
Chapter 16
Ocean Ensemble Forecasting and Adaptive
Sampling

Xiaodong Hong and Craig Bishop

Abstract An ocean adaptive sampling algorithm, derived from the Ensemble
Transform Kalman Filter (ETKF) technique, is illustrated in this Chapter using
the glider observations collected during the Autonomous Ocean Sampling Network
(AOSN) II field campaign. This algorithm can rapidly obtain the prediction error
covariance matrix associated with a particular deployment of the observation
and quickly assess the ability of a large number of future feasible sequences of
observations to reduce the forecast error variance. The uncertainty in atmospheric
forcing is represented by using a time-shift technique to generate a forcing ensemble
from a single deterministic atmospheric forecast. The uncertainty in the ocean
initial condition is provided by using the Ensemble Transform (ET) technique,
which ensures that the ocean ensemble is consistent with estimates of the analysis
error variance. The ocean ensemble forecast is set up for a 72 h forecast with a
24 h update cycle for the ocean data assimilation. Results from the atmospheric
forcing perturbation and ET ocean ensemble mean are examined and discussed.
Measurements of the ability of the ETKF to predict 24–48 h ocean forecast error
variance reductions over the Monterey Bay due to the additional glider observations
are displayed and discussed using the signal variance, signal variance summary map,
and signal variance summary bar charts, respectively.

16.1 Introduction

The impact of supplemental observations on the forecast error reduction depends
on: (a) the size of the forecast error at the location where the observation is taken,
(b) the assumptions used in the data assimilation scheme about the strength of the
correlation between errors in forecasts of the observed variable and errors in all other
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variables defining the model state, (c) the actual correlation between errors of the
observed variable and the model state variables, and (d) the growth and movement
of the change in the estimated state imparted by the supplemental observations. In
many applications, there is a special region called a verification region and a special
time called a verification time. One often wishes to collect and use supplemental
observations at an earlier observation time to minimize the forecast error variance
within the verification region at the verification time. The problem of identifying the
best location for deploying mobile observation platforms is often called the adaptive
sampling or targeting problem. The importance of this problem has been heightened
in oceanic applications by the advent of Autonomous Underwater Vehicles (AUVs)
and underwater gliders. These observing platforms need to be told where to go and
when. Since one must decide where to take the supplemental observations well
before the targeting time, it is critical to solve the adaptive sampling problem in
an accurate and timely manner. The ETKF based technique is used to provide the
guidance of the ocean adaptive sampling for the supplemental ocean observations.

The ETKF uses an ensemble forecast initialized at an initialization time to
quickly obtain the prediction error covariance matrix associated with a particular
deployment of observation by solving a low rank Kalman filter equation. The
technique can quickly assess the ability of a large number of future feasible
sequences of observations to reduce the forecast error variance. The ETKF was
developed by Bishop et al. (2001) and first used to provide the optimal flight
tracks, where Global Positioning System (GPS) dropwindsondes were released
during the Winter Storm Reconnaissance (WSR) program (Szunyogh et al. 2000),
for improving the 24–72 h forecasts over the continental United States (Majumdar
et al. 2002). It was also used for the medium range forecasts through a single
model ensemble (Buizza et al. 2003; Sellwood et al. 2008), and a multi-model
ensemble (Majumdar et al. 2010), as well as for tropical cyclone predictions
(Majumdar et al. 2011). While the ETKF technique is increasingly used in the area
of atmospheric adaptive sampling, there are relatively few applications in the area
of ocean adaptive sampling.

In this study, the ETKF ocean adaptive sampling technique is applied to the
glider data collected during the AOSN II field campaign that took place in the
Monterey Bay in August 2003. The goal for the month-long field experiment was
to build a fundamental understanding for upwelling and relaxation processes as
well as their impact on the other biological (ecosystem productivity) and chemical
(nutrient fertilization) counterparts in the Monterey Bay. To achieve the goal, it was
important to develop strategies to command sophisticated robotic vehicles to the
locations where the observations collected by them could be the most useful ones
(AOSN 2003). Multiple AUVs and underwater gliders were deployed during the
field campaign to collect data so that the data could be integrated into ocean forecast
models for improving the model performance.

