle certain objects. In Section 3.4, we will describe how
to modify PG-means for our problem.

3 Supervised UK-Means

3.1 Problem Definition

In the supervised model, there are a set ofN training objects o1, o2, ..., oN , andm
numerical (real-valued) feature attributes A1, ..., Am. The domain of attribute
Au(1 ≤ u ≤ m) is dom(Au). Each oi is associated with a probability density
function (pdf fi(x)) and a class label cj (cj ∈ L, where L is the set of all class
labels), where x is a possible location of oi, and UD(oi) is uncertain domain of
oi. Each tuple x is associated with a feature vector x = (x̃1, x̃2, ..., x̃m), where
x̃u ∈ dom(Au)(1 ≤ u ≤ m). The goal of supervised UK-means is to find K (the
number of labels, |L|) class representatives which can predict a testing object
otest to class ck with the minimum expected Euclidean distance. The boundary
between classes are sometimes in arbitrary shape (e.g. convex or concave). Also,
the objects from the same class may be disconnected by other classes. It is
obvious that one class representative is not enough for representing a class. In
our model, we assume one class can be further divided into a number subclasses,
and we try to estimate an appropriate number of subclasses of each class. Then,
we find the subclasses’ representatives to predict the labels of testing objects
with the minimum expected Euclidean distance between objects and subclass
representatives.

3.2 Expected Euclidean Distance

As Figure 2 shows, one way to approximate the calculation is to divide the
uncertain domain into a number of grid cells. A sample is considered to be
located at the center of each grid cell which represents a possible location of
the uncertain object oi. The expected Euclidean distance (EED) from object
oi (represented by a pdf fi) to the cluster representative pcj is the weighted
average of the distances between the samples in oi and pcj (the mean vector

of pcj ), i.e. EED(oi, pcj) =
∑T

t=1 Fi(si,t)ED(si,t, pcj ), where T is the number
of samples in oi, si,t is the location (vector) of the t -th sample of oi, pcj is
a probabilistic object representing the domain of the cluster representative of
cluster cj , Fi(si,t) =

∫
x∈cellt

fi(x)dx (Fi is a discrete probability distribution
function over T grid cells, cellt is the grid cell that sample si,t represents, x is
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Fig. 2. Expected distance calculation from oi to pcj in [3,9,10]

the possible location of sample si,t in cellt), and the metric ED is Euclidean
distance used in [3, 9, 10]. In this paper, the mean vector oi (expected value)
of oi, which is the weighted mean of all T samples (or possible locations), is
calculated as Equation (1).

oi =
T∑

t=1

si,t × Fi(si,t). (1)

The mean vector pcjk
of k -th subclass representative pcjk of class cj is obtained

by Equation (2), where |cjk | is the number of objects assigned to subclass cjk ,
and C(oi) = cjk means that object oi is assigned to subclass cjk .

pcjk =
1

|cjk |
∑

oi∈{oi|C(oi)=cjk}
oi. (2)

3.3 Supervised UK-Means with Multiple Subclasses (SUMS)

Algorithm 1 shows Supervised UK-means with Multiple Subclasses (SUMS),
where N is the number of training objects, K is the number of class labels,
kl is the number of subclasses of the l-th class. In Algorithm 1, the number of
subclass representatives is estimated and the subclass representatives are trained
by the objects of the same class. First, Algorithm 1 calculates the mean vectors
of uncertain objects. Then the number of subclasses of each class is estimated
by Algorithm 2. The subclass representatives are trained by UK-means based on
the objects of the same class. The time complexity of the algorithm is decided
by the time costing on estimation of ki (the number of subclasses) and the
calculation of subclass representatives. The time complexity of training subclass
representatives is O(NTKkmax), where N is the number of training objects, T
is the number of samples of object, K is the number of class labels, and kmax is
the maximum number of subclasses of a class. The time complexity of estimation
of ki (the number of subclasses) will be discussed in Section 3.4.

3.4 Estimation of ki

In [7], PG-means uses a statistical hypothesis test on one-dimensional projection
of the data and model to determine if the examples are well represented by the
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Algorithm 1. Supervised UK-means with Multiple Subclasses (SUMS)

Input: training set {o1, o2, ..., oN} with class labels cj (j ∈ {1, 2, ..., K})
Output: learner of sub-class representatives.

1: for i = 0; i < N ; i++ do
2: compute oi of training objects by Equation (1);
3: end for
4: for i=0; i < K; i++ do
5: Estimate the number of subclasses ki by PG-means and get the subclass rep-

resentatives (pci1 , pci2 , ..., pciki
);

6: end for
7: repeat
8: for m=0; m < N ; m++ do
9: for i=0; i < K; i++ do
10: for j=0; j < ki; j++ do
11: compute Expected Euclidean Distance by EED(om, pcij ) =∑T

t=1 Fm(sm,t)ED(sm,t, pcij );

12: end for
13: end for
14: assign object om to the subclass with the minimum EED(om, pclq );
15: end for
16: update all subclass representatives by Equation (2);
17: until all subclass representatives converge

model. PG-means stands for Projected Gaussian and refers to the fact that
the method applies the projections to the clustering model as well as the data,
before performing each hypothesis test for model fitness. In [7], the standard
Gaussian mixture model is used with Expectation-Maximization training. The
key idea of PG-means is using the EM algorithm to learn a model containing k
centers. When EM learning converges, PG-means projects both the data set and
the learned model to one dimension, and then applies the Kolmogorov-Smirnov
(KS) test to determine whether the projected model fits the projected data.

Assume some data X is sampled from a single Gaussian cluster with distri-
bution X � (μ,Σ) in d dimension. μ = E[X ] is the d × 1 mean vector and
Σ = cov[X ] is the d × d covariance matrix. Given a d × 1 projection vector
P of the unit length (||P || = 1), we can project X along P as X

′
= PTX .

Then, X
′ � N(μ

′
, σ), where μ

′
= PTμ and σ2 = PTΣP . We can project each

cluster model to obtain a one-dimensional projection of an entire mixture along
P . PG-means [7] repeats this projection and test step several times for a single
learned model. If any test rejects the null hypothesis that the data follows the
model’s distribution, then it adds one subclass and starts with UK-means in our
algorithm. If every test accepts the null hypothesis for a given model, then the
algorithm terminates. The following are the two hypotheses:

H0: The data around the center are sampled from a Gaussian.
H1: The data around the center are not sampled from a Gaussian.
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Algorithm 2. Estimation of ki
Input: The mean vectors of objects X with the same label ci,confidence α, number of
projections J .
Output: the number of subclasses (ki) of class ci and subclass representatives
(pci1 , pci2 , ..., pcki ).

1: Let ki ← 1. Initialize the class with the mean and covariance of X.
2: for j = 0; j < J ; j ++ do
3: Randomly generate a d× 1 projection vector P .
4: Project X and the model to P with the same projection.
5: Use KS test at significance level α to test if the projected model fits the projected

data set.
6: if any test rejects the null hypothesis then
7: break out of the loop.
8: end if
9: end for
10: if any test rejected the null hypothesis then
11: Initialize ki + 1 subclasses as the ki previously learned plus one new subclass.
12: Run UK-means on ki + 1 subclasses to learn ki + 1 subclass representatives.
13: Let ki ← ki + 1, and go to step 2.
14: end if
15: Every test accepts the null hypothesis; stop and return the model.

After projection, PG-means uses the univariate Kolmogorov-Smirnov (KS)
test for model fitness. The KS test statistic is D = maxX |F (X) − S(X)|-the
maximum absolute difference between the true cumulative distribution function
(CDF) of F (x) with the sample CDF S(X). Algorithm 2 shows the algorithm
more formally. PG-means uses UK-means to learn a model containing ki cen-
ters. In our work, we use UK-means instead of EM training [7]. UK-means uses
hard assignment (each example has membership in only one subclass). The worst
case is that each object belongs to a subclass, and the time complexity of Algo-
rithm 2 is O(Jn2T ), where J is the number of projections, n is the number of
objects of a class, T is the number of samples. In the algorithm, we use random
projection [6] to project the data and the model. There are also other possible
methods, e.g. principal component analysis which can be used to do projection.
We wish to use a small but sufficient number of projections and tests to discover
when a model does not fit data well. In [7], they followed Dasgupta’s conclu-
sion that c-separation2 is the natural measure for Gaussian [6]. In [6, 7], they
gave the conclusion that if J random projections are performed, the probability
that all J projections are ‘bad’3 is less than some ε: Pr(J bad projections) =
Erf(

√
1/2)J < ε, where Erf is the standard Gaussian error function. To find

2 For any c > 0, assume the two cluster centers μ1 and μ2 are in d dimension and the
spherical covariances Σ of the two clusters are the same for simplicity, c-separation
is that the vector m connecting the two centers (m = μ2−μ1) satisfies the condition
||m|| ≥ c

√
trace(Σ).

3 The probability that J is a ‘bad’ projection, i.e. that it does not maintain c-
separation between the cluster means when projected.
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a projection that keeps the two clusters means c-separated, approximately J is
shown as J < log(ε)/log(Erf(

√
1/2)) ≈ −2.6198log(ε) follows [6, 7]. For exam-

ple, if ε is 0.01, 12 projections are needed. In the experiments, we use J = 12
projections to estimate the number of subclasses in a class.

4 Experimental Evaluation

In this section, we evaluate Supervised UK-means with Multiple Subclasses
(SUMS) by comparing it with supervised UK-means. We compare their clas-
sification results in this section. All algorithms were written in Matlab and
were run on a Windows machine with an Intel 2.66GHz Pentium(R) Dual-Core
processor and 4GB of main memory.

4.1 Synthetic Data Sets

We have done the experiments on the two typical data sets shown in Figure 1(a)
and Figure 1(b). In Figure 1(a), the class (‘x’) is divided by the class (‘+’).
The number of objects in class (‘+’) is 100, and the number of objects in class
(‘x’) is 200 with equally distribution on the two sides of class (‘+’). We denote
the data set by “Middle” which means that one class is divided in the middle.
The centers of uncertain objects were generated from a Gaussian distribution,
whose mean and standard deviation are equal to the class center and σ respec-
tively. A set of uncertain objects represented by MBRs with size S × S were
randomly generated in 2D space [−100, 100]× [−100, 100]. An MBR is divided
into

√
T ×

√
T grid cells. Each grid cell corresponds to a sample. Each sam-

ple is associated with a randomly generated probability value. All probabilities
in an MBR are normalized to have their sum equal to 1. For each data set,
a set of K class representatives were trained by the labeled objects. Similarly,
in Figure 1(b), the number of objects in class (‘x’) is 200, and the number of
objects in class (‘+’) is 200. The class ‘x’ and the class ‘+’ are divided into two
subclasses by each other. We denote the example by “Side” with the meaning
that each class being divided on two sides. Each subclass has 100 objects. The
execution time is shown in Table 2. SUMS spends more time than supervised
UK-means. Because in SUMS, PG-means is used to find the subclasses of class
which costs extra time. The time of SUMS depends on the number of training

Table 1. Parameters for experiments using data sets

Parameter Description Baseline Value

K number of classes 2
T number of samples per object 49
w maximum size of MBR, S × S 0.25
D number of dimensions 2
σ standard deviation of Gaussian distribution 1
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Table 2. Execution Time (Seconds)

Data Set Supervised UK-means SUMS

Middle 0.589 1.988
Side 0.704 3.215

objects, the number of samples and the number of projections. Table 3 shows
that the accuracy is improved by SUMS compared with supervised UK-means.
In Figures 3 and 4, the (symbol ‘o’ is the learned (sub)class representative of a
class). In Figure 1(a), the center of class ‘x’ is (1, 4) and (12, 4), and the center of
class (‘+’) is (6, 4). As Figure 3(a) shows, in supervised UK-means, the learned
mean vector of class (‘x’) is (2.7931, 4.2881) while the learned mean vector of
class (‘+’) is (10.9975, 4.2332). Figure 3(b) shows, in SUMS, the learned class
representatives of class (‘+’) is (6.6879, 4.2589) while the learned class represen-
tatives of class (‘x’) is (1.1130, 4.2304) and (12.0707, 4.2947). In Figure 1(b), the
subclass representatives of class (‘x’) is (1, 4) and (8, 4) and the center of class
(‘+’) is (3, 4) and (12, 4). The learned subclass representatives of class (‘x’) are
(0.8984, 4.0726) and (8.4050, 4.0098) while the learned subclass representatives
of class (‘+’) are (3.1032, 3.9298) and (12.1603, 3.8576) (Figure 4(b)) in SUMS.
In Figure 4(a), the supervised UK-means can only learn one class representative
for each class (the class representative of class ‘x’ is (1.8759, 4.0096) and the
class representative of class ‘+’ is (10.2837, 3.9341)). In Figure 3(a) and 4(a),
the learned class representative is far from some objects from the same class
which makes the accuracy of classifier low. In Figure 3(b) and 4(b), the learned

Table 3. Accuracy on synthetic data sets

Data Set Supervised UK-means SUMS

Middle 0.4667 0.9833
Side 0.5175 0.9067
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Fig. 3. (a) Class representatives of “Middle” learned by Supervised UK-means (b)
Subclass representatives of “Middle” learned by SUMS
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Fig. 4. (a) Class representatives of “Side” learned by Supervised UK-means (b) Sub-
class representatives of “Side” learned by SUMS

subclass representatives can improve the performance of supervised UK-means,
because the subclass representatives are closer to their real class centers. From
the experiments, the SUMS algorithm can learn more information compared
with supervised UK-means. SUMS with PG-means can learn the subclasses of
the synthetic data sets. SUMS improves the accuracy of supervised UK-means
with more time cost. We also did experiments on other synthetic data sets which
also show that SUMS can learn subclasses more accurately than supervised UK-
means. From the experiments, if the number of subclasses (as well as classes,
samples, objects, or dimensions) increases, the time of SUMS will increase. Be-
cause of space limitation, we will not show the figures.

4.2 Real Data Sets

We have also done experiments on real data sets. The parameters of the chosen
data sets used for the experiments are summarized in Table 4. The attributes of
all the data sets are numerical obtained from measurements. Classifiers are built
on the numerical attributes and their “class label” attributes. For the chosen data
sets, we use 10-fold cross validation to measure the accuracy. The 3 data sets
contains “point values” without uncertainty. Similar to uncertainty generation
of synthetic data sets, each object is represented by an MBR with size 0.25×0.25
in a multiple dimension space, which is divided into

√
49×

√
49 grid cells. Each

grid cell corresponds to a sample. Each sample is associated with a randomly

Table 4. Selected Data Sets from the UCI Machine Learning Repository

Data Set Training Tuples No. of Attributes No. of Classes Test Tuples

Iris 150 4 3 10-fold
BreastCancer 569 30 2 10-fold
Ionosphere 351 32 2 10-fold
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Table 5. Accuracy on real data sets

Data Set Supervised UK-means SUMS

Iris 0.913 0.927
BreastCancer 0.843 0.895
Ionosphere 0.706 0.871

generated probability value. All probabilities in an MBR are normalized to have
their sum equal to 1. From Table 5, SUMS with PG-means can classify the
objects more accurately on real data sets compared with supervised UK-means.
Supervised UK-means learns one class representative for each class. However,
the objects of a class may be distributed nearer to other class representatives.
Thus, the SUMS can train more than one class representatives for each class by
PG-means. In SUMS, PG-means tries to estimate the number of subclasses of a
class and learn local subclass representatives which may be closer to the objects
belonging to the same class. The experiments on both synthetic and real data
sets show that the Supervised UK-means with Multiple Subclasses (SUMS) can
improve the accuracy of supervised UK-means.

5 Conclusion

In our work, we study the problem of classification on uncertain objects whose
locations are uncertain and described by probability density functions (pdf).
Though supervised UK-means algorithm is proposed to classify uncertain ob-
jects more efficiently, it assumes that the classes are well separated. In real data,
subsets of objects of the same class are usually interspersed among (disconnected
by) other classes. Thus, we consider the objects in the same class can be further
divided into several groups (subclasses) within the class. We use PG-means (pro-
jected Gaussian) to estimate the number of subclasses in the class and train the
subclass representatives by UK-means. Our experimental results demonstrated
that our algorithm (SUMS) can overcome the limitation of supervised UK-means
when a class is divided by other classes.
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by grants from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (PolyU 5182/08E, PolyU 5191/09E).
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Abstract. Logistics and distribution planning are an important element of military 
operational planning. The vast level of detail available during planning increases 
the difficulty in forming a complete solution within time constraints. Moreover, 
the consideration of multiple planning scenarios is paramount to successfully 
investigate all available contingencies. This paper presents a hierarchical multi-
agent approach to distribution planning. The use of a multi-agent system enables a 
distribution problem to be logically separated, with each part being delegated to 
an independent agent. The application of hierarchy allows agent communication 
to be regulated, reducing redundancy in communication, as encountered in a flat 
multi-agent structure. Through multiple trials, it was found that the application of 
hierarchy vastly improved the computational performance of the system, without 
compromise to solution quality. 

Keywords: distribution planning, multi-agent systems, agent hierarchy. 

1 Introduction 

A complete and robust distribution plan underpins a successful military operation. 
Logistics and distribution planning have become of central importance to operational 
planning. Logistics with respect to defence is defined as force projection and 
sustainment of forces [1] and distribution as the act of satisfying those logistical 
requirements. Therefore the distribution problem is defined as the satisfaction of 
deployment and redeployment activities (force projection) and the movement of 
sustainment stock (sustainment). A distribution plan is formed by constructing and 
assigning a schedule to each transport, collectively providing one possible solution to 
the distribution problem. Each schedule consists of a mapping of personnel, 
equipment and sustainment to movements conducted by a specific transport at a given 
point in time. The aim of a distribution plan is usually to achieve the movements 
required in the shortest time possible with the lowest cost. Solving the distribution 
problem is best described as the difficulty of managing cost and uncertainty [2].  

The application of intelligent agents in software systems are becoming increasingly 
attributed as “capable of exhibiting flexible problem-solving behaviour” [3]. When 
the distribution problem is viewed with the mindset of employing an intelligent agent 
approach, one cannot help but see the possibility of using multiple agents [4]. This is 
because the problem can be easily viewed as a set of self-interested agents, some with 



756 T. Allard and S. Shekh 

tasks that require completion and others with resources to complete those tasks. In 
this paper we consider each transport as an individual agent with goals to complete 
distribution tasks in the shortest duration. A single agent handles task announcement 
and allocation using a bidding process, the details of which will be explained later. 
Through multi-agent negotiation, agents collaborate to formulate the distribution plan. 
As the number of agents increase so too does the communication overhead, increasing 
the time taken to produce a solution to the distribution problem. Since the agents 
themselves can be described by the transports they represent and the capabilities of 
those transports, we propose grouping the agents by capability. In this way a single 
agent can represent a collection of transports and a hierarchical structure of agents is 
developed. This paper presents a two-tiered hierarchical multi-agent approach to 
solving the distribution problem, modelling agents: 

• at the micro level as individual transportation assets, and 
• at the macro level as representations of homogeneous collections of transport 

capabilities 

A hierarchical multi-agent system (MAS) is evaluated for the quality of the solution 
and the computational time taken to achieve the solution against a set of example 
scenarios. The distribution problem can be simplified to a Vehicle Routing Problem 
(VRP), which has been shown to be NP-Hard [5]. As a result, optimal solutions to the 
real-world scenarios considered in this paper could not be computed. However the 
solutions produced by the hierarchical MAS were compared to those produced 
manually and found to be of similar quality. 

This paper focuses on the solution to the distribution problem from the point of 
view of efficient allocation of resources. Therefore force projection and sustainment 
are modelled as fixed time events. These events represent a quantity of personnel, 
equipment and sustainment (cargo) to be moved from one location to another by one 
or more transportation assets with set temporal constraints. The solution space of the 
distribution problem consists of transports, routes (modes) and bases (nodes) each 
with varying capabilities, as well as the possibility of unavailability time; such as 
maintenance. Therefore the logistical planner’s job is one of data acquisition and 
analysis, resource allocation, risk mitigation and optimisation. This paper will discuss 
a solution to the resource allocation problem and optimisation, for an insight into risk 
analysis see [6]. 

2 Related Work 

Multi-agent techniques have been used for planning and scheduling in a wide range of 
domains. Andreev, Rzevski et al. [7] used agents to model the drivers and vehicles of 
a Rent-a-Car company, while [8] applied multi-agent concepts to the newspaper 
industry. In these cases, a multi-agent system provided problem abstraction and 
efficiency in generating schedules, both of which would be difficult to achieve with a 
centralised approach. Agents provide a way of dividing responsibility among multiple 
entities and negotiation between agents can be used to formulate schedules. One 
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negotiation technique is auction-based allocation, where tasks are allocated based on 
the best bids made by agents. [9] used this approach to model auctions with various 
trucking companies for deliveries in transportation logistics. 

Military operations are generally very complex in nature, and modelling them is 
therefore a difficult task. Multi-agent systems provide an effective way of dealing 
with this problem. Agents can be used to represent various entities, such as transports, 
resources and units, including both friendly and hostile forces. The basic behaviours 
of these entities can then be modelled, which provides a platform for observing 
interactions between entities and utilising the resultant outputs. This approach has 
been applied to numerous types of military operations, including military combat 
[10], crisis management [11] and logistics [12]. The system described by [12], called 
UltraLog, utilises the interaction and collaboration of over a thousand planning agents 
to develop a military logistics plan. 

Despite the ability of the MAS to provide problem abstraction, modelling a large 
system can result in a significant communication overhead. As the number of agents 
increases so does the number of communication channels and hence the effort 
required to search [13]. One strategy for dealing with this is to incorporate a 
predetermined hierarchy into the agent structure. [14] presents a hierarchical multi-
agent approach for modelling work schedules on a construction site. The hierarchy 
consists of multiple tiers of agents, which task each other in building a structure, from 
the low-level agents that lay the bricks to the high-level agents that coordinate the 
construction. Similarly, the MAS presented in this paper uses a hierarchical structure 
(albeit not pre-determined) to allocate responsibility; high-level agents are responsible 
for broad planning through negotiation, while low-level agents perform detailed 
planning of their respective transportation requirements. The presence of fewer agents 
at the higher levels of the hierarchy results in less communication overhead. 

A hierarchical agent structure was used by [15] to resolve conflicts amongst agents 
functioning as subject matter experts (SME). The agents were clustered together 
based on the data they used to make decisions; agents with common data were placed 
in similar clusters. The MAS was structured as a three-tiered hierarchy with each 
cluster headed by an agent that facilitated communication within the cluster and 
between different clusters. The top of the hierarchy was a single agent responsible for 
making the final decision based on the suggested decisions provided by each cluster. 
This implementation focused on reducing conflicts between agents and improving the 
accuracy of the system. While this reduced some communication overhead, if these 
SME agents are viewed as operating on similar capabilities, then this paper seeks to 
utilise the hierarchy to episodically filter agents whose capabilities are not suitable for 
a particular distribution problem. 

Initial schedules formulated by agents can be sub-optimal, and improvements 
become more evident as the schedules are populated. Thus, our system incorporates 
techniques for schedule optimisation, similar to the transport load consolidation in the 
system described by [16]. Schedule optimisation allows cargo to be delivered quicker 
using fewer resources, which is an important factor given the limited transportation 
assets that are often available during military operations. 



758 T. Allard and S. Shekh 

3 Problem Definition 

The distribution problem defined in this paper is modelled as a finite set of jobs, , … , , each with an amount of cargo requiring transportation from an origin 
to destination within fixed temporal boundaries. Let  be the finite set of geographical 
locations, which include the origin and destination of these jobs, , … , . Each 

job, , can then be represented by the tuple , , , ,  

where,  and  are the earliest time  can be started and the latest time  

can be completed respectively. ∈  is the location of ’s cargo at time , 

while ∈  is the desired location of ’s cargo at time . , … ,  is the finite set of cargo for ; where, each element, , is the 
volume and mass representation of the  cargo element. 

Each geographical location is connected to other locations through zero or more 
routes. Let , … ,  be the finite set of routes for the distribution problem. 
Each of these routes can support a single mode of transportation within the  
fixed set , , , . Each route, , is defined by the tuple , , ,  where, ∈  and ∈  are the start and 
end geographical locations of ; ∈  is the mode of  and  is the distance of 

. Two locations can be connected by a sequence of routes, where each route can 
potentially involve a different mode of transportation. Hence, a single job may 
involve traversing routes of multiple modes. 

The distribution problem also models transportation assets as the fixed set  , … , . Each transport  is represented by the tuple , , , ,  
where,  and  are the maximum speed and distance  is capable of travelling 
respectively; ∈  is the mode of transportation  can travel and  is the 
volume and mass representation of the amount of cargo  can carry. 

Distribution planning is the allocation of transport assets to specific jobs. A job, , 
is completed when its cargo  is transported from  to . 

Transportation of  cannot begin prior to  and for  to be successful all cargo 

must arrive at  no later than . A transport, , can only participate in 

the completion of  if there is some item in  that fits within the cargo capacity of 
. When moving between two locations  can only travel on the set of routes ⊆ , where ∈ ì, .  can transport ’s cargo 

directly to the  or partway to a new location, . If  transports the cargo 
partway, another transport, , is required to transport the cargo the remaining 
distance (  to ) or to another intermediary location (  to ). This 

cooperative style of transportation may be required if  and  are 
separated by routes of varying modes. 

The distribution problem is solved when all jobs are completed successfully. It 
may not be possible to complete a job within a single trip, so a transport may need to 
perform multiple trips, or more than one transport may need to be used. Transports 
can also participate in multiple jobs at once. 
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4 Multi-agent Negotiation 

We begin by looking at a non-hierarchical (flat) agent structure, which models agents 
as individual transportation assets. Let , … ,  be the fixed set of agents in 
the system. Each agent is aware of its capabilities as a transport, ; its current 
schedule, ∆ ; the locations it can travel,  and the other agents in the system with 
which it can communicate, . Therefore an agent  can be represented by the tuple , , ∆ , . In this flat structure each individual agent is capable of 
communicating with all other agents in the system, meaning . 

The process of solving a distribution problem is coordinated by the Bid Controller 
(BC), with the goal of formulating an efficient allocation of transport resources. The 
BC has access to the set of jobs, J, and processes J in order of , announcing each 
job to all agents in the system. The agents form their best bid for each job and submit 
that bid to the BC. This bidding process is illustrated in Fig. 1, and discussed in more 
detail below. 

 

 

Fig. 1. The bidding process in the flat agent structure 

When the BC announces a new job, , the goal of each agent is to transport as 
much of  as possible from  to  before . To achieve this each 

agent computes a series of bids for  and selects its most efficient bid to respond to 
the announcement. 

A bid is a proposed movement or set of movements to complete , either in part 
or in full.  can form a bid to transport  directly from  to , or if it 

is unable to reach  , it may transport to an intermediate location  and 
subcontract the remainder of the journey. Once  decides to subcontract, it will send 
a new sub-job announcement to  outlining the requirement to transport  from  
to . The agents that receive the announcement will then undergo the same 
bidding process as described above with . Concretely, each agent  in  will 
consider completing the sub-job themselves, or subcontracting further, depending on 
what is likely to result in the most efficient bid. 
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A bid that contains more than one movement is termed a composite bid. 
Composite bids are limited in size to no more than six movements or the number of 
transports in the problem, whichever is smaller. This means that for a bid to be valid it 
must complete the transportation of  from  to  utilising no more 

than six transportation assets. The imposition of a subcontract limit on the MAS limits 
the search space, preventing agents from pursuing intractable solutions. A subcontract 
limit of six was found to be a good compromise between computation time and 
solution quality. 

Each agent, , creates bids by iterating over  and  and attempts to move 
the maximum amount of cargo it can carry to each location, , initiating 
subcontracting when . This follows a heuristic search which prunes 
branches of the search tree that can be seen to offer less efficient results. 

Once all bids have been generated,  responds to the job announcement with its 
most efficient bid. Efficiency is determined by the expected completion time of the 
job, according the bid. If two bids have the same expected completion time, the agent 
will use the bid with the lowest transport utilisation time.  Bids that involve fewer 
transports for shorter periods of time will have lower utilisation times and are 
considered more desirable. The system itself maintains a set of bids received by 
agents and selects the best bid that satisfies the same efficiency criteria. All agents 
involved in the best bid will then have their schedules updated. If  does not 

transport all of  from  to , the system will create a new job 

announcement to transport the remaining cargo, at which point the bidding process 
begins again. 

5 Benefits of Hierarchy 

The MAS described above enables each agent to communicate or subcontract to any 
other agent in the system. This is termed a flat communication structure (FCS); 
meaning that for each agent in the system . Therefore if  is the 
number of agents in the MAS, then each agent has 1 communication links. If  
is the subcontract limit, then the worst case number of iterations of subcontracting is ∏ . If the MAS iterates over the set of jobs, , and each job requires, at 
worst case, each agent to iterate over all locations, , then the worst case 
computational complexity of the problem is ∏ . Using this 
equation, two of the sets can be held constant while the other is increased. The effect 
of each set on the computational complexity is shown in Fig. 2. Computational 
complexity is modelled in computational units; an abstract unit representing a single 
iteration over any of the three sets. Fig. 2 shows that an increase in the number of jobs 
or locations in the system results in a linear increase in computational complexity. 
However as the number of agents in the system increases, the computational 
complexity increases exponentially. This exponential increase is not surprising, since 

 agents could have up to 1 communication links. 
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Fig. 2. Effect of system elements on computational complexity 

It can therefore be said that the number agents in the MAS, or indeed the number 
of communication links between them, is the dominant factor affecting computational 
complexity. The most effective method for reducing computational complexity is to 
reduce agent communication or the communication overhead. This paper suggests 
logical grouping of agents to isolate communication between groups and the 
development of these groups into a hierarchical communication structure (HCS) to 
better direct communication. Agents were grouped based on the capabilities of the 
transport asset they were modelling, with similar capabilities grouped together. A new 
type of agent, transport agent , models the head of an agent group and directs 
communication down the hierarchy. This hierarchy is illustrated in Fig. 3, providing 
an alternative communication structure to step 2 of Fig. 1. 

 

 

Fig. 3. The hierarchical agent communication structure 

Bidding, communication and hence subcontracting are performed at the transport 
agent level. Transport agents select the most suitable agent in their group to 
participate in a bid. The original equation for worst case iterations of subcontracting 
thus becomes ∏  where  is the number of transport agents, and 

. Each transport agent can be thought of as a different capability group 
within the MAS. The exponential growth of the computational complexity can now be 
limited by the ability to divide agents into capability groups. As will be shown in the 
next section the HCS results in a large reduction in computational complexity and 
hence computation time when compared with the FCS.  
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The HCS solution quality depends on the degree of similarity between transports 
within capability groups. When capability groups are characterised by specific 
platform type (e.g. C-130H aircraft, C-17 aircraft, etc.) the solutions of both MAS 
structures should be equivalent since the Transport Agent exactly represents its 
constituents. However when capability definitions are generalised (e.g. aircraft, ships, 
trucks, etc.) the solutions produced by the HCS tend to reduce in quality when 
compared to those produced by the FCS. As capability definitions become more 
abstract the quality of the HCS will continue to degrade with a corresponding increase 
in computational performance. This degradation in quality may require the use of an 
automated plan repair functionality to correct the errors introduced. This paper 
considers only specific transport capability groups, while abstract capability 
representations and plan repair techniques are areas for future work. 

6 Results 

Testing was completed in two parts; one assessing computational complexity and the 
other testing the quality of the solution. 

Computational complexity was assessed using two distribution problem scenarios 
that were similar to circumstances faced by military planners. The two scenarios 
differed in their route network; the first was designed with a fully connected route 
network allowing each individual transport type to complete a problem in full. The 
second was designed with a partially connected route network where agents were 
required to subcontract to achieve their goals. Specifically, in the partially connected 
network, each location could only be reached, on average, by two routes. For 
example, Location C might only be reachable by sea from A, or by air from B. This 
created a need for agents to cooperate in the partially connected network, because 
most jobs could not be completed alone. Conversely, the fully connected network had 
no such restriction and each agent could operate independent of other agents. 

Each distribution problem consisted of a set of fixed time events requiring the 
movement of supplies from multiple geographical locations. Three different transport 
asset capabilities were initialised in groups at random locations. The number of 
transports of each type was varied from one to 25 during testing with each amount 
tested 100 times. Both the HCS and FCS attempted to solve each of these 
distributions problems. When a solution was found, each communication structure 
produced the same solution however the time required to reach such a solution varied, 
especially when dealing with increasing instances of each transport capability. 
Solutions produced by both structures were of equal quality due to the use of specific 
transport capability groups in the HCS as described in Section 5. 

The computation time for various problems is shown in Fig. 4 and Fig. 5 for fully 
connected and partially connected networks respectively. These graphs use a 
logarithmic time scale due to the rapid growth in computation time of the FCS. The 
vertical bars show the standard deviation of each result. Due to time constraints, the 
FCS was unable to complete instances of the problem comprising of more than four 
transports in each capability for a fully connected route network, and seven transports 
in each capability for a partially connected route network. These instances are 
therefore not shown in the graphs. 
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The quality of the solution was also tested against a centralised approach for 
distribution planning, known as the Greedy Distribution Algorithm (GDA) [17]. 
Instead of using a multi-agent system, the GDA contains a central entity that 
considers the constraints of the planning scenario and formulates a distribution plan 
by applying heuristics. The use of heuristics is driven by the inability of exact 
methods, such as integer programming, to scale effectively to larger problems [18]. 

The solutions produced by the HCS were compared to those produced by the 
GDA algorithm for the same problem set, as shown in Table 1. These problems are 
based on real world distribution scenarios faced by military planners, and for this 
paper have been labelled S1-S10. The quality of the solutions is measured by the 
makespan of the schedule generated by the algorithm. The makespan is the time 
difference between the start of the first movement and the end of the last movement. 
Shorter makespans are desired for a given distribution problem as it means the 
movements were completed in a shorter duration. 

 

  

Fig. 4. Distribution problem computation time for a fully connected route network 

 

Fig. 5. Distribution problem computation time for a partially connected route network 
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Table 1. Distribution plan makespans for the HCS and GDA 

Scenario Hierarchical Communication Structure Greedy Distribution Algorithm 

S1 52 days, 14 hours, 41 minutes 68 days, 6 hours, 34 minutes 

S2 21 days, 11 hours, 9 minutes 23 days, 21 hours, 32 minutes 

S3 182 days, 5 hours, 51 minutes 199 days, 21 hours, 51 minutes 

S4 10 days, 7 hours, 43 minutes 17 days 15 hours 40 minutes 

S5 37 days, 4 hours, 12 minutes 37 days 12 hours 6 minutes 

S6 121 days, 17 hours, 15 minutes 140 days 22 hours 9 minutes 

S7 31 days, 8 hours, 9 minutes 31 days 12 hours 24 minutes 

S8 70 days, 9 hours, 22 minutes 80 days 20 hours 25 minutes 

S9 48 days, 8 hours, 46 minutes 50 days 11 hours 42 minutes 

S10 21 days, 5 hours, 41 minutes 21 days 12 hours 36 minutes 

7 Discussion 

The results in Fig. 4 show a comparison of computation times for both 
communication structures in a fully connected route network. Fig. 5 shows a similar 
comparison for a partially connected route network. In both network configurations, 
the FCS performed poorly, growing at a near exponential rate. Due to this exponential 
growth, calculating a result became infeasible for transport quantities above four in 
fully connected networks, and seven in partially connected networks. For example, a 
fully connected network with four transports per capability using the FCS took 
approximately 48 hours to compute one solution. In contrast, the HCS demonstrated 
improved scalability, suggesting that it is better suited for handling the complexity of 
real-world scenarios. A solution could be found for route networks with up to 25 
transports per capability in an acceptable timeframe, faster than the FCS could 
compute a solution for four transports per capability. 

The poor computational performance of the FCS can be attributed to the large 
number communication links. Every agent can potentially communicate with every 
other agent, regardless of previous communications between agents of a similar 
capability. This leads to redundant communication that costs computation time without 
improving the quality of the solution. The HCS exhibits a distinct improvement in 
computational performance. This is due to the structure’s logical isolation of similarly 
capable agents, thereby reducing redundant communication and allowing negotiation 
between agents to be better focused on improving the global solution. This is evident in 
Fig. 4 and Fig. 5 where the HCS consistently outperformed the FCS, despite both 
approaches producing solutions of equal makespan. 
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Fig. 4 displays a non-uniform computation time slope for the HCS, becoming 
increasingly evident as the number of agents per capability increases. This is caused 
by the lack of restriction in the route network. The ability of any transport to travel to 
any destination lends itself to many different solutions for the same problem. This 
requires a large number of samples for a statistically significant result. While the 
gathered data still reflects the scalability of the algorithm, a larger sample set could 
improve the uniformity of the computation time slope. Gathering more results and 
further investigating the progression of the computation time slope for the MAS 
implementation is an area for future research and is beyond the scope of this paper. 

Table 1 shows the comparative performance of the HCS and GDA. The GDA 
utilises a greedy algorithm designed to produce solutions in a timely manner at the 
expense of solution quality. In contrast the HCS employs a more comprehensive 
search of the solution space enabling it to provide better quality solutions at the 
expense of computational performance. To overcome performance issues the HCS 
utilises hierarchy to logically group agents and reduce communication overhead. As a 
result the HCS was able to produce better quality solutions when compared with the 
GDA, while remaining comparable in computational performance. 

8 Conclusion 

This paper presents a hierarchical MAS for solving logistic distribution problems. 
From trials conducted against real-world distribution scenarios it was shown that the 
HCS dominates the FCS in its ability to produce efficient solutions in considerably 
less computation time. As the scenario size increases the FCS becomes intractable, 
while the HCS remains computationally efficient, without loss of solution quality. 
The efficiency of the HCS is the result of its ability to isolate similarly capable agents 
and better direct communication. 

The hierarchical MAS presented was able to provide better quality solutions to 
distribution scenarios than algorithms developed with similar intent. When solutions 
from both the HCS and GDA were compared it was found that the HCS was able to 
produce on average better quality solutions with similar computational performance. 
This supports the claim that HCS can produce quality solutions to complex real-world 
problems within acceptable timeframes. 

Future research is directed to further increasing the computational performance of 
the MAS, either through improved agent communication or applied heuristics. 
Another area of interest is the application of the MAS in dynamic replanning and plan 
repair as a computer-based decision aide for human planning. 
 
Acknowledgements. The authors would like to acknowledge Don Gossink, Luke 
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Abstract. Operations of modern organizations critically depend on Data Centers
(DC). Due to ad hoc additions from diverse business units over time, the IT re-
sources in a DC get unwieldy and complex. Transformations of DC - server con-
solidation, migration, application/data simplification, technology standardization
- are important for cost, efficiency and reliability. Even when a specific transfor-
mation is identified (“consolidate these 100 existing servers into these 48 new
servers”) it is difficult to generate a detailed optimal project plan for its execu-
tion. The project plan must identify all the tasks involved, identify an optimal
team (size and expertise) and generate a detailed work schedule that meets the
and respects the constraints and dependencies among the tasks. We present a
methodology to generate such a plan automatically from given ”high-level” IT
transformation specifications (“as-is” and “to-be” states). We adopt a heuristic
forward chaining metric temporal planner engine (SAPA) to generate a project
plan that attempts to optimize the overall time and team-size. The idea is to cap-
ture the domain-knowledge as reusable planning action. This automation reduces
the efforts and errors in manual project planning. The method can be extended to
projects in other domains.

