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Recent Applications in Representer-Based
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Abstract Data assimilation with representer-based algorithms (also called “dual
space” algorithms) are currently being used for weak-constraint four-dimensional
variational data assimilation (W4D-Var) atmospheric prediction, distributed param-
eter estimation, and other hydrodynamic data assimilation problems. The iterative
linear solvers at the core of these systems may display non-monotonic convergence
in the norm defined by the primal objective function, and this behavior makes
problematic the development of practical stopping criteria. One approach to this
problem is described, namely an implementation of the inner solver using the gener-
alized conjugate residual(GCR) algorithm. Additional elements of data assimilation
systems are error model for the background, model forcings, and observations. An
implementation of a posterior analysis method for diagnosing the error variances is
described, and representative results from an atmospheric data assimilation systems
are shown.
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12.1 Introduction

Four-dimensional variational data assimilation (4D-Var) is an estimation technique
which finds a model state x.t0/, at initial time t0, that minimizes a quadratic objective
function, the sum of the distance between the initial state x.t0/ 2 Rn and a prior
estimate (the so-called background field) xb 2 Rn, and the distance between a real-
valued vector of observations y 2 Rm and measurements H.x/ of the trajectory x.t/

obtained by integration of a dynamical model from x.t0/. The objective function J
is written

J Œx.t0/� D .x.t0/ � xb/T B�1.x.t0/ � xb/

C Œy � H.x/�T R�1Œy � H.x/�;
(12.1)

where B and R are estimates of the background and observation error covariance
matrices, respectively, and the observations, y D fyigm

iD1, are nonlinear functions of
the initial state,

yi D Hi ŒM.ti ; t0/x.t0/� C ıi : (12.2)

Here we assume that M.ti ; t0/ propagates the model state from t0 to ti , Hi is the
i�th observation operator, and ıi is the observation error. Note that if the initial
condition and observation errors are Gaussian distributed with covariances B and
R, if the observation errors are unbiased, and if the background field xb is equal to
the statistical mean of x.t0/, then the minimizer of J is the maximum likelihood
estimate of x.t0/.

In addition to errors in the initial conditions, it is clear that oceanic and
atmospheric models contain other sources of error which must be considered.
Specifically, there are errors in model inhomogeneities such as boundary conditions
and radiative forcing. Weak-constraint four-dimensional variational data assimila-
tion (W4D-Var) is a generalization of 4D-Var which permits one to estimate these
additional inhomogeneities, denoted f. Assuming that prior or background values
of the forcing fields are available, fb , then the above objective function naturally
generalizes to

J Œx.t0/; f� D .f � fb/T F�1.f � fb/

C .x.t0/ � xb/T B�1.x.t0/ � xb/

C Œ.y � H.x/�T R�1Œ.y � H.x/�;

(12.3)

where it should be understood that the model propagator M now depends on both
the space-time-dependent inhomogeneities, f, and the initial conditions, x.t0/.

In the incremental formulation (Courtier et al. 1994), the dynamics and measure-
ment operators are linearized around a background trajectory x, and an incremental
objective function is defined in terms of ıx D x � x. Of course, if the model
dynamics and observation operator are linear, the extremum of the incremental
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objective function corresponds to an extremum of the original objective function.
When nonlinearity is present, the incremental objective function is used to build
an iterative solver for the original, nonlinear, data assimilation problem. In this
article we assume that some linearization strategy has been selected, e.g., the tangent
linearization proposed in Courtier et al. (1994) or the bounded iterate strategy of
Bennett and Thorburn (1992), so that the so-called inner loop solver must minimize
a strictly quadratic objective function. Henceforth, we shall restrict our attention to
the objective function,

J Œx.t0/; f� D .f � fb/T F�1.f � fb/

C .x.t0/ � xb/T B�1.x.t0/ � xb/

C .y � Hx/T R�1.y � Hx/;

(12.4)

where the matrix H 2 Rm�n is a linear approximation to the operator H, and
inhomogeneities resulting from the linearization have been absorbed into xb, fb ,
and y.