The ocean ensemble and adaptive sampling technique presented here is a
continued effort of the verification of ocean modeling project (Hong et al. 2009a).
The deterministic run in Hong et al. (2009a) is used as the control run of the
ensemble simulation in this study. Consequently, the model, model configuration,
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Fig. 16.1 The NCOM and NCODA domain; (b) The COAMPS nested domain

and domain setting are exactly the same in both studies. The ocean model is
the Navy Coastal Ocean Model (NCOM, Martin 2000) with the multivariate
analysis of Navy Coupled Ocean Data Assimilation (NCODA, Cummings 2005).
The atmospheric forcing is obtained from a deterministic operational forecast
using Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS, Doyle
et al. 2008). Figure 16.1 shows the domain setting for the atmospheric and oceanic
components of COAMPS as well as NCODA, respectively. The domain for the
ocean components is within the innermost nested domain of the atmospheric
component of COAMPS.

The rest of the Chapter is organized as follows. In Sect. 16.2, the description of
the ETKF adaptive sampling is provided. Section 16.3 contains the discussion of the
atmospheric forcing ensemble generation. Section 16.4 presents the results from
the ocean ensemble forecast. Section 16.5 illustrates the application of the ocean
adaptive sampling for the AOSN II glider observations. Summary and discussion
are presented in Sect. 16.6.

16.2 Ocean Adaptive Sampling Technique

In ETKF adaptive sampling, the observations are divided into: (1) non-adaptive or
routine observations such as satellite and buoy observed SST, satellite observed
altimeter, mooring observed ocean profiles and high frequency radar observed
surface current, and (2) adaptive observations such as aircraft observed SST
and observations collected by autonomous underwater gliders. The first step is
to estimate routine analysis error covariance matrix valid for the ocean routine
observations. The second step is to estimate the reduction in forecast error variance
due to the supplemental ocean adaptive observations.
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16.2.1 Analysis Error Covariance for the Routine Observations
with the ET Technique

To be consistent with the ET technique of ensemble generation, we need to utilize
a guess of the analysis error covariance matrix Pa

g associated with the routine
observational network. Let the columns of the nxK matrices Xo and Xv list the raw
ensemble perturbations at the observation and verification times, respectively, of the
ensemble forecast initialized at the initialization time.

The forecast perturbations Xo can be transformed into a set of perturbations Xr

that are consistent with Pa
g using

Xr D XoT (16.1)

where

T D B—ƒ�1=2BT (16.2)

and where B D Œb1; b2; : : : ; bK� is a K � K orthogonal matrix containing the

eigenvectors of the symmetric matrix
�

XoTPa�1
g X0=N

�
. In other words,

XoTPa�1
g Xo

N
D BƒK � KBT : (16.3)

where ƒ D diag .�11; �22; : : : ; �KK/ is a K � K diagonal matrix listing the eigen-

values of
�

XoTPa�1
g X0=N

�
. Since the sum of the forecast perturbations is equal to

zero, one of these eigenvalues will be equal to zero. Consequently, provided each
ensemble contains K�1 linearly independent perturbations, ƒ can be written in the
form,

ƒK � K D
�

ƒ.K�1/ � .K�1/ 0

0 0

�
(16.4)

where ƒ.K�1/ � .K�1/ is a (K�1)�(K�1) diagonal matrix whose diagonal elements
are all greater than zero. The —ƒ used in (16.4) is obtained from ƒ by setting its zero
eigenvalue equal to 1, in other words,

—ƒK � K D
�

ƒ.K�1/ � .K�1/ 0

0 1

�
(16.5)

Note that while —ƒ has an inverse, the inverse of ƒ does not exist. This adjustment of
the eigenvalue matrix is permissible because it does not affect the sample covariance
matrix of initial perturbations implied by (16.3). To see this, first note that pre and
post multiplying (16.5) by the eigenvector bK corresponding to the zero eigenvalue
�K D 0 shows that
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bT
KXoTPa�1

g X0bK

N
D 0; and consequently jXobK j D 0: (16.6)

Second, note that if �ii and –�ii denote the diagonal elements of ƒ and —ƒ,
respectively, we may deduce that the perturbation ensemble sample covariance
matrix Pr

e associated with the transformed ensemble perturbations is given by

Pr
e D Xr XrT

K � 1
D XoTTT XoT

K � 1
=

XoB—ƒ�1BT XoT

K � 1

D 1

K � 1

KX
iD1

xo
i bi bT

i xoT
i

—�1=2
i i

D 1

K � 1

K�1X
iD1

xo
i bi bT

i xoT
i

�
1=2
i i

(16.7)

where bi is the ith column of B. Equation 16.7 shows that because jXobK j D 0,
Pr

e is entirely independent of the value assigned to Kth eigenvalue. Throughout this
discussion we will assume that every ensemble contains K�1 linearly independent
ensemble perturbations.