1 Introduction

Operations of modern organizations critically depend on Data Centers (DC), which
consist of a large number of IT resources such as servers, storage, networks, OS, mid-
dleware, databases, business applications etc. Due to changing business requirements,
changing workload patterns, new applications/users/customers/business partners and
technology changes, the IT infrastructure in a DC keeps evolving. Due to ad hoc ad-
ditions from diverse business units over time, the IT resources in a DC get unwieldy
and complex. As a real-life example, a large bank has several DCs containing 30,000+
servers, 5+ OS with 20+ versions, 10+ database products, 25+ middleware environ-
ments, 2500+ app server instances, 10+ petabytes of storage, 35+ programming lan-
guages etc. As another example, the US Army has 800+ DCs which run 24,000+ servers
and 9000+ applications, which they are planning to consolidate into 615+ DC by 2014,
thereby hoping to save approx. $5 billion (http://www.army.mil/article/70991/
accessed on 04-July-2012).

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 767–778, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Managing a DC consisting of such large, complex, heterogeneous and business crit-
ical IT resources is very difficult, leading to issues with performance, utilization, re-
liability, availability, costs (maintenance, license and power) and workload on support
personnel. Thus DC transformations - e.g., server consolidations, application and data
simplifications, technology standardizations - are important for cost, efficiency and reli-
ability. Focus on green IT is another reason for DC transformations. DC transformations
is an active area of research; e.g., [1,2,3,4,5,6] and much other work, most of which
is primarily about problems and technologies related to DC transformations, including
in cloud and other scenarios. Many IT organizations provide specialized services and
products for DC transformations.

In this paper, we focus on two problems: (i) generating a detailed and reasonably
good (not necessarily optimal) project plan for a given DC transformation project; and
(ii) deciding the optimal team size for the project. Creating such a project plan is a
complex and effort-intensive activity, as myriad details of identifying relevant tasks,
interdependencies among IT resources as well as tasks, human resource related con-
straints etc. need to be taken into account. Manually creating such a plan is error-prone
and time-consuming; ensuring that the plans are close to optimal is difficult.

In this paper, we propose an approach where detailed and reasonably good quality
project plans for DC transformation projects are automatically generated using a stan-
dard temporal planner engine. The high-level details of the IT resources and their trans-
formations are taken as input. The approach is based on a one-time activity of building
a comprehensive library of transformation tasks, modeled as a set of actions (operators)
in the domain file in PDDL. All the dependencies for each task as well as team-related
constraints are built into the corresponding action. The transformation details are au-
tomatically translated to the problem file in PDDL. The planner engine then generates
a location-wise plan (since a transformation project often includes multiple DCs) that
includes start and end time for each task, along with the associated team member to
carry it out. As far as we know, this is the first time a temporal planner is used to gen-
erate detailed project plans for DC transformation projects. The approach is extendible
to projects of other kinds.

The paper is organized as follows. Section 2 defines the DC transformation task
in detail along with a real-life case-study. Section 3 defines the approach and illustrates
how it works for the case-study. Section 4 describes related work. Section 5 offers some
conclusions and outlines future work.

2 DC Transformation Projects

2.1 Server Consolidation and DC Migration

We focus here on a particular kind of DC transformation strategy, called server consol-
idation. The task is to identify redundant, under-utilized, “small” or “old” servers in a
DC and move all the data and applications on them to other “suitable” existing servers
and/or on new servers, so that the new set of servers are “better” than the old set of
servers (e.g., less power, less operating costs, better reliability, easier to manage etc.).
Server consolidation is often coupled with DC migration, where all IT resources in a
source DC are “consolidated” into resources in another target DC and the source DC is
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then closed, thereby saving on some capital costs. A server consolidation specification
consists of one or more movegroups. A movegroup (MG) [1] often consists of a group of
closely related servers along with related resources such as business applications (e.g.,
cheque processing or ATM transaction processing in a bank), databases etc. There are
carefully designed strategies to form the MGs in a server consolidation project.

The MGs are disjoint i.e., any server in a source DC belongs to at most one MG.
Each MG G is a unit of server consolidation project and consists of a finite set S =
{s1, s2, . . .} of source servers from DC D, which need to be mapped or moved to a
set T of destination (or target) servers in (possibly different) DC D′. We assume that
S ∩ T = ∅. Generally, |T | ≤ |S| i.e., target servers are fewer in number than source
servers. For generality, we assume that source servers in all MG belong to the same
DC D and target servers in all MG belong to the same DC D′ �= D. MG specification
gives complete details of each source as well as target server in it; e.g., number of
CPUs, memory, disk, OS, special-purpose HW devices connected to it, system software
running on it, business applications running on it, old and new IP addresses etc. The MG
specification also defines which source servers are mapped to which target servers and
also the method of transformation (Section 2.2).

The MGs in a project may have dependencies among each other and so they need to
be consolidated in a suitable order that “respects” these dependencies. However, we will
ignore this issue and assume that we are given an MG which either has no dependencies
on other MGs or all the MGs on which it is dependent are already consolidated in the
target DC. This is not a serious limitation because our approach is designed to handle
such dependencies.

If all the source servers in an MG were independent, then in principle they can all be
consolidated in sequence, in parallel or in any combination of sequential and parallel
steps. However, the source servers (and the applications running on them) within an
MG may depend on each other in several ways:

– a source server may provide a shared service to other servers;
– a source server may host data (e.g., tables or files) shared by other servers;
– a source server may control access to a hardware resource (e.g., tape drive or com-

munication link) by other servers.

Thus the dependencies among the source servers must be taken into account when
preparing a project plan for an MG. In general, a server may run several business appli-
cations and there may be dependencies among these applications as well.

2.2 A Case-Study

We consider a real-life server consolidation and DC migration project, consisting of
nearly 400 servers in source DC called DC1, which were to be consolidated and mi-
grated to about 300 servers in target DC called DC2. This project was divided into
7 MGs. Figure 1 shows the specification for a particular MG consisting of 19 source
servers (all in one DC) and 10 target servers (all in another DC). We have omitted some
details such as source and target IP addresses etc. Servers marked as “shared” typi-
cally run common services or functionality (e.g., databases, user authentication etc.)
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Fig. 1. Specification of an MG

used by multiple applications. Here, LPAR indicates the process of migrating every-
thing (OS, applications, data etc.) from a physical source server (IBM machine running
AIX) to a virtual machine, which consists of a logical partition of hardware resources
(e.g., CPUs, memory) on a physical target server from IBM running AIX. P2V indicates
the process of migrating everything (OS, applications, data etc.) from a physical source
server (Intel-based machine running Windows) to a virtual machine, typically emulating
the same environment using virtualization software such as VMWare. Other transfor-
mations can be similarly understood. We have assumed that shared servers within this
MG need to be consolidated first and the business application groups (FRNA, STD,
GRPD MFGPRO) can be consolidated in any order. Within FRNA, the application
servers can be consolidated in any order and the database server must be consolidated
last; the system allows more complex precendece relations to be set among the servers
in a business application group.

2.3 The Processes of Server Consolidation and DC Migration

Basic steps in server consolidation are about moving all the OS, database, middleware,
application programs and other IT resources from a particular source server onto its tar-
get server. These steps actually consists of several tasks, which depend on the specifics
of the concerned server and the IT resources on it. Each task is executed either on the
source server or on the destination server. Each task requires a particular skill and which
generally takes a specific amount of time. In addition, the tasks themselves have depen-
dencies among each other, which need to be respected when preparing a project plan.
For example, suppose task A takes the backup of the data on source server, task B cre-
ates the necessary tables, users and permissions on the destination server and task C
restores this data on the target the server; clearly task A andB must be done before task
C. In general, the tasks may be structured hierarchically i.e., a task may have sub-tasks
and so forth. Even the time required for each task should ideally be treated as a random
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variable. However, for simplicity, we treat each task as an atomic unit which requires a
specific skill and takes a fixed amount of time.

Any server consolidation and DC migration project typically involves some common
tasks. The tasks can be divided into the following groups, where tasks within a group
are functionally similar.

1. Source Server Handover: These tasks involve a formal handing over of a source
server from the IT operations team to the server consolidation team.

2. Source Server Pre-migration: These tasks are related to system health checkup,
installation checks and other tasks that need to be done before this server’s consol-
idation can begin.

3. Server image: These tasks typically consist of creating an image (or a snapshot of
the state) of the entire source server on a storage device, transferring this image to
the target DC and copying the image onto the target server. Assuming that the target
server has already been configured to have the system environment as the source
server, the target server is then booted up and it starts in the same state as where the
source server was stopped. Detailed specifications of these tasks are dependent on
the type of the source and target servers. For example, AIX provides mksysb and
related commands for non-SAN bootable servers.

4. Data Backup: This involves taking a backup of all the user files, tables etc. Detailed
specifications of the tasks are dependent on the type of the source servers as well as
the device on which the backup is taken (e.g., tape, USB, CD etc.). Also, the backup
can be total or only incremental. Incremental backup is required if the source server
is functioning during the server consolidation project.

5. Data Transfer: These tasks involve either physically shipping a storage device to
the target DC or transferring the backed up data over a communication network,
typically using ftp commands.

6. Server Shutdown: These tasks are related to shutting down a (source) server.
7. Target Server Startup and Data Restore: These tasks are related to starting up a

source server, creating the same system environment on it (using virtualization
if required) and ensuring that the required configuration parameters, environment
variables, users, access permissions, devices etc. are correctly set. These tasks also
include using a storage device to restore the backed up data from the source server
into the target server and ensuring its completeness and correctness. The restored
data may be part of a full or incremental backup. The business applications on the
target are then started one by one and brought up “alive”.

8. Target Server Go-Live and Handover: These tasks involve user acceptance testing
of business applications in a live environment and a formal handing over of a source
server from the server consolidation team to the IT operations team.

Detailed specifications of the tasks in each group are dependent on the type of the source
server. The tasks have well-understood precedence relationships, which can be modeled
as precedence graph or equivalently, a partial order. There are precedence relations even
among the tasks in the same task group; thus the precedence graph is actually over all
pairs of tasks and servers. However, in most cases, these dependencies are only for tasks
to be performed on the same server; tasks on different servers are usually unrelated or
unconstrained (i.e., there is parallelism among tasks across servers).
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2.4 Project Plan

We focus here on creating a project plan for a particular MG. The approach can be
extended easily to create a project plan for the entire server consolidation project (i.e.,
all the MG together). A project plan for an MG lists out all the tasks involved for
consolidating each source server onto the destination server, along with start and end
time for each task and assigns a specific person to carry out each task. Clearly, the
requirement is to prepare a project plan that respects all server dependencies as well as
task dependencies (which corresponds to the required domain knowledge), minimizes
the overall time as well as minimizes the number of people required to execute the
tasks. Additional people-related constraints need also to be taken into account while
preparing the project plan; e.g., a person cannot work more than, say, 9 hours in a day
and a person can work on exactly one task at any time (no “multiplexing” of tasks).

Clearly, creating such a detailed project plan manually (even for a single MG), is
difficult, time-consuming and error-prone, particularly when the MG includes a large
number of servers. It is difficult to ensure that the manually created plan is optimal in
terms of delivery time and team size. Lastly, manually re-generating the project plan at
some later stage during execution is even more difficult.

3 Using a Planner Engine to Generate Project Plans

3.1 The Approach

We propose an approach where a project plan for an MG is automatically generated by
a planner engine from the given MG specifications. We maintain the required domain
knowledge about the tasks and their dependencies, input pre-conditions and output ef-
fects (post-conditions), as a library of standard actions in the planner engine. Creating
such a library is a one-time task, which is reused for generating project plans for multi-
ple MGs as well as multiple server consolidation projects. This approach makes it easy
to quickly generate optimal (or at least close to optimal) project plans. The steps in the
approach are as follows:

1. Create a reusable library of tasks involved in server consolidation and DC migration
as a domain file in PDDL; this is a one-time manual step.

2. Automatically generate a PDDL problem file from MG specifications
3. Automatically generate a detailed project plan from given problem file and the

domain file, using a standard planner engine.
4. Automatically generate a Gantt chart and other project plan deliverables from the

output plan.

3.2 Modeling Tasks as a Domain File in PDDL

Detailed specifications of these tasks specialized for each type of servers, including
their precedence tasks and post facto effects, the skills required and expected duration
for each task constitutes a reusable component of domain knowledge. We model each
task as a durative action (or operation) in the planning domain and specify it using
Planning Domain Definition Language (PDDL) 2.1 [7]. Briefly, a PDDL specification
consists of:
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1. Objects: in our case, these are the various IT resources such as servers, devices, op-
erating system, system software, databases, middleware and business applications.

2. Predicates: Boolean properties of objects which can be TRUE or FALSE.
3. Initial state: in our case, these specify the initial conditions about the source and

target servers.
4. Goal state specification: in our case, these specify the final conditions about the

target servers.
5. Actions/operators: ways in which the objects can be manipulated to reach a goal

state from the given initial state. Each action has a set of parameters, a precondition
(which must beTRUE for the action to get executed and a post-condition (or effect,
which is guaranteed to be TRUE after the action is executed. In our case, actions
correspond to tasks. We encode the precedence relations for a task as part of the
pre-conditions for the task. We use durative action facility in PDDL and associate
a time duration with it; this means that we can only use temporal planner engines
to generate the project plan.

In PDDL, the predicates and actions (operators) are defined in a domain file and objects,
initial state and goal state specifications (for a specific instance of IT transformation)
are defined in a problem file. This library (i.e., the domain file) of PDDL predicates and
actions is reusable for generating project plans for multiple MGs and different server
consolidation projects (i.e., for different problem files). If the given MG includes an
unknown IT resource (e.g., a server with a previously unseen operating system) then
we need to manually add the corresponding tasks to the domain file, including any
changes to the precedence relations for all tasks.

Figure 2(a) shows PDDL specifications of one task. SERVER, BA, LOCATION and
TEAM are (sets of) objects. Here, BA stands for a set of business applications, TEAM
stands for a set of human beings involved in carrying out the tasks, LOCATION contains
locations of the source and target DC. These objects have various Boolean properties,
which are specified as predicates; e.g., each server has a type (predicate serverTypeIs)
and a location (predicate at), each server contains one or more business applications
(predicate partOfBA), each team member has a location (predicate available-at)
and can be free or busy (predicate free) and so forth. This task depends on the shut-
down task for the given server, which sets the flag shutdown-done for the given server.
Note that a precondition for this action checks that the given team members is free to
perform this task. The flag virtualReplica-done-at is set for the given server and
location as a post-condition of this task, which the later tasks can check.

3.3 Modeling MG Specification as Problem File in PDDL

The actual MG is specified as a problem file in PDDL. The problem file contains a set of
objects, the initial conditions and a specification of the goal state. In our case, the initial
conditions correspond to the information about the source servers (e.g., their location is
the old DC). The goal state specification corresponds to the facts that all source servers
are moved to the target DC and are “working satisfactorily” i.e., all the tasks have been
performed and the user acceptance testing is passed for each target server. We generate
the problem file automatically from the MG specification (Figure 2(b)).
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Fig. 2. (a) PDDL specification for one task. (b) Problem file for MG specification in Figure 1.

3.4 Finding Optimal Team Size

In our formulation of the multi-agent planning problem, the optimal number of agents
is unknown and the planner is expected to generate a plan that is not only optimal in
terms of time but also in terms of number of agents required to carry out the plan. We
are working to reformulate the planning problem accordingly. In the meantime, we take
a simple approach: we run the planner several times, each time varying the team size
and checking the overall turnaround time for the project. We then select the optimal
team size as one that delivers the project in the shortest time. For the example MG, we
have clubbed handover and pre-migration tasks into a single skill-group, shutdown tasks
constitute a separate skill-group, data backup, data transfer, data restore and system
image as two separate skill-groups (for Microsoft Windows and for AIX), and finally,
handover and go-live tasks as a separate skill-group. For brevity, we report only the
results where we have kept the team-size for 4 groups as fixed and only vary the team-
size for the skill-group for Windows. Figure 3 shows how the project turn-around time
varies with team-size for this skill-group; clearly, the team-size of 14 is optimalfor this
skill-group. The overall team-size as per this optimal plan is 21 people and 5 skill-
groups, with the following skill-wise and location-wise break-up: handover and pre-
migration in DC1:1, shutdown in DC1:2, AIX in DC2:2, Windows in DC2:14, go-live
and final handover (user acceptance testing) in DC2:2.

3.5 Project Plan for the Example MG

We use the metric temporal planner engine SAPA [8] to generate the plan using the
domain file (which is fixed) and the given porblem file, which is specific to a particular
MG. The generated plan for the example MG contains a server and task-wise schedule
that spans 40 hours, which is well within the given upper limit of 48 hours (a weekend).
The composition of the optimal team is already discussed. Our system also has facili-
ties to convert the generated project plan into user-readable artifacts such as schedules
(Gantt charts), team utilization summary and other auxiliary outputs which are useful
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Fig. 3. Project turn-around time as a function of the team-size, for the example MG

Fig. 4. Part of the Gantt chart produced for the example MG

for understanding the plan and during plan execution. Figure 4 shows a part of the Gantt
chart for servers 9 and 12 in this MG. Even though 12 is a shared server, its consolida-
tion overlaps in time with that of the server 9 in application FRNA. This is fine because
there is no direct dependency between the two and the entire FRNA application does
not go “live” untill all the shared servers are already consolidated. This part of the Gantt
chart is not shown.

4 Related Work

Automated planning plays a significant role in a variety of demanding applications,
ranging from controlling space vehicles and robots to playing bridge [9]. As in our
work, planners have been used for generating workflows for IT infrastructure manage-
ment which transform a given initial state to a desired final state and where the trans-
formation actions are encoded as planning actions. [10] used a partial order planner for
this purpose. [11] generates workflows for IT infrastructure reconfiguration projects,
where each step in the workflow preserves global constraints, which are specified by
the end-users “outside” of any particular actions. [12] develop propositional planners
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which use domain-specific heuristics to generate plans for the closely related problem
of incremental transformations of a network topology so as to minimize service dis-
ruptions. In these papers, the actions are not durative and team size optimization is not
considered. Planners are also used for somewhat similar problems of services software
composition in business process management, which we do not review here; see [13].

A closely related planning problem formulation is called multiagent planning, in
which the planner needs to create a plan taking into account concurrent actions of and
dependencies of multiple autonomous agents, such as robots. Several approaches have
been designed to create multi-agent plans; see, for example, [14,15,16,17,18,19,20,21,22]
etc. The issues there are related to the nature of the planning process: dynamic or static,
centralized or distributed, agents are truthful or not, nature of cooperation among agents
etc. The focus is on coordination and control of agent actions. In this paper, we have
considered a centralized, static project planning formulation, in the classical planning
framework, where the tasks and their precedences are known and the time required for
each task is also known. We have associated a specific skill with each task. The key dif-
ference is that the number of people required to execute the plan is not fixed and known;
rather, we want to find the right plan along with the right team size. There are proba-
bilistic planning approaches where quantities like task times can be treated as random
variables to generate “most probable” plans; e.g., [17,23].

5 Conclusions and Further Work

In this paper, we use a standard temporal planner engine to automatically generate a de-
tailed project plan for DC transformation projects, which takes into account the needed
tasks and skills as well as various kinds of dependencies. The approach is based on one-
time creation of a reusable library of DC transformation tasks in PDDL. We illustrated
the approach using a real-life case-study.

A limitation of the current approach is scale: SAPA is unable to handle large projects
involving 100s of servers. We currently do not take into account some precedence and
priority constraints; e.g., FRNA and STD are treated as equal, without any precedence
among them, except that shared servers are consolidated before both business applica-
tions. We do not take into account precedence among specific programs running on a
server. The system is not currently usable to generate a partial plan, after some of the
tasks are done and perhaps they have overshot their allocated time. End-users need a
lot more information, summarized from the generated plan, such as utilization factors,
workload measures etc. We are working on adding these features. A key aspect of our
work is manually transforming the domain knowledge (for IT infrastructure transforma-
tions) into PDDL. For a planning problem with a large number of inter-related tasks and
objects, this becomes complex and error prone; approaches like HTN to PDDL transla-
tion [24] can simplify this process and approaches like PDVer [25] can be used to verify
the planning domain description. Planners which use PDDL3 [26] (with additions such
as sometime, at-most-once etc.) can be exploited to make the generated plan more re-
alistic. we need to generalize our approach by treating each task duration as a random
variable (not as a constant) and then generate “most probable” plans. We are working
on reformulating our planning problem to include team sizing and utilization as an in-
tegral part. A key aspect of project planning is identifying the risk factors, quantifying
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risks and creating a project plan that minimizes risks (e.g., by including risk mitigating
actions), as well as suggests alternative workflows in case a risk materializes. We are
working on including these aspects in the planning problem formulation.
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Abstract. We introduce a new class of planning problems in which there
is a separate set of actions with higher priority than regular actions. We
present new planning domains to show that problems of practical interest
may easily fit in this framework. We argue that though this framework
is quite succinctly encoded in classical planning itself, existing planners
are disappointingly inept at solving them. To demonstrate this, we have
built a wrapper tool for planners which uses ad-hoc techniques to give
far better results. Therefore, we also propose our encoded domains as
new challenges for general-purpose planners.

Keywords: Planning, benchmarks, action priority.

1 Introduction

Automated planning is an important area of research in Artificial Intelligence.
Not only is it a very interesting research problem, but it also has real-life usage in
areas like logistics scheduling and spacecraft commanding. It is widely recognized
that automated planning is a very difficult problem by itself and in general, no
planners can give any reasonable guarantee on performance. However, through
successive improvements over the years, general purpose planners have become
highly capable of solving a wide range of problems.

It is expected from general purpose planners that they are able to solve a
wide range of problems without specific bias to any special characteristics of the
problems. Based on this belief, we translated some special verification problems
from the automotive control domain to planning. These verification problems
are marked in their similarity with the planning problem itself, so translation is
trivial and good results were expected. To keep it simple, we consider the original
verification problem itself to be outside the scope of this paper and discuss our
problem entirely from a planning perspective. We present some planning domains
in this paper which are sufficiently endowed with the special characteristics of
our original verification problems.

Basically, our typical planning problem has two independent sets of actions.
As in classical planning, an initial state and planning goal is given and we need
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to find a sequence of actions that transform the initial state to a final state
satisfying the goal. However, we have a special requirement which is to ensure
during planning that we do not choose actions from the second set as long as
any action from the first set is applicable. In other words, actions from the first
set, which we term as the control actions, take an absolute priority over actions
from the second set, termed as the environment actions. Additionally, the goal
must be achieved in a state where no control actions are applicable.

As we show in this paper, this problem is easily reduced to classical planning
so we can always encode and try to solve it with standard planners like FF[3]
and LPG[4]. However, none of the planners that we have tried so far works well
on our encoded instances. Consequently, we have formed the opinion that even
domain-independent planners today have a bias towards solving some specific
type of problems better than others. We believe that this bias has come because
of an enthusiasm in the planning community with solving specific problems like
the blocks world, logistics etc. In an attempt to help break off from this set
pattern, we propose our encoded instances as new challenges for general purpose
planners.

Our planning domains touch problems of practical interest in areas like power
supply restoration [6] and functional model verification. Additionally, we argue
that these problems are not as difficult to solve as the planners may make it ap-
pear because we are able to produce far better results through our own wrapper
tool.1

Thus, our main contributions in this work are that (i) we introduce a new class
of planning problems for critical appreciation by the planning community and
(ii) our encoded domains and tools give an opportunity to compare, investigate
and improve on the existing capability of general-purpose planners.

The rest of this paper is structured as follows. We describe the basic framework
of our class of planning problems in Section 2. In Section 3, we describe the
encoding mechanism to support this framework in standard planners. In Section
4, we present a primary analysis of the reason that this encoding fails to work
well in most planners. In Section 5 and 6, we present two domains which are
modeled in our framework. Finally, in Section 7 we describe our wrapper tool
and compare its results with the results achieved from planners through direct
encoding.

2 Planning with Action Prioritization (PAP)

Our problem formulation is primarily based on propositional STRIPS planning
[1]. A state is given by a set of propositions (i.e. ground atoms) belonging to a
finite superset P . The presence of a proposition indicates that its value is assigned
to true in the state (and false otherwise). The precondition and postcondition of
an action α, denoted by the symbols pre(α) and post(α), are finite sets of literals.
The action set, A, in our case is the union of two disjoint sets Ae and Ac. We

1 Our planning domains and tools can be downloaded from the link
http://www.facweb.iitkgp.ernet.in/~pallab/paplan.tar.gz.

http://www.facweb.iitkgp.ernet.in/~pallab/paplan.tar.gz
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refer to Ae as the set of environment actions and Ac as the set of control actions.
Thus an instance our problem, which we name as PAP, is actually a five-tuple
〈P ,Ae,Ac, I,G〉. As in propositional STRIPS planning, we are given an initial
state I and a goal condition G (which is a set of literals) and we are required
to find a sequence of actions which will transform the initial state to a state
satisfying the goal condition. However, unlike in classical STRIPS planning, this
sequence of actions (i.e. the plan) must have some special properties which we
specify below.

A state is said to be a control stable state if and only if no control action is
applicable in it. To keep things simple, we require that for each α ∈ Ac, there
exists some l ∈ pre(α) such that l̄ ∈ post(α) (i.e., applying a control action
makes it inapplicable). Now, considering the sequence of states that are visited
as we apply the plan, we require the following:

1. Environment actions in the plan are applied only from control stable states.
2. The final state achieved by the plan is a control stable state.

There is one last issue that we must address before we can say that our problem
is well defined. It is always possible that control actions are defined such that
they form an inescapable loop in some states (meaning, we would keep applying
control actions without any hope of reaching a control stable state). In this
paper, we just assume that such situations are not allowed to occur.

Assumption 21. In a valid PAP instance, a control stable state is always reach-
able from every reachable state.

Unfortunately, this condition is not easy to verify. In practice, it may be pos-
sible to introduce stronger assumptions which are relatively easy to verify (e.g.
disallowing any control loop, not just inescapable ones). As we intend to address
PAP only in its most generalized form here, we consider this topic to be outside
the scope of this paper.

2.1 Complexity of PAP

Finding whether a solution exists for a PAP instance is PSPACE-hard as an
instance of the classical planning problem can be reduced to an instance of PAP
by copying all the actions to the environment action set and leaving the control
action set empty. On the other hand, we propose an algorithm in Section 3 which
reduces PAP to classical STRIPS planning in polynomial time. This implies
that the problem of checking whether a solution exists for a PAP instance is in
PSPACE. Hence we deduce that PAP is a PSPACE-complete problem.

3 Compilation to Classical Planning

In this section, we show how PAP can be easily reduced to classical plan-
ning. The pseudo code of this reduction algorithm, named PAPLAN, is given in
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Fig. 1. Environment action E1 and control actions C1 and C2

Algorithm 1. We illustrate the working of this reduction algorithm on the set of
actions shown in Figure 1.

The main emphasis of this reduction is on preventing the environment actions
from being applied unless the state is a control stable state. In order to impose
this restriction in a classical planning framework, we introduce one additional
proposition dis(Ci) for each control action Ci. The proposition dis(Ci) is true
only at states where Ci is not applicable. In order to express that an environment
action applies only at a control stable state, we add all the dis(Ci) propositions
to its precondition (Algorithm 1, Line 6). For example, the precondition of E1
becomes {G1, dis(C1), dis(C2)}.

We say that an action α (environment or control) triggers a control action Ci

if and only if the postcondition of the former contains one or more propositions
that appear in the precondition of the latter. In our encoded instance, whenever
we apply an action α which triggers a control action Ci, we set dis(Ci) to false.
The intent here is to prevent any environment action from being applied till we
ensure that Ci is not applicable anymore. Therefore, we rewrite the postcondition
of α to include ¬dis(Ci) for each triggered Ci (Algorithm 1, Line 9). Using the
shorthand 〈pre(α), post(α)〉 to express actions, the actions in our example in
Figure 1 would finally become:

E1 = 〈{G1, dis(C1), dis(C2)}, {P1,G2,¬dis(C1)}〉
C1 = 〈{P1}, {¬P1,P2,¬dis(C2)}〉
C2 = 〈{P2}, {¬P2,¬G1}〉

It is possible that Ci is not applicable after applying its triggering action α
because some of the other propositions in its precondition are not true. Alter-
natively, Ci may later cease to be applicable after applying Ci or some other
control actions. In both situations, we must be able to set dis(Ci) back to true.
For this, we introduce some new actions (for each Ci), each of which has the
negation of a precondition of Ci as its precondition and dis(Ci) as its postcon-
dition (Algorithm 1, Line 12). For our particular example, they are:

M1 = 〈{¬P1}, {dis(C1)}〉
M2 = 〈{¬P2}, {dis(C2)}〉

The initial state and goal are modified suitably (Line 2, Line 3) and finally, we
extract the plan by calling a classical planner (Lines 14-15). We do not argue
the correctness of this reduction here due to space limitation, but believe that
the reader will be readily convinced of it with a little effort.
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Input: The propositions in the planning domain (P), a set of environment
actions (Ae), a set of control actions (Ac), the initial state (I), and the
goal state (G).

Output: The generated plan (plan).
1 P ′ ← P ∪ {dis(ac) | ac ∈ Ac}
2 I′ ← I ∪ {dis(ac) | ac is not applicable in I}
3 G′ ← G ∪ {dis(ac) | ac ∈ Ac}
4 Ad ← ∅
5 foreach e ∈ Ae do
6 pre(e) ← pre(e) ∪ {dis(ac) | ac ∈ Ac}

end
7 foreach a ∈ Ae ∪Ac and ac ∈ Ac do
8 if a is a trigger for ac then
9 post(a) ← post(a) ∪ {¬dis(ac)} /* To mark ac as enabled */

end

end
10 foreach ac ∈ Ac do
11 foreach � ∈ pre(ac) do
12 Ad ← Ad ∪ {〈{¬�}, {dis(ac)}〉} /* To mark ac as disabled */

end

end
13 A′ ← Ad ∪Ae ∪Ac

14 plan′ ← PLAN(P ′,A′, I′,G′)
15 plan ← RemoveMarkerActions(plan′,Ad)
16 return plan

Algorithm 1. PAPLAN

4 Our Encoding and Planning Graphs

Though all planners employ different heuristics and techniques, the most suc-
cessful ones usually employ the planning graph [2] in some way or other. Since
it is practically impossible for us to analyze the specific reasons of under perfor-
mance for each and every planner, we focus on the planning graph and mutex
relations to obtain a general picture. We assume that the reader is well aware of
planning graphs and their construction method [5].

Let us again take the example in Figure 1 and assume that we are given the
initial state I = {G1} and goal G = {G1,G2}. It is obvious that this goal is
not achievable because as soon as we apply E1, we have to next apply control
actions C1 and C2 which would then destroy the goal G1. Remember that by
definition we are required to achieve the goal in a control stable state.

The above example represents a very common phenomenon in planning prob-
lems featuring our prioritized action framework (as the reader may appreciate
better in the next two sections). We will informally refer to this phenomenon as
the distant destruction of goals. Basically, achieving of one literal using an action
may necessitate destruction of others through successive triggering of control ac-
tions. A planner which is aware of such inevitable consequences would probably
perform better than others.
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Fig. 2. Planning graph for encoded problem

Taking our encoded example, let us observe how the planning graph works.
We partially depict the planning graph in Figure 2. Note that in order to prevent
cluttering, we have only depicted those literals which are either goal literals or
appear in some action’s precondition. Persistence actions and some inconsequen-
tial actions have not been depicted either. A dashed line from the action to a
literal indicates that the action destroys that literal.

At the first level, we are able to achieve G2 but it is mutex with dis(C1) (as E1
triggers C1). This mutex carries on to the second level. However, as C1 causes
the deletion of the mutex between ¬P1 and G2 in the second level, we get no
mutex between G2 and dis(C1) in the third level (M1 and persistence of G2 are
no longer mutex). So the planning graph predicts no difficulty in achieving the
goal set G′ = {G1,G2, dis(C1), dis(C2)}.

Quite clearly, as the goal literals are achieved together pairwise in the in-
termediate levels, the planning graph looses all information relevant to distant
destruction. We believe that this is an important drawback to the efficiency of
any planner using planning graphs and mutex relations. We are presently work-
ing on techniques to address this and look forward to any future inputs from the
planning community on this.

5 The Power Supply Restoration Planning Domain

The Power Supply Restoration (PSR) domain [6] is known to the planning com-
munity as it was featured in the fourth International Planning Competition
(IPC-4). As our first working example of PAP, we present a model of this domain
in our framework. What we like about our version of PSR is that we basically
express the domain in plain STRIPS syntax, yet it remains just as succinct and
easy to understand as the versions from IPC-4. The models of PSR from IPC-4
invariably make use of advanced syntactic constructs such as derived predicates
or conditional effects that become unreadable when compiled to plain STRIPS.

The PSR domain basically models an electrical power distribution system.
The model of a small power distribution system is illustrated in Figure 3. It
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is composed of power lines, switching devices and circuit breakers. Each power
line is connected to one or more switching devices. The main power station
(not shown in the figure) distributes the power through the circuit breakers. A
switching device connects two power lines. Closed circuit breakers and switch-
ing devices are darkened in the figure to help identify them. Whenever a fault
appears in a line, it puts all its feeding lines and the main power station under
risk. Therefore, any circuit breaker supplying power to it needs to be opened im-
mediately. Subsequently, the switches and breakers need to be opened or closed
in such an order that power can be safely restored to a given set of power lines.

Fig. 3. Example of a Power Distribution System

To represent the logic of a power distribution system, we define a set of con-
trol actions which model the automatic flow of electrical power through the
system. For example, some control actions for the system in Figure 3 are as
follows:

〈{closed(CB1),¬fed(L1)} , {fed(L1)}〉
〈{closed(SD1), fed(L1),¬fed(L11)} , {fed(L11)}〉
〈{closed(SD1), fed(L11),¬fed(L1)} , {fed(L1)}〉

The first control action above ensures that the line L1 is fed (meaning, powered)
through a closed CB1. The second and third control actions ensure that the lines
L1 and L11 feed each other through a closed SD1 (the third action is actually
redundant for this particular example).

Further, if one side of a switching device or circuit breaker is connected to a
faulty line, we mark the other side as unsafe. For example. we would define a
control action for this as follows (the upper side called side1):

〈{faulty(L9), closed(SD11),¬unsafe(SD11, side1)}, {unsafe(SD11, side1)}〉
Additionally, if one side of a switching device or circuit breaker is connected
through some line to the unsafe side of another switching device, the other side
is deemed unsafe:

〈{unsafe(SD11, side1), closed(SD9),¬unsafe(SD9, side2)}, {unsafe(SD9, side2)}〉
Finally, if a circuit breaker has an unsafe side, then it is said to be affected:

〈{unsafe(CB2, side1),¬affected(CB2)}, {affected(CB2)}〉
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Next, we come to the environment actions which represent things that we can
perform at will on the power distribution system, e.g. closing and opening of the
switching devices. For example, we define the following two actions to represent
the closing and opening of a switching device SD1, respectively:

〈 { ¬closed(SD1),¬affected(CB1),¬affected(CB2)}, {closed(SD1)}〉
〈 { closed(SD1),¬affected(CB1),¬affected(CB2)},
{ ¬closed(SD1),¬fed(L1), . . . ,¬fed(L11),
¬unsafe(SD1, side1), . . . ,¬unsafe(SD11, side2),

¬unsafe(CB1, side1), . . . ,¬unsafe(CB2, side2)}〉
Note that with each “open” action, we mark all the power lines as unfed and all
the switching devices and circuit breakers as safe. This is because we intend to
force a complete re-evaluation of the logic represented by the control actions in
order to retain the correct values.

We have also have a “wait” action, quite similar to “open”, to represent the
opening of circuit breakers specifically when they are affected (note that we are
not allowed to perform normal opening and closing in that case). These actions
mark the circuit breaker as unaffected in addition to opening it.

In Figure 3, a number of faulty lines are fed through the circuit breaker CB2,
hence we must apply “wait(CB2)” before anything. Following this, lines L3 to
L10 are left without power. To solve this example, we may open SD7 and SD11
first and then close SD3 to safely restore power to all non-faulty lines except L5.
Finding out this sequence can be quite a difficult problem for large distribution
systems. The reader is encouraged to satisfy himself/herself of the fact that our
prioritized action planning would allow us to do such reasoning correctly.

6 The GRID Domain

We present here another representative domain for PAP. The system we visualize
is a grid of processors serving job requests from one or more external dispenser
units. A processor in our domain has four communication channels each of which
can be connected to a neighbouring processor or dispenser unit. Examples of such
interconnected systems are shown in Figure 4.

Dispenser

Dispenser

Dispenser

Dispenser

Fig. 4. Various configurations for a grid of processors
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A dispenser unit creates new jobs and makes requests to one of its neighbour-
ing processors to take them up. If the requested processor accepts, then it is
instantly handed over the job. In the case of a reject, the dispenser waits till it
eventually gets an accept signal from the requested processor. Though the dis-
penser receives an instantaneous response on its request, the internal allocation
of the handling processor (or the collective decision to reject) happens through
a non-trivial protocol which we clarify below.

Control Actions for GRID Domain. The processor allocation protocol dic-
tates that each request be propagated through the grid in a distributed depth
first manner. As soon as an available processor receives the request, it responds
by giving an acceptance to the request. This acceptance is relayed back to the
dispenser which then hands over the job description to be relayed back to the
accepting processor. The communication channels allow the exchange of signals
such as request, accept, reject, busy etc. and data such as job description between
neighbours.

To make the problem more interesting, we assume that it is required that no
processor handling a job should have more than two neighbours handling similar
jobs. Also, no processor is allowed to handle two jobs simultaneously.

As a detailed description of the complete domain is beyond the scope of this
paper, we just reproduce the English translation of some of the control actions
below. Note that this is just a sample to illustrate the type of actions used and
not a complete description:

– If any of the following three conditions hold, then mark self unavailable:
1. The processor is busy handling a job.
2. Three neighbours are busy with jobs.
3. A busy neighbour has two busy neighbours.

– If none of the above conditions hold, mark self available.
– If a request for job processing is made by a neighbour and the current state

does not have any outgoing requests (i.e., this is the first request to be
processed in this round), then:
1. If state of self is unavailable, make outgoing requests to all other neigh-

bours besides the one making the request.
2. If state of self is available, signal acceptance to the requesting neighbour.

– When transformed in to a state making outgoing requests to neighbours:
1. If all requested neighbours signal reject or convey requests themselves

(meaning that they cannot handle the job), then signal reject to request-
ing neighbours.

2. If any requested neighbour indicates acceptance, then indicate accep-
tance to any requesting neighbour.

– If the processor (or dispenser) has a new job to dispense and a neighbour
has indicated acceptance, hand over the new job to that neighbour and drop
all outgoing requests and accepts.

