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Yoshikazu Sasaki (right) and his mentor Shigekata Syono working on hydrodynamic
theory of vortex motion during Syono’s visit to the University of Oklahoma
(December 1963): Drawn by John M. Lewis, using pen, brush, and India ink.





To Yoshi K. SASAKI and Roger W. DALEY





Preface

Since the first session for data assimilation (DA) had been organized at the Asia
Oceania Geosciences Society (AOGS) Annual Meeting in 2005, we have conducted
several successful sessions under the title of “Yoshi K. Sasaki Symposium on
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications.” It was
to honor Prof. Yoshi K. Sasaki of the University of Oklahoma for his lifelong
contributions to DA in geosciences. Yoshi had introduced the variational method
to meteorology as early as the 1950s, and since then DA has developed into an
utmost important technique in modern numerical prediction in various disciplines
of geosciences.

The first volume of this book, under the same title of the Sasaki Symposium, has
been published in March 2009 with a collection of notable invited papers along with
those selected from previous symposiums up to 2008. Among them, John M. Lewis,
one of Yoshi’s students, contributed a chapter titled “Sasaki’s Pathway to Determin-
istic Data Assimilation.” I. Michael Navon provided a thorough review of variational
DA for numerical weather prediction, while Yoshi himself introduced a new theory
based on the entropic balance. Milija and Dusanka Zupanski discussed some issues
in ensemble DA, and Zhaoxia Pu overviewed the effect of satellite DA to improve
forecasts of tropical cyclones. A coastal application of the ocean DA was reviewed
by Xiaodong Hong and colleagues, and the variational approach to hydrologic
DA was discussed by Francois-Xavier Le Dimet. Rolf H. Reichle and colleagues
addressed recent advances in land data assimilation at the NASA/GMAO, and
Nasim Alavi and colleagues surveyed assimilation of soil moisture and temperature
into land surface models. As demonstrated, the previous volume covered important
topics on DA in meteorology, oceanography, and hydrology, by dealing with both
theoretical and practical aspects.

It has been more than 3 years since the first volume has been published.
Since then we had three successful symposiums - held at Singapore in August
2009, at Hyderabad in July 2010, and at Taipei in August 2011, each with about
30 presentations. Therefore we decided to publish the second volume under the
same title, again by collecting both invited papers and selected papers from the
three symposiums. This volume includes excellent overviews of estimation theory,

ix



x Preface

nudging and variational methods, and Markov chain Monte Carlo methods. Most
prominently, Yoshi has extended his entropy balance theory for tornado DA from
the previous volume.

In this volume, theoretical and methodological aspects encompass estimation
and entropic balance theory, variational and ensemble methods, nudging and
representer methods, Monte Carlo and ensemble adaptive methods, the maximum
likelihood ensemble filter, the local ensemble transform Kalman filter, micro-
genetic algorithm, etc., with applications to oceanic, meteorological, and hydrologic
DA; radar/lidar/satellite assimilation; parameter estimation; adjoint sensitivity; and
adaptive (targeting) observations.

This book will be useful to individual researchers as well as graduate students
as a reference to the most recent progresses in the field of data assimilation. We
appreciate Boon Chua at Naval Research Laboratory and Francois-Xavier Le Dimet,
who have served as the co-conveners of the Sasaki Symposium. We are very honored
to dedicate this book to Yoshi Sasaki and the late Roger Daley for their significant
contributions in data assimilation.

Ewha Womans University, Seoul
Naval Research Laboratory, Monterey Liang Xu
July 2012

Seon Ki Park
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Chapter 1
A Survey of Observers for Nonlinear Dynamical
Systems�

Wei Kang, Arthur J. Krener, Mingqing Xiao, and Liang Xu

Abstract The Kalman filter, invented initially for control systems, has been widely
used in science and engineering including data assimilation. For the last several
decades, the estimation theory for dynamical systems has been actively developed
in control theory. In this paper, we survey several observers, including Kalman
filters, for nonlinear systems. We also review some fundamental concepts on the
observability of systems defined by either differential equations or a numerical
model. The hope is that some of these ideas will inspire research that can benefit
the area of data assimilation.

Keywords Observers and estimation • Nonlinear systems • Observability

1.1 Introduction

In modern control theory, the term Observer has a technical meaning. An observer
is a system defined by differential or difference equations and associated computa-
tional algorithms which accepts the measured data from another system as input and
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returns an estimate of the state of the other system. Observers play a critical role in
control systems because many feedback controllers depend on the accurate estimate
of state variables of the system to be controlled. An accurate estimation of the state
in the presence of noise and uncertainties is essential for a controller to achieve high
quality performance.

Estimation from data with random noise can be traced to Gauss about 200 years
ago who invented the technique of deterministic least-squares for orbit measure-
ments. In the early twentieth century, Fisher introduced maximum likelihood
estimation. Then in the middle of the twentieth century Wiener invented his
well known optimal filter for stationary processes. Around 1960s, Kalman and
Bucy introduced an optimal recursive filter for dynamical systems. This filter,
now known as the Kalman filter, is “the very foundation for data mixing in
modern multisensor systems (Gelb 1974).” The estimation for systems governed by
differential equations has been an active research field in control theory for more
than 50 years. In addition to the Kalman filter, which is essentially a recursive
solution to the least square problem, estimation processes have been developed
for various performance requirements, such as asymptotically stable estimation,
H1 estimation, and minimum energy estimation. Fundamental theory has been
developed to analyze observability, an intrinsic property of systems with sensors that
largely determines the invertibility from past measurement to the state of the system.

Data assimilation is an area of estimation theory and an application to systems
with extremely high dimensions. Both filtering and smoothing methods are critical
to date assimilation. Although we focus on nonlinear filtering methods in this paper,
smoothing algorithms can be developed using similar ideas. Approaches such as
ensemble Kalman filters and 4D-Var are based on the theory of optimal estimation,
especially the Kalman filter and minimum energy estimation. The data assimilation
community has done extensive research on these topics for over 30 years. While this
book is focused on problems in data assimilation, this article is to provide a survey
on some ideas and results that have been actively developed in control theory, but
not widely used in data assimilation. The goal is to lay out some related but different
concepts and methods. We hope that some of them may inspire different approaches
that benefit the area of data assimilation.

1.2 Observability

In this paper, we consider systems defined by differential equations. The sensor
measurement is defined by an output function. For example,

Px D Ax

y D Cx

x.0/ D x0

(1.1)
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is a linear system in which x 2 R
n is the state variable, y 2 R

p is the output variable
whose value can be measured, A 2 R

n�n and C 2 R
n�p are known constant or

time varying matrices. Given A, C , and the past sensor information about y.t/, the
problem is to estimate x or a function of the state variable in the presence of noise
and uncertainties. A nonlinear system is defined similarly,

Px D f .x/

y D h.x/

x.0/ D x0

(1.2)

An immediate question to be answered before observer design is whether
a system (1.1) or (1.2) admits a convergent estimator. In other words, how to
determine that the past values of y.t/ contain adequate information to achieve a
reliable estimate of x.t/. This leads to the concept of observability. Two initial
states x01 and x02 are said to be distinguishable if the outputs y1.t/ and y2.t/
of (1.2) satisfying the initial conditions x0 D x01 and x0 D x02 differ at some time
t � 0. The system is said to be observable if every pair x01, x02 are distinguishable.
Observability can be easily verified for linear systems. The output of (1.1) and its
derivatives at time t D 0 are

y.0/ D Cx0
Py.0/ D CAx0

Ry.0/ D CA2x0
:::

y.n�1/.0/ D CAn�1x0

(1.3)

Obviously, (1.1) is observable if the mapping from x0 to the derivatives of y.t/
is one-to-one. In fact, it can be proved that (1.1) is observable if and only if the
following observability matrix has full rank

O D

2
666664

C

CA

CA2

:::

CAn�1

3
777775

For nonlinear systems, the output and its derivatives are given by the iterated Lie
derivatives

y.0/ D y.x0/

Py.0/ D Lf .h/.x0/ D @h

@x
.x0/f .x0/
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Ry.0/ D L2f .h/.x0/ D @Lf .h/

@x
.x0/f .x0/

:::

y.k�1/.0/ D Lk�1
f .h/.x0/ D @Lk�2

f .h/

@x
.x0/f .x0/

for some integer k > 0. If the mapping from x0 to h;Lf .h/; L2f .h/; � � � distin-
guishes points then the system is observable. For a real analytic system this is a
necessary and sufficient condition for observability. For simplicity of exposition,
suppose p D 1. Consider the matrix

2
666666664

@h

@x
.x0/

@Lf .h/

@x
.x0/

:::

@Ln�1
f .h/

@x
.x0/

3
777777775

If this matrix is invertible, then the system is locally observable at x0. This
observability matrix is a topic addressed in almost all textbooks of linear and
nonlinear control theory, for instance Kailath (1980) for linear systems and Isidori
(1995) for nonlinear systems.

For high dimensional systems, it is important to quantitatively define observabil-
ity. The observability Gramian is a widely used concept for this purpose (Kailath
1980). Consider a linear system (1.1), an arbitrary initial state x0 of a trajectory

x.t/ D eAtx0

can be uniquely determined from the known function y.t/ D Cx.t/ if and only if
the columns in the matrix

CeAt

are linearly independent over Œt0; t1�. This is equivalent to say that

G D
Z t1

t0

eA
T tC T CeAtdt

is nonsingular. This matrix is called the observability Gramian. In fact, theL2-norm
of the output satisfies Z t1

t0

jjy.t/jj2dt D xT0 Gx0
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Therefore, the eigenvalues of G represent the gain from the initial state to the
output. If G has a zero eigenvalue, then its eigenvector results in a zero output. The
system is unobservable. If G has a very small eigenvalue, then the system is weakly
observable, i.e. a small noise in y.t/ can cause a large estimation error. Therefore,
the smallest eigenvalue of G is used as a quantitative measure of observability.

For nonlinear systems, an empirical observability Gramian can be numerically
computed (Krener and Ide 2009). Consider (1.2) and a nominal trajectory x.t/ with
initial state x.0/ D x0. Define a mapping

ıx0 ! h. Ox.t// � h.x.t//

subject to
POx.t/ D f . Ox.t//
Ox.0/ D x0 C ıx0

(1.4)

Let v1; v2; � � � ; vn be an orthonormal basis in R
n. Let � > 0 be a small number. In

the direction of �vi , the variation of the output can be estimated empirically by

�i.t/ D 1

2�

�
h.xC.t// � h.x�.t//

�
; (1.5)

where
Px˙.t/ D f .x˙.t//
Ox˙.0/ D x0 ˙ �vi ;

The mapping, (1.4), from the initial state to the output space can be locally
approximated by a linear function

ıx0 D
nX
iD0

˛ivi !
nX
iD0

˛i�i .t/ (1.6)

Therefore, the observability Gramian of the nonlinear system can be approximated
by the Gramian associated to (1.6)

G D .Gij /
n
i;jD1

Gij D
Z t1

t0

�T
i .t/�j .t/dt

(1.7)

Locally around the nominal trajectory, the eigenvalues of (1.7) measure the gain
from the variation of the initial state to the variation of the output. If G has a small
eigenvalue, then x.t/ is weakly observable. A small noise in y.t/ can result in a
large estimation error.

The Gramian or empirical Gramian in Kailath (1980) and Krener and Ide (2009)
measures the observability of full initial states. However, for systems with very high
dimensions, the problem of full observability is, in many cases, ill-posed. Some
discussions on the partial observability, or Z-observability, for complex systems
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were introduced in Kang and Barbot (2007). Meanwhile, quantitatively measure
partial observability has been rapidly developed in a sequence of papers (Kang 2011;
Kang and Xu 2009a,b, 2011). For PDEs, the observability is defined and computed
for the finite dimensional approximations of the original model. In Kang and Xu
(2009a,b), dynamic optimization is used as a tool for the definition.

Definition 1.1. Given a trajectory x.t/, t 2 Œt0; t1�. Let W � R
n be a subspace. Let

� > 0 be a constant. Define � as follows

� D minNx.t/ jjh. Nx.t// � h.x.t//jj
subject to

PNx D f . Nx/;
jj Nx.0/� x0jj D �

Nx.0/ � x0 2 W

Then the ratio �=� is a measure of observability for the W -component of x.0/.

If � ! 0, the ratio �=� can be considered as an extension of the observability
Gramian. Consider a linear system (1.1). Suppose W D R

n. Then the observability
Gramian, G, satisfies (Kailath 1980; Krener and Ide 2009)

jjyjj2
L2

D xT0 Px0 (1.8)

Given jjx0jj D �, we have
�2 D �min�

2 (1.9)

where �min is the smallest eigenvalue of G. Therefore, the ratio �2=�2 equals the
reciprocal of the smallest eigenvalue of the observability Gramian. In Kang and Xu
(2009a,b), the concept of partial observability was applied to more general problems
using various types of norms and knowledge of the system. An example of optimal
sensor location by maximizing the observability for data assimilations was given in
Kang and Xu (2011).

1.3 Asymptotic Observers

Following control theory, asymptotic observers are systems defined by differential
or difference equations and associated computational algorithms which accepts the
measured data from another system as input and returns an estimate of the state of
the other system. In the case of a perfect model without noise and uncertainties,
the estimated state should converge to the true state of the system being observed.
Also if the initial state of the observer equals the true state, then the estimation error
is zero along the entire trajectory. In most observer designs, such as Luenberger
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observers and Kalman filters, an observer consists of a copy of the original system
plus a correction term which is a function of the measured data.

Asymptotic observers are widely used in control systems to achieve stable
estimates of state variables. The design emphasizes the stability and simplicity of
the estimation process. In general it does not optimize any performance measure.
The Luenberger observer for linear systems is a simplest example that illustrates the
fundamental idea of asymptotic observers.

1.3.1 Luenberger Observer

Given a dynamical system with an output

Px D Ax

y D Cx
(1.10)

where x 2 R
n is the state variable, y 2 R

p is the output which can be measured,
A 2 R

n�n and C 2 R
p�n are matrices. We assume that A, C and the output y.t/

are known information. The goal is to find an estimate, estimate, denoted by Ox.t/,
of the state variable so that Ox.t/ asymptotically approaches x.t/. The observer has
the following form

POx D A Ox CG.y � C Ox/ (1.11)

The matrix G 2 R
n�p is called the observer gain, which is used to stabilize the

estimation error. Define
e D x � Ox

then the error dynamics has the following form

Pe D Ae �G.y � C Ox/
D .A �GC/e (1.12)

It is obvious that e.t/ asymptotically approaches zero if the eigenvalues of A�GC
are all located in the left half plane. To estimate x.t/, one can use any initial guess
Ox.0/. Then Ox.t/ from (1.11) satisfies

lim
t!1 e.t/ D 0

When applying the observer, y.t/ is measured online and the (1.11) is numerically
propagated in real-time to provide an estimate of x.t/.

It can be proved that, for any set of n complex numbers, there always exists an
observer gain, G, so that the eigenvalues of the error dynamics (1.12) are placed
at these locations, if the pair .A; C / is observable, i.e. the following observability
matrix has full rank
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2
666664

C

CA

CA2

:::

CAn�1

3
777775

This result guarantees that one can always find linear observers with stable error
dynamics for observable systems. For systems in which .A; C / is not observable,
it is still possible to achieve asymptotic stability of (1.12). This depends on the
spectrum of A, which can be divided into observable modes and unobservable
modes. Details are referred to Kailath (1980). If all the unobservable modes are
on the left half plane, then there always exists a G that stabilizes (1.12).

The error dynamics does not include measurement error. If the output is corrupted
by noise, the asymptotic stability of the observer guarantees that Ox.t/ is stabilized
around the true value. There are infinitely many observer gains to stabilize the
observer. A high gain observer has fast convergence to the true value of the system,
however it is very sensitive to sensor noise. Although asymptotic observers do not
guarantee optimal performance in any sense, their advantage lies in the simplicity.
For real time applications, each estimate at a given time is simply computed by
one step integration of the observer equation, which can be implemented using any
numerical algorithm for solving ordinary differential equations (ODEs). Luenberger
observers can be found as a standard topic in almost all textbooks on control theory,
for instance (Kailath 1980; Khalil 2002).

1.3.2 Observers with Linear Error Dynamics

For nonlinear systems, observer design with a guaranteed asymptotically stable error
dynamics is a difficult task (Hermann and Krener 1977). The Luenberger observer
works for linear systems because its error dynamics is decoupled from the unknown
trajectory being observed. For nonlinear systems, however, this is not true in general.
There is a large volume of literature on the construction of nonlinear observers
that admit a linear error dynamics. In the pioneering work (Krener and Isidori
1983) a technique called output injection was introduced. In addition, necessary
and sufficient conditions are found under which the error dynamics of the nonlinear
observer is equivalent to a linear ODE. Consider a nonlinear dynamical system with
an output

Px D f .x/

y D h.x/
(1.13)

in which x 2 R
n is the state variable, y 2 R

p is the output which can be measured,
f .x/ and h.x/ are vector valued functions with adequate smoothness. In Krener and
Isidori (1983), it is propose to find a change of coordinates around a fixed point x0
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z D z.x/
z.x0/ D 0

(1.14)

so that (1.13) is transformed into a linear system with a nonlinear output injection

Pz D Az C �.y/

y D C z
(1.15)

for some matrices A 2 R
n�n and C 2 R

p�n. If this is the case, then we can easily
construct a Luenberger type of observer as follows.

POz D AOz C �.y/CG.y � C Oz/ (1.16)

Let
e D z � Oz

then the error dynamics is a linear system decoupled from z.t/

Pe D .A�GC/e

If G, the observer gain, is chosen so that the eigenvalues of .A�GC/ are all in the
left half plane, then

lim
t!1 e.t/ D 0

Not all nonlinear systems can be transformed into a linear system with output
injection. The existence of the change of coordinates (1.14) can be determined
using Lie differentiation. Given a function h.x/, let dh represents the 1-form, or
the gradient,

dh.x/ D
�
@h

@x1
.x/

@h

@x2
.x/ � � � @h

@xn
.x/

�

The Lie derivative is defined as follows

Lf .h/ D dh � f
Lf .dh/ D f T

@2h

@x
C dh

@f

@x

The following theorem was proved in Krener and Isidori (1983).

Theorem 1.1. There exists a local change of coordinates (1.14) that trans-
forms (1.13) into a linear system with output inject (1.15) if and only if

f .x0/ D 0

h.x0/ D 0

and Lnf .dh/ is a linear combination of Lkf .dh/ for k D 0; 1; � � � ; n � 1.
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Note that the theorem guarantees the existence of a local change of coordinates
around an equilibrium. Therefore, the observers are limited in a local neighborhood
of an equilibrium point. Among a large number of publications on the observer
design by achieving linearized error dynamics, we would like to bring up (Kazantzis
and Kravaris 1998). In this work, the formulation of the observer design problem
is realized via a system of singular first-order linear partial differential equations
(PDE). The theory is applicable to a larger family of systems than that addressed
in Krener and Isidori (1983). In fact, after a nonlinear change of coordinates, the
resulting system is not required to have a linear output like in (1.15). Another
advantage of the work in Kazantzis and Kravaris (1998) is that the solution to
the PDEs is locally analytic and this enables the development of a series solution
method, that is programmable using symbolic software packages. In the presence
of noise, some types of output injection, such as a y2 term, may result in a biased
estimation because EŒ.y C n/2� D EŒy2�C EŒn2�, where n is a random noise.

Other related work includes Zeitz’s extended Luenberger observer based upon
a local linearization technique (Zeitz 1987). Nonlinear coordinate transformations
have also been employed to transform the nonlinear system to a suitable observer
canonical form, where the observer design problem may be solved (Bestle and Zeitz
1983; Ding et al. 1990; Xia and Gao 1989; Zheng et al. 2007).

1.3.3 Observers Based on Lyapunov Functions

For systems that do not admit a linear error dynamics, nonlinear observers can
be derived so that its stability is guaranteed by a Lyapunov function. A widely
used approach is based on the high gain observer proved in Gauthier et al. (1992).
Once again, consider the nonlinear system (1.13). Using a single output case as an
example, consider the mapping, z D z.x/ W Rn ! R

n, defined by

z.x/ D

2
6664

h.x/

Lf h.x/
:::

Ln�1
f h.x/

3
7775 (1.17)

We assume that z D z.x/ is a diffeomorphism on a region � � R
n. Under this

transformation, the original system is equivalent to the system in the form

Pz D

2
666664

z2
z3
:::

zn
�.z/

3
777775

y D z1

(1.18)
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Using the following notation

Nf .z/ D �
z2 z3 � � � zn �.z/

�T

NA D

2
64
0 1 0 � � � 0 0
0 0 1 � � � 0 0
:::
:::
::: � � � ::: :::

3
75

NC D �
1 0 � � � 0 �

the observer has the form

POz D Nf .Oz/� S�1 NC. NC Oz � y/

where S is the solution of the equation

�	S � NAT S � S NAC NCT NC D 0

where 	 is a constant. It is proved in Gauthier et al. (1992) that the error of the
observer

e.t/ D z � Oz
approaches zero if 	 is large enough (thus the name “high gain observer”). While
the proof is carried out in the z-space, the observer can be constructed in the original
state space

POx D f . Ox/ �
�
@z

@x

	�1
S�1 NC.h. Ox/� y/

The simplicity in the construction of a high gain observer makes it a convenient
tool for nonlinear systems (Gauthier and Kupka 1994). However, in the presence
of noise, a high gain observer should be used with caution. It may significantly
enlarge the impact of the noise and result in large estimation errors. In addition,
the “homomorphism” requirement for (1.17) limits the region in the state space in
which the observer is applicable. In Krener and Kang (2003), a nonlinear observer is
constructed without a global homomorphism requirement. In addition, the observer
gain depends on the state of the system so that it is not constantly high. Global or
semi-global observers can also be derived based on Lyapunove functions for systems
with a triangular structure or bounded nonlinear terms in its differential equations
(Lei et al. 2007; Krener and Kang 2003; Tsinias 1989). Deriving Lyapunov
functions for nonlinear systems is always difficult. An alternative is to directly apply
convergent numerical algorithms in nonlinear observers. For instance, an Euler-
Newton observer is introduced in Kang (2006). Moving horizon observers are also
computational based methodologies (Findeisen et al. 2002; Michalska and Mayne
1995).

The sliding mode observer is another Lyapunov function based approach. It has
the capability of handling unknown inputs or unknown parameters (Floquet and
Barbot 2007). A survey of various types of sliding mode observers can be found in
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Spurgeon (2008). It is interesting to point out that an engineering approach for fast
estimation is to build an electronic analogue realization of a sliding mode observer
(L’Hernault et al. 2008).

1.4 Optimal Filtering

Optimal filtering is a class of observers that achieve optimal performance by
minimizing some metrics of the estimation error. Due to the optimality requirement,
the online computational load required for optimal filters is usually higher than that
needed for asymptotic observers.

1.4.1 Kalman Filters

Consider a system with random noise

Px D f .x/CGw
y D h.x/CDv

(1.19)

where w and v are standard white Gaussian noises. Suppose the estimated state is
Ox.t/. If (1.19) is nonlinear, we linearize it around Ox.t/

Px D A.t/x C w
y D C.t/x C v

(1.20)

where

A.t/ D @f

@x
. Ox.t//; C.t/ D @h

@x
. Ox.t//

A Kalman filter based upon the linearization of a nonlinear system is called an
extended Kalman filter (EKF). It includes the estimates of the state variable, Ox, and
the estimation error covariance matrix, P.t/ 2 R

n. More specifically, EKF is an
observer with a dynamic gain

POx D f . Ox/CK.t/.y � Oy/
PP .t/ D A.t/P.t/C P.t/AT .t/CQ.t/� P.t/C T .t/R�1C.t/P.t/
Ox.t0/ D Ox0; P.t0/ D P0

Oy D h. Ox/
Q.t/ D G.t/GT .t/

R.t/ D D.t/DT .t/

K.t/ D P.t/C T .t/R�1.t/
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The matrices Q(t) and R(t) are the driving noise covariance in the system dynamics
and the measurement noise covariance, respectively. The matrix Q.t/ must be
nonnegative definite and R.t/ must be positive definite. The initial state estimate
x0 and its covariance P0 describe the prior knowledge of the true state at the
beginning of the process. The Kalman filter “represents the most widely applied and
demonstrable useful result to emerge from the state variable approach of modern
control theory” (Sorenson 1985). It can be found in many textbooks on control
theory, for instance (Gelb 1974; Brown and Hwang 1997). A drawback of EKF is
that the convergence is, in general, not guaranteed. Simple examples can be found
in which an EKF estimation process diverges (Krener 2004). Various proofs of its
local convergence exist in the literature. Interested readers are referred to Krener
(2003b) and references therein.

An EKF requires the linearization of system models, which may not be easily
available during real-time operations. In addition, the linearization is changed if the
model is modified or updated. A different approach is to use the Unscented Kalman
Filter (UKF) which does not require the online computation of the linearization.
Following Julier and Uhlmann (2004), consider a discrete time nonlinear system

xk D f .xk�1;wk�1/
yk D h.xk�1; vk�1/

where x; y; v and w are the state, measurement, process noise and measurement
noise respectively. The UKF is “founded on the intuition that it is easier to approx-
imate a probability distribution than it is to approximate an arbitrary nonlinear
function or transformation” (Julier and Uhlmann 2004). The UKF assumes that at
every sampling instance, the state x is always a normally distributed variable. The
mean and the covariance information of this random variable can be stored in a set
of specially chosen points called sigma points. One simple choice of such sigma
points is given below (Julier and Uhlmann 2004)


i D E.x/˙ p
nP ; i D 1; 2; : : : ; n

where E.x/ is the mean of the random variable x, P is the covariance matrix and n
is the dimension of x. It can be shown that the nonlinear transformation of the sigma
points preserves statistics up to second order in a Taylor serious expansion (Julier
and Uhlmann 2004). Based on this fact, a prediction of the state and the covariance
matrices in the filter algorithm can be carried out as follows:

• Based on the previous-step estimation of the state, Oxk�1, and the covariance
matrix, OPxx

k�1, calculate a set of sigma points as


i D Oxk�1 ˙
q
n OPxx

k�1; i D 1; 2; : : : ; nI
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• Propagate all the sigma points through the nonlinear dynamic and the output
equations,

zi D f .
i ; 0/

gi D h.
i ; 0/; i D 1; 2; : : : ; nI
• Calculate the mean (prediction) of the state and output,

Qxk D 1
2n

P2n
iD1 zi

Qyk D 1
2n

P2n
iD1 gi I

• The prediction of the covariance matrices are given by,

QPxx
k D 1

2n

P2n
iD1.zi � Qxk/.zi � Qxk/T

QPyy

k D 1
2n

P2n
iD1.gi � Qyk/.gi � Qyk/T

QPxy

k D 1
2n

P2n
iD1.zi � Qxk/.gi � Qyk/T

Once the prediction of Qxk , QPxx
k , QPyy

k and QPxy

k are available, the update is given by

Oxk D Qxk CK.yk � Qyk/

where
K D QPxy

k Œ QPyy

k ��1
OPxx
k D QPxx

k �K QPxy

k KT :

While UKF avoids the computation of linearization, it requires the integration of
2n trajectories. For nonlinear systems with a moderate dimension, the UKF is an
reliable and efficient filter for real-time estimation. However, it is not clear if the
idea is applicable to large scale systems with tens of thousands or even millions
of dimensions. For systems with very high dimensions, such as the models for
numerical weather forecast, currently popular approaches include the ensemble
Kalman filter (EnKF) and 4D-Var estimation and prediction (Anderson 2003;
Evensen 2007, 1994; Houtekamer and Mitchell 1998; Chua and Bennett 2001;
Courtier et al. 1994; Rabier et al. 2000; Xu et al. 2005). These methods are primarily
developed and widely used in the data assimilation community. They are extensively
addressed in the other chapters of this book. Therefore, we skip the details on EnKF
and 4D-Var methods.

1.4.2 H1 Filter

The Kalman filter is optimal in a stochastic sense. However, the probability model of
disturbances may not be available for a given system. In this case, one may assume
that the noises are not stochastic but unknown L2 functions. The goal of H1 filters
is to estimate the state variables in such a way that the gain from noise to estimation
error is as small as possible. Following Krener (2004), consider a system
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Px D f .x/C g.x/w

y D h.x/C v (1.21)

x.0/ D x0 C Qx0
where disturbances w and v are unknown L2 functions, Qx0 is an unknown error in
the initial condition. The total “energy” of the disturbances is formulated using L2

norms

jj Qx0jj2 C
Z t

0

jjw.�/jj2 C jjv.�/jj2d�

For some � > 0, if a filter satisfies

Z t

0

jjx.�/ � Ox.�/jj2d� � �2
�

jj Qx0jj2 C
Z t

0

jjw.�/jj2 C jjv.�/jj2d�
	

for arbitrary Qx0, w, and v, then we say that the gain from the disturbance to
the estimation error is bounded by � . We seek an estimator based on worst case
scenarios. Define

Q.x; t/ D inf
Qx0;w.�/

�
�2

2
jj Qx0jj2 C �2

2

Z t

0

jjw.�/jj2 C jjy.�/� h.x.�//jj2d�

�1
2

Z t

0

jjx.�/ � Ox.�/jj2d�
	

where x.�/ is subject to (1.21) and x.t/ D x. If Q.x; t/ � 0, then it is guaranteed
that the gain from the disturbance to the estimation error is bounded by � . From
dynamic programming,Q.x; t/ satisfies the following partial differential equation

0 D @Q

@t
.x; t/C

nX
iD1

@Q

@xi
.x; t/fi .x/C 1

2�2

nX
i;jD1

@Q

@xi
.x; t/aij .x/

@Q

@xj
.x; t/

��
2

2
jjy.t/ � h.x/jj2 C 1

2
jjx � Oxjj2

(1.22)
If the equation has a solution, then the optimal estimate is given by

Ox.t/ D argminxQ.x; t/ (1.23)

It is of Hamilton-Jacobi type, first order, nonlinear PDE driven by the observa-
tions. It is very difficult, if not impossible, to compute an accurate solution in real
time. Moreover it may not admit a smooth solution so the (1.22) must be interpreted
in the viscosity sense. This is an infinite dimensional observer with state Q.�; t/
evolving according to (1.22) with state estimate given by (1.23). Hence it is of
limited practical use.



16 W. Kang et al.

For linear systems, (1.22) reduces to a Riccati differential equation. Consider

Px D Ax C Bw
y D Cx CDv

x.0/ D 0

Its H1 filter has the following form

POx.t/ D A Ox CK.t/.y.t/ � C Ox.t//
K.t/ D Q.t/C T

whereQ.t/ is a solution of the Riccati differential equation

PQ.t/ D AQ.t/CQ.t/AT C BBT �Q.t/.C T C � ��2I /Q.t/
Q.0/ D 0

This is an observer similar to Kalman filter. However, this filter can be modified to
estimate a linear combination of the state variables, z D Lx. There are many books
and papers on H1 filters, for instance (Green and Limebeer 1995).

1.4.3 Minimum Energy Estimation

Consider a system model (1.21) in which the noises are unknown L2 functions. We
seek the initial state error Qx0 and the noises w.t/ and v.t/ of “minimum energy”

1

2
jj Qx0jj2 C 1

2

Z t

0

jjw.�/jj2 C jjv.�/jj2d�

where v.t/ is consistent with the observation. The quality of estimation is defined
by an optimal control problem

Q.x; t/ D inf
Qx0;w.�/

�
1

2
jj Qx0jj2 C 1

2

Z t

0

jjw.�/jj2 C jjy.�/ � h.x.�//jj2d�
	

in which x.�/ is subject to (1.21) and x.t/ D x. The optimal estimation is given by
the one that minimizesQ.x; t/,

Ox.t/ D argminxQ.x; t/

This approach is similar to and predates a H1 estimation, except that it does not
require the searching for gain � . The dynamic programming approach yields a
partial differential equation forQ.x; t/
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0 D @Q

@t
.x; t/C

nX
iD1

@Q

@xi
.x; t/fi .x/C 1

2

nX
i;jD1

@Q

@xi
.x; t/aij .x/

@Q

@xj
.x; t/

�1
2

jjy.t/ � h.x/jj2

Similar to the H1 filter, this equation is very difficult to solve, if not impossi-
ble, either analytically or numerically. For linear systems, the partial differential
equation is reduced to a linear Riccati equation, which is numerically solvable for
systems with a moderate dimension. For systems with extremely high dimensions,
such as the models used for numerical weather forecast, special treatment must be
applied in the optimization process. In principle, 4D-Var is a discrete minimum
energy filter using a weighted norm. Some matrices of extremely large size exceed
the capacity of computational facility. The way to get around these difficulties
is to use tangent linear model and adjoint model in the computation (Liang,
some references here). More information on the general idea of minimum energy
estimation methods is referred to Hijab (1980), Krener (2003a), and Mortensen
(1968) and references therein.

1.5 Observer Construction for PDE Systems

1.5.1 Linear Case

We consider a PDE system written in an abstract form

Px.t/ D Ax.t/; x.0/ D x0; t � 0

y.t/ D Cx.t/; t � 0;
(1.24)

on a Hilbert space X , where A is the infinitesimal generator of the strongly
continuous semigroup eAt on X and C is a bounded operator from X to a second
Hilbert space Y (Curtain and Zwart 1995).

Similar to the finite dimensional case, the observability map of (1.24) on Œ0; T �
is a bounded linear operator CT W X ! L2.Œ0; T �IY / defined as follows

CT .x/.t/ D CeA.T�t /x: (1.25)

A widely adopted definition of observability is based on the property that the knowl-
edge about the output y over a finite time interval uniquely determines the initial
state. The following definition is essentially the same as the one following (1.3) for
finite dimensional systems:

Definition 1.2. System (1.24) is exactly observable on Œ0; T � (for some T > 0) if
CT is injective and its inverse is bounded on the range of CT .



18 W. Kang et al.

In other words, .C;A/ is exactly observable on Œ0; T � if Ker.CT / is f0g and CT has
a closed range. Although the exact observability is consistent with the one for finite
dimensional systems, there is no general observability test for infinite dimensional
systems. The observability is equivalent to the following inequality

Z T

0

k.CT x/.s/k2Y ds D
Z T

0

kCeA.T�s/xk2Y ds � �kxk2X (1.26)

where � > 0 is a constant which may depend on T . However, in many cases the
inverse of CT may not be bounded. Thus this leads to the following definition of
weak observability:

Definition 1.3. System (1.24) is approximately observable on Œ0; T � (for some
T > 0) if

ker.CT / D f0g:
In other words, .A; C / is approximately observable on Œ0; T � if CT is injective. This
definition has a drawback. Some observable systems can be ill-posed, i.e. the inverse
mapping from the output variable to the estimated state is extremely sensitive to
noise. In this case, studying partial observability makes more sense. In fact, in Kang
(2011) it was proved that Definition 1.1 can be applied to PDEs to quantitatively
measure the observability of a finite dimensional subspace of the state variables.

A Luenberger observer for (1.24) is an abstract system in the form of

POx.t/ D A Ox C L. Oy.t/ � y.t//

Oy.t/ D C Ox.t/ (1.27)

where L W Y ! X is a linear operator. Unlike the finite dimensional case, even
if (1.24) is exactly observable on some interval Œ0; T �, we may not have a convergent
observer (1.27) (see Curtain and Zwart 1995 and references therein). If we define
the error e.t/ D x.t/� Ox.t/, then e.t/ approaches zero exponentially as t increases
provided that .A; C / is exponentially detectable, which means that there exists a
linear operator L W Y ! X such that A C LC generates an exponentially stable
C0-semigroup e.ACLC/t .

When C is a compact operator, a necessary condition for .A; C / to be detectable
is that the unstable part of the spectrum of A consists only of eigenvalues (Curtain
and Zwart 1995). In infinite dimensions, it is impossible to achieve arbitrary
eigenvalue assignment, but some interesting results on partial assignment can be
found in Clarke and Williamson (1981), Curtain and Zwart (1995), Russell (1968),
Sun (1981), and Rebarber (1999). In the following, we present a relatively complete
result when C has a finite rank, i.e. Rang.C / is finite dimensional, a typical case in
engineering problems.

For a given real number ˛, the spectrum of A can be decomposed into two parts
in the complex plane


C̨ D 
.A/ \ f� 2 C j Re.�/ � ˛g

 �̨ D 
.A/ \ f� 2 C j Re.�/ < ˛g: (1.28)
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An operator A is said to satisfy the spectrum decomposition assumption at ˛ if

C̨ is bounded and separated from 
 �̨, i.e. the boundaries of 
C̨ and 
 �̨ have no
intersection. Under this assumption, we can define the following spectral projection

P˛x D 1

2j

Z
�˛

.�I �A/�1xd�;

where j 2 D �1 and �˛ is a curve traversed once in the positive direction
(counterclockwise) to enclose an open set containing 
C̨ in its interior and 
 �̨ in its
exterior. The projection induces a decomposition of the state space X :

X D X C̨ ˚X �̨; where X C̨ D P˛X and X �̨ D .I � P˛/X:

Next let us denote

AC̨ D P˛A; A�̨ D .I � P˛/A;

C C̨ D CP˛; C �̨ D C.I � P˛/: (1.29)

Assume C has finite rank. We say that .A; C / is detectable with stability margin
greater than or equal to �˛ if there exists L 2 L.Y;X/ such that the C0-semigroup
e.ACLC/t generated by ACLC satisfies

ke.ACLC/tk � Me�ˇt ; M � 1 (1.30)

holds for any ˇ < ˛. The pair .A; C / is detectable if and only if

• A satisfies spectrum decomposition assumption at ˛;
• X C̨ is finite dimensional;
• .AC̨; C C̨/ is observable;
• eA

�

˛ t is exponentially stable with a stability margin that is least �˛.

Sufficient conditions for the exponential detectability were obtained in 1975 by
Triggiani (1975) (also see surveys by Pritchard and Zabczyk (1981) and by Russell
(1978)). In 1985 Desch and Schappacher (1985) show that these conditions are also
necessary for finite-rank inputs. These conditions can be simplified for systems of
either the Riesz-spectral type or the retarded delay type (Bhat 1986; Curtain and
Pritchard 1974; Curtain and Zwart 1995).

The observer for (1.24) has been studied by many authors (see Orner and Foster
1971; Kitamura et al. 1972; Sakawa and Matsushita 1975; Balas 1980; Gressang
and Lamont 1975; Fuji 1980) under the framework of distributed parameter
systems. However, due to its infinite-dimensional feature, in general, it is not
implementable in applications. Thus designs of finite dimensional observers (in
the context of compensators) were proposed based on eigenfunction projections
or direct state space projection (Bernstein and Hyland 1986; Curtain 1982, 1993;
Kaman et al. 1985; Sakawa 1984; Schumacher 1983; Xiao and Başar 1999). These
projection approximations usually lead to high dimensional observers in order to
achieve accurate estimation. For extensions to systems with unbounded input and
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output operators see Curtain (1984) and Curtain and Salamon (1986). Some recent
approaches can be found in Smyshlyaev and Krstic (2008, 2009) and Li et al. (2012)
and references therein.

1.5.2 Nonlinear Case

Observer design for systems governed by nonlinear PDEs is very challenging. There
are very few results available. Instead of trying to cover a broad class of issues, here
we introduce a new idea that may directly connect to finite dimension observer
design, presented in Sect. 1.2.

A mathematical description of the long-term behavior of a dynamical system
ultimately is to determine its attractor. However, the global attractor can be quite
complicated geometrically and can attracts solutions at algebraic rate. It has been
found that in many cases the global attractor can be embedded into exponen-
tially attractive finite dimensional manifolds (Chueshov 2002; Chow et al. 1992;
Demengel and Ghidaglia 1991; Foias and Temam 1977; Garcia-archilla et al. 1999;
Marion 1989; Temam 1997). It turns out that inertial manifolds are an appropriate
mathematical tool which has been used in the study of the long-term behavior of
dynamical systems. These are finite-dimensional Lipschitz manifolds, which attract
all the orbits at an exponential rate. Inertial manifolds are positively invariant under
the state dynamics and thus contain the global attractors.

If a system possesses an inertial manifold, the long-time dynamics of the
system can be captured by the finite-dimensional dynamical flow on the manifold
because the inertial manifold exponentially attracts all the orbits of the system.
Hence, inertial manifolds can be used for the reduction of a PDE to a finite
dimensional ODE in which the !-limit set of the solution of the PDE coincides
with the !-limit set of a system of ODEs. In a way, the long-time dynamics of
a PDE with an inertial manifold is completely determined by the solutions of a
system of ODEs in finite dimensions, and one can use the well-established ODE
theory for the qualitative analysis in an infinite dimensional setting. Many infinite-
dimensional systems, including the well-known Navier-Stokes equations, actually
possess inertial manifolds.

Consider an abstract evolution equation of the form

du

dt
C Au D f .u/; u.0/ D u0; (1.31)

in a Banach space X , where f is assumed to be continuous from a Banach space E
into another Banach space F , with

E 	 F 	 X I

The injections are continuous and each space is dense in the following one.
Typically, u.t/ is a function, for instance U.t; x/ with a space variable x and a
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norm in a Banach space. For PDEs, A is a differential operator with respect to x,
for instance A.u/.t/ D Ux.t; x/. Under a Lipschitz condition for f .u/ and some
assumptions about A and its spectrum, there exists a finite dimensional subspace
V 	 E that is invariant under e�tA. The subspace is generated by a set of
eigenvectors of A. Over this subspace is an invariant manifold of (1.31), denoted
by M, which can be defined as a graph

M D f.p; p Cˆ.p// j p 2 V g
where ˆ is a mapping from V to its orthogonal complement in E . It can be proved
that (1.31) induces an ODE in V ,

dp

dt
CAp D Nf .p Cˆ.p//; Np.0/ D Np0 2 V: (1.32)

for some function Nf derived from the original PDE. The most important property of
M is that it is exponentially attractive, that is, for any solution u.t/ of (1.31), there
exists an induced trajectory

Nu.t/ D p.t/Cˆ.p.t// 2 M

such that u.t/ approaches Nu.t/ exponentially. Thus, the finite dimensional dynam-
ics (1.32) determines the long-term behavior of the original system (1.31). An
observer designed for (1.32) can be used to estimate u.t/.

For example, let us consider the system of reaction-diffusion equations

@u

@t
D ��u C f .u;ru/;

@u

@n

ˇ̌
ˇ
@�

D 0; (1.33)

in a bounded domain � 	 R
d . Here u D .u1; : : : ; um/. The function f .u;w/

satisfies the global Lipschitz condition:

jf .u;w1/ � f .v;w2/j � L
pju � vj2 C jw1 � w2j2; (1.34)

where u; v 2 R
m, w1;w2 2 R

md , and L > 0. It can be verified that the
system satisfies all the conditions to guarantee the existence of an inertial manifold
(Chueshov 2002). In fact, in this example we have ˆ.p/ D 0. The manifold is the
same as the invariant space V . The induced ODE in V has the following form.

d Nu
dt

D f .Nu; 0/; Nu.t/ 2 V: (1.35)

Thus for any PDE solution u to (1.33), there exists an ODE solution Nu to (1.35) such
that

ku.t/ � Nu.t/k1 � Ce��t ; t � 0;
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where the constant � > 0 does not depend on u.t/ and k � k1 is the Sobolev norm
of the first order. Therefore, the observer design for the PDE system (1.33) boils
down to the observer design for ODE (1.35), and the methods in previous sections
are applicable.

1.6 Conclusions

The Kalman filter, invented initially for control systems, has been widely used in
science and engineering including data assimilation. For the last several decades,
the estimation theory for dynamical systems have been actively developed in control
theory. We have surveyed some but not all of the ways of observers for a nonlinear
system. Some approaches have been applied to engineering problems for many
years, and some others are relatively new. It is not clear which of them is scalable
for systems with extremely high dimensions, like atmospheric models or ocean
dynamics. However, we certainly hope that some of these ideas will benefit the data
assimilation community. The high gain observer is a theoretical finite dimensional
solution to a broad class of systems with small noise. The minimum energy and
H1 observers are theoretical infinite dimensional solutions to broad classes of
noisy problems. However, it is not trivial to implement them for nonlinear systems.
The linearization techniques give local and sometimes only approximate solutions
for narrower classes of problems. The extended Kalman filter is probably still
the most robust and practical approach for most problems. If there are substantial
nonlinearities, e.g., multiple stable equilibria and/or stable limit cycles then the use
of multiple extended Kalman filters is probably the preferred approach. However, a
disadvantage for the extended Kalman Filter is the requirement of linearization in
real-time. This is why the unscented Kalman filter is getting increasingly popular
in engineering applications, although it suffers the requirement of doubling the
dimension of the system. To summarize, there is no best estimation method for
general nonlinear systems. Observers should be designed to fit the specific behavior
and form of a system and its model.

All these methods rely on the observability of the system to insure convergence.
The concept of observability has the potential to benefit data assimilations in several
ways, including optimal sensor network design, data thinning, targeted sensing, etc.
For these applications, numerically computing the observability for large systems is
a challenge that needs further research.
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Chapter 2
Nudging Methods: A Critical Overview

S. Lakshmivarahan and John M. Lewis

Abstract A review of the various methods used to implement the “nudging” form
of data assimilation has been presented with the intension of identifying both
the pragmatic and theoretical aspects of the methodology. Its appeal rests on the
intuitive belief that forecast corrections can be made on the basis of feedback control
where forecast error from earlier times is incorporated into the dynamics. Further,
the methodology is easy to implement. However, its early-period implementation
with a nudging coefficient based on pure empiricism with slight consideration
of the time scales of motion lacked a firm theoretical foundation. This empirical
approach is reviewed but then placed in the context of advances that have attempted
to optimally choose the nudging coefficient based on a functional that fits model
to data as well as fitting the coefficient to an a priori estimate of the coefficient.
Original research in this review makes it clear that these “optimal” methods have
unintentionally neglected the inherent presence of serially correlated error in the
nudged model. And in the absence of account for this error, the results are non-
optimal. Finally, the theories of observer-based nudging and forward-backward
nudging are presented as promising avenues of research for the nudging process
of dynamic data assimilation.
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2.1 Introduction

To avoid confusion and repetition, we begin by establishing basic notation and
definitions. Let x 2 Rn refer to the state vector of the forecast model, and
M W Rn ! Rn denote the one-step transition map. A discrete time nonlinear
dynamic model is given by

x.k C 1/ D M.x.k// (2.1)

with x.0/ the initial condition. Given x.0/, the sequence of states fx.k/gk�0 is
called the model forecast.

Let z 2 Rm and h W Rn ! Rm where

z.k/ D h . Nx.k//C V.k/ (2.2)

denote the observation at time k, where Nx.k/ is the “true” unknown state of the
system captured by the model in (2.1), V.k/ is the Gaussian white noise sequence
V.k/ 
 N.0; R/ where R 2 Rm�m is a known symmetric and positive definite
covariance matrix of V.k/. It is assumed that the unknown true state evolves
according to the dynamics

Nx.k C 1/ D NM . Nx.k// (2.3)

with Nx.0/ as the initial condition. The differences

QM.x/ D M.x/ � NM.x/ (2.4)

and
Qx.0/ D x.0/ � Nx.0/

denote the model error and the error in the initial condition, respectively.
A modern version of the standard dynamic data assimilation problem (Lewis

et al. (2006)) may be stated as follows: Given a set fz.k/ W 1 � k � N g of N
observations, find the optimal initial condition x�.0/ that minimizes the cost
functional

J1.x.0/ D 1

2

NX
kD1

< e.k/;R�1e.k/ > (2.5)

where
e.k/ D z.k/ � h .x.k// (2.6)

is the forecast error and< a; b >D aT b is the standard inner product of two vectors
a, b 2 Rn where T denotes the transpose. The importance of this problem stems
from the fact that the model forecast starting from x�.0/ “best fits” the observation
that in turn is a surrogate of the truth.
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In the parlance of dynamic meteorology, the optimal forecast problem has
a rich and cherished history. Wilhelm Bjerknes (1904), father of modern-day
dynamic meteorology, was the first scientist to formulate forecasting as an initial
value problem. And in the early 1920s, British meteorologist Lewis Fry (“L. F.”)
Richardson (1922) paved the foundation for modern numerical weather prediction
(NWP) with his bold effort to use discrete mathematics to make a single-step
advance of the atmospheric state (Lynch 2006). Although unsuccessful for reasons
discussed in Lynch (2006), Richardson’s work inspired a team of meteorologists
and mathematicians at Princeton University’s Institute for Advanced Study. And
under the leadership of Jule Charney, this team made two successful 24-h NWP
forecasts of the transient features of the large-scale flow (initialized on 30 January
and 13 February 1949) using a filtered model that excluded the fast moving gravity-
inertial waves while retaining the slower Rossby waves (Charney et al. 1950;
Platzman 1979). The calculations were made on the ENIAC (Electronic Numerical
Integrator And Computer), the very first generation of stored program digital
computers, housed at the Aberdeen Proving Grounds, Maryland between 1947
and 1955.

With the advent of more-powerful digital computers along with advances in
numerical analysis techniques, NWP and the associated numerical simulation of
atmospheric flow have become dominant themes of research in meteorology. Indeed,
Bjerknes’s dream has been realized albeit tempered by the uncertainty of extended
range forecasting in response to the chaotic nature of atmospheric flow (see review
in Lewis 2005). The melding of observations and dynamics into the construction
of an initial state of the system, the data assimilation (DA) phase of NWP, has
been central to advances in NWP (See Lewis and Lakshmivarahan (2008) for a
comprehensive historical review of meteorological data assimilation from the mid-
1950s to the present day).

From roughly the early-1970s to the present day, variational calculus and
optimization theory have assumed central roles in the solution to the dynamic
data assimilation problem. The well-known 4D-Var (four-dimensional variational
method), based on use of the adjoint model to determine the gradient of the cost
function, has both esthetic appeal and pragmatic utility for assimilating data into a
deterministic model (strong constraint where the model is assumed perfect). For a
stochastic approach where the model is assumed imperfect, a “Kalman filter” type
approach, referred to in meteorology as optimal or statistical interpolation or more
recently referred to as 3D-Var, Lorenc (1986) has enjoyed wide appeal (Again, see
Lewis and Lakshmivarahan (2008) for the historical development of these ideas).
The books by Daley (1991), Kalnay (2003), Evensen (2007), and Lewis et al. (2006),
offer pedagogical explanations and discussions of these various methods. We hasten
to add that both the 4D-Var and Kalman-filter methods (Kalman 1960b) have
enjoyed widespread development and use in the control theory literature.

Anthes (1974) and Hoke (1976) introduced a method of data assimilation that
differed from the classic methods mentioned above. Fundamentally, this methodol-
ogy has its roots in control theory where an empirical forecast error term is added
to the dynamical constraint—essentially a feedback control Wiener (1948). More
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formally, the forecast error e.k/ in (2.6) is used as an artificial forcing to the model
as follows:

x.k C 1/ D M .x.k//CG0.k/e.k/ (2.7)

where G0.k/ 2 Rn�m is called the time varying nudging coefficient matrix. Since
the correction term in (2.7) is proportional to e.k/ 2 Rm (in the observation space),
this form of nudging is called observation nudging where G0.k/ is the associated
nudging coefficient. Instead, let xa.k/ 2 Rn be the state vector on the computational
grid obtained from z.k/ using any one of the DA schemes. Then,

x.k C 1/ D M.x.k//CGa.k/ Œxa.k/� x.k/� (2.8)

is called analysis nudging where Ga.k/ 2 Rn�n is a time varying analysis nudging
coefficient. In either form, an appropriate measure of the forecast error is used
to force the model state towards the observation. The nudging method has also
been viewed as a case of Newtonian relaxation or “repeated insertion of data”
(Macpherson (1991)).

The notion of using the error to drive a model towards a desired state is
a basic principle underlying the design of feedback control systems. Refer to
Bennett (1996), Bryson (1996), and Sussmann and Willems (1997) for historical
overviews of these techniques.

The literature on nudging covers nearly four decades (since 1974) and can be
broadly divided into parts or divisions as follows:

1. The nudging coefficient is empirically determined through examination of
dynamical simulation over a broad range of coefficients. The coefficient G is
positive and may be time varying, but its magnitude is controlled in part by the
smallest time scale of the typical multi-scale phenomenon captured by the model.

2. The coefficient matrix G is optimally determined through minimization of a
functional that combines the standard fit (equation 2.5) augmented by a term
that fits the coefficient to an a priori estimate of that coefficient. The resulting
constrained minimization is solved by the 4D-Var method mentioned earlier.

3. A class of methods that exploit the similarity between nudged dynamics (2.7–
2.8) and feedback control in observer theory (Luenberger 1964).

4. A process labeled “back-and-forth nudging” that uses the same model in a
forward and backward mode to obtain a good match between the forecast model
and the observations (Auroux (2009)).

Nudging based dynamic data assimilation has been applied to a variety of problems
including the following:

1. Initialization of a dynamic model as originally proposed by Anthes (1974)
and Hoke (1976) where Hoke (1976) recommended an analysis-based nudging
process [as found in (2.8)] as opposed to observation-based nudging [as found in
(2.7)]. Application has been made to forecast of the Indian Monsoon [Krishna-
murti et al. (1991), Ramamurthy and Carr (1987, 1988)].
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2. Diagnostic studies of synoptic-scale and mesoscale processes in mid-latitude
weather systems [Brill et al. (1991), Stauffer et al. (1985), Stauffer and
Seaman (1990), Yamada and Bunker (1989), and Warner (1990)].

3. Observation System Simulation Experiments (OSSE’s) using observations from
wind profilers as found in the work of Kuo and Guo (1989).

4. Application of the nudging assimilation method to operational prediction has
been made in both meteorology and oceanography. In meteorology, the following
publications have explored nudging: Bell and Dickinson (1987) and Lorenc
et al. (1991). In oceanography, Derber and Rosati (1989) and Derber et al. (1990)
have used nudging.

Beyond this divisional breakdown of nudging processes in research and operations,
the following studies are noteworthy: A non-operational application of nudging
to analyses from FGGE (First GARP Global Experiment) as found in Stern
et al. (1985), a sensitivity of assimilation and prediction to the nudging coefficient
by Bao and Errico (1997), and a series of explorations into the “back-and-
forth” nudging method by Auroux and collaborators [Auroux (2009), Auroux and
Nodet (2010), and Auroux and Blum (2005) and (2008)].

We begin our review by providing a historical examination of the empirical
methods used in nudging. This is followed by a study of the work that searched
for optimal nudging coefficients including an account for serial correlation errors
in the nudging process. We then examine the observer-based methods and explore
the ideas behind the back-and-forth nudging process. We summarize and discuss the
work on nudging in the final section of the paper.

2.2 Early Empirical Method

For completeness and to give a flavor of the ideas used in the early era, in this section
we describe a method for determining the scalar nudging coefficient G. Following
Brill et al. (1991) consider the analysis nudging scheme in continuous time. Let

Px.t/ D F .x.t//CGf.t/ Œxa.t/ � x.t/� (2.9)

where F W Rn ! Rn, G 2 R is an unknown positive scalar to be estimated,
f W Œ0; T � ! Ris a non-negative real valued function such that

0 � f .t/ � 1 f .0/ D 0 D f .T / (2.10)

and xa.0/ and xa.T / are the known analyses at times t D 0 and t D T obtained
from the available observations at these times. Brill et al. (1991) postulate that xa.t/
in (2.9) varies linearly and is given by

xa.t/ D xa.0/C t

T
Œxa.T / � xa.0/� (2.11)

The dynamics is then integrated from the initial condition x.0/ D xa.0/.
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Integrating (2.9), we get

x.T / � x.0/ D
TZ

0

F .x.t// dt CG

TZ

0

f .t/ Œxa.t/ � x.t/� dt (2.12)

Brill et al. (1991) further postulate that the first integral which is the contribution
of the model accounts for the fraction .1 � ˛/ Œx.T /� x.0/� of the total change in
the solution x.t/ from time 0 to T as given by the left-hand side of (2.12), where
0 < ˛ < 1. Consequently, the second integral accounts for the remainder of the
change leading to the following relation:

a Œx.T / � x.0/� D G

Z T

0

f .t/ Œxa.t/ � x.t/� dt (2.13)

To further simplify the evaluation of the integral on the right-hand side of (2.13),
Brill et al. (1991) make one more assumption; namely, the nudged solution x.t/
varies linearly from x.0/ D xa.0/ to x.T /. That is,

x.t/ D x.0/C t

T
Œx.T /� x.0/� (2.14)

Now subtracting (2.14) from (2.11),

Œxa.t/ � x.t/� D t

T
Œxa.T / � xa.0/� � t

T
Œx.T / � x.0/� (2.15)

Substituting (2.15) in (2.13) and simplifying, we readily obtain

G D ˛ˇ

.1 � ˇ/ 1
T

R T
0
tf .t/dt

(2.16)

where

ˇ D x.T /� x.0/
xa.T /� xa.0/ D x.T / � x.0/

xa.T / � x.0/ (2.17)

is a fraction of the change in the nudged forecast to that of the analysis. For the case
when

f .t/ D �6:75
�
t

T

	3
C 6:75

�
t

T

	2
(2.18)

Brill et al. (1991) in their Appendix provide the values ofG that range from 4:1�10�4
to 2:6 � 10�3. They also examine the contour plots of

G

T

Z T

0

tf .t/dt D ˛ˇ

1 � ˇ
(2.19)

in the ˛ � ˇ plane.



2 Nudging Methods: A Critical Overview 33

In summary, it can be seen that this heuristic analysis rests firmly on two
assumptions—namely, that the large fraction of the change in the solution is due to
the model and that the evolution of the solution and the analysis from t D 0 to t D T

can be approximated linearly. A necessary condition for this latter assumption to
hold is that the time horizon Œ0; T � must be small. Brill et al. (1991) take t D 3h in
their analysis.

By discretizing (2.9) using an Euler scheme, we get

x.N /� x.0/ D
 
N�1X
kD0

F .x.k//

!
�t CG

N�1X
kD0

f .k/ Œxa.k/� x.k/� �t (2.20)

which is a direct analog of (2.12) in discrete form. By following the above
arguments, we leave it to the reader to arrive at an expression forG similar to (2.16).

2.3 Estimating Optimal Nudging Coefficient: Problems
and Challenges

There are two basic approaches to the problem of estimating the optimal value of the
nudging matrixG. The first approach is due to Stauffer and Seaman (1990), Stauffer
and Bao (1993) and Zou et al. (1992). Using the classic four-dimensional variational
(4D-Var) data assimilation method, they independently found the optimal G. The
second approach is due to Vidard et al. (2003) where a combination of Kalman filter
and 4D-Var is used to estimate the optimalG. In this section we provide a summary
of these two approaches. As will be seen, these approaches are incomplete in the
sense that they do not account for the inherent serial correlation of forecast errors
that constitute the basis for the estimation algorithm. A direct impact of excluding
the underlying correlation introduces a bias into the problem that directly affects the
value of the so-called optimal estimate.

For definiteness in the following development, we use the observation-based
nudging scheme that easily extends to the analysis-based nudging scheme.

2.3.1 Estimation of G Using the Variational Approach

Let the observation and the nudged dynamics be given by (2.2) and (2.7), respec-
tively. Let the forecast error e.k/ 2 Rm be given by (2.6). Define a vector

e.1 W N/ D �
eT .1/; eT .2/; : : : ; eT .N /

�T 2 RNm (2.21)

consisting of the forecast errors at times 1 � k � N .
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Define a cost function

J2.G/ D 1

2
< e.1 W N/;R�1.N /e.1 W N/ > (2.22)

which is an analog of the cost function J1.x.0// in (2.5), where

R.N/ D I ˝R 2 RNm�Nm (2.23)

where A ˝ B D Œaij B� where aij is the ijth element of the matrix A, is called
the Kroneker product of A and B . Clearly, R.N/ is a block diagonal matrix whose
diagonal blocks are R and the off-diagonal blocks are zero matrices. Also, define

Jp.G/ D ˇ

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌G � OG

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

F

(2.24)

where OG is a prior estimate of G, ˇ > 0 is a penalty parameter (the larger its value

the closer the estimate of G is to OG) and

ˇ̌
ˇ̌
ˇ̌
ˇ̌A
ˇ̌
ˇ̌
ˇ̌
ˇ̌
F

D
"

nP
i;jD1

a2ij

# 1
2

is called the Frobe-

nius matrix norm (which is an extension of the Euclidean norm for the matrix A).
Zou et al. (1992) and Stauffer and Seaman (1990) seek to minimize

Q1.G/ D J2.G/C Jp.G/ (2.25)

using the nudged dynamics in (2.7) as a strong constraint.
This equality constrained minimization problem can be solved in one of two

ways: using a Lagrangian formulation (Thacker and Long (1988)) or using the first-
order variational formulation (Lewis et al. (2006)).

In either approach, the gradient r GQ1.G/ 2 Rn�m is computed which is then
used in a minimization algorithm to obtain a G that minimizesQ1.G/.

There are two difficulties associated with the above formulation. First is the
question related to the choice of the prior value OG of the unknown nudging
coefficient. The second and more serious problem is the inherent need to account for
the temporally correlation of the forecast errors e.1/; e.2/; : : : ; e.N /. Exclusion of
this correlation introduces a bias in the optimal estimate G� of G (Lakshmivarahan
and Lewis (2011)).

In the following we provide a pathway to quantify this inherent temporal
correlation. To this end, first rewrite (2.7) as

x.k C 1/ D f .x.k/;G/CGz.k/ (2.26)

or as
x.k C 1/ D F.xk; Nxk;G/CGV.k/ (2.27)
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where
f .x;G/ D M.x/�Gh.x/ (2.28)

and
F.x; Nx;G/ D f .x;G/CGh. Nx/ (2.29)

which is separable in x and Nx.
Since V.k/ is a vector white noise Gaussian process, it readily follows from

(2.27) that fx.k/gk�0 is a first-order nonlinear auto-regressive process of order
1 (Hamilton (1994)). Thus, given M.x/;M. Nx/; h.x/; x.0/ and Nx.0/, x.k/ is a
function of G and the complete history noise sequence V.1/; V .2/; : : : ; V .k/ for
k � 1 Assuming h.x/ D x, the error in (2.6) namely

e.k/ D z.k/ � x.k/ (2.30)

depends on G and the noise vector

V.1 W k/ D �
V T .1/; V T .2/; : : : ; V T .k/

�T 2 Rkm (2.31)

Consequently, there exists a covariance matrix V 2 RNm�Nm such that

Vij D cov.e.j /; e.j // 2 Rm�m (2.32)

for all 1 � i; j � N:

Now define

J3.G/ D 1

2
< e.1 W N/; V �1e.1 W N/ > (2.33)

which is a modified version of J2.G/ in (2.22). Accordingly, the correct formulation
is as follows: Find G that minimizes

Q2.J / D J3.G/C Jp.G/ (2.34)

instead of Q1.G/ in (2.25).
We hasten to add that while (2.34) is the correct formulation of the optimal nudg-

ing problem, it is very difficult to compute the elements of the covariance matrix V
for the case when the state transition map M in (2.7) is nonlinear. However, when
the dynamics is linear, we can give an explicit expression for the elements of V that
captures the underlying correlation structure of the forecast errors.

Example 2.1. Linear Dynamics and Observations
Consider the special case whenM.x/ D Mx,M.x/ D Mx, h.x/ D Hx where

M 2 Rn�n, M 2 Rn�n, and H 2 Rm�n. Then the observation equation (2.6)
becomes

z.k/ D H Nx.k/C V.k/ (2.35)
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and the nudged dynamics (2.7) takes the form

x.k C 1/ D Mx.k/CG Œz.k/ �Hx.k/� (2.36)

We can rewrite (2.36) as

x.k C 1/ D Ax.k/CGz.k/ (2.37)

A D .M �GH/

Iterating (2.37), it follows that the solution is given by

x.k/ D Akx.0/ C
k�1X
jD0

AjGH NMk�1�j Nx.0/

�
k�1X
jD0

AjGV .k � 1 � j / (2.38)

where we have used the fact that the true state Nx.k/ dynamics is given by

Nx.k C 1/ D M Nx.k/ (2.39)

with Nx.0/ as the initial condition and

Nx.k/ D M
k Nx.0/ (2.40)

Hence substituting (2.35) and (2.39) in

e.k/ D z.k/ � x.k/

and simplifying we readily obtain a decomposition into deterministic and stochastic
parts as follows:

e.k/ D �
F.k/ Nx.0/ � Akx.0/

�C �.k/ (2.41)

where

F.k/ D
2
4HMk �

k�1X
jD0

AjGHM
k�1�j

3
5 (2.42)

and

�.k/ D V.k/ �
k�1X
jD0

AjGV.k � 1 � j /

D V.k/ � �
GV.k � 1/C AGV.k � 2/C A2GV.k � 3/C : : : Ak�2GV.1/

�
(2.43)
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From the properties of V.k/ it follows that

E Œ�.k/� D 0 and E Œe.k/� D �
F.k/ Nx.0/�Akx.0/� (2.44)

The covariance matrix V D ŒVij� is now given by

Vii D E
�
�.i/�T .i/

�
(2.45)

and
Vjj D E

�
�.i/�T .j /

�
for i ¤ j

As an example, consider the case when N D 4. Then from (2.43),

�.1/ D V.1/

�.2/ D V.2/ �GV.1/

�.3/ D V.3/ � ŒGV.2/C AGV.1/�

�.4/ D V.4/ � �
GV.3/C AGV.2/C A2GV.1/

�

Hence,

V11 D E
�
�.1/�T .1/

� D E
�
V.1/V T .1/

� D R

V22 D E
�
�.2/�T .2/

� D R CGRGT

V33 D E
�
�.3/�T .3/

� D R CGRGT C AGRGTAT

V12 D E
�
�.1/�T .2/

� D �RGT D V21

V13 D E
�
�.1/�T .3/

� D �RGTAT D V31

V14 D E
�
�.1/�T .4/

� D �RGT.A2/T D V41

V23 D E
�
�.2/�T .3/

� D �RGT CGRGTAT D V32

V24 D E
�
�.2/�T .4/

� D �RGTAT C RGT.A2/T D V42

V34 D E
�
�.3/�T .4/

� D �RGT CGRGTAC AGRGT.A2/T D V43

Thus, the elements of V are polynomial matrices in G;A; and R.
Hence the shape of J3.G/ in (2.33) in general depends on the (unknown) model

error, x.0/, Nx.0/, R, random realizations of the observational errors, andG. Clearly
the problem of determining the optimal G is much more involved than implied in
the literature. To simplify matters, we generally assume that the model is perfect,
that is, M D M .

The deterministic part F.k/ in (2.42) of the error e.k/ in (2.41) takes a much
simpler form when the model is perfect; that is, M D M andH D I in which case
z.k/ D x.k/. SubstitutingM D M andH D I in (2.34), we obtain
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F.k/ D Mk �
k�1X
jD0

.M �G/jGHMk�1�j (2.46)

It can be verified F.1/ D .M � G/ D A, F.2/ D .M � G/2 D A2. It is a simple
exercise to prove by induction that

F.k/ D .M �G/k D Ak (2.47)

Substituting (2.47) in (2.41) and simplifying

e.k/ D Ak . Nx.0/� x.0//C �.k/ (2.48)

Thus, in this case the deterministic part of the error has a simple from and is
essentially controlled by the error in the initial condition.

We now illustrate the impact of model error, error in the initial condition and the
variance of the observation noise on the optimal estimate of the nudging coefficient
for a simple scalar, linear, discrete time model.

Example 2.2. Numerical Experiment
Consider a scalar linear nudged model given by

x.k C 1/ D mx.k/C g .z.k/ � x.k// (2.49)

starting from the initial condition x.0/ and g 2 R is a nudging parameter. The
observation

z.k/ D Nx.k/C V.k/ (2.50)

That is, h.x/ D x, where V.k/ is a white Gaussian noise, namely V.k/ 

N.0; 
2/, and x.k/ is the state of the dynamics given by

Nx.k C 1/ D m � Nx.k/ (2.51)

with Nx.0/ as the initial condition.
Let m D m C ı where ı denotes the model error and .x.0/� Nx.0// is the error

in the initial condition. Let

e.k/ D z.k/ � x.k/ (2.52)

Consider the scalar analogs of (2.22) and (2.33) given by

J2.g/ D 1

2
2
eT .1 W 4/e.1 W 4/ (2.53)

and

J3.g/ D 1

2
eT .1 W 4/V �1e.1 W 4/ (2.54)
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Figure: Plot of J Vs. gFig. 2.1 Illustration of the
cost functions from
Example 2.2 with
Nm D m D 1:1.ı D 0/,
Nx0 D 1:1, h D 1, 
2 D 0:01,
and x0 D 0:9:J3.g/ and
J2.g/ are represented by
“xxx” and “——”,
respectively

where e.1 W 4/ D .e.1/; e.2/; e.3/; e.4//T 2 R4 and the analog of the covariance
matrix V in (2.45) is given by

V D 
2

2
664

1 �g �ag �a2g
�g 1C g2 �g C ag2 �ag C a2g2

�ag �g C ag2 1C g2 C a2g2 �g C g2aC g2a3

�a2g �ag C a2g2 �g C g2aC g2a3 1C g2 C a2g2 C a4g2

3
775

where a D .m � g/.
A comparison of the plots of J2.g/ and J3.g/ in (2.53) and (2.54) for the case

when Nm D m D 1:1 .ı D 0/, Nx0 D 1:1, h D 1, 
2 D 0:01, and x0 D 0:9 is given in
Fig. 2.1. It is easily seen that the minimum of J3.g/ is to the right of the minimum
of J2.g/.

2.3.2 Estimation of G Using Kalman-Like Nudging Scheme

This approach is due to Vidard et al. (2003) which is a nice hybrid scheme that
combines the Kalman filter like predictive part and the conventional nudging scheme
to combine the innovation or the prediction error [Kalman (1960b)].

Let x.0/ D xb.0/ C ıx.0/ be the initial state for the nudged dynamics where
xb.0/ is the background/prior information about x.0/ and ıx.0/ is the perturbation
added to the background. Let B be the covariance of the background state xb.0/.
A two step nudging scheme is then given by

xf .k/ D M .x.k � 1// (2.55)
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and
x.k C 1/ D xf .k/CGŒz.k/ � h.xf .k//�

Define an innovation

d.k/ D z.k/ � h
�
xf .k/

� 2 Rm (2.56)

and define
d.1 W N/ D �

dT .1/; dT .2/; : : : ; d T .N /
�T 2 RNm (2.57)

Define

Jb .x.0// D 1

2

�
x.0/ � xb.0/�T B�1 �x.0/� xb.0/� (2.58)

Jn.x.0/;G/ D 1

2
dT .1 W N/GT .P f /�1Gd.1 W N/ (2.59)

Clearly, Jb.x.0// measures the weighted squared distance between x.0/ and xb.0/
and Jn.x.0/;G/ is called the nudging term that measures the weighted square of the
model error term in (2.55), and Pf 2 RNm�Rm is the model error covariance matrix
computed using the standard method used in the Kalman filter literature (Lewis
et al. (2006)).

Vidard et al. (2003) then pose the estimation problem as one of minimizing

Q3.x.0/;G/ D J2.G/C Jb.x.0//C Jn.x.0/;G/ (2.60)

where J2.G/ is defined in (2.22) and the nudged dynamics in (2.56) is used as a
strong constraint. This minimization is again solved by invoking the standard adjoint
method [Lewis et al. (2006)].

Following the arguments at the end of Sect. 2.3.1, it can be readily verified that
the error vector e(1:N) which is a part of J2.G/ in (2.22) is temporally correlated.
Hence, the correct formulation J2.G/ in (2.60) must be replaced by J3.G/ in (2.33).
Similarly, it can be verified that the innovation vector d.1 W N/ is also temporally
correlated and the Jn.x.0/;G/ in (2.60) by a similar correct form of the functional
that takes the serial correlation of d.1 W N/ into account. Let W 2 RNm�Nm be the
serial correlation of d.1 W N/. Then define

J3.x.0/;G/ D 1

2
dT .1 W N/GTW �1Gd.1 W N/ (2.61)

Hence the correct formulation is to minimize

Q3 .x.0/;G/ D J3.G/C Jb .x.0//C J3 .x.0/;G/ (2.62)

We leave the computation of the elements of W as an exercise to the reader.
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2.4 Observability and Observer-Based Nudging

We start by reviewing some of the fundamental concepts related to observability
that are key to the analysis of observer-based nudging. Loosely stated, observability
relates to the goal of reconstruction of a past state, say x.q/ at time q, from
a finite collection of N future observations z.k/ for q � k � .N C q/ of a
system. The basic theory of controllability/reachability and its dual observability
of linear deterministic dynamical systems was first introduced by Kalman (1960a).
The notion of observer was introduced by Luenberger (1964, 1971). If the given
dynamical system is observable, then the observer is a derived dynamical system
that estimates the state of the original system. In this sense, observers are the
deterministic counterpart of the well known Kalman filters which provide the “best”
estimate of the state of a stochastic dynamical system. The notion of observability
and the design of observers have been extended to nonlinear deterministic systems.
Refer to the book by Isidori (1995) for a thorough treatment of this topic.

2.4.1 Conditions for Observability

Let x.0/ 2 Rn be the initial state of a linear dynamical system

x.k C 1/ D Mx.k/ (2.63)

whereM 2 Rn�n is a nonsingular matrix. Iterating (2.63), it can be verified that

x.k C q/ D Mkx.q/ (2.64)

for any integer q � 0 and k � 0. Let z.k/ 2 Rm be the observation at time k given
by

z.k/ D Hx.k/C V.k/ (2.65)

where H 2 Rm�n and V.k/ 
 N.0;R/ is a white Gaussian noise with R 2 Rm�n,
a known symmetric and positive definite matrix.

Assume that we are given a set fz.k/ W q � k � N C q � 1g of N observations.
Substituting (2.64) in (2.65), this set of N observations can be collectively repre-
sented by

2
6666666664

z.q/
z.q C 1/

z.q C 2/

�
�
�

z.q CN � 1/

3
7777777775

D

2
6666666664

H

HM

HM2

�
�
�

HMN�1

3
7777777775

x.q/C

2
6666666664

V.q/

V .q C 1/

V .q C 2/

�
�
�

V.q CN � 1/

3
7777777775

(2.66)
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To simplify the notation, z.q W q C n � 1/ 2 RNm denotes the column vector of
observations on the l. h. s. of (2.66) and V.q W q C N � 1/ denotes the column
vector of observation noise in the second term on the r. h. s. of (2.66). Consequently
(2.66) becomes

z.q W q CN � 1/ D H.0 W N � 1/x.q/C V.q W q CN � 1/ (2.67)

mathematically, observability relates to solving the linear least squares problem
(2.67) for x.q/.

From the standard linear least squares theory (Chap. 5, Lewis et al. (2006)), the
best x.q/ is the one that minimizes

f .x.q// D 1

2
< e.q W q CN � 1/; .I ˝ R/�1e.q W q CN � 1/ > (2.68)

where

e.q W q CN � 1/ D z.q W q CN � 1/�H.0 W N � 1/x.q/ (2.69)

is the vector of residuals, I ˝ R is the Kronecker product of I 2 RN�N , and R 2
Rm�m.

It can be verified (Chap. 5, Lewis et al. (2006)) that the minimizer is given by

xls.q/ D �
HT .0 W N � 1/.I ˝ R/�1H.0 W N � 1/��1 �

�
HT .0 W N � 1/.I ˝ R/�1z.q W q CN � 1/

�
(2.70)

Hence the solution exists and is unique if the observability matrix

ON D HT .0 W N � 1/.I ˝R/�1H.0 W N � 1/ (2.71)

D
N�1X
kD0

.Mk�1/T .HTR�1H/Mk�1

is nonsingular. A necessary and sufficient condition forON to be nonsingular is that
the matrix (Bernstein (2009))

H.0 W N � 1/ D

2
6666666664

H

HM

HM2

�
�
�

HMN�1

3
7777777775

2 RNm�n (2.72)
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must be of full rank, that is Rank.H.0 W N � 1// D n. Consequently, if H.0 W
N � 1/ satisfies this condition, the pair .M;H/ is said to be observable. By Cayley-
Hamilton theorem since Mn can be expressed as a linear combination of Mk for
0 � k � n � 1, it follows that N D n observations would suffice. Hence, the pair
.M;H/ is observable if H.0 W n � 1/ is of rank n.

We now quote a mathematical fact that we need in the analysis of observer-based
nudging considered in Sect. 2.4.2.

Fact 2.1: If the system (2.63) and (2.65) is such that the pair .M;H/ is observable
then there exists a matrix G 2 RHn�m such that

.M �GH/ is a Hurwitz matrix (2.73)

That is, the eigenvalues �i , 1 � i � n, of .M �GH/ are such that j�i j < 1 for all
1 � i � n where jaj denotes the absolute value of the complex number a. That is,
the eigenvalues of .M �GH/ lie within the unit circle in the complex plane. Refer
to Chap. 12 in Bernstein (2009) for a proof of this fact.

Example 2.3. Let n D 2 andm D 1. Then x.k/ D .x1.k/; x2.k//
T ; z.k/ 2 R: Let

H D Œ0; 1� andM D
�
1 1

0 a

�
. Then x.kC1/ D Mx.k/ in component form is given

by

x1.k C 1/ D x1.k/C x2.k/

x2.k C 1/ D ax2.k/

and
z.k/ � x2.k/C V.k/

Where V.k/ 
 N.0; 
2/. It can be verified that

HŒ0 W 1� D
�
H

HM

�
D
�
0 1

0 a

�

is of rank 1 and hence the pair .M;H/ is not observable.
The import of the above example can be interpreted from another angle by

using the standard data assimilation point of view. Let z.1/ and z.2/ be the two
observations and let

e.k/ D z.k/ �Hx.k/ D z.k/ �HMkx.0/ (2.74)

be the residuals for k D 1 and 2. Consider the sum of the squared residuals

f .x.0// D 1

2
2

�
e2.1/C e2.2/

�
(2.75)
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then it can be verified that

rx.0/f .x.0// D � 1


2

�
e.1/MTHT C e.2/.M2/THT

�
(2.76)

But since MTHT D
�
0

a

�
and .M2/THT D

�
0

a2

�
, we get

rx.0/f D � 1


2

�
0

ae.1/C a2e.2/

�
(2.77)

this in turn implies that f .x.0// is a constant with respect to the first component of
x.0/. Hence, the initial condition x.0/ cannot be recovered from z.1/ and z.2/

2.4.2 Observer-Based Nudging: Linear Dynamics

Let
Nx.k C 1/ D M Nx.k/ (2.78)

where Nx.k/ is the true linear dynamical state with true initial condition Nx.0/ and

z.k/ D H Nx.k/C V.k/ (2.79)

the observations. It is assumed that the pair .M;H/ is observable (See Sect. 2.4.1).
Let the observer be given by (Luenberger 1964, 1971) the dynamics

x.k C 1/ D Mx.k/CG .z.k/ �Hx.k// (2.80)

where G 2 Rn�m. The idea of the observer is that the observer state x.k/ is an
estimate of the true state Nx.k/. In the parlance of meteorology this observer is
called the nudged dynamics (Anthes (1974)) and the matrixG is called the nudging
coefficient.

To analyze the behavior of (2.80), using (2.79) and simplifying, we obtain

e.k/ D x.k/ � Nx.k/ (2.81)

Subtracting (2.78) from (2.80), using (2.81) and simplifying, we obtain

e.k C 1/ D .M �GH/e.k/CGV.k/ (2.82)

Since it is given that the pair .M:H/ is observable, by the fact 2.1 in Sect. 2.4.1,
there exists a matrix G 2 Rn�m such that .M � GH/ is a Hurwitz matrix. Then
setting A D .M �GH/, from (2.82) we obtain
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e.k/ D Ake.0/C
k�1X
jD0

AjGV .k � 1 � j / (2.83)

Since A is Hurwitz, it follows that the spectral norm

ˇ̌
ˇ̌
ˇ̌
ˇ̌A
ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

of A is less than 1 and

lim
k!1Ak D 0 and

lim
k!1

k�1X
jD0

AjG D lim
k!1.I C AC A2 C : : :C Ak�1/G

D .I � A/�1G (2.84)

in analogy with the expansion of .1 � x/�1 when jxj < 1. Hence E Œe.k/� � 0 for
all k � 0 and

Cov.e.k// D E

8̂
<
:̂

2
4
k�1X
jD0

AjGV.k � 1 � j /
3
5
2
4
k�1X
jD0

AjGV.k � 1 � j /

3
5
T
9>=
>;
(2.85)

D
k�1X
jD0

AjGRGT .Aj /T

Hence,

ˇ̌
ˇ̌
ˇ̌
ˇ̌cov .e.k/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

�
ˇ̌
ˇ̌
ˇ̌
ˇ̌GRGT

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

1X
jD0

ˇ̌
ˇ̌
ˇ̌
ˇ̌A
ˇ̌
ˇ̌
ˇ̌
ˇ̌
2j

2

(2.86)

D
ˇ̌
ˇ̌
ˇ̌
ˇ̌GRGT

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

.1 �
ˇ̌
ˇ̌
ˇ̌
ˇ̌A
ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

/�1

In the special case when the observations are noise free, the second term on the r. h.
s. of (2.83) vanishes identically and in this case

lim
k!1 e.k/ D 0 or lim

k!1 x.k/ D Nx.k/ (2.87)

Clearly, the rate of convergence is controlled by the choice of G. If the norm

ˇ̌
ˇ̌
ˇ̌
ˇ̌A
ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

is close to zero, the convergence is way too fast which should be avoided.
In the following, we illustrate the choice of G using a simple example.

Example 2.4. Let n D 2 and m D 1 with
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M D
�
2 �1

�2 2

�
and H D Œ1; 0�

It can be verified that the eigenvalues of M are �1 D .2C p
2/ > 1 and �2 D

.2 � p
2/ < 1. Hence, the true system Nx.k C 1/ D M Nx.k/ is unstable with one

growing mode and one decaying mode. Let G D Œg1; g2�
T 2 R2�1 and consider

A D M �GH D
�
.2 � g1/ �1

�.2C g2/ 2

�

the eigenvalues � D .�1; �2/ are given by the roots of

0 D p.�/ D det.A D �I/ D �2 � �.4 � g1/C .2 � 2g1 � g2/

Setting g1 D 3 and g2 D � 17
4

, it follows that

0 � �2 � �C 1

4
D
�
�
1

2

	2

Hence, �1 D �2 D 1
2

are the eigenvalues which in turn implies that .M � GH/ is
a Hurwitz matrix.

2.4.3 Observer Based Nudging: Nonlinear Dynamics

There is a vast corpus of books and papers in control literature relating to the
design of observers for nonlinear dynamical systems, simply known as nonlinear
observers (Isidori (1995), Marquez (2003), Bonnabel et al. (2009), Auroux (2011)).
While it is tempting to provide a comprehensive survey of results from this area,
it turns out that nonlinear observer design theory is deeply rooted in some of the
fundamental results from differential geometry. Even an elementary introduction to
these beautiful results will take us too far from our stated goals. So, quite reluctantly,
we content ourselves with a very simple approach based on the classical Lyapunov
theory of stability.

Let the given nonlinear dynamical system be given by

Nx.k C 1/ D M Nx.k/C F . Nx.k// (2.88)

with Nx.0/ as the initial condition where the right hand side of (2.88) is the sum of
the linear part Mx and the nonlinear part F.x.k// where the map F W Rn ! Rn is
assumed to satisfy the (global) Lipschitz condition

ˇ̌
ˇ̌
ˇ̌
ˇ̌F.x1/ � F.x2/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

� LF

ˇ̌
ˇ̌
ˇ̌
ˇ̌x1 � x2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

(2.89)

for all x1x2 2 Rn where LF > 0 is called the Lipschitz constant.
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Let
z.k/ D h . Nx.k// (2.90)

be the noise-free observations where the map (called the forward operator) h W
Rn ! Rm is also assumed to be Lipschitz with Lh as its Lipschitz constant.

Borrowing the ideas from the linear observer design in Sect. 2.4.2, we consider
an observer of the form

x.k C 1/ D M .x.k//C F .x.k//CG Œz.k/ � h .x.k//� (2.91)

where G 2 Rn�m is the unknown nudging matrix.
Subtracting (2.88) and (2.91) and using the definition of the error e.k/ in (2.81)

and (2.90), we get

e.k C 1/ D Me.k/C F.x.k// � F. Nx.k//�G Œh.x.k//� h. Nx.k//� (2.92)

Taking the norms of both sides, we get

jje.k C 1/jj � ŒjjM jj � jje.k/jj C jjF .x.k//� F . Nx.k// jj� (2.93)

C jjGjj � jjh .x.k/ � h . Nx.k/ jj�

where we have used the following facts:

jjAxjj � jjAjj � jjxjj
jja � bjj � jjajj C jjbjj

Since F and h are Lipschitz, the above inequality becomes

jje.k C 1/jj � .jjM jj C LF C jjGjjLh/ jje.k/jj (2.94)

Clearly,

ˇ̌
ˇ̌
ˇ̌
ˇ̌e.k/

ˇ̌
ˇ̌
ˇ̌
ˇ̌ ! 0 only when

.jjM jj C LF C jjGjjLh/ < 1 (2.95)

Since M;LF ;Lh are given, there is only a limited choice for G such that (2.95)
holds.

We can get a better idea if the observation is linear, that is

z.k/ D H Nx.k/ (2.96)

In this case, (2.91) becomes

x.k C 1/ D .M �GH/x.k/C F.x.k// (2.97)
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Subtracting (2.88) from (2.97), we obtain

e.k C 1/ D .M �GH/e.k/C F .x.k// � F . Nx.k// (2.98)

Using the Lipschitz property of F.x/ in (2.98), it becomes

e.k C 1/ � .M �GH CLF In/e.k/ (2.99)

where In is the identity matrix. Taking the norms of both sides, we obtain

jje.k C 1/jj � jj.M C LF In/�GH jj � jje.k/jj (2.100)

Thus, if ..M C LF In/;H/ is observable, then there exists G such that
Œ.M C LF In/�GH� is a Hurwitz matrix.

Clearly, if F.x/ � 0, then and we obtain the results of Sect. 2.4.2.

2.5 Back and Forth Nudging Scheme

Recently Auroux (2011) and his collaborators have introduced a nudging scheme
wherein the same set of observations are inserted into the model that runs forward
in time and then backward in time. Starting from an arbitrary initial condition, say
x
.0/
0 D x0, let x.0/N be the nudged model state at the final forecast time N . The

nudged forecast is made using observations fz0; z1; : : : ; zN�1g. Then the model is run
backwards starting from the final state which is now denoted by Qx0N .D x0N /. Let Qx.0/0
be the state at time k D 0 resulting from the backward run. Then a new forward run
is initiated from the initial condition x.1/0 .D Qx.0/0 /, the initial state computed by the
backward run just completed. This cycle is repeated. It is shown by Auroux (2011)
that the sequence of initial states for the forward run: x.0/0 ; x

.1/
0 ; x

.2/
0 ; : : : converges

to the true initial state—that is, the initial state used to create the observations in the
numerical experiment.

In the following we illustrate the power of this idea using a simple dynamics for
both the cases of observations being noiseless and noisy.

Consider a linear advection equation

ut C cux D 0 (2.101)

where ut and ux are the first partial derivatives of u D u.x; t/ with respect to the
time variable t and the space variable x where it is assumed that x 2 Œ�1; 1� and
t � 0. It is also assumed that

u.x; 0/ D sin.x/ .initial condition/ (2.102)
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and
u.�1; t/ D u.1; t/ D 0 .boundary condition/ (2.103)

the parameter c is the constant phase velocity of the sinusoidal curve.
A useful way to characterize the solution of (2.101) is that the time derivative of

u along the characteristics is zero, that is,

du

dt
D 0

�
along the characteristic W dt

dx
D 1

c

	
(2.104)

We use this latter property to illustrate the back and forth nudging scheme and its
properties.

The forward nudged dynamics in continuous time is given by

du

dt
D g.z � u/ (2.105)

and where g > 0. The corresponding backward dynamics is given by
(Auroux (2011))

dw

dt
D �g.z � w/ (2.106)

Discrete form of (2.105) using Euler scheme is

u.k C 1/ D .1 � g/u.k/C gz.k/ (2.107)

where u.0/ is the initial condition. Similarly, the discrete form of the backward
dynamics is given by

w.k/ D .1 � ˛/w.k C 1/C ˛z.k/ (2.108)

where ˛ D g

1Cg > 0 and w.N / is the starting condition for the backward integration.
We use the same set of observations

fz.j / W 0 � j � N � 1g (2.109)

in the nudging analysis, where it is tacitly assumed that z.j / is model generated
starting from a true initial state uT .0/. Let

duT .t/

dt
D 0 (2.110)

be the true model whose solution is given by

uT .t/ D uT .0/ (2.111)
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Then the observation z.j / is given by

z.j / D uT .j�t/C V.j /

D uT .0/C V.j / (2.112)

where V.j / 
 N.0; 
2/ is the Gaussian noise affecting the observations and �t is
the time discretization used in the Euler scheme.

2.5.1 Analysis of Forward Nudging

Iterating (2.107), it can be verified that the forward solution of (2.107) at anytime is
given by

u.k/ D .1 � g/ku.0/C g

k�1X
jD0

.1 � g/j z.k � 1 � j / (2.113)

where u.0/ is the arbitrary initial condition used to start the forward run.
Substituting (2.112) into (2.113) we get

u.N / D DPF C SPF (2.114)

where the deterministic part, DPF , is given by

DPF D .1 � g/N u.0/C guT .0/
N�1X
jD0

.1 � g/j

D uT .0/C .1 � g/N
�
u.0/� uT .0/

�
(2.115)

where Œu.0/� uT .0/� is the error in the initial condition. Similarly, the stochastic
part is

SPF D g

N�1X
jD0

.1 � g/j V .k � 1 � j / (2.116)

whose mean is zero and the variance is given by

1


2
Var.SPF / D g2

�
1 � .1� g/2N

1 � .1 � g/2

�
(2.117)

Combining (2.115) and (2.117), it follows that u.N / is a Gaussian random variable
whose mean is DPF and variance is given by Var.SPF /:
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2.5.2 Analysis of Backward Nudging

Iterating (2.108), it can be verified that the backward solution, at any time k, is given
by

W.N � k/ D .1 � ˛/kW.N/C ˛
Xk

jD1
.1� ˛/k�jZ.N � j/ (2.118)

where W(N) is the final condition from which the backward nudging starts.
Substituting (2.112) in (2.118) and simplifying we get

W.0/ D DPB C SPB (2.119)

where the deterministic part, DPB is given by

DPB D .1 � ˛/NW.N/C ˛
Xk

jD1
.1 � ˛/N�j uT.0/ (2.120)

D uT.0/.1 � ˛/N �W.N/� uT.0/
�

The stochastic part, SPB is given by

SPB D ˛
XN

jD1 .1� ˛/N�jV.N � j/ (2.121)

whose mean is zero and the variance is given

1


2
Var.SPB/ D ˛2

�
1 � .1 � ˛/2N /

1 � .1 � ˛/2

�

D
�

g2

.1C g/2 � 1
� �
1 � 1

.1C g/2N

�
(2.122)

Thus, W(0) is a Gaussian random variable whose mean is given by DPB and
variance is equal to Var(SPB).

2.5.3 Back and Forth Nudging Scheme

Against this background, we now close the loop between the forward and the
backward steps to get the so called back and forth nudging scheme.

Let u.j/.0/ be the starting initial condition for the jth forward run of the model
that leads to the sequence of rates given by fu.j/.0/; u.j/.1/; u.j/.2/; : : :: : ::u.j/.N/g
obtained by running the forward model (2.107) where u.j/(N) is the final state. In
the jth backward run of the model, the starting final state W.j/.N/ is set to be equal
to the final state u.j/.N/ of the jth forward run just completed.
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Let fW.j/.0/; W.j/.1/; W.j/.2/; : : :: : ::W.j/.N/ D u.j/.N/g be the sequence of
backward states obtained by running the backward model (2.108).

The new initial condition, u.jC1/.0/ for the (j C 1)th run of the forward model is
set to be equal to the initial rate, W.j/(0) of the backward run just completed.

To start the overall iterative process at the 0th run of the forward model, the initial
condition u.0/.0/ D u.0/, an arbitrary choice.

Our goal is to characterize the limiting behavior of the sequence
fu.0/ D u.0/.0/; u.1/.0/; u.2/.0/; : : :: : ::u.p/.0/ : : :: : ::g of initial state of

the forward run induced by the feed–back process between the forward and the
backward runs described above.

We consider two cases.
CASE A: Observations are Noise – free
Under this assumption, V.k/ � 0 in (2.112). Consequently, the stochastic part

SPF in (2.116) and SPB in (2.121) are identically zero.
We now derive a recurrence relation that relates the evolution of the required

initial conditions u.j/.0/. The final rate u.j/ (N) starting from u.j/(0) is given by
(2.115) as

u.j/.N/ D uT.0/C .1 � g/N
�
u.j/.0/� uT.0/

�
(2.123)

Similarly, referring to (2.120) the initial rate W.j/.0/ of the jth backward run is given
by

W.j/.0/ D uT.0/C .1 � ˛/N �W.j/.N/� uT.0/
�

(2.124)

Since W.j/.N/ D u.j/.N/, substituting (2.123) into (2.124) and simplifying we get,

u.jC1/.0/ D W.j/.0/ (2.125)

D uT.0/C .1 � ˛/N.1 � g/N
�
u.j/.0/� uT.0/

�

That is,

u.jC1/.0/� uT.0/ D .1 � ˛/N.1 � g/N
�
u.j/.0/� uT.0/

�
(2.126)

Thus, if 0 < g < 1, then so is ˛ and (2.126) becomes

ju.jC1/.0/� u.0/j D ˇju.j/ � uT .0/j (2.127)

when ˇ D .1 � ˛/N .1 � g/N and 0 < ˇ < 1 for any fixed numbers N.> 0/ of
observations.

Iterating (2.127), we obtain

ju.p/.0/� u.0/j D ˇpju.0/ � u.0/j (2.128)

That is, u.p/.0/ converges to the true but unknown initial state exponentially, That is,

lim
p!1 u.p/.0/ D u.T/.0/ (2.129)
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Referring to Chap. 10, Lewis et al. (2006) we can restate that u.p/(0) converges to
uT(0) asymptotically at a linear rate.

CASE B: Noisy Observations
In this case, from (2.114, 2.115, 2.116 and 2.117) it follows that

u.j/.N/ D u.T/.0/C .1 � g/N
�
u.j/.0/� uT.0/

�C �.j/.N/ (2.130)

where
�.j/.N/ 
 N .0;Var.SPF// (2.131)

Similarly, from (2.118)–(2.112), we get

W.j/.0/ D u.T/.0/C .1 � ˛/N �W.j/.N/� uT.0/
�C ".j/.0/ (2.132)

where
©.j/.0/ 
 N .0;Var.SPB// (2.133)

with W.j/.N/ D U.j/.N/. Substituting (2.130) into (2.132) and using the feed—back
law of back and forth nudging, we get,

u.jC1/.0/ D W.j/.0/

D u.T/.0/C .1 � ˛/N.1 � g/N
h
u.j/.0/ � UT.0/

i
C .1 � ˛/N�.j/.N/C ".j/.0/

(2.134)

which on rewriting becomes

�
u.jC1/.0/� uT/.0/

� D ˇ
�
u.j/.0/� u.T/.0/

�C  .j/.0/ (2.135)

where
§.j/.0/ D .1 � ˛/N�.j/.N/C ".j/.0/ (2.136)

Substituting for ˜.j/.N/ D SPF in (2.116) and ©.j/.0/ D SPM in (2.121) in (2.136),
it can be verified that §.j/.0/ is a mean—zero Gaussian random variable whose
variance is given by

1


2
Var

�
 .j/.0/

� D .1 � ˛/2NVar.SPB/C Var.SPF/ (2.137)

Now, iterating (2.135), we get, for any integer p > 0,

�
u.p/ � u.T/.0/

� D D C S (2.138)

where
D D ˇp

�
u.0/.0/� uT.0/

�
(2.139)

which reads to zero as p grows since 0 < “ < 1, and S is given by
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S D
Xp�1

jD0 ˇ
p�1�j .j/.0/ (2.140)

It can be verified that S is a mean zero Gaussian random variable whose variance is
given by

Var.S/ D Var
�
 .j/.0/

� Xp�1
jD0 ˇ

2.p � 1 � j/ (2.141)

D Var
�
 .j/.0/

� �1 � ˇ2p
�

Œ1 � ˇ2�
Thus, for a fixed number N of observations,

Var.S/ ! Var
�
 2.0/

�

Œ1 � ˇ2�
(2.142)

as the number, p of back and forth iterations increase.

2.6 Discussion and Conclusions

There is an ever-growing literature on the applications of nudging as a simple
viable method for dynamic data assimilation. It is attractive to the geophysical
science community because of its ease of implementation and its intuitive appeal—
in essence, the use of the earlier known error in prediction to alter subsequent
prediction appeals to common sense. Yet, in its earliest stage of development where
empiricism was the theme, search for a suitable nudging coefficient exhibited great
computational demand through numerous simulations and validation against the
evolution of dynamical systems. And the final choice of the nudging coefficient was
always subject to debate—linked to the question: isn’t there a better coefficient?
It naturally led to an effort to find a coefficient that exhibited optimality under
a specific form of the cost functional that forced the coefficient toward an a
priori estimate. And again, this brought up other questions concerning the “heavy
handedness” by producing a cost function that was forced to remain close to the a
priori estimate. Further, these methods have unintentionally omitted an important
aspect of the nudging problem—nudging dynamics carries with it the presence of a
serially correlated forecast error and this error must be accounted to find the optimal
coefficient. It is computationally demanding to find the structure of this correlated
error. For sure, its influence on the optimal nudging process is an important area of
investigation that remains open. Our review also indicates that the well-established
theory of observer design (as a practice in the contemporary control theory) deserves
further attention from those involved in data assimilation for numerical prediction
in the geophysical sciences. And the “back-and-forth” nudging offers promise for
application to operational prediction, but where attention must be focused on the
results for irreversible processes that are ubiquitous in the ocean-atmosphere system.
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Chapter 3
Markov Chain Monte Carlo Methods: Theory
and Applications

Derek J. Posselt

Abstract Markov chain Monte Carlo algorithms constitute flexible and powerful
solutions to Bayesian inverse problems. They return a sample of the unapproximated
posterior probability density, and make no assumptions as to linearity or the form
of the prior or likelihood. MCMC algorithms are in principle easy to construct,
however, they can prove difficult to implement in practice. This chapter describes
the theory that underlies MCMC simulation, provides guidance for its practical
implementation, and presents examples of applications of MCMC to satellite
retrievals and model uncertainty characterization. Though the high dimensionality
of Earth system datasets and the complexity of atmospheric, oceanic, and hydrologic
models present significant challenges, continued advances in theory and practice are
making application of MCMC algorithms increasingly feasible.

3.1 Introduction and History

Markov chain Monte Carlo (MCMC) algorithms were born out of investigations
into numerical integration at Los Alamos national laboratory in the 1940s and
1950s. These were initially centered around the development of Monte Carlo (MC)
methods, which comprise a class of algorithms designed to compute numerical
solutions to integrals using random draws from a specified probability distribution.
MC algorithms were developed as a way to numerically solve neutron diffusion
problems during the development of the atomic bomb, but were generally limited to
low-dimensional problems. Shortly after the advent of Monte Carlo based random
simulation, Metropolis et al. (1953) developed an extension that allowed MC to be
used to evaluate integrals over large dimensional spaces. The method was used to
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simulate the movement of interacting particles in equilibrium with each other. In
essence, the Metropolis algorithm is composed of a random sequence of particle
moves, each of which depends only on the current position (thus forming a Markov
chain). In each new configuration of particles, the energy of the system is computed
and compared with the energy of the previous configuration. If the new state has
lower energy than the old, it is accepted as a valid particle configuration. If not, it
is accepted with a probability that depends on the difference in energy between the
two states. The collection of states that results from a sufficiently long sequence of
proposed configurations describes a system of particles in equilibrium with correct
relationship between pressure, temperature, and volume. Hastings (1970) later
generalized the Metropolis algorithm for use in integrating probability distributions,
and this constituted the first use of Markov chain Monte Carlo algorithms for
posterior probability simulation.

It is thought that the relative lack of computational power limited the general
applicability of MCMC for statistical computation until the 1980s. Geman and
Geman (1984) applied a variant of MCMC to the problem of image restoration and
drew an analogy between image processing and computation of posterior probability
densities. The use of Gibbs random fields in this study resulted in their algorithm
being termed the “Gibbs sampler”. Inspired by the work of Geman and Geman
(1984) and Gelfand and Smith (1990) generalized MCMC-based computation of
posterior probability densities from of a collection of algorithms that included
Geman and Geman (1984)’s Gibbs sampler, data augmentation methods (Tanner and
Wong 1987), and importance sampling (Rubin 1987). It is generally acknowledged
that the Gelfand and Smith (1990) paper led to widespread use of MCMC for
Bayesian posterior sampling in the statistical community, and that Tierney (1994)
was the first to thoroughly describe the necessary convergence properties of the
underlying Markov chains. Building on the foundations laid by Metropolis et al.
(1953), Hastings (1970), Gelfand and Smith (1990), Tierney (1994), and Green
(1995) further generalized the MCMC algorithm to the exploration of probability
spaces with variable dimensions. Since the mid-1990s, a host of variants of MCMC
have been proposed, most aimed at increasing the efficiency with which MCMC
samples the posterior probability space.

Though the use of MCMC in statistical computation is now common (Gelman
et al. 2011), its adoption in the atmospheric and oceanic sciences has been slow.
This is in part due to the exceedingly large dimensionality of most atmospheric and
oceanic state estimation problems, as well as to the complexity and computational
expense of geophysical process (forward) models. In the remainder of this chapter,
we will briefly present the theory that underlies MCMC algorithms, describe the
practical issues users encounter when implementing MCMC for a new application,
highlight the successful use of MCMC in satellite retrievals and model parameter
estimation, and finish with concluding remarks as to future applications of MCMC
in the atmospheric sciences.
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3.2 Theoretical Basis of MCMC in Bayesian Inference

MCMC algorithms are, in essence, a form of Bayesian inference and hence prior
to a discussion of the details of MCMC itself, it is useful to briefly review the
foundations of Bayesian theory. The general stochastic inverse problem is described
in great detail by Tarantola (2005). According to inverse problem theory, there are
three distinct sources of quantitative information about a system: measurements of
the properties of the system, prior knowledge, and a model of the system. Each piece
of information is associated with a space that contains all possible values. Placing
the Earth system in this framework, all possible physical states (x) occupy one space
and all possible outcomes of observations (y) made of any and all properties of
the physical system occupy another space. The role of the model y D F.x/ is
to map information from one space into another. If we allow for uncertainty in
our knowledge of the state x, then any event (realization of a possible physical
state) occupies a sub-region of the overall state space and can be associated with a
probability distribution P.x/ over that region. Similarly, allowing for uncertainty in
observations of the system of study gives rise to similar definition of an observation
event that occupies a sub-region of the observation space. This sub-region is also
associated with a probability distribution P.y/. Let us assume for the moment that
the observations contain information about the portion of the state space we are
interested in. In this case, the forward problem defines the process of mapping from
state to observation space (producing an analogue of the observations using the
model) and the inverse problem consists of determining information about the state
space from information contained in the observations. Each exercise (the forward
and inverse problems) consists of a conjunction of the two information spaces
that can be represented in the joint probability distribution P.x; y/. Clearly, if the
two information spaces are disjoint, then the forward and inverse calculations are
meaningless.

It is common to make the problem more specific by assuming that one of
two events (a realization of either a set of specific state properties x or set of
observations y) has occurred. In this case, the problem becomes characterization
of the observation space given a subset of the state space, or inference of the state
space given a set of observations. These are formalized by introducing the definition
of conditional probability, for which the probability of state x conditioned on a set
of observations y is

P.xjy/ D P.x; y/

P.y/
; (3.1)

and the corresponding probability of observations y conditioned on the state x is

P.yjx/ D P.y; x/

P.x/
D P.x; y/

P.x/
: (3.2)

Note thatP.x; y/ D P.y; x/ because in this case they simply reflect the intersection
of two probability events. Bayes’ theorem results from solving (3.2) for the joint
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probability P.x; y/ and inserting the result in (3.1). Given, as is typically the case,
discrete state and observation vectors x and y, Bayes’ theorem can be written

P.xjy/ D P.yjx/P.x/
P.y/

(3.3)

In practice, we are always dealing with a system for which either a state (or set
of states) has already been determined, or of which observations have already been
taken, and it is common to begin with Bayes’ theorem. The benefit of generalized
inverse theory is its flexibility–it makes no assumption that any event has taken
place and considers only the conjunction of information spaces. Standard Bayesian
estimation theory (e.g., Jazwinski 1970; Bennett 1992; Evensen 2006) treats each
quantity that contributes to a total quantitative knowledge of each component of
the system as a stochastic quantity with an associated probability density function
(PDF). The conjunction of separate PDFs associated with contributions from the
model and the associated modeling errors, the observation errors, and the prior
information result in a joint posterior PDF. The properties of the joint posterior PDF
determine the characteristics and tractability of the inverse problem (e.g., whether or
not the solution is unique). The explicit separation of information into components
provided by the model, observation, and prior estimate facilitates determination of
the unique contribution of each to the posterior PDF.

The inverse problem, according to Bayes’ theorem, consists in computing each
individual PDF on the right hand side of (3.3) and combining them to obtain the
properties of the state of interest given prior knowledge and a set of observations
related through the model. It is well known that computation of the posterior PDF is
straightforward if the model is linear and all PDFs can be assumed to be Gaussian.
Approximate solutions can be obtained in the case of a nonlinear model by either
linearizing the model (e.g., extended Kalman filter (Gelb 1974), three dimensional
variational data assimilation (3DVAR; Sasaki 1970; Lorenc 1986), four dimensional
variational data assimilation (4DVAR; Courtier 1997)) or via Monte Carlo methods
using a stochastically generated ensemble of states (e.g., the ensemble Kalman filter,
Evensen 2006). In the case of models for which the dimension of the state space is
large and the mapping between state and observation space is nonlinear, it is not
computationally feasible to compute numerical solutions to (3.3). The fundamental
result of the work of Metropolis et al. (1953) and Hastings (1970) is that it is not
necessary to compute a solution to the posterior PDF if one can construct a Markov
chain that has the same equilibrium distribution. The goal of MCMC is to sample
the posterior PDF P.xjy/ up to a normalizing constant (i.e., by computing only the
numerator on the RHS of (3.3)) using a Markov chain that has a stationary transition
probability q.xi; xiC1/; the probability of moving to a set of states xiC1 from the
current state xi. Robust samples of the posterior PDF are ensured in MCMC via the
application of an update to the Markov chain that determines whether a proposed
transition from the current state xi to a proposed state Ox 
 q.x; �/ (consistent with the
specified transition probability) is accepted. In the formulation originally introduced
by Metropolis et al. (1953) and generalized by Hastings (1970), the update is done
in the following way:
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(i) Given a current state xi, propose a move to Ox with probability

q.xi; Ox/: (3.4)

(ii) Now, compute forward observations Oy by running the forward model on the
proposed state Ox.

(iii) Compute the Hastings ratio

� .xi; Ox/ D P.OyjOx/P.Ox/q.Ox; xi/

P.yijxi/P.xi/q.xi; Ox/ ; (3.5)

(iv) And accept the proposed move to Ox with probability

Q.xi; Ox/ D min.1; � .xi; Ox//: (3.6)

Note that if the transition probability is symmetric and stationary, then the probabil-
ity q.xi; Ox/ is identical to q.Ox; xi/ and the Hastings ratio simplifies to the Metropolis
update

� .xi; Ox/ D P.OyjOx/P.Ox/
P.yijxi/P.xi/

(3.7)

Note the similarity between the numerator and denominator of (3.7) and the
numerator in (3.3). It is precisely the accept/reject criterion that allows MCMC to
sample from the un-normalized posterior P.xjy/.

It is common to construct proposals of the form Ox D xi C� where � 
 N.0;†x/.
Here, †x is the variance of the proposal distribution–specification of this is one
of the subtleties involved in constructing an MCMC algorithm. The choice of
transition probability q.x; �/ is flexible and the likelihood P.yjx/ may assume any
form, consistent with the characteristics of the system of study. The requirement
for any MCMC algorithm is that the Markov chain with (Metropolis or Hastings)
updates converges (in the limit of infinite number of proposal steps) to sampling
the stationary invariant posterior distribution (ergodicity). Ergodicity is guaranteed
if the MCMC algorithm is properly constructed. In practice, convergence is not
assured if the form and properties of the posterior distribution are unknown (black
box MCMC). The construction of an MCMC algorithm involves a number of
decisions as to the form and characteristics of the transition probability distribution,
as well as the specifics of the Metropolis-Hastings update. We discuss such practical
issues in the next section.

3.3 Practical Issues

The only fundamental requirement for proper MCMC simulation is that the user
construct a chain that is Markov with transition probabilities and updates that ensure
ergodicity to the invariant posterior (target) distribution. The practical usability of an
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MCMC algorithm, however, is a function of how rapidly and thoroughly it samples
the posterior space. As such, while constructing a Metropolis-Hastings algorithm
is simple, ensuring its efficiency is not. In this section, we outline several practical
issues encountered in adapting an MCMC algorithm to a new problem and highlight
a number of best practices and potential pitfalls along the way.

3.3.1 Choice and Tuning of Proposal Distribution

It is clear from the formulation of the Metropolis-Hastings update (3.5) that the
proposal distribution q.x; �/ plays an important role in the MCMC algorithm.
Proposals that result, on average, in large deviations from the current position will in
general lead to smaller Hastings ratio (3.5) and lower probability of acceptance, and
vice versa. A desirable property of any MCMC algorithm is that it mix thoroughly
and rapidly, not being confined to a small region of the state space. Because there
is often little knowledge of the shape of the posterior distribution, it is necessary
in practice to adjust the width (e.g., (co)variance) of the proposal distribution
to strike a balance between sampling rapidly enough to mix thoroughly (large
moves through the state space; large proposal width) and sampling finely enough
to resolve details of the probability distribution (small moves through the state
space; small proposal width). Because of this, much of the subtlety involved in
constructing a MCMC algorithm centers around (1) choice of a suitable proposal
distribution, and (2) tuning the distribution width. As mentioned above, choice of
a symmetric proposal distribution leads to q.xi; Ox/ D q.Ox; xi/, which simplifies
the Metropolis-Hastings update. While there are variants of MCMC that use non-
symmetric proposal distributions (e.g., Langevin-Hastings MCMC; Roberts and
Rosenthal 1998), in all of the discussion that follows we will assume the use of a
symmetric proposal distribution. A common choice of proposal is Uniform, centered
on the current estimate. In this case, the tunable parameter is simply the width of
this Uniform distribution. The advantage of this is its simplicity, and indeed this
was the choice originally made by Metropolis et al. (1953). It is now common
to use a zero mean multivariate Normal as the proposal distribution. This has the
advantage of consistently producing moves of about one standard deviation, but
with finite probability of much larger or smaller moves as well, allowing the chain
to more easily move between regions of the space containing localized probability
maxima.