16.2.2 Signal Variance and Forecast Error Variance Reduction
for Adaptive Observation with the ETKF Technique

If the true analysis error covariance at the observation time after assimilating all
routine observations was given by Pr

e D Xr XrT

K�1
then the posterior analysis error

covariance Pa
i after assimilating the ith feasible deployment of adaptive observations

ya
i in addition to the routine observations is given by

Pa
i D Pe

r � Pe
r

QHaT
i

� QHa
i Pe

r
QHaT

i C I
��1 QHa

i Pe
r (16.8)

where QHa
i describes the mapping from the model state vector to the observation

vector normalized by the inverse square root of the observation error covariance
R�1=2

i associated with the ith feasible deployment; in other words,

QHa
i xt D R�1=2

i yt
i (16.9)

where xt denotes the true model state and yt
i denoted the true value of the observed

variable. As shown in Bishop et al. (2001), if

Pa
i D Xa

i XaT
i

K � 1
(16.10)
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where Xa
i is a n�K matrix then

Xa
i D Xr Ci .�i C I/�1=2 CT

i (16.11)

where the K�K orthonormal matrix Ci and the K � K diagonal matrix �i is given
by the eigenvector decomposition

XaT
r HaT

i R�1
i Ha

i Xa
r

K � 1
D Ci �i CT

i : (16.12)

The columns of Xa
i may be interpreted as transformed ensemble perturbations

whose covariance gives the analysis error covariance at the observation time
assuming that the ith deployment of adaptive observations had been assimilated.
To see the impact of the adaptive observations at the verification time, one needs to
be able to propagate each of the columns of Xa

i through time in a manner consistent
with the governing dynamical equations. A computationally expensive way of doing
this would be to define a tangent linear model M such that

M
�

xo
c C xa

j i

�
� M

�
xo

c

� � Mxa
j i (16.13)

where M is the non-linear dynamics propagator that maps state vectors from the
observation time to the verification time, xo

c is the control forecast at the observation
time and xa

j i is the jth column of Xa
i . If one had this operator in hand, then the

forecast error covariance matrix given the ith deployment of observations Pv
i would

be given by

Pv
i D MXa

i

�
MXa

i

�T

K � 1
(16.14)

However, using (16.11) and (16.1) in (16.14) gives

MXa
i D .MXo/ TC .� C I/�1=2 CT : (16.15)

Now MXo represents a tangent linear approximation to the propagation of the raw
untransformed ensemble perturbations at the observation time to the verification
time. Of course, the non-linear equations map the observation time raw pertur-
bations Xo to the verification time perturbations Xv. These are directly available
from the raw ensemble without any additional computational expense. Hence, a
computationally inexpensive way of computing Pv

i that is more accurate than that
given by (16.14) is

Pv
i D Xv

i X
vT
i

K � 1
; where Xv

i D XvTCi .�i C I/�1=2 CT
i : (16.16)

Equation 16.16 gives the forecast error covariance of the model variables given
the ith deployment of adaptive observations. Often the controller of adaptive
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observational resources will want to use them to minimize the error variance of
some q-vector function fv of some subset(s) of the forecasted variables.

A perfect raw ensemble would provide K draws from the distribution of verifying
functions given the forecast. In particular, the jth ensemble member gives

fv
j D H v

�
xv

j

�
D H v

h
Nxv C

�
xv

j � Nxv
�i

' H v .Nxv/ C Hv
�

xv
j � Nxv

�
(16.17)

where Nxv is the mean of the ensemble forecast and where H v is the non-linear
function of interest and Hv is the derivative of the non-linear function with respect to
the model variables about the mean of the ensemble forecast Nxv. Thus, the estimate
of the qxq forecast error covariance matrix of the vector function f associated with
the forecast upon which targeting decisions is made is given by

D�
f � ft

� �
f � ft

�T
E

' 1

K � 1

KX
j D1

�
H v

�
xv

j

�
� H v

�
xv

j

�� �
H v

�
xv

j

�
� H v

�
xv

j

��T

' 1

K � 1

KX
j D1

Hv
�

xv
j � Nxv

� �
xv

j � Nxv
�T

HvT

D HvXv .HvXv/T

K � 1
: (16.18)

where H v
�

xv
j

�
denotes the mean of the ensemble of vector functions. Using (16.18)

and (16.16) leads to the following estimate of forecast error covariance matrixD
.f � ft / .f � ft /

T
E
i

for the vector function f given routine observations and the ith

deployment of adaptive observations.