There are practical considerations which make the implementation of W4D-Var
considerably more complex than 4D-Var for realistic models. The first issue is the
dimensionality of the unknown vectors, which has consequences for the design
and implementation of solvers for minimizing J . Assuming the state vector x.t/

is of dimension n, then the model forcing f may be as large as T � n, where T

is the cardinality of the time interval under consideration. The dimension of the
space-time covariance matrix F is formally the square of this. The second key
issue is scientific, and relates to the determination of the error covariances B and
F. Quantitative estimation of these objects requires vast amounts of data which are
rarely available; in practice they are often parameterized in terms of a spatially-
or temporally-varying variance function, and a set of correlation scales for the
orthogonal coordinate directions.

Here we review recent developments associated with the application of
representer-based solvers (Bennett 1992) to 4D-Var and W4D-Var problems, an
approach which is the foundation for the so-called dual form of variational data
assimilation (Courtier 1997). Recall that the minimizer of the objective function is
the solution to 1

2
rJ .x/ D 0; applied it to (12.1) yields,

.B�1 C HT R�1H/x D HT R�1y C B�1xb; (12.5)

where uniqueness is assured provided that B is of full rank. Equivalently, the
solution can be expressed as the sum of the background and a linear combination of
representer functions x D xb CBHT Ox, yielding the equation for the dual variables Ox,

.HBHT C R/Ox D y � Hxb: (12.6)
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In this dual formulation the unknown vector Ox lies in Rm, whereas x lies in Rn.
Also, the expansion in terms of representer functions is valid even in the continuum
limit of the discretized dynamics, in which case (12.5) become the Euler-Lagrange
equations for the extremum of the objective functional. The columns of the BHT

matrix, which are approximations to the representer functions in the continuum
limit, span the space of observable increments; i.e., they are exactly the m degrees
of freedom which are determined by the measurements (Bennett 1992).

The dual formulation and representer expansion have by now been utilized in
many data assimilative modeling studies of the ocean and atmosphere. Because the
dimension of the vector of unknowns is m in either case of 4D-Var or W4D-Var,
there is no intrinsic limitation of the method in the latter case. In order to fix the
notation so that a single system describes both 4D-Var and W4D-Var, consider the
following augmented vectors and covariance matrices:

x0 D
�

x.t0/

f

�
; B0 D

�
B 0

0 F

�
; H0 D

�
H
0

�
; R0 D R; y0 D y: (12.7)

Henceforth, we drop primes and simply write the objective function as

J Œx� D.x � xb/T B�1.x � xb/

C .y � Hx/T R�1.y � Hx/;
(12.8)

noting that the extremal conditions (12.5) and dual formulation (12.6) are formally
unchanged.

Recent advances for representer-based variational assimilation have been con-
nected with technologies for solving (12.6), e.g., preconditioners and iterative
solvers, and with developing justifiable error models for the background and model
forcing errors, B and F.

In the next section, recent technological developments for solving (12.6) are
discussed, and we share our experience concerning the primal and dual forms of
the variational data assimilation algorithms, as has been the focus of recent papers
(El Akkraoui and Gauthier 2010; El Akkraoui et al. 2008; Gratton and Tshimanga
2009). Following that, recent work on covariance modeling is described. The latter
developments are not unique to representer-based approaches.

12.2 Solver Improvements

Several considerations have led to improvements in representer-based solvers for
variational data assimilation.