Once a suitable proposal distribution has been chosen the question naturally
arises as to how to successfully tune it to thoroughly and efficiently sample the
posterior distribution. In essence, the question is what makes one Markov chain
“better” than another? Desirable properties are: rapid exploration of the space, fast
convergence to the target distribution, and production of a thorough and accurate
sample; no regions of the state space containing probability mass are missed. It is
clear from (3.5) that if the width of the proposal distribution (3.4) is small, virtually
all proposed moves will be accepted, but the movements will be very small and
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Fig. 3.1 Timeseries plots of parameter values in MCMC chains with (a) well tuned proposal, (b)
proposal variance that is too large, (c) proposal variance that is too small, and (d) proposal variance
that is too small and a chain that is started far from the mode of the target distribution. The dashed
horizontal line corresponds to the true parameter maximum likelihood value (D 0:5), and the
marginal distribution of each parameter is plotted in gray along the ordinate axis of each plot on
the right hand side. For reference, each marginal distribution is overlaid with a black line depicting
the distribution obtained by sampling with the well-tuned proposal (a)

the chain will mix very slowly. Conversely, if the width of the proposal distribution
is large, most proposed moves will be rejected (due to small Hastings ratio) and
the chain may not move at all. An example is shown in Fig. 3.1, in which a single
parameter is estimated using three different proposal widths. The first (Fig. 3.1a)
is tuned to an optimal 25 % acceptance rate (see below for a discussion on the
theory of optimal tuning), while the proposal width in the second and third are
set to an order of magnitude larger (Fig. 3.1b) and an order of magnitude smaller
(Fig. 3.1c), respectively. It can be seen that each explores the same portion of the
parameter space, and that their marginal PDFs (plotted on the right hand ordinate
axis) are all very similar. Even so, the case with large proposal variance gets stuck
for many successive iterations at the same parameter value, while the chain with
small proposal variance moves very slowly through the parameter space. A small
proposal width can also lead to problems if the chain is started at a point outside
of a region with sufficient probability density (Fig. 3.1d); in this case, slow mixing
may cause the chain not to encounter a region with significant probability density
for many iterations and in the worst case may produce an erroneous sample of the
target distribution.

The trade-off between thorough and rapid sampling gives rises to the so-called
Goldilocks principle; it is desirable to find a proposal scale that is not too large
and not too small, but just right. What is “just right”? In general, the ratio of
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accepted moves to proposed moves should neither be close to 0 or close to 1. If
the target distribution is multivariate Gaussian, then the optimal acceptance rate
is 0.23 (Gelman et al. 2004) and a value of approximately 20 % has been shown
to work well for non-Gaussian posterior PDFs as well (Geyer and Thompson
1995). Roberts et al. (1997) determined that, in the limit of large dimensional state
space and for posterior distribution in which each variable is i.i.d., the optimal
acceptance rate is precisely 23.4 %. Roberts and Rosenthal (2001) showed that the
optimal multivariate Normal proposal covariance †p should be proportional to the
covariance † of the target distribution; †p D k†. Given a multivariate Normal
target density with multivariate covariance† and dimension d , the optimal Normal
proposal covariance is

†p D
�
.2:38/2

d

�
†: (3.8)

Of course, the difficulty is that (1)† is typically not known a priori and (2) there
is no guarantee the target distribution is multivariate Normal. Though care must be
taken not to blindly tune to the “optimal” acceptance rate, the theory laid out in
Roberts et al. (1997) and Roberts and Rosenthal (2001) serves as a useful starting
point.

In practice, the following procedure has proven to work well for most problems:

(i) Run a pilot MCMC chain that generates an ensemble of realizations of P.yjx/
and compute an approximate†, assuming the posterior is multivariate Normal.

(ii) Construct an initial †p from (3.8) above.
(iii) Monitor the acceptance rate in the early stages of the algorithm and ensure it

stabilizes between 10 and 60 %.

If the target distribution is far from multivariate Gaussian, then the result will still
be slow mixing, but the chain will be more efficient than if left un-tuned.

The question remains: in the absence of knowledge of the true covariance of
the target distribution, how can one optimally choose the proposal covariance?
Adaptive algorithms are the most commonly used solution to this problem and
are nearly uniformly used during a period that is referred to by most authors as
“burn-in”, though the term burn-in is rather confusing as it has been applied both
to the practice of proposal tuning and rejection of the initial portion of the chain
(see Sect. 3.3.2 below). Increasingly, adaptive algorithms are used over the length of
the chain (e.g., Haario et al. 2001, 2006; Roberts and Rosenthal 2007, 2009; Vrugt
et al. 2009; Vrugt and Ter Braak 2011), but a full discussion of this topic is beyond
the scope of this paper. Adaptive proposal tuning is typically done as follows. The
user first selects a proposal covariance (typically diagonal) under the assumption
that the individual parameter proposal variances are proportional to the realistic
range of values of each. A starting point for the chain is selected and Metropolis-
Hastings sampling commences. After a set of n iterations, the sample covariance
†n is computed and the proposal covariance matrix is updated using these values.
The new proposal covariance is then held fixed for the next m iterations, after which
the most recent set of n values is used to produce an updated proposal covariance.
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According to Roberts and Rosenthal (2001), the optimal proposal covariance
update is

†p D
�
.2:38/2

d

�
†n (3.9)

where, as above, d is the dimension of the system of interest. Note that the sub-
sample size n (e.g., the number of iterations used to update the covariance) and the
frequency of update m are not necessarily equal, and reasonable choices (assuming
a Gaussian target distribution) are documented in Haario et al. (1999). Once the
acceptance rate converges to something between 10 and 60 %, then the proposal
covariance is held fixed and the algorithm is allowed to run freely. It is standard
practice to discard the iterations used in adaptively tuning the proposal covariance. A
note of caution is merited here: for highly complex parameter covariances and large
dimensions a very large number of samples may be required to robustly estimate
the posterior covariance matrix. The author has found that, in cases involving
a complicated posterior structure and infrequent covariance update, the wrong
covariance may be specified, leading to inefficient sampling. In practice, a safe
choice is to update the proposal variances only (neglecting any information on the
parameter covariances), though this may result in a slightly less efficient algorithm.
It should also be noted that the choice of starting point may also influence the
effectiveness of parameter tuning. For example, imagine the chain starts in a very
low-probability portion of the space within which the gradient in probability mass
is also small. In this case, each proposed point will have very similar likelihood, the
Hastings ratio will always be close to 1, and nearly all moves will be accepted.
It follows that, because of the large acceptance fraction, the proposal variance
will become tuned too large. Just as importantly, the sample covariances will be
unrepresentative of those in the true posterior PDF.

3.3.2 The Initial Sample

There are two issues that must be considered when initiating the Markov chain at the
core of the MCMC algorithm: (1) the characteristics of the posterior sample should
not be sensitive to the values of the state variables at the start of the chain, and (2) it
is desirable to start the chain in a region that contains relatively large probability
mass. This is not only because these are the regions the sampling algorithm is
designed to characterize, but also because it is not desirable to include samples
in the chain that are associated with very low probability. This problem can be
illustrated by considering a tutorial example in which two parameters are estimated
from two observations. A random collection of 20,000 points drawn from a posterior
sample generated with a high-probability start point and well-tuned proposal is
shown in Fig. 3.2a. Three experiments are conducted. In the first, the start point
is located in a high probability region; in the second, the start point is ten standard
deviations outside the mean; and in the third, the start point is ten standard deviations
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Fig. 3.2 Scatter plots of (a) 20,000 samples from an MCMC chain with a well tuned proposal,
(b)–(d) 1,000 samples from three test MCMC chains. In (b), the proposal variance is too small,
and the chain is started far from the posterior mode. In (c), the proposal variance is too small,
but the chain is started near the posterior mode. In (d), the chain is started at a point far from
the posterior mode, and with proposal variance that is initially too small. However, the proposal
variance is allowed to vary according to the characteristics of the sample during the first 1,000
iterations

outside of the mean, but the proposal variance is adaptively tuned according to (3.9).
The transition probability is a zero-mean multivariate Normal distribution with
standard deviation equal to 0.5 % of the commonly observed range of parameter
values. The proposal width is intentionally set too small to illustrate the potential
problems encountered when a poor start point is chosen. Because the proposal
width is small, nearly all proposed transitions are accepted (the Hastings ratio
(3.5) is everywhere close to 1). It thus takes some time for the chain with initially
poor start position (Fig. 3.2b) to enter a region with reasonable probability density.
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As a consequence, the initial set of points in the chain is not representative of the
posterior PDF. In contrast, the chain initiated within a region of relatively high
probability (Fig. 3.2c) immediately begins sampling regions with relatively large
probability, however, the slow rate of mixing leads to inefficient sampling. When
the proposal variance is allowed to adapt (Fig. 3.2d), the chain rapidly converges
to efficient posterior sampling, though it is clear that the first portion of the chain
is still not representative. This example illustrates the fact that, even with a poorly
chosen start point, effective tuning of the proposal distribution can produce a robust
sample.

To eliminate dependence of the posterior PDF on the start point, and to ensure
posterior samples are representative of the target distribution, it is common practice
to discard a portion of the beginning of the Markov chain. However, there is
disagreement as to how much of the chain should in general be thrown out.
Some authors suggest running a chain until convergence has been determined, then
discarding the first half of the chain (Gelman et al. 2004). Others note that, if a
suitable starting point is chosen, then there is no need to discard any samples at
all (Haario et al. 1999; Geyer 2011). In practice, it is difficult to know a priori
whether the chosen starting point lies in a region of sufficient probability density.
Diagnostic examination of the properties of the chain after a suitable number of
iterations typically reveals how many samples should be discarded. In general,
the Markov chain can be said to have “forgotten” the initial position once the
lagged autocorrelation between a given point in the chain and the starting point is
sufficiently close to zero. The resulting number of samples constitutes the minimum
number that should be discarded. Comparison of the likelihood (P.yjx/) of the
posterior mean with likelihood values near the beginning of the chain often reveals
which values near the start of the chain are associated with very low probability and
should be removed. Note that we are drawing a distinction between the practice of
discarding a number of initial samples and the practice of so-called burn-in, which
is often conflated with tuning of the proposal distribution.

3.3.3 Single Versus Multiple Chains

Multi-core computing has become common in most research environments, and it
is now standard practice to run multiple Markov chains in parallel (Gelman et al.
2004). The motivation behind doing this is primarily computational efficiency; once
each chain has converged to sampling the target distribution, samples from all chains
can be combined together and the sample size greatly increased in the process. In
theory, this practice can be effective, provided each chain is constructed as carefully
as would be done with a single chain. There are, however, a number of potential
pitfalls. The first is the temptation to replace a single long chain with multiple short
chains, with the goal of obtaining the same sample size in a shorter period of time.
This has been used to great utility in computationally demanding problems, and for
applications that require rapid solutions (e.g., Delle Monache et al. 2008). However,
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the possibility arises that one or more of the chains may not have converged to
sampling the target distribution, and the resulting sample will not be representative
of the true posterior PDF. This is related to the problem of “pseudo-convergence”,
which is discussed in greater detail below (and it should also be noted that multiple
chains can be effectively used to diagnose convergence). Another common practice
is to start multiple chains in as widely dispersed locations in the parameter space
as possible, creating an “over-dispersed” initial sample (Gelman et al. 2004). As
discussed above, it is not desirable to start a chain in a region of the space that
contains low probability values as it may then take more time for the algorithm
to find a region with relatively large probability density, and in the process the
proposal may be badly mis-tuned. In most computing environments, and for most
applications, it is not possible to disperse the initial points in such a way as they
span the full range of possible parameter combinations. As such, some (potentially
vast) regions of the space will not contain a Markov chain start point and may be
left unexplored.

3.3.4 Pseudo-convergence

Because the true structure of the posterior PDF is not typically known in advance,
the possibility exists that a chain that has appeared to have converged may in fact
have simply spent a very long time sampling a localized probability structure. After
running for a suitably long interval, the chain may make a sudden transition to a
new and previously unexplored high probability region of the space. This situation
is most common for posterior PDFs that exhibit multiple highly localized modes
and is referred to as pseudo-convergence; the tendency for the chain in this case to
appear to have converged to sampling the invariant target distribution when in reality
it has not. In practice, there is no way to guarantee the chain has truly converged;
the best way to safeguard against pseudo-convergence is to run very long chains.
That said, it is possible that the use of a heavy-tailed proposal distribution may
help to avoid this problem by making large proposed moves with greater frequency
than the centered multivariate Normal. It may also be possible to make clever use
of proposals from multiple chains to increase the likelihood of jumping between
widely dispersed modes (e.g., Vrugt et al. 2009; Vrugt and Ter Braak 2011).

3.3.5 Diagnosing Convergence

As mentioned above, in cases for which the shape of the true posterior PDF is
unknown, it is impossible to know with absolute certainty that the Markov chain
has converged to sampling the invariant target distribution. Even so, there are several
diagnostic tools that can be brought to bear in assessing whether the chain has at the
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very least pseudo-converged. In most practical applications, this may be the best one
can hope for.

3.3.5.1 Time Series Plots

This is one of the simplest, yet also most effective convergence diagnostics as it
leverages the powerful pattern recognition capabilities built into the human brain. It
is performed by simply plotting a long time series of one or more parameters from
the multidimensional parameter set. A chain can be said to have converged when
it varies rapidly about a stable central value, not exhibiting a trend in the mean or
changes in spread. The drawback to this technique is that it is qualitative rather
than quantitative. An illustration of the sort of time series plots that are used in this
analysis can be see in Fig. 3.1.

3.3.5.2 Running or Batch Moments

In addition to time series plots of the parameter values, convergence can also be
diagnosed from time series of the moments of the sample computed in batches as
the chain runs. This leverages the fact that the chain should eventually converge
to sampling the stable (invariant) target distribution and as such should produce
stable values of the posterior moments. Alternatively, comparison of moments for
randomly selected sets of sub-samples (batches) can be done and the result should
be similar to that of the running moments.

3.3.5.3 Multi-chain Convergence Diagnostics: The R-Statistic

Another method of assessing convergence leverages the information contained in
the differences between chains of a multi-chain MCMC simulation. This method is
based on a comparison of the variance (or other moments) within each chain to the
variance between chains for each estimated parameter, and is done in the following
manner (Gelman et al. 2004). Consider m chains, each of length n samples. First,
the within-chain variance is computed for each parameter x as

W D 1

m

mX
jD1

"
1

n

nX
iD1

�
xij � xj

�2
#
; (3.10)

where xj is the mean of each parameter x within each chain

xj D 1

n

nX
iD1

xij : (3.11)
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The between-chain variances are computed as

B D n

m � 1

mX
jD1

�
xj � x�2 ; (3.12)

where x is the mean of the given parameter across all chains

x D 1

m

mX
jD1

xj : (3.13)

An unbiased estimate of the marginal posterior variance of each parameter x condi-
tioned on the set of observations y can be obtained from a weighted combination of
B and W as

bvarC .xjy/ D n � 1

n
W C 1

n
B: (3.14)

This quantity tends to overestimate the true marginal posterior variance, but
converges to the true variance as n ! 1. Proper chain mixing is assessed by
comparing the variance estimate to the within-chain variance, and computing the
R-statistic, OR; an estimate of the factor by which the dispersion in the current sample
would be reduced if each chain were allowed an infinite length

OR D
r
cvarC .xjy/

W
: (3.15)

It can be readily seen from (3.14) that this estimate will converge to 1 in the
limit as n ! 1. According to Gelman et al. (2004), there is no specific value
of the r-statistic for which chains can be said to have sufficiently mixed, though a
value of OR less than 1.1 for each parameter is generally deemed acceptable. An
illustration of convergence of within and between-chain variance for increasing
numbers of samples for an 8-chain MCMC experiment is depicted in Fig. 3.3. It
can be seen that by approximately 5,000 iterations, the chains can be assumed to
have mixed sufficiently as their OR value drops below 1.1, and between 5,000 and
10,000 iterations OR drops below 1.05 and levels off.
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3.3.6 Working with the Posterior Sample

After tuning the proposal distribution, assessing convergence, and ensuring insen-
sitivity to the Markov chain starting point, the end result of MCMC integration is
a sample of the target posterior PDF. As with any discrete sample, moments and
quantiles can be computed, and the maximum likelihood estimate (or maximum
a posteriori estimate; mode) can be obtained. In addition, while chain monitoring
and convergence diagnostics lend confidence that the algorithm has sampled a
stationary posterior distribution, it is also useful to present an estimate of the
error (termed the Monte Carlo error) in the posterior sample associated with
the discrete nature of the data. While it is impossible to precisely determine the
error if the exact posterior distribution is unknown, it is possible to approximate
it by examining the variance of the asymptotic distribution of, for example, the
mean of the distribution for increasing numbers of samples in the chain. For a
clear and comprehensive discussion of Monte Carlo error, the reader is referred
to Flegal et al. (2008). Summary statistics may obscure some of the relevant
features of the posterior sample (i.e., multi-modality), and it is common practice
to analyze the data from multiple different perspectives. Plots of one-dimensional
histograms of parameters x provide an initial indication of the center of mass and
dispersion in the posterior distribution, however, integration over the remainingd�1
dimensions can mask inter-parameter relationships and multiple modes. For this
reason, it is common practice to examine two-dimensional marginals for every pair
of parameters. These are typically presented either as scatter plots or contour plots
of the posterior PDF. To obtain a more robust estimate of the posterior mode and
structure from the discrete sample, most studies apply a kernel density estimate
(KDE) to the posterior data (Wand and Jones 1995; Tamminen and Kyrola 2001).
KDE consists of multiplying every data point by a kernel function (e.g., Gaussian)
with width determined from the sample (Jones et al. 1996). The result is a smoothed
representation of the posterior sample that does not suffer from potential errors
introduced in the specification of histogram bin widths and locations.

Because MCMC affords near infinite flexibility in the specification of the PDFs
in (3.3), the posterior sample can be used to examine the error introduced by
approximations made in the implementation of simpler and/or more computation-
ally efficient posterior estimates (e.g., optimal estimation-type satellite retrievals;
Rodgers 2000). In applications that involve uncertainty quantification, the posterior
PDF represents the variability in a set of model output variables y associated with
changes in a set of input parameters x. The posterior PDF can thus be used to
examine the sensitivity of model output to changes in parameters, as well as the
relationships between parameters. The degree of sensitivity in a parameter or set of
parameters is directly related to the reduction in the dispersion of the prior PDF.
For parameters that exert large influence over the model state, a small change
in parameter values will produce a relatively large change in model output. As
such, the posterior PDF will narrow relative to the prior. The degree of sensitivity
can be formalized via computation of the Shannon Information content (Shannon
and Weaver 1949; Rodgers 2000; Cooper et al. 2006), which is computed as the
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reduction in the entropy of the estimate due to the addition of information from
observations. In discrete form, the entropy of state P is defined as:

S.P / D
KX
iD1

pi log2.pi /; (3.16)

where pi is the discretized PDF and K is the number of discrete bins the PDF is
divided into. Shannon information content is then defined as the difference between
the entropy of the a priori state and the entropy of the retrieved state

H D S.xa/� S.Ox/ D
"

�
NX
iD1

pi .xa/ log2 .pi .xa//

#
�
"

�
NX
iD1

pi .Ox/ log2 .pi.Ox//
#
;

(3.17)

which can be interpreted as the extent to which the number of allowable states is
reduced by the addition of information from the measurements. Because MCMC
algorithms return a sample of the full PDF, H can be computed directly from the
above relationship. Select examples of application of MCMC to satellite retrievals
and model uncertainty evaluation are presented below.

3.4 Select Applications of MCMC in the Atmospheric
Sciences

3.4.1 Retrieval of Atmospheric State Variables from Satellite
Measurements

The surface-based Earth observing network is generally limited to land and to
regions close to major population centers and consequently does not sufficiently
sample the global atmosphere. For this reason, studies of the Earth’s weather and
climate have increasingly depended on observations from satellites, which have
the potential to provide a more complete temporal and spatial observational record.
In contrast to many in-situ measurements, satellite-based observations are indirect
measurements of the quantities of interest. Extracting geophysical quantities from
satellite radiances requires the solution to an inverse problem: inference of the state
of the atmosphere from observations of radiative properties via some functional
relationship (e.g., a forward radiative transfer model, regression, etc.; Rodgers 2000;
Miller et al. 2000 and references therein). As such, the geophysical quantities
obtained from satellite are said to be retrieved from what the satellite actually
measures. The magnitude and characteristics of the uncertainty in a retrieval depend
on the characteristics of uncertainty in the observations, their sensitivity to the
parameters of interest, forward model accuracy, and the quality of available prior
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the retrieval analysis (Adapted from Posselt et al. (2008a), Fig. 1b)

information about the retrieved state (Rodgers 2000; Cooper et al. 2003, 2007;
L’Ecuyer et al. 2006). Though the relationship between satellite measurements and
geophysical quantities may be complex and nonlinear, computational constraints
often restrict retrievals to simplified frameworks. MCMC can be effectively used to
robustly diagnose the uncertainty in a satellite retrieval, to improve the implemen-
tation of more efficient algorithms, and in some cases, to perform the retrieval itself
(Tamminen and Kyrola 2001; Tamminen 2004).

In this section, we briefly highlight the use of an MCMC algorithm for
diagnosing uncertainties in an ice cloud property retrieval. Vertically integrated
ice mass (ice water path; IWP) and ice particle effective radius are obtained from
relative differences in absorption of infrared radiation by clouds at two channels
in the infrared window (wavelengths between 8 and 14�m, Inoue 1985 and
Prabhakara et al. 1988). Split-window retrievals provide global estimates of climate-
relevant characteristics of widespread thin cirrus clouds under both daytime and
nighttime conditions. Retrieved cloud properties from the split-window technique
are known to be sensitive to uncertainties in cloud top height (Miller et al. 2000;
Cooper et al. 2003), cloud geometric thickness (Hong et al. 2007), and ice crystal
shape (Cooper et al. 2003; Baum et al. 2005). Posselt et al. (2008a) examined these
sources of uncertainty by applying an MCMC algorithm to a cloud scene observed
by the Moderate Resolution Imaging Spectroradiometer (MODIS). A portion of the
results corresponding to analysis of the retrieval solution for a single pixel (Fig. 3.4),
is presented below. Additional details on the case, as well as results from the entire
scene, can be found in Posselt et al. (2008a,b).

The cloud of interest was associated with the warm frontal portion of an
extratropical cyclone off the United States East Coast at 1730 UTC 22 November
2006 (Fig. 3.4). In-cloud temperatures were uniformly below �25 ıC and the cloud
was approximately 4 km thick. Cloud top and base were obtained from CloudSat
and CALIPSO radar and lidar profiles, respectively. The forward radiative transfer
model consisted of a combination of OPTRAN for gaseous transmission (Kleespies
et al. 2004), and the Successive Order of Interaction (SOI) model for cloud
particle scattering and absorption (Heidinger et al. 2006; O’Dell et al. 2006). Cloud
properties were retrieved from MODIS brightness temperatures at 11.0 and 13.3�m
wavelengths.
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The MCMC algorithm used to perform the retrieval was a straightforward
implementation of Metropolis-Hastings sampling with uncorrelated zero mean
Gaussian proposal distribution for each of five unknown retrieved parameters: the
cloud top and base height, effective radius, ice water path, and ice crystal shape.
Proposed values were generated for all parameters simultaneously and proposal
variance was tuned during the initial portion of the Markov chain to converge to
an acceptance rate of approximately 25 %. A Gaussian PDF was assumed for the
satellite brightness temperature uncertainty, and the error standard deviation was
assumed to be 1.5 and 1.0 K for the 11�m brightness temperature and 11–13.3�m
brightness temperature difference. Cloud top and base height were obtained from
CloudSat reflectivity profiles and assumed to have a Gaussian uncertainty with
standard deviation of 2 km. Note that we also tested a log-Normal error distribution
for cloud top height uncertainty. These results are presented in Posselt et al. (2008a)
and will not be discussed here.

The prior distribution for all five retrieved parameters was assumed to be bounded
Uniform with bounds set to [0,100]�m for the effective radius, [0,200] g m�2 for
IWP, and [0,15] km for cloud top base and height. Ice crystal shape was varied by
allowing the proposal to sample from all real numbers in the range [0.5,4.5] then
rounding to the nearest integer value. The ice crystal shape was corresponding to this
integer value was then used in the forward radiative transfer model (reordering the
crystal shape index was found to have no influence on the outcome of the retrieval).
Cloud base was constrained to lie below cloud top by treating any proposal with
cloud base > cloud top height as an automatic rejection.

Posterior PDFs of IWP and effective radius retrieved for the pixel of interest
are shown in Fig. 3.5. In Fig. 3.5a, b, the ice crystal shape is assumed to be solid
columns, and the cloud top and base height are fixed (Fig. 3.5a) and allowed to vary
(Fig. 3.5b). It can be seen that the characteristics of the posterior solution do not
change significantly when cloud top and base are allowed to vary–the maximum
a posteriori estimate (mode) is unchanged and the functional relationship between
IWP and effective radius is consistent. The primary effect of variability in cloud
top and base location is to increase the variance in the solution. When ice crystal
shape is allowed to vary, the characteristics of the posterior PDF change markedly.
Solid columns and droxtals (Fig. 3.5a, c) produce posterior PDFs with similar
characteristics, but with slightly larger retrieved IWP and Re for droxtals. The PDF
corresponding to bullet rosettes (Fig. 3.5d) is bimodal with a primary mode that
is much more compact and circular in shape than for the other crystal shapes and
with a solution that returns far smaller IWP and effective radius. In contrast, when
aggregates are the assumed crystal shape (Fig. 3.5e), the posterior mode is elongated
and centered at much larger values of IWP and effective radius. When the algorithm
is allowed to adaptively choose a crystal shape (Fig. 3.5f), the result is bimodal with
the primary mode associated with aggregates and the secondary mode a combination
of bullet rosettes, droxtals, and columns.

The results demonstrate the utility of MCMC for examining the properties of
a retrieval with unknown uncertainty characteristics. In the above case, while it is
generally acknowledged that ice crystal shape is an important contributor to ice
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Fig. 3.5 Joint PDFs of IWP and effective radius in a single pixel for the case in which cloud top
and base height are fixed (a, c, d, e, and f) and varied (b). Plots correspond to cases in which (a)
only solid columns are allowed, (b) only solid columns are allowed, and cloud top and base height
is allowed to vary by ˙1 km, (c) only droxtals are allowed, (d) only bullet rosettes are allowed,
(e) only aggregates are allowed, and (f) all crystal shapes are considered. Note that a white line
has been added to (d) to highlight the secondary mode in the joint PDF of bullet rosettes (Adapted
from Figs. 4b and 6 in Posselt et al. (2008a))
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cloud retrieval error, the characteristics of the error (e.g., changes in the shape of
the posterior distribution with changes in crystal type and the presence of discrete
multiple modes when all types are allowed) would have been difficult to determine
in advance. It is important to recognize that an MCMC-based retrieval method
provides the unapproximated joint posterior PDF of all retrieved quantities for
every pixel in the scene and thus can yield a much more robust estimate of the
scene dependent characteristics of the error. This topic is explored in more detail in
Posselt et al. (2008a).

3.4.2 Model Parameter Estimation and Uncertainty Analysis

Errors and/or uncertainty in model physics parameterizations are increasingly
recognized to be an important source of forecast error in weather and climate
prediction (Murphy et al. 2004; Palmer et al. 2005; Stainforth et al. 2005; Berner
et al. 2011; Jarvinen et al. 2010, 2012; Laine et al. 2012). Specifically, empirically
specified parameters associated with simplifying assumptions about the form of the
particle size distribution of ice and liquid condensate have an important effect on the
details of cloud and precipitation development and feed back on the radiative fluxes,
heating rates, and thermodynamic environment (Tao et al. 1995; Grabowski et al.
1999; Wu et al. 1999; Petch and Gray 2001; Gilmore et al. 2004; van den Heever and
Cotton 2004). It is reasonable to expect certain sets of parameters to produce model
trajectories that are consistent with observations. However, due to nonlinearity in
the parameter-state relationship and errors in observations, there may not exist
one optimal set of parameter values. The issue of how to quantitatively represent
parameterization uncertainties presents a significant challenge, and has implications
for the efficacy of ensemble weather and climate forecasting, data assimilation, and
model physics development.

In this section, we demonstrate how MCMC can be used to understand the
functional relationship between model physics parameters and model output
variables. The outcome is an estimate of the sensitivity of the simulation output
to the model formulation, as well as information on how to properly account
for parameter uncertainty in a data assimilation system. The parameters of interest
define the particle shape, density, and size distribution in a bulk cloud microphysical
parameterization (Lin et al. 1983; Rutledge and Hobbs 1983, 1984; Tao et al. 2003;
Lang et al. 2007), and are listed in Table 3.1. To evaluate parameter uncertainty
in isolation from the complications introduced by feedback to the flow field
and thermodynamic state, the physical parameterization is driven with specified
vertical motion and water vapor tendencies that vary sinusoidally with height, and
change in magnitude with time. Particles are allowed to settle according to their
mass weighted fall speed and interact fully with long and shortwave radiation.
The thermodynamic environment, water vapor forcing, and vertical motion are
set consistent with a vertical column passing through a tropical deep convective
squall line. As such, the model demonstrates two distinct regimes: convective and
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Table 3.1 Cloud microphysical parameters used in the MCMC-based parameter sensitivity
experiments, along with truth values for the simulated observation experiment and parameter
ranges. Note that all values are reported in CGS units to be consistent with what is used in the
model formulation and inverse method

Parameter description Abbreviation Units Truth Min Max

Snow fall speed coefficient as cm1�bs 200:0 50:0 1;000:0

Snow fall speed exponent bs None 0:3 0:1 1:0

Graupel fall speed coefficient ag cm1�bg 400:0 50:0 1;200:0

Graupel fall speed exponent bg None 0:4 0:1 0:9

Slope intercept of the N0r cm�4 0:5 0:0 5:0

rain particle size distribution
Slope intercept of the N0s cm�4 0:5 0:0 5:0

snow particle size distribution
Slope intercept of the N0g cm�4 0:5 0:0 5:0

graupel particle size distribution
Snow particle density �s g � cm�3 0:2 0:1 1:0

Graupel particle density �g g � cm�3 0:4 0:1 1:0

Threshold cloud mass mixing ratio qc0 g � kg�1 1:0 0:1 3:0

for autoconversion to rain
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Fig. 3.6 Simulated 10-cm
wavelength radar reflectivity
(dBZ) for the 1D emulated
squall line (Adapted from
van Lier-Walqui et al. (2012),
Fig. 1)

stratiform (Fig. 3.6–simulated radar reflectivity from van Lier-Walqui et al. 2012).
Note that though there is no bright-band simulator in the radar forward model, the
effects of melting snow and graupel are accounted for in the model. For additional
details on the model configuration, the reader is referred to Posselt and Vukicevic
(2010), Posselt and Bishop (2012), and van Lier-Walqui et al. (2012).

A MCMC algorithm very similar in form to that implemented for the afore-
mentioned ice cloud property retrieval is used to examine how changes in each of
ten cloud microphysical parameters affect output precipitation, liquid and ice water
path, and radiative fluxes (Table 3.2) for the idealized deep convective squall line.
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Table 3.2 Observations used
in the MCMC-based
parameter sensitivity
experiments, along with their
units and error estimates

Observation Units Error

Precipitation rate mm � h�1 2.0 mm � h�1

Liquid water path mm 0.5 mm
Ice water path mm 1.0 mm
TOA LW radiative flux W � m�2 10 W � m�2

TOA SW radiative flux W � m�2 20 W � m�2

As in the retrieval problem, all ten parameters are perturbed simultaneously using
a Gaussian proposal distribution centered on the current parameter value and with
variance that is adaptively tuned early in each Markov chain so that the acceptance
rate is approximately 25 %. Parameter prior ranges are obtained from observations
of cloud particle properties (Locatelli and Hobbs 1974; Mitchell 1996; Tokay and
Short 1996; Heymsfield et al. 2002; Roy et al. 2005). A set of specified parameters
is used to produce a true state, from which observations are drawn at 30, 60, 90,
120, 150, and 180 min of simulated time. Observations consist of precipitation rate,
liquid and ice water path, and outgoing longwave and shortwave radiative fluxes,
and measurement uncertainty is set equal to values consistent with error estimates
on Tropical Rainfall Measuring Mission (TRMM) retrievals. Each Markov chain in
the MCMC parameter estimation experiment was run for 4� 106 iterations. Further
details of the parameter values, observations, and simulation output can be found in
Posselt and Vukicevic (2010).

Two dimensional marginal PDFs for select sets of parameters are shown in
Fig. 3.7. The parameter sets depicted in this plot are chosen because they exhibited
multi-mode posterior PDFs and a non-trivial influence on each of the output vari-
ables of interest. Each row in Fig. 3.7 corresponds to assimilation of observations
with different characteristics and each demonstrates the utility of MCMC for
assessing observation impact as well as the vagaries of the assimilation algorithm.
Note that obtaining the results depicted in each row also required a new run of the
MCMC algorithm. It can be seen from Fig. 3.7a–d that observations of precipitation
rate and liquid and ice water path are not sufficient to constrain the parameter
values; the mode of the joint PDF does not line up with the true parameter values.
When radiative flux observations are added to the likelihood function (Fig. 3.7e–h),
the number of possible solutions is reduced and the mode in the PDF lies at
approximately the true value. However, there are clearly multiple modes in the
solution space. In an attempt to reduce the solution to a single set of most likely
parameter values, the algorithm is re-run under the assumption that more accurate
observations of outgoing long and shortwave radiation are available. This serves
only to exacerbate the multimodality (Fig. 3.7i–l). In essence, in the presence of a
multimode solution, more accurate observations cannot serve to eliminate one of the
modes, they only serve to make the modes more distinct. This may actually make
the data assimilation problem more difficult, and Posselt et al. (2008a) found that
this was also true of cloud property retrievals. Note that including more observation
times may help to constrain the problem via reduction in the number of possible
solutions (Vukicevic and Posselt 2008).
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Fig. 3.7 Plots of select joint PDFs for observations of precipitation rate, liquid water path, and ice
water path (PLI; row 1), PLI plus observations of outgoing long and shortwave radiation (PLIOO;
row 2), PLIOO with reduced error on the radiative fluxes (row 3), and PLIOO with reduced
error on the radiative fluxes and the constraint that the graupel fall speed coefficient exceed the
snowfall speed coefficient (ag> as). White solid and dashed curves correspond to the 68 and 95 %
probability contours, respectively; red solid lines indicate the position of the parameter truth value;
and red dashed lines indicate the truth value for the situation in which snow and graupel parameters
are interchanged (Adapted from Posselt and Vukicevic (2010), Fig. 12)

Close inspection of the posterior PDFs in Fig. 3.7i–l indicates that nonuniqueness
in the relationship between snow and graupel may be the underlying cause of
multiple modes in the solution. If snow and graupel are essentially interchangeable
in the code, then identical solutions will be obtained if snow parameters are set to
graupel truth values and vice versa. This possibility was eliminated by applying the
constraint that graupel fall faster than snow; note that this is easily tested in the
MCMC framework by adding another criterion to the Metropolis update that rejects
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Fig. 3.8 Posterior two-dimensional marginal parameter PDFs for increasing numbers of obser-
vations assimilated in an MCMC parameter estimation experiment. Each row corresponds to a
different pair of parameters, while each column represents a different set of assimilated observation
times. (a)–(f) are 2D marginal PDFs of the slope intercept of the rain particle size distribution (N0r )
and threshold cloud mixing ratio for autoconversion to rain (qc0). (g)–(l) are 2D marginal PDFs of
the coefficient and exponent in the graupel diameter – fall velocity relationship. True parameter
values are indicated in the red cross-hairs. The thin dash-dot, dashed, solid, and dotted black
contours enclose the 99.7, 95, 68.3, and 38.3 % probability contours, respectively

any parameter values for which snow falls faster than graupel. The result is shown
in Fig. 3.7m–p: the solution reduces to a single mode centered on the true parameter
values for the snow and graupel fall speed parameters. Graupel density (Fig. 3.7p)
continues to exhibit a mode that stretches from its true value to the maximum
allowable value, indicating a loss of sensitivity to changes in this parameter above
a certain value. The 2D marginals contained in Fig. 3.7 demonstrate the utility of
MCMC for exploring the relationship (e.g., covariance) between parameters, the
effect on parameter estimates of adding additional and/or more accurate observa-
tions, and the need for physical constraints in the data assimilation procedure.

Now, the MCMC algorithm is a static inverse method; control variables are not
updated sequentially but are instead assumed fixed over the length of the simulation.
We may address the question of when non-uniqueness in the posterior parameter
PDF arises by running several MCMC experiments, and changing the number of
observation times included in each one. The results of such an experiment, in
which we included observations from 30, 30–60, 30–90, 30–120, 30–150, and
30–180 min in the MCMC algorithm, are presented in Fig. 3.8. Posterior PDFs for
the cloud-rain autoconversion threshold and the slope intercept of the rain particle
size distribution (Fig. 3.8a–f), and the graupel fall speed parameters (Fig. 3.8g–l)
are shown. Several conclusions can be drawn from this figure. First, changes in the
warm rain parameters affect the solution most during the convective phase of the
simulation (0–90 min) with influence that wanes as the system is forced to make
the transition to stratiform. The opposite is true of the graupel fall speeds, which
strongly influence the solution at stratiform times, but have limited effect early in
the simulation. In addition, it is clear that multiple modes do not arise in the solution
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until the final two observation times are used–the posterior PDF that results from
assimilation of observations at 30, 60, 90, and 120 min has a single mode. The fact
that multimodality arises suddenly in the solution upon incorporation of a single
additional observation time is interesting, and has implications for the performance
of ensemble data assimilation methods. Note that the sample of the joint posterior
distribution produced by MCMC, in addition to its utility for parameter optimization
and uncertainty quantification, can also be used as a benchmark for examining
the characteristics of approximate solutions to inverse problems. A comparison of
the posterior PDF produced by MCMC with that obtained using deterministic and
stochastic versions of an Ensemble Transform Kalman Filter (ETKF, Bishop et al.
2001) is presented in Posselt and Bishop (2012).

3.5 Concluding Remarks

MCMC is now widely used for Bayesian inference in the statistical research
community, and is gaining popularity in the physical and social sciences. The large
dimensionality of Earth system datasets and complexity of process models present a
significant computational and algorithmic challenge. This is particularly true in the
case of global Earth system models and high resolution process models, which may
require weeks of compute time for a single integration. For these models, running
tens of thousands of integrations in a Markov chain is simply not feasible. Nev-
ertheless, the development of efficient sampling algorithms, judicious application
of simplified models, and widespread availability of multicore computing make
application of MCMC to problems in atmospheric, oceanic, and hydrologic sci-
ences increasingly feasible. As demonstrated above, significant progress is already
possible in the areas of model uncertainty quantification and satellite retrievals. In
particular, use of MCMC to evaluate simpler (and computationally more efficient)
satellite retrieval algorithms and data assimilation schemes appears to be particularly
promising. In addition, the PDF returned by MCMC can be effectively used to assess
the information content in new and future observing systems, and to examine which
types of observations might be used to constrain uncertain parameters in numerical
models. It is likely that the next few years will see continued development of
adaptive and hybrid algorithms, as well as innovative uses of MCMC for exploration
of processes in the physical system. Experiments with sequential MCMC will
allow more sophisticated evaluation of ensemble filters, as well as advance the
development of nonlinear, non-Gaussian data assimilation techniques.

On a final note, though it is still common for scientists and statisticians to write
their own MCMC software, open source codes are becoming more widely available.
These include (among others) the R package “mcmc” (http://www.stat.umn.edu/
geyer/mcmc/), Bayesian inference Using Gibbs Sampling (BUGS, Lunn et al. 2009,
http://www.openbugs.info), the Delayed Reject Adaptive Metropolis code of Haario
et al. (2006, http://www.helsinki.fi/�mjlaine/dram/), and the Differential Evolution

http://www.stat.umn.edu/geyer/mcmc/
http://www.stat.umn.edu/geyer/mcmc/
http://www.openbugs.info
http://www.helsinki.fi/~mjlaine/dram/
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Adaptive Metropolis algorithm (DREAM, Vrugt and Ter Braak 2011, http://jasper.
eng.uci.edu/software.html). (The author is not affiliated with or funded by any of
these research efforts, and makes no claims as to the utility or effectiveness of the
software.)
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Chapter 4
Observation Influence Diagnostic of a Data
Assimilation System

Carla Cardinali

Abstract The influence matrix is used in ordinary least-squares applications for
monitoring statistical multiple-regression analyses. Concepts related to the influence
matrix provide diagnostics on the influence of individual data on the analysis,
the analysis change that would occur by leaving one observation out, and the
effective information content (degrees of freedom for signal) in any sub-set of
the analysed data. In this paper, the corresponding concepts are derived in the
context of linear statistical data assimilation in Numerical Weather Prediction. An
approximate method to compute the diagonal elements of the influence matrix
(the self-sensitivities) has been developed for a large-dimension variational data
assimilation system (the 4D-Var system of the European Centre for Medium-Range
Weather Forecasts). Results show that, in the ECMWF operational system, 18 % of
the global influence is due to the assimilated observations, and the complementary
82 % is the influence of the prior (background) information, a short-range forecast
containing information from earlier assimilated observations. About 20 % of the
observational information is currently provided by surface-based observing systems,
and 80 % by satellite systems.

A toy-model is developed to illustrate how the observation influence depends
on the data assimilation covariance matrices. In particular, the role of high-
correlated observation error and high-correlated background error with respect to
uncorrelated ones is presented. Low-influence data points usually occur in data-rich
areas, while high-influence data points are in data-sparse areas or in dynamically
active regions. Background error correlations also play an important role: high
correlation diminishes the observation influence and amplifies the importance of the
surrounding real and pseudo observations (prior information in observation space).
To increase the observation influence in presence of high correlated background
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error is necessary to introduce the observation error correlation but also observation
and background error variances must be of similar size. Incorrect specifications of
background and observation error covariance matrices can be identified, interpreted
and better understood by the use of influence matrix diagnostics for the variety of
observation types and observed variables used in the data assimilation system.

4.1 Introduction

Over the years, data assimilation schemes have evolved into very complicated sys-
tems, such as the four-dimensional variational system (4D-Var) (Rabier et al. 2000)
at the European Centre for Medium-Range Weather Forecasts (ECMWF). The
scheme handles a large variety of both space and surface-based meteorological
observations. It combines the observations with prior (or background) information
of the atmospheric state and uses a comprehensive (linearized) forecast model to
ensure that the observations are given a dynamically realistic, as well as statistically
likely response in the analysis.

Effective monitoring of such a complex system, with the order of 109 degrees of
freedom and more than 107 observations per 12-h assimilation cycle, is a necessity.
The monitoring cannot be restricted to just a few indicators, but a complex set of
measures is needed to indicate how different variables and regions influence the
data assimilation (DA) scheme. Measures of the observational influence are useful
for understanding the DA scheme itself: How large is the influence of the latest data
on the analysis and how much influence is due to the background? How much would
the analysis change if one single influential observation were removed? How much
information is extracted from the available data? It is the aim of this work to provide
such analytical tools.

We turn to the diagnostic methods that have been developed for monitoring
statistical multiple regression analyses. In fact, 4D-Var is a special case of the
Generalized Least Square (GLS) problem (Talagrand 1997) for weighted regression,
thoroughly investigated in the statistical literature.

The structure of many regression data sets makes effective diagnosis and
fitting a delicate matter. In robust (resistant) regression, one specific issue is to
provide protection against distortion by anomalous data. In fact, a single unusual
observation can heavily distort the results of ordinary (non-robust) LS regression
(Hoaglin et al. 1982). Unusual or influential data points are not necessarily bad
data points: they may contain some of the most useful sample information. For
practical data analysis, it helps to judge such effects quantitatively. A convenient
diagnostic measures the effect of a (small) change in the observation yi on the
corresponding predicted (estimated) value >yi . In LS regression this involves a
straightforward calculation: any change in yi has a proportional impact on >yi . The
desired information is available in the diagonal of the hat matrix (Velleman and
Welsch 1981), which gives the estimated values >yi as a linear combination of the
observed values yi . The term hat matrix was introduced by J.W. Tukey (Tukey 1972)
because the matrix maps the observation vector y into Oy, but it is also referred to as
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the influence matrix since its elements indicate the data influence on the regression
fit of the data. The matrix elements have also been referred to as the leverage of
the data points: in case of high leverage a unit y-value will highly disturb the fit
(Hoaglin and Welsch 1978). Concepts related to the influence matrix also provide
diagnostics on the change that would occur by leaving one data point out, and the
effective information content (degrees of freedom for signal) in the data.

These influence matrix diagnostics are explained in Sect. 4.2 for ordinary least-
squares regression. In Sect. 4.3 the corresponding concepts for linear statistical DA
schemes is derived. It will be shown that observational influence and background
influence complement each other. Thus, for any observation yi either very large or
very small influence could be the sign of inadequacy in the assimilation scheme,
and may require further investigation. A practical approximate method that enables
calculation of the diagonal elements of the influence matrix for large-dimension
variational schemes (such as ECMWF’s operational 4D-Var system) is described
in Cardinali et al. (2004) and therefore not shown here. In Sect. 4.4 results and
selected examples related to data influence diagnostics are presented, including an
investigation into the effective information content in several of the main types of
observational data. Conclusions are drawn in Sect. 4.5.

4.2 Classical Statistical Definition of Influence Matrix
and Self-Sensitivity

The ordinary linear regression model can be written:

y D X“ C © (4.1)

where y is an m� 1 vector for the response variable (predictand); X is an m� q
matrix of q predictors; “ is a q � 1 vector of parameters to be estimated (the
regression coefficients) and © is an m � 1 vector of errors (or fluctuations) with
expectation E.©/ D 0 and covariance var.©/ D ¢2Im (that is, uncorrelated
observation errors). In fitting the model (4.1) by LS, the number of observations
m has to be greater than the number of parameters q in order to have a well-posed
problem, and X is assumed to have full rank q.

The LS method provides the solution of the regression equation as “ D
.XTX/�1XT y. The fitted (or estimated) response vector y is thus:

Oy D Sy (4.2)

where
S D X.XTX/�1XT (4.3)

is the m �m influence matrix (or hat matrix). It is easily seen that

S D @Oy
@y

(4.4)
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and that

Sij D @ Oyi
@yj

Sii D @ Oyi
@yi

(4.5)

for the off-diagonal (i ¤ j ) and the diagonal (i D j ) elements, respectively. Thus,
Sij is the rate of change of Oyi with respect to yj variations. The diagonal element
Sii, instead, measures the rate of change of the regression estimate Oyi with respect to
variations in the corresponding observation yi . For this reason the self-sensitivity (or
self-influence, or leverage) of the i th data point is the i th diagonal element Sii, while
an off-diagonal element is a cross-sensitivity diagnostic between two data points.

Hoaglin and Welsch (1978) discuss some properties of the influence matrix. The
diagonal elements satisfy

0 � Sii � 1 : : : : : : : : : i D 1; 2; : : : ; m (4.6)

as S is a symmetric and idempotent projection matrix (S D S2). The covariance of
the error in the estimate >y, and the covariance of the residual r D y � Oy are related
to S by

var.Oy/ D 
2S

var.r/ D 
2.Im � S/ (4.7)

The trace of the influence matrix is

tr.S/ D
mX
iD1

Sii D q D rank.S/ (4.8)

(in fact S hasm eigenvalues equals to 1 andm� q zeros). Thus, the trace is equal to
the number of parameters. The trace can be interpreted as the amount of information
extracted from the observations or degrees of freedom for signal (Wahba et al. 1995).
The complementary trace, tr.I � S/ D m� tr.S/, on the other hand, is the degree of
freedom for noise, or simply the degree of freedom (df ) of the error variance, widely
used for model checking (F test).

A zero self-sensitivity Sii D 0 indicates that the i th observation has had no
influence at all in the fit, while Sii D 1 indicates that an entire degree of freedom
(effectively one parameter) has been devoted to fitting just that data point. The aver-
age self-sensitivity value is q=m and an individual element Sii is considered ‘large’
if its value is greater than three times the average (Velleman and Welsch 1981).
By a symmetrical argument a self-sensitivity value that is less than one-third of the
average is considered ‘small’.
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Furthermore, the change in the estimate that occurs when the i th observation is
deleted is

Oyi � Oy.�i /i D Sii

.1 � Sii/
ri (4.9)

where Oy.�i /i is the LS estimate of yi obtained by leaving-out the i th observation
of the vector y and the i th row of the matrix X. The method is useful to assess
the quality of the analysis by using the discarded observation, but impractical for
large systems. The formula shows that the impact of deleting .yi ; xi / on Oyi can be
computed by knowing only the residual ri and the diagonal element Sii – the nearer
the self-sensitivity Sii is to one, the more impact on the estimate Oyi . A related result
concerns the so-called cross-validation (CV) score: that is, the LS objective function
obtained when each data point is in turn deleted (Wahba 1990, Theorem 4.2.1):

mX
iD1

.yi � Oy.�i /i /2 D
mX
iD1

.yi � Oyi /2
.1 � Sii/2

(4.10)

This theorem shows that the CV score can be computed by relying on the all-data
estimate Oy and the self-sensitivities, without actually performing m separate LS
regressions on the leaving-out-one samples. Moreover, (4.9) shows how to compute
self-sensitivities by the leaving out one experiment.

The definitions of influence matrix (4.4) and self-sensitivity (4.5) are rather
general and can be applied also to non-LS and nonparametric statistics. In spline
regression, for example, the interpretation remains essentially the same as in
ordinary linear regression and most of the results, like the CV-theorem above, still
apply. In this context, Craven and Wahba (1979) proposed the generalized-CV score,
replacing in (4.10) Sii by the mean tr.S/=q. For further applications of influence
diagnostics beyond usual LS regression (and further references) see Ye (1998) and
Shen et al. (2002). The notions related to the influence matrix that it has introduced
here will in the following section be derived in the context of a statistical analysis
scheme used for data assimilation in numerical weather prediction (NWP).

4.3 Observational Influence and Self-Sensitivity
for a DA Scheme

4.3.1 Linear Statistical Estimation in Numerical Weather
Prediction

Data assimilation systems for NWP provide estimates of the atmospheric state x
by combining meteorological observations y with prior (or background) informa-
tion xb. A simple Bayesian Normal model provides the solution as the posterior
expectation for x, given y and xb. The same solution can be achieved from a classical
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frequentist approach, based on a statistical linear analysis scheme providing the Best
Linear Unbiased Estimate (Talagrand 1997) of x, given y and xb. The optimal GLS
solution to the analysis problem (see Lorenc 1986) can be written

xaD Ky C .In � KH/xb (4.11)

The vector xa is the ‘analysis’. The gain matrix K(n � m) takes into account the
respective accuracies of the background vector xb and the observation vector y as
defined by the n � n covariance matrix B and the m �m covariance matrix R, with

K D .B�1CHTR�1H/�1HTR�1 (4.12)

Here, H is a m � n matrix interpolating the background fields to the observation
locations, and transforming the model variables to observed quantities (e.g. radiative
transfer calculations transforming the models temperature, humidity and ozone into
brightness temperatures as observed by several satellite instruments). In the 4D-Var
context introduced below, H is defined to include also the propagation in time of the
atmospheric state vector to the observation times using a forecast model.

Substituting (4.12) into (4.11) and projecting the analysis estimate onto the
observation space, the estimate becomes

Oy D Hxa D HKy C .Im � HK/Hxb (4.13)

It can be seen that the analysis state in observation space (Hxa) is defined as a sum
of the background (in observation space, Hxb) and the observations y, weighted by
the m �m square matrices I � HK and HK; respectively.

Equation (4.13) is the analogue of (4.1), except for the last term on the right hand
side. In this case, for each unknown component of Hx, there are two data values:
a real and a ‘pseudo’ observation. The additional term in (4.13) includes these
pseudo-observations, representing prior knowledge provided by the observation-
space background Hxb. From (4.13) and (4.4), the analysis sensitivity with respect
to the observations is obtained

S D@Oy
@y

D KT HT (4.14)

Similarly, the analysis sensitivity with respect to the background (in observation
space) is given by

@Oy
@.Hxb/

D I � KTHT D Im � S (4.15)

Let’s focus here on the expressions (4.14) and (4.15). The influence matrix for the
weighted regression DA scheme is actually more complex (see Appendix), but it
obscures the dichotomy of the sensitivities between data and model in observation
space.
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The (projected) background influence is complementary to the observation
influence. For example, if the self-sensitivity with respect to the i th observation
is Sii, the sensitivity with respect the background projected at the same variable,
location and time will be simply 1 � Sii. It also follows that the complementary
trace, tr.I � S/ D m � tr.S/, is not the df for noise but for background, instead.
That is the weight given to prior information, to be compared to the observational
weight tr(S). These are the main differences with respect to standard LS regression.
Note that the different observations can have different units, so that the units of the
cross-sensitivities are the corresponding unit ratios. Self-sensitivities, however, are
pure numbers (no units) as in standard regression. Finally, as long as R is diagonal,
(4.6) is assured (see Sect. 4.3.2), but for more general non-diagonal R-matrices it is
easy to find counter-examples to that property.

Inserting (4.12) into (4.14), we obtain

S D R�1H.B�1 C HTR�1H/�1HT (4.16)

As .B�1 C HTR�1H/�1 is equal to the analysis error covariance matrix A, we can
also write S D R�1HAHT.

4.3.2 R Diagonal

In this section it is shown that as long as R is diagonal (4.6) is satisfied. Equation
(4.16) can be written as

S D R�1HŒB � BHT .HBHT C R/�1HB�HT (4.17)

D R�1HBHT � R�1HBHT .HBHT C R/�1HBHT

Let’s introduce the matrix V D HBHT , (4.17) becomes

S D R�1V � R�1V.V C R/�1V

D R�1VŒI � .V C R/�1V�

D R�1VŒ.V C R/�1.V C R/� .V C R/�1V�

D R�1V.V C R/�1R

D R�1Œ.V C R/.V C R/�1 � R.V C R/�1�R (4.18)

D R�1ŒI � R.V C R/�1�R

D I � .V C R/�1R

D .V C R/�1V



96 C. Cardinali

Since V and R are positive definite covariance matrices, the matrix (V C R/ is
positive definite as well. In fact by definition for a non-zero vectors z with real
entries the quantity zT.V C R/z D zTVz C zTRz > 0.

Let’s consider the following theorem: If D is positive definite matrix then D�1 is
positive definite and defining

D�1 D f•ijg; D D fdijg we have: •ii � 1=dii where the equality holds if and only
if di1 D � � � D dii�1 D diiC1 D � � � D din D 0.

The diagonal elements of D�1 D .V C R)�1 D f•ijg are then larger than the
diagonal elements of (V C R). Moreover, if V D fvijg and R D diag.ri/ we obtain

ıii � 1

vii C ri
(4.19)

And since the i -diagonal element of (V C R/�1R is .ıi1; : : : ; ıin/

0
BBBBBB@

0
:::

ri
:::

0

1
CCCCCCA

D ıi i ri

ıiiri � ri

vii C ri
(4.20)

From (4.18) considering that the product of two positive definite matrix is still a
positive definite matrix

0 < Sii D 1 � ıiiri � 1 � ri

vii C ri
D vii

vii C ri
< 1 (4.21)

(4.21) proves that the diagonal elements of the influence matrix for the weighted
regression DA scheme are bound between (0,1).

4.3.3 Toy Model

Let’s assume a simplified model with two observations, each coincident with a point
of the background – that is H D I2. Assume the error of the background at the two

locations have correlation ˛, that is B D ¢2b

�
1 ˛

˛ 1

	
, with variance 
2b , and that

similarly R D 
2o

�
1 ˇ

ˇ 1

	
with variance ¢2o and correlation “. For this simple case S

is obtained from (4.14)
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Fig. 4.1 Self-Sensitivities or Observation Influence (OI) as a function of the ratio between the
observation error variance and the background error variance. Four different cases are shown:
highly correlated R and uncorrelated B (thick black line). Highly correlated R and highly correlated
B (thick grey line). Uncorrelated R and highly correlated B (thin grey line). Uncorrelated R and
uncorrelated B (dashed black line)

S11 D S22 D 
2b 

2
o .1 � ˛ˇ/C 
4b .1 � ˛2/


4b .1 � ˛2/C 
4o .1 � ˇ2/C 2
2b 

2
o .1 � ˛ˇ/ (4.22)

S12 D S21 D 
2b 

2
o .˛ � ˇ/


4b .1 � ˛2/C 
4o .1 � ˇ2/C 2
2b 

2
o .1 � ˛ˇ/ (4.23)

For ’ ¤ ˙1 and “ ¤ ˙1(R and B are full rank matrices). Let’s define r D 
2o =

2
b ,

(4.22) and (4.23) reduce to

S11 D S22 D r.1 � ˛ˇ/C 1 � ˛2
r2.1 � ˇ2/C 1 � ˛2 C 2r.1� ˛ˇ/ (4.24)

S12 D S21 D r.˛ � ˇ/

r2.1 � ˇ2/C 1 � ˛2 C 2r.1� ˛ˇ/ (4.25)

Figure 4.1 shows the diagonal elements of the influence matrix as a function
of r; Sii D Sii.r/ (4.24). From now on, Sii is also indicated as Observation Influence
(OI). In general, the observation influence decreases with the increase of r . For
highly correlated (’ D 0:9; “ D 0:9) R and B and diagonal (’ D 0; “ D 0) R
and B, the observation influence as a function of r is the same (solid grey line and
dash thick line, respectively). Maximum observation influence is achieved when
B is diagonal (’ D 0) and R is highly correlated (“ D 0:9) (thin black line).
The observation influence will constantly decrease from the ‘maximum curve’ with
the decrease of the correlation degree in R (B still diagonal). And the minimum
observation influence curve is achieved when R is diagonal (“ D 0) and B is highly
correlated (’ D 0:9) (thick solid line). It is worth to notice that if the observation
error variance is larger than the background error variance (¢2o > ¢2b / introducing
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the observation error correlation will slightly increase the observation influence and
for ¢2o  ¢2b the observations will not be more influent in the analysis despite R is
not diagonal.

(i) R diagonal and B non-diagonal (˛ ¤ 0; ˇ D 0). Equations (4.24) and (4.25)
reduce respectively to

S11 D S22 D r C 1 � ˛2
r2 C 1 � ˛2 C 2r

(4.26)

S12 D S21 D r˛

r2 C 1 � ˛2 C 2r
(4.27)

It can be seen that if the observations are very close compared to the scale-length
of the background error correlation, i.e. ’ 
 1 (data dense area), then

S11 D S22 D S12 D S21 ' 1

r C 2
(4.28)

Furthermore, if ¢b D ¢o, that is r D 1, we have three pieces of information
with equal accuracy and S11 D S22 D 1=3. The background sensitivity at both
locations is 1� S11 D 1� S22 D 2=3. If the observation is much more accurate
than the background (¢b >> ¢o/, that is r 
 0, then both observations have
influence S11 D S22 D 1=2, and the background sensitivities are 1 � S11 D
1 � S22 D 1=2.

Let’s now turn to the dependence on the background-error correlation ’, for the
case ¢b D ¢o.r D 1/. It is

S11 D S22 D 2 � ˛2
4 � ˛2 (4.29)

S12 D S21 D ˛

4 � ˛2 (4.30)

If the locations are far apart, such that ’ 
 0, then S11 D S22 D 1=2, the background
sensitivity is also 1=2 and S12 D S21 D 0. It can be concluded that where observa-
tions are sparse, Sii and the background-sensitivity are determined by their relative
accuracies (r) and the off-diagonal terms are small (indicating that surrounding
observations have small influence). Conversely, where observations are dense, Sii

tends to be small, the background-sensitivities tend to be large and the off-diagonal
terms are also large.

It is also convenient to summarize the case ¢b D ¢o.r D 1/ by showing the
projected analysis at location 1

Oy1 D 1

4 � ˛2
�
.2 � ˛2/y1 C 2x1 � ˛.x2 � y2/

�
(4.31)
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The estimate Oy1 depends on y1, x1 and an additional term due to the second
observation. It is noticed that, with a diagonal R, the observational contribution
is generally devalued with respect to the background because a group of correlated
background values count more than the single observation [’ ! ˙1; .2�’2/ ! 1�.
From the expression above we also see that the contribution from the second
observation is increasing with the correlation’s absolute value, implying a larger
contribution due to the background x2 and observation y2 nearby observation y1.

4.4 Results

The diagonal elements of the influence matrix have been computed for the opera-
tional 4D-Var assimilation system at T159 spectral truncation 91 model levels for
October 2011. For the calculation details see Cardinali et al. (2004). The observation
departures (y � Hxb) were calculated by comparing the observations with a 12-h
forecast integration at T511 resolution. The assimilated observations for each main
observation type are given in Table 4.1. A large proportion (
98%) of the used data
is provided by satellite systems.

4.4.1 Trace diagnostic: Observation Influence and DFS

The global average Observation Influence (OI) is defined as

OI D tr.S/
m

(4.32)

where m is the total number of observations. For October 2011 OI D 0:18. Con-
sequently, the average background global influence to the analysis at observation
points is equal to 0.82 (see 4.15). It is clear that in the ECMWF system the global
observation influence is quite low.

In Fig. 4.2 the OI for the all different observation types is plotted. In general, OI
of conventional observations (SYNOP, DRIBU, PROFILER, PILOT, DROP, TEMP,
Aircraft) is larger than the satellite one. The largest OI is provided by DRIBU
surface pressure observations because they are located over the oceans that are in
general very poor observed (less than continental areas). Moreover, DRIBU and
SYNOP observations are very high quality measurements and the observation error
variances is quite small, likely smaller than the background error variance (see ‘toy
model’ in Sect. 4.3.3). Similarly, the OI 
0:4–0:5 of the remaining conventional
data is due to their quite small observation error variance. In Sect. 4.3.3 it has been
proved that if R is diagonal the OI is bounded between (0,1) but from Fig. 4.2, we
can see that DRIBU OI is higher than 1. This is due to the approximation of the
numerical solution and, in particular, the use in the influence matrix calculation of
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Table 4.1 Observation type assimilated on October 2011. The total number of data in one
assimilation cycle is on average m � 25;000;000

Data name Data kind Information

OZONE (O3) Backscattered solar UV radiation,
retrievals

Ozone, stratosphere

GOES-Radiance US geostationary satellite infrared
sounder radiances

Moisture, mid/upper troposphere

MTSAT-Rad Japanese geostationary satellite infrared
sounder radiances

Moisture, mid/upper troposphere

MET-rad EUMETSAT geostationary satellite
infrared sounder radiances

Moisture, mid/upper troposphere

AMSU-B Microwave sounder radiances Moisture, troposphere
MHS Microwave sounder radiances Moisture, troposphere
MERIS Differential reflected solar radiation,

retrievals
Total column water vapour

GPS-RO GPS radio occultation bending angles Temperature, surface pressure
IASI Infrared sounder radiances Temperature, moisture, ozone
AIRS Infrared sounder radiances Temperature, moisture, ozone
AMSU-A Microwave sounder radiances Temperature
HIRS Infrared sounder radiances Temperature, moisture, ozone
ASCAT Microwave scatterometer backscatter

coefficients
Surface wind

MODIS-AMV US polar atmospheric motion vectors,
retrievals

Wind, troposphere

Meteosat-AMV EUMETSAT geostationary atmospheric
motion vectors, retrievals

Wind, troposphere

MTSAT-AMV Japanese geostationary atmospheric
motion vectors, retrievals

Wind, troposphere

GOES-AMV US geostationary atmospheric motion
vectors, retrievals

Wind, troposphere

PROFILER American, European and Japanese Wind
profiles

Wind, troposphere

PILOT Radiosondes from land stations Wind, troposphere
DROP Dropsondes from aircrafts Wind, temperature, moisture,

pressure, troposphere
TEMP Radiosondes from land and ships Wind, temperature, moisture,

pressure, troposphere
Aircraft Aircraft measurements Wind, temperature, troposphere
DRIBU Drifting buoys Surface pressure, temperature,

moisture, wind
SYNOP Surface observations at land Surface pressure, temperature,

stations and on ships moisture, wind

an estimate of the analysis covariance matrix A (see Cardinali et al. 2004 for details).
On the contrary, the OI influence of satellite data is quite small. The largest influence
is provided by GPS-RO observations (
0:4) which again are accurate data (Healy
and Thépaut 2006), followed by AMSU-A measurements (
0:3). All the other
observations have an influence of about 0.2. Recently, changes in the assimilation
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Fig. 4.2 Observation Influence (OI) of all assimilated observations in the ECMWF 4DVar system
in October 2011. Observation types are described in Table 4.1

of ‘All-Sky’ observations (TMI and SSMIS) have increased their influence in the
analysis (Cardinali and Prates 2011; Geer and Bauer 2011).

In Sect. 4.2 it has been shown that tr(S) can be interpreted as a measure of the
amount of information extracted from the observations. In fact, in non-parametric
statistics, tr(S) measures the ‘equivalent number of parameters’ or degrees of
freedom for signal (DFS). Having obtained values of all the diagonal elements of
S (using 4.16) we can now obtain reliable estimates of the information content in
any subset of the observational data. However, it must be noted that this theoretical
measure of information content does not necessarily translate on value of forecast
impact. Figure 4.3 shows the information content for all main observation types. It
can be seen that AMSU-A radiances are the most informative data type, providing
23 % of the total observational information, IASI follows with 17 % and AIRS with
16 %. The information content of Aircraft (10 %) is the largest among conventional
observations, followed by TEMP and SYNOP (
4%). Noticeable is the 7 % of
GPS-RO (4th in the satellite DFS ranking) that well combines with the 0.4 value
for the average observation influence. In general, the importance of the observations
as defined by e.g. the DFS well correlates with the recent data impact studies by
Radnoti et al. (2010).

Similar information content of different observation types may be due to different
reasons. For example, DRIBU and OZONE information content is similarly small
but whilst OZONE observations have a very small average influence (Fig. 4.2) and
dense data coverage, DRIBU observations have large mean influence but much
lower data counts (Fig. 4.2). Anyhow, the OZONE data are important for the ozone
assimilation in spite of their low information content per analysis cycle. In fact,
OZONE is generally a long-lived species, which allows observational information
to be advected by the model over periods of several days.
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Fig. 4.3 Degree of Freedom for Signal (DFS) of all observations assimilated in the ECMWF
4DVar system in October 2011. Observation types are described in Table 4.1

The difference between OI and DFS comes from the number of observation
assimilated. Therefore, despite the generally low observation influence of satellite
measurements, they show quite large DFS because of the large number assimilated.
A large discrepancy between OI and DFS points on those observation types where
a revision of the assigned covariance matrices R and B will be beneficial: more
information extracted from e.g. satellite measurements.

Another index of interest is the partial Observation Influence (OIm/ for any
selected subset of data

OIm D
P
i2I
Sii

mI

(4.33)

where mI is the number of data in subset I . The subset I can represent a
specific observation type, a specific vertical or horizontal domain or a particular
meteorological variable. In Fig. 4.4 the OI of Aircraft data (I ) is plotted as a
function of pressure layers and for all observed parameters: temperature (t), zonal
(u) and meridional (v) component of the wind. The largest OI is provided by
temperature observations (
0:4) similar distributed on the different pressure layers.
Wind observations have larger influence (0.4) on the top of the atmosphere (above
400 hPa) than on the bottom one (0.2) due to the fact that there are very few wind
observations on the troposphere and lower stratosphere mainly over the oceans.
At those levels, temperature information is also provided by different satellite
platforms (in terms of brightness temperature or radiance). In Fig. 4.5 the Aircraft
DFS with respect to different pressure levels and observed parameters is shown. The
largest DFS in the lower troposphere (below 700 hPa) for temperature measurements
(
10% with respect to the total Aircraft DFS) with respect to wind ones is due to
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Fig. 4.4 Observation Influence (OI) for Aircraft observations and for October 2011 grouped by
pressure layer and observed parameter. Parameters are temperature (t ) light grey bar; meridional
wind (v) dark grey bar and zonal wind (u) black bar
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Fig. 4.5 Degree of Freedom for Signal (DFS) in percentage for aircraft observations and for
October 2011 grouped by pressure layer and observed parameter. Parameters are temperature (t )
light grey bar; meridional wind (v) dark grey bar and zonal wind (u) black bar. The percentage is
relative to the total Aircraft DFS

the largest temperature influence. For all the other levels, the DFS is quite similar
to the OI distribution with the exception of the layer from 200 to 300 hPa where the
increase to 
50% is due to the increase of number of observations assimilated.
Figures 4.6 and 4.7 shows the AMSU-A OI and DFS, respectively, for all the
channels assimilated. A large part of the AMSU-A information is with respect
to stratospheric temperature and the largest OI at that atmospheric layer is from
channel 9 to 10 (
0:4) (Fig. 4.6). Channel 5 (
700 hPa) shows a very large 
0:8OI,
the largest influence among all the channels. The reason of this large OI is unclear,
and investigation is in due course to understand the cause. The channels observation
influence distribution is similar to the DFS distribution (Fig. 4.7): channel 9 and 10
count for 18 % of the AMSU-A DFS and channel 5 for 24 %.
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Fig. 4.6 Observation Influence (OI) for AMSU-A observations and for October 2011 grouped by
channels

0 3 6 9 12 15 18 21 24

5

6

7

8

9

10

11

12

13

14

AMSU-A DFS %

C
ha

nn
el

s

Fig. 4.7 Degree of Freedom for Signal in percentage (DFS) for AMSU-A observations and for
October 2011 grouped by channels. The percentage is relative to the total AMSU-A DFS

4.4.2 Geographical Map of OI

The geographical map of observation influence for SYNOP and DRIBU surface
pressure observations is shown in Fig. 4.8. Each box indicates the observation influ-
ence per observation location averaged among all the October 2011 measurements.
Data points with influence greater than one are due to the approximation of the
computed diagonal elements of influence matrix (see Cardinali et al. 2004). Low-
influence data points have large background influence (see 4.14 and 4.15), which is
the case in data-rich areas such as North America and Europe (observation influence

0:2) (see also Sect. 4.3.3). In data-sparse areas individual observations have larger
influence: in the Polar regions, where there are only few isolated observations, the
OI is very high (theoretically 
1) and the background has very small influence on
the analysis.

In dynamically active areas (Fig. 4.8: e.g. North Atlantic and North Pacific),
several fairly isolated observations have large influence on the analysis. This is
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Fig. 4.8 Observation Influence (OI) of SYNOP and DRIBU surface pressure observations for
October 2011. High influential points are close to 1 and low influential points are close to 0
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Fig. 4.9 Observation Influence (OI) of Aircraft zonal wind component above 400 hPa for October
2011. High influential points are close to 1 and low influential points are close to 0

also due to the evolution of the background-error covariance matrix as propagated
by the forecast model in 4D-Var (Thépaut et al. 1993, 1996). As a result, the data
assimilation scheme can fit these observations more closely.

Similar features can be seen in Fig. 4.9, which shows the influence of
u-component wind observations for Aircraft data above 400 hPa. Isolated flight
tracks over Atlantic and Pacific oceans show larger influences than measurements
over data-dense areas over America and Europe. The flight tracks over North
Atlantic and North Pacific are also in dynamically active areas where the
background error variances are implicitly inflated by the evolution of the
background-error covariance matrix in the 4D-Var window. Figure 4.10 shows
the geographical distribution of AMSU-A channel 8 observation influence. The
largest influence is noticed in the extra-tropics and polar areas (
0:4) whilst in the
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Fig. 4.10 Observation Influence (OI) of AMSU-A channel 8 for October 2011. High influential
points are close to 1 and low influential points are close to 0

tropics the maximum OI is 
0:12. Since channel 8 observation error variances are
geographically constant the main difference in the observed OI pattern is likely due
to the B covariance matrix. It looks that the background error correlation are higher
in the tropics than in the extra-tropics.

4.5 Conclusions

The influence matrix is a well-known concept in multi-variate linear regression,
where it is used to identify influential data and to predict the impact on the estimates
of removing individual data from the regression. In this paper the influence matrix
in the context of linear statistical analysis schemes has been derived, as used for
data assimilation of meteorological observations in numerical weather prediction
(Lorenc 1986). In particular an approximate method to compute the diagonal
elements of the influence matrix (the self-sensitivities or observation influence)
in ECMWF’s operational data assimilation system (4D-Var) has been derived and
implemented. The approach necessarily approximates the solution due to the large
dimension of the estimation problem at hand: the number of estimated parameters
is of the order 109, and the number of observational data is around 25�106.

The self-sensitivity provides a quantitative measure of the observation influence
in the analysis. In robust regression, it is expected that the data have similar self-
sensitivity (sometimes called leverage) – that is, they exert similar influence in
estimating the regression line. Disproportionate data influence on the regression
estimate can have different reasons: First, there is the inevitable occurrence of
incorrect data. Second, influential data points may be legitimately occurring extreme
observations. However, even if such data often contain valuable information, it
is constructive to determine to which extent the estimate depends on these data.



4 Observation Influence Diagnostic of a Data Assimilation System 107

Moreover, diagnostics may reveal other patterns e.g. that the estimates are based
primarily on a specific sub-set of the data rather than on the majority of the data.

In the context of 4D-Var there are many components that together determine
the influence given to any one particular observation. First there is the specified
observation error covariance R, which is usually well known and obtained simply
from tabulated values. Second, there is the background error covariance B, which
is specified in terms of transformed variables that are most suitable to describe a
large proportion of the actual background error covariance. The implied covariance
in terms of the observable quantities is not immediately available for inspection,
but it determines the analysis weight given to the data. Third, the dynamics and
the physics of the forecast model propagate the covariance in time, and modify it
according to local error growth in the prediction. The influence is further modulated
by data density. Examples for surface pressure and aircraft wind observations
have been shown indicating that low influence data points occur in data-rich areas
while high influence data points are in data-sparse regions or in dynamically active
areas. Background error correlations also play an important role. In fact, very high
correlations drastically lessen the observation influence (it is halved in the idealized
example presented in Sect. 4.3.3) in favour of background influence and amplify
the influence of the surrounding observations. The observation influence pattern of
AMSU-A channel 8 suggests some affectation of the correlation expresses by the B
covariance matrix.

The global observation influence per assimilation cycle has been found to be
18 %, and consequently the background influence is 82 %. Thus, on average the
observation influence is low compared to the influence of the background (the prior).
However, it must be taken into account that the background contains observation
information from the previous analysis cycles. The theoretical information content
(the degrees of freedom for signal) for each of the main observation types was also
calculated. It was found that AMSU-A radiance data provide the most information
to the analysis, followed by IASI, AIRS, Aircraft, GPS-RO and TEMP. In total,
about 20 % of the observational information is currently provided by surface-based
observing systems, and 80 % by satellite systems. It must be stressed that this
ranking is not an indication of relative importance of the observing systems for
forecast accuracy. Nevertheless, recent studies on the 24-h observation impact on the
forecast with the adjoint methodology have shown similar data ranking (Langland
and Baker 2004; Zhu and Gelaro 2008; Cardinali 2009; Cardinali and Prates 2011).

If the influence matrix were computed without approximation then all the
self-sensitivities would have been bounded in the interval zero to one. With the
approximate method used, out-of-bound self-sensitivities occur if the Hessian
representation based on an eigen-vector expansion is truncated, especially when few
eigen-vectors are used. However, it has been shown that this problem affects only a
small percentage of the self-sensitivities computed, and in particular those that are
closer to one.

Self-sensitivities provide an objective diagnostic on the performance of the
assimilation system. They could be used in observation quality control to pro-
tect against distortion by anomalous data; this aspect has been explored by
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Junjie et al. (2009) in the context of Ensemble Kamlan Filter where the B is well
known and the solution for the diagonal element of the Influence matrix is therefore
very accurate. Junjie et al. have shown that the leaving-out-one observation, not
practical for large system dimension, can be replaced by the Self-sensitivities
(4.9) that provide a similar diagnostic without performing separate least square
regressions. Self-sensitivities also provide indication on model and observation
error specification and tuning. Incorrect specifications can be identified, interpreted
and better understood through observation influence diagnostics, partitioned e.g. by
observation types, variable, levels, and regions.

In the near future more satellite data will be used and likely be thinned. Thinning
has to be performed either to reduce the observation error spatial correlation
(Bormann et al. 2003) or to reduce the computational cost of the assimilation. The
observation influence provides an objective way of selecting observations dependent
on their local influence on the analysis estimate to be used in conjunction with
forecast impact assessments. Recently, Bauer et al. (2011) have shown that satellite
measurements in sensitive areas as defined by singular vectors methodology have
larger impact in the forecast than measurements in different regions and also larger
or similar impact than the full amount of data. In this case, a dynamical thinning can
be thought that selects, at every assimilation cycle, the most influent measurements
partition of a particular remote sensing instrument, from information based on
the previous cycle (see also Rabier et al. 2002). Clearly, it can be assumed that
components of the observing network remain constant and the background error
variances remain almost unchanged for close assimilation cycles.
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Appendix

Influence Matrix Calculation in Weighted Regression Data Assimilation Scheme
Under the frequentist approach, the regression equations for observation

y D H™ C ©o

and for background
xb D ™ C ©b

are assumed to have uncorrelated error vectors ©o and ©b, zero vector means and
variance matrices R and B, respectively. The ™ parameter is the unknown system
state (x) of dimension n. These regression equations are summarized as a weighted
regression

z D X™ C ©
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where z D �
yT xTb

�T
is .mC n/� 1; X D �

HT In
�T

is .mC n/� n and © D Œ©o©b�
T

is .mC n/ � 1 with zero mean and variances matrix

� D
�

R 0

0 B

	

The generalized LS solution for ™ is BLUE and is given by

O™ D .XT��1X/�1XT��1z (4.34)

see Talagrand (1997). After some algebra this equation equals (4.11). Thus

z D X O™ D �
HT xTa xTa

�T D X.XT��1X/�1XT��1z

and by (4.5) the influence matrix becomes

Szz D @Oz
@z

D @ O™
@z

D
�

Syy Syb

Sby Sbb

	
D
�

R�1HAHT R�1HA
B�1AHT B�1A

	

where Syy D @Hxa
@y I Syb D @xa

@y I Sby D @Hxa
@xb

I Sbb D @xa
@xb

. Note that Syy D S as defined
in (4.4).

Generalized LS regression is different from ordinary LS because the influence
matrix is not symmetric anymore. For idempotence, using (4.33) it easy to show
that SzzSzz D Szz: Finally,

Sbb D B�1A D In � HTR�1HA

hence,
tr.Sbb/ D n � tr.HTR�1HA/ D n� tr.Syy/

it follows that
tr.Szz/ D tr.Syy/C tr.Sbb/ D n

The trace of the influence matrix is still equal to the parameter’s dimension.
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Chapter 5
A Question of Adequacy of Observations in
Variational Data Assimilation

John M. Lewis and S. Lakshmivarahan

Abstract The adequacy of observations to locate the minimum of the standard
cost function for variational data assimilation under strong constraint has been
investigated. A simplified yet meaningful Lagrangian air/sea interaction model
that captures key aspects of air mass modification over the Gulf of Mexico in
wintertime is the dynamical tool used to examine this question of adequacy. Two
mathematically different yet equivalent variational schemes are used in numerical
experiments with a fixed number of observations along a prior known trajectory over
the Gulf. Research clearly indicates that sensitivity of model output to elements of
control (initial condition, boundary condition, and physical parameter) is key to
placement of observations in order to minimize the cost function and determine
optimal corrections to control.

5.1 Introduction

From the early days of numerical weather map analysis as an aid to numerical
weather prediction (NWP) (Wiin-Nielsen 1991), the adequacy of observations to
produce an analysis faithful to the weather and consistent with the dynamical
model has been an ever-present concern. In the earliest numerical map analysis
by Bergthórsson and Döös (1955) that spanned the North Pacific Ocean and the
bounding continental areas (northern Europe and eastern Canada), a climatological
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background field for the 500 mb geopotential field was required to produce a mean-
ingful upper-air analysis over the ocean. The observations alone were insufficient to
yield a product useful for NWP.

The Bergthórsson-Döös analysis was non-optimal, yet it provided guidance for
one of the first optimal data assimilation methods in meteorology—the optimal
or statistical interpolation method [generally referred to as OI method (See Lewis
et al. 2006)]. The OI method optimally fit the analysis to both background (forecast
from an earlier time) and observations in accord with relative accuracy of these
inputs. It fundamentally depends on the statistical structure of errors associated
with the background forecast. Problems can develop with OI when the background
error covariance matrix is “almost singular” which occurs when the observations
are clustered together and lack any sense of distributional uniformity—related to
the inadequacy of observations. This situation is made all the worse when the
observational errors are small [See the carefully crafted quotation by J. Purser on
the subject in Lewis and Lakshmivarahan (2008)].

When the four-dimensional data assimilation method using adjoint equations
(4D-Var with Adjoint) arrived on the operational scene in the late 1980s [LeDimet
and Talagrand (1986), Lewis and Derber (1985), and Thacker and Long (1988)], the
minimization of the cost function through “steepest descent” was the philosophy
to find the optimal control vector of the model (initial conditions, boundary
conditions, and physical/empirical parameters)—the control that minimized the
squared departure between forecast and observations under the “strong” dynamical
constraint (exact satisfaction of the dynamical law). The method has esthetic appeal
with its foundation in calculus of variations and it also possesses a utilitarian
component through its efficiency in calculating the gradient of the cost function.
However, in the presence of the complex dynamics of atmospheric flow, it is not
unusual to encounter “flatness” in the geometric structure of the cost function in the
space of control and this poses problems for steepest descent-type algorithms. As
explored by Thacker (1989), the insufficiency issue benefits from an examination
of the Hessian matrix, the matrix of second derivatives of the cost function with
respect to control. The eigenvalues and associated eigenvectors of the Hessian
about the terminal iterated state reveal the structure of the cost function. The
eigenvectors point along the principal axes of the ellipse of constant cost and the
eigenvalues determine the lengths of the semiaxes. As the eigenvalue approaches
zero, the semiaxis approaches infinity and the Hessian approaches singularity. The
cost function surface should curve upward steeply in directions associated with well-
determined elements of control. When the surface is flat along some directions, this
is a sign of ill-conditioning of the optimization problem—another way of saying the
observations are inadequate for finding the optimal state. For the high-dimension
nonlinear dynamics of weather prediction, it is most challenging to determine the
characteristics of the Hessian in spite of efforts to simplify the problem and make it
tractable (Lewis et al. 2006).

In those cases of ill-conditioning, and where acquisition of more observations is
difficult or impossible, the use of prior knowledge such as climatology or a forecast
from an earlier time is the most reasonable avenue of pursuit to rid the problem of
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ill-conditioning—an augmentation to the cost function including terms that fit the
model to the prior in accord with the representativeness and accuracy of the prior.
But as will be explored in this paper, if the number of observations is fixed but free
to be moved (in space and/or time), there is a strategy that can generally remove the
ill-conditioned nature of the problem.

We numerically test this idea of moveable observations in the context of a sim-
plified Lagrangian air/sea interaction model with relevance to air mass modification
over the Gulf of Mexico in wintertime. The strategy revolves around knowledge of
the sensitivities of the model variables to elements of control—generally obtained
by integration of equations similar to the dynamical equations of the model.
The examination of sufficiency/insufficiency of observations in variational data
assimilation will be explored through use of two schemes: Forward Sensitivity
Method (FSM) and the variational method with �rJ (negative gradient of the
cost function) serving to determine the search direction. For simplicity, we refer
to this latter method as the rJ -method. In an earlier paper, Lakshmivarahan and
Lewis (2010) have proved the equivalence of these two schemes. Since little is
known about FSM, the mechanics of this scheme will be developed after rudiments
of the air/sea interaction model are presented. Numerical experiments follow and
the paper ends with conclusions and a discussion on applicability of these ideas to
the more challenging dynamics of NWP.

5.2 Model Dynamics: Air/Sea Interaction

5.2.1 Background Physical Processes

We consider a persistent operational weather prediction problem that has plagued
modelers and weather forecasters at the National Center for Environmental Pre-
diction (NCEP)/Environmental Modeling Center (EMC) for several decades [from
the late 1980s to the present day; reviewed in Lewis (2007)]. The problem occurs
in association with air mass modification over the Gulf of Mexico in the cool
season. These events occur 4–5 times per month from November to March.
The phenomenon is labeled “return flow” since air that enters the Gulf exhibits
anticyclonic turning and returns to the coast as the cold high pressure system moves
eastward. A schematic diagram of the process is depicted in Fig. 5.1. In the top
portion of this figure, the cold front is shown entering the Gulf with the attendant
low/high pressure couplet to the north. As the front moves through the Gulf along
with the eastward movement of the cyclone/anticyclone couplet, low-level southerly
winds at LCH (Lake Charles, LA) and BRO (Brownsville, TX) shift to northerly
and easterly, respectively. From this wind structure it is clear that the air entering
the Gulf near LCH will move southward and then westward along an over-water
trajectory. The persistent problem faced by forecasters is bias in the numerical
prediction of low-level temperature and water vapor as the air is modified over
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Fig. 5.1 Schematic diagram
indicating the sequence of
synoptic events associated
with a typical return flow
event over the Gulf of
Mexico. Wind speeds are in
knots (1ms�1 	 2 knots)

the ocean and returns to land (a bias that was cold/dry in the late-1980s through
the early-to-mid 1990s but warm/moist since that time). The consequence of a
poor forecast in these return-flow events is serious since slight changes in the
moisture and heat content of the returning air leads to significantly different weather
regimes—a range of weather that varies from mist and low stratus to shallow
convection (without precipitation) to deep convection with thunderstorms.

From experience with return flow events during project GUFMEX (Lewis
et al. 1989), we pattern our study after a typical return-flow event in the northwestern
Gulf. The typical trajectory associated with a shallow intrusion of cold air into the
Gulf is shown in Fig. 5.2. The bathymetry of the Gulf underpins this trajectory in
Fig. 5.2 and indicates that the low-level airflow takes place over shelf water. When
we assume surface winds of 15ms�1 along the over-water path of 
 1;000 km, the
time of transit over water is 18 h.
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Fig. 5.2 The trajectory of air over the northwestern Gulf of Mexico superimposed over bathymetry
of the Gulf. Ocean depths are recorded in meters

5.2.2 Governing Equation

Since candidates for the source of bias errors in return flow are uncertainties in
initial conditions, sea surface temperature (SST: boundary condition), and turbulent
transfer of heat and moisture from the sea to the air (turbulence parameterization),
we consider a simplified yet physically meaningful air/sea interaction model that
includes these three elements of control. We assume prior knowledge of the air
trajectory over water (as shown in Fig. 5.2).

Our governing equation represents the Lagrangian forecast of air temperature
along the known trajectory where elements of control are the initial temperature of
the surface air just east of New Orleans, a sea surface temperature (SST) that is
assumed constant along the trajectory (boundary condition), and a turbulent transfer
coefficient that controls the turbulent heat exchange at the air/sea boundary.

The continuous form of the constraint is

dx

dt
D CT .	 � x/ (5.1)

where x is air temperature, t is time, CT is the turbulent transfer coefficient, and 	 is
sea surface temperature (SST). In Euler’s form of finite differencing, the Lagrangian
forecast of temperature at time step k (1 h time steps) is a weighted average of
temperature at the previous time step and the SST that takes the form
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x.k/ D x.k � 1/.1 � CT�t/C CT�t	

D x.k � 1/ � .1 � c/C c	 (5.2)

where c D CT�t is a nondimensional exchange coefficient (D0.25) based on typ-
ical values of parameters involved in the air/sea interaction [See Liu et al. (1992)].
A closed form solution to (5.2) is:

x.k/ D .1 � c/k.x.0/� 	/C 	 (5.3)

5.2.3 Sensitivities

The solution (5.3) is nonlinear in the elements of control. The associated sensitivi-
ties, again nonlinear in control, are given by:

@x.k/

@x.0/
D .1 � c/k

@x.k/

@	
D Œ1 � .1 � c/k� (5.4)

@x.k/

@�
D � k

10
.1 � c/k�1Œx.0/ � 	�

where � D 10c. This change of control-element variable is a form of precondi-
tioning that leads to faster convergence of the optimization process described below
[See Gill et al. (1981) for a discussion of preconditioning]. The true control vector
is taken to be Y D Œx.0/; 	; �� D Œ1ıC; 11ıC; 2:5� while the incorrect control
is Y 0 D Œx0.0/; 	 0; �0� D Œ2ıC; 10ıC; 3:0�. Thus, the difference between true and
erroneous control is given by Y � Y 0 D Œ�1ıC;C1ıC;�0:5�. Entries in Table 5.1
exhibit the time evolution of the three sensitivities for correct and incorrect control
(to be used in the numerical experiments). Under the assumption that true elements
of control are unknown in practice, incorrect sensitivities are used to initiate the
variational data assimilation process.

5.2.4 Cost Function for Data Assimilation

We assume thatM observations of air temperature are made at a subset of the points
along the trajectory displayed in Fig. 5.1. Indices associated with these observation
points are represented by the sequence f�i W �1; �2; : : : ; �M g. With z.�i / representing
the observation at point �i , the cost function takes the form
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Table 5.1 Sensitivity functions for the correct control (left-hand columns) where correct control
is given by x.0/ D 1:0, 	 D 11:0, and � D 2:5, and for the incorrect control (right-hand columns)
where the incorrect control is given by x.0/ D 2:0, 	 D 10:0, and � D 3:0. The bold numbers
indicate errors greater than 40 %

Correct Sensitivity Incorrect Sensitivity

k
@x.k/

@x0

@x.k/

@	

@x.k/

@�

@x.k/

@x0

@x.k/

@	

@x.k/

@�

0 1.000 0.000 0.000 1.000 0.000 0.000
1 0.750 0.250 1.000 0.700 0.300 0.800
2 0.562 0.438 1.500 0.490 0.510 1.120
3 0.422 0.578 1.688 0.343 0.657 1.176
4 0.316 0.684 1.688 0.240 0.760 1.098
5 0.237 0.763 1.582 0.168 0.832 0.960
6 0.178 0.822 1.424 0.118 0.882 0.807
7 0.134 0.866 1.246 0.082 0.918 0.659
8 0.100 0.900 1.068 0.058 0.942 0.527
9 0.075 0.925 0.901 0.040 0.960 0.415
10 0.056 0.944 0.751 0.028 0.972 0.323
11 0.042 0.958 0.619 0.020 0.980 0.249
12 0.032 0.968 0.507 0.014 0.986 0.190
13 0.024 0.976 0.412 0.010 0.990 0.144
14 0.018 0.982 0.333 0.007 0.993 0.109
15 0.013 0.987 0.267 0.005 0.995 0.081
16 0.010 0.990 0.214 0.003 0.997 0.061
17 0.008 0.992 0.170 0.002 0.998 0.045
18 0.006 0.994 0.135 0.001 0.998 0.033

J.x.0/; 	; �/ D 1

2

MX
iD1

Œz.�i /� x.�i /�
2 (5.5)

5.3 Forward Sensitivity Method (FSM) Applied to Air/Sea
Interaction Model

The strong-constraint forecast of air temperature at observation point �i is given
by xf .�i /. It is generally different than the observation due to incorrect control
and error in the observation. The basic idea behind FSM is that corrections to
control can annihilate the difference between forecast and observation. To first order
in the Taylor series expansion about the forecasted state, the new estimate of air
temperature at �i is given by

x.�i / D fxf .�i /
CŒ @x.k/

@x.0/
�kD�i ��x.0/C Œ

@x.k/

@	
�kD�i ��	 C Œ

@x.k/

@�
�kD�i ���g (5.6)
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where the sensitivities and forecast are assumed known and incremental changes to
control are the unknowns. Optimal changes to control are those that minimize the
cost function. In terms of (5.6), the cost function (5.5) is rewritten as

J.x.0/; 	; �/ D
MX
iD1

fe.�i / (5.7)

�Œ@x.k/
@x.0/

�kD�i ��x.0/� Œ
@x.k/

@	
�kD�i ��	 � Œ

@x.k/

@�
�kD�i ���g

where e.�i / D z.�i / � xf .�i /.
Let us define a sensitivity matrix S 2 RM�3:

S D

666666666664

Œ
@x.k/

@x.0/
�kD�1 Œ

@x.k/

@	
�kD�1 Œ

@x.k/

@�
�kD�1

Œ
@x.k/

@x.0/
�kD�2 Œ

@x.k/

@	
�kD�2 Œ

@x.k/

@�
�kD�2

� � � � � � � � �
Œ
@x.k/

@x.0/
�kD�M Œ

@x.k/

@	
�kD�M Œ

@x.k/

@�
�kD�M

777777777775
(5.8)

and an error vector E 2 RM�1:

E D

666664

z.�1/� xf .�1/

z.�2/� xf .�2/

� � �
z.�M /� xf .�M /

777775 (5.9)

and an incremental control vector�" 2 R3�1:

�" D
6664
�x.0/

�	

��

7775 (5.10)

Then

J D 1

2
.S�"�E/T .S�"�E/ (5.11)

where superscript T indicates transpose. The necessary condition for minimization
of J is vanishing of the derivative of J with respect to the increment of control�".
Satisfaction of this condition gives

�" D .ST S/�1ST E (5.12)

[See Lewis et al. (2006) for details].
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Following correction to control based on this first-order Taylor expansion, a
revised forecast is made and associated errors calculated. Iteratively the corrections
to control are made until satisfaction of some empirical criteria — a criteria such as
the norm of the incremental correction vector is smaller than a value commensurate
with the expected error norm of control. However, in the numerical experiments to
follow, corrections to control are found in a single step.

5.4 Numerical Experiments

5.4.1 Prelude

The problem we investigate assumes availability of surface air temperature observa-
tions along the known trajectory and an estimate of average SST along the trajectory.
Observations from the moored buoys operated by the National Data Buoy Center
(NDBC) and the U. S. Coast Guard serve as our guide in establishing a realistic
distribution of surface observations over the Gulf of Mexico for the numerical
experiments. For reasons related to economy of operation and maintenance of
instruments, most buoys over the Gulf of Mexico are located in the shelf waters—
roughly 50–100 km of the shoreline (Hamilton 1986). Given the position of NDBC
buoys in the vicinity of the trajectory shown in Fig. 5.1, it is reasonable to assume
that there are four instrumented buoys neighboring the trajectory (M D 4).

Our premise is that differential placement of observations along the trajectory is
key to understanding the condition for sufficiency/insufficiency of observations—
the condition that makes it possible/impossible to minimize the cost function.

The mechanics for correction to control by FSM have been discussed in Sect. 5.3.
The standard procedure for finding rJ in 4D-Var is backward integration of the
model’s adjoint. Under the simplified constraint of air/sea interaction, however, rJ
is found by straightforward differentiation of the cost function using knowledge of
the sensitivities found in Table 5.1. Further, the conjugate gradient algorithm is used
to determine search direction and step size (Lewis et al. 2006).

5.4.2 Forecast Errors

In our experiments, we assume observations are true—derived from the strong
constraint (5.2) with true control (Y ). The forecast error stems from incorrect control
(Y 0). The error vector E is displayed in Table 5.2 and the systematic nature of the
error is obvious—an under-forecast the order of �.0:01�1ıC/ up to t D 5 h and an
over-forecast the order of C.0:1 � 1ıC/ from t D 6 h until the end of the forecast
at t D 18 h.
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Table 5.2 Forecast error E.k/, z.k/ W observation, and xf .k/ W forecast
k z.k/ xf .k/ E.k/ W z.k/� xf .k/

0 1.000 2.000 �1:000
1 3.500 4.400 �0:900
2 5.375 6.080 �0:705
3 6.781 7.256 �0:475
4 7.836 8.079 �0:243
5 8.627 8.655 �0:028
6 9.220 9.059 C0:161
7 9.665 9.341 C0:324
8 9.999 9.539 C0:460
9 10.249 9.677 C0:572
10 10.437 9.774 C0:663
11 10.587 9.842 C0:736
12 10.683 9.889 C0:794
13 10.762 9.922 C0:840
14 10.822 9.946 C0:876
15 10.866 9.962 C0:904
16 10.900 9.973 C0:927
17 10.925 9.981 C0:944
18 10.944 9.987 C0:957

5.4.3 Experiment 1: Insufficiency of Observations

From the sensitivities displayed in Table 5.1, air temperature at the last few hours of
forecast is insensitive to the initial air temperature. This insensitivity is even made
apparent when the forecast error is due only to incorrect initial air temperature, i.e.,
2ıC instead of 1ıC . In this case, the error at t D 18 is �0:005ıC which is a very
small fraction of the forecast error when all three elements are incorrect (DC0:957).
The sensitivity of air temperature to turbulent transfer coefficient at the last few
times is also relatively small compared to sensitivity with respect to SST. From the
FSM, it is clear that correction to a given element of control is tied to the fraction
of forecast error due to incorrectness of the given element, i.e., the error relative
to errors in the other elements. In view of this fact, when the four observations are
located at the last four times (t D 15, 16, 17, and 18 h), it is unlikely that meaningful
corrections to x.0/ and � can be found. Accordingly, we assume observations at
these last four time steps as the input to Experiment 1.

The components of the gradient of the cost function at the end of the first iteration
are:

@J

@x.0/
D �0:011; @J

@	
D �3:721; and

@J

@�
D �0:203 (5.13)

where the philosophy of steepest descent obviously indicates that the control state is
being moved toward a higher SST as expected. But most apparent is the extreme
flatness of the surface along the direction of the initial condition element. The
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Table 5.3 Numerical experiment results

Erroneous control Correct control

x0.0/; 	 0; �0 x.0/; 	; �

2.0, 10.0, 3.0 1.0, 11.0, 2.5

Experiment 1: Observations at k D 15, 16, 17, and 18

rJ -method FSM

Adjusted Control
(x.0/, 	 , �/ (2.00, 10.93, 3.1) (1.23, 10.99, 2.0)

J (initial): J (final) 1:74 W 8:3 � 10�4 1:74 W 6:1 � 10�2

Eigenvalues of H �0:010; 0:42; 3:99 �0:002; 0:56; 4:99

Experiment 2: Observations at k D 1, 2, 17, 18

rJ -method FSM

Adjusted control
(x.0/, 	 , �/ (1.39, 11.13, 2.2) (1.05, 10.98, 2.3)

J (initial): J (final) 1:56 W 2:0 � 10�2 1:56 W 6:0 � 10�2

Eigenvalues of H 0.06, 1.82, 5.06 0.06, 1.94, 5.12

J (initial): Initial value of the cost function
J (final): Final value of the cost function
H: Hessian matrix at the point of adjusted control

surface is also relatively flat along the direction of the turbulent transfer coefficient.
Not only is the surface flat in these directions, the negative gradient with respect to
the initial condition and turbulent transfer coefficient will push the correction toward
higher values of these elements whereas ideal corrections are toward lower values.
Nevertheless, it is the end result of the search for the minimum that is critical to
examine. Four iterations of the conjugate gradient method are executed before the
empirical criterion for termination is satisfied (a change in the cost function less
than 10�4 from one iteration to the next).

A summary of results for both rJ -method and FSM are shown in the top portion
of Table 5.3. Although the value of the cost function has significantly decreased
via the rJ -method, the corrections to initial condition and turbulent transfer are
minimal. The reduction is obviously due to the SST correction alone. The search
moves steadily toward the correct value of SST because of a significant negative
gradient in that direction, but moves nary a bit in the other directions because of
flatness of the surface in those directions. In short, the value of the cost function can
be reduced significantly due to correction of SST alone—poor estimates of initial
condition and turbulent exchange coefficient have little influence on the fit. What
is the consequence of the poor fit to these elements? The consequence that can be
determined in this idealized experiment is a poor forecast of temperature at the early
times—based on observations that are known although unused in the functional.

Eigenvalues of the Hessian fundamentally determine the adequacy or inadequacy
of observations in this case. The eigenvalue set for the rJ -method is of mixed sign
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indicating a saddle point at the location of the final iteration. Positive eigenvalues
are indicative of upward turning of the cost function whereas a negative eigenvalue
is indicative of downward turning of the surface. In this circumstance of mixed signs
in the Hessian’s eigenvalue set, we conclude that the observations are insufficient to
locate the minimum of J.

One iteration of the FSM for this case yields an adjusted control shown beside the
results for the rJ -method (again in the top portion of Table 5.3). The cost function
is reduced but not as much as in the case of the rJ -method. Further iterations with
FSM would improve the fit. Whereas flatness in the cost function surface is the
problematical aspect encountered by the rJ -method, the corresponding problem
for FSM is displayed as an absence of differences in the sets of sensitivities at the
last four times (evident through examination of the last four rows of the sensitivity
functions in Table 5.1). This lack of difference in the corresponding elements in
these rows indicates near singularity of the ST S matrix. The near singularity is
measured by the largeness of the condition number of the ST S matrix (D109)—the
ratio of the largest to the smallest eigenvector. Inversion of ST S matrix is essential
to finding corrections to control [See (5.12)]. As was the case for the rJ -method,
the FSM exhibits an eigenvalue set of mixed sign indicating insufficiency of the
observations to locate the minimum of the cost function.

5.4.4 Experiment 2: Sufficiency of Observations

In this experiment, we replace the observations at t D 15 and 16 with observations
at t D 1 and 2. We now have observations where the forecast is sensitive to initial
conditions and turbulent exchange coefficient (times 1 and 2) as well as sensitive to
SST (at all four times). As opposed to results from Experiment 1, the structure of the
cost function in the vicinity of Y 0 is not flat in any direction. Further, the magnitudes
of the various elements of �rJ are comparable and they have signs consistent with
ideal corrections to control (positive for SST and negative for initial condition and
turbulent transfer coefficient). The first-iteration components of rJ are

@J

@x.0/
D C0:971; @J

@	
D �1:267; and

@J

@�
D C1:436 (5.14)

Results from the optimization processes are found in the lower portion of Table 5.3.
Adjusted controls for both FSM and rJ -method are reasonably good and the
eigenvalue set consists of positive eigenvalues for both forms of assimilation. Thus,
the terminal points of the optimization process for both schemes are extremely close
to the minimum of the cost function and the observation set is sufficient to find the
minimum of J . Another indication of sufficiency is the small value of the condition
number for the ST S matrix. In this case the condition number is 60.
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5.5 Discussion and Conclusions

With the natural appeal that comes from application of variational data assimilation
to weather analysis and prediction problems, the experiments conducted warn that
an iterative process leading to a reduction in the cost functional is not necessarily
heading for a minimum of the functional. In the low-order systems similar to the
one we have investigated, where calculation of the eigenvalues of the Hessian about
the terminal point of iteration is not overly challenging, the presence or absence of
a minimum at the terminal point can be definitively determined.

In the more realistic systems associated with NWP, a meaningful structure of the
true Hessian is difficult to determine despite a variety of innovative methods that
have been developed to capture this structure.

In the absence of knowing the Hessian, this research has presented another view
of the problem that holds promise for improving the chances of finding optimal
correction to control through reliance on the forward sensitivity method (FSM)—
knowledge of forward evolving sensitivity of model variable to elements of control
in the context of a variational data assimilation scheme. Generally, this requires
straightforward yet computationally demanding integration of the equations of
sensitivity [described in detail in Lakshmivarahan and Lewis (2010)]. The FSM
identifies those locations in space and time where observations are most likely to
have little impact on the assimilation process—observations that generally lead to
an ill-posed variational adjustment problem. Although the methodology does not
give a recipe for an ideal or optimal placement of observations, valued locations are
identified through their sensitivity to the various elements of control.

The methodology developed in this paper has application to the more-realistic
NWP models used in operations. For example, in a post-mortem examination of
the biased forecasts associated with return flow over the Gulf of Mexico, the FSM
can identify those observational locations in space and time where the model
variables exhibit sensitivity to elements of control. Calculation of error at these
points, assuming availability of instrumented buoys near these locations, along with
knowledge of sensitivity, provide the means to make corrections to control. Under
the assumption that the model is faithful to the event (i.e., inclusion of reasonable
representations of major physical processes), those elements that require the largest
relative corrections are candidates for producing the bias.
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Chapter 6
Quantifying Observation Impact for a Limited
Area Atmospheric Forecast Model

Clark Amerault, Keith Sashegyi, Patricia Pauley, and James Doyle

Abstract Adjoint models calculate the first order sensitivity of a scalar output
parameter to an input vector. Adjoint numerical weather prediction models have
been used for a variety of sensitivity and data assimilation studies to provide a
gradient for a measure of error with respect to the model’s analysis variables.
Recent work has shown that the adjoint of the data assimilation system can map
the gradient information in analysis space onto individual observations to provide
a quantitative estimate of an observation’s influence on short-term forecast error.
This chapter will review the framework of an adjoint observation impact system
and some reported applications. Aspects of the framework particular to limited
area atmospheric models will be the main focus of this chapter and results from a
specific system will be presented. Issues discussed include: the effect of horizontal
grid spacing on observation impact, the influence of lateral boundaries on forecast
error, the relative importance of observations for different physical locations, and
appropriate error metrics for limited area forecast models.

6.1 Adjoint Sensitivities

This chapter investigates the application of a limited area adjoint observation impact
system. The adjoint operators of a numerical weather prediction (NWP) model and
data assimilation (DA) system are combined to quantify the influence an observation
has on short-term forecast error. This section reviews the previously developed
framework of the system and its components, beginning with the adjoint NWP
model. A description of the components of the limited area modeling system utilized
for this work is given in Sect. 6.2, and observation impacts for the system are
presented in Sect. 6.3. Future considerations are discussed in Sect. 6.4.
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6.1.1 Tangent Linear and Adjoint of the Forecast Model

The tangent linear and adjoint of an NWP model were introduced by Dimet and
Talagrand (1986) for data assimilation experiments. An overview of tangent linear
and adjoint models in meteorology and references for seminal works can be found
in paper by Errico (1997). A tangent linear model M calculates the first order
response of the output to a perturbation of the input of a nonlinear model M . If M
is quasi-linear, the perturbation forecast by M will be similar to the difference in
output between perturbed and non-perturbed runs of M . The tangent linear model
is constructed by differentiating the nonlinear model with respect to the model’s
forecast state vector x.

M D @M.x/
@x

: (6.1)

Adjoint models provide the gradient of some scalar function J of the forecast state
vector within a numerical weather prediction NWP model with respect to the initial
state vector (analysis). The forecast state vector depends on the initial conditions in
the following way,

J.x/ D J.M.xa//; (6.2)

where xa is initial state. The gradient of J with respect to the initial model state is

@J

@xa
D MT @J

@x
; (6.3)

where MT is the adjoint model. The adjoint model maps the gradient of J with
respect to the forecast state to the initial time, resulting in the sensitivity of J
with respect to the analysis. The input to the adjoint model, @J

@x is calculated by
differentiating J with respect to the forecast state. Since the adjoint model is
derived from the tangent linear model, it’s ability to calculate meaningful gradients
is dependent on the quasi-linearity of the forecast model. Therefore, adjoint model
fields in the atmosphere are most accurate over short time scales and for dry
processes.

6.1.2 Observation Sensitivity

More recently, the adjoint of a DA system was formulated to compute gradients with
respect to observations (Baker and Daley 2000). In DA, to obtain the analysis xa,
the linear three dimensional analysis equations is written as

xa D xb C K.y � Hxb/: (6.4)

The vector of observations y is length N , while the model space analysis xa

and background vectors xb are both length L. The linear forward operator H
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transfers model space values to observation locations and is the Jacobian matrix
corresponding to the nonlinear forward operator H.xb/ linearized around xb. The
Kalman gain K can be thought of as a weighting matrix and when expanded is
written as,

K D PbHT .HPbHT C R/�1; (6.5)

where Pb is the background error covariance matrix and R is the covariance
matrix of the observations. A more detailed derivation of these equations and the
assumptions utilized in the formulation is given in Daley (1991).

The analysis equation (6.4) can be rewritten as

xa D xb � KHxb C Ky D .I � KH/xb C Ky; (6.6)

with the N � N identity matrix I. Differentiating Eq. 6.6 with respect to y gives an
expression for the sensitivity of the analysis field with respect to the observations,

@xa

@y
D KT: (6.7)

Likewise, the sensitivity with respect to the background field is obtained by
differentiating Eq. 6.6 with respect to xb,

@xa

@xb
D .I � KH/T D I � HTKT: (6.8)

The focus of this chapter is gradients with respect to observations, so @xa
@xb

will not
be mentioned further.

An expression for the sensitivity of the scalar function in Eq. 6.2 with respect to
the observations is obtained by applying the chain rule for derivatives to Eqs. 6.3
and 6.7 to obtain,

@J

@y
D @J

@xa

@xa

@y
D KT @J

@xa
: (6.9)

Therefore, the sensitivity of a scalar function of a model’s output with respect to
the observations that were used to create the model’s analysis field is obtained by
applying the transpose of the Kalman gain to the result of the backward in time
adjoint NWP integration.

Since Pb and R are symmetric matrices, .HPbHT C R/ is also symmetric and
Eq. 6.9 can be expanded to give,

@J

@y
D .HPbHT C R/�1HPb

@J

@xa
: (6.10)

An examination of Eq. 6.10 reveals that most of the matrix operations performed
in the original analysis procedure (Eq. 6.4) also appear in the gradient calculation,
only in a different order. Therefore, the adjoint of the DA system is obtained by
reordering the routines of the analysis scheme and is much easier to formulate than
the adjoint of the NWP model.
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6.1.3 Adjoint Observation Impact

A robust procedure for quantitatively evaluating the impact of an observation’s
assimilation on short-range forecast error utilizing the adjoint observation sensitivity
framework was developed by Langland and Baker (2004). This procedure is
responsible for most of the results presented in this chapter so the details found
in Langland and Baker (2004) are summarized here for clarity.

The error of two forecasts of lengths f and g can be measured against an analysis
xt available at verification time t in an inner product h; i using the following two
equations,

ef D ˝
.xf � xt /;C.xf � xt /

˛
; (6.11)

and,
eg D ˝

.xg � xt /;C.xg � xt /
˛
: (6.12)

The coefficients in C weight the model fields so that the error is measured in an
energy norm. The forecast for g begins at an earlier time than f , and a short-term
field (usually 6 or 12 h) from the g forecast serves as the background field xb in
the analysis procedure to produce xa for the f forecast. For global atmospheric
NWP models, the value of ef is generally less than eg due to the assimilation of
observations y to update xb. If no observations are assimilated to produce xa for the
f forecast, then xa will be the same field as xb and ef will equal eg . For limited area
models, the lateral boundaries are also updated during the analysis procedure, which
can lead to a change in ef even if no observations are assimilated (Sect. 6.3.1).

To quantify the value of observations in reducing forecast error, an equation for
the difference in ef and eg is defined,

�e
g

f D ef � eg: (6.13)

Using the adjoint NWP model, �egf can be mapped backward in time to analysis
space. To do this, two cost functions are defined along with their corresponding first
derivatives, which will serve as input for two adjoint model integrations along the
f and g forecast trajectories,

Jf D 1

2
ef ; (6.14)

Jg D 1

2
eg; (6.15)

@Jf

@xf
D C.xf � xt /; (6.16)

@Jg

@xg
D C.xg � xt /: (6.17)

Eqs. 6.11–6.12 and 6.16–6.17 can be used to rewrite Eq. 6.13 as,
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�e
g

f D


.xf � xg/;

@Jf

@xf
C @Jg

@xg

�
: (6.18)

The difference between forecast trajectories f and g at the analysis time is the
increment .xa � xb/. The adjoint model maps @Jf

@xf
to @Jf

@xa
and @Jf

@xg
to @Jf

@xb
. Assuming

that the analysis increment evolves approximately tangent linearly, then an estimate
of �egf in analysis space can be written as,

ıe
g

f D


.xa � xb/;

@Jf

@xa
C @Jg

@xb

�
: (6.19)

Equation 6.19 is not an exact match to �egf because the adjoint model does not
capture all of the processes of the nonlinear model used to calculate the error. To
determine the impacts in observation space, the analysis increment is replaced in
Eq. 6.19 in the following manner,

ıe
g

f D


K.y � Hxb/;

@Jf

@xa
C @Jg

@xb

�
: (6.20)

Using the properties of an adjoint operator in an inner product, the following
expression in observation space,

ıe
g

f D


.y � Hxb/;KT

�
@Jf

@xa
C @Jg

@xb

	�
; (6.21)

is obtained. The observation impacts are a product of the innovation vector
components and the vector obtained from the adjoint DA process. The inner product
in Eq. 6.21 gives a total estimate for all observations, but the inner product can
be partitioned into any particular subset of interest. For example, the impact of a
particular instrument, observation type (temperature, winds, etc.), or even a single
measurement at a specific location can be determined using the method outlined
above.