– If the processor has received a new job description and is available itself,
then get busy and drop outgoing accept signal.
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– If state of self is such that requests have been made to three neighbours and
the fourth neighbour (i.e. the original requester) has dropped its request,
then drop all outgoing request and reject signals.

Environment Actions for GRID Domain. The main role of the environ-
ment in this domain is to submit and finish jobs. We maintain a total count of
jobs at the system level (up to N , where N is the number of processors). The
following environment actions are associated with each dispenser (there are N
actions for each dispenser):

– If there are n jobs in the system and the dispenser is free, create a new job
description in the dispenser and mark there to be n+ 1 jobs in the system.

Likewise, the following environment actions are associated with each processor,
representing the finishing of jobs (N actions for each processor):

– If there are n + 1 jobs in the system and the processor is busy, mark the
processor to be not busy and the system to have n jobs.

Goals for Planning. Our planning goals typically represent some worst case
scenario, very much like in verification problems:

1. Is it possible that the grid may not find a processor for the fourth job sub-
mitted?

2. Is it possible that the grid allows six jobs to run simultaneously?

7 Experiments

As the direct translation (Algorithm 1) fails to provide a satisfactory solution for
our planning problems, we have created a wrapper tool which employs existing
planners in an intelligent manner to solve these problems efficiently. This tool
basically makes use of the same encoding as Algorithm 1, but in an incremen-
tal manner. The input language of this tool is the standard STRIPS subset of
PDDL and we follow a simple naming convention to identify the control actions
separately. We briefly explain the working of this wrapper tool here, and follow
it with a comparison of the results achieved with it versus Algorithm 1.

There are basically four steps which our wrapper tool continuously iterates
over till a solution is found:

Step 1, Compilation and planning. The original problem is translated par-
tially and given to the classical planner, almost exactly as in Algorithm 1.
By a partial translation we mean that many control actions do not have
the dis(Ci) propositions added or instrumented for them. In the very first
iteration, the input instance is actually passed verbatim to the planner. Fur-
ther iterations keep including more and more control action instrumentation.
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Usually, the incomplete translation allows for easier plan generation, albeit
in violation of the action priority requirements. For example, our illustrative
problem in Section 4 will have a solution plan consisting of only the action
E1 in the first iteration, which achieves both G1 and G2. This, clearly, is not
an acceptable solution as C1 becomes applicable after applying E1.

Step 2, Rectification. After we generate a plan, we rectify it by patching
it with applicable control actions. The rectify procedure basically scans
the generated plan in order and inserts as many pending control actions as
possible before each environment action (and at the end of the plan as well).
For example, the rectification would give us E1.C1.C2 for our illustrative
example. This is a very simple procedure that works on brute-force principle.

Step 3, Control Action Selection. If the planning goal is not met by a rec-
tified plan, we then select some new actions to be restored to their special
status as control actions (as mentioned in Step 1). We have two alternative
policies to select new control actions. Our first variant, which we call the Fast
Convergence policy, restores the status of all the control actions that needed
to be inserted during rectification. The second variant, which we call the
Slow Convergence policy, takes a more selective approach: only the control
actions which were critical to the missing of the goal are restored.

Step 4, Macro Generation. We exploit the information from previous runs
by introducing some environment-control interactions from last runs asmacro
environment actions for future runs. For example, the sequence E1.C1.C2
could be introduced as one macro action 〈{G1}, {¬G1,G2,¬P1,¬P2}〉. By
careful selection of macro environment actions, we are able to achieve great
improvements in total solution time.

We compare the performance of direct compilation versus our wrapper tool. We
use test cases of different sizes from the PSR and GRID domains and use three
different planners FF, maxplan[7] and LPG to demonstrate the consistency of
results. The scalability of different versions of the tool (that is, different com-
binations of optimization techniques and back-end planners) is illustrated by
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Fig. 5. No. of Tests Solved with Time for PSR and GRID domains
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plotting the cumulative number of tests solved against elapsed time in Figure 5.
We use a logarithmic scale for time as it gives a clearly visible and almost lin-
ear distribution of points. The curves for the versions of the tool using a direct
compilation with a planner typically appear at the bottom, indicating that they
solve fewer instances and take more time. The curves with the fast convergence
policy (shown as +FC) appear in the middle while the best results are typically
achieved by the slow convergence policy (+SC) for the same planners.

8 Conclusion

We strongly believe that the PAP formulation can prove useful for modeling
many problems of practical interest. However, we realize that it may take much
deliberation within the planning community to establish and treat it as a first
class entity. For now, encoding it as classical planning seems to be the most
legitimate solution but unfortunately, existing planners fail to satisfactorily solve
it. We feel that the domains presented in this paper (i.e, their encodings) serve as
a good challenge for general purpose planners as they may reveal some intriguing
and commonly occurring features in difficult-to-solve planning problems which
can be exploited by the planners.
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Abstract. Capacitated Arc Routing Problem (CARP) is a well known combi-
natorial problem that requires the identification of the minimum total distance
travelled by a set of vehicles to service a given set of roads subject to the vehi-
cle’s capacity constraints. While a number of optimization algorithms have been
proposed over the years to solve CARP problems, all of them require a large
number of function evaluations prior to its convergence. Application of such al-
gorithms are thus limited for practical applications as many of such applications
require an acceptable solution within a limited time frame, e.g., dynamic versions
of the problem. This paper is a pre-cursor to such applications, and the aim of
this study is to develop an algorithm that can solve such problems with a limited
computational budget of 50,000 function evaluations. The algorithm is embed-
ded with a similarity based parent selection scheme inspired by the principles of
multiple sequence alignment, hybrid crossovers, i.e., a combination of similarity
preservation schemes, path scanning heuristics and random key crossovers. The
performance of the algorithm is compared with a recent Memetic algorithm, i.e.,
Decomposition-Based Memetic Algorithm proposed in 2010 across three sets
of commonly used benchmarks (gdb, val, egl). The results clearly indicate the
superiority of performance across both small and large instances.

Keywords: Capacitated arc routing problem, memetic algorithm, heuristic,
random key representation, multiple sequence alignment.

1 Background

The capacitated arc routing problem (CARP) [12] can be described as follows: Assume
a road network represented using a undirected graphG = (V,E) with a set V of v nodes
and a set E of e edges. The set of p tasks (required edges) T = (t1, ..., tp) needs to be
served by a fleet of vehicles which are associated with a same capacity C and located
at a depot s (s ∈ V ). Each edge is associated with a distance d(i) ≥ 0(i = 1, 2, ..., e)
and a demand q(i) ≥ 0(i = 1, 2, ..., e). A demand of q(i) equal to zero indicates that
the edges do not need service. The objective is to find the set of vehicle trips using
minimum total distance D, such that each vehicle trip starts and ends at the depot s,
each required edge is serviced by one single trip, and the total demand handled by any
vehicle must not exceed its capacity C. The distance of a trip includes the distance of
its serviced tasks and the distance traveled through edges that are not serviced.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 791–802, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



792 M. Liu and T. Ray

Table 1. Mathematical Symbols used in this paper

Symbol Meaning
Q Population
w Population size
S Solution
N Number of trips
C Capacity of vehicle
e Number of edges

di (i = 1, ..., e) Distance of each edge
qi (i = 1, ..., e) Demand of each edge

T A set of tasks
s Depot of the vehicles
p Number of tasks
D Total distance, i.e., fitness of the solution

The symbols used in the paper are provided in Table 1.
Arc routing problems [7, 9, 10] are classic combinatorial optimization problems,

wherein the aim is to find a route with minimum total distance subject to the set of
predefined constraints. CARP is a practical form of an arc routing problem, in which
a fleet of homogeneous (same capacity) vehicles needs to service the set of demands
associated with the edges. CARP is known to be NP-hard and thus application of ex-
act optimization methods are still limited small problems (20-30 edges) [12]. Although
exact methods can solve some large instances of CARP, the computational cost is ex-
orbitantly large, e.g., the branch-and-cut-price algorithm required around 20000 sec-
onds [16] to solve a problem with 190 edges. In most real-world applications, it is
necessary to obtain a solution within a given time budget. Different heuristic based ap-
proaches have been proposed over the years to deal with such problems, which include
augment-merge [12], path-scanning [11, 21], construct-and-strike [19], Ulusoy’s tour
splitting [23], argment-insert [20] etc. Metaheuristic based approaches have also been
proposed such as Simulated Annealing [8], Tabu Search [17], Variable Neighborhood
Search [22], Guided Local Search [4], Genetic Algorithm [18], Evolutionary Algorithm
(EA) [24], Ant Colony Optimization [1] and more recently hybrids such as Memetic
Algorithm (MA) [13,22] which is an intelligent combination of a genetic algorithm and
a local search.

A memetic algorithm with extended neighborhood search (referred as MAENS) [22]
was introduced by Yi Mei et al in 2010 and is one of the most efficient algorithms de-
veloped till date. However, the number of function evaluations required (approximate
from 4.0×107 to 3.0×109) are still far more than what can be afforded for practical
problems such as for dynamic CARPs. The performance of any optimization algorithm
is largely dependent on the mechanisms of parent selection, method of recombination
and local search strategies. The proposed algorithm is realized using a memetic algo-
rithm as its baseline form. The parent selection is based on a similarity measure inspired
by multiple sequence alignment while the recombination process is a hybrid consisting
of path scanning heuristics and random key crossovers. The performance of the pro-
posed method has been evaluated on three sets of CARP instances (gdb, val, egl) that
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contain a total of 81 instances and compared with MAENS [22]. Section 2 describes the
proposed Memetic Algorithm (MA) and Section 3 describes the numerical experiments
and results. The conclusions are summarized in Section 4.

2 Proposed Algorithm

The algorithm maintains a population of solutions which are evolved over generations.
Fitter individuals are paired with its partner based on a multiple sequence alignment
inspired similarity measure. Such a scheme identifies pairs of solutions that have the
maximum number of common vehicle trips which is then inherited by the child solu-
tion. Such a process is similar to inheriting good building blocks from parents in the
context of genetic algorithms. As for the remaining set of demand edges, path scan-
ning heuristic is used. Unique solutions are always maintained in a population and in
the event, the number of unique solutions is less than the population size, solutions are
generated using random key crossovers. In order to further improve a child solution, a
neighborhood based local search is invoked with a given probability. The pseudocode
of the algorithm is presented in Algorithm 1.

2.1 Solution Representation and Generation of the Initial Population

Firstly, the undirected graph of the road network is transformed to a directed graph, i.e.,
each edge is represented as two directed arcs in opposite directions and each of these
arcs have the same edge ID. A solution(chromosome) for CARP is represented as a list
of edge IDs. The set of w chromosomes are generated to form the initial population
Q using a set of edge IDs using path-scanning (PS) heuristic without considering the
capacity constraints (Rule 1: maximize the distance dist(t, s) from task t to depot; Rule
2: minimize the distance dist(t, s); Rule 3: maximize the yield q(t)/d(t), i.e., the ratio
of demand/distance for each task; Rule 4: minimize the yield q(t)/d(t); Rule 5: use
Rule 1 if the vehicle’s capacity is less than half-full, else use Rule 2) [11]. Non-unique
solutions are replaced with randomly generated chromosomes. Then the chromosomes
are (split) using Ulusoy heuristic [13] which identifies the locations of the split that
results in a minimum D while satisfying capacity constraints of the vehicles. This D is
assigned as the fitness of the chromosome. The individuals of the population are sorted
based on their fitness.

2.2 Multiple Sequence Alignment Inspired Selection

Parent selection is an important element in any population based search strategy. There
are different variants of parent selection such as through the use of roulette wheel, bi-
nary tournament, random selection etc [24]. Fundamentally, all such processes aim to
generate child solutions which inherit good building blocks from fitter parents. In the
context of molecular biology [14], scientists are faced with the challenge of aligning
multiple DNA sequences. Each DNA sequence is a set containing the base elements,
i.e., A, C, T or G, and similarity between two sequences are sought via maximization
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Algorithm 1. Proposed Algorithm
REQUIRE: Population size (w), Maximum number of function evaluations (MFE), Local
search probability rLS

1: Generate an initial population Q
2: while Number of solutions evaluated ≤ MFE do
3: Apply MSA inspired selection operator to select w/2 pairs of parents
4: Save the common trips of each pair of parents, keep the different part of each pairs, i.e., a

set of edges that contains different trips, as P∗
5: w solutions Pc are generated by using path-scanning heuristic (PS) without considering

capacity constraints on each edge in P∗ twice
6: Keep the unique solutions in Pc

7: if Number of Pc ≤ w then
8: for i = 1:w-Number of Pc do
9: Apply roulette wheel to select two solutions Pc1 and Pc2 in Pc

10: Apply Random Key Crossover on Pc1 and Pc2 to generate a child Child
11: Insert Child into Pc

12: end for
13: end if
14: Sort Pc

15: Select the best one in Pc as C1 (if the best one is same (all generated solutions are worse
than the best in Pc), using roulette wheel instead)

16: if m ≤ rLS ; m is a random number [0,1] then
17: Apply local search to C1 to generate C3

18: if C3 is not a clone of any chromosome in Q then
19: Insert C3 into Q
20: else if C1 is not a clone of any chromosome in Q then
21: Insert C1 into Q
22: end if
23: else if C1 is not a clone of any chromosome in Q then
24: Insert C1 into Q
25: end if
26: Sort the chromosomes in Q and keep the best w solutions in Q
27: end while

of the matching score. In the current context of a population of solutions sorted based
on fitness, a partner of solution P1 is the solution that has maximum number of vehicle
trips in common. In the event there are multiple potential partners (i.e., with the same
number of trips in common), a random partner is chosen among them.

2.3 Hybrid Recombination

A hybrid recombination scheme is used in this study. The recombination process iden-
tifies trips that are common in both the parents and maintains the same for the child so-
lution. As for the remaining set of edges, a path-scanning heuristic without considering
the capacity (PS) is used to generate the giant trip. By applying PS twice on the same set
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of remaining edges, two offsprings are generated. After allw child solutions are created,
unique solutions are maintained and in the event the number of unique solutions is less
than the size of the population, a random key crossover [2] is used to generate new so-
lutions. From the set of w parent solutions and newly generated w child solutions, the
best w individuals are maintained in Q.

The process of random key crossover is illustrated below for completeness. Two
individuals Pc1 and Pc2 are identified using a roulette wheel based selection. Seven
random numbers (one for each task in Pc1) are drawn uniformly from (1, 3000) and for
the discussion assume them as follows : (2100, 569, 3, 888, 970, 1100, 30). The sorted
list of random numbers is (3, 30, 569, 888, 970, 1100, 2100). The original chromosome
(6, 1, 5, 4, 2, 3, 7) is encoded such that the element 3 in the sorted list of random numbers
is inserted in location 6, 30 in location 1, 569 in location 5 and so on resulting in an
encoded chromosome as (30, 970, 1100, 888, 569, 3, 2100). The process is repeated for
Pc2, the encoded form of which is (90, 220, 457, 140, 1400, 700, 550). It is important
to highlight that the random numbers used in Pc1 and Pc2 should be unique. Following
the standard form of two point crossover in the encoded space, the child chromosomes
R1∗ and R2∗ assumes the form (30, 970, 1100, 140, 1400, 3, 2100) and (90, 220, 457,
888, 569, 700, 550). A decoding of the chromosomesR1∗ and R2∗ back to the original
space results in (6, 1, 4, 2, 3, 5, 7) and (1, 2, 3, 7, 5, 6, 4) respectively, where 6 denotes
the position of the smallest random number in the encoded chromosome, 1 denotes
the position of next smallest random number and so on. These offsprings generated by
crossover via random keys are guaranteed to be feasible and a random one is selected.
The pseudocode of the process is presented below.

Algorithm 2. Modifed Random Key Crossover

1: for i = 1 → w −NumberofPc do
2: Apply roulette wheel to select two individual Pc1 and Pc2

3: for j = 1 → 2 do
4: Randomly select h numbers ⊆ (1, 3000) {Number of total tasks in Pcj}
5: Encode Pcj =⇒ Ri

6: Randomly select two integer numbers mpoint1 ⊆ [1, h− 1] and mpoint2 ⊆ [1, h− 1]
to split Ri

7: while mpoint1 = mpoint2 do
8: Randomly select a integer number mpoint2 ⊆ [1, h− 1]
9: end while

10: Ri =⇒ (part1i∗, part2i ∗, part3i ∗)
11: end for
12: Swap (part21∗ ⇐⇒ part22∗) =⇒ R1∗, R2∗
13: for j = 1 → 2 do
14: Decode Rj∗ =⇒ Chrj∗
15: end for
16: Randomly select Chr1∗ and Chr2∗ =⇒ C1

17: end for
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2.4 Local Search

Apart from recombination, local search plays an important role in any hybrid or memetic
forms. Firstly, the child C1 is improved using a local search with a probability rLS .
Three move operators have been used to perturb the solution, i.e., single insertion, dou-
ble insertion, and swap. The best chromosome C2 with the shortest distance is the
outcome of this phase. It is very important to highlight that if the top Q is still the same
after a generation, a roulette wheel selection is used to identify C1.

The best result S from splitting C1 identified from phase 1 is now improved further
using a larger search domain, wherein tasks of two vehicle trips are redistributed among
them using five rules of path scanning respectively resulting in five candidate part-
solutions. The best candidate part-solution is inserted into the rest of the S to result in
the new solution SC . Since there areC2

N combinations possible, the following condition
is enforced, i.e., if I:N !/2(N − 2)! < 50, ltimes = I , else ltimes = 50, where ltimes

denotes the number of attempts.
The solution identified through this second phase of local search is accepted if its

distance is lower than the one obtained during the first phase of local search, else the
local search phase is aborted and the best solution corresponds to the one obtained in
phase one. In the event, the solution obtained from the second phase of local search is
better than the one obtained from the first phase, the algorithm offers one more chance
to the solution to improve while moving through phase one and phase two of the local
search procedure. The best solution of this phase is denoted as C3.

The pseudocode of the local search process is presented in Algorithm 3.

Algorithm 3. Local Search Algorithm
REQUIRE: Probability ≤ rLS

1: Perform single insertion operator to C1 =⇒ C1
1

2: Perform double insertion operator to C1 =⇒ C2
1

3: Perform swap operator to C1 =⇒ C3
1

4: Keep the best one of C1
1 , C2

1 and C3
1 =⇒ C2

5: Apply split method to C2 =⇒ S = (S1, S2, ..., SN )
6: ltimes = min [I, 50]
7: for i = 1 to ltimes do
8: Apply path-scanning to each pair of solutions to generate five different part solutions
9: Select the best one of them =⇒ SC

10: Combine SC with the rest solutions =⇒ C3

11: Apply split method to evaluate C3

12: Update the solution if C3 is better than C2, C3 =⇒ Cnew

13: end for
14: if Found Cnew = true then
15: Apply local search again on Cnew

16: end if
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3 Performance on Benchmarks

In this section, the computational experiments and results are discussed. The first bench-
mark set contains 23 instances (gdb) originally generated by DeArmon [6]. The second
benchmark set is from Benavent et al [3] which contains 34 instances (val benchment)
defined using 10 different graphs. In both these instance sets, all the edges of the graphs
require service. The final benchmark set [8] consists of 24 instances with large number
of edges constructed from winter gritting data of Lancashire. The road networks of all
the instances are undirected. Although the proposed algorithm can deal with mixed net-
works, we still focus on these problems since there are no mixed graph data instances
in public domain.

The performance of the proposed algorithm is presented in Tables 2 3 4 and com-
pared with the state-of-the-art algorithm MAENS [22] using a limited budget of 50,000
function evaluations(FE). For each instance, the results reported are averaged over 20
independent runs. Population size (w) is set to 30. Local search is applied with a prob-
ability rLS = 0.2. In each table, the number of vertices are denoted as |V |, edges as
|E|, the number of tasks as |T |, the average computational time as Tc(second) and
low bound as LB [4, 5, 15]. The average distance, standard deviation of the distance,
best distance and the number of vehicles corresponding to the solution with the best
distance are indicated for all the problem instances. The value in column Rs indicates
the number of runs in which the worst solution obtained by the proposed algorithm in
20 runs is better than the best obtained using MAENS. A value of 20 indicates that the
results obtained in all the runs of the proposed algorithm is better than the best obtained
using MAENS. The progress plot of the median run for one of each problem classes are
presented in Figure 1. One can clearly observe the benefits of the initialization scheme
and the efficiency of the proposed approach. Detailed comparison of results of MAENS
with other approaches have appeared in [22] and hence have been omitted in this paper.

Table 2 presents the results of experiments on the gdb benchmark, which consist
of small networks with no more than 55 tasks. It is clear that the proposed algorithm
performs significantly better than MAENS in terms of the best, average and the standard
deviation when the budget is limited to 50,000FE. Table 3 and Table 4 present the
results for val and egl benchmarks which represent large size network instances. It can
be observed that the proposed algorithm still performs significantly better than MAENS
in all aspects, i.e., best, average and the standard deviation. While this study considered
the performance of the proposed algorithm with limited number of evaluations (50,000),
a quick comparison with the known lower bounds reported in [13] indicates that in 63
out of 81 instances, the best solution obtained by the proposed algorithm is within 20%
of the lower bound. In order to observe the performance of the algorithm for higher
number of function evaluations, the algorithm was allowed to use 250,000 function
evaluations and in 71 out of 81 instances the best solution was siwthin 20% of the lower
bound. One can observe a signifcant improvement in performance when the allowed
number of function evaluatsiona are higher. In order to study the effect of MSA based
parent selection, the same algorithm was run with random parent selection. The results
of MSA based parent selection are signifcanltly better than the random parent selection
scheme.
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Fig. 1. The rate of convergence

4 Conclusion

In this paper, a memetic algorithm is introduced that relies on the use of multiple se-
quence alignment inspired parent selection scheme, a hybrid recombination strategy
and a local search. Results on both small and large scale instances with limited number
of solution evaluations indicate the applicability of the proposed algorithm for dynamic
CARP problems, where one is interested in identifying an acceptable quality of solution
within a short time. Although in reality, computational time is of primary interest, we
focus here on a more objective performance indicator, i.e., number of function evalua-
tions which is independent of the computing platform and skills of implementation. The
proposed algorithm obtained high quality solutions to 81 well studied CARP instances
within 50,000 function evaluations and all of which are better than the existing state-of-
the-art approach based on MAENS. The performance of the algorithm is also presented
for 250,000 function evaluations for further studies. Apart from the convergence ob-
served in the objective function space, the detailed performance on its components are
analyzed and discussed. In future, we would incorporate an adaptive strategy which
allocates/redistributes function evaluations to local search and recombination strate-
gies based on their success which is likely to further improve the effectiveness of the
algorithm.
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Block-Structured Plan Deordering

Fazlul Hasan Siddiqui and Patrik Haslum
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Canberra, Australia

Abstract. Partially ordered plans have several useful properties, such
as exhibiting the structure of the plan more clearly which facilitates
post-plan generation tasks like scheduling the plan, explaining it to a
user, or breaking it into subplans for distributed execution. The standard
interpretation of partial ordering implies that whenever two subplans
are unordered, every interleaving of steps from the two forms a valid
execution. This restricts deordering to cases where individual steps (i.e.,
actions) are independent. We propose a weaker notion of partial ordering
that divides the plan into blocks, such that the steps in a block may
not be interleaved with steps outside the block, but unordered blocks
can be executed in any sequence. We present an algorithm to find such
deorderable blocks, and show that it enables deordering plans in many
cases where no deordering is possible under the standard interpretation.

1 Introduction

In AI planning, the process of deordering converts a sequential plan into a par-
tially ordered plan, by removing ordering constraints between steps, such that
the steps of the plan can be successfully executed in any order consistent with
the partial order and still achieve the goal [1]. Partially ordered plans have
two advantages: first, they afford execution flexibility, thus allowing plans to
be scheduled for improved efficiency or robustness [2]; and second, they make
the plan structure more accessible, which facilitates further analysis of the plan.
However, current state space search planners, which produce totally ordered
sequential plans, are far more efficient than the older partial order planners.
Thus, deordering plays a useful role in that it enables more efficient generation
of partially ordered plans.

The standard interpretation of a partially ordered plan is that it is valid if
and only if every sequential plan that is a topological sort of the steps is valid
(according to the semantics of sequential plan execution). This implies that for
two subplans to be unordered, every interleaving of steps from the two must
form a valid execution. This restricts deordering to only the cases where indi-
vidual steps (i.e., actions) are independent and non-interfering. We examine a
weaker notion of partial ordering: We divide a plan into blocks, such that the
steps in a block may not be interleaved with steps outside the block, but un-
ordered blocks can be executed in any sequence. The difference is illustrated in
Figure 1. The restriction to non-interleaved executions allows “transient” de-
pendencies and effects to be encapsulated within a block, and thus not cause

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 803–814, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. A normal partially ordered plan (left) represents the set of all sequential plans
that are topological sorts of the plan steps, such as abcd, acbd, cbda, etc. A block ordered
plan (right) allows unordered blocks (shown with dashed outlines) to be executed in
any order, but not steps from different blocks to be interleaved. Thus, abcd, bacd, cdab
and cdba are the only linearisations of this plan.

interference with other blocks. This can enable deordering of blocks in some
cases also when their constituent actions cannot be deordered under step-wise
interpretation of partially ordered plans. (An example of this is shown in Fig-
ure 2.) We also present an algorithm to find block deorderings of plans, and
show empirically that it deorders plans to a much greater degree than step-wise
deordering.

Since unordered blocks cannot, in general, be executed concurrently, block
deordering improves mainly on the second advantage of partial ordering, viz.
making the structure of the plan explicit. We believe that the main benefit of
this will be to facilitate post-plan generation tasks such as explaining the plan
to a user, or breaking it into a set of subplans with minimal constraints between
them, which is useful for reducing the coordination overhead if the plan is to be
executed by a distributed team of agents [3], or for improving plan quality by
local modifications [4].

2 Plans, Validity and Deordering

AI planning is model-based: a planner takes as input a description of avail-
able actions, in some formal modelling language, and the initial state and goal.
Several modelling languages are in use (see, e.g., [5]). Because many details of
the modelling language are not relevant for the purpose of plan deordering, we
adopt Bäckström’s [1] producer-consumer-threat model, which is general enough
to encompas most common planning formalisms (e.g., STRIPS and SAS+).

A planning problem is defined over a set of atomic propositions. An action
that makes a proposition p true is called a producer of p; an action that requires p
to hold is called a consumer of p, and p is called a precondition of the action; and
an action that makes p false is called a threat to p. (In the common propositional
STRIPS formalism, producers are actions that add p and threats are actions that
delete p.) A partially ordered plan is a set, S, of steps, where each step s ∈ S
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is labelled by an action, act(s), and a strict (i.e., irreflexive) partial order ≺
over S. There is one final step, sG in S, which represents the goal. If necessary,
we can also include in S an initial step, which acts as the producer of initially
true propositions. We use the terms producer, consumer and threat also for plan
steps, referring to their associated actions. We use ≺+ to denote the transitive
closure of a partial order ≺. An element (si, sj) ∈≺ (also si ≺ sj) is a basic
ordering constraint iff it is not implied by other constraints and transitivity,
that is, iff (≺ −{si ≺ sj})+ ⊂≺+. A linearisation of ≺ is a strict total order
that contains ≺ (i.e., a topological sort). A partially ordered plan (S,≺) is valid
iff for every step s ∈ S and for every precondition p of act(s), there is a producer
sp of p that precedes s (i.e., sp ≺+ s) and for every step st that threatens p, st is
either ordered before sp or after s (i.e., st ≺+ sp or s ≺+ st). This is essentially
Chapman’s [6] modal truth criterion (without “white knights”), and equivalent
to the standard notion that a partial order plan is valid iff every linearisation of
it is valid under the usual sequential execution semantics [5].

There are three possible reasons for an ordering constraint si ≺ sj : (1) Step si
produces a proposition p that sj consumes. This relation is usually called a causal
link from si to sj [7]. (2) si threatens a proposition that sj produces, and that is
consumed by some later step. Note that it is not necessary to order a producer
and threat if no step that may occur after the producer in the plan depends on
the produced proposition. (3) sj threatens a proposition that si consumes. It is
easy to see that if every precondition is supported by a causal link, and no causal
link is threatened by a possibly intervening step, the plan is valid in the sense
defined above. We will use the labels PC(p) (producer–consumer of p), TP(p)
(threat–producer) and CT(p) (consumer–threat) to denote the three reasons.
Note that an ordering constraint can have several associated reasons (including
several reasons of the same type but referring to different propositions). We
denote the set of reasons for an ordering constraint si ≺ sj by Re(si ≺ sj).

Let (S,≺) be a valid partially ordered plan. A (step-wise) deordering of the
plan is a valid plan (S,≺′) such that (≺′)+ ⊂≺+. That is, a deordering is the re-
sult of removing some basic ordering constraints without invalidating the plan.
Deordering a sequential plan is simply a special case, since a total order is a
special case of a partial order. Several algorithms for plan deordering have been
proposed [8,9,10,11,12,13]. The complexity of optimal deordering depends on
the planning formalism and the measure of optimality. To compute a deordering
with a smallest (w.r.t. cardinality) ordering relation is NP-hard for almost every
planning formalism [1]. We use a combination of two simple methods: Chrpa
& Bartak’s algorithm [14] for computing causal links (what they call “depen-
dency”), with the difference that our version selects the earliest unthreatened
producer whereas theirs selects the latest, and the PRF algorithm [1] for com-
puting threat–producer and consumer–threat orderings. This procedure is es-
sentially the same as the algorithm by Kambhampati & Kedar [11]. Although it
does not guarantee optimality, a recent study found that it did produce optimal
deorderings of all plans on which it was tested [13].
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3 Block Decomposition and Deordering

3.1 Blocks and Their Semantics

A block is a part of the plan, i.e., a subset of steps, that must be executed
without being interleaved with any step not in the block. Thus, there cannot be
a step not in the block that is ordered in between two steps of the block.1 The
no-interleaving restriction affords us a simplified,“black box”, view of blocks, in
which only the preconditions and effects of executing the block as a whole are
important. Thus, for the purpose of deordering we can ignore some dependencies
and effects that matter only internally within the block.

A decomposition of a plan into blocks can be recursive, i.e., a block can be a
strict subset of another block. However, blocks cannot be partially overlapping.

Definition 1. Let (S,≺) be a partially ordered plan. A block w.r.t. ≺ is a subset
b ⊂ S of steps such for any two steps s, s′ ∈ b, there exists no step s′′ ∈ (S − b)
such that s ≺+ s′′ ≺+ s′ or s′ ≺+ s′′ ≺+ s. A set B of subsets of S is a block
decomposition of (S,≺) iff (1) each b ∈ B is a block w.r.t. ≺ and (2) for every
bi, bj ∈ B, either bi ⊂ bj, bj ⊂ bi, or bi and bj are disjoint.

We omit the reference to the ordering relation when it is clear from context. A
set consisting of a single step is always a block, but we do not consider such
“trivial blocks” explicitly in the decomposition.

Formally, the semantics of a partially ordered block decomposed plan are
defined by restricting its linearisations to those that respect the block decompo-
sition, i.e., that do not interleave steps from disjoint blocks. The plan is defined
to be valid iff every linearisation of it is valid, in the sense defined earlier.

Definition 2. Let (S,B,≺) be a partially ordered and block decomposed plan.
A linarisation of (S,B,≺) is a total order ≺lin on S such that (1) ≺⊆≺lin and
(2) every b ∈ B is a block w.r.t. ≺lin.

The set of linearisations of a partially ordered and block decomposed plan is
a subset of the linearisations under the same partial ordering without block
decomposition, as illustrated by the example in Figure 1.

As mentioned above, the restriction on exections of a block decomposed plan
allows us to ignore some dependencies and effects that matter only within the
block. The following definition captures those preconditions and effects that
are visible from outside the block, i.e., those that give rise to dependencies or
interference with other parts of the plan. These are what we need to consider
when deciding if two blocks can be unordered.

Definition 3. Let (S,B,≺) be a partially ordered and block decomposed plan,
and b ∈ B a block:

1 Chrpa & Bartak [14] define the same concept, but call it a “subplan”. We use the
term “block” to emphasize the contiguous, “black box”, nature of them, and to leave
the term “subplan” free to refer to any part of a plan.
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• b consumes p iff there is a step s ∈ b that consumes p such that there is no step
s′ ∈ b with s′ ≺+ s that produces p and for which either s′′ ≺+ s′ or s ≺+ s′′

holds for any s′′ ∈ b that threatens p, (In other words, there is a consumer s
of p in the block, and there is no producer of p within the block from which we
could draw a causal link to s that is not threatened by any step in the block.)

• b produces p iff there is a step s ∈ b that produces p such that for any step
s′ ∈ b that threatens p, s′ ≺+ s, and b does not consume p.

• b threatens p iff there is a step s ∈ b that threatens p such that there is no
step s′ ∈ b with s ≺+ s′ that produces p.

Whenever a block consumes, produces or threatens a proposition, there is at least
one step within the block that does the same. We refer to this as the responsible
step, and it plays an important role in the block deordering algorithm.

Note that if a block consumes a proposition, it cannot also produce the same
proposition. The reason for this is that taking the “black box” view of block
execution, the proposition simply persists: it is true before execution of the
block begins and remains true after it has finished. If the steps within a block are
totally ordered, the preconditions and effects of a block according to Definition
3 are nearly the same as the “cumulative preconditions and effects” of an action
sequence, defined by Haslum & Jonsson [15], the only difference being that a
consumer block cannot also be a producer of the same proposition.

3.2 Block Deordering

The process of block deordering is more complicated than standard deordering,
which only involves removing constraints from the ordering relation. A block
deordering involves adding new blocks to a plan decomposition, removing order-
ing constraints, and possibly also adding some explicit ordering constraints that
were transitively implied by the removed constraints.

Let (S,B,≺) be a valid partially ordered and block decomposed plan. Consider
a basic ordering constraint si ≺ sj , and the set Re(si ≺ sj) of reasons for this con-
straint. (We consider only basic ordering constraints, since removing a transitively
implied constraint does not lead to any de facto deordering of the plan.) To remove
si ≺ sj , we create two corresponding blocks, bi and bj , where si is the unique last
step in bi (that is, every step in bi is transitively ordered before si) and sj is the
unique first step in bj (that is, every step in bj is transitively ordered after sj).
Note that one of the two blocks can be trivial, i.e., consist of a single action. Both
blocks must be consistent with the existing decomposition, i.e., B ∪ {bi, bj} must
still be a valid block decomposition, in the sense of Definition 1. We seek blocks
that allow us to remove reasons from Re(si ≺ sj). Therefore, conditions on the
blocks depend on what those reasons are:

• If PC(p) ∈ Re(si ≺ sj), bi must not produce p. Since si produces p and is the
last step in bi, and thus cannot be possibly followed by a threat to p within
the block, this means bi must consume p. Since the plan is valid, there must
be some (unthreatened) producer, s′, that necessarily precedes the step in bi
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that consumes p. If s′ can precede every step in bi, then adding the causal link
PC(p) to Re(s′ ≺ sj) (adding (s′, sj) to ≺ if not already present) allows PC(p)
to be removed from Re(si ≺ sj). (Note that the added ordering constraint,
even if not already explicitly in ≺, is transitively implied by si ≺ sj and the
conditions on bi.)

• If TP(p) ∈ Re(si ≺ sj), then bj must include every step s′ such that PC(p) ∈
Re(sj ≺ s′). Then TP(p) can be removed from Re(si ≺ sj).

• If CT(p) ∈ Re(si ≺ sj), then either bi must not consume p or bj must not
threaten p. Then CT(p) can be removed from Re(si ≺ sj).

The ordering si ≺ sj can exist for several reasons (including several reasons of
the same type, referring to different propositions). Only if blocks bi and bj can
be found that meet the conditions above to remove every reason in Re(si ≺ sj)
can the ordering be removed. Yet, even this does not guarantee the blocks will
be unordered. If bi contains some step other than si that is ordered before a step
in bj (sj or another), the two blocks will still be ordered. Note that we must also
check for new threats between steps in or before bi and steps in or after bj that
become unordered as a result of removing si ≺ sj .

Theorem 1. Deordering according to the rules above preserves plan validity.

Proof. Let (S,B,≺) be a valid partially ordered and block decomposed plan,
si ≺ sj a basic ordering constraint, and bi, bj blocks that meet the conditions for
removing si ≺ sj, and that are not ordered for any other reason. Let (S,B′,≺′)
be the plan that results from deordering. Any linearisation of (S,B′,≺′) in which
bi precedes bj is also a linearisation of (S,B,≺), and thus valid by assumption.
Consider a linearisation in which bj precedes bi:

s1, . . . , sm, bj = [sj , . . . , skj ], skj+1, . . . , bi = [ski , . . . , si], . . . , sn.

We examine each of the possible reasons for si ≺ sj : If PC(p) ∈ Re(si ≺ sj),
then the precondition p of step sj is now supplied by the step s′ (which is one
among s1, . . . , sm). bj cannot threaten the causal link for p from s′ to the step s′′

in bi that consumes p, since for it to do so, there must be some step s ∈ bj that
threatens p, which would imply CT(p) ∈ Re(s′′ ≺ s), making this linearisation
inconsistent. Neither can any of the steps between bj and bi threaten p, since
they can appear between s′ and s′′ also in a linearisation of the original plan.

If TP(p) ∈ Re(si ≺ sj), then bj includes every step s′ such that PC(p) ∈
Re(sj ≺ s′). Thus, si does not threaten any causal link originating in sj .

If CT(p) ∈ Re(si ≺ sj), there are two possibilities: either bi does not consume
p or bj does not threaten p. In the first case, this means that bi constains a step s

′

that produces p, such that s′ precedes si and the causal link is not threatened by
any step in bi; this means that the causal link is also unthreatened in the above
linearisation, since no steps not in bi appear between s′ and si. In the second
case, since bj includes sj , which does threaten p, bj must also include a step s′

that produces p and that is ordered after any step in bj that threatens p. Since
the original plan is valid, there is a step s′′ that supplies an unthreatened causal



Block-Structured Plan Deordering 809

link for p to si. Again, there are two cases: If s′′ is one of the steps s1, . . . , sm,
then none of the steps between bj and bi can threaten p, since these steps can
appear between s′′ and si also in the original plan. Thus, we can now form an
unthreatened causal link from the step s′ in bj to si. Otherwise, s′′ is one of
the steps between bj and bi, in which case the causal link from the original plan
remains unthreatened. �

3.3 The Block Deordering Algorithm

The previous subsection described the conditions under which block deordering
is correct, in the sense that it preserves plan validity. Next, we describe the
algorithm that we use to efficiently find block deordering possibilities in a plan.

We extend ordering to blocks: two blocks are ordered bi ≺ bj if there exist
steps si ∈ bi and sj ∈ bj such that si ≺ sj and neither block is contained in the
other (i.e., bi �⊂ bj and bj �⊂ bi). In this case, all steps in bi must precede all steps
in bj in any linerarisation of the block decomposed plan. We also extend the
reasons for ordering (PC, TP and CT) to ordering constraints between blocks,
with the set of propositions produced, consumed and threatened by a block given
by Definition 3. Recall that a responsible step is a step in a block that causes
it to produce, consume or threaten a proposition. For example, if b produces p,
there must be a step s ∈ b that produces p, such that no step in the block not
ordered before s threatens p; we say step s is “responsible” for b producing p.