First, it has been noted that iterative solvers for (12.6) may yield a non-monotonic
sequence of J .xp/ values, where xp represents the approximate solution at step p of
the iterative solver (El Akkraoui et al. 2008). This phenomenon has been observed
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initialize x0, ε;
r0 = b − Ax0;
i = 0;
while (rT

i ri)1/2 > ε, do
i = i + 1;
ui
ci

ci ci

ci ci

ui ui

ui ui

= ri−1;
= Aui;

for k = 1, i − 1, do
αk = ci

Tck;
= − αkck

αkuk

;
= − ;

end;
= /(cT

i ci)1/2;
= /(cT

i ci)1/2;
xi = xi−1
ri ri−1

+ (cT
i ri−1)ui;

= − (cT
i ri−1)ci;

end

Fig. 12.1 The GCR
algorithm for solving Ax D b

with the Physical-space Statistical Analysis System (PSAS, Cohn et al. 1998),
which employs the conjugate-gradient algorithm applied to (12.6) using R�1=2 as
preconditioner, and it was also displayed in Zaron (2006) with a non-preconditioned
solver. The non-monotonic reduction in the value of the objective function makes
it problematic to establish an acceptable stopping criteria for the iterative solver. In
spite of the fact that m << n, data sets are frequently large enough that executing
full set of m iterations, the worst-case iteration count for conjugate-gradient-type
linear solvers in exact arithmetic, is prohibitive.

Another issue which arises in practice is that the huge condition number of the
covariance matrices and asymmetry of the linearized model and its approximate
adjoint may cause R C HBHT to be non-positive-definite symmetric. Experience
with idealized problems, where the operators can be explicitly constructed as
matrices, shows that the lack of monotonic convergence discussed in the previous
paragraph is exacerbated by symmetry errors and lack of positive-definiteness in the
HBHT matrix.

A final consideration in the development of new solvers is the availability of
diagnostic data to assess the progress of the iteration or to evaluate the quality of the
state variable which is obtained.

Recent experience has shown that the generalized conjugate residual (GCR)
method (de Sturler 1994, 1996) addresses all the above-mentioned points. GCR
is a general-purpose Krylov method for solving non-symmetric systems, Ax D b,
which builds matrices U and C in Rp�m such that AU D C. The columns of both U
and C are in the span of the Krylov subspace K D Spanfb; Ab; : : : ; Ap�1bg, and C
is orthogonal, such that CT C D I. The GCR algorithm shown in Fig. 12.1 computes
xp 2 K to minimize k Axp � b k2, which is similar to the minimum residual
algorithm suggested by El Akkraoui and Gauthier (2010). Although the GCR
algorithm can fail when either the residual is orthogonal to the Krylov subspace or
when b is an eigenvector of Ap , neither of these situations has occurred in practice.
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Fig. 12.2 Reduction of J .x/ using GCR. The performance of the GCR solver as measured by the
value of the objective function for an ocean data assimilation problem is shown. J .xp/ is computed
using (12.14) and (12.15) in the text. The application involves the assimilation of satellite altimetry
data into a three dimensional primitive equations ocean model encompassing the Hawaiian Ridge,
with the goal of estimating the tidal circulation around the Ridge

Figure 12.2 shows the progress of J .xp/ for a data-assimilative three-
dimensional ocean model with approximately n D 400 � 300 � 30 � 5 D 18 � 106

state variables and m D 17 � 104 observations (see Zaron et al. 2009 for a similar
application in a smaller computational domain). The figure shows that the decrease
in cost function is not monotonic, and increases can occur. This behavior does not
occur in smaller, exactly symmetric problems, and the working hypothesis is that the
non-monotonicity is caused by asymmetry or lack of positive-definiteness in either
the adjoint model or background covariance. Pointwise tests of the symmetry of B
and HBHT indicate that the former is symmetric to machine precision, while the
latter contains symmetry errors of 10 % of the diagonal elements. The computational
cost of evaluating Ax is approximately 100 cpu-hours, so there is a substantial need
for computational efficiency.

Further diagnostic information is available from the GCR iterates as well.
Qualitative assessment of the solution in the state space is available since the
solution xp is computed at each iterate. Because AU D C, with C orthogonal, the
singular values �.U/ of U approximate the singular values of A�1 (Golub and Van
Loan 1989). Knowledge of the singular spectrum and orthogonal decomposition of
U may be used to better precondition subsequent outer iterations (Giraud et al. 2006;
Parks et al. 2006).