In practice, to calculate the observation impacts for a cycling NWP system the
following steps are involved:

• Save appropriate forecast trajectories during the nonlinear NWP model run.
• When a verifying analysis xt becomes available, calculate cost functions

(Eqs. 6.14 and 6.15) and forcings for the adjoint NWP runs (Eqs. 6.16 and
6.17).

• Perform two adjoint NWP integrations along trajectories f and g back to the
analysis time of f .

• Add the two resulting model space vectors together to create the input vector for
the adjoint DA operator.

• Run the adjoint DA scheme to obtain the gradient in observation space, the inner
product of this vector with the innovation will provide observation impacts.
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The adjoint observation impact framework has also been derived in terms of a
Taylor series expansion and shown to be a third-order metric by Errico (2007). The
nonlinear nature of the metric means that cross terms with other observations may
exist, which may make subsets of impacts difficult to interpret. However, the cross
term effect was found to be small in a global system for the major observation
networks (Gelaro et al. 2007). Although the cross terms will not be considered in
this chapter, they may be important for smaller subsets of observations in a limited
area model.

Another consideration not considered in this chapter is redundancy of infor-
mation. Removing an observation from the DA process may result in a pre-
viously unimportant observation becoming important. Finally, the observation
impact framework in this chapter applies to sequential DA, like three-dimensional
variational systems. Approximations are needed to apply the framework to four-
dimensional variational systems (Tremolet 2008).

The adjoint observation impact framework (Langland and Baker 2004) is a
powerful tool for monitoring data assimilation performance and observation quality.
Some of the subsequent applications (mainly to global NWP systems) of this
framework will be discussed below (Sect. 6.1.4) and its application to a limited area
model will be presented in Sect. 6.3.

6.1.4 Applications

In the seminal work by Langland and Baker (2004), the framework was applied
to the Naval Research Laboratory’s (NRL) global atmospheric modeling system.
The NWP model was the Navy’s Operational Global Atmospheric Predicition
System (NOGAPS) and the accompanying DA component was the NRL Variational
Data Assimilation System (NAVDAS). In the Northern Hemisphere, the largest
error reductions were due to the assimilation of rawindsondes, satellite wind data,
and aircraft observations, while in the Southern Hemisphere, satellite retrieved
temperature profiles were important along with rawindsondes and satellite wind
data. The framework has been implemented at a number of operational NWP center
as a diagnostic monitoring system for the DA process (Langland 2005; Gelaro and
Zhu 2009; Cardinali 2009). The system will indicate if a particular observation type
or physical area is repeatedly increasing forecast error. These problem observations
or areas can then be further investigated to find the cause of forecast degradation.

A comparison of observation impact systems for three distinct global modeling
systems showed that observations have similar impact no matter the system on
a global scale (Gelaro et al. 2010). Satellite sounding radiances provided the
largest total impact in each of the forecast systems. Satellite winds, radiosondes,
aircraft observations were also important contributors and are important components
of the global atmospheric observing network. Slightly more than half of all the
measurements (between 50 and 55 %) for each observation type are actually
beneficial to forecast error reduction, meaning that a large number (between 45 and
50 %) are degrading the forecast.
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The framework has also been accepted in the oceanographic community (Moore
et al. 2011). More recent studies (Liu and Kalnay 2008) have investigated obtaining
impact values with an ensemble of models (to replace the need for the adjoint
operators) and obtaining sensitivity to other parameters of the DA system for
performance tuning purposes (Daescu and Todling 2010).

6.2 COAMPS and NAVDAS

Results presented in this chapter were obtained from an adjoint observation impact
system developed for NRL’s limited area model. The system includes the Coupled
Ocean Atmosphere Mesoscale Prediction System (COAMPS R�)1 atmospheric
model and its accompanying DA component, NAVDAS. Brief descriptions of these
components as well as their accompanying adjoint operators are provided below.

6.2.1 COAMPS

The COAMPS atmospheric model is a limited area, relocatable, grid point model.
The model is non-hyrdostatic and contains predictive equations for zonal wind u,
meridional wind v, vertical velocity w, the dimensionless Exner pressure function ,
the potential temperature 	 , water vapor qv, and turbulent kinetic energy e. The bulk
cloud microphysics scheme calculates the source and sink terms in the prognostic
equations for cloud droplets qc , cloud ice qi , rain water qr , snow qs , and graupel qg .
The other parameterizations in the model for subgrid-scale processes are turbulent
mixing, surface fluxes, cumulus convection, and radiation. The vertical coordinate
of the model is a terrain following 
z defined as


z D zt.z � zs/

zt � zs
; (6.22)

where the constant zt is the depth of the model domain and zs is the terrain height.
Lateral boundary conditions are provided from NOGAPS. A detailed description of
COAMPS is given in Hodur (1997).

6.2.2 NAVDAS

NAVDAS is currently used by the U.S. Navy for its operational regional DA
system at the Fleet Numerical Meteorology and Oceanography Center (FNMOC).

1COAMPS R� is a registered trademark of NRL.
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It had also been used for the global DA system from October 2003 until October
2009, when it was extended to a four-dimensional variational system. NAVDAS
uses an incremental update cycle to create the initial conditions for generating
new model forecasts every 6 or 12 h. In the regional application, NAVDAS
uses conventional and aircraft observations, geostationary satellite winds, Special
Senor Microwave/Imager (SSM/I) winds speeds, satellite total precipitable water
retrievals, scatterometer and passive microwave derived surface marine winds and
satellite temperature retrievals. In addition, synthetic observations are used to define
the wind and thermal structure of tropical cyclones. Satellite sounding radiances
are currently under testing to replace the satellite temperature retrievals in near
future. NAVDAS includes a geostrophic balance constraint and uniform analysis
length scale.

The preprocessing and quality control software for the different observation types
is built into NAVDAS. Innovations are first computed by interpolating the 6 or 12 h
background forecast to the observation locations and then subtracting the result
from the observations. A complex quality control (Collins and Gandin 1990; Gandin
et al. 1993) is used for checking the rawinsonde observations. For aircraft data, the
quality control includes sophisticated flight track checking and characteristic error
detection. Vertical profiles of temperature and wind from the surface to 400 mb
are created from the aircraft accents during takeoff for more efficient handling
by the analysis algorithm. Satellite feature tracked winds from the geostationary
satellites and polar-orbiting satellites, surface marine winds from scatterometer and
WindSat instruments, and wind speed from SSM/I are all checked and averaged
to create lower density “superobs” for each instrument type (Pauley 2003). The
feature track satellite winds, scatterometer and WindSat winds are averaged in 1ı
by 1ı boxes, while wind speed from SSM/I, total-precipitable water estimates from
several instruments, and temperature retrievals are averaged in 2ı by 2ı boxes. The
total-precipitable water superobs are used to generate vertical retrievals of pseudo
relative humidity (ratio of observed mixing ratio to the saturation mixing ratio of
the background).

NAVDAS uses Eq. 6.4 to update the background field (although the observation
operator is not always linear as in Eq. 6.4). A preconditioned conjugate gradient
algorithm is used to invert .HPbHT C R/ followed by a post-multiplication
step to obtain the analysis corrections .xa � xb/ at COAMPS grid points. For
increased efficiency, vertical profiles of observations from any single instrument are
transformed into coefficients of the eigenvectors of the background error correlation.
The number of vertical modes used in the analysis can depend on the type of
instrument used for the observation; ten modes are used for the low vertical
resolution of satellite temperature retrievals and a reduced set of modes can be
used for satellite humidity retrievals. Predefined functions are used to define the
horizontal and vertical variation of the background error covariance (Daley and
Barker 2001). The horizontal and vertical length scales of the background error
correlations may also vary with any combination of height, horizontal location
and grid resolution. The covariances for the wind are based on those for the
streamfunction and velocity potential (Daley 1991). For mesoscale analysis, a
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horizontal length scale of 385 km is currently used for the autocovariance of
the streamfunction. The geopotential/wind background error covariances are then
related by the geostrophic assumption. A latitude dependent coupling parameter
(smaller in tropics compared to poles) is used to control the degree of geostrophic
coupling between the streamfunction of the wind and the geopotential.

6.2.3 COAMPS Adjoint

In addition to the dynamical core, the COAMPS tangent linear and adjoint
models include all of the respective components of the nonlinear model’s physical
parameterizations, with the exception of the radiation parameterization and the
cumulus scheme (a less complex option is available in the tangent linear and adjoint
models). More information on the adjoint COAMPS atmospheric model can be
found in Amerault et al. (2008). The convective and moist parameterization adjoint
operators are not robust for the length of the adjoint integrations (12 h) due to
discontinuities and nonlinearities inherent in the corresponding nonlinear schemes.
Therefore, current results are obtained with a “dry” adjoint model (although the
nonlinear forecasts are run with all available physics options). The observation
impacts calculated with a dry adjoint model will not capture all of the information
in the nonlinear model’s error. In practice, the estimate of �egf in analysis or
observation space is roughly 80–90 % of the actual value (similar to global systems).
Furthermore, COAMPS can be configured with multiple nests where the horizontal
grid spacing is less than 10 km. The adjoint model can also be run with nests, but this
option is computationally expensive due to the extra trajectories and not currently
configured for the observation impact system. Therefore, all nonlinear forecasts and
adjoint integrations are performed on a single domain for this work.

6.2.4 NAVDAS Adjoint

The adjoint NAVDAS adjoint operator is performed by reordering the operations
of NAVDAS (Sect. 6.1.2). The adjoint operator does not involve any of the code
responsible for quality control of the observations or creating the innovation vector.
Therefore, the adjoint of NAVDAS for COAMPS was able to incorporate many
of the components of the global system (Langland and Baker 2004). However,
NAVDAS and COAMPS differ in their state variables and vertical coordinate.
Additional code was needed to transfer the gradient field produced by the COAMPS
adjoint model into NAVDAS analysis space.

For example, NAVDAS creates analyses of pseudo relative humidity which are
converted and output as fields of dewpoint depression to be read by COAMPS. One
more conversion to mixing ratio takes place before the COAMPS integration begins.
In the adjoint observation impact system there is corresponding code to transfer the
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gradients through the mixing ratio – dewpoint depression – pseudo relative humidity
sequence. The NAVDAS adjoint code is checked by comparing calculations of ıegf
in observation and model space and with values of �egf .

6.3 Observation Impacts for COAMPS/NAVDAS

As discussed in Sect. 6.1.4, the adjoint observation impact framework has been
primarily implemented for global modeling systems. This section will highlight
some of the unique aspects of the framework for a limited area model such as
COAMPS.

The flow of error information is shown in Fig. 6.1 for a 12 h COAMPS forecast
with 60 km grid spacing valid at 1200 UTC 05 May 2010. The forecast error was
computed on the lowest 20 model levels (out of 30) from the surface to the upper
troposphere in a dry energy norm. All of the experiments in this chapter (except in
Sect. 6.3.4) will use a dry energy norm in the lowest 20 model levels. The sum of
the components of �egf in the vertical at each model grid point in the horizontal is
presented in Fig. 6.1a. The blue shaded areas indicate where the error in the forecast
from the analysis field is less than the background forecast valid at the same time.
The COAMPS adjoint model integrates this information backward in time so that
the components of ıegf in analysis space can be shown (Fig. 6.1b). Similar plots in
observation space are shown for radiosondes and aircraft data (Fig. 6.1c, d) with the
aid of the NAVDAS adjoint.

A small majority of observations contribute to the overall reduction in forecast
error, which is why there are many observation locations with red shading in
Fig. 6.1c, d. The percentage of beneficial observations in COAMPS/NAVDAS is
similar to values for other global systems (Gelaro et al. 2010). The area of the
forecast error calculation is smaller than the model domain, but the COAMPS
adjoint model spreads error information to grid points outside the forecast error area.
The smaller error area was chosen because of the influence of the lateral boundaries
which will be discussed in the next section.

6.3.1 Lateral Boundaries

In the original framework for an adjoint observation impact system, Langland and
Baker (2004) noted that the reduction in forecast error after the analysis procedure
was due entirely to the assimilation of new observational information. This is
true for a global NWP model, but for a limited area model like COAMPS, the
lateral boundary conditions are also updated with the new analysis. Fortunately the
framework allows for a quantitative estimation of the lateral boundary effects.

To illustrate, three impact experiments were conducted that only differed in the
area over which the forecast error reduction was calculated. The dark boxes in
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Fig. 6.1 The vertically integrated components of (a) �egf (b) and the model space estimate ıegf
at the analysis time. Also, the subset of observation space estimate ıegf mapped to (c) radiosonde,
and (d) aircraft observation locations. All calculations are for a 12 h COAMPS forecast valid 1200
UTC 05 May 2010. Values are in units of J kg�1

Fig. 6.2 indicate the box edges for the error calculation in Cases 1–3. For Case 1, the
error was calculated at every model grid point, while in Case 2, the outermost seven
grid points along each edge were removed. In Case 3, the box was placed over
the eastern United States to allow information to flow upstream in the COAMPS
adjoint model and still stay on the model’s grid. Impacts were computed for a 12 h
COAMPS forecast valid 0000 UTC Sep 25 2011 with 90 km horizontal grid spacing.

The ratio of ıegf in model space to �egf is shown at each of the 12 h of the
COAMPS adjoint integration by the black bars in Fig. 6.3 for each of the three cases.
At 12 h, the value ıegf and �egf are exactly equal so their ratio is 1:0. However, the

adjoint model is linear and does not account for all of the contributions in �egf .
Therefore, the ratio drops as the COAMPS adjoint model is integrated backward
in time. The ratio is just above 0:5 by the end of adjoint model run in Case 1.
Removing some points near the boundary improves the situation in Case 2, and the
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Fig. 6.2 Area over which
forecast error is computed for
Cases 1–3

ratio is even closer to 1:0 in Case 3. These results indicate that the lateral boundaries
may effect the ratio calculation, and that the relatively large reduction in Case 1 may
not be entirely due to the inability of the adjoint model to account for parts of the
nonlinear error.

As the COAMPS adjoint model runs backward in time, some information is
transferred from the adjoint model variables to the adjoint lateral boundary condition
variables and is not included in the calculation of ıegf . Therefore, the calculation of

ıe
g

f was updated to include the effects of the lateral boundaries,

ıe
g

f D


.xa � xa/;

@Jf

@xa
C @Jg

@xb

�
C


.la � lb/;

@Jf

@la
C @Jg

@lb

�
: (6.23)

The updated expression includes a second inner product similar in form to the first
term except that the model space vector x has been replaced by a vector of lateral
boundary conditions l. As long as the proper lateral boundary fields and gradients
with respect to these fields are stored, the calculation of this second term is trivial.

The value of the second inner product in Eq. 6.23 for each of the three cases
are indicated by the red bars in Fig. 6.3. With the addition of the lateral boundary
contribution to ıegf , the ratios are all above 0:8 (similar to the values observed
in global systems Langland and Baker 2004; Gelaro et al. 2010). As would be
expected, the red bars are largest for Case 1, and smallest for Case 3.

The ability to quantify the effect of lateral boundary conditions on forecast error
is a nice byproduct of this framework. However, only the information in the first
term of Eq. 6.23 is passed to observation space, so the remainder of the experiments
will be similar to Case 3 to maximize the impact of observations and minimize the
lateral boundary effects.

6.3.2 Location

Observation impacts for a week of forecasts (Dec 24–31 2010) for three different
locations (continental United States, eastern Pacific Ocean and western United
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Fig. 6.3 Ratio of ıegf to�egf
for every hour of the adjoint
COAMPS integration for (a)
Case 1, (b) Case 2, and (c)
Case 3. The verification time
was 0000 UTC Sep 25 2011.
The contribution to ıegf from
the model variables is
indicated by the black portion
of the bars, while the lateral
boundary component is
colored red

States, and southwest Asia) are shown in Fig. 6.4. The model’s horizontal grid
spacing was 60 km in each location. A brief description of the observation categories
listed in Fig. 6.4 are provided in Table 6.1.
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Fig. 6.4 Averaged observation impacts by type for each forecast cycle (left) and contribution at
radiosonde locations (right, multiplied by 1,000) for domains covering (a) and (b) the continental
United States, (c) and (d) the eastern Pacific Ocean and western United States, and (e) and (f)
southwest Asia. The impacts were calculated for 12 h forecasts valid over the period 0000 UTC
24–0000 UTC 31 Dec 2010. Values are in units of J kg�1
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Table 6.1 Description of observation types

RAOB Radiosonde
CLD wnd Satellite feature track wind
AMDAR Aircraft instrument
MDCRS Aircraft instrument
AIREP Aircraft instrument
LAND Surface observation over land
SHIP Surface observation over water
SSMI wnd Surface wind from SSM/I
SSMI rh Moisture retrieval from SSM/I
SCAT wnd Surface wind vector from SCAT
ASCAT wnd Surface wind vector from ASCAT
WNDST wnd Surface wind from WNDST
WNDST rh Moisture retrieval from WNDST
UAV Observations from unmanned aircraft
HDOB High density hurricane hunter aircraft
TC Syn Synthetic TC data

For each forecast cycle, radiosondes (RAOB) and aircraft data (AMDAR,
MDCRS, AIREP) are large contributors to forecast error reduction over the United
States. Also note that the shading at the United States radiosonde locations is
almost entirely blue, meaning that over time, each of these locations is reducing
the forecast error. When the model’s domain moves west to include a portion of the
Pacific Ocean, the impact of the radiosondes decrease, while the feature track winds
(CLD wnd) increase. In southwest Asia, error reduction is due to a combination of
radiosondes, aircraft data, and feature track winds.

The importance of radiosondes, aircraft data, and feature track winds is also
seen in global systems (Gelaro et al. 2010) along with satellite sounding radiances.
NAVDAS for COAMPS does not currently assimilate radiances, but this system will
prove to be a useful tool when they are added to the stream of assimilated data.

6.3.3 Model Resolution

The COAMPS adjoint observation impact system was run with two different
grid configurations of differing horizontal grid spacing (90 and 30 km) for 3 days
(Sep 22–25 2011). On a per observation basis, impacts are larger for the grid
configuration with more points and smaller horizontal spacing (Fig. 6.5). This is
partly due to larger impacts as seen in Fig. 6.6 by the darker blue shading off
the southern California coast for the 30 km grid spacing. However, the larger
per observation values can also be partly explained by the greater number of
observations that are assimilated for the 90 km grid. NAVDAS creates a grid that
is extended beyond the model domain by 15 points in every direction (1,350 km
for the 90 km grid and 450 km for the 30 km grid). So even though the area that
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Fig. 6.5 Impacts by
observation category on a per
observation basis (multiplied
by 1,000) for 3 days of 12 h
COAMPS forecasts Sep
22–25 2011. The horizontal
grid spacing was (a) 90 km
and (b) 30 km. Values are in
units of J kg�1

the model domain covers is equal for both cases, the analysis area is larger for the
90 km grid. Therefore, more observations are being assimilated on the 90 km grid
which reduce the per observation impact values. This can be seen by comparing the
amount of shading south of 15ı N in Fig. 6.6a, b.

Many more experiments need to be conducted before any definitive statements
can be made about the effect of horizontal grid spacing on observation impact
calculations. One other consideration is the manner in which the error is calculated.
The truth is an analysis field on the same grid as the model forecasts, so it is not
consistent between the two grid configurations (30 km forecasts are compared with
30 km analyses and 90 km forecasts are compared with 90 km analyses). Future
experiments would benefit from comparisons with a consistent truth.

6.3.4 Other Metrics

As noted earlier, the error for all other experiments in this chapter was calculated in
a dry energy norm for the lowest 20 model levels. This is a metric that is suitable
for a global observation monitoring system; however, mesoscale applications may
require different error considerations. This section demonstrates that a change in the
error metric can also change the relative importance of observations in reducing that
metric. Impacts for the same COAMPS 12 h forecast as in Sect. 6.3.1 were computed
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Fig. 6.6 Impacts of feature track satellite winds at observation locations (multiplied by 1,000) for
the same forecasts in Fig. 6.5. The horizontal grid spacing was (a) 90 km and (b) 30 km. Values
are in units of J kg�1

for three different metrics. First, the error was calculated in a dry energy norm,
but only for the the lowest ten model layers (roughly the extent of the planetary
boundary layer). Then a moisture term was added to the energy norm calculated over
the same area. Finally, the error was calculated in terms of modified refractive index
(only depends on the temperature and humidity variables). The results for these
different metrics are shown in Figs. 6.7 and 6.8. Although the units are different,
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Fig. 6.7 Impacts by
observation category on a per
observation basis a 12 h
COAMPS forecasts valid
0000 UTC Sep 25 2011. The
error was calculated in a (a)
dry energy norm, (b) moist
energy norm, and (c)
modified refractivity space.
Values are in units of J kg�1

multiplied by 1,000 in (a) and
(b) and unitless in (c)

the patterns of the moist energy norm and the modified refractive index are quite
similar, even though the moist energy error depends on the winds, along with
temperature and moisture. Not surprisingly, adding moisture to the error calculation
increases the importance of the satellite relative humidity retrievals (SSMI rh and
WNDST rh). Oceanic surface observations (SHIP) are also important for the moist
metrics and in this case are due to the positive impacts in the Gulf of Mexico.

As in Sect. 6.3.3, more experimentation is needed before definitive statements
can be made about these different error metrics. Still, it is easy to see that changing
the metric and its location can have a dramatic effect on an observation’s relative
impact.
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Fig. 6.8 Impacts of surface
measurements at observation
locations for the same
forecast in Fig. 6.7. The error
was calculated in a (a) dry
energy norm, (b) moist
energy norm, and (c)
modified refractivity space.
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6.4 Summary and Considerations

An adjoint observation impact system for a limited area model is a useful tool. The
system built for COAMPS is similar to other global systems in that it indicates
that radiosondes, aircraft data, and feature track satellite winds are all important
in reducing forecast error measured in a dry energy norm throughout the depth of
the troposphere. As new observation types such as satellite radiances are added to
NAVDAS, the impact system can be utilized to ensure the data is being properly
assimilated. A nice additional feature of this system is its ability to quantify the
impact of lateral boundary conditions as well as observational data.

The relative importance of observations can vary with location and error metric.
Choosing a suitable metric for a user’s particular interest is key to properly
evaluating an observation’s importance. The COAMPS observation impact system
contains much of the functionality inherent in both COAMPS and NAVDAS
(relocatability, varying grid configurations) as well as the ability to easily change the
volume over which the error is calculated and the metric. However, to investigate
smaller scale atmospheric features (<30 km) the nesting capability in the adjoint
model will need to be added to the system. Also, an option for the truth other than the
model’s analysis field would be helpful for making comparisons between different
experiments. For example, the error could be calculated with respect to radiosonde
observations, but this will require more system development. As it stands, the
COAMPS adjoint observations impact system is a valuable asset and is already
providing important information on the performance of the entire atmospheric
modeling system.
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Chapter 7
Skewness of the Prior Through Position Errors
and Its Impact on Data Assimilation

Daniel Hodyss and Alex Reinecke

Abstract Uncertainty in the position of a feature is a ubiquitous influence on data
assimilation (DA) in geophysical applications. This chapter explores the properties
of distributions arising from the uncertainty of the location of a flow feature. It is
shown that distributions arising from phase uncertainty have surprisingly complex,
non-Gaussian characteristics. These non-Gaussian characteristics are explored from
an ensemble DA perspective in which the skewness (third-moment) is shown to
be a significant contributor to the state-estimates obtained through Bayesian state
estimation. Idealized examples, as well as an example in a real tropical cyclone
using a state-of-the-art numerical weather prediction model, will be shown.

7.1 Introduction

Data assimilation (DA) is the combining of information from a model forecast and
an observation to obtain an estimate of the state of a physical system that is generally
better than either individually. One way DA is accomplished is through ensemble
(Monte-Carlo) methods. The basic idea in this perspective is to perform regression
of the state variables in need of updating against the observations of the state. This
form of DA is rapidly becoming the technique of choice for the estimation of the
state of a geophysical system. This popularity is largely due to the significant ease of
implementation afforded by the use of Ensemble-based Kalman Filter (EnKF) DA
systems. The EnKF is a state-estimation technique that makes use of the ensemble
to estimate the first and second moments of the prior distribution, which are then
used to estimate the posterior mean. This reliance upon just the first and second
moments of the prior distribution allows for significant computational advantages
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over more complex methods. Even with its reliance upon only the first two moments
the application of the EnKF in the meteorological community has been met with
considerable success in a wide-range of applications (e.g., Houtekamer et al. 2005;
Szunyogh et al. 2008; Meng and Zhang 2008; Torn and Hakim 2008; Whitaker
et al. 2008; Anderson et al. 2009).

There are, however, several unresolved issues with the application of the EnKF to
the highly nonlinear dynamics inherent to meteorological flows at high resolution.
Situations in which the EnKF is known to have some difficulty, and where
nonlinearity may be significant, include the assimilation of: vortex position (Lawson
and Hansen 2005; Chen and Snyder 2007), radar observations (Dowell et al. 2011),
parameter estimation (Hacker et al. 2011), and observations over a long assimilation
window (Khare et al. 2008). We speculate that one reason the assimilation in
these situations is sometimes difficult is the fact that the relationship between the
prior estimates of the observed variables and the state-vector is nonlinear. This
nonlinearity may come about from nonlinearity in the model operator, which is
described through the dynamics of the physical system, or from nonlinearity in
the observation operator used to observe the system. In either case, this nonlinear
relationship leads to skewed (non-zero third moment) posterior distributions that,
as has been discussed by Hodyss (2011) and reviewed below, results in suboptimal
behavior from the EnKF.

Previous work towards state estimation techniques for nonlinear modeling sys-
tems has been discussed by Kushner (1967); Jazwinski (1998; Chap. 9), Anderson
and Anderson (1999), and Julier and Uhlmann (1997, 2004). However, in the
geophysical sciences work towards explicitly accounting for the non-Gaussian
aspects of the prior within an ensemble DA framework has emphasized particle
filtering [See van Leeuwen (2009) for a comprehensive review]. In particle filtering
one estimates the probability that a particular realization is the true state by
comparing against observations. Given these probabilities (sometimes referred to
as weights) one can do such things as make a state estimate based on the mean of
the pdf or randomly sample from the pdf to generate an ensemble consistent with
observational and prior uncertainties. Another way to get non-normal distributions
is through nonlinearity in the observation operators or the non-normality of the
observation likelihood. Two examples of ensemble filters that are aimed at the
situation where the observation operator is nonlinear or the observation likelihood is
non-Gaussian (but the prior distribution is normal) are the work of Zupanski (2005)
and Fletcher and Zupanski (2006).

The focus here however will be on neither model nor observation operator
induced nonlinearity; here we will focus on the nonlinearity, or more specifically the
non-Gaussianity, that arises from phase errors. This “nonlinearity” that results from
the uncertainty in the location of the feature will be shown to arise from a nonlinear
relationship between the uncertainty in the location of the feature and the state
variables describing the physical system. We show below that prior distributions
whose uncertainty arises from errors in the location of a feature leads to significant
skewness and hence significantly non-Gaussian distributions. The distributions that
arise from phase error uncertainty will be shown to have surprisingly complex
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multivariate structures. Previous work (e.g., Lawson and Hansen 2005; Chen and
Snyder 2007) examining the relationship between phase error uncertainty and data
assimilation have noted the role of the non-Gaussian shape of the distribution and
some of the potential avenues for failure of the EnKF. In Lawson and Hansen (2005)
a two-step procedure was suggested in which the DA is first performed to account
for the position errors and then after shifting the ensemble consistent with the
updated positions (which attempts to reduce the non-Gaussianity by reducing the
variance in position-space) assimilate a second set of observations to account for
the structural update. In Chen and Snyder (2007) it was suggested that assimilating
observations of vortex shape and intensity as well as position helps reduce the errors
made by the EnKF. This chapter intends to first provide a detailed examination of the
specific structure of distributions that arise from phase uncertainty and then show
how incorporating information about the third moments of the prior impacts the
DA. The focus here will therefore be to understand and then attempt to use the
non-Gaussian information in the prior distribution rather than find ways to avoid or
eliminate it.

The organization of this paper is as follows: In Sect. 7.2 we will describe DA
through a Bayesian perspective and illustrate both linear and nonlinear regression.
In Sect. 7.3 we show how an error in the location of a feature in the fluid leads to
a non-Gaussian distribution. In Sect. 7.4 we will apply Kalman and higher-order
DA methods to the assimilation of observations in which the prior uncertainty is
described by errors in location. Section 7.5 closes the manuscript with a summary
of the most important results, conclusions, and points out avenues of future research
presently being investigated.

7.2 Understanding Data Assimilation Through Bayes’ Rule

7.2.1 Bayes’ Rule: The Posterior Distribution

We imagine the true state, x, to be an N -vector and that it is drawn from a
distribution whose pdf we label �.x/. In addition, we will collect the sum total of all
previous information about this true state in a previous estimate we label xf . At the
present time we have available a p-vector of observations y such that we may use
Bayes’ rule to obtain a density that describes the combined knowledge of the likely
distribution of states:

�
�

xj y; xf
� D � .yj x/ �

�
xj xf

�
1R

�1
� .yj x/ �

�
xj xf

�
dx
: (7.1)

The density �.yjx/ describes the conditional distribution of observations given a
particular value of the truth (observation likelihood), while �.xjxf / describes the
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conditional distribution of truth given a previous estimate of the true state; this last
density will hereafter be referred to as the “prior.” The density �.xjy; xf / describes
the conditional distribution of the truth given a particular observation and previous
estimate; this density will hereafter be referred to as the “posterior.”

7.2.2 Data Assimilation as a Problem in Nonlinear Regression

The presentation below relates the estimation of the posterior mean to the
well-known methods of nonlinear regression and is presented as a review of
Hodyss (2011). A standard estimation technique for the true state given the posterior
density is to find its mean, i.e.

Nx �y; xf
� D

1Z

�1
x�
�

xj y; xf
�
dx: (7.2)

This estimate of the true state has the property that it is unbiased and that it min-
imizes the posterior error variance (Jazwinski 1998).In ensemble-based estimation
techniques it is often assumed that our previous estimate of the truth is the mean
of the prior distribution, Nxf . Note that a random draw from the prior distribution
behaves as x D Nxf C ©f , where ©f is a random variable with zero mean. Adding
and subtracting the prior mean allows (7.2) to be written as

Nx �y; Nxf
� D Nxf C

1Z

�1

�
x � Nxf

�
�
�

xj y; Nxf
�
dx: (7.3)

Equation (7.3) shows that the “correction” to the mean of the prior that produces
the mean of the posterior is the expected error given the distribution of errors
conditioned on today’s observation and prior mean. Without loss of generality
we may consider the right-hand side of (7.3) as simply an unknown function of
today’s observation and prior mean. By taking this perspective (7.3) may be written
concisely as

Nx � Nxf D f
�
y; Nxf

�
: (7.4)

The vector-function f is assumed smooth and is the object of central interest.
One way to understand the structure of f is through an expansion in terms of the
observation about the prior estimate of that observation (Jazwinski 1998, pp. 340–
346), i.e.

Nx � Nxf D f0 C M1v C M2v2 C : : : (7.5)

where the innovation, v D y � HNxf , the matrix H is the observation operator that
takes theN -dimensional state vector, Nxf , into the p-dimensional observation space,
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and the vector f0 D f.v D 0/ and the matrix coefficients of the expansion, Mi , are
to be determined below.

The unusual vector notation v2 represents a vector of length p2 such that,

v2 D v ˝ v D �
v1vT v2vT � � � vpvT

�T
; (7.6)

where the symbol “˝” refers to the Kronecker product and vi is the ith element of
the innovation vector. A similar representation applies to the p3-vector v3 and so on.

The entire polynomial expansion in (7.5) may formally be represented as

Nx � Nxf D f0 C GOv (7.7)

where

G D ŒM1 M2 : : :M1� ; (7.8)

Ov D �
vT v2T � � � v1T

�T
: (7.9)

Equation (7.7) describes how to calculate the mean of the posterior using the
“linear” update involving the gain matrix G operating on the predictor vector Ov,
where Ov is comprised of an infinite number of predictors formed from today’s
innovation.

To determine the vector f0 we note that a random draw from the posterior
distribution is x D Nx C ©, where © is a random variable with zero mean. Therefore,
an equation for the “error” in estimating the true state as the posterior mean may be
obtained by subtracting x from both sides of (7.7):

© D ©f � .f0 C GOv/ : (7.10)

Because the expected value of © and ©f must vanish this implies that

f0 D �G hOvi ; (7.11)

where

hOvi D
h

hviT ˝v2˛T � � �
iT
; (7.12)

and the notation hi represents the expected value of a random variable. Note that if
we assume that hvi D 0 this implies that we have assumed that the observation and
the mean of the prior are accurate in so far as the distribution of truth about them is
unbiased.

Given (7.11) we may now re-write (7.10) as

© D ©f � GOv0; (7.13)

where Ov0 D Ov � hOvi, which now clearly has the property that the “errors” have zero
mean.
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The standard technique to derive the minimum error variance estimate is to find
the gain matrix in (7.13) that minimizes the trace of the expected posterior error
covariance matrix, i.e.

NP D
1Z

�1
P.v/�.v/dv; (7.14)

where P(v) is the posterior error covariance matrix,

P .v/ D
1Z

�1
.x � Nx/ .x � Nx/T � .xj v/ dx (7.15)

and �.v/ is the pdf that describes the distribution of innovations. As we will
discuss in detail below the expected posterior error covariance matrix (7.14) is
generally different from the actual posterior error covariance matrix (7.15) and these
differences will be shown to be significant for distributions with significant third
moments.

Upon making use of (7.13, 7.14, and 7.15) the expected posterior error covariance
matrix may be calculated:

NP D Pf � G
D
Ov0©Tf

E
� ˝

©f Ov0T ˛GT C G
˝Ov0 Ov0T ˛GT : (7.16)

The matrices in (7.16) are defined in Appendix 1.
By minimizing the trace of the expected posterior error covariance matrix (7.16)

with respect to the matrix, G, one may determine an expression for G that minimizes
the expected posterior error variance, i.e.

G D ˝
©f Ov0T˛ ˝Ov0 Ov0T˛�1 (7.17)

We may subsequently use (7.17) in (7.16) to obtain the expected posterior error
covariance matrix:

NP D Pf � ˝
©f Ov0T˛ ˝Ov0 Ov0T˛�1 DOv0

©
T

f

E
: (7.18)

By truncating the expansion in (7.5) we may obtain approximations of various levels
that coincide with polynomial regression. The first two levels of approximation are
explored next.

7.2.2.1 Linear Regression

By truncating the polynomial expansion in (7.5) at the linear term and minimizing
the trace of the expected error covariance matrix we find
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f0 D 0; (7.19)

M1 D Pf HT
�
HPf HT C R

��1
; (7.20)

where it should be recognized that we have derived the Kalman (1960) and
Kalman-Bucy (1961) filter, which in geophysics is commonly implemented using
ensemble methods and referred to as the EnKF:

Nx � Nxa D Nxf C Kv; (7.21)

NP � NPa D .I � KH/Pf ; (7.22)

where
K D Pf HT

�
HPf HT C R

��1
: (7.23)

Two issues should be noted. First, the linear filter is incapable of estimating the
constant term f0 of the expansion and therefore the estimate of the mean of the
posterior for vanishingly small innovations is simply that of the mean of the prior.
As we will show, this is a good assumption for symmetric prior distributions but
not for strongly skewed prior distributions. Second, while (7.21) is correctly an
approximation to the true posterior mean the updated posterior error covariance
matrix in (7.22) is an approximation to (7.14) and not an approximation to the actual
posterior error covariance matrix in (7.15). This second issue will be shown below
to be the reason why EnKF ensemble generation algorithms are unable to produce
the appropriate posterior distribution in the presence of phase errors.

7.2.2.2 Quadratic Nonlinear Regression

By truncating the polynomial at the quadratic term and minimizing the trace of the
expected error covariance matrix we find

f0 D � .I � KH/Tf HT
2 …�1 ˝v2˛ ; (7.24)

M1 D K � .I � KH/Tf HT
2 …�1H2TTf HT

�
HPf HT C R

��1
; (7.25)

M2 D .I � KH/Tf HT
2 …�1: (7.26)

In (7.24, 7.25, and 7.26) we can see that the inclusion of the quadratic term has not
just added a new term, M2, but also corrected the previous terms. Hence, one may
think of this procedure of adding additional terms and finding a gain matrix that
minimizes the expected error covariance as developing an “expansion” for each of
the terms in the exact gain in (7.17). The linear filter of the previous section consists
of the lowest order terms of the expansion of the coefficients in (7.5). It is important
to recognize however that for vanishingly small innovations and a prior distribution
with a significant third moment that the leading term of the complete expansion



154 D. Hodyss and A. Reinecke

(7.5) is f0. Hence, in the limit of vanishingly small innovation the linear filter (7.21)
fails to include the largest term of the complete expansion (7.5), while the quadratic
filter makes an estimate of f0.

We may write the terms in (7.24, 7.25, and 7.26) as in (7.5) to derive the
“quadratic” ensemble filter:

Nx � Nxa D Nxf C Kv C .I � KH/Tf HT
2 …�1 hv20 � H2TTf HT

�
HPf HT C R

��1
v
i
;

(7.27)

NP � NPa D .I � KH/Pf � .I � KH/Tf HT
2 …�1H2TTf

�
I � HTKT

�
; (7.28)

Where v20 D v2 � hv2i. Note that equations (7.27 and 7.28) are simply the linear
filter of section (3.a) with a correction term that is proportional to the third moment
of the prior distribution. Hence, if the prior distribution is perfectly symmetric the
quadratic filter reduces to the linear filter. In this case it would prove more effective
to truncate the polynomial expansion at the cubic term in order to retain a correction
to the linear filter. In addition, note that the expected error variance (7.28) is that
of the linear filter (7.22) with a new term that for all non-zero third moments reduces
the trace of the analysis error covariance to less than that of the linear filter.

Another way to view the quadratic ensemble filter is through (7.7) as a kind of
“Kalman filter” in an extended state-space:

Nx � Nxa D Nxf C Zw; (7.29)

ONPa D
�

I � OPf OHT
h OH OPf OHT C OR

i�1 OH
	

OPf ; (7.30)

where Z is the first N rows of OZ (Please see Eq. 7.45 of Appendix 1) and the weights
of the prior ensemble may be calculated from

w D OZT OHT
h OH OPf OHT C OR

i�1 Ov0: (7.31)

Again, please see Appendix 1 for notation. The equations (7.29 and 7.30) are in
fact identical to that of (7.27 and 7.28) but because its form is identical to that
of a Kalman filter this representation allows a practical algorithm to be developed
that may be easily incorporated into an already constructed EnKF (Hodyss 2012).
The formulation as (7.29 and 7.30) makes clear that the quadratic ensemble filter
can be viewed as “linear” regression in an extended state-space in which the
implied nonlinearities have been linearized by extending the state-space to include
them. Please see Appendix A in Hodyss (2011) and also Hodyss (2012) for more
discussion on this extended state-space.

Writing the quadratic ensemble filter as in (7.27 and 7.28) is interesting because
it illustrates the potential errors the EnKF (linear regression) may make when
applied to situations with skewed prior distributions. The potential errors that an
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EnKF may make is simply noted by asking when the new terms in (7.27 and
7.28) dominate over those of the EnKF; there are two important situations when
this happens. The first situation in which skewness is a significant issue for an
EnKF is when the innovation is very large when compared with its variance. The
EnKF makes a correction to the prior mean that goes linearly with the innovation.
However, depending on the direction of the skewness of the posterior (sign of
the third moment) and the sign of the innovation this correction will either be
too large or too small. This is due to the fact that the true posterior mean is a
curved (nonlinear) function of the innovation whenever the posterior has significant
skewness (Hodyss 2011). Therefore, the EnKF’s linear (in the innovation) estimate
of the curved posterior mean will always contain significant error whenever the
innovation and the skewness of the posterior are large.

The second situation illustrated by (7.27 and 7.28) in which skewness is a
significant issue for an EnKF occurs when the innovation is very small when
compared with its variance. The fact that the EnKF makes significant errors when
the innovation is small is rather surprising and is a result of the fact that when the
innovation is small and the prior third moments are large the f0 term dominates
the expansion. Note that when the innovation is small the estimate of the posterior
mean from the EnKF (See 7.21) is just that of the prior mean. However, when there
is significant skewness in the prior distribution the prior mean is not a good estimate
of the posterior mean. This can be seen in (7.7) through the importance of the f0 term
for small innovation. The point to be made here is that whenever there is significant
skewness, and the innovation is very small, the posterior mean and the prior mean
will differ. However, in this situation the EnKF will not make a correction to the
prior mean and in terms of its estimate of the posterior mean it will behave as if
there were no observation to assimilate. More about these issues will be discussed
below in Sect. 7.4

7.3 Distributions Arising from Phase Errors

Imagine a localized disturbance to a fluid, such as a tropical cyclone (TC). Suppose
that this disturbance has a pressure field that appears as in Fig. 7.1a. Further suppose
that the center (point of lowest pressure) of this disturbance is situated at a grid point
.x D x0 D 0/ of our model and we are, for now, interested in the moments of the
prior distribution at this grid point. The uncertainty in the prior is assumed to arise
from a normally distributed random variable ' 
 N.0; 
2/ denoting the location of
the disturbance. No amplitude (structural) uncertainty will be considered.

The uncertainty in phase has been assumed to be normally distributed in order
to show that non-Gaussianity in a state variable such as pressure can arise even
from normally distributed phase errors. There is however no reason to expect that
phase errors in complex fluid dynamical systems would be normally distributed.
This point is explored further in Appendix 2. In Appendix 2 we show through the
method of characteristics that in general sheared flows the variable translation speed
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Fig. 7.1 Gaussian phase error model. In (a) is shown a single member (thin solid) of the
distribution centered at the origin as well as the mean of the distribution (thick solid). The vertical
dashed lines denote the location of the inflection points. In (b) is shown the variance (thin solid)
and the third moment (thick solid)

of a disturbance may lead to non-Gaussian phase uncertainty. The strength of the
shearing of the flow is shown to be the determining factor as to whether the resulting
phase distribution will be Gaussian or non-Gaussian.

Returning to our phase error model of the pressure field of a TC we may write a
Taylor-series approximation of the pressure field at x0, of the form:

p .x0I'/ D p .x0/C ˇ .x0 � '/2 C : : : ; (7.32)

where

ˇ D 1

2

d2p

dx2

ˇ̌
ˇ̌
xDx0

> 0: (7.33)

Note that the term at leading-order that depends on the phase of the disturbance
is quadratic because the term proportional to dp=dx vanishes at the center of the
TC. Hence, the distribution of p at the mean (center) location of the disturbance is
therefore approximately chi-square1, which can be seen in the values of its scalar
moments:

hpi D p0 C ˇ
2; (7.34)
D
.p � hpi/2

E
D 2ˇ2
4; (7.35)

D
.p � hpi/3

E
D 8ˇ3
6: (7.36)

1A chi-square distribution with one-degree of freedom is constructed by squaring each random
draw from a Gaussian distribution.
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Note that we have assumed that the variance of the phase uncertainty is small
compared with the characteristic length scale of the disturbance such that the
truncation of the Taylor-series to the quadratic term is sensible. Physically, the
reason the distribution of p is approximately chi-square at this location arises
because the values of pressure at this location can never be below p0 but can vary
as high as the far-field values of pressure allow. This type of hard lower limit
characterizing the distribution of pressures is a characteristic of distributions like
that of the chi-square distribution and always leads to significant third moments.

Similarly, we may perform a Taylor-expansion around the inflection point
(x D x1), which lies along the edge of the storm (See Fig. 7.1):

p .x1I'/ D p .x1/C ˛ .x1 � '/C : : : ; (7.37)

where

˛ D dp

dx

ˇ̌
ˇ̌
xDx1

: (7.38)

Note that at the inflection point of the TC the second derivative vanishes while the
first derivative (˛) is large. Hence, the distribution in the vicinity of the inflection
point is nearly Gaussian and therefore has vanishingly small third moment, which
can be seen in the values of its moments:

hpi D p1 C ˛x1; (7.39)
D
.p � hpi/2

E
D ˛2
2; (7.40)

D
.p � hpi/3

E
D 0: (7.41)

Therefore, we have so far seen that at the mean position of the phase distribution
the structure of the pressure distribution is strongly non-Gaussian, but as we make
our way away from the center of the phase distribution we find that the pressure
distribution appears to become approximately Gaussian.

This variation in the structure of the scalar distributions at each grid point along
the disturbance can be summarized by eliminating the Taylor-expansion and simply
randomly sampling from a known distribution. We define a function that is vaguely
similar to the pressure field of a tropical cyclone,

p .xI'/ D 1000� 25 exp

"
� .x � '/

4

2
#
; (7.42)

and proceed to randomly sample this function by drawing values of ' 
 N.0; 2/.
This function represents a Gaussian-shaped depression that is positioned at random
locations and is in fact the function plotted in Fig. 7.1a. By calculating the scalar
moments of this distribution at each grid point we find a pattern as in Fig. 7.1b.
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Fig. 7.2 The structure of phase error distribution as loops. In (a) is the distribution of pressure
between x D 0 and x D 1, (b) is for x D 0 and x D 1:4, (c) is for x D 0 and x D 2, and (d) is for
x D 0 and x D 4. The open circle in each panel denotes the location of the mean

The pattern found in Fig. 7.1b is consistent with the analysis presented above in so
far as the third moment is positive at the center of the distribution and decreases
to zero near the inflection point. Figure 7.1b reveals however that the third moment
actually turns negative outside of the inflection points leading to a tri-pole structure.
This tri-pole structure in the third moments depends on the strength of the phase
error variance of '. When the phase error variance is large, rendering the assump-
tions about truncating the Taylor-series invalid, the tri-pole pattern in the third
moments is replaced with a relatively wide monopole negative region (not shown).

To gain understanding of the multivariate structure we plot in Fig. 7.2 the
distribution of pressure values at the center of the distribution .x D x0/ against
the values of pressure at various locations for the same Gaussian phase error
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Fig. 7.3 The distribution of pressure at x D 2 as a function of the location of the feature

model (7.42). Note that the structure of the distribution in this plane focuses all
the members along a single loop structure. This loop arises because for a value of
pressure at, say x D x0, there are always two different phase values, ', that are
consistent, which leads to two different possible pressure values at x D x1. We
emphasize that the loop structure is not restricted to just the relationship between
the center and the inflection point, but also occurs between all other locations as
well; the loop structure shown in Fig. 7.2 between other locations differs only in
the shape of the loops. The existence of these loops has important implications to
the accuracy of the DA. Because the relationship between any two locations is not
only nonlinear but also multi-valued the DA must be able to choose which side of
the loop is the correct side. Subsequently, a single observation of pressure cannot
discern the location of the feature because the distribution is always multi-modal.
Moreover, as shown in Fig. 7.2 the loop structure of the prior distribution assures
that the prior mean will not be a state representative of any particular member. The
ensemble mean value in this plane is denoted in Fig. 7.2 and can be seen to be
well away from the loop. This loop structure makes clear the complexity of these
distributions and implies significant high-order multivariate moments.

In tropical cyclone data assimilation the location (or phase, ') of the minimum
central pressure is an often used observation. Therefore, it is of interest to examine
the prior distribution of phase locations (') plotted against the values of pressure at
some location we might update with that observation of location. In this respect this
tells us the relationship between the state and the prior estimates of the observed
variables. Figure 7.3 shows what this looks like for phase locations (') plotted
against the values of pressure at x D 2 for our Gaussian phase error model (7.42).
Because the disturbance structure is simply a function of the phase the distribution
here is not a loop like Fig. 7.2 but simply the actual structure of the Gaussian phase
error model (7.42). Nevertheless, this functional dependence is clearly nonlinear and
as we show next will lead to significant difficulties with Kalman filter-based DA.
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7.4 DA in the Presence of Phase Errors

7.4.1 Idealized Cases

In this section we will perform DA on the distribution (7.42) studied in Sect. 7.3.
In particular, we set the distribution shown in Fig. 7.3 to be our prior. This implies
that we will simply observe the location of the feature and attempt to update the
state. As a baseline to compare linear regression (EnKF) against quadratic nonlinear
regression (quadratic ensemble filtering) we will employ a particle filter [See van
Leeuwen 2009) for a review]. Because we will be using an ensemble of size 20,000
in this section the posterior mean obtained from the particle filter will be for all
intents and purposes identical to that of the un-approximated application of Bayes’
rule. Because we have one observation (the location of the feature) and 20,000
ensemble members in this particle filter these experiments will not be contaminated
by the detrimental issues of limited ensemble size discussed in Snyder et al. (2008).
In any event, the goal in these experiments will be to understand when linear
and/or quadratic nonlinear regression can and cannot get close to the result of the
un-approximated application of Bayes’ rule.

7.4.1.1 Estimating the Posterior Mean

To begin we will examine the situation of observing the location of the feature
with very low observation error variance, R D 0:01. When the observation error
is very low an EnKF based DA system will make substantial corrections for large
innovations. However, because the relationship between the observation and the
state space is nonlinear (See Fig. 7.3) the EnKF correction will not be accurate for
all values of the innovation. We proceed to illustrate this in detail next.

In Fig. 7.4a, c, e is shown the results of the experiments with low observation
errors. In each figure is shown the true state that is observed. In Fig. 7.4a the true
state is the Gaussian phase error model (7.42) for a ' D 0 Because the distribution
of phase errors is ' 
 N.0; 2/, the prior mean is identically zero and because the
observation in this case is zero the innovation is also identically zero. For this
innovation the particle filter’s estimate of the posterior mean is for all intents and
purposes identical to the true state and hence indistinguishable from the true state in
this figure. What this means is that a high quality observation of the location of the
feature should identify that feature precisely because there is no uncertainty in the
structure of the feature. Recall that for each value of location (the observation in
this case) the distribution in Fig. 7.3 is a nonlinear but single-valued function. This
implies that if one’s DA system can handle the nonlinearity, then one observation
can identify the feature quite closely. However, in Fig. 7.4a one can see the obvious
result of the zero innovation being that the EnKF estimate of the posterior mean is
actually identical to the prior mean, i.e. no correction has been made. In contrast,
the Quadratic Ensemble Filter makes a correction even when the innovation is zero,
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Fig. 7.4 Estimates of the posterior mean from phase error distributions. The left column shows
results for low observation errors and the right column shows results for moderate observation
errors. The first row shows results for the true state located at the origin; the second row is for the
true state at one standard deviation; the third row is for the true state at two standard deviations
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as was already discussed in detail at the end of Sect. 7.2. Note that this result is
rather remarkable in so far as the phase location of the feature is located precisely at
its expected value and one might hope that this would be the location that an EnKF
DA system would perform well.

In fact, an EnKF DA system performs better (e.g., similar to quadratic nonlinear
regression), not when the innovation is very small, but actually when the innovation
is equal to its expected value (Hodyss 2011). This result can be seen in Fig. 7.4c.
In Fig. 7.4c the true state is the Gaussian phase error model (7.42) for a ' D 
 ,
i.e. the phase location observation is taken as situated at one standard deviation and
therefore the amplitude of the innovation is essentially its expected value. Again, the
particle filter’s estimate of the posterior mean is indistinguishable from the true state
in this case. However, the EnKF result is now basically identical to the Quadratic
Ensemble Filter result. Mathematically, we can understand that this occurs when the
quantity in square brackets in (7.27) vanishes, and this happens for innovations that
have the amplitude of their expected value .hv2i � 
2/ because the third moment in
observation space (location observations) is zero for Gaussian phase errors.

In Fig. 7.4e we show an example for which the true state is the Gaussian phase
error model (7.42) for a ' D 2
 , i.e. the phase location observation is taken as
situated at two standard deviations and therefore the amplitude of the innovation is
significantly larger than its expected value. Again, the particle filter’s estimate of the
posterior mean is indistinguishable from the true state in this figure. However, in this
case the EnKF’s estimate of the posterior mean and that of the Quadratic Ensemble
Filter is now quite different. When the observation errors are low but the innovation
is larger than its expected value a common way in which the EnKF is in error is to
produce an estimate of the posterior mean that has too much amplitude. This can
be seen in Fig. 7.4e by the large values in the estimate of the posterior mean above
1,000 mb and below 975 mb. Note that the true posterior mean does not go above
1,000 mb or below 975 mb. In addition, the phase location of the estimate from the
EnKF typically does not shift far enough towards the true location. The Quadratic
Ensemble Filter produces an estimate that has significantly reduced issues with the
amplitude of the estimate of the posterior mean and the phase location and this is
obviously due to its ability to account for the nonlinearity seen in Fig. 7.3.

Next, we will consider the situation where the observation error variance is
substantially larger: R D 1. In this case the true posterior mean from the particle
filter will not be particularly close to the true state as the observation is not accurate
enough to distinguish the location of the feature exactly. This can be seen in
Fig. 7.4b. In this case the innovation is again zero because the observation is taken
to be located at the mean phase location. Again, the estimate of the posterior mean
from the EnKF is just that of the prior mean. In contrast, the Quadratic Ensemble
Filter now produces an estimate of the posterior mean that is very close to that of
the true posterior mean from the particle filter. In Fig. 7.4d is shown the case where
the location of the observation is at one standard deviation. As one can see from
Fig. 7.4d the state estimate from the EnKF is now again very close to that of the
Quadratic Ensemble Filter. Therefore, for this size of innovation both linear and
quadratic nonlinear regression give very similar estimates of the posterior mean
and they are quite close to the true posterior mean. In Fig. 7.4f is shown the case
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where the location of the observation is at two standard deviations. Here, again we
see that the EnKF estimate has the wrong phase location (with respect to the true
posterior mean) and still has substantially too large values (greater than 1,000 mb)
and also too small of values that are less than that of the true posterior mean
minimum value of approximately 978 mb. In contrast, the Quadratic Ensemble Filter
matches the location and amplitude of the true posterior mean quite closely.

7.4.1.2 Ensemble Update

Estimating the posterior mean is only one-half of the calculations necessary to
update the ensemble posterior distribution. The other half of the calculation is to
produce a set of ensemble perturbations that appropriately perturb the estimated pos-
terior mean. Traditional ensemble generation schemes, like perturbed observations
(Houtekamer and Mitchell 1998; Burgers et al. 1998; Evensen 1994) and square
root filters (Anderson 2001; Bishop et al. 2001; Tippet et al. 2003), are all based
on determining the actual posterior error variance (7.15) from its expected value
(7.14). As discussed by Hodyss (2011), this is an accurate technique for normal
distributions because the posterior error variance is not a function of the innovation
(or observation) for normal distributions. Furthermore, Hodyss (2011) showed that
the posterior error variance (7.15) is a function of the innovation (observation)
whenever the posterior distribution is skewed, i.e.

dP

dv
D T

R
; (7.43)

whereP is the posterior error variance, T is the posterior third moment, andR is the
observation error covariance and v is the innovation. [For clarity (7.43) was written
for a scalar system; multivariate generalizations may be found in Appendix 2 of
Hodyss (2011).] We show next that this issue is particularly significant for phase
error distributions and location observations because the location of maximum
posterior error variance must shift with the location of the observation.

In Fig. 7.5 is shown the diagonal of the posterior error covariance matrix from
(7.22) for the EnKF and (7.28) for the Quadratic Ensemble Filter. Recall that these
equations are the object that is constraining perturbed observation and square root
update algorithms. It is important to keep in mind that (7.22 and 7.28) are not
attempting to approximate the true posterior error variance (7.15), but in fact are an
approximation to the expected posterior error variance (7.14). This fact can be seen
in Fig. 7.5. The panels in Fig. 7.5 correspond to the same experiments as Fig. 7.4.
The major result to be noted from Fig. 7.5 is that in each column the posterior error
variance from an EnKF (7.22) and quadratic ensemble filter (7.28) algorithm does
not move with the location of the true state. Indeed, equations (7.22 and 7.28) do
not include information from the actual observation (innovation) of location. Note in
contrast we may use the particle filter to calculate the true posterior error variance as
a function of the innovation (7.15). These curves are plotted in Fig. 7.5 and show that
the true posterior error variance as a function of the innovation does in fact shift with
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Fig. 7.5 Same as Fig. 7.4 except now each panel shows the estimates of the expected posterior
error variance from the Kalman and Quadratic techniques as well as the posterior error variance as
a function of the innovation from the particle filter technique. Note that the posterior error variance
from the particle filter moves with the location observation while that from the other techniques
does not



7 Skewness of the Prior Through Position Errors and Its Impact on Data Assimilation 165

the location of the observation. We note in passing that we have also compared the
structure of the true posterior covariance matrices (7.15) against those covariance
matrices determined from (7.22 and 7.28). The result is that the covariance’s are also
similarly in error when compared to the structure of the true posterior covariance
matrix (not shown). Because a covariance between two variables may be positive
or negative, the error in (7.22 and 7.28) when compared to (7.15) may be wrong
in both the magnitude as well as the sign of that covariance. Hence, to produce
an ensemble consistent with the “errors of the day” requires the consideration
of the posterior error covariance matrix as a function of the innovation (7.15).
Unfortunately, traditional ensemble generation schemes make use of the expected
posterior error variance (7.14), which does not properly account for information
from the innovation.

7.4.2 Hurricane Katia (2011)

In this section we will illustrate that the idealized results found in the previous
section can be found in a real ensemble DA experiment with a tropical cyclone. We
utilize a prior distribution from an 80-member ensemble for Hurricane Katia (2011)
generated with the Coupled Ocean/Atmosphere Mesoscale Prediction System for
Tropical Cyclones (COAMPS R�-TC; Doyle et al. 2012) ensemble data assimilation
system. The COAMPS-TC system is a limited area model designed specifically
for the simulation and prediction of tropical cyclones. It is comprised of a suite
of packages and parameterizations that represent physical processes unique to
the tropical environment. COAMPS-TC uses three horizontally nested domains
with the horizontal resolution decreasing from 45 km on the outer basin-scale
domain to 5-km on the inner vortex-scale domain. All calculations below are
done on the 5-km inner vortex-scale domain. In order for COAMPS-TC to remain
computationally efficient, the inner two domains are designed to track the location
of the storm. The system utilizes the Data Assimilation Research Testbed (DART;
Anderson et al. (2009) developed at the National Center for Atmospheric Research
to assimilate observations with a square-root version of the EnKF as well as adaptive
prior inflation.

The results presented in this section are based upon a prior distribution for
Hurricane Katia valid on 12 UTC, 2 September 2011. The ensemble was initialized
00 UTC, 30 August by interpolating the Global Forecasting System ensemble
(Hamill et al. 2011) to the three COAMPS-TC nested domains. The COAMPS-TC
ensemble was then cycled by using DART to assimilate observations of radiosondes,
cloud-track winds, surface observations, and aircraft data every 6-h until 12 UTC,
2 September. The fact that Katia developed away from land in the central Atlantic
Ocean makes it an ideal case to test the various filter algorithms because any
skewness will be a direct result of phase and intensity variability and not interactions
with land.

This ensemble will be used in precisely the same way as in the previous section
to compare the levels of approximation resulting from DA with linear and quadratic
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Fig. 7.6 Estimates of the posterior mean for Hurricane Katia (2011). The sea-level pressure is
plotted in each panel with a contour from 990 to 1,016 mb at intervals of 2 mb. The “o” denotes the
location of the observation and the “p” denotes the location of the center of the sea-level pressure
in the prior mean

nonlinear regression against that resulting from the application of Bayes’ rule as
seen through particle filtering. In Fig. 7.6a is shown the prior mean sea level pressure
that will be used in the DA experiments. In Fig. 7.6d is the true posterior mean from
the particle filter after assimilation of just the position observations, which consists
of two observations; one of which is the location in longitude and the other is the
location in latitude. One can see that the result of the position observations was to
shift the mean to the Northeast. Note however that the posterior mean was not shifted
all the way to the observation location. The observation location is at about one
standard deviation from the prior mean in latitude and two standard deviations from
the prior mean in longitude. Because this location observation is at a location that is
greater than one standard deviation in longitude and the observation error variance is
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Fig. 7.7 Estimates of the posterior error variance for Hurricane Katia (2011). In each panel the
contour interval is 0–80mb2 at intervals of 10, except for the particle filter which is 0–16mb2 at
intervals of 2

of moderate value this example is most consistent with Fig. 7.4f from the idealized
examples. Recall that in Fig. 7.4f the location of the posterior mean was also not
centered on the position observation location, but rather was located approximately
halfway between the observation location and the prior mean location. Similarly,
note that the EnKF estimate in Fig. 7.5b is shifted less towards the prior mean
location than when compared with that of the particle filter, and includes a small
“high” to the Southwest of the prior mean location. This small high can be seen in
the ridging to the Southwest of the prior mean location and also in the very flat
appearance of the contours on the Southwest side of the TC. Again, recall that
these features of the Kalman estimate were also seen in Fig. 7.4f. In contrast, the
Quadratic Ensemble Filter estimate of the posterior mean is very close (in both
position and structure) to that of the true posterior mean, which is again very similar
to that of Fig. 7.4f.

In Fig. 7.7a is shown the prior error variance. The prior error variance has a
single maximum in the vicinity of the prior mean location. In contrast, the true
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posterior error variance as a function of the position observation, which is of course
the estimate of the posterior error variance obtained from the particle filter, has
two maxima. One maximum is at the location of the prior mean and the other is
near to the location of the observation. The structure of the true posterior error
variance, in particular its multi-modal character, is again very similar to that found
in the idealized experiment (Fig. 7.5f), which gives confidence to our estimate of
the true posterior error variance using the limited ensemble size of 80 members. In
Fig. 7.7b, c are the EnKF and quadratic ensemble filter estimates of the expected
posterior error variance. Note that while the quadratic posterior error variance is
less than that estimated by the EnKF neither has the correct structure of the posterior
error variance; both have a single maximum in the vicinity of the prior mean location
much like that of the idealized experiment in Fig. 7.5f. The fact that the ensemble
mean from the quadratic ensemble filter is much better than that from the EnKF
but that the ensemble generation is not significantly better underscores the fact that
contemporary ensemble generation techniques do not properly account for the latest
set of observations.

7.5 Summary and Conclusions

This chapter has explored in detail the issues surrounding the impact of phase errors
on the ability of traditional ensemble-based Kalman filtering (EnKF) algorithms
to accurately reproduce the posterior mean and perturbations to that mean that
sample the posterior distribution. We began by illustrating the relationships between
EnKF algorithms and linear and nonlinear regression. Here, we saw that quadratic
nonlinear regression is simply the EnKF with a correction term that provides some
accounting for the prior third moment. The prior third moment turns out to be of
some significance as prior distributions whose uncertainty arises from uncertainty
in the location of the feature have large third moments. This third moment (or
skewness) of the prior distribution was shown to lead to difficulties for EnKF
algorithms.

We have shown that an important issue with the estimation of the posterior mean
from an EnKF algorithm is the size of the innovation. In situations with non-zero
prior third moments, such as phase uncertainty, the posterior distribution is almost
always a curved (nonlinear) function of the innovation (Hodyss 2011). This implies
that for large innovations the EnKF will always produce significant error because
it is a linear function of the innovation. More surprising however is the fact that
the EnKF will also make a significant error in its estimate of the posterior mean
whenever the innovation is very small. This is because whenever the posterior third
moment is large and the innovation is small the posterior mean curves away from
the prior mean. This leads to significant error in the estimate of the posterior mean
because for small innovation the EnKF estimate of the posterior mean is always
the prior mean. In fact, the size of the innovation for which an EnKF algorithm is
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most accurate is when the magnitude of the innovation is approximately equal to its
expected value.

We have shown that a significant issue with the generation of an ensemble that
correctly samples the posterior distribution is in the calculation of the posterior
error variance. One way to view ensemble generation is simply as a method to
estimate the posterior error covariance matrix. Because normal distributions have
posterior covariance matrices that are independent of the innovation (observation)
this has led to a significant number of ensemble generation algorithms based on
the expected posterior error covariance matrix. This unfortunately is an assumption
and it fails most strongly whenever the posterior distribution has non-zero third
moments (skewness). The generation of an ensemble in feature-based systems with
observations of location leads to this issue becoming extremely important. We
have seen in both idealized cases and in a real tropical cyclone that the correct
posterior error covariance matrix knows the location of the observation whereas the
expected posterior error covariance matrix does not. This leads to two problems:
(1) the uncertainty is not appropriately centered in the correct location and (2) the
structure of the variances and co-variances, even if they were correctly located
through a shift in their position, are simply not correct. The first problem leads
to the uncertainty being in the wrong location and subsequently not accurately
predicting the probability of particular events. The second problem implies that
the ensemble generation cannot produce structures that are self-consistent with the
structures within the prior ensemble. This means that the TCs that are produced
by the ensemble will not have the correct relationships between variables because
the co-variances are simply incorrect. It is important to realize that this issue was
not corrected by the use of quadratic nonlinear regression. This is because while the
polynomial expansion in the innovation suggested in Sect. 7.2 provides a convergent
estimate of the posterior mean with higher-order approximations, it does not in
fact provide a convergent estimate of the posterior error covariance matrix as a
function of the innovation when combined with the ensemble generation algorithms
referred to as perturbed observations (Houtekamer and Mitchell 1998; Burgers
et al. 1998; Evensen 1994) or square root filters (Anderson 2001; Bishop et al. 2001;
Tippet et al. 2003). The reason for this is because these algorithms for generating
ensemble perturbations are based on an estimate of the posterior error covariance
matrix that is incorrect in situations with significant third moments. Both of these
ensemble generation algorithms are based on a covariance matrix that is obtained
by estimating the weighted averaged over all possible posterior covariance matrices
rather than the one associated with the latest innovation.

Nevertheless, from a practical point of view, the fact that the estimate of the
posterior mean from the quadratic ensemble filter is more accurate than that from
an EnKF and subsequently that the posterior error variance is smaller may in fact
translate into a better performing data assimilation system in the presence of phase
uncertainty. Research in this direction with tropical cyclones and other atmospheric
phenomena is ongoing.
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Appendix 1: Matrix and Notation Definitions

The prior error covariance matrix is extended to include the higher moments:

OPf D
OZ OZT
K � 1

D
"

Pf Tf
TTf Ff � pf pTf

#
; (7.44)

whose square root form may be approximated with an ensemble as

OZ D
�

©1 ©2 � � � ©K

©1 ˝ ©1 � pf ©2 ˝ ©2 � pf � � � ©K ˝ ©K � pf

�
(7.45)

and the vectorized covariance matrix, pf D vec.Pf /, is an N2-vector constructed
from the concatenation of the N columns of Pf and whose organization follows
that of the Kronecker product “˝”, andK is the ensemble size.

The extended observation operator takes the following form:

OH D
�

H
H2

�
D
�

H
H ˝ H

�
: (7.46)

Note that for nonlinear observation operators one would not use a linearized form of
the operator. Instead, the correct procedure is to operate the nonlinear observation
operator on each member of the ensemble and then perform linear or nonlinear
regression on this new distribution of predicted prior observations against the state
variables needing update (Houtekamer and Mitchell 2001).

The covariance matrices in the extended state-space takes the form:

˝
©f Ov0T˛ D �

Pf HT Tf HT
2 � � � � ; (7.47)

˝Ov0 Ov0T˛ D
D
OvOvT

E
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3
75 ; (7.50)
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and 0 is the p � p zero matrix. The matrices in (7.17) are defined as:

Pf D
D
©f ©Tf

E
; (7.51a)

Tf D
D
©f ©2Tf

E
; (7.51b)

Ff D
D
©2f ©2Tf

E
; (7.51c)
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©o©

T
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˛
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©2o©

2T
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˛
; (7.52b)
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B D R ˝ HPf HT C HPf HT ˝ R; (7.54)
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and H2 D H˝H is the matrix operator that takes anN2 vector into the p2 predictor
space and copious use of the identity, .H©f /˝ .H©f / D .H ˝ H/.©f ˝ ©f /, has
been made.

In (7.51a), Pf is a square matrix listing the necessary second moments of the
prior distribution. In (7.51b), Tf is a rectangular matrix listing the necessary third
moments of the prior distribution. In (7.51c), Ff is a square matrix listing the
necessary fourth moments of the prior distribution. In (7.52a), R4 is a square matrix
listing the necessary fourth moments of the observation likelihood. Note that even
when the observation error covariance matrix, R, is diagonal R4 is not diagonal. The
matrices A, B, and C are sparse, square matrices that represent various combinations
of observation error covariances and forecast error covariances.

The covariance matrix of squared innovations is

… D H2Ff HT
2 C A C B C C C R4 � H2TTf HT

�
HPf HT C R

�
�1

HTf HT
2 � ˝

v2
˛ ˝

v2T
˛
:

(7.56)

Appendix 2: Non-Gaussian Phase Uncertainty from Variable
Shear Flows

To isolate the effects of phase uncertainty we focus on the one-dimensional
advection equation:

@p

@t
C c .x/

@p

@x
D 0; (7.57)
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where p D p.x; t/ is the wavefield being advected at the speed c.x/. We attach to
(7.57) an unbounded domain in x as well as a localized initial condition such as the
functions (7.42), which was our prototype for the surface pressure field of members
of a prior distribution of tropical cyclones. By the method of characteristics we know
that the solutions to (7.57) move away from their initial location according to,

dX

dt
D c.X/; (7.58)

where X D X.t/ is the location of, say, the minimum central pressure of the
function (7.42). We may immediately note that even though equation (7.57) is
linear in the amplitude of the disturbance, equation (7.58) may be non-linear if
the function c.x/ is non-linear. Hence, the motion of the location of the minimum
central pressure may evolve non-linearly and therefore even if the initial distribution
of phase uncertainty is Gaussian it still may evolve into a non-Gaussian phase
distribution owing to the non-linearity in (7.58). Two examples follow:

(1) Linear Shear

In the case where the shear is a linear increasing function of distance from the origin,
i.e.

c.x/ D c0
x

L
; (7.59)

where c0 is a characteristic phase speed and L is characteristic length scale. By
inserting (7.59) into (7.58) and solving finds

X.t/ D X0 exp

�
c0t

L

	
; (7.60)

where X0 is the initial location of the minimum central pressure. In Sect. 7.3 the
parameter X0 was denoted as ' and was normally distributed. Notice that if the
location of the minimum central pressure is normally distributed with mean Nx and
variance 
2, then at a later time, t , the phase distribution will be normal with

X 
 N

�
Nx exp

�
c0t

L

	
; 
2 exp

�
2c0t

L

		
: (7.61)

Hence, linear shear produces disturbances that move away from their initial location
exponentially with time. Nevertheless, disturbances in linear shear preserve the
Gaussian character of their initial phase uncertainty.

(2) Quadratic Shear

In the case where the shear is a quadratic function of distance from the origin, i.e.

c.x/ D c0

� x
L

2
; (7.62)
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the solution to (7.58) is

X.t/ D L
L
X0

� c0t
L

: (7.63)

In this case, the phase locations of the disturbances move away from their initial
locations faster than exponential with time. This can be seen by the fact that
disturbances in linear shear flow approach infinity, i.e. X ! 1, as t ! 1, but
disturbances in quadratic shear flow reach infinity in finite-time Œt1 D L2=.c0X0/�.
Note that in the limit of small time, i.e., t � L2=.c0X0/ then equation (7.63)
behaves approximately as

X.t/ � X0 C c0t

L2
X2
0 ; (7.64)

which is obviously non-Gaussian even whenX0 is normally distributed and becomes
increasingly non-Gaussian as time goes on.

Hence, the structure of the shear flow the disturbances are being advected within
will determine whether the resulting phase distribution will be Gaussian or non-
Gaussian at some time later. Moreover, even though (7.57) is an equation linear
in the amplitude of the disturbance, its characteristics maybe be non-linear, which
could lead to non-Gaussian distributions. This implies that it is not sufficient to
simply note that the physical system (7.57) is linear in amplitude in order to assess
whether a Kalman filter will be optimal or not. The correct condition is that both
the model and its characteristics must be linear and the initial distribution one draws
from must also be Gaussian. Given the severity of these conditions it would appear
that it is unlikely that the phase distributions of actual flow features found in nature
would always maintain a normally distributed character. Rather, it would seem more
likely that the atmosphere would evolve through time and flow configurations in
which a Gaussian initial phase distribution would be altered to have non-Gaussian
characteristics.
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Chapter 8
Background Error Correlation Modeling
with Diffusion Operators

Max Yaremchuk, Matthew Carrier, Scott Smith, and Gregg Jacobs

Abstract Many background error correlation (BEC) models in data assimilation
are formulated in terms of a positive-definite smoothing operator B that is employed
to simulate the action of correlation matrix on a vector in state space. In this
chapter, a general procedure for constructing a BEC model as a rational function
of the diffusion operator D is presented and analytic expressions for the respective
correlation functions in the homogeneous case are obtained. It is shown that this
class of BEC models can describe multi-scale stochastic fields whose characteristic
scales can be expressed in terms of the polynomial coefficients of the model.
In particular, the connection between the inverse binomial model and the well-
known Gaussian model Bg D exp D is established and the relationships between
the respective decorrelation scales are derived.

By its definition, the BEC operator has to have a unit diagonal and requires
appropriate renormalization by rescaling. The exact computation of the rescaling
factors (diagonal elements of B) is a computationally expensive procedure, therefore
an efficient numerical approximation is needed. Under the assumption of local
homogeneity of D, a heuristic method for computing the diagonal elements of
B is proposed. It is shown that the method is sufficiently accurate for realistic
applications, and requires 102 times less computational resources than other meth-
ods of diagonal estimation that do not take into account prior information on the
structure of B.
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8.1 Introduction

In recent years, heuristic background error correlation (BEC) modelling has become
an area of active research in geophysical data assimilation. Of particular interest are
the BEC models constructed with positive functions of the diffusion operator,

D D r�r (8.1)

where � is the spatially varying positive-definite diffusion tensor. This type of BEC
model is attractive for several reasons: (a) it guarantees positive definiteness of the
resulting correlation functions (CFs), (b) it is computationally inexpensive in most
practical applications, and (c) it allows straightforward control of inhomogeneity
and anisotropy via the diffusion tensor. In the traditional approach of correlation
modeling where spatial correlations are specified by prescribed analytical functions,
care should be taken to maintain positive definiteness of the respective correlation
operator, especially in anisotropic and/or inhomogeneous cases (Gaspari et al. 2006;
Gregori et al. 2008).

Among the most popular operators B used in practical BEC modeling are those
using the exponential and the inverse binomial functions of D:

Bg D exp.a2D/I Bm D
�

I � a2D
m

	�m
(8.2)

where I is the identity operator, a is a scaling parameter and m is a positive
integer. Since D has a non-positive spectrum whose larger eigenvalues correspond
to the smaller-scale eigenvectors, the operators Bg and Bm are positive-definite and
suppress small-scale variability. Both types of BEC models (8.2) are extensively
used in geophysical applications. Numerically, they are implemented by integration
of the diffusion equation using either explicit (in the case of Bg Derber and Rosati
1989; Egbert et al. 1994; Weaver et al. 2003) or implicit (in the case of Bm Ngodock
et al. 2000; Di Lorenzo et al. 2007) integration schemes.

A disadvantage of the BEC models (8.2) is that there is a limited freedom in
the shape of local CFs, which have either the shape of the Gaussian bell (Bg) or
provide its mth-order strictly positive approximations (Bm) (Xu 2005; Yaremchuk
and Smith 2011). In order to allow negative correlations, one has to consider
operators generated by the arbitrary polynomials in D. The quadratic polynomial
case was studied recently by Hristopulos and Elogne (2007, 2009) and Yaremchuk
and Smith (2011), who obtained analytic representations of the CFs and derived
relationships between the polynomial coefficients and the spectral parameters of B
in the homogeneous case.

In a more realistic inhomogeneous setting, the diffusion tensor varies in space,
making analytic methods inapplicable. Nevertheless, they can still give a reasonable
guidance for quick estimation of the diagonal elements of B (normalization factors),
whose values are crucial for constructing the BEC models. The importance of
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accurately computing diagB is evident from the fact that the operators B under
consideration are formulated numerically as multiplication algorithms by the
matrices, whose elements are not explicitly known. On the other hand, since the
BEC operator C is represented numerically by the correlation matrix, it must have
a unit diagonal and, therefore, knowledge of the diagonal elements of B is required
for renormalization:

C D .diagB/�1=2B.diagB/�1=2 (8.3)

Equation (8.3) shows that the considered BEC models involve two separate
algorithms: one for computing the action of B and another for estimating the
normalization factors .diagB/ that are necessary for computing the action of
.diagB/�1=2.

Purser with coauthors (Purser et al. 2003; Purser 2008a,b) were among the first to
employ analytic methods for estimating the normalization factors for the Gaussian
operator Bg in geophysical applications. Somewhat earlier, an asymptotic technique
was developed for estimating the diagonal of the Gaussian kernel in Riemannian
spaces to study quantum effects in general relativity (e.g., Gusynin and Kushnir
1991; Avramidi 1999). These ideas can be utilized to derive a useful algorithm for
estimating the normalization factors.

In this chapter, we first give an overview of the recent developments in construct-
ing the D-operator BEC models, and illustrate their major features with the examples
in the homogeneous case � D const. In particular, in Sect. 8.2.2, the relationships
between the scaling parameters for the Gaussian model and its mth-order approxi-
mation (8.2) are obtained and the respective CFs are given. In Sect. 8.2.3 the inverse
binomial model is extended to an arbitrary polynomial of D: Expressions for the
CFs and normalization factors are derived, and relationships are established between
the structure of the BEC spectrum and the polynomial coefficients. In Sect. 8.3,
after a brief overview of the diagonal estimation methods, a heuristic formula for
computing diagBg is derived (Sect. 8.3.2) and then tested numerically against other
methods in a set of realistic oceanographic applications (Sects. 8.3.3–8.3.5). Results
of similar tests with the Bm model are also presented. Summary and discussion of
the prospects for the D-operator BEC modeling complete the chapter.

8.2 Diffusion Operator and Covariance Modeling

The convenience of the diffusion operator (8.1) for constructing the BEC models
can be explained by the non-negative spectrum of �D: An operator that is generated
by a positive rational function F of �D whose eigenvalues tend to zero at large
wavenumbers, is positive-definite and has a smoothing property, i.e. tends to
suppress high-frequency components of the solution. In this section we consider
two types of such functions: Those that are generated by the mth-order binomials
(Sect. 8.2.2) and the others by the inverse of a positive polynomial (Sect. 8.2.3). To
allow analytical treatment, anisotropic homogeneous case in the boundless domain
is considered.
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The benefit of analytical consideration is its ability to reveal local correlation
structure and therefore provide a reasonable guidance to construction of more
general operators B. In addition, as it has been shown recently, good approximations
to diagB can be obtained by using analytical results obtained with the homogeneous
versions of B (e.g., Purser et al. 2003; Mirouze and Weaver 2010; Yaremchuk
and Carrier 2012). Therefore, analytical formulas describing homogeneous BEC
operators are of significant practical interest. The analytical results may facilitate
practical design of the cost functions in variational data assimilation problems,
because they give explicit relationships between the shape of the local CFs and the
structure of the corresponding BEC operator.

8.2.1 Correlation Functions and Normalization

Consider an anisotropic, homogeneous diffusion operator (8.1) in R
n; n D 1; : : : ; 3,

with x 2 R
n representing points in the physical space. By using the coordinate

transformation x0 D ��1=2x, the problem can be reduced to considering isotropic
operators of the form

B D F.��/; (8.4)

where� is the Laplacian (e.g., Xu 2005; Hristopulos and Elogne 2007) and F is an
arbitrary positive function. In the case of an inhomogeneous diffusion (� ¤ const)
the global transformation cannot be found. Transformations of this type, however,
can be used locally for constructing B and the normalization factors (Sect. 8.3).
All of the formulas that are written below are assumed to be in the transformed
coordinates x0 with primes omitted to simplify the notation.

The operator (8.4) is diagonalized with the Fourier transform, and the diagonal
elements are B.k/ D F.k2/ where k is the Fourier coordinate (wavenumber).
Because of homogeneity, the matrix elements of B in the x-representation depend
only on the distance r D jxj from the diagonal. They can be computed by applying
the inverse Fourier transform to B.k/:

Bn.x/ D .2/�n
Z

Rn

B.k/ exp.�ikx/dk: (8.5)

By integrating over the directions in R
n (Appendix 1), (8.5) can be reduced to

Bn.r/ D .2/�n=2
1Z

0

B.k/kn�1.kr/sJ�s.kr/dk (8.6)

where k � jkj, J denotes the Bessel function of the first kind, and s D 1 � n=2.
The respective matrix elements of the correlation operator (CFs) are obtained by
normalization:

Cn.r/ D Bn.r/=Bn.0/ (8.7)
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In practical applications, the diffusion operator is not homogeneous, and the analytic
representations (8.6) and (8.7) cannot be obtained. However, the action of B on
a state vector can be computed numerically at a relatively low cost. The major
problem with such modelling is the efficient estimation of the diagonal elements

Bn.x; x/ �
Z

Rn

Bn.x; y/ı.x � y/dy (8.8)

which are necessary to rescale B to have its diagonal elements equal to unity. In
practice, the rescaling factors Nn.x/ are defined as reciprocals of Bn.x; x/.

Computing the integral (8.8) numerically is expensive, because the convolutions
with the ı-functions have to be performed at all points x of the numerical grid.
However, reasonable approximations (Purser et al. 2003; Yaremchuk and Carrier
2012) for Nn.x/ can be obtained by using asymptotic expansions of (8.8) under the
assumption of weak inhomogeneity (see Sect. 8.3).

8.2.2 The Gaussian Model and Its Binomial Approximations

The Gaussian-shaped correlation model is widely used in geophysical applications.
Numerically, it is implemented by approximating exp.a2D=2/ with the binomial:

Bg.D/ D exp.
a2D
2
/ �

�
I C a2D

2m

	m
; (8.9)

where m is a large positive integer. This numerical approach is often referred to
as “integration of the diffusion equation” and has been used in practice for several
decades (Derber and Rosati 1989; Egbert et al. 1994; Weaver et al. 2003; Di Lorenzo
et al. 2007). There is, however, a certain disadvantage associated with the numerical
stability of the integration: The number of “integration time steps”m has to be large
enough for the eigenvalues of the binomial operator in the rhs of (8.9) to be less than
1 in the absolute value. This constraint may limit m from below by a large value,
which can make the computation rather expensive.

Another option is to use a different approximation in (8.9):

Bm.D/ D
�

I � a2D
2m

	�m
: (8.10)

The eigenvalues of the operator in the rhs of (8.10) do not exceed 1, and the
“integration procedure” is unconditionally stable. This approach is often referred
to as “implicit integration of the diffusion equation” (see Appendix 2). and has been
used in many practical applications as well (Ngodock et al. 2000; Di Lorenzo et al.
2007; Carrier and Ngodock 2010).
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In the Fourier representation both models (8.9) and (8.10) approximate the same
Gaussian function of k:

Bn
e .k/ D

�
1 � a2k2

2m

�m
� exp.�a

2k2

2
/ (8.11)

Bn
m.k/ D

�
1C a2k2

2m

��m
� exp.�a

2k2

2
/ (8.12)

Since the value of m in (8.11) is fairly large in practice, the resulting CF is hardly
distinguishable from a Gaussian-shaped curve with a half-width a.

Substituting (8.12) into (8.6), integrating over k, and normalizing the result by
Bn
m.0/ yields the CFs of the Matern family (Stein 1999) enumerated by s D m�n=2

and scaled by a� D a=
p
2m:

Cn
m.�/ D �sKs.�/

2s�1� .s/
; (8.13)

where � D r=a�, � is the gamma-function and K stands for the modified
Bessel function of the second kind (Abramowitz and Stegun 1972). The respective
normalization factors are

Nn
m D

p
� .m/

� .m � 1=2/!na
n� (8.14)

where !1 D 2, !2 D 2 , and !3 D 4 . In the limiting case of m ! 1, the CFs
(8.13) take the Gaussian form:

Cn1 D exp.�r2=2a2/I n D 1; :: (8.15)

Consecutive approximations of the Gaussian CF by (8.13) are shown in Fig. 8.1. It
is remarkable that when m D 1, the CFs (8.13) have singularities at � D 0 in both
two and three dimensions (see also Table 8.1). This means that in the continuous
case the first-order approximations become invalid when n > 1. Numerically,
however, the CFs do exist for n > 1, but their decorrelation scale is limited by
the grid size ı (the corresponding CF is shown by the dotted line in the left panel
of Fig. 8.1). This occurs because the numerical analogue of the ı-function is never
singular, but has a finite amplitude inversely proportional to the volume of a grid
cell, therefore, resulting in a finite value of the convolution (8.8) even if it is infinite
in the continuous case. After normalization by that finite value, the CF is 1 at r D 0,
but its effective decorrelation scale remains proportional to the local grid size.

The left panel in Fig. 8.1 shows that low-order binomial approximations (8.13)
underestimate the decorrelation scale a of the target Gaussian function. This
unpleasant property can be corrected by optimizing the value of a in (8.10) to obtain
the best fit with the Gaussian CF. Since the Gaussian and its approximating functions
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Fig. 8.1 Left: Binomial approximations (8.13) of the Gaussian CF in two dimensions (n D 2).
The CF for m D 1 is shown by the dotted line for the numerical realization with the grid step
ı D a=4. Middle: Same approximations, but with optimally adjusted correlation radii for various
combinations of m and n. Right: Differences between the Gaussian CF and its approximations
shown in the middle panel. The horizontal axes are scaled by a

are both positive and have similar shapes, a reasonable optimization criterion is to
set their integral decorrelation scales equal to each other:

1Z

0

C n
m.�/dr� aoptp

2m

1Z

0

C n
m.y/dyD

1Z

0

exp.� r2

2a2
/drD

p
ap
2
: (8.16)

Expression (8.16) shows that aopt D �nma, where the rescaling coefficient �nm is
defined as:

�nm D p
m

2
4

1Z

0

C n
m.y/dy

3
5

�1

D � .s/

� .s C 1=2/

p
m: (8.17)

The values of �nm for m; n < 4 and their respective approximation errors

enm D
1Z

0

jCn
m � C1jdr=Œ

1Z

0

jC1jdr�

are assembled in Table 8.1.
The coefficients �nm along with relationship (8.12) provide an expression for

estimating the scaling parameter in the binomial model (8.10) which approximates
the Gaussian-shaped CF with a given radius a:

abinom D �nma=
p
2m (8.18)



184 M. Yaremchuk et al.

Table 8.1 Correlation functions associated with the power approximations (8.10) of the Gaussian
CF in n dimensions. The CFs for n D 1 and 3 are rewritten in terms of elementary functions
for convenience. The correlation radius adjustment coefficients �nm are shown below the formulas
together with the corresponding relative errors enm in approximation of the Gaussian CF (bold
numbers)

n D 1 n D 2 n D 3

m D 1 exp.��/ K0.�/ exp.��/=�p
 0.33 — —

m D 2 .1C �/ exp.��/ �K1.�/ exp.��/p
=2 0.13

p
8= 0.19

p
2 0.33

m D 3 .1C �C �2=3/ exp.��/ �2K2.�/=2 .1C �/ exp.��/p
27=8 0.08

p
16=3 0.10

p
3=4 0.13

8.2.3 The Inverse Polynomial Model

A certain disadvantage of the binomial models (8.9) and (8.10) is their inability to
represent oscillating CFs whose spectra may have multiple maxima. This issue can
be overcome by considering the BEC models of the form:

B D
2
4I C

JX
jD1

ajDj

3
5

�1

(8.19)

Here aj are the real numbers, constrained by the positive definiteness requirement
of B. In the Fourier representation, the operator (8.19) acts as multiplication by the
inverse of the polynomial in k2, and the positive-definiteness property translates into
the requirement that the spectral polynomial

B�1.k2/ D 1C
JX
jD1

aj .�k2/j (8.20)

should be positive for all k2 > 0. This constraint is equivalent to the statement that
the rhs of (8.20) must not have real positive roots. Therefore, B�1.k2/ can also be
represented in the form

B�1.k2/ D 1

Z

MY
mD1

.k2 C z2m/.k
2 C Nz2m/; (8.21)

whereM D J=2,
Z D

Y
m

jz2mj2; (8.22)
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the overline denotes the complex conjugate, and zm D am C ibm are arbitrary
complex numbers with Im.z2m/ ¤ 0. In its general form, the polynomial (8.21) is
additionally multiplied by the product of the arbitrary number of real negative roots
(bm D 0). The ensuing analysis of (8.21) will be simplified by omitting the product
(summation) limits overm and assuming there are no real negative or multiple roots.
The latter requirement is not restrictive in practice, because location of the roots is
never known exactly, and the BEC spectrum can always be well approximated by
(8.21) (Yaremchuk and Sentchev 2012).

It is instructive to note that the polynomial (8.21) can also be rewritten as

B�1.k2/ D 1

Z

MY
mD1

.a2m C .k � bm/2/.a2m C .k C bm/
2/; (8.23)

Compared to the spectral representation (8.20), representation (8.23) has the
advantage that its free parameters are not constrained by the positive-definiteness
requirement, and they have a sensible meaning of the scales (b�1) and “energies”
(a�1) of the modes forming the spectrum.

Using (8.6), the matrix elements of B can now be written as

Bn.r/D Zr�s

.2/
n
2

1Z

0

ksC1Js.kr/dkQ
m

.k2 C z2m/.k
2 C Nz2m/

; (8.24)

where s D n=2 � 1. The integral in (8.24) can be taken by decomposing

B.k/ D ZQ
m

.k2 C z2m/.k
2 C Nz2m/

(8.25)

into elementary fractions:

B.k/ D
X
m

�
qm

k2 C z2m
C Nqm
k2 C Nz2m

�
; (8.26)

where

qm D Z

.Nz2m � z2m/
Q
j¤m

.z2m � z2j /.z
2
m � Nz2j /

(8.27)

After substitution of (8.26) into (8.24), the integral is reduced to the sum of
Hankel-Nicholson type integrals (Abramowitz and Stegun 1972) and can be taken
explicitly, yielding

Bn.r/D 2r2�n

.2/
n
2

X
m

hqm�smKs.�m/i (8.28)

where �m D zmr , and angular brackets denote taking the real part (cf. (8.13)).
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Fig. 8.2 Two-parameter CFs corresponding to the inverse BEC (8.21) with a D 1;M D 1. The
horizontal axis is scaled by a. Dotted lines show CFs corresponding to the special case with two
negative roots k21 D �a; k22 D �b not described by the spectral polynomial (8.21)

The corresponding correlation functionsCn.r/ are obtained through normalizing
(8.28) by Bn.0/. The first three values at r D 0 are

B1.0/ D
X
m

hqmNzmijzmj�2 (8.29)

B2.0/ D � 1


X
m

hqm log zmi (8.30)

B3.0/ D � 1

2

X
m

hqmzmi (8.31)

The normalization factors can be found by integrating Cn.r/ over Rn:

Nn D 2

Bn.0/

X
m

hqmNz2mi
jzmj4 (8.32)

Relationships (8.28)–(8.32) provide analytical expressions for the CFs and the
normalization factors.

In the important case of the quadratic polynomial (M D 1) the BEC model
is defined by two parameters a; b (Fig. 8.2). Expressions for the respective CFs in
1- and 3-dimensional cases can be rewritten in terms of the elementary functions
(Yaremchuk and Smith 2011; Yaremchuk and Sentchev 2012)

C1.a; b; r/D
p
a2 C b2

b
exp.�ar/ cos.br � arctan

a

b
/ (8.33)

C3.a; b; r/ D exp.�ar/ sin.br/

br
(8.34)

and the normalization factors are given by

N1D 4a

a2 C b2
I N2D 8ab

2.a2 C b2/2arctan.b=a/
I N3D 8a

.a2 C b2/2
(8.35)
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Fig. 8.3 An example of the normalized spectrum (left) and the respective
correlation function (right) for the fourth-order polynomial (8.26) in two dimensions
(M D 2I z1 D :5C 3i I z2 D :2C 6i )

In practical applications, a BEC model is often constructed by fitting the spectral
(8.25) or correlation (8.28) functions to those derived from experimental data.
These functions are characterized by 2m parameters which give enough freedom for
approximating complex spectra. The approximation procedure can be formulated as
a least squares problem in 2m dimensions, which may be rather difficult to solve due
to the non-linearity ofB with respect to the fitting parameters am and bm. Therefore,
it is useful to have guidance on how the BEC model parameters are related to the
scales and amplitudes of the physical modes that contribute to the experimental
spectrum (Fig. 8.3).

The contribution of the mth mode to the spectrum can be assessed by integrating
the right hand side of (8.26):

Em D
1Z

0

�
qm

k2 C z2m
C Nqm
k2 C Nz2m

�
dk D hqmNzmi

jzmj2 (8.36)

In the limit when distances jbl�bmj between the spectral peaks of B are much larger
than their half-widths am, (i.e. am=bm � 0 in particular), (8.36) can be simplified
using the asymptotic approximations

zm � ibmI qm � b3m
4iam˘m

I ˘m �
Y
j¤m

.1� b2m=b
2
j /
2

to yield

Em � b2m
4am˘m

: (8.37)

Asymptotic values of the spectral density at the peaks are respectively

B.bm/ � b2m
4a2m˘m

D Em

am
; (8.38)
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i.e. the peak amplitudes are inversely proportional to b2m and to the square of the
mode scale a�1

m . Expressions (8.36)–(8.38) can be useful in generating the first guess
values for zm to initialize an iterative procedure of approximating experimental data.

After the model parameters are established, the action of B�1 can be computed
recursively (cf. (8.21) and (8.22)):

B�1 D
Y
m

�
I � jz2mj�2D.2hz2miI � D/

�
(8.39)

The inverse BEC model (8.39) can then be employed to compute either the action
of B with an iterative inversion algorithm or to directly compute the gradient of
a 3dVar cost function involving the quadratic form xTB�1x, where x is the state
vector.

The above analysis gives an insight on the shape of the local CFs and provides a
direct connection between the scales described by B and the polynomial coefficients
of the considered BEC models (8.9), (8.10), (8.25) or (8.39). The second important
ingredient in constructing the BEC operator C (8.3) is estimating the diagonal
elements of B, which is a more technical but equally important problem.

8.3 Diagonal Estimation

8.3.1 Stochastic Methods

In the last few decades a large family of stochastic algorithms were developed for
estimating elements and traces of extra-large matrices emerging from numerical
soluitons of the PDEs in applied physics (e.g., Girard 1987; Dong and Liu 1994;
Hutchison 1989). Weaver and Courtier (2001) were among the first to use this
approach in geophysical applications for estimating the diagonal of the operator
(8.9).

The underlying idea is to define an ensemble of K random vectors sk on
the model grid and perform componentwise averaging of the products Qs D Bs
according to the formula:

Qd.x/ D s ˇ Qs ˛ s ˇ s; (8.40)

where the overline denotes averaging over the ensemble and ˇ, ˛ stand for the
componentwise multiplication and division of the vectors respectively. Simple
considerations show that when all the components of s have identical ı-correlated
distributions with zero mean, the contributions to Qd from the off-diagonal elements
tend to cancel out, and Qd converges to d D diagB asK ! 1. More accurately, the
squared relative approximation error

"2.x/ D . Qd � d/2=d2 (8.41)
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is inversely proportional to the ensemble size K . In other words, one may expect to
achieve 10 % accuracy at the expense of approximately 100 multiplications by B if
the first ensemble member gives a 100 % error. This estimate may seem acceptable
since in geophysical applications the BE variances are usually known with limited
precision and approximating the diagonal with 5–10 % error seems satisfactory.

The above described Monte-Carlo (MC) technique was developed further by
Bekas et al. (2007), who noticed that the method may converge to d in the finite
number of iterations that equals to the matrix dimension N if the ensemble vectors
are mutually orthogonal. An easy way to construct such an ensemble is to draw the
vectors sk from the columns of theN �N Hadamard matrix (HM), which span the
model’s state space (see Appendix 3).

In the numerical experiments below we use MC and HM techniques as testbeds
for the diagonal estimation methods which can be derived from analytical consider-
ations and take into account prior knowledge of the structure of B.

8.3.2 Locally Homogeneous Approximations

Consider homogeneous (� D const) operators (8.2) with a2 D 1=2 and assume
that the coordinate axes are aligned along the eigenvectors of the diffusion tensor,
whose (positive) eigenvalues are �2i ; i D 1; ::; n. Then the matrix elements of Bg;m

can be written down explicitly as

Bg.x; y/ D exp.D=2/ D d exp

���2
2

�
(8.42)

Bm.x; y/ D .I � D=2m/�m D d
N�sKs. N�/
2s�1� .s/

(8.43)

where

� D
q
.x � y/T��1.x � y/

is the distance between the correlated points (measured in terms of the smoothing
scales �i ), d D .2/�n=2˝�1 are the (constant) diagonal elements of Bg;m, ˝ D
˘�i D p

det� is the diffusion volume element, and N� D p
2m�.

When � varies in space, (8.42) and (8.43) are no longer valid, and the diagonal
elements d depend on x and the type of the B operator. However, if we assume that
� is locally homogeneous (LH), i.e. varies in space on a typical scale L which is
much larger than �i , the diagonal elements d.x/ can be expanded in the powers of
the small parameter � D N�=L, where N� is the mean eigenvalue of

p
�. The zeroth-

order LH approximation term (LH0) is apparently

d0.x/ D .2/�n=2˝.x/�1 (8.44)
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because for infinitely slow variations of � (L ! 1), the normalization factors
must converge to the above expression for the constant diagonal elements d . It is
noteworthy that the formula (8.44) is found to be useful even in the case of strong
inhomogeneity � � 1. In particular, numerical experiments of Mirouze and Weaver
(2010) have shown that such an approximation provided 10 % errors in a simplified
1d case.

The accuracy of (8.44) can formally be increased by considering the next
term in the expansion of the diagonal elements of Bg;m. The technique of such
asymptotics has been well developed for the diagonal of the Gaussian kernel (8.42)
in Riemannian spaces (e.g., Gusynin and Kushnir 1991; Avramidi 1999). More
recently, the approach was considered by Purser (2008a,b) in the atmospheric data
assimilation context. The application of this technique to the diffusion operator (8.1)
in flat space yields the following asymptotic expression for the diagonal elements
of Bg in the local coordinate system where �.x/ is equal to the identity matrix, and
D takes the form of the Laplacian operator:

Bg.x; x/ D 1

.2/n=2

�
1 � 1

2
trh � 1

12

�
�

2
trh C r� divh

	�
CO.�5/ (8.45)

Here h is a small (jhj 
 �) correction to � within the vicinity of x. Note that the
terms in the parentheses have the order O.�3/, because each spatial differentiation
adds an extra power of �.

The asymptotic estimate (8.45) involves second derivatives which tend to amplify
errors in practical applications when � may not be small. Therefore, using (8.45)
in its original form could be inaccurate even at a moderately small value of �. To
increase the computational efficiency, it is also desirable to formulate the first-order
approximation as a linear operator, which acts on d0.x/. Keeping in mind that jhj 

�, and utilizing the relationships:

d0.x/ D .2/�n=2˝.x/�1 � .2/�n=2
�
1 � 1

2
trh
	

(8.46)

exp.�=2/ � I C 1

2
�; (8.47)

the second term in the parentheses of (8.45) can be represented as follows:

r� divh D 1

n
�trh C r� divh0 (8.48)

where h0 is the traceless part of h. On the other hand, if the divergence of h0 is
neglected, the (8.45) can be rewritten in the form

Bg.x; x/ � 1

.2/n=2

�
1C �n

�

2

	�
1 � 1

2
trh
	

(8.49)
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where

�n D 1

6
C 1

3n
: (8.50)

Taking (8.46) and (8.47) into account and replacing � by D, the desired ansatz for
the first-order approximation (LH1) of the diagonal elements is obtained:

d1g D exp

�
�n

D
2

	
d0g (8.51)

The relationship (8.51) was derived by Purser et al. (2003) for the one-dimensional
case (�1 D 0:5) and tested by Mirouze and Weaver (2010), who reported a
significant (2–4 times) improvement of the accuracy in 1d simulations.

An estimate similar to (8.51) can also be obtained for Bm, possibly with a
different coefficient Q�n. It is assumed, however, that Q�n may not differ too much
from �n given similarity in the shapes (Fig. 8.1) of the correlation functions (8.42)
and (8.43). Furthermore, because of the approximate nature of (8.51), the best
representation of d.x/ in realistic applications may be achieved with a value of �n
that ts significantly different from the one given by (8.50). For this reason, a more
general form of (8.51) was adopted in the numerical experiments, assuming

d1g.x/ � exp Œ�D=2�d0g.x/I d12.x/ � ŒI � �D=4��2 d02.x/ (8.52)

for the Gaussian model and its second-order (m D 2) spline approximation (8.10).
The following experiments investigate the dependence of the respective approx-

imation errors h"g;2i on the free parameter � .

8.3.3 Numerical Results

To assess the efficiency of the methods outlined in Sects. 8.3.1 and 8.3.2, two
series of numerical experiments with realistically inhomogeneous BEC models are
performed. In the first series the methods were tested in the 2d case with the state
vector having a dimension of several thousand. In the second series, the LH0 and
LH1 techniques are examined in a realistic 3d setting with a state space dimension
of N 
 106.

8.3.3.1 Experimental Setting in 2d

The state space is described by scalar functions defined on the orthogonal curvilinear
grid of the Navy Coastal Ocean Model (NCOM) (Martin et al. 2008) set up in
the Monterrey Bay (Fig. 8.4). The number N of grid points (dimension of the
state space) was 3,438. A vector field u.x/ was used to generate the diffusion
tensor as follows. The smaller principal axis �2 of

p
� is set to be orthogonal
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Fig. 8.4 Left: A composite map of five columns of the Bg operator. White circles denote locations
of the diagonal elements of the corresponding correlation matrices. Right panel shows the map of
the non-normalized diagonal elements of Bg . Depth contours are in meters

to u with the corresponding “background” length scale �2 D 3ı, where ı.x/ is
the spatially varying grid step. The length of the larger axis �1 is set to be equal to
max.1;

pjuj=u/�2, where u is a prescribed threshold value of juj. If u is a velocity
field, then a structure like this simulates enhanced diffusive transport of model errors
in the regions of strong currents on the background of isotropic error diffusion with
the decorrelation scale �2.

In the 2d experiments, the vector field u is generated by treating bottom
topography h.x/ (Fig. 8.4) as a stream function. The threshold value v was taken
to be one-fifth of the rms variation of jrhj over the domain.

All the experiments described in the next two sections are performed using the
BEC models (8.42) and (8.43) with the parameters n D m D 2. A composite map of
five columns of Bg is shown in Fig. 8.4a. The diffusion operator (8.1) is constrained
to have zero normal derivative at the open and rigid boundaries of the domain in
both 2d and 3d experiments.

Numerically, the action of Bg on a state vector y0 was evaluated by explicitly
integrating the corresponding diffusion equation yt D D=2y for the virtual “time
period” defined by �, starting from the “initial condition” y0. The minimum number
of “time steps” required for the scheme’s stability in such a setting was 5,256. The
action of B2 was computed by solving the system of equations .I � D=4/2y D y0
with a conjugate gradient method. The number of iterations, required for obtaining
a solution, varied within 2,000–2,500. To make the shapes of the Bg and B2

compatible (Fig. 8.1), the diffusion tensor in B2 was multiplied by 8= (see
Table 8.1).

The exact values d.x/ of the diagonal elements are shown in Fig. 8.4b. Their
magnitude appears to be lower in the regions of “strong currents” (large u), as
the corresponding ı-functions are dispersed over larger areas by diffusion. d.x/
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Fig. 8.5 (a) reduction of the domain-averaged diagonal estimation error h"i with iterations for the
HM (black) and MC (gray) methods for the B2 model. The lower curves are obtained after optimal
smoothing of the estimates. The thin horizontal lines show the error levels that are provided by
the asymptotic zeroth- (h"i D 0.17) and first-order (h"i D 0.10) methods which do not require
iterative schemes. (b) Horizontal distribution of �.B2/ after 60 iterations of the HM method with
smoothing

are higher near the boundaries because part of the domain available for dispersion
is screened by the condition that prescribes zero flux across either open or rigid
boundaries.

8.3.3.2 Statistical Methods

The MC method is implemented in two ways: In the first series of experiments, the
components of sk are taken to be either 1 or �1 with equal probability. In the second
series they are drawn from the white noise on the interval [�1, 1]. The residual error
" is computed using (8.41). In both series, the rates of reduction of " with iteration
k are similar and closely follow the

p
k law (upper gray line in Fig. 8.5a).

To improve the accuracy, the MC estimates are low-pass filtered with the
corresponding B-operators at every iteration (Fig. 8.5b). To optimize the filter,
the diffusion operators in Bg;2 are multiplied by the tunable parameter � , which
effectively reduced the mean decorrelation (smoothing) scale ��1=2 times. The
lower lines in Fig. 8.5a demonstrate the result of such optimal smoothing: this
procedure resulted in an almost four-fold reduction of the domain-averaged error
h"i to 0.16 after performing 60 iterations (averaging over 60 ensemble members).

Experiments with the HM method (black curves in Fig 8.5a) show that horizontal
smoothing significantly improves the accuracy of the estimates, especially after the
first few dozens of iterations. Comparison with the MC method (gray curves in
Fig. 8.5a) demonstrates a noticeable advantage of the HM technique (black curves),
which remains visible at higher iterations k > 100 even after smoothing (lower
curves). This advantage increases with increasing iterations for two reasons: The
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Fig. 8.6 Diagonal approximation errors under the zeroth-order (a), and first-order (b) LH methods
for the Bg model. The thin black line inside the boundaries shows the domain of error averaging

HM method converges faster than k�1=2 by its nature, whereas the efficiency of
smoothing (targeted at removing the small-scale error constituents) degrades as the
signal-to-noise ratio of the diagonal estimates increases with the iteration number k.

From the practical point of view, it is not reasonable to do more than several
hundred iterations, as h"i drops to the value of a few per cent (Fig. 8.5a), which
is much smaller than the accuracy in the determination of the background error
variances. It can therefore be concluded that it is advantageous to use the HM
technique, when making more than a 100 iterations is computationally affordable.

8.3.3.3 Asymptotic Expansion Method

Since the principal axes of the diffusion tensor at every point are defined by con-
struction, computation of the zeroth-order approximation (8.44) to the normalization
factors is not expensive. Near the boundaries, however, the factors described by
(8.44) have to be adjusted by taking into account the geometric constraints imposed
on the diffusion. This adjustment was computed for points located closer than 3�1
from the boundary and it was assumed that the boundary had negligible impact on
the shape of the diffused ı-function (Yaremchuk and Carrier 2012).

Figure 8.6 demonstrates the horizontal distribution of the error ".x/ obtained by
approximating the diagonal elements of Bg with (8.44) (zeroth-order LH method,
or LH0) and with (8.51), (the first-order LH method LH1). Despite an apparent
violation of the LH assumption in many regions (e.g., �1 changes from 20ı to the
background value of 3ı at distances L 
 5 � 6ı < �1 across the shelf break), the
mean approximation error of the diagonal elements appears to be relatively small
(19 %) for the LH0 method, with most of the maxima confined to the regions of
strong inhomogeneity (Fig. 8.6a). The next approximation (Fig. 8.6b) reduces h"i to
9 %. Numerical experiments with the B2 model have shown similar results (16 and
10 % errors).
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Table 8.2 Relative CPU
times required by the MC and
HM methods to achieve the
accuracies h"i of the LH0 and
LH1 methods (shown in
brackets)

MC/LH0 MC/LH1 HM/LH0 HM/LH1

Bg 755 1205 680 520
(0.19) (0.09) (0.19) (0.09)

B2 780 490 850 330
(0.17) (0.10) (0.17) (0.10)

Another series of experiments are performed with the varying scaling parameter
� to find an optimal fit to d. Computations were made for 0 � � � 1. The
best result for Bg was obtained for �2 D 0:30 which is fairly consistent with the
value (�2 D 0:33) given by (8.50). In the case of the B2 operator, the optimal
value is �2 D 0:24, still in a reasonable agreement with (8.50), given the strong
inhomogeneity of � and deviation of the B2 operator from the Gaussian form. A
somewhat smaller value of �2.B2/ can be explained by the sharper shape of the
respective correlation function at the origin (Fig. 8.1), which renders d0 to be less
dependent on the inhomogeneities in the distribution of �, and, therefore, requires
less smoothing in the next approximation.

8.3.4 Numerical Efficiency

Table 8.2 provides an overview of the performance for the tested methods. For
comparison purposes we show CPU requirements by the smoothed MC and HM
methods after they achieve the accuracies of the LH0 and LH1 methods. It is
seen that both MC and HM methods are 300–1,000 times more computationally
expensive than the LH technique. In fact, for the 2d case considered, the compu-
tational cost of the stochastic diagonal estimation method is similar to the cost of
the 3dvar analysis itself, which required several hundred iterations. The remarkable
CPU savings are due to the fact that the LH methods explicitly take into account
information on the local structure of B which can be derived by analytical methods.
Comparison of the spatial distributions of the approximation error h"i.x/ (Figs. 8.5b
and 8.6b) favor the LH methods as well: They show significantly less small-scale
variations and may have a potential for further improvement. Comparing Figs. 8.5b
and 8.6b also shows that, in contrast to the statistical methods, LH0 errors tend
to increase in the regions of strong inhomogeneity, but decrease substantially after
smoothing by the LH1 algorithm. At the same time, the LH1 errors tend to have
relatively higher values near the boundaries. The effect is less visible in the HM
pattern (Fig. 8.5b). This feature can be partly attributed to certain inaccuracy in
estimation of the near-boundary elements. However, there is certainly room for
further improvement with the issue.
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8.3.5 LH Experiments in 3d Setting

To check the performance of the LH0 and LH1 methods further, a larger 3d NCOM
domain is set up in the Okinawa region (Fig. 8.7) with horizontal resolution of 10 km
and 45 vertical levels. The state vector dimensionN (total number of the grid points)
in this setting was 862,992.

Because of the large N , it is computationally unfeasible to directly compute all
the diagonal elements of the BEC matrix. Therefore, accuracy checks are performed
on a subset of 10,000 points, randomly distributed over the domain and the value of
h"i is estimated by averaging over these points.

The diffusion tensor is constructed in the same way that is described in
Sect. 8.3.1, but the generating field u.x/ is taken to be the horizontal velocity field
from an NCOM run. The value of �3 (in the vertical direction) is independent of
horizontal coordinates, but varies in the vertical as 3ız, where ız is the vertical
grid step. Figure 8.7 illustrates spatial variability of the Bg diagonal elements at
z D 20m. The smallest values are observed in the regions of the Kuroshio and
the North Equatorial Current, where the largest velocities are observed, and the
˝ D p

det� reaches its largest values (8.44). To better test the algorithm, a relatively
small threshold value of v D 0:02m/s is prescribed, so that diffusion is anisotropic
in more than 90 % of the grid points.
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Figure 8.8 demonstrates the accuracy of LH0 and LH1 methods in such setting:
the LH0 method provides an accuracy of 9 % which is further improved to 6 % by
the LH1 scheme. The major improvement occurs in the regions where points with
highly anisotropic � neighbor isotropic points and reduce the diagonal elements
in the latter. The effect is reflected by the negative bias of the scatter plot at high
values of d0, which reaches its maximum of 0.0237 in the points with isotropic �

(Fig. 8.8a).
Figure 8.8c shows the dependence of approximation error " on the value of �3

for both correlation models. The best approximation is obtained at �3 D 0:26, a
value somewhat lower than suggested by the heuristic formula (�3 D 5=18 D 0:28,
dashed line). Similarly to the 2d case, the optimal value of �3.B2/ D 0:21 is less
than �3.Bg/, which is in agreement with the more rapid off-diagonal decay of the
B2 matrix elements.