The core of the algorithm is the Resolve procedure (Algorithm 1). It takes as
input two blocks, bi and bj , that are ordered (one or both blocks may consist of a
single step), and tries to break the ordering by extending them to larger blocks,
b′i and b′j. The procedure examines each reason for the ordering constraint and
extends one of the blocks to remove that reason, following the rules given in the
previous subsection. After this, the sets of propositions produced, consumed and
threatened by the new blocks (b′i and b′j) are recomputed (following Definition
3) and any new reasons for the ordering constraint that have arisen because
of steps that have been included are added to Re(b′i ≺ b′j). This is repeated
until either no reason for the ordering remains, in which case the new blocks
returned by the procedure can safely be unordered, or some reason cannot be
removed, in which case deordering is not possible (signalled by returning null).
The function Intermediate(bi, bj) returns the set of steps ordered between bi
and bj , i.e., {s | bi ≺+ s ≺+ bj}. Where Algorithm 1 refers to a “nearest” step s′

preceding or following another step s, it means a step with a smallest number
of basic ordering constraints between s′ and s.

Applying theResolve procedure to each basic ordering constraint we obtain a
collection of blocks with which we can break some orderings. But this collection is
not necessarily a valid decomposition, since some of the blocks may have partial
overlap. To find a valid decomposition, we use a greedy procedure with some
heuristic enhancements. We repeatedly examine each basic ordering constraint
bi ≺ bj and call Resolve to find two extended blocks b′i ⊇ bi and b′j ⊇ bj that
allow the ordering to be removed. In each iteration, constraints are checked in
order from the beginning of the plan. If such blocks are found, and they are
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Algorithm 1 Resolve ordering constraints between a pair of blocks.

1: procedure Resolve(bi, bj)
2: Initialise b′i = bi, b

′
j = bj .

3: while Re(b′i ≺ b′j) �= ∅ do
4: for each r ∈ Re(b′i ≺ b′j) do
5: if r = PC(p) then
6: Find a responsible step s ∈ b′i and a nearest s′ �∈ b′i that consumes

p such that s′ ≺+ s.
7: if such s′ exists then
8: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
9: else
10: return null

11: else if r = TP(p) then
12: Find a responsible step s ∈ b′j and a nearest s′ �∈ b′j that threatens p

such that s ≺+ s′.
13: if such s′ exists then
14: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
15: else
16: return null

17: else if r = CT(p) then
18: Find a responsible step s ∈ b′j and a nearest s′ �∈ b′j that produces p,

such that s ≺+ s′.
19: if such s′ exists then
20: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
21: else
22: Find a responsible step s ∈ b′i and a nearest s′ �∈ b′i that produces

p, such that s′ ≺+ s.
23: if such s′ exists then
24: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
25: else
26: return null.
27: Recompute Re(b′i ≺ b′j).

28: return (b′i, b
′
j).

consistent with the current decomposition, bi and bj are replaced. If b′i or b′j
cannot be added to the decomposition (because one or both of them partially
overlaps with an existing block), we consider all blocks ordered immediately after
bi, and check if all these orderings can be broken simultaneously, using the union
of the blocks returned by Resolve for each ordering constraint. (Symmetrically,
we also check the set of blocks immediately before bj , though this is only very
rarely useful.) As an additional heuristic, we discard the two blocks if there is a
basic ordering constraint between a step that is internal to one of the blocks (i.e.,
that has both preceding and following steps within the block) and a step outside
the block. If either possibility leads to a valid new decomposition, the ordering
is removed. The inner loop then exits and the ordering relation is updated with
any new constraints between b′i and blocks ordered after bj and between b′j and
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blocks ordered before bi. This is done by checking for the three reasons (PC, TP
and CT) based on the sets of propositions produced, consumed and threatened
by b′i and b′j. The inner loop is then restarted, with ordering constraints that
previously could not be broken checked again. This is done because removing
ordering constraints can make possible the resolution of other constraints, since
removal of orderings can change the set of steps intermediate between two steps.

The main loop repeats until no further deordering consistent with the current
decomposition is found. It is easy to verify that each iteration runs in polynomial
time, but we currently do not have an upper bound on the number of iterations.
Note, however, that the procedure is “any time”, in the sense that if interrupted
before running to completion, the result at the end of the last completed iteration
is still a block deordering of the plan. Since the choice of deordering to apply is
greedy, the result is not guaranteed to be optimal.

4 Results

We tested block deordering on a large set of plans generated by planners par-
ticipating in past editions of the International Planning Competition (IPC). To
measure the effect of deordering, we compare the flexibility 2, or “flex”, of plans,
after standard, step-wise, deordering (as described in Section 2) and after block
deordering. The flex of a partially ordered plan is defined as the fraction of pairs
of steps that are not (transitively) ordered. Thus, a higher flex value indicates
a less strictly ordered plan, with a fully sequential plan having a flex of zero.
We apply the same definition to block deordered plans. Recall that in a block
deordered plan, all steps belonging to two ordered blocks are ordered by the
requirement that blocks not be interleaved, even when there is no ordering be-
tween an individual pair of steps. This is taken into account when calculating
the flex of a block deordered plan. Because of this, it is in fact possible for block
deordering of a partially ordered plan to decrease its flex value. For example,
assume the plan on the left in Figure 1 also had the ordering constraints a ≺ d
and b ≺ d, and that the block decomposition on the right removed only the first
of these: it would then only have the linearisations abcd and bacd, and have lower
flex than the original plan (which has c unordered w.r.t. both a and b). However,
we did not observe this happening in any of the plans analysed.

Results are summarised by domain in Table 1. For each domain, we report the
number of plans analysed, the number of plans for which block deordering led
to an increase in flex, and the average (over all analysed plans) flex values after
step-based deordering and after block deordering. We imposed a 600 second time
limit on the block deordering procedure; where the limit was reached (∼ 8% of
all plans), we take the flex of the plan after the last completed iteration.

Note that several domains are purely sequential, and do not permit any
deordering of individual steps. (These have an average flex of zero after step

2 The term “flexibility” is used with different meanings by different authors. Nguyen
& Kambhampati’s [16] definition is equivalent to ours. Muise et al. [13] use it for the
number of linearisations of a partially ordered plan.
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Table 1. Comparison of step and block deordering. For each domain, the first column
shows the number of plans analysed, and the second the number of plans in which
block deordering increased the flex value above that achieved by step deordering. The
average flex values after step and block deordering are over all plans in each domain.

Domain #plans #inc. Average flex after deordering
step block

Airport (IPC4) 563 262 0.1492 0.1562
Blocks (IPC2) 381 284 0.0 0.0479
Cybersec (IPC6) 109 109 0.0142 0.2476
Depots (IPC3) 234 183 0.1589 0.1951
Elevators (IPC6) 276 216 0.1543 0.1965
FreeCell (IPC2) 358 214 0.0516 0.0596
Logistics (IPC2) 534 437 0.2435 0.2629
Openstacks (ADL, IPC5) 109 109 0.0 0.0733
Openstacks (STRIPS, IPC5) 15 15 0.0 0.0353
Openstacks (ADL, IPC6) 312 312 0.0453 0.1298
Openstacks (STRIPS, IPC6) 488 487 0.0469 0.1347
ParcPrinter (IPC6) 252 218 0.0820 0.2747
Pathways (STRIPS) 113 85 0.2455 0.2683
PegSol (IPC6) 301 261 0.0 0.1018
Rovers (IPC3) 187 187 0.2003 0.3541
Scanalyzer (IPC6) 343 202 0.1201 0.2418
Sokoban (IPC6) 205 174 0.0 0.0144
Storage (IPC5) 185 117 0.0423 0.1119
Transport (IPC6) 243 156 0.2071 0.2340
Woodworking (IPC6) 277 5 0.4551 0.4551

0–2 3 4 5–9 10–14

15 16–21 22 23 24–28

29 30

· · ·

Fig. 2. Visualisation of the execution of (part of) an example plan in the Sokoban
domain. Arrows show the movements of the man; dashed outlines show the movement
of boxes that he pushes. The blocks consisting of steps 3–4 and 5–28 can be safely
unordered, as can the blocks 10–21 and 22–23.



Block-Structured Plan Deordering 813

deordering.) Yet, even in these domains, it is often possible to block deorder
plans. As an example, Figure 2 visualises the execution of part of a plan from
the Sokoban domain (the reference plan for problem #11 from the IPC6 satis-
ficing track). Sokoban is a puzzle game, involving a man who must push boxes
around on a grid, one at a time, to reach a goal configuration. The domain is
sequential because actions in the planning encoding of the game move the man
from one square to another; thus, every step has a causal link from the step
immediately before, and no deordering of individual steps is possible. Block de-
ordering, however, is: In the example plan, the blocks consisting of steps 3–4 and
steps 5–28 are independent and can be unordered. As can be seen clearly from
the visualisation, moving steps 3–4, as a block, to after step 28 does not inval-
idate the plan. There are also two blocks, consisting of steps 10–21 and 22–23,
within the larger block 5–28, that can be deordered. Our algorithm found all
these possibilities.

5 Conclusions

Deordering makes the structure of a plan explicit, showing us which parts are
necessarily sequential (because of dependency or interference) and which are in-
dependent and non-interfering. Block deordering improves on this by creating an
on-the-fly hierarchical decomposition of the plan, encapsulating some depende-
cies and interferences within each block. Considering blocks, instead of primitive
actions, as the units of partial ordering thus enables deordering plans more, in-
cluding in cases where no deordering is possibly using the standard, step-wise,
partial order plan notion. We showed that using a simple greedy algorithm to
find block decompositions we could substantially increase the flex of deordered
plans across many planning domains.

Maximising flex is not an end in itself; we use it only as a way to measure the
“amount of deordering” done. The ultimate significance of block deordering will
be determined by how much we can exploit the additional structural information
it provides to improve on various post-plan generation tasks, such as explaining
the plan to a user, or minimising execution coordination. We are particularly
motivated by the use of plan structure information to improve the quality of
plans by identifying subplans that can be locally improved [4]. As a simple
example, in Figure 2 it can be observed that if the block 3–4 is relocated to after
the block 5–28, steps 4 and 29 become redundant and can be removed. We are
currently developing plan optimisation methods based on block deordering.
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Abstract. Ride-sharing is considered as one of the promising solutions
for reducing fuel consumption of fuel and reducing the congestion in
urban cities, hence reducing the environmental pollution. With the ad-
vancement of mobile social networking technologies, it is necessary to
reconsider the principles and desired characteristics of ride-sharing sys-
tems. Ride-sharing systems can be popular among people if we can pro-
vide more flexible and adaptive solution according to preferences of the
participants and solve the social challenges. In this paper, we focus on
encouraging people to use a ride-sharing system by satisfying their de-
mands in terms of safety, privacy, convenience and also provide enough
incentives for drivers and riders. We formalized the ride sharing prob-
lem as a multi source-destination path planning problem. An objective
function is developed which models different conflicting objectives in a
unified framework. We provide the flexibility to each driver that he can
generate the sub-optimal paths according to his own requirements by
suitably adjusting the weights. These sub-optimal paths are generated
in an order of priority (optimality). The simulation results have shown
that the system has the potential to compute multiple optimal paths.

Keywords: Ride-sharing, Path Planning, Dynamic Optimization.

1 Introduction

We are entering “a new era” enabled with new smart phone applications and
more intuitive software that will help us find efficient and easy-to-use shared
rides. Technology thus plays a major role in overcoming carpool barriers such as
perceived ease-of-use and flexibility. As our society adapts to these new tools,
our perception of carpooling will change as well. Apparently, there is plenty of
room for improvements, for example, when considering the fact that on average
cars carry 1.58 passengers, i.e., only an estimated 25% of emissions are caused by
people traveling, and the rest by moving empty seats [6]. The growing ubiquity
of mobile Internet technology has created new opportunities to bring together
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people with similar itineraries and time schedules to share rides on short-notice.
Encouraging ride-share is, after all, an easy and cost-effective solution to helping
reduce congestion and gas emissions.

Internet-enabled smart-phones allow people to offer and request trips when-
ever they want wherever they are. By dynamic ride-sharing, we refer to a sys-
tem where an automated process employed by a ride-share provider matches up
drivers and riders on very short notice [5], which can range from a few min-
utes to a few hours before departure time. Dynamic ride-sharing systems are
developed to publicize formal ride-sharing in urban areas. Most of the current
ride-sharing systems are covering formal requirements of users. Safety, security,
flexibility, enough incentives for drivers and riders are the critical issues for users
and it is also necessary to understand that riding and meeting with people are
often related activities. Gathering enough participants is also major concern for
web based and mobile ride-sharing systems. This paper addresses the following
questions.

Q1) How can we provide more flexibility to drivers in finalizing the path based
on his own preferences?

Q2) Can we use social networking features like social strength or closeness in
the path computation?

Q3) Could we provide a ride-sharing system that encourages the people and satis-
fying their demands in terms of safety, flexibility, privacy and convenience?

In our approach for ride-sharing system, we particularly focus on encouraging
people to use a ride-sharing system by satisfying their demands addressed above.
We provide the flexibility to each driver that he can generate the sub-optimal
paths according to his own requirements by suitably adjusting the weights. An
objective function is developed which models different conflicting objectives in
a unified framework, different objectives can be assigned with different weights.

With a GPS-enabled phone, a user can select his current location as the origin
of the trip. For security purpose, the system will generate an auto pin number
for the riders and also provides an option to see the complete description of
the vehicle and the proposed path before finalizing the trip. The system allows
the riders to rate the driver and the ride including the vehicle (zero to five
stars), and optionally a comment just after the ride. Such ratings are converted
into the feedback score. In addition, the driver could also rate participants by
monitoring cancelations, no-shows and late arrivals. Such ratings are converted
into a reliability score. Both the reliability and feedback scores are computed
and recorded by the ride-sharing system and have great importance on the trust
building of the system. If the driver and the rider both agree on the proposed
arrangement, the driver picks up the rider at the agreed time and location.

The rest of the paper is structured as follows. In Section 2, we will introduce
the related work. In Section 3 and 4, we will formulate the ride-sharing problem
and discusses the route matching factors and finally the cost function is devel-
oped. In Section 5, we explain our approach to solve the dynamic ride-share
problem and the simulation results are discussed in Section 6. Finally, in Section
7, we summarize our main insights in the form of conclusion.
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2 Related Work

Many solutions concerning to the Ride-sharing System have been proposed in
the literature and many of them were implemented and are used on the Web. In
this section we will summarize the related work in cotext of ride sharing systems
and the path planning.

Ride Sharing System: Real-time ride-sharing is becoming a new, mainstream
mode of transport and a lot of work has already been done in this regard. In a
recent work, Trasarti et al. [2] introduces a methodology for extracting mobility
profiles of individuals from raw digital GPS traces. In his experiments, the impact
of car pooling application based on profile matching is measured and showed
as it may foster an intelligent car pooling service. In another work Kleiner et
al. [3] presents an incentive compatible dynamic ride-sharing solution based on
auctions. It also provides tradeoff the minimization of vehicle kilometers travelled
with overall probability of successful ride-share.

Resnick [16] suggests to drop the concept of a few standardized pickup and
drop off locations and replace them with dynamically chosen collecting points
regarding the current position of the rider and driver. Kelley [11] introduces
an automatic system by which needed information is retrieved by special RFID
tags. Smart Jitney [12] is a slightly different system design approach. Murphy
et al. suggests to equip every vehicle with identifiable and trackable hardware.
Just as a cab, this device can be contacted to reserve a seat.

SafeRide [9] is a draft of a dynamic ride-sharing system for modern Smart-
phones. Morris proposes to use existing Web technologies such as Google Transit
and combine them in order to facilitate user interaction. Further, he recommends
the riders to rate the driver (and vice versa) in an also included eBay-like rep-
utation system. With Ride Now! Kirshner [8] introduces a testable computer-
and telephone-based dynamic ride-sharing system. The system finds a feasible
driver for this request and informs the rider about the drivers contact details.
Vanoutrive et al. [1] find that the most carpool-oriented sectors are construc-
tion and manufacturing and also in the wholesale and retail sectors carpool is
popular. It is rather unpopular at universities, health sector and in public trans-
port companies, and seems to be an alternative at locations where rail is no real
alternative.

Multi Objective Path Planning: In this section, we will give a brief overview
of some efforts directed towards solving the multi objective shortest path find-
ing problem. There are of two main broad categories of multi objective shortest
path problem. The first category is the deterministic (global optimal) approaches
which are generalizations of the traditional single objective shortest path label
setting and label correcting algorithms, and the second category is the approxi-
mation schemes, mainly evolutionary algorithms.

Herbwai et al. [4] presents evoulutionay multiobjective route planning algo-
rithm for solving the route planning problem in the dynamic multi-hop ride-
sharing. They have used the time expanded graph to represents the drivers of-
fers. In another independent work, Martins et al. [18] have provided a detailed
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theoretical study for different types of labeling algorithms to solve the multi
objective path problem. They have proved that it is bounded if and only if ab-
sorbent cycles are not present in the network. Müller-Hannemann and Weihe
[17] have identified a set of key characteristics that exists in many applications
of shortest path problem that makes the number of Pareto optimal paths at each
visited node to be limited by a small constant.

Shad et al. [15] have analyzed and concluded that the genetic algorithm per-
forms poorly on large size networks. However, Mooney et al. [14] have devel-
oped an evolutionary algorithm for the multi objective shortest path problem
and showed its feasibility through a set of experiments over real road networks.
Pangilinan et al. [13] have explored the behavior of a multi objective evolution-
ary algorithm when applied to solve the shortest path planning problem. The
behavior of the algorithm is described in terms of the diversity and optimality
of the solutions in addition to its computational complexity.

Summary: To summarize the literature review, the majority of the existing
systems provides one fixed path to the driver and the rider based on their lo-
cations. The drivers do not have the flexibility to change or compute the path
according to his own requirement. This is one of the main motivations of this
work because the driver can be any person from any discipline of life therefore
his choice of preferences are different at different times and on different days.

Fig. 1. A shared trip between
driver(circles) and rider(diamonds)

Fig. 2. A grid showing the drivers(circles)
and riders(diamonds)

3 Problem Formulation

The target system of our Ride-sharing System approach is a smart-phone appli-
cation for dynamic ride-sharing, does not require pre-declared paths or pickup
points, and can be used from virtually any location at any time. The system pro-
motes ride-shares among people with connections within social networks (e.g.,
Facebook) in order to favor ride-shares among users that trust each other.

3.1 Ride Sharing

Ride-sharing system continuously receives a sequence Z of trip announcements
over time from potential participants and stored this information in the database.
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A trip announcement contains an origin and a destination location, and ad-
ditional information that specify its potential timing. With this information,
the provider automatically establishes ride-shares over time, matching potential
drivers and riders. Now the goal of our system is twofold, on the one hand the
system needs to minimize the distance or path length and on the other hand it
increases the number of passengers for optimal utilization of the resource.

We suppose that the database has set of drivers D = {d1, d2, ., dn}, a set of
stations S = {s1, s2, ., sm} and a set of driver’s offers O = {o1, o2, ., ok}. Each
offer consists of a starting station s1, ending station s2, departure time t1 and
arrival time t2, and a cost c such that ∀o ∈ O : o = {s1, s2, t1, t2, c : s1, s2 ∈
S, s.t s1 �= s2 ∧ t1 < t2}. We also have set of riders R = {r1, r2, ., rn} with
request q for sharing a ride, it contains the source station s1, destination station
s2, and the earliest departure time t1 and the latest arrival time t2. Similarly for
all requests ∀q ∈ Q : q = {s1, s2, t1, t2 : s1, s2 ∈ S, s.t s1 �= s2 ∧ t1 < t2}. Now
we have the multiple drivers’ and the riders’ presents as agents in the system.

The basic motivation behind the ride sharing system usage is to reduce the
travel cost. In this work, we focus on systems designed to enable users to share
variable trip costs. When such costs are roughly proportional to distance trav-
eled, cost reduction is only possible when the length of a ride-share trip is shorter
than the sum of the lengths of the separate trips. We consider this as a first con-
dition for a feasible match only if it provides positive cost savings: i.e a ride-share
between driver d and rider r is feasible iff C(P ) > 0, where

C(P ) = C(x,y) + C(a,b) − (C(x,a) + C(a,b) + C(b,y)) (1)

3.2 Modeling Drivers’ Offers

Here we will model the two sets of group to solve the route matching problem.
We are using the geodetic grid (latitude/longitude) system with a resolution of
0.5 degree in each axes to efficiently map the drivers’ offer and riders’ request
in each grid element as shown in the Fig. 2. Whenever a new request r ∈ R and
offer o ∈ O comes from the rider and driver respectively, it will be first directly
assigned to some grid element and then it is processed. Each grid element has its
own local list of the drivers and riders based on the trip announcements. If there
is no driver already present to any grid element or no successful match found
then the respective grid element is expanded to neighboring eight grid elements
to find suitable match for the ride-sharing. The request of the rider is evaluated
with the driver’s list based on the following factors as discussed below.

4 Route Matching

In this section we will discuss about the various factors which will be used in
matching the new request r ∈ R from the rider to each driver d ∈ D present on
the network.
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4.1 Detour and Range Factors

At this stage we make use of the detour distance and the range factor as an initial
measurement criteria of route matching and further it is used for calculating
the relevancy rate. The ride request which has higher relevancy rate value will
occupy the higher position in the recommendation list of drivers. The number of
riders assigned to each driver depends upon the nature and capacity of vehicle.
Moreover the detour distance and range factor between new request from rider
and default paths of online drivers are computed in respective grid elements.

Definition (Detour and the Range Factor): Given two ride requests R1
and R2 which have start and destination locations 〈a, b〉 and 〈x, y〉 as shown in
the Fig. 1. Now if μ(x, y) denotes the length of the shortest path of the driver
from point x to y and μ(a, b) denotes the length of the shortest path of the rider.
The detour factor is then defined as:

fd(R1, R2) =
(μ(x, a) + μ(a, b) + μ(b, y)− μ(x, y))

μ(x, y)
(2)

and the range factor is defined as:

fr(R1, R2) =
mean(μ(x, a), μ(b, y))

μ(x, y)
(3)

The value range of detour factor will be [0,+∞). Now we define a transformation
E : R[0,+∞) → (0, 1] for uniform comparison of the values between driver and
different riders. We define this transformation as relevancy rate:

E(R1, R2) = e−fd(R1,R2) (4)

The range of the values of relevancy is between (0, 1] and 1 means the maximum
matching of the routes. The value of the range factor needs to be less than 0.5 as
the first step for suitable match. The system determines drivers that are online
and compatible for this ride based on the relevancy of both the paths, the value
of the range factor, condition of the Eq. 1 and whether the deadlines will comply.
In this way system assigns multiple riders to single driver based on these factors.

Graph Generation: From drivers’ perspective, each driver may have single or
multiple riders associated with him based on vehicle capacity. Now just before
starting the drive, the driver computes the path for the whole ride. The system
will generate a number of sub-optimal paths for the driver based on the multiple
riders requests and the weights of the objective function set by the driver as
shown in the Fig. 3.

Now each driver has its own local network, rider nodes are sorted in ascending
order with respect to the distances, the drivers’ initial point I and final point F
are then inserted at the start and end of the list. Each start point node in this
sorted vector is a candidate for connection to all start nodes ahead of it and no
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Fig. 3. The drivers’ setting dialog

unrealistic edge (e.g inserting destination node without the source node and vice
versa) is allowed into the grid. Therefore, the node Ni is connected to all source
nodes and hence with their corresponding destination nodes I,Ni+1, ..., NN , F .
Each edge is evaluated under several constraints like length, time etc and as-
signed the edge cost based on the objective function as described below.

4.2 Cost Function

In the ride-sharing system, new riders and drivers continuously enter and leave
the system. Some drivers want the shortest route and some may want the maxi-
mum riders on the weekends or holidays. Some people may only feel safe sharing
rides with friends or acquaintances and possibly also with the friends of friends.
The different objectives need to be considered when defining the edge cost. Of-
ten these objectives are conflicting, and thus there is a need to incorporate them
into a single multi-objective function that satisfies route requirements. In this
study the objectives considered are: 1) Minimization of the path lengths 2) Min-
imization of the travel time 3) Maximization of the available seats (occupancy)
4) Maximization of social closeness.

The first objective can be modelled as LE

Lmax
, where LE is the edge length

and normalized by the maximum length Lmax. The travel time is the time spent
in the vehicle while actually traveling from origin to destination. The second
objective of minimization of travel time can be transformed into an equivalent
objective of minimizing the path length. It can be modelled by dividing the edge
distance by the average velocity of the vehicle i.e LE

Avgvel
. The third objective

of maximum utilization of the available seats(i.e occupancy) can be modeled
as c

(Sa)max
, where c is the constant usually taken to be 1 (the same for all

the edges) and the (Sa)max is the maximum number of the riders used for
the normalization of the cost. This objective may be beneficial for a ride-share
provider whose revenues are linked to the number of successful ride-shares. In
social closeness calculation, we adopt the same method as defined by Gilbert
et al. [10]. From their method we consider some measures like social distance,
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demographic and some structural information to compute the social closeness.
Finally we normalize the net social closeness as S. We assign the -S to the edge
cost, where 0 ≤ S ≤ 1. The edge cost can be written as:

Ecost =
WL × C1 +WT × C2 +WSa × C3 +WSd × C4

WL +WT +WSa +WSd
(5)

Here Ecost is the edge cost and WL, WT , WSa and WSd are user defined weights
for four objectives as shown in the Fig. 3. where

C1 =
LE

Lmax
, C2 =

LE

Avgvel
, C3 =

c

(Sa)max
, C4 = −S

5 Path Planning

In this section we will discuss how we have exploited the greedy algorithm to
compute a number of suboptimal paths available to the driver.

5.1 Path Optimization

Our goal is to select an algorithm that solves the minimum cost problem given
in Eq. 5 above, furthermore we would like to work out a number of sub-optimal
paths also. The edge cost components discussed above can be negative, the choice
of the optimization algorithm therefore needs to be done accordingly. Since the
Bellman-Ford algorithm works well with the negative edge costs and computes
the shortest path between two given nodes in a weighted digraph. The Bellman-
Ford algorithm in the process of finding the optimal path from the start node
I to the final node F, also finds lowest cost paths from the start node to all
other nodes. This feature of the algorithm is used here in the computation of
a number of sub-optimal paths. We have extended the Bellman-Ford algorithm
and incorporate the constraints directly into the runtime. In the algorithm, we
have assigned the labels to nodes and the edges. Each label consists of three tags
i.e cost, name and the time. The cost tag indicates the cost in going from the
node I to that node and the name tag contains the name of edge that connects to
the node I on the shortest path found so far and the third tag contains the time.

The algorithm can be divided into four parts. The graph generated in above
section is a directed graph with an edge j starting from node b(j) and ending at
node e(j) with cost Ej . Let Ci

I be the cost of the shortest path of the ith node
from the node I, P i

I is the edge previous to the ith node and T i
I is the time to

the ith node on that path.
1) During the initialization part, first assign a label (0,0,0) to the initial node I,
and the labels (∞, 0, 0) to all other nodes and the edges respectively. The zero
present in the name tag indicates that neither preceding edge assignment has
been made, nor the edge originates from the initial node I.
2) The forward and reverse phase computations are done for generating the
multiple paths. At the start of the algorithm we check if the start node of an
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edge is the initial node I, in which case the cost of the end node of the edge is
compared with the cost of the edge itself. If the cost of the edge is smaller, the
label of the end node and the time tags are updated accordingly. If an edge does
not originate from the initial node I, we check if a preceding edge assignment for
the edge start node exists. Then previously stored cost at the end node of the
edge is compared to that accrued by going through this edge. In case of a lower
cost, the end node label and the edge label are both updated whenever there is
an end node assignment, there is also an edge assignment as the reverse is not
possible. If however the cost at the end node while going through the edge is
not lower, then this cost is compared with the cost stored in the edge label. In
case of a lower cost, only the edge label is updated. This implies that this new
path from I to e(j) via the jth edge results in a lower cost, and hence the label
of the jth edge now contains this cost. During forward phase computation, we
have traced for each edge j, the shortest path vector j2I from e(j) to initial node
I by linking each node to preceding node as:

j2I = [e(j), b(j), b(P j
I ), b(P

P j
I

I ), b(P
P

P
j
I

I

I ), ..., I]

The shortest path vector I2j from I to e(j) can be obtained by reversing this.

3) Similarly treatment is done in the reverse phase computation, we interchange
the roles of b(j) and e(j)and also the nodes I and F, the shortest path vector
from I2j from I to e(j) is obtained along with the corresponding cost Cj

I and the

time T j
I . The paths are generated in an order of priority if one path does not

meet user satisfaction for some reason, the next path can be considered.
4) Now during the multiple path computation, we finds the corresponding list
of the path vectors [I2j ∪ j2F ], where j2F is the shortest path vector from edge
j to the final node F, computed during the reverse phase computation. This will
give the multiple best paths in the order of priority defined by the driver that
fulfils all the required constraints.

6 Simulation Results

The above algorithm is coded into a software application for generating the op-
timal paths from given set of offers and requests at any time t. We utilized the
OpenStreetMaps (openstreetmap.org) data together with the MoNav planner
that offers exact routing without heuristic assumptions at very little computa-
tional demand due to a routing core based on contraction hierarchies Vetter [7].
As a test bed for our experiments we used the following case study.

6.1 Case Study

In this section, we will discuss the different scenarios and monitors the perfor-
mance of our algorithm. Optimal paths (satisfying all constraints) are computed
using the above algorithm and the effect of varying the weights is studied here.
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Fig. 4. Individual paths of driver and riders Fig. 5. Shortest length paths

The case study considers a person (driver) who has uploaded his schedule
of departure from home to the office with the route map. Similarly, numerous
people, who intend to reach airport for catching a flight have also uploaded their
schedule along with departure point. Based on the information uploaded by the
riders, the riders are automatically assigned to a suitable driver as per defined
criteria described in section 4. All the scenarios consider r1, r2, r3 ∈ R are three
riders with requests q1, q2, q3 ∈ Q and one driver d1 ∈ D with offer o1 ∈ O and
their default paths are shown in Fig. 4.

In the first scenario, the objective function is optimized for the shortest path
with weight settings WL = 1, assuming that all other weights are considered to
be zero. Similarly in the second scenario, the objective function is optimized for
the maximum occupancy by adjusting weight as WSa = 1. The third scenario
is worked around optimizing the minimum time constraint, with the weight
WT = 1. In the fourth scenario, the paths are computed on the basis of the
social closeness value by mining the riders social network. It can be achieved by
setting the weight as WSd = 1. Finally we applied multiple constraints like time
and social closeness by assigning the weights as WT = 0.4,WSd = 0.6.

In all the five scenarios, the optimal paths are generated by the application
based on priority settings adjusted by the driver and the paths which are not
complying with the constraints are simply rejected. The path computed clos-
est to the objective function will be ranked the highest and is shown in red,
similarly the next path in green and the third path is shown in blue color as
shown in figures Fig. 5, 6, 7, 8, 9 respectively. Moreover Fig. 9 shows that the
shortest closeness path(red) comes as a first choice in comparison with Fig. 8
output.
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Fig. 6. Paths with maximum occupancy Fig. 7. Paths with time constraint

Fig. 8. Paths with Social Closeness Fig. 9. Time constraint on Social Closeness

7 Conclusion

Internet-enabled mobile technology allows car travelers to announce trip requests
and ride offer on short notice. In this paper we have presented a novel path plan-
ning approach that: 1) Allows more flexibility than state of the art system, as it
gives more freedom to the users in the choice of ride sharing partner such as social
interests matching and provides more security and convenience. 2) Furthermore
it provides multiple feasible paths along with the ranking that minimizes a multi-
objective cost function and weights of the factors can be specified by the driver
to achieve the optimal objectives, such as the length, time, occupancy and social
closeness. 3) Our simulation study results have shown that the proposed system
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may have the potential to compute that multiple optimal paths against different
user defined objective function.
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Abstract. The ability to accurately track a ball is a critical issue in hu-
manoid robot soccer, made difficult by processor limitations and
resultant inability to process all available data from a high-definition
image. This paper proposes a computationally efficient method of deter-
mining position and size of balls in a RoboCup environment, and com-
pares the performance to two common methods: one utilising Levenberg-
Marquardt least squares circle fitting, and the other utilising a circular
Hough transform. The proposed method is able to determine the position
of a non-occluded tennis ball with less than 10% error at a distance of 5
meters, and a half-occluded ball with less than 20% error, overall outper-
forming both compared methods whilst executing 300 times faster than
the circular Hough transform method. The proposed method is described
fully in the context of a colour based vision system, with an explanation
of how it may be implemented independent of system paradigm. An ex-
tension to allow tracking of multiple balls utilising unsupervised learning
and internal cluster validation is described.

Keywords: Robotics, robotic soccer, computer vision, feature
extraction, object recognition, clustering.

1 Introduction

The problem of developing a team of humanoid robots capable of defeating the
FIFA World Cup champion team, coined “The Millennium Challenge” [9], has
been a milestone that has driven research in the fields of artificial intelligence,
robotics and computer vision for over a decade. One crucial skill of soccer, the
accurate, robust and efficient determination and tracking of ball size and loca-
tion, has proven to be a challenging subset of this task and the focus of much
research [11–13, 16]. With the evolution of robot platforms and subsequent ad-
vances in processor performance over the last decade, from the 384 MHz RISC-
based processors of the Sony AIBO ERS-210 (2002) to the 1.6 GHz Intel Atom
processors of the Robotis DARwIn-OP [7] platform (2012), the temporal and
spatial complexity of feature extraction algorithms to solve this task has grown
accordingly.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 827–838, 2012.
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With past research suggesting that colour-based algorithms are suboptimal
for object recognition in a RoboCup environment [12, 13], particularly in the
presence of varying lighting conditions, a paradigm shift from colour-based to
shape-based feature extraction has been evident amongst RoboCup teams [12].
This shift has been amplified as a result of the evolution of RoboCup rules,
with “colour-coded” objects, such as landmark beacons and uniquely-coloured
goals, being phased out entirely from the Standard Platform League to facilitate
convergence with the FIFA rules of human soccer [2, 9].

Despite this trend, it is important to note that the paradigm-shift from colour-
based to shape-based feature extraction is not universal, with many Robo-Cup
teams, including the University of Newcastle’s NUbots and 2012 kid-sized hu-
manoid league champions Team DARwIn, depending primarily on colour look-up
tables (LUTs) to facilitate the process of feature extraction. With this in mind,
this paper presents a method of ball detection which can be implemented inde-
pendently of the adopted paradigm, requiring only a set of points marking the
edges of potential salient features. The algorithm is very efficient, implementing
only basic geometric operations, and yet effective at locating the ball from the
opposite side of a SPL RoboCup field (up to 5 meters). This method, which
was effectively utilised by the NUbots team at RoboCup 2012 (Mexico City), is
demonstrated to be robust against both considerable levels of noise and occlu-
sion, and can readily be extended to cater for a non-RoboCup environment with
multiple present balls.

The remainder of this paper, firstly, presents a description of how a ball can-
didate can be determined in the context of a colour-based vision system. Ex-
tensions of this method to a shape-based system are described, in addition to
detailing a method by which multiple candidates can be generated to facilitate
tracking of multiple balls. The refinement of these candidates to calculate exact
ball position and size is then described, for both ideal and occluded ball scenar-
ios. Finally, the accuracy and efficiency of the algorithm is compared to previous
ball detection approaches, including the previous NUbots system [1], implement-
ing Levenberg-Marquardt least squares circle fitting [10]; and a circular Hough
transform based method [16], similar to those implemented by many RoboCup
teams [11, 15].

2 Ball Detection in Context

In computer vision, a mapping from an arbitrary 3-component colour space C to
a set of coloursM assigns a class label mi ∈M to every point cj ∈ C [5]. If each
channel is represented by an n-bit value and k = |M | represents the number of
defined class labels, then

C →M,

where

C = {0, 1, . . . , 2n − 1}3 and M = {m0,m1, . . . ,mk−1} .
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Where computational resources are limited, the colour segmentation process
is performed off-line, with the resultant mapping represented in the form of a
2n × 2n × 2n look-up table (LUT). This LUT can then be used for efficient,
real-time colour classification [5], and as such colour-based vision systems util-
ising LUTs are still commonplace amongst RoboCup teams [1]. Specifically, the
NUbots vision system, for which this ball detection method was initially devel-
oped, adopts the following methodology:

1. Generate scan lines: As current processor limitations do not allow complex
operations over every pixel of a 2-megapixel image without significant frame-
rate reduction, only the pixels along a set of vertical and horizontal scan lines
are considered for candidate determination. This method is preferred over
reduced camera resolution, as it provides the same performance increase (i.e.
the same number of pixels are considered) whilst still allowing for small, high
resolution portions of the image to be processed to resolve finer detail. Scan
lines may be either equidistant on the image plane, or spaced in such as way
as to be equidistant on the field plane (requires robot kinematics data).

2. Determine field border: Determination of the field border, or green horizon,
allows for specific knowledge of the RoboCup environment to be applied to
reduce the required image processing. For example, a ball and field lines
should only ever be found beneath the horizon, whereas the majority of
the goal post area will be found above. Starting at the top of the image,
each pixel along each vertical scan line is inspected until a certain threshold
of consecutive green pixels is exceeded, at which stage the top green pixel
coordinates are added to a list of points. The green horizon then becomes the
upper convex hull of these points, determined by a modified implementation
of Andrew’s monotone chain algorithm [3].

3. Generate colour transitions: Processing of the image to locate potential field
object candidates is a colour transition level operation. To generate colour
transitions, each pixel along each scan line is considered, and wherever the
colour class label of a pixel differs from that of the previous adjacent pixel,
a transition is generated. The information stored in each transition includes
its (x, y) image coordinate, start colour class label and end colour class label.

4. Determine candidates: Colour transitions are considered to determine poten-
tial field object candidates. This process may or may not consider transitions
of opposite direction or orthogonal orientation as equivalent (e.g. ball detec-
tion does, but goal detection does not).

5. Refine candidates: The area surrounding each candidate is processed at a
pixel level to determine the exact location, dimensions and confidence of a
particular field object.

Steps 1-3 simply describe one method by which a series of points, representing
the positions of edges of various image features, may be generated. Any system
capable of returning equivalent information, whether it be primarily colour, in-
tensity gradient or shape-based, may be implemented as a substitute. As such,
the ball detection method described may be implemented somewhat indepen-
dently of the adopted paradigm.
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Sect. 3 and 4 describe how steps 4 and 5 of the above list above are realised
for the proposed ball detection method.

3 Determining Candidates

As outlined in Sect. 2, given a set of points corresponding approximately with
edges of image features (herein assumed to be colour transitions, consistent with
the NUbots vision system), the next step of ball detection is to determine the
(x, y) image coordinates of potential ball candidates. The remainder of this sec-
tion, firstly, describes a simple and computationally efficient method by which
a single candidate may be determined. Finally, a generalised method is pro-
posed, which utilises unsupervised learning to allow for the determination of any
number of ball candidates.