D�
f � ft

� �
f � ft

�T
E
i

� HvXv
i X

vT
i HvT

K � 1

D HvXvTCi .�i C I/�1 CT
i TT XvT HvT

K � 1

� ŒH v .Xv/� TCi .�i C I/�1 CT
i TT ŒH v .Xv/�T

K � 1
(16.19)

where the qxK matrix ŒH v .Xv/� is given by

ŒH v .Xv/�

D
h�

H v
�
xv

1

� � H v .xv/
�

;
�
H v

�
xv

2

� � H v .xv/
�

; : : : ;
�
H v

�
xv

K

� � H v .xv/
�i

:

(16.20)
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Thus, the ETKF allows non-linear cost functions without the need for the first
derivative (Jacobian) of the non-linear verification time functions of interest.

Equation 16.19 gives the forecast error covariance of the user specified functions
of interest for the ith deployment of adaptive observations. Often, users will
reduce the information in this matrix to a single cost function by, for example,
evaluating the trace of the matrix. To find which of all feasible deployments
of adaptive observations minimizes the user specified cost function, one simply
evaluates (16.19) for all feasible deployments of adaptive observations and chooses
the deployment which minimizes the cost. Since the transformation matrix (16.2)
associated with the routine observational network and the ŒH v .Xv/� matrix only
need to be evaluated once, the main computational expense associated with each
deployment is the K � K eigenvector decomposition (16.12). For ensemble sizes
smaller than 100, this is a trivial expense on today’s CPUs and thousands of
networks can be evaluated in a matter of minutes on moderate computing resources.

To highlight and predict the impact of the targeted observations, it is also of
interest to predict the covariance of the distribution of changes to the forecast that
would be imparted by the ith observational network given an infinite sampling of
the distributions of observation and forecast. As shown in Bishop et al. (2001), at
the observation time this covariance is given by

D�
xo

i � xo
r

� �
xo

i � xo
r

�T
E

D Pe
r

QHaT
i

� QHa
i Pe

r
QHaT

i C I
��1 QHa

i Pe
r

D XoTCi�i .�i C I/�1 CT
i TT XoT

K � 1
(16.21)

where xo
r represents the minimum error variance state estimates at the observation

time given routine observations while xo
i represents the minimum error variance

state estimates at the observation time given routine observations and the ith
deployment of adaptive observational resources. Thus, it represents the covariance
of changes to the state estimate due to adaptive observations. The changes due to the
adaptive observations are called signals and the covariance of these changes is called
the signal covariance. The expression for the signal covariance at the verification
time is

D�
xv

i � xv
r

� �
xv

i � xv
r

�T
E

D XvTCi �i .�i C I/�1 CT
i TT XvT

K � 1
(16.22)

As can be seen by comparing (16.21) with (16.8) and as was discussed in Bishop
et al. (2001), for an optimal data assimilation scheme, the signal variance is precisely
equal to the reduction in forecast error variance due to the observations that created
the signals. Comparison of geographical plots of the diagonal elements of (16.21)
and (16.22) with actual changes in forecasts due to targeted observations can give
a good indication of whether the ETKF signal variance predictions are reasonable
or not.
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16.3 Atmospheric Forcing Ensemble Generation

Based on the theory that model forecast errors are often well described in terms
of shifting and timing errors (Hoffman et al. 1995), the uncertainty of atmo-
spheric forcing can be represented by adding perturbations to surface fields from
a single deterministic atmospheric forecast through spatial and temporal deforma-
tion. The amplitude of the perturbations is chosen to be small enough to ensure that
the perturbed field lies within the error bounds of the forecast. To control the
amplitude and horizontal correlation length scale of the random perturbations, the
covariance matrix of the shift-vector ıt of shifts at a certain time is given by:

˝
ıtıtT

˛ D DE ƒ ET D (16.23)

where D is a diagonal matrix of the variances we wish to assign to the random
process at each grid point and E ƒ ET defines a correlation matrix whose diagonal
values are all equal to 1. For simplicity, we chose the columns of E to be
the two-dimensional sinusoids and cosinusoids that define a basis for the two-
dimensional domain upon which the ocean state is defined. Let a be a random
normal vector with zero mean and covariance

˝
aaT

˛ D ƒ. Now consider random
vectors y obtained using y D Ea. Note that since the columns of E are the sinusoidal
basis used in inverse Fourier transform, the operation Ea is simply an inverse Fourier
transform. To ensure that the random perturbations satisfy (16.1), we generate each
perturbation using

ıt D DEa; where hai D 0 and
˝
aaT

˛ D ƒ (16.24)

In other words, a random perturbation is created by

1. Creating a vector b of n normally independently identically distributed numbers
each of which has a mean of zero and a variance of 1.