In general, it appears that the relationship (8.50) provides a reasonable guidance
to the estimation of the smoothing parameter in the LH1 method. For the Bg model,
the operator acting on d0g can be implemented by either reducing the number of
“time steps” in integration of the diffusion equation ��1 times, or by ��1=2-fold
reduction of the decorrelation radius. For the B2 model only the second option is
applicable: it also reduces the number of iterations required for computing the action
of the B2 due to the decrease of the condition number.

8.4 Summary and Discussion

BEC modeling with the diffusion operator is an efficient and flexible tool for
evaluating matrix-vector products of large dimension which emerge in minimization
algorithms of variational data assimilation. In this chapter, we discussed two
major issues associated with this type of models: construction of a positive-definte
smoothing operator B as a rational function of D and the estimation of diagB.
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In Sect. 8.2 analytic relationships between the polynomial coefficients of B
and the parameters controlling the shape of correlation functions were derived.
Although only homogeneous operators in boundless domains were considered,
these relationships provide reasonable guidance to constructing more realistic BEC
operators, especially in cases when the typical scale of variability of the diffusion
tensor is much larger than the local decorrelation scale �c and/or most of the
observations are separated from the boundaries by distances, exceeding �c . In a
similar way, weak inhomogeneity can be introduced by variable coefficients zm.x/,
and the local CF shapes can be assessed using (8.13) and (8.28)–(8.31).

Similar issues have been recently studied by many authors (e.g., Xu 2005;
Hristopulos and Elogne 2007, 2009; Mirouze and Weaver 2010). In particular,
analytic formulas analogous to (8.33)–(8.35), were derived in somewhat differ-
ent setting by Hristopulos and Elogne (2007, 2009) who considered quadratic
polynomials of similar structure. Xu (2005) analyzed Taylor expansions of exp B
and obtained recursive relations for the polynomial coefficients associated with an
arbitrary CF. Mirouze and Weaver (2010) demonstrated a possibility to generate
oscillating CFs using higher-order polynomials in one dimension.

Relationships (8.28)–(8.32) generalize these results for the polynomial model
of an arbitrary order M . We assume, however, that the inverse quadratic model
(M D 1) is of major practical interest for two reasons. First, the BEC operators
that are encountered in GFD applications are rarely homogeneous and observational
statistics are usually insufficient to capture the details of the spatial variability of the
CFs. Therefore, experimental estimates of the BECs are either limited to low-rank
ensemble estimates or have to rely on the very rough assumption of homogeneity.
Needless to say, that in the latter case the structure of a sample CF should be
elaborated with sufficiently low detailization and be well accounted for by a two-
parameter BEC model (Fig. 8.2). The second reason is that the use of higher-order
polynomials considerably degrades the conditioning of the linear systems that are
being solved in the assimilation process and, therefore, may require sophisticated
preconditioners.

The second equally important aspect of the D-operator BEC modeling is the
computational efficiency of estimating the diagonal elements of B. Two types of
the BEC operators were considered: with the Gaussian-shaped kernel Bg and with
the kernel generated by the second-order binomial approximation to Bg. The tested
techniques include the “stochastic” MC and HM methods, which retrieve diagB
iteratively from its action on a sequence of model state vectors, and the “determinis-
tic” scheme based on the analytic diagonal expansion under the assumption of local
homogeneity of the diffusion tensor. The deterministic scheme was tested in two
regimes: the zeroth (LH0) and the first-order (LH1) approximations.

Numerical experiments conducted with realistic diffusion tensor models show
that: (a) the HM technique proves to be superior in efficiency compared to the
MC technique when accuracies of less than 10 % error (k > 100) are required;
(b) both stochastic methods require 300–1,000 times more CPU time to achieve the
accuracy, compatible with the most efficient LH1 method; (c) with the Gaussian
model, the LH1 method demonstrates the best performance with the value of the
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smoothing parameter � compatible with the one given by the relationship (8.50)
derived from the asymptotic approximation of the Gaussian kernel diagonal. In
deriving the ansatz (8.51) for the LH1 model, we followed the approach of Purser
et al. (2003), who proposed to smooth the zeroth-order diagonal by the square-root
of the BEC operator in the one-dimensional case. Using the asymptotic technique
for the heat kernel expansion, we obtained a formula for higher dimensions, and
tested its validity by numerical experimentation.

It should be noted that the formal asymptotic expansion (8.45) is local by
nature and tends to diverge in practical applications, where spatial variations of the
diffusion tensor may occur at distancesL comparable with the typical decorrelation
scale N�. To effectively immunize the expansion from the ill-effects of the abrupt
changes in �, we utilized a non-local empirical modification, still fully consistent
with the original expansion in the limit N�=L ! 0, but sufficiently robust with
respect to the numerical errors related to the high-order derivatives of �. A similar
technique was developed by Purser (Purser et al. 2003; Purser 2008a), who used
empirical saturation functions to stabilize higher-order approximations of the Bg .

In general, results of our experiments show high computational efficiency of the
LH1 scheme, whose total CPU requirements is just a fraction of the CPU time
required by the convolution with the BEC operator – a negligible amount compared
to the cost of a 3dVar analysis. Therefore, LH1 approximations to the BEC diagonal
may serve as an efficient tool for renormalization of the correlation operators in
variational data assimilation, as they are capable of reducing the error to 3–10 % in
realistically inhomogeneous BEC models.

A separate question, that requires further investigation, is the accurate treatment
of the boundary conditions. In the present study we assumed that boundaries affect
only the magnitude of the corresponding columns of B, but not their structure. This
approximation is only partly consistent with the zero normal flux conditions for D,
but can be avoided if one uses “transparent” boundary conditions (e.g. Mirouze and
Weaver 2010) which do not require computation of the adjustment factors. On the
other hand, it might be beneficial to keep physical (no-flux) boundary conditions in
the formulation of D, as they are likely to bring more realism to the dynamics of the
BE field.

Another important issue is parameterization of �.x/ using the background fields
and their statistics. In the simple diffusion tensor model used in the experiments,
anisotropic BE propagation is governed by the background velocity field and
superimposed on the small-scale isotropic BE diffusion, which takes place at
scales that are not well resolved by the grid (less than 3ı). More sophisticated
parameterizations of �.x/ are surely possible and require further studies. In par-
ticular, recent studies have shown that since �.x/ has only n.nC 1/=2 independent
components, it can be estimated from ensembles of moderate (
100n) size with
reasonable accuracy (Belo-Pereira and Berre 2006; Pannekoucke and Massart 2008;
Pannekoucke et al. 2008; Berre and Desroziers 2010). Finally, the considered
BEC models could also be effectively used for adaptive/flow-dependent covariance
localization (Bishop and Hodyss 2007, 2011; Yaremchuk and Nechaev 2013), which
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is an issue of crucial importance in improving the forecast skill of the state-of-the-art
data assimilation systems.
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Appendix 1

Let 	 be the angle between x and k in R
n and n > 2. Then the integral (8.5) can be

rewritten in spherical coordinates as

Bn.r/ D .2/�n
1Z

0

B.k/

Z

˝n�1

exp.�ikr cos 	/kn�1dk d˝n�1; (8.53)

where d˝n�1 is the element of the surface area of the unit sphere. Since cos 	
changes symmetrically within the limits of integration, the imaginary part of the
exponent vanishes. Furthermore, using the identity d˝n�1 D d˝n�2 � sinn�2 	d	 ,
the integral (8.53) can be rewritten as

Bn.r/ D .2/�n
1Z

0

B.k/kn�1dk
Z

˝n�2

d˝n�2
Z

0

cos.kr cos 	/ sinn�2	d	 (8.54)

Integration over 	 and substitution of the formula for the surface of .n � 2/-
dimensional unit sphere into (8.54) yields (8.6).

The general relationship (8.6) also holds for n D 1; 2 although these cases require
a special (less complicated) treatment.

Appendix 2

In practice, the matrix elements of the operator (8.10) are never calculated explicitly
due to the immense cost of such a computation. Instead, the result Oxm.x/ of the
action by B on a (discrete) model state vector Ox0.x/ is calculated by solving the
linear system of equations

�
I � OD=2m

m Oxm D Ox0; (8.55)

where OD denotes the discretized diffusion operator. If Ox0.x/ represents the “initial
state” and the “time step” ıt is prescribed such that the “integration time” ismıt D
1, then action of the operator (8.55) can be identified as a result of a discrete-time
integration of the diffusion equation @tx D D=2x with the implicit scheme
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Oxi � Oxi�1 D 1

2
ıt OD Oxi ; i D 1; : : : ; m (8.56)

starting from the initial state Ox0. Here i denotes the time step number.
Similarly, the action of exp.D=2/ is never computed by convolving a state vector

Ox0 with the discretized kernel (8.42), but rather by the discrete-time integration of
the diffusion equation with the explicit numerical scheme

Oxi � Oxi�1 D 1

2
ıt OD Oxi�1; i D 1; : : : ; m (8.57)

such that
Oxm D

�
I C OD=2m

m
x0 (8.58)

in correspondence with the asymptotic relation (8.9) for the Gaussian kernel Bg .

Appendix 3

By definition, a Hadamard matrix (HM) is a square matrix whose entries are either
1 or �1 and whose columns are mutually orthogonal. The simplest way to construct
HMs is the recursive Sylvester algorithm which is based on the obvious property: if
HN is an N �N Hadamard matrix, then

H2N D
�
HN HN

HN �HN

�

is also an HM. Starting from H2 D Œ1 1I 1 �1�, the HMs with order N D
2n; n D 1; 2 : : : can be easily constructed. HMs with N D 12; 20 were constructed
“manually” more than a century ago. A more general HM construction algorithm,
which employs the Galois fields theory, was found in 1933. In the present study we
used the MatLab software that only handles the cases when M=12, or M=20 is a
power of 2. Despite this restriction, the available values of M were sufficient for
purposes of this chapter.
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Chapter 9
The Adjoint Sensitivity Guidance to Diagnosis
and Tuning of Error Covariance Parameters

Dacian N. Daescu and Rolf H. Langland

Abstract Adjoint techniques are effective tools for the analysis and optimization
of the observation performance on reducing the errors in the forecasts produced
by atmospheric data assimilation systems (DASs). This chapter provides a detailed
exposure of the equations that allow the extension of the adjoint-DAS applications
from observation sensitivity and forecast impact assessment to diagnosis and tuning
of parameters in the observation and background error covariance representation.
The error covariance sensitivity analysis allows the identification of those param-
eters of potentially large impact on the forecast error reduction and provides a
first-order diagnostic to parameter specification. A proof-of-concept is presented
together with comparative results of observation impact assessment and sensitivity
analysis obtained with the adjoint versions of the Naval Research Laboratory
Atmospheric Variational Data Assimilation System – Accelerated Representer
(NAVDAS-AR) and the Navy Operational Global Atmospheric Prediction System
(NOGAPS).

9.1 Introduction

Advanced measurement capabilities and algorithms for operational retrieval of
atmospheric parameters from data acquired by remote sensing instruments have
increased at a fast pace the amount of information provided by the global observing
system (Thépaut and Andersson 2010; Lahoz 2010). As the data volume has
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increased tremendously, there is a growing gap between the ability to collect
information and the ability to optimally ingest it into numerical weather prediction
(NWP) models through data assimilation techniques. The high model resolution
and data density must be matched by an improved representation in the data
assimilation system (DAS) of the statistical properties of the errors in the prior
state estimate, model, and observations. Suboptimal information weighting poses a
fundamental limitation on the DAS performance and the development of structured
error covariance models for NWP applications and of computationally efficient
techniques for tuning of error covariance parameters are areas of active research
(Gaspari and Cohn 1999; Dee and Da Silva 1999; Lorenc 2003; Desroziers et al.
2005; Buehner et al. 2005; Chapnik et al. 2006; Bannister 2008a,b; Li et al. 2009;
Frehlich 2011).

Adjoint-data assimilation system (adjoint-DAS) techniques provide effective
tools for the analysis and optimization of the observation impact on reducing
the forecast errors. The adjoint-DAS evaluation of the observation sensitivity has
been introduced in NWP by Baker and Daley (2000) for the analysis and design
of observation targeting strategies. Practical applications include monitoring the
impact of data provided by the global observing system to reduce short-range
forecast errors, data quality diagnostics and guidance to optimal satellite channel
selection, and adaptive observation targeting (Langland and Baker 2004; Langland
2005; Cardinali 2009; Baker and Langland 2009; Gelaro and Zhu 2009; Gelaro et al.
2010; Cardinali and Prates 2011; Lupu et al. 2011).

The assessment of the forecast impact as a result of variations in the specification
of observation and background error covariance parameters has been mainly
performed through observing system experiments (Zhang and Anderson 2003;
Joiner et al. 2007) and recently, the extension of the adjoint-DAS approach has
been formulated to include the forecast sensitivity to the specification of error
covariance parameters (Daescu 2008; Daescu and Todling 2010). This chapter
presents a detailed exposure of the equations to evaluate the sensitivity of a forecast
error aspect with respect to parameters in the observation and background error
covariance representation and recent results obtained with the adjoint versions
of the Naval Research Laboratory Atmospheric Variational Data Assimilation
System – Accelerated Representer (NAVDAS-AR) (Xu et al. 2005; Rosmond
and Xu 2006) and the Navy Operational Global Atmospheric Prediction System
(NOGAPS) (Hogan and Rosmond 1991). The chapter is organized as follows below.
Section 9.2 includes a brief review of the adjoint-DAS approach to observation
impact assessment in variational data assimilation. A simple scalar example of
statistical estimation illustrates the suboptimal observation performance in the
presence of misspecified information error statistics. In Sect. 9.3 we present the
theoretical basis to adjoint-DAS forecast sensitivity and first order impact estimation
for observation and background error covariance parameters. A proof-of-concept
to error covariance diagnosis is provided with the Lorenz 40-variable model.
Section 9.4 presents results of observation impact and forecast sensitivity to error
covariance weight parameters obtained with NAVDAS-AR/NOGAPS and their
adjoint versions. The sensitivity analysis provides guidance on the parameter
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adjustments that are necessary to improve the DAS performance. A summary and
further research perspectives are in Sect. 9.5. The notational convenience adopted in
this work and some useful elements of matrix calculus are in the appendix.

9.2 The Analysis Equation

Variational data assimilation (Kalnay 2002) provides an analysis xa 2 Rn to the
true state xt of the atmosphere by minimizing the cost functional

J.x/ D 1

2
.x � xb/TB�1.x � xb/C 1

2
Œh.x/� y�T R�1 Œh.x/� y� (9.1)

where xb 2 Rn is a prior (background) state estimate, y 2 Rp is the vector
of observational data, and h W Rn ! Rp is the observation operator that maps
the state into observations. In a four-dimensional variational (4D-Var) DAS the
operator h incorporates the nonlinear forecast model and evolves the initial state to
the observation time. Statistical information on the background error �b D xb � xt

and observational error �o D y � h.xt / is used to specify the weighting matrices
B 2 Rn�n and R 2 Rp�p that are representations in the DAS of the background
and observation error covariances Bt D E.�b�b

T
/ and Rt D E.�o�oT/ respectively,

where E.�/ denotes the statistical expectation operator.
In practice, an approximate solution to the nonlinear minimization problem (9.1)

is obtained using a linearization of the observation operator (Courtier et al. 1994),

h.x/ � h.xb/C H.x � xb/ (9.2)

where

H D
�
@h
@x

�

jxDxb
2 Rp�n (9.3)

is the Jacobian matrix of the observation operator h evaluated at xb . In this study we
consider a single outer loop iteration such that the analysis state is expressed as

xa D xb C KŒy � h.xb/� (9.4)

where the gain matrix K is defined as

K D �
B�1 C HTR�1H

��1
HTR�1 D BHT �HBHT C R

��1
(9.5)

The observation-space evaluation of the analysis (9.4) is a two-stage process
consisting of solving the linear system

�
HBHT C R

�
z D y � h.xb/ (9.6)



208 D.N. Daescu and R.H. Langland

for the vector z 2 Rp and followed by a post-multiplication operation

xa D xb C BHTz (9.7)

In NAVDAS-AR the computational steps (9.6) and (9.7) are performed using a
matrix-free implementation (Xu et al. 2005; Rosmond and Xu 2006).

9.2.1 Adjoint-DAS Observation Impact Estimation

Adjoint techniques are currently implemented as an effective approach (all-at-once)
to estimate the impact of any data subset in the DAS on reducing the forecast errors.
The forecast score is typically defined as a short-range forecast error measure

e.x/ D .xf � xv
f /

TE.xf � xv
f / (9.8)

where xf D Mt0;tf .x/ is the model forecast at verification time tf initiated at t0
from x, xv

f is the verifying analysis at tf and serves as a proxy to the true state xtf ,
and E is a diagonal matrix of weights that gives (9.8) units of energy per unit mass.

The adjoint approach to observation impact (OBSI) estimation relies on the
adjoint-DAS operator KT to obtain an observation-space estimation of the change
in the model forecast due to the assimilation of all data in the DAS

e.xa/ � e.xb/ � ˝
g; xa � xb

˛
Rn D ˝

KTg; y � h.xb/
˛
Rp (9.9)

The order of the approximation (9.9) is determined by the specification of the vector
g 2 Rn (Gelaro et al. 2007; Daescu and Todling 2009).

In NAVDAS-AR the OBSI assessment is performed based on a second-order
accurate approximation introduced by Langland and Baker (2004) with g defined
as the average of two forecast gradients that are evaluated with adjoint model
integrations along the analysis and background trajectories

g D
�
1

2

@e

@x
.xa/C 1

2

@e

@x
.xb/

�
D ŒMa

to;tf
�TE.xaf �xv

f /CŒMb
to;tf

�TE.xbf �xv
f / (9.10)

where Mt0;tf denotes the tangent linear model from t0 to tf . A measure of the
contribution of individual data components in the assimilation scheme to the
forecast error reduction, per observation type, instrument type, and data location,
is obtained as

OBSI.yi / D ˝fKTggi ; fy � h.xb/gi
˛
Rpi

(9.11)

where yi 2 Rpi is the data component whose impact is being evaluated. Data
components for which OBSI.yi / < 0 contribute to the forecast error reduction
(improve the forecast), whereas data components with OBSI.yi / > 0 increase
the forecast error (degrade the forecast). The second-order approximation (9.9) and
(9.10) has been found to provide satisfactory results for OBSI estimates associated
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to short-range forecast error measures (Baker and Langland 2009; Cardinali 2009).
An intercomparison study on OBSI assessment at various NWP centers is provided
by Gelaro et al. (2010).

9.2.2 Suboptimal Observation Performance: A Scalar Example

A simple scalar example of statistical estimation is used to illustrate the suboptimal
observation performance for misspecified information error statistics. Consider a
prior estimate xb D xt C �b and a measurement y D xt C �o to the true value xt
and let assume that the errors �b and �o are unbiased E.�b/ D 0;E.�o/ D 0, and
uncorrelated E.�b�o/ D 0. The error variances E.�2b/ D 
2b;t and E.�2o/ D 
2o;t are
assumed to be unknown and are specified in the analysis equation as 
2b and 
2o ,
respectively. A suboptimal analysis estimate to xt is obtained as

xa D 
2o


2b C 
2o
xb C 
2b


2b C 
2o
y D �

1C �
xb C 1

1C �
y (9.12)

where � denotes the ratio � D 
2o =

2
b . The observation performance on improving

the prior estimate xb is investigated in terms of the specification� versus the optimal
ratio �t D 
2o;t =


2
b;t . The analysis variance is


2a D
�

�

1C �

	2

2b;t C

�
1

1C �

	2

2o;t (9.13)

and the ratio

2a


2b;t
D
�

�

1C �

	2
C
�

1

1C �

	2
�t (9.14)

provides a measure of the statistical quality of the analysis as compared with the
prior estimate xb . The minimum value of the ratio (9.14) as a function of � is
achieved at � D �t and corresponds to the optimal analysis xa;t ,


2a;t


2b;t
D �t

1C �t
< 1 (9.15)

In the practical situation when the specification of the information error statistics
is such that � ¤ �t , the observation performance is suboptimal and, in certain
situations, the assimilation of data y may provide an estimate xa of lower quality as
compared to xb . Contours 
2a=


2
b;t D const of the ratio (9.14) as a function of the

two variables .�; �t / are shown in Fig. 9.1. A threshold value to the � specification
is obtained when 
2a=


2
b;t D 1,


2a


2b;t
D 1 , �t D 2�C 1 (9.16)
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The line �t D 2�C 1 divides the positive quadrant of the .�; �t / plane in a region
�t < 2�C1 of benefic observation impact, 
2a=


2
b;t < 1, and a region�t > 2�C1 of

detrimental observation impact, 
2a=

2
b;t > 1. Since � depends on the specification

of both 
2o and 
2b , this is a simple illustration that the observing system performance
(observation “value”) is closely determined by the representation in the DAS of both
observation and background error statistics.

9.3 Adjoint-DAS Sensitivity Analysis

The adjoint-DAS sensitivity analysis aims to provide an assessment of the response
of a functional e.xa/ to variations in the DAS input parameters. The first order
variation ıe.xa/ induced by the analysis variation ıxa is defined as

ıe D


@e

@xa
; ıxa

�

Rn

D .ıxa/T
@e

@xa
(9.17)

For the functional (9.8), the forecast sensitivity to analysis, @e=@xa 2 Rn, is
evaluated using a backward adjoint model integration from tf to t0 along the
analysis trajectory

@e

@xa
D 2ŒMa

t0;tf
�TE.xaf � xv

f / (9.18)

where Ma
t0;tf

denotes the tangent linear model from t0 to tf .



9 Adjoint-DAS Sensitivity to Error Covariance Parameters 211

Equations (9.4) and (9.5) establish the relationship xa D xa.y; xb;R;B/ and
allow the expression of the first order analysis variation ıxa in (9.17) in terms of
variations in the DAS input components y; xb;R, and B.

9.3.1 Sensitivity to Observations and Background

Baker and Daley (2000) derived the equations of the forecast sensitivity with respect
to observations and background

@e

@y
D KT @e

@xa
(9.19)

@e

@xb
D ŒI � HTKT�

@e

@xa
D @e

@xa
� HT @e

@y
(9.20)

where I denotes the n � n identity matrix. It is noticed that the xb-sensitivity
equation (9.20) is formally valid only for a linear observation operator, h.x/ D Hx,
since it neglects the dependence of the linearized observation operator (9.3) on xb .
For the purpose of estimating the forecast sensitivity to background error covariance
parameters we will simply interpret (9.20) as a vector notation. Second order
derivative information or additional approximations are also necessary to evaluate
the observation sensitivity in a variational DAS with multiple outer loop iterations
(Daescu 2008; Trémolet 2008).

The relationship



@e

@xb
; xa � xb

�

Rn

D


@e

@y
; y � h.xb/� H.xa � xb/

�

Rp

(9.21)

may be established from (9.19), (9.20), and the analysis equations (9.4), (9.5) and its
significance to the parametric error covariance sensitivity is explained in Sect. 9.3.3.

The evaluation of the observation sensitivity is currently integrated in the routine
activities at NWP centers to monitor the observing system performance using OBSI
measures such as (9.9) and (9.10). As shown below, the vectors (9.19) and (9.20)
are also key ingredients to obtain information on the forecast R- and B-sensitivity,
respectively.

9.3.2 Forecast R- and B-Sensitivity and Impact Estimation

The forecast R- and B-sensitivity and impact estimation identifies those error
covariance parameters of potentially high forecast impact and provides guidance
on the forecast benefit that may be achieved from adjusting the error covariance
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parameters. The DAS operator K incorporates both R and B models and from (9.4)
the analysis variation induced by a perturbation in the K operator is expressed as

ıxa D ıKŒy � h.xb/� (9.22)

By replacing (9.22) in (9.17), the first order forecast variation ıe is expressed in
terms of ıK as

ıe D


@e

@xa
; ıKŒy � h.xb/�

�

Rn

(9.23)

From (9.23) and (9.62), the forecast sensitivity to the K operator is the rank-one
matrix

@e

@K
D @e

@xa
Œy � h.xb/�T 2 Rn�p (9.24)

To obtain the forecast sensitivity to the error covariance specification it is necessary
to analyze how the K operator responds to variations in R and B. Additionally, each
covariance model incorporates a diagonal matrix ˙ whose entries are the values
assigned to the error standard deviation and an error correlation model C,

R D ˙ oCo˙ o; B D ˙ bCb˙ b (9.25)

A flow chart of the functional dependence of the forecast aspect on various DAS
input components is illustrated in Fig. 9.2 and the extension of the adjoint-DAS
applications to parameters in the error covariance specification is discussed next.

9.3.2.1 Forecast R-Sensitivity and Impact Estimation

From (9.5) and (9.65), the first order variation in the K operator induced by a
variation ıR in the observation error covariance model R is expressed as

ıK D �BHTŒHBHT C R��1ıRŒHBHT C R��1 D �KıRŒHBHT C R��1 (9.26)
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and the relationship between ıe and ıR is obtained by replacing (9.26) in (9.23)

ıe D �


@e

@xa
;KıRŒHBHT C R��1Œy � h.xb/�

�

Rn

(9.27)

An observation-space formulation to (9.27) is obtained by using the adjoint-DAS
operator KT and Eqs. (9.6) and (9.19)

ıe D �


KT @e

@xa
; ıRŒHBHT C R��1Œy � h.xb/�

�

Rp

D �


@e

@y
; ıRz

�

Rp

(9.28)

From (9.28) and (9.62), the forecast R-sensitivity is the rank-one matrix

@e

@R
D �@e

@y
zT 2 Rp�p (9.29)

In an observation-space DAS, the evaluation of the vector z is performed in
the intermediate stage (9.6) of the analysis. An R-sensitivity formulation that is
equivalent to (9.29) and may be used in both observation-space and analysis-space
data assimilation systems is obtained by expressing z from (9.6) and (9.7) as

z D R�1Œy � h.xb/� H.xa � xb/� (9.30)

If the observation error correlations are not modeled in the DAS then R is a diagonal
matrix, R D diag.� 2

o/, and the forecast sensitivity to the specification of the
observation error variance is expressed from (9.29) as

@e

@� 2
o;i

D � @e

@yi
zi ; i D 1 W p (9.31)

A first order assessment of the forecast performance of a new covariance model OR,
as compared with the model R in the DAS, may be obtained by setting ıR D OR � R
in (9.28) and requires only the additional ability to provide the matrix/vector product
ŒıR�z,

eŒxa. OR/� � eŒxa.R/� � �fŒıR�zgT @e

@y
(9.32)

In particular, if the observation error covariance models R and OR are specified as
diagonal matrices, R D diag.
2o;i / and OR D diag. O
2o;i /, then (9.32) is expressed
as

eŒxa. O� 2o/� � eŒxa.� 2o/� � �
pX
iD1

�
ı
2o;i

� � @e
@yi

zi

	
(9.33)

The right side of (9.33) provides an all-at-once first order assessment to the forecast
impact of each individual variation ı
2o;i D O
2o;i � 
2o;i . The impact estimates (9.32)
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and (9.33) may be evaluated prior to the actual implementation of the model OR in the
DAS and provide insight on the potential forecast gain at a reduced computational
effort.

9.3.2.2 Forecast B-Sensitivity and Impact Estimation

From (9.5) and (9.65), the first order variation in the K operator associated with a
variation ıB in the background error covariance model B is expressed as

ıK D ıBHTŒHBHT C R��1 � BHTŒHBHT C R��1HıBHTŒHBHT C R��1

D ŒI � KH�ıBHTŒHBHT C R��1 (9.34)

An explicit relationship between ıe and ıB is obtained by replacing (9.34) in (9.23),

ıe D


@e

@xa
; ŒI � KH�ıBHTŒHBHT C R��1Œy � h.xb/�

�

Rn

D


ŒI � KH�T

@e

@xa
; ıBHTŒHBHT C R��1Œy � h.xb/�

�

Rn

(9.35)

With the aid of (9.6) and (9.20), (9.35) may be expressed as

ıe D


@e

@xb
; ıBHTz

�

Rn

(9.36)

From (9.36) and (9.62), the forecast B-sensitivity is the rank-one matrix

@e

@B
D @e

@xb
�
HTz

�T 2 Rn�n (9.37)

A first order assessment of the forecast performance of a new background error
covariance model OB, as compared with the model B in the DAS, may be obtained
by setting ıB D OB � B in (9.36),

eŒxa. OB/� � eŒxa.B/� � �
ŒıB�HTz

�T @e

@xb
(9.38)

Having available the xb-sensitivity vector defined as in (9.20), the evaluation
of the first order impact estimate (9.38) may be performed prior to the actual
implementation of the model OB in the DAS at a computational cost roughly
equivalent to the cost of a post-multiplication operation (9.7).
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9.3.3 Forecast Sensitivity to Error Covariance Parameters

While the explicit evaluation and storage of the R- and B-sensitivity matrices is not
feasible in an operational system, from (9.29) and (9.37) it is noticed that evaluation
and storage of only a few vectors are necessary to capture the information content of
the sensitivity matrices. Of practical significance is the ability to evaluate directional
derivatives associated with perturbations .ıR; ıB/ and to obtain sensitivities to key
parameters used to model the error covariances. The observation sensitivity vector
(9.19) is a key ingredient to both R- and B-sensitivity estimation and techniques
to observation sensitivity and impact estimation in an ensemble-based DAS have
been also formulated (Liu and Kalnay 2008; Liu et al. 2009). The R- and B-
sensitivity equations provided in this work are thus of relevance to both variational
and ensemble-based data assimilation systems and their use to perform parameter
sensitivity analysis is presented below.

9.3.3.1 Sensitivity to Multiplicative Error Covariance Parameters

A practical approach to perform error covariance tuning relies on the parametric
representation

B.sb/ D sbB; Ri .s
o
i / D soi Ri ; i 2 I (9.39)

where sb > 0 and soi > 0 are scalar coefficients used to adjust the weight given
in the DAS to the background information and to the information provided by
the observing system component yi ; i 2 I , respectively (Chapnik et al. 2006;
Desroziers et al. 2009). In the formulation (9.39) it is assumed that fyi ; i 2 I g
is a partition of the observations consisting of data subsets yi 2 Rpi ; i 2 I ,
with uncorrelated observation errors such that the model R is structured as a block
diagonal matrix

R D diag.Ri /; Ri 2 Rpi�pi (9.40)

The covariance specification .R;B/ in the reference DAS corresponds to all weight
parameters in set to 1 i.e., soi D 1; i 2 I and sb D 1. From (9.39), the covariance
variations induced by perturbations ısoi and ısb in the weight coefficients are
expressed respectively, as

ıRi D ısoi Ri ; i 2 I (9.41)

ıB D ısbB (9.42)

By replacing (9.41) in (9.28) and with the aid of (9.30), the first order variation in
the forecast aspect e.xa/ is expressed in terms of ısoi as

ıe D �
X
i2I

ısoi



@e

@yi
; Œy � h.xb/ � H.xa � xb/�i

�

Rpi

(9.43)
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Equation (9.43) provides the forecast sensitivity to each observation error covari-
ance weight coefficient,

@e

@soi
D �



@e

@yi
; Œy � h.xb/ � H.xa � xb/�i

�

Rpi

D �Œy � h.xb/� H.xa � xb/�Ti
@e

@yi
; i 2 I (9.44)

By replacing (9.42) in (9.36) and with the aid of the analysis equation (9.7), the first
order variation in the forecast aspect e.xa/ is expressed in terms of ısb as

ıe D ısb


@e

@xb
; xa � xb

�

Rn

(9.45)

Equation (9.45) provides the forecast sensitivity to the background error covariance
weight coefficient,

@e

@sb
D


@e

@xb
; xa � xb

�

Rn

(9.46)

and the identity (9.21) allows the observation-space evaluation of the sb-sensitivity
as

@e

@sb
D Œy � h.xb/� H.xa � xb/�T

@e

@y
(9.47)

From (9.44) and (9.47) it is noticed that the identity (9.21) is formally equivalent to

@e

@sb
C
X
i2I

@e

@soi
D 0 (9.48)

and reflects an intrinsic property of the optimization problem (9.1) in variational
data assimilation: multiplication of both R and B matrices by the same positive
constant has no impact on the analysis.

9.3.3.2 Sensitivity to the Observation Error Correlation Specification

The standard practice in operational data assimilation and forecast systems is to
neglect the statistical correlation of the observation errors and tuning of the assigned
observation error variance parameters is used to compensate for unrepresented error
correlations. Recent diagnostic studies have shown evidence of both spatial and
inter-channel error correlations in the radiance data provided by the atmospheric
sounders (Garand et al. 2007; Bormann et al. 2010, 2011) and research to assess
the potential gain that may be achieved from modeling the observation error corre-
lations is becoming increasingly important as the next generation of hyperspectral
instruments will further increase the data density.
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By replacing
ıR D ˙ oıCo˙ o (9.49)

in (9.28), the first order forecast variation ıe induced by a ıCo-perturbation in the
observation error correlation model is expressed as

ıe D �


@e

@y
;˙ oıCo˙ oz

�

Rp

D �


˙ o @e

@y
; ıCo˙ oz

�

Rp

(9.50)

From (9.50), the forecast Co-sensitivity is the rank-one matrix

@e

@Co
D �

�
˙ o @e

@y

	
.˙ oz/T 2 Rp�p (9.51)

and may be expressed using the elementwise vector product (9.60) as

@e

@Co
D �

�
� o ı @e

@y

	
.� o ı z/T 2 Rp�p (9.52)

where � o 2 Rp denotes the vector of values assigned in the DAS to the observation
error standard deviation, ˙ o D diag.� o/.

9.3.3.3 Sensitivity to the Background Error Correlation Specification

The specification of the background error correlations is a key ingredient of the
data assimilation system and ongoing research at NWP centers is focused on
the development of flow-dependent background error covariance models (Buehner
2005; Bannister 2008a,b; Brousseau et al. 2011). By replacing

ıB D ˙ bıCb˙ b (9.53)

in (9.36), the first order forecast variation ıe induced by a perturbation ıCb in the
background error correlation model is expressed as

ıe D


@e

@xb
;˙ bıCb˙ bHTz

�

Rn

D


˙ b @e

@xb
; ıCb˙ bHTz

�

Rn

(9.54)

From (9.54), the forecast Cb-sensitivity is the rank-one matrix

@e

@Cb
D
�

˙ b @e

@xb

	�
˙ bHTz

T 2 Rn�n (9.55)
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Table 9.1 Forecast sensitivity to various input parameters of a data assimilation system with a
single outer loop iteration

Parameter Significance Dimension Sensitivity equation

y Observation vector Rp KT @e

@xa

R Observation error
covariance model

Rp�p �@e
@y

zT

Co Observation error
correlation model

Rp�p �
�

� o ı @e
@y

	
.� o ı z/T


o Observation error
standard deviation

Rp �
�1
o ı

�
@e

@y
ı .Rz/C

�
R
@e

@y

	
ı z

�

soi Observation error
covariance weight

R1 �Œy � h.xb/� H.xa � xb/�Ti
@e

@yi

xb Background state
vectora

Rn
@e

@xa
� HT @e

@y

B Background error
covariance model

Rn�n
@e

@xb
�
HTz

�T

Cb Background error
correlation model

Rn�n

�
� b ı @e

@xb

	 �
� b ı �HTz

��T

� b Background error
standard deviation

Rn � �1
b ı

�
@e

@xb
ı .xa � xb/C

�
B
@e

@xb

	
ı �HTz

��

sb Background error
covariance weight

R1 Œy � h.xb/� H.xa � xb/�T
@e

@y

a See Sect. 9.3.1 on the interpretation of the xb-sensitivity equation

and may be expressed using the elementwise vector product (9.60) as

@e

@Cb
D
�

� b ı @e

@xb

	�
� b ı �HTz

��T 2 Rn�n (9.56)

where � b 2 Rn denotes the vector of values assigned in the DAS to the background
error standard deviation, ˙ b D diag.� b/.

A similar reasoning strategy may be used to derive the equations of the forecast
sensitivity with respect to the specification of the observation and background error
standard deviation vectors � o and � b respectively, in the covariance representation
(9.25). A summary of equations to evaluate the forecast sensitivity with respect
to various input parameters of a data assimilation system with a single outer loop
iteration is provided in Table 9.1.

9.3.4 The Adjoint Sensitivity Guidance: A Proof-of-Concept

The derivative information obtained through adjoint-DAS techniques provides
guidance on the local behavior of the forecast aspect as a function of various
parameters in the DAS. For a generic parameter u, the steepest descent direction



9 Adjoint-DAS Sensitivity to Error Covariance Parameters 219

d D � @e
@u

(9.57)

identifies the direction of small parameter variations ıu, from the current DAS
configuration, that will be of largest forecast benefit and provides a first-order
optimality diagnostic. For applications to parameter tuning an additional search
must be performed to determine an optimal step length along the descent direction.
Daescu and Todling (2010) provided an illustration of iterative gradient-based
tuning of observation error variances. Whereas the optimal parameter values may
not be inferred from the derivative information alone, valuable insight may be
gained by monitoring the forecast error sensitivity to the specification of the error
covariance parameters.

A proof-of-concept is given with the Lorenz 40-variable model (Lorenz and
Emanuel 1998)

d xj
d t

D .xjC1 � xj�2/xj�1 � xj C F; j D 1 W n (9.58)

where n D 40; xnCj D xj , and the forcing constant is specified as F D 8.
The system (9.58) is integrated with the standard fourth-order explicit Runge-Kutta
method and a constant time step �t D 0:05 that is identified with a 6-h time period
to produce a reference trajectory (“the truth”) xt .

The adjoint-DAS sensitivity guidance to diagnosis and tuning of error covariance
parameters is illustrated using an idealized data assimilation system (DAS-I) and
a suboptimal data assimilation system (DAS-II). Observations are assumed to be
available at each grid point, with unbiased and uncorrelated observation errors taken
from a normal distribution with the standard deviation of 
o;t D 0:5 at locations
1–20 and of 
o;t D 1 at locations 21–40. In both DAS-I and DAS-II the assigned

o values are consistent with the true observation error statistics, 
o D 
o;t , and
distinction between the experiments is made through the B-matrix specification.
DAS-I provides an optimal analysis by implementing a full Extended Kalman Filter
(EKF) to update in time the background error covariance. Figure 9.3a shows the
average over N D 7;200 analysis cycles (
 a 5-year period) of the background
error covariance in DAS-I,

QB D 1

N

NX
iD1

B.ti / (9.59)

Deficiencies are introduced in DAS-II by ignoring the background error correlations
and the flow dependence of the B matrix. In DAS-II, the background error
covariance is specified as a diagonal matrix (Cb D I), frozen in time, with the
diagonal entries 
2b taken from (9.59), as shown in Fig. 9.3b.

The B-sensitivity associated to the Euclidean norm of the 24-h forecast errors is
monitored in each of DAS-I and DAS-II and time averaged results are displayed
in Fig. 9.3c and in Fig. 9.3d, respectively. In the optimal system DAS-I, the B-
sensitivity matrix displays no particular structure and this is an indication that
no systematic deficiency in the B matrix specification has been identified. In the
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Fig. 9.3 (a) Time-averaged background error covariance in DAS-I. (b) The specification of the
background error covariance in DAS-II. (c) Time-averaged forecast error B-sensitivity in DAS-I.
(d) Time-averaged forecast error B-sensitivity in DAS-II. Displayed is the symmetric part of the
B-sensitivity matrices

suboptimal system DAS-II, the B-sensitivity matrix distinguishes a pronounced
off-diagonal structure from the noisy entries and provides an indication that the
background error correlations are misspecified in the model B.

The time-averaged structure of the background error correlation matrix Cb in
DAS-I is shown in Fig. 9.4a. The time-averaged structure of the forecast error
sensitivity to the background error correlation model in DAS-II (Cb-sensitivity)
is shown in Fig. 9.4b. The diagonal entries of the correlation model Cb are
constrained to Cb

i i D 1; i D 1 W n. For visual display purposes only and
to emphasize the cross-correlation structure, the diagonal entries of the Cb and
Cb-sensitivity matrices in Fig. 9.4a, b respectively, were set to zero. Negative values
of the entries in the Cb-sensitivity matrix in DAS-II are associated with positive
values of the background error correlations in DAS-I (and vice versa) which is in
agreement with the guidance provided by the steepest descent direction (9.57). The
Cb-sensitivity in Fig. 9.4b provides a first order guidance on the ıCb update that is
necessary to correct the correlation model in DAS-II from its current specification
of Cb D I toward the correlation structure of the background errors in DAS-I
(Fig. 9.4a).
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Fig. 9.4 (a) The time-averaged structure of the background error correlations in DAS-I. (b) Time-
averaged forecast error sensitivity to the background error correlation model in DAS-II. Displayed
is the symmetric part of the Cb-sensitivity matrix
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Fig. 9.5 Time-averaged forecast error sensitivity to the 
b and 
o specification in DAS-II

A suboptimal specification of the error covariance parameters in a DAS input
component will be reflected in the sensitivities with respect to other input com-
ponents. To illustrate this aspect, Fig. 9.5 displays time-averaged values of the
forecast sensitivity to the specification of the background error standard deviation

b and to the specification of the observation error standard deviation 
o in DAS-II.
The negative values associated with the 
b-sensitivity indicate that in average, the
background information is overweighted in the current configuration of DAS-II
and that an improved performance may be obtained by increasing the assigned

b values (variance inflation). At the same time, positive values associated with
the 
o-sensitivity indicate that the information provided by the observing system is
underweighted and that an improved performance of DAS-II may be also obtained
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Fig. 9.6 The total number of observations assimilated in NAVDAS-AR to produce the 00 UTC
analyses over the time period of study, the total observation impact on the 24-h forecast error
reduction (J Kg�1), and the average observation impact/observation (J Kg�1)

by artificially reducing the assigned 
o values from the current specification of 
o D

o;t (optimal estimate). In this context, the evaluation of the forecast error sensitivity
with respect to a selected parameter in the DAS merely provides guidance on the
parameter variations that are necessary to compensate for (unknown) deficiencies in
the error covariance specification associated with other components of the DAS.

9.4 Results with the Adjoint NAVDAS-AR/NOGAPS

The guidance derived from the error covariance sensitivity analysis and its rele-
vance to the observation impact estimates are presented with the NRL NAVDAS-
AR/NOGAPS and their adjoint versions. The forecast error measure (9.8) is defined
as the moist total energy norm over the global domain and the verification state
xv is the analysis valid at the forecast time. The results are valid for the 24-h
NOGAPS forecasts associated with the 00 UTC NAVDAS-AR analyses produced
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Fig. 9.7 The sensitivity of the 24-h forecast error to the background error covariance weight
coefficient sb during each assimilation/forecast cycle

in a 6-h 4D-Var assimilation interval during the time period of 2010 September 29–
October 26 (data for 2010 October 15 was not incorporated in this study). For each
observed parameter, the total number of observations assimilated in NAVDAS-AR
to produce the 00 UTC analyses over the period of study (27 data sets) is shown in
Fig. 9.6 together with the OBSI (9.10) and (9.11). It is noticed that each observed
parameter had a benefic OBSI on the forecast error reduction and that radiance and
wind speed observations had the largest overall impact. The total precipitable water
results are for profiles through an entire atmospheric column, which may explain
their relatively high value of impact per observation.

First guidance derived from the error covariance sensitivity analysis is on the
proper weighting in the DAS between the information provided by the background
estimate and the observing system as a whole (covariance parameterization through
a single parameter). This is obtained by systematically monitoring the forecast
error sensitivity to the background error covariance weight coefficient sb (9.47).
The forecast sb-sensitivity values for each assimilation/forecast cycle are shown in
Fig. 9.7. The sensitivity magnitude is closely determined by the forecast episode
and negative derivative values indicate that, in general, inflation of the background
error covariance is of potential benefit to the forecasts (at weight sb D 1 the
forecast aspect is a locally decreasing function of the sb parameter). An alternative
interpretation of the sb-sensitivity guidance is that, in general, the information
provided by the observing system as a whole is underweighted in the DAS.
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Fig. 9.8 The sensitivity of the 24-h forecast error to the observation error covariance weight
coefficient soi . Displayed are average values per assimilation/forecast cycle (left side graphic) and
average values per observation (right side graphic)

By analogy with the OBSI estimates, the adjoint approach provides all-at-once
R-sensitivity information for each data type, instrument, and observation location in
the time-space domain. For each observed parameter, the forecast error sensitivity
to the observation error covariance weight coefficient soi (9.44) is shown in Fig. 9.8.

The comparison is facilitated by the fact that all soi -sensitivities have units of J/Kg
since all the weight coefficients are non-dimensional scalar parameters. Positive
values identify those data types whose reduced 
2o values will be of potential
benefit to the forecasts and it is noticed that total precipitable water observations
exhibit the largest sensitivity/observation. Radiances and specific humidity are
identified in Fig. 9.8 as data types whose negative sensitivity values point toward 
2o -
inflation. The presence of both positive and negative soi -sensitivity values indicate
that an optimal weighting between the information provided by the background and
observations may not be achieved by adjusting a single scalar covariance coefficient
(e.g., sb-inflation) and that a systematic analysis of each data type and instrument is
necessary to optimize the DAS performance. To further illustrate this aspect, results
of forecast sensitivity to the 
2o -weight coefficient for the Special Sensor Microwave
Imager (SSMI) total precipitable water and for the radiosonde specific humidities
are contrasted in Fig. 9.9 for each assimilation/forecast episode.
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Fig. 9.9 Forecast error sensitivity (J Kg�1) to the observation error variance weight coefficient
so for SSMI total precipitable water observations (TPW) and for the radiosonde specific humidity
observations (SpecHum) during each assimilation/forecast cycle

The sensitivity results obtained for the radiosondes indicate that, in general, the
information provided by temperature measurements is underweighted whereas
the information provided by specific humidity measurements is overweighted in
the DAS. The geographical distribution of the forecast error sensitivity to the
assigned 
2o -weight coefficient for radiosonde temperature and specific humidity
measurements is shown in Figs. 9.10 and 9.11, respectively. These maps display
the cumulative values of the sensitivities over the time period of study, vertically
integrated, and at a horizontal bin resolution of 2:5ı.

The sensitivity analysis of the radiance data distinguishes the Advanced
Microwave Sounding Unit (AMSU)-A from the Infrared Atmospheric Sounding
Interferometer (IASI), the Atmospheric Infrared Sounder (AIRS), and the Special
Sensor Microwave Imager Sounder (SSMIS) instruments. For each instrument,
the forecast error sensitivity to the assigned observation error variance weight
coefficient was monitored during each assimilation/forecast episode and the results
are displayed in Fig. 9.12. Positive so-sensitivities associated with AMSU-A
indicate a conservative use of information and that reducing the 
2o values assigned
to this instrument is of potential benefit to the forecasts. Systematic negative
so-sensitivities are noticed for IASI and provide an indication that further inflation
of the 
2o values assigned to this instrument is of potential benefit to the forecasts.
Negative sensitivity values are also noticed in the majority of the analysis/forecast
episodes for AIRS and SSMIS instruments.
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Fig. 9.12 Forecast error sensitivity (J Kg�1) to the observation error variance weight coefficient so

for the atmospheric sounders AMSU-A, AIRS, IASI, and SSMIS during each assimilation/forecast
cycle

Bormann and Bauer (2010) and Bormann et al. (2010, 2011) implemented var-
ious diagnostics to estimate observation error statistics in the European Centre for
Medium-Range Weather Forecasts (ECMWF) assimilation system. Their findings
suggest that observation-error estimates for sounder radiances are significantly
lower than the values assigned in the operational systems and indicate a too-
conservative use of the AMSU-A instrument. In the above-mentioned studies it was
also found that AMSU-A shows little spatial and interchannel error correlations
and that error correlations of larger magnitude are present for the IASI, AIRS, and
SSMIS instruments. In this context, the sensitivity guidance may be interpreted as an
attempt to compensate for unrepresented observation error correlations in the DAS
through artificial inflation of the assigned error variances. Caution must be exercised
in the interpretation of the sensitivity analysis for tuning DAS error covariance
parameters and, as explained in Sect. 9.3.4, the derivative information only allows
the identification of a descent direction in the parameter space and without providing
the optimal parameter values. This information may be considered in conjunction
with other diagnostic tools such as the methods of Desroziers and Ivanov (2001)
and Desroziers et al. (2005).
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Fig. 9.13 Scatter diagram of innovation vs. observation impact (left side graphics) and of forecast
sensitivity to the error variance weight coefficient vs. observation impact (right side graphics).
Results are for the radiosonde temperatures (top) and AMSU-A channel 7 radiances (bottom)
assimilated in NAVDAS-AR to produce the analysis valid at 00 UTC 2010 September 29

We conclude this section with an illustration of the statistical correlation
between the observation impact and the forecast sensitivity to the observation
error variance weight coefficient. Gelaro et al. (2010) noticed that in general, in
a given assimilation/forecast episode the percentage of observations in the DAS
that have a benefic forecast impact is in the range of 50–54 %. Their study also
investigates the relation of observation impact to innovation value, y � h.xb/. In
Fig. 9.13, scatter diagrams are used to additionally illustrate the correlation between
the observation impact and the forecast sensitivity to the error variance weight
coefficient associated with the observation. For practical reasons, results are shown
for a single 24-h forecast initiated at 00 UTC 2010 September 29 for the radiosonde
temperatures and for the radiances from the AMSU-A channel 7. It is noticed
that for the majority of observations a negative (benefic) observation impact is
associated with a positive so-sensitivity (guidance is to reduce the assigned 
2o ) and a
positive (detrimental) observation impact is associated with a negative so-sensitivity
(guidance is to increase the assigned 
2o ). In each quadrant of the (so-sensitivity,
OBSI)-plane (listed in counterclockwise order, with Q-I being the positive quadrant)
the percentage distribution of the number of observations was found to be as follows.
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For radiosonde temperatures, of 27,063 observations analyzed: 10 % in Q-I, 38.5 %
in Q2, 12 % in Q-III, and 39.5 % in Q-IV. For AMSU-A channel 7, of 22,215
observations analyzed: 13 % in Q-I, 36 % in Q-II, 14 % in Q-III, and 37 % in Q-IV.
A similar distribution was noticed in the analysis of data for other days of the study
period and a throughout investigation of the global observing system remains to be
performed. These results also illustrate that in a given assimilation/forecast episode
tuning an instrument through a single covariance weight coefficient is suboptimal.
For practical applications, a potential use of the combined information derived
from sensitivity and impact estimates is to identify data components and to provide
guidance on the adjustment in the corresponding covariance weight parameters that
are necessary to reduce the errors in a specified forecast aspect.

9.5 Summary and Research Perspectives

The value added by observations to a data assimilation and forecast system is
closely determined by the weight assigned in the DAS to the information provided
by the prior state estimate and measurements. The adjoint-DAS methodology
offers a computationally feasible approach to assess the significance of each DAS
input component to a selected forecast aspect. The evaluation of the observation
sensitivity, observation impact, and forecast R- and B-sensitivity share the same
adjoint-DAS tools and may be performed simultaneously to obtain complementary
information on the DAS performance. The necessary software for these calculations
is currently in place or it is being developed at various NWP centers and new
practical applications remain to be investigated. Valuable insight to the design of
observing system experiments and implementation of parameter tuning procedures
that are effective in reducing the forecast errors may be gained by systematically
monitoring the forecast sensitivity to parameters in the observation and background
error covariance representation. Observation sensitivity calculations provide guid-
ance for observation-space targeting and the practical ability to obtain R- and
B-sensitivity information establishes a basis for extending the traditional targeting
approach from the observation space to the error covariance space.
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Appendix

All vectors are represented in column format and the superscript T denotes the
transposition operator. The elementwise (Hadamard) product of two vectors u 2 Rn

and v 2 Rn is denoted u ı v and is the vector w 2 Rn with entries defined as
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w D u ı v; wi D uivi ; i D 1 W n (9.60)

For two matrices of the same order X;Y 2 Rn�m

hX;YiRn�m D T r
�
XYT

� D T r
�
XTY

�
(9.61)

denotes the Frobenius inner product that is expressed in terms of the matrix trace
operator T r . Given the vectors u 2 Rn, v 2 Rm, and the matrix X 2 Rn�m,

hu;XviRn D uTXv D huvT;XiRn�m (9.62)

Given a functional e W Rn�m ! R of matrix argument X 2 Rn�m, the sensitivity
of e with respect to X is the matrix of the first order partial derivatives denoted as

@e

@X
D
�
@e

@Xi;j

�

iD1;nIjD1;m
2 Rn�m (9.63)

The first order variation ıe induced by a variation ıX is expressed as

ıe D


@e

@X
; ıX

�

Rn�m

D T r

�
@e

@X
.ıX/T

�
(9.64)

For a nonsingular matrix X 2 Rn�n, the first order variation ıX�1 in the inverse
matrix X�1 induced by a variation ıX is expressed as

ıX�1 D �X�1ıXX�1 (9.65)
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Trémolet Y (2008) Computation of observation sensitivity and observation impact in incremental
variational data assimilation. Tellus 60A:964–978

Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of
the linear problem. Tellus 57A:546–559

Zhang S, Anderson JL (2003) Impact of spatially and temporally varying estimates of error
covariance on assimilation in a simple atmospheric model. Tellus 55A:126–147



Chapter 10
Treating Nonlinearities in Data-Space
Variational Assimilation

Brian S. Powell

Abstract One goal of four-dimensional variational (4D-Var) state estimation is to
utilize the longest time window that maximizes the observational constraints to
improve predictive skill; unfortunately, nonlinearities are present in geophysical
flows and limit the time in which the linear approximation is valid. For weakly
nonlinear flows, updating the background trajectory, relinearizing, and repeating
the minimization is a way to lengthen the time window. This so called “outer-
loop” requires special consideration when minimizing the solution in data-space.
This discussion provides a review of the relevant theory and presents two data-
space cost functions: the standard cost-function that becomes unconstrained during
additional outer-loops and a modified function that preserves the original con-
straint. Experiments with the Lorenz (J Atmos Sci 20:130–141, 1963) model
show that unconstrained outer-loops perform similarly to sequentially applied 3D-
Var assimilations by overfitting the observations and producing state estimates
with poor predictive skill. Evaluating the posterior error covariances, the analysis
error, and minimum cost function illustrate how overfitting degrades the solution.
This is an important lesson for assimilation schemes: minimizing the model
data residuals without proper constraint does not provide the optimal solution.
By properly constraining the data-space outer-loop, adjoint-based methods will
be well constrained over time windows that are longer than those required by
linearity.
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10.1 Introduction

Data assimilation has become an important component of numerical modeling com-
bining numerical models with observational data to obtain an improved estimate of
the circulation. Variational methods aim to minimize the residual difference between
the model and observations via least-squares. Three-dimensional variational assim-
ilation (3D-Var) holds time constant and is valid for synoptic observations. Four-
dimensional variational assimilation (4D-Var) is constrained by the physics of the
model to preserve the dynamical relationships between the observations during a
time window. Much of the theoretical 4D-Var work is described in Le Dimet and
Talagrand (1986), Talagrand and Courtier (1987), and Courtier et al. (1993, 1994).
Lorenc (2006) provides a comparison of 3D-Var and 4D-Var.

The problem of minimizing the residuals can be accomplished in either the space
of the model or in the space defined by the observations referred to as model-space
and data-space, respectively. The focus of this work is on the data-space methods
that are well described in Courtier (1997), Bennett (2002), Chua and Bennett (2001),
Bennett et al. (2008), El Akkraoui et al. (2008), and El Akkraoui and Gauthier
(2010).

Variational methods make assumptions of linearity for the time-scales over which
the assimilation occurs. For geophysical circulations that are nonlinear, a choice
must be made: limit the time window over which the assimilation is performed, or
occasionally update the nonlinear trajectory during the assimilation procedure. For
some applications, reducing the time window to ensure linearity would collapse
the problem to 3D-Var (in the limit as the assimilation time-window converges
to the model time-step, 4D-Var becomes 3D-Var). For many applications, it is
unacceptable to consider time-dependent observations synoptic. In 4D-Var, the goal
is to use the longest possible time window, incorporating as many observations as
are available; however, the growth of nonlinearities in the flow may disrupt the
convergence of the iteration scheme.

The purpose of this discussion is to examine how data-space variational methods
in weakly nonlinear regimes are properly constrained to prevent overfitting of
noisy observations. With a longer time window and more observational constraints,
a better estimate and prediction are produced. Furthermore, long time-windows
provide dynamically consistent circulations without frequent initialization shocks.
If the prior estimate is not the fixed reference as is often done in sequential 3D-Var
and the standard 4D-Var cost function, the residuals are minimized, but the model
structure is no longer physically consistent.

This discussion presents how outer-loops in variational data-space methods can
be updated to use a longer assimilation window to better estimate the state. First, the
standard data-space cost-function is derived and shown to be inappropriate when
applying multiple outer-loops. Two outer-loop methods (one constrained and one
unconstrained) and sequential 3D-Var are used to illustrate the insidious effects
of overfitting the observations. A number of posterior diagnostics are presented to
examine the consistency of the solution before concluding.
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10.2 Background

An abbreviated description of variational assimilation is presented, but detailed
descriptions may be found in Talagrand and Courtier (1987), Le Dimet and
Talagrand (1986), Courtier et al. (1994), Courtier (1997), Chua and Bennett (2001),
and Moore et al. (2011b) among others. Assuming a linearly-forced, nonlinear
model, the time-step integration is expressed as:

x.tiC1/ D M .x.ti // C L .f.ti // C q.ti /; (10.1)

where x.ti / is the model state vector at time ti , M .x.ti // is the forward nonlinear
integration of state x.ti / to state x.tiC1/, f.ti / is the forcing and boundary condition
parameter vector, L .�/ transforms the given vector to model forcing and boundary
condition influence, and q.ti / represents the model errors. Using a model guess for
the initial conditions, x.0/, and forcing, f.t/, the model can be integrated to produce
a reference or “background” trajectory xb.t/.

The residuals between the observations and the model are given by the innovation
vector,

di D yi � Hi .xb.ti // ; (10.2)

for N observations, where Hi .�/ maps data from the model to a given observation
yi location in time and space. The goal of any assimilation scheme is to reduce these
residuals.

Assuming that perturbations, ıx.ti /, ıf.ti /, and ıq.ti / to the background are
within the realm of linearity, then these perturbations evolve by the tangent-linear
model linearized around the background trajectory, xb , with a forcing function, L,
linearized about L .

The residuals between the perturbed model solution and the observations are
given by

ri D yi � .Hi .xb.ti // C HiMiz.ti // D di � Giz.ti /; (10.3)

where Hi is the linearized sampling matrix, Mi represents the integration of the
tangent-linear model over the interval .t0; ti /, Gi D HiMi , and z is a vector that
comprises the perturbations to the initial state, forcing, and model error fields: z D
.ıx; ıf; ıq/T .

In 4D-Var, our goal is to solve for z that minimizes (10.3) via least-squares by
employing a quadratic cost function,

J D 1

2

NX
iD1

rTi R�1ri C 1

2
zTP�1z; (10.4)

where P is the covariance of uncertainty in the model initial state, forcing, and model
error .xb; f;q/ and R is the covariance of uncertainty in the residuals, r.
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Substituting for ri from (10.3), using vector notation rather than i indices, such
that G D .G1;G2; : : : ;GN /

T , the cost function is given by

J D 1

2
.d � Gz/T R�1 .d � Gz/ C 1

2
zTP�1z: (10.5)

The minimal solution for (10.5) is the analysis increment, za, that yields @J =@z D
0, given by

za D �
GTR�1G C P�1��1 GTR�1d; (10.6)

where the transpose to the tangent-linear integration, GT , is the adjoint model
integrated backwards over .ti ; t0/. Equation (10.6) is the solution to the 4D-Var
problem in model space. The analysis increment is the perturbation applied to the
initial conditions and forcing such that the residuals (10.3) are minimized. This is
the form used in the incremental scheme shown by Courtier et al. (1994) and used
by the European Centre for Medium-range Weather Forecasting (ECMWF) as well
as in the ocean as shown in studies such as Weaver et al. (2003), Powell et al. (2008),
and Broquet et al. (2009). Simplifying (10.6) by replacing G and GT with H and
HT , respectively, results in the solution to 3D-Var, which ignores the time-dependent
dynamics of the system.

The solution (10.6) may be rearranged using the Woodbury Identity (Golub and
Van Loan 1989) such that the minimization is performed in the data space to yield

za D PGT
�
GPGT C R

��1
d: (10.7)

This is used by the Physical-space Statistical Analysis System (PSAS) (Courtier
1997) and “Representer” (Chua and Bennett 2001; Bennett 2002) methods. These
data-space methods have been used successfully for research in both atmospheric
(Chua et al. 2009) and oceanic applications (Di Lorenzo et al. 2007; Muccino et al.
2008; Kurapov et al. 2007). For this discussion,

K D PGT
�
GPGT C R

��1
; (10.8)

will be referred to as the “Kalman Gain Matrix.” The total solution to the data-space
minimization procedure is given by xa D xb C Kd D xb C za.

Due to the large size of the typical geophysical problem, one cannot solve for za

explicitly, and the solution is found iteratively via a conjugate-gradient algorithm.
This minimization iteration to find an approximation to (10.7) is referred to as
the “inner-loop.” The estimate of za is revealed at the conclusion (determined by
convergence or reaching a maximum number of inner-loops) of the inner-loops. If
the problem is linear, then the global minimum is reached when the inner-loops
converge.
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If the particular problem is sufficiently nonlinear that the cost function is not well
represented by the linear model, it is desirable to update xb with za, re-linearize, and
find a new update za. This iterative procedure is referred to as the “outer-loop.”

In many 4D-Var applications, the problem is sufficiently linear that multiple
outer-loops are not used. When it is truly linear, the increments would not change
the subsequent linearization about the perturbed xb . However, any nonlinearities
may result in differing cost functions between the nonlinear and linear spaces. To
deal with this, one may choose to update the nonlinear trajectory with the increments
to avoid local minima in the nonlinear cost function. During these additional outer-
loops, consideration must be given that the increments remain constrained to the
original background, xb; otherwise, the iterates will overfit the data at the expense
of the background covariance. Solving the problem in model-space (see Eq. 10.6)
provides an implicit constraint to the initial-state and additional outer-loops are not
an issue (Tshimanga et al. 2008). This is not the case in data-space and during
additional outer-loops, the cost-function must be modified to add an additional
constraint.

Upon completing the inner-loops, an estimate of zak is found, where k signifies
the outer-loop iteration (beginning with k D 1). The operators Gk�1 and GT

k�1
are linearized about the prior trajectory xk�1 (where x0 D xb and z0 D 0).
If the problem were perfectly linear, Gk D Gk�1 and there would be no need
for additional outer-loops. The next iteration of the outer-loop (k C 1) requires
linearization about the new prior, .xk D xk�1 C zak/ integrated by (10.1). The
question becomes how to keep the original background constraint, xb, active when
further iterating in the data-space methods. The typical approach is to simply
reapply (10.7) such that

zk D PGT
k�1

�
Gk�1PGT

k�1 C R
��1

dk�1; (10.9)

where .dk�1/i D yi �Hixk�1.ti / as was used in Zaron et al. (2011). This constrains
zk to be small; however, the total increment,

Pk
jD1 zj , is required to be small.

Hence (10.9) constrains the increments only against the prior nonlinear circulation
(xk�1), which allows the increments to deviate from the background trajectory.

To rectify, the total constraint must be incorporated to yield a new cost function,

Jk D 1

2
.dk�1 � Gk�1zk/T R�1 .dk�1 � Gk�1zk/

C 1

2

0
@zk C

k�1X
jD1

zj

1
A
T

P�1
0
@zk C

k�1X
jD1

zaj

1
A : (10.10)

The gradient at its minimum is given by

@Jk

@zk
D �GT

k�1R�1 .dk�1 � Gk�1zk/ C P�1
0
@zk C

k�1X
jD1

zaj

1
A D 0: (10.11)
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Solving for the analysis increment reveals

zak D �
GT
k�1R�1Gk�1 C P�1��1 GT

k�1R�1dk�1 � P�1
k�1X
jD1

zaj : (10.12)

The constraint to minimize the total increment acts as an additional forcing on the
model-space solution as compared to (10.6). The additional background constraint
forcing from

Pk�1
jD1 zaj opposes the residuals force and prevents overfitting the obser-

vations. Once updating the prior nonlinear circulation no longer provides additional
increments, the right hand side of (10.12) vanishes and convergence is reached.
However, (10.12) remains in model-space, and the goal is to understand how
the additional constraint impacts data-space methods. This requires the additional
forcing term to be applied within data-space.

The solution is found by El Akkraoui et al. (2008), such that the analysis
increment for outer-loop k is given by

zak D PGT
k�1

�
Gk�1PGT

k�1 C R
��1

.dk�1 C Gk�1zk�1/ : (10.13)

This provides the constraint that each data-space outer-loop is constrained by its
prior loop. The prior increment is propagated through the tangent-linear model that
is now linearized about the previous outer-loop trajectory. It should be noted that if
the problem is fully linear, this method is identical to the typical approach because
G1 D G0, and the additional term in (10.13) is negated.

This procedure can be carried forward for as many outer-loops as necessary
to approximate nonlinearities without violating the initial increment constraint.
It is important to note that with each outer-loop, a new minimization descent
begins from approximately zero using a new linearization, which will have negative
consequences on preconditioning schemes that improve their estimates during
subsequent outer-loop runs.

10.3 Experiments

As presented, there are two potential methods for handling multiple outer-loops in
data-space methods. The typical cost-function formulation (10.9) will be referred
to as the “overfit” method because it forgets the background constraint after more
than one outer-loop giving full weight to the observations. Overfitting observations
is never the goal of assimilation and should always be avoided, and the insidious
effects of overfitting are found in the results. The method derived by El Akkraoui
et al. (2008) is designated the “constrained” method as it respects the total
increment constraint. Because overfitting observations leads to solutions with highly
variable structure and poor prediction skill, the 4D-Var solutions are compared
along with sequential 3D-Var during both assimilation and prediction phases. The
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strong-constraint of all methods is used in both data poor and data rich regimes
to examine the efficacy. To accomplish these experiments, a system that is weakly
nonlinear during the assimilation window is required. The Lorenz (1963) (hereafter
referred to as Lorenz63) system provides a nonlinear, dynamic system with particu-
lar sensitivity to the initial state, x.t0/. The Lorenz63 system is a well used test case
in dynamical systems due to its highly nonlinear but basic structure. Prediction is a
difficult problem with its strong sensitivity to changes in the initial conditions.

One of the first adjoint-based assimilation experiments using Lorenz63 was
performed by Gauthier (1992). This work was followed by other experiments using
both adjoint and Kalman filter techniques by Evensen and Fario (1997) and Miller
et al. (1994). More recently, Ngodock et al. (2007) examined how well the weakly-
constrained Representer method can be used to approximate strongly nonlinear
flows in an observation-rich environment.

The Lorenz63 system is a simplified model of convective atmospheric dynamics.
It is unforced (f.ti / D 0) and uses a three-dimensional state vector .x; y; z/ to
describe the convective motion intensity, temperature difference between vertical
currents, and vertical temperature deviation from linearity, respectively. The model
parameters .
; r; b/ describe the Prandtl number, ratio of the Rayleigh number to
criticality, and convective period. Parameter values of .10; 28; 8=3/ are chosen to
provide a strongly nonlinear flow as in Gauthier (1992). The forward integration of
the model is performed with the standard fourth-order Runge-Kutta method. The
tangent-linear operator M is implemented with the tangent-linearization of both
the nonlinear model and Runge-Kutta integrator. Likewise, the adjoint model is
represented by MT .

Gauthier (1992) examined two regimes of the Lorenz63 system: “regular,” in
which the system remains within a single attractor during the time window and
is weakly nonlinear, and the “transition” case that changes attractor for the other
during the time window and is strongly nonlinear. For each case, Gauthier (1992)
integrated from t D Œ0; 8�; however, these periods are too long for linear methods.
As shown by Gauthier (1992) and Evensen and Fario (1997), the local minima (due
to nonlinearity) in the transition period limit the effectiveness of the assimilation.
Miller et al. (1994) showed that these issues were due to the length of time window
used.

Determining the length of the window to keep the system weakly nonlinear
requires a metric to evaluate any differences between the linear and nonlinear
solutions. A simple cost-function to compare a perturbed trajectory against the
unperturbed is given by A D .x � xt /

T Q�1 .x � xt /, where x is a perturbed model
trajectory sampled at every timestep, xt is the unperturbed model trajectory, and Q
is the prescribed measure of estimate error chosen to be diagonal with values of 2.
Perturbations were randomly chosen with a variance of Q and integrated through
the tangent-linear model (linearized about xt ). These perturbations were also added
to xt and integrated through the nonlinear model (10.1). Any differences between
the nonlinear and linear cost functions, A, are due to unresolved nonlinearity.
Figure 10.1 shows the dramatic difference between two different time windows.
In Fig. 10.1a, the system is weakly nonlinear over 1.9 time units; however, over the
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Fig. 10.1 Cost functions
resulting from various sized
perturbations (x-axis) for
both the nonlinear (solid) and
linear (dashed) models
integrated for (a) 1.9 and (b)
8 time units. If the system
were within the linear regime,
both lines would be identical

8 time units (Fig. 10.1b) as used by Gauthier (1992), the system is highly nonlinear
(note the difference in scales). Perturbations are only shown for x and results (not
shown) are similar for y and z. The situation is far worse during transition periods.
The system is weakly nonlinear only over 0.5 time units, but strongly nonlinear over
8 time units. In fact, multiple minima are present in the nonlinear cost-function;
however, the linear cost function is nearly five orders of magnitude greater.

It is clear that the degree of nonlinearity is a function of time window length and
size of the initial perturbation. In order to determine a range of valid time windows
that remain weakly nonlinear, numerous perturbations were integrated through both
the linear and nonlinear models and the differences were normalized by the initial
perturbation. The time at which the ratio achieves one is determined as the maximum
possible time window length to be considered. The results for the regular case in
Fig. 10.2 show that with perturbations near zero, the maximum window length is 14
time units. As the perturbations in x and y (perturbations in z are not shown, but are
similar) increase, the maximum window size decreases significantly. Differences
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equal to the initial error are too great to be considered weakly nonlinear; however,
these time window estimates provide an upper time bound for the experiments.

As is shown in Figs. 10.1 and 10.2, the prescribed initial error is significant to
determining the time window of the system. No matter the growth of the nonlineari-
ties, a longer period can be used with smaller initial error as the error growth rate can
be approximated by P

1
2 e�t . If the prior error, P, is small, long time-windows are pos-

sible. Figure 10.1b shows that despite the large growth of linear error, long window
solutions are possible if P is small. The linear and nonlinear cost functions deviate
illustrating that this system is not fully linear over the periods of interest, and it
provides an ideal configuration to examine the role of constraints in the outer-loops.

Ensembles of twin experiments are created to compare the two separate cost
functions. The regular and transition initial conditions were integrated for the
predetermined time window to generate truth trajectories then sampled to generate
the observations. Observations were equally spaced over the time window avoiding
the starting and ending times and each state variable was sampled an equal
number of times, such that at each observation time, the entire state is observed.
An ensemble of 500 members was created by randomly perturbing the initial
conditions with variance consistent with P. For each ensemble member, random
error consistent with R was added to each observation. Initially, P and R were
chosen as diagonal matrices with elements set to 2. Each member assimilated the
randomly perturbed observations using four outer-loops with both the overfit and
constrained data-space methods as well as with sequentially applied 3D-Var. The
3D-Var was applied at each time of the full state observations during the time
window of interest. After applying the 3D-Var, the system was integrated to the
next set of observations, and the 3D-Var is repeated with the same P and R and
using the current state as xb . Unlike the 4D-Var solutions, the 3D-Var solutions
are discontinuous during each of the examined time windows and posterior
statistics discussed below are not readily available. The time window was taken as



242 B.S. Powell

0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outer−Loop Number

J/
J 0

Fig. 10.3 The normalized
total cost function, J , from
the nonlinear (grey) and linear
(black) models after each
other-loop for the regular case
with the overfit (solid) and the
constrained (dashed) methods

one-half of the values found in Fig. 10.2 as a conservative measure of the time
window (t D Œ0; 1:9� for the regular case). Because the Lorenz63 system state
contains only three state variables, the Kalman matrix (10.8) was computed directly
rather than employ a gradient-descent inner-loop.

For each ensemble member, the linearity is estimated similar to that shown
in Fig. 10.1, but scaled by the observational error, R, because this provides an
estimate of the errors expected in the fit (including nonlinearity). Any member with
a linearity error greater than 10 % of R is thrown out. This insures that only weakly
nonlinear ensemble members are compared. For all cases, at least 200 members
passed this criterion. Because the distribution of the ensemble member trajectories
is not Gaussian, for all remaining discussion (unless noted) the median of the valid
ensemble members is used to represent the entire ensemble. Ensembles using 3, 6,
9, 12, 15, 18, and 21 observations were created.

The cost functions (Eq. 10.4) for each ensemble member upon completion of
each outer-loop, normalized by the initial guess are computed to compare the
behavior of each outer-loop. The ensemble median cost-functions for the three
observation case are shown in Fig. 10.3. Because the overfit method constrains only
the residuals and ignores the background constraint, it significantly under-estimates
the cost function. In both the regular and transition (not shown as it is similar) cases,
the overfit method significantly reduces the linear cost function through each outer-
loop. After the second inner-loop, most further reduction is accomplished against
the background constraint, Jb , term. The overfit method considers only the current
increment weighted by P rather than the total increments over all inner-loops. The
constrained case shows little improvement after the first outer-loop, and after the
second outer-loop, it has converged.

It is expected that overfitting the observations would degrade the forecasting
ability of the model. Using the true (unperturbed) trajectory, a new cost function
A D .x � xt /

T S�1 .x � xt / is computed every 0.05 time units of the window. The
diagonal error matrix S is composed of the prescribed random observational error.
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Figure 10.4 shows the ensemble median temporal cost function for the assimilation
and forecast periods for the regular case (transition case is similar) using 12
observations when solved with sequential 3D-Var (at four time steps, marked with
grey, vertical line in the figure) and the two 4D-Var outer-loop schemes. All methods
improve upon the initial guess; however, the forecasts from the 3D-Var and overfit
methods suffer. Once the final set of observations are accounted for, the 3D-Var and
the overfit method follow similar trajectories.

A skill ratio between the total cost functions of the two cost-functions is given
by 1 � Ac=Ao, where Ao and Ac are the overfit and constrained cost functions,
respectively is shown in Fig. 10.5. Furthermore, the skill ratio between the 3D-
Var and constrained method (1 � Ac=A3) is shown in grey. For both cases,
the assimilation and forecast periods are shown as a function of the number of
observations assimilated.

In the limit as the cost of Ao or A3 increases, the ratio goes to zero meaning
that the errors of the overfit or 3D-Var methods are significantly higher than the
constrained. So, as the skill reaches higher values shows, overfitting penalizes the
solution. As before, the overfit method improves only when significantly increasing
the number of observational constraints. This is an important consideration for
geophysical assimilation where in situ data are temporally and spatially sparse. As
more noisy data are assimilated into the sequential 3D-Var solutions, overfitting
becomes a significant issue because it is a series of individual time solutions
unconstrained by the original background. These series of independent fits lose
dynamical consistency as more and more observations are included through time.

The cost functions reveal that the overfit procedure in data-space assimilation
violates the fundamental constraints and produces worse assimilation and forecast-
ing results. Sequential 3D-Var was found to perform similarly for these number of
observations; however, it worsened as the number of observations increased. No
matter the choice of values of P and R (not shown) or the regular or transition
cases, the overfit method consistently undervalues the cost function and produces
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poor forecast results. These two methods may exhibit extremely small residuals at
individual times; however, this comes at the expense of adding noisy model structure
with a loss of dynamical consistency throughout the time window. For the remainder
of the discussion, posterior analysis of the two 4D-Var cases are examined.

10.4 Posterior Statistics

The overfit method exhibits worse predictive skill for every case examined. By
ignoring the total increment constraint, it emphasizes the noisy observations. There
are a number of posterior diagnostics available to quantify the performance of each
outer-loop method, including: the final analysis error, the consistency of the prior
and posterior errors, and the true minimum cost functions.

The analysis error (Ea) of the assimilation is provided by the inverse term in
(10.6). For most geophysical applications, direct calculation of this matrix is not
possible due to the size; however, it can be computed directly for the Lorenz63
system. Because these are twin experiments, the true error between the analysis and
the truth is computed and compared against the diagonal of Ea. The ratio between
the true error, Et , and the analysis error, (diagŒEa�), is compared to examine how
well each cost-function evaluates the true statistics. By ignoring the background
error, it is expected that the overfit method will underestimate the analysis error.
For all valid ensemble members, the mean Et =.diagŒEa�/ was 1.075 for the overfit
method. This is an underestimate of the true error by 7.5 %. For the constrained
method, the mean ratio was 0.984, which is an overestimate of the true analysis
error by 1.6 %.

The initial background state and analysis state are compared to the true initial
state for all valid ensemble members tested and the overfit method increases the
initial error by 8.8 % on average, while the constrained method improves the initial
error by 3.2 %. Without a fixed constraint, the overfit method tends to push away
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from the true initial conditions in order to better represent the noisy observations.
In fact, comparing the true observations without random error perturbations to the
final analysis trajectories, the overfit method only reduces the innovation residuals
(Eq. 10.3) between the model and true observations by 37 %, while the constrained
method reduces it by 88 %. Without a proper background constraint, the overfit
method attempts to best fit the noisy observations. The constrained method attempts
to best represent the noisy observations while decreasing the initial error. This
initial constraint actually provides for a better observational fit against the true
observations.

Another important measure is the consistency between the prescribed prior
background (P) and observational (R) errors with the posterior estimates from the
analysis. As shown in Desroziers et al. (2005) and used in Moore et al. (2011a),
two relationships are found. First, two vectors are defined: .dkb/i D H .xk.ti // �
H .xb.ti //, where xk is the integrated solution of the kth outer-loop and provides
the difference between the analysis and background at the observation locations;
and, .dko/i D yi � H .xk.ti // provides the difference between the analysis and the
observations. Desroziers et al. (2005) shows that the posterior error estimates are
given by,

E
�
dkbdT

� D GkPGT
k (10.14)

E
�
dkodT

� D R: (10.15)

Because each term is computed directly in the Lorenz63 problem, the specified
prior error values are compared with (10.14) and (10.15). First, the posterior error
estimate from the analysis, Pa D dkbdT , is compared with the diagonal of the prior
error, Pp D GkPGT

k . Because the diagonal values of P are prescribed, one would
expect consistency with the posterior error; however, the true error, Pt , is less than
P because ensemble members were selected that did not violate weak nonlinearity.
This created a selection bias that decreases the true initial error of the ensemble. For
all of the cases performed, the Pt averages 30 % less than the specified value, P,
regardless of the method.

With this in mind, the ratio of the posterior error, Pa, to the prior, Pp , is com-
pared. The inner-product of the sampled observation locations should be equivalent
to the initial error projected into data-space and the Pa is highly dependent upon
the number of observations as expected by (10.14). As shown in Fig. 10.6, both
methods tend to underestimate the actual background error. Interestingly, the ratio
depends only upon the choice of R. As R decreases, both assimilation methods
grossly underestimate the error in the background. As R increases, the overfit
method significantly overestimates the error in the background as it relies solely
on the observations, while the constrained method becomes more consistent. The
results are from the regular case, but are consistent with the transition case.

Likewise, (10.15) is used to compute the posterior Ra for comparison with the
prescribed prior R. Figure 10.7 shows that no matter the number of observations
or selection of P, the overfit method always underestimates the actual error in
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the observations. The constrained method slightly underestimates the observational
error, but is consistent with the prior. This exposes the overfit method for placing
too much emphasis on the observations.

As a final comparison, the theoretical cost-function minimum is compared to the
minimized cost-function at the end of each outer-loop. Because the overfit method
is unconstrained by P after the first outer-loop, it was shown that it will minimize
Jo at the expense of Jb .

Bennett (2002) showed that for correctly specified P and R, the minimum value
of the cost-function is Jmin D Nobs=2. This measure has been used as a useful
diagnostic by Weaver et al. (2003) and Powell et al. (2008). Unfortunately, this
measure does not quantify the contribution of each component of the cost function.
Moore et al. (2011a) provides a concise review of the work of Talagrand (1999),
Chapnik et al. (2006), and Desroziers et al. (2009) along with the derivation for
determining the minimum theoretical values of each cost-function component. The
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cost-function minima are functions of the trace of the Kalman gain matrix, and are
given by:

�
Jb

�
min

D 1

2
.Nobs � Tr ŒGk�1Kk�/ (10.16)

�
Jo

�
min

D 1

2
Tr ŒGk�1Kk� (10.17)

Normally, to compute the trace of the matrices involved would be prohibitively
expensive; however, for the Lorenz63 system, the Kalman Gain matrix is computed
explicitly to solve (10.16) and (10.17).

Both methods tend to underestimate the background cost because the actual
background error is less than the prescribed; however, the overfit method increas-
ingly underestimates the background cost with each subsequent outer-loop. This
is well illustrated in Fig. 10.8 (other results are very similar and are not shown).
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The constrained method achieves the minimum cost function precisely when
the prescribed observational errors are equal to the background error. When the
observational errors are greater than the background error, the background cost
function is overestimated. The observational cost function shows that the overfit
method continues to reduce the observational cost far below the minimum level,
which is a clear indication of strong overfitting. After the second outer-loop, the
constrained method no longer reduces the cost-function as it has reached the
minimum that balances the two gradients.

Cardinali et al. (2004) showed that
�
Jo

�
min

is a measure of the degrees of
freedom in the system and that

�
Jb

�
min

is a measure of the degrees of freedom
in the observations. The overfit method reduces Jb to zero, thus placing all
weight onto the observations; hence, the degrees of freedom to the observations
is zero. Only the constrained method maintains the proper relationship between the
constraints of the system.

10.5 Discussion

Unconstrained outer-loops in data-space and sequential 3D-Var degrades the solu-
tion and overfits the data. With the proper formulation, weakly nonlinear problems
can be solved with longer time-windows to improve both the number of observa-
tional constraints and length of the trajectory. For problems that are purely linear
(such as when employing the “Representer” method of Bennett (2002)), there is no
need for additional outer-loops because the problem is solved when the inner-loops
converge. For many geophysical applications that are weakly nonlinear, multiple
outer-loops are advantageous. It is important to note that in methods that give greater
weight to the observations (3D-Var, multi-variate optimal interpolation, etc.), careful
consideration must be paid to prevent increments from adding unrealistic structure
to the model in order to fit the observations because it was shown that this structure
leads to severely handicapped predictive skill.

Using a number of quantifiable measures of the assimilation framework to com-
pare the posterior errors of each method, the constrained method preserves the prior
error and does not underestimate the true error. The analysis error of the constrained
method assimilation was consistent with the true error. Although the overfit method
tended to worsen the background initial conditions, it still underestimated the true
analysis error by an average of 7.5 %. Not only does the overfit method provide
an improper minimization, the posterior analysis statistics are invalid. In addition,
the overfit method further underestimated the error in the observations, which is
expected as it gave higher consideration to the noisy observations. The constrained
method was consistent with the true posterior statistics, and as shown by the cost
metrics, provided significant estimate to the degrees of freedom in the system.

When assimilating data in geophysical models, a long time window constrained
by the model dynamics with as many available observations provides a quantifiably
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superior analysis circulation. This circulation is dynamically consistent for the
longer time window, avoiding the frequent discontinuities present in 3D-Var or short
window 4D-Var solutions. To achieve similar results, the overfitting methods would
require nearly error free observations at a frequency that approaches the time-step of
the model. For geophysical flows with temporally sparse data, properly constrained
data-space methods provide an ideal configuration for assimilation.
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Chapter 11
Linearized Physics for Data Assimilation
at ECMWF

Marta Janisková and Philippe Lopez

Abstract A comprehensive set of linearized physical parameterizations has been
developed for the global ECMWF Integrated Forecasting System. Implications
of the linearity constraint for any parametrization scheme, such as the need for
simplification and regularization, are discussed. The description of the methodology
to develop linearized parameterizations highlights the complexity of obtaining a
physics package that can be efficiently used in practical applications. The impact
of the different physical processes on the tangent-linear approximation and adjoint
sensitivities, as well as their performance in data assimilation are demonstrated.

11.1 Introduction

Adjoint models have several applications in numerical weather prediction (NWP).
In variational data assimilation (DA) for instance, they are used to efficiently
determine optimal initial conditions. Another application of the adjoint technique
is the computation of the fastest growing modes (i.e. singular vectors) over a finite
time interval, which can be used in Ensemble Prediction Systems (EPS). Adjoint
models can also be used for sensitivity studies since they enable the computation
of the gradient of a selected output parameter from a numerical model with respect
to all its input parameters. In practice, this is often used to obtain the sensitivity of
the analysis to model parameters, sensitivities of one aspect of the forecast to initial
conditions or sensitivities of the analysis to observations.
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Initially, only the adiabatic linearized models were used in NWP. However, the
significant role played by physical processes in various large-scale and mesoscale
phenomena was soon recognized. Physical processes are particularly important
in the tropics, near the surface, in the planetary boundary layer or the strato-
sphere, where the description of the atmospheric processes is controlled by both
physics and dynamics. Therefore a lot of effort was devoted to include physical
parameterizations in adjoint models. Several studies aimed at including physical
parameterizations in adjoint models (Zou et al. 1993; Zupanski and Mesinger 1995;
Tsuyuki 1996; Errico and Reader 1999; Janisková et al. 1999; Mahfouf 1999;
Janisková et al. 2002; Laroche et al. 2002; Lopez 2002; Tompkins and Janisková
2004; Lopez and Moreau 2005; Mahfouf 2005) with encouraging results. However,
these studies also showed that the linearization of physical parametrization schemes
is not straightforward because of the non-linear and on/off nature of physical
processes. Strong non-linearities that could lead to noise problems had to be
removed from the models in order to be able to benefit from the inclusion of physical
processes in the linearized model.

In recent years, four-dimensional variational (4D-Var) data assimilation became
a powerful tool for exploiting information from irregularly distributed observations
for initial conditions of a numerical forecast model. 4D-Var minimizes the distance
between a model trajectory and observations spread over a given time interval, using
the adjoint equations of the model to compute the gradient of the cost function with
respect to the model state at the beginning of the assimilation period. The mismatch
between model solution and observations can remain large if the imperfect adiabatic
adjoint model would only be used in the minimization. Many satellite observations,
such as radiances, rainfall and cloud measurements, cannot be directly assimilated
with such overly simple adjoint models. Therefore it is crucial to represent physical
processes in the assimilating models. Parametrization schemes for adjoint models
started from very simple ones, such as Buizza (1994), which aimed at removing
very strong increments produced by the adiabatic adjoint models. More complex,
but still incomplete schemes were developed by Zou et al. (1993), Zupanski and
Mesinger (1995), Janisková et al. (1999), Mahfouf (1999, 2005), and Laroche et al.
(2002). More recently, comprehensive schemes were implemented, which describe
the whole set of physical processes and interactions between them almost as in the
non-linear model, just slightly simplified and/or regularized (e.g. Janisková et al.
2002; Tompkins and Janisková 2004; Lopez and Moreau 2005).

In this paper, a comprehensive set of physical parameterizations developed
for the linearized version of the global ECMWF model is described together
with its applications in sensitivity studies and data assimilation. A description of
the current package, which is unique because of its complexity, has never been
published in the literature. Readers would only be able to find summaries of old
parametrization schemes (Mahfouf 1999) from which hardly anything is left in the
current operational model. Some information about updated versions of the schemes
for shortwave radiation (Janisková et al. 2002) and moist processes (Tompkins and
Janisková 2004; Lopez and Moreau 2005) is available, but is no longer up-to-
date. In Sect. 11.2, the reasons for using physics in variational data assimilation
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are explained. The implications of the linear constraint for any parametrization
schemes, such as simplification and regularization are described in Sect. 11.3. The
methodology for the development of linearized simplified parameterizations is
provided in Sect. 11.4. To fully appreciate the achieved level of sophistication of
the linearized physical parametrization schemes used at ECMWF, which can still be
integrated even over 48 h on the global scale without producing spurious noise, each
of them is described in Sect. 11.5. The impact of different physical processes on the
tangent-linear approximation, adjoint sensitivity, as well as the performance in data
assimilation are demonstrated in Sect. 11.6. Finally, conclusions and perspectives
are given in Sect. 11.7.

11.2 The Need for Physics in Variational Data Assimilation

Two main reasons can justify the need for linearized physical parameterizations in
variational data assimilation.

The first one lies in the necessity to compute model-observation departures at
a given time, so that the variational cost function can be minimized. For instance,
if satellite microwave brightness temperatures are to be assimilated, one must be
able to translate the model control variables (typically temperature, humidity, wind
and surface pressure) into some equivalent simulated brightness temperatures. In
this example, this can be achieved by applying moist physics parameterizations to
simulate cloud and precipitation fields first, and then a radiative transfer model to
obtain the desired microwave brightness temperatures, as seen by the model. The
goal of data assimilation is to define the atmospheric state such that the mismatch
between the model and observations (or cost function, J ) is minimum. To minimize
the cost function for obtaining the optimal increments in each model state vector
component, its gradient with respect to model variables needs to be assessed. In
the chosen example of microwave brightness temperatures, this would be achieved
by applying the adjoint of the radiative transfer model followed by the adjoint of
the moist physical parameterizations to the gradient of J in observation space. The
adjoint of a given operator is simply the transpose of its Jacobian matrix with respect
to its input variables.

Secondly, in the particular context of 4D-Var data assimilation, the model state
needs to be compared to each available observation at the time the latter was
performed. It is therefore necessary to evolve the model state from the beginning
of the 4D-Var assimilation window (time 0) to the time of the observation (time i ).
This is achieved by integrating the full non-linear (NL) forecast model, M , from
time 0 to i . Again, the minimization of the 4D-Var cost function, J , which measures
the total distance between the model and all observations available throughout the
assimilation window, requires the computation of its gradient, rx.t0/J with respect
to the model state at the beginning of the 4D-Var assimilation window, x.t0/.
To achieve this, the gradient of the observation term, Jo, of the cost function in
observation space can be first computed through simple differentiation as
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rQyi Jo D
nX
iD0

R�1
i .Qyi � yoi / (11.1)

where Qyi D H.xi / is the model observed equivalent, yoi is the vector of available
observations and Ri is the observation error covariance matrix. Using the adjoint of
the observation operator, HT

i , one can then calculate the gradient of Jo with respect
to the model state at observation time, x.ti /,

rxi Jo D
nX
iD0

HT
i R�1

i .Hi Œx.ti /� � yoi / (11.2)

Finally, the gradient of Jo with respect to the model state at time 0 can be obtained
by applying the adjoint (AD) of the forecast model, MT .ti ; t0/,

rx.t0/Jo D
nX
iD0

MT .ti ; t0/HT
i R�1

i .Hi Œx.ti /� � yoi / (11.3)

Again, since the adjoint version of the forecast model can be seen as the transpose
of its Jacobian matrix, the forecast model first needs to be differentiated with respect
to its inputs, yielding the so-called tangent-linear (TL) model, M.

In contrast with the full non-linear model, the tangent-linear model works on
perturbations of the input variables rather than on full model fields and is fully linear
by construction. The adjoint is therefore a fully linear operator as well and, in the
case of 4D-Var, its inputs are the components of rx.ti /J . As a consequence, solving
the 4D-Var minimization requires the linearization of the forecast model’s physical
parameterizations (e.g. vertical diffusion, radiation, convection, large-scale moist
processes) so that their TL and AD versions can be used to describe the (forward,
respectively backward) time evolution of the model state during the minimization
as seen from (11.3).

11.3 Implication of the Linearity Constraint

The minimization of the 4D-Var cost function is solved with an iterative algorithm
and is therefore computationally rather demanding. Even though the minimization
is usually performed at a much lower resolution (T159/T2551 in current ECMWF’s
operations) than in the standard forecast model (T12792 at ECMWF), the several
tens of iterations required to obtain the optimal model state means that the linearized

1T159/T255 corresponding approximately to 130/80 km
2T1279 corresponding approximately to 16 km
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physics package must be as cheap as possible. To reduce computational cost, it
is therefore often necessary to simplify the set of linearized parameterizations by
retaining only physical processes that dominate in the full forecast model. Linearity
considerations can also influence this choice: if a given process is known to be
highly non-linear (e.g. thresholds, switches), this process should be discarded from
the linearized code since this might otherwise lead to instabilities during TL and AD
integrations. However, some of those instabilities can be overcome through adequate
modifications of the code. At the same time, though simplified, parametrization
schemes used in the linearized model must remain realistic enough to keep the
description of atmospheric processes physically sound.

11.3.1 Simplification

For important practical applications (incremental approach of 4D-Var – Courtier
et al. 1994, adjoint based sensitivities, initial perturbations of EPS), the linearized
version of the forecast model is run at a lower resolution than the non-linear model.
In this case, since the dynamics is already simplified through the reduction in
horizontal resolution, the linearized physics does not necessarily need to be exactly
tangent to the full physics. In principle, physical parameterizations can already
behave differently between non-linear and tangent-linear models due to the change
in resolution. Consequently, some freedom exists in the development of a simplified
physics package, as long as the parameterizations can represent general feedbacks of
physical phenomena present in the atmosphere. Simplified approaches can allow the
progressive inclusion of physical processes in the tangent-linear and adjoint models.
This strategy has been used, for instance, in the operational 4D-Var systems of
ECMWF (Mahfouf 1999; Mahfouf and Rabier 2000; Rabier et al. 2000; Janisková
et al. 2002; Janisková 2003; Tompkins and Janisková 2004; Lopez and Moreau
2005) and at Météo-France (Janisková et al. 1999; Geleyn et al. 2001).

11.3.2 Regularization

As already mentioned, physical processes are often characterized by thresholds.
These can be:

– Discontinuities of some functions themselves describing the physical processes
or some on/off processes (for instance produced by saturation, changes between
liquid and solid phase);

– Some discontinuities in the derivative of a continuous function (i.e. the derivative
can go towards infinity at some points);

– Some strong non-linearities (such as those created by the transition from unstable
to stable regimes in the planetary boundary layer).
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In each of these situations, an estimation of the derivative close to the discontinuity
point will be different between the non-linear model (in terms of finite differences)
and the TL model. All of this makes the tangent linear approximation less valid
when the linearized model includes physical parameterizations compared to the
adiabatic version only. To treat the described problems, it is important to regularize,
i.e. to smooth the parameterized discontinuities in order to make the scheme
as much differentiable as possible. One should recognize that it is often quite
difficult to achieve a tradeoff between a physically sound description of atmospheric
processes and a well-behaved linear physical parametrization. However, without
a proper treatment of the most significant thresholds, the TL model can quickly
become too inaccurate to be useful. Therefore a lot of effort was devoted by
a number of investigators to deal with discontinuities present in parameterized
physical processes (e.g. Zou et al. 1993; Zupanski and Mesinger 1995; Tsuyuki
1996; Errico and Reader 1999; Janisková et al. 1999; Mahfouf 1999; Laroche et al.
2002; Tompkins and Janisková 2004; Lopez and Moreau 2005).

To illustrate a potential source of problem in the linearized model, the rain pro-
duction function, describing which portion of the cloud water is converted into pre-
cipitation, is shown in Fig. 11.1. An increase of cloud water mixing ratio by a small
amount dx (Fig. 11.1a) leads to a small change in the precipitation amount dyNL in
the case of the non-linear (NL) model, but to a much larger change (dyTL) in the
case of the TL model. As a possible solution, one can modify the function to make it
less steep (dotted line on Fig. 11.1b ). In this case, the resulting TL increment will be
significantly smaller (dyTL2). However, the required modification can be substantial
and it can deteriorate the overall quality of the physical parametrization itself.
Therefore one must always be careful to keep the right balance between linearity
and realism of the parametrization schemes. In the future, the better the non-linear
forecast model will become, the smaller 4D-Var analysis increments and hence the
hope to have less difficulties with using linearized physical processes will be.

11.4 Methodology for the Development of Linearized
Simplified Parameterizations

There are several problems with including physics in adjoint models. The devel-
opment requires substantial resources and it is technically very demanding. The
validation must be very thorough and it must be done for the non-linear, tangent-
linear and adjoint versions of the physical parametrization schemes. The compu-
tational cost of the model with physical processes can be very high despite some
possible simplifications applied. One must be also very careful with the non-linear
and threshold nature of physical processes which can affect the range of validity of
the tangent-linear approximation as mentioned above.

The development of a new linearized physical parametrization can be divided
into four main stages:
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Fig. 11.1 Autoconversion function of cloud water into precipitation (black solid line) based on
Sundqvist et al. (1989). A change in the cloud water, dx, results in a change of precipitation,
dyNL, in the case of non-linear (NL) model. dyTL is the corresponding change in precipitation
given by the tangent-linear (TL) model. (b) Describes the modified function which is less steep
and helps to reduce the TL increments to dyTL2 (closer to dyNL)

1. Simplified non-linear forward model design, coding, tuning and validation.
2. Tangent-linear coding and testing.
3. Adjoint coding and testing.
4. Performance assessment in data assimilation and other applications (see exam-

ples in Sect. 11.6).

11.4.1 Simplified Non-linear Version

In the first stage, the non-linear version of the new simplified physical parametriza-
tion needs to be designed. This can be achieved through either an “upward” or
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“downward” approach, both relying on the prioritization of the various processes
represented in the full NL code used in standard forecasts. With the upward
technique, the simplified code is obtained by keeping only the most relevant
processes found in the full NL version. In the downward approach, the simplified
code is built by ignoring the least significant processes from the full NL code.
Ideally, both approaches should converge to more or less similar simplified codes,
which should be computationally cheaper than the full NL code, and contain fewer
discontinuities but are still able to provide realistic forecasts. Once the simplified
code has been written, it is thus necessary to tune and validate it in traditional
forecasts over periods at least equal to the maximum length of the expected
applications. At ECMWF for instance, this period corresponds to 12 h for 4D-Var
DA or to 24 h for singular vector computations involved in the ensemble prediction
system. It is particularly crucial to ensure that the new simplified NL code does not
depart too much from its full NL counterpart over this period of time. Verification in
much longer integrations (up to climate timescales), although not essential, is also
recommended to make sure that the new simplified scheme is stable and behaves
reasonably well.

11.4.2 Linearization Techniques

Once the NL version of the simplified scheme is deemed adequate, efforts are
devoted to the development of the TL code, first, and then of the AD code. In
practice, linearization can be achieved using either a manual line-by-line approach
or an automatic coding software (e.g. Giering and Kaminski 1998; Araya-Polo
and Hascoët 2004). However attractive automatic coding may sound, the manual
technique is usually more suitable as soon as one has to deal with the large amounts
of complex code used in modern NWP systems. Until now, in our own experience,
the code produced through automatic differentiation and adjoining often turned
out to be computationally very expensive (no optimization) and sometimes not
bug-free. This is the reason why so far only manual line-by-line TL and AD
coding has been applied to derive and update ECMWF’s full set of linearized
physical parameterizations. In the future this strategy might be revisited if automatic
softwares become more efficient and reliable.

11.4.3 Tangent-Linear Version

An estimation of sensitivity of model output with respect to input required by
many studies can be efficiently done by using the adjoint. For atmospheric models
evolving in time, this backward integration requires to have the tangent linear model
acting forward in time. To build the TL model, the linearization is performed with
respect to the local tangent of the model trajectory.
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If M is the model describing the time evolution of the model state x as:

x.tiC1/ D MŒx.ti /� (11.4)

then the time evolution of a small perturbation ıx can be estimated to the first order
approximating by the tangent linear model M (derived from the NL modelM ):

ıx.tiC1/ D MŒx.ti /�ıx.ti /

ıx.tiC1/ D @MŒx.ti /�
@x

ıx.ti / (11.5)

The verification of the correctness of the TL model is first performed through the
classical Taylor formula:

lim
�!0

M.x C �ıx/�M.x/
M.�ıx/

D 1 (11.6)

This examination of asymptotic behaviour, using perturbations the size of which
becomes infinitesimally small, is performed to check the numerical correctness of
the TL code.

For practical applications, it is also important to investigate the accuracy of
TL models for finite-amplitude perturbations (typically perturbations of the size of
analysis increments). The results from applications of tangent-linear and adjoint
models are only useful when the linearized approximation is valid for such
perturbations. Therefore, for the validation of the tangent-linear approximation, the
accuracy of the linearization of a parametrization scheme is studied with respect to
pairs of non-linear results. The difference between two non-linear integrations (one
starting from a background field, xb , and the other from an analysis, xa) run with
the full NL model, M , is compared to time evolution of the analysis increments
(xa � xb) obtained by integrating the TL model, M, with the trajectory taken from
the background field.

For a quantitative evaluation of the impact of linearized schemes, their relative
importance is evaluated using mean absolute errors between tangent-linear and non-
linear perturbations as:

" D
ˇ̌
ˇM.xa � xb/� �

M.xa/�M.xb/
�ˇ̌ˇ (11.7)

As a reference for the comparisons, an absolute mean error for the TL model without
physics, "ref , is taken. If "exp is defined as the absolute mean error of the TL model
with the different physical schemes included, then an improvement coming from the
inclusion of more physics in the TL model is expressed as "exp < "ref . The relative
errors, rer , and relative improvements, �, are also computed as:
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rer D
ˇ̌
ˇM.xa � xb/� �

M.xa/�M.xb/
�ˇ̌ˇ

ˇ̌
ˇM.xa/�M.xb/

ˇ̌
ˇ

(11.8)

� D "exp � "ref
"ref

(11.9)

Validity tests of the tangent-linear approximations are mostly performed over the
time period and at the resolution at which adjoint models will be applied in practice:
resolution and time length of an inner-loop integration of 4D-Var system (e.g. 12 h,
T255 and 91 vertical levels at ECMWF) or longer time periods for singular vectors
and sensitivity applications (e.g. 24 h at ECMWF). An example of the results from
such TL approximation assessment will be given in Sect. 11.6.1.

11.4.4 Adjoint Version

The adjoint of a linearized operator, M, is the linear operator, M�, such that:

8x;8y < M:x; y >D< x;M�:y > (11.10)

where <;> denotes the inner product and x and y are input vectors.
Besides, the adjoint model M� can provide the gradient of any objective function,

J, with respect to x.ti / from the gradient of the objective function with respect to
x.tiC1/

@J

@x.ti /
D M�

�
@J

@x.tiC1/

	
(11.11)

The integration of the AD forecast model works backward in time. One should
remember that, M being non-linear, M as well as M� depend on the particular
state of the atmosphere, x, about which the linearization is performed. The adjoint
operator, for the simplest canonical scalar product <;> (11.10), is actually the
transpose of the tangent linear operator, MT (not its inverse).

For the practical verification of the adjoint code, one must test the identity
described in (11.10). It should be emphasized that it is absolutely essential to ensure
that the TL and AD codes verify (11.10) to the level of machine precision, even
when vectors x and y are global 3D atmospheric states and even for time integrations
up to 12 or 24 h. Note that a correct adjoint test does not imply the correctness of
tangent-linear code.
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11.4.5 Singular Vectors

Besides the verification of the numerical correctness of TL and AD versions of the
model and the examination of the validity of TL approximation, singular vectors
can be used to find out whether the new schemes do not lead to a growth of spurious
unstable modes. Such modes would indicate the existence of strong non-linearities
and threshold processes in the model and would have a negative impact on the
usefulness of the linearized model.

11.5 ECMWF’s Linearized Physics Package

11.5.1 Description

The set of ECMWF physical parameterizations used in the linearized model (called
simplified or linearized parameterizations) comprises six different schemes: radia-
tion, vertical diffusion, orographic gravity wave drag, moist convection, large-scale
condensation/precipitation and non-orographic gravity wave activity, sequentially
called in this order. The current linearized physics package is therefore quite
sophisticated and is believed to be the most comprehensive one used in operational
global data assimilation. Each physical parametrization scheme of this package is
described below starting with dry processes.

11.5.1.1 Radiation

The radiation scheme solves the radiative transfer equation in two distinct spectral
regions. The computations for the longwave (LW) radiation are performed over the
spectrum from 0 to 2,820 cm�1 (
100 to 3.5�m). The shortwave (SW) part of the
scheme integrates the fluxes over the whole shortwave spectrum between 0.2 and
4.0�m. The scheme used for data assimilation purposes must be computationally
efficient to be called at full spatial resolution to improve the description of cloud-
radiation interactions during the assimilation period (Janisková et al. 2002).

The Shortwave Radiation Scheme

The linearized code for the SW radiation scheme has been derived from ECMWF’s
original non-linear scheme developed by Fouquart and Bonnel (1980) and revised by
Morcrette (1991). In this scheme, previously used in the operational forecast model,
the photon-path-distribution method is applied to separate the parametrization of
scattering processes from that of molecular absorption. Upward F "

sw and downward
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F
#
sw fluxes at a given level j are obtained from the reflectance and transmittance of

the atmospheric layers as

F #
sw.j / D F0

NY
kDj

Tbot.k/ (11.12)

F "
sw.j / D F #

sw.j /Rtop.j � 1/ (11.13)

Computations of the transmittance at the bottom of a layer, Tbot, start at the top
of atmosphere and work downwards. Those of the reflectance at the top of the
same layer, Rtop, start at the surface and work upwards. In the presence of cloud
in the layer, the final fluxes are computed as a weighted average of the fluxes in the
clear-sky and in the cloudy fractions of the column (depending on the cloud-overlap
assumption).

The non-linear scheme is reasonably fast for application in 4D-Var and has
therefore been linearized without a-priori changes (Janisková et al. 2002). The only
modification with respect to the non-linear version (used operationaly until June
2007; since then Rapid Radiation Transfer model for SW radiation is used – Mlawer
and Clough 1997), is the use of two spectral intervals, instead of six intervals. This
is meant to reduce the computational cost.

The Longwave Radiation Scheme

The LW radiation scheme, used in the ECMWF full NL forecast model is the Rapid
Radiation Transfer Model (RRTM; Mlawer et al. 1997; Morcrette et al. 2001).
The complexity of the RRTM scheme for the LW part of the spectrum makes
accurate computations expensive. In the variational assimilation framework, the
older operational scheme of Morcrette (1989) was linearized. In this scheme, the LW
spectrum from 0 to 2,820 cm�1 is divided into six spectral regions. The transmission
functions for water vapour and carbon dioxide over those spectral intervals are fitted
using Padé approximations on narrow-band transmissions obtained with statistical
band models (Morcrette et al. 1986). Integration of the radiation transfer equation
over wavenumber � within the particular spectral regions yields the upward and
downward fluxes.

The inclusion of cloud effects on the LW fluxes follows the treatment discussed
by Washington and Williamson (1997). The scheme first calculates upward and
downward fluxes (F "

0 .i/ andF #
0 .i/) for a clear-sky atmosphere. In any cloudy layer,

the scheme evaluates the fluxes assuming a unique overcast cloud of emissivity
unity, i.e. F "

n .i/ and F #
n .i/ for a cloud present in the nth layer of the atmosphere.

The fluxes for the actual atmosphere are derived from a linear combination of the
fluxes calculated in the previous steps with some cloud overlap assumption (see
below) in the case of clouds spreading over several layers. If N is the number of
model layers starting from the top of atmosphere to the bottom, Ci the fractional
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cloud cover in layer i , the cloudy upward F "
lw and downward F #

lw fluxes are then
expressed as:

F
"
lw.i/ D .1 � CCN;i /F

"
0 .i/C

NX
kDi
.CCi;kC1 � CCi;k/F "

k .i/ (11.14)

F
#
lw.i/ D .1 � CCi�1;0/F #

0 .i/C
i�1X
kD1

.CCi;kC1 � CCi;k/F
#
k .i/ (11.15)

where CCi;j is the cloudiness encountered between any two levels i and j in the
atmosphere computed using the overlap assumption described below.

In the case of semi-transparent clouds, the fractional cloudiness entering the
calculations is an effective cloud cover equal to the product of the emissivity due
to condensed water and gases in the layer by the horizontal coverage of the cloud
cover. This is the so called effective emissivity approach.

To reduce a computational cost of the linearized LW radiation for data assim-
ilation, the scheme is not called at each time step. Furthermore, the transmission
functions are only computed for H2O and CO2 absorbers (though the version taking
into account the whole spectrum of absorbers is also coded for aerosols and other
gases). The cloud effects on LW radiation are only computed up to cloud top.

Cloud Overlap Assumptions

Cloud overlap assumptions must be made in atmospheric models in order to
organize the cloud distribution used for radiation. This is is necessary to account
for the fact that clouds often do not fill the whole grid box. The maximum-
random overlap assumption (originally introduced in Geleyn and Hollingsworth
1997) is used operationally (Morcrette and Jakob 2000). Adjacent cloudy layers are
combined by assuming maximum overlap to form a contiguous cloud and discrete
layers separated by clear-sky are combined randomly.

Cloud Optical Properties

When one considers cloud-radiation interactions, it is not only the cloud fraction
or cloud volume, but also cloud optical properties that matter. In the case of SW
radiation, cloud radiative calculations depend on three different parameters: the
optical thickness, the asymmetry factor and the single scattering albedo. They are
derived from Fouquart (1987) for water clouds, and Ebert and Curry (1992) for ice
clouds. They are functions of cloud condensate and a specified effective radius.

Cloud LW optical properties are represented by the emissivity, related to the
condensed water amount, and by the condensed-water mass absorption coefficient
obtained from Smith and Shi (1992) for water clouds and Ebert and Curry (1992)
for ice clouds.
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11.5.1.2 Vertical Diffusion

Vertical diffusion applies to wind components, dry static energy and specific
humidity. The exchange coefficients in the planetary boundary layer and the drag
coefficients in the surface layer are expressed as functions of the local Richardson
number,Ri , (Louis et al. 1982). They differ from the formulation of the operational
forecast model (i.e. full non-linear scheme) where for the unstable regime (Ri < 0)
the Monin-Obukhov (M-O) formulation is used, together with a K-profile approach
for convectively mixed layer in the case of unstable surface conditions. In the
linearized model, the exchange coefficients are computed according to Louis et al.
(1982). For the stable regime (Ri > 0), diffusion coefficients according to the Louis
scheme are used close to the surface and above 300 m, then they tend asymptotically
to the M-O formulation. A mixed layer parametrization is also included. This is
consistent with the full non-linear model.

Analytical expressions are generalized for the situation with different roughness
lengths for heat and momentum transfer. For any conservative variable  (wind
vector components, u and v; dry static energy, s; specific humidity, q), the tendency
produced by vertical diffusion is

@ 

@t
D 1

�

@

@z

�
K.Ri/

@ 

@z

	
(11.16)

where � is the air density. The exchange coefficient K for heat and momentum
transfer is given by

K D l2
ˇ̌
ˇ̌
ˇ̌
ˇ̌@U
@z

ˇ̌
ˇ̌
ˇ̌
ˇ̌f .Ri/ (11.17)

where U is the wind vector and f .Ri/ represents the coefficient accounting for
the dependence of vertical turbulent diffusion on the local Richardson number,
either computed according to Louis et al. (1982), fL.Ri/, or to the Monin-Obukhov
formulation, fMO.Ri/. l is the mixing length profile based on the formulation of
Blackadar (1962) with a reduction in the free atmosphere.