3.1 Single Ball

Given a set of colour transitions, the first step of determining the ball candidate
is to ignore all transitions which do not fulfill the following criteria:

– Must have a start or end colour class label consistent with the ball colour
(typically orange).

– Must be located beneath the green horizon.

Transitions are considered independent of their direction, i.e. an orange-white
transition is equivalent to a white-orange transition. Following this, the candi-
date position is calculated as the geometric mean of the transition coordinates.
Concretely, given a set of transitions {t1 = (x1, y1), . . . , tn = (xn, yn)},

pcand =

⎛
⎝( n∏

i=1

xi

)1/n

,

(
n∏

i=1

yi

)1/n
⎞
⎠ .

To prevent arithmetic overflow in a noisy image, in which several hundred tran-
sitions may be present, the following observation is utilised:(

n∏
i=1

xi

)1/n

=

(
k∏

i=1

xi

)1/n

×
(

2k∏
i=k+1

xi

)1/n

× · · · ×
(

n∏
i=n−k+1

xi

)1/n

.

Maximum computational efficiency is obtained by determining the largest value
of k for which the data type chosen to store the intermediate value is guaranteed
not to overflow. Concretely, for an image of width w pixels and a data type of
length m bits,

k = "logw (2m)#.
As an example, given a full HD image (1920 × 1080 resolution) and a C++
unsigned long long data type1 (n = 64 bits), k is calculated to be 5.

1 Increasing k will also reduce the average rounding error for integer data types.
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3.2 Multiple Balls

Given a non-RoboCup environment with multiple balls, the process of ball de-
tection can be extended simply by replacing the determine candidates module
(see Sect. 2) by a generalised module capable of determining multiple candidate
points. In an environment where the maximum number of balls is known a pri-
ori, this is accomplished via k-means clustering [8, 14]. Concretely, given a set
of m data points P = {x(1), . . . , x(N)} (x(i) ∈ Rm), k-means clustering attempts
to partition P into K sets (known as clusters) S = {S1, . . . , SK} such that the
following objective function J is minimised.

J(c(1), . . . , c(m), μ1, . . . , μK) =
1

m

m∑
i=1

‖x(i) − μc(i)‖2,

where ci is the index of the cluster (1, . . . ,K) to which data point x(i) is cur-
rently assigned, μk is the cluster centroid of Sk (μk ∈ Rn), and therefore μc(i)

is the centroid of the cluster to which x(i) has been assigned [8, 14]. This is ac-
complished via the repeating the following two-step algorithm until convergence.

Step 1: Assignment step:

S
(t)
i = {x(p) : ‖x(p) − μ(t)

i ‖ ≤ ‖x(p) − μ
(t)
j ‖ ∀ 1 ≤ j ≤ k}.

Step 2: Update step:

μ
(t+1)
i =

1

|S(t)
i |

∑
x(j)∈S

(t)
i

x(j).

The resultant cluster centroids form the ball candidates. The benefits of utilising
k-means clustering for determining candidates are twofold. Firstly, compared to
other common clustering techniques such as mean shift and expectation maximi-
sation, k-means is computationally efficient, with time complexity O(Km) [4]. In
addition, as clustering only takes place over the set of colour transitions and very
few iterations are required, this method is able to be executed in real time on the
DARwIn-OP platform [7]. Secondly, k-means utilises an implicit representation
of the underlying probability distribution as a superposition of spherically sym-
metric distributions [14], which performs well given a set of colour transitions
positioned approximately on the circular border of a ball.

For an image where the number of balls, b, is known a priori, the number of
clusters, K, may simply be set to equal the number of balls. In general, for an
environment where the number of balls is known but with no guarantee every
ball is present in a given image, an internal cluster validation criteria (such as
the Dunn’s based index [5, 6]) is applied to the each cluster for K = {1, . . . , b},
with the K value yielding the best results indicating the number of balls in the
current image.
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4 Determining Location and Size

As outlined in Sect. 2, once the ball candidate(s) have been determined, the
final step in ball detection is to inspect each candidate point to calculate the
exact location, dimensions and confidence of the ball itself. The remainder of
this section, firstly, describes a computationally efficient method by which the
position and size may be determined, assuming an occlusion-free ball. Next, a
generalised version of this method is explained, which extends the functionality
to deal with balls suffering from up to 50% occlusion, either from a direction
parallel to the x or y-axes (4-point occlusion detection) or an arbitrary direction
(n-point occlusion detection). Finally, systems of verifying the correctness of
the ball detection results are described; this is particularly vital in a multiple
candidate scenario.

4.1 Occlusion-Free

Given a candidate point pcand, as determined by one of the two methods de-
scribed in Sect. 3, the process of calculating the exact dimensions of an occlusion-
free ball is a straightforward process that operates at a pixel level to maximise
the detail which can be resolved. Concretely, given an image where each possi-
ble pixel value maps to some colour class label via a look-up table (LUT), each
pixel along the x and y-axes (relative to origin pcand) is inspected until a certain
threshold, ϑ, of consecutive “non-ball” pixels is exceeded2, at which time the
last-considered pixel belonging to the ball is stored. The four resultant points,
p1, . . . , p4 (see Fig. 1), therefore correspond ideally with four points on the edge
of circle.

Fig. 1. Center update method for determining center of a non-occluded ball

As balls in images are rarely perfect circles (due to motion blur and pixel
quantization) and LUT mappings are often noisy (due to variations in ambient
illumination), the ball location and dimensions are not determined by substi-
tuting the above points into the equation of a circle. Instead, a single-iteration

2 In the NUbots vision system, “non-ball” pixels are simply those which do not map
to the orange colour class label.
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center update method is applied to find the exact center of the ball. For a non-
occluded ball, the center update consists of two steps:

1. Determine center: Considering the points p1 = (x1, y1), . . . , p4 = (x4, y4)
(see Fig. 1), the center of the ball, pcent, is calculated as

pcent =

(
x3 + x4

2
,
y1 + y2

2

)
.

2. Determine diameter: Considering pcent as the origin, each pixel along the x
and y-axes is inspected until a certain threshold, ϑ, of consecutive “non-ball”
pixels is exceeded, at which time the last-considered pixel belonging to the
ball is stored. Considering the resultant points, p′1, . . . , p

′
4 (labeled in the

same orientation as p1, . . . , p4, see Fig. 1), the diameter of the ball, d, is
calculated as

d = max {||p′1 − p′2||, ||p′3 − p′4||} .

It can be demonstrated that, given a candidate point pcand within some ideal
circle C, this method is guaranteed to yield correct results3. An example is
illustrated in Fig. 2a.

4.2 4-Point Occlusion Detection

Although the threshold parameter ϑ may be tuned to compensate for classifi-
cation noise, the method presented in Sect. 4.1 is unable to deal with any ball
occlusion. This is illustrated in Fig. 2a; any occlusion from any side of the ball
will result in a shift of the ball center pcent and reduction of diameter d. For-
tunately, the process of 4-point occlusion detection may be used to compensate

(a) (b)

Fig. 2. Error in applying initial center update method to occluded ball (a), and the
corrected result of applying 4-point occlusion compensation (b)

3 Proof omitted. Available at: http://www.davidbudden.com/research/
ball-detection/

http://www.davidbudden.com/research/ball-detection/
http://www.davidbudden.com/research/ball-detection/
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for occlusion of the ball from a single direction, as illustrated in Fig. 2b. This
method requires the addition of the following three steps to those presented in
Sect. 4.1:

1. Detect occlusion: Consider a ray, r1, with initial point pcent and passing
through p1. Starting at p1, inspect ϕ pixels in the direction of r1, where ϕ is
the occlusion sensitivity parameter. If none of these are “field”4 pixels, mark
p1 as occluded. Repeat for p2, . . . , p4.

2. Determine if correction is required: If none of the points p1, . . . , p4 are
marked as occluded, no ball occlusion is detected, and the method of updat-
ing center and diameter reduces to that of Sect. 4.1. Likewise, if more than
one point is marked as occluded, the ball is occluded from multiple direc-
tions; this is a scenario unable to be corrected by 4-point occlusion detection,
so the method also reduced to that of Sect. 4.1 (with error).

3. Correct points: Assume p3 is marked as occluded. The position of p3 is up-
dated such that its distance from p4 becomes exactly max{||p1 − p2||, ||p3 −
p4||}, as illustrated in Fig. 4.2b. An equivalent method is applied for all
possible occluded points.

Although not guaranteeing correctness, this method presents allows for fast ex-
ecution, whilst maintaining high accuracy in position determination. To func-
tion correctly, 4-point occlusion detection requires the direction of the occlusion
source be parallel to either the x or y-axes. This limitation can be reduced by
extending the method to n-point occlusion detection, where n points about the
circle C are utilised, p1, . . . , pn. Ignoring pixel quantisation and assuming an
ideal ball, n-point occlusion detection yields accurate results for 50% occlusion
as n→∞, independent of the direction and nature of the occlusion. The process
of 4-point occlusion detection is illustrated in Fig. 2b.

4.3 Ball Verification

Although the proposed method is robust against both noise and ball occlusion, it
does not inherently deal well with images where no ball is present; specifically, in
an image with no ball, the algorithm will attempt to locate a ball in any appro-
priate transitions caused by noise or over-classification, such as in a shadowed
yellow goalpost. This is corrected by the addition of a ball verification stage,
where the distance to the potential ball is calculated by two different metrics:

– Distance by width: The distance between the robot and the ball is calculated
directly from determined ball width:

dw =

√(
rcm

tan (γxrpx)

)2

− h2cam , γx =
θx
wimg

(1)

4 In the NUbots vision system, “field” pixels are simply those which map to the green
colour class label.
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(a) (b)

Fig. 3. Correct ball detection for a LUT-classified RoboCup image, for both non-
occluded (a) and 50% occluded (b) ball scenarios (calculated ball represented by cyan
circle)

where rcm is the actual radius of the ball (cm), rpx is the radius of the
ball located in the image (pixels) and hcam is the current height of the
camera from the ground (calculated from kinematics data). The pixel an-
gular width, γx, is a conversion factor that approximates the relationship
between the horizontal field of view of the camera, θx, and the pixel width
of the image, wimg. This approximation is most accurate at the center of the
frame.

– Distance to point: This method utilises a ground-plane projection to cal-
culate the distance to any point on the field, knowing only the (x, y) pixel
coordinates, pixel angular width γx and height γy, and the kinematics data
of the robot5:

dp =
hcam tan(θhead + β)

cosα
,

where θhead is the robot head elevation and α and β, the point bearing and
elevation, are defined as

α = γx

(wimg

2
− x
)
, β = γy

(
himg

2
− y
)
.

If the absolute difference between the two calculated distances exceeds a certain
error threshold value, the ball is disregarded. This process prevents the detection
of false balls, except in the scenario that the offending object is actually ball-
sized. Additional checks, such as maximum ball distance and minimum orange
pixel density, may also be applied such that false positives can only result from
ball-sized, ball-coloured objects positioned on the field of play.

5 Computational Results

The performance of the proposed ball detection method was evaluated by cal-
culating the distance to the ball from its pixel width, as described in Sect. 4.3

5 γy is defined as per γx in (1), in terms of θy and himg , the image pixel height.
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(1). This distance was calculated at 0.5 meter intervals, from a distance of 0.5
to 5.0 meters, for non-occluded, 25% and 50% occluded balls6. The accuracy of
the algorithm is compared to previous ball detection approaches, including the
previous NUbots system [1], implementing Levenberg-Marquardt least squares
circle fitting [10]; and a circular Hough transform based method [16] similar to
those implemented by many RoboCup teams [11, 15].

Fig. 4 illustrates the experimental results, with the proposed ball detection
method indicated by blue, the previous NUbots method by magenta and the
Hough transform based method by red. It can be seen from Fig. 4a that, for
a non-occluded ball, the proposed method yields the most accurate results
for balls greater than 1.5 meters away. For closer balls, the Hough transform
method performs best, although the error in both instances is very small. In-
creasing the level of occlusion from to 25% and 50% increases the distance
for which the Hough method is most accurate, to 2.0 m and 3.5 m respec-
tively. Overall, the proposed method produces the most consistently accurate
results; the error is consistently less than 10% for non-occluded and 25% oc-
cluded balls, and less than 20% for 50% occluded balls. The previous NUbots
method performed worst in all cases, and was incapable of detecting balls at a
distance greater than 3.5, 3.0 and 2.5 meters for 0%, 25% and 50% occlusion
respectively.

The dashed lines in Fig. 4 represent the mean calculated distance error over
100 frames of a stationary robot. To minimise error introduced by the approxi-
mated pixel angular width (see Sect. 4.3), all images were captured with the ball
positioned in the center of the frame. As pixels are an inherently quantised unit,
it follows that, for a fixed camera height, certain distances will be less susceptible
to error than others. For example, at a distance of 4 meters, the optimal ball
width is 4.94 pixels, whereas for 3.5 meters the optimal width is 5.64. As 4.94
is much closer to an integer value than 5.64, it is reasonable that some methods
perform better at 4.0 meters than 3.5 (see the blue dashed line in Fig. 4a and
c). As this pixel quantization error is a function of camera height, which varies
as the robot walks, the solid lines (representing the current maximum error) are
introduced to Fig. 4 to provide a better indication of the expected error at a
given distance.

As robots in humanoid soccer typically suffer from significant processor con-
straints due to power consumption requirements, it is vital that any implemented
algorithm is as computationally efficient as possible. Table 5 contains the execu-
tion times for the refine candidates module of the proposed ball detection system
(see Sect. 2) and equivalent sections of the compared methods, as measured on
the DARwIn-OP platform [7]. Results demonstrate that the proposed system
executes 1.5 times faster than the previous NUbots system, and over 300 times
faster than the Hough transform based system7.

6 The official kid size league match ball was utilised for all experiments.
7 Performance overhead may have been introduced by the OpenCV C++ Hough trans-
form implementation.
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Fig. 4. Comparison of ball distance er-
rors for the proposed ball detection method
(blue), previous NUbots method (ma-
genta) and Hough transform based method
(red), for occlusion levels of 0% (a), 25%
(b) and 50% (c). As finite camera reso-
lution introduces a pixel quantisation er-
ror (demonstrated by the dashed lines),
the solid lines are introduced to represent
the expected performance considering vari-
ations in camera height (see Sect. 5). (a)
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Table 1. Execution time mean μ and standard deviation σ for the proposed ball
detection method, previous NUbots method and Hough transform based method

Method μ (ms) σ (ms)

Center update w/ 4-point occlusion detection 0.395 0.088
Previous NUbots (least squares circle fitting) 0.615 0.103

Circular Hough transform 128 18.4

6 Conclusion

The proposed ball detection method overall demonstrated the most accurate
results, maintaining an error in calculated ball distance of less than 10% for
non-occluded and 25% occluded balls, and less than 20% for 50% occluded balls,
over a range of distances from 0.5 to 5.0 meters. The compared Hough transform
method performed slightly better for balls closer than a certain distance, which
increased from 1.5 to 3.5 meters as occlusion levels were raised. The previous
NUbots ball detection method, which implemented Levenberg-Marquardt least
squares circle fitting, performed worst for all distances and occlusion levels.

In addition to accurate performance, the proposed method executed over
300 times faster than the Hough transform based method on the DARwIn-OP
platform [7]. Much of this performance gain was leveraged by utilising specific



838 D. Budden et al.

knowledge of the RoboCup environment, such as the ball size and quantity
known a priori, in addition to the green field border. Future research will focus
on dynamically identifying these salient features in real time, such that similar
performance advantages may be leveraged in an arbitrary environment.
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Abstract. Recent research has shown the benefits of using K -means
clustering in task allocation to robots. However, there is little evalua-
tion of other clustering techniques. In this paper we compare K -means
clustering to single-linkage clustering and consider the effects of straight
line and true path distance metrics in cluster formation. Our empirical
results show single-linkage clustering with a true path distance metric
provides the best solutions to the multi-robot task allocation problem
when used in sequential single-cluster auctions.

1 Introduction

We consider a team of autonomous mobile service robots operating in an office-
like environment. These robots may be required to deliver mail between rooms,
provide an escort to visitors, or complete cleaning tasks. In all of these situations
a set of tasks is to be completed and it is our desire that the tasks are distributed
amongst all available robots in a manner that seeks to optimise a global team
objective.

Recent research has shown market-based sequential auctions can quickly gen-
erate good solutions to this class of problem. In particular, Sequential single-item
auctions (SSI auctions) which allocate tasks to robots one task per auction round
at a time provide solutions within guaranteed bounds [11,8]. Further refinements
of this approach have considered various components such as considering com-
plete task allocations with rollouts [20], changing the winner determination rules
[10], and exchanging tasks post-initial allocation [19,14].

However, a drawback of allocating tasks one at a time in a market-based
environment is that robots are generally greedy in their bidding strategies and
will often only consider tasks that seek to minimise their overall cost, rather
than the global team cost. For instance, it is common for two robots to be
allocated one task each when the overall team cost would be lower if one robot
completed these two tasks and the other robot was allocated and completed other
tasks.
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To overcome this problem, Koenig et al. [9] consider an extension of SSI
auctions where robots form and bid for combinations of multiple tasks during
each auction round. However, despite this approach improving the final task
allocation, the calculations required to form the task bundles are very compu-
tationally expensive. Heap and Pagnucco considered the merits of this approach
in their work on Sequential single-cluster auctions (SSC auctions) [5,6] which
uses K -means clustering to form clusters of tasks that are allocated to robots as
fixed bundles.

Furthermore, K -means clustering has also been used in a variety of other
multi-robot task allocation problems. These include evenly balancing task allo-
cation between robots [4], ensuring robots are spread out in the exploration of
unknown space [17,15], and for map segmentation in RoboCup Rescue Agent
Simulation [13]. However, few papers have considered alternative algorithms for
the formation of task clusters. In this paper we use SSC auctions to compare
K -means clustering to single-linkage clustering and consider both straight line
distance and true path distance (which takes into consideration obstacles be-
tween tasks) as metrics in cluster formation.

In the remainder of this paper we define the multi-robot task allocation
problem in the domain of auction-like algorithms, we define SSC auctions, out-
line each clustering technique, consider the time required for each clustering
algorithm to complete, and report our empirical experimental results for each
clustering techinque when used in SSC auctions for task allocation. Our key re-
sults show single-linkage clustering with a true path distance metric is the best
performing clustering technique when used in SSC auctions to solve the multi-
robot task allocation problem. However, we also show that the time required to
form clusters using a true path distance metric is around 100 times slower than
using straight line distances.

2 Multi-robot Routing

Multi-robot routing (Fig. 1) is considered the standard testbed for the multi-
robot task allocation problem in which each task is represented as a location to
visit [3]. We follow Koenig et al. [9] in their formalisation of the problem. Given
a set of robots R = {r1, . . . , rm} and a set of tasks T = {t1, . . . , tn}, any tuple
〈Tr1 , . . . , Trm〉 of pairwise disjoint bundles Tri ⊆ T and Tri∩Trj = ∅ for i �= j, for
all i = 1, . . . ,m, is a partial solution of the multi-robot task allocation problem.
This means that robot ri performs the tasks Tri , and no task is assigned to
more than one robot. To determine a complete solution we need to find a partial
solution 〈Tr1 . . . Trm〉 with ∪ri∈RTri = T , that is, where every task is assigned
to exactly one robot.

Robots have perfect localisation and can calculate the costs to travel between
locations. We assume costs are symmetric, λ(i, j) = λ(j, i) and are equal across
all robots. The robot cost λr(Tr) is the minimum cost for an individual robot r
to visit all locations Tr assigned to it. There can be positive synergies between
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Fig. 1. Multi-Robot Routing

tasks where λri(Tri ∪Tr′i) < λri(Tri)+λri(Tr′i). Furthermore, we desire to find
a complete solution that seeks to minimise a global team objective. In this paper
we test with two common team objectives first introduced in [18]:

MiniMax maxr∈Rλr(Tr), that is to minimise the maximum distance each in-
dividual robot travels.

MiniSum
∑

r∈R λr(Tr), that is to minimise the sum of the paths of all robots
in visiting all their assigned locations.

3 Sequential Single-Cluster (SSC) Auctions

SSC auctions [5] are an extension of SSI auctions and assign fixed clusters of
tasks to robots over multiple bidding rounds. At the conclusion of each bidding
round one previously unassigned task cluster c = {t1, . . . , to} is assigned to the
robot that bids the least for it so that the overall team cost increases the least.
After all task clusters are allocated, each robot seeks to complete all its allocated
tasks in as short a distance possible. Robots do not have to do all tasks in a
cluster sequentially. When a robot is awarded a new cluster, the robot adds the
tasks in this new cluster to its existing task assignment and replans its path to
travel.

We formulate the algorithm for SSC auctions in Fig. 2. Each robot runs the
algorithm independently of other robots and, with the exception of supply-
ing the initial list of tasks and clusters to each robot, there is no centralised
controller. Before the SSC auction algorithm begins, a clustering algorithm
is used to allocate all tasks into task clusters and C = {c1, . . . , ck} is the
set of all clusters. Each task is assigned to one, and only one cluster, and
clusters can be of varying sizes. All robots are informed of all tasks and all
clusters.
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function SSC-Auction (C̄,Cr, r, R)
Input: C̄: the set of clusters to be assigned

Cr: the set of clusters presently assigned
r: the robot r
R: the set of robots R

Output: Cr: the set of clusters assigned to the robot

1: while (C̄ �= ∅)
2: /* Bidding Stage */
3: for each cluster c ∈ C̄
4: βc

r ←CalcBid(Cr ,c);
5: Send(βc

r , R) | B ← ⋃
i

Receive(βc
ri , R);

6: /* Winner-Determination Stage */
7: (r′, c) ← arg min(r′∈R,c∈C̄) B;
8: if r = r′ then
9: Cr ← Cr ∪ {c};
10: C̄ ← C̄\{c};

Fig. 2. Sequential Single-Cluster Auctions

The SSC auction begins and continues while there are unassigned task clus-
ters (Line 1). During the bidding stage (Lines 2-5) the robot calculates bids
for every unassigned task cluster and submits its lowest bid to all other robots.
Each bid calculation requires robots to provide a solution to the travelling re-
pairman problem [1]. Because this problem is NP-hard, robots often use the
cheapest-insertion and two-opt heuristics [2] to provide a close approximation
to the optimal solution. Each bid is a triple β = 〈br, bc, bλ〉 of a robot br, a task
cluster bc and a bid cost bλ. The function CalcBid takes the set of previously
assigned clusters Cr to robot r and the cluster c being bid on and uses a bid-
ding rule to calculate a bid cost (Line 4). The robots send their bids and receive
all bids from other robots in parallel (Line 5). The winner-determination stage
(Lines 6-10) consists of each robot choosing the task cluster with the lowest
bid from the set of submitted bids. Ties are broken in an arbitrary manner. The
robot with the winning bid has the winning task cluster assigned to it. All robots
then remove the winning task cluster from the set of unassigned clusters and the
next bidding round begins.

4 Clustering Techniques

We now consider two different models of cluster formation. K -means clustering
is a form of centroid based clustering where each object is assigned to a single
cluster based on the object’s proximity to the centre of the cluster. Single-linkage
clustering is a form of connectivity based clustering which recursively merges
clusters by the minimum distance between two objects in each cluster. In this
section we also compare the effects of using straight line distance and true path
distance as metrics for both clustering models.
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function K-means (T ,k)
Input: T : the set of tasks to be clustered

k: the number of clusters to form
Output: C: the set of clusters

1: M ← InitialiseClusterCentres(T ,k);
2: while cluster centres have changed
3: /* Task Cluster Assignment Stage */
4: for each task t ∈ T
5: for each cluster centre mi ∈ M
6: λt

mi
←CalcDistance(t,mi);

7: Cmin
(λt

mi
) ← t;

8: /* Update Cluster Centres Stage */
9: for each cluster c ∈ C
10: Mc ←CalcCentre(c);

Fig. 3. K -means Clustering

o1 o2 o3

o4

a. Initial Cluster Centres

o1 o2 o3

o4

b. Stable Cluster Centres

Fig. 4. Formation of three clusters of four
objects using K -means clustering with a
straight line distance metric.

The standard K -means clustering algorithm [12] is given in Fig. 3 and an
example cluster formation with a straight line distance metric is presented in
Fig. 4. Before the algorithm begins the initial centres of all clusters must be
selected (Line 1). A common approach for this is to randomly select k ob-
jects from the set of data to be clustered and use each of these objects as
an initial cluster centre (Fig. 4a). The algorithm then alternates between two
stages until the membership of all clusters is stable (Fig. 4b). During the task
cluster assignment stage (Lines 3 - 7) every task is considered independently.
The distance between the task and every cluster centre is calculated and the
task is reassigned from its current cluster to the cluster with the minimum
distance to itself. During the update cluster centres stage (Lines 8 - 10) the
centre of each cluster is recalculated to reflect the changes in the member-
ship of each cluster. The algorithm then repeats until no object moves between
clusters.

We present an algorithm to perform single-linkage clustering [16] in Fig.
5 and give an example cluster formation with a true path distance metric
in Fig. 6. The algorithm begins with each object being assigned to a clus-
ter containing only itself (Lines 1 - 2) (Fig. 6a). Clusters are then repeatedly
merged until the number of clusters is equal to k (Lines 3 - 10) (Fig. 6b).
To merge clusters we calculate the distance between every individual object
in each cluster and every object in every other cluster (Lines 4 - 6). The two
clusters containing the two objects with the minimum distance between them
are then merged (Lines 7 - 10). The algorithm then repeats until there are k
clusters.
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function Single-linkage (T ,k)
Input: T : the set of tasks to be clustered

k: the number of clusters to form
Output: C: the set of clusters

1: for each task ti ∈ T
2: Ci ← ti;
3: while |C| > k
4: for each cluster C ⊃ Ci

5: for each cluster C\Ci ⊃ Cj

6: λCi
Cj

←CalcDistance(Ci,Cj);

7: if min(λCi
Cj

) then

8: Cmerged ← {Ci,Cj};
9: C ← C ∪ {Cmerged};
10: C ← C\{Ci,Cj};

Fig. 5. Single-linkage Clustering

o1 o2 o3

o4

a. Initial Clusters

o1 o2 o3

o4

b. Final Merged Clusters

Fig. 6. Formation of three clusters of four
objects using single-linkage clustering with
a true path distance metric

In our experiments we expect that the differences in the design of these two
algorithms will cause vastly different task allocations to robots. Due to K-means
clustering focussing on 2-dimensional areas of tasks, we expect that each robot
will be generally constrained to completing tasks within an isolated area. In
comparison, task clusters formed using single-linkage clustering are more likely
to see robot paths crossing over each other as the task formation is focussed on
the 1-dimensional connection between any two tasks.

5 Cluster Formation Time Analysis

The length of time required to formulate clusters is crucial in finding a good
solution to the multi-robot task allocation problem. The time complexity for
K -means clustering is O(|T |dk+1 log |T |) (where d is the number of dimensions)
[7] and for single-linkage clustering is O(|T |2). Generally speaking single-linkage
clustering is much quicker than K -means clustering.

However, it is also important to take into account the time involved in the
calculation of the distance metric. When we consider the calculation of a straight
line Euclidean distance between objects the time required is minimal. Contrary
to this is the time required to calculate the true path distance between two
objects taking into account obstacles. Even in a two dimensional environment,
such as the map presented in Fig. 4 and Fig. 6, two geographically close objects
o2 and o3 have a true path distance that is greater than the distance between o1
and o2. To calculate the true path distance we are required to perform a search
for the shortest distance between every object and every other object using an
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Fig. 7. Cluster Formation Time using a Straight Line Distance Metric

Fig. 8. Cluster Formation Times using a True Path Distance Metric

occupancy grid map. The number of true path calculations required for single-
linkage clustering is constrained by the number of tasks. However, in K -means
clustering every time a cluster centre is changed we are required to recalculate
the distance from the centre to all objects.

To examine the real time requirements of each clustering algorithm we simu-
late an office-like environment with 16 rooms each containing four interconnect-
ing doors that can be independently opened or closed to allow or restrict travel
between rooms (Fig. 1). We test on 25 different fixed configurations of combina-
tions of opened and closed doors. In each configuration we guarantee there is an
open path between each room and every other room. For each configuration we
test a wide range of total tasks to be clustered |T | ∈ {16, . . . , 60}. For each task
set we repeat the clustering process for two different values of k, k = 1

2 |T | and
k = 2

3 |T |. To calculate the true path cost between tasks we use an A* search on
an occupancy grid map of each office environment with our heuristic being the
straight line distance between the two tasks.
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The results of clustering using a straight line distance metric are plotted in
Fig. 7 and the results of clustering using a true path distance metric are plotted
in Fig. 8. These plots show that generally, as expected, single-linkage clustering
completes quicker than K -means clustering. However, when there are a large
number of tasks and k = 1

2 |T | single-linkage clustering takes a long period of
time to complete. This is due to the large number of cluster merges required when
k is small. We note that K -means clustering does not suffer this problem as the
stablisation of clusters is independent of the value of k. Finally, we also observe
that the use of a true path distance metric causes both clustering algorithms to
perform about 100 times slower compared to the straight line distance metric.

6 Empirical Analysis Using SSC Auctions

We now test each of these clustering techniques with SSC auctions to solve
the multi-robot task allocation problem for both the MiniMax and the Min-
iSum team objectives. Using the clusters formed in Sect. 5 we test homogeneous
mobile robots in teams of varying sizes |R| ∈ {4, 6, 8, 10}. In each of the 25 of-
fice configurations robots are initially positioned in different random locations.
Robots can only travel between rooms through open doors and they cannot open
or close doors. We present the mean results of the maximum distance and the
summation of all distances travelled for the two team objectives in Tables 1, 2,
3 and 4.

The results for SSC auctions with robots bidding according to the MiniMax
team objective are shown for clusters formed with k = 1

2 |T | in Table 1 and
for clusters formed with k = 2

3 |T | in Table 2. Both of these result tables show
that generally the use of a true path distance metric results in task allocations
that have lower mean maximum robot travel distances. Overall, single-linkage
clustering with a true path distance metric produces the best task allocations for
this team objective and K -means clustering with a straight line metric performs
the worst.

To confirm the statistical validity of these results we perform non-parametric
one-sided Wilcoxon signed-rank tests for each robot/task/cluster combination.
We choose this statistical test as we cannot make distribution assumptions due
to the differences in robot initial locations and the map configurations of opened
and closed doors for each experiment. We seek to confirm that the use of a true
path distance metric in cluster formation results in lower final travel distances
than clusters formed using a straight line distance metric. Our null hypothesis
is defined as H0 : μλtrue-path ≥ μλstraight-line and our alternative hypothesis as
H0 : μλtrue-path < μλstraight-line.

For K -means clustering with k = 1
2 |T | we get a significant difference with con-

fidence greater than 0.90 for all robot/task/cluster combinations tested. How-
ever, for K -means clustering with k = 2

3 |T | our results are not significant for all
robot/task/cluster combinations. In particular, our mean results for the config-
uration of 4 robots, 24 tasks, and 16 clusters has true path distances resulting
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Table 1. Mean Maximum Distance for MiniMax Team Objective with k = 1
2
|T |

Straight Line Metric True Path Metric

Robots Tasks Clusters K -means Single-link K -means Single-link

4 16 8 995 954 906 874
6 24 12 983 963 816 777
8 32 16 895 921 773 690

10 40 20 823 870 677 636

4 20 10 1090 1084 989 932
6 30 15 1023 1032 888 833
8 40 20 898 918 802 776

10 50 25 814 883 745 679

4 24 12 1203 1174 1053 1027
6 36 18 1117 1094 965 913
8 48 24 988 983 863 810

10 60 30 887 886 805 690

Table 2. Mean Maximum Distance for MiniMax Team Objective with k = 2
3
|T |

Straight Line Metric True Path Metric

Robots Tasks Clusters K -means Single-link K -means Single-link

4 16 11 910 873 864 874
6 24 16 810 874 750 713
8 32 21 830 840 727 671

10 40 27 718 746 669 617

4 20 13 1004 1043 991 917
6 30 20 932 941 841 826
8 40 27 818 831 762 731

10 50 33 752 753 698 652

4 24 16 1015 1154 1029 967
6 36 24 955 969 936 886
8 48 32 884 863 840 785

10 60 40 860 742 724 698

in a worst maximum distance travelled than the use of a straight line metric.
We speculate that the cause of these non-significant results is due to K -means
clustering seeking to form non-overlapping clusters of geographically close tasks,
whereas robots, in seeking to minimise their path travelled, may not confine
themselves to particular local geographic areas.

Our results for single-linkage clustering have much stronger statistical signif-
icance. For all robot/task/cluster combinations we obtain confidence 0.97 and
greater for both k = 1

2 |T | and k = 2
3 |T |. Finally, we compare our best and worst

results of single-linkage clustering with true path distances to K -means cluster-
ing with straight line distances. Again for k = 1

2 |T | we get a very significant
result with confidence 0.99 and with k = 1

2 |T | we get confidence 0.97. Overall,
we can conclude that using true path distance metrics produces much better
solutions to the multi-robot task allocation problem than straight line distances
for the MiniMax team objective.
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Table 3. Mean Summed Distance for MiniSum Team Objective with k = 1
2
|T |

Straight Line Metric True Path Metric

Robots Tasks Clusters K -means Single-link K -means Single-link

4 16 8 2298 2231 2197 2140
6 24 12 2801 2701 2565 2489
8 32 16 3123 3061 2893 2806

10 40 20 3444 3301 3087 3000

4 20 10 2701 2621 2483 2464
6 30 15 3239 3083 2943 2850
8 40 20 3627 3504 3300 3211

10 50 25 3775 3741 3459 3409

4 24 12 3011 2864 2767 2715
6 36 18 3511 3464 3272 3258
8 48 24 3917 3821 3605 3541

10 60 30 4208 4059 3878 3786

Table 4. Mean Summed Distance for MiniSum Team Objective with k = 2
3
|T |

Straight Line Metric True Path Metric

Robots Tasks Clusters K -means Single-link K -means Single-link

4 16 11 2232 2178 2142 2117
6 24 16 2642 2640 2519 2501
8 32 21 3090 3009 2896 2809

10 40 27 3105 3185 3045 2990

4 20 13 2636 2569 2495 2460
6 30 20 3101 3058 2897 2878
8 40 27 3329 3419 3241 3229

10 50 33 3626 3500 3446 3375

4 24 16 2839 2850 2783 2748
6 36 24 3339 3401 3268 3230
8 48 32 3813 3643 3551 3350

10 60 40 4160 3849 3850 3814

Our results for robots bidding according to the MiniSum team objective are
likewise shown for k = 1

2 |T | in Table 3 and for k = 2
3 |T | in Table 4. This data

mirrors our results for the MiniMax team objective with single-linkage clustering
using a true path metric producing the best results and K -means clustering with
a straight line metric the worst.

Again we perform one-sided Wilcoxon signed-rank tests to confirm the statis-
tical validity of our data. For K -means clustering with k = 1

2 |T | we confirm a
very significant result with confidence 0.99. However, when tested with clusters
of k = 2

3 |T | K -means clustering again fails to deliver a strong statistical confi-
dence. This is despite our overall means showing the use of a true path distance
metric outperforming a straight line distance metric in all robot/task/cluster
combinations.

For single-linkage clustering we again get strong statistically significant re-
sults. For clusters formed with k = 1

2 |T | we measure a confidence result of
0.995 and for k = 2

3 |T | a confidence of 0.95. Finally, we conclude by testing the



Cluster Formation Techniques for Task Allocation Using SSC Auctions 849

significance of the difference between our best performing single-linkage cluster-
ing using true path distances and worst performing K -means clustering using
straight line costs. Comparing k = 1

2 |T | we get a confidence of 0.998 and for
k = 2

3 |T | a confidence of 0.95.
In summary, for both MiniMax and MiniSum team objectives tested, we have

shown the power of using a true path distance metric in the formation of clusters
to solve the multi-robot task allocation problem. Despite our cluster formation
time measurements showing that the use of true path distance metrics is around
100 times slower than straight line calculations, we believe that the overall travel
distance saved as a result of better clusters far outweighs the extra initial time
spent on cluster formation. Futhermore, it can be argued that the cluster for-
mation time with a true path metric will be much smaller than the expected
execution time of the robots completing all allocated tasks.

7 Conclusions and Further Work

We have presented an analysis of clustering techniques to solve the multi-robot
task allocation problem using SSC auctions. We have considered the time re-
quired using two different clustering models and the effect of calculating true
path distances instead of straight-line distances in the formation of clusters.
Our empirical results show the benefit of using single-linkage clustering with a
true-path distance metric over other cluster formation techniques.

There remains much scope for future work. Finding a good value for k remains
a challenge. A large k value results in clusters that contain few tasks and, as
such, little inter-task synergy is considered. On the other hand, small k value
results in clusters containing many tasks can lead to robots being allocated tasks
and resultant paths that would be better suited to other robots. A clustering
approach that sought a balance between these two challenges would be ideal,
however, the time complexity may be much greater than our existing approaches.

In a related vein, disparity between the number of tasks contained in each
cluster can lead to clusters containing few tasks being allocated in earlier auction
rounds than larger clusters. Future work could consider the effects when robots
take into account the size of clusters during the formation of bids. Allocating
large clusters first may lead to better solutions than a series of small clusters
being allocated in early auctions rounds.

Finally, we also wish to consider more complicated extensions to the
multi-robot task allocation problem. Of particular interest is the courier delivery
problem which requires robots to pick up and drop off objects. Auctioning clus-
ters of tasks in this problem domain is much more difficult as we are required to
consider both the pick up and drop off locations of objects when forming clusters.
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Abstract. Without a model the application of reinforcement learning
to control a dynamic system can be hampered by several shortcomings.
The number of trials needed to learn a good policy can be costly and time
consuming for robotic applications where data is gathered in real-time. In
this paper we describe a variable resolution model-based reinforcement
learning approach that distributes sample points in the state-space in
proportion to the effect of actions. In this way the base learner economises
on storage to approximate an effective model. Our approach is conducive
to including background knowledge to speed up learning. We show how
different types of background knowledge can used to speed up learning
in this setting. In particular, we show good performance for a weak type
of background knowledge by initially overgeneralising local experience.

Keywords: Artificial Intelligence, Machine Learning, Reinforcement
Learning, Robotics, Background Knowledge, Function Approximation,
Continuous State, Model-Based.

1 Introduction

In robotics it is often the case that we wish to control a real, possibly non-
linear, continuous dynamic system when the model is unknown. In principle
reinforcement learning (RL) holds out the promise to solve this control problem
by simply letting the learner interact with the system. By specifying a reward
signal to guide the learner to the control goal the theory suggests that a pol-
icy can be learned over time given enough training experience. Unfortunately
in practice the shear number of trials required to learn a good policy becomes
prohibitive. It may take a long time to learn anything useful, the real system
may break down before learning is complete, or it may be costly to run a system
sub-optimally for the duration of the training phase. It is clearly desirable to
have methods that can speed up learning by finding a good policy with as few
trials as possible. Sometimes we have an approximate model of the system and
would like to use this as a starting point. However, many reinforcement learning
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methods do not provide representations that are conducive to including back-
ground knowledge to help the learner. In this paper we describe a RL approach
that:

– automatically changes the resolution of the representation based on the effect
of actions. It stands to reason that the representation of the dynamics can
be coarser where actions move the system over a greater distance. A sparser
representation requires less trials to learn.