Assuming the observation error is uncorrelated and constant, R D �I, one can
approximate the singular spectrum of the so-called representer matrix R D HBHT

(Bennett 1992) with �.R/ � �.U/�1 � � . Here the notation �.U/ D f�i.U/gp
iD1

denotes the ordered singular spectrum, the set of nonzero singular values of the
matrix U 2 Rm�p, where �iC1.U/ � �i .U/ and p � m are assumed, and the
inverse of the singular spectrum �.U/�1 is defined as the set of reciprocals of
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the singular values. This singular spectrum is useful when assessing the observing
array or covariance model, since it establishes a criterion for counting the number
of degrees of freedom effectively constrained by the data (Bennett 1985, 1992).
When the observation error is not a constant it is advantageous to transform with
the change of variables, Ov D R�1=2 Ox.

The singular spectrum can be used to develop a stopping criterion for the iterative
solver in terms of the predicted percent of variance explained. Recall that the
representer matrix R can be interpreted as a covariance matrix, the trace of which is
the total amount of variance expected in the observations exclusive of measurement
noise (Bennett 2002). Recall also, that the degrees of freedom associated with
singular vectors may be classified as either smoothed or interpolated by the data
assimilation, according to whether �i .R/ < � or �i .R/ > � , respectively (Bennett
2002). Let k denote the mode number with the singular value comparable to the
measurement error, e.g., �k.R/ > � � �kC1.R/, then

S D
kX

iD1

�i .R/ (12.9)

is the expected total observed variance explainable by the given data assimilation
system. In practice �.R/ is not known exactly, but its approximation O�.R/ D
�.U/�1 �� is available from the orthogonal decomposition of U. An approximation
to S can be made by extrapolating O�.R/ out to i D k. Letting O�e.R/ denote this
approximate spectrum, then the fraction of S explained by stopping at iterate p may
be estimated as

f D
 

pX
iD1

O�i.R/

! 
kX

iD1

O�e
i .R/

!�1

: (12.10)

Figure 12.3 shows an application of these ideas with the data-assimilative ocean
model described in Zaron et al. (2009). The estimated spectrum O�.R/ is computed
for iterates p D 10; 20; 40 (gray) and for the final iterate p D 58 (black). The
extrapolated spectrum O�e.R/ is computed from a power-law fit to the middle 50 %
of the singular values, and one sees that the extrapolated spectrum and data error
variance intersect at approximately k D 200; thus, one expects approximately 142
additional iterates would be necessary to minimize J .x/. Applying (12.10) to
compute the fraction of variance explained, one finds f D 88 %. In other words,
the solution obtained by stopping the solver at p D 58 accounts for 88 of the
explainable observed variance. Note that the variance associated with modes p > k

is un-explainable with the covariance model B, and it is ascribed to observation
error. While the details are certainly problem-dependent, we have found that O�.R/

adequately approximates the true spectrum when judged against the uncertainty in
B. Experience with idealized, low-dimensional, data assimilation problems suggests
that these methods are applicable in realistic systems, where complete knowledge
of the spectra cannot be obtained.
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Fig. 12.3 Spectral Diagnostics from GCR. The estimated spectrum O�.R/ of the representer matrix
R D HBHT is shown by the dark solid line corresponding to the last GCR iterate (p D 58) in
Fig. 12.2. Solid gray lines show O�.R/ based on iterates p D 10; 20; and 40, for comparison. The
data variance is � , where R D �I. The extrapolated spectrum is computed from a linear fit to
.log.i/; log.�i .R/// in the range p=4 � i � 3p=4

Finally, the two components of J .xp/ due to the background and observations
may be obtained as diagnostic information from the GCR iterates. Substituting xp D
BHT Oxp in (12.4), one obtains

J .Oxp/ D J B.Oxp/ C J R.Oxp/

D OxT
p HBHT Oxp

C .HBHT Oxp � y/T R�1.HBHT Oxp � y/:

(12.11)

Because the GCR solver computes the residual rp at each iterate, one has

.HBHT C R/Oxp D y � rp: (12.12)

Assuming that ROxp can be computed on demand, then

HBHT Oxp D y � rp � ROxp; (12.13)

and all terms in the expression for the objective function are computable. The
contribution from the background term is

J B.xp/ D .Oxp/T .y � rp � ROxp/; (12.14)

while the contribution from the observations is

J R.xp/ D .rp C ROxp/T R�1.rp C ROxp/: (12.15)
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In summary, the GCR algorithm has been found useful for data assimilation
solvers based on the representer expansion. Being applicable to non-symmetric
linear systems, the solver is more tolerant of symmetry errors in the adjoint
model, such as are present when the continuous adjoint equations are discretized.
The GCR solver is currently being used for a variety of weak-constraint ocean
data assimilation problems, and it has been implemented within the IOM data
assimilation software system (Bennett et al. 2008; Muccino et al. 2008).

12.3 Diagnosis of Error Variances

The preceding analysis of the solver performance and interpretation in terms of
explained variance is contingent upon having correct descriptions of the model
and observation error covariances. Validation of B and R is thus of paramount
importance. This section outlines the posterior diagnosis strategy of Desroziers and
Ivanov (2001) for validating the errors B and R, with application to a large-scale
operational weather analysis system, the Naval Research Laboratory Atmospheric
Variational Data Assimilation System-Accelerated Representer, or (NAVDAS-AR;
Xu et al. 2005; Rosmond and Xu 2006).

12.3.1 Notation and Background Materials

First, recall some established results using the notation employed here. It may
be shown (Lorenc 1986) that the analysis xa, the minimizer of the objective
function (12.8), is given by

xa D xb C K.y � Hxb/; (12.16)

where K denotes the so-called Kalman gain,

K D BHT .HBHT C R/�1: (12.17)

At this optimum, the value of the objective function J is given by Bennett (1992),

J .xa/ D dT D�1d; (12.18)

where D D HBHT C R denotes the stabilized representer matrix, and d D y � Hxb

denotes the innovation vector. If the background and observation errors are correctly
modeled by B and R, it may be shown that the minimum value of J is a chi-squared
random variable with m degrees of freedom (Bennett 1992),

EfJ .xa/g D Ef�mg D m; (12.19)
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where it is recalled that m is the number of observations, and Efg denotes the
expected value of its argument. Furthermore, Bennett et al. (2000) notes that the
expected values of parts J B and J R of the objective function J are

EfJ B.xa/g D Tr.HBHT D�1/; (12.20)

and
EfJ R.xa/g D Tr.RD�1/; (12.21)

where Tr.A/ denotes the trace of the matrix argument A. These results may be
further specialized to compute the expected value of subsets of terms in J B and J R

(Talagrand 1999; Desroziers and Ivanov 2001). Define …B
l as a projection operator

such that xl D …B
l x, then the expected value of J B

l associated with xa
l is given by

Desroziers and Ivanov (2001)

EfJ B
l .xa/g D Tr.…B

l HBHT D�1…B
l

T
/: (12.22)

Likewise, define the projection operator …R
k so that yk D …R

k y, then the expected
value for J R

k of J R is

EfJ R
k .xa/g D Tr.…R

k RD�1…R
k

T
/: (12.23)

12.3.2 Validation of Error Variances by Posterior Diagnosis

Desroziers and Ivanov (2001) utilize the above relations (12.22) and (12.23)
to validate the error variances in the objective function based on the posterior
diagnosis of the assimilation system. They demonstrate how to produce realistic
error variances for simulated observations in a cost-effective manner. This approach
was further evaluated and developed by Chapnik et al. (2004, 2006) and Sadiki and
Fischer (2005) for operational data assimilation systems. Following Chapnik et al.
(2004), the objective function (12.8) is rewritten as