A continuous transition between Louis coefficients near the surface to about
300 m and M-O coefficients above is computed as

1

l
p
f .Ri/

D 1

�z
p
fL.Ri/

C 1

�
p
fMO.Ri/

(11.18)

where � is the Von Karman’s constant, z is the height and � is the asymptotic mixing
length.

To parameterize turbulent fluxes at the surface, the drag coefficient, Csf , (i.e. the
exchange coefficient between the surface and the lowest model level) is computed
as

Csf D gsf .Ri/ CN (11.19)



11 Linearized Physics for Data Assimilation at ECMWF 265

whereCN is the neutral drag coefficient, which is a function of the roughness length,
and gsf .Ri/ is a function of the local Richardson number. Different formulations of
CN and gsf .Ri/ are used for momentum and heat, according to Louis et al. (1982).

Regularization

In earlier versions of the model, perturbations of the exchange coefficients were
simply neglected (K 0 D 0), in order to prevent spurious unstable perturbations
from growing in the linearized version of the scheme (Mahfouf 1999). Later, some
regularization of exchange coefficients was introduced at upper model levels to
allow partial perturbations of these coefficients. This consists in the perturbations
being more significantly reduced around the neutral state (i.e. Ri close to zero)
where both the function of Ri itself and its derivative exhibit a significant rate of
change. The reduction is eased exponentially away from the neutral state.

11.5.1.3 Subgrid Scale Orographic Effects

Only the low-level blocking part of the operational non-linear scheme developed
by Lott and Miller (1997) is taken into account in TL and AD calculations. The
deflection of the low-level flow around orographic obstacles is supposed to occur
below an altitude Zblk such that

Z 3�

Zblk

N

jUj dz � Hncrit (11.20)

where Hncrit is a critical non-dimensional mountain height, � is the standard
deviation of subgrid-scale orography and N is the Brunt-Väisälä frequency.

The deceleration of wind due to low-level blocking is given by

�
@U
@t

	

blk
D �Cd max

�
2 � 1

r
; 0

	



2�

s
Zblk � z

z C �
.B cos2 ˛ C C sin2 ˛/

UjUj
2

(11.21)
where Cd is the low-level drag coefficient, 
 is the mean slope of the subgrid-scale
orography, and ˛ is the angle between the low-level wind and the principal axis of
orography. r is determined as r D .cos2 ˛C � sin2 ˛/=.� cos2 ˛C sin2 ˛/, where �
is the anisotropy of the subgrid-scale orography. The functions B , C are written as
(Phillips 1984)

B D 1 � 0:18� � 0:04�2 and C D 0:48� C 0:3�2:

The final wind tendency produced by the low-level drag parametrization is then
obtained from the following partially implicit discretization of (11.21)
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�
@U
@t

	

blk
D UnC1 � Un

�t
D �AjUnjUnC1 D � ˇ

1C ˇ

Un

�t
(11.22)

where ˇ D AjUnj�t and UnC1 D Un=.1C ˇ/.

11.5.1.4 Non-orographic Gravity Wave Drag

The tangent-linear and adjoint versions of the non-linear scheme for non-orographic
gravity waves (in details described by Orr et al. 2010) were developed in order
to reduce discrepancies between the full NL and linearized versions of the model,
especially in the stratosphere. The parametrization scheme used in the NL model is
based on Scinocca (2003). This is a spectral scheme that follows from the Warner
and McIntyre (1996) scheme representing the three basic mechanisms that are
conservative propagation, critical level filtering, and non-linear dissipation. Since
the full nonhydrostatic and rotational wave dynamics considered by Warner and
McIntyre (1996) is too costly for operational models, only hydrostatic and non-
rotational wave dynamics are employed.

The dispersion relation for a hydrostatic gravity wave in the absence of rotation
is

m2 D k2N 2

Q!2 D N2

Qc2 (11.23)

where k, m are horizontal and vertical wavenumbers, while Q! D ! � kU and Qc D
c � U are the intrinsic frequency and phase speed (with c being the ground based
phase speed and U the background wind speed in the direction of propagation),
respectively.

The launch spectrum, which is globally uniform and constant, is given by the
total wave energy per unit mass in each azimuth angle � following Fritts and
VanZandt (1993) as

QE.m; Q!; �/ D B
� m
m�

s N 2 Q!�d

1 � �
m
m�

�sC3 (11.24)

where B , s and d are constants, and m� D 2L is a transitional wavelength.
Instead of the total wave energy QE.m; Q!; �/, the momentum flux spectral density
� QF .m; e!; �) is required. This is obtained through the group velocity rule. In order
to have the momentum flux conserved in the absence of dissipative processes as
the spectrum propagates vertically through height-varying background wind and
buoyancy frequency, the coordinate framework .k; !/ is used instead of .m; Q!/ as
shown in Scinocca (2003).

The dissipative mechanisms applied to the wave field in each azimuthal direction
and on each model level are critical level filtering and non-linear dissipation. After
application of them, the resulting momentum flux profiles are used to derive the
net eastward � NFE and northward � NFN fluxes. The tendencies for the (u, v) wind
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components are then given by the divergence of those fluxes obtained through
summation of the total momentum flux (i.e. integrated over all phase speed bins)
in each azimuth �i projected onto the east and north directions, respectively:

@u

@t
D g

@.� NFE/
@p

(11.25)

@v

@t
D g

@.� NFN /
@p

(11.26)

where g is the gravitational acceleration and p is pressure.

Regularization

In order to eliminate the spurious noise in TL computations caused by the
introduction of this scheme, it was necessary to implement some regularizations.
These include rewriting buoyancy frequency (N ) computations in the NL scheme
in height coordinates instead of pressure coordinates (as used in the original code)
and setting increments for momentum flux in the last three spectral elements (high
phase speed) of the launch spectrum to zero.

11.5.1.5 Moist Convection

The original version of the simplified mass-flux convection scheme currently used
in the minimization of 4D-Var is described in Lopez and Moreau (2005). Through
time, the original scheme has been updated so as to gradually converge towards
the full convection scheme used in high-resolution 10-day forecasts (Bechtold et al.
2008). The transport of tracers by convection is also implemented.

The physical tendencies produced by convection on any conservative variable  
(dry static energy, wind components, specific humidity, cloud liquid water) can be
written in mass-flux form following Betts (1997)

@ 

@t
D 1

�

�
.Mu CMd/

@ 

@z
CDu. u �  /CDd. d �  /

�
(11.27)

The first term on the right hand side represents the compensating subsidence induced
by cumulus convection on the environment through the mass flux, M . The other
terms account for the detrainment of cloud properties in the environment with a
detrainment rate, D. Subscripts u and d refer to the updraughts and downdraughts
properties, respectively. Evaporation of cloud water and precipitation should also be
added in (11.27) for dry static energy, s D cpT C gz, and specific humidity.
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Equations for Updraught and Downdraught

The equations describing the evolution with height of the convective updraught and
downdraught mass fluxes, Mu andMd, respectively, are

@Mu

@z
D .�u � ıu/Mu (11.28)

@Md

@z
D �.�d � ıd/Md (11.29)

where � and ı respectively denote the entrainment and detrainment rates. A
second set of equations is used to describe the evolution with height of any other
characteristic,  , of the updraught or downdraught, namely

@ u

@z
D ��u. u �  / (11.30)

@ d

@z
D �d. d �  / (11.31)

where  is the value of  in the large-scale environment.
In practice, (11.28) and (11.29) are solved in terms of � D M=M base

u , where
M base

u is the mass flux at cloud base (determined from the closure assumption as
described further down).

Triggering of Moist Convection

The determination of the occurrence of moist convection in the model is based on
whether a positively buoyant test parcel starting at each model level (iteratively from
the surface and upwards) can rise high enough to produce a convective cloud and
possibly precipitation. For an updraught starting from the lowest model level, its
initial temperature and moisture departures with respect to the environment and its
initial vertical velocity depend on surface sensible and latent heat fluxes, following
Jakob and Siebesma (2003). When starting from higher model levels, the ascent is
initially set to 1 m s�1 and its initial thermodynamic characteristics are assumed to
be representative of a few hundred metre deep mixed-layer, with typical excesses
of 0.2 K for temperature and 1�10�4 kg kg�1 for moisture. A 200 hPa threshold for
cloud depth is prescribed to distinguish between shallow and deep convection. Mid-
level convection is treated as deep convection.
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Entrainment and Detrainment

Entrainment rate in the updraught (�u) is split into turbulent and organized com-
ponents, which are both modulated by humidity conditions in the environment.
Detrainment in the updraught (ıu) is assumed to occur inside the convective cloud
only where the updraught vertical gradient of kinetic energy and buoyancy are
negative, that is usually in the upper part of the convective cloud.

Entrainment in downdraughts (�d) is assumed to occur only between the level
of free sinking and the top of the 60 hPa atmospheric layer just above the surface.
Inside this layer, it is set to a constant value. Detrainment (ıd) is defined such as to
ensure a downward linear decrease of downdraught mass flux to zero at the surface.

Precipitation Processes

The formation of precipitation from the cloud water contained in the updraught is
parameterized according to Sundqvist et al. (1989) and a simple representation of
precipitation evaporation is included. Precipitation formed from cloud liquid water
at temperatures below the freezing point is assumed to freeze instantly, which affects
the dry static energy tendency.

Closure Assumptions

One needs to formulate so-called closure assumptions to relate the convective
updraught mass-flux at cloud base, M base

u , to quantities that are explicitly resolved
by the model. For deep convection, the closure is based on the balance between the
convective available potential energy in the subgrid-scale updraught and the total
heat release in the resolved larger-scale environment. The cloud base mass flux is
expressed as the ratio of the latter two quantities, modulated with an adjustment
timescale. This timescale depends on the updraught vertical velocity averaged over
its depth and on spectral truncation. For shallow convection, the closure assumption
links the moist energy excess at cloud base to the moist energy convergence inside
the sub-cloud layer. The ratio of these two quantities yields the cloud base mass flux
for shallow convection.

Regularization

Various regularizations need to be applied in the TL and AD code of the convection
scheme to avoid spurious instabilities. These include reducing or setting to zero the
perturbations of some terms that directly depend on the updraught vertical velocity
as well as reducing updraught buoyancy and cloud base mass flux perturbations.
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11.5.1.6 Large-Scale Condensation and Precipitation

The original version of the simplified diagnostic large-scale clouds and precipitation
scheme currently used in the minimization of 4D-Var is described in Tompkins and
Janisková (2004). Only a summary of its main features is given here.

The physical tendencies of temperature and specific humidity produced by moist
processes on the large-scale can be written as

@q

@t
D �Cce C Eprec CDconv (11.32)

@T

@t
D L.Cce � Eprec �Dconv/C Lf .Frain �Msnow/ (11.33)

whereCce denotes large-scale condensation/evaporation,Eprec is the moistening due
to the evaporation of precipitation andDconv is the detrainment of cloud water from
convective clouds. Frain and Msnow correspond to the freezing of rain and melting
of snow, respectively.L and Lf are the latent heats of vaporisation/sublimation and
fusion, respectively.

Condensation

The subgrid-scale variability of humidity is assumed to be represented by a uniform
distribution. This allows the estimation of the stratiform cloud fraction, Cstrat, and
cloud condensate amount, qstrat

c , from the grid-box relative humidity,RH , as

Cstrat D 1 �
s

1 � RH

1 � RHcrit � �.RH � RHcrit/
(11.34)

qstrat
c D qsatC

2
strat

˚
�.1 � RH/C .1 � �/.1� RHcrit/

�
(11.35)

where qsat is the saturation specific humidity. The critical relative humidity thresh-
old,RHcrit, and the coefficient � are specified as in Tompkins and Janisková (2004).
A simple diagnostic partitioning based on temperature is used to separate cloud
condensate into liquid and ice.

The impact of convective activity on large-scale clouds, which is particularly
important in the tropics and mid-latitude summers, is accounted for through the
detrainment rate produced by the convection scheme. This detrainment term is
used to compute the additional cloud cover and cloud condensate resulting from
convection (i.e. convection called before condensation).
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Precipitation Processes

The formation of precipitation from cloud condensate, qc, is parameterized accord-
ing to Sundqvist et al. (1989), but the Bergeron-Findeisen mechanism and collection
processes are currently disregarded. Precipitation formed from cloud liquid water
at temperatures below the freezing point is assumed to freeze instantly, which
corresponds to term Frain in (11.33). On the other hand, precipitation evaporation
is estimated from the overlap of precipitation with the uniformly distributed subgrid
fluctuations of humidity inside the clear-sky fraction of the grid box.

Regularization

Perturbations of Cstrat were found to cause spurious instabilities in TL and AD
integrations and are therefore artificially reduced according to the value of Cstrat

in the trajectory. A reduction of perturbations in the autoconversion of cloud
condensate to precipitation is also needed.

11.5.2 A Few Remarks

The set of physical parametrization schemes developed for the ECMWF linearized
model was described in Sect. 11.5.1. Although there are some simplifications and
regularizations applied in the different parametrization schemes, the whole package
is comprehensive and its non-linear form is able to provide up to 3 days forecasts
that show a degree of realism which does not depart too much from that of the non-
linear physics. Different levels of simplification of the schemes have been driven
either by the requirement to decrease computational cost for operational applications
or the necessity to avoid unrealistic perturbations in the linearized version of the
scheme. The applied regularizations and simplifications allow global integrations of
the linearized model with elaborated physical parametrization schemes even up to
48 h without producing spurious noise.

Overall, the presented package is a result of compromise between realism,
linearity and computational cost while at the same time the level of complexity
for the parametrization schemes is also influenced by the required applications. It is
a constant challenge to maintain the best tradeoff between all those requirements.

11.5.3 Benefits of Regularization

The validity of the tangent-linear approximation can be highly degraded due to the
non-linear and discontinuous nature of physical processes (see Sect. 11.3.2). If the
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Fig. 11.2 Zonal wind increments around 700 hPa after 12-h evolution: (a) finite-differences
(FD), (b) tangent-linear (TL) model without any regularization and (c) TL model with applied
regularization in the cloud parametrization scheme

derivatives of model outputs with respect to the model state variables become very
large, the linearization will become useless.

As an illustration of how strong nonlinearities can lead to erroneous behaviour of
the tangent linear model, Fig. 11.2b shows the evolution of zonal wind increments at
the model level around 700 hPa when using the TL model without any regularization
in the cloud parametrization scheme. When compared to the finite differences
(differences between two non-linear integrations) in Fig. 11.2a, one can notice that
strong spurious noise develops in the tangent linear model. This noise comes from
the autoconversion function (Fig. 11.1) describing the conversion of cloud water
to precipitation. When regularization is applied to this function, TL increments
(Fig. 11.2c) agree well with the finite differences (Fig. 11.2a).

11.6 Performance of the Linearized Physics

11.6.1 TL Approximation

Once discontinuities in the different physical parametrization schemes have been
properly smoothed, the TL model describing the evolution of perturbations with the
simplified physical parameterizations generally fits the finite differences between
two non-linear forecasts much better than an adiabatic TL model.

To demonstrate the impact of the different physical processes in the TL model,
experiments have been performed at a horizontal resolution equal to T255 and
91 levels in vertical (L91) using the linearized physics of ECMWF described in
Sect. 11.5. The impact of the different physical processes on the tangent-linear
evolution of temperature and zonal wind increments is shown in Fig. 11.3. Results
are presented in terms of zonal mean of error difference as in (11.7) (i.e. the fit
to the non-linear model with full physics) between the TL model including the
whole set of linearized parametrization schemes and the adiabatic TL model (i.e.
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Fig. 11.3 Impact of the ECMWF operational linearized physics on the evaluation of (a) temper-
ature and (b) u-wind increments in zonal mean. Results are presented as the error differences (in
terms of fit to the non-linear model with full physics) between the TL model with full linearized
physics and the purely adiabatic TL model

"exp � "adiab). Negative values are associated with an improvement of the model
using the parametrization schemes with respect to the adiabatic TL model since they
correspond to a reduction of the errors. The improvement is observed over most of
the atmosphere, and is maximum in the lower troposphere.

Figure 11.4 shows the global relative improvement (see (11.9)) coming from
including (a) dry physical parametrization schemes (i.e. vertical diffusion, gravity
wave drag, non-orographic gravity wave and radiation) alone and (b) in combination
with the moist processes (i.e. convection and cloud with large-scale parametrization
schemes) in the linearized model compared to adiabatic tangent linear model for
temperature, wind and specific humidity. The additional improvement due to the
inclusion of the moist parametrization schemes is not only coming from these
schemes, but also from cloud-radiation interactions.

The relative error of the TL model with respect to the finite differences using the
full non-linear physical parameterizations is also used for evaluation. Figure 11.5
shows vertical profiles of global relative error reduction (therefore negative values)
of the TL model using different physical parametrization schemes with respect to
the adiabatic TL model. The error reduction becomes larger by gradually including
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wind and specific humidity coming from including: (a) dry physical parametrization schemes (i.e.
vertical diffusion, gravity wave drag, non-orographic gravity wave and radiation) alone (grey bars)
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Fig. 11.5 Global relative error reduction of the tangent-linear (TL) model obtained from the
gradual inclusion of physical parameterizations as shown in legend with respect to adiabatic TL
model for (a) temperature, (b) zonal wind and (c) specific humidity. Relative errors of TL model
are computed with respect to finite differences using the full non-linear physics

parametrization schemes, e.g. by including moist processes on top of the dry
physical parametrization schemes.

11.6.2 Adjoint Sensitivities

Adjoint models can also be used for sensitivity studies since they allow to compute
the gradient of one output parameter of a numerical model with respect to all input
parameters. This property of adjoint allows to study, for instance, the sensitivity
of a physical parametrization scheme to its input parameters (e.g. Li and Navon
1998; Janisková and Morcrette 2005). It is a more effective method compared with
other standard approaches of repetitively using the direct schemes to obtain the
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sensitivity of all outputs by modifying in turn each input variables. More generally,
an adjoint can be applied to analyze the sensitivity of a forecast aspect to initial
conditions as proposed, for instance, by Errico and Vukicevic (1992) or Rabier
et al. (1996). The adjoint method can also be used to measure the sensitivity
with respect to any parameter of importance of the data assimilation system. In
recent years, adjoint-based observation sensitivity techniques have been used as
a diagnostic tool to monitor the observation impact on short-range forecasts (e.g.
Langland and Baker 2004; Cardinali and Buizza 2004; Zhu and Gelaro 2008;
Cardinali 2009). Such technique is restricted by the tangent-linear assumption and
its validity. The better the tangent-linear approximation, the more realistic and useful
the sensitivity patterns. Results obtained through the adjoint integration when using
a too simplified adjoint model with large inaccuracies or adjoint models without a
proper treatment of nonlinearities and discontinuities, can be incorrect.

The adjoint( FT ) of the linear operator F can provide the gradient of any objective
function, J, with respect to x (input variables) given the gradient of J with respect
to y (output variables) as:

@J

@x
D FT :

@J

@y
(11.36)

As an example, Fig. 11.6 displays the adjoint sensitivity of the 24-h forecast error
to the initial conditions, i.e. to the analysis @J

@x , where J is a measure of the forecast
error (Rabier et al. 1996; Cardinali 2009). The sensitivity with respect to specific
humidity and temperature at the lowest model level are shown for the situation on
28 August 2010 at 21:00 UTC from the run at T255L91 resolution. The results
are presented for two different experiments, the first one run with only the dry
parametrization schemes (i.e. vertical diffusion, gravity wave drag, non-orographic
gravity wave and radiation) included in the adjoint model (Fig. 11.6a, b) and the
second one with moist processes also taken into account (Fig. 11.6c, d). With only
dry parametrization schemes, sensitivity to specific humidity is quite small and
localized in areas of strongest dynamical activity. Even for temperature, it is obvious
that some sensitivities are quite weak, especially in convective regions. Adding
moist processes in the adjoint model brings additional structures to the sensitivity in
areas affected by large-scale condensation/evaporation and convection. Therefore,
using a more sophisticated adjoint model also provides more flow-dependent and
more realistic sensitivities.

Another example of adjoint sensitivity computations using the adjoint version of
the linearized physics package is given here, where the cost function was defined
as the 3-h precipitation averaged over the core of a mid-latitude winter storm over
northwestern Europe. One should emphasize that this kind of computation is only
possible if the adjoint of moist physics parameterizations is available. Figure 11.7
shows the field of 3-h precipitation accumulation used for the evaluation of the
precipitation cost function inside the black box at 0000 UTC 10 February 2009.
As an illustration, Fig. 11.8 displays the adjoint sensitivities of the precipitation cost
function with respect to 500 hPa temperature at 0000 UTC 9 February 2009 (i.e.
24 h beforehand and computed at T159L91 resolution). In other words, Fig. 11.8
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Fig. 11.6 (continued)
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Fig. 11.6 Adjoint sensitivity of the 24-h forecast error to initial conditions in (a, c) specific
humidity (J kg�1/(g kg�1)) and (b, d) temperature (J kg�1/K) at the lowest model level for the
situation on 28 August 2010 at 21:00 UTC. The results are presented for (a, b) an experiment with
dry parametrization schemes (i.e. vertical diffusion, gravity wave drag, non-orographic gravity
wave and radiation) used in the adjoint model and (c, d) with moist processes also included.
Sensitivities are shown with colour shading. Black isolines represent mean-sea-level pressure (hPa)

points out the regions where temperature ought to be modified in order to change
precipitation inside the target box, 24 h later. In Fig. 11.8, the region of maximum
sensitivity is found in the vicinity of the cold front associated with the 990 hPa
low pressure system located at 19ıW/47ıN. The dipolar pattern of sensitivities
indicates that a strengthening of the cross-frontal temperature gradient would result
in a precipitation increase inside the black box, 24 h later.

Of course, it would also be possible to plot sensitivities with respect to moisture,
wind and surface pressure fields for this case (not shown). In fact, sensitivities can
be computed with respect to any variable which is part of the control vector of
the adjoint model. However, one should also keep in mind that the relevance and
usefulness of adjoint sensitivities can be limited by the degradation of the linearity
assumption over time.

11.6.3 Data Assimilation

Experiments have been performed over July–September 2011 in order to compare
two versions of the ECMWF 4D-Var system at resolution T5113L91: the first one
including the linearized physics described above and the second one without it.
Actually, in the version without the described linearized physics, a simple linear

3T511 corresponding approximately to 40 km
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Fig. 11.7 Map of 3-h precipitation accumulations ending at 0000 UTC 10 February 2009 and used
for computing the precipitation cost function inside the target black box over northwestern Europe.
Grey shading shows precipitation (in mm day�1), while black isolines of mean-sea-level pressure
are also plotted (in hPa)

vertical diffusion (dry and acting mainly close to surface) and surface drag scheme
(Buizza 1994) had to be used to avoid strong wind increments close to the surface.
Precipitation and cloud related observations have not been taken assimilated in
order to use the same type of observations in both experiments. Indeed, without
the linearized moist physics in 4D-Var, cloud and precipitation observations cannot
be assimilated since no observation equivalent can be produced from the model.

Including physical processes in the linear model of 4D-Var not only decreases
the background cost function (measuring the distance between the initial state of
the model and the background), but also brings model closer to observations as
indicated by the general decreased observation cost function (measuring the distance
between the model trajectory and corresponding observations) as seen in Fig. 11.9.
Thus the distance between the model and the observations is better optimized when
the linearized physics is used in the 4D-Var minimization.

The significance of the impact coming from including the linearized physical
parametrization schemes in the 4D-Var system on the subsequent forecast is
illustrated in Fig. 11.10 for the period of July–September 2011. The forecasts are
scored against operational analyses in terms of anomaly correlation. A systematic
and significant improvement for all plotted parameters, levels and regions is clearly
obvious. Close to analysis time (where obviously the impact of the linearized
physics in 4D-Var should be the largest), the biggest improvement is found in the
middle and upper troposphere (e.g. 200 hPa wind vector scores) and overall in the
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Tropics. The positive impact is also generally remarkable in the lower troposphere
(e.g. 700 hPa temperature scores or 700 hPa relative humidity scores).

The results presented above only show which impact the linearized physical
parameterizations have on the evolution of the model state from the beginning of
the 4D-Var assimilation window to the time of observations. However, including
physical processes in the linearized model also allows to assimilate observations
that are directly related to the physical processes, such as cloud and precipitation
observations. Therefore further improvement in producing more realistic initial
atmospheric states can be achieved. Since the late 1990s, significant efforts have
been devoted to the assimilation of such observations. This is also the case at
ECMWF, where a 1D C 4D-Var technique has been first used operationally for
the assimilation of precipitation-related observations using microwave brightness
temperatures from SSM/I (Bauer et al. 2006) from June 2005 until March 2009.
This was then replaced by direct 4D-Var assimilation unifying the treatment of clear-
sky, cloudy and precipitation situations, leading to an all-sky approach (Bauer et al.
2010; Geer et al. 2010). Direct 4D-Var of rain- and cloud-affected observations
allows a physically consistent adjustment of model dynamics with temperature
and humidity increments, due to the sensitivity of radiance observations to the
atmospheric state through the combined radiative transfer model and the moist-
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Fig. 11.9 Global values of
(a) background cost function
and (b) observation cost
function for 4D-Var
assimilation experiments run
with all linearized physical
parametrization schemes
included (solid line) and
using only very simple
vertical diffusion of Buizza
(1994) (dashed line).
Statistics are shown over
July 2011

physics parametrization. Furthermore, direct 4D-Var of surface rain data from
ground-based NCEP Stage IV rain radars and gauges over the Eastern USA recently
became operational in ECMWF global forecasting system (Lopez 2011) providing
the clear improvement of short-range precipitation forecasts over the region. In
the longer term, one could consider the assimilation of more radar networks (e.g.
Europe, China, Canada, : : :) once problems of data availability and quality are
solved.

Experimental studies for assimilation of other observations related to the physical
processes which may be considered for the future operational assimilation and
therefore requiring parametrization schemes being able to provide a realistic coun-
terpart to these observations were also performed at ECMWF. Experiments were
conducted to assimilate spaceborne cloud optical depths (from MODIS, Benedetti
and Janisková 2008), precipitation radar reflectivities (from TRMM precipitation
radar, Benedetti et al. 2005) and cloud radar data (from CloudSat, Janisková et al.
2011). More recently, the potential benefits of directly assimilating synoptic station
(SYNOP) rain gauge observations in 4D-Var were investigated (Lopez 2012) in
both, a high resolution operations-like context and a lower-resolution data-sparse
reanalysis-like framework.

The results from all above mentioned studies are not shown here, since they are
well documented in the literature.
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Fig. 11.10 (continued)
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Fig. 11.10 Relative impact from the inclusion of the linearized physical parametrization schemes
in ECMWF’s 4D-Var system. Forecast scores against operational analysis are shown in terms
of anomaly correlations for ranges up to 10 days. Score change is normalized by the control
and positive values correspond to an improvement. Grey bars indicate significance at the 95 %
confidence level. Results are shown for: 500 hPa geopotential, 700 hPa temperature, 700 hPa
relative humidity, 200 hPa vector wind and for the different regions: (a)–(d) Northern extratropics,
(e)–(h) Southern extratropics, (i)–(l) Europe and (m)–(o) tropics. Statistics are valid for the period
of July–September 2011

11.7 Conclusions and Prospects

Past experimentation and operational implementation in ECMWF’s Integrated
Forecasting System have clearly demonstrated the benefits of including linearized
physical parameterization schemes in the data assimilation process. Linearized
physics can also be beneficial to singular vector computations for the Ensemble
Prediction System, leading to more realistic initial perturbations. It can be useful to
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diagnose short-range forecast sensitivities to observations. Furthermore, employing
linearized moist physics parameterizations in the 4D-Var minimizations has per-
mitted the assimilation of the ever-increasing number of satellite and ground-based
observations that are sensitive to clouds and/or precipitation.

However, the development of efficient and well-behaved TL and AD codes is
made difficult by many obstacles and is therefore time consuming and often tedious,
if not sometimes rather frustrating. In particular, a substantial amount of work is
required to simplify and regularize the code or, in other words, to eliminate or
smooth out the discontinuities and non-linearities that often characterize physical
processes. The behaviour of the linearized physics package also needs to be
constantly and thoroughly monitored in a wide range of potential applications
(e.g. data assimilation, singular vectors computations, sensitivity experiments). In
particular, every time one of the physical parameterizations is modified in the
non-linear forecast model (which in practice occurs at every new model release),
it is necessary to verify that the tangent-linear approximation is not degraded.
If it is, appropriate updates have to be made to the TL and AD code so as to
avoid a likely degradation of the 4D-Var operational performance. Eventually, a
delicate compromise must constantly be achieved between linearity, computational
efficiency and realism, to ensure that the best analysis and (above all) forecast
performance are obtained.

With the continual trend towards higher and higher resolutions (both in the hor-
izontal and the vertical), maintaining a well-behaved linearized physics package is
bound to become more and more challenging. Currently, the minimizations involved
in ECMWF’s 4D-Var are still run at a relatively coarse resolution of roughly 80 km,
even though trajectories and final analyses are computed at 16 km resolution. When
minimization resolution is increased, the ability to represent smaller-scale and often
noisier processes (such as convection) is likely to make it more difficult to fulfil the
TL hypothesis. However it should be mentioned that preliminary TL approximation
tests were recently performed with a global resolution of 25 km and over 12 h, with
no sign of a degradation. One of the major uncertainty for the future is whether it will
remain possible to make linearized physics to work when the resolution of the non-
linear forecast model reaches a few kilometres, while the resolution remains well
above 10 km in the 4D-Var minimizations. At this stage, the paradox of explicitly
resolving convection in the trajectory but still needing to parameterize it in the
minimization could be very challenging, and the current 4D-Var approach might
need to be modified so as not to include the smaller scales in the entire analysis
process (e.g. through trajectory smoothing).

There should nonetheless be some even greater concern about the growing
complexity of the physical parameterizations used in the non-linear forecast model.
Over the years, the increasing level of detail added to the representation of physical
processes has been synonymous for enhanced and more numerous sources of
non-linearity, which by construction cannot be included in the linearized physics
package. There is a risk that if nothing is done to keep this trend under control, it will
become impossible to make the linearized physics follow its non-linear counterpart
closely enough, in which case 4D-Var as we know it may not be sustainable.
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Even though there is some hope that future configurations of data assimilation
based on weak-constraint 4D-Var might provide some ways to slightly relax the
linearity constraint in time, it is paramount that non-linear model developers always
remember that 4D-Var can only deliver good analyses if the linearity assumption
remains valid over the entire assimilation window.
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climate and analysis in the ECMWF forecasting system through a non-orographic gravity wave
parametrization. J Climate 23:5905–5926

Phillips SP (1984) Analytical surface pressure and drag for linear hydrostatic flow over three-
dimensional elliptical mountains. J Atmos Sci 41:1073–1084

Rabier F, Klinker E, Courtier P, Hollingsworth A (1996) Sensitivity of forecast errors to initial
conditions. Q J R Meteorol Soc 122:121–150

Rabier F, Järvinen H, Klinker E, Mahfouf J-F, Simmons A (2000) The ECMWF operational
implementation of four-dimensional variational assimilation. Part I: experimental results with
simplified physics. Q J R Meteorol Soc 126:1143–1170

Scinocca JF (2003) An accurate spectral nonorographic gravity wave drag parameterization for
general circulation models. J Atmos Sci 60:667–682

Smith EA, Shi L (1992) Surface forcing of the infrared cooling profile over the Tibetan plateau.
Part I: influence of relative longwave radiative heating at high altitude. J Atmos Sci 49:805–822

Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parametrization studies
with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657
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Chapter 12
Recent Applications in Representer-Based
Variational Data Assimilation
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Abstract Data assimilation with representer-based algorithms (also called “dual
space” algorithms) are currently being used for weak-constraint four-dimensional
variational data assimilation (W4D-Var) atmospheric prediction, distributed param-
eter estimation, and other hydrodynamic data assimilation problems. The iterative
linear solvers at the core of these systems may display non-monotonic convergence
in the norm defined by the primal objective function, and this behavior makes
problematic the development of practical stopping criteria. One approach to this
problem is described, namely an implementation of the inner solver using the gener-
alized conjugate residual(GCR) algorithm. Additional elements of data assimilation
systems are error model for the background, model forcings, and observations. An
implementation of a posterior analysis method for diagnosing the error variances is
described, and representative results from an atmospheric data assimilation systems
are shown.
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12.1 Introduction

Four-dimensional variational data assimilation (4D-Var) is an estimation technique
which finds a model state x.t0/, at initial time t0, that minimizes a quadratic objective
function, the sum of the distance between the initial state x.t0/ 2 Rn and a prior
estimate (the so-called background field) xb 2 Rn, and the distance between a real-
valued vector of observations y 2 Rm and measurements H.x/ of the trajectory x.t/
obtained by integration of a dynamical model from x.t0/. The objective function J
is written

J Œx.t0/�D .x.t0/ � xb/TB�1.x.t0/� xb/

C Œy � H.x/�TR�1Œy � H.x/�;
(12.1)

where B and R are estimates of the background and observation error covariance
matrices, respectively, and the observations, y D fyigmiD1, are nonlinear functions of
the initial state,

yi D Hi ŒM.ti ; t0/x.t0/�C ıi : (12.2)

Here we assume that M.ti ; t0/ propagates the model state from t0 to ti , Hi is the
i�th observation operator, and ıi is the observation error. Note that if the initial
condition and observation errors are Gaussian distributed with covariances B and
R, if the observation errors are unbiased, and if the background field xb is equal to
the statistical mean of x.t0/, then the minimizer of J is the maximum likelihood
estimate of x.t0/.

In addition to errors in the initial conditions, it is clear that oceanic and
atmospheric models contain other sources of error which must be considered.
Specifically, there are errors in model inhomogeneities such as boundary conditions
and radiative forcing. Weak-constraint four-dimensional variational data assimila-
tion (W4D-Var) is a generalization of 4D-Var which permits one to estimate these
additional inhomogeneities, denoted f. Assuming that prior or background values
of the forcing fields are available, fb , then the above objective function naturally
generalizes to

J Œx.t0/; f�D .f � fb/TF�1.f � fb/

C .x.t0/� xb/T B�1.x.t0/ � xb/

C Œ.y � H.x/�TR�1Œ.y � H.x/�;
(12.3)

where it should be understood that the model propagator M now depends on both
the space-time-dependent inhomogeneities, f, and the initial conditions, x.t0/.

In the incremental formulation (Courtier et al. 1994), the dynamics and measure-
ment operators are linearized around a background trajectory x, and an incremental
objective function is defined in terms of ıx D x � x. Of course, if the model
dynamics and observation operator are linear, the extremum of the incremental
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objective function corresponds to an extremum of the original objective function.
When nonlinearity is present, the incremental objective function is used to build
an iterative solver for the original, nonlinear, data assimilation problem. In this
article we assume that some linearization strategy has been selected, e.g., the tangent
linearization proposed in Courtier et al. (1994) or the bounded iterate strategy of
Bennett and Thorburn (1992), so that the so-called inner loop solver must minimize
a strictly quadratic objective function. Henceforth, we shall restrict our attention to
the objective function,

J Œx.t0/; f�D .f � fb/TF�1.f � fb/

C .x.t0/ � xb/TB�1.x.t0/� xb/

C .y � Hx/TR�1.y � Hx/;

(12.4)

where the matrix H 2 Rm�n is a linear approximation to the operator H, and
inhomogeneities resulting from the linearization have been absorbed into xb, fb ,
and y.

There are practical considerations which make the implementation of W4D-Var
considerably more complex than 4D-Var for realistic models. The first issue is the
dimensionality of the unknown vectors, which has consequences for the design
and implementation of solvers for minimizing J . Assuming the state vector x.t/
is of dimension n, then the model forcing f may be as large as T � n, where T
is the cardinality of the time interval under consideration. The dimension of the
space-time covariance matrix F is formally the square of this. The second key
issue is scientific, and relates to the determination of the error covariances B and
F. Quantitative estimation of these objects requires vast amounts of data which are
rarely available; in practice they are often parameterized in terms of a spatially-
or temporally-varying variance function, and a set of correlation scales for the
orthogonal coordinate directions.

Here we review recent developments associated with the application of
representer-based solvers (Bennett 1992) to 4D-Var and W4D-Var problems, an
approach which is the foundation for the so-called dual form of variational data
assimilation (Courtier 1997). Recall that the minimizer of the objective function is
the solution to 1

2
rJ .x/ D 0; applied it to (12.1) yields,

.B�1 C HTR�1H/x D HTR�1y C B�1xb; (12.5)

where uniqueness is assured provided that B is of full rank. Equivalently, the
solution can be expressed as the sum of the background and a linear combination of
representer functions x D xbCBHT Ox, yielding the equation for the dual variables Ox,

.HBHT C R/Ox D y � Hxb: (12.6)
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In this dual formulation the unknown vector Ox lies in Rm, whereas x lies in Rn.
Also, the expansion in terms of representer functions is valid even in the continuum
limit of the discretized dynamics, in which case (12.5) become the Euler-Lagrange
equations for the extremum of the objective functional. The columns of the BHT

matrix, which are approximations to the representer functions in the continuum
limit, span the space of observable increments; i.e., they are exactly the m degrees
of freedom which are determined by the measurements (Bennett 1992).

The dual formulation and representer expansion have by now been utilized in
many data assimilative modeling studies of the ocean and atmosphere. Because the
dimension of the vector of unknowns is m in either case of 4D-Var or W4D-Var,
there is no intrinsic limitation of the method in the latter case. In order to fix the
notation so that a single system describes both 4D-Var and W4D-Var, consider the
following augmented vectors and covariance matrices:

x0 D
�

x.t0/
f

	
; B0 D

�
B 0

0 F

	
; H0 D

�
H
0

	
; R0 D R; y0 D y: (12.7)

Henceforth, we drop primes and simply write the objective function as

J Œx� D.x � xb/TB�1.x � xb/

C .y � Hx/TR�1.y � Hx/;
(12.8)

noting that the extremal conditions (12.5) and dual formulation (12.6) are formally
unchanged.

Recent advances for representer-based variational assimilation have been con-
nected with technologies for solving (12.6), e.g., preconditioners and iterative
solvers, and with developing justifiable error models for the background and model
forcing errors, B and F.

In the next section, recent technological developments for solving (12.6) are
discussed, and we share our experience concerning the primal and dual forms of
the variational data assimilation algorithms, as has been the focus of recent papers
(El Akkraoui and Gauthier 2010; El Akkraoui et al. 2008; Gratton and Tshimanga
2009). Following that, recent work on covariance modeling is described. The latter
developments are not unique to representer-based approaches.

12.2 Solver Improvements

Several considerations have led to improvements in representer-based solvers for
variational data assimilation.

First, it has been noted that iterative solvers for (12.6) may yield a non-monotonic
sequence of J .xp/ values, where xp represents the approximate solution at step p of
the iterative solver (El Akkraoui et al. 2008). This phenomenon has been observed
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initialize x0, ε;
r0 = b − Ax0;
i = 0;
while (rT

i ri)1/2 > ε, do
i = i + 1;
ui
ci

ci ci

ci ci

ui ui

ui ui

= ri−1;
= Aui;

for k = 1, i − 1, do
αk = ci

Tck;
= − αkck

αkuk

;
= − ;

end;
= /(cT

i ci)1/2;
= /(cT

i ci)1/2;
xi = xi−1
ri ri−1

+ (cT
i ri−1)ui;

= − (cT
i ri−1)ci;

end

Fig. 12.1 The GCR
algorithm for solving Ax D b

with the Physical-space Statistical Analysis System (PSAS, Cohn et al. 1998),
which employs the conjugate-gradient algorithm applied to (12.6) using R�1=2 as
preconditioner, and it was also displayed in Zaron (2006) with a non-preconditioned
solver. The non-monotonic reduction in the value of the objective function makes
it problematic to establish an acceptable stopping criteria for the iterative solver. In
spite of the fact that m << n, data sets are frequently large enough that executing
full set of m iterations, the worst-case iteration count for conjugate-gradient-type
linear solvers in exact arithmetic, is prohibitive.

Another issue which arises in practice is that the huge condition number of the
covariance matrices and asymmetry of the linearized model and its approximate
adjoint may cause R C HBHT to be non-positive-definite symmetric. Experience
with idealized problems, where the operators can be explicitly constructed as
matrices, shows that the lack of monotonic convergence discussed in the previous
paragraph is exacerbated by symmetry errors and lack of positive-definiteness in the
HBHT matrix.

A final consideration in the development of new solvers is the availability of
diagnostic data to assess the progress of the iteration or to evaluate the quality of the
state variable which is obtained.

Recent experience has shown that the generalized conjugate residual (GCR)
method (de Sturler 1994, 1996) addresses all the above-mentioned points. GCR
is a general-purpose Krylov method for solving non-symmetric systems, Ax D b,
which builds matrices U and C in Rp�m such that AU D C. The columns of both U
and C are in the span of the Krylov subspaceK D Spanfb;Ab; : : : ;Ap�1bg, and C
is orthogonal, such that CT C D I. The GCR algorithm shown in Fig. 12.1 computes
xp 2 K to minimize k Axp � b k2, which is similar to the minimum residual
algorithm suggested by El Akkraoui and Gauthier (2010). Although the GCR
algorithm can fail when either the residual is orthogonal to the Krylov subspace or
when b is an eigenvector of Ap , neither of these situations has occurred in practice.
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Fig. 12.2 Reduction of J .x/ using GCR. The performance of the GCR solver as measured by the
value of the objective function for an ocean data assimilation problem is shown. J .xp/ is computed
using (12.14) and (12.15) in the text. The application involves the assimilation of satellite altimetry
data into a three dimensional primitive equations ocean model encompassing the Hawaiian Ridge,
with the goal of estimating the tidal circulation around the Ridge

Figure 12.2 shows the progress of J .xp/ for a data-assimilative three-
dimensional ocean model with approximately n D 400 � 300 � 30 � 5 D 18 � 106
state variables and m D 17 � 104 observations (see Zaron et al. 2009 for a similar
application in a smaller computational domain). The figure shows that the decrease
in cost function is not monotonic, and increases can occur. This behavior does not
occur in smaller, exactly symmetric problems, and the working hypothesis is that the
non-monotonicity is caused by asymmetry or lack of positive-definiteness in either
the adjoint model or background covariance. Pointwise tests of the symmetry of B
and HBHT indicate that the former is symmetric to machine precision, while the
latter contains symmetry errors of 10 % of the diagonal elements. The computational
cost of evaluating Ax is approximately 100 cpu-hours, so there is a substantial need
for computational efficiency.

Further diagnostic information is available from the GCR iterates as well.
Qualitative assessment of the solution in the state space is available since the
solution xp is computed at each iterate. Because AU D C, with C orthogonal, the
singular values �.U/ of U approximate the singular values of A�1 (Golub and Van
Loan 1989). Knowledge of the singular spectrum and orthogonal decomposition of
U may be used to better precondition subsequent outer iterations (Giraud et al. 2006;
Parks et al. 2006).

Assuming the observation error is uncorrelated and constant, R D 
I, one can
approximate the singular spectrum of the so-called representer matrix R D HBHT

(Bennett 1992) with �.R/ � �.U/�1 � 
 . Here the notation �.U/ D f�i.U/gpiD1
denotes the ordered singular spectrum, the set of nonzero singular values of the
matrix U 2 Rm�p, where �iC1.U/ � �i .U/ and p � m are assumed, and the
inverse of the singular spectrum �.U/�1 is defined as the set of reciprocals of
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the singular values. This singular spectrum is useful when assessing the observing
array or covariance model, since it establishes a criterion for counting the number
of degrees of freedom effectively constrained by the data (Bennett 1985, 1992).
When the observation error is not a constant it is advantageous to transform with
the change of variables, Ov D R�1=2 Ox.

The singular spectrum can be used to develop a stopping criterion for the iterative
solver in terms of the predicted percent of variance explained. Recall that the
representer matrix R can be interpreted as a covariance matrix, the trace of which is
the total amount of variance expected in the observations exclusive of measurement
noise (Bennett 2002). Recall also, that the degrees of freedom associated with
singular vectors may be classified as either smoothed or interpolated by the data
assimilation, according to whether �i .R/ < 
 or �i .R/ > 
 , respectively (Bennett
2002). Let k denote the mode number with the singular value comparable to the
measurement error, e.g., �k.R/ > 
 � �kC1.R/, then

S D
kX
iD1

�i .R/ (12.9)

is the expected total observed variance explainable by the given data assimilation
system. In practice �.R/ is not known exactly, but its approximation O�.R/ D
�.U/�1�
 is available from the orthogonal decomposition of U. An approximation
to S can be made by extrapolating O�.R/ out to i D k. Letting O�e.R/ denote this
approximate spectrum, then the fraction of S explained by stopping at iterate p may
be estimated as

f D
 

pX
iD1

O�i.R/
! 

kX
iD1

O�ei .R/
!�1

: (12.10)

Figure 12.3 shows an application of these ideas with the data-assimilative ocean
model described in Zaron et al. (2009). The estimated spectrum O�.R/ is computed
for iterates pD 10; 20; 40 (gray) and for the final iterate pD 58 (black). The
extrapolated spectrum O�e.R/ is computed from a power-law fit to the middle 50 %
of the singular values, and one sees that the extrapolated spectrum and data error
variance intersect at approximately kD 200; thus, one expects approximately 142
additional iterates would be necessary to minimize J .x/. Applying (12.10) to
compute the fraction of variance explained, one finds f D 88%. In other words,
the solution obtained by stopping the solver at pD 58 accounts for 88 of the
explainable observed variance. Note that the variance associated with modes p > k
is un-explainable with the covariance model B, and it is ascribed to observation
error. While the details are certainly problem-dependent, we have found that O�.R/
adequately approximates the true spectrum when judged against the uncertainty in
B. Experience with idealized, low-dimensional, data assimilation problems suggests
that these methods are applicable in realistic systems, where complete knowledge
of the spectra cannot be obtained.
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Fig. 12.3 Spectral Diagnostics from GCR. The estimated spectrum O�.R/ of the representer matrix
R D HBHT is shown by the dark solid line corresponding to the last GCR iterate (p D 58) in
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data variance is 
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Finally, the two components of J .xp/ due to the background and observations
may be obtained as diagnostic information from the GCR iterates. Substituting xp D
BHT Oxp in (12.4), one obtains

J .Oxp/ D J B.Oxp/C J R.Oxp/
D OxTpHBHT Oxp

C .HBHT Oxp � y/TR�1.HBHT Oxp � y/:

(12.11)

Because the GCR solver computes the residual rp at each iterate, one has

.HBHT C R/Oxp D y � rp: (12.12)

Assuming that ROxp can be computed on demand, then

HBHT Oxp D y � rp � ROxp; (12.13)

and all terms in the expression for the objective function are computable. The
contribution from the background term is

J B.xp/ D .Oxp/T .y � rp � ROxp/; (12.14)

while the contribution from the observations is

J R.xp/ D .rp C ROxp/TR�1.rp C ROxp/: (12.15)
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In summary, the GCR algorithm has been found useful for data assimilation
solvers based on the representer expansion. Being applicable to non-symmetric
linear systems, the solver is more tolerant of symmetry errors in the adjoint
model, such as are present when the continuous adjoint equations are discretized.
The GCR solver is currently being used for a variety of weak-constraint ocean
data assimilation problems, and it has been implemented within the IOM data
assimilation software system (Bennett et al. 2008; Muccino et al. 2008).

12.3 Diagnosis of Error Variances

The preceding analysis of the solver performance and interpretation in terms of
explained variance is contingent upon having correct descriptions of the model
and observation error covariances. Validation of B and R is thus of paramount
importance. This section outlines the posterior diagnosis strategy of Desroziers and
Ivanov (2001) for validating the errors B and R, with application to a large-scale
operational weather analysis system, the Naval Research Laboratory Atmospheric
Variational Data Assimilation System-Accelerated Representer, or (NAVDAS-AR;
Xu et al. 2005; Rosmond and Xu 2006).

12.3.1 Notation and Background Materials

First, recall some established results using the notation employed here. It may
be shown (Lorenc 1986) that the analysis xa, the minimizer of the objective
function (12.8), is given by

xa D xb C K.y � Hxb/; (12.16)

where K denotes the so-called Kalman gain,

K D BHT .HBHT C R/�1: (12.17)

At this optimum, the value of the objective function J is given by Bennett (1992),

J .xa/ D dTD�1d; (12.18)

where D D HBHT C R denotes the stabilized representer matrix, and d D y � Hxb

denotes the innovation vector. If the background and observation errors are correctly
modeled by B and R, it may be shown that the minimum value of J is a chi-squared
random variable with m degrees of freedom (Bennett 1992),

EfJ .xa/g D Ef�mg D m; (12.19)
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where it is recalled that m is the number of observations, and Efg denotes the
expected value of its argument. Furthermore, Bennett et al. (2000) notes that the
expected values of parts J B and J R of the objective function J are

EfJ B.xa/g D Tr.HBHTD�1/; (12.20)

and
EfJ R.xa/g D Tr.RD�1/; (12.21)

where Tr.A/ denotes the trace of the matrix argument A. These results may be
further specialized to compute the expected value of subsets of terms in J B and J R

(Talagrand 1999; Desroziers and Ivanov 2001). Define …B
l as a projection operator

such that xl D …B
l x, then the expected value of J B

l associated with xal is given by
Desroziers and Ivanov (2001)

EfJ B
l .x

a/g D Tr.…B
l HBHTD�1…B

l

T
/: (12.22)

Likewise, define the projection operator …R
k so that yk D …R

k y, then the expected
value for J R

k of J R is

EfJ R
k .x

a/g D Tr.…R
k RD�1…R

k

T
/: (12.23)

12.3.2 Validation of Error Variances by Posterior Diagnosis

Desroziers and Ivanov (2001) utilize the above relations (12.22) and (12.23)
to validate the error variances in the objective function based on the posterior
diagnosis of the assimilation system. They demonstrate how to produce realistic
error variances for simulated observations in a cost-effective manner. This approach
was further evaluated and developed by Chapnik et al. (2004, 2006) and Sadiki and
Fischer (2005) for operational data assimilation systems. Following Chapnik et al.
(2004), the objective function (12.8) is rewritten as

J .x/ D
�BX
lD1

J B
l .x/

sBl
C

�RX
kD1

J R
k .x/

sRk
; (12.24)

where sBl and sRk are scalar tuning parameters for the �B and �R components of the
background and the observations, respectively. The analysis xa.s/ is now a function
of the tuning parameter vector s D .sBl ; s

R
k / (Chapnik et al. 2004),

xa.s/ D xb C K.s/.y � Hxb/; (12.25)

where the tuned Kalman gain, K.s/, takes the form
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K.s/ D B.s/HT ŒHB.s/HT C R.s/��1 D B.s/HT D.s/�1; (12.26)

with B.s/ D P�B

lD1 sBl …B
l

T
Bl…B

l and R.s/ D P�R

kD1 sRk …R
k

T
Rk…

R
k . The reduced

values for the sub-parts J B
l and J R

k of the objective function J .s/ are

J B
l .x

a.s// D dT D�1H…B
l

T
B.s/…B

l HTD�1d; (12.27)

with expected value

EfJ B
l .x

a.s//g D sBl TrŒ…B
l HB.s/HTD.s/�1…B

l

T
�; (12.28)

and

J R
k .x

a.s// D Œ…R
k .y � Hxa.s//�T R.s/�1Œ…R

k .y � Hxa.s//�

D dTD.s/�1…R
k

T
R.s/…R

k D.s/�1d;
(12.29)

with expected value

EfJ R
k .x

a.s//g D sRk TrŒ…R
k R.s/D.s/�1…R

k

T
�: (12.30)

The criterion for the tuning parameters is that the relations

sBl D J B
l .x

a.s//

TrŒ…B
l HB.s/HTD.s/�1…B

l

T
�

(12.31)

and

sRk D J R
k .x

a.s//

TrŒ…R
k R.s/D.s/�1…R

k

T
�

(12.32)

are exactly satisfied. Desroziers and Ivanov (2001) proposed an iterative approach
(fixed-point algorithm) to solve (12.31) and (12.32), namely,

sBl iC1 D J B
l .x

a.si //

TrŒ…B
l HB.si /HTD.si /�1…B

l

T
�

(12.33)

sRk iC1 D J R
k .x

a.si //

TrŒ…R
k R.si /D.si /�1…R

k

T
�
; (12.34)

observing that the first iteration of the fixed-point algorithm gives a good estimate
of the converged results.
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12.3.3 Practical Implementation and Application
to NAVDAS-AR

Computation of the tuning parameters requires the evaluation of the trace of the large

matrices, TrŒ…B
l HB.s/HTD.s/�1…B

l

T
� and TrŒ…R

k R.s/D.s/�1…R
k

T
�. Because the

matrices HBHT and D.s/�1 are not explicitly formed (Chua and Bennett 2001), the
trace is computed using the randomized trace estimator (Girard 1989; Hutchinson
1989) which was used by Wahba et al. (1995) for an adaptive tuning of parameters
in a numerical weather prediction application.

It is the randomized trace technique which makes feasible the posterior analysis
of Desroziers and Ivanov (2001) for large-scale data assimilation, and this approach
has been applied to the NAVDAS-AR. The forecast model associated with the
NAVDAS-AR system is the United States Navy Operational Global Atmospheric
Prediction System (NOGAPS). NOGAPS is a global spectral numerical weather
prediction model (Hogan and Rosmond 1991) with 42 vertical levels and T239
spectral horizontal resolution.

The research version of NAVDAS-AR routinely assimilates conventional in
situ observations (including radiosondes and pibals, and surface observations from
land and sea) and satellite observations (including geostationary rapid-scan and
feature-tracked winds; winds from QuikScat, WindSat, ASCAT, ERS-2, AVHRR,
MODIS, SSM/I and SSMIS; and total precipitable water from WindSat, SSM/I and
SSMIS). NAVDAS-AR also assimilates remotely-sensed microwave and infrared
sounder radiances from AMSU-A, SSMIS, AIRS and IASI. The representation of
the background error covariance matrix B (in (12.7)) is based on the NAVDAS 3D-
Var analysis system (Daley and Barker 2001), and the observation error covariance
matrix R is diagonal. Because the space-time error covariance F (in (12.7)) is set to
zero, the current system is 4D-Var, rather than the W4D-Var targeted for the future.

Figure 12.4 shows the behavior of the NAVDAS-AR system based on the
diagnostics: J .xa/=m, sB and sR. The values are computed over a 7 day period
from 23 to 29 November 2008, with all available observations assimilated. If
the background and observation errors are correctly modeled, one would expect
J .xa/=mD sB D sR � 1. The figure shows that J .xa/=m varies from 0:4 to 0:6
and is smaller than the expected value of 1. Also, the background errors are
underestimated and the observation errors are overestimated, as shown by values
of sB varying from 1:8 to 2:4, and values of sR varying from 0:4 to 0:6, nearly
overlapping the values of J .xa/=m. The diagnostics also indicate that the analysis
system is sensitive to the number of observations (more radiosonde observations at
0 and 12UTC than at 6 and 18UTC), with stable values over the observation period.

The observation error tuning coefficient sR may be further broken down to diag-
nose the observation error variances for different types of observations. Table 12.1
shows the components for temperature, wind velocity, wind speed, moisture, total
precipitable water, and satellite radiances. The values indicate that the temperature
standard errors should be kept unchanged, but the standard error of the zonal and
meridional components of wind should be slightly reduced. Likewise, the standard
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Fig. 12.4 NAVDAS-AR posterior error diagnostics. The reduced value of the objective function
divided by the number of observations is consistently smaller than unity (J .xa/=m < 1; solid line),
its expected value if both background and observation errors are correctly scaled (12.19). Analysis
of the separate background and observation errors, sB (12.31) and sR (12.32), respectively, shows
that the background error variance is under-estimated (sB > 1; solid line, square markers) and the
observation error variance is over-estimated (sR < 1; dashed-line, circle markers). The sawtooth
(up-down) pattern in these curves is due to the twice-daily timing of radiosonde observations,
resulting in twice-daily changes in the number of observations assimilated.

Table 12.1 Tuning coefficients

Obs-type TEMP UWIND VWIND WINDSPD H2O TPW RADIANCE

sRk 1.15 0.72 0.72 0.23 1.46 0.29 0.28

TEMP tuning coefficients for temperature, UWIND zonal wind, VWIND meridional wind,
WINDSPD wind speed, H2O moisture, TPW total precipitable water, and RADIANCE satellite
radiances

error for wind-speed, total precipitable water, and radiances should be adjusted
downward. In contrast, the standard error for moisture data should be increased.

12.4 Summary

Variational data assimilation systems based on representer-based solution methods
are being used to perform analyses and prediction in the ocean and atmosphere. One
such weather prediction system, NAVDAS-AR, is currently in operational use (Xu
et al. 2005; Rosmond and Xu 2006).

The inner iterative linear solvers at the core of these systems may display non-
monotonic convergence in the norm defined by the primal objective function, and
this behavior makes problematic the development of practical stopping criteria.
One approach to this problem has been described, namely, using an inner solver
that permits more diagnostics of the solution progress and objective function to
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be computed during the minimization. The generalized conjugate residual (GCR)
algorithm provides these diagnostics, at the cost of some additional complexity
compared with the conjugate gradient algorithm, but it performs reliably when the
approximate adjoint of the model is used.

The analysis produced by any data assimilation system is always limited by
the quality of the prior covariance models for the background, model forcings,
and observations. In Sect. 12.3 it was shown how the posterior error analysis of
Desroziers and Ivanov (2001) could be applied to calibrate these covariance models
in variational data assimilation systems using representer-based solvers. Application
of these methods has been applied to diagnose the observation error in NAVDAS-
AR, which utilizes many sources of atmospheric data, each with unique error
characteristics.
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Chapter 13
Variational Data Assimilation
for the Global Ocean

James A. Cummings and Ole Martin Smedstad

Abstract A fully three dimensional, multivariate, variational ocean data assimila-
tion system has been developed that produces simultaneous analyses of temperature,
salinity, geopotential and vector velocity. The analysis is run in real-time and
is being evaluated as the data assimilation component of the Hybrid Coordinate
Ocean Model (HYCOM) forecast system at the U.S. Naval Oceanographic Office.
Global prediction of the ocean weather requires that the ocean model is run at very
high resolution. Currently, global HYCOM is executed at 1/12 degree resolution
(
7 km mid-latitude grid mesh), with plans to move to a 1/25 degree resolution
grid in the near future (
3 km mid-latitude grid mesh). These high resolution global
grids present challenges for the analysis given the huge model state vector and the
ever increasing number of satellite and in situ ocean observations available for the
assimilation. In this paper the development and evaluation of the new oceanographic
three-dimensional variational (3DVAR) data assimilation is described. Special
emphasis is placed on documenting the capabilities built into the 3DVAR to make
the system efficient for use in global HYCOM.

13.1 Introduction

Eddy-resolving global ocean prediction requires high resolution since the charac-
teristic scale of ocean eddies is on the order of a few tens of kilometers. Only
recently have sufficient data and computer power become available to nowcast
and forecast the ocean weather at eddy-resolving scales, including processes that
control the surface mixed layer, the formation of ocean eddies, meandering ocean
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currents and fronts, and generation and propagation of coastally trapped waves.
Hurlburt et al.(2008a) gives a good discussion of the requirements for an ocean
model to be eddy-resolving. High resolution global ocean forecast models present
challenges for the assimilation component of the forecasting system given the huge
model state vector and the ever increasing number of satellite and in situ ocean
observations available for the assimilation. Accordingly, the global analysis has to
be both computationally efficient and accurate to account for the oceanographic
features resolved by the high resolution model. At the same time the analysis must
use all of the available observations and create and maintain dynamically adjusted
corrections to the model forecast.

The purpose of this chapter is to provide an overview of a new variational ocean
data assimilation system that has been developed as an upgrade to an existing
multivariate optimum interpolation (MVOI) system (Cummings 2005). Compared
to the MVOI the 3DVAR algorithm has several advantages. First, the 3DVAR
performs a global solution that does not require data selection. In the MVOI,
observations are organized into overlapping analysis volumes and the solution can
depend on how the volumes are defined. This is not the case in the 3DVAR, as the
global solve allows all observations to influence all grid points, a requirement for
an optimum analysis. Second, through the use of observation operators, 3DVAR
can incorporate observed variables that are different from the model prognostic
variables. Examples of this in the ocean are integral quantities, such as acoustic
travel time and altimeter measures of sea surface height, and direct assimilation
of satellite radiances of sea surface temperature (SST) through radiative transfer
modeling. Finally, 3DVAR permits more powerful and realistic formulations of
the background error covariances, which control how information is spread from
the observations to the model grid points and model levels. The error covariances
also ensure that observations of one model variable produce dynamically consistent
corrections in the other model variables.

The 3DVAR referred to in this paper is the Navy Coupled Ocean Data Assim-
ilation (NCODA) system, version 3. NCODA 3DVAR is in operational use at the
U.S. Navy oceanographic production centers: Fleet Numerical Meteorology and
Oceanography Center (FNMOC) in Monterey, CA, and the Naval Oceanographic
Office (NAVOCEANO) at the Stennis Space Center, MS. NCODA is truly a
unified and flexible oceanographic analysis system. It is designed to meet all Navy
ocean data analysis and assimilation requirements using the same code. In two-
dimensional mode, NCODA provides SST and sea ice concentration analyses for
lower boundary conditions of the Navy global and regional atmospheric forecast
models. In three-dimensional mode, it is executed in a sequential incremental update
cycle with the Navy ocean forecast models: the Hybrid Coordinate Ocean Model
(HYCOM) on the global scale, and the Navy Coastal Ocean Model (NCOM) on
the regional scale. Here, NCODA provides updated initial conditions of ocean
temperature, salinity, and currents for the next run of the ocean forecast model.
The analysis background fields, or first guess, are generated from a short-term
ocean model forecast, and the 3DVAR computes dynamically consistent corrections
to the first-guess fields using all of the observations that have become available
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since the last analysis was made. Further, NCODA 3DVAR is globally relocatable
and has been integrated into the Coupled Ocean Atmosphere Mesoscale Prediction
System (COAMPS R�1), which is used by Navy for rapid environmental assessment.
In this mode of operation, the 3DVAR performs multi-scale analyses on nested,
successively higher resolution grids. Finally, NCODA provides the data assimilation
component for the WAVEWATCH wave model forecasting system at FNMOC
(Wittmann and Cummings 2005). In this mode of operation, NCODA computes
corrections to the model’s two-dimensional wave spectra from assimilation of
satellite altimeter and wave buoy observations of significant wave height.

The examples used in the paper are taken from NCODA 3DVAR analyses cycling
with global HYCOM. Sections 13.2 and 13.3 of the paper describe the assimilation
method and techniques used to specify the error covariances. Section 13.4 lists
the ocean observing systems assimilated and outlines the data selection and data
pre-processing that is done for the real-time global forecast. Section 13.5 gives an
overview of the entire NCODA system, including the diagnostic suite. Section 13.6
presents some verification results from global HYCOM. Section 13.7 describes
future capabilities and applications of the NCODA 3DVAR system, while Sect. 13.8
gives a summary.

13.2 Method

The method used in NCODA is an oceanographic implementation of the Navy
Variational Atmospheric Data Assimilation System (NAVDAS), a 3DVAR tech-
nique developed for Navy numerical weather prediction (NWP) systems (Daley
and Barker 2001). The oceanographic 3DVAR analysis variables are temperature,
salinity, geopotential (dynamic height), and u; v vector velocity components. All
ocean variables are analyzed simultaneously in three dimensions. The horizon-
tal correlations are multivariate in geopotential and velocity, thereby permitting
adjustments to the mass fields to be correlated with adjustments to the flow
fields. The velocity adjustments (or increments) are in geostrophic balance with
the geopotential increments, which, in turn, are in hydrostatic agreement with
the temperature and salinity increments. The multivariate aspects of the 3DVAR
assimilation are discussed further in Sect. 13.3.3.

The NCODA 3DVAR problem is formulated as:

xa D xb C PbH
T .HPbH

T CR/�1Œy �H.xb/� (13.1)

where xa is the analysis vector, xb is the background vector, Pb is the positive-
definite background error covariance matrix, H is the forward operator, R is the
observation error covariance matrix, and y is the observation vector. At the present

1COAMPS R� is a registered trademark of the Naval Research Laboratory
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time, the forward operator in NCODA is spatial interpolation performed in three
dimensions by fitting a surface to a 4 � 4 � 4 grid point target and evaluating the
surface at the observation location. Thus, HPbHT is approximated directly by the
background error covariance between observation locations, and PbHT directly by
the error covariance between observation and grid locations. For the purposes of
discussion, the quantity Œy�H.xb/� is referred to as the innovation vector, Œy�H.xa/�

is the residual vector, and xa-xb is the increment (or correction) vector.
The observation vector contains all of the synoptic temperature, salinity and

velocity observations that are within the geographic and time domains of the
forecast model grid and update cycle. Observations can be assimilated at their
measurement times within the update cycle time window by comparison against
time dependent background fields using the first guess at appropriate time (FGAT)
method. An advantage of the FGAT method is that it eliminates a component of the
mean analysis error that occurs when comparing observations and forecasts not valid
at the same time. As will be described in Sect. 13.6, the use of FGAT in real-time
HYCOM allows for assimilation of late receipt observations.

Equation (13.1) is the observation space form of the 3DVAR equation. A dual
form of the 3DVAR is the analysis space algorithm, which is defined by the
model state vector on some regular grid. Courtier (1997) has shown that the two
formulations are equivalent and give the same solution. However, as discussed by
Daley and Barker (2000, 2001), there are advantages to the use of an observation
space approach in Navy ocean model applications. In the observation space
algorithm the matrix to be inverted .HPbHT C R)�1 is dimensioned by the number
of observations, while in the analysis space algorithm the matrix to be inverted is
dimensioned by the number of grid locations. Given the high dimensionality of
global ocean forecast model grids, and the relatively sparse ocean observations
available for the assimilation, an observation space 3DVAR algorithm will have
a clear computational advantage. Further, an observation space system is more
flexible and can more easily be coupled to many prediction models. As has
been discussed, NCODA must work equally well with multiple atmospheric and
oceanographic prediction systems in a wide variety of applications, as well as a
wave model prediction system. Finally, due to the local nature of the observation
space algorithm, the background error covariances are multivariate and can be
formulated and generalized in a straightforward manner. As will be shown, this
aspect of the 3DVAR is an important feature of NCODA. On the other hand, analysis
space systems typically restrict the background error covariances to be sequences of
univariate, one-dimensional digital filters, thereby ignoring the inherent multivariate
nature of the background error correlations.

Solution of the observation space 3DVAR problem is done in two steps. First, the
equation,

.HPbH
T CR/z D Œy �H.xb/� (13.2)

is solved for the vector z. Next, a post-multiplication step is performed by left-
multiplying z using,

xa � xb D PbH
T z (13.3)
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to obtain the correction field in grid point space. A pre-conditioned conjugate gradi-
ent descent algorithm is used to solve (13.2) using block diagonal pre-conditioners.
The blocks are defined by decomposing the analysis grid into non-overlapping
partitions of a regular quilt laid over the analysis domain in model grid point
(i; j ) space. The use of i; j blocks rather than latitude-longitude blocks allows
the analysis to be completely grid independent. The flexibility of this approach is
shown in Fig. 13.1 for the global HYCOM Atlantic basin analysis (see Sect. 13.6
and Fig. 13.9 for a discussion of the HYCOM basins). A total of 1,935, 2,436,
and 1,147 blocks are defined for the global HYCOM Atlantic, Indian, and Pacific
analysis regions, respectively, which use Mercator grid projections. Observations
are sorted into the blocks and the pre-conditioning matrix is formed from a
Choleski decomposition of the correlations between observations in the same
block. The Choleski decomposed block matrices are calculated once and stored
before application of the conjugate gradient descent algorithm. Solution of the pre-
conditioned conjugate gradient for the vector z n (13.2) typically converges in 6–10
iterations. Determination of convergence is based on the norm of the gradient of the
cost function estimated at each iteration step. This gradient is a vector the size of the
number of observations and the norm is the square root of the sum of the elements,
which are the residuals of the fit of the analysis to the innovations. In practice,
convergence is reached when the norm of the gradient is reduced by 2 orders of
magnitude. This is considered to be sufficient because an increase in the number
of iterations only fits small-scale features. This may appear to be beneficial, but it
must be noted that the post-multiplication step is a spatially smoothing operation
when the background error correlations are applied. Thus, the extra iterations in the
solver required to resolve small-scale features in the observations do not have much
effect on the final analyzed increment field because of the smoothing effect of the
post-multiplier.

Observation space 3DVAR algorithms converge quickly because very good pre-
conditioners can be developed. In fact, the pre-conditioner used in NCODA is
perfect. For example, NCODA is configured such that when the data count is less
than 2,000 the observation data block is defined as the entire analysis domain.
When this global pre-conditioned data block is presented to the conjugate gradient
solver the algorithm converges in a single iteration. No further work by the solver is
necessary. This sparse data pathway through the code is often encountered when
NCODA 3DVAR is executed on nested grids in the relocatable coupled model
system where the innermost grid represents a small geographic area.

As noted by Daley and Barker (2001), partitioning of the observations into
blocks has no effect on the final solution. The NCODA 3DVAR formulation is
guaranteed to include correlations between all observations in all blocks, thereby
achieving a global solution. After the vector z is obtained it is post-multiplied
by PbHT to create the analysis correction fields for each analysis variable. This
step is performed using blocks in grid space that are defined differently from the
observation blocks used to compute the solution vector z. To accommodate high
resolution ocean model forecast grids and minimize computer memory resource
requirements for the analysis, the grid space blocks are defined smaller by simply
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Fig. 13.1 Observation data blocks for HYCOM Atlantic basin grid. Blue lines give observation
block edges; observation locations are indicated by black dots. A total of 1,935 data blocks are
defined (43 in the X direction, 45 in the Y direction)

sub-setting the previously defined observation blocks. Again, it must be emphasized
that partitioning the grid domain into blocks in the post multiplication does not affect
the final results. The correction fields are guaranteed to contain the correlations
between all observations and all grid points, thereby creating a seamless and
continuous analysis.

Parallelization of the 3DVAR algorithm is achieved in three ways. The first
parallelization is done over the observation-defined blocks in the pre-conditioner,
the second parallelization is done over observation-defined blocks in the conjugate
gradient solver, and the third parallelization is done over grid point-defined blocks
in the post-multiplication step (mapping from observation space to grid space). The
number of processors used to execute the 3DVAR can be as few as one or as many
as the maximum number of observation or grid node blocks. A load balancing
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algorithm is used to spread the work related to the block-dependent calculations
out evenly across the processors. In the conjugate gradient descent step, the work
load for an observation block is calculated as the sum of the observation-observation
interactions. In the post-multiplication step, the work estimate is based on the sum
of the observation-grid point interactions. Observation and grid point blocks are
determined to be close enough to contribute to the solution if the block centers
are within 8 correlation length scales. Thus, for a given block size, the number of
observation-observation and observation-grid point block interactions varies with
the horizontal correlation length scales and will be more numerous where length
scales are long. Further efficiency is achieved by keeping communication among
the processors minimal. To do this matrix elements are calculated, stored, and
used on each processor, they are never passed between processors. Only elements
of the solution and correction vectors scattered across the processors have to be
communicated and reassembled and, in the case of the solution vector, broadcast
for the next iteration. Note that memory utilization for the conjugate gradient solver
in the 3DVAR is reduced as the number of processors is increased. This feature
allows the 3DVAR to scale very well across many processors on large machines,
and run equally well on small platforms with limited memory.

13.3 Error Covariances

Specification of the background and observation error covariances in the assim-
ilation is very important. As previously noted, the background error covariances
control how information is spread from the observations to the model grid points and
model levels, but they also ensure that observations of one model variable produce
dynamically consistent corrections in the other model variables. The background
error covariances in the NCODA 3DVAR are similar to the error covariances defined
for the MVOI, but with some notable exceptions. As in the MVOI, the error
covariances in the 3DVAR are separated into a background error variance and a
correlation. The correlation is further separated into a horizontal (Ch) and a vertical
.Cv/ component. Correlations are modeled as either second order auto-regressive
(SOAR) functions of the form,

Ch D .1C sh/ exp.�sh/
Cv D .1C sv/ exp.�sv/ (13.4)

or Gaussian functions of the form,

Ch D exp.�s2h/
Cv D exp.�s2v / (13.5)

where sh and sv are the horizontal and vertical distances between observations or
observations and grid points, normalized by the arithmetic mean of the horizontal or
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the vertical correlation length scales at the two locations. The horizontal correlation
length scales vary with location and the vertical correlation length scales vary with
depth and location in the analysis. As described in the subsequent sections, both
correlation components evolve with time in accordance with information obtained
from the model forecast background valid at the update cycle interval.

13.3.1 Horizontal Correlations

The horizontal correlation length scales are set proportional to the first baroclinic
Rossby radius of deformation using estimates computed from the historical profile
archive by Chelton et al. (1998). Rossby length scales qualitatively characterize
scales of ocean variability and vary from 10 km at the poles to greater than 200 km in
the tropics. The Rossby length scales increase rapidly near the equator which allows
for stretching of the zonal scales in the equatorial wave guide. Flow-dependence is
introduced in the analysis by modifying the horizontal correlations with a tensor
computed from forecast model sea surface height (SSH) gradients. The flow-
dependent tensor spreads innovations along rather than across the SSH contours,
which are used as a proxy for the circulation field. Flow dependence is a desirable
outcome in the analysis, since error correlations across an ocean front are expected
to be characteristically shorter than error correlations along the front. Note that
other gradient fields can be used as a flow-dependent tensor in the analysis, such
as SST or potential vorticity (Martin et al. 2007). The flow dependent correlation
tensor (Cf/ is computed using either a SOAR or Gaussian model defined in (13.4)
and (13.5), where the SSH difference between two locations is normalized by a
scalar that defines the strength of the flow dependence. Because the flow dependent
correlations are computed directly from the forecast SSH fields they depend strongly
on the accuracy of the model forecast. This dependence may prove not to be
very useful in practice if the forecast model fields are inaccurate. Accordingly, the
normalization scalar can be set to a relatively large value in order to reduce the
strength of the flow dependence in the analysis and prevent a model with systematic
errors from adversely affecting the analysis. Alternatively, the flow dependence can
be switched completely off. Figure 13.2 shows a zoom of the analysis increments
off South Africa from a global high resolution SST analysis executed using a 6-h
update cycle. The analysis has 12-km resolution at the equator, 9-km mid-latitude,
and is a FNMOC contribution to the Group for High Resolution SST (GHRSST).
Background SST gradients are used as the flow dependent tensor, with the result that
the SST analysis increments are constrained by the meanders and eddies associated
with the Agulhas retroflection current. The increments are both positive and negative
along the front and eddy locations, indicating that application of the flow dependent
tensor is a relatively weak constraint and the strength and position of features can
change from one update cycle to the next in the analysis.

To account for the discontinuous and non-homogeneous influence of coastlines
in the analysis a second tensor is introduced .Cl/ that rotates and stretches horizontal
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Fig. 13.2 Analysis example of flow dependent tensor based on SST gradients in Agulhas Current
region; scalar value defining gradient strength of flow dependence set to 0:5ıC. (a) analyzed
increments; (b) analyzed SST field

correlations along the coast while minimizing or removing correlations into the
coast. First, all observations and model grid points are assigned an orthogonal
distance to land value based on a 1-km global coastline database. Land distances
greater than some minimal value (say, 20 km) are set to the minimal value. This
operation results in land distance gradients greater than zero along coastlines and
zero elsewhere. Similar to the flow dependence tensor, the coastline tenor is then
calculated using the difference in land distance between two locations normalized
by a scalar that specifies the strength of the coastline dependence. Away from
the coast (>20 km) this difference is zero resulting in no modification of the
horizontal correlations. However, in the vicinity of the coast (<20 km) land distance
differences are non-zero, resulting in Cl < 1 and a modification of the horizontal
correlations. Background error correlations close to the coast are expected to be
anisotropic because horizontal advection from coastal currents will elongate the
corrections and spread the information along the coast. Figure 13.3 illustrates the
coastline tensor applied to an observation 
5 km from the coast in Monterey Bay. In
this example, the horizontal correlations are specified as homogenous with a length
scale of 30 km. The effect of the coastline tensor is clearly seen as the correlations
adjust to prominent coastal features like the Monterey peninsula to the south and
the rotation of the coastline to an east–west orientation north of the observation
location.

The total horizontal background error correlation .Cb/ is then computed as
the product of the two correlation components and the two correlation tensors
according to,

Cb D ChCvCf Cl (13.6)
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Frame 71 DistanceFig. 13.3 Example of land
distance correlation tensor for
point 4.8 km from coast in
Monterey Bay, California,
USA. Observation point is
given by white X mark.
Horizontal length scales are
assumed homogenous at
30 km. The land distance
tensor spreads the
correlations from the
observation point along the
contours of the Monterey Bay
coastline

13.3.2 Vertical Correlations

Vertical correlation length scales vary with location and depth and evolve from one
analysis cycle to the next in the 3DVAR. They are defined on the basis of either:
(1) background density vertical gradients in pressure space, or (2) background
density differences in isopycnal space. In the vertical density gradient option, a
change in density stability criterion is used to define a well-mixed layer. The change
in density criterion is then scaled by the background vertical density gradient at each
grid location and grid level according to,

hv D �s=.@�=@z/ (13.7)

where hv is the vertical correlation length scale, �s is the change in density criterion
(
0:15 kg m�3/, and @¡=@z is the vertical density gradient. Surface mixed layer
depths, calculated at each grid point using the same change in density criteria
(Karra et al. 2000), are spliced onto the three-dimensional vertical length scale
field computed using (13.7). With this modification, surface-only observations
decorrelate at the base of the spatially varying mixed layer. The vertical density
gradient correlations are computed each update cycle from the background den-
sity fields, thereby allowing the vertical scales to evolve with time and capture
changes in mixed layer, thermocline depths, and the formation of mode waters.
Overall, the method produces vertical correlation length scales that vary with depth
and location, and are long when the water column stratification is weak and short
when the water column is strongly stratified.
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In the isopycnal option, observation or grid point differences in density are scaled
by ¡s to form a correlation. This procedure essentially derives the vertical corre-
lations relative to a density vertical coordinate. Observations are more correlated
along an isopycnal than across an isopycnal, which introduces considerable flow
dependence into the correlations. The procedure is cost free and does not require a
transformation of the model background to isopycnal coordinates. All that is needed
is knowledge of the density for any point of interest, which can be obtained from
the observation itself or the model forecast. Use of the isopycnal vertical correlation
option is ideally suited for HYCOM, since each coordinate surface in the model is
assigned a reference isopycnal. Vertical correlation defined along isentropic surfaces
is well known in atmospheric data assimilation (e.g., Riishøjgaard 1998). Note
that vertical correlations in the analysis are calculated either via a SOAR, (13.4)
or Gaussian, (13.5) function using lengths scales derived from either the vertical
density gradient or isopycnal formulations.

Figure 13.4 gives cross sections through the vertical correlation length scale field
and the model density field for the HYCOM Pacific domain (Sect. 13.6). The length
scales were computed using the vertical density gradient option with ¡s D 0:15. The
cross sections extend from the coast of Japan at 42ıN, 140ıE along a great circle
path to the equator at 0ıN, 160ıE. Figure 13.4a shows vertical correlation length
scales shorter near the surface and longer at depth in agreement with the density
stratification (Fig. 13.4b). The influence of the Kuroshio front is clearly seen, with
longer length scales at increasingly shallower depths as the permanent thermocline
shoals towards the equator. Relatively longer length scales are also seen in the
17–19ıC mode-water layer immediately south of the Kuroshio, which has relatively
uniform density at depths of 200–400 m.

13.3.3 Multivariate Correlations

The horizontal and vertical correlation functions described above are used in the
analysis of temperature, salinity, and geopotential. Temperature and salinity are
analyzed as uncorrelated scalars, while the analysis of geopotential is multivariate
with velocity. Geopotential is computed in the analysis from vertical profiles of
temperature and salinity by integrating the specific volume anomaly (Fofonoff
and Millard 1983) from a level of no motion (2,000 m depth) to the surface. The
multivariate correlations require specification of a parameter � , which measures the
divergence permitted in the velocity correlations, and a parameter ', which specifies
the strength of the geostrophic coupling of the velocity/geopotential correlations.
Typically, � is set to a small, constant value (� D 0:05) that produces weakly
divergent velocity increments and assumes that the divergence is not correlated
with changes in the mass field. The geostrophic coupling parameter ' varies with
location from 0 to 1. It is scaled to zero within 1ı of latitude from the equator,
where geostrophy is not defined, and in shallow water (<50m deep), where friction
rather than pressure gradient forces control ocean flow. The multivariate correlations
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Fig. 13.4 Cross sections of vertical correlation length scales and density from Pacific basin run of
global HYCOM. (a) Vertical length scales (m); (b) Density (kg=m3)

also include auto- and cross-correlations of the u; v vector velocity components.
However, at the present time, there are no operational sources of ocean current
observations available for the assimilation, although the capability to assimilate
velocity data is built into the 3DVAR system. A full derivation of the multivariate
horizontal correlations is provided in Daley (1991). The multivariate correlations
are derived from the first and second derivatives of the SOAR (or Gaussian) model
function and require precise calculation of the angles between any two locations in
order to guarantee a symmetric correlation matrix.

13.3.4 Background Error Variances

Background error variances are poorly known in the ocean and are likely to be
strongly dependent on model resolution and other factors, such as atmospheric
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model forcing errors and ocean model parameterization errors. In the analysis, the
background error variances .e2b/ vary with location, depth, and analysis variable.
The variances are computed prior to an analysis from a weighted time history of
differences in forecast fields valid at the update cycle interval and issued from a
series of analyzed states according to,

e2b D
nX

kD1
wk.xk � xk�1/2 (13.8)

where xk � xk�1 are the differences in model forecasts (indices indicating grid
location and depth are omitted for clarity), k is the update cycle index, n is
the number of update cycles into the past to use in the summation, and wk is
a weight vector computed using a geometric series, wk D .1 � ¥/k�1, where
¥ is typically set to 0.1. The background error variances computed according to
(13.8) are normalized such that the weighted averages are unbiased. In practice,
the background error variances tend to evolve to a quasi-steady state over time.
The model forecast difference fields include the influence of observations from the
assimilation, so in well observed areas the background errors are consistent with
the innovations (model-data errors at the update cycle interval). However, in the
case of poorly observed or strong flow areas the background error variances are
more likely dominated by model variability arising from atmospheric forcing and
baroclinic and barotropic instabilities. Figure 13.5 shows background temperature
error standard deviation computed using Eq. (13.8) for different vertical levels
in the global HYCOM analysis domains (see Sect. 13.6). Figure 13.6 shows the
background salinity error standard deviation and Fig. 13.7 the background velocity
error standard deviation at the surface. Relatively high background errors are evident
at all depths in boundary current areas: Gulf Stream, Kuroshio, Agulhas, Brazil-
Malvinas, East Australia. Surface salinity error levels are also large near some river
outflow areas, in tropical regions, and in the marginal ice zone around Antarctica
during the Austral summer. Surface velocity error standard deviations tend to
be large in western boundary currents and in the inter-tropical convergence zone
(ITCZ) due to the variable wind and solar forcing in that area.

The adaptive scheme implemented here is designed to provide background errors
that: (1) are appropriate for the time interval at which data are inserted into the
model; (2) are coherent with the variance of the innovation time series; (3) reflect
the variable skill of the different ocean forecast models that are used with the
analysis system; and (4) adjust quickly to new ocean areas when the analysis is
re-located in a rapid environmental assessment mode of operation. One difficulty
with this approach is that differences in model fields contain a mixture of fore-
cast and analysis error. Forecast errors result from initial condition, model, and
atmospheric forcing deficiencies, while analysis errors result from the fact that the
statistical parameters used in the analysis represent expected values and are unlikely
to be correct at all places and at all times.
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Fig. 13.5 Temperature (ıC) background error standard deviations valid 20 January 2012 in
global HYCOM analysis domains: Atlantic, Indian, and Pacific. (a) 0 M depth, (b) 150 M depth,
(c) 300 M depth

13.3.5 Observation Error Variances

The observation errors and the background errors are assumed to be uncorrelated,
and errors associated with observations made at different locations and at different
times are also assumed to be uncorrelated. As a result of these assumptions, the
observation error covariance matrix R is set equal to 1 C E2o along the diagonal
and zero elsewhere. Note that E2o represents observation error variances (e2o) nor-
malized by the background error variances interpolated to the observation location
(E2o D e2o=e2b). Observation errors are computed as the sum of a measurement
error and a representation error. Measurement errors reflect the accuracy of the
instruments and the ambient conditions in which the instruments operate. These
errors are fairly well known for many ocean observing systems, although the
errors can change in time due to calibration drift of the instruments and other
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Fig. 13.5 (continued)

factors. Representation errors, however, are a function of the resolution of the model
and the resolution of the observing network. For satellite retrievals with known
measurement footprints, representation errors are set equal to the gradient of the
background field at the observation location when the retrieval footprint exceeds the
model grid resolution. Representation error of profile observations consists of two
additive components. The first component is set proportional to the observed profile
vertical gradients of temperature and salinity as a proxy for uncertainty associated
with internal waves. The second component is estimated from the variability of
multiple observed profile level data averaged into layers defined by the model
vertical grid (see Sect. 13.4.2).

13.4 Ocean Observations

The analysis makes full use of all sources of the operational ocean observations.
Ocean observing systems assimilated by the 3DVAR are listed in Table 13.1, along
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Fig. 13.5 (continued)

with typical global data counts per day. All ocean observations are subject to data
quality control (QC) procedures prior to assimilation. The need for quality control
is fundamental to a data assimilation system. Accepting erroneous data can cause
an incorrect analysis, while rejecting extreme, but valid, data can miss important
events. The NCODA 3DVAR analysis was co-developed and is tightly coupled to
an ocean data QC system. Cummings (2011) provides an overview of the NCODA
ocean data quality control procedures.

13.4.1 Surface Observations

Table 13.1 indicates that there are many high volume sources of satellite and in situ
SST, SSH, and sea ice observations. It is not uncommon to assimilate 
40 million
satellite SST retrievals, 
2 million sea ice concentration retrievals, and 
500; 000
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Fig. 13.6 Surface salinity (PSU) background error standard deviations valid 20 January 2012 in
global HYCOM analysis domains: Atlantic, Indian, and Pacific

altimeter SSH observations in a single day. These high-density, surface-only, data
types must be thinned prior to the analysis to remove redundancies in the data
and minimize horizontal correlations among the observations. The data thinning
is achieved by averaging innovations into bins with spatially varying sizes defined
using the ratio of horizontal correlation length scales and horizontal grid resolution.
Innovations are inversely weighted based on observation error in the data thinning
process, and in the case of SST observations the water mass of origin is maintained
(see Cummings 2005 for a discussion of the Bayesian water mass classification
scheme). The length scale to grid mesh ratio bin sizes automatically adjust to
changes in the spatially varying horizontal correlation length scales, but are never
smaller than the underlying model grid mesh. As a result, fewer data are thinned
as the grid resolution decreases or as the correlation length scales shorten. This
adaptive feature of the data thinning process can be used to decrease (increase)
the amount of data thinning by artificially shortening (lengthening) the horizontal
correlation length scales given a fixed model grid. Note that simply increasing data
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Fig. 13.7 Surface velocity (cm/s) background error standard deviations valid 20 January 2012 in
global HYCOM analysis domains: Atlantic, Indian, and Pacific

density does not necessarily improve the analysis. More data will require more
conjugate gradient iterations while, more importantly, it may not noticeably alter the
results given the smoothing operation of the post-multiplication step (see discussion
in Sect. 13.2). Figure 13.8 shows an example of data thinning results for 6 h of
satellite SST observations in the FNMOC GHRSST analysis. Even with just 6 h
of SST data the various satellite missions and in situ sources show a high degree
of spatial overlap. The data thinning removes this data redundancy and creates a
sampling pattern consistent with the horizontal correlation length scales defined for
the analysis. In this case, length scales are based on Rossby radius of deformation,
which varies significantly across the grid. As a result, there is increased data
thinning near the equator where length scales are 
200 km. Elsewhere, especially
at high latitude, the data thinning is much less, and satellite retrievals with footprint
resolutions of 2 km and 8 km are directly assimilated without any spatial averaging.
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Table 13.1 Data types assimilated in NCODA 3DVAR with typical daily data counts. Note that
the profile data counts are for the entire profile. Profiles typically contain hundreds of levels that
are assimilated as unique latitude, longitude, level observations

Data type Data source Specifications Number daily obs

Satellite SST NOAA-18
NOAA-19

Infrared 2-km day, night
retrievals

4,800,000

NOAA-18
NOAA-19

Infrared 8-km day, night,
relaxed day retrievals

800,000

AMSR-E Microwave 25-km day,
night retrievals

3,600,000

METOP-A Infrared 2-km day, night
retrievals

15,000,000

METOP-A Infrared 8-km day, night,
relaxed day retrievals

450,000

GOES E/W Infrared 12-km day, night
retrievals

2,000,000

MeteoSat-2 Infrared 8-km day, night
retrievals

220,000

AATSR Infrared 1-km day, night
retrievals

12,000,000

In Situ SST Ships Engine room intake 6,500
Hull contact sensor 1,000
Bucket temperature 100
CMAN Station 100

Drifting Buoy 34,000
Fixed Buoy 7,000

Satellite altimeter Jason 1, 2
Envisat

SSHA 150,000

SWH 180,000
Sea ice concentration DMSP F13, F14,

F15
SSM/I 25-km retrievals 900,000

DMSP F16, F17,
F18

SSMIS 25-km retrievals 1,200,000

Profiles Drifting buoy Temperature 50
Fixed buoy 1,200
Argo 600
XBT 100
TESAC (CTD) 3,500
Drifting buoy Salinity 50
Fixed buoy 800
Argo 600
TESAC (CTD) 3,000

13.4.2 Profile Observations

Preparation of profile observations for the assimilation consists of several steps.
First, observed profiles are extended to the bottom using the model forecast. The
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Fig. 13.8 Data thinning of global SST data. Satellite and in situ sources SST show in left panel
(blue daytime, green nighttime, red relaxed day satellite retrieval types). The SST data sources are
(in order from top to bottom): AMSR-E, Drifting and Fixed Buoy, GOES E/W, METOP-A GAC,
METOP LAC, MeteoSat-2, NOAA 18,19 GAC, NOAA 18,19 LAC, Surface Ship (engine room
intake, bucket, hull contact sensor). Thinned data for assimilation is show in middle panel (blue—
SST observation; red—freezing sea water under ice covered seas). Schematic of how correlation
lengths vary as a function of latitude shown on right

observed profile is merged to the forecast profile by selecting the depth at which
the merge is complete based on the shape of the extracted forecast model profile.
This target depth is set to be the second zero crossing of the forecast profile
curvature. Note that the merge can fail if a suitable target depth is not found or
if the difference between the observed and model profile at the merge depth is too
large (>3ıC for temperature; >0:1 PSU for salinity). Second, similar to the high
density surface-only data, profile observations are thinned in the vertical to remove
redundant data. The profile thinning is done by averaging temperature and salinity
observations at observed levels within vertical layers defined by the mid-points
of the model vertical grid. Since the ocean circulation models interfaced with the
3DVAR have very different vertical coordinates (NCOM uses a sigma/z vertical
grid; HYCOM uses a z/isopycnal/sigma hybrid vertical grid), model vertical levels
at the grid point closest to the profile location are used to define layer thicknesses.
Third, in cases where profile vertical sampling is inadequate to resolve the local
vertical correlation length scales, the profile is expanded in the vertical by linearly
interpolating data to interleaving levels in order to form a more vertically dense
profile. This scheme ensures vertically smooth analysis increments at all model
levels even when vertical correlations are short due to strong density stratification.
This situation routinely occurs in the tropics with the sparse vertical sampling
in profiles received from the Tropical Atmosphere Ocean (TAO), Triangle Trans-
Ocean Buoy Network (TRITON), and Prediction and Research Moored Array in
the Atlantic (PIRATA) buoys. It is clear that the vertical sampling of the tropical
mooring arrays needs to be improved.
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13.4.3 Altimeter Sea Surface Height

Table 13.1 shows that most ocean observations are remotely sensed and measure
ocean variables only at the surface. The lack of synoptic real-time data at depth
places severe limitations on the ability of the data assimilation system to resolve and
maintain an adequate representation of the ocean mesoscale. Subsurface properties
in the ocean, therefore, must be inferred from surface-only observations. The
most important observing system for this purpose is satellite altimetry, which
measures the time varying change in SSH. Changes in sea level are strongly
correlated with changes in the depth of the thermocline in the ocean, and the ocean
dynamics generating sea level change are for the most part the mesoscale eddies
and meandering ocean fronts. The SSH data are provided as anomalies relative to a
time-mean field. The time mean removes the unknown geoid, but it also removes the
mean dynamic topography (MDT), which needs to be added back in order to allow
the data to be compared with model fields. The 3DVAR determines the satellite
altimeter SSH sampling locations in two alternative ways: (1) direct assimilation
of the along-track data at the observed locations, or (2) by first performing a 2D
horizontal analysis of SSH and then generate a sampling pattern of synthetic profile
locations within contours of sea level change that exceed a prescribed noise level
threshold (see Cummings 2005 for details). Once the altimeter sampling locations
are known there are two alternative methods available in the 3DVAR to project
the SSH data to depth in the form of synthetic temperature and salinity profiles.
One method is the Modular Ocean Data Assimilation System (MODAS) database,
which models the time averaged co-variability of dynamic height vs. temperature at
depth and temperature vs. salinity at a fixed location from an analysis of historical
profile data (Fox et al. 2002). The MDT used in the MODAS method is derived from
historical hydrographic data. Note that an upgrade to the MODAS synthetic profile
capability, the Improved Synthetic Ocean Profile (ISOP) system (Helber et al. 2012),
is currently being evaluated. The second “direct” method adjusts the model forecast
density field to be in agreement with the difference found between the model
forecast sea surface height field and the SSH measured by the altimeter (Cooper
and Haines 1996). The MDT used in the direct method is the mean SSH from the
model derived from a hindcast run. Output of the direct method is in the form of
innovations of temperature and salinity from the forecast model background field,
which are directly input into the assimilation. An advantage of the direct method is
that it relies on model dynamics for its prior information rather than statistics fixed
at the start of the assimilation. However, a disadvantage is that it cannot explicitly
correct for forecast model errors in stratification due to model drift in the absence of
any real data constraints. MODAS does not suffer from these limitations, although
MODAS may have marginal skill due to: (1) sampling limitations of the historical
profile data, (2) non-steric signals in the altimeter data, or (3) weak correlations
between steric height and temperature at depth due to other factors, such as the
influence of salinity on steric height at high latitudes. Needless to say, neither of the
methods available for assimilating altimeter SSH data is ideal. A new method under
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development assimilates altimeter SSH by conversion of the along-track SSH slopes
to geostrophic velocity profiles. This method is described briefly in Sect. 13.7.

While having the potential of adding important information in data-sparse areas,
the number of altimeter-derived synthetic observations computed can greatly exceed
and overwhelm the in situ observations in the analysis. Accordingly, the synthetic
observations are thinned prior to the analysis in four ways. First, it is assumed
that directly observed temperature and salinity profiles are a more reliable source
of subsurface information wherever such observations exist. Altimeter-derived
synthetic profiles, therefore, are not generated in the area surrounding an in situ
profile observation. Second, the observed SSH from the along-track data or the
analyzed incremental change in sea level must exceed a threshold value, defined
as the noise level of the satellite altimeters, to trigger the generation of a synthetic
observation. This value is typically set to 4 cm. Third, projection of the SSH signal
onto the model subsurface density field can produce unrealistic results when the
vertical stratification is weak. In the absence of specific knowledge about how to
partition SSH anomaly into baroclinic and barotropic structures in these weakly
stratified regions, synthetic profiles are rejected for assimilation when either of
the following occurs: (1) the top-to-bottom temperature difference of the MODAS
synthetic profile is less than 5ıC; or (2) the maximum value of the Brunt-Väisälä
frequency calculated from the model density profile in the direct method is less
than 1.4. Fourth, there are problems with the SSH data in shallow water due
to contamination of the altimeter signal by tides. Accordingly, SSH data are not
assimilated in water depths less than 400 m.

13.5 NCODA System

NCODA is a comprehensive ocean data assimilation system. In addition to the
3DVAR it contains other components that perform functions useful for many
applications. These component capabilities are briefly summarized in this section.

13.5.1 Analysis Error Covariance

The analysis error covariance Pa is estimated from the equation,

Pa D Pb � PbH
T .HPbH

T CR/�1HPb (13.9)

where Pb and R are the background and observation error covariances previously
defined for (13.1). Unlike (13.1), which involves matrix–vector operations, (13.9)
requires the use of matrix-matrix operations and is computationally expensive to
perform. The NCODA 3DVAR provides an estimate of the analysis error variance
(the diagonal of the second right-hand term) in the form of a normalized reduction
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of the forecast error ranging from 1 (0 % reduction) to 0 (100 % reduction)
for each analysis variable at all model grid points. The analysis error solution
is a local approximation performed within the grid decomposition blocks that is
improved upon though the use of halo regions to bring in the influence of additional
observations. The analysis error estimation uses the same data inputs as the 3DVAR
other than the innovations. In this way the analysis error calculation can be done
at the same time as the analysis, albeit on a different set of processors, to improve
throughput of the entire data assimilation system. The primary application of the
analysis error covariance program is as a constraint in the Ensemble Transform
technique (Sect. 13.5.3).

13.5.2 Adjoint

Adjoint-based observation sensitivity provides a feasible all at once approach to
estimating observation impact. Observation impact is calculated in a two-step
process that involves the adjoint of the forecast model and the adjoint of the
assimilation system. First, a cost function (J) is defined that is a scalar measure of
some aspect of the forecast error. The forecast model adjoint is used to calculate
the gradient of the cost function with respect to the forecast initial conditions
(@J=@xa/. The second step is to extend the initial condition sensitivity gradient from
model space to observation space using the adjoint of the assimilation procedure
(@J=@y D KT @J=@xa/, where K D PbHTŒHPbHT CR��1 is the Kalman gain matrix
of (13.1) and the adjoint of K is given by KT D ŒHPbHT C R��1HPb. The only
difference between the forward and adjoint of the analysis system is in the post-
multiplication of going from the solution in observation space to grid space. The
pre-conditioned, conjugate gradient solver ŒHPbHTCR� is symmetric or self-adjoint
and operates the same way in the forward and adjoint directions. The NCODA
3DVAR adjoint was coded directly from the forward 3DVAR by transposition of the
post-multiplier to a pre-multiplier that is invoked first to convert adjoint sensitivities
from grid space to observation space prior to execution of the solver for calculation
of observation sensitivities and data impacts.

13.5.3 Ensemble Transformation

The ensemble transform (ET) ensemble generation technique (Bishop and
Toth 1999) transforms an ensemble of forecast perturbations into an ensemble
of analysis perturbations. The method ensures that the analysis perturbations are
consistent with the analysis error covariance matrix .Pa/, computed using (13.9). To
compute the required transform matrix an eigenvector decomposition is performed,

.XT
f P

�1
a Xf /=n D C�CT (13.10)
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where Xf is the matrix of ensemble forecast perturbations about the ensemble
forecast mean, Pa is the analysis error covariance matrix, n is the number of model
variables (state vector), and C are the eigenvectors and � the eigenvalues of the left
hand side of (13.10). Superscript T indicates matrix transpose. Given the eigenvector
decomposition the transformation matrix T is given by T D C��1=2CT, which
is used to transform a matrix of forecast perturbations to a matrix of analysis
perturbations according to Xa D XfT. If the ensemble size is large enough it can
be shown that the covariance of the analysis perturbations equals the prescribed
analysis error covariance Pa (McLay et al. 2008). Thus the analysis error covariance
is an effective constraint in the ET, ensuring that the ensemble generation system is
consistent with the data assimilation system.

The NCODA ET is multivariable and computes the transformation matrix for
temperature, salinity, and velocity simultaneously. As a result the NCODA ET
perturbations are balanced and flow dependent. In an ET ensemble generation
scheme the control run is the only ensemble member that executes the 3DVAR. This
results in a considerable savings in computational time as compared to a perturbed
observation approach where the analysis must be executed by all of the ensemble
members. Given a 3DVAR control run analysis and its corresponding analysis
error covariance estimate, the system calculates the ET analysis perturbations and
adds the perturbations to the control run to form new initial conditions for each
ensemble member. The forecast model is then integrated creating a new set of
ensemble forecasts for the next cycle of the ET. The NCODA ET and 3DVAR have
been successfully implemented in a coupled ocean atmosphere mesoscale ensemble
prediction system (Holt et al. 2011).

13.5.4 Residual Vector

The residual vector Œy � H.xa/� is very useful in assessing the fit of the analysis
to specific observations or observing systems. It is usually calculated at the end
of the analysis after the post-multiplication step by horizontally and vertically
interpolating the analysis vector .xa/ to the observation locations and application
of the nonlinear forward operators H to obtain H.xa/ in observation space. This
result is then subtracted from the observations to form the residual vector. The
problem here is that horizontal and vertical interpolations of the analysis grid to
the observation locations and subsequent application of the H operator introduces
error into the residual vector, which may change interpretation of the quality of
the fit of the analysis to an observing system. A better approach is to estimate
the analysis result, and the residual vector, while still in observation space, that
is, before application of the post-multiplication (13.3). Daley and Barker (2000)
show that a good approximation of the true residuals while in observation space
can be obtained from ya D y � Rz, where y is observation vector, ya the residual
vector, R is the observation error covariance matrix, and z is defined in (13.2). Using
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this formulation to calculate residuals gives a better indication of the performance
of the 3DVAR assimilation algorithm and how best to tune the background and
observation error statistics to improve the analysis. The NCODA 3DVAR system
routinely computes residual vectors while still in observation space and saves the
residual and innovation vectors for each update cycle in a diagnostics file. As noted,
a time history of the innovations and the residuals is the basic information needed to
compute a posteriori refinements to the 3DVAR statistical parameters. Analysis of
the innovations is the most common, and the most accurate, technique for estimating
observation and forecast error covariances and the method has been successfully
applied in practice (e.g. Hollingsworth and Lonnberg 1986). Similarly, a spatial
autocorrelation analysis of the residuals is used to determine if the analysis has
extracted all of the information in the observing system. Any spatial correlation
remaining in the residuals at spatial lags greater than zero represents information
that has not been extracted by the analysis and indicates an inefficient analysis
(Hollingsworth and Lonnberg 1989).

13.5.5 Internal Data Checks

Internal data checks are those quality control procedures performed by the analysis
system itself. These data consistency checks are best done within the assimilation
algorithm, since it requires detailed knowledge of the background and observa-
tion error covariances, which are available only when the assimilation is being
performed. The first step is to scale the innovations .y � H.xb// by the diagonal
of .HPbHT C R/1=2, the symmetric positive-definite covariance matrix of (13.1).
The elements of this scaled innovation vector (dˆ) should have a standard deviation
equal to 1 if the background and observation error covariances have been specified
correctly. Assuming this to be the case, set a tolerance limit (TL/ to detect and reject
any observation that exceeds it. Since Pb and R are never perfectly known, it is best
to use a relatively high tolerance limit (TL D 4:0) to identify marginally acceptable
observations.

The second part of the internal data check is a consistency check. It compares
the marginally acceptable observations with all of the observations. The procedure
is a logical extension of the tolerance limit check described above. In the data
consistency test, the innovations are scaled by the full covariance matrix (not just the
diagonal). The elements of this scaled innovation vector (d�) are also dimensionless
quantities normally distributed. However, because the scaling in d� involves the
full covariance matrix, it includes correlations between all of the observations. By
comparing the vectors dˆ and d� it can be shown (Daley and Barker 2000) which
marginally acceptable observations are inconsistent with other observations and
can therefore be rejected. The d� metric should increase (decrease) with respect
to dˆ when that observation is inconsistent (consistent) with other observations, as
specified by the background and observation error statistics.
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13.6 Global HYCOM

As mentioned in the introduction, the NCODA 3DVAR analysis is currently cycling
with global HYCOM in real-time at NAVOCEANO. The 3DVAR is expected to
replace the MVOI as the data assimilation component in the operational HYCOM,
which is referred to as the Global Ocean Forecast System (GOFS) version 3.

As configured within GOFS v3, HYCOM has a horizontal equatorial resolution
of :08ı or 
1=12ı.
7 km mid latitude) resolution. This makes HYCOM eddy
resolving. Eddy-resolving models can more accurately simulate western boundary
currents and the associated mesoscale variability and they better maintain more
accurate and sharper ocean fronts. In particular, an eddy resolving ocean model
allows upper ocean topographic coupling via flow instabilities, while an eddy-
permitting model does not because fine resolution of the flow instabilities is required
to obtain sufficient coupling (Hurlburt et al. 2008b). The coupling occurs when
flow instabilities drive abyssal currents that in turn steer the pathways of upper
ocean currents (Hurlburt et al. 1996 in the Kuroshio; Hogan and Hurlburt 2000
in the Japan/East Sea; and Hurlburt and Hogan 2008 in the Gulf Stream). In ocean
prediction this coupling is important for ocean model dynamical interpolation skill
in data assimilation/nowcasting and in ocean forecasting, which is feasible on time
scales up to about a month (Hurlburt et al. 2008a).

The global HYCOM grid is on a Mercator projection from 78:64ıS to 47ıN
and north of this it employs an Arctic dipole patch where the poles are shifted
over land to avoid a singularity at the North Pole. This gives a mid-latitude
(polar) horizontal resolution of approximately 7 km (3.5 km). This version employs
32 hybrid vertical coordinate surfaces with potential density referenced to 2,000 m
and it includes the effects of thermobaricity (Chassignet et al. 2003). Vertical
coordinates can be isopycnals (density tracking), often best in the deep stratified
ocean, levels of equal pressure (nearly fixed depths), best used in the mixed layer
and unstratified ocean, and sigma-levels (terrain-following), often the best choice
in shallow water. HYCOM combines all three approaches by choosing the optimal
distribution at every time step. The model makes a dynamically smooth transition
between coordinate types by using the layered continuity equation. The hybrid
coordinate extends the geographic range of applicability of traditional isopycnic
coordinate circulation models toward shallow coastal seas and unstratified parts of
the world ocean. It maintains the significant advantages of an isopycnal model in
stratified regions while allowing more vertical resolution near the surface and in
shallow coastal areas, hence providing a better representation of the upper ocean
physics. HYCOM is configured with options for a variety of mixed layer sub-
models (Halliwell 2004) and this version uses the K-Profile Parameterization (KPP)
of Large et al. (1994). A more complete description of HYCOM physics can be
found in Bleck (2002). The ocean model uses 3-hourly Navy Operational Global
Atmospheric Prediction System (NOGAPS) forcing from FNMOC that includes: air
temperature at 2 m, surface specific humidity, net surface short-wave and long-wave
radiation, total (large scale plus convective) precipitation, ground/sea temperature,
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zonal and meridional wind velocities at 10 m, mean sea level pressure and dew-
point temperature at 2 m. The first six fields are input directly into the ocean
model or used in calculating components of the heat and buoyancy fluxes while
the last four are used to compute surface wind stress with temperature and humidity
based stability dependence. Currently the system uses the 0:5ı degree resolution
application grid NOGAPS products (i.e. already interpolated by FNMOC to a
constant 0:5ı latitude/longitude grid); however HYCOM can also (and preferably)
use the NOGAPS T319 computational grid (i.e. a Gaussian grid—constant in
longitude, nearly constant in latitude) products. Typically atmospheric forcing
forecast fields extend out to 120 h (i.e. the length of the HYCOM/NCODA forecast).
On those instances when atmospheric forecasts are shorter than 120 h, an extension
is created based on climatological products. The last available NOGAPS forecast
field is then gradually blended toward climatology to provide forcing over the entire
forecast period. The current version of the global HYCOM forecast system includes
a built-in energy loan, thermodynamic ice model. In this non-rheological system,
ice grows or melts as a function of SST and heat fluxes. For an extensive validation
of the global forecast system see Metzger et al. (2008, 2010a,b).

The NCODA 3DVAR analysis system consists of three separate programs that
are executed in sequence. The first program does the analysis and data preparation,
including computation of the innovation vector. The second program performs the
3DVAR, where it reads the innovation vector and outputs the analysis increment
correction fields. The third program performs several post-processing tasks, such
as updating the background error fields and computing some diagnostic and
verification statistics. The global HYCOM 3DVAR analysis is split into seven
overlapping regions covering the global ocean (Fig. 13.9). The Atlantic, Indian and
Pacific Ocean regions cover the Mercator part of the model grid. The remaining four
regions cover the irregular part of the model domain, one region in the Antarctic,
one each in the northern part of the Atlantic and Pacific and the last region covering
the Arctic Ocean. The boundary between the different regions follows the natural
boundary of the continents. The regions overlap to ensure that the analyses will be
smooth across the boundaries that fall over the ocean. At present the forecast system
is running on 624 Cray XT5 processors. The processors are split among the sub-
regions so that each regional analysis can run in parallel and finish at about the same
time. Note that performing the 3DVAR in sub-regions is a holdover from the old
MVOI system. There are no limitations in the 3DVAR that prevent the analysis
from being executed on the full global HYCOM grid. However, at the present time,
memory limitations in the data prep program do not allow the system to be executed
globally. This problem is being addressed.

Two assimilative runs of the 3DVAR cycling with global HYCOM on a daily
basis (24-h update cycle) are reported here. Both runs were initialized from a non-
assimilative spin-up of the model. The run initialized on 1 May 2010 was executed in
hindcast mode and has the advantage of assimilating synoptic ocean observations.
The run initialized on 29 November 2011 is a real-time run and must deal with
data latency issues associated with some of the ocean observing systems. Satellite
altimeter and profile observations have the longest time delays before the data are
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Fig. 13.9 NCODA 3DVAR analysis regions for global HYCOM. The three regions in the Atlantic,
Indian and Pacific Ocean cover the Mercator projection part of the global model grid. The three
regions in the Arctic Cap cover the irregular bi-polar part of the global grid: northern part of the
Atlantic, northern part of the Pacific, and a region covering the Arctic Ocean. A spherical grid
projection is used in the vicinity of Antarctica

available for assimilation in real-time. The delays in the altimeter data are at least
7296 h due to orbit corrections that have to be applied to improve the accuracy of
the measurements. Profile data can be delayed up to 
72 h. Since ocean data are so
sparse it is important to use all of the data in the assimilation. Accordingly, in real-
time applications the 3DVAR has the capability to select data for the assimilation
based on receipt time (the time the observation is received at the center) instead
of observation time. In this way all data received since the previous analysis are
used in the next real-time run of the 3DVAR. However, data selected this way will
necessarily contain non-synoptic measurement times. This source of error in the
analysis is reduced by comparing observations against time dependent background
fields using FGAT. Hourly forecast fields are used in the FGAT for assimilation of
SST observations in order to maintain a diurnal cycle in the model. Daily averaged
forecast fields are used in FGAT for profile data types (both synthetic and real).
SSH data are assimilated in global HYCOM using the MODAS synthetic profile
approach. The 3D temperature, salinity, and u; v velocity analysis increments are
incrementally inserted into the model over a 6 h time period using the incremental
analysis update procedure (Bloom et al. 1996). A separate 2D ice concentration
analysis is used to update the ice concentration in the thermodynamic ice model.