– is able to include background knowledge by generating or seeding the state
transition dynamics in particular parts of the state space. We show how
background knowledge can be introduced in a natural way to significantly
speed learning.

– over-generalises local dynamics to larger parts of the surrounding state space
to quickly find a working policy and then progressively refining the repre-
sentation to improve performance over time.

RL has been studied and applied for well over a decade and we assume the
reader has a basic understanding of its methods. Introductory material can be
found in several AI texts, for example[1,2], or in specifically dedicated texts
[3,4,5]. In brief, reinforcement learning involves an agent learning to take ap-
propriate actions to maximise future reward by interacting with the environ-
ment. The reinforcement learning problem is usually couched in the form of a
Markov decision problem 〈S,A, T,R〉, were S is a set of states, A is a set of
actions, T : S × A × S → [0, 1] is a stochastic state transition function and
R : S × A × R → [0, 1] is a stochastic reward function. The transition func-
tion and the reward function define the model of the environment. The agent
interacts with the environment by iteratively observing state s ∈ S, taking an
action a ∈ A and at the next time-tick receiving reward r ∈ R, and observ-
ing the next state s′ ∈ S. The aim is to learn an action policy, π : S → A,
to maximise a measure of future reward. This is usually achieved by learning
an optimum value function, e.g. Q∗ : S × A → R using policy iteration, from
which follows the optimum policy π∗(s) = argmaxaQ

∗(s, a). So calledmodel-free
methods exist that learn the value function directly from environmental inter-
action, but we take the view in this paper that explicitly learning the model has
advantages.

We will briefly review related work modelling continuous dynamic systems
and methods for speeding up learning. We describe our approach to variable
resolution modelling and how to include background knowledge. The presenta-
tion uses a simple cart to illustrate the concepts. Results for a cart showing
that learning is speeded up by a factor of 2 and even more when more explicit
background knowledge is provided.

2 Related Work

Sutton and Barto [4] show how reinforcement learning can be speeded up with
the Dyna architecture. Transition experiences of the form (st, at, rt+1, s

′
t+1) are
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retained, thereby model-learning the dynamics of the system. The trick is to
play transitions back as simulated experience interleaved with real-experience
during Q-learning. The relatively slow interactions for a real robot may be in-
terleaved with many simulated experiences that help converge the value func-
tion much faster. Related methods to help speed learning are the use of el-
igibility traces that store transition experience and back up recent experi-
ence along the trace, and prioritised sweeping that prioritises back-ups of the
value function in the reverse direction to the directionality of state transi-
tions. All these methods rely on storing the model to some degree. The ap-
proach in this paper is to incrementally store all novel transition experiences
and run Q-Learning until convergence or until the next real experience becomes
available.

As we are modelling continuous systems with an infinite number of states, and
RL uses finite tables, we need a method for function approximation to gener-
alise the value of learned points to nearby query points. Function approximation
can use any supervised machine learning method. Here we use a non-uniform
case-based lazy-learner approach, similar to methods by Santamaria, et al [6]
in which neighbouring cases are chosen based on the Euclidian distance di be-
tween the i-th case point and query point. This linear function approximator is
a nearest neighbour function that uses a Gaussian kernel, K(di) = exp(−d2i /τ2),
to weigh each i-th neighbour’s contribution to the query point Q value, where
τ is a smoothing parameter that controls the blending of values of the near-
est neighbours. Gabel and Riedmiller further investigate the use of Case-Based
Reasoning function approximation methods in reinforcement learning [7]. Where
our approach differs is that we store the local model in each case and vary the
resolution of cases in each dimension of the state space based on the effect of
actions. We store separate cases for each action.

More recent work by Jong and Stone [8] also stores the model as a set of
instances and uses kernel-based averages to approximate the value of a query
state. Kernel-based averages are known to converge. We use a similar approach
to represent the model and to approximate the value function. Our concern in
this paper is how we incorporate and employ background knowledge about the
dynamics of the system to help speed learning.

A different but related research topic is qualitative modelling and simulation
[9]. Qualitative modelling reasons about continuous aspects of systems in logical
form (without numbers). For example, the statement “acceleration increases
velocity” imparts information about a system’s dynamics without being specific
about the numerical value about of the acceleration or the velocity. The objective
is to reduce search time by reasoning and constraining the learner subject to the
qualitative descriptions. We show how qualitative knowledge may be used to
guide a RL by seeding the learner with compliant transitions. This suggests a
method whereby qualitative modelling can bridge quantitative implementations
in specific instances.
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3 Approach

We start by introducing an intuitive example sufficient to illustrate the continu-
ous modelling of a dynamic system. We then describe our model-based approach
to RL and show how background knowledge can be incorporated.

3.1 Motivating Example

Our physical system consists of a frictionless wheeled 104kg cart moving in one
dimension on a horizontal flat 40 meter table as shown in Figure 1. At a frequency
of 6 Hertz the controller is able to sense the position and velocity of the cart and
apply a positive force of 1000 Newtons through the wheels, a negative force of
the same magnitude, or to let the cart coast under its own momentum. The aim
of the reinforcement learning controller is to learn to bring the cart to rest at
the goal position. We model the cart system as an instance of the PhysicsVehicle
class in the open source real-time physics simulator jMonkeyEngine [10].

Fig. 1. The cart on a horizontal table as rendered by the real-time jMonkeyEngine
3D game and physics simulator. The positive direction is towards the left. The cart is
started at random during learning and at -15 meters to periodically measure perfor-
mance. The goal is to reach the origin in the middle of the table.

3.2 Method

As the reinforcement learner interacts with the environment it experiences the
model of the system as successive tuples of the form (s, a, r, s′) where taking
action a in state s results in a reward r and a transition to the next state
s′. The state s may be multi-dimensional, hence s = (x1, x2, . . . , xn) for an n-
dimensional state vector. In the case of the cart the state has 2-dimensions:
s = (position, velocity). We assume all dimensions are continuous.

Rather than throwing the experience away after updating the value function as
one would in model-free RL, we store the model information as a case, subject to
a resolution criterion. Experiencing similar transitions over and over again leads
to diminishing information gain. We therefore only store new experiences when
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the state s is greater than a threshold distance from previously stored cases with
the same action for any one of the dimensions. The threshold itself is variable
(subject to a minimum value) throughout the state space and depends on the
effect of the action recorded for the nearest neighbouring state. If the following
isNeighbour function returns true for any existing case the experience is not
added as a new case.

Algorithm 1. Tests if existing case, caseID, covers the experience (s, a)

isNeighbour(s[], a, caseId, spread){

if(cases[caseId].a!=a) return false;

for (int d=0; d<dimS; d++) {

v1 = s[d];

v2 = cases[caseId].s[d];

delta = cases[caseId].threshold[d];

if(Math.abs(v1-v2)>spread*delta) return false;

}

return true;

}

The parameter spread in the above function regulates the resolution of the
cases representing the system. It can be used to increase the resolution if re-
quired, for example to better represent stochasticity. We set spread = 0.9. Fig-
ure 2 shows the transition cases stored for the cart after plying the RL with
random transitions for a long period.

It is reasonable to reduce the number of cases in parts of the state-space
where the effect of actions leads to greater transition distances. For the cart
the density of cases is reduced along the position dimension with an in-
crease in the magnitude of the velocity, as the cart moves further at higher
speed.

At each time-tick we find the optimum policy by repeatedly iterating through
all the cases stored so far using a temporal difference Q-learning method in the
spirit of the Dyna architecture, halting only after convergence or in an anytime
fashion when the next experience arrives. As the next state s′ for each case is
unlikely to be equal to a state s from another case, we approximate the Q-values
of s′ from the neighbouring cases using a Gaussian kernel. Figure 3 illustrates
the estimation of the Q-value of s′ for action a′ using Algorithm 2.

Without enough experience the controller is unlikely to find a solution. Never-
theless it solves the problem with whatever cases are available and attempts an
optimal policy. Early in the learning, when there are no neighbours, we set the
next Q values optimistically high to encourage exploration. During Q-learning
we use a discount rate of 0.99 to ensure the value function remains bounded while
discovering the model, and a learning rate of 1.0, making the tacit assumption
that the system is deterministic.
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Fig. 2. Transition cases for the cart showing the effect of different actions in the
position-velocity space. Note the reduction in resolution for position for higher velocity
values. Solid dots indicate terminations cases - goal with reward 0, -100 otherwise.

Fig. 3. Estimating successor Q-values from neighbouring cases. The red circle delimits
the neighbourhood cases.

3.3 Inserting Background Knowledge in RL

Background knowledge includes all the assumptions, inductive bias (both repre-
sentational and preference), parameter settings, and system dynamics provided
to the learner beforehand. We focus here on background knowledge about the
system dynamics. The language provided by the MDP model is used to describe
this background knowledge, namely the state transition and reward function.
With this representational approach it is possible to generate background knowl-
edge as case samples and feed these to the learner beforehand, giving the learner
a head-start. As an extreme example, if the dynamics of the system are known,
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Algorithm 2. Estimate max Q-value of next state s′ of case t from Neighbours

dimension estQneighbour[numA]; totWeight[numA];

ret = -100;

for(int n=0; n<numNeighbours(t); n++){

tn = cases[neigbour(n)];

dist = sharpness*distance(tn.s, s’);

weight = exp(-dist*dist);

totWeight[tn.a] += weight;

estQneighbour[tn.a] += weight*tn.Qvalue;

}

for(int nA=0;nA<numA;nA++) {

if(totWeight[nA]<=0f)

if(measuring) estQneighbour[nA] = -100; //act greedily

else estQneighbour[nA] = 0f; //encourage exploration

else estQneighbour[nA] /= totWeight[nA];

if(estQneighbour[nA]>ret) ret = estQneighbour[nA];

}

return ret;

we could generate experience cases to cover the whole state-action space so that
the learner would not require any training, effectively dynamic programming the
optimal policy using the Q-Learner. In other situations, a qualitative description
or an approximate model may be available that could be used to generate cases
a priori to speed up learning.

It is also possible to generate additional cases from background knowledge
during the learning process. For example when we know the system dynamics
exhibits symmetry we could mirror experiences speeding up learning. In the
following results we will show two other examples of the use of background
knowledge to insert cases while learning. In one case we model common sense
knowledge that physics is invariant to the inertial frame of reference, and in the
other we over-generalise local experiences.

When we use background knowledge to insert approximate cases we label them
as provisional and allow cases from real experience to progressively replace them.
The objective is to quickly learn a satisficing [11] policy and improve it over time.

4 Results

In this section we show experiments with the cart that illustrate how background
knowledge can be used to speed up learning.

We start the cart at a random position and velocity with the goal of coming to
rest at the origin. We accept any position and velocity satisfying |position| < 1
meter and |velocity| < 1 meter/second as having reached the goal. For practical
purposes we limit the position and velocity space to lie in a region ±20 meters
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and ±20 meters/second and terminate a trial if the cart moves outside these
limits, takes more than 50 time-steps to reach the goal, or reaches the goal.
We administer a reward of −1 per time-step, implicitly setting the objective to
reach the goal in minimum time. The minimum resolution for cases for both
position and velocity is set at 0.9. The RL is initialised with optimistic Q val-
ues to encourage exploration. We periodically measure the performance of the
controller by starting the cart at rest at position -15 meters as show in Figure
1. During this time we use the latest optimum greedy policy. Learning is turned
off during performance measurement so that the results are not influenced by
this observation process.

Fig. 4. The number of time-steps to reach the goal given the time in seconds of real-time
training. The blue graph shows the results when learning without any extra background
knowledge by taking random exploration actions. The red graph shows the results when
the learner is given the physics model in the form of sample transitions that cover the
state-action space and provides a benchmark of the best performance achievable with
this controller i.e. 15.7 ± 1.1. The experiments are each run between 10 and 20 times
and the graphs show the standard deviation and the standard error.

The first two experiments were designed to set upper and lower bounds on
the RL’s performance. We plot the number of time-steps to reach the goal vs the
number of seconds of real-time training. In the first experiment the learner was
given no additional background knowledge and required to explore and learn
an optimum policy just from interaction with the simulated real-time system.
As shown in Figure 4 (blue plots) the RL took over 4 minutes on average to
learn a good policy. At the other extreme, if the learner was supplied with the
exact physical model of the cart by seeding the RL with sample transitions
prior to learning similar to that show in Figure 2, the RL was able to learn and
execute an optimal policy without any real-time training (Figure 4, red plots).
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The standard deviation in performance is much greater when learning in real-
time due to the hit and miss nature of the random exploration actions taken by
the RL. The error bars indicate that after about 4 minutes our confidence even
at 68% cannot separate the two experiments1.

Fig. 5. RIGHT -max|Q| values sampled uniformly over the state-space, LEFT - typical
trajectories from random starting positions

Figure 5 gives some further insight to the working of the RL. The left of the
Figure shows the maximum |Q| values sampled over the relevant state-space.
As the goal becomes unreachable from certain parts of the state space values
start to approach the undesirable termination value set to 100. The right shows
the trajectories after learning when the cart is started at random locations. The
trajectory to reach the goal area is not a simple straight line in the position-
velocity space, but usually requires a carefully timed 2-phased strategy involving
acceleration and deceleration.

In the next experiment we include the qualitative background knowledge that
the physics of the cart is invariant to position. Since the table is uniformly level,
the effect of an action on velocity is the same for any position, and the cart’s
change in position is also be expected to be the same for any position.

To make use of this background knowledge, whenever we experience a tran-
sition at one position and velocity, we duplicate the experience and seed this
transition for all positions for the same velocity. Figure 6, left shows the
RL seeded with duplicated position invariant transition cases from just a few

1 Both the standard deviation and the standard error were calculated assuming Gaus-
sian distributed data. The termination of trials after 50 time-steps and the lower
bound of the theoretical optimum policy means that the Gaussian assumption does
not hold and the interpretation of the plot of these measures needs to take this into
account.
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Fig. 6. RIGHT - The transition cases duplicated from background knowledge that
physics is position invariant, and LEFT - Transitions seeded by overgeneralising from
limited real experience

Fig. 7. The green graphs show the improvement in learning with the addition of the
common-sense background knowledge, namely that the physics of the cart is the same
at all positions on the table. Graphs from Figure 4 are retained for comparison.

real-time experiences. The improvement in learning is shown as the green plot in
Figure 7. It is apparent that the inclusion of this background information has had
a significant effect on learning time which is now reduced to less than a minute.

Position invariance may not always be appropriate background knowledge. It
will not apply for example to the mountain car test-bed [12] where the surface
is hilly. We tested a weaker form of background knowledge that would apply in
many continuous dynamic systems. We assume that experienced transitions are



Speeding Up Reinforcement Learning 861

a good approximation in a larger neighbourhood and seed the RL accordingly.
While this approximation may not produce an optimal solution, it does neverthe-
less find a solution quickly that can later be refined when more real experiences
come to hand.

Figure 6 (right) shows this generalisation applied to several cases in a rect-
angular neighbourhood around a real-experience. In this way the state-action
space can be quickly filled with approximate transitions to allow the learner to
find a path to the goal. Figure 8 (black plots) charts the performance of this
overgeneralisation approach. Other experiments are retained on the graph to
show the relative performance. Overgeneralisation for the cart results in a two-
fold speed-up, learning an optimal policy in about 2 minutes, and even after one
minute of training, the RL has made good progress.

Fig. 8. The performance of the RL by over-generalising experience in a local neigh-
bourhood. This weak type of background knowledge shows a significant speedup. The
approximation is progressively improved with additional real experience over time.

5 Discussion

An advantage of learning the model of the system rather than just the value
function is that the model can be reused to achieve alternate goals. For the cart,
not only do we have a policy to bring the cart to rest from any position and
velocity, but we can now set any (position, velocity) as a goal and the RL can
use the stored experience to learn a new policy with minimal on-line learning.

While the implementation has been developed for a general multi-dimensional
continuous system we have only tested the RL algorithm on the cart problem.
We would next wish to test it on standard problems such as the 2-dimensional
mountain-car and the 4-dimensional pole and cart. The latter provides an op-
portunity to add background knowledge in the form of the symmetry of the
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inverted pendulum. These problems are not expected to exhibit any surprises.
The issue that will need attention is scaling the implementation to larger and
higher dimensional spaces. For the current implementation neighbouring cases
are precomputed and store as part of each case to make Q-Learning more effi-
cient. For query points during execution we could use a kd-tree and for higher
dimensions an approximate nearest neighbour algorithm. There are also several
parameters that need setting, such as the minimum resolution and spread, that
are problem dependent.

One application that we propose to tackle is bipedal walking that was previ-
ously reported using just a naive discretisation for function approximation and
model-free learning [13]. In conclusion, we have outlined a variable-resolution
model-based approach to tackle RL for continuous systems and have shown how
to include various forms of background knowledge to help speed up learning.
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tine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009,
Part I. LNCS, vol. 5781, pp. 644–659. Springer, Heidelberg (2009)

9. Kuipers, B.: Qualitative simulation. Artificial Intelligence 29, 289–338 (1986)
10. jMonkeyEngine 3D Game Development SDK (2012), http://jmonkeyengine.org/
11. Simon, H.A.: Rational choice and the structure of the environment. Psychological

Review 63(2), 129–138 (1956)
12. Moore, A.W.: Efficient memory-based learning for robot control. Technical Report

UCAM-CL-TR-209, University of Cambridge, Computer Laboratory (November
1990)

13. Hengst, B., Lange, M., White, B.: Learning ankle-tilt and foot-placement control
for flat-footed bipedal balancing and walking. In: 11th IEEE-RAS International
Conference on Humanoid Robots (2011)

http://jmonkeyengine.org/


A Novel D-S Theory Based AHP Decision

Apparatus under Subjective Factor Disturbances

Wenjun Ma, Xudong Luo	, and Wei Xiong

Institute of Logic and Cognition, Sun Yat-sen University, Guangzhou, 510275, China

Abstract. In real life, sometimes Multi-Criteria Decision Making
(MCDM) problems are dealt with inevitably under the disturbance of sub-
jective factors such as intuition, feeling and emotion. However, the exist-
ing work cannot handle the issue well. As a result, it is difficult for them to
predict and give some decision support for MCDM problem of this kind.
Thus, to address the issue, this paper constructs a novel Analytic Hier-
archy Process (AHP) approach based on Dempster-Shafer (D-S) theory.
More specifically, our model can: (i) handle the subjective factor distur-
bances by distinguish complete (there not exists any hidden subjective
factors impact the decision) and incomplete (the converse of complete)
criteria; (ii) differentiate incomplete and complete relative ranking of the
groups of decision alternatives over a criterion; and (iii) handle the am-
biguous criteria evaluations of the groups of decision alternatives. More-
over, we give two methods to reduce the subjective factor disturbances.
Finally, we illustrated our approach with a real-life problem.

1 Introduction

In real-life, often a decision is influenced by different hidden subjective factors,
such as intuition, feeling, emotion of the decision maker. For example, an in-
vestor wants to pick up a house from three options that an agency introduces
to him. When he enters a house, if he feels very uncomfortable suddenly, al-
though the agency tells him how nice this house is at the reasonable price,
the investor may still hesitate to make a deal. Another example is that a man
wants to buy a second-hand car. Although the car dealer offers a good price and
shows many excellent aspects of his car, if the man feels that the dealer cannot
be trusted, he would not buy. Apparently, in both two Multi-Criteria Decision
Making (MCDM) problems, the final choice of the decision makers has been
affected by their feelings or intuition. Therefore, subjective factor disturbances
actually plays a vital role in real-life MCDMs [7]. Especially, when we need pre-
dict what will happen if subjective factors will indeed work, the factors have to
be reflected in the decision model that is used to predict this case.

Actually, decision making problems with the effects of subjective factors have
been an active area of research that obtain more and more attentions from re-
searchers [1]. Some focus on eliciting the influence of subjective factors for the
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decision making by psychological investigations [10,4,21] and experiments in be-
havioral economics [8,17,6]. All of these researches show that subjective factors
such as emotions and intuition are, in manifold ways, involved in process of de-
cision making. However, all of these researches do not give a formal treatment
to this kind of decision problems, which is the main contribution of our model
proposed in this paper. Another line of research incorporating subjective factor
disturbances into models of decision making can be seen in the development of
prospect theory [9], regret theory [13], dual-process models [18], smooth ambi-
guity model [11], and so on. However, all of these models focus on the decision
making in single criterion, which means that they do not account the effect of
subjective factors as the criteria weights in MCDM problems. Moreover, because
of the subjective factor disturbances, it is difficult even impossible to elicit accu-
rate evaluations for each decision alternative regarding each criterion in MCDM
problem [12]. As a result, to handle hidden subjective factors in MCDM problem
has to base on some uncertainties theory in MCDM. There are some important
methods have been developed to deal with uncertainty in MCDM problems. For
example, fuzzy sets approach [25] is used to model and solve fuzzy MCDM prob-
lems [16,22]. Beynon et al. [3] extend the AHP model to a DS/AHP method that
introduce the basic concepts of D-S theory based AHP model to deal with the
incomplete pairwise compare and the range of levels of uncertainty in MCDM
problem. Nevertheless, all of these models do not consider the effects of subjec-
tive factors for the finally decision. Also, these MCDM approaches are essentially
based on traditional evaluation methods, which cannot well handle uncertainty
of different kinds of ambiguity, such as missing, imprecise, and uncertain evalu-
ations of multi-criteria.

In order to address these issues, we propose model extend Analytic Hierar-
chy Process (AHP), which is one of the most well-known MCDM techniques.
Also our extension is based on D-S theory, which is one primary theory to han-
dle the ambiguity information. So, this paper actually proposes a novel method
that incorporates AHP method and D-S theory to handle MCDM problems un-
der subjective factor disturbances. First, as the subjective factor disturbances
will impact the choices of a decision maker and change the criteria weights in
the given MCDM problems, we identify two situations of criteria by consider-
ing whether or not there exists subjective factor disturbances. Therefore, we
construct two comparation rules. (i) When the importance ordering of all crite-
ria have been revealed (i.e., when subjective factor disturbances do not exist),
the decision maker will apply the complete relative ranking rule. (ii) When the
importance ordering of all criteria are incomplete (i.e., when subjective factor
disturbances do exist), the decision maker will apply incomplete relative rank-
ing rule. Then, our new model employs the rules to set the preference degree of
decision alternatives. After combining the criteria weights and preference degree
of decision alternatives, our method can find the optimal decision alternatives.

Actually, compared with the DS/AHP method that is also based on the D-S
theory, our model can solve some problems of it while maintaining its advantage.
(i) The DS/AHP method cannot explain why the criterion weights established
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by a pairwise comparison matrix is still constructed as in AHP, but not by
identifying a especial group of focal elements (set of single element sets) as
favorable from the frame of discernment (of all criteria), but our model can
apply the same rules to set the criteria weight and the relative ranking of groups
of decision alternatives against the each criterion. (ii) The DS/AHP method does
not offer an approach to obtain the optimal decision alternative based on the
final mass function of each decision alternative, but our model does. Moreover,
we extend the DS/AHP method to deal with subjective factor disturbances and
ambiguity information.

This paper advances the state of art in the field of MCDM in the following as-
pects. (i) Our model can deal with the influence of subjective factors of the de-
cision maker, and discerning two types of the criteria: revealed and hidden ones.
(ii) While remaining the advantages of the DS/AHP model, our model can han-
dle the complete and incomplete relative ranking of all choices over a criterion.
(iii) Our model can incorporate the ambiguity aversion principle of minimax re-
gret [14,15,23,24] to handle three types ambiguity evaluations that are mentioned
in [14,15]. And (iv) according to our model, we give two methods to reduce the
influence of subjective factor disturbances to make decision more rationally.

The rest of this paper is organised as follows. Section 2 recaps D-S theory and
the decision rule under ambiguity. Section 3 models the subjective factor distur-
bances. Section 4 discerns the relative ranking of groups of decision alternatives
on each criterion and discusses how to combine the criteria’s weights and the
decision alternatives’ relative ranking. Section 5 shows some properties of our
method. Section 6 illustrates our model by a real-life problem. Finally, Section
7 conclude the paper with future work.

2 Preliminaries

This section recaps D-S theory [19] and the decision rule under ambiguity
[14,15,23,24].

2.1 Basics of D-S Theory

Definition 1. Let an exhaustive set of mutually disjoint atomic Θ be a frame of
discernment.

(i) Function m : 2Θ → [0, 1] is called a basic probability assignment or a mass
function if m(φ) = 0 and

∑
A⊆Θ m(A) = 1.

(ii) Function Bel : 2Θ → [0, 1], defined as follows, is a belief function over Θ:

Bel(A) =
∑
B⊆A

m(B). (1)

If m(B) > 0, then B is said to be a focal element of Bel.
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(iii) Function Pl : 2Θ → [0, 1], defined as follows, is called a plausibility function
over Θ:

Pl(A) =
∑

B∩A �=φ

m(B). (2)

Moreover, D-S theory also provides a rule to combine different mass functions:

Definition 2 (Dempster combination rule). Let m1 and m2 be two basic
probability assignment over the discernment frame Θ. Then function m12 =
m1

⊕
m2 is given by:

m12({x}) =

⎧⎪⎨
⎪⎩

0 if x = ∅∑
Ai

⋂
Bj=x

m1(A)m2(B)

1−
∑

Ai
⋂

Bj=∅
m1(A)m2(B) if x �= ∅

(3)

The following is the concept of a mass function’s ambiguity degree, which is a
normalised version of the generalised Hartley measure for nonspecificity [5].

Definition 3. Let m be a mass function over discernment frame Θ, and |A| be
the cardinality of set A. Then the ambiguity degree of mass function m, denoted
as δ, is given by

δ =

∑
A⊆Θ

m(A) log2 |A|

log2 |Θ|
. (4)

The point-valued expected utility can be extended to the interval one [20]:

Definition 4. For choice a specified by mass function m over Θ, its expected
utility interval is EUI(a) = [E(a), E(a)], where

E(a) =
∑
A⊆Θ

min(A)m(A), (5)

E(a) =
∑
A⊆Θ

max(A)m(A). (6)

In the above definition, if each A ⊆ Θ has only one element, m(A) degenerates
to probability and formulas (5) and (6) degenerate to the point-valued expected
utility. In other words, the interval-valued expected utility is caused bym(A) > 0
where |A| > 2 (i.e., ambiguity).

2.2 Ambiguity Aversion Principle of Minimax Regret

In [14,15,23,24], we propose the following decision rule:

Definition 5 (The ambiguity aversion principle of minimax regret). Let
m be an initial mass function over a set of utilities Θ = {x1, ..., xn}, EUI(x) =
[E(x), E(x)] be the expected utility interval of choice x and δ(b) be the ambiguity
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degree of choice b. Then the ambiguity-avoiding maximum regret of the choice a
against choice b is defined as

�b
a = ε(b)− E(a), (7)

where ε(b) = E(b)+(1−δ(b))(E(b)−E(b)), called the ambiguity-avoided upper
expected utility of choice b. For any two choices a and b, the strict preference
ordering 5 is defined as follow:

a 5 b⇔ �b
a < �a

b . (8)

In [23], we prove that the binary relation 5 defined in the above is a preference
relation (asymmetric, acyclic and transitive) and so with the binary relation ∼
(x ∼ y if x �5 y and y �5 x), we can compare any choices properly.

Also, in [14,15], we give a point-valued preference degree over a group of iden-
tified decision alternatives with the expected utility interval, which can induce
a preference ordering equivalent to that in Definition 5. That is the following
definition:

Definition 6. Let EUI(A, c) = [E(A, c), E(A, c)] be an interval-valued expected
utility of the group of decision alternatives A against criterion c, and δ(A, c) be
the ambiguous degree of EUI(A, c), then the preference degree of A is given by

ρc(A) =
2E(A, c) + (1 − δ(A, c))(E(A, c)− E(A, c))

2
. (9)

Also, in [14,15], we present the following method to obtain the optimal decision
alternative by the idea similar to that of the ambiguous aversion principle of
minimax regret.

Definition 7. Let m({ai}) is a mass function over Θ = {a1, a2, . . . , an}, where
each ai is a decision alternative , which induces belief function Bel({ai}) and
plausibility function Pl({ai}), then the degree of preference of a1 over a2,
denoted by P a1

a2
∈ [0, 1], is given by:

P a1

a2
= (Bel({a1}) + μ({a1}))− (Bel({a2}) + μ({a2})), (10)

where μ({ai}) = (1 − δU (ai))(Pl({ai}) − Bel({ai})) (i = 1, 2) and δU (ai) =∑
{ai}

⋂
B 
=∅

m(B) log2|B|

log2 |Θ| .

Thus, the preference relation between two decision alternatives can be defined
as follows:

Definition 8. The preference relation between two decision alternatives a and
b is defined as follows: (i) a 5 b if P a

b > 0; (ii) a ≺ b if P a
b < 0; and (iii) a ∼ b

if P a
b = 0.

The binary relation in Definition 8 is proved indeed a preference ordering [14,15].
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3 To Model Subjective Factor Disturbances

This section will handle the issue of subjective factor disturbances in MCDM,
which has two characteristics. (i) The subjective factors will change the criteria
weights in a given problem. For example, although the apples quality is high
and the price is reasonable, which should be the main concerns of a buyer, the
buyer might still not buy if he feels that the salesman cannot be trusted. In
this case, apparently the intuition of the decision maker weakens the importance
of the revealed criteria (i.e., quality and price) in the final decision. (ii) The
decision maker cannot tell how important the subjective factors are in affecting
his decision. To reflect these two characteristics, we take the subjective factors as
a hidden criterion, denoted as T with an imprecise value of weight. Therefore, we
can distinguish two situations for criteria: (i) complete criteria, i.e., the decision
maker is sure that he has considered all relevant criteria; and (ii) incomplete
criteria. i.e., there is a hidden criterion T , which is caused by some subjective
factors that might disturb his decision. Formally, we have:

Definition 9. Let discernment frame Θ ⊆ {c1, . . . , cn}, which is the set of
all the criteria of an MCDM problem. Then the criteria are said to be com-
plete if Θ = {c1, . . . , cn}, while the criteria are said to be incomplete if
Θ ⊃ {c1, . . . , cn}.
In the situation of incomplete criteria, as the decision maker is uncertain about
the weight of the hidden criterion T , the decision maker has no evidence about
the weight of it. According to D-S theory, a belief degree should be assigned to
the whole discernment frame. On the other hand, the complete criteria mean
that the decision maker has the evidence to support the relative ranking of all
criteria. So, we need not to assign any belief degree to the discernment frame to
express the ignorance of the decision maker.

From the previous discussion, we can distinguish complete and incomplete cri-
teria. First, in the case of incomplete criteria, when the relative ranking of some
criteria weights are hidden, the decision maker adopts a frame of discernment
to express his ignorance for the final relative ranking. These groups of decision
alternatives and the discernment frame constitute a specific matrix. Through
comparing a group of decision alternative with discernment frame Θ, the de-
cision maker can express his preference ordering of the given criteria. So, our
method satisfies the following theorem and corollary of [2]:

Theorem 1. For (d+ 1) by (d+ 1) matrix

Ad+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 a1

0 1
. . .

... a2
...

. . .
. . . 0

...
0 · · · 0 1 ad

1/a1 1/a2 · · · 1/ad 1

⎞
⎟⎟⎟⎟⎟⎟⎠ , d = 1, 2, . . . , (11)

where a1, . . . , ad are positive real values, the largest eigenvalue defined λLd+1

associated with matrix Ad+1 is λLd+1 = 1 +
√
d.
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Corollary 1 (Incomplete Relative Ranking Rule (IRRR)). For (d + 1)
by (d + 1) matrix Ad+1 given in Theorem 1, the normalised values within the
eigenvector defined by (x1, . . . , xd+1) associated with the largest eigenvalue of
the matrix Ad+1 are as follow:

xj =
aj∑d

i=1 ai +
√
d
, (12)

xd+1 =

√
d∑d

i=1 ai +
√
d
, (j = 1, 2, . . . , d). (13)

In this situation, based on the belief interval obtained by Corollary 1, by the
similar idea of Definitions 6 and 7, we can obtain the point-value weight for each
criterion under the condition of hidden criteria disturbance:

ωi = m(i) +
(1 −m(Θ))(m(Θ))

2d
, (14)

ωT = 1−
d∑

i=1

ωi =
m(Θ)(1 +m(Θ))

2
. (15)

Now we turn to the situation of complete criteria. In this situation, as the decision
maker actually has sufficient evidence for ranking all given criteria, he can rank
the criteria without hesitation. As a result, he needs not to use the discernment
frame to express his ignorance. Using the idea behind DS/AHP, we can introduce
a new measurement: in the complete criteria, any relative ranking made on given
criteria is compared with empty set ∅, which means no elements can be chosen by
the decision maker, he must accept even turn out to be worst or least important
criterion. In this aspect, we consider that empty set ∅ reflects the least important
criterion. As the DS/AHP method [3] constructed, by Theorem 1, Corollary 1,
and Definition 1, we can obtain:

Corollary 2 (Complete Relative Ranking Rule (CRRR)). For the com-
plete criteria, let si be one of d focal elements of a criterion with scale values ai,
then the normalised value for the relative ranking value of the decision alterna-
tives over the criterion is:

m(si) =
ai∑d
j=1 aj

, (i = 1, 2, . . . , d). (16)

Proof. By Definition 1, we have m(∅) = 0 and
∑

A⊆Θm(A) = 1. And thus
we have:

m(si)=

ai∑
d
j=1

aj+
√
d∑

A⊆Θm(A)
=

ai∑
d
j=1

aj+
√
d

1−
√
d∑d

j=1
aj+

√
d

=
ai∑d
j=1 aj

, i=1, 2, . . . , d. �

It is straightforward that the weight of each criterion is the percentage of its
importance value from the total importance value of all revealed criteria.
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4 Discern the Relative Ranking Value on an Individual
Criterion

Similar to Definition 9, we can also distinguish two situations for the relative
ranking of the groups of decision alternatives with respect to a given criterion:

Definition 10. Let Θ = {a1, . . . , an} be the discernment frame of all decision
alternatives, and A1, . . . , Am (Ai ∩ Aj = ∅ if i �= j) be the groups of decision
alternatives with respect to a given criterion that we can assign a preference
scale value. Then the relative ranking of the groups of decision alternatives over
a criterion is said to be complete if A1 ∪ . . . ∪ Am = Θ; and it is said to be
incomplete if A1 ∪ . . . ∪ Am ⊂ Θ.

Actually, we can also use the CRRR and IRRR rules to solve these two cases.
When the relative ranking of the decision alternatives against a criterion is in-
complete, then the relative ranking of some decision alternatives against the given
criterion is completely ignorant. As a result, a belief degree should be assigned to
the discernment frame. On the other hand, the relative ranking of the decision al-
ternatives regarding a criterion is complete, which means that the decision maker
has the evidence to support the relative ranking of all decision alternatives over
the criterion. As a result, we need not to assign any support belief degree to the
discernment frame to express the ignorance of the decision maker.

Formally, by CRRR and IRRR, the relative ranking value of the decision
maker regarding a criterion can be counted by formulas (17) and (18). Notice
here without loss of generality, this paper uses 1− 6 for discriminating levels of
favourability, meaning equal, strong, very strong, really strong, extremely strong,
and absolutely strong, respectively.

When the relative ranking is complete, it is

v(ai) = m(si), (17)

wherem(si) is given by formula (16).When the relative ranking is incomplete, it is

vt(si) = xj , v(Θ) = xd+1, (18)

where xj and xd+1 is given by formulas (12) and (13). As a result, our model can
solve the complete evaluation ignorance problem by introducing two methods of
pairwise comparison.

After obtaining the criteria weights and the relative ranking value of the
decision alternative of each criterion, the next step is to combine these two values
and apply Dempster combination rule (i.e., formula (3)) to obtain the overall
mass function for each decision alternative. In the DS/AHP method, Beynon [3]
suggests that the weight of each criterion is incorporated into their respective
knowledge matrix. So, the preference scale value of each decision alternative is
multiplied by the respective weight of the given criterion.

However, if we adopt the DS/AHPmethod in the case that the relative ranking
of the groups of decision alternatives is complete, the relative ranking value of
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the groups of decision alternatives regarding a given criterion will not change no
matter which weight we assign to the criterion. For this reason, we propose a new
method to combine criteria weights and the relative ranking value of groups of
decision alternative. Formally, we can set the mass function for the focal elements
of each criterion as follows:

m(x) = ωiv(x), m(Θ) = 1− ωi + v(Θ)ωi, (19)

where v(x) and v(Θ) is the relative ranking value of groups of decision alterna-
tives against criterion i, Θ is the frame of discernment of all decision alternatives,
and ωi is the weight of criterion i. This method means that because of the in-
fluence of the weight for a given criterion, the result (the relative ranking value)
obtained by the criterion is on the level of ω available for the final ranking. The
other level of (1 − ω) is unknown because we do not have evidence about the
relative ranking of the decision alternatives regarding other criteria if we just
consider the preference scales of the criterion.

Finally, the decision maker can obtain the mass function of each criterion
by formula (19) and then use Dempster combination rule (i.e., formula (3)) to
aggregate the overall mass function. After that, the decision maker can apply
Definition 8 to set the preference ordering over the belief intervals and finally
set the optimal option.

Moreover, in [14,15], we have pointed out that there are five types of eval-
uation over the groups of decision alternatives regarding each criterion, i.e.,
point-valued, risk lottery, missing, interval-value, and ambiguous lottery ones.
Actually, in our ambiguity aversion AHP method, when the preference degree
is point-valued, we can apply the complete relative ranking rule (CRRR) and
incomplete relative ranking rule (IRRR) to obtain the relative rank value (the
mass function for each criterion). As a result, we can apply formulas (5) and (6)
and Definition 6 to obtain point-valued preference degree for these five types of
evaluation, and then handle the ambiguity information directly.

5 How to Reduce the Disturbance

In real-life, sometimes it is necessary to reduce the effects of subjective factor
disturbances in decision making. For example, in business, although a manager
hates some suppliers, he should put the interest of the company in the first place
and consider the deals more rationally or less emotionally. So, we need consider
how to reduce the effect of subjective factor disturbances according to our model.
This section will discuss this issue. First, we will give a formal definition for the
effect of this kind before showing the properties.

Definition 11. For a MCDM problem with subjective factor disturbances with
the relative ranking of already known criterion is ai, suppose the overall mass
function of each group of decision alternatives is m1(Xt)in the condition of com-
plete criteria, and the the overall mass function of each group of decision alterna-
tives m2(Xt) in the condition of incomplete criteria then the effect of subjective
factors T is
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ft =

2Θ∑
j=1

(m1(Xj)−m2(Xj))
2. (20)

This definition means that the effect of subjective factor disturbances are deter-
mined by the sum of difference of two sets of overall mass function about each
group of decision alternatives, one of which consider the subjective factor dis-
turbances and another is not. There are two reasons for this definition: (i) The
effect of subjective factor disturbances is based on its impact for the final deci-
sion choice. For example, the feeling of uncomfortable for a house might change
the final choice of decision maker. (ii) By Definitions 7 and 8, we can find that
the preference ordering of the decision alternatives is determined by the value of
Bel({ai})+μ({ai}). Moreover, because the ambiguity degree of the belief inter-
val and Bel({ai})+μ({ai}) can be obtained by the overall mass function, we can
just consider the change of overall mass function that considered the subjective
factor disturbance or not to know the effect of subjective factors disturbances.