J .x/ D
�BX
lD1

J B
l .x/

sB
l

C
�RX

kD1

J R
k .x/

sR
k

; (12.24)

where sB
l and sR

k are scalar tuning parameters for the �B and �R components of the
background and the observations, respectively. The analysis xa.s/ is now a function
of the tuning parameter vector s D .sB

l ; sR
k / (Chapnik et al. 2004),

xa.s/ D xb C K.s/.y � Hxb/; (12.25)

where the tuned Kalman gain, K.s/, takes the form
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K.s/ D B.s/HT ŒHB.s/HT C R.s/��1 D B.s/HT D.s/�1; (12.26)

with B.s/ D P�B

lD1 sB
l …B

l

T
Bl …

B
l and R.s/ D P�R

kD1 sR
k …R

k

T
Rk…R

k . The reduced
values for the sub-parts J B

l and J R
k of the objective function J .s/ are

J B
l .xa.s// D dT D�1H…B

l

T
B.s/…B

l HT D�1d; (12.27)

with expected value

EfJ B
l .xa.s//g D sB

l TrŒ…B
l HB.s/HT D.s/�1…B

l

T
�; (12.28)

and

J R
k .xa.s// D Œ…R

k .y � Hxa.s//�T R.s/�1Œ…R
k .y � Hxa.s//�

D dT D.s/�1…R
k

T
R.s/…R

k D.s/�1d;
(12.29)

with expected value

EfJ R
k .xa.s//g D sR

k TrŒ…R
k R.s/D.s/�1…R

k

T
�: (12.30)

The criterion for the tuning parameters is that the relations

sB
l D J B

l .xa.s//

TrŒ…B
l HB.s/HT D.s/�1…B

l

T
�

(12.31)

and

sR
k D J R

k .xa.s//

TrŒ…R
k R.s/D.s/�1…R

k

T
�

(12.32)

are exactly satisfied. Desroziers and Ivanov (2001) proposed an iterative approach
(fixed-point algorithm) to solve (12.31) and (12.32), namely,

sB
l iC1 D J B

l .xa.si //

TrŒ…B
l HB.si /HT D.si /�1…B

l

T
�

(12.33)

sR
k iC1 D J R

k .xa.si //

TrŒ…R
k R.si /D.si /�1…R

k

T
�
; (12.34)

observing that the first iteration of the fixed-point algorithm gives a good estimate
of the converged results.
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12.3.3 Practical Implementation and Application
to NAVDAS-AR

Computation of the tuning parameters requires the evaluation of the trace of the large

matrices, TrŒ…B
l HB.s/HT D.s/�1…B

l

T
� and TrŒ…R

k R.s/D.s/�1…R
k

T
�. Because the

matrices HBHT and D.s/�1 are not explicitly formed (Chua and Bennett 2001), the
trace is computed using the randomized trace estimator (Girard 1989; Hutchinson
1989) which was used by Wahba et al. (1995) for an adaptive tuning of parameters
in a numerical weather prediction application.

It is the randomized trace technique which makes feasible the posterior analysis
of Desroziers and Ivanov (2001) for large-scale data assimilation, and this approach
has been applied to the NAVDAS-AR. The forecast model associated with the
NAVDAS-AR system is the United States Navy Operational Global Atmospheric
Prediction System (NOGAPS). NOGAPS is a global spectral numerical weather
prediction model (Hogan and Rosmond 1991) with 42 vertical levels and T239
spectral horizontal resolution.

The research version of NAVDAS-AR routinely assimilates conventional in
situ observations (including radiosondes and pibals, and surface observations from
land and sea) and satellite observations (including geostationary rapid-scan and
feature-tracked winds; winds from QuikScat, WindSat, ASCAT, ERS-2, AVHRR,
MODIS, SSM/I and SSMIS; and total precipitable water from WindSat, SSM/I and
SSMIS). NAVDAS-AR also assimilates remotely-sensed microwave and infrared
sounder radiances from AMSU-A, SSMIS, AIRS and IASI. The representation of
the background error covariance matrix B (in (12.7)) is based on the NAVDAS 3D-
Var analysis system (Daley and Barker 2001), and the observation error covariance
matrix R is diagonal. Because the space-time error covariance F (in (12.7)) is set to
zero, the current system is 4D-Var, rather than the W4D-Var targeted for the future.