2. Letting a D ƒ1=2b.
3. Performing the inverse Fourier transform implied by Ea.
4. Performing the operation ıt D DEa.

To see that this process creates random perturbations that satisfy (16.1) note that

˝
ıtıtT

˛ D ˝
DEaaT ET D

˛

D DE
˝
aaT

˛
ET D because E and D are constant

D DE ƒ ET D; because
˝
aaT

˛ D ƒ (16.25)

The scales and magnitudes of the random perturbations are thus determined by the
user’s specification of D and ƒ. Here, we chose D D ˛I so that the constant ˛ gives
the variance at each point and let the diagonal elements �ii of ƒ be given by the
Gaussian function of the total wavenumber to which they pertain that is given by
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�ii .k; l/ D C � exp

��.k2 C l2/

L2

	
(16.26)

where k and l are non-dimensional wave numbers (associated with the indexing of
grid points in the FFT routine), L (a non-dimensional length scale) controls the
horizontal correlation length scale in spectral space. Decreasing L increases the
spatial scale of the random fields by (16.24). The scale C is an amplitude factor
that is used to ensure that the diagonal elements of E ƒ ET are equal to unity and
hence that E ƒ ET is a valid correlation matrix. The values of C; L and ˛ used in
our experiments are 0.5, 10, and 0.5 h, respectively. With these parameters, (16.24)
produces a spatially correlated field of time shifts with a standard deviation of
˛ D 0:5 h.1

To create a time shift vector ıt.t/ that varies in time as well as space, we used
(16.24) to create two entirely independent time-shift vector shifts ıt.ti / and ıt.tiC1/

corresponding to the discrete times ti and tiC1. These two times might be 24 or 72 h
apart depending on the perceived decorrelation time of atmospheric forcing errors.
(In our study independent fields were generated every 24 h). To ensure that the time
shift vector varied smoothly between these two times, we set

ıt.t/ D ıt.ti / cos

�
 

2

�
t � ti

tiC1 � ti

	�
C ıt.tiC1/ sin

�
 

2

�
t � ti

tiC1 � ti

	�
(16.27)

Equation 16.27 implies that the evolution of the covariance of time shifts is given by

D
ıt .t/ ıt .t/T

E
D DiEƒi ET Di cos2

�
�

2

�
t � ti

tiC1 � ti

	�

C DiC1EƒiC1ET DiC1 sin2

�
�

2

�
t � ti

tiC1 � ti

	�
(16.28)

This formulation allows both the scale and magnitude of the deformations to be
a function of time. Note also that in the special case that DiC1EƒiC1ET DiC1 D
Di Eƒi ET Di , the trigonometric rule cos2 � C sin2 � D 1 ensures that the covariance
of the time shifts given by (16.27) and (16.28) is constant even though each
individual time shift is smoothly evolving through time.

For the experiments reported in this Chapter, the eigenvector matrix E was
comprised by the set of sinusoidal basis functions spanning a two dimensional plane.
By making the domain on which the time shifts ıt were generated larger than that
of the regional ocean model, it was possible to produce aperiodic time-shifts.

The temporally shifted fields include surface wind, air temperature, relative
humidity, precipitation, sea-level pressure, and short- and long-wave radiation. Each

1This technique has been used to perturb an initial best-guess unperturbed state of sea surface
temperature (SST) to provide an ensemble of ocean-surface lower boundary conditions for
atmospheric ensemble forecast (Hong et al. 2011).
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Fig. 16.2 Original (first column), shifted (second column) and difference between original and
shifted u-component (upper panel) and v-component of surface 10-m wind speed from COAMPS
forecast for AOSN II domain (Monterey Bay)

randomly shifted field is used to compute the surface wind stress and heat fluxes for
each ensemble member. The NCOM-predicted SST is interactively feedback to the
surface latent and sensible heat fluxes using the drag coefficient from the standard
bulk formulas of Kondo (1975) (Martin and Hodur 2003; Hong et al. 2007, 2009b).
The surface salt flux for NCOM is calculated from the computed latent heat flux and
the COAMPS precipitation.