Figures 13.10, 13.11, and 13.12 give time series of innovation and residual error
statistics in the Pacific domain of the hindcast run. The statistics are computed in
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Fig. 13.10 Time of RMS and mean bias error statistics for temperature observations in HYCOM
Pacific basin. Upper panel reports RMSE, middle panel reports mean bias, and bottom gives
temperature data counts. Tick marks along time axis indicate 24-h update cycle periods

observation space and represent averages across all data assimilated for a particular
analysis variable. Innovation RMS errors for temperature (Fig. 13.10) and salinity
(Fig. 13.11) show increased errors for the first few update cycles while the free
running model adjusts to the data. After this initial adjustment time, RMS errors
are very stable, with temperature errors 
0:4ıC and salinity errors 
0:1 PSU.
The model innovations are remarkably unbiased in both temperature and salinity.
The 3DVAR analysis produces a reduction in error from the innovations to the
residuals of about 60 %, which is clearly seen in both temperature and salinity.
However, the time series of the layer pressure error statistics (Fig. 13.12) are the
most interesting. When cycling with HYCOM, the 3DVAR includes a sixth analysis
variable, layer pressure. Layer pressure innovations are computed as differences in
the depths of density layers in the observations and the model forecast. The layer
pressure correction fields are then used to correct isopycnal layer depths in the
model. Unlike the fairly rapid response of the free-running model to the assimilation
of temperature and salinity observations, bias in the layer structure of the model
spin-up takes about a month to adjust to the data. Layer pressure RMS errors remain
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Fig. 13.11 Same as Fig. 13.10, except for salinity observations

high (
100 db) after the adjustment time period due to the assimilation of MODAS
synthetic profiles at high latitudes. MODAS synthetics were not thinned based on
stratification (Sect. 13.4.3) in these model runs. Layer pressure RMS errors are
reduced more than 50 % when weakly stratified MODAS synthetics are rejected
(not shown).

Figure 13.13 shows a verification result from the real-time run for sea surface
height in the Kuroshio region on 12 January 2012. The assimilation of SSH
anomalies is crucial to accurately map the circulation in these highly chaotic regions
dominated by flow instabilities. The white (black) line overlain is an independent
analysis of available infrared observations of the north edge of the current system
performed at the Naval Oceanographic Office. The frontal analysis clearly indicates
that the forecast system is able to accurately map the mesoscale features in the
western boundary current.

Table 13.2 gives run times for the 3DVAR conjugant gradient solver and post-
multiplication steps. The run times are listed for a typical day (28 January 2012) in
six of the global HYCOM analysis subdomains. A total of 2.2 million observations
were assimilated into the HYCOM grid that contained more than 520 million grid
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Fig. 13.12 Same as Fig. 13.10, except for layer pressure observations. Layer pressure is computed
from density using temperature and salinity profiles (see text for details)

points. The total time of the 3DVAR step in the NCODA analysis system is the
maximum time needed to complete any of the subdomains—in this case 14.2 min to
complete the Indian Ocean analysis. Efficiency of the 3DVAR is clear, especially
in the large Pacific basin where >1 million observations were assimilation into
195.2 million grid points in 
9:8 min wall clock time. Table 13.2 also shows how
well the analysis scales using different numbers of processors. Reduction of the
Indian Ocean run time, and thus speed-up of the 3DVAR analysis step in global
HYCOM analysis/forecast system, can easily be achieved by simply increasing
the number of processors. In general, the post-multiplication step of the analysis
is more computationally expensive than the observation space solver. Accordingly,
the analysis contains an option to perform the post-multiplication step on a reduced
resolution grid. The innovations are always formed from the full resolution model
grid, and the solution vector is calculated using all of the observations, but now the
solution is mapped to every other (or any multiple) horizontal grid point. This option
results in a considerable saving in computational time with no loss of information
when analysis correlation length scales generally exceed the model grid resolution.
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Fig. 13.13 Sea surface height in the Kuroshio region from the 1=12ı global HYCOM/NCODA
forecast system on January 12, 2012. An independent infrared (IR) analysis of the north edge of
the current system performed by the Naval Oceanographic Office is overlain. A white (black) line
means the IR analysis is based on data less (more) than four days old

Table 13.2 3DVAR run times for six of the seven global HYCOM analysis domains on 28
January 2012

Number Number Solver Post proc Total
Domain Grid size procs obs (min) (min) (min)

Atlantic 1,751 � 1,841 � 42 88 613,525 4.8 5.6 10.7
Indian 1,313 � 1,569 � 42 64 468,828 6.6 7.3 14.2
Pacific 2,525 � 1,841 � 42 416 1,028,369 6.7 2.6 9.8
Arctic Ocean 1,630 � 551 � 42 16 11,879 0.1 0.2 1.7
Arctic Atlantic 1,490 � 551 � 42 16 82,137 0.1 0.6 2.3
Arctic Pacific 1,335 � 551 � 42 16 17,630 0.4 0.2 1.6
Totals 520,250,556a 616 2,222,368
aTotal for grid size is the total number of grid points

Full resolution correction fields for the model update are produced for each analysis
variable in the NCODA 3DVAR post-processing step by interpolation. This reduced
resolution grid option is used in global HYCOM where the solution vector is
mapped to every other model grid point.
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13.7 Future Capabilities

The NCODA 3DVAR and Navy global ocean forecasting systems continue to be
developed and improved. These new developments and capabilities are summarized
in this section.

13.7.1 HYCOM GOFS

The present 1=12ı global HYCOM/NCODA system is the first step towards a 1=25ı
global forecast system. The first phase of the upgrade will continue to use the 1=12ı
model. In this phase the simple thermodynamic ice model will be replaced by the
Los Alamos Community Ice CodE (CICE). CICE is the result of an effort to develop
a computationally efficient sea ice component for a fully coupled forecast system.
CICE has several interacting components: a thermodynamic model that computes
local growth rates of snow and ice due to vertical conductive, radiative and turbulent
fluxes, along with snowfall; a model of ice dynamics, which predicts the velocity
field of the ice pack based on a model of the material strength of the ice; a transport
model that describes advection of the areal concentration, ice volumes and other
state variables; and a ridging parameterization that transfer ice among thickness cat-
egories based on energetic balances and rates of strains. HYCOM and CICE will be
fully coupled via the Earth System Modeling Framework (ESMF: Hill et al. 2004).
An interim, fully coupled, real time Arctic Cap HYCOM/CICE/NCODA-3DVAR
forecast system has been set up until CICE is implemented in the global model
(Posey et al. 2010). The second phase of the upgrade includes the implementation
of a fully coupled 1=25ı HYCOM/CICE model that includes tidal forcing and uses
NCODA 3DVAR as the data assimilation component for both HYCOM and CICE.
Preliminary experiments with the assimilative 1=25ı model are under way. This
model will have 
3 km mid latitude resolution.

13.7.2 Satellite SST Radiance Assimilation

At the present time, SST retrievals are empirically derived using stored regressions
between cloud cleared satellite SST radiances and drifting buoy SSTs. The regres-
sions are global, calculated once, and held constant. The coefficients represent a very
broad range of atmospheric conditions with the result that subtle systematic errors
are introduced into the empirical SST when the method is uniformly applied to new
radiance data. In the 3DVAR, work is underway to develop an observation operator
for direct assimilation of satellite SST radiances. This new physical SST algorithm
uses an incremental approach. It takes as input prior estimates of SST and short-term
predictions of air temperature and water vapor profiles from NWP. The algorithm is
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forced by differences between observed and predicted top-of-the-atmosphere (TOA)
brightness temperatures (BTs) for the different satellite SST channel wavelengths.
Calculation of the TOA-BTs requires use of a fast radiative transfer model. For this
purpose the Community Radiative Transfer Model (CRTM; Han et al. 2006) is being
integrated into the 3DVAR. In addition to the TOA forward model, CRTM provides
the tangent linear radiance sensitivities (Jacobians) with respect to the prior SST,
water vapor, and atmospheric temperature predictor variables as a function of the
infrared satellite 3.5, 11 and 12�m wavelengths. The physical SST inverse model
for a given channel is given by,

2
4
•BT � Jsst

•BT � Jt
•BT � Jq

3
5 D

2
4
©�1sst � Jsst � Jsst Jsst � Jt Jsst � Jq
Jt � Jsst ©�1t � Jt � Jt Jt � Jq
Jq � Jsst Jq � Jt ©�1q � Jq � Jq

3
5
2
4
•Tsst

•Ta
•Qa

3
5 (13.11)

where •BT are the TOA-BT innovations, Jsst, Jt, and Jq are the radiative transfer
model Jacobians for SST, atmospheric temperature, and water vapor, respectively,
©sst, ©t, and ©q are the errors of the priors, and •Tsst, •Tatm, and •Qatm are the
corrections output for each of the priors that take into account the variable SST
and temperature and water vapor content of the atmosphere at the time and location
of the radiance measurement. The prior corrections are calculated and summed
over the SST channels (3 channels at night, 2 channels during the day). With
this approach, coefficients that relate radiances to SST in the observation operator
are dynamically defined for each atmospheric situation observed. The method
removes atmospheric signals in the radiance data and extracts more information
on the SST, which improves the time consistency of the SST estimate, especially
in the tropics where water vapor variations create unrealistic sub-daily variations
in the empirically derived SST. However, the physical SST method requires careful
consideration of biases and error statistics of the NWP fields. Biases are expected
since the NWP information may represent areas that are both cloudy and clear, while
the satellite radiance data, by definition, are only available in clear-sky, cloud free
conditions. Accordingly, a bias correction step is under development following the
ideas developed by Merchant et al. (2008). Proper specification of the error statistics
of the priors is also required to correctly partition the observed TOA-BT differences
into the various sources of variability (atmospheric temperature, water vapor, or
sea surface temperature). Sensitivity experiments are underway to evaluate situation
dependent error statistics for the atmospheric temperature and water vapor priors
using the 96-member global NWP ensemble operational at FNMOC.

Implementation of the physical SST method via an observation operator will
have many advantages in the 3DVAR. First, in a coupled model forecast, the
prior SST will come from the coupled ocean model forecast and differences
between observed and predicted TOA-BTs will be computed using the coupled
model atmospheric state. This is a true example of coupled data assimilation: an
observation in one fluid (atmospheric radiances) creates an innovation in a different
fluid (ocean SST). Second, the method can easily be extended to incorporate the
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effects of aerosols; the presence of which tends to introduce a cold bias in infrared
estimates of SST. To do this prior information on the microphysical properties of
dust and its amount and vertical distribution is obtained from the Navy Aerosol
Analysis Prediction System (NAAPS; http://www.nrlmry.navy.mil/aerosol/). The
contribution of NAAPS aerosol information to the TOA-BTs is determined using
CRTM, which contains aerosol Jacobians defined for 91 wavelengths and 6 aerosol
species. Equation (13.11) is then expanded to a 4 � 4 matrix to further partition
differences between observed and simulated TOA BTs into an additional aerosol
source of variability. Third, the method can be applied to radiances from ice covered
seas to determine ice surface temperature (IST). Knowledge of IST is important
since it controls snow metamorphosis and melt, the rate of sea ice growth, and
modification of air–sea heat exchange. IST has been added as an analysis variable in
the 3DVAR and is analyzed simultaneously with SST to form a seamless depiction
of surface temperature from the open ocean to ice covered seas. This capability will
be used in the coupled HYCOM/CICE system (Posey et al. 2010).

13.7.3 SSH Velocity Assimilation

An alternative to assimilating SSH information referenced to the along-track mean
is to assimilate the dynamically important along-track SSH slope. Altimeter SSH
slopes provide the cross-track component of the vertically averaged geostrophic
current. As noted in Sect. 13.4.3, current methods for assimilating altimeter SSH
data via synthetic temperature and salinity profiles have known deficiencies. One
major difficulty is the need to specify a reference MDT matching that contained
in the altimeter data; a non-trivial problem. The mean height of the ocean includes
the Geoid (a fixed gravity equipotential surface) as well as the MDT, which is not
known accurately enough relative to the centimeter scales of variability contained
in the dynamic topography. The use of SSH slopes obviates the need for a MDT.

To derive geostrophic currents from SSH slopes appropriate for the ocean
mesoscale, noise in the along-track altimeter data must be suppressed. For this
purpose a quadratic LOESS smoother (LOcally wEighted Scatterplot Smoother:
Cleveland and Devlin 1988; Schlax and Chelton 1992) with varying cutoff wave
lengths is applied. The wave lengths are adjusted in accordance with the Rossby
radius of deformation to account for the varying eddy length scales. The advantage
of this method is that noise in the data, the SSH slope derivative, and the u; v
vector velocity components are all computed in a single operation. Figure 13.14
shows the LOESS smoothing of the altimeter SSH data along two tracks; track 109
across the Gulf Stream (Fig 13.14a) and track 106 across the Kuroshio (Fig. 13.14b).
The quality of the LOESS filter is clearly seen when the altimeter data exhibit
considerable noise (distance points 1,000–3,000, track 109; distance points 1,200–
2,440, track 106), and when the altimeter data show strong signals from crossing the
Gulf Stream and Kuroshio fronts (distance points 3000–3800, track 109; distance
points 400–1,000, track 106). Figure 13.15 shows the Atlantic and Pacific basin

http://www.nrlmry.navy.mil/aerosol/
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a

b

Fig. 13.14 Smoothed along-track SSH computed using LOESS filter. All data from 10 January
2012. (a) LOESS filter fit to altimeter SSH data along track 109 in the Gulf Stream area; (b) LOESS
filter fit to altimeter SSH data along track 106 in the Kuroshio area. Plus marks give raw altimeter
SSH data values, solid line gives LOESS fit
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a

b

Fig. 13.15 Basin scale
geostrophic velocity data
calculated from smoothed
along-track altimeter SSH
data using LOESS filter. All
data from 10 January 2012.
Top part of each Figure gives
basin scale results, lower left
gives LOESS filter results,
lower right gives zoom on
geostrophic velocity along
tracks intersecting the
Kuroshio and Gulf Stream
fronts. (a) HYCOM Pacific
basin; (b) HYCOM Atlantic
basin
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cross-track geostrophic velocities computed using the LOESS filter for one day of
along-track altimeter data (10 January 2012). It is readily apparent that a tremendous
amount of mesoscale oceanographic information is contained in the geostrophic
velocities derived from the along-track altimeter data.

Once the altimeter SSH along-track geostrophic currents are calculated the
model equivalents are determined. Cross-track geostrophic velocity relative to a
deep level of no motion (2,000 m) is computed from the model using dynamic
height differences at points adjacent to the along-track estimate of the SSH slope.
The difference between the vertically averaged model and altimeter cross-track
geostrophic velocities is used to correct the relative geostrophic shear from the
model and form the velocity profile ua.z/ for the assimilation according to:

ua.z/ D ug.z/ � ug C c (13.12)

where ug.z/ is the model relative geostrophic shear profile, Nug is its vertical average,
and c is the integral cross track velocity component calculated from the altimeter
slope. Assimilation of the u; v velocity vectors formed this way via the multivariate
correlations in the 3DVAR provide balanced geopotential increments, which in
turn are decomposed into balanced temperature and salinity increments using a
linearized equation of state. The velocity profiles in this scheme are very sensitive
to the reference level of no motion. One option here is to use Argo trajectory data to
infer a time dependent geopotential field at the float parking depth (cf. Davis 2005).
A dynamic geopotential field would go a long way in solving a long-standing
problem of hydrography: properly referencing geostrophic shear.

13.7.4 Hybrid Ensemble Four Dimensional Data Assimilation

A four-dimensional (4D) ensemble-enhanced data assimilation scheme for global
HYCOM is being developed to better deal with the late receipt, temporally
distributed observations than the current 3DVAR methodology. As previously noted,
a crucial aspect of all ocean data assimilation schemes is the way in which the
background error covariances are specified. The data assimilation process is optimal
if the background error covariances are perfectly known, which is never the case.
A major challenge then is to find ways to estimate accurate and comprehensive
background error covariances. Ensemble methods provide a method for doing this,
including the ability to provide a flow-dependent estimate of the background error
covariances.

When ensemble covariances are used in a variational data assimilation frame-
work to augment the existing background-error covariance, analyses are further
improved. This method is called a hybrid ensemble variational method. In com-
parison with conventional ensemble-based data assimilation, a hybrid scheme is
attractive for the following reasons. First, the hybrid schemes build upon existing
variational systems enabling the ensemble information to be incorporated relatively
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easily. Existing variational ocean data assimilation technology and capabilities are
not lost. Second, when ensemble variances are imperfect the optimal error variance
estimate is a linear combination of a climatological covariance and an ensemble
covariance. The superiority of hybrids over conventional ensemble assimilation
schemes is particularly marked when the ensemble size is small or the model error
is large.

A static 4D ensemble covariance data base will be computed from an ensemble
of mesoscale anomalies using the long term integration of global HYCOM in
the 1993–2009 reanalysis product, which includes NCODA 3DVAR assimilation.
Covariances calculated in this way have clear physical meanings and represent 4D
model climate flow dependence and model variable interactions. Existing 3DVAR
initial covariances will be extended to 4D by assuming that the error covariances
between variables are a separable function of space and time. The computational
overhead of imparting this 4D aspect to the 3DVAR covariances is expected to be
very small. The 4D extension of the NCODA covariances will then be linearly
combined with the 4D localized HYCOM static ensemble covariances forming
a fully 4D hybrid data assimilation scheme. Optimum values for weighting the
ensemble and extended 3DVAR covariances in the hybrid are determined from
model statistics.

13.8 Summary

This paper describes the development, implementation, and validation of a new
oceanographic 3DVAR assimilation system. The system is unified and flexible
and a key component of many Navy ocean and atmosphere applications. It is
run globally or regionally, where it can be applied to nested, successfully higher-
resolution grids, providing analyses on a range of scales. NCODA 3DVAR provides
the assimilation component for both ocean and wave model prediction systems as
well as multiple atmospheric prediction systems, where it is used to provide sea
ice and SST lower boundary conditions. It assimilates a wide range of ocean data
types and it contains numerous diagnostic features for assessing and tuning the
statistics needed for the assimilation as well as quality control. The background error
covariance formulation permits considerable anisotropy with adaptive horizontal
and vertical length scales and error variances that vary with location and evolve with
time. It is shown to be efficient for very large scale, high resolution global ocean
model grids, assimilating millions of observations a day. The intelligent, adaptive
data thinning algorithm permits all sources of the high density surface data types to
be assimilated with minimal loss of information. The parallel implementation has
minimal communication overhead, with granularity of the code (important for load
balancing) easily controlled by the number and size of the observation data blocks.
The NCODA 3DVAR system is operational at the Navy oceanographic production
centers and is in the final phase of pre-operational testing as the data assimilation
component for the global HYCOM forecasting system.
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Chapter 14
A 4D-Var Analysis System for the California
Current: A Prototype for an Operational
Regional Ocean Data Assimilation System

Andrew M. Moore, Christopher A. Edwards, Jerome Fiechter, Patrick Drake,
Emilie Neveu, Hernan G. Arango, Selime Gürol, and Anthony T. Weaver

Abstract In this chapter we will describe a comprehensive 4-dimensional varia-
tional ocean data assimilation system that is currently being used in the Regional
Ocean Model System for the production of both near real-time and historical ocean
analyses of the California Current circulation. The main focus of this article is on the
practical aspects of the data assimilation system as applied to an energetic coastal
mesoscale circulation environment.

14.1 Introduction

For many years, ocean data assimilation has lagged behind meteorological data
assimilation primarily for two reasons. First, developments in data assimilation
in meteorology have been driven primarily by the demands of numerical weather
prediction (NWP), and second, until relatively recently, observations of the oceans
have been relatively scarce compared to the data-rich atmosphere. However, with
the revolution in new ocean observing systems such as Argo drifting floats, ocean
gliders, and autonomous underwater vehicles, and the push to develop ocean
observing and forecasting systems, ocean data assimilation has rapidly reached an
advanced level of maturity.
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Global ocean data assimilation efforts have been propelled in part by the
coordinated efforts of the Global Ocean Data Assimilation Experiment (GODAE),
the growing need for seasonal forecasts, as well as growing concerns over climate
change. An increasing number of groups produce global ocean analyses of the
circulation of the past (see for example http://www.godae.org/Ocean-products.
html). In addition, some operational centers routinely generate analyses for present
conditions. Global ocean data assimilation, however, presents a considerable chal-
lenge because of the size of the inverse problem involved, so the resolution
(horizontal and vertical) of global assimilation products is often limited. The highest
resolution products currently available are performed on grids with horizontal grid-
spacing typically 
 1=4–1=6 degree, so the effective resolutions are probably 2–3
times lower than this considering that anything less than 3 or 4 grid lengths is
poorly resolved. This is marginal for resolving much of the important mesoscale
variability in the open ocean, and certainly inadequate for capturing important
circulation features in coastal regions. For this reason, there has also been a push
to develop regional ocean data assimilation systems which utilize higher resolution
grids. Two approaches to regional ocean data assimilation are typically used: either
the regional model is nested within a global data assimilating model, or the regional
model is run stand-alone and boundary condition information is provided by a global
assimilating model. While there are clear advantages and disadvantages to both
approaches, the stand-alone approach offers greater flexibility since the analyses can
be produced using a variety of global circulation estimates as boundary conditions,
thus providing a range of uncertainty estimates. Some current regional ocean data
assimilation efforts can also be found at http://www.godae.org/Ocean-products.
html.

In this chapter we will review a state-of-the-art regional ocean data assimilation
system that is run routinely for the U.S. west coast to provide both near-real
time and historical analyses for the California Current System (CCS). This is one
of several such systems currently in operation in support of the U.S. Integrated
Ocean Observing System (IOOS) which comprises seven regional centers, three
of which are focused on different parts of the CCS. The CCS is one of 65 Large
Marine Ecosystems (LMEs) that have been identified by NOAA and the United
Nations Environment Program (UNEP) which collectively account for 
 95 % of
global fisheries biomass (see http://www.lme.noaa.gov). The CCS is particularly
noteworthy because it is one of five LMEs that are subject to seasonal variations
in coastal upwelling in which cold, nutrient rich water is brought to the surface,
creating conditions that are favorable for high levels of primary productivity.
The CCS is therefore a region of considerable environmental and socio-economic
importance.

In Sect. 14.2 we describe the Regional Ocean Modeling System (ROMS) and a
detailed summary of the important features of the ROMS 4-dimensional variational
(4D-Var) data assimilation algorithms. The specific configuration of ROMS and
4D-Var for the CCS is introduced in Sect. 14.3, while in Sects. 14.4 and 14.5 we
describe two ongoing applications: an historical analysis of the CCS circulation,
and a near real-time analysis system. We end with a summary in Sect. 14.6.

http://www.godae.org/Ocean-products.html
http://www.godae.org/Ocean-products.html
http://www.godae.org/Ocean-products.html
http://www.godae.org/Ocean-products.html
http://www.lme.noaa.gov
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14.2 ROMS 4D-Var

The ocean analysis system described here is based on the Regional Ocean Modeling
System (Shchepetkin and McWilliams 2005). ROMS is a hydrostatic, primitive
equations model that uses terrain following coordinates in the vertical and orthogo-
nal curvilinear coordinates in the horizontal to resolve the complex bathymetry and
land geometry that characterize many coastal regions. While ROMS is primarily
designed with coastal and regional applications in mind, it is also run routinely at
basin scales (e.g. Haidvogel et al. 2008). One of the great advantages of ROMS over
other ocean models is the high degree of flexibility that it affords the user in terms
of available numerical schemes, physical parameterizations, and open boundary
conditions. A detailed description of ROMS is beyond the scope of this chapter,
but more details about the model can be found at http://www.myroms.org.

14.2.1 Primal Versus Dual Formulation

The ROMS data assimilation system is based on an incremental 4-dimensional
variational approach (4D-Var). Two different approaches to 4D-Var are available as
part of ROMS: one based on the primal formulation, and the other based on the dual
formulation (Courtier 1997). The primal version of ROMS 4D-Var is very similar
to that used at several operational NWP centers, and follows closely that of Weaver
et al. (2003) for the ocean. The dual version of ROMS 4D-Var comes in two flavors:
one approach is based on the Physical-space Statistical Analysis System approach
(PSAS) of Cohn et al. (1998), while the other uses the indirect representer method
of Egbert et al. (1994). The details and differences between the three ROMS 4D-Var
algorithms are not important for what we describe here, and the interested reader
is referred to Moore et al. (2011a) for a complete description of each algorithm. In
later sections, however, it will be necessary to refer to some specific features of the
primal and dual formulations of ROMS 4D-Var, so we begin with a brief overview
of the fundamental ideas that underpin each system.

The ocean state vector for ROMS is composed of all ocean grid point values
of temperature (T ), salinity (S ), sea surface height (�), and the two components
of velocity (u,v). Following the standard notation of Ide (1997) and later extended
for the ocean by Daget et al. (2009) we will denote the ROMS state vector as x D�
TT;ST; �T;uT; vT

�T
, where the vector elements of x denote column vectors of the

grid point values of the state variables. Using this notation, ROMS can then be
represented symbolically as:

x.ti / D M.ti ; ti�1/.x.ti�1/; f.ti /;b.ti // (14.1)

http://www.myroms.org
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where M.ti ; ti�1/ denotes the operators of the non-linear ROMS that advance the
state vector forward in time over the interval Œti�1; ti �, while f.ti / denotes the ocean
surface forcing (i.e. surface fluxes of momentum, heat and freshwater), and b.ti /
denotes the lateral open boundary conditions, both over the same interval Œti�1; ti �.

Data assimilation requires the specification of prior or background estimates
of all the control variables for the model, which in the case of ROMS includes
the model initial conditions, xb.t0/, the surface forcing, fb.ti /, and open boundary
conditions, bb.ti /. For each prior, there will also be an associated prior or
background error covariance matrix, namely Bx, Bf, and Bb which embody all of the
hypotheses about errors and uncertainties in the prior fields. For ease of notation, we

will denote the vector that comprises all control variables as z D �
xT.t0/; fT;bT

�T
,

where f and b in the absence of a time argument denote the concatenation in
time of the vectors of surface forcing and open boundary conditions over the
entire time interval of interest, Œt0; tN �. Similarly we will denote the combined
prior error covariance matrix of all control variables by the block diagonal matrix
D D diag.Bx;Bf;Bb/. In the systems described in later sections it is assumed that
the model is free of errors, so the inclusion of control vector elements to account
for model errors is not considered here. Furthermore, the prior or background error
covariance matrix D is assumed to be time invariant.

In addition to the prior estimate of the circulation xb.t/ from ROMS, there
will also be available observations during the same interval Œt0; tN �. The vector
of observations is traditionally denoted as yo with an associated observation error
covariance matrix R. According to Bayes’ theorem, the optimal choice of z that
yields the most likely posterior circulation estimate is that which minimizes the
cost function:

JNL D .z � zb/
TD�1.z � zb/C .yo �H.x//TR�1.yo �H.x// (14.2)

where H denotes the observation operator, and H.x/ denotes the circulation esti-
mate x.t/ evaluated at the appropriate observation times and locations (Lorenc 1986;
Wikle and Berliner 2007). Since x.t/ is the solution of the nonlinear model
(14.1), the cost function JNL in (14.2) is a non linear function of the state vector,
which in practical terms means that it may not possess a unique global minimum
value. Even in the event that a global minimum does exist for (14.2), locating the
global minimum in what may be a complicated topology may be very challenging.
Therefore instead of minimizing (14.2) directly, Courtier et al. (1994) proposed the
incremental approach in which the desired posterior circulation estimate xa.t/ can
be considered as a small departure from the prior, namely xa.t/ D xb.t/C ıxa.t/.
The increment ıxa.t/ is a solution of the tangent linearization of (14.1) subject to
the surface forcing increments ıfa.t/ and open boundary increments ıba.t/ which
are also assumed to be small compared to the prior estimates fb.ti / and bb.ti /

respectively. Specifically, we will denote the tangent linearization of (14.1), the so
called tangent linear ROMS (hereafter TLROMS), as:

ıx.ti / D Mb.ti ; t0/ıx.t0/ (14.3)
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where Mb.ti ; t0/ denotes the linear operator (also sometimes referred to as the
resolvent or propagator matrix) that advances the initial increment ıx.t0/ forward in
time, and the subscript b indicates that the linearization is about the prior circulation
xb.t/ subject to the prior forcing and prior open boundary conditions fb and bb.
Since ıx.ti / also depends on ıf.t/ and ıb.t/, it is sometimes more convenient to
express TLROMS as:

ıx.ti / D Mb.ti ; t0/ız (14.4)

where ız is the vector of control increments composed of ıx.t0/, and ıf and ıb at all
times in the interval Œt0; tN �. Therefore, Mb.ti ; t0/ is the linear operator that maps a
control vector increment into a state vector increment.

Using the incremental approximation, the cost function can be re-expressed as:

J D ızTD�1ız C .d � Gız/TR�1.d � Gız/ (14.5)

where d D yo � H.xb/ is referred to as the innovation vector, and G represents
the convolution in time of Mb with H, where H is the tangent linearization of the
observation operator H . Since the constraints in (14.5) are linear in ız, a unique
global minimum value of J exists. The vector of control increments that yields the
optimal circulation estimate will be denoted as ıza and the vector of the total control
vector as za D zb C ıza. At the minimum of (14.5) the gradient is @J=ız D 0, and
the optimal control vector increment is given by ıza D Kd where K is referred to as
the Kalman gain matrix. The Kalman gain matrix can be expressed in two equivalent
forms as:

K D .D�1 C GTR�1G/�1GTR�1 (14.6)

K D DGT.GDGT C R/�1: (14.7)

Equation (14.6) is referred to as the primal form, and corresponds to the case
where the minimum of J in (14.5) is found by searching for ız directly in control
space. Conversely, (14.7) is referred to as the dual form, and corresponds to the
case where the minimum of J is found by searching for ız in observation space.
Both approaches yield the same optimal circulation estimate, as demonstrated in
ROMS by Moore et al. (2011b). The main advantage of the dual formulation over
the primal formulation is that the control vector can be expanded in the former
to include corrections for model error without any increase in the dimension of
the matrix inverse in (14.7). Until recently the dual formulation was known to
suffer from poor convergence properties (El Akkraoui and Gauthier 2010; Moore
et al. 2011b) making it difficult to use for large problems. However, Gratton and
Tshimanga (2009) have shown that the same rate of convergence of the primal and
dual formulations toward the minimum of J can be guaranteed by using a restricted
preconditioned conjugate gradient method (RPCG), as confirmed recently by Gürol
et al. (2013) in two complex ocean general circulation models, including ROMS.

It is important to note that while (14.6) and (14.7) are written in matrix notation,
the matrix inverse in each case is never directly evaluated, but is instead computed
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by solving an equivalent system of linear simultaneous equations. The latter is
achieved iteratively by the direct minimization of J using a conjugate gradient
descent algorithm. Similarly, none of the implied matrix multiplications in (14.6)
and (14.7) are ever performed explicitly, but instead involve the direct integration
of a model. Specifically, G represents an integration of TLROMS sampled at the
appropriate space-time observation points, while GT is the adjoint of TLROMS,
hereafter referred to as ADROMS. The operator G is a linear map from the space
of the control vector to the space of the observations, while GT is a linear map
from the dual of the observation space to the dual of the control vector space. The
prior covariance matrix D is also described by a model using the diffusion operator
approach introduced by Derber and Rosati (1989). Only the observation error
covariance R is explicitly treated as a matrix since for the applications considered
here it is assumed to have a simple diagonal structure (i.e. spatially and temporally
uncorrelated errors).

ROMS 4D-Var also supports weak constraint data assimilation in which errors in
the model formulation can be admitted in the calculation of the ocean circulation
estimate. However, in the applications presented here, no explicit account is
taken of model errors (i.e. the so-called strong constraint problem), so important
considerations as they relate to the treatment of model errors will not be discussed
further. Full details of weak constraint 4D-Var in ROMS can be found in Moore
et al. (2011a, b).

14.2.2 Inner- and Outer-Loops

In general, we are interested in identifying the minimum of JNL in (14.2), and
in practice this proceeds via a sequence of linear minimizations of J in (14.5).
Each minimization of (14.5) proceeds iteratively where each iteration is referred
to as an inner-loop. During the first set of inner-loop iterations, G and GT are
linearized about the time evolving prior circulation estimate xb.t/ resulting from
the prior control vector zb. The kth sequence of inner-loops will be represented
in sequel by the superscript k. For the first sequence of inner-loops k D 1, and
when the increment ız1 has been identified that minimizes J , a new circulation
estimate x1.t/is computed using the updated control vector z1 D zb C ız1, and
a new sequence of inner-loops performed during which G and GT are linearized
about x1.t/. The repeated application of this procedure is equivalent to minimizing
(14.2) using a Gauss-Newton method (Lawless et al. 2005), and the updates of the
circulation xk.t/ about which TLROMS and ADROMS are linearized are referred
to as outer-loops.

14.2.3 Conjugate Gradient Descent and Preconditioning

Following the customary approach adopted in NWP, the minimization of (14.5)
in ROMS is preconditioned by a change of variable, namely ıv D D�1=2ız.
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Such an approach is essential for any practical application of 4D-Var, since it
greatly improves the convergence of the conjugate descent algorithm toward the
minimum of J . In the primal algorithm of ROMS 4D-Var, a Lanczos formulation
of the conjugate gradient approach is used following Fisher and Courtier (1995).
In the dual algorithm of ROMS 4D-Var, a Lanczos formulation of the RPCG
algorithm of Gratton et al. (2009) is used following Gürol et al. (2013), and is
hereafter referred to as RLanczos. RLanczos is a specific version of the Range
Space Full Orthogonalization Method (RSFOM) developed by Gratton et al. (2009).
The use of the Lanczos formulation in both the primal and dual formulations
introduces considerable utility to the ROMS 4D-Var system. For example, due to
limited computer resources it is neither possible (or even desirable) to iterate 4D-Var
to complete convergence, in which case ıza D QKd where QK is the gain matrix that
is used in practice to compute the optimal control vector increment, and represents a
reduced rank approximation of the true gain matrix. It is straightforward to express
QK (hereafter referred to as the “practical gain matrix”) in terms of the Lanczos
vectors of either the primal or dual form, which in turn can be used to compute the
impact of observations on the resulting analysis, as well as other useful diagnostics
such as model error (see Moore et al. 2011c, 2012 for details).

14.2.4 Covariance Models and Balance Operators

As noted above, each block diagonal component of the prior error covariance matrix
D D diag.Bx;Bf;Bb/ is also expressed as a model in ROMS. Specifically, we follow
the approach of Weaver et al. (2005) in which first the initial condition increment
ıx.t0/ is expressed as the sum of the balanced and unbalanced components of
the circulation. The unbalanced components of ıx.t0/ are assumed to be mutually
uncorrelated with covariance matrix ˙C˙T, where C is a univariate correlation
matrix, and ˙ is a diagonal matrix of standard deviations. The initial condition
prior error covariance matrix Bx can then be factorized as:

Bx D Kb˙C˙TKT
b (14.8)

where Kb is a multivariate balance operator, and describes the covariances between
errors in the balanced components of ıx.t0/. As in Weaver et al. (2005) and Ricci
et al. (2005), Kb is based on the T-S characteristics and dominant dynamical
balances in the ocean, namely hydrostatic balance and geostrophic balance.

Following Weaver and Courtier (2001), the univariate correlation matrix C
is assumed to be separable in the horizontal and the vertical. The horizontal
(vertical) correlation function is then modeled as the solution of a 2-dimensional
(1-dimentional) pseudo-diffusion equation. The product of the pseudo time inter-
val and diffusion coefficient determines the desired correlation length, and can be
varied spatially. At the present time, the balance operator is applied only to the initial
condition prior error covariance matrix Bx.
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14.2.5 Background Quality Control Checks

A new feature of the ROMS 4D-Var systems is the recent introduction of a
background quality control of the observations to reject those data that are subject to
gross errors (Hollingsworth et al. 1986; Lorenc and Hammon 1988). The approach
used is based on that described by Järvinen and Undén (1997) and Andersson and
Järvinen (1999) and used in NWP. Specifically, the elements of the innovation vector
d are compared with their expected error (assuming observation and background
errors are uncorrelated errors) according to:

�
yoi � ybi

�2
=
2b < ˛

�
1C 
2o =


2
b

�
(14.9)

where yoi is the i th observation, ybi is the i th element of the vector H.xb/, the
background evaluated at the observation locations, and 
o and 
b are the standard
deviations of the observation and background errors at the observation points. The
threshold parameter ˛ generally depends on each observation type, and appropriate
values can be determined from historical analyses as described by Andersson and
Järvinen (1999). Observations that do not satisfy (14.9) are rejected prior to the
analysis. This has the effect of eliminating from the analysis observations that are
subject to large gross errors. In addition, observations that are inconsistent with the
model due, for example, to model deficiencies, are also eliminated from the analysis.
The introduction of the background quality control in ROMS based on (14.9)
has been found to yield substantial improvement in the behavior and convergence
properties of the dual 4D-Var algorithm in particular.

14.3 Configuration of ROMS CCS and 4D-Var

The California Current System (CCS) is an eastern boundary current characterized
by a pronounced seasonal cycle of upwelling and by energetic mesoscale circula-
tions (Hickey 1998; Checkley and Barth 2009), and provides a challenge for linear
data assimilation methods such as 4D-Var. The ROMS CCS domain and circulation
is described in detail by Veneziani et al. (2009) and Broquet et al. (2009a, b), and
spans the region 134ıW to 116ıW and 31ıN to 48ıN, with 1/10th degree resolution
in the horizontal and 42
-levels in the vertical. The model domain and bathymetry
are shown in Fig. 14.1.

The model forcing is derived from either 6 hourly or daily averaged atmo-
spheric boundary layer fields from different sources depending on the application.
In the case of the 13 year reanalysis project described in Sect. 14.4.1 and the
near real-time analysis system described in Sect. 14.5, daily averaged atmospheric
variables at standard heights were taken from the Naval Research Laboratory’s
Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) (Doyle
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Fig. 14.1 The ROMS CCS
domain and bathymetry

et al. 2009). The ocean surface fluxes were derived using the bulk formulations
of Liu et al. (1979) and Fairall et al. (1996a, b). However, historical COAMPS
analyses are not available prior to 1999, so in the case of the 31 year reanalysis
described in Sect. 14.4.2, a combination of 6 hourly fields from the ECMWF ERA40
and ERA Interim projects were used, along with the cross-calibrated, multiplatform
(CCMP) ocean wind product of Atlas et al. (2011). In either case, the surface forcing
fields obtained represent the background surface forcing, fb, for 4D-Var introduced
in Sect. 14.2.1.

The model domain has open boundaries at the northern, southern, and western
edges, and at these boundaries the tracer and velocity fields are prescribed, while
the free surface and vertically integrated flow are subject to Chapman (1985) and
Flather (1976) boundary conditions respectively. The prescribed open boundary
solution was taken from the Simple Ocean Data Assimilation product (SODA)
of Carton and Giese (2008) in the case of the reanalyses of Sect. 14.4, and from
the World Ocean Atlas 2005 (WOA05) in the case of the near real-time system
of Sect. 14.5. In either case, these fields represent the background open boundary
conditions, bb, for 4D-Var introduced in Sect. 14.2.1.

A sponge layer was also used adjacent to each open boundary where viscosity
increased linearly from 4m2s�1 in the interior to 400m2s�1 at the boundary over a
distance of 100 km.

The observations assimilated into the model were collected by various platforms,
and will be described in more detail in Sects. 14.4 and 14.5. To reduce data
redundancy, all observations of the same state variable within each model grid
cell, over a 6 h time window, were combined to form “super observations,” and
the standard deviation of the observations that contribute to the super observation in
each grid cell was used as an estimate of the error of representativeness.
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Observation errors were assumed to be uncorrelated in space and time, resulting
in a diagonal observation error covariance matrix, R. The variances along the main
diagonal of R were assigned as the sum of measurement error and the error of
representativeness. Measurement errors were chosen with the following standard
deviations: 0.02–0.04 m for dynamic topography depending on the instrument;
0:3–1ıC for SST depending on the satellite platform; 0:1–0:5ıC for in situ T ; and
0.01–0.1 for in situ S .

The background error standard deviations for the initial condition components
of the control vector (i.e. the elements of the diagonal matrix ˙) were estimated
based on the variance of a long run of the model subject only to surface forcing and
boundary conditions (i.e. no data assimilation). The surface forcing and boundary
condition fields used depend on the application as described above. However, in the
case of salinity, past experience has revealed that the background errors computed
using this method are too large, so the standard deviations for S were capped at
0.1. The temporal variability of the surface forcing fields for the appropriate period
was used as the variance for the background surface forcing error, and the open
boundary condition background error variances were chosen to be the variances of
the appropriate data (as described above) at the boundaries.

As noted in Sect. 14.2.4, each block diagonal component of the background
error covariance matrix D was modeled using the diffusion operator approach of
Weaver and Courtier (2001). The capability to have spatially varying correlation
lengths is a fairly recent addition to the ROMS 4D-Var code, so in the calculations
and applications presented in Sects. 14.4 and 14.5, the horizontal and vertical
correlation lengths were held constant over the model domain. The decorrelation
length scales used to model the prior errors of all initial condition control variable
components of Bx were 50 km in the horizontal and 30 m in the vertical. Horizontal
correlation scales chosen for the background surface forcing error components of
Bf were 300 km for wind stress and 100 km for heat and freshwater fluxes. The
correlation lengths for the background open boundary condition error components
of Bb were chosen to be 100 km in the horizontal and 30 m in the vertical. No
explicit account is taken of temporal correlations in any of the background errors
in the current version of ROMS 4D-Var, although this capability is currently under
development. However, the surface forcing, and boundary condition increments
were only computed daily and interpolated to each intervening model time step, a
procedure which effectively introduces some temporal correlation of the errors. The
correlation lengths chosen for the prior errors are typically estimated using semi-
variogram techniques that have traditionally been applied to observational data (e.g.
Banerjee et al. 2004; Milliff et al. 2003; Matthews et al. 2011). However, some
level of subjective tuning of the correlation lengths is also typically required to
optimize the performance of the 4D-Var algorithm. A discussion of the choice of
the aforementioned background error covariance parameters for the CCS can be
found in Broquet et al. (2009a, 2009b, 2011) and Moore et al. (2011b). In all of the
calculations presented here, the multivariate balance operator was not used.
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14.4 CCS Historical Analyses

ROMS CCS is currently being used in conjunction with 4D-Var to construct two
sequences of historical analyses for the circulation along the west coast of North
America. The first of these analyses, referred to as WCRA13, is a 13 year sequence
that spans the period Jan. 1999–Dec. 2011, while the second sequence, referred to
as WCRA31, covers the 31 year period Jan. 1980–Dec. 2011. The two analyses
use identical configurations for ROMS, but differ in the prior surface forcing used.
During the overlapping period 1999–2011 of the two analyses, the observations
assimilated into the model are identical.

14.4.1 WCRA13

In WCRA13, the prior surface forcing is derived from the NRL COAMPS model
introduced in Sect. 14.3. While the COAMPS fields for the CCS are not available
before Jan. 1999, they do span the full period of WCRA13. The standard height
atmospheric variables are actually derived from four different nests of COAMPS
with horizontal resolution ranging from 3 to 81 km from the inner to the outer nest
(Doyle et al. 2009). Only data from the three inner-most nested grids are used in
ROMS and yield surface fields with a resolution of 3–9 km near the coast. This is
the highest resolution atmospheric forcing data set currently available for the CCS
region, and COAMPS verifies well against independent observations, indicating that
it is a high quality product. High horizontal resolution is important for the surface
forcing because many of the important regions of coastal upwelling along the U.S.
west coast are due to topographically enhanced regions of wind stress curl.

14.4.2 WCRA31

In WCRA31, the prior surface forcing is derived from a combination of atmo-
spheric analysis products. The surface winds are taken from the cross-calibrated
multiplatform product (CCMP) of Atlas et al. (2011) which is a 2D-Var analysis
of all available surface wind observations, using the ECMWF ERA40 reanalysis
as the prior estimate for the period 1987–1999, and the operational ECMWF
analysis after 1999. Consequently, we use 6 hourly sea level pressure, radiation
fluxes, precipitation, and standard height temperature, humidity from the ERA40
analysis so that the ROMS derived heat and fresh water fluxes are consistent with
the prior used for the winds. The resolution of the CCMP wind fields is 25 km,
while that of the ERA-40 reanalysis fields is 2:5ı. Prior to 1987, the ERA-40
reanalysis fields are used, while after 1987 the ERA-40 reanalysis fields are used
in conjunction with CCMP winds since ERA40 is the prior for the CCMP analyses.
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After 2001 ERA-Interim reanalysis fields, which have a resolution of 0:7ı, are used
in conjunction with CCMP winds.

A comparison of the WCRA13 and WCRA31 analyses during the overlapping
period 1999–2011 will reveal the impact of the resolution of the prior surface
forcing fields on the circulation estimates.

14.4.3 WCRA Observations

The observations assimilated into the model during each WCRA analysis were
collected by various platforms, and are summarized in Table 14.1, along with the
combined measurement error and error of representativeness that is assumed for the
diagonal entries of R.

All of the in situ hydrographic profiles of T and S were taken from the quality
controlled EN3 data archive maintained by the UK Met Office as part of the
European Union ENSEMBLES project (Ingleby and Huddleston 2007). The version
of EN3 used here is version 2a which includes the XBT and MBT temperature error
corrections of Levitus et al. (2009).

The in situ observations from the EN3 archive are available from a variety of
different observing platforms including: expendable bathythermographs (XBTs),
mechanical bathythermographs (MBTs), conductivity temperature depth devices
(CTDs), free drifting Argo profiling floats, and autonomous pinniped bathythermo-
graphs (APBs) in the form of tagged marine mammals. Figure 14.2 shows a time
series of log10 of the total number of super observations from EN3 and each satellite
platform that fall within the ROMS CCS model domain during each month of the
year spanning the full period of WCRA31.

The SSH observations assimilated into the model are in the form of 1 day gridded
composites of the mean dynamic topography from Aviso. Before assimilation, the
mean dynamic topography of the Aviso data averaged over the ROMS CCS domain
was corrected to match that of the model. This data is used rather than the raw
along-track data because at the present time there is no temporal correlation included
in the prior error covariance matrices D or R. The result is that information from
individual along track observations is lost quite quickly and becomes ineffective
for constraining the model unless some additional effort is made to persist the
along-track observations over time. This problem is alleviated by using the gridded
products, although we appreciate that this is not an ideal solution because of
the limitations of the objective mapping technique used to map the altimeter
observations onto a regular grid. In addition, satellite SSH observations near the
coast are known to be unreliable (Saraceno et al. 2008) so only observations that are
more than 50 km from the coast are assimilated into ROMS.

As indicated in Table 14.1, SST observations are available from several different
platforms. The along track data from each platform are used, and when multiple
platforms are concurrently available, the data from each platform are combined to
form super observations. Only the number of super observations for each individual
platform are shown in Fig. 14.2.
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Table 14.1 A summary of the observation types, observing platforms, data sources, the nominal
combined measurement and representation errors, and the period covered. The combined error is
replaced by the standard deviation of the observations about the super observation value if larger
than the assumed nominal error

Observing
Observation type platform Source Combined error Period covered

SSH Altimeter Aviso, 1 day
average

0.04 m 1993–2010

SST AVHRR/
Pathfinder

NOAA Coast
Watch

0:6ıC 1981–2011

SST AMSR-E NOAA Coast
Watch

0:7ıC 2002–2010

SST GOES NOAA Coast
Watch

1ıC 2001–2010a

SST MODIS-
Terra

NASA JPL 0:5ıC 2000–2011

Hydrographic data Various UK
Meteorological
Office

0:5ıC for T 1950–2011

0.1 for S
aThe GOES SST are seriously biased during the period 2001–2002, so they are not used in ROMS
4D-Var until 2003

Fig. 14.2 A time series of log10 the total number of super observations available each month
from EN3 and each satellite observing platform within the ROMS CCS model domain during
each month of the year during the period spanned by WCRA31. Blue: In situ observations from
EN3; Red: SST from AVHRR/PathFinder; Black: SST from AMSR-E; Green: SST from GOES;
Magenta: SSH from Aviso

14.4.4 WCRA 4D-Var Configuration

Both WCRA13 and WCRA31 take the form of sequences of overlapping 8 day
analyses each separated by 4 days as illustrated in Fig. 14.3. During each analysis
cycle, all of the available observations during the cycle time interval are assimilated
into ROMS using the dual formulation of 4D-Var in the form of PSAS. Each
analysis cycle utilizes 1 outer-loop and 15 inner-loops which has been demonstrated
by Broquet et al. (2009a), Moore et al. (2011b) and Gürol et al. (2013) to yield
adequate convergence toward the cost function minimum in the CCS region. The
prior estimate for the initial conditions for each assimilation cycle is the posterior
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Fig. 14.3 A schematic illustrating the overlapping 8 day data assimilation cycles used in
WCRA13 and WCRA31. The starting time for cycle j is denoted as tj

0 and the mid-point and

ending times as tj
0 C 4 and tj

0 C 8 respectively. As indicated, the ending time of 4D-Var analysis
cycle j corresponds to the mid-point of cycle j C 1 and the starting time of cycle j C 2. The
prior circulation initial condition for cycle j C 1 is taken as the posterior circulation estimate at
the mid-point of cycle j

circulation estimate at the mid-point of the previous analysis cycle. The advantages
of overlapping cycles are two-fold. First, it is well known that the 4D-Var analysis
cycle is equivalent to a Kalman Smoother, in which case the uncertainty in the
analysis will be at a minimum at the mid-point of the cycle, hence each analysis
cycle will start from the best possible prior initial condition. Second, at each initial
analysis time, an ensemble of three circulation estimates will be available allowing
for the possibility of ensemble averaging to further minimize the uncertainty of
the posterior circulation estimate. However, with overlapping analysis cycles, the
observations collected during the first half of each cycle will be correlated with
the background circulation during the same period. Since these correlations are not
accounted for in the current 4D-Var analysis system, this may lead to overweighting
of the analysis to some of the observations.

The dual formulation of ROMS 4D-Var was chosen for the historical analyses
because of the added utility that is available in the form of diagnostic post-
processing tools. As part of the ROMS 4D-Var suite, drivers are available for
computing the a posteriori impact of each observation on different scalar measures

of the circulation via QKT
, the transpose of the practical gain matrix. In addition,

the adjoint of the entire dual 4D-Var algorithm is available, and the sensitivity of the
same scalar circulation indices to uncertainties in the observations can be quantified,
as well as the expected errors in each index (Moore et al. 2011c, 2012).

14.4.5 Background Quality Control of Observations for WCRA

Andersson and Järvinen (1999) describe a procedure by which suitable values
of the threshold parameter ˛ in (14.9) can be estimated from the frequency
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Fig. 14.4 Frequency distributions f of the elements of the innovation vector d for (a) SSH
observations (m), (b) SST observations (K), (c) in situ temperature observations (K), and (d) in
situ observations of salinity. The distributions are computed from 1 year of 7 day 4D-Var cycles
during 1999. The red curves show the best fit Gaussian distribution in each case

distribution of the elements of the innovation vector d computed from historical
analyses. In our case, no sequence of historical analyses is available, so instead
we examined the innovations from a randomly chosen year (1999) during which all
observations were assimilated into the model. The frequency distributions, f , of the
innovation elements for each observation platform, and the transformed distribution
Of D p�2 lnŒf =max.f /�were computed for the random year following Andersson

and Järvinen (1999), where f is the number of data in each bin of the histogram. The
resulting histogram distributions of f and Of for satellite SST (AVHRR/Pathfinder),
SSH (Aviso), in situ temperature and in situ salinity (both from EN3) are shown in
Figs. 14.4 and 14.5 respectively. Also shown in Fig. 14.4 is the best fit Gaussian
distribution for each histogram. The transformed distribution Of highlights the
tails of the distribution and is therefore more convenient for viewing the outlier
innovations. The slopes of the lines superimposed on the transformed distributions
in Fig. 14.5 represent the standard deviation for the best fit Gaussian distributions in
Fig. 14.4, and are estimates of .
2b C
2o /1=2. Figure 14.5a, b indicate that for satellite
SST and SSH, there are relatively few outliers in the elements of d. Conversely,
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Fig. 14.5 The transformed frequency distributions Of corresponding to the same data groupings
shown in Fig. 14.4. The red curves in each case represent the lines y D abs

�
x=
f

�
where 
f is

the estimate of .
2o C
2b /
1=2 corresponding to the best fit Gaussian distributions shown in Fig. 14.4

for the in situ observations, there are typically a significant number of outliers,
particularly in the case of salinity. Following Andersson and Järvinen (1999), the
threshold parameter ˛ was chosen to reflect a significant departure of the straight
lines in Fig. 14.5 from the distribution. Based on Fig. 14.5, we apply (14.9) only to
the in situ observations with ˛ D 16, which corresponds to rejecting observations
that are greater than 
4.
2b C 
2o /

1=2 from the mean of the distribution, which
corresponds to 
2:8ıC and 
1:2 for in situ temperature and salinity respectively.
When applying (14.9), the prescribed 
b and 
o evaluated at the observation
locations are used during each 4D-Var cycle. For this choice of ˛ it was found that
on average less than 1 % of the in situ observations are rejected during 4D-Var.

14.4.6 Preliminary Results

At the time of writing, WCRA31 is underway with 
5 years completed so far and
will require approximately another 3 months to complete. In this section we are
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Fig. 14.6 Time series of the initial (blue) and final (red) values of the cost function log10.J / in
(14.5) for each 4D-Var cycle of the preliminary WCRA13 analysis sequence. Also shown are the
values of JNL from (14.2) computed at the end of the single outer-loop (red pluses)

therefore only able to show some preliminary results from a sequence of benchmark
integrations for WCRA13 which were performed to assess storage requirements,
execution time, efficacy of the assimilation set-up, etc. The final analyses for
WCRA31 and WCRA13 are now available to the community via a dedicated
Opendap web server at http://oceanmodeling.pmc.ucsc.edu.

To illustrate the performance of 4D-Var in ROMS CCS, Fig. 14.6 shows a time
series of the initial and final values of the cost function J from (14.5) for each
data assimilation cycle of the preliminary WCRA13 sequence. In general, the cost
function is reduced by 
 50–70% during most cycles. Also shown in Fig. 14.6 is the
value of JNL from (14.2) which is consistent with J during most cycles. Clearly the
4D-Var procedure moves the model circulation estimates closer to the observations.

14.5 The CCS Near Real-Time Analysis and Forecast System

In addition to the historical analyses described in Sect. 14.4, ROMS CCS is also
being used in conjunction with 4D-Var to compute analyses for the ocean in near
real-time. The system described here builds on previous experience using ROMS
4D-Var in real-time analysis and ensemble prediction mode in the Caribbean Sea
and the Gulf of Mexico by Powell et al. (2009). The near real-time aspect of this
system places strict constraints on the prior information and observations that can
be used in the assimilation system. The prior surface forcing fields are computed by
ROMS based on standard height atmospheric variables, surface radiation fluxes and
precipitation from COAMPS that is run at NRL Monterey in a near real-time mode.
There is no near real-time product available for constraining the model at the open
boundaries, so climatological open boundary conditions derived from WOA05 are
used as the prior in this case.

The CCS near real-time analysis system is run every Monday morning using
all of the available ocean observations from the previous week. The primal 4D-Var

http://oceanmodeling.pmc.ucsc.edu
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Fig. 14.7 A schematic to illustrate the 7 day data assimilation cycles used in the near real-time
system. The starting and ending times of cycle j are denoted tj

0 and tj
0 C 7 respectively, and the

starting time of cycle j C 1 corresponds to the ending of time of cycle j . The prior circulation
initial condition for cycle j C 1 is taken as the posterior circulation estimate at the end of cycle j

Table 14.2 A summary of the observations and platforms currently used in the UCSC near real-
time analysis system for the CCS. CalCOFI Line 67 is a repeat glider line that runs offshore from
the California coast just south of Monterey Bay out to 316 km offshore. This CalCOFI line is
maintained by the Monterey Bay Aquarium Research Institute (MBARI). OSTIA: operational sea
surface temperature and sea ice analysis, and is described by Stark et al. (2007), CaLCOFI: the
California cooperative fisheries investigation

Observation type Observation platform Source Combined error

SSH Altimeter Aviso 0.02 m
SST Various OSTIA 0:4ıC

UK Met Office
Hydrographic data Glider, CalCOFI Line 67 MBARI 0:1ıC for T

0.01 for S

algorithm is used in this case, for historical reasons, in conjunction with a 7 day data
assimilation window in which the prior initial condition for each analysis cycle is
the posterior circulation estimate at the end of the previous cycle. In this system,
the 4D-Var control vector is composed of the initial conditions only. The procedure
used is illustrated schematically in Fig. 14.7.

Because of the near real-time aspect of this system, the number and type of ocean
observations that are available for assimilation is limited. Information about the
observations that are currently used is given in Table 14.2.

An example analysis is shown in Fig. 14.8 which shows the prior and increments
for SST, sea surface salinity (SSS), sea surface height (SSH), for the analysis cycle
starting on 2 Feb., 2012. The prior fields for SST, SSS and SSH all reveal the
complex nature of the meso-scale circulation environment associated with the CCS.
The increments reveal that most of the corrections that are being made to the prior
during this cycle are generally at the mesoscale also, although some larger scale
corrections are present as well, as for example in SSH (Fig. 14.8e) in the northern
part of the domain.

The near real-time analyses, like that of Fig. 14.8, are produced in support of
the Central and Northern California Ocean Observing System (CeNCOOS) and are
freely available at http://oceanmodeling.pmc.ucsc.edu/ccsnrt. Typical users include
fisherman, marine planners, and search and rescue organizations.

http://oceanmodeling.pmc.ucsc.edu/ccsnrt
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Fig. 14.8 An example of the surface analysis for the 4D-Var cycle starting on 2 Feb., 2012 as part
of the near real-time system. (a) prior SST, (b) SST increment, (c) prior sea surface salinity (SSS),
(d) SSS increment, (e) prior sea surface height (SSH) and (f) SSH and increments

14.6 Summary

Our aim in this chapter is to demonstrate that ocean data assimilation has reached a
maturity whereby sophisticated, state-of-the-art systems have been developed for a
widely used community ocean model. The ROMS 4D-Var system has features that
are comparable to those used in some operational NWP systems, and this article
demonstrates that it is now possible to compute regional ocean analyses at eddy
resolving resolutions to generate not only historical circulation estimates but also
analyses in near real-time. The ROMS 4D-Var system used here is freely available
to the ocean modeling community at large (http://myroms.org), and the experience
gained from the activities described here will provide valuable guidance for future
efforts in the California Current system and elsewhere.
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Chapter 15
A Weak Constraint 4D-Var Assimilation
System for the Navy Coastal Ocean Model
Using the Representer Method

Hans Ngodock and Matthew Carrier

Abstract A 4D-Variational system was recently developed for assimilating ocean
observations with the Navy Coastal Ocean Model. It is described here, along
with initial assimilation experiments in the Monterey Bay using a combination of
real and synthetic ocean observations. For testing a new assimilation system it is
advantageous to use this combination of real and synthetic data over simplified
cases of climatology and twin data. Assimilation experiments are carried out in
a weak constraint formulation, with the model’s external forcing assumed to be
erroneous in addition to initial conditions. The system’s ability to fit assimilated and
non assimilated observations is assessed, as well as the consistency and relevance of
the retrieved model forcing. Experiment results show that the assimilation system
fits the data with relatively high prior errors in the initial conditions and surface
forcing fluxes. However, the retrieved model forcing errors are well within the range
of acceptable corrections according to an independent study.

15.1 Introduction

This paper presents the development of a weak constraint 4D-Var data assimilation
system based on the representer method (Bennett 1992, 2002) for the Navy Coastal
Ocean Model (NCOM). NCOM is an operational ocean model that has been
validated (Martin 2000; Barron et al. 2006). A major effort to implement state-of-
the-art assimilation schemes was undertaken a few years ago, with the development
of a 3DVAR, and a 4D-Var system based on the NCOM numerical code. The
3DVAR system is used for assimilation in global to regional scales, while the 4D-Var
is to be used in limited area models with in-situ observations, provided initial and
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boundary conditions from a global or regional model assimilating with 3DVAR.
Both the adjoint and linear perturbation (also called the forward representer) model
codes were derived for the most part with the help of the Parametric Fortran
compiler (PFC), Erwig et al. 2007.

Some general circulation models of the complexity of NCOM have seen
similar efforts undertaken in the past decade: a 4D-Var assimilation system was
developed for the Ocean Parallelisé (OPA) model (Weaver et al. 2003), for the MIT
general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO
consortium assimilation experiments (Stammer et al. 2002), and a similar system
was built for the regional ocean model system (ROMS), Moore et al. 2004. Unlike
the other models using fixed z-levels (OPA and MITgcm) or s-coordinates (ROMS)
NCOM uses a combination of both sigma layers, z-levels and a generalized vertical
coordinate.

It is a common practice to test a recently developed assimilation system with
climatological data or identical twin experiments in which the observations are
simulated by the numerical model. There is hardly a case of failure in twin
experiments, yet a successful assimilation with twin experiments never guarantees
success with real data. On the other hand, climatological data are overly smooth in
both space and time (due mostly to linear interpolation) and lack the variability
associated with real observations. To avoid these simplified cases, the newly
developed NCOM 4D-Var system is tested with real and synthetic observations
generated by the modular ocean data assimilation system (MODAS) Fox et al. 2002,
as well as with real observations collected from satellites and a fleet of gliders during
the second autonomous ocean sampling network (AOSN II) in the Monterey Bay.

There are no specific applications of 4D-Var in the Monterey Bay, let alone
its weak constraint formulation. Strong constraint variational assimilation (Broquet
et al. 2009) has been applied to the California current system (CCS), including an
application to estimate surface forcing correction (Broquet et al. 2011), using the
inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007) with
horizontal resolutions of 10 and 30 km. The CCS is a large area that includes the
Monterey Bay, although these applications did not specifically target the Monterey
Bay, given their rather coarse resolutions. Most of the assimilation experiments that
have been carried for the Monterey Bay were based on sequential methods such as
3DVAR and ensemble-based Kalman filters: Chao et al. (2009), Haley et al. (2009),
and Shulman et al. (2009). This study presents an application of the weak constraint
4D-Var in the Monterey Bay in a proof-of-concept context, using synthetic and real
observations. The first objective is to demonstrate the system’s ability to reduce large
discrepancies between the model and the observations, when the latter are assigned
very low errors. Therefore, this paper is more focused on the technical development
of the weak constraint 4D-Var system.

A brief description of the numerical model is presented in the next sec-
tion, followed by the 4D-Var system derivation and implementation in Sect. 15.3.
Section 15.4 deals with the experiments setup and results, and concluding remarks
follow in Sect. 15.5.
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15.2 The Model

NCOM is described in the literature (Martin 2000; Barron et al. 2006). The
description of the model equations given in the appendix is only repeated in order
to exhibit the nonlinear terms in the model equations, as they directly affect the
development of the linearized and adjoint models associated with NCOM. NCOM
is a free surface model based on the primitive equations and employs the hydrostatic,
Boussinesq and incompressible approximations. The model is discretized using
finite differences on an Arakawa C-grid in the spatial dimensions. The equations are
solved in three dimensions for momentum (both zonal and meridional components
of velocity), temperature and salinity, and two dimensions for the free-surface mode:
surface elevation and barotropic velocities.

The leapfrog scheme is used for time stepping in conjunction with an Asselin
filter to avoid time splitting. All terms are treated explicitly in time except for
the solution for the free surface and vertical diffusion. In the solution for the
free surface, the surface pressure gradient terms in the depth-averaged momentum
equations and the divergence terms in the depth-averaged continuity equation are
evenly split between the old and new time levels to minimize the damping of surface
waves. The model equations discretized with finite differences in flux-conservative
form are given in the appendix.

The model domain used for this experiment contains the Monterey Bay, California
region. This location is favorable for ocean modeling due to its strong land/sea breeze
circulation patterns, complex coastline with steep topography, and the existence of
frequent local upwelling and relaxation events (Shulman et al. 2002). The domain
covers latitudes 35:6ı–37:49ı North and longitudes 121:38ı–123:2ı West with a
horizontal resolution of 2 km and 41 layers in the vertical. The model was initialized
on 01 August, 2003 and ran for one month to 01 September, 2003. The initial condi-
tions were obtained from downscaling the operational 1=8ı resolution global NCOM
to an intermediate model with horizontal resolution of 6 km, and then via a 3-to-1
nesting ratio to the 2 km model. Horizontal viscosities and diffusivities are computed
using either the grid-cell Reynolds number (Re) or the Smagorinsky schemes, both
of which tend to decrease as resolution is increased. The grid-cell Re scheme sets
the mixing coefficientK to maintain a grid cell Re number below a specified value,
e.g. if Re D u�dx=KD 30, thenKD u�dx=30. Hence, as dx decreases,K decreases
proportionally. A similar computation is performed for the Smagorinsky scheme.

Surface boundary conditions (e.g. wind stress, IR radiation flux, etc.) are
provided by the atmospheric mesoscale model COAMPS (Hodur 1997), which is
run at the same horizontal resolution as the ocean model, with forcings archived
every 12 h at the synoptic times of 0000 and 1200 UTC. Open boundary conditions
use a combination of radiative models and prescribed values provided by the
1=8ı Global NCOM (GNCOM). Different radiative options are used at the open
boundaries depending on the model state variables: a modified Orlanski radiative
model is used for the tracer fields (temperature and salinity), an advective model for
the zonal velocity (u), a zero gradient condition for the meridional velocity (v) as
well as the barotropic velocities, and the Flather boundary condition for elevation.
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15.3 The 4D-Var System

15.3.1 Linearization

Nonlinear terms in the model consist of all the advection terms in the momentum and
tracer equations, the horizontal mixing with the Smagorinsky formula, the curvature
correction, the vertical mixing with coefficients computed using the Mellor-Yamada
2.5 turbulence closure. Additional nonlinearities stem from the discretization in flux
conservative form where vertical increments �z in the sigma layers depend on the
free surface elevation. As a consequence, even the time discretization is nonlinear.
Nonlinearities also appear in the free surface, or barotropic mode, with the multiplica-
tion by the depth variablesDu andDv in (15.23) and (15.24). However, the barotropic
transportsDu Nu and DvNv are computed explicitly first, then the barotropic velocities
(Nu and Nv) are derived by dividing the barotropic transports by the depth variable,
which is a nonlinear operation. The baroclinic pressure gradient is computed from the
density field obtained from the state equation as a nonlinear function of temperature
and salinity. Other nonlinearities appear in the various radiative conditions at the open
boundaries of the model domain mentioned above.

With the exception of the Mellor-Yamada turbulence closure, all of these
nonlinear terms are linearized according to the first-order Taylor’s approximation
for the derivation of the tangent linear model.

For the sake of clarity, let’s rewrite the leap-frog time discretization of (15.14),
see the appendix, in the form

�xu�yu

2�t

�
.�zu/nC1 unC1 � .�zu/n�1 un�1


D Gn; (15.1)

where Gn represents the terms in the right hand side of (15.14) evaluated at time
level n, and the depth increment .�zu/nC1 is available from a previously computed
elevation. The numerical model is updated by

unC1 D 1

.�zu/nC1

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�
(15.2)

The linearization of (15.2) is

ıunC1 D 1

.�zu/nC1

�
.�zu/n�1 ıun�1 C .ı�zu/n�1 un�1 C 2�t

�xu�yu
ıGn

�

� .ı�zu/nC1
h
.�zu/nC1i2

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�
(15.3)

where u is the background solution, i.e. the solution around which the model is
linearized, G and �z are computed using the background solution, and ıu, ıG
and ı�z are the linear perturbations of u, G and �z respectively. In both (15.2)
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(and hence (15.3)) a small positive number is usually added to the denominator to
prevent it from vanishing. As mentioned above the depth increments in the vertical
discretization in NCOM depend on the time varying elevation only in the sigma
layers. In the z-level portion of the vertical grid, (15.2) and (15.3) take the form

unC1 D un�1 C 2�t

�xu�yu�zu
Gn (15.4)

and

ıunC1 D ıun�1 C 2�t

�xu�yu�zu
ıGn: (15.5)

As for the vertical mixing coefficients from the Mellor-Yamada turbulence closure
scheme, they are provided by the nonlinear model trajectory around which the model
is linearized.

The stability of the linearized model is assessed by the time evolution of small
perturbations: the tangent linear model is initialized by random three dimensional
perturbations of the temperature and salinity fields and integrated over time. At each
time step the norms of the perturbed temperature and salinity fields are computed
and divided by the norms of their respective initial perturbations. Results plotted in
Fig. 15.1 show that the linear perturbations are stable and bounded for about 12–15
days before they start to grow exponentially. Initial perturbations here are generated
by the adjoint integration forced by Dirac impulses at randomly selected grid points.
This process produces three-dimensional initial fields with dynamically coherent
structures compared to purely random fields. However, the TLM test with purely
random fields did not yield different results (not shown).
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15.3.2 Adjoint Derivation

Once the linear perturbation model was obtained, the adjoint model was derived by
transposition of the perturbation model as follows for both sigma layers and z-levels:

�� D �nC1
u

�nC1
u D 0

�nC1
�zu D �nC1

�zu � ��
h
.�zu/nC1i2

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�

�nG D �nG C 1

.�zu/nC1
2�t

�xu�yu
�� (15.6)

�n�1
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�
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u C .�zu/n�1

.�zu/nC1 �
�

and

�� D �nC1
u

�nC1
u D 0

�nG D �nG C 2�t

�xu�yu�zu
��

�n�1
u D �n�1

u C �� (15.7)

where �ia denotes the adjoint variable associated with the state variable a at the
time level i , and �� is a temporary variable. In (15.6) and (15.7) it is assumed
that the adjoint variables have been initialized at a prior time level. In practice, the
model is usually computer programmed by subroutines, with individual terms of
the model equations computed in separate subroutines. Similarly, the linearization
and the adjoint derivation were carried out one subroutine at a time, and care was
taken to ensure that symmetry between the linearized subroutine and its adjoint
was preserved. The entire linearized model was obtained once every subroutine was
linearized, and the entire adjoint was obtained with individual adjoint subroutines
appearing in reverse order as compared to the linearized model.

In practice, both the linearized and adjoint models were obtained with the help of
the Parametric Fortran compiler (PFC). Parametric Fortran is an extension of Fortran
that supports defining Fortran program templates by allowing the parameterization
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of arbitrary Fortran constructs. A Fortran program template can be translated into
a regular Fortran program guided by values for the parameters. The Parametric
Fortran compiler is written in Haskell (Peyton Jones 2003), and the parameter values
are represented as Haskell values so they can be used by the Parametric Fortran
compiler directly. Parametric Fortran is particularly useful in scientific computing.
The applications include defining generic functions, removing duplicated code, and
automatic differentiation. Parametric Fortran thus has broader and more general
uses than previous tools in the likes of TAMC (Giering and Kaminski 1998),
TAPENADE (Hascoet and Pascual 2004) or ADIFOR (Bischof et al. 1992),
developed just for the purpose of automatic differentiation. The differentiation is
based on the chain rule, with special treatment for non-differentiable functions.

15.3.3 How PFC Works for TL and Adjoint Generation

The Parametric Fortran compiler is publicly available from http://web.engr.
oregonstate.edu/�erwig/pf/. It is a command line program in which the
differentiation operation has been parameterized by “Diff”. Assuming it has been
installed on a user’s computer, it can be used to generate tangent linear and adjoint
of Fortran subroutines or programs in the following manner:

1. The user creates a parameter text file, say “param file”, in the format:

Diff D TL [var1, var2, var3 : : :]

where var1, var2, var3 . . . , form a list of all active variables and all
variables that depend or operate on active variables (including temporary
variables), “TL” will indicate to the compiler that the tangent linear model
is being created, and “Diff” is the differentiation parameter for Parametric
Fortran.

2. For a subroutine “test.f” to be differentiated the user also creates a file
“test.pf” that contains the subroutine in the form

fDiff:
Subroutine test(var1,var2. . . )
Body of subroutine
end
g

3. Finally, the compiler is invoked by typing the following from the command
line: pfc -p param file test.pf test TL.f

The output of the compiler will be the tangent linearized subroutine
“test TL.f”.

4. The procedure for generating the adjoint is the same except that in steps
1 and 3 “TL” is replaced with “AD”.

http://web.engr.oregonstate.edu/~erwig/pf/
http://web.engr.oregonstate.edu/~erwig/pf/


374 H. Ngodock and M. Carrier

For generic state variables x and y and a subroutine computing a quantity Ax, the
symmetry between the linearized subroutine and its adjoint is evaluated by

hAx; yi D ˝
x;ATy

˛
(15.8)

where h: ; :i denotes an inner product. This equality should hold to machine precision
(regardless of computer architecture) not only for individual subroutines, but also
for the entire linearized model and its adjoint. For randomly generated x and y
as initial and final conditions for the linearized and adjoint models respectively,
equality (15.8) was tested for integration periods of 1 and 5 days with an absolute
difference in the order of 10�14 between the left and right hand side of (15.8), the
computations being done in double precision.

Alternatively, this symmetry is also assessed by the symmetry of the representer
matrix (Bennett 1992, 2002). For a given number M of observation locations (in the
space-time domain), regardless of which model variable is observed, representer
functions are computed, one per observation location. A representer function
associated with a given observation location is obtained by integrating the adjoint
model forced by a Dirac delta function centered at the chosen observation location,
then using the adjoint solution (in space and time) as forcing for the perturbation
model. A column of the representer matrix is computed by evaluating a representer
function at all observation locations. If the adjoint model is consistently derived
from the perturbation model, the representer matrix should be symmetric to the
machine precision which is the case for our model and its adjoint.

15.3.4 The Cost Function

For sake of clarity, the model equations are rewritten in a simpler form

(
@X
@t

D F .X/C f; 0 � t � T

X .t D 0/ D I .x/C i.x/
(15.9)

where X stands for all the dependent model state variables: two dimensional sea
surface height and barotropic velocities, and three dimensional temperature, salinity
and baroclinic velocities, F is the model tendency terms in the right hand side of
(15.14, 15.15, 15.16, 15.17 and 15.18) and (15.23, 15.24 and 15.25), f is the model
error, a function of the independent variables (x and t) of the space-time domain�
with covariance Cf , I.x/ is the prior initial condition, i.x/ is the initial condition
error with covariance Ci . Given a vector Y of M observations of the model state
in the space-time domain, with the associated vector of observation errors © (with
covariance C©),

ym D HmX C "m; 1 � m � M (15.10)
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where Hm is the observation operator associated with the mth observation, one can
define a weighted cost function

J D
TZ

0

Z

˝

TZ

0

Z

˝

f .x; t/Wf .x; t; x
0; t 0/f .x0; t 0/dx0dt0dxdt

C
Z

˝

Z

˝

i.x/Wi.x; x
0/i.x0/dx0dx C ©TW©© (15.11)

where� denotes the model domain, the weightsWf andWi are defined as inverses
of Cf and Ci in a convolution sense, and W© is the matrix inverse of C©. The latter
is usually considered a diagonal matrix, from the assumption that observation errors
are uncorrelated. Boundary condition errors are omitted from (15.9) to (15.11) only
for the sake of clarity. The model error covariance is assumed to take the form

Cf
�
x; t; x0; t 0

� D v .x/1=2 v.x0/1=2 exp

 
�jx � x0j2

2L2

!
exp

�
�jt � t 0j

£

	
(15.12)

where v.x/ is the error variance and L and £ are the length and time scales
respectively. The initial error covariance Ci assumes the form of (15.12) with the
exception of the time correlation term and different (higher) variance. Horizontal
correlations in (15.12) are obtained by solving a diffusion equation (Derber and
Rosati 1989; Egbert et al. 1994; Weaver and Courtier 2001), while the time
correlation is obtained by solving a pair of coupled Langevin equations (Chua
and Bennett 2001; Bennett 2002; Ngodock 2005). Correlations in (15.12) are
univariate and are implemented layer by layer for each model state variable. The
cross correlations are provided by the model dynamics through the integration of the
adjoint and the tangent linear models. Note that although the cost function is written
with the inverse of the covariance functions, the actual inverses are not needed in
practice, when the solution of the Euler-Lagrange equations associated with the
minimization of (15.11) is sought through the representer method (Bennett 1992,
2002).

15.3.5 Error Standard Deviations: v.x/1=2

Assigning model errors and prescribing their covariances is the most difficult task
in data assimilation, as acknowledged by most assimilation experts: Daley (1992),
Talagrand (1999), Bennett (2002), Wunsch (2006). Not only are there many error
sources (external forcing, initial and boundary conditions, bad parameterization,
empirical formulation, unresolved processes), but also the errors cannot be mea-
sured. Therefore one can only make assumptions about them. Since NCOM includes
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all resolvable processes and sub-gridscale parameterization, errors are attributed to
the initial conditions and external forcing for all the dynamical equations, and the
derivation of their estimates is given below. Note that there is no external forcing
applied to the continuity equation, and thus it is not assigned a model error either,
as in Jacobs and Ngodock (2003).

Consider the momentum equation (15.14) in its non-discretized form

@u

@t
C : : : D : : :C ��1F (15.13)

where F represents the wind stress atmospheric forcing (in Nm�2), the volume
flux source and the tidal potential, and � is the water density. The model error
at the surface consists of errors in the wind stress. For the subsurface, errors are
assumed to arise from the volume flux and the tidal potential terms. We consider
errors to be high in magnitude at the surface and decreasing with depth. Although
the wind stress varies in space and time, its associated error is assumed uniform
in the horizontal directions. The error magnitude is considered to be 50 % of the
actual wind stress at the surface and decreasing with depth in order to mimic the
decreasing impact of wind stress with depth. Two terms contribute to the forcing
for the temperature equation: the net longwave, latent and sensible heat flux on one
hand, and the solar radiation on the other hand. Both are assumed to be 30 % in error
and the sum of their errors constitutes the forcing error in the temperature equation,
with a spatial distribution similar to the one used for the errors in the momentum
equation. A similar approach is taken for the errors in the salinity equation, where
the forcing consists of the river inflow and evaporation minus precipitation. Forcing
terms here are also considered to be 30 % in error. Finally the standard deviations
for the initial condition errors are 1 m for the surface elevation, 0:5ms�1 for both
components of the velocity field, 2 K for temperature and 0.5PSU for salinity. These
rather high errors indicate the lack of confidence in the forcing fields and initial
conditions. Spatial and temporal correlation scales in (15.12) are set to 10 km and
30 h. The errors and scales above are obviously arguable, and it is not our intention
to defend their choice. Rather, they are selected in this preliminary assimilation
setup to demonstrate the functionality of the NCOM 4D-Var system. Smaller errors
will be adopted when the system is used with real observations.

15.3.6 The Minimization

The solution of the assimilation problem is found by solving the Euler-Lagrange
(EL) system of equations associated with the minimization of the cost function
(15.11). The EL system is a linear yet coupled system between the adjoint and
state variables. The representer methods uncouples the system by expanding the
solution as the sum of a first guess and a finite linear combination of representer
functions, with the representer coefficients computed by solving a linear system in
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data space involving the representer matrix, the data error covariance matrix and
the innovation vector. The entire representer matrix need not be computed since the
linear system can be solved using an iterative algorithm (e.g. the conjugate gradient),
by taking advantage of the symmetry of each matrix involved. The representer
coefficients constitute the right hand side of the adjoint equation in the EL system.
Once the representer coefficients are computed, they are substituted in the adjoint
equation which is then solved and substituted in the forward linear equation for
the final solution. A background solution around which the model is linearized is
needed. Usually it is the solution of the nonlinear model. For the first guess solution,
one may consider either the background or the tangent linear solution around
the background. Also, the new optimal solution may replace the background for
another minimization process (i.e. outer loops) until formal convergence (Bennett
et al. 1996, 1998, 2002; Ngodock et al. 2000, 2007, 2009).

15.4 Experiment Setup and Results

Assimilation experiments are carried out with two different data sets, and the results
shown below are primarily aimed at evaluating the 4D-Var system’s ability to fit
both the assimilated and the non-assimilated observations.

15.4.1 MODAS Data

MODAS generates synthetic vertical profiles of temperature and salinity in the two
following steps: first, a subsurface temperature is computed at a given depth using a
regression from sea surface temperature and the steric component of the sea surface
height anomaly. Once the subsurface temperature is computed, a corresponding
subsurface salinity is computed using a climatology-based temperature/salinity
relationship, Fox et al. (2002). MODAS data are thus a combination of real sea
surface data (SSH and SST) and simulated sub-surface data derived from the real
surface data using regression and historical relationships.

MODAS synthetics are saved and utilized in the 4D-Var analysis at intervals of
6 h. There are approximately fifty-six uniformly distributed profiles of temperature
and salinity across the model domain. Each profile is represented on a vertical grid
of 46 layers that do not coincide with the model’s vertical grid of 41 layers, but the
observation operatorH in (15.10) handles the projection from the model grid to the
data grid. Temperature (salinity) observation errors are set to 0:2ıC (0.1 psu), and
held constant through the entire assimilation window. These observation errors are
purposefully set low, not because MODAS data are very accurate, but to test the
assimilation’s ability to reduce large discrepancies with the model, i.e. to drive the
model with large errors to fit observations with small errors.
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Fig. 15.2 The model domain
with bathymetry contours and
the profile locations,
including the numbered
profiles (in red) where the
assimilated solution is
evaluated

15.4.2 Results with MODAS Data

Starting from an initial condition on August 02, the model was integrated and
the assimilation performed for 5 days at a time, with the analysis at the end of
the 5 days becoming the initial condition for the following 5-day assimilation, the
overall assimilation experiment interval being 30 days.

In order to assess how well the assimilation fits the observations, the analysis
is examined at 5 locations in the model domain shown on Fig. 15.2. These
locations are selected according to their geographic position with respect to the bay:
offshore (location 1), slightly outside of the bay mouth (location 2), inside the bay
(location 3), and south and north of the bay (locations 4 and 5). Results at locations
2 and 4 are similar to those at location 5, and therefore are not shown.

Examining the solution in the top 500 m at the offshore location 1, it can be seen
that the assimilation is able to correct large and small discrepancies between the
first guess and the observations for both the temperature and salinity fields, as seen
in Fig. 15.3. In the first 5 days temperature discrepancies range between 2 K in the
upper 50 m, and about 1 K from 100 m and below. Likewise salinity discrepancies
range from 0.15psu in the upper 200 m to 0.05psu below. These discrepancies are
gradually corrected in the analysis (bottom panels of Fig. 15.3) and by the end
of the first 5-day assimilation window, they have vanished. For the subsequent
5-day assimilation windows, the model temperature and salinity appear to be well
constrained below 100 m with minimal to no discrepancies between the first guess
and the data. Discrepancies are confined to the upper 100 m. They are small at the
beginning of each 5-day window and grow with time. This is to be expected since
the first guess is initialized with the previous 5-day analysis at the final time, and
because the NOGAPS forcing fields are not necessarily compatible with MODAS
data. That the discrepancies are confined to the upper ocean also suggests that the
model error is driven by erroneous surface fluxes, although the simulation of the
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Fig. 15.4 Same as Fig. 15.3, except for location 3

mixed layer could also be incompatible with MODAS data. Yet both the data and
the forcing fields are purposefully chosen in order to test the assimilation’s ability
to efficiently reduce these discrepancies while estimating a reasonable (magnitude-
wise) correction to the surface fluxes. The assimilation effectively reduces all the
discrepancies to within the data standard deviation for both temperature and salinity.

The maximum depth at location 3 inside the bay is 28 m. Results at this location,
shown in Fig. 15.4, indicate that high salinity discrepancies sometimes exceeding
.25psu are distributed through the water column during the first 5-day assimilation
period. Some large salinity discrepancies also appear between days 18–20. Temper-
ature discrepancies on the other hand are more prevalent, distributed over space and
time. It appears that the initialization of the model using the previous 5-day analysis
has less influence on the current 5-day first-guess. This may be due to the fact that in
this shallow location, temporal variability of the solution is mostly governed by the
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Fig. 15.5 Same as Fig. 15.3, except for location 5

local external/surface forcing coupled with strong mixing, and not by the short-lived
initial conditions. Nevertheless, the assimilation still significantly reduces these
discrepancies (bottom panels of Fig. 15.4) through the depth-time domain except
for some isolated places. Assimilation results at location 4 (south of the mouth of
the bay) are very similar to those at location 2, and therefore are not shown here.

At location 5 (north of the mouth of the bay) the maximum depth is 100 m. The
largest salinity discrepancies are in the upper 20 m during the first 5-day, as seen
in Fig. 15.5. There are also some moderate discrepancies in the lower layers around
day 24. Temperature discrepancies are initially moderate (less than 1.5 K during
the first 5-day period) and remain low until day 20, after which they start growing
again, reaching 2 K. For most of the assimilation period these discrepancies are
significantly reduced below 0.5 K, except for some isolated locations, e.g. around
40 m depth at days 21 and 22.

15.4.3 AOSN II Data

The dataset comprises SST from satellite and aircraft, a few SSH from satellite
altimetry (due to the limited area of the model domain), vertical profiles of
temperature and salinity from Slocum and Spray gliders and two moorings (M1 and
M2) and AXBTs. All the vertical profiles are projected on a static grid of 42 levels.

Slocum glider tracks covered a portion of the bay, the mouth of the bay and
the area to the northwest of the bay, i.e. the upwelling center around Año Nuevo.
Spray glider tracks originated from the nearshore and went offshore in transec-like
trajectories as seen in Fig. 15.6. To avoid redundancy some of the glider data are
withheld from the assimilation and used for validation of the analyses. Withholding
the data takes into account the model grid resolution and the prescribed horizontal
decorrelation scale of the model error. The observations are assigned a constant error
of 0.5 K and 0.3psu in temperature and salinity respectively.
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Fig. 15.6 All glider and the two mooring positions (left), and assimilated Slocum (center) and
Spray (right) glider tracks during August, 2003. The red dots represent the location of the moored
buoys M1 (right) and M2 (left). The red box indicates the upwelling center near Año Nuevo

15.4.4 Results with AOSN II Data

The assimilation covers the time window of August 2 to August 27, 2003, and is
carried out in cycles of 5 days, with the analysis at the end of a cycle becoming the
initial condition for the following cycle. Although the observations are processed
and stored in 6-h intervals, the 4D-Var system assimilates all observations within
the 5-day cycle simultaneously. The performance of the assimilation system is
examined by computing the difference between the observations and three model
solutions: (1) the free running (non assimilative) model that is integrated from the
given initial conditions and forcing fields, (2) the first guess (also non assimilative)
for which the initial condition is updated from the assimilation in the previous
cycle, with the exception of the first cycle where both the first guess and the free
running model are equal, and (3) the analysis. The first guess is also the background
trajectory for the tangent linear model and the adjoint, i.e. the trajectory around
which the model is linearized. It is stored in intervals of 6 h. It is anticipated that
due to the re-initialization from assimilating in a previous cycle, the first guess
should have smaller discrepancies with the observations than the free running
model, and the analysis should have smaller discrepancies with the observations
than the first guess. This should be the case for discrepancies computed with the
assimilated and non-assimilated observations. It is expected of every assimilation
system to fit the assimilated observations within one observation standard deviation.
Unassimilated observations consist of withheld observations within the current
assimilation window and future observations, those in the next cycle before the
assimilation. The assimilation is expected to fit the former as a measure of the
system’s ability to propagate the information from the assimilated observations sites
through the model spate-time domain within the assimilation window. However,
there is no expectation to fit future observations, i.e. the innovations in the next
cycle are not expected to be smaller than the observation standard deviation. One
only hopes that having initialized the model from the previous cycle’s assimilation,
the model forecast will remain sufficiently accurate to maintain small innovations.
However, integrating the model from the initial conditions with uncorrected forcing
fields is prone to drive the model away from the observations.
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Fig. 15.7 Absolute model temperature (left) and salinity (right) discrepancies to assimilated
observations for the free run (top), first guess (middle) and analysis (bottom)

The difference between the observations and the model is computed for all
assimilated profiles of temperature and salinity and plotted in chronological order
in Fig. 15.7. It can be seen that the temperature differences are confined in the upper
100 m of the water column, with magnitudes sometimes reaching 3 K for both the
free run and the first guess. Salinity differences extend deeper in the water column,
to about 200 m, although the largest differences are confined to the upper 100 m. A
slight improvement can be noticed from the free run to the forecast solutions in the
temperature field, but not as much in the salinity field. However, the assimilation is
able to significantly reduce the forecast discrepancies in both the temperature and
salinity fields, with the exception of a few profiles at the beginning of each cycle.
The assimilation is able to reduce discrepancies as high as 3 K and 0.4psu to less
than 0.5 K and 0.1psu in temperature and salinity respectively.

The forecast solution is expected to have smaller discrepancies to the observa-
tions than the free run, because it is initialized with the analysis at the end of a
previous cycle. So, having only a marginal improvement from the free run to the
first guess is an indication that the gains from the assimilation are short-lived in the
forecast run as a consequence of inadequate forcing fields driving the model away
from future observations

15.4.5 Independent Observations

For verification and evaluation purposes, discrepancies are computed between the
withheld glider observations and the three model solutions: the free run, the first
guess and the analysis. Results in Fig. 15.8 show that all three solutions have similar
error levels with respect to the un-assimilated as to the assimilated observations.
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Fig. 15.8 Same as Fig. 15.7, except for non-assimilated glider observations

This result was expected because in most cases the withheld observations were
located in the vicinity of assimilated observations. There are still some large
temperature and salinity discrepancies in the analysis, usually around the beginning
of the assimilation cycle.

15.4.6 Qualitative Fitting of the Data

The assimilation system’s ability to fit the observations is further examined by
comparing the differences between the observations and the free running model, the
first guess and the analysis for all the observations and at all times, for both MODAS
and AOSN II data. The free running model is integrated from the initial conditions
and is never re-initialized, while the first guess for an assimilation cycle is initialized
by the analysis at the end of the previous cycle. Elements of these difference vectors
are binned by comparing their magnitude to the observations standard deviation.
For example, all elements that are smaller than a standard deviation in absolute
value are binned together, and so are all elements whose absolute value is between
one and two standard deviations, and so on. The number of elements in each bin is
then converted into a percentage of the number of assimilated observations. The
results plotted as a cumulative bar chart on Fig. 15.9 show that the assimilated
solution with MODAS data fits 80 % and 90 % of the observations to within one
and two standard deviations respectively, while the corresponding numbers for the
first guess are 60 % and 75 %, and 45 % and 63 % for the free running model. Some
posterior misfits, although only a small percentage, are larger than 7 observations
standard deviations, which obviously violate the Gaussian assumption on the errors
in general. Similarly, for the AOSN II data, assimilated solution fits 86 % and 95
% of the observations to within one and two standard deviations respectively, while
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function of the number of observation standard deviations. MODAS experiment is shown on the
left and AOSN II experiment on the right

the corresponding numbers for the first guess are 68 % and 80 %, and 64 % and 76
% for the free running model.

The large posterior misfits happened for some temperature observations with
prior misfits sometimes higher than 5ı, and the assimilation reduces these misfits
to about 1:5ı. They are larger than 7 standard deviations primarily because of very
low data errors and possibly high model errors. It is assumed that a better fit would
be achieved with larger observation errors and lower model errors. Such experiments
(not shown here) are carried in the context of real observations and are the subject
of another study.

15.5 Conclusion

A 4D-Var assimilation system for NCOM has been developed based on the indirect
representer method. The system produces analysis increments for all prognostic
variables (3D temperature, salinity, u- and v- components of velocity, and sea
surface elevation) from a time-window of observations in a weak-constraint envi-
ronment. The adjoint model has been checked against the linearized model using
well established methods, verifying that the system is symmetric to within machine
precision. Assimilation experiments were carried out with two different data sets.

The first experiment involved MODAS synthetic data (T , S , SSH) that were sam-
pled every 6 h and assimilated in a sequence of 5-day time windows. Starting from
an initial condition on August 02, the model was integrated and the assimilation
performed for 5 days at a time, with the analysis at the end of the 5 days becoming
the initial condition for the following 5-day assimilation. The results indicate that the
assimilation system is performing correctly, with the model-data misfit is reduced
substantially as examined at individual profiles.
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The second experiment used the observations collected during AOSN II. Starting
from a free run solution that completely misrepresented both the data and the
dynamics of the region during the selected time period, the assimilation was able
to accurately fit the assimilated data. Also, contrary to the free run and the first
guess, the upwelling and relaxation events that dominate the dynamics of the regions
were accurately described by the analysis which benefited from a good observation
coverage of the domain and a robust assimilation system.

To avoid redundancy, some glider profiles were withheld from the assimilation
and used for evaluation. The analysis fitted the withheld observations with the same
accuracy as the assimilated observations. This was due in part to the proximity of
the withheld observations with those that were assimilated.

The assimilated solution with MODAS data fits 80 % and 90 % of the
observations to within one and two standard deviations respectively, while the
corresponding numbers for the first guess are 60 % and 75 %, and 45 % and 63 % for
the free running model. Some posterior misfits, although only a small percentage,
are larger than 7 observations standard deviations, which obviously violate the
Gaussian assumption on the errors in general. Similarly, for the AOSN II data, the
assimilated solution fits 86 % and 95 % of the observations to within one and two
standard deviations respectively, while the corresponding numbers for the first guess
are 68 % and 80 %, and 64 % and 76 % for the free running model.

The largest discrepancies between the first guess and the observations were
mostly confined to the upper ocean. After the first 5-day assimilation the first guess
discrepancies grew quickly from their small initial values, confirming that the model
is being forced by surface fluxes that are not compatible with the observations.
This was purposefully set up in order to test the assimilation’s ability to efficiently
reduce these discrepancies while estimating what appears to be magnitude-wise a
reasonable correction to the surface fluxes.
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Appendix

The discretization of NCOM uses second-order interpolation and differentiation as
defined with the notations:
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and
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The NCOM equations are then discretized in flux conservative form as follows

�xu�yu

2�t
ı2t .�zuu/ D �x�y�z .f C Ccurv/ Nvyx ��yu�zugıx.�

� C �atm � �tp/

��xu�zu 1

�0
ıx.pi /

� ıx
�
�yu�zuua

x Nux


� ıy
�
�xv�zvva

x Nuy


� ız

�
�x�yw

x Nuz


C�x�y�zQ
x
usor C F �

u

C�xu�yuız

0
B@ KM

x

�
�zwx

nC1
ızu

nC1

1
CA (15.14)

�xv�yv

2�t
ı2t .�zvv/ D �x�y�z .f C Ccurv/ Nuxy ��xv�zvgıy

�
�� C �atm � �tp

�

��xv�zv 1

�o
ıy .pi /

� ıx
�
�yu�zuua

y
vx


� ıy

�
�xv�zvva

x
vy


� ız

�
�x�yw

y
vz


C�x�y�zQ
y
vsor C F �

v

C�xv�yvız

0
B@ KM

y

�
�zwy

nC1
ızv

nC1

1
CA (15.15)

�x�y

2�t
ı2t .�z/ D �ıx .�yu�zuua/ � ıy .�xv�zvva/ � ız .�x�yw/ (15.16)

�x�y

2�t
ı2t .�zT / D �ıx

�
�yu�zuuaT

x


� ıy

�
�xv�zvvaT

y


� ız

�
�x�ywT

z


C�x�y�zQTsor C ıx

�
�yu�zuAu

H

�xu
ıxT

n�1

	



15 A Weak Constraint 4D-Var Assimilation System for the Navy Coastal . . . 387

C ıy

�
�yv�zvAv

H

�yv
ıyT

n�1

	

C�x�yız

 
KH

.�zw/nC1
ızT

nC1/

!
C�x�yQrız� (15.17)

�x�y

2�t
ı2t .�zS/ D �ıx.�yu�zuuaS

x
/ � ıy.�xv�zvvaS

y
/ � ız.�x�ywS

z
/

C�x�y�zQSsor C ıx

�
�yu�zuAu

H

�xu
ıxS

n�1

	

C ıy

�
�yv�zvAv

H

�yv
ıyS

n�1

	

C�x�yız

 
KH

.�zw/nC1
ızS

nC1

!
(15.18)

In (15.14, 15.15, 15.16, 15.17 and 15.18),Fu andFv are the horizontal mixing terms,
�atm and �tp are the atmospheric surface pressure and tidal potential respectively,
and �� is the surface elevation term that can be distributed among any of the three
time levels, �� D ˛1�

nC1 C ˛2�
n C ˛3�

n�1, according to the temporal weighting
terms ˛1, ˛2, or ˛3, which are specified by the user. AM and AH are the horizontal
mixing coefficients for the velocity and scalar fields (temperature and salinity)
respectively, likewise KM and KM for the vertical mixing, Q is a volume flux
source term (with Tsor, Ssor, usor, and vsor as the term source values), Qr is the
solar radiation, � is a function describing the solar extinction, �x, �y and �z
denote the grid-cell dimensions defined at the center of the grid cells, and the
superscripts u, v and w indicate the grid-cell dimensions computed at those velocity
locations on the staggered Arakawa C-grid. f is the Coriolis term, �0 and pi are
the reference density of seawater and the internal pressure, respectively, and the
horizontal advection velocity terms are given by ua and va. The term Ccurv is used
to correct the horizontal advection of momentum for the horizontal curvature of the
grid. It is calculated as

Ccurv D Nvy ı2x.�y/
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(15.19)

The horizontal mixing terms for the momentum equations are given by
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where the mixing coefficient is modeled according the Smagorinsky formula
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with the magnitude of the eddy coefficient being scaled by the constant Csmag. The
vertical mixing coefficients are computed using the turbulence closure by Mellor
and Yamada in either 2 or 2.5 version.

The computation for the free-surface mode is governed by the equations:
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where ˇ1, ˇ2 and ˇ3 are positive constants define by the user with ˇ1Cˇ2Cˇ3 D 1,
DuGu and DvGv are the vertical integrals of all the terms in the right hand side
of (15.14) and (15.15) respectively, with the exception of the surface elevation
gradient terms and the vertical mixing, and Du D NDx and Dv D NDy . The free-
surface mode (15.25) is solved by first substituting .Du Nu/nC1 and .Dv Nv/nC1 from
the time discretized (15.23) and (15.24) into (15.25), resulting in an elliptic equation
that is solved for the surface elevation at time level n C 1, which is then substituted
back in (15.23) and (15.24) for computing the barotropic transports Du Nu and DvNv
from which the barotropic velocities are obtained.

The vertical discretization uses a combination of sigma layers and z-levels in a
three-tiered distribution with (1) free sigma layers near the surface that expand and
contract with the free surface elevation, (2) fixed sigma layers that do not vary with
the free surface, and (3) fixed z levels that allow for partial bottom cells for a better
match of the bottom topography.
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Chapter 16
Ocean Ensemble Forecasting and Adaptive
Sampling

Xiaodong Hong and Craig Bishop

Abstract An ocean adaptive sampling algorithm, derived from the Ensemble
Transform Kalman Filter (ETKF) technique, is illustrated in this Chapter using
the glider observations collected during the Autonomous Ocean Sampling Network
(AOSN) II field campaign. This algorithm can rapidly obtain the prediction error
covariance matrix associated with a particular deployment of the observation
and quickly assess the ability of a large number of future feasible sequences of
observations to reduce the forecast error variance. The uncertainty in atmospheric
forcing is represented by using a time-shift technique to generate a forcing ensemble
from a single deterministic atmospheric forecast. The uncertainty in the ocean
initial condition is provided by using the Ensemble Transform (ET) technique,
which ensures that the ocean ensemble is consistent with estimates of the analysis
error variance. The ocean ensemble forecast is set up for a 72 h forecast with a
24 h update cycle for the ocean data assimilation. Results from the atmospheric
forcing perturbation and ET ocean ensemble mean are examined and discussed.
Measurements of the ability of the ETKF to predict 24–48 h ocean forecast error
variance reductions over the Monterey Bay due to the additional glider observations
are displayed and discussed using the signal variance, signal variance summary map,
and signal variance summary bar charts, respectively.

16.1 Introduction

The impact of supplemental observations on the forecast error reduction depends
on: (a) the size of the forecast error at the location where the observation is taken,
(b) the assumptions used in the data assimilation scheme about the strength of the
correlation between errors in forecasts of the observed variable and errors in all other
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variables defining the model state, (c) the actual correlation between errors of the
observed variable and the model state variables, and (d) the growth and movement
of the change in the estimated state imparted by the supplemental observations. In
many applications, there is a special region called a verification region and a special
time called a verification time. One often wishes to collect and use supplemental
observations at an earlier observation time to minimize the forecast error variance
within the verification region at the verification time. The problem of identifying the
best location for deploying mobile observation platforms is often called the adaptive
sampling or targeting problem. The importance of this problem has been heightened
in oceanic applications by the advent of Autonomous Underwater Vehicles (AUVs)
and underwater gliders. These observing platforms need to be told where to go and
when. Since one must decide where to take the supplemental observations well
before the targeting time, it is critical to solve the adaptive sampling problem in
an accurate and timely manner. The ETKF based technique is used to provide the
guidance of the ocean adaptive sampling for the supplemental ocean observations.

The ETKF uses an ensemble forecast initialized at an initialization time to
quickly obtain the prediction error covariance matrix associated with a particular
deployment of observation by solving a low rank Kalman filter equation. The
technique can quickly assess the ability of a large number of future feasible
sequences of observations to reduce the forecast error variance. The ETKF was
developed by Bishop et al. (2001) and first used to provide the optimal flight
tracks, where Global Positioning System (GPS) dropwindsondes were released
during the Winter Storm Reconnaissance (WSR) program (Szunyogh et al. 2000),
for improving the 24–72 h forecasts over the continental United States (Majumdar
et al. 2002). It was also used for the medium range forecasts through a single
model ensemble (Buizza et al. 2003; Sellwood et al. 2008), and a multi-model
ensemble (Majumdar et al. 2010), as well as for tropical cyclone predictions
(Majumdar et al. 2011). While the ETKF technique is increasingly used in the area
of atmospheric adaptive sampling, there are relatively few applications in the area
of ocean adaptive sampling.

In this study, the ETKF ocean adaptive sampling technique is applied to the
glider data collected during the AOSN II field campaign that took place in the
Monterey Bay in August 2003. The goal for the month-long field experiment was
to build a fundamental understanding for upwelling and relaxation processes as
well as their impact on the other biological (ecosystem productivity) and chemical
(nutrient fertilization) counterparts in the Monterey Bay. To achieve the goal, it was
important to develop strategies to command sophisticated robotic vehicles to the
locations where the observations collected by them could be the most useful ones
(AOSN 2003). Multiple AUVs and underwater gliders were deployed during the
field campaign to collect data so that the data could be integrated into ocean forecast
models for improving the model performance.

The ocean ensemble and adaptive sampling technique presented here is a
continued effort of the verification of ocean modeling project (Hong et al. 2009a).
The deterministic run in Hong et al. (2009a) is used as the control run of the
ensemble simulation in this study. Consequently, the model, model configuration,
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Fig. 16.1 The NCOM and NCODA domain; (b) The COAMPS nested domain

and domain setting are exactly the same in both studies. The ocean model is
the Navy Coastal Ocean Model (NCOM, Martin 2000) with the multivariate
analysis of Navy Coupled Ocean Data Assimilation (NCODA, Cummings 2005).
The atmospheric forcing is obtained from a deterministic operational forecast
using Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS, Doyle
et al. 2008). Figure 16.1 shows the domain setting for the atmospheric and oceanic
components of COAMPS as well as NCODA, respectively. The domain for the
ocean components is within the innermost nested domain of the atmospheric
component of COAMPS.

The rest of the Chapter is organized as follows. In Sect. 16.2, the description of
the ETKF adaptive sampling is provided. Section 16.3 contains the discussion of the
atmospheric forcing ensemble generation. Section 16.4 presents the results from
the ocean ensemble forecast. Section 16.5 illustrates the application of the ocean
adaptive sampling for the AOSN II glider observations. Summary and discussion
are presented in Sect. 16.6.

16.2 Ocean Adaptive Sampling Technique

In ETKF adaptive sampling, the observations are divided into: (1) non-adaptive or
routine observations such as satellite and buoy observed SST, satellite observed
altimeter, mooring observed ocean profiles and high frequency radar observed
surface current, and (2) adaptive observations such as aircraft observed SST
and observations collected by autonomous underwater gliders. The first step is
to estimate routine analysis error covariance matrix valid for the ocean routine
observations. The second step is to estimate the reduction in forecast error variance
due to the supplemental ocean adaptive observations.
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16.2.1 Analysis Error Covariance for the Routine Observations
with the ET Technique

To be consistent with the ET technique of ensemble generation, we need to utilize
a guess of the analysis error covariance matrix Pag associated with the routine
observational network. Let the columns of the nxK matrices Xo and Xv list the raw
ensemble perturbations at the observation and verification times, respectively, of the
ensemble forecast initialized at the initialization time.

The forecast perturbations Xo can be transformed into a set of perturbations Xr

that are consistent with Pag using

Xr D XoT (16.1)

where

T D B—ƒ�1=2BT (16.2)

and where B D Œb1;b2; : : : ;bK� is a K � K orthogonal matrix containing the

eigenvectors of the symmetric matrix
�

XoTPa�1
g X0=N


. In other words,

XoTPa�1
g Xo

N
D BƒK � KBT : (16.3)

where ƒD diag .�11; �22; : : : ; �KK/ is a K � K diagonal matrix listing the eigen-

values of
�

XoTPa�1
g X0=N


. Since the sum of the forecast perturbations is equal to

zero, one of these eigenvalues will be equal to zero. Consequently, provided each
ensemble contains K�1 linearly independent perturbations,ƒ can be written in the
form,

ƒK � K D
�
ƒ.K�1/ � .K�1/ 0
0 0

�
(16.4)

where ƒ.K�1/ � .K�1/ is a (K�1)�(K�1) diagonal matrix whose diagonal elements
are all greater than zero. The —ƒ used in (16.4) is obtained fromƒ by setting its zero
eigenvalue equal to 1, in other words,

—ƒK � K D
�
ƒ.K�1/ � .K�1/ 0
0 1

�
(16.5)

Note that while —ƒ has an inverse, the inverse ofƒ does not exist. This adjustment of
the eigenvalue matrix is permissible because it does not affect the sample covariance
matrix of initial perturbations implied by (16.3). To see this, first note that pre and
post multiplying (16.5) by the eigenvector bK corresponding to the zero eigenvalue
�K D 0 shows that
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bTKXoTPa�1
g X0bK
N

D 0; and consequently jXobK j D 0: (16.6)

Second, note that if �ii and –�ii denote the diagonal elements of ƒ and —ƒ,
respectively, we may deduce that the perturbation ensemble sample covariance
matrix Pre associated with the transformed ensemble perturbations is given by

Pre D XrXrT

K � 1
D XoTTTXoT

K � 1 =
XoB—ƒ�1BT XoT

K � 1

D 1

K � 1
KX
iD1

xoi bib
T
i xoT

i

—�1=2i i
D 1

K � 1

K�1X
iD1

xoi bib
T
i xoT

i

�
1=2
i i

(16.7)

where bi is the ith column of B. Equation 16.7 shows that because jXobK j D 0,
Pre is entirely independent of the value assigned to Kth eigenvalue. Throughout this
discussion we will assume that every ensemble contains K�1 linearly independent
ensemble perturbations.

16.2.2 Signal Variance and Forecast Error Variance Reduction
for Adaptive Observation with the ETKF Technique

If the true analysis error covariance at the observation time after assimilating all
routine observations was given by Pre D XrXrT

K�1 then the posterior analysis error
covariance Pai after assimilating the ith feasible deployment of adaptive observations
yai in addition to the routine observations is given by

Pai D Per � Per QHaT
i

� QHa
i Per QHaT

i C I
��1 QHa

i P
e
r (16.8)

where QHa
i describes the mapping from the model state vector to the observation

vector normalized by the inverse square root of the observation error covariance
R�1=2
i associated with the ith feasible deployment; in other words,

QHa
i x
t D R�1=2

i yti (16.9)

where xt denotes the true model state and yti denoted the true value of the observed
variable. As shown in Bishop et al. (2001), if

Pai D Xa
i X

aT
i

K � 1
(16.10)
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where Xa
i is a n�K matrix then

Xa
i D XrCi .�i C I/�1=2 CT

i (16.11)

where the K�K orthonormal matrix Ci and the K � K diagonal matrix �i is given
by the eigenvector decomposition

XaT
r HaT

i R�1
i Ha

i X
a
r

K � 1
D Ci�iCT

i : (16.12)

The columns of Xa
i may be interpreted as transformed ensemble perturbations

whose covariance gives the analysis error covariance at the observation time
assuming that the ith deployment of adaptive observations had been assimilated.
To see the impact of the adaptive observations at the verification time, one needs to
be able to propagate each of the columns of Xa

i through time in a manner consistent
with the governing dynamical equations. A computationally expensive way of doing
this would be to define a tangent linear model M such that

M
�

xoc C xaj i


�M �
xoc
� � Mxaj i (16.13)

where M is the non-linear dynamics propagator that maps state vectors from the
observation time to the verification time, xoc is the control forecast at the observation
time and xaj i is the jth column of Xa

i . If one had this operator in hand, then the
forecast error covariance matrix given the ith deployment of observations Pv

i would
be given by

Pv
i D MXa

i

�
MXa

i

�T
K � 1

(16.14)

However, using (16.11) and (16.1) in (16.14) gives

MXa
i D .MXo/TC .� C I/�1=2 CT : (16.15)

Now MXo represents a tangent linear approximation to the propagation of the raw
untransformed ensemble perturbations at the observation time to the verification
time. Of course, the non-linear equations map the observation time raw pertur-
bations Xo to the verification time perturbations Xv. These are directly available
from the raw ensemble without any additional computational expense. Hence, a
computationally inexpensive way of computing Pv

i that is more accurate than that
given by (16.14) is

Pv
i D Xv

iX
vT
i

K � 1 ;where Xv
i D XvTCi .�i C I/�1=2 CT

i : (16.16)

Equation 16.16 gives the forecast error covariance of the model variables given
the ith deployment of adaptive observations. Often the controller of adaptive
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observational resources will want to use them to minimize the error variance of
some q-vector function fv of some subset(s) of the forecasted variables.

A perfect raw ensemble would provideK draws from the distribution of verifying
functions given the forecast. In particular, the jth ensemble member gives

fv
j D H v

�
xv
j


D H v

h
Nxv C

�
xv
j � Nxv

i

' H v .Nxv/C Hv
�

xv
j � Nxv


(16.17)

where Nxv is the mean of the ensemble forecast and where H v is the non-linear
function of interest and Hv is the derivative of the non-linear function with respect to
the model variables about the mean of the ensemble forecast Nxv. Thus, the estimate
of the qxq forecast error covariance matrix of the vector function f associated with
the forecast upon which targeting decisions is made is given by

D�
f � ft

� �
f � ft

�T E ' 1

K � 1

KX
jD1

�
H v

�
xv
j


�H v

�
xv
j

� �
H v

�
xv
j


�H v

�
xv
j

�T

' 1

K � 1

KX
jD1

Hv
�

xv
j � Nxv

 �
xv
j � Nxv

T
HvT

D HvXv .HvXv/T

K � 1
: (16.18)

whereH v
�

xv
j


denotes the mean of the ensemble of vector functions. Using (16.18)

and (16.16) leads to the following estimate of forecast error covariance matrixD
.f � ft / .f � ft /T

E
i

for the vector function f given routine observations and the ith

deployment of adaptive observations.