Figure 12.4 shows the behavior of the NAVDAS-AR system based on the
diagnostics: J .xa/=m, sB and sR. The values are computed over a 7 day period
from 23 to 29 November 2008, with all available observations assimilated. If
the background and observation errors are correctly modeled, one would expect
J .xa/=m D sB D sR � 1. The figure shows that J .xa/=m varies from 0:4 to 0:6

and is smaller than the expected value of 1. Also, the background errors are
underestimated and the observation errors are overestimated, as shown by values
of sB varying from 1:8 to 2:4, and values of sR varying from 0:4 to 0:6, nearly
overlapping the values of J .xa/=m. The diagnostics also indicate that the analysis
system is sensitive to the number of observations (more radiosonde observations at
0 and 12 UTC than at 6 and 18 UTC), with stable values over the observation period.

The observation error tuning coefficient sR may be further broken down to diag-
nose the observation error variances for different types of observations. Table 12.1
shows the components for temperature, wind velocity, wind speed, moisture, total
precipitable water, and satellite radiances. The values indicate that the temperature
standard errors should be kept unchanged, but the standard error of the zonal and
meridional components of wind should be slightly reduced. Likewise, the standard
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Fig. 12.4 NAVDAS-AR posterior error diagnostics. The reduced value of the objective function
divided by the number of observations is consistently smaller than unity (J .xa/=m < 1; solid line),
its expected value if both background and observation errors are correctly scaled (12.19). Analysis
of the separate background and observation errors, sB (12.31) and sR (12.32), respectively, shows
that the background error variance is under-estimated (sB > 1; solid line, square markers) and the
observation error variance is over-estimated (sR < 1; dashed-line, circle markers). The sawtooth
(up-down) pattern in these curves is due to the twice-daily timing of radiosonde observations,
resulting in twice-daily changes in the number of observations assimilated.

Table 12.1 Tuning coefficients

Obs-type TEMP UWIND VWIND WINDSPD H2O TPW RADIANCE

sR
k 1.15 0.72 0.72 0.23 1.46 0.29 0.28

TEMP tuning coefficients for temperature, UWIND zonal wind, VWIND meridional wind,
WINDSPD wind speed, H2O moisture, TPW total precipitable water, and RADIANCE satellite
radiances

error for wind-speed, total precipitable water, and radiances should be adjusted
downward. In contrast, the standard error for moisture data should be increased.

12.4 Summary

Variational data assimilation systems based on representer-based solution methods
are being used to perform analyses and prediction in the ocean and atmosphere. One
such weather prediction system, NAVDAS-AR, is currently in operational use (Xu
et al. 2005; Rosmond and Xu 2006).

The inner iterative linear solvers at the core of these systems may display non-
monotonic convergence in the norm defined by the primal objective function, and
this behavior makes problematic the development of practical stopping criteria.
One approach to this problem has been described, namely, using an inner solver
that permits more diagnostics of the solution progress and objective function to
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be computed during the minimization. The generalized conjugate residual (GCR)
algorithm provides these diagnostics, at the cost of some additional complexity
compared with the conjugate gradient algorithm, but it performs reliably when the
approximate adjoint of the model is used.

The analysis produced by any data assimilation system is always limited by
the quality of the prior covariance models for the background, model forcings,
and observations. In Sect. 12.3 it was shown how the posterior error analysis of
Desroziers and Ivanov (2001) could be applied to calibrate these covariance models
in variational data assimilation systems using representer-based solvers. Application
of these methods has been applied to diagnose the observation error in NAVDAS-
AR, which utilizes many sources of atmospheric data, each with unique error
characteristics.
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