Figure 16.2 shows u- and v- components of surface 10-m wind from a single
COAMPS deterministic forecast, a time shifted field and the difference between
the original and shifted fields. The high-resolution COAMPS atmospheric forecast
presents a strong northwesterly, which is favorable for the ocean coastal upwelling
for the Monterey Bay during the AOSN II field campaign (Doyle et al. 2008).
The northwesterly lasts from 7 to 19 August and induces an upwelling period.
The perturbed atmospheric forcing fields for a particular ensemble member and
forecast lead time present smooth features over the entire domain. The northwesterly
wind is preserved in the perturbed fields so that the upwelling will be induced in
each ocean ensemble forecast with the inclusion of atmospheric forcing uncertainty.
The difference between the original and shifted fields displays various locations
of maximum perturbation, which explains the feature of random distribution from
space and time shifting.
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16.4 Ocean Ensemble Forecast

Ocean ensemble generation is based on the ET technique, which has been used
for atmospheric ensemble generation (Bishop et al. 2009) and for coupled atmo-
sphere/ocean ensemble generation (Holt et al. 2011). The ET technique provides
initial perturbations that (1) have an initial variance consistent with the best available
estimates of initial condition error variance, (2) are dynamically conditioned by
a process similar to that used in the breeding technique (Toth and Kalnay 1993,
1997), (3) add to zero at the initial time, (4) are quasi-orthogonal and equally
likely, and (5) partially respect mesoscale balance constraints by ensuring that each
initial perturbation is a linear sum of forecast perturbations from the preceding
forecast. The analysis error variance is used to constrain the magnitude of initial
perturbations that represent transformations or linear combinations of ensemble
forecast perturbations, so called ET perturbations (Bishop and Toth 1999; Bishop
et al. 2009). The analysis error variance used in this study is scaled from the NCODA
ocean analysis to adjust large untruthful values from the sparse ocean observations.
A complete description of the ET technique and the detailed steps to creating an ET
ensemble can be found in Bishop et al. (2009).

The ocean ensemble with 20 ensemble members is initialized from a set of
perturbations derived from a control deterministic NCOM run for one month
from August 1–31, 2003. The NCOM monthly run is performed in a sequential
incremental update cycle with an update interval of 24 h and produces 72 h forecast
at each analysis update time (Hong et al. 2009a). The differences between every 12 h
forecast (up to 24 h) and monthly mean generate 62 perturbations, which provide a
database for random selection of initial ensemble perturbations.

From August 7–19, the winds are upwelling favorable with north/northwesterly
(Doyle et al. 2008) and induce strong upwellings with two upwelling centers
developed off Point Ano Nuevo and Point Sur (Hong et al. 2009a). Ensemble means
display stronger upwellings from the two upwelling centers than in the control run
and provide features more comparable with the observation (Fig. 16.3). Stronger
horizontal SST gradients occur between the upwelled cold water and the offshore
warm water. The seaward advection is more consistent with the observation from
the ensemble mean on August 12 (upper panel in Fig. 16.3). Later in the upwelling
period, a cold tongue of upwelled water off Point Ano Nuevo is advected southward
across the mouth of the Monterey Bay and joins with the upwelled cold water from
Point Sur, resulting in a large, cold-water region located just off the coast both in
ensemble mean and the observation. These results indicate that the ensemble means
are more accurate to the observation MCSST than the control run.

The ensemble spread increases with the forecast lead time as shown for SST
forecast in Fig. 16.4. Large ensemble spread transports southward with time, reflect-
ing the upwelled cold water movement. It indicates that the forecasted transport of
upwelled cold water across the mouth of the Monterey Bay during the upwelling
period has high uncertainty.
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Fig. 16.3 SST from NCOM control run, ensemble mean and NOAA POES AVHRR HRPT
(Courtesy NWS and NOAA Coastwatch). The model outputs are from 18 h forecast valid at 18Z
August 12, 2003 for the upper panel and 18Z August 15, 2003 for the lower panel

Fig. 16.4 Ensemble spread for 24, 48 and 72 h forecast initiated from August 12, 2003