D�
f � ft

� �
f � ft

�T E
i

� HvXv
iX

vT
i HvT

K � 1

D HvXvTCi .�i C I/�1 CT
i TT XvTHvT

K � 1

� ŒH v .Xv/�TCi .�i C I/�1 CT
i TT ŒH v .Xv/�T

K � 1 (16.19)

where the qxK matrix ŒH v .Xv/� is given by

ŒH v .Xv/�

D
h�
H v

�
xv
1

� �H v .xv/

;
�
H v

�
xv
2

��H v .xv/

; : : : ;

�
H v

�
xv
K

� �H v .xv/
i
:

(16.20)



398 X. Hong and C. Bishop

Thus, the ETKF allows non-linear cost functions without the need for the first
derivative (Jacobian) of the non-linear verification time functions of interest.

Equation 16.19 gives the forecast error covariance of the user specified functions
of interest for the ith deployment of adaptive observations. Often, users will
reduce the information in this matrix to a single cost function by, for example,
evaluating the trace of the matrix. To find which of all feasible deployments
of adaptive observations minimizes the user specified cost function, one simply
evaluates (16.19) for all feasible deployments of adaptive observations and chooses
the deployment which minimizes the cost. Since the transformation matrix (16.2)
associated with the routine observational network and the ŒH v .Xv/� matrix only
need to be evaluated once, the main computational expense associated with each
deployment is the K � K eigenvector decomposition (16.12). For ensemble sizes
smaller than 100, this is a trivial expense on today’s CPUs and thousands of
networks can be evaluated in a matter of minutes on moderate computing resources.

To highlight and predict the impact of the targeted observations, it is also of
interest to predict the covariance of the distribution of changes to the forecast that
would be imparted by the ith observational network given an infinite sampling of
the distributions of observation and forecast. As shown in Bishop et al. (2001), at
the observation time this covariance is given by

D�
xoi � xor

� �
xoi � xor

�T E D Per QHaT
i

� QHa
i P

e
r

QHaT
i C I

��1 QHa
i P

e
r

D XoTCi�i .�i C I/�1 CT
i TT XoT

K � 1
(16.21)

where xor represents the minimum error variance state estimates at the observation
time given routine observations while xoi represents the minimum error variance
state estimates at the observation time given routine observations and the ith
deployment of adaptive observational resources. Thus, it represents the covariance
of changes to the state estimate due to adaptive observations. The changes due to the
adaptive observations are called signals and the covariance of these changes is called
the signal covariance. The expression for the signal covariance at the verification
time is

D�
xv
i � xv

r

� �
xv
i � xv

r

�T E D XvTCi�i .�i C I/�1 CT
i TTXvT

K � 1
(16.22)

As can be seen by comparing (16.21) with (16.8) and as was discussed in Bishop
et al. (2001), for an optimal data assimilation scheme, the signal variance is precisely
equal to the reduction in forecast error variance due to the observations that created
the signals. Comparison of geographical plots of the diagonal elements of (16.21)
and (16.22) with actual changes in forecasts due to targeted observations can give
a good indication of whether the ETKF signal variance predictions are reasonable
or not.
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16.3 Atmospheric Forcing Ensemble Generation

Based on the theory that model forecast errors are often well described in terms
of shifting and timing errors (Hoffman et al. 1995), the uncertainty of atmo-
spheric forcing can be represented by adding perturbations to surface fields from
a single deterministic atmospheric forecast through spatial and temporal deforma-
tion. The amplitude of the perturbations is chosen to be small enough to ensure that
the perturbed field lies within the error bounds of the forecast. To control the
amplitude and horizontal correlation length scale of the random perturbations, the
covariance matrix of the shift-vector ıt of shifts at a certain time is given by:

˝
ıtıtT

˛ D DEƒETD (16.23)

where D is a diagonal matrix of the variances we wish to assign to the random
process at each grid point and EƒET defines a correlation matrix whose diagonal
values are all equal to 1. For simplicity, we chose the columns of E to be
the two-dimensional sinusoids and cosinusoids that define a basis for the two-
dimensional domain upon which the ocean state is defined. Let a be a random
normal vector with zero mean and covariance

˝
aaT

˛ Dƒ. Now consider random
vectors y obtained using y D Ea. Note that since the columns of E are the sinusoidal
basis used in inverse Fourier transform, the operation Ea is simply an inverse Fourier
transform. To ensure that the random perturbations satisfy (16.1), we generate each
perturbation using

ıt D DEa;where hai D 0 and
˝
aaT

˛ D ƒ (16.24)

In other words, a random perturbation is created by

1. Creating a vector b of n normally independently identically distributed numbers
each of which has a mean of zero and a variance of 1.

2. Letting a D ƒ1=2b.
3. Performing the inverse Fourier transform implied by Ea.
4. Performing the operation ıt D DEa.

To see that this process creates random perturbations that satisfy (16.1) note that

˝
ıtıtT

˛ D ˝
DEaaTET D

˛

D DE
˝
aaT

˛
ET D because E and D are constant

D DEƒET D; because
˝
aaT

˛ D ƒ (16.25)

The scales and magnitudes of the random perturbations are thus determined by the
user’s specification of D andƒ. Here, we chose D D ˛I so that the constant ˛ gives
the variance at each point and let the diagonal elements �ii of ƒ be given by the
Gaussian function of the total wavenumber to which they pertain that is given by
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�ii .k; l/ D C � exp

��.k2 C l2/

L2

	
(16.26)

where k and l are non-dimensional wave numbers (associated with the indexing of
grid points in the FFT routine), L (a non-dimensional length scale) controls the
horizontal correlation length scale in spectral space. Decreasing L increases the
spatial scale of the random fields by (16.24). The scale C is an amplitude factor
that is used to ensure that the diagonal elements of EƒET are equal to unity and
hence that EƒET is a valid correlation matrix. The values of C;L and ˛ used in
our experiments are 0.5, 10, and 0.5 h, respectively. With these parameters, (16.24)
produces a spatially correlated field of time shifts with a standard deviation of
˛ D 0:5 h.1

To create a time shift vector ıt.t/ that varies in time as well as space, we used
(16.24) to create two entirely independent time-shift vector shifts ıt.ti / and ıt.tiC1/
corresponding to the discrete times ti and tiC1. These two times might be 24 or 72 h
apart depending on the perceived decorrelation time of atmospheric forcing errors.
(In our study independent fields were generated every 24 h). To ensure that the time
shift vector varied smoothly between these two times, we set

ıt.t/ D ıt.ti / cos

�
 

2

�
t � ti

tiC1 � ti

	�
C ıt.tiC1/ sin

�
 

2

�
t � ti

tiC1 � ti

	�
(16.27)

Equation 16.27 implies that the evolution of the covariance of time shifts is given by

D
ıt .t/ ıt .t/T

E
D DiEƒiETDi cos2

�


2

�
t � ti
tiC1 � ti

	�

C DiC1EƒiC1ETDiC1 sin2
�


2

�
t � ti
tiC1 � ti

	�
(16.28)

This formulation allows both the scale and magnitude of the deformations to be
a function of time. Note also that in the special case that DiC1EƒiC1ETDiC1 D
DiEƒiET Di , the trigonometric rule cos2 	C sin2 	 D 1 ensures that the covariance
of the time shifts given by (16.27) and (16.28) is constant even though each
individual time shift is smoothly evolving through time.

For the experiments reported in this Chapter, the eigenvector matrix E was
comprised by the set of sinusoidal basis functions spanning a two dimensional plane.
By making the domain on which the time shifts ıt were generated larger than that
of the regional ocean model, it was possible to produce aperiodic time-shifts.

The temporally shifted fields include surface wind, air temperature, relative
humidity, precipitation, sea-level pressure, and short- and long-wave radiation. Each

1This technique has been used to perturb an initial best-guess unperturbed state of sea surface
temperature (SST) to provide an ensemble of ocean-surface lower boundary conditions for
atmospheric ensemble forecast (Hong et al. 2011).
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Fig. 16.2 Original (first column), shifted (second column) and difference between original and
shifted u-component (upper panel) and v-component of surface 10-m wind speed from COAMPS
forecast for AOSN II domain (Monterey Bay)

randomly shifted field is used to compute the surface wind stress and heat fluxes for
each ensemble member. The NCOM-predicted SST is interactively feedback to the
surface latent and sensible heat fluxes using the drag coefficient from the standard
bulk formulas of Kondo (1975) (Martin and Hodur 2003; Hong et al. 2007, 2009b).
The surface salt flux for NCOM is calculated from the computed latent heat flux and
the COAMPS precipitation.

Figure 16.2 shows u- and v- components of surface 10-m wind from a single
COAMPS deterministic forecast, a time shifted field and the difference between
the original and shifted fields. The high-resolution COAMPS atmospheric forecast
presents a strong northwesterly, which is favorable for the ocean coastal upwelling
for the Monterey Bay during the AOSN II field campaign (Doyle et al. 2008).
The northwesterly lasts from 7 to 19 August and induces an upwelling period.
The perturbed atmospheric forcing fields for a particular ensemble member and
forecast lead time present smooth features over the entire domain. The northwesterly
wind is preserved in the perturbed fields so that the upwelling will be induced in
each ocean ensemble forecast with the inclusion of atmospheric forcing uncertainty.
The difference between the original and shifted fields displays various locations
of maximum perturbation, which explains the feature of random distribution from
space and time shifting.
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16.4 Ocean Ensemble Forecast

Ocean ensemble generation is based on the ET technique, which has been used
for atmospheric ensemble generation (Bishop et al. 2009) and for coupled atmo-
sphere/ocean ensemble generation (Holt et al. 2011). The ET technique provides
initial perturbations that (1) have an initial variance consistent with the best available
estimates of initial condition error variance, (2) are dynamically conditioned by
a process similar to that used in the breeding technique (Toth and Kalnay 1993,
1997), (3) add to zero at the initial time, (4) are quasi-orthogonal and equally
likely, and (5) partially respect mesoscale balance constraints by ensuring that each
initial perturbation is a linear sum of forecast perturbations from the preceding
forecast. The analysis error variance is used to constrain the magnitude of initial
perturbations that represent transformations or linear combinations of ensemble
forecast perturbations, so called ET perturbations (Bishop and Toth 1999; Bishop
et al. 2009). The analysis error variance used in this study is scaled from the NCODA
ocean analysis to adjust large untruthful values from the sparse ocean observations.
A complete description of the ET technique and the detailed steps to creating an ET
ensemble can be found in Bishop et al. (2009).

The ocean ensemble with 20 ensemble members is initialized from a set of
perturbations derived from a control deterministic NCOM run for one month
from August 1–31, 2003. The NCOM monthly run is performed in a sequential
incremental update cycle with an update interval of 24 h and produces 72 h forecast
at each analysis update time (Hong et al. 2009a). The differences between every 12 h
forecast (up to 24 h) and monthly mean generate 62 perturbations, which provide a
database for random selection of initial ensemble perturbations.

From August 7–19, the winds are upwelling favorable with north/northwesterly
(Doyle et al. 2008) and induce strong upwellings with two upwelling centers
developed off Point Ano Nuevo and Point Sur (Hong et al. 2009a). Ensemble means
display stronger upwellings from the two upwelling centers than in the control run
and provide features more comparable with the observation (Fig. 16.3). Stronger
horizontal SST gradients occur between the upwelled cold water and the offshore
warm water. The seaward advection is more consistent with the observation from
the ensemble mean on August 12 (upper panel in Fig. 16.3). Later in the upwelling
period, a cold tongue of upwelled water off Point Ano Nuevo is advected southward
across the mouth of the Monterey Bay and joins with the upwelled cold water from
Point Sur, resulting in a large, cold-water region located just off the coast both in
ensemble mean and the observation. These results indicate that the ensemble means
are more accurate to the observation MCSST than the control run.

The ensemble spread increases with the forecast lead time as shown for SST
forecast in Fig. 16.4. Large ensemble spread transports southward with time, reflect-
ing the upwelled cold water movement. It indicates that the forecasted transport of
upwelled cold water across the mouth of the Monterey Bay during the upwelling
period has high uncertainty.
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Fig. 16.3 SST from NCOM control run, ensemble mean and NOAA POES AVHRR HRPT
(Courtesy NWS and NOAA Coastwatch). The model outputs are from 18 h forecast valid at 18Z
August 12, 2003 for the upper panel and 18Z August 15, 2003 for the lower panel

Fig. 16.4 Ensemble spread for 24, 48 and 72 h forecast initiated from August 12, 2003

16.5 Adaptive Sampling for the AOSN II Glider Observation

The underwater vehicle network features a fleet (up to 15 gliders) of autonomous
underwater gliders during the AOSN-II field campaign. Underwater gliders are
small, relatively simple and inexpensive, winged, buoyancy-driven submersibles.
They are ideal platforms to collect scientific data for the ocean adaptive sampling.
The deployment of the gliders are efficient and effective by allowing them to change
plans on-line in response to the state and environmental measurement needs with
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Fig. 16.5 Illustration of ensemble initialization time, decision time, targeting time and verification
time for adaptive sampling used in this study

daily time scale and faster time scale (on the order of every two hours) (Leonard
and Robinson 2003). With the ability to frequently update the glider plan, the time
for decision-making for optimal glider deployment can be shorter than other type
of platform deployment, such as aircraft equipped with GPS dropwindsondes for
upstream observation of significant weather event (Majumdar et al. 2002).

Key times involved in the decision-making process for the adaptive sampling
application of AOSN II glider observation are illustrated in Fig. 16.5. The goal
of the adaptive sampling is to use an available ensemble forecast to identify the
future glider path that would maximally reduce the forecast error variance in the
verification region at the verification time. As an example, consider the ensemble
forecast initialized at the initialization time of 00 UTC Aug 12th. A new forecast will
be initialized at the targeting time of 00 UTC Aug 13th using targeted observations.
The decision time is the time when one must decide the location to which the glider
should be sent in order to minimize the error norm of the forecast to be initialized
on 00 UTC Aug. 13th. The verification time selected here is 00 UTC Aug 14th to
verify the forecast error reduction for the upwelled cold water transport across the
mouth of the Monterey Bay.

For a group of adaptive observations, the signal variance, which would be equal
to the reduction in forecast error variance in an optimal system, is used to identify
the best location for the deployment. The verification region is placed in a location
within which the ensemble variance is large at the verification time. This choice of
verification region increases the chances that the targeted observations will result in
a significant reduction in forecast error (Bishop et al. 2006). Figure 16.4b illustrates
the fact that for a verification time 48 h from the ensemble initialized, at 00 UTC
Aug. 12th, there is a large ensemble spread across the mouth of the Monterey Bay
due to the uncertainty of the southward transportation of upwelled cold water from
Point Ano Nuevo. The verification region selected to enclose some of this high
spread region is shown by the ellipse on Fig. 16.4b. The possible location for optimal
adaptive deployment can be tested in the two areas where the ensemble spread
is significant at the targeting time. As shown in Fig. 16.4a, there are two possible
locations with one off the mouth of the Monterey Bay (location #1) and another one
in the south off Point Sur coast (location #2).

Nine adjacent “test” observations of surface temperature are placed for these
two locations centered at 36:7ıN, 122:5ıW and 36:2ıN, 122:1ıW, respectively and
used to calculate signal variance at the targeting and verification times (Fig. 16.6).
There are high signal variances for both locations of the adaptive observation at
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Fig. 16.6 Signal variance for nine observations centered at 36:7ıN, 122:5ı W for (a) targeting
time 00 UTC 13 Aug 2003 and (b) verification time 00 UTC 14 Aug 2003. Signal variance for
nine observations centered at 36:2ı N, 122:1ı W for (c) targeting time same as (a) and verification
time same as (b). The black ellipse contour indicates verification region

the targeting time. It shows larger signal variances at the location #1 (Fig. 16.6a)
compared to the location #2 (Fig. 16.6c) due to larger ensemble spread at the
targeting time. The signal variance at the verification time has larger values within
the verification region from the location #1 (Fig. 16.6b) compared to the location
#2 (Fig. 16.6d). This suggests the first location for the deployment is more likely to
improve the forecast than the second location.

Figure 16.7a depicts the predicted reduction in forecast error variance at the
verification time due to a surface temperature observation at the targeting time at the
location indicated by the white cross. By integrating this field across the verification
region we obtain a prediction of the reduction in forecast error variance due to an
observation at the white cross. Figure 16.7b plots the mean reduction in forecast
error variance as a function of the location of the test observation. We refer to maps
like Fig. 16.7b as a “summary map”.

If gliders are available for adaptive sampling, summary bar charts can be used to
choose among several feasible glider paths. At a particular location, a glider needs
to be directed which direction it will be towards to. To demonstrate how signal
variance summary bar chart can be used, assuming that for a particular location,
a glider can have eight possible tracks (red lines in Fig. 16.7b). The predicted
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Fig. 16.7 (a) Signal variance at the verification time for the feasible deployment of adaptive
observations indicated by the white crosses, (b) Summary map of average signal variance over
the verification area at the verification time as a function of a single temperature observation, (c)
Bar chart of signal variance for eight glider tracks displayed in (b)

reduction in forecast error variance within the verification region at the verification
time as a function of each of the eight possible glider paths is plotted as a bar chart
(Fig. 16.7c). Each bar gives the ETKF prediction of the reduction of forecast error
variance within the verification region to be associated with a particular glide track.
Given knowledge about where a glider is at the beginning of the targeting time,
these bar charts can be used to direct the glider along the path predicted to have the
maximum impact on the forecast error reduction. Thus, the signal variance given on
the bar chart suggests that track seven is the best of these eight glider deployments.

During the AOSN II field campaign, up to 15 different gliders are crisscrossing
the Monterey Bay at any given time. For example, thirteen gliders are deployed
on Aug 13, 2003 during a 24 h observation time window and each takes the path
indicated in Fig. 16.8a. As a test of a target technique, it is of a great interest to see
which of these 13 glider paths would have been the best choice if one were only
going to assimilate observations from just one of the 13 gliders. Figure 16.8b gives
the ETKF predicted reduction in forecast error variance in the verification region at
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Fig. 16.8 (a) Glider tracks on Aug 13, 2003. (b) Signal variance summary bar chart for 13 glider
tracks shown in (a)

the verification time as a function of the glider track. It shows that, according to our
implementation of the ETKF, path 6 would have been the best followed by path 2
and 11.

16.6 Summary

The purpose of this Chapter is to illustrate the development and present preliminary
results of the ETKF ocean adaptive sampling system that incorporates three
distinctive techniques: (1) a time-shifting technique that enables an ensemble of very
high resolution atmospheric forecasts to be generated from a single high resolution
ensemble member, (2) an ET ensemble generation technique for the generation of
ocean ensemble, and (3) an ETKF technique for ocean adaptive sampling. The
system is applied to the Monterey Bay area during the AOSN II field campaign
in the month of August 2003.

The atmospheric forcing from COAMPS AOSN II forecast is shifted smoothly
in time to transfer a single deterministic forecast to an ensemble for ocean ensemble
forecast. The shifted atmospheric forcing fields are able to preserve the important
aspects of the atmospheric features so that each ocean ensemble member is forced
with an approximation to a realization of the true atmospheric state given previous
observations.

The NCOM ensemble mean is found to be able to give a better representation of
the upwelling features than the single deterministic run during the upwelling period.
Two upwelling centers are found. One is near the coast of Point Ano Nuevo and the
other near Point Sur. The ensemble mean is also found to be closer to the features
in the satellite observations than the ones in the control forecast. Furthermore,
the ensemble mean is closer to the observed cold water seaward movement and
transport across the mouth of the Monterey Bay during an earlier and later time of
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the upwelling period, respectively. The ensemble spread is found to be maximized
near the upwelled cold water transport across the mouth of the Monterey Bay.

An ocean adaptive sampling system derived from the ETKF technique is
illustrated using the data collected during the AOSN II field campaign. For a
large number of possible adaptive observations, a signal variance summary map
provides an overview of the predicted reduction in forecast error variance within the
verification region as a function of the location of a plausible future observation. The
predicted reduction in forecast error variance for a large number of possible glider
tracks is summarized and displayed in a bar chart for each feasible deployment.
The real glider tracks from the AOSN II field campaign are used to derive a
signal variance bar chart with 13 possible glider deployments. The ETKF adaptive
sampling distinguishes one path with a large summarized signal variance near the
verification area. The use of this path, in our view, would have been most likely to
reduce the forecast error within the verification region.

As discussed in Majumdar et al. (2002), the quantitative assessments of the
accuracy of ETKF signal variance predictions require a large number of events.
Unfortunately, the limited events during the AOSN II do not provide enough cases
for such quantitative assessments to be made. Nevertheless, the aforementioned
experiment indicates that the adaptive sampling locations selected using the tech-
nique presented here are, at the very least, consistent with the group velocity of
wave packets of ocean forecast errors that are unlikely to propagate very far over
a 24 h period in the ocean. For the future work, we hope to use a large number
of cases to quantitatively measure the accuracy of the ETKF prediction of forecast
error variance reduction in the ocean prediction.
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Chapter 17
Climate Change and Its Impacts on Streamflow:
WRF and SCE-Optimized SWAT Models

Shie-Yui Liong, Srivatsan V. Raghavan, and Minh Tue Vu

Abstract It has been noted that global warming is likely to increase both the
frequency and severity of weather events such as heat waves and heavy rainfall.
These could lead to large scale effects such as melting of large ice sheets with major
impacts on low-lying regions throughout the world (Intergovernmental Panel on
Climate Change, IPCC 2007a). Since these projected climate changes will impact
water resources, agriculture, bio-diversity and health, one of the key challenges of
climate research is the application of climate models to quantify both future climate
change and its impacts on the physical and biological environment. One of the
widely studied impacts is on hydrology, right from large scale river basins, river
deltas through to small scale urban reservoirs. In this context, this chapter discusses
some hydrological impact studies and presents results of a study done over the Sesan
catchment in Lower Mekong Basin (in Southeast Asia). Sensitivity analysis and
an optimization calibration scheme, SCE-UA algorithm, are applied to the SWAT
model.

17.1 Introduction

17.1.1 General Introduction

The Intergovernmental Panel on Climate Change (IPCC) has mentioned in its Fourth
Assessment Report (AR4) that “physical and biological systems on all continents
and in most oceans are already being affected by recent climate changes and climatic
effects on human systems, although more difficult to discern due to adaptation and
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non-climatic drivers, are emerging” (IPCC 2007a). Since these climate changes are
likely to alter global surface temperatures, precipitation patterns, sea levels, extreme
events and other aspects of climate on which the natural environment and human
systems depend, substantial impacts are expected on, for example, water resources,
bio-diversity, agriculture and human health. Hence, adaptation to climate change has
become globally very important and especially is of great concern to the developing
countries. Though the impacts of climate change are expected to affect all natural
systems, water resources are likely to be impacted deeply. Current vulnerabilities
to climate are strongly correlated with climate variability, in particular precipitation
variability. Increased changes in precipitation intensity and variability are projected
to increase the risks of flooding and drought in many areas. While temperatures
are expected to increase everywhere over land and during all seasons of the year,
although at different increments, precipitation is expected to increase globally and
in many river basins, but to decrease in many others (IPCC 2007a). However,
quantitative projections of changes in precipitation, river flows and water levels at
the river-basin scale remain uncertain (IPCC 2001).

The IPCC also notes that semi-arid and arid areas are particularly exposed to
the impacts of climate change on freshwater and many of these areas such as the
Mediterranean basin, western USA, southern Africa and north-eastern Brazil are
likely to suffer a decrease in water resources due to climate change (IPCC 2007b).
The IPCC also reports that current water management practices are insufficient to
counter the possible negative impacts of climate change on water supply, flood risk,
health, energy and aquatic ecosystems. For the development of adaptation policies,
realistic projections of climate change and its impacts on water resources are needed.
Global Climate Models, also known as General Circulation Models or GCMs are
primary tools for prediction of global climate. Precipitation, a principal input signal
to water systems, is not reliably simulated in these global climate models due to
their coarse resolutions (IPCC 2007b). GCM projections are subject to substantial
uncertainties in the modelling processes so that climate projections are not easy
to be incorporated into hydrological impact studies (Mearns et al. 2001; Allen
and Ingram 2002; Forest et al. 2002). It has been noticed that such uncertainties
have produced biases in the simulation of river flows when using direct GCM
outputs for hydrological impact studies. Some studies have found that uncertainties
in climate change impacts on water resources are primarily due to the uncertainty in
precipitation inputs and less due to the uncertainties in greenhouse gas emissions, in
climate sensitivities or in hydrological models themselves (IPCC 2007b). Most cli-
mate change impact studies consider only changes in precipitation and temperature,
based on changes in the averages of long-term monthly values. A major problem
in the use of GCM outputs for impact studies is the mismatch of spatial grid scales
between GCMs (typically a few hundred kilometers) and the hydrological processes.
Water is managed at the catchment scale and adaptation is local, while GCMs
work on large spatial grids. Generally, precipitation projections are less consistent
than those of temperature due to its high variability in space and time, with large
inter-model ranges for seasonal mean rainfall responses. These inconsistencies are
explained partly by the inability of GCMs to reproduce the mechanisms responsible
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Change in average annual runoff: 2050s
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Fig. 17.1 Changes in
average annual runoff for
2050 using A2 IPCC
Emission scenario shown by
different GCMs. Percentage
change compared to
1961–1990. (GCMs
HadCM3, ECHAM4,
CGCM2, CSIRO, GFDL and
CCSR/NIES) (Adopted from
Arnell (2004))

for precipitation such as the convection processes and the hydrological cycle or to
account for orography (IPCC 2007b). With uncertainties in such climate projections,
impacts studies are difficult.

17.1.2 Hydrological Studies Based on Global Climate
Projections

Arnell (2004) conducted a study of the future climate change impact on water
resources by applying GCM outputs for estimating river flows under both present
and future climates. The results of this study are shown in Fig. 17.1 which provides
an indication of the effects of future climate change on long-term average annual
river runoff by the 2050s across the world, under the IPCC A2 emission scenario,
estimated by different climate models. It was reported that climate change is likely to
increase water resources stresses in some parts of the world where runoff decreases,
including around the Mediterranean, in parts of Europe, central and southern
America, and southern Africa. In other water-stressed parts of the world, particularly
in southern and eastern Asia, climate change was likely to increase runoff. It
was also reported by the author that there were differences in the magnitude and
direction of climate change over some parts of the world, including Asia. It was
seen that even for large river basins, climate change scenarios from different
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climate models resulted in very different projections of future runoff change, such
as in Australia, South America and Southern Africa. The study recognized the
uncertainties that exist amongst the climate projections of various GCMs. Although
this study highlighted uncertainties on a global scale, impact studies over regions
like Africa are even more difficult due to lack of sufficient technological resources
and under-developed scientific research compared to many other parts of the world
(Washington et al. 2006).

Some hydrological research studies over the Okavango River basin and
Okavango Delta have been made. The most comprehensive study was conducted
within the EU WERRD project (Water and Ecosystem Resources in Regional
Development). The general objective of this project was to increase understanding
of livelihoods, the environment and policies relating to international river basins. In
this case, the project refers to the Okavango River Basin and was being designed by
many researchers from Botswana, UK, Namibia, South Africa and Sweden, funded
by the European Union. As a part of this project, Andersson et al. (2006) applied
scenario modelling as a tool for integrated water resource management over the
Okavango River basin. The Pitman hydrological model (Pitman 1973) was used to
assess the impact of various climate change scenarios on downstream river flow.

Pitman model of the river basin was applied to both present day historical
conditions and future climate change scenarios to assess the impact on river
flows. Four GCMs (HadCM3, CCSR/NIES, CCCma and GFDL) with present day
conditions and future A2 IPCC emission scenario were applied in the study. Their
results showed that there was considerable uncertainty about the magnitude and
direction of any future discharge response associated with both the GCM and the
IPCC emission scenarios. Results of the study showed that the modeled experiments
indicated a reduction in future flow after about 2050 for both the A2 and B2 GHG
scenarios that increases over time. This is seen in Fig. 17.2 which shows the mean
monthly flow at a particular station (Mukwe) in the Okavango River basin that was
simulated by the hydrological model used in this study. The key conclusion from the
study was that different GCMs predicted future conditions in the Okavango Basin
ranging from drier than present to wetter than present and there are differences
in both degree of change and direction of change between the Okavango river
catchment area and the Okavango Delta.

In a related hydrological modelling study of the Okavango Delta, Murray-
Hudson et al. (2006) applied a mathematical model to assess the impacts of changing
hydrological inputs on the flooding in the delta. The assessment of effects of
possible future changes (2020–2050) on the hydrological characteristics of the
Okavango Delta was done by running a hydrological model of the Okavango Delta
with discharge inputs from the Pitman model of the river basin. Three different
GCMs (HadCM3, CCC and GFDL) with the future A2 IPCC emission scenario
were used to drive the hydrological model. The GCMs produced a wide spectrum of
possible future conditions in the Delta as shown in Fig. 17.3. The authors concluded
that there was a large uncertainty about future climatic conditions and the modeled
effects of climatic variation on the hydrology of the Delta. Figure 17.3 shows the
different flood plain classes categorized according to Permanent Flooded (PF),
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Fig. 17.2 Mean monthly flow at Mukwe with baseline simulations and with assessment of changes
of precipitation and evaporation derived from various GCMs, driven by the A2 and B2 greenhouse
gas emission scenarios (Adopted from Andersson et al. (2006))

Regularly Flooded (RF), Occasionally Flooded (OF), High Flooded Only (HFO)
and Dry Land (DL). The PF floodplain was further classified into Proper and Fringe
and hence denoted as PF1 and PF2 respectively and so is the case with RF—Annual
(RF1) and Biennial (RF2).

The future change simulated by the hydrological model using these GCMs is
shown as either ‘wetter’ or ‘drier’, which makes adaptation policy difficult. These
studies have also recognized the uncertainties in current GCM climate change
projections and the need to reduce these uncertainties followed by the need to
develop appropriate adaptation strategies for the use of water resources over the
Okavango River basin region.

It has been noted that changes in future precipitation may be more adequately
specified on the sub-basin scale by downscaling the coarse GCM data using
Regional Climate Models (RCMs) allowing for more detailed assessments of spatial
heterogeneities in climate change impacts on water resources since these are limited
area models run at a higher resolution compared to GCMs (Andersson et al. 2006).
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Fig. 17.3 Effects of change in hydrological inputs on the Okavango Delta as obtained from various
climate models (HadCM3, CCC and GFDL) under A2 greenhouse gases scenario for 2020–2050
period (Adopted from Murray-Hudson et al. (2006))

The IPCC reports that during recent years several studies have focused on diverse
applications of RCMs for impact studies which include downscaling from the
climate model scale to the catchment scale, using regional climate models to create
scenarios to drive hydrological models and quantifying the effect of hydrological
model uncertainty on estimated impacts of climate change (IPCC 2007b).

17.1.3 Dynamically Downscaled Climate Model Input
for Hydrological Studies

Although the GCMs provide reasonable simulation accuracy of climate in a global,
hemispheric or a continental scale, at a regional/sub-regional scale representa-
tion, the simulation accuracies are poor due to their coarse spatial resolution
(Giorgi 1990, 1996a, b).

Regional climate is often affected by forcings and circulations that occur at a
sub-grid scale of the GCM. Some of the regional and local scale climate forcings
due to land-use characteristics, complex topography, land-ocean contrasts, aerosols,
radiatively active gases, snow, sea ice and ocean currents are not resolved well by
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GCMs. It is therefore obvious that the GCMs cannot explicitly capture the fine
scale structure that characterizes climate variables in many regions of the world
that is required to run impact models. This becomes particularly problematic for
important climate variables like precipitation that have high variability in space and
time. Due to their coarse spatial resolutions and their inability to include mesoscale
atmospheric features in their large scale circulation, the GCMs do not simulate the
precipitation fields with adequate fine scale details to be applied to impact models
such as hydrological models. Hence, before the GCM output information of certain
key variables like rainfall can be used to drive the impact models at a regional or
a local scale, there is an intermediate step which requires the ‘downscaling’ of this
large scale GCM information to regional scale information. One of the techniques
that is employed to this end is what is called as regional climate modelling that
uses a high resolution limited area climate model, also called Regional Climate
Model (RCM), for climate simulations. Later, the output from this RCM, usually
precipitation and temperature, are used as input for hydrological models.

This chapter describes a study that assesses hydrological responses over a couple
of river basins in one of the most climate vulnerable regions, the Mekong River
basin in Southeast Asia. This study uses the output of a regional climate model as
the input to the popular hydrological model Soil Water Assessment Tool (SWAT).
Sensitivity analysis has been carried out to sort out the most affected parameters
to modelling scheme and observed discharge. Shuffled Complex Evolution (SCE)
algorithm is employed to calibrate SWAT model’s most sensitive parameters.
Minimum discrepancy between the observed and the simulated runoff results in an
optimal set of values for the calibration parameters.

The following section describes the study region, the Sesan catchment, which is
a small part of the Lower Mekong Basin. The hydrological model and the regional
climate model that were used for this study and the modelling approaches are also
described.

17.2 Study Catchment and Hydrological Model

17.2.1 Sesan Catchment

The catchment considered in this study is the Sesan catchment, lying over the
central highland region of Vietnam between 107ı190E and 108ı380E and 13ı330N
and 15ı150N. Together with SrePok and SeKong rivers, the catchment forms
the main river system of Sub-Area 7 (SA7) of Lower Mekong Basin. Detailed
information about the SA7 region is available from the Mekong River Commission
website at: http://www.laoiwrm.com/BDPatlas/BDPatlas 6-10(finalune2006)/SA7/
SA7 Main.htm

http://www.laoiwrm.com/BDPatlas/BDPatlas_6-10(finalune 2006)/SA7/SA7_Main.htm
http://www.laoiwrm.com/BDPatlas/BDPatlas_6-10(finalune 2006)/SA7/SA7_Main.htm
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Fig. 17.4 Sesan catchment in Vietnam

The Sesan river basin has a catchment area of 9,030 km2 which consists of
two sub-catchments, called Poko and Dakbla. Each of these sub-catchments has
a discharge station located closed to the catchment outlet (Fig. 17.4). There are six
rainfall stations inside and outside the study catchment with three stations for each
sub-basin. The stations marked ‘A’ and ‘B’ as small triangles indicate the discharge
stations and the rest of the six square markers indicate the six rainfall stations.
The shaded region in the diagram in the left is magnified for clarity in the right
which shows the two sub-basins considered in this study.

17.2.2 SWAT Model

The SWAT model is a river basin scale model, developed at the United States
Department of Agriculture (USDA)—Agriculture Research Service (ARS) in the
early 1990s (Arnold et al. 1998). SWAT is a physically based model which is
designated to work for large river basins and catchments and uses readily available
inputs. It is widely used to study the impacts of land management practices on
water, sediment and agriculture chemical yields with varying soil, land use and
water management conditions. A suite of information about the model and its varied
applications are available at the SWAT website: http://swatmodel.tamu.edu/.

http://swatmodel.tamu.edu/.
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17.2.2.1 Model Setup

In this study, the main objective was to quantify the impacts of climate change
to hydrological stream flow over a long period of time. SWAT was chosen as the
hydrological model to which the precipitation output of a regional climate model
was applied as input to simulate stream flow. The input for ArcSWAT included a
spatial reference map such as the DEM (Digital Elevation Model) with a resolution
of 250 m � 250 m, a land use map and a soil map (converted to raster format with
the same resolution) and meteorological data (precipitation and temperature time-
series of all stations in daily format). The DEM was obtained from Department of
Survey and Mapping (DSM) of Vietnam. The land use map was obtained from the
Forest Investigation and Planning Institute (FIPI), of Vietnam for the year 2000. The
soil map was obtained through the Ministry of Agriculture and Rural Development
(MARD) of Vietnam categorized by the FAO (Food and Agriculture Organization).

17.2.2.2 Model Sensitivity Analysis

The sensitivity analysis is a method that analyzes the sensitivity of model parameters
to the model performance. This method entails to filter the model parameters that
either have or have not any significant influence on the model results. On the other
hand, it also aims to reduce the number of parameters required in fitting to a model
input-output. Traditional methods of sensitivity analysis have been classified by
Saltelli et al. 2000. They are (1) Local method (Melching and Yoon 1996) (2)
Integration of local to global method using Random One-Factor-At-a-Time (OAT)
proposed by Morris (1991) and (3) Global methods like Monte Carlo and Latin-
Hypercube (LH) simulation (McKay et al. 1979; McKay 1988). By studying the
advantages and disadvantages of each of the above methods, van Griensven and
Meixner (2006) developed the LH-OAT method which performs LH sampling
followed by OAT sampling. This method samples the full range of all parameters
using LH design along with the precision of OAT sampling to ensure that the
changes in each model output could be attributed to the changed parameter. The
LH-OAT design has been coupled to the SWAT model for sensitivity analysis
module. Model parameters are analysed based on the performance of its output
compared against observed data and the model itself. In the SWAT model, there are
26 parameters sensitive to water flow, 6 parameters sensitive to sediment transport
and other 9 parameters sensitive to water quality. In this study, since the stream flow
is the main focus, 10 most sensitive parameters out of the available 26 options are
analysed (Table 17.1).

17.2.2.3 Auto-Calibration by ParaSol Method (Parameter Solution) Using
SCE-UA Algorithm

SWAT model has the options to choose either manual or auto-calibration. Calibra-
tion is applied to those most sensitive parameters to yield the optimal set of values
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Table 17.1 Sensitivity analysis ranking of 10 most sensitive parameters in SWAT model to stream
flow

Sensitivity
analysis order Parameter Description Parameter range

1 Cn2 Moisture condition II
curve no

35 � 98

2 Alpha Bf Baseflow recession
constant

0 � 1

3 Ch K2 Effective hydraulic
conductivity in main
channel

�0:01 � 500

4 Surlag Surface runoff lag
coefficient

1 � 24

5 Ch N2 Manning n value for the
main channel

�0:01 � 0.3

6 Blai Maximum potential leaf
area index for land
cover

0 � 8

7 Sol Awc Available water capacity 0 � 1

8 Esco Soil evaporation
compensation factor

0 � 1

9 Canmx Maximum canopy
storage

0 � 100

10 Gwqmn Threshold water level in
shallow aquifer for
base flow

0 � 5;000

for the model parameters which results in the minimum discrepancy between the
observed and the simulated discharge data. While manual calibration can be used
by trained, experienced users who are familiar with the model and the catchment
under consideration, auto-calibration is recommended especially for the new user.
Parameter Solution method (ParaSol) is a built-in auto-calibration model since
the SWAT 2005 version was implemented (van Griensven and Meixner 2004).
ParaSol operates by a parameter search method for model parameter optimization
followed by a statistical method that was performed during the optimization to
provide parameter uncertainty bounds and the corresponding uncertainty bounds
on the model outputs. The ParaSol method aggregates objective functions (OF)
into a global optimization criterion (GOC), minimizes these OF’s or a GOC
using the Shuffled Complex Evolution Method (SCE-UA) algorithm and performs
uncertainty analysis with a choice between two statistical concepts. The SCE-
UA (Duan et al. 1992) method is based on a synthesis of all the best functions
from many other existing methods consisting of the Genetic Algorithm (GA),
simplex method (Nelder and Mead 1965), controlled random search (Price 1987),
competitive evolution (Holland 1975) and the newly developed concept of complex
shuffling. SCE-UA conducts a global minimization of a single function for up to 16
parameters. This method is also capable for non-linear optimization problems.
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Fig. 17.5 Illustration of the SCE-UA method (Adopted from Duan et al. 1994)

In SCE-UA, the initial set of parameters (first step) is chosen randomly through-
out the feasible parameters space for p parameters to be optimized. Then the set is
partitioned to several “complexes” that have 2p C 1 points in which each complex
evolves independently using the simplex algorithm. The complexes are then shuffled
to form new complexes in order to share information between the complexes. SCE-
UA method is briefly illustrated in Fig. 17.5. The processes of competitive evolution
and complex shuffling introduced in SCE-UA ensure that the information contained
in the sample is efficiently and thoroughly exploited. Overall, SCE-UA appears to
be capable of efficiently and effectively identifying the optimal values for the model
parameters (Duan et al. 1992). SCE-UA has been used widely in watershed model
calibration and other areas like soil erosion, subsurface hydrology, land surface
modelling (Duan et al. 2003).
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The model is based on a synthesis of all the best functions from many other
existing methods consisting of the Genetic Algorithm (GA), simplex method and
controlled random search of Nelder and Mead (1965). This method is also capable
for non-linear optimization problems. This method has been found to be robust,
effective and efficient (Duan et al. 2003). There are two objective functions which
can be used in the model calibration using SCE-UA. They are (1) the sum of the
squares of the residuals (SSQ) and (2) the sum of the squares of the difference of
the measured and simulated values after ranking (SQQR). In this study the SSQ
objective function is used. The SSQ, used to target at matching the simulated with
the observed data, is expressed as follows:

SSQ D
X
iD1;n

ŒTF .xi;obs/� TF .xi;sim/�
2 (17.1)

where, n is the number of pairs of observed and simulated variable and ‘TF’ is a
user defined transformation function. Detailed description of ParaSol method can
be found in van Griensven and Meixner (2004).

17.2.2.4 Model Results

Using the above methodology, the SWAT model performance is established.
A period of five years from 2000 to 2005 was used to calibrate the SWAT model
for stream flow with the first year 2000 as a warm up period. The validation for the
model was done for another period 1996–2000 to check if the calibrated model holds
good for a different period. Station discharge data from the station Kon Tum (on the
Dakbla river) and the station Trung Nghia (on the Poko river) were used to calibrate
the model separately. The precipitation data on a daily scale were used from 1996–
2005 from the stations inside and outside catchment (Fig. 17.4) for the calibration
and validation processes of the SWAT model. The coefficient of determination (R2/
and the Nash-Sutcliffe Index (NE) were used as statistical indices to assess the
goodness of fit of the model.

The NE index is defined by:

NE D 1 �

NP
iD1

.Oi � Si/
2

NP
iD1

�
Oi �O

�2 (17.2)

and the coefficient of determination R2 is defined by
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Table 17.2 Statistical Indices of model calibration and validation: R2 and NE
Calibration Validation

River Daily Monthly Daily Monthly
Basin R2 NE R2 NE R2 NE R2 NE

Dakbla 0.71 0.68 0.94 0.86 0.47 0.46 0.59 0.58
Poko 0.83 0.82 0.90 0.89 0.56 0.55 0.68 0.67

Fig. 17.6 Calibration of the model: Dakbla (left) and Poko (right) river basins on the daily (top)
and monthly (bottom) scales

R2 D

8̂
ˆ̂̂<
ˆ̂̂̂
:

N
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iD1
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iD1
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NP
iD1
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S2i �
�
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iD1

Si

	2s
N
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iD1
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iD1

Oi

	2

9>>>>=
>>>>;

2

(17.3)

where, O and S are observed and simulated discharge values, respectively.
The statistical indices in Table 17.2 show that the values of validation indices

were, as expected, higher on a monthly scale than a daily scale because daily
variability is higher than monthly variability. For climate change impacts study,
longer temporal information is of the main concern. The monthly statistical indices,
for the validation period, showed a value of about 0.6 for both R2 and NE; this
suggested that the model was reasonably well calibrated. These results suggest that
the SWAT model showed good performance and hence suitable for climate change
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Fig. 17.7 Validation of the model: Dakbla (left) and Poko (right) river basins on the daily (top)
and monthly (bottom) scales

applications. The calibration and validation results for Dakbla and Poko rivers are
shown in Figs. 17.6 and 17.7, respectively.

17.3 RCM Output for Climate Applications

In this study, a regional climate model, Weather Research and Forecasting (WRF),
was used to simulate climate over a part of the Lower Mekong Region at a horizontal
resolution of 30 km centered over the Sesan catchment area. The RCM WRF model
was run for the period 1991–2000 using the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis to
assess its performance of the present-day climate. Later, the WRF model was also
run driven by the global climate model ECHAM5 T63 over the same period to assess
the model’s performance on the 10 year climatology of the present-day climate.
The rainfall output from the WRF model obtained from the two above mentioned
simulations were then used as input to the calibrated SWAT model to simulate the
stream flow. The simulated stream flow is shown in Fig. 17.8. Results also indicate
the precipitation output derived from the WRF model driven by the GCM ECHAM5
were better than the NCEP/NCAR reanalysis as the stream flow simulated using
WRF ECHAM5 output agreed better against the station data than the stream flow
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Fig. 17.8 Climatological Annual Cycles of Stream flow (left) Kontum observed station—Dakbla
river basin (right) Trung Nghia observed station—Poko river basin

simulated using WRF NCEP/NCAR reanalysis. This could probably be due to the
relatively coarser spatial resolution of the latter (2:5ı�3:75ı) compared to the former
(1:8ı�1:8ı). The stream flows over the two river basins chosen for study, Poko and
Dakbla are shown in Fig. 17.8.

The future climate simulation of the RCM WRF spanned the period 2091–2100
driven by the GCM ECHAM5 T63 under the IPCC SRES A2 emission scenario.
This period has been considered in this study as the emission scenario shows clear
signal of change towards the end of the century. Just as the simulation for the
present-day climate, the RCM WRF derived estimates for future rainfall was used
to simulate future stream flow conditions.

For the assessment of future stream flow, the delta factor approach was under-
taken where the climate change factor was derived using the estimates of the future
climates and present day climates of the WRF-ECHAM5 simulations. This factor
is the difference between the future and the present day rainfall estimates. This
method is usually practiced by impact modellers as the difference between the future
and present day model output cancels the biases in the model output and gives out
the clear signal of climate change. Since the best available record of rainfall is the
station data, this change factor was added to the station data time series, which in
turn represents the changed future conditions of rainfall. The change factor added
station rainfall was then used as the input to the SWAT model to simulate future
stream flow. Such an application of delta factor for climate change studies have
been described by Sushama et al. (2006) and Andersson et al. (2006). A student
t-test was done to ensure that the climate signal is true and not a noise. This method
entails that a credible estimate of future stream flow could be obtained.

Figure 17.9 shows the stream flow thus derived over the two river basins Poko
and Dakbla. For clarity in comparison, the present day stream flow (shown as
‘baseline’) is overlaid on the future estimated stream flow that used the WRF-
ECHAM5 change factor as discussed above. Results show that, both over Dakbla
and Poko river basins, the future stream flow is expected to increase, especially
during the peak rainfall season. The Dakbla river basin shows a more pronounced
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Fig. 17.9 Future stream flow (compared to baseline stream flow) (left) Kontum observed station—
Dakbla river basin) (right) Trung Nghia observed station—Poko river basin

increase in steamflow of about 48 % than Poko river basin that shows about 10 %
increase during the peak rainfall season. During the dry season, about 15 % decrease
is seen over both Dakbla and Poko basins.

17.4 Conclusions

Existing research studies indicate uncertainties in climate projections stemming
from global climate models and different emission scenarios of climate change.
Since global climate output have been found insufficient for regional and local
impacts, it has been realized that adaptation measures to combat climate change
requires high spatial resolution information and hence the use of regional climate
models in climate research has become common. Since hydrology is one of the most
common impact studies, this chapter highlights the importance of high resolution
models in impacts research and the use of sophisticated optimization algorithms
when applying hydrological models.

Rainfall derived from climate model has been applied to a hydrological model
(SWAT) which was calibrated with SCE-UA algorithm and its simulated discharges
were compared with the their observed counterparts. The performance of the
model using station data rainfall has been found satisfactory and hence the model
derived rainfall were also used to see assess stream flow simulation over the
current and future climate. Using the RCM driven by GCM ECHAM5, the present-
day and future stream flows were also simulated. Results show that, both over
Dakbla and Poko river basins, the future stream flow is expected to increase,
especially during the peak rainfall season. The Dakbla river basin shows a more
pronounced increase than the Poko river basin.

However, further work is required to improve the confidence in these results. As
mentioned before, a higher resolution simulation of the RCM may be required to
obtain more credible estimates of future precipitation. In addition, since this result
has been obtained only from one run of the RCM, it is recommended to obtain an
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ensemble estimate of future change in climate by downscaling more GCMs or by
using perturbed initial conditions to the RCM to derive multiple estimates of future
climate.
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Chapter 18
Entropic Balance Theory and Radar
Observation for Prospective Tornado
Data Assimilation

Yoshi K. Sasaki, Matthew R. Kumjian, and Bradley M. Isom

Abstract This article reports further theoretical development on the entropic bal-
ance theory applied to tornadogenesis (Sasaki 2009, 2010), and the first preliminary
application of the theory to radar observations. The entropic balance is a newly
found balance, different from the other balance conditions, such as hydrostatic,
(quasi-)geostrophic, cyclostrophic, Boussinesq, and anelastic. The entropic balance
condition is described as the sole diagnostic Euler-Lagrange equation derived from
the Lagrangian of the variational formalism. The entropic balance is most general
and involves no additional assumptions other than for the flow with high Reynolds
and Rossby numbers estimated as appropriate for supercell storms and tornadoes.
The entropic balance theory and the deduced wrap-around mechanism explain well
the observations and simulations of tornado, RFD, hook-echo, upward tilting of
horizontal vorticity, the vertical in-phase superimposition between upper and lower
mesocyclones, and sudden transition from supercell, mesocyclones totornado. In
the application, new variables DZ (temporal difference of radar reflectivity) and
DZDR (temporal difference of differential reflectivity) are introduced to compute the
entropy anomaly based on the entropic balance theory. The conditions necessary for
the transition from supercell to tornado are clarified from the theory and verified
from the DZ and DZDR analyses for a non-tornadic supercell case compared with
VORTEX2 tornadic case.
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Since the entropic balance theory is found to fit well with all analyzed results of
tornado and visual observations, it is suggested to use the entropic balance equation
as a constraint for variational data assimilation in future development as a challenge.

18.1 Introduction

Tornado data assimilation requires an appropriate dynamical model and observa-
tional input data. The dynamical model utilized in current applications is a full set
of governing equations of motion, mass continuity, thermodynamics, and cloud-
physics. The dynamical model has been tested by tornado simulations. Starting from
the numerical simulation of a supercell storm by Klemp and Wilhelmson (1978),
many simulations were successful in reproducing supercells and mesocyclones, but
not tornadoes. Indeed, Burgess (1997) concluded from his analysis that tornadoes
developed from only 20 % of mesocyclones, suggesting that tornadogenesis is
still unsolved. Recent advanced observations and successful computer simulations
of tornadogenesis (Wilhelmson and Wicker 2001; Noda 2002) clearly suggested
super high spatial resolution and the associated temporal resolution are required to
solve a full set of governing equations of motion, mass continuity, thermodynamics
and cloud-physics by computer. For example, in the first successful simulation of
tornadogenesis for a few hours of evolution time, Noda used ARPS (Advanced
Regional Prediction System, Version 4.5; Xue et al. 1995) with horizontal grid
size of 70 m, not nested, and 45 levels of vertical grid, with 10-m spacing near
the ground, with associated time increments on the time split integration scheme
(Klemp and Wilhelmson 1978;�t D 0:03 s, 0.18 s; the former is for sound wave and
the latter for others). The simulation took about 720 h on the IBM Regatta computer
of 16 nodes at Tokyo University. It will take several days or weeks of computer
execution time to simulate tornado evolution of a few hours by the supercomputers
currently available for weather forecasting. These requirements prohibit direct
application of the current full simulation model for practical operational use under
present computing availability.

Also, recent advanced observations such as phased-array Doppler radar and
mobile X-band radars have revealed spatial and temporal details of similar high
resolutions that are important for tornadogenesis and should be properly reflected in
data assimilation. However, again, the presently-available computing power is not
sufficient for practical operational forecasting of tornadoes with numerical models.
So, it became the first author’s motivation to develop a simple but accurate theory
that captures all essential processes of tornadogenesis.

The molecular Reynolds number is extremely large (normally > 107/ for most
of atmospheric weather systems, and the molecular viscosity is neglected. It allows
us to define an appropriate Lagrangian based on the variational principle instead
of use of all governing equations of motion, mass continuity, thermodynamics,
and cloud physics. It leads to a sole diagnostic Euler-Lagrange (E-L) equation
among all other prognostic E-L equations. The diagnostic E-L equation, first
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found by Clebsch (1859) and called the Clebsch transformation (Lamb 1932),
shows indeed a new balance condition different from the known hydrostatic,
(quasi-) geostrophic, cyclostrophic, and anelastic balance conditions, as well as
the Boussinesq approximation. It is named as entropic balance because of its
analogy to other balance conditions, and found it essential to explain tornadogenesis
mechanism (Sasaki 1999, 2009, 2010). The entropic balance theory is based on the
variational principle, which is proved valid for the tornado-producing, atmospheric
fluid of Reynolds number Re D 108�12 and Rossby number Ro D 102�4. The
Euler-Lagrange equations are all prognostic except one that is diagnostic, which
was found to play key role in the long-lasting steady state of a tornado. The state
is analogous to the attractor of nonlinear dynamics. Based on the entropic balance
theory, the wrap-around mechanism is introduced to explain explicitly the nonlinear
process of tornadogenesis. The results are consistent with advanced observations
and successful tornado simulations of phenomena in tornadic storms, such as over-
shooting hydrometeors against the upper-level westerlies, the mesocyclone, hook
echo, discontinuous transition from supercell to tornadic stages as a transition from
baroclinic to barotropic stages, an increase of the relative helicity to one (its maxi-
mum value), and the tornado touching the ground in the perpendicular direction.

The wrap-around mechanism is analogous to a nonlinear process, the so-
called “baker’s transformation,” and the transition is discontinuous from baroclinic
to barotropic stages by trapping entropic sink core inside the vortex, like a
nonlinear attractor (Fig. 18.10). Note that the entropic source and sink are of
larger magnitudes, it is baroclinic while they are of smaller magnitudes, it is
barotropic. Note also that the wrap-around mechanism is two-dimensional while the
baker’s transformation is one-dimensional. In the entropic balance theory, the sole
diagnostic Euler-Lagrange equation is the key equation of the steady state, long-
lasting mesocyclonic and tornadic states, where the entropy anomaly is an essential
term. Consequently, to estimate the entropy anomaly from radar reflectivity, dual-
polarization radar data, or other observational means is a new challenge for data
assimilation and prediction of tornadoes.

The entropic balance theory predicts that the supercell and tornado stages
correspond well to the cases of high values of helicity. Helicity has been known
as an important index for conservation certain rotation to determine the spin and
velocity of air particle or parcel, the swirling direction and magnitude of streamlines
in fluid mechanics, and the earth magnetism in the dynamo theory of the earth’s
core magma convection. It is also an important index of mature tornadoes from data
analyses, numerical simulations, and theoretical analyses over recent decades. In
meteorology, a positive relation between vertical velocity and vertical vorticity was
found by Klemp et al. (1981) and Weisman and Klemp (1982) in their analyses
of observations and numerical simulations, which seems to support higher values
of helicity in supercell thunderstorms. Theories were developed for the helicity to
reach nearly a maximum value at the mature stage of rotating convective storms and
tornadoes from dynamical analyses by Lilly (1982, 1986), Davies-Jones (1984), and
Davies-Jones et al. (2001). Their theoretical analyses suggested the upward tilting
of the horizontal vortex tube for tornadogenesis. Note that fluid mechanics allows



432 Y.K. Sasaki et al.

either parallel or perpendicular approach of a vortex tube to the ground. These
numerical simulations and theories lead unrealistic results of touching the ground
in parallel, not perpendicular, direction (Question 7 in Appendix 1). However, in
contrary, many visual observations have suggested perpendicular touch down of
tornadoes to the ground. To solve this controversy, the dynamic pipe effect (DPE)
theory developed by Leslie (1971), Smith and Leslie (1978) was applied by Trapp
and Davies-Jones (1997) for tornado touch down perpendicularly to the ground.
Their theory is based on dynamical pressure deficit on the barotropic Boussinesq
(balance) approximation, not including explicitly any thermo-dynamical term, and is
consequently insufficient to explain the transition between baroclinic and barotropic
stages.

On the other hand, the wrap-around mechanism developed on the basis of the
entropic balance theory (Sasaki 1999, 2009, 2010) seems better to explain the
transition as we will discuss it in details in Sect. 18.7. Also, the wrap-around
mechanism together with the kinematic boundary condition at the ground better
explains the important findings that all observed tornado funnels hit perpendicularly
when they touch the ground, contrary to the expectation from the upward tilting of a
horizontal vortex tube. The numerical simulation experiments of tornadogenesis by
Noda (2002), Noda and Niino (2005, 2010) seem to suggest not tilting, but a vertical
coupling mechanism because the helicity (relative or normalized) increases to one
at the mature stage, meaning less solenoidal effects in the vorticity equation and
parallel alignment of updraft and the vorticity axis in their simulation experiments
of tornadogenesis.

Recent VORTEX2 results seem to provide supporting evidence for the entropic
balance theory (Markowski et al. 2012a,b) and will be discussed in Sect. 18.9. Meth-
ods for estimating the entropy anomaly from radar reflectivity and dual-polarization
radar data are presented in Sect. 18.10. Section 18.11 presents preliminary results of
the application of dual-polarization WSR-88D radar data (Kumjian et al. 2010) by
the second author of the present article, and Sect. 18.12 by the third author of this
article for rapid-scanning, mobileX-band radar data. The entropic balance theory
(and derived the entropic right-hand rule and the wrap-around mechanism) and other
directly related observations, theories and models in references are briefly reviewed
in Sect. 18.2.

18.2 Entropic Balance Theory for Tornadogenesis

The entropic balance theory developed for tornadogenesis (Sasaki 1999, 2009,
2010) is briefly summarized in Sects. 18.2, 18.3, 18.4, 18.5, 18.6, and 18.7 with
addition of further explanation. A tornado is approximated by inviscid and Coriolis-
force free flow because high Reynolds number Re with the molecular viscosity of
the air and high Rossby number Ro at the middle latitudes are used,

Re D 108�12 and Ro D 102�4: (18.1)
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The entropic balance theory hypothesizes that changes in entropy are a quasi-
adiabatic process, that is, the microphysical phase change of a small ensemble
of hydrometeor molecules is instantaneous, creating a new entropy level, with
adiabatic conditions before and after the phase change. It is hypothesized that this
phase change timescale is significantly shorter than the time-scales of convective
storms and tornadoes (Hypothesis 1), schematically shown in Fig. 18.15,

�tphase change << �tsupercell, tornado (18.2)

Variations of the initial entropy levels are small enough and allow us to approximate
them by their ensemble means (Hypothesis 2). These hypotheses are further
discussed in Sect. 18.10.

The Lagrangian density L is thus formulated as

L WD � .1=2v2 � U.�;S/ �ˆ/ � ˛.@t�C r � .�v//� ˇ.@t.�S/C r � .�vS//;
(18.3)

where �, U, ˆ, S, and v are density of the air, internal energy, gravitational
potential energy, entropy, and flow velocity respectively, and ˛ and ˇ are the
Lagrange multipliers to satisfy the constraints of conservation of mass and entropy,
respectively. Then, the Lagrangian (action) denoted by L is defined as

L W D
Z
�

I L d�; (18.4)

where � represents the temporal and spatial integration domain, and the ensemble
of air molecules is represented by the spatial integration.

The first variation of L leads to the Euler-Lagrange (E-L) equations, which, after
mathematical manipulation, lead to a full set of dynamical and thermodynamical,
nonlinear, equations of the ideal flow (Lamb 1932; Bateman, 1932; Sasaki, 1955;
Dutton 1976). The E-L equations are all prognostic except for one that is diagnostic,
so-called by Lamb as the Clebsch’s transformation (Clebsch 1859) of flow velocity,

v D �r˛ � Srˇ: (18.5)

Then, the vorticity, !, equation becomes

! D .1=S/rS � .�Srˇ/: (18.6)

The vector relation (18.6) is found to be extremely important to gain clear insight
into the development mechanisms of supercells and tornadogenesis. The diagnostic
velocity (18.5) is universal for the ideal flow. The vorticity (18.6), derived from
(18.5), is demonstrated in convenience by the mutually orthogonal vector relation,
similar to the so-called Fleming’s right hand rule of electromagnetic fields, called
by the author as “entropic right-hand rule”, among the orthogonal variables of
the spatial three dimensions, the vorticity !, the entropy gradient (1/S) rS, and
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Fig. 18.1 Entropic right
hand rule. The rule shows
the mutually orthogonal
vector relation, similar to the
so-called Fleming’s right
hand rule of electro-magnetic
fields, now we may call as
“entropic right hand rule”,
among the orthogonal
variables of spatial three
dimensions, entropy gradient
(1/S) rS, rotational
component of flow velocity
vR or vˇ WD �Sr ˇ and
vorticity !

the rotational flow velocity component, �Srˇ, denoted by vˇ or vR, while the
divergent component, �r˛, denoted v˛ or vD. These notations are used in the figure
illustrations of this article. Figure 18.1 illustrates schematically the entropic right-
hand rule.

18.3 Entropic Balance Equation Viewed from Completeness
of Solution

Because of the variational principle used in the entropic balance theory, the diagnos-
tic (18.5) should be satisfied always with all other prognostic E-L equations. In the
schematic diagram of the solution space (Fig. 18.2), it is shown that the solution sub-
space DS is expressed as a part of the other solution subspaces, NSS (non-stationary
state) and SS (stationary state). Since the helicity becomes nearly maximum at
the time of mesocyclone development and tornadogenesis, as will be discussed in
Sect. 18.4 (i.e., the local change of vorticity vanishes as will be seen from (18.12)),
the long-lasting subspaces, DS (diagnostic state) and SS, are essential.

The solution in the sub-domain covered by DS and SS has a long-lasting property
that is similar mathematically to the attractor in nonlinear dynamics. They appear in
Fig. 18.2 as the sub-domains of the solution space, DS and SS. Note that

DS 	 SS 	 NSS: (18.7)
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Fig. 18.2 Solution space.
The domain of full solution of
the Euler Lagrange (E-L)
equations is schematically
shown in the solution space
by the heavy solid line. It
includes non-stationary state
(NSS), stationary state (SS),
and the solution of diagnostic
E-L equation (DS). The
solution in the domain
covered by DS and SS has
long-lasting property
mathematically similar to the
attractor

The relationships expressed by (18.7) emphasize the importance of the diagnostic
E-L equation (18.5); that is, the transition to a steady state SS or DS from non-
steady state NSS must satisfy (18.5). In other words, we can find the necessary
conditions for the tornadogenesis and transition among different stages from the
entropic balance theory as discussed further in the next sections. The diagnostic
balance (18.6) provides insight to a long-lived tornado, presumably by DS and SS
steady states, as expressed by (18.7). It is important to note that (18.7) is reached
indirectly by a high value of helicity as shown by (18.11) and (18.12) in the next
sections.

18.4 Helicity and Tornadogenesis

The helicity, H, is defined as a scalar (inner) product of flow velocity and vorticity,

H WD v � !; (18.8)

where v is flow velocity and ! represents vorticity of the flow r� v. For fluids of
high Reynolds number and high Rossby number, the fluid motion is assumed as an
ideal fluid. Without solenoidal effects, the vorticity equation is given by

@t! D r � .v � !/: (18.9)

The case with solenoidal effects will be shown by (18.25) in the next section.
Because of the normal relationship, sin2 	 C cos2 	 D 1, between the scalar product
and the vector product, where 	 is the angle between two vectors v and !, we get
(Yoshizawa 2001),
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..v � !/=D/2 C ..v � !/=D/2 D 1; (18.10)

where D2 WD v2!2, and (v�!//D is called relative helicity or normalized helicity, or
simply helicity. When the relative helicity approaches unity, (18.10) imposes that

.v � !/ ! 0: (18.11)

Then, from (18.9) to (18.10), we get

@t! ! 0: (18.12)

This means that a steady state of vorticity will be reached when the magnitude
of relative helicity increases to unity. Also, it means that the mature stage of a
tornado is a long-lasting system, which is similar to the attractor of a nonlinear
system (e.g., Lorenz strange attractor of Rayleigh convection). This result agrees
with the solution classification in the solution space of the entropic balance theory,
as shown as the steady state attractor in Fig. 18.2. It is also clear that (18.11) will be
satisfied if the vector v is parallel to the vector !, and the helicity (18.8) becomes a
maximum.

18.5 A Form of Helicity Based on Entropic Balance theory

The entropic balance theory gives further new insight into helicity and entropy. The
following E-L equation is the only diagnostic one among all E-L equations obtained
from the Lagrangian density of the flow of high Reynolds and Rossby numbers
shown by (18.5) as

v D �r˛ � Srˇ: same as (18.5) (18.13)

In (18.13), S is entropy, ˛ and ˇ are the Lagrange multipliers of mass conservation
and thermodynamics of quasi-adiabatic process, adiabatic with instantaneous phase-
change, then entropy change, of microphysics in the Lagrangian density. The
Lagrange multipliers ˛ and ˇ are potentials, and they are analogous to the well-
known velocity potential usually designated by ˛� as follows

˛� D ˛ C S0ˇ; (18.14)

where S0 is a constant along each molecular trajectory and may be determined from
the initial condition. Note that S0 is S0(x, y, z) at t D t0. Determination of S0 is
discussed in Sect. 18.6.

The vorticity is computed from (18.5, or 18.13) and shown by (18.6) as

!.WD r � v/ D .1=S/rS � .�Srˇ/: same as (18.6) (18.15)
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The helicity is calculated from (18.8), (18.5) to (18.6) as

H D .�r˛ � Srˇ/ � .1=S/rS � .�Srˇ/: (18.16)

The helicity consists of two parts representing the irrotational and rotational
components of v in (18.13),

H D H˛ C Hˇ; (18.17)

where the irrotational part is

H˛ WD .�r˛/ � .1=S/rS � .�Srˇ/; (18.18)

and the rotational part is

Hˇ WD .�Srˇ/ � .1=S/rS � .�Srˇ/; (18.19)

where H˛ and Hˇ are used for simplicity instead of Hirrot and Hrot which were used
in the earlier publications (Sasaki 2009, 2010).

Because .�Srˇ/ � .�Srˇ/ D 0, (18.19) becomes

Hˇ D 0 (18.20)

and

H D H˛: (18.21)

Therefore, the helicity is given, using (18.6); ! D .1=S/rS � .�Srˇ/, as

H˛ D .�r˛/ � !: (18.22)

Comparing the old form of helicity expressed by (18.8), the new form (18.22)
shows an important difference, because the rotational term denoted by .�Srˇ/ in
the above vector product vanishes. Since ! includes rS and rˇ, two independent
thermodynamical parameters for baroclinicity in general, (18.22) becomes

H˛ D H˛;BC WD uD � � C vD � �C wD � �: (18.23)

where the subscript BC sands for baroclinic, uD; vD and wD (or u˛; v˛ and w˛

respectively) represent the irrotational velocity components (�r˛/ on Cartesian x,y,
and z coordinates, and �, �, and � are the three-dimensional components of vorticity.
This supports Beltrami relation and the tilting of a horizontal vortex tube into the
vertical, and a high value of helicity (relative helicity ! 1.0) in the supercell stage.

However, the vortex tube at the mature tornadic stage is vertical and hits the
ground perpendicularly, so we expect a drastic change from the supercell stage to
the mature tornado stage to satisfy the boundary condition of the vortex tube at
the ground surface. Therefore, (18.23) becomes drastically different from the tilting
process, expressed by,
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Fig. 18.3 Discontinous
transition from supercell
storm or mesocyclone to
tornado. It is schematically
shown by the transition of
Hˇ ) H˛;BC C Wrap-around
mechanism ) H˛;BT. The
divergent velocity vD or v˛
has Cartesian components,
uD, vD, and wD

H˛ ) H˛;BT WD wD � �; (18.24)

where the subscript BT satands for barotropic.
The notations of H˛;BC and H˛;BT are used because the former of (18.23)

represents the cases where entropic source and sink are of larger magnitudes and
the latter of (18.24) does smaller magnitudes. It is valid for the stretching process
of tornado and is consistent with the boundary condition of vanishing vertical
velocity at the ground surface. The helicity grows up to its maximum near the
mature stage of a tornado when the updraft w is intensified due to convective
buoyancy, and the vorticity � by upward stretching. At and after the mature stage,
the updraft changes to a low-magnitude updraft or to a downdraft due to the
development of a negative vertical pressure gradient, and the helicity decreases
suddenly as demonstrated by Noda (2002) and Noda and Niino (2005, 2010) in
numerical simulations of tornadoes. The above discussion suggests that the helicity
calculated by the entropic balance theory will vary between Hˇ;BC at the supercell
mesocyclone, Lear Frank Downdraft (RFD), hook echo stages, and H˛;BT at the
mature tornadic stage. Figure 18.3 is prepared to show schematically the roles of
H˛;BC and H˛;BT suggesting sufficient requirement of wrap- around mechanism for
tornadogenesis allowing downdraft core of tornado surrounded updraft tornado with
high helicity, barotropic surrounding as demonstrated in Fig. 18.4.

The conventional helicity is an index used in tornado research, and, as discussed
in the introduction, used to determine how small the term r � .v � !/ is and when
the vorticity becomes stationary, as seen from (18.9) to (18.12). Because of (18.10),
the helicity (v �!/ is used as an index, although it is indirect. However, the vorticity
(18.9) lacks the solenoidal term, which is important. Instead of (18.9), the more
accurate vorticity equation is

@t! D r � .v � !/ � r � ..1=�/rp/ ; (18.25)
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Fig. 18.4 Schematic diagram of tornadogenesis based on the entropic balance theory.
Meandering westerlies transport water vapor evaporated from Gulf Stream into the deeper inland
of the central US great plain area and meet with the dry air to onset supercell. The moisture of the
southerly flow condenses and releases the latent heat to the surrounding air resulting in entropy
increase (18.26b) that is shown by circled plus sign, called entropic source, in the figure. The
hydrometeors such as raindrops and ice particles created by the condensation are lifted by the
updraft of thermal convection of the storm reaching near the cloud top and blow away towards
the downstream side, east-side, of the storm. However, the lifted hydrometeors are overshot
towards upstream direction against the upper-air westerlies. It is due to the upper air horizontal
vortex as shown in this figure where the rotational flow direction of ! is shown by an arrow
with double solid lines. The overshot hydrometeors will fall down evaporating because of dry
air surrounding and cooling the air. The descending hydrometeors with cooled air meet with dry
middle-level south-westerly jet and are cooled further to produce the rear frank downdraft. Thus,
entropic sink forms nearly at the same altitude of the entropic source at the west of the source.
Horizontal spatial gradient of entropy is generated by the pair of the entropic source and sink. A
vortex, mesocyclone, is formed and the wrap-around mechanism is organized. The wrap-around
mechanism becomes activated by the mesocyclone existed between the entropic source and sink
and produces circular belt of entropic source around the sink. The circular system is an ensemble
of specific combination of the vorticity under the entropic right-hand rule and its conjugate
vorticity. The conjugate vorticity has anti-symmetric entropy gradient and anti-symmetric flow
velocity (rotational component), but results in the same vorticity, under nonlinear processes similar
to folding of the baker’s transformation. The wrap-around mechanism is a nonlinear process,
similar to attractor, to generate hook echo, low-level mesocyclone, wall cloud and tornado. These
processes are explained by the diagnostic E-L equation, the entropic right-hand rule and wrap-
around mechanism which are derived by the entropic balance theory

where � is the density of the air, the second term of the right side of (18.25) is the
solenoid term. Note that the vorticity diffusion term due to molecular viscosity ($/,
$�!, is omitted because of the high Reynolds number of the flow. The solenidal
effect is significant at the supercell stage, but it will be decreased during the
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transition period towards the mature stage of the tornado, and the flow becomes
barotropic by the wrap-around mechanism as will be discussed in Sect. 18.7.

18.6 Comments on Entropy

Next, we will explore more about entropy. For simplicity, it is assumed that the
adiabatic processes are considered to be independent to the diabatic processes, both
are added linearly when both are working. Also, because of the high Reynolds num-
ber for supercell and tornadic cases, starting with the First law of thermodynamics,
d’U D d’Q C d’W where the internal energy U(S, �/ and external heating d’Q is
expressed by the following relation, using the entropy S and the specific volume
�.D 1=�/, and the work d’W by pd� for a dry ideal gas for simplicity as

dU D TdS � pd�; dS D d’Q=T: (18.26a,b)

Hence, we get

p D �U�T D US; p� D RT: (18.27a,b,c)

The entropy change dS is expressed by the temperature change and pressure change
because the adjustment of d’Q is made due to change of temperature and pressure
for the example described in Appendix 4 as, for one mole of gas,

dS D d’Q=T D R=2 dT=T � R dp=p (18.28)

where the relations CV D 3=2 R and CP D 5=2 R are used.
The internal energy is a function of temperature alone for an ideal gas,

U D cvT; (18.29)

where cv is the specific heat at constant volume. After mathematical manipulation
from the above (18.26), (18.27), (18.28), and (18.29), we get

S D cplog.Tp� /C S0; (18.30)

where the exponent � is a constant defined as R=cp for dry adiabatic processes
and its value is adjusted for moist adiabatic processes. Mathematically, S0 is the
arbitrarily determined integral constant, but physically it is discussed as to be
determined on the basis of the Third law of thermodynamics, strictly speaking,
different from the convention taken in meteorology.

The potential temperature 	 is conventionally defined in meteorology as the
temperature at a pressure of 1,000 mb after hypothetically moving the particle in
adiabatic process to the pressure level,

	 D T.p00=p/� : (18.31)
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Fig. 18.5 Entropic vortex. Entropic vortex exists by the gradient of entropy in a baroclinic field.
The horizontal vortex is formed due to the vertical entropy gradient at the upper levels above the
entropic source and overshoots the hydrometeors to upstream against the headwind westerlies. The
vertical vortex is formed at the middle levels due to the horizontal gradient between the source and
the sink of entropy. The entropic vortex formation is explained by the entropic right-hand rule
derived from the entropic balance theory

However, it does not satisfy the Boltszmann’s third law of thermodynamics, that
is, the entropy S should be zero at the zero absolute temperature T, namely S D 0

at T D 0, justified by statistical thermodynamics as the entropy defined by S D k
ln W, where k is Boltsmann’s constant and W is the weight of configuration,
and then S D 0 for W D 1 for perfect configuration and no ambiguity (Atkins and
de Paula 2002).

This article uses the third law of the thermodynamics, instead of the conventional
potential temperature. An example is shown in Appendix 4 in conjunction with an
entropic analysis of tornado.

The baroclinic and barotropic states are viewed also from solenoidal state. The
solenoid, 
 , is a key term of vorticity generation in (18.25), and it appeared as a
vector product of the spatial gradient of specific volume and the pressure gradient,
or the spatial gradients of entropy and temperature,


 WD �r � .1=�/rp D �r.1=�/ � rp: (18.32)

The solenoid defined above is written in terms of temperature and entropy with
simplification as


 D rT � rS; (18.33)

which basically is in agreement with that obtained by Dutton (1976) in a conven-
tional method.

A supercell has properties of baroclinicity, as it is axially asymmetric along the
vertical axis (Figs. 18.5 and 18.6), whereas a tornado has confined in entropic sink
core, like a singularity, axially-symmetric, surrounded by circular entropic source
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Fig. 18.6 Conjugate
entropic vortex. The vortex
of the same as Fig. 18.5
is produced under
anti-symmetric spatial
entropic gradient and
anti-symmetric flow velocity
(rotational component) under
a non-linear super-imposition,
with the same vorticity. The
conjugate entropic vortex
formation is explained by the
entropic right-hand rule
derived from the entropic
balance theory

Fig. 18.7 Tornadogenesis.
Schematic illustration of
tornadogenesis explained
with the wrap-around
mechanism. The wrap-around
mechanism is modeled by the
entropic right-hand rule
which is derived from the
entropic balance theory

environment (Figs. 18.7 and 18.8). The transition from supercell to tornadic stages
is physically explained by the proposed wrap-around mechanism (Figs. 18.3, 18.4,
18.9, and 18.10) as explained in the next chapter. Also the entropic balance theory
suggests the existence of multiple vortices (Fig. 18.8) as seen from the right hand
rule (Fig. 18.1) and the solution space theory (Fig. 18.2).
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Fig. 18.8 Multi-vortexes.
Schematic illustration of
formation of four vortexes for
an example explained with
the wrap-around mechanism.
The wrap-around mechanism
is modeled by the entropic
right-hand rule which is
derived from the entropic
balance theory

In a successful numerical simulation of tornadoes with horizontal resolution of
75 m, Noda (2002) and Noda and Niino (2005, 2010) clearly showed the particle
trajectory which started at the point of about 500 m AGL, 25 km away in the
NW direction from the tornado vortex center, moved downward continuously,
and converged on the order of 100 m in diameter outside of the tornado vortex.
Similar results were shown in other numerical simulations of tornadoes. The
helicity (18.17), (18.18), and (18.19) play important roles and provide a theoretical
background to explain the above features of the trajectory and unique characteristics
of entropy, which seem in agreement with the numerical simulations and detailed
analyses of observations. The downdraft agrees with the entropic balance theory,
which says intensification of the cyclonic circulation around a tornado is due to the
downdraft. Also, the downdraft on the west-side of a tornadic supercell adiabatically
transports and converges the entropy into or in the neighborhood of a tornadic vortex
with a small area. The entropy from the broader areas outside of 25 km distance
from the tornado vortex and several hundreds meters or more above the ground also
converges downwards and decreases the gradient of entropy outside of the vortex.
The weak baroclinicity in the shallow layer of the atmosphere near the ground that
is expected from the entropic theory seems in agreement with the mobile Doppler
radar observations and surface observations (Davies-Jones et al. 2001). Also, the
entropic balance theory suggests a converged, concentrated, axially (in vertical
direction) symmetric, wrap-around entropy field in and near the mature tornado
vortex core, similar to a nonlinear attractor, as will be discussed further in the next
chapter.
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Fig. 18.9 Wrap-around
mechanism. Schematic
illustration of nonlinear
process transforming the
baroclinic state (top) to
barotropic state with
baroclinic core (bottom)

18.7 Wrap-Around Mechanism

It was suggested in the earlier publications (Sasaki 2009, 2010) that the mature stage
of tornado appears almost discontinuously from the parent supercell, like the axially
symmetric, nonlinear attractor, and a singular stationary-state vortex, by the pro-
posed process named the “wrap-around mechanism.” The wrap-around mechanism
is analogous to the baker’s transformation in nonlinear dynamics although it is two
dimensional while the baker’s transformation is one dimensional. The wrap-around
mechanism becomes activated by the mesocyclone existing between the entropic
source and sink, which is a baroclinic state, and is expected from the entropic right-
hand rule (Fig. 18.1). The mesocyclone produces a circular belt of entropic source
around the sink. The circular system is an ensemble of specific combinations of the
original vorticity and its conjugate (Figs. 18.5 and 18.6). The conjugate vorticity has
a conjugate entropy gradient and conjugate flow velocity (rotational component),
but with an integrated magnitude of vorticity and direction. Thus, the original vortex
and conjugate vortex produce the integrated magnitude of vorticity in the original
direction.



18 Entropic Balance Theory and Radar Observation for Prospective Tornado . . . 445

Fig. 18.10 Wrap-around
mechanism (two
dimensional) analogous to
the nonlinear Baker’s
transformation (one
dimensional)

The wrap-around mechanism explains the observation that all tornadoes hit the
ground in the perpendicular direction, and also it is found favorable for the drastic
transition from the supercell to tornadic stages. The wrap-around mechanism based
on the entropic balance theory creates axially-symmetric structure of a tornado
and suggests the transition from supercell to tornado as that from baroclinic to
barotropic states. The barotropic state is horizontal due to the axial symmetry along
the vertical core axis of tornado. We will further discuss the background reasons for
this suggestion.

18.7.1 Tornado Hits the Ground in the Perpendicular Direction

Some theories speculated that a tornado is formed from a horizontally laying vortex
tube by tilting upward by a storm updraft (Davies-Jones et al. 2001). However,
it is known from many visual observations that a tornado vortex always hits the
ground in the perpendicular direction. It is easily understood from fluid mechanics
that a vortex tube of finite diameter does so at a wall surface, because the normal
component of the flow velocity should vanish at the wall surface.

Therefore, there only exist two cases: (a) the vortex tube lays on the ground in
the parallel direction, or (b) the tube hits the ground in the perpendicular direction,
but not in a slanted direction.
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Accordingly, a tornado core is not formed from upward tilting of a horizontal
vortex tube by storm updrafts. Instead, it seems natural to assume that it orig-
inates in the storm from mid-levels at an altitude of several hundred meters or
a few kilometers above the ground, and with the wrap-around nonlinear mech-
anism, the tornado vortex tube hits the ground in the perpendicular direction,
satisfying the boundary condition of vanishing vertical velocity at the ground
surface.

18.7.2 High Relative Helicity and Stationary State

It is supported by successful numerical simulations (Noda 2002; Noda and Niino
2005, 2010) that the relative helicity of a mature tornado is high, near one, implying
a stationary state SS (Fig. 18.2) of a relatively long life time for the mature stage
of a tornado as discussed in Sects. 18.3 and 18.4 of this article. It should be noted
that the helicity is defined as given in (18.8) as the scale product (v � !) between
the flow velocity v and the vorticity !, and it is used to show the stationary state,
namely @t! � 0. To do so, it is assumed, as shown in (18.10) of Sect. 18.4, that
the magnitude of the tem .v � !/ is sufficiently smaller than that of .v � !/.
Here the solenoid term r � ..1=�/rp) and r � .v � !/ of (18.23) are neglected,
although both play important roles in supercell development stage (baroclinic),
but not after the transition to tornadic stage (barotropic), as discussed earlier in
Sasaki (2010).

18.7.3 Transition from Supercell to Mature Tornado

In the entropic balance theory, the flow velocity v is expressed by the diagnostic E-L
equation (18.5),

v D �r˛ � Srˇ: same as (18.5) (18.34)

The rotational term .�Srˇ/, plays an important role in supercell stages including
tornadogenesis as discussed in the author’s earlier article (Sasaki 1999, 2009, 2010)
and Sect. 18.5 of this article. This can also be been seen in the following vorticity,
!, equation,

! D .1=S/rS � �.Srˇ/: same as (18.6) (18.35)

The helicity, however, uses only the first divergent term (-r˛/ for the flow velocity
as shown in (18.22), as

H˛ D .�r˛/ � !: same as (18.22) (18.36)
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Fig. 18.11 Baroclinic case
of the entropic balance
expressed in the right hand
rule

The transition to the mature stage of a tornado is characterized by the transition from
the asymmetric baroclinic stage to the symmetric barotropic stage as discussed in
Sect. 18.5,

Hˇ ) H˛;BC C Wrap-around mechanism ) H˛;BT: (18.37)

18.7.4 Wrap-Around Mechanism

The wrap-around mechanism is proposed to be responsible for the transition from
the supercell stage to the mature tornado stage. In Fig. 18.9, the supercell baroclinic
stage is shown at the top, and the mature tornado stage is at the bottom. S 0
is the entropy anomaly. S0 >0 due primarily to condensation, and S0<0 due to
evaporation in the supercell storm. Tighter wrap-around causes steeper, axially
symmetric entropy gradients in and closely around the trapped core of tornado,
consequently creating intense vorticity, according to the entropic balance theory.
The wrap-around mechanism and the corresponding baker’s transformation are
schematically shown in Figs. 18.9 and 18.10 respectively.

The supercell stage is baroclinic, 
 ¤ 0, created by the axially asymmetric
entropy anomaly distribution, due to S0 > 0 (condensation in the storm) and S0 < 0
(evaporation of the overshot hydrometeors against the head-wind westerlies in the
west of storm). The baroclinicity is created by the solenoid. The mature tornadic
stage is created by the field of circular band of positive S0 wrapping around the
tornado core of negative S0. The trapped tornado core and the environment in
an small area is like barotropic over all by a nonlinear wrap-around mechanism
(Figs. 18.3, 18.4, 18.5, 18.6, 18.7, 18.8, 18.9, 18.10, 18.11, and 18.12).
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Fig. 18.12 Barotropic case
of the entropic balance
expressed in the right hand
rule

The wrap-around mechanism developed on the basis of the entropic
balance theory provides the flow velocity (18.5), which explicitly includes the
thermodynamic terms of entropy S varied by heating d’Q, and the Lagrange
multipliers ˛ and ˇ of the constraints of density and entropy, respectively. The wrap-
around mechanism and the entropic balance theory seem to explain the transition
from supercell to tornado. Also, the wrap-around mechanism, together with the
kinematic lower boundary condition, better explain the important findings that all
observed tornadoes contact the ground perpendicularly, contrary to the expectation
from the upward tilting of a horizontal vortex tube.

18.8 Schematic Entropic Balance Model of Supercell
and Tornadogenesis

Figure 18.4 illustrates schematically the entropic balance model of supercell and tor-
nadogenesis under meandering westeries. When a large-amplitude trough develops,
more water vapor evaporated from Gulf Stream is transported by the southerly flow
deeper inland into the central US Great Plains and meets with the dry air transported
by the north-westerly jet-stream. In a developing supercell, the moisture of the
southerly flow condenses and releases latent heat into the surrounding air, resulting
in an entropy increase (18.26b) that is shown by circled plus sign, called an entropic
source, in the figure. The hydrometeors such as raindrops and ice crystals created
by the condensation and freezing are lifted by the updraft, reaching near the cloud
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top, wherein they blow away towards the downstream side, east-side, of the storm
in the anvil.

However, some of the lifted hydrometeors are overshot towards the upstream
direction of westerlies, against the strong headwind. It is due to the horizontal vortex
(represented by the vorticity !/ as shown in Fig. 18.4 where the rotational flow
direction of ! is shown by an arrow with double solid lines. The horizontal vortex
is formed within the vertical but slanted, towards head-wind direction, by a dipole
of entropic source and sink. The overshot hydrometeors will be evaporating and
sublimating in the ambient dry air, cooling the air. The descending hydrometeors
with cooled air meet with dry middle-level south-westerly jet and are cooled
further and produce rear flank downdraft. Thus, major entropic sink forms nearly
at the same altitude as the entropic source, but further west. The horizontal spatial
gradient of entropy is generated by this entropic source and sink, (Fig. 18.4) and
the mesocyclones are generated. There, the diagnostic E-L equation (18.5) and the
entropic right-hand rule play important roles.

The wrap-around mechanism discussed in Sect. 18.7 and shown in schematic
Figs. 18.9 and 18.10 is a nonlinear process, similar to the folding process of the
baker’s transformation of nonlinear dynamics (Fig. 18.10), and produces an axially-
symmetric vortex in the vertical axis. This mechanism produces the hook echo,
low-level mesocyclone, wall cloud, and tornado. The mechanism is well explained
by the diagnostic E-L equation and the entropic right-hand rule, both of which are
derived by the entropic balance theory.

18.9 Comparison with a Well Documented VORTEX2 Result

The entropic balance theory is tested with a well-documented casefrom the most
recent observational experiment, VORTEX2. Figure 18.13 is a schematic diagram
of the supercell and tornadogenesis that occurred on June 5, 2009 in Goshen County,
Wyoming (Markowski et al. 2012a, b).

Entropic balance theory implies that the mesocyclone develops in the baroclinic
field between the entropic source (primarily due to condensation) and sink (pri-
marily due to evaporation), as shown in Fig. 18.4. It is deduced from the theory
that tornado is developed due to the wrap-around of the positive entropic anomaly
air around the subsiding negative core at the area of the center of the tornado.
Indeed, the subsiding core is shown by DRC (descending reflectivity core) and high
value of vertical vorticity in Fig. 18.13. From entropic balance theory, we found
that the transition from mesocyclone to tornado is characterized by the transition
from baroclinic stage to barotropic stage (Figs. 18.11 and 18.12). The transition is
nonlinear, analogous to the baker’s transformation, common in nonlinear dynamics,
called in this study as the wrap-around mechanism because of its higher dimension
than that of the baker’s transformation (Fig. 18.10). It is important to note that
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Fig. 18.13 A schematic summary of VORTEX2 data analysis of the Goshen, Wyoming
tornadogenesis case. Schematic summarizing the evolution of a tornadic storm during its pre-
tornadic phase. The clocks represent the time until tornadogenesis. Regions of significant cyclonic
(anticyclonic) vertical vorticity are indicated by the purple (yellow) shading. Dark gray shading
encloses even larger cyclonic vertical vorticity. The descending reflectivity core is indicated by the
green shading. Surface gust fronts are analyzed using blue lines. Streamlines are shown in black
arrows. Vortex lines are shown in gray streamers, with the sense of rotation indicated by the gray
arrows. In (d), the downward-pointing arrow indicates the occlusion downdraft (From Markowski
et al. (2012a,b))

in Fig. 18.13, the wrap-around mechanism worked actively by the right-hand side
vortex in Fig. 18.13 corresponding to the lower and upper mesocyclones in Fig. 18.4.
Also, it is noted that the shaded area of high vertical vorticity of Fig. 18.13 covers
both areas of the upper-level and the low-level mesocyclones, which may be formed
by the baroclinicity generated between entropic source and sink and upward tilting
horizontal vortex, respectively. It suggests that vertical superimposition of their
phases seems a key of tornadogenesis (Fig. 18.14).



18 Entropic Balance Theory and Radar Observation for Prospective Tornado . . . 451

Fig. 18.14 Change of entropy. Note that dS is totally differentiable while �’Q is not, and dS D
.@t C v � r/ S

18.10 Temporal Discretization of Radar Data
for Entropy anomaly

The hypotheses 1 and 2 used for the Lagrangian in Sect. 18.2 are restated here.
Hypothesis 1 states that microphysical phase changes of a small ensemble of
hydrometeor molecules is instantaneous, creating a new entropy level with adiabatic
conditions before and after the phase change, and having a much shorter time-scale
than the time-scales of convective storms and tornadoes,

�tphase change << �tsupercell, tornado: same as (18.2) (18.38)

Hypothesis 2 states that variations of the initial entropy levels are small enough to
allow us to approximate them by their ensemble means. These hypotheses are shown
schematically in Fig. 18.15.

The entropic source and sink are created by diabatic heating and cooling
(Fig. 18.4), and (18.26b) is rewritten as

.@tS C v � rS/ D d’Q=T: same as .18:26b/ (18.39)
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Fig. 18.15 Schematic
diagram of molecule
ensemble of instantaneous
phase change

Using the difference of the time-scales between phase changes of cloud physical
processes and supercell processes as shown in (18.38), we can simplify the entropic
analysis eliminating the advection effect of not-important dipole of entropic source
and sink, because it is merely caused by the term of v � rS in (18.39), as
schematically demonstrated in Fig. 18.15, but focusing on the more important
contribution of d’Q/T on the entropy change. It seems to be accomplished by taking
smaller value of time interval �t compared with �tsupercell, tornado. An appropriate
value of �t is suggested as �t < 1 min.

The latent heat values are much higher with condensation or evaporation, almost
five times, than that of freezing or melting at various pressure and temperature
conditions of the troposphere, as seen from the three phase diagram of water
(Meteorological Glossary, American Meteorological Society 2000; Atkins and
de Paula 2002, for pure water; Pruppacher and Klett 1997, for the behavior
of water vapor, liquid and solid water states with salt and other condensation
nuclei and various environmental conditions; Stensrud 2007, for water-atmosphere
parameterization and convective parameterization). It is assumed that there are
important roles of condensation and evaporation for tornadogenesis as the first
approximation, which occur at lower and middle levels of the troposphere and create
a nearly maximum entropy gradient between the entropic source and sink (Fig. 18.4)
as explained in Sects. 18.2 and 18.8. It is based on the fact that significantly larger
latent heat released by condensation (or removed by evaporation) is expected at low-
and middle- levels than from freezing (or melting) at the mid- or upper-levels of the
troposphere. This entropic source and sink with neutral stability in the middle and
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Fig. 18.16 New radar
variables

lower troposphere (Sasaki 2009) seems provide and answer to the question of why
the tornado is a low-level phenomenon.

The value of the heating or cooling, d’Q, may be estimated from the temporal
change of radar reflectivity, if the time step is taken small enough so that the
advection term of reflectivity becomes negligible. Other effects such as radiation
seem to be small compared against the latent heat. Because T is nearly constant,
240–273ıK for the condensation with super-saturation and evaporation processes
leads good estimates of dS from the latent heat release d’Q. It is the purpose of this
study to find a clue if we could estimate d’Q from radar reflectivity variations, in
spite of not detecting the details for the cause of d’Q. In order to get a feeling on the
order of magnitude estimate of flow velocity (rotational component) v, vorticity !

in conjunction of d’Q and rS (from the distance between entropic source and sink
assuming linear profile of entropy) shown as a numerical example in Appendix 4.

The preliminary results of initial testing are shown in Sects. 18.11 and 18.12 in
addition to the comparison with VORTEX 2 (Sect. 18.9). The new notations DZ,
DZDR, S0, S0

RR, and S0
DR are defined as follows, and shown in Fig. 18.16, because of

future use of the defined quantities:

DZ WD Z.t C dt/� Z.t/;with optimally-selected temporal interval dt,

and radar reflectivity Z, (18.40)

DZDR WD ZDR.t C dt/� ZDR.t/ where ZDR is differential reflectivity, (18.41)

S’ W Entropy anomaly, (18.42)
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S’RR W Entropy anomaly estimated from radar reflectivity, (18.43)

S’DR W Entropy anomaly estimated from differential reflectivity. (18.44)

In this experiment, for simplicity, we assume that

S’RR ' L=T DZ (18.45)

and

S’DR ' L=T DZDR: (18.46)

where L is the latent heat of phase transition of microphysical process, excluding
non-phase transition processes such as advection. It will be discussed in Chap. 11
for a selected process. Note that the instantaneous cloud physical phase change
(Fig. 18.15) should be captured better by a small temporal interval dt in ((18.40),
(18.41), (18.42), (18.43), and (18.44)) because the time scales of the environmental
atmospheric flow system, supercell, mesocyclone, and tornado are much larger.
However, as we discussed in Sect. 18.7 (D), the advection term of the wrap-around
mechanism is the needed important nonlinear process to include for tornadogenesis.
However, for simplicity, we focus our initial testing of the entropic balance theory
on the diabatic heating and cooling d’Q estimates on a moving coordinates with
tornado from radar observations.

18.11 Estimating Entropy from Polarimetric Radar Data

As discussed in previous chapters, the entropic sources and sinks can be created by
evaporative cooling or condensational heating:

d’Q D TdS; same as .18:26b/ and .18:39/ (18.47)

where d’Q is the heating or cooling. To estimate what changes in entropy dS could
look like in radar data, we make use of the evaporation model of Kumjian and
Ryzhkov (2010). In this simplified one-dimensional model, raindrops in the 3 km
column evaporate as they descend to the surface. Evaporation leads to a decrease in
radar reflectivity Z and an increase in the differential reflectivity ZDR (e.g., Li and
Srivastava 2001; Kumjian and Ryzhkov 2010). The magnitude of these changes in
the radar variables depends on the initial drop size distribution (DSD) aloft as well
as the environmental conditions in the model domain. The cooling rate owing to
evaporation of liquid water can be expressed as (e.g., Pruppacher and Klett 1997;
Bohren and Albrecht 1998):

d’Q=dt D Lvdm=dt; (18.48)
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where Lv is the latent enthalpy of vaporization, and dm/dt is the rate of change of
mass owing to evaporation (which is negative, implying a cooling rate). The change
in mass of water in the one-dimensional model is calculated based on the change in
liquid water content (mass of water per unit volume),

M D .=6/�w

Z
N.D/D3dD: (18.49)

Here, N(D) is the number concentration (per unit volume) of drops of diameter D,
and �w is the density of liquid water. Thus, we can obtain an estimate of the change
in entropy per unit volume based on model output:

dS � .LvT�/dM; (18.50)

where T� is the average temperature of the model domain. Using a number of
different environmental profiles and DSDs, we can estimate the entropy anomalies
S0

RR and S0
DR as a function of the evaporative changes DZ and DZDR. In general,

larger changes in Z and ZDR correspond to larger changes in entropy for a given
DSD (not shown).

18.11.1 1 June 2008 case

The temporal difference method is applied to the rapid-scan radar data from the
1 June 2008 case of a cyclic nontornadic supercell in Oklahoma (see Kumjian
et al. 2010). Figure 18.17 shows the temporal difference fields of Z and ZDR over
the period 0341:36 UTC to 0346:26. At this time, the storm is undergoing cyclic
mesocyclogenesis, and the new mesocyclone is developing along the RFD gust
front. This time is marked by an increase in the strength of the updraft. Note that
the signal of storm advection is evident in each panel (the C/� difference “dipole”
is clearly seen in the hook echo at each time). However, meaningful patterns of
differences exist. For example, in panels (d), a relatively large region of positive
DZ (indicating an increase in Z from one scan to the next) is located across much
of the RFD north of the hook echo. At the same time, a large positive DZDR is
located farther downstream along the forward-flank downdraft echo, after several
consistently negative differences in the preceding scans. Such changes in behavior
of the storm microphysics may be related to changes in entropy (e.g., increased
Z could mean more precipitation produced by condensation and accretion aloft,
indicating a positive entropy anomaly). A positive DZDR along the forward flank
indicates suddenly larger drops are falling there, as a result of enhanced size sorting
or some other process.

It is interesting to note that this case is an excellent example of baroclinicity
development at the front edge of RFD, (see Fig. 18.5 for schematic illustration,
applying the righthand rule of Fig. 18.1), which is known as favorable for tornado-
genesis (Lemon and Doswell 1979). However, a tornado did not develop from this
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Fig. 18.17 Non-tornadic supercell case. Z: Initial reflectivity field of each section (left panels),
temporal sequence of DZ (center panels), and that of DZDR(right panels) from the case of 1 June
2008. Differences are for (a) 0341:36 to 0342:49, (b) 0342:49 to 0344:01, (c) 0344:01 to 0345:14,
and (d) 0345:14 to 0346:26 UTC. Overlaid on the difference plots are the 30-, 40-, 50, and 60-dBZ
contours of radar reflectivity Z from the most recent of the two times

storm. Why this storm did not produce a tornado even though it seemingly had
an environment favorable for tornadogenesis is an important question (listed in the
Appendix 1).

The entropic balance theory seems to provide an answer: that tornadogenesis
requires the wrap-around nonlinear process (Sect. 18.7), which creates the transition
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from the baroclinic stageto the barotropic stage (Fig. 18.3). The wrap-around
mechanism was apparently missing in this case. It could be because the low-level
mesocyclone was incapable of producing the wrap-around process and cyclic sym-
metry necessary for tornado development. This could be due to the large distance
between the major entropic source and sink regions outside of the hook echo (RFD)
area, which cause too small of an entropic gradient and thus too weak vorticity.

18.12 Temporal Discretization Necessary for Phase
Change Ensemble

The previous case illustrates the potential for the use of entropic balance theory
with standard weather radar outputs, Z and ZDR. However, data from this case
were collected at approximately 70-s intervals, a rate much higher than is used
operationally for the NEXRAD network, which usually receives updates for a
particular elevation every 5 min. It is clear from the rapidly evolving scenario
presented that, even at this high temporal sampling rate (
70 s), storm advection
produces a bias in the calculation of DZ and DZDR. Since the parameters used to
calculate the system entropy depend on the microphysical changes within a radar
resolution volume, it can be assumed that over a necessarily short period of time,
the molecular phase state fluctuations will dominate (see Fig. 18.13). The question
of how short a time interval is appropriate will be addressed in this section.

The temporal difference method was applied to data collected from the Atmo-
spheric Imaging Radar (AIR), a multi-channel, X-band, mobile imaging weather
radar capable of gathering 20ı range-height indicator (RHI) scans at approximately
1 s time intervals. A detailed description of the radar and its capabilities can be
found in Isom et al. (2011). It should be noted here that this radar is horizontally
polarized and thus we cannot calculate the DZDR parameter. This extremely high
temporal resolution made it possible to examine the calculated values of DZ at
various intervals and determine an appropriate dt in which the changes in reflectivity
are dominated by microphysical processes and not advection.

Three examples of varying interval lengths are given in Fig. 18.18. Data were
collected during a squall line that moved through the Norman, OK area on August
9, 2011 at approximately 0200 UTC. RHI scans at a single azimuth angle (no
azimuthal scanning) and 1ı � 1ı angular resolution were used to achieve the high
temporal sampling. Range corrected power for 0228:15, 0229:00 and 0231:36 UTC
are given in the left column of Fig. 18.18 and DZ/dt for time intervals of 1, 45 and
154 s are given in the right column. Again, several entropic dipoles can be seen
throughout the storm cross-sections, especially at the shorter two time intervals.
Qualitatively, there is good agreement between the 1 and 45-s DZ calculations,
particularly in the convective portions of the storm (4–5 km range) and along
the gust front (8–9 km range). The dipole structure has significantly degraded by
the 154-s interval, thus indicating that the time-span is dominated by advection.
While advection plays a role in the 45-s interval as well, it can be argued that,
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Fig. 18.18 Selection of temporal discretization of Z for entropy anomaly. Range corrected
power calculated from the Atmospheric Imaging Radar (AIR) are shown in the left column
at 0228:15, 0229:00 and 0231:36 UTC. The right column shows the calculated DZ values for
temporal intervals of 1, 45 and 154 s. Note the dipole structure has degraded in the 154-s interval
indicating advection dominates the microphysical phase changes within the radar resolution
volume. A temporal resolution of less than 1 min is necessary to reduce the advection bias and
obtain measurements appropriate for entropy estimation

since the dipole structure visible in the 1-s interval is still intact, the microphysical
information required for the entropy derivation is still present and accurate.

From this experiment, it is determined that high temporal resolution is necessary
for meaningful and accurate measurements of DZ, and thus entropy. Revisit times
(�t) of 1 min or less would be appropriate for reflectivity or power measurements
and would ensure that environmental advection does not significantly bias the
estimates for entropic balance theory.

18.13 Providing a Basis for Tornado Data Assimilation

The entropic balance theory was described and its theoretical applicability for
tornadogenesis was shown in the Sects. 18.2, 18.3, 18.4, 18.5, 18.6, 18.7, 18.8,
18.9, and 18.10. Some key questions of tornado and environment (Appendix 1)
are answered well by the entropic balance theory (Appendices 2 and 3). All
of the governing equations of atmospheric dynamics, thermodynamics and mass
continuity for the flow of high Reynolds number can be derived from the Lagrangian
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(18.3) of the variational formalism (Sect. 18.2). The Reynolds number is estimated
using molecular viscosity as 109�12. Consequently the molecular viscosity term can
be neglected so that the flow is an ideal flow, but the nonlinear terms of the governing
equations are fully retained, portion of which is expressed by eddy viscosity.

The entropic balance (18.5) is the sole diagnostic Euler-Lagrange equation and
should be always satisfied for the all other prognostic Euler-Lagrange equations as
discussed in Sect. 18.3 and in Fig. 18.3 as the completeness of solution. The vorticity
(18.6) is derived from the entropic balance (18.6).

Using the variational analysis method (Sasaki 1970) with the constraints (18.5)
and (18.6), it may be possible to get entropy, flow velocity, vorticity, the potentials ˛
and ˇ from the conventional and radar observation data. It is noted that the Lagrange
multiplier potentials ˛ and ˇ are not easily expressed in terms of conventional
meteorological field variables (which can be seen as a weakness of this approach),
except in this article they are well interpreted as divergent part and rotational part
respectively (Fig. 18.1). In the Sects. 18.11 and 18.12 of this article, preliminary
research on uses of the radar data was described. The results are promising, although
shown only for one case in each of the chapters. With the new radar variables DZ
and DZDR etc., we may be able to extract cloud microphysical information from
the storm. We plan to further test for a number of other cases by this approach to
establish a solid basis for tornado data assimilation, because of the applicability of
the entropic balance equation as a constraint with the radar observation in variational
formulation.

Appendix 1 Some Key Questions on Tornadogenesis

Accurate forecasting of tornadogenesis is one of the unsolved problems, in spite
of a great number of observations and research made over many decades. In
recent years, significant progress has been made to understand the mechanism of
tornadogenesis. However, there still remain key questions and difficult problems in
fully understanding tornadogenesis and tornado.

Some of the key questions that need to be answered by any proposed theory of
tornadogenesis are:

1. How does the mesocyclone develop? Note that mesocyclone and wall cloud are
known as observed with tornadogenesis.

2. Why are hydrometeors able to be overshot against the upper air westerlies
of much stronger wind speed than that of low level south-easterly inflow to
tornadic storm?

3. Why are the locations of tornado and major precipitation regions spatially
separate, not coincident?

4. Why is dry air aloft important for tornadogenesis?
5. Why do multiple vortices sometime develop before and during tornadogenesis?
6. How does the tornado develop in a hook echo, at the south-west corner, not at

the center, of a supercell, and why is it associated with wall cloud?
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7. Why does the tornado touch down in the perpendicular direction to the ground?
Note that tornado should touch down to the ground in a parallel direction if the
tornado is generated by the upward tilting theory of horizontal vortex.

8. Why is the tornado a phenomenon of low altitudes (<2–3 km) of the atmo-
sphere?

9. What is the role of upward tilting of low level horizontal vorticity for tornado-
genesis ?

10. What are necessary and sufficient conditions to separate tornadogenesis from
non-tornadogenesis, in spite of several favorable conditions (such as favorable
environmental soundings, supercell, mesocyclones, and RFD)?

These questions seemed to be well answered by the entropic balance theory
(Sasaki 2009, 2010).

Appendix 2 Answer to the Questions 1, 2, 3 and 4

Firstly we consider a simple case where the linear slope between the entropic source
and sink as shown in Fig. 18.5 and the flow velocity (rotational component) is
horizontal and southerly. For this case, the direction of the vorticity ! is vertical
as given by (18.5) that is expressed by the entropic right-hand rule (Fig. 18.1), and
is shown in Fig. 18.5 where the rotational flow direction of the vorticity ! is shown
by an arrow with double solid lines. The vorticity ! represents mesocyclone existed
indeed in the linear entropy slope between the entropic source and sink. It may
answer the question 1.

The entropic anomaly in the air above the top of convective supercell is negative
due to evaporation of the hydrometeors in the dry westerlies and radiative cooling,
while the having the positive entropic source below. Accordingly, the maximum
spatial gradient of the entropy anomaly between the points just above the supercell
(S0<0) and at the convective center of the supercell (S0>0) is directing straight
downwards. With the upper air westerlies wind vector and the entropic spatial
gradient vector, the vorticity ! is that of the horizontal vortex tube as shown at the
top of the supercell in Fig. 18.5. The upper vortex seems the key to overshoot the
hydrometeors generated in the supercell updraft, westwards against the headwind
westerly jet. This may answer the question 2. From the above answer to the
questions 1, and 2, it is apparent that the question 3 is answered from the above
answer to the questions 1 and 2. To answer the both questions 1, 2 and 3, it is noted
that the dry air plays the key roles, and it may answer the question 4.

Appendix 3 Answer to the Questions 5, 6, 7, 8, 9 and 10

The “wrap-around mechanism” is explained in a simple way by using the diag-
nostic E-L equation (18.5) and the entropic right-hand rule (Fig. 18.1) of (18.6).
Figure 18.6 is prepared which has opposite sign of spatial entropy gradient and the
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flow velocity direction (rotational component) and produces the same vorticity of
Fig. 18.1. It is called as conjugate vortex (or vorticity) in this article. Combination
of the original vortex and its conjugate produces multi-vortexes as well as single
vortex. It answers the question 5. The answer for the questions 6 and 8 may be
easily found from Fig. 18.4.

The answer for the questions 7 and 8 is discussed in Sect. 18.7. The question 9
may be answered in Sect. 18.5. The answer to the historically long-standing question
10 is a tough one, but may be hinted by the entropic balance theory discussed in this
article and in an example shown in the following Appendix 4. It is challenging for
continuing research to find a full answer for the question 10.

Appendix 4 Entropy Variation and Tornadogenesis

The entropy variation due to cloud-physical phase change is computed at the alti-
tudes of 1–3 km where condensation and evaporation to provide thermodynamical
effects for development of mesocyclones and tornado, and the atmospheric pressure
of approximately 750 mb and temperature of 0ı C .273ıK/ as an example. For
simplicity for this preliminary investigation, we assume also that S0 D 0 and only
consider the diabatic effects of water molecules on S of the surrounding air on a
moving coordinates with tornado.

The entropy change�c S of the surrounding air due to water vapor condensation
measured at 100 ıC and 1,013 mb is estimated as 109.0 JıK�1mol�1, and that
of evaporating of water droplet �109 JıK�1 mol�1. Since moisture measurement
is not considered in this preliminary investigation and insufficient measurement
and knowledge on the cloud-physical phase changes of actual cloud, the estimates
were made simply based on the measurements of heat in published chemical
experiments. Their values are adjusted to the value of 0 ıC and 750 mb for
representing the altitude of 1–3 km, using the standard adjustment processes (Atkins
and de Paula 2002; Watanabe 2003).

The adjustment amount due to the temperature change �T S .100 ıC —>

0 ıC/D � 16:6 JıK�1mol�1 and that due to pressure change �p S (1,013 mb — >

750 mb) D 2.1 JıK�1mol�1.
After the adjustments, the entropy change of the surrounding air due to con-

densation of water vapor is; �c S D .109:0 � 16:6 C 2:1/ JıK�1mol�1 D
94:5 JıK�1mol�1, and for that due to evaporation of water droplets is �e S D
.�109:0� 16:6C 2:1/ JıK�1mol�1 D �123:5 JıK�1mol�1.

Thus we get the entropy difference between the entropic source and sink
separated by the distance d;�d S D .94:5� .�123:5// D 218:0 JıK�1mol�1.

Similarly, the absolute entropy S is calculated by adding the entropy changes
due to melting of ice, 22:0 JıK�1mol�1 and the residual entropy, 0:8 JıK�1mol�1
from the Boltzmann’s third law of thermodynamics, resulting S D .94:5C 22:0C
0:8/ JıK�1mol�1 D 117:3 JıK�1mol�1.
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From (18.6), the vorticity ! is written as

! D vˇ � .1=S/S: (18.51)

where Vrot represents the rotational component of flow velocity.
Usin the estimated values of S and� S, (18.51) becomes

! D Vˇ � 1:86.D 273:0=117:3/=d s�1 (18.52)

where d is distance between the entropic source and sink.
For an example of mesocyclone cases, vˇ is taken 10 m/s and d as 5 km, then

(18.52) leads ! D 0:0037 s�1. For tornado by wrap-around mechanism cases,
(18.52) with 50 m/s of Vˇ and 100 m of d leads ! D 0:93 s�1. The former and latter
seem appropriate order of magnitudes for mesocyclones and tornado respectively.
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Chapter 19
All-Sky Satellite Radiance Data Assimilation:
Methodology and Challenges

Milija Zupanski

Abstract Assimilation of satellite radiances is the backbone of today’s operational
data assimilation. Satellites can cover all parts of globe and provide information in
areas not accessible by any other observation type. Of special interest are high-
impact weather areas, such as tropical cyclones and severe weather outbreaks,
which are mostly covered by clouds. Unfortunately, in current operational practice
only clear-sky satellite radiances are assimilated, with only few exceptions. This
effectively filters out a potentially useful information from all-sky radiances related
to clouds and microphysics, and consequently limits the utility of satellite data. In
this paper we will address numerous challenges related to the use of all-sky satellite
radiances.