Now, we present a lemma as follows:

Lemma 1. Suppose the mass function of the criteria’s relative ranking is
m(i) = s, m(Θ) = t, where Θ is the discernment frame of each revealed cri-
terion i and hidden criterion T . Then the higher the value of t, the higher the
value of ωT , vice versa.

Proof. In this case, by formula (15), we can obtain the point-valued weight of
each criterion:

ωi = s+
(1− t)(t)

2d
, ωT =

(1 + t)(t)

2
.

Since 0 ≤ t ≤ 1, the higher the value of t, the higher the value of ωT , vice versa. �

Moreover, because the higher value of criteria weight of ωT , the more effects the
subjective factor disturbances will cause for the final decision, then by Lemma
1, we can derive:

Theorem 2. The larger scale value (favourable degree) the decision maker uses
as the basic for discriminating level of favourability, the less effects subjective
factor disturbances will cause for the final decision, ceteris paribus.

Proof. By formulas (15) and IPOR (Corollary 2), we have ω = 1 −
∑d

j=1 ωi =
t(t+1)

2 , t =
√
d∑

d
j=1 aj+

√
d
, where t = m(Θ). As a results, we can easily find that

when the number of the revealed criteria does not change, and the decision maker
uses the larger scale value (favourable degree) for the basic for discriminating

level of favourability, which means that the value of
∑d

j=1 aj is higher, we find
that the new weight of hidden criteria T : ω′

T is less than the old one. By Lemma
1, we can obtain the theorem directly. �
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This theoremmeans that to reduce the influence of subjective factor disturbances
in an MCDM problem, the decision maker has to use large enough unit-scale to
discriminate level of favourability on the criterion. This is consistent with our
intuition that the more important (facourability level) the decision maker thinks
the revealed criteria are, the more confident for him to insist on his choice.
For example, the buyer might easily change his mind for buying some daily
necessities, but in financial industry, it is hard for a CEO to change his mind,
for example, when considering the feasibility of an equity financing project.

Theorem 3. When the total preference degree of revealed criteria satisfies∑d
j=1 aj < 2d + 1, where d is the number of revealed criteria, the more cri-

teria in consideration, and the less effects subjective factor disturbances cause
upon the final decision, ceteris paribus.

Proof. Let the number of the revealed criteria in an MCDM problem be d, T be
the hidden criterion with weight ωT . Now we add a new criterion that favourable
degree compared with Θ is r (≥ 1). In order to prove that subjective factor
disturbances will cause less affects for final decision, by Lemma 1 and Corollary

2, we have (noticing
∑d

j=1 aj = k):

√
d

k +
√
d
>

√
d+ 1∑d+1

j=1 aj +
√
d+ 1

⇐
√
d(k + 1 +

√
d+ 1) >

√
d+ 1(k +

√
d) (when r ≥ 1)

⇔ (
√
dk +

√
d)2 > (

√
d+ 1k)2

⇐ 2d + 1 > k > 0 �

By Theorems 2 and 3, we find that according to our model, there are two ways for
reducing the effects of subjective factor disturbances: (i) to make a larger scale
value to capture the importance degree of the revealed criteria; and (ii) when

the scale value is small enough (
∑d

j=1 aj < 2d + 1), to consider more relevant
criteria to make decision. This result satisfies our intuition well: the decision
maker will be not hesitated for subjective factors when making the decision if
he has firmness of will or considers the problem very rationally.

6 The Problem of House Investment

This section illustrates our model by a real life house investment problem, which
decision tree is shown in Fig. 1. Suppose a decision maker wants to buy a house
for investment. There are four different alternatives A, B, C, and D and two cri-
teria. Moreover, when he comes to house A, suppose he feels very uncomfortable
suddenly.

To set the preference ordering for the decision alternatives over all the criteria,
by the ambiguity aversion AHPmethod, first we use a 6-unit scale to discriminate
the preference degrees of the decision alternatives and obtain the favourable ma-
trix for criteria price, quality and hidden (see Table 1). From Fig. 1, we can see
that for criterion price, three groups of decision alternatives have been identified
and the union of these set of decision alternatives is the same as the discernment
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Best  House

Price Quality

{A} {B,C} {D} {A,B} {C}

Focus

Criteria

Decision
Alternatives

Fig. 1. Decision tree for the example of house investment

Table 1. Initial favourable matrix for price and quality criterion

Price {A} {B, C} {D} ∅ Quality {A, B} {C} Θ T {A} {B, C, D} ∅
{A} 1 0 0 6 {A, B} 1 0 3 {A} 1 0 1

{B, C} 0 1 0 3 {C} 0 1 4 {B, C, D} 0 1 4
{D} 0 0 1 1 {Θ} 1/3 1/4 1 ∅ 1 1/4 1
∅ 1/6 1/3 1 1

frame. So, by Definition 9, the relative ranking of decision alternatives over the
price criterion is complete, which means that the distinct groups of decision al-
ternative are compared with the empty set (this set stands for the worst choice
according to criterion price). For criterion quality, the union of two identified
groups of decision alternatives are real subsets of the discernment frame, which
means that the relative ranking of decision alternatives over criterion quality are
incomplete. So, the decision maker compares the groups of decision alternatives
with the discernment frame to express his ignorance in the preference degrees
over criterion quality. Finally, for hidden criteria T , the decision maker feels
very uncomfortable with house A, meaning that all other decision alternatives
are must better than A. In order to distinguish the situation of no subjective
feeling from that of an uncomfortable feeling, we set other decision alternative
in higher level, but the preference relation amongst these decision alternatives is
uncertain. As the decision maker knows all situations of his feelings, the relative
ranking of decision alternatives over the hidden criterion is complete, meaning
that the distinct groups of decision alternatives are compared with the empty
set. This is exactly the meaning of Table 1. Now the decision maker can obtain
the relative ranking value of each criterion by formulas (17) and (18) as follows:
(i) for criterion price: v({A}) = 0.6, v({B,C}) = 0.3, v({D}) = 0.1; (ii) for
criterion quality: v({A,B}) = 0.357, v({C}) = 0.475, v(Θ) = 0.168; and (iii)
for the hidden criterion: v({A}) = 0.2, v({B,C,D}) = 0.8.

After confirming the favourable matrix, the decision maker will set the criteria
weights. In this example, the decision maker feels very uncomfortable for house
A, which means that this kind of subjective factor disturbed his final decision.
As a result, the decision maker thinks that his criteria weight may change by the
disturbance of hidden criterion T , which stands for his feeling about the houses.
After using a 6-unit scale to discriminate importance degrees of the criteria, by
the importance degrees of the criteria that is compared with the discernment
frame, we can obtain the favourable matrix as follow:
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⎜⎜⎝

Criteria Price Quality Θ
Price 1 0 3

Quality 0 1 1
Θ 1/3 1 1

⎞
⎟⎟⎠ (21)

By formulas (12) and (13), we can obtain: m(p) = 0.554, m(q) = 0.185, m(Θ) =
0.261. Therefore, by formulas (14) and (15), the point-valued weight for each
criterion is: ωp = 0.602, ωq = 0.233, ωT = 0.165. Then, form the relative
ranking value of each criterion and the criteria weight, by formula (19), we can
obtain the basic probability assignment in the D-S theory, which stands for the
priority value over each criterion as follows: mp({A}) = 0.361, mp({B, C}) =
0.181, mp({D}) = 0.06, mp(Θ) = 0.398; mq({A,B}) = 0.083, mq({C}) = 0.111,
mq(Θ) = 0.806; mT ({A}) = 0.033, mT ({B, C, D}) = 0.132, mT (Θ) = 0.835.

By Dempster combination rule (i.e., formula (3)), we can aggregate the overall
mass function for all criteria as follows: mh({A}) = 0.322, mh({B}) = 0.021,
mh({C}) = 0.07, mh({D}) = 0.053, mh({A,B}) = 0.031, mh({B,C}) = 0.158,
mh({B,C,D}) = 0.047, mh(Θ) = 0.298.

Thus, form the above mass function, by formulas (1) and (2) we have:

[Bel(A), P l(A)] = [0.322, 0.651], [Bel(B), P l(B)] = [0.021, 0.555],

[Bel(C), P l(C)] = [0.07, 0.573], [Bel(D), P l(D)] = [0.053, 0.398].

Hence, form the belief interval and overall mass function, by Definitions 7, we
can obtain

PA
B = 0.524, PA

C = 0.435, PA
D = 0.535, PB

A = −0.524, PB
C = −0.089, PB

D = 0.011,

PC
A = −0.435, PC

B = 0.089, PC
D = 0.1, PD

A = −0.535, PD
B = −0.011, PD

C = −0.1.

Moreover, by Definition 8, we can set the preference ordering of the house in-
vestment problem as A 5 C 5 B 5 D. So, the decision alternative A is the
optimal one over all the criteria.

7 Summary

This paper proposes a new MCDM method. (i) It can deal with the situation that
the optimal option of decision maker is disturbed by some subjective factors (e.g.,
intuition, feeling, and emotion). (ii) It can differentiate two types of criteria that
can consider the effects of subjective factors in MCDM problem. Moreover, our
method offers two different rules (i.e., CRRR and IRRR) to deal with two criteria
situations that distinguish by the existence of hidden criterion. (iii) It shows that
actually the relative ranking values have two types that can be distinguished
by the completeness of the information obtained. These two types can also be
solved by CRRR and IRRR. And (iv) we identified two ways for reducing the
effects of subjective factor disturbances to ensure the decision making is more
rational. However, we still need to do some psychological experiments to check
and improve our decision model in the future work.
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Abstract. Parameters in logistic regression models are commonly esti-
mated by the method of maximum likelihood, while the model structure
is selected with stepwise regression and a model selection criterion, such
as AIC or BIC. There are two important disadvantages of this approach:
(1) maximum likelihood estimates are biased and infinite when the data
is linearly separable, and (2) the AIC and BIC model selection criteria
are asymptotic in nature and tend to perform well only when the sam-
ple size is moderate to large. This paper introduces a novel criterion,
based on the Minimum Message Length (MML) principle, for parameter
estimation and model selection of logistic regression models. The new
criterion is shown to outperform maximum likelihood in terms of param-
eter estimation, and outperform both AIC and BIC in terms of model
selection using both real and artificial data.

Consider the logistic regression model for explaining data y ∈ Rn given a matrix
of covariates X = (x′

1,x
′
2, . . . ,x

′
n)

′

p(y|X, α,β) =
n∏

i=1

(
1

1 + exp(−yi(α+ x′
iβ))

)
(1)

where the target variable yi ∈ {−1,+1}, xi ∈ Rp (i = 1, 2, . . . , n), β ∈ Rp is a
vector of logistic regression coefficients and α ∈ R is the intercept parameter.
The p regression coefficients β and the intercept parameter α determine the
probability of the target variable yi = ±1. The task in logistic regression is to
estimate the (p+ 1) parameters θ = (α,β)

′ ∈ Rp+1 and select a subset of the p
predictor variables that is associated with the target.

Logistic regression is the most commonly used model in epidemiology and
social science for analysis of data with a binary outcome. The parameter coeffi-
cients are often estimated by the method of maximum likelihood

θ̂ML(y) = (α̂(y), β̂′(y))′ = argmax
α,β

{
n∏

i=1

1

1 + exp(−yi(α+ x′
iβ))

}
(2)

which effectively sets the free parameters to the values that maximise the like-
lihood or, equivalently, the log-likelihood of the observed data. However, the
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maximum likelihood estimates for logistic regression are biased and can be in-
finite in small samples and when the data is linearly separable. To select which
predictors are associated with the target, one combines maximum likelihood with
best subset selection or forward/backward regression and applies a model selec-
tion criterion, such as Akaike’s Information Criterion (AIC) [1] or the Bayesian
Information Criterion (BIC) [2].

This paper considers minimum message length (MML) [3] parameter estima-
tion and model selection in logistic regression analysis. We derive a new Bayesian
model selection criterion that is defined even when the data is linearly separa-
ble, requires no user specified parameters and exhibits good performance in small
samples. A procedure for obtaining MML parameter estimates is introduced and
the new estimates are shown to exhibit better prediction performance than the
traditional maximum likelihood estimates. The new model selection criterion
is then empirically evaluated against two popular criteria, AIC and BIC, and
demonstrates excellent performance. This is a remarkable result. By minimising
the MML codelength function we obtain parameter estimates that are superior
to maximum likelihood and bias–corrected maximum likelihood estimates, espe-
cially in small samples with correlated covariates. Further, minimising the same
codelength function yields a model selection criteria that outperforms both AIC
and BIC.

1 Minimum Message Length (MML)

Minimum message length (MML) [4,5,6,3] principle of inductive inference states
that the best model is one which results in the best compression, or shortest
codelength, of the data. The compressed codelength comprises two parts: (1) the
assertion, stating a model for the data from a set of candidate models, and
(2) the detail which encodes the data using the model that was named in the
assertion. The assertion and the detail are commonly denoted as I87(θ) and
I87(y|θ) respectively. The most commonly used form of MML is the Wallace–
Freeman approximation [6], or the MML87 approximation, which states that the
codelength, I87(y, θ), of model θ ∈ Θ ⊂ Rk and data y ∈ Rn is

I87(y, θ) = − log π(θ) +
1

2
log |Jθ(θ)|+

k

2
log κk︸ ︷︷ ︸

I87(θ)

+
k

2
− log p(y|θ)︸ ︷︷ ︸
I87(y|θ)

(3)

where π(·) denotes a prior distribution over the support Θ, p(y|θ) is the like-
lihood function, Jθ(θ) is the (k × k) Fisher information matrix and κk > 0 is
a dimensionality constant. Following Wallace (p. 237, [3]), the dimensionality
constant is well approximated by

k

2
(log κk + 1) ≈ −k

2
log(2π) +

1

2
log(kπ) + ψ(1) (4)

where ψ(·) is the digamma function. MML is a Bayesian principle and requires
stating a prior density over the free model parameters. Under MML87, the model
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θ̂87(y) which minimises (5) is chosen as the most a posteriori likely explanation
of the data y, in view of the chosen prior density π(·).

The Wallace–Freeman approximation is derived under the following assump-
tions: (1) the log-likelihood is approximately quadratic at the maximum, (2) the
Fisher information matrix is positive definite over the support Θ and (3) the
prior density is locally continuous and ‘slowly’ varying around the region deter-
mined by |Jθ(θ)|. Assumptions (2) and (3) do not hold for logistic regression
models with the priors selected in Section 2.1. This is because the chosen prior
density has a singularity at the origin and the Fisher information is semi-positive
definite; that is, the Fisher information tends to zero as the regression parameters
tend to infinity. The combination of these two factors may result in a breakdown
of the codelength approximation and hence nonsensical codelengths.

To alleviate these issues, we use the “small sample” codelength approximation
suggested by Wallace ([3], pp. 235–236)

I87(y, θ) =
1

2
log

(
1 +
|Jθ(θ) + Ik|κkk

π(θ)2

)
︸ ︷︷ ︸

I87(θ)

+
k

2
− log p(y|θ)︸ ︷︷ ︸
I87(y|θ)

(5)

Further, we add an identity matrix to the Fisher information matrix to prevent
the parameters from shooting off to infinity and prevent the codelength approxi-
mation from breaking down. This change to the Fisher information matrix makes
little to no difference around the ‘true’ MML estimate, but significantly improves
the codelength accuracy when the parameters are large (that is, the Fisher in-
formation is nearly singular). The new codelength is unfortunately no longer
invariant under model transformation due to the modification to the Fisher in-
formation matrix. However, this violation appears minor since the models that
actually minimise the codelength are virtually unaffected by the change to the
Fisher information.

If the number of parameters is fixed and does not grow with the sample size,
the MML87 estimates asymptotically converge to maximum likelihood as the
sample size n → ∞. Furthermore, the MML87 codelength is asymptotically
equivalent to the Bayesian Information Criterion (BIC) as n → ∞. In contrast
to maximum likelihood, MML87 estimates are statistically consistent in certain
difficult inference problems; for example, the Neyman–Scott problem [7] and
the factor analysis model. The MML87 estimator also tends to improve upon
maximum likelihood in problems where the data size is small to moderate. Thus,
the MML criterion may be viewed as a small–sample version of BIC that also
features improved parameter estimates.

2 MML Logistic Regression

Standard Bayesian inference of logistic regression models requires specifying a
prior distribution over the parameters and sampling from the corresponding
posterior distribution given the observed data. This has traditionally been done
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using Markov Chain Monte Carlo (MCMC) techniques with Gaussian approxi-
mations, some variant of the Metropolis–Hastings sampler [8] or numerical in-
tegration techniques. More recently, researchers have examined MCMC tech-
niques with alternative representations of the logistic function and Gaussian
scale-mixture priors [9]. A common representation of the logistic function is to
model the data y ∈ Rn as a thresholded version of some underlying continuous
random variable. Examples include the the random-utility construction of the lo-
gistic model by Holmes and Held [10], the Z–distribution framework of Gramacy
and Polson [11] and the Polya–gamma representation of Polson et al. [12].

In the Bayesian framework, the prior distribution hierarchy commonly follows
the local/global shrinkage framework described by Polson and Scott [13]. The
prior distribution over the regression coefficients is taken to be the Gaussian
distribution with a prior variance hyperparameter, which is given a separate hy-
perprior. The functional form of the hyperprior allows the generation of several
widely used distributions for the regression coefficients through Gaussian-scale
mixtures; examples of distributions that may be generated in this setting in-
clude the Student t-distribution or the double exponential distribution used in
Bayesian LASSO regression [14], among others.

Although the MML principle is Bayesian by design, the MML approximation
(5) that is used in this paper does not require any sampling from the poste-
rior distribution of the parameters. Instead, one must specify: (1) the negative
log-likelihood function, (2) the determinant of the Fisher information matrix,
and (3) a prior distribution over the free model parameters for the logistic re-
gression model. The fully-specified model θ(y) which minimises the codelength
approximation given by (5) is then the best MML model in light of the cho-
sen priors. The negative log-likelihood function and the Fisher information for
logistic regression models are

− log p(y|X, θ) =
n∑

i=1

log(1 + exp(−yi(α+ x′
iβ))), (6)

|Jθ(θ)| = |(1n,X)′V(θ)(1n,X)| , (7)

where 1n = (1, 1, . . . , 1)′ is an n-dimensional vector of ones, V(θ) = diag(μ1(1−
μ1), μ2(1 − μ2), . . . , μn(1 − μn)) is an (n × n) diagonal matrix, μi = 1/(1 +
exp(−α − x′

iβ)) and θ = (α,β)
′ ∈ Rk denotes the k = (p + 1) vector of

free parameters. It remains to specify the prior distribution over the regression
coefficients.

2.1 Prior Distribution

Almost all Bayesian approaches to logistic regression use a Gaussian prior dis-
tribution (or Gaussian-scale mixtures) over regression coefficients θ ∈ Rk. This
is done primarily out of mathematical convenience. However, the Gaussian dis-
tribution is not invariant under rotations and translations of the decision hy-
perplane implied by the logistic model. We argue that this is not desirable and
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seek a prior that is invariant under all translations and rotations of the decision
hyperplane.

The decision boundary in logistic regression models is

α+ x′β = α̃(1 + x′β̃) = 0, (8)

which is a (p − 1)-dimensional hyperplane embedded inside the p-dimensional
data space induced by the predictor matrixX, assumingX is full rank. Note that
the logistic regression model is now parameterised in terms of θ̃ = (α̃, β̃′)′ ∈ Rk,
where the parameter transformation function F : Rk �→ Rk maps θ ∈ Rk to
θ̃ = F (θ) = (F0(θ), F1(θ), . . . , Fp(θ))

′ and

α̃ = F0(θ) = α (9)

β̃j = Fj(θ) = βj/α (j = 1, 2, . . . , p), (10)

provided α �= 0. It is clear from (8) that α̃ ∈ R does not affect the location and
orientation of the decision boundary which is solely determined by the regression
coefficients β̃ ∈ Rp.

A prior distribution over β̃ ∈ Rp that does not favor any orientation or posi-
tion of the decision boundary is

πβ̃(β̃) =
Γ (p/2)r0
2πp/2

(β̃′β̃)−(p+1)/2, (||β̃||2 ≥ r0 > 0), (11)

where Γ (·) is the gamma function and r0 is a lower limit on the �2-norm of
the parameter vector β̃ (discussed below). The prior distribution was originally
derived in the context of feed-forward multilayer perceptron networks [15]. Let
Ip denote a (p×p) identity matrix. It is straightforward to show that − logπβ̃(β̃)

is a strictly concave function of β̃ since the (p× p) Hessian matrix

−
∂2 log πβ̃(β̃)

∂β̃∂β̃′
=

(
p+ 1

β̃′β̃

)(
Ip −

(
2

β̃′β̃

)
β̃β̃′
)

(12)

has a strictly negative determinant∣∣∣∣∣−∂
2 log πβ̃(β̃)

∂β̃∂β̃′

∣∣∣∣∣ = −
(
p+ 1

β̃′β̃

)p

< 0, β̃ ∈ Rp. (13)

The constant r0 may be set to the radius of the minimum volume enclosing hy-
perball of the predictor matrix X; this can be efficiently computed for moderate
p using the fast algorithm in [16]. Alternatively, one may set r20 = 1/(t′t) where
t ∈ Rp is the point closest to the origin through which the decision hyperplane
passes. This procedure was recommended by Toussaint et al. ([15], Section 3.1).
Section 2.2 discusses how to set the constant r0 in the current paper.

It remains to specify a prior distribution over the parameter α̃ ∈ R. We opt
for the scale invariant prior

πα̃(α̃) =
a

2α̃2
, α̃ ∈ [a,∞). (14)
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where a > 0. Note that Toussaint et al. ([15], Section 3.1) advocate a max-
imum entropy prior for α̃ in neural networks using the maximal slope of the
decision boundary as testable information. The maximum entropy prior how-
ever introduces an extra hyperparameter which is not easily eliminated. Since
α̃ is a common parameter to all models, the choice of prior is not expected to
significantly alter the results and conclusions of this paper.

To summarise, the complete prior distribution over the k free parameters
θ̃ = (α̃, β̃′)′ is

πθ̃(θ̃) = πα̃(α̃)πβ̃(β̃). (15)

where the prior distributions for α̃ and β̃ are assumed to be conditionally inde-
pendent and are given by (14) and (11), respectively.

2.2 MML Logistic Regression Criterion

It remains to specify the complete MML codelength (5) for the logistic regression
model as a function of the new parameters θ̃ = (α̃, β̃′)′ ∈ Rk (see Section 2.1).
The negative log-likelihood and the Fisher information are now given by

− log p(y|X, θ̃) =
n∑

i=1

log(1 + exp(−yi(α̃(1 + x′β̃)))) (16)

|Jθ̃(θ̃)| = |JT
′Jθ(θ)JT| = α̃2p|(1n,X)′V(θ̃)(1n,X)| (17)

where JT is the (k × k) Jacobian transformation matrix

JT =

(
1 0′

p

β̃ α̃Ip

)
, |JT| = α̃p (18)

and V(θ̃) = V(θ) (see Section 2). The complete MML codelength for logistic
regression is

I87(y, θ̃) =
1

2
log

(
1 +

|Jθ̃(θ̃) + Ik|κk
k

π(θ̃)2

)
+

n∑
i=1

log(1 + exp(−yi(α̃(1 + x′β̃)))) +
k

2

where the prior density and the Fisher information are given in (15) and (17)
respectively. The constant κkk is approximated using (4). We set the prior param-
eters a and r0 to the parameter estimates that minimise the codelength. That

is, we choose a = ˆ̃α(y) and r0 =
ˆ̃
β(y)′

ˆ̃
β(y).

We have thus far ignored the important requirement for stating which of
the p predictors are used in the model under consideration. In this paper, we
choose a prior distribution that treats each possible subset of regressors of size
q (0 < q ≤ p) as equally likely. The new prior adds a term of size

log(p+ 1) + log

(
p

q

)
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to the codelength (19). The first term states the number q(≤ p) of predictors
which are in the model, while the second term names which of the p predictors
are selected. Recall that a model with q predictors always includes an additional
intercept term, represented by the parameter α̃ ∈ R, and thus has (q + 1) free
parameters.

2.3 Parameter Estimation

It is well known that maximum likelihood parameter estimates for logistic re-
gression (2) are biased away from the point θ = 0k and are infinite if the data
is linearly separable [17]. In order to remove or lessen the bias, some amount
of parameter shrinkage towards the origin is necessary. The bias arises due to
the curvature and unbiasedness of the score function (that is, the derivative of
the log-likelihood). A common method of reducing the bias is that of Firth [18]
where, instead of maximising the log-likelihood, one maximises the penalized
log-likelihood

θ̂FR(y) = (α̂(y), β̂′(y))′ = argmax
α,β

{
log p(y|X, θ) + 1

2
log |Jθ(θ)|

}
(19)

where the penalty is equal to the determinant of the Fisher information ma-
trix. This penalized log-likelihood introduces bias into the score function by an
amount that depends on the curvature of the log-likelihood. The end result for
exponential families is the removal of O(n−1) bias for the canonical parameter.

Firth’s penalized log-likelihood estimates are not model space invariant, since
bias itself is not invariant. Shen and Gao [19] extend the approach and add
a second, ridge regression, penalty to the log-likelihood function to improve
maximum likelihood estimates in case of highly correlated predictors. A poten-
tial disadvantage of both penalized likelihood estimates is that commonly used
model selection criteria, such as AIC and BIC, are only derived assuming max-
imum likelihood estimates and may need modification for penalized regression
procedures. In contrast, the MML approach allows parameter estimation and
model selection within the same framework. The authors recommend [20] for
an overview of other similar approaches to bias reduction in logistic regression
models.

The MML parameter estimates,
ˆ̃
θ87(y) can be obtained by minimising the

total codelength (19) with respect to the parameters θ̃, that is

ˆ̃
θ87(y) = argmin

α̃,β̃

{
I87(y, θ̃)

}
. (20)

The Fisher information term log |Jθ̃(θ̃)| and the prior distribution πβ̃(β̃) are
strictly concave functions and unbounded below. The negative log-likelihood
function is strictly convex and bounded below. In this paper, the parameter
estimates are obtained using the MATLAB fminunc optimisation function. Pre-
liminary simulation experiments initially showed that minimising the codelength
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with respect to both α̃ and β̃ can sometimes result in numerical issues, especially
as α̃ → 0 and the parameter transformation becomes singular. A possible rem-
edy is to fix α̃ to equal, say, α̂FR(y), and estimate the p regression coefficients
by minimising the codelength. This removes all issues with numerical optimisa-
tion and yields valid codelengths provided the initial estimate of α̃ is reasonable.
The effect of the prior distribution πβ̃(β̃) on the MML codelength is to shrink
the maximum likelihood parameters towards the origin of the coordinate sys-
tem. Given the tendency of maximum likelihood to overestimate the regression
coefficients, we expect the MML estimates to exhibit less bias (see Section 3.1).

It is interesting to note that some penalized regression procedures can be
interpreted within the MML framework. The bias correction suggested by Firth,
for example, amounts to maximising the posterior distribution of the parameters
assuming a Jeffreys’ prior distribution. This is equivalent to using a constant
Fisher information when computing MML87 estimates.

3 Results and Discussion

3.1 Parameter Estimation

This section compares the prediction performance of the maximum likelihood

estimator θ̂ML(y), the MML parameter estimator
ˆ̃
θ87(y) and Firth’s penalized

maximum likelihood estimator θ̂FR(y) in logistic regression models. The three
estimators are defined in (2), (20) and (19) respectively. In the spirit of repro-
ducible research, all MATLAB simulation code will be made available on the
authors’ web pages1. Recall that

μi =
1

1 + exp(−yi(α+ x′
iβ))

(i = 1, 2, . . . , n), (21)

denotes the probability of datum yi = ±1, and let μ̂i denote an estimate of μi

inferred by one of the three aforementioned estimators. Similarly, let ŷi denote
the predicted class of the datum yi. The estimates will be compared on the area
under the receiver operating characteristic curve (AUC) and

CA =
1

n

n∑
i=1

δ(yi, ŷi) (22)

KL = − 1

n

n∑
i=1

(
μi log

(
μ̂i

μi

)
+ (1 − μi) log

(
1− μ̂i

1− μi

))
, (23)

where CA denotes classification accuracy, KL denotes Kullback–Leibler diver-
gence [21] and δ(yi, ŷi) = 1 if and only if (yi = ŷi), otherwise δ(yi, ŷi) = 0.
These three metrics will measure the prediction error of the estimators under
consideration.

1 www.emakalic.org/blog and www.dschmidt.org

www.emakalic.org/blog
www.dschmidt.org
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Table 1. Parameter estimation performance measured by median classification ac-
curacy (CA), area under the ROC curve (AUC) and KL divergence (KL) computed
for maximum likelihood θ̂ML(y), penalized maximum likelihood θ̂FR(y) and minimum
message length θ̂87(y) estimators

n ρ θ̂ML(y) θ̂FR(y) θ̂87(y)

CA AUC KL CA AUC KL CA AUC KL

0.0 72.16 75.01 8.72 72.45 81.11 0.58 72.43 83.10 0.57

0.2 77.79 81.85 6.59 77.77 87.25 0.47 85.45 94.71 0.40

25 0.5 80.11 84.72 5.66 79.92 89.37 0.43 90.44 97.74 0.30

0.7 81.00 85.51 5.39 80.46 90.10 0.41 91.92 98.45 0.26

0.9 81.53 86.21 5.17 81.01 90.57 0.41 93.12 98.85 0.24

0.0 78.11 85.54 0.87 78.48 87.60 0.49 77.50 87.69 0.52

0.2 83.36 86.93 4.89 84.06 92.95 0.36 86.89 95.30 0.31

50 0.5 85.97 89.36 4.13 86.42 94.88 0.30 91.15 97.83 0.24

0.7 86.99 90.39 3.78 87.24 95.44 0.29 92.63 98.48 0.21

0.9 87.68 91.16 3.52 87.84 95.83 0.27 93.66 98.85 0.19

0.0 81.47 90.30 0.44 81.47 90.31 0.41 81.50 90.39 0.40

0.2 87.17 95.11 0.35 87.26 95.23 0.30 87.95 95.69 0.28

100 0.5 89.67 96.40 0.41 89.89 96.97 0.24 91.26 97.72 0.21

0.7 90.35 95.16 1.33 90.69 97.45 0.22 92.69 98.38 0.18

0.9 90.97 94.08 2.43 91.33 97.79 0.20 93.84 98.85 0.15

0.0 82.94 91.49 0.38 82.93 91.49 0.37 82.95 91.50 0.37

0.2 88.67 96.07 0.27 88.67 96.07 0.26 88.84 96.17 0.26

250 0.5 91.39 97.70 0.21 91.39 97.71 0.20 91.76 97.88 0.19

0.7 92.30 98.16 0.20 92.33 98.17 0.18 92.85 98.40 0.17

0.9 92.94 98.46 0.19 92.95 98.47 0.17 93.89 98.82 0.15

The test procedure for comparing the estimators is now described. For each
test, a training data set comprising the predictor matrix X ∈ Rn×p was gen-
erated from a multivariate Gaussian distribution X ∼ Np(0p,Σ), where the
entries of the variance–covariance matrix are Σi,i = 1 for all (i = 1, 2, . . . , p)
and Σi,j = ρ whenever (i �= j); that is, Σ is a variance–covariance matrix with
ones on the diagonal and ρ everywhere else. This is expected to produce signif-
icant correlation in the covariates as |ρ| → 1. The training data y ∈ Rn was
generated using the predictor matrix X and (α,β) = (0′,1′)′ for the unknown
parameters θ = (α,β′)′ ∈ Rp+1. The maximum likelihood, penalized maximum
likelihood and the MML estimators were then used to estimate the unknown
parameters θ given the training data. For the the MML estimate, ˆ̃α(y) is set to
the Firth estimate (see Section 2.3). The performance of the three estimators
was compared using the three metrics CA, AUC and KL computed from a new
test data set with sample size (m = 105). In all tests, (p = 10) predictor variables
were used to generate the predictor matrices. The entire procedure was repeated
for 2000 iterations for the following values of (n, ρ): n ∈ {25, 50, 100, 250} and
ρ ∈ {0.0, 0.2, 0.5, 0.7, 0.9}. The results are shown in Table 1.
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It is clear that both the MML and Firth’s penalized likelihood estimator sub-
stantially improve the prediction performance of maximum likelihood, especially
when the sample size is small (n < 100). This is not surprising as such data is
often linearly separable and maximum likelihood tends to estimate β → ±∞.
The MML estimator and Firth’s penalized likelihood estimator exhibit similar
prediction performance for larger sample sizes (n ≥ 100) and for all values of
correlation ρ. However, the MML estimator has significantly better prediction
error as measured by all three metrics for n = {25, 50}, especially as ρ → 1.
This indicates that the MML estimator is able to better estimate the under-
lying ‘degrees of freedom’ of the model when the data is highly correlated. For
larger sample sizes, all three estimators performed equally well under the metrics
considered.

3.2 Model Selection

The MML logistic regression criterion is now compared against AIC and BIC in
terms of model selection performance on five real data sets. The data sets were:
pima (8 predictors, 768 samples), australian (15 predictors, 690 samples), wcbc
(10 predictors, 683 samples), liver (6 predictors, 345 samples) and heart (13
predictors, 270 samples). The pima, wcbc and liver data sets were obtained
from the UCI Machine Learning Repository, while the remaining data sets were
downloaded from StatLOG.

For each data set, random samples of n = 25 and n = 50 data were used
for training, while the remaining data was used for estimating prediction perfor-
mance. Prior to each test iteration, the predictor variables were normalized to
have zero mean and length x′

jx = n for all (j = 1, 2, . . . , p). Initially, all-subset
selection was used to generate candidate models. However, the computational
complexity of examining all 2p models renders any kind of exhaustive empiri-
cal comparison extremely difficult. Consequently, the elastic net procedure [22]
(function lassoglm in MATLAB with parameter α = 0.95) was used to generate
candidate models – the elastic net parameter estimates were ignored. Two met-
rics were computed from the test data: (a) classification accuracy, and (b) nega-
tive log-likelihood. The complete test procedure was repeated for 103 iterations
for each data set. The results are shown in Figure 1. Note, the AIC score resulted
in inferior performance in comparison to BIC in virtually all tests considered and
was hence omitted.

In terms of median classification accuracy, both MML and BIC perform sim-
ilarly across all data sets and sample sizes considered. However, the models
selected by the MML criterion have significantly smaller variance in terms of
classification accuracy than those selected by BIC. This is clearly visible for
n = 50 training samples where the variance in classification accuracy of the
MML models is approximately half of the BIC models. In terms of negative log-
likelihood, the MML criterion has resulted in clearly superior models to BIC for
both n = 25 and n = 50 training samples.
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Fig. 1. Classification accuracy and negative log-likelihood computed from test data for
MML (left boxplot) and BIC (right boxplot) for sample sizes n = 25 and n = 50
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Abstract. In various domains, such as security and surveillance, a large
amount of information from heterogeneous sources is continuously gath-
ered to identify and prevent potential threats, but it is unknown in ad-
vance what the observed entity of interest should look like. The quality of
the decisions made depends, of course, on the quality of the information
they are based on. In this paper, we propose a novel method for assessing
the quality of information taking into account uncertainty. Two proper-
ties – soundness and completeness – of the information are used to define
the notion of information quality and their expected values are defined us-
ing a probabilistic model output. Simulation experiments with data from
a maritime scenario demonstrates the usage of the proposed method and
its potential for decision support in complex tasks such as surveillance.

1 Introduction

Information is collected virtually in any domain and task to increase our knowl-
edge about reality and to provide bases for decisions. The quality of these deci-
sions depends, of course, on the quality of the information they are based on and
the estimation of the latter has been the focus of research for many years. Very
early work can be found in the science of experimental measurement, where in-
formation is largely collected in a controlled setting with priorly defined expected
outcomes, and information quality is typically quantified by statistical measures
such as systematic and statistical errors. Later the field of information retrieval
emerged based on survey studies and database management tasks, where mea-
sures such as precision and recall are used to determine the goodness of answers
extracted with respect to a pre-defined question [8]. These measures are clearly
defined with respect to ground-truth information, assumed to be provided by
an expert or another information source with certainty [3]. Studies in informa-
tion management have further defined information quality by a large variety of
dimensions, e.g., completeness, accuracy, relevancy, timeliness, as summarised
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industrial partner.
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(a) (b)

Fig. 1. Two approaches for estimating the quality of information I in terms of sound-
ness (snd) and completeness (cmp): a) standard method used in information retrieval,
assuming that the hypothetical true world W is known, and b) our model-based method
yielding expected values based on probabilistic estimates of the possible true worlds
Wi generated from a set of user queries Q

in [7]. The definitions of these dimensions include uncertainty but no methods
for the practical assessment of the dimensions are provided.

In recent years, we observe wide availability and heterogeneity of information
sources in new domains, such as security, surveillance and object recognition,
where one has to handle a continuous stream of information and it is unknown
in advance what the observed entity of interest should look like. This leads to un-
certainty in the information obtained and in the estimation of its quality. Hence,
new measures are required for defining and assessing information quality such
that uncertainty is explicitly taken into account. The notions and probabilistic
method we propose in this paper are a contribution in this direction.

The representation language of our method is based on first-order logic with
binary predicates, which allow a straightforward expression of object-attribute-
value relations, typically referred as facts in the information obtained from
sources. We define the notion of “information quality” in terms of two prop-
erties – soundness and completeness – that are based on the estimation of set
cardinalities. The conceptual idea is similar to the ones proposed earlier in [2,6],
but we propose a novel formalisation and estimation of these properties taking
into account uncertainty, as illustrated in Figure 1, namely:

– We define the intersection set of the information gathered and the ground-
truth with respect to a set of user queries and not to a fixed database as
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done before. Hence, we consider “quality” as a dynamic property of the
information, which depends on the questions at hand.

– Unlike the related studies, we do not assume that the true world is provided,
for example by a human or a database, but we generate the set of possible
true worlds based on the set of user queries. Then for each world we com-
pute the probability for being true using a predefined model using domain
knowledge and other information. The probabilities obtained are finally used
to compute the expected value for soundness and completeness of the infor-
mation gathered. Here, we do not restrict the structure or the nature of the
model, as long as it provides a proper probability distribution of the possible
world states.

The proposed method is general and can be applied to any domain where un-
certainty of information plays a role, but its development was motivated by our
research on estimating information quality in maritime surveillance. Therefore,
we next present a scenario from the maritime domain to motivate this research.
Section 3 presents the language and main notions used to define information
quality. The main theoretical contribution–probabilistic method for assessment
of information quality–is described in Section 4. Experiments described in Sec-
tion 5 illustrate the application of the method. Section 6 concludes the paper.