16.5 Adaptive Sampling for the AOSN II Glider Observation

The underwater vehicle network features a fleet (up to 15 gliders) of autonomous
underwater gliders during the AOSN-II field campaign. Underwater gliders are
small, relatively simple and inexpensive, winged, buoyancy-driven submersibles.
They are ideal platforms to collect scientific data for the ocean adaptive sampling.
The deployment of the gliders are efficient and effective by allowing them to change
plans on-line in response to the state and environmental measurement needs with
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Fig. 16.5 Illustration of ensemble initialization time, decision time, targeting time and verification
time for adaptive sampling used in this study

daily time scale and faster time scale (on the order of every two hours) (Leonard
and Robinson 2003). With the ability to frequently update the glider plan, the time
for decision-making for optimal glider deployment can be shorter than other type
of platform deployment, such as aircraft equipped with GPS dropwindsondes for
upstream observation of significant weather event (Majumdar et al. 2002).

Key times involved in the decision-making process for the adaptive sampling
application of AOSN II glider observation are illustrated in Fig. 16.5. The goal
of the adaptive sampling is to use an available ensemble forecast to identify the
future glider path that would maximally reduce the forecast error variance in the
verification region at the verification time. As an example, consider the ensemble
forecast initialized at the initialization time of 00 UTC Aug 12th. A new forecast will
be initialized at the targeting time of 00 UTC Aug 13th using targeted observations.
The decision time is the time when one must decide the location to which the glider
should be sent in order to minimize the error norm of the forecast to be initialized
on 00 UTC Aug. 13th. The verification time selected here is 00 UTC Aug 14th to
verify the forecast error reduction for the upwelled cold water transport across the
mouth of the Monterey Bay.

For a group of adaptive observations, the signal variance, which would be equal
to the reduction in forecast error variance in an optimal system, is used to identify
the best location for the deployment. The verification region is placed in a location
within which the ensemble variance is large at the verification time. This choice of
verification region increases the chances that the targeted observations will result in
a significant reduction in forecast error (Bishop et al. 2006). Figure 16.4b illustrates
the fact that for a verification time 48 h from the ensemble initialized, at 00 UTC
Aug. 12th, there is a large ensemble spread across the mouth of the Monterey Bay
due to the uncertainty of the southward transportation of upwelled cold water from
Point Ano Nuevo. The verification region selected to enclose some of this high
spread region is shown by the ellipse on Fig. 16.4b. The possible location for optimal
adaptive deployment can be tested in the two areas where the ensemble spread
is significant at the targeting time. As shown in Fig. 16.4a, there are two possible
locations with one off the mouth of the Monterey Bay (location #1) and another one
in the south off Point Sur coast (location #2).

Nine adjacent “test” observations of surface temperature are placed for these
two locations centered at 36:7ıN, 122:5ıW and 36:2ıN, 122:1ıW, respectively and
used to calculate signal variance at the targeting and verification times (Fig. 16.6).
There are high signal variances for both locations of the adaptive observation at
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Fig. 16.6 Signal variance for nine observations centered at 36:7ıN, 122:5ı W for (a) targeting
time 00 UTC 13 Aug 2003 and (b) verification time 00 UTC 14 Aug 2003. Signal variance for
nine observations centered at 36:2ı N, 122:1ı W for (c) targeting time same as (a) and verification
time same as (b). The black ellipse contour indicates verification region

the targeting time. It shows larger signal variances at the location #1 (Fig. 16.6a)
compared to the location #2 (Fig. 16.6c) due to larger ensemble spread at the
targeting time. The signal variance at the verification time has larger values within
the verification region from the location #1 (Fig. 16.6b) compared to the location
#2 (Fig. 16.6d). This suggests the first location for the deployment is more likely to
improve the forecast than the second location.

Figure 16.7a depicts the predicted reduction in forecast error variance at the
verification time due to a surface temperature observation at the targeting time at the
location indicated by the white cross. By integrating this field across the verification
region we obtain a prediction of the reduction in forecast error variance due to an
observation at the white cross. Figure 16.7b plots the mean reduction in forecast
error variance as a function of the location of the test observation. We refer to maps
like Fig. 16.7b as a “summary map”.

If gliders are available for adaptive sampling, summary bar charts can be used to
choose among several feasible glider paths. At a particular location, a glider needs
to be directed which direction it will be towards to. To demonstrate how signal
variance summary bar chart can be used, assuming that for a particular location,
a glider can have eight possible tracks (red lines in Fig. 16.7b). The predicted
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Fig. 16.7 (a) Signal variance at the verification time for the feasible deployment of adaptive
observations indicated by the white crosses, (b) Summary map of average signal variance over
the verification area at the verification time as a function of a single temperature observation, (c)
Bar chart of signal variance for eight glider tracks displayed in (b)

reduction in forecast error variance within the verification region at the verification
time as a function of each of the eight possible glider paths is plotted as a bar chart
(Fig. 16.7c). Each bar gives the ETKF prediction of the reduction of forecast error
variance within the verification region to be associated with a particular glide track.
Given knowledge about where a glider is at the beginning of the targeting time,
these bar charts can be used to direct the glider along the path predicted to have the
maximum impact on the forecast error reduction. Thus, the signal variance given on
the bar chart suggests that track seven is the best of these eight glider deployments.

During the AOSN II field campaign, up to 15 different gliders are crisscrossing
the Monterey Bay at any given time. For example, thirteen gliders are deployed
on Aug 13, 2003 during a 24 h observation time window and each takes the path
indicated in Fig. 16.8a. As a test of a target technique, it is of a great interest to see
which of these 13 glider paths would have been the best choice if one were only
going to assimilate observations from just one of the 13 gliders. Figure 16.8b gives
the ETKF predicted reduction in forecast error variance in the verification region at
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Fig. 16.8 (a) Glider tracks on Aug 13, 2003. (b) Signal variance summary bar chart for 13 glider
tracks shown in (a)

the verification time as a function of the glider track. It shows that, according to our
implementation of the ETKF, path 6 would have been the best followed by path 2
and 11.

16.6 Summary

The purpose of this Chapter is to illustrate the development and present preliminary
results of the ETKF ocean adaptive sampling system that incorporates three
distinctive techniques: (1) a time-shifting technique that enables an ensemble of very
high resolution atmospheric forecasts to be generated from a single high resolution
ensemble member, (2) an ET ensemble generation technique for the generation of
ocean ensemble, and (3) an ETKF technique for ocean adaptive sampling. The
system is applied to the Monterey Bay area during the AOSN II field campaign
in the month of August 2003.

The atmospheric forcing from COAMPS AOSN II forecast is shifted smoothly
in time to transfer a single deterministic forecast to an ensemble for ocean ensemble
forecast. The shifted atmospheric forcing fields are able to preserve the important
aspects of the atmospheric features so that each ocean ensemble member is forced
with an approximation to a realization of the true atmospheric state given previous
observations.

The NCOM ensemble mean is found to be able to give a better representation of
the upwelling features than the single deterministic run during the upwelling period.
Two upwelling centers are found. One is near the coast of Point Ano Nuevo and the
other near Point Sur. The ensemble mean is also found to be closer to the features
in the satellite observations than the ones in the control forecast. Furthermore,
the ensemble mean is closer to the observed cold water seaward movement and
transport across the mouth of the Monterey Bay during an earlier and later time of
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the upwelling period, respectively. The ensemble spread is found to be maximized
near the upwelled cold water transport across the mouth of the Monterey Bay.

An ocean adaptive sampling system derived from the ETKF technique is
illustrated using the data collected during the AOSN II field campaign. For a
large number of possible adaptive observations, a signal variance summary map
provides an overview of the predicted reduction in forecast error variance within the
verification region as a function of the location of a plausible future observation. The
predicted reduction in forecast error variance for a large number of possible glider
tracks is summarized and displayed in a bar chart for each feasible deployment.
The real glider tracks from the AOSN II field campaign are used to derive a
signal variance bar chart with 13 possible glider deployments. The ETKF adaptive
sampling distinguishes one path with a large summarized signal variance near the
verification area. The use of this path, in our view, would have been most likely to
reduce the forecast error within the verification region.

As discussed in Majumdar et al. (2002), the quantitative assessments of the
accuracy of ETKF signal variance predictions require a large number of events.
Unfortunately, the limited events during the AOSN II do not provide enough cases
for such quantitative assessments to be made. Nevertheless, the aforementioned
experiment indicates that the adaptive sampling locations selected using the tech-
nique presented here are, at the very least, consistent with the group velocity of
wave packets of ocean forecast errors that are unlikely to propagate very far over
a 24 h period in the ocean. For the future work, we hope to use a large number
of cases to quantitatively measure the accuracy of the ETKF prediction of forecast
error variance reduction in the ocean prediction.
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