2 Motivating Scenario

The detection of drug smuggling is one of the biggest challenges that maritime
surveillance and the coast guard operators nowadays face. Typical hypotheses
that increase the suspiciousness of a ship are falsified/missing ship identity in-
formation or the type of cargo that allows to hide drugs easily (e.g., bulk dry).
The operators need to check the quality of information reported by the ship via
the automatic identification system (AIS) or radio contact in their daily tasks
to examine these hypotheses.

The Dutch bulk-carrier “Seaman” approaches the port of Rotterdam carrying cement,
sand and stone, and sends the following AIS information to the coast guard:

i: ID = 23378, name = Seaman, type = bulk-carrier, cargo = {sand, gravel}.
An intelligence report of the same day warns an operator that a bulk carrier, most
likely carrying cement and registered in Bahamas, is expected to arrive within a day
at the Rotterdam port and it is suspected for drugs smuggling. To decide whether the
Seaman may be the suspected vessel, the operator wants to examine the quality of
information reported by the ship with respect to various questions:

– Does Seaman carry cement?
– Is Seaman a bulk-carrier registered in Bahamas?

To get answers to these questions, the operator uses additional information from other

sources such as a ship registry database and visual observations and finds out that the

Seaman is a Dutch bulk-carrier carrying also cement and stone but not gravel on board.
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Thus, the operator concludes that the Seaman has reported incorrect and incomplete

cargo, prompting some attention for further monitoring.

Performing such manual check-ups in practice, however, would make the work of
operators practically impossible. Furthermore, some sources may not be easily
accessible or their information not fully trusted, thus making the conclusions
uncertain. Therefore, an automated approach is needed to evaluate the quality
of information inherent with uncertainty.

3 Preliminaries

3.1 Represention Language

We use first-order logic as a flexible way to represent information and formulate
queries. This abstracts from how data is stored in an actual implementation
which could for instance be in some kind of database system. Our logic consists
of a countable set of predicate symbols. We do not use functions, only constants
like seaman. This restriction is chosen to ensure that domains are finite, as is
common in probabilistic logics. We use upper case labels for variables, like X .
We further use the common logical connectives ∀, ∃, ∧, ∨, =⇒ and ⇐⇒ to
build up formulas.

We assume that information consists of logical facts described as object-attribute-
value relations, which are represented as binary predicates in the form a(O, V ),
where a refers to an attribute of object O and V is the attribute value. We do this
without loss of generality as binary predicate logics is as expressive as full predi-
cate logic. In the paper we use the name of objects, like seaman, as object labels
for better readability. Adding new information means taking the conjunction of
the previous and the new one. Instantiation ofO and V means assigning a value to
them. We explicitly do not use a closed world assumption, but distinguish wrong
information from not reported information which is true in the real world.

3.2 Information Quality

In Table 1 we define the notions for representing information used in the rest of
the paper. Although (sets of) queries and the true world also represent informa-
tion, for the remaining of the paper we will use the term information only for
what has been reported, thus defining and estimating its quality. For the meta
properties we use to define information quality we use upper case labels for vari-
ables, like X and lower case labels for instantiations (x). We use bold notation
for variables and instantiations representing sets (X and x). We finally use logic
entailment, denoted by |=, to indicate that a query is positively answered by
given information.

Ideally, all queries positively answered by the information one has are true
in the real world, too. The other way around, everything true in the real world
should be derivable from the information. So we consider information quality as
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Table 1. Definition of notions for representing information

Notion Definition Scenario examples

Information I A self-contained statement
about the world that can be
expressed by a logical ground
sentence (a formula without
free variables).

i1 = type(seaman, tanker)
∧name(seaman, seaman)
∧id(seaman, 23378)

i2 = cargo(seaman, sand)
∧cargo(seaman, gravel)

i = i1 ∧ i2
Query Q A logical ground sentence, rep-

resenting a question, which is
positively answered if it is en-
tailed by the information

q1 = cargo(seaman, sand)
q2 = type(seaman, bulk–carrier)

∧flag(seaman, Bahamas)

Set of queries Q It can be abbreviated by a for-
mula with a free variable, if
all possible groundings of the
variable are known.

q1 = {q1, q2}
q2 = cargo(seaman,TYPE)
q3 = {cargo(seaman, cement),

cargo(seaman, sand),
cargo(seaman, stone)}

World W The information representing
the state of the real world.

W = {flag(seaman, NL),
type(seaman, bulk–carrier),
cargo(seaman, cement),
cargo(seaman, sand),
cargo(seaman, stone), . . .}

a two dimensional property. We introduce measures of how much those desired
meta properties are true, referred to as soundness and completeness of informa-
tion I with respect to a set of queries Q and they are formalised as follows:

sndW(Q, I) ≡

∣∣∣∣{Q ∈ Q | I |= Q ∧W |= Q
}∣∣∣∣∣∣∣∣{Q ∈ Q | I |= Q

}∣∣∣∣
(1)

cmpW(Q, I) ≡

∣∣∣∣{Q ∈ Q | I |= Q ∧W |= Q
}∣∣∣∣∣∣∣∣{Q ∈ Q | W |= Q

}∣∣∣∣
(2)

In the case the denominator is 0 the soundness or completeness becomes 1. The
values for soundness and completeness range from 0 to 1, where 0 is the worst
and 1 the best possible quality. The soundness intuitively measures how much
of what the information tells is actually true, the completeness measures how
much of what is true is included in the information. In the special case that the
set contains one query only, the result is always 0 or 1. The completeness never
decreases when additional information I′ is added to the information I, whereas
for soundness such a general property cannot be stated.

Example 1. The soundness and completeness of i2 given q3 defined in Table 1 are:

sndW(q3, i2) =
1

1
= 1 cmpW(q3, i2) =

1

3
≈ 0.33
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The definitions in (1) and (2) are closely related to the notions of precision
and recall in information retrieval, and soundness and completeness as defined
in [2,6], which are also based on the comparison of set cardinalities. The main
difference in our definitions is that we construct the sets with respect to the set
of queries. In other words, the elements of the sets depend on whether a query is
entailed by the information and/or the true world, instead of directly comparing
the information and the true world as done in the other approaches.

4 Probabilistic Method for Assessing Information Quality

In practice the entire state of W is often not known, especially in the domain
we deal with. Previous work [2] for instance solves this by using data for which
the world is assumed to be true, for example based on expert evaluation. There
are two problems with this approach. First, the quality of received information
cannot be assessed instantaneously in an automated way. Second, it cannot deal
with uncertainty about how the world looks like.

Therefore, instead of requiring hard decisions of what is true or not in the real
world, we construct a set of all possible worlds, which is restricted only to the
relevant part given by all groundings of predicates relevant for the set of queries
Q. We denote this set of possible worlds by WQ.

Example 2. The possible parts of all relevant worlds given q3 are:

wq3 = { cargo(seaman, cement) ∧ cargo(seaman, sand) ∧ cargo(seaman, stone),

cargo(seaman, cement) ∧ cargo(seaman, sand) ∧ ¬cargo(seaman, stone),
. . . }

Now for every possible world W ∈WQ we want to compute the probability for
being true. To achieve this, we use a probabilistic modelM = 〈S, P 〉, where S
denotes the structure of the model and P is a probability distribution such that
P : WQ −→ [0, 1]. The probability of a possible world is denoted by P (W ) and
we have

∑
W∈WQ

P (W ) = 1. In general, P is the joint probability distribution
of the specific grounding terms in W .

Building such a probabilistic model can itself be a complex task, but there is
a largo body of work about how to build such models by incorporating expert
knowledge or learning from data. Here we do not restrict the structure of the
model, as long as the model produces a valid probability distribution, but in
Section 4.2 we discuss some possible alternatives. A strong point of our approach
is that once such a model is build, it can be reused for different vessels and sets
of queries.

4.1 Expected Information Quality

We can then useM to derive the expected soundness and completeness of a set
of queries, as defined in (1) and (2). For this we sum over all possible worlds and
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parametrise snd and cmp with a possible world. We use the notation sndW and
cmpW replacing W by the possible world W in (1) and (2), respectively:

E
[
sndW(Q, I)

]
≡

∑
W∈WQ

P (W ) · sndW (Q, I) (3)

E
[
cmpW(Q, I)

]
≡

∑
W∈WQ

P (W ) · cmpW (Q, I) (4)

Note that if the probability distribution P gives a probability of 1 for a possible
world then the formulas for the expected values of soundness and completeness
reduce to those in (1) and (2), respectively.

Example 3. In this example we use i2, q3 and W from Table 1. Given q3, we generate
the set of all relevant possible worlds Wq3 and we assume that a probabilistic model
gives the probability P (W ) of each possible world W being true; see the table below.
This probabilities could for instance be frequencies obtained from past observations.
We abbreviate the possible world by only giving the cargo the Seaman is carrying
instead of giving the full predicates. To compute the expected values of soundness and
completeness we count the number of queries q ∈ q3 satisfying i2 |= q ∧W |= q, i2 |= q
and W |= q, shortly abbreviated as |i2 ∧W |, |i2| and |W |.

W P (W ) |i2 ∧W | |i2| |W | sndW (q3, i2) cmpW (q3, i2)

¬cement ∧ ¬sand ∧ ¬stone 0.56 0 1 0 0 1
¬cement ∧ ¬sand ∧ stone 0.06 0 1 1 0 0
¬cement ∧ sand ∧ ¬stone 0.07 1 1 1 1 1
¬cement ∧ sand ∧ stone 0.1 1 1 2 1 1/2
cement ∧ ¬sand ∧ ¬stone 0.04 0 1 1 0 0
cement ∧ sand ∧ ¬stone 0.09 1 1 2 1 1/2
cement ∧ ¬sand ∧ stone 0.05 0 1 2 0 0
cement ∧ sand ∧ stone 0.03 1 1 3 1 1/3

Using (3) and (4) the expected soundness and completeness are then:

E
[
sndW(q3, i2)

]
= 0.29 E

[
cmpW(q3, i2)

]
= 0.735

We notice that the estimations are not close to the actual qualities computed in Ex-
ample 1, as P (W ) is based on prior distributions and does not account for additional
information, for instance, that the vessel is a bulk-carrier.

An advantage of our approach is that it allows for a lot of flexibility in what one
is interested in. One could for instance ask whether two types of cargo are on
board of the Seaman or at least one of them.

Example 4. Some examples for more complex queries are given, together with the true
and estimated qualities of i2, given the estimates of Example 3:

Q sndW(Q, i2),
cmpW(Q, i2)

E[sndW(Q, i2)],
E[cmpW(Q, i2)]

q4 = {cargo(seaman, cement) ∧ cargo(seaman, sand)} 1.0, 0.0 1.00, 0.88
q5 = {cargo(seaman, cement) ∨ cargo(seaman, sand)} 1.0, 1.0 0.19, 1.00
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4.2 Probabilistic Model

Although in this paper we do not restrict ourselves to a particular type of a prob-
abilistic model, below we discuss some alternatives for estimating the probability
distribution of the set of possible worlds depending on available information.

No Information–Uniform P (WQ). When no knowledge and information
about the domain is given, the simplest assumption is that all possible worlds
are equally likely:

∀W∈WQ : P (W ) =
1

|WQ|
(5)

Example 5. Consider again Example 3. Given the assumption in (5), the expected

soundness and completeness are E
[
sndW(q3, i2)

]
= 0.5 and E

[
cmpW(q3, i2)

]
≈ 0.42.

In practice, this assumption is most likely violated, making the estimation of
information quality less reliable.

Estimate P (WQ) Using Prior Distributions. Information is often avail-
able as statistics over a population, which can be used as prior distribution for
estimating P (WQ), when no other specific information is available. For example,
in Example 3, one can derive the distribution by taking the fraction of vessels
carrying the particular set of cargoes out of the bulk dry vessels documented at
a particular port.

Although prior distributions could be a good first step for estimating P (WQ),
we note that this may be suboptimal since the quality of information about
unlikely cases will be considered low, even if the quality is good; this is illustrated
in the examples in Section 5.2.

Update P (WQ) Using New Information. If new information becomes avail-
able, in terms of probability theory, we can condition on this information to
update the estimate of P (WQ).

Example 6. Continuing Example 3, the prior distribution estimate can be improved
by using the type of the vessel. Next to the type adding also information obtained
from a visual observation that the vessel definitely carries sand, further updates the
probability distribution of the possible worlds, as shown in the table below:

W P (W ) P (W |bulk carrier) P (W |bulk carrier, sand)

¬cement ∧ ¬sand ∧ ¬stone 0.56 0.06 0.00
¬cement ∧ ¬sand ∧ stone 0.06 0.02 0.00
¬cement ∧ sand ∧ ¬stone 0.02 0.08 0.10
¬cement ∧ sand ∧ stone 0.15 0.04 0.05
cement ∧ ¬sand ∧ ¬stone 0.04 0.05 0.00
cement ∧ sand ∧ ¬stone 0.09 0.03 0.0375
cement ∧ ¬sand ∧ stone 0.05 0.07 0.00
cement ∧ sand ∧ stone 0.03 0.65 0.8125

How the probabilities are updated depends on the model, which is not the focus in this
paper but we note that the probabilities of P (W |bulk carrier, sand) can be derived
from the probabilities for P (W |bulk carrier). This example demonstrates that more
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relevant information contributes to getting a distribution closer to the true world.
Below are shown the actual qualities together with the expected ones using the different
distributions:

sndW(q3, i2) = 1 cmpW(q3, i2) = 0.33

Model distribution E[sndW (q3, i2)] E[cmpW(q3, i2)]

P (W ) 0.29 0.735
P (W |bulk carrier) 0.8 0.392
P (W |bulk carrier, sand) 1 0.415

This shows that having more specific information leads to better estimates of the

expected values of information quality.

Derivation of P (WQ) Using Independence Assumptions. Learning the
probabilities for all possible worlds may quickly become impractical because
their number grows exponentially with the number of queries. One way to tackle
this is to assume that the probability P (g) for a grounding g of a predicate,
representing a query in Q, is true is independent of all the others. In this case,
only one estimated probability is needed for each query to define the model. The
probability that a possible world is true can then be defined as:

P (W ) ≡
∏
W |=g

P (g) ·
∏

W |=¬g

(
1− P (g)

)
(6)

Example 7. Consider again Example 3. Suppose that the model cannot give a prob-
abilistic estimate of each possible world as before but only to the grounding of each
predicate in the queries, i.e.,

P (cargo(seaman, cement)) P (cargo(seaman, sand)) P (cargo(seaman, stone))
0.21 0.29 0.24

Here, the probabilities are computed as the marginals for the sake of comparison.
Now using (6) and the three probabilities above, we compute the probabilities for

each possible world. Then E
[
sndW(q3, i2)

]
= 0.29 and E

[
cmpW(q3, i2)

]
≈ 0.66. The

expected soundness is still the same, while the expected completeness changes.

Although in practice, the independence assumption may be too strict for all
variables, it can still help reduce complexity while providing useful estimations.

Typical examples of probabilistic models that are able to incorporate do-
main knowledge, manage dependencies, and provide prior and posterior (joint)
probability distributions include probabilistic graphical models such as Bayesian
networks [5] and probabilistic logic [4,1].

5 Experiments

We perform two experiments to show that (i) the queries matter for estimating
information quality (Exp-1), showing that our flexible approach to define queries
is necessary, and (ii) a distribution conditioned on observations of the actual
world is needed to give proper estimates (Exp-2).
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Fig. 2. The effect of the query on the soundness and completeness of information

For both experiments we generate N samples using the distribution given
in the table of Example 3. Each sample S1, . . . , SN therefore consists of three
Boolean values indicating whether the ship carries cement, sand or stone. We fix
N = 100000 for all experiments. We simulate pieces of information I1, . . . , IN
by observing whether a type of cargo is present in the actual world or not. The
information can be wrong, which we simulate by introducing an error ε, i.e. there
is a probability ε that the observation is wrong, which means that the cargo is
reported while not present or the other way around. In the dynamic domain we
deal with the actual error rates are unknown. We therefore vary ε from 0 to 1 in
steps of 0.01 in the experiments to get results for various error rates.

5.1 Exp-1: Effect of Query on Information Quality

The information quality decreases with more discrepancies between the informa-
tion and the actual world, i.e., with increasing ε. The rate of change of soundness
and completeness given the error, however, depends on the query, as demon-
strated in this experiment.

We compare the different sets of queries: q3 from Table 1 and q4, q5 from
Example 4. For the different queries we determine the actual soundness and
completeness sndSi(Q, Ii) and cmpSi(Q, Ii) for each sample and compute the
averages. We repeat this for different ε. Figure 2 shows the average soundness
and completeness for the different queries against ε.

The quality of information obviously decreases as the error increases. If there
is no error the quality is perfect, but it is interesting that it never goes to 0
even if the reported information is completely wrong. For instance, the mean
completeness for q3 and ε = 1.0 is above 0.5. This is because according to the
distribution in 56% of the cases none of the three cargo types is on board of a
ship. The reported completely wrong information reports all three kinds of cargo,
which is per definition complete. This is true for soundness in an analogous way.
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Fig. 3. The effect of the distribution used to estimate information quality on the MSSE

The set of query containing the conjunction q4 has a better soundness, as in
less situations the query can be positively answered. In this case the soundness
is 1.0. The difference between the completeness of q4 and q5 is very small. This
is not a general property of the queries, but changes with a different distribution
used to generate the samples.

5.2 Exp-2: Comparison of Different Distributions for Prediction

In this section we compare how different distributions perform when used to
estimate the information quality. This shows that as already shown in Example 6
conditioning on some knowledge about the actual world is needed to get proper
estimates. We only use q3 and use the following distributions:

– D1: the uniform distribution (Equation 6)
– D2: the distribution used to generate the data (table of Example 3)
– D3: the distribution used to generate the data conditioned on the observation

whether the ship is carrying sand (P (W |sand) or P (W |¬sand))

For the different distributions we determine for each sample the actual and
estimated soundness and completeness and compute the mean sum of squared
errors (MSSE). We repeat this for different ε; see Figure 3.

The result clearly shows that using a distribution which is dynamically condi-
tioned on information from the actual world, outperforms fixed distributions in
nearly all cases. It might be surprising that the uniform distribution for some ε
works better than the one used to generate the data. We focus on the soundness
for the case ε = 0 to give a better insight of why this is the case. In the following
table we give for each pair of estimated and actual soundness the frequency of
how often this pair occurs for all samples S1, . . . , SN :
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D1 D2

sndW(q3, I) E[sndW(q3, I)] frequency E[sndW(q3, I)] frequency
1.0 1.0 0.562 1.0 0.562
1.0 0.5 0.438 0.247± 0.026 0.438

For the cases where no information is reported the information is always sound,
so the difference is in the other cases. Using D1 for those cases all predictions
are 0.5 and for D2 it is always smaller. Since 0.5 is close to the actual soundness
1.0, D1 performs better for this case. This shows that a fixed distribution is not
sufficient even if the actual distribution is perfectly known.

6 Conclusions

We propose a novel methodology for systematically representing and assessing
the quality of information obtained from various sources in uncertain domains
such as maritime surveillance. We give a concise, formal definition of informa-
tion quality based on logical entailment and two sub-properties–soundness and
completeness–indicating the goodness of answers derived from information com-
pared to the ground truth. Unlike previous work the definition allows to consider
information quality as a dynamic property of the information, which depends on
the questions at hand. Also we do not require certain knowledge about reality
and allow to deal with uncertainty, by proposing method to estimate informa-
tion quality using a probabilistic model. An application on a maritime scenario
demonstrated basis properties of the proposed method.

In future, we plan to study the effect of the estimates from the probabilistic
model on the quality of information by developing a realistic model based on the
maritime domain.
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Abstract. While a great variety of algorithms have been developed
and applied to learning static Bayesian networks, the learning of dy-
namic networks has been relatively neglected. The causal discovery pro-
gram CaMML has been enhanced with a highly flexible set of methods
for taking advantage of prior expert knowledge in the learning process.
Here we describe how these representations of prior knowledge can be
used instead to turn CaMML into a promising tool for learning dynamic
Bayesian networks.

Keywords: Learning dynamic Bayesian networks, causal discovery,
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1 Introduction

Bayesian networks (BNs) have become a valuable tool for applied Artificial In-
telligence, where they are effective in reasoning about and under uncertainty,
managing uncertainty, and providing better information for planning. Bayesian
networks have been widely and successfully applied across the sciences, includ-
ing economy, biology, and medicine. In simpler cases, a Bayesian network can
be built by expert elicitation. However, for many real world applications, BNs
are too complex to be fully specified by experts, requiring learning from obser-
vational data. A great amount of effort has been spent on research on learning
Bayesian networks from data, with many successful programs and algorithms the
consequence (see Daly et al., 2011, for a recent review). While the generaliza-
tion of static to dynamic Bayesian networks (DBNs), representing both “static”
causal relations (within one time slice) and dynamic causal relations (across time
slices), is relatively straightforward, the generalization of static BN learners to
dynamic BN learners is a bit trickier. Here we present some preliminary results
applying a static learner, the CaMML causal discovery program (causal discov-
ery via Minimum Message Length), to learning dynamic BNs structure from
data.

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 902–913, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Bayesian Networks

A Bayesian network is a directed acyclic graph where each node represents a
random variable, and the topology of the graph encodes the independence rela-
tions among the variables, according to the d-separation criterion (Pearl, 1988).
Given the independencies implied by the graph, the joint distribution is deter-
mined by the condiional probability tables (CPTs) associated with each node;
thus, for a Bayesian network with variables X1, . . . , Xn:

p(x1, . . . , xn) =

n∏
i=1

pi(xi|pa(xi)), (1)

where pa(xi) denotes a configuration of values of the parents of variable Xi in
the network.

2.1 Learning Bayesian Networks

There are two fundamental difficulties in learning Bayesian network structures.
One is the complexity of learning Bayesian network structures. The space of
Bayesian networks is super-exponential in the number of variables, and the
learning problem has been proven to be NP-hard (Chickering, 1996). The other
difficulty is that given observational data there is usually no unique Bayesian
network that represents observed joint distribution over a set of variables. Vari-
ous approaches have been developed to make the problems tractable, which can
be categorized into constraint-based methods and metric-based methods.

Constraint-based methods aim to discover causal models using conditional
independences from statistical tests on data, incorporating heuristic search to
find the best structure over the Markov equivalence classes.

Metric-based learners use metrics that score candidate structures embedded
in a search procedure aiming to maximize or minimize that score. The Bayesian
Information Criterion (BIC) score (?) and the Bayesian Dirichlet (BDe) score
(Cooper and Herskovits, 1991) are two popular metrics that have been used in
many BN learning techniques. Wallace and Korb (1999) used Minimum Message
Length (MML) metric for learning BN in the casual discovery program CaMML.

2.2 The CaMML Learner

CaMML (Causal discovery via Minimum Message Length) attempts to learn the
best causal structure to account for the data, using a Minimum Message Length
(MML) metric (Wallace, 2005) with a two-phase search over the model space,
simulated annealing followed by Markov Chain Monte Carlo (MCMC) search.
CaMML has been developed at Monash University over the past 16 years (see
Korb and Nicholson, 2011, Ch 9, and O’Donnell, 2010 for a full description). We
used the most recent open-source version of CAMML,1. CaMML supports mul-
tiple ways of describing prior information about relationships between variables

1 https://github.com/rodneyodonnell/CaMML

https://github.com/rodneyodonnell/CaMML
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(O’Donnell et al., 2006), each of which can be accompanied by a confidence level.
The types of priors are:

– Full structure. An expert may supply a fully specified network for all or
subnetwork.

– Direct causal connections between variables may be indicated (e.g., A→ B).
– Direct relation (A −B). I.e., there is an arc between two variables, but the

direction is unknown.
– Causal dependency (A⇒ B). One variable is an ancestor of the other.
– Correlation (A ∼ B). There is some connection between the nodes, which

may be a causal dependency in either direction or via a common ancestor.
– Temporal order ({A1, A2, ...Am} ≺ {B1, B2, ...Bn}). This sorts variables into

tiers, a partial ordering based on the notion that tiers separate the variables
on a timeline and that causality only occurs in the forward time direction.
This is the most commonly allowed prior constraint in BN learning (e.g.,
Tetrad IV and K2). Thus ≺ means that the Ai occur before the Bj ; for
CaMML this becomes the structural constraint that the Ai cannot be de-
scendants of Bj .

The expert may provide CaMML with any combination of the priors above,
together with the confidence in each (expressed as a probability).2 CaMML then
combines these into an MML code for a prior probability distribution over the
model space, as explained, for example, in Korb and Nicholson (2011, Chap 9).

3 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) represents a system that changes over
time. A static model over the variables X1, . . . , Xn is repeated for each time
slice Ti.

3 To distinguish between corresponding variables across time slices, we
will denote them XTi

n , meaning variable Xn during time slice Ti. The time slices
are connected through temporal links, that are the same for every consecutive
pair of time slices. Usually the temporal links only connect one time slice with
the next (so, the order 1 Markov assumption holds). Finally, the conditional
probabilities don’t change over time (the system is assumed to be stationary).
A DBN can be specified very compactly:

– Set of node names, defined as ΩX = ∀n∀iXTi
n

– Intra-slice links, that connect variables in the same time slice
– Temporal (inter-slice) links
– CPTs for the first time slice
– CPTs for the second time slice (when parents may be either from Ti or Ti+1

time-slices)

2 Some other BN learners also support the use of structural knowledge, but they have
been limited to specifying one or two of these kinds of priors.

3 I.e., DBNs are stationary systems. The flexibility of CaMML would allow us also to
look at learning non-stationary dynamic models, which we may do in the future.



Causal Discovery of Dynamic Bayesian Networks 905

3.1 Learning Dynamic Bayesian Networks

Friedman et al. (1998) were the first to look at automated learning of DBNs,
extending both the BIC score and the BDe score to apply them to DBNs. They
decomposed the learning problem into learning first the static network, rep-
resenting time slices, and then the transition network relating one time slice
to the next, applying Friedman’s structural EM algorithm to the learning tasks.
Tucker and Liu (1999, 2003) applied evolutionary algorithms with an MDL score
to DBN learning. Other techniques that have been applied include branch-and-
bound (de Campos and Ji, 2011) and greedy search (Van Berlo et al., 2003).

Comparison with these methods is made difficult by the lack of a common
set of learning problems and lack of access to the programs used (although the
EM MDL approach is available in Murphy’s BNT). Here we will simply explore
using CaMML for DBN learning in comparison with the PC algorithm in GeNIe.
We chose CaMML because, not only are we familiar with it, but it has the
widest and most flexible range of representations for prior learning constraints
of the available BN learning programs (see §2.2), allowing DBN constraints to
be readily incorporated.

4 Examples of Dynamic Bayesian Networks

To explore the possibilities of learning DBNs with CaMML, we have taken two
Bayesian networks from the literature, modified to represent stationary models
with two time slices. The CPTs were handcrafted.

4.1 eMilk Dynamic Bayesian Network

Milk from a cow may be infected. There is a test to detect whether the
milk is infected, which may give either a positive or a negative test result.
The test is not perfect. It may give a positive result on clean milk as well
as a negative result on infected milk (Jensen and Nielsen, 2007).

We have added some weather conditions that may affect the milk, namely tem-
perature and humidity. These two variables are summarized in a weather vari-
able, that affects directly the quality of the food eaten by the cow and indi-
rectly the probability of an infection in the milk. In our model high humidity
increases the probability of an infection, and the temperature has an impact on
the accuracy of the test, with extreme temperatures increasing the chances of
a malfunction. The model can be extended over time to observe this situation
over time. We duplicated the original structure to obtain two time slices, with
some temporal links between them. The full model is shown in Fig.1.

4.2 eMetCancer Dynamic Bayesian Network

Metastatic cancer is a possible cause of brain tumors and is also an ex-
planation for increased total serum calcium. In turn, either of these could
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Fig. 1. Handcrafted extended milk model (eMilk)

explain a patient falling into a coma. Severe headache is also associated
with brain tumors. (Cooper, 1984)

This situation can also be observed over time. For example the presence of a
brain tumor at one time may be due to an earlier tumor metastasizing. We have
expanded this model into two time slices by duplicating the original structure
and adding five temporal links to it. Note that the model has not been checked
with an expert and so it may not represent the medical reality. The resultant
model is shown in Fig. 2.

4.3 Sensitivity Analysis

We performed sensitivity analysis on the models in order to determine the con-
nection strengths of the links in the dynamic Bayesian networks (Jitnah, 1999;
Boerlage, 1992). This allowed us to check the strengths of the links that CaMML
was not able to detect. We obtained the mutual information between each pair
of connected nodes using Netica’s M.I. function.4 These strengths are specified
in Fig.1 and Fig.2 as links weights. As shown, we designed both examples to
have a mixture of weak and strong arcs.

4 See www.norsys.com. More specifically, the Netica M.I. measure is over all paths
between two nodes; we limited it to the direct connection path by d-separating the
nodes on any other paths, by averaging over the Markov blanket (excluding the path
in question).

www.norsys.com
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Fig. 2. Handcrafted extended Metastatic Cancer model (eMetCancer)

5 Experimental Evaluation

5.1 Methodology

In order to learn dynamic Bayesian networks with CaMML, we incorporated as
prior knowledge constraints that define DBNs. The most obvious such constraint
is to group variables within a time slice in a tier, so all the variables of one time
slice must precede all those in the next. Thus we define the temporal order:
{XT0

1 , XT0

2 , ...XT0

i } ≺ {X
T1

1 , XT1

2 , ...XT1

i }.
A more elaborate approach to learning DBNs is shown in Algorithm 1. The

idea here is to learn a static Bayesian network for a single time slice; duplicate
it, identifying it as the subnetwork for both time slices, by fixing its causal arcs
as prior constraints with confidence 1 (as CaMML allows us to do); learn the
temporal links connecting the two tiers.

We used three sample sizes for most of our experiments: 1000, 10000 and
100000 cases. CaMML was run with the default of 201n3 iterations in its search
(where n is the number of variables).

For comparison, we also learned models using the version of the PC algorithm
implemented in GeNIe,5 employing both tier priors and Algorithm 1. GeNIe
permits the incorporation of certain types of prior information, in particular
temporal tiers and the hard constraint of arcs that can or can’t be in the model.
Since PC does not direct all arcs learned, when measuring the quality of these

5 From the Decision Systems Laboratory of the University of Pittsburgh
http://dsl.sis.pitt.edu/.

http://dsl.sis.pitt.edu/
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models, we penalized undirected arcs (when present in the original model) with
half the penalty used for standard errors.

Algorithm 1: Learn a DBN with CaMML using learned prior information

Input: A database D
Output: DBND, a DBnet for D

1 begin
2 // Divide D into DT1 and DT2

3 Let DT1 = data from variables in T1

4 Let DT2 = data from variables in T2

5 Let X1...Xn be the generic variables in a time slice

6 Change variables in DT1 and DT2 for their equivalents in X1...Xn

7 // Note that Dgeneric will have twice as much data as DT1 and DT2

8 Make Dgeneric = DT1 ∪DT2

9 Learn Ggeneric from Dgeneric using CaMML
10 foreach time slice Tk, k = 1, 2 do
11 foreach pair of variables Xi, Xj in Ti do
12 if Xi → Xj ∈ Ggeneric then

13 set the intra-slice link X
Tk
i → X

Tk
j as prior with confidence 1

14 else

15 set the intra-slice link XTk
i → XTk

j as prior with confidence 0

16 Set tier for the temporal order ({XT1
1 , XT1

2 , ...XT1
n } ≺ {XT2

1 , XT2
2 , ...XT2

n })
17 Learn temporal links with CaMML using the priors defined in steps 10-15

and the tier defined in step 16, using database D
18 Set the result as DBND

19 return DBND

5.2 Evaluation

To evaluate the different approaches to learning we measured how close learned
structures were to the original networks used to generate the data using edit
distances. For learning static BNs, this can be as simple as counting the minimal
number of arc deletions, additions and reversals to go from one model to the
other.6 DBNs require some adjustment to the edit distance, however.

Edit Distance for DBNs (eED). In a stationary DBN, all time slices have
the same structure, so if during the learning process this restriction is violated,
the traditional computation of the edit distance does not detect it. We modify

6 Even for static BNs this is too simple, ignoring the difference between reversals
that leave models Markov equivalent and those that don’t. In any case, however,
edit distance will remain crude compared to Kullback-Leibler divergence and other
measures. For a discussion see Korb and Nicholson, 2011, Sec 9.8.
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this metric by counting the errors in just the second slice and the errors in the
temporal links separately. These links suffice to reconstruct the entire DBN,
excepting the first time slice, whose importance disappears in a sufficiently large
expansion of the DBN. Thus we used:

eED(N,N ′) = wtE(Nt, N
′
t) + wsE(Ns, N

′
s)

where N,N ′ are the original and learned networks respectively, E(·, ·) measures
static BN edit distance, wt is the weight assigned to temporal links and ws

that for static links, Nt is the original network restricted to temporal links, Ns

is the same restricted to static links in the second tier, and N ′
s and N ′

t the
corresponding learned subnetworks. For this work we set wt = ws = 1.

5.3 Results and Discussion

Some of our results are shown in Table 1. A more detailed view of results for
eMilk without priors is given in Table 2. If we look only at the outcome of the
experimentation with no priors and with tier priors, an inspection of the learned
BNs for eMilk (e.g., Figure 3) shows that when arcs are missing, these arcs are
the ones with the lower M.I. score, e.g., Temp 0 → Test 0, Temp 1 → Test 1
and Humid 0 → Infection 0. In the case of the eMetCancer model, the errors
are always found in the temporal link set.

While we have a general expectation that learning with more samples will
reduce errors, interestingly this is not always the case. For example, GeNIe no
priors, the eED for eMilk goes from 4.25 to 7.5 from 1000 to 100000 sample
points. In such cases, the increase in the eED is commonly due to errors of
commission, with spurious arcs being added. This happens for both networks
and for learning with and without priors, suggesting that especially GeNIe’s PC
is overfitting its data. For a detailed comparison of PC and CaMML’s learning
performance, see Dai et al. (1997).

Tier priors for GeNIe reduced the eED in all cases. For CaMML, priors,
whether with tiers or Algorithm 1, eliminated errors with eMetCancer, but did

Fig. 3. Extended milk model learned with the PC algorithm, with a database of 10000
cases
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Fig. 4. Extended Metastatic Cancer model learned with the PC algorithm, with a
database of 10000 cases and the temporal tier

Fig. 5. Extended milk model learned by CaMML with Alg. 1 using a 100000 cases
database

Fig. 6. Extended Metastatic Cancer model learned by CaMML with Alg. 1 using a
100000 cases database
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Table 1. Edit distance for DBNs (eED) obtained for the different models learned

CaMML GeNIe
eMilk eMetCancer eMIlk eMetCancer

1000 0.95 2.6 4.5 4.5
no priors 10000 0 0.5 2 4.5

100000 0 0.5 7.5 1

1000 0.975 2.4 3.5 2.5
tier 10000 0 0 3 1.25

100000 0 0 4.5 0.25

1000 1.5 0 5.5 5
Algorithm 1 10000 0 0 4.5 3

100000 0 0 9 4.5

Table 2. Mean errors (omissions, commissions, reversals) and edit distances (eED) for
eMilk without priors (reporting standard deviations for CaMML over twenty runs; PC
is deterministic)

CaMML GeNIe
om com rev eED (sd) om com rev eED

100 4.2 0 1.65 3.425 (0.43) 9 2 0 5.5
no priors 1000 1.9 0 0 0.95 (0.15) 4 4 1 4.5

10000 0 0 0 0 (0.0) 2 1 1 2

not make a difference for eMilk, where the learning is exact given 10k or larger
samples. Both the use of tiers and Algorithm 1 appear to provide a satisfactory
basis for learning dynamic networks.

Table 2 shows the results for eMilk without priors in more detail (other cases
show similar results). In order to examine variation, we ran CaMML twenty times
and estimated its mean and standard deviation in eED (PC is deterministic).
The results show differences in performance between CaMML and PC at all
sample sizes that are statistically significant.

6 Conclusions and Future Work

In this paper we have shown how a static BN learner with structural priors
can be adapted to learn dynamic Bayesian networks, which explicitly model
changes over time. We have presented experimental results applying two such
learners, CaMML (a metric-based learner) and GeNIe (which uses conditional
independence learning). Applying temporal tiers can result in networks with
different structures in each time slice. An alternative two-stage algorithm ensures
the connections within a slice remain the same, but may lead to other errors in
the network structure. Our results also show that CaMML clearly outperforms
GeNIe PC.
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The obvious next step is to compare the performance of the static learners used
with priors and Algorithm 1 with tailored DBN learners such as that provided
with Murphy’s BNT software (Murphy, 2001). There are further opportunities
for using CaMML’s flexible priors to boost DBN learning. Finally, CaMML’s
scoring metric may be enhanced to deal with DBN features intrinsically. While
this work is very preliminary, it clearly points out a promising direction for future
research.
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Gütl, Christian 95

Haslum, Patrik 803
Heap, Bradford 839
Hendrikx, Mark 1
Hengst, Bernhard 851
Hindriks, Koen 1
Hingston, Philip 338
Hong, Xia 433
Hoque, Md. Tamjidul 107
Hu, Chao Heng 902
Huang, David Tse Jung 614
Hung, Edward 743
Hussain, M.S. 170
Hutter, Marcus 15

Iqbal, Muhammad 350
Issabekov, Rustam 626

Jabeen, Shahida 421
Johnston, Mark 144, 373



916 Author Index

Jonker, Catholijn 1
Jourabloo, Amin 132

Kazmiercazk, Ed 73
Khan, Mohammad Sharif 362
Khoo, Suisin 49
Kim, Yang Sok 61
Knittel, Anthony 156
Koh, Yun Sing 120, 614
Korb, Kevin B. 902
Krzywicki, Alfred 61

Lam, Chiou Peng 338
Leau, Yu Beng 291
Leckie, Christopher 649
Leod, Peter Mc 85
Li, Juanzi 815
Li, Ruobing 385
Li, Wenkai 385
Li, Yuefeng 457
Liang, Guohua 637
Liu, Min 791
Liu, Wei 95, 649
Lu, Juan 73
Lucas, Peter J.F. 890
Luo, Xudong 409, 863

Ma, Wenjun 409, 863
Maali, Yashar 661
Mahidadia, Ashesh 61
Main, Linda 707
Makalic, Enes 672, 878
Man, Zhihong 49
Manton, Jonathan H. 73
Manzuri-Shalmani, Mohammad T. 132
Mascaro, Steven 902
Masek, Martin 338
McPartland, Michelle 397
Mendes, Alexandre 827
Meyer, Thomas 505
Michels, Steffen 890
Monkaresi, Hamed 170
Morawska, Barbara 493
Moser, Josef Robert 95

Nantajeewarawat, Ekawit 481
Narodytska, Nina 194, 206
Nayak, Abhaya C. 517
Newton, M.A. Hakim 107

Nguyen, Dung 445
Nicholson, Ann E. 902

O’Keefe, Richard 300

Pagnucco, Maurice 839
Palshikar, Girish Keshav 767
Park, Laurence A.F. 579
Patrick, Jon 445
Pears, Russel 614
Peng, Lifeng 266
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