All-sky satellite radiances present a formidable challenge for data assimila-
tion as they relate to numerous technical aspects of data assimilation such as:
(1) forecast error covariance, (2) correlated observation errors, (3) nonlinearity
and non-differentiability, and (4) non-Gaussian errors. Assimilation of all-sky
radiances is also challenging from a dynamical/physical point of view, since
observing clouds implies a need for better understanding and ultimately sim-
ulation of cloud microphysical processes. Given that a reliable prediction of
clouds requires a high-resolution cloud-resolving model, assimilation of all-sky
radiancesis also a high-dimensional problem that requires addressing computational
challenges.
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19.1 Introduction

Satellites, radars, and other remote sensing are the major sources of information
about atmosphere and oceans with invaluable implications for weather, climate,
and hydrology. Satellites can cover all parts of globe and can provide information
in the areas not accessible by any other observation type. It is not surprising that
satellite radiance observations are widely used in data assimilation and numerical
weather prediction (NWP). Among most relevant data assimilation and NWP
applications are for high-impact weather events such as tropical cyclones and severe
weather outbreaks, which are mostly covered by clouds. Unfortunately, in current
operational practice only clear-sky satellite radiances are commonly assimilated,
with rare exceptions. This effectively filters out potentially useful information from
cloud and precipitation affected radiances and consequently limits the utility of
satellite data. In this paper we will address several challenges related to the use of
all-sky (i.e. combined clear-sky and cloud/precipitation affected) radiances in data
assimilation.

The relevance of all-sky radiance assimilation is widely recognized and discussed
(e.g., Errico et al. 2007a, b; Auligne et al. 2011; Bauer et al. 2011). Challenges of
all-sky satellite radiances for data assimilation and prediction can be all traced back
to clouds and precipitation. Cloud microphysical processes are highly nonlinear,
discontinuous, and characterized by very small spatial scales of the order of
hundreds of meters to a kilometer, requiring high-resolution and complex modeling.
Consequently, data assimilation of clouds and precipitation is also nonlinear and
high-resolution. High spatiotemporal resolution of cloud processes has a direct con-
sequence on computations, posing an additional challenge in practical applications.

In this paper we focus on addressing the data assimilation challenges of all-sky
satellite radiance assimilation related to variational and ensemble data assimilation,
since they represent the most relevant methodologies used today. In Sect. 19.2
we present the current status of data assimilation in reference to all-sky radiance
assimilation, and discuss several major challenges in detail in Sect. 19.3. We
summarize the issues and look at the future of all-sky satellite radiance assimilation
in Sect. 19.4.

19.2 Current Status

In this section we introduce a more formal overview of data assimilation method-
ologies currently used in research and operations, and also describe current status
of data assimilation with respect to all-sky radiance assimilation.
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19.2.1 Data Assimilation Overview

We assume that reader is at least partially familiar with data assimilation, thus we
will only describe data assimilation methodologies in general. This section will also
serve to introduce the notation.

Data assimilation (DA) may be referred to as a mathematical algorithm that
provides optimal combination of observations and model prediction. DA produces
optimal estimates of the model state vector (e.g., analysis), as well as its uncer-
tainty, typically represented by the analysis error covariance matrix. “Optimal”
is commonly defined as a minimum variance or a maximum likelihood estimate
(e.g., Jazwinski 1970). Current data assimilation methodologies generally rely on
the use of Bayes formula for describing conditional probability density function
(pdf). A detailed overview of data assimilation methods can be found in books by
Daley (1993), Kalnay (2003), Lewis et al. (2006), and Evensen (2009).

We briefly describe two major DA methodologies, variational and ensemble.
Variational DA is commonly used in operational weather centers, while ensemble
DA is mostly used in research and is making progress towards operational use.
Also, there are a variety of sub-methods and hybrid methods that combine the two
methodologies.

Following Lorenc (1986), for Gaussian probability distribution one can derive
a cost function by taking a negative logarithm of the Bayes formula for posterior
probability

J.x/ D 1

2
Œx � xf �T P�1

f Œx � xf �C 1

2
Œy � h.x/�T R�1 Œy � h.x/� (19.1)

Where x denotes the state vector, y is the observation vector, the superscript f
denotes forecast, h is a nonlinear observation operator and Pf and R are the
forecast and observation error covariances, respectively. Although this cost function
is typically mentioned in variational methods, it is important to note that this
function is also relevant for Kalman filter based methodologies, including ensemble
Kalman filter (Li and Navon 2001). As shown in Jazwinski (1970), minimization of
the cost function (19.1) defined for linear observation operator produces the Kalman
filter analysis solution formally obtained using Newton method for minimization of
quadratic function (e.g., Luenberger 1989). This apparent equivalence between the
minimum variance and maximum likelihood estimates is ultimately a consequence
of using Gaussian pdfs for which the mean and the mode are identical.

Variational and ensemble data assimilation methods can be applied sequentially,
in which case they are referred to as filters, or in batch mode, in which case they are
referred to as smoothers. Variational filtering method is called the three-dimensional
variational (3d-Var) DA, while when it is used as a smoother it is referred
to as the four-dimensional variational (4d-Var) DA. Ensemble data assimilation
methodologies are mostly applied sequentially, although there is a possibility to
apply them in a smoother framework (e.g., Evensen and van Leeuwen 2000).
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The main assumption of variational methods is related to the forecast error
covariance, which is modeled, and thus generally static without time depen-
dence. Another characteristic of variational methods is that they are developed
around an iterative minimization algorithm, typically of unconstrained type (e.g.,
conjugate-gradient, quasi-Newton), making them suitable for nonlinear processes
and operators.

Ensemble DA methods use ensemble of forecast models to define a time-
dependent forecast error covariance, however for the price of being a reduced
rank approximation. They are algorithmically simpler than variational methods,
thus easier to develop and maintain. Although ensemble DA can handle very well
nonlinearities of the forecast model, their straightforward application is not very
good for addressing nonlinearities of observation operator because the analysis is
based on using the Kalman filter linear solution.

19.2.2 Assimilation of All-sky Radiances

Most operational weather centers are currently using variational DA methods,
although they actively investigate ensemble and hybrid variation-ensemble methods.
On the other side, ensemble and hybrid variational-ensemble methodologies are typ-
ically developed at research laboratories and universities. However, this distinction
is not that clear and there are several research data assimilation algorithms being
tested for operational use. Even though there is a wealth of information that all-
sky radiances could bring to the prediction system, only a limited research effort
to assimilate such observations exists. Most efforts include the use of variational
methods (e.g., Vukicevic et al. 2004; Bauer et al. 2006, 2010; Geer et al. 2010; Geer
and Bauer 2010; Polkinghorne and Vukicevic 2011) with some applications within
ensemble and hybrid variational-ensemble methods (e.g., Zupanski et al. 2011a, b;
Zhang et al. 2012).

Especially relevant is the pioneering work by satellite research group at the
European Centre for Medium Range Weather Forecast (ECMWF) (e.g., Bauer
et al. 2010; Geer et al. 2010) leading to the first operational assimilation of all-
sky radiances, since 2009. There are similar efforts to assimilate all-sky satellite
radiances in the United States at the National Centers for Environmental Prediction
(NCEP), and other centers will likely follow.

19.3 Challenges

In general, challenges of all-sky satellite radiance assimilation originate due to
their relation to clouds. Observing and simulating clouds is challenging in it
own right. This is magnified in data assimilation, being a method that combines
information from observations and from prediction models. Although problems
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related to accurate and efficient assimilation of all-sky radiances are fundamentally
related to each other, one could try to distinguish the challenges related to (1) data
assimilation, (2) simulation and prediction, and (3) computation. Simulation and
prediction of clouds is related to the ability of prediction models to represent clouds,
and the complexity of the employed microphysics. Although this clearly impacts
data assimilation, it is typically assumed an input to data assimilation and thus it will
not be discussed here. Computational requirements for all-sky radiance assimilation
we refer to are caused by high spatiotemporal resolution of cloud microphysical
processes, as well as by a necessity to include cloud scattering processes in forward
radiative transfer model. Computational restrictions will impact the choices one
could have regarding methodology and algorithms used in data assimilation. In this
paper we will focus on data assimilation issues related to all-sky satellite radiances,
and discuss model prediction and computational issues only in context of data
assimilation.

Data assimilation challenges of all-sky radiance assimilation are defined as the
aspects of data assimilation that are especially exposed by assimilation of all-sky
radiances and related cloud-resolving scales. They can be all traced back to clouds,
and range from methodological to computational: (1) forecast error covariance,
(2) correlated observation errors, (3) nonlinearity and non-differentiability, and (4)
non-Gaussian errors.

19.3.1 Forecast Error Covariance

Forecast error covariance is typically used as a measure of uncertainty of the
forecast, and could be defined as

Pf D ˝
.xf � xt /.xf � xt /T

˛
(19.2)

Where xf and xt are the first-guess forecast and the (unknown) truth, respectively,
h�i denotes mathematical expectation and the superscript T denotes a transpose.
It also represents one of the main differences between variational and ensemble
based data assimilation methodologies: Pf is modeled in variational methods,
while computed from a forecast ensemble in ensemble methods. This implies time-
independent covariance in variational methods, while ensemble methods produce
a flow-dependent structure. Time-dependence is in principal an advantage for
applications at cloud-scales with characteristic fluctuating dynamical processes.
One can think of cloud microphysical processes in a hurricane, or in severe storm
outbreaks. However, one should also be aware that ensemble data assimilation
at such high resolution implies a low-rank approximation to the forecast error
covariance, with the number of ensembles much smaller than the state dimension.
Although this issue can be considerably improved by error covariance localization
techniques (e.g., Hamill et al. 2001; Houtekamer and Mitchell 2001), this is still a
limitation.
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We now describe how the choice of static, but full-rank, versus flow-dependent,
but reduced-rank error covariance could impact all-sky radiance assimilation.

Forecast error covariance has a fundamental role in data assimilation as it defines
the subspace where the analysis correction can be defined (Appendix 1). Following
the relations (19.26) and (19.30) from Appendix 1, one can represent a generic
analysis increment as

xa � xf D
X
i

ˇiui (19.3)

where ˇi is a coefficient equal to �i and �i defined in Appendix 1, and u is a
singular vector. Therefore, an arbitrary analysis increment can be represented as
linear combination of forecast error covariance singular vectors.

The implication of (19.3) is that a well-defined forecast error covariance is
critical for successful data assimilation. Therefore, the quality of data assimilation
can be assessed by examining the structure of forecast error covariance used in
assimilation. In weather, climate, hydrology, and other geoscience applications the
structure of true forecast error covariance can be very complex, since it incorporates
relations between various state variables. Of special interest for all-sky radiance
assimilation is the structure of forecast error covariance with respect to cloud
microphysical variables since cloud variables are input to radiative transfer model.
In general, there are various processes that imply cross-correlation between cloud
variables, approximately described by the cloud microphysics component of a
forecast model. One can also anticipate correlations between cloud and standard
dynamical variables, such as temperature, pressure and wind. It is convenient to use
a block matrix form to represent forecast error covariance

Pf D
�
Pdd P

T
cd

Pcd Pdd

�
(19.4)

where index d refers to dynamical variables, and index c to cloud variables (e.g.,
cloud ice, snow, rain, etc.).We also use the fact that Pf is symmetric matrix, thus
PT
cd D Pdc . For simplicity, assuming that dynamical variables include temperature,

pressure and wind, and that cloud variables include cloud ice, snow and rain, the
block matrices in (19.4) are

Pdd D
2
4
PT;T PT;p PT;v

PT;p Pp;p Pp;v
PT;v Pp;v Pv;v

3
5 ; (19.5)

Pcc D
2
4
Pice;ice Pice;snow Pice;rain

Pice;snow Psnow;snow Psnow;rain

Pice;rain Psnow;rain Prain;rain

3
5 ; (19.6)
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Pcd D
2
4
Pice;T Pice;p Pice;v

Psnow;T Psnow;p Psnow;v

Pice;T Psnow;p Prain;v

3
5 : (19.7)

The diagonal blocks (19.5) and (19.6) are symmetric matrices, while the off-
diagonal block matrix (19.7) is not symmetric.

The forecast error covariance structure defined by (19.4)–(19.7) is indicative of
the complexity of relations that this matrix represent. Given that these matrices
represent the uncertainty of model variables, one can quickly realize that elements of
these matrices are fundamentally time dependent. The natural formation and decay
of clouds will have a profound impact on the elements of matrices (19.6) and (19.7).
In clear skies these matrices have all elements essentially equal to zero. When
clouds begin forming, the block matrices describe how various variables impact
each other in the process. Unfortunately, there is a limited capability of current data
assimilation methodologies to accurately address the structure (19.4)–(19.7).

Variational methods include modeling of forecast error covariance and typically
do not represent time-dependent information in its definition. One should note
that 4d-Var method includes time-dependence through tangent linear and adjoint
model integration, which does have some impact on the uncertainties at the end of
assimilation interval. However, the forecast error covariance defined at initial time
of assimilation is modeled as in 3d-Var data assimilation. For dynamical variables
one can identify simplified relations such as hydrostatic, geostrophic, and similar
balance constraints that are commonly used in modeling cross-variable interactions
(e.g., Parrish and Derber 1992). Unfortunately, this approach is much more difficult
to apply at cloud scales due to poorly known or unknown balance constraints. This
apparently creates a difficulty for variational data assimilation to represent cloud
variable cross-correlations in (19.6), as well as dynamical-cloud correlations in
(19.7). Although in principle it may be possible to successfully model cross-variable
correlations, this still has not been done for cloud variables. A more feasible solution
applicable to current variational methods is to assume a regular (i.e., isotropic
and homogeneous) correlation for the diagonal blocks in (19.6), i.e. to pre-define
correlation function for Pice;ice, Psnow;snow, and Prain;rain and thus avoid modeling
more complex cross-correlations. In this case the matrices Pcd and Pcc become

Pcc D
2
4
Pice;ice 0 0

0 Psnow;snow 0

0 0 Prain;rain

3
5 ; (19.8)

Pcd D
2
4
0 0 0

0 0 0

0 0 0

3
5 : (19.9)
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On the other hand, ensemble-based forecast error covariance has a potential to
capture all inter-variable correlations, and is also inherently time-dependent. How-
ever, even with error covariance localization, the low-rank limitation of ensemble
error covariance does not allow accurate representation of all cross-correlations
between variables. Fortunately, there are still inter-variable correlations that can
be represented well in ensemble-based methods. Typically, a correlation between
variables at near-by points is well represented even by a limited size ensemble. This
property essentially allows ensemble forecast error covariance to include all terms
defined by (19.4)–(19.7), however with reduced accuracy. The practical problem
is how to distinguish between “good” and “bad” correlations, and the answer
is not yet clear. More aggressive localization may have an appearance of better
controlling cross-variable correlations, but it does potentially impact dynamical
balance of the analysis and would prevent some important correlations in vertical for
well-developed cloud systems. Alternatively, one could introduce other localizing
functions that would selectively apply localization to off-diagonal matrix blocks
depending on the variable.

In addition to algebraic representation of all-sky assimilation issues with respect
to forecast error covariance described above it is also instructive to visually examine
its structure. The structure can be inspected by plotting columns of the forecast error
covariance that is also related to “single-observation” data assimilation experiments.
Let define a vector with all zero elements except for the i -th element with the value
one

zi D �
01 � � � 0i�1 1i 0iC1 � � � 0Ns

�T
(19.10)

where the index refers to a grid point and a variable (e.g., index of the state vector),
and NS is the dimension of state vector. After multiplying vector zi by matrix Pf
one obtains the i -th column of the forecast error covariance matrix

ci D Pf zi D �
f i
1 • f i

i�1 f i
i f i

iC1 • f i
Ns

�T
(19.11)

with f i
j representing the i -th column value at location j . Note that location refers to

a grid point and variable. Following Thepaut et al. (1996) and Huang et al. (2009),
one can derive the analysis increment for single observation at i -th point

xa � xf / Pf
�
y � h.xf /�

i
(19.12)

Applying the matrix–vector product in (19.12), and using (19.11)

xa � xf / �
y � h.xf /�

i
ci (19.13)

i.e. the analysis increment is simply the i -th column of forecast error covariance
scaled by the observation increment. This result, also expected on the basis of (19.3),
allows us to interpret a column of the forecast error covariance as analysis response,
and thus give a physical meaning to the structure of forecast error covariance.



19 All-Sky Satellite Radiance Data Assimilation: Methodology and Challenges 473

Cov, QSNOW QSNOW, z=15 (∼650 hPa) Cov, QSNOW V, z=15 (∼650 hPa)

34.8N

34.5N

34.2N

33.9N

33.6N

33.3N

33N

32.7N

32.4N

32.1N

34.8N

34.5N

34.2N

33.9N

33.6N

33.3N

33N

32.7N

32.4N

32.1N

88.8W 88.5W 88.2W 87.9W 87.6W 87.3W 87W 86.7W 86.4W 86.1W 88.8W 88.5W 88.2W 87.9W 87.6W 87.3W 87W 86.7W 86.4W 86.1W

1.1e-07

1e-07

9e-08

8e-08

7e-08

6e-08

5e-08

4e-08

3e-08

2e-08

1e-08

0.0002

0.0001

-0.0001

-0.0002

-0.0003

-0.0004

-0.0005

a b

Fig. 19.1 Horizontal analysis response to a single observation of cloud snow at 650 hPa on 09
September 2012 at 18 UTC: (a) cloud snow analysis increment, and (b) north–south wind analysis
increment. The results are shown for the inner nest at 3 km horizontal resolution
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Fig. 19.2 Vertical analysis response to a single observation of snow at 650 hPa on 09 September
2012 at 18 UTC for: (a) cloud snow analysis increment, and (b) rain analysis increment. The results
are shown for the inner nest at 3 km horizontal resolution

One such example using ensemble error covariance is shown in Figs. 19.1
and 19.2, where the analysis response to a single observation of cloud snow
at 650 hPa is plotted. This corresponds to a hypothetical observation of high-
frequency microwave all-sky satellite radiance that is sensitive to cloud snow
and ice. The results are obtained using the Weather Research and Forecasting
(WRF) model (e.g., Skamarock et al. 2005) at 9 km/3 km resolution and the
Maximum Likelihood Ensemble Filter (MLEF) data assimilation algorithm (e.g.,
Zupanski 2005; Zupanski et al. 2008). The control variables include dynamical
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variables (e.g., perturbation pressure, perturbation height, perturbation potential
temperature, and winds) as well as cloud variables (e.g., cloud ice, cloud snow,
cloud water, graupel, and water vapor). In Fig.19.1a, b we show a horizontal map
of analysis increment for cloud snow and for the north–south wind component at
the level of the cloud snow observation. One can see that snow analysis has a strong
positive response to snow observation (Fig.19.1a), as expected. It is also interesting
to note that cloud snow observation impacts wind (Fig.19.1b), a dynamical variable,
corresponding to Psnow;v component of the forecast error covariance from (19.7).
This is important since it indicates that, with adequate forecast error covariance
structure, one can impact dynamical variables by all-sky radiance observations. One
can also note a relatively regular response that resembles modeled error covariance
structure (e.g., Parrish and Derber 1992; Wu et al. 2002), possibly suggesting that
such covariance components can be successfully modeled in variational methods.

In Fig.19.2 we show cloud snow and rain analysis responses in the vertical,
corresponding to the components Psnow;snow and Psnow;rain. One can see a well-
defined cloud snow response centered at the observation location (Fig.19.2a).
The response is confined to few levels above and below the observation, again
suggesting that modeling this covariance component may be possible. However, the
response of cloud rain (Fig.19.2b) exposes a potential difficulty in modeling cross-
variable correlations such as snow-rain. The first problem is to create a non-centered
response of rain to cloud snow observation. Although this may be mathematically
possible (e.g., Gaspari and Cohn 1999), it has not been done in practice and opens
several new problems. One such problem is to know what exactly needs to be
modeled, because there is a very limited knowledge about cloud-variable correlation
statistics. The most difficult problem may be related to flow-dependence of these
correlations. It is clear that the existence of cloud rain and snow depends on the
current temperature conditions that change with time and thus require additional
flow-dependent parameters to be introduced to the modeling function and eventually
estimated.

Therefore, forecast error covariance can have very different structure depending
on the methodology used. Even within same methodology one can choose different
parameters related to decorrelation length of correlation function in variational
methods, or to the covariance localization in ensemble methods, effectively imply-
ing a large number of possible choices for forecast error covariance. This apparent
variety of possible choices for the forecast error covariance creates a problem
since in light of (19.3) it implies a non-unique analysis solution. The “optimal”
choice of forecast error covariance may be good for overall data assimilation
performance, but may not adequately address all-sky radiance observations since
they are generally confined to a smaller local area of intense dynamical development
and thus their global impact is relatively small. One possible way to address the
problem of non-uniqueness of forecast error covariance is to reduce the number of
additional parameters, or at least to include their estimation in the data assimilation
algorithm. Another possibility may be to develop a new methodology that will be
less dependent on forecast error covariance and include fewer undefined parameters.
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19.3.2 Correlated Observation Errors

The number of satellite radiance observations can dramatically increase when
cloudy radiances are included. This immediately opens several new data assim-
ilation issues such as observation error correlations and computational overhead.
Consider a commonly used observation equation

y D h.x/C " (19.14)

Where " is a Gaussian random variable N.0;R/ and

R D ˝
""T

˛
(19.15)

The observation error covariance matrixR is typically defined as diagonal, implying
uncorrelated observation increments. This assumption greatly simplifies data assim-
ilation that requires the inverse of R, and is also relatively accurate if observations
are not very close to each other. However, when observations are densely distributed
the uncorrelated observation error assumption may not be justified. The ultimate
consequence of correlated observation errors is that the information content of
near-by observations is reduced compared to their independent information. This
intuitive conclusion can be formalized using mathematical framework of Shannon
information theory (Shannon and Weaver 1949; also Appendix 2). Let Y1 and
Y2 represent random observation errors for two near-by observations. Using a
general relationship between entropyH and mutual information I (e.g., Cover and
Thomas 2006)

I.Y1IY2/ D H.Y1/C H.Y2/�H.Y1; Y2/ (19.16)

as well as (19.34) from Appendix 2

I.Y1IY2/ D I.Y1IY1/C I.Y2IY2/�H.Y2; Y2/: (19.17)

Since by definition H.Y1; Y2/ � 0 for arbitrary random variables Y1 and Y2, we
have

I.Y1IY2/ � I.Y1IY2/C I.Y2IY2/: (19.18)

The relation (19.18) states that mutual information of dependent variables is smaller
than mutual information of independent variables. Since in Gaussian framework the
notion of dependence is directly related to correlations, one can say that correlated
observations bring less information than uncorrelated observations. This conclusion
implies a need to account for correlated observation in all-sky satellite radiance
assimilation.

There are several possible ways one could address observation error correlations
in data assimilation:

1. Increase observation errors: If observation density is high, reduce the impact of
dense observations by increasing the observation error.
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2. Observation thinning: If observation density is high, thin observations by
selecting every n-th observation. The reduced number of observations could keep
the original error, or have some error adjustment.

3. Cut-off based selection (Fertig et al. 2007): Based on an empirical estimate of
observation correlations one can design an algorithm to select which radiance
observations to assimilate.

4. Eigenvalue decomposition (Parrish and Cohn 1985; Anderson 2003): For non-
diagonal R work in eigenvectors space where the errors are diagonal, i.e.
R D SƒST . Introduce the change of variable ST Œy � h.x/� D ST " to obtain
transformed error as Rs D ˝

.ST "/.ST "/T
˛ D ST

˝
""T

˛
S D ST RS D ƒ.

Note that new observation error is diagonal, thus a standard data assimilation
algorithm with diagonal observation covariance can still be applied.

5. Direct application of the inverse. This can be done directly by calculating
the matrix inverse, or indirectly by using a matrix–vector product. In both
cases one needs to assume the correlation properties, since there is insufficient
statistical information available from data. Given large number of observations
the former approach may be computationally prohibitive. The latter approach is
computationally feasible and can be described as follows. Here we assume that
R D DCD where D is the diagonal matrix of observation errors, and C is the
correlation matrix. One can decompose C D EET using the unique symmetric
square rootE . The inverse square root of correlated observation error covariance
is R�1=2 D .DE/�1 D E�1D�1. Since the inverse of a symmetric positive
definite matrix is symmetric and positive definite, E�1 can be modeled using
a simple correlation matrix such as Toeplitz (e.g., Golub and van Loan 1989)
and thus avoid the calculation of the inverse E�1. In practice the method is
applied using a matrix–vector product such as R�1=2 Œy � h.x/�, which makes
the approach feasible even for large number of observations.

Note that the approaches (1) and (2) never assume non-diagonalR, they only adjust
the observation errors (1), or the number of observations (2) to match the desired
observation impact. However, if observations errors are correlated, the approach
(1) is implicitly using a top-hat function instead of a true correlation function.
The approach (2) is implying that near-by observations have similar information
content (i.e. homogeneity) which may not be true for observations of clouds and
precipitation given that the quality of radiance observation depends on the scan
angle, for example. The approach (3) implicitly assumes non-diagonal R but it
employs this information only to select radiance observations to be assimilated, still
using the original diagonal-based assimilation framework.

The approaches (4) and (5), assume non-diagonal (e.g., correlated) observation
errors. The approach (4) is mathematically more general than (5), since it can be
applied to an arbitrary R, while the approach (5) requires simplified R correlations
in order to be practical. However, the approach (4) also needs an assumption about
an eigenvalue threshold. For example, the inverse square root of R D SƒST is
R�1=2 D Sƒ�1=2ST . Calculation of ƒ�1=2 requires defining a threshold value in
order to avoid the division by zero. Unfortunately, the smallest values of ƒ are
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exactly those that are most important for the inverse, making the decision about the
threshold difficult.

Additional computational issues arise due to the use of radiative transfer operator
for all-sky radiances. Inclusion of cloud and precipitation scattering processes
required for all-sky radiance calculations adds considerably to the computational
cost of data assimilation (e.g., Stephens 1994). Coupled with a significant increase
of the number of radiance observations, the cost of all-sky radiance calculations can
be much larger than the cost of clear-sky radiances. This directly impacts the cost
of data assimilation and needs to be taken into account.

19.3.3 Nonlinearity and Non-Differentiability

Nonlinearity of cloud microphysical processes and the radiative transfer operator
for all-sky radiances is a well-known issue (e.g., Errrico et al. 2007b; Steward
et al. 2012). The approach to address nonlinearity may be to choose fundamentally
different methodology, such as particle filters (e.g., Gordon et al. 1993; Xiong
et al. 2006; van Leeuwen 2009), or to improve minimization conditioning (e.g.,
Axelsson and Barker 1984; Axelsson 1994; Zupanski et al. 2008). Also, there are
so-called linear channels (e.g., frequencies) that do not have strong nonlinearity
and thus can be treated using linear or weakly nonlinear methods. Variational
methods are generally equipped to address nonlinearity using iterative minimization
of the cost function. Standard ensemble Kalman filtering methods do not address
the observation nonlinearity specifically, which prompted a development of hybrid
variational-ensemble Ensemble methods (e.g., Zupanski 2005; Wang et al. 2007),
ensemble iterative Kalman filters (e.g., Gu and Oliver 2007), or a refinement of the
ensemble Kalman filter (e.g., Evensen 2003).

Since majority of practical data assimilation algorithms today use iterative
minimization to solve nonlinear problems, we will discuss this approach in more
detail. These minimization algorithms are typically unconstrained algorithms, most
often a nonlinear conjugate-gradient algorithm or quasi-Newton algorithms (e.g.,
Luenberger 1989). One of the minimization algorithm components most relevant for
all-sky satellite radiance assimilation is Hessian preconditioning (e.g., Axelsson and
Barker 1984; Axelsson 1994; Yang et al. 1996; Zupanski 1995; Steward 2012). Its
general role is in speeding up minimization by a change of variable that effectively
reduces the condition number of Hessian matrix (e.g., second derivative of the cost
function). The ideal impact of preconditioning is illustrated in Fig. 19.3, which
shows a change of a quadratic cost function from an elongated ellipse to a circle.
Starting minimization from an arbitrary point will lead to numerous minimization
iterations for the original ellipsoidal cost function (Fig. 19.3a), whilst a single
iteration will be sufficient for a preconditioned minimization problem (Fig. 19.3b).

Another role of preconditioning, of special importance in practical applications,
is to provide a “balanced” reduction of cost function. This means that minimization
should produce a change of all control variables that is in agreement with actual
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Fig. 19.3 Impact of Hessian
preconditioning on
minimization: (a) physical
space, and (b) preconditioned
space. In this example of a
quadratic cost function it is
shown how an ideal
preconditioning can change
the cost function so that the
minimum is reached in single
minimization iteration

weather situation. In principle, one would like to achieve a similar percentage of
adjustment for each control variables, with the idea that although minimization may
not have sufficient time to reach mathematical convergence it will still produce an
acceptable physical solution. Consider temperature and wind as an example. Let the
initial guess have dynamically balanced fields, which is generally true given that
it is produced by a forecast. If the temperature component of the cost function is
perfectly preconditioned, while the wind component is not preconditioned at all, the
analysis after first minimization iteration would have fully adjusted temperature but
practically unchanged wind. Since wind and temperature were in dynamical balance
before minimization, the produced solution after first iteration would be unbalanced
and eventually create noise in the ensuing forecast. This situation can be visualized
from Fig. 19.3 with temperature converging according to Fig. 19.3b, while the wind
slowly converging as shown in Fig. 19.3a. This situation also illustrates the impact
of Hessian preconditioning on the utility of observations: temperature observations
will be efficiently used, while wind observations would have a marginal impact. The
important point is that this potential problem can be resolved by adequate Hessian
preconditioning.

Let now consider the impact of Hessian preconditioning on all-sky satellite
radiance assimilation. Assimilation of all-sky satellite radiance would be most
beneficial if cloud variables were defined as control variables since they have the
strongest impact on the radiative transfer operator. However, if the cloud variable
component of the cost function is not adequately preconditioned, all-sky radiances
will not be well utilized, eventually producing an unbalanced analysis. Assuming
that other dynamical variables were well preconditioned, it is likely that the ensuing
forecast will get rid of clouds and precipitation created by the analysis, simply as
a consequence of inadequate preconditioning. This problem is real and it can have
dire consequences for all data assimilation methods.

In case of variational methods one should recall that forecast error covariance is
used to precondition minimization. Unfortunately, since there are no practical ways
to include cross-variable correlations for cloud variables, while error covariance
of dynamical variables has a relatively well-defined cross-variable structure, it is
clear that the overall preconditioning will be off balance. This can also happen in
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Fig. 19.4 Discontinuous
all-sky radiative transfer
operator defined by (19.19).
The left area of the figure
represents clear-sky
conditions and the right area
corresponds to cloudy
conditions. In principle, the
function value and its
derivatives all can experience
a discontinuity

hybrid variational-ensemble methods since often the variational component is used
for adjustment of dynamical variables, while the ensemble component is primarily
used for cloud variables. In this situation cloud variables will have a much better
preconditioning than dynamical variables eventually creating unbalanced analysis
that can also act to remove adjusted clouds and precipitation in the forecast.
The above examples illustrate the important role of Hessian preconditioning in
assimilation of all-sky radiances, and indirectly suggest that preconditioning method
should be related to dynamics.

Although nonlinearity of all-sky radiance operator has been generally acknowl-
edged, non-differentiability is typically not discussed and thus requires attention.
The definition of observation operator h becomes an issue in the case of all-sky
radiances. This is because the radiative transfer operator has an on-off switch to
decide if it should go through the cloudy branch that normally includes scattering
effects, or not in the case of clear-sky radiances. Since this decision depends on the
atmospheric parameters such as cloud mixing ratios and temperature, the forward
radiative transfer operator has a discontinuity in the function value and derivative
implying discontinuity of the cost function. Therefore, one can write the radiative
transfer operator for all-sky radiances as

h.x/ D
�
c.x/ x 2 C
s.x/ x … C (19.19)

where C represents the state subspace corresponding to clear-sky conditions, c is
the clear-sky component and s is the cloudy component of the observation operator.
The point where the state can cross between clear and cloudy conditions is the
discontinuity point, and thus the operator h.x/ has two branches. This is visualized
in Fig. 19.4, indicating that the function value and all its derivatives can have a
discontinuity.
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Discontinuity of observation operator creates an obvious problem for variational
methods since they are commonly using gradient-based minimization (e.g., Nocedal
1980; Navon 1986). A non-existent gradient at the point of transition from clear-
sky to cloudy conditions prevents correct performance of minimization, eventually
resulting in incorrect minimizing solution. Since KF can be described in terms
of gradient-based minimization, (e.g., Jazwinski 1970), it has similar problems as
variational methods. This implies that non-differentiability of all-sky observation
operator is a problem of data assimilation in general.

There are many ways to deal with discontinuity, most obvious being: (1)
neglect it, (2) apply smoothing, (3) use non-differentiable minimization algorithms.
Although the first option may not be mathematically correct, it does not require any
additional effort. Since the discontinuity point is in the area of transition from cloudy
to clear-sky conditions, the discontinuity problem may be confined to only those
geographical areas, allowing minimization to perform well in the rest of the domain.
However, since discontinuity also impacts the line-search algorithm (i.e. finding the
optimal step-size), its influence can be more pronounced. Therefore, neglecting the
discontinuity problem may be acceptable in some situations, but not in general and
definitely not in operational practice. The option (2) has been successfully applied
within 4d-Var methods in cases of parameterization schemes (e.g., Zupanski and
Mesinger 1995). The approach is to change the original operator by introducing a
smooth function in the place of an on-off switch, thus preventing code branching. In
choosing the adequate smoothing function and parameters it is important to maintain
approximately the same skill and accuracy of the original operator. This could be
difficult and it requires an extensive preparation of the code. The third option (3) is
the most correct approach, since it does not alter the original observation operator
and it addresses the true problem, which is the minimization algorithm performance.
There are numerous minimization algorithms that can address non-differentiability,
some of those developed as an extension of gradient-based algorithms (Haarala
et al. 2004; Karmitsa et al. 2012; Steward et al. 2012). Encouraging results obtained
using this approach in data assimilation have been reported by Steward et al. (2012).

It is likely that the choice of approach will depend on the actual assimilation
problem and the amount of work required to implement the changes. Important
message from this section is that non-differentiability of all-sky observation operator
should not be overlooked. Once the problem is identified, one can proceed to
solutions (1)–(3), or take an alternative approach.

19.3.4 Non-Gaussian Errors

Current data assimilation methodologies are generally designed to address only
Gaussian errors. It is also understood that there are numerous applications with
non-Gaussian errors and that a non-Gaussian data assimilation framework may
be necessary (e.g., Abramov and Majda 2004; Fletcher and Zupanski 2006a, b;
Bocquet et al. 2010). Satellite radiance observation error statistics indicates a
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skewness for some instruments and channels that may be attributed to non-Gaussian
pdfs (e.g., Okamoto and Derber 2006; Errrico et al. 2007b; Bauer et al. 2010), and
thus implies that data assimilation of all-sky satellite radiances may not perform
correctly in such cases. One should also be aware of ways to mitigate non-
Gaussianity in data assimilation (e.g., Simon and Bertino 2009; Bocquet et al. 2010).

One can distinguish several possible approaches to deal with non-Gaussian errors
of all-sky radiances: (1) neglect the problem, (2) apply Gaussian assumption, but
introduce bias correction, (3) apply change of variable to convert from non-Gaussian
to Gaussian framework, and (4) use non-Gaussian data assimilation framework.

The option (1) is the simplest, and thus the easiest. If one chooses to assimilate
only channels with approximately Gaussian observation errors, it may be still
possible to use the original Gaussian data assimilation framework. However, this
approach may leave important observation information not assimilated. It also
requires a good knowledge of the observation error statistics by channels, which
could take time to accumulate.

Option (2) is commonly used in operations (e.g., Harris and Kelly 2001; Dee
and Uppala 2009). Satellite bias is typically defined to include predictors, defined
to include satellite geometry (e.g., viewing angle) and atmospheric precursors (e.g.,
thickness, skin temperature, surface wind speed)

b.'; x/ D
X
i

'i ri .x/ (19.20)

where r is predictor and ' is regression coefficient. Parameters of such formed
regression are added as control variables to minimization thus creating an aug-
mented control variable and cost function. Although used with great success,
there are channels that are not well controlled using this technique. Also, current
operational practice includes mostly clear-sky, not all-sky radiance assimilation,
and so does the bias correction. This means that atmospheric precursors used for
clear-sky may not be adequate for cloudy conditions. Even if adequate atmospheric
precursors are found, it is clear that this approach requires a lot of experimenting and
fundamental knowledge of interactions between clouds and satellites. In addition,
the augmented control variable in minimization may be technically difficult to
implement, depending on the existing minimization setup. As suggested in several
papers (e.g., Errrico et al. 2007b), if the actual observation error has skewed pdf
that resembles lognormal distribution, then one could pose the problem in terms of
logarithmic variable which would then be Gaussian. Although this is a feasible solu-
tion, it was shown to be non-unique (e.g., Fletcher and Zupanski 2008). The option
(4) may be the most complete since it addresses the true problem of having non-
Gaussian errors in data assimilation. It was shown that ensemble data assimilation
could be defined in terms of non-Gaussian errors within hybrid variational-ensemble
methodology (e.g., Fletcher and Zupanski 2006a), or within particle filters (e.g., van
Leeuwen 2009). In either case, implementing new methodology is a slow process
and the ultimate decision about the approach for handling non-Gaussian errors
will depend on desired application and developmental time constraints. Addressing
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non-Gaussian all-sky radiance observation errors inherently implies a need for better
handling of nonlinearity. Therefore, if the available data assimilation algorithm is
not very good for nonlinear operators, it is probably good to avoid introducing non-
Gaussian errors.

19.4 Summary and Future

Data assimilation of all-sky satellite radiances is a difficult problem that puts to test
data assimilation methodology and algorithmic solutions that are used today. Since
the information from all-sky radiances is potentially very valuable, using “short-
cut” solutions is not acceptable. We discussed several critical aspects of successful
all-sky radiance data assimilation, with emphasis on forecast error covariance,
Hessian preconditioning, non-differentiability, and correlation of observation errors.
Also, the focus of our presentation was on how variational and ensemble data
assimilation can handle these challenging problems. In conclusion, both methods
have their advantages and disadvantages and likely best approach is to develop
hybrid variational-ensemble methods that can selectively choose the better option.
One can also adopt other methodologies that can possibly address better the
difficulties arising in variational and ensemble methods.

Although we did not describe in detail all issues related to all-sky radiances,
such as verification, or algorithmic details related to a specific methodology, they
also have to be taken into account. There may be research issues that we are not
aware of at present, but will be eventually addressed as all-sky radiance assimilation
research becomes widespread.

One important implication of presented challenges is that development of new
data assimilation methodology that is better suited for all-sky satellite radiance
assimilation has to be comprehensive. For example, solving nonlinear issues cannot
be properly done without addressing non-Gaussian errors or without utilizing the
full power of Hessian preconditioning. Similarly, better definition of forecast error
covariance will not be fully beneficial unless it is combined with superior Hessian
preconditioning that can maximize the benefit of nonlinear minimization. As
suggested here, it may not be always necessary to develop most complex algorithms
to solve the challenges of all-sky radiance assimilation. There are applications that
may accept simple solutions to some of the issues, but it is important not to dismiss
an issue before its impact is well understood. For example, although one can opt
for uncorrelated observation errors at the end, it first needs to evaluate the potential
impact of correlations or to investigate statistics of observations errors.

Development of hybrid variational-ensemble and other new methodologies is an
ongoing effort and will likely produce an improved all-sky radiance assimilation
methodology capable of extracting maximum information from this valuable data.
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Appendix 1

Analysis Increment and Forecast Error Covariance

Forecast error covariance is one of the major components of the analysis update
equation. In this section we derive the analysis update as a function of forecast error
covariance. It is convenient to begin by defining the singular value decomposition
(SVD) of a square root forecast error covariance (e.g., Golub and van Loan 1989)

P
1=2

f D
X
i


iuiv
T
i (19.21)

where fuig and fvi g are singular vectors and f
i g are singular values. This leads to
eigenvalue decomposition (EVD) in the form

Pf D P
1=2

f P
T=2

f D
X
i

�iuiu
T
i (19.22)

with �i D 
2i .

1 Kalman Filter and Related Methods

The analysis update is given by the KF analysis equation

xa � xf D Pf H
T .HPf H

T C R/�1
�
y � h.xf /

�
(19.23)

where the superscript a denotes analysis, R is the observation error covariance, and
h andH are the nonlinear observation operator and its Jacobian, respectively. After
using (19.22) in (19.23), and denoting

�i D �iu
T
i

�
HT ŒHPf H

T C R��1
�
y � h.xf /�� ; (19.24)

the KF analysis update (19.23) becomes

xa � xf D
X
i

�iui (19.25)

i.e. it can be represented as a linear combination of the forecast error covariance
singular vectors.
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2 Variational Methods

Successful and efficient minimization of the cost function ((19.1) from main text)
requires the so-called Hessian preconditioning (e.g., Axelsson and Barker 1984;
Zupanski 1993, 1995). The square-root forecast error covariance is commonly used
for this purpose in variational methods, introduced as a change of variable

x � xf D P
1=2

f w (19.26)

Where w is the preconditioned control variable. The iterative minimization solution
wa is obtained as a limit of sequence fwk D wk�1 C ˛k�1dk�1I k D 1; 2; : : :g
where index k is the iteration index, ˛ is step-size, and d is descent direction.
After substituting the minimization solution wa in (19.26) one obtains the analysis
solution in terms of the physical state variable

xa � xf D P
1=2

f wa: (19.27)

After substituting (19.21) in (19.27), and denoting

�i D 
iv
T
i wa (19.28)

The variational method solution (19.27) becomes

xa � xf D
X
i

�iui : (19.29)

Therefore, the variational solution can also be represented as a linear combination
of forecast error covariance singular vectors.

Since majority of currently used data assimilation algorithms are based on
KF and/or variational methods, one can see from (19.25) to (19.29) that analysis
correction xa � xf lies in the space defined by the forecast error covariance singular
vectors.

Appendix 2

Entropy and Mutual Information

We follow Cover and Thomas (2006) to quantify the information content of
observations, based on Shannon information theory (Shannon and Weaver 1949)
and relative entropy (Kullback and Leibler 1951). Entropy of a random variable X
is defined as a non-negative measure of uncertainty
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H.X/ D �
X
x2�

p.x/ log p.x/: (19.30)

Where p is a pdf. One can also define joint entropy

H.X; Y / D �
X
x2�

X
y2Y

p.x; y/ log p.x; y/ (19.31)

and relative entropy (e.g., Kullback-Leibler distance) between probabilities p.x/
and q.x/

D.p k q/ D
X
x2�

p.x/ log
p.x/

q.x/
: (19.32)

The mutual information I.X IY / is defined as the relative entropy between the joint
distribution and the product distribution

I.X I Y / D
X
x2�

X
y2Y

p.x; y/ log
p.x; y/

p.x/p.y/
; (19.33)

and it represents a reduction of uncertainty due to information sharing between vari-
ables. The mutual information is non-negative and becomes zero for independent
variables. One can also see that

I.X IX/ D H.X/ (19.34)

since there is no new information that can reduce uncertainty.
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Chapter 20
Development of a Two-way Nested LETKF
System for Cloud-resolving Model

Hiromu Seko, Tadashi Tsuyuki, Kazuo Saito, and Takemasa Miyoshi

Abstract A two-way nested Local Ensemble Transform Kalman Filter (LETKF)
system has been developed to improve the accuracy of numerical forecasts on local
heavy rainfalls. In this system, mesoscale convergence which drives local heavy
rainfalls, is first reproduced by the LETKF with a grid interval of 15 km (Outer
LETKF) which assimilates conventional data. The convection cells associated with
the local heavy rainfall are then reproduced by the higher resolution LETKF with a
grid interval of 1.875 km (Inner LETKF) which assimilates local data. The boundary
conditions of the Inner LETKF are given by the forecast of the Outer LETKF. To
consider the upward cascade effect from storm scale to mesoscale, the forecast
results of the Inner LETKF are reflected into the Outer LETKF every 6 h.

This system was applied to a thunderstorm that caused a local heavy rainfall
event on the Osaka Plain on 5th September 2008. The rainfall distributions similar
to the observed ones were reproduced in a few ensemble members of the Inner
LETKF, although the observed scattered convection cells were expressed as weak
rainfall regions in the Outer LETKF. When the precipitable water vapor or slant-path
water vapor data obtained by GPS and horizontal wind or radial wind data observed
by Doppler radars were assimilated in the Inner LETKF, the number of ensemble
forecasts, which reproduced the local heavy rainfall, increased. The experiments on
the small-scale disturbances in the initial seeds of the Inner LETKF and on the initial
conditions produced by the no-cost smoother showed that these improvements might
enhance the accuracy of local heavy rainfall forecasts.
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20.1 Introduction

In the last decade, local heavy rainfalls that developed in urban areas (e.g.
Tokyo Metropolitan area) in summer have influenced urban functions, and have
occasionally caused urban flash floods (e.g. Nerima heavy rainfall in 1999, Itabashi
heavy rainfall in 2005). To mitigate damages from local heavy rainfalls, accurate
forecasts are desired. A few experiments on local heavy rainfalls have been
performed so far with variational data assimilation systems. For instance, Kawabata
et al. (2007) reproduced the Nerima heavy rainfall that occurred in the Tokyo
Metropolitan area by assimilating GPS, (Global Positioning System) precipitable
water vapor, (PWV, amount of water vapor in a column) and radial wind of
Doppler radars with JMANHM (Japan Meteorological Agency Non-hydrostatic
Model)-4DVAR (4 dimensional variational data assimilation system), and pointed
out that low-level convergence of water vapor is essential to reproduce local heavy
rainfalls.

Besides variational data assimilation methods, ensemble Kalman filters (EnKFs)
can provide initial conditions that are close to actual fields by assimilation of
observation data. Some previous studies have used the EnKF for mesoscale appli-
cations and have obtained promising results (e.g., Snyder and Zhang 2003; Zhang
et al. 2004, 2006; Dowell et al. 2004; Tong and Xue 2005; Xue et al. 2006; Meng
and Zhang 2008; Seko et al. 2011; Miyoshi and Kunii 2012). In addition to accurate
initial conditions, EnKFs used as assimilation systems provide the probability
of heavy rainfalls and a number of rainfall forecasts. Especially in the forecast
of local heavy rainfalls, horizontal convergence in which local heavy rainfalls
are generated is generally relatively weak and the predicted distribution of local
heavy rainfalls is widely spread. Thus, it should be considered that the predicted
distribution is a part of the fields that have probability density distributions.
Because of these merits, Local Ensemble Transform Kalman Filter (LETKF, Hunt
et al. 2007) based on the JMANHM (Saito et al. 2006), known as the NHM-LETKF
(Miyoshi and Aranami 2006), was used as the data assimilation system in this
study.

As mentioned before, local heavy rainfalls most often are generated in mesoscale
convergences. Even if convergence is relatively weak, mesoscale convergences
need to be reproduced by assimilation. In this study, mesoscale convergences were
produced by the LETKF system with a grid interval of 15 km (Outer LETKF).
Besides the position of convergence, rainfall intensity of local heavy rainfalls is
also important. Then, the LETKF systems with a grid interval of 1,875 km (Inner
LETKF), which reproduce positions and intensities of intense convection cells, are
deployed within the domain of the Outer LETKF.

As pointed out in Kawabata et al. (2007), convergence of low-level water vapor
is indispensable in reproducing local heavy rainfalls. Because GPS-derived PWV or
slant water vapor (SWV, water vapor amount along paths from GPS satellites to GPS
receivers) and horizontal wind or radial wind observed by Doppler radars provide
information about low-level convergence of water vapor, this data is expected to
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improve the rainfall forecast. A number of data assimilation experiments on radial
wind from Doppler radars and GPS-PWV using the EnKFs have been reported so
far (e.g. Xue et al. 2006; Seko et al. 2011). The impacts of the GPS-SWV and the
synergistic effect of simultaneous assimilation of Doppler radar data and GPS-water
vapor data (PWV or SWV) have not been investigated so far with EnKFs, though
they were shown in the data assimilation experiments in which the JMA meso-4dvar
assimilation system was used (e.g. Seko et al. 2004). In this study, these impacts are
investigated with EnKFs, in addition to the impacts of GPS-PWV data and Doppler
radar data.

In Sect. 20.2, a local heavy rainfall which the nested LETKF system was applied
to is explained. Section 20.3 briefly explains the nested LETKF system. Results of
assimilation of conventional data are described in Sect. 20.4. Impacts of GPS data
and Doppler radar and their synergistic effect are shown in Sect. 20.5. Section 20.6
is the conclusion of this study.

20.2 Thunderstorm of 5th September 2008 Developed
on the Osaka Plain

As the target of experiments in this study, a local heavy rainfall generated on the
Osaka Plain on 5th September 2008 was adopted, because Doppler radar data of the
Osaka and Kansai international airports can be used.

On 5th September 2008, a high pressure system widely covered Japan and a
small low pressure system was seen in the south of western Japan (Fig. 20.1a).
Because large-scale disturbances, such as synoptic fronts or typhoons did not exist
near Japan’s main islands, scattered convection cells were generated not only near
Osaka, but also over western Japan (Fig. 20.1b). Figure 20.2b shows the radar
echo distribution observed by conventional radars of JMA (Japan Meteorological
Agency) from 1400 JST to 1600 JST (Japan Standard Time; 0900 JST corresponds
to 0000 UTC; Universal Time Coordinate). At 1400 JST, there were scattered
convection cells in mountainous areas east and south of the Osaka Plain (indicated
by circles in Fig. 20.2a). These convection cells developed there by 1500 JST and
other intense convection cells were generated on the Osaka Plain. The intense
convection cells on the Osaka Plain organized, and then produced a rainfall amount
exceeding 90 mm from 1450 JST to 1600 JST at Sakai City (not shown). This
rainfall region extended northwestward, maintaining its rainfall intensity until 1600
JST. The horizontal wind and the sea level temperature and pressure at 1400
JST are shown in Fig. 20.3. A high temperature region existed on the Osaka
Plain (Fig. 20.3b) and a thermodynamic low-pressure system was generated there
(Fig. 20.3c). The southerly flow from the Kii-channel and the northeasterly flow
over the Osaka Plain were converged near Sakai City (Fig. 20.3a). This low-level
convergence is one of the reasons why the intense convection cells generated on the
Osaka Plain.
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Fig. 20.1 (a) Surface weather chart at 15 JST 5th September 2008. (b) Rainfall distribution
observed by operational radars of JMA at 15 JST 5th September 2008
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Fig. 20.2 (a) Topography in and around the Osaka Plain. (b) Rainfall distribution observed by
operational radars of JMA from 1400 JST to 1600 JST 5th September 2008. Circles in (b) indicate
the rainfall regions generated in mountainous areas

20.3 Outlines of the Nested LETKF System

Figure 20.4a shows the schematic illustration of the nested LETKF system. This
data assimilation system was composed of two LETKF systems: the Outer and
Inner LETKFs. The vertical layer structure was common in both LETKFs. Namely,
the number of vertical layers was 50 and the depth of the vertical layers was
increased from 40 to 880 m as the height increased. The height of the domain’s top
was 22.6 km. The number of ensemble members was 12. Other parameters, such
as the horizontal grid interval, microphysical processes and so on depend on the
LETKFs.
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Fig. 20.3 Surface meteorological data observed by AMeDAS and the Meteorological Observato-
ries of JMA at 1400 JST 5th September 2008. (a) Horizontal wind, (b) Sea level temperature ( ˚ C),
(c) Sea level pressure (hPa)
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As for the Outer LETKF system, it was used to reproduce mesoscale distributions
including convergence lines. The grid interval of the Outer LETKF is 15 km
and the grid number in the horizontal directions was 80 � 80. The Kain-Fritch
parameterization scheme was adopted. The ensemble forecast started at 0900 JST
1st September 2008 and the initial seed of the Outer LETKF was obtained from the
JMA mesoscale analysis fields from 29th to 31st August. The boundary condition
from 1st to 5th September was also produced from the JMA mesoscale analysis.
The data assimilation window (1 cycle) was 6 h and the conventional data (surface
and upper sounding data), which was used in the JMA mesoscale analysis, were
assimilated every hour.

The Inner LETKF was used to reproduce the intense convection cells of local
heavy rainfalls. The grid interval of the Inner LETKF was as small as 1.875 km
to resolve small convection cells. The microphysical process, in which the mixing
ratio of cloud, rain, ice crystals, graupel and the number density of ice crystals
were predicted, was used. The boundary conditions and first initial seed of the
Inner LETKF (indicated by an open triangle in Fig. 20.4a) were produced from the
forecast of the Outer LETKF. The data assimilation window (1 cycle) is 1 h, and
three sets of 6 cycle experiments were performed from 03 JST 5th. In addition to
the conventional data, GPS water vapor data and radar wind data were assimilated
every 10 min.

To reflect the analysis of the Inner LETKF in the Outer LETKF, the analyzed
value of the Outer LETKF was replaced by that of the Inner LETKF every 6 h at
the end of the assimilation windows of the Outer LETKF (namely, 09 JST and
15 JST of 5th), at which time both LETKFs produced the analyses. To reduce
the inconsistencies between the Inner LETKF and the Outer LETKF, the values
of the Outer LETKF at one and two grids inside from the boundary of the Inner
LETKF were produced by blending with those of the Outer LETKF (Fig. 20.4b).
The weights used in blending are determined with linear interpolation.

If an Inner LETKF has to cover a wide area, huge computer resources are needed.
In this study, the wide area is divided into a number of small domains and the
Inner LETKFs are executed at each divided domain. When a number of Inner
LETKFs are deployed in the domain of the Outer LETKF, there might be overlapped
regions (Fig. 20.4c). As the first step of the multi Inner LETKF, the values in the
overlapped regions were determined by averaging the analyzed values produced by
the aforementioned procedure. For instance, when N Inner LETKFs .xi1 
 xiN /

were used, the values of the Outer LETKF (xo/ were obtained with the following
equation;

xo D .wo1xo C wi1xi1 C wo2xo C wi2xi2 C � � � C woN xo C wiN xiN / = N: (20.1)

This method allows the Inner LETKFs to be deployed flexibly. This method might
be more robust, because the replaced values of the Outer LETKF in the regions
where the domains of the Inner LETKFs are overlapped include the analyzed values
of the Outer LETKF.
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20.4 Assimilation Results of Conventional Data and Other
Improvements of Nested LETKF System

20.4.1 Assimilation Results of Conventional Data

Figures 20.5a, b show the ensemble mean and spread of the rainfalls reproduced
by the Outer LETKF at 15 JST (the end of the second sets of the Inner LETKF
experiments, indicated by a gray triangle in Fig. 20.4a), just before the occurrence
of the local heavy rainfall. As shown in Sect. 20.2, the small intense convections
scattered over the western Japan were observed. Due to the large grid interval of
the Outer LETKF (15 km), the reproduced rainfalls were expressed as weak rainfall
regions (Fig. 20.5a). Although the rainfall intensities were much weaker than the
observed ones, the distribution of rainfall regions was roughly similar to that of the
observed one. In this experiment, any deviation, such as deviations produced from
ensemble forecasts of Global models, was not added to the boundary conditions of
the Outer LETKF. Due to the fixed boundary conditions, the ensemble spreads near
the boundary were small (Fig. 20.5b). However, the spread around the center of the
domain where the Osaka Plain is located was relatively large, and one Inner LETKF
was deployed around the center of the Outer LETKF.

Next, the ensemble mean distribution of rainfalls analyzed by the Inner LETKF
was compared with the observed one (Figs. 20.5c and 20.2b). Although the rainfall
regions were more widely distributed and their rainfall intensities were smaller due
to the averaging procedure, the positions of the reproduced rainfall regions were
similar to the observed regions at 1500 JST (Figs. 20.5c and 20.2b). Namely, the
reproduced rainfall regions more than 1 mm/h roughly corresponded to the observed
regions of which rainfall intensities were more than 4 mm/h. Because these well-
reproduced rainfall regions were located in mountainous areas (indicated by circles
in Fig. 20.5c), these scattered rainfalls at 15 JST are likely related to orographic
effects. As for the rainfall that developed into the local heavy rainfall at Sakai City
(indicated by an arrow in Fig. 20.5c), it was too small and its intensity was too
weak.

As mentioned, the rainfall intensity of the ensemble mean was smaller than that
of each ensemble member due to the averaging procedure. Because the rainfall
intensity, as well as the position of the rainfalls, is important from the point of
view of disaster prevention, the rainfall distributions of each ensemble members
are shown in the following sections. Figure 20.6b is the rainfall distributions at
17 JST (indicated by a solid triangle Fig. 20.4a) reproduced by the Inner LETKF
to show the development of the rainfall at Sakai City. The conventional data was
assimilated in the Outer LETKF and Inner LETKF from 1510 JST to 1700 JST. In
four ensemble members (#001, #004, #007 and #008), the intense rainfall regions
that were developed at Sakai City extended northwestward (indicated by circles in
Fig. 20.6b). This feature of the analyzed distributions, which was the same as the
observed one at 16 JST, indicates that the local heavy rainfall at Sakai City were
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Fig. 20.5 (a) Ensemble mean and (b) spread of 1 h rainfall (shaded regions), horizontal wind
at the height of 20 m (vectors) and sea level pressure (contours) at 15 JST 5th September 2008
reproduced by the Outer LETKF. (c) Same as (a) except ensemble mean by the Inner LETKF.
Circles in (c) indicate the rainfall regions generated in mountainous areas. An arrow indicates the
rainfall region that developed into the thunderstorm of Sakai City

well reproduced in one third of the ensemble members, though there was a time lag
of 1 h. When these rainfall regions were traced backward in time, these reproduced
intense rainfall regions were originated from the small rainfall regions near Sakai
City at 15 JST (indicated by arrows in Fig. 20.6a). As explained in the comparison
with the ensemble mean distribution, these small rainfall regions were much weaker
than the observed one. To increase the accuracy of initial conditions, in other words,
to increase the number of the ensemble members in which the local heavy rainfall
was reproduced, more high-resolution data, such as GPS water vapor data or Radar
wind data, would be helpful. The impacts of this high-resolution data are explained
in Sect. 20.5.

20.4.2 Feedback to Outer LETKF and Convection Cells Near
the Boundary of Inner LETKF

In this nested system, the analyzed values of the Outer LETKF within the regions
of the Inner LETKF were replaced with those of the Inner LETKF every 6 h. It is
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Fig. 20.6 Horizontal distributions of 1 h rainfall (shaded regions) and horizontal wind at the height
of 20 m (vectors) reproduced by the Inner LETKF at (a) 15 JST and (b) 17 JST. Circles in (b)
indicate the intense rainfall regions which extended northwestward. Arrows in (a) indicate the
small rainfall regions that developed into the intense rainfall regions at 17 JST

expected that analyzed values of the Outer LETKF inside and around the domain
of the Inner LETKF were modified by this procedure. To investigate the impacts
of this procedure, the spread distributions of rainfall and sea level pressure were
compared with ones obtained by performing the assimilation without the Inner
LETKF (Fig. 20.7). In this case, the rainfall distribution of the Outer LETKF was
similar to that obtained by performing the assimilation without the Inner LETKF
(Figs. 20.5a and 20.7a). However, the spread distributions of the Outer LETKF
region were affected by the Inner LETKF. Namely, the spread of rainfall in the Inner
LETKF became larger and that of sea level pressure became smaller, when the Inner
LETKF was used (indicated by arrows in Figs. 20.7c, d). These small spreads of sea
level pressure expanded outside of the domain of the Inner LETKF (Figs. 20.5b and
20.7b). This comparison indicates that the Inner LETKF influences the analysis of
the Outer LETKF, though the impact was not large in this study.

Next, the convection cells near the boundaries of the Inner LETKF are described.
Because the analyzed values of the Outer LETKF within the domain of the Inner
LETKF were replaced with the analyzed values of the Inner LETKF, this procedure
might lead to the generation of unrealistic convection cells near the boundary of the
Inner LETKF, especially when the analyzed horizontal winds between the Inner and
Outer LETKFs are greatly different. Figure 20.8 shows the rainfall and horizontal
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Fig. 20.7 (a) Ensemble mean and (b) spread of 1 h rainfall (shaded regions), horizontal wind at the
height of 20 m (vectors) and sea level pressure (contours) at 15 JST 5th September 2008 obtained
by performing the assimilation without the Inner LETKF. (c, d) Enlarged distribution of spreads
that are shown in Fig. 20.7b (without the Inner LETKF) and 20.5b (with the Inner LETKF). Arrows
in (c) and (d) indicate the regions in which spreads of sea level pressure and rainfall were larger,
respectively

wind distributions of the ensemble member #005 that were obtained by deploying
4 Inner LETKFs side by side. In this experiment, the configuration of the Inner
LETKFs was the same as the aforementioned one except that their horizontal grid
number was changed to 121 � 121. In the reproduced distributions, the rainfall
regions and horizontal wind varied smoothly near the boundary of the Inner
LETKFs and the unrealistic convection cells were not generated there. It is deduced
that the blending of the analyzed values of the Outer and Inner LETKFs at the
boundaries of Inner LETKFs reduced the generation of unrealistic convection cells.

20.4.3 Impact of No-Cost Smoother

Next, other improvements of the nested system are explained in this section. The
aforementioned experiment of the nested system will be called “CNTL” hereinafter.
In CNTL, the initial seeds and boundary conditions of the Inner LETKF were
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Fig. 20.8 Horizontal distributions of 1 h rainfall (shaded regions) and horizontal wind at the height
of 20 m (vectors) at 15 JST 5th September 2008 obtained by deploying 4 Inner LETKFs side by
side

produced by the spatial interpolation of the forecast of the Outer LETKF. Namely,
the boundary conditions of the Inner LETKF in CNTL did not have the information
of the Outer LETKF’s assimilation data, even if the assimilation data existed
just outside of the Inner LETKF. To reflect the assimilation data of the Outer
LETKF into the Inner LETKF, the analyzed fields obtained by the no-cost smoother
(Kalnay et al. 2007; Yang et al. 2009), which is equivalent to the Ensemble Kalman
Smoother (Evensen 2003), were used in producing the initial seeds of the Inner
LETKF (indicated by thick open arrows in the Outer LETKF in Fig. 20.4a). The
boundary conditions of the Inner LETKF were also obtained from the forecast
from the analyzed fields of the no-cost smoother. Figure 20.9 shows the ensemble
mean distributions of rainfalls at 17 JST that were obtained with the initial seeds
and boundary conditions from the Outer LETKF’s forecast (CNTL) and from the
analyzed fields of the no-cost smoother. When the analyzed fields of the no-cost
smoother were used, the rainfall regions, which were not generated in CNTL, were
generated at the northwestern part of the Inner LETKF’s domain (indicated by an
arrow in Fig. 20.9). In the no-cost smoother experiment, the conventional data that
was used in Outer LETKF was assimilated again in the Inner LETKF. However, it
is considered that the conventional data can be used in the Inner LETKF, because
this data provides the small-scale information through the small scale localization
in the Inner LETKF. Since these rainfall regions that were generated in the no-cost
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Fig. 20.9 Ensemble mean distributions of rainfall (shaded regions) and horizontal wind at the
height of 20 m (vectors) reproduced by the Inner LETKF at 17 JST obtained from (a) the initial
conditions of the Outer LETKF’s forecast (CNTL) and (b) the analyzed fields of the no-cost
smoother. An arrow in (b) indicates the rainfall region that was not generated in CNTL and
generated in the no-cost smoother experiments

smoother experiments were close to the boundary of Inner LETKF, it is deduced
that the observation data just outside of the Inner LETKF’s domain modified the
analysis of the Inner LETKF through the initial seeds and boundary conditions of
the Inner LETKF. This result indicates that the no-cost smoother can improve the
rainfall distribution of the Inner LETKF. However, the whole observation data in
the assimilation window period (6 h from the initial time of assimilation in this
experiment) needs to be waited for if the no-cost smoother is used. If real-time
analysis is required, using the initial seeds and boundary conditions produced from
the Outer LETKF’s forecast might be a more realistic approach.

Next, the initial seeds of the experiments using the no-cost smoother are
explained. When the initial seeds are produced by the interpolation of the analysis
of the Outer LETKF, the small-scale disturbances that cannot be resolved by the
grid interval of the Outer LETKF are not included in the initial seeds. To reproduce
local heavy rainfalls, small-scale disturbances should be included in the initial seeds
because they are expected to affect the generation of the convection cells. To show
the impact of small-scale disturbances in the initial seeds, the experiments were
performed with the Inner LETKF of the grid number of 121 � 121 by using the
interpolated fields of the Outer LETKF (L at 9 JST in Fig. 20.4a) and the last
analyzed fields of the Inner LETKF (S at 9 JST in Fig. 20.4a), as the initial seeds at
9 JST (indicated by an open pentagon in Fig. 20.4a). Figure 20.10 shows the spread
fields of rainfalls at 11 JST, after 2 cycles of the Inner LETKFs (indicated by a
gray pentagon in Fig. 20.4a). During 2 cycles of the Inner LETKF, the boundary
conditions of the Inner LETKF that were produced by assimilation of conventional
data in the Outer LETKF were used, and the conventional data was assimilated from
0910 JST to 1100 JST. These procedures from 0900 JST to 1100 JST are common to
two experiments. Because the mesoscale convergence was reproduced in both seeds,
the rainfall regions were similar to each other (not shown). However, relatively large
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Fig. 20.10 Spread distributions of 1 h rainfall (shaded regions) and surface wind at the height of
20 m (vectors) reproduced by the Inner LETKF at 11 JST of which initial seeds were produced by
using (a) the interpolated fields of the Outer LETKF (L in Fig. 20.4a) and (b) the last analyze fields
of the Inner LETKF (S in Fig. 20.4a). Arrows in (a) indicate the rainfall regions of which spreads
became smaller when the last analyzed fields of the Inner LETKF were used as the initial seeds

spreads that were seen at several points became smaller, when the analysis fields of
the Inner LETKF (S) were used (indicated by thin arrows in Fig. 20.10a). Because
small-scale convergences might influence the occurrence of local heavy rainfalls,
initial seeds which include small-scale disturbances are desired.

In the CNTL experiment, the initial seeds of the second or later sets of the
Inner LETKF (A in Fig. 20.4a) should be close to the initial conditions of the Outer
LETKF (B in Fig. 20.4a). Because the initial conditions (B) are originated from the
last analyzed fields of the Inner LETKF (S in Fig. 20.4a), the smoothed distributions
of the last analyzed fields of the Inner LETKF (S) are similar to the interpolated dis-
tributions (L in Fig. 20.4a) of the Outer LETKF’s initial conditions (B). Therefore,
the last analyzed fields of the Inner LETKF (S) are used directly as the initial seeds
of the Inner LETKF in the next assimilation set (A). In the experiments in which
the no-cost smoother is adopted in producing the initial conditions of the Inner
LETKF, however, the analyzed fields of the no-cost smoother at the initial time of
assimilation are different from the smoothed distributions of the last analyzed fields
of the Inner LETKF (S). Therefore, the initial seeds of the Inner LETKF should be
produced by adding the small disturbances, which were extracted from the last ana-
lyzed fields of the Inner LETKF (S), to the analyzed fields of the no-cost smoother.

20.5 Impact of Doppler Radar Data and GPS Water Vapor
Data

As mentioned in Sect. 20.2, convergence of low-level water vapor is essential to
reproduce local heavy rainfalls. In this section, impacts of the GPS data and Doppler
radar data, which provide information of convergence of water vapor, are shown.
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20.5.1 Impact of GPS Water Vapor Data

Due to frequent occurrence of earthquakes, movements of clusters are monitored
by more than 1,200 GPS receivers that have been deployed by the Geospatial
Information Authority of Japan. Because signals of radio waves transmitted from
GPS satellites are delayed by water vapor in the atmosphere, the delays of signals
are estimated as well as GPS receivers’ positions. In this study, PWV and SWV
that were estimated from the delays (Shoji et al. 2004), which have information
of water vapor, were used as assimilation data. PWV and SWV are the integrated
value of water vapor in the column or along the paths from GPS satellites to GPS
receivers. For this study, we produced intermediate profiles of relative humidity
from observations and statistical data from outputs of the ensemble forecast, and
these profiles were assimilated by LETKF. In the estimation of intermediate profiles,
the following two assumptions were used; (1) Differences between intermediate
profile and first guess are proportional to the spread of relative humidity. Due
to position errors of rainfall regions and large dispersion of relative humidity
distributions caused by small ensemble size, area-mean relative humidity profile
and area-maximum spread profiles of relative humidity within the areas from
18 km from GPS receivers were used as the first guess and spread profiles of
relative humidity (detailed procedures were explained in Seko et al. 2011). (2)
The intermediate profile is produced at the layers where the correlation among
the ensemble members between relative humidity of each layer and PWV exists
(Fujita et al. 2011). In this study, the correlation of 0.3 was used as the threshold.
Namely, relative humidity was increased where the correlation was larger than
0.3, and decreased where the correlation was smaller than –0.3. The assimilation
method of SWV was the same as that of PWV, except for the slant paths and the
small areas that were used in producing the ensemble mean and maximum spread
profiles of relative humidity. Because SWV is water vapor between GPS satellites
and receivers, SWV data provides water vapor values as well as its direction. If large
areas were used in producing the ensemble mean and maximum spread profiles,
the direction would become ambiguous because large areas dilute this information.
To exploit this advantage of SWV, areas used in producing ensemble mean and
maximum spread were reduced from 18 to 3 km.

Figure 20.11 shows the rainfall regions at 17 JST that were obtained by assim-
ilation of PWV and SWV data. In addition to convectional data, PWV and SWV
data from 9 to 15 JST were assimilated in the Inner LETKF. When the PWV data
was added, the number of ensemble members in which the rainfall regions were
extending northwestward increased from 4 to 7 (#001–#004, #008, #009 and #011)
(Figs. 20.6b and 20.11a). Because the assimilation of PWV data modified the water
vapor that was supplied into the rainfall region, the intensities of the rainfall regions
are expected to be improved. In this experiment, the position and intensities of
rainfall regions were improved. When SWV data was added to assimilation data,
the intense rainfall regions were generated at the northwestern side of Sakai City,
where the intense rainfall region was observed (16 JST of Fig. 20.2b), in most of
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Fig. 20.11 Horizontal distributions of 1 h rainfall (shaded regions) and horizontal wind at the
height of 20 m (vectors) reproduced by the Inner LETKF at 17 JST obtained by the assimilation of
(a) PWV data and (b) SWV data. Arrows indicate the rainfall regions that extended northwestward

the ensemble members. It is deduced that some paths from GPS receivers to GPS
satellites penetrated the humid regions that generated the convection cells northwest
of Sakai City. The rainfall regions extending northwestward were reproduced in
9 ensemble members (#000–#007, #011) (Fig. 20.11b). The number of ensemble
members in which the intense rainfall was reproduced was increased by assimilation
of GPS water vapor data. This means that GPS water vapor data had a strong
influence on the reproduction of the heavy rainfall. The ensemble spread is expected
to be smaller because the rainfall regions became closer to the observed ones by
data assimilation. In the case that the rainfall regions with small spreads are greatly
different from the observed ones, the ensemble spreads should be wider by removing
the causes of the small spreads before data assimilation. On the other hand, the
analyzed rainfall regions in this study were close to the observed ones. These
distributions indicate that the ensemble forecasts were performed appropriately.

20.5.2 Impact of Doppler Radar Data and the Synergistic
Effect of GPS Water Vapor Data and Radial Wind Data

As for the Doppler radar data, two kinds of data were assimilated. The first was
the horizontal wind obtained by the dual analyses of the radial wind of Kansai and
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Osaka international airports (indicated by two circles in Fig. 20.2a) (Tanaka and
Suzuki 2000). Although horizontal wind obtained by dual analyses of radial wind can
be assimilated directly as assimilation data, the regions where the horizontal wind is
estimated are smaller than those of radial wind, because the horizontal wind can be
obtained in the overlapping regions of two Doppler radars. The second kind of data
is radial wind of Doppler radar. This wind data are expected to be more effective to
improve the rainfall forecasts because it provides the information from a wider area.

Figures 20.12a, c are the rainfall distributions at 17 JST that were obtained by the
assimilation of the horizontal wind and the radial wind. The horizontal and radial
winds from 1400 to 1500 JST were assimilated, because the rainfall regions were
fewer and smaller before 1400 JST. When the horizontal winds were added to assim-
ilation data, the number of ensemble members in which the intense rainfall regions
extended northwestward was increased from 4 to 7 (#001–004, #007–#009). When
the radial winds were assimilated, the intense rainfall regions that extended north-
westward were reproduced in 9 ensemble members (#001–#008 and #011), though
the rainfall intensity remained relatively weak. These results indicate that the wind
data, especially radial wind, can improve rainfall forecasts. This impact of wind data
was the same as that of variational data assimilation methods (Kawabata et al. 2007).

To show the synergistic effects of water vapor data and wind data, simultaneous
assimilation of the horizontal wind and PWV was performed. Figure 20.12b shows
the rainfall distributions of 17 JST. When both data were added to assimilation data,
the rainfall forecasts in the ensemble members #007 and #011, in which the intense
rainfall region was not reproduced by the individual assimilation of the PWV and
horizontal wind, were improved (Figs. 20.11a and 20.12a, b). The improvements
of rainfall forecasts in the ensemble members #002 and #003 became obscure,
compared with those in which the PWV or horizontal wind was assimilated sep-
arately (Figs. 20.11a and 20.12a, b). However, the rainfall distributions of #002 and
#003 remained better than those obtained from the assimilation of conventional data
(Figs. 20.6a and 20.12b). These results indicate that the simultaneous assimilation
is useful for increasing the number of members in which local heavy rainfalls are
reproduced. This result is consistent with that of Seko et al. (2004). In this study,
the synergistic effects of water vapor data and wind data were investigated by the
combination of the PWV and horizontal wind. Further improvements are expected
when the SWV and radial wind data are assimilated simultaneously, because the
impacts of the SWV and radial wind were more significant than those of the PWV
and horizontal wind. The combinations of water vapor data and wind data except
PWV and horizontal wind is to be investigated in the future study.

20.6 Summary and Future Plan

The nested LETKF system was developed to reproduce local heavy rainfalls. In
the experiments in this study, the convection cells of local heavy rainfalls were
well reproduced in one third of ensemble members of the Inner LETKF, when the
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Fig. 20.12 Horizontal distributions of 1 h rainfall (shaded regions) and horizontal wind at the
height of 20 m (vectors) reproduced by the Inner LETKF at 17 JST obtained by the assimilation
of (a) horizontal wind, (b) horizontal wind and PWV, and (c) radial wind. Circles and arrows
indicate the rainfall regions that were reproduced by the assimilation of wind data and of GPS
water vapor data, respectively. Circles and arrows of broken lines indicate the rainfall regions
where the rainfalls were reproduced but their intensities were weaker

conventional data from JMA was assimilated. Assimilations of GPS water vapor
data and Doppler radar data further increased the number of ensemble members in
which local heavy rainfalls were reproduced. These results indicate that the nested
LETKF system has the potential to be used as a data assimilation system for local
heavy rainfalls. In general, high-resolution ensemble forecasts using high-resolution
data (e.g. Radar data) have a huge computational cost. The nested LETKF system
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has the merit that it can be executed with limited computational resources by cutting
out small regions from a whole domain. Some modifications, such as the no-cost
smoother that was used in producing the initial seeds and boundary conditions of
the inner LETKF, were also investigated. To apply this nested system to various
phenomena (e.g. synoptic fronts and typhoons), rainfall systems that extend wider
than the domain of the Inner LETKF should be investigated.

To increase the accuracy of rainfall forecast, the high-resolution data that pro-
vides small-scale disturbances is indispensable. The project “Tokyo Metropolitan
Area Convection Study for Extreme Weather Resilient Cities (TOMACS)” in which
local heavy rainfalls developed in the Tokyo Metropolitan area were observed by
Ku-band radar, surface dense network and Doppler lidars etc. was started in 2011.
The observation data of TOMACS will be used as assimilation data of the nested
LETKF system.

Because of the ‘Tohoku-earthquake’ that occurred over Eastern Japan on 11th
March 2011, computer resources were limited so the number of ensemble members
and the horizontal grid of LETKFs became 12 and 80 � 80 .121 � 121/. However,
results of this study show the potential of the nested LETKF system. The results
shown in this study will be further investigated using the high-performance super
computer’Kei’, which will be provided by the ‘High Performance Computing
Infrastructure’ project.
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Chapter 21
Observing-System Research and Ensemble Data
Assimilation at JAMSTEC

Takeshi Enomoto, Takemasa Miyoshi, Qoosaku Moteki, Jun Inoue,
Miki Hattori, Akira Kuwano-Yoshida, Nobumasa Komori, and Shozo Yamane

Abstract Recent activities on ensemble data assimilation and its application to
observing-system research at the Japan Agency for Marine-Earth Science and
Technology are reviewed. A revised version of an ensemble-based data assimilation
system for global atmospheric data has been developed on the second-generation
Earth Simulator. This system assimilates conventional atmospheric observations and
satellite-based wind data into an atmospheric general circulation model using the
local ensemble transform Kalman filter (LETKF), a deterministic ensemble Kalman
filter algorithm that is extremely efficient with parallel computer architecture. The
updated system incorporates improvements to the previous system in the forecast
model, data assimilation algorithm and input data. Using the LETKF system,

T. Enomoto (�)
Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Showamachi,
Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
e-mail: eno@dpac.dpri.kyoto-u.ac.jp

T. Miyoshi
RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan

Department of Atmospheric and Oceanic Science, University of Maryland, College Park,
MD 20742, USA

Q. Moteki � J. Inoue � M. Hattori
Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology,
2-15, Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan

A. Kuwano-Yoshida � N. Komori
Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Showamachi,
Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan

S. Yamane
Department of Environmental Systems Science, Doshisha University, 1-3, Tatara Miyakodani,
Kyotanabe 610-0394 Kyoto, Japan

S.K. Park and L. Xu (eds.), Data Assimilation for Atmospheric, Oceanic
and Hydrologic Applications (Vol. II), DOI 10.1007/978-3-642-35088-7 21,
© Springer-Verlag Berlin Heidelberg 2013

509

mailto:eno@dpac.dpri.kyoto-u.ac.jp


510 T. Enomoto et al.

observations taken during field campaigns are evaluated by data assimilation exper-
iments involving adding or removing observations. The results of these observing-
system experiments successfully demonstrate the value of the observations and are
highly useful for exploring the predictability of atmospheric disturbances.

21.1 Introduction

The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducts
observations of the climate system over ocean and land in various parts of the
globe. JAMSTEC operates eight research vessels (Chikyu, Natsushima, Kaiyo,
Yokosuka, Mirai, Kairei, Hakoho-maru and Tansei-maru), Triangle Trans-Ocean
Buoy Network (TRITON) in the western tropical Pacific and eastern Indian Oceans,
Polar Ocean Profling System (POPS) in the Arctic Ocean and hundreds of Argo
floats. In addition, JAMSTEC conducts observations of the hydrological cycle of
the cryosphere and field campaigns to collect data on the atmosphere and ocean.
These various data sources provide a number of measurements daily, contributing
to the monitoring and investigation of the climate system.

JAMSTEC has one of the world’s largest super computer systems devoted to the
earth sciences, the Earth Simulator. The Earth Simulator has been used to conduct
large-scale simulations in various areas in solid earth, ocean and atmospheric
sciences. The observational and computational capabilities at JAMSTEC provide
enormous opportunity for data assimilation. Ocean observations have already been
used to produce a number of data sets. A monthly global ocean analysis of Argo,
TRITON and CTD (conductivity, temperature and depth), called MOAA (Monthy
Objective Analysis using the Argo data) GPV (grid point value), was produced
by the optimal interpolation (Hosoda et al. 2008). Argo was also used to con-
struct G-YoMaHa, with an objectively mapped velocity at 1,000 dvar (Katsumata
and Yoshinari 2010) and MILA (Mixed Layer data set of Argo) GPV (Hosoda
et al. 2010). The four-dimensional variational algorithm has been successfully
applied to an ocean general circulation model (Masuda et al. 2003) and a global
coupled atmosphere–ocean model (Sugiura et al. 2009). Atmospheric observations,
however, have not been fully utilized, indicating the potentials for data assimilation
and observing-system research.

A collaborative project was conducted from fiscal year (starting in April)
2006 to 2008 to develop an ensemble data assimilation system among the Japan
Meteorological Agency (JMA), JAMSTEC and the Chiba Institute of Science. The
system, named ALEDAS (AFES–LETKF ensemble data assimilation system), is
composed of the atmosphere general circulation model (AGCM) for the Earth
Simulator (AFES) as a forecast model (Numaguti et al. 1997; Ohfuchi et al. 2004;
Enomoto et al. 2008) and the local ensemble transform Kalman filter (LETKF) as
an assimilation algorithm (Hunt et al. 2007; Miyoshi and Yamane 2007). Obser-
vations were prepared from those used for numerical weather prediction at JMA
except for satellite radiances. An experimental analysis data set, called ALERA
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Fig. 21.1 The analysis ensemble spread of the sea-level pressure averaged between 0 UTC
October and 12 UTC 2 December 2006 over the equatorial Pacific. Circles indicate surface
observations and triangles indicate buoys. Filled triangles denote buoys equipped with a barometer.
TRITON and TAO regions are marked by rectangles

(AFES–LETKF experimental ensemble reanalysis), with 40 members was pro-
duced for approximately one and a half years beginning in May 2005 (Miyoshi
et al. 2007a). These data are freely available from the Earth Simulator Center.
The quality of ALERA is comparable to existing long-term reanalysis data sets
in the troposphere even though it does not use satellite radiance observations. In
addition, ALERA provides a flow-dependent analysis ensemble spread, which can
be regarded as a measure of the analysis error.

Figure 21.1 shows the analysis ensemble spread of the sea-level pressure aver-
aged for approximately 40 days in the Tropical Atmosphere Ocean (TAO) and
TRITON regions. In general, the analysis ensemble spread is small over land
owing to the dense observational network. Over the equatorial Pacific, there is
a longitudinal asymmetry between the TRITON and TAO regions. Most of the
TRITON buoys are equipped with a barometer. These barometers contribute to
a spread smaller than 0.6 hPa. In contrast, only TAO buoys along the equator
have a barometer. Pressure observations at 170 and 155 W contribute to the
local minima, which are likely achieved with surrounding observations over land.
The distribution of the analysis ensemble spread implies the importance of two-
dimensional coverage to reduce analysis error.

Because the analysis ensemble spread is dependent on observation density,
ALEDAS can be used to evaluate observations. The impact of observations can
be quantified by the reduction in the analysis ensemble spread. The first observing-
system experiments (OSEs) using ALEDAS were conducted to evaluate the impact
of additional dropsonde observations in the western Pacific during the PALAU
(the Pacific area long-term atmospheric observation for understanding of climate
change) 2005 field campaign (Moteki et al. 2007). These researchers found the
influence of the temperature and humidity observations over the western Pacific
reaches as far as Japan through the southerly peripheral flow of the Pacific
anticyclone. Moteki et al. (2011) further investigated the impact of observations
in the tropics. Moteki et al. conducted OSEs with additional sondes at three
locations in the Indian Ocean during the MISMO project (Yoneyama et al. 2006)
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and found that the reduction in analysis error in terms of the difference of the
vertically integrated analysis ensemble spread of the geopotential height (OSE–
ALERA) extends eastward in Kelvin waves and westward in Rossby waves. Moteki
et al. also found signals indicating that the tropical cyclogenesis is affected by
the Kelvin wave. In the Arctic Ocean, Inoue et al. (2009) conducted data denial
experiments to evaluate the surface pressure observations by drifting buoys. The
analysis ensemble spread, not only in the Beaufort Sea, where buoys are densely
deployed, but also throughout the whole Arctic Ocean, increased without the surface
pressure observations north of 70 N. The influence of the buoys reaches 700 hPa.
The relationship between the number of buoys and accuracy is confirmed with
consistency among the different reanalysis data sets.

The analysis is not static but varies in time under the influence of atmospheric
disturbances. Enomoto et al. (2010) investigated the relationship between the anal-
ysis ensemble mean and the spread of ALERA in various atmospheric phenomena.
These researchers found an increase in the analysis ensemble spread prior to the
westerly bursts in the tropical eastern Indian Ocean, in the onset of the monsoon
westerlies in southern Vietnam, and even in the stratospheric sudden warming.
Because the error growth implies instability in the linear perturbation theory, it is
anticipated that the analysis ensemble spread, which is an estimate of the analysis
error, contains some precursory signals. The actual error growth is, however,
nonlinear owing to the finite amplitude and complex physical processes and is not
fully understood. Further investigations into the precursory signals contained in the
analysis ensemble spread require the variables related to physical processes, which,
unfortunately, are not included in ALERA.

Motivated by the success of the observing-system experiments and predictability
studies, JAMSTEC formed a research team called OREDA (Observing-System
Research and Ensemble Data Assimilation development research team). This article
reports the activities of OREDA related to the development of the ensemble data
assimilation system of the global atmospheric data and OSEs. The updated version
of the ensemble data assimilation system (ALEDAS2) is described in Sect. 21.2.
OSEs were conducted with ALEDAS2. Preliminary results are shown in Sect. 21.3.
Finally, the summary and our plan for future research are given in Sect. 21.4.

21.2 The Ensemble Data Assimilation System

ALEDAS2 is composed of improved versions of AFES and LETKF. In the
forecast step, an ensemble forecast is conducted with AFES to propagate the
mean and covariance to the next time level. In the analysis step, LETKF, one
of the deterministic Kalman filters that assimilate observations to the ensemble
mean, is used. This section summarizes the updates of the forecast model and
analysis scheme and describes the forecast–analysis cycle of ALEDAS2. With this
system, we are producing ALERA2, a successor to ALERA. The configurations for
ALERA2 are described in comparison with those for ALERA.
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Table 21.1 The root-mean square difference of the 5-day geopotential height forecast at 500 hPa
averaged over the Northern Hemisphere for the different versions of AFES forecast from the JMA
analysis

Version Resolution RSMD m Remarks

1.22 T159L48 55.4 Original
2.2 T159L48 52.1 ALERA
2.7 T119L48 51.3
2.7 with MATSIRO T119L48 49.5
3.6 T119L48 48.9 ALERA2

21.2.1 The Forecast Model

AFES integrates the primitive equations of winds, temperature, specific humidity,
cloud water and surface pressure using the spectral transform method and Eulerian
advection, and it has physics schemes common to many forecast and climate
models. As in the version of AFES used in ALERA, the radiative fluxes are
parameterized using mstrnX (Sekiguchi and Nakajima 2008), and the cumulus
convection is represented by the Emanuel scheme (Emanuel 1991; Emanuel and
Živković-Rothman 1999; Peng et al. 2004) without discrimination between shallow
and deep convection. Updated physics schemes of AFES include cloud (Kuwano-
Yoshida et al. 2010) and land-surface schemes (Takata et al. 2003). The new cloud
scheme with moist turbulence improves the representation of the boundary-layer
clouds in the eastern oceanic basins. The land-surface scheme MATSIRO improves
the modeling of the hydrological cycle.

Reduction in the forecast error of AFES has been achieved continuously.
Table 21.1 shows the geopotential height error averaged in the Northern Hemisphere
.> 30N/ in the forecast experiments for August 2004 with different versions of
AFES. We conducted a 5-day forecast from the analysis at 12 UTC on each day in
August 2004. The root-mean square difference from the JMA analysis was regarded
as an error. AFES 2.2 used in ALERA has an error of 52.1 m, a 3.3 m (approximately
6 %) decrease from the original version (Ohfuchi et al. 2004). Better estimations of
the cloud water (Bony and Emanuel 2001) and of the saturation specific humidity
allow the error to decrease from AFES 2.2 to 2.7 despite the use of a somewhat
coarser resolution. The introduction of the new land-surface and cloud schemes
contributed to a further reduction in the forecast error. The RSMD of AFES 3.6
used in ALERA2 is reduced by approximately 6 % from AFES 2.2 used in ALERA
and by more than 10 % from the original version.

21.2.2 Analysis Scheme

ALEDAS2 uses the LETKF for analysis as in ALEDAS but with distance-based
covariance localization. Before illustrating this improvement, the formulation is
briefly described following Hunt et al. (2007). LETKF is a deterministic ensemble
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Kalman filter, and the unperturbed observations are assimilated to update the
ensemble mean. The analysis ensemble mean Nxa is calculated from the forecast
ensemble mean Nxf and the linear combination of the ensemble forecast perturbation
matrix Xf with the weight Nwa.

Nxa D Nxf C Xf Nwa; (21.1)

where superscripts a, f, and o denote analysis, forecast and observation, respectively,
and over bars indicate the ensemble mean. The i th column (i th member) of Xf is
xf
i � Nxf. The weight is determined by

Nwa D QPa
�
Yf
�T

R�1 �y0 � Ny f
�

(21.2)

where R the observation error covariance matrix and Yf is a forecast perturbation
matrix in the observation space, whose i th column is yf

i � Ny f. The forecast
observation vector yf

i is calculated by

yf
i D H

�
xf
i

�
: (21.3)

whereH is the observation operator. The analysis covariance is computed as

QPa D �
.k � 1/I C .Yf/TR�1Yf

��1
: (21.4)

The analysis ensemble perturbation matrix Xa is obtained from the forecast
ensemble perturbation matrix Xf using the transform matrix Wa:

Xa D XfWa (21.5)

where
Wa D �

.k � 1/ QPa
�1=2

(21.6)

(Bishop et al. 2001). Analysis in LETKF is performed in a local subspace of the
model, and different linear combinations of ensemble members in different regions
(21.3) can be chosen. In this way, localization acts to reduce the sampling error by
making the global dimensions larger than the ensemble size, and to remove spurious
correlations between distant locations (Hunt et al. 2007).

In the previous version of the LETKF code used in ALERA (Miyoshi and
Yamane 2007), analysis is performed with a square-shaped local patch in the
model grid space. The zonal distance of a local patch decreases toward the poles
because of the convergence of meridians. As a result, significant discontinuity exists
in ALERA, especially in the analysis ensemble spread in the polar regions. In
ALEDAS2 the error covariance is localized by physical distance rather than by
model-space local patches (Miyoshi et al. 2007b). The weight w for covariance
localization diminishes with distance r from each grid point for analysis to an
observation in the form
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Fig. 21.2 The data flow chart of ALEDAS2. Rectangles represent data, and round rectangles
represent processes

w.r/ D exp

�
�1
2

� r



2�
(21.7)

where 
 is the localization length parameter. In this modified algorithm, the analysis
is conducted at each model grid point. The reduced matrix size contributes to two to
threefold gains in speed (Miyoshi et al. 2007b).

21.2.3 The Forecast–Analysis Cycle

Figure 21.2 shows the data flow chart of ALEDAS2. In the forecast step, each
ensemble member is integrated in time with AFES from the initial conditions input
from an IC file to produce a restart file. AFES is capable of running multiple
ensemble members with a single MPI execution. The restart contains hourly
forecasts at 3–9 h (˙ 3 h from analysis time t) from the initial time. Each restart is
split into seven files for input into LETKF. In the analysis step, observations (obs)
are assimilated into the forecast in a 6-h window by LETKF to produce analysis
(analysis). Analysis is performed locally in parallel with MPI processes. The
guess files from LETKF represent the forecast at analysis time t in the restart
files. Finally, the analysis files from LETKF replace the model forecast in the
part of the restart files for analysis time t to produce the next initial condition.

21.2.4 Configurations of ALERA2

ALEDAS2 is used to produce the control run for ALERA2 and OSEs. Table 21.2
summarizes the configurations of the two systems. AFES in ALEDAS2 uses
a slightly coarser horizontal resolution and the same vertical resolution, but it
produces a better forecast because of the improved physics described in Sect. 21.2.1.
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Table 21.2 A comparison of the configurations of ALEDAS and ALEDAS2

ALEDAS ALEDAS2

AFES version 2.2 3.6
Resolution T159L48 T119L48
Ensemble size 40 63C 1

Covariance localization 21� 21 � 13 400 km/0.4ln p
Spread inflation 0.1
Observations compiled by JMA NCEP

The ensemble size is increased from 40 to 63. Control runs are conducted from the
analysis ensemble mean. The localization length is 400 km in the horizontal and
0:4 lnp in the vertical. The spread inflation of 0.1 has not been changed.

For ALERA, the observations used for the global NWP at JMA were provided
under the collaboration. For ALERA2, a less restricted PREPBUFR compiled by
the National Centers for Environmental Prediction (NCEP) and archived at the
University Corporation for Atmospheric Research (UCAR) is used. The number
of the observations is reduced as follows. For weather balloons (ADPUPA), the
data used are at 1,000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50 and
10 hPa. Reports from aircraft and satellite retrievals are trimmed to one in every four
values and wind profilers to one in every three levels (St-James and Laroch 2005).

NOAA (National Oceanic and Atmospheric Administration) daily 1=4ı OISST
(optimal interpolation sea-surface temperature) version 2 (Reynolds et al. 2007) is
used to provide ocean boundary conditions with a higher resolution in both time
and space. The initial conditions are prepared from the AMIP (Atmospheric Model
Intercomparison Project)-type integration for 20 years. The integration is performed
with AFES at the same resolution (T119L48). Ensemble members are arbitrarily
chosen to be the atmospheric states of a particular date and nearby dates from
different years.

The second generation of the Earth Simulator (ES2) updated in March 2009 is
used to conduct ALERA2 and OSEs. Each ensemble forecast is performed on a
single vector processor. Each node hosts 8 processes (members), and a total of 64
processes are used on eight nodes of ES2.

21.3 Data Assimilation Experiments

Currently, three streams have been conducted as ALERA2:

• Stream 2003: from 1 June 2003,
• Stream 2008: from 0 UTC 1 January 2008,
• Stream 2010: from 1 August 2010.

Stream 2003 aims to produce a data set that is as long as possible temporally.
Stream 2003 began at the earliest continuously available time in the PREPBUFR
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archive at UCAR1. Stream 2008 was integrated to 0 UTC 25 February 2009 to
cover the periods of the following field campaigns: PALAU 2008 in the western
Pacific, the Mirai Arctic Ocean Cruise 2008, and the summer and winter T-PARC
(THORPEX Pacific Asia Regional Campaign; THORPEX: the observing-system
research and predictability experiment). Stream 2010 was initiated separately to
quickly evaluate field campaigns conducted in 2010: the Mirai Arctic Ocean
Cruise 2010 and the Vietnam–Philippines Rain Fall Experiment (VPREX) 2010.
Stream 2010 continues to integrate toward the present. In this section, preliminary
results are shown for ALERA2, and OSEs are shown for the latter two campaigns.

21.3.1 ALERA2

ALERA2 provides smoother analysis ensemble spreads than those in ALERA.
Figure 21.3 depicts the analysis ensemble spread of sea-level pressure in the Arc-
tic. Note that the date is arbitrarily chosen to be the same, but the year is different.
Discontinuities found in ALERA are absent in ALERA2. Another advantage of
ALERA2 over ALERA is the richness of diagnostic variables produced from 6-h
forecast. Here, we compare ALERA2 precipitation with the Global Precipitation
Climatology Project (GPCP) analysis (Adler et al. 2003) as an example. The forecast
(Fig. 21.4a) agrees well with the satellite-based analysis (Fig. 21.4b) at peaks that
represent disturbances both in the mid-latitudes and in the tropics. Figure 21.4c
shows the ensemble spread of the precipitation. Convective precipitation contributes
most of the variability, causing weak precipitation in the subtropics and tropics.
Large-scale precipitation is responsible for the variability in the higher latitudes.
A large ensemble spread may also be interpreted as uncertainty of the mean.

ALERA2 even represents some fine details (Fig. 21.5). On 18 July 2003 torrential
rainfalls occurred in northern Kyushu. As a result of this disaster, 23 human
lives were lost; 51 houses were destroyed; and thousands of houses were flooded.
ALERA2 reproduces features found in the GPCP analysis: a local maximum over
northern Kyushu owing to a precipitation band running from southwest to northeast,
and a secondary band in the south of Shikoku and the Kii peninsula. Both GPCP
and ALERA2, however, fail to reproduce the intensity observed by radar and gauge
observations, likely because the precipitation bands organized at the meso scales
cannot be resolved at the coarse resolution.

The forecast has excessive weak precipitation. It is known that reanalysis
produces a larger global average than satellite-based estimates (Onogi et al 2007).
Uncertainties remain in the satellite-based estimates despite recent improvements in
rain/no rain classification methods (Kida et al. 2009). In addition, larger biases exist
in forecast model models. Precipitation is unrealistically predicted in the convective
parameterization over the subtropical ocean, where convective inhibition should act

1Currently PREPBUFR observations are available continuously from 1 May 1997.



518 T. Enomoto et al.

Fig. 21.3 The analysis
ensemble spread of sea-level
pressure in the Arctic (a) on
10 January 2006 in ALERA
and (b) on 10 January 2008 in
ALERA2

to suppress precipitation. Recent convective parameterization schemes are designed
to suppress such precipitation by including sensitivity to environmental humidity
(Emori et al. 2001; Betchold et al. 2008; Chikira and Sugiyama 2010). We also mod-
ified the Emanuel scheme this way, but it has not yet been adopted in ALEDAS2.
There is another reason for the excessive weak precipitation: precipitation is a
highly non-Gaussian process. Under a conditionally unstable environment, a small
perturbation can ignite convective parameterization. If precipitation is generated
with only a few members with modest intensity, the ensemble mean precipitation
will be weak rather than non-existent. With a convectively unstable profile, almost
all members yield precipitation, and the distribution will be closer to Gaussian.
Consequently, the ensemble mean agrees well with observations in the regions with
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Fig. 21.4 The daily
precipitation (mm d�1/ on 18
July 2003 from (a) GPCP
analysis, (b) the ensemble
mean, (c) control and
(d) ensemble spread of
ALERA2 6-h forecast
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Fig. 21.5 As in Fig. 21.4 but near Japan

strong precipitation. The surrounding regions have weak precipitation because not
all the members necessarily precipitate. Another likely state is given by the control
run or the forecast from the analysis ensemble mean (Fig. 21.4c). The control run
has less weak precipitation. The excess of weak precipitation in the ensemble mean
can also be understood statistically. If the probability distribution of precipitation is
lognormal, the mean is larger than the mode.

The overestimation of weak precipitation in ALERA2 is also evident in the
histogram (Fig. 21.6). The almost clear .< 1mmd�1/ bin holds 68 % in GPCP
but only 38 % in ALERA2. In the control run, the first bin holds 47 %, and the
percentages in the bins between 2 and 16 mm d�1 are reduced by 1–3 %. The control
run indicates that weak precipitation is partly caused by statistics. A local minimum
at 1–2 mm d�1 bin of GPCP might imply the limited performance of detecting weak
precipitation.
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Fig. 21.6 A histogram of precipitation in July 2003. Blue and red bars represent GPCP and
ALERA2, respectively. Numbers on the bars indicate the percentage in a bin

21.3.2 The Mirai Arctic Ocean Cruise 2010

Research vessel Mirai conducted a cruise in the Arctic Ocean from 2 September
to 16 October 2010. One of the major meteorological outcomes of this cruise is
an in-situ observation of an Arctic cyclone (Inoue and Hori 2011). An OSE was
conducted to evaluate the impact of balloon observations from Mirai during the
cyclogenesis. Figure 21.7 shows the analysis ensemble spread of temperature at
250 hPa with shading and winds in vectors. During the cyclogenesis, the reduction
in error in the lower troposphere may be attributable to information over land carried
by southerly winds. In contrast, the balloon observations are the major contributor to
error reduction in the upper troposphere. In fact the analysis ensemble spread along
the track of Mirai is smaller than the surrounding region. The result of the OSE is
under detailed investigation.

21.3.3 VPREX 2010

A field campaign focusing on heavy precipitation in central Vietnam was conducted
from September 2010 to January 2011. The frequency of radio sonde observations
is doubled from twice to four times a day at Da Nang, Vietnam. Special balloon
observations are conducted twice a day at Mactan, Philippines. These observations
were transmitted to GTS and are included in PREPBUFR. Figure 21.8 shows
the westward migration of disturbances produced from ALERA2. The analysis
ensemble spread of the meridional wind correlates well with vorticity. A data denial
experiment was conducted to further investigate the impact of balloon observations
at a station at Da Nang, Vietnam and six locations in the Philippines, including
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Fig. 21.7 A time–latitude cross-section of the analysis ensemble spread of temperature (shading)
and winds (vectors) during 0 UTC 27 and 0 UTC 29 September 2010. The white line and squares
indicate the track of Mirai and the observation locations, respectively

Mactan. The balloon observations contribute to the reduction in the analysis error at

 D 0:7 by 25 % over the Philippines. An error reduction of 5–25 % extends from
the Indochina peninsula to the southern coast of Japan. Details will be reported
elsewhere.

21.4 Concluding Remarks

We have constructed an ensemble data assimilation system of global atmospheric
observations, called ALEDAS2, on the Earth Simulator 2. An ensemble reanalysis
data set called ALERA2 is being produced with ALEDAS2. ALERA2 provides
a smooth analysis ensemble mean and spread by replacing patches of covariance
localization with weights based on the distances from observations. The output
of ALERA2 includes various variables such as precipitation, radiative and surface
fluxes and land surface variables. ALERA2 reproduces the intensity and location
of intense precipitation associated with mid-latitude and tropical disturbances.
ALERA2, however, produces excessive weak precipitation in comparison with the
satellite-based estimation. In addition to the uncertainties in the model and satellite
retrieval algorithm, the ensemble mean operation contributes to the generation of
weak precipitation. Using ALERA2 as a reference, we have conducted observing-
system experiments (OSEs) to evaluate the atmospheric observations collected at
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Fig. 21.8 A longitude–time section of the analysis ensemble spread of meridional winds (shading)
and vorticity (contours) at 
 D 0.85 averaged between 12 and 18 N. Blue dots indicate the locations
of the center of a tropical cyclone

during field campaigns such as PALAU 2008, the Mirai Arctic Ocean Cruise 2010
and VPREX 2010. These experiments show the importance of additional observa-
tions in data-sparse regions over the ocean. Details will be reported elsewhere.

Our next step is to incorporate the variability of the ocean. With the coupled
atmosphere–ocean model for the Earth Simulator (CFES) (Komori et al. 2008),
we began the development of data assimilation system called CLEDAS. In this
system, the ocean boundary conditions are replaced by the ocean general cir-
culation model for the Earth Simulator (OFES) (Pacanowski and Griffies 2000;
Masumoto et al. 2004) with the sea-ice process (Komori et al. 2005). Currently,
only atmospheric observations can be assimilated. Preliminary tests indicate that the
replacement of AFES with CFES contributes to an increased ensemble spread in the
lower troposphere. In the future, CLEDAS will allow ocean and land observations to
be assimilated. We plan to use CLEDAS as a test bed for the a study of the problem
of assimilating data with different spatiotemporal scales and degrees of nonlinearity.
CLEDAS may also be used to evaluate and design the observation systems and field
campaigns conducted by JAMSTEC.
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List of Acronyms

AFES: AGCM for the Earth Simulator
ALEDAS: AFES–LEKTF Ensemble Data Assimilation System
ALERA: AFES–LETKF Experimental Ensemble Reanalysis
AMIP: Atmospheric Model Intercomparison Project
CFES: Coupled Atmosphere–Ocean Model for the Earth Simulator
CTD: Conductivity, Temperature and Depth
ES: The Earth Simulator
GPCP: Global Precipitation Climatology Project
GPV: Grid Point Value
GTS: Global Telecommunication System
JAMSTEC: Japan Agency for Marine-Earth Science and Technology
JMA: Japan Meteorological Agency
LETKF: Local Ensemble Transform Kalman Filter
MATSIRO: Minimal Advanced Treatments of Surface Interaction and RunOff
MILA: Mixed Layer data set of Argo
MISMO: Mirai Indian Ocean Cruise for the Study of MJO Onset
MOAA: Monthly Objective Analysis using the Argo data
NCEP: National Centers for Environmental Prediction
NOAA: National Oceanic and Atmospheric Administration
OISST: Optimal Interpolation Sea-Surface Temperature
OREDA: Observing System Research and Ensemble Data Assimilation Devel-
opment Research Team
PALAU: Pacific Area Long-Term Atmospheric Observation for Understanding
of Climate Change
POPS: Polar Ocean Profiling System
T-PARC: THORPEX Pacific Asia Regional Campaign
TAO: Tropical Atmosphere Ocean
THORPEX: The Observing-System Research and Predictability Experiment
TRITON: Triangle Trans-Ocean Buoy Network
UCAR: University Corporation for Atmospheric Research
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Betchold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G
(2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic
to decadal time-scales. Q J R Meteor Soc 134:1337–1351. doi:10.1002/qj.289

Bishop CH, Etherton J, Majumdar SJ (2001) Adaptive sampling with the ensemble transform
Kalman filter. Part I: theoretical aspects. Mon Wea Rev 129:420–436. doi:10.1175/1520-
0493(2001)129 < 420:ASWTET > 2.0.CO;2



21 Observing-System Research and Ensemble Data Assimilation at JAMSTEC 525

Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus
convection; evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183

Chikira M, Sugiyama M (2010) A cumulus parameterization with state-dependent entrainment
rate. Part I: description and sensitivity to temperature and humidity profiles. J Atmos Sci
67:2171–2193. doi:10.1175/2010JAS3316.1

Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos
Sci 48, 2313–2329
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Chapter 22
Data Assimilation of Weather Radar and LIDAR
for Convection Forecasting and Windshear
Alerting in Aviation Applications

Wai Kin Wong and Pak Wai Chan

Abstract In this paper, variational data assimilation techniques to retrieve
3-dimensional wind fields from weather radars and LIDAR are discussed. The
retrieved wind field from the 3-dimensional variational (3DVAR) technique applied
to the weather radar data are found useful to delineate the mesoscale features
leading to the convective development in a rainstorm event that brought significant
lightning and thunderstorms near the Hong Kong airport and heavy precipitation
over the territory. Impacts in improving analysis and forecast of a non-hydrostatic
NWP model are also obtained through the data assimilation of wind retrieval
data as additional observations in the model analysis. To capture the low-level
windshear due to complex wind flow around the Hong Kong airport, 3DVAR
and 4DVAR techniques are applied to LIDAR data. The performance of the wind
retrieval algorithms and results of case studies will be illustrated. It is found that the
wind fields obtained are useful to depict salient features of terrain-induced airflow
disturbances at HKIA, such as mountain waves and vortices in a gustnado event.

22.1 Introduction

Ground-based remote sensing platforms including radars, LIDARs (Light Detection
and Ranging), wind profilers and GPS (Global Positioning System) provide valuable
observations for monitoring and forecasting of the development of mesoscale
weather systems, significant convection, thunderstorm, windshear and turbulence.
In this paper, a brief summary on the use of radar data in the data assimilation system
of the non-hydrostatic NWP modeling system of Hong Kong Observatory will first
be given. Using data from multiple weather radars, 3-dimensional variational data
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assimilation algorithm is applied to retrieve the horizontal and vertical wind fields
that are found to provide useful source of data in showing the mesoscale circulation
characteristics in a heavy rain event. Furthermore, the retrieved wind data show
impacts on improving the NWP model analysis and forecast of thunderstorms and
convective systems.

In monitoring the occurrence of low-level windshear and turbulence around the
Hong Kong airport due to complex wind flow over the Lantau Island, LIDAR
data have been put into operational and as a key component in the windshear
and turbulence alerting system to capture the wind and their changes at high
spatial and temporal resolution. To further investigate the use of LIDAR to depict
a complete view of three dimensional wind flow over the complex terrain around
the airport area, the variational data assimilation techniques are utilized and found
to be very useful to analyze the wind flow and capture the small-scale features.
The formulation of the variational methods will be discussed in this paper and their
performance will be illustrated through some case studies.

22.2 An Overview of Data Assimilation of Weather Radar
Data in Operational Non-Hydrostatic Mesoscale NWP
Model in HKO

In June 2010, Hong Kong Observatory (HKO) started to operate a new generation of
mesoscale NWP model suite called the Atmospheric Integrated Rapid-cycle (AIR)
Forecast Model System (Wong 2010) based on the Non-Hydrostatic Model (NHM)
of the Japan Meteorological Agency (JMA) (Saito et al. 2006). In brief, the new
NWP system contains two domains called Meso-NHM and RAPIDS-NHM with
horizontal resolution of 10 and 2 km respectively to provide forecast up to 72 and
15 h ahead respectively. With increased in model resolution, use of 3-dimensional
variational data assimilation (3DVAR) system and better representation of physical
processes like cloud microphysics and convective parameterization, benefits in fore-
casting of severe weather phenomena are obtained to support aviation applications
of AIR/NHM (Wong et al. 2011).

In particular, to capture the fast evolving convective systems its associated
mesoscale circulation features, RAPIDS-NHM is executed every hour to pro-
vide storm-scale prediction over Hong Kong and its nearby Guangdong region
(Fig. 22.1). 3DVAR analysis at full model resolutions and vertical levels, and the
boundary conditions from Meso-NHM forecast in one-way nesting configuration
are used. Due to short observation cut-off time (
35 min) in RAPIDS-NHM
3DVAR, the numbers of conventional observations from synoptic surface and upper-
air stations, ships, buoys and aircrafts (AMDAR—Aircraft Meteorological Data
Relay) are usually limited depending on availability in real-time. The observations
ingested in 3DVAR of RAPIDS-NHM are mostly from mesoscale observation
networks in Hong Kong (HK) and the Guangdong Province, including data from
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Fig. 22.1 Domain coverage
and terrain height of
RAPIDS-NHM

automatic weather stations, wind profilers, total precipitable water vapour from the
Global Positioning System (GPS), radar Doppler velocity and radar wind retrieval
(see next section).

In NHM-3DVAR, the model optimal analysis is calculated from the best linear
unbiased estimate of the control variables representing the model states that
minimize the following cost function:

J.x/ D Jb C Jo D 1

2
.x � xB/B.x � xB/

T C 1

2
.y � Hx/R.y � Hx/T (22.1)

where x; xB are respectively control variable vector and model background
field. The control variables of NHM-3DVAR include horizontal wind components,
pressure, potential temperature and pseudo relative humidity in terms of the ratio of
specific humidity of water vapour to its saturation value. y represents a state vector
containing observation data and H is the observation operator. In (22.1), B and R
are respectively background and observation error covariance matrices where model
error represented in the B matrix is estimated using the NMC method (Parrish and
Derber 1992).

In RAPIDS-NHM, Doppler velocity data from the two S-band weather radars
in Tai Mo Shan and Tates’ Cairn in Hong Kong are used. Radar radial velocity
data on selected CAPPI levels (at altitudes from 1 to 3 km above sea levels) are
thinned to separate the wind data into about three grid-point spacing (5–6 km) in
order to reduce the correlation between them. The radial velocity data are passed
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Fig. 22.2 Domain of 3D
wind retrieval computation
and locations of radars in
Shenzhen and Hong Kong

to quality control procedure to filter out those observations with large departure
from the model first-guess. Additionally, to better adjust the moisture content in the
model analysis, pseudo-observations of humidity near to the saturation values at that
height level are created in case the relative humidity in the first-guess is low at the
grid point corresponding to the observed radial velocity and non-zero reflectivity.
The radial wind data and the relative humidity observations are then assimilated
together into the 3DVAR together with other available observations.

22.3 Wind Retrieval Technique of Doppler Weather
Radar Data

22.3.1 Doppler Weather Radars and Wind Retrieval Algorithm

While the mesoscale features of convective systems could be delineated from the
radar radial velocity field, it would be better if the 3-dimensional (3D) wind compo-
nents can be estimated to facilitate real-time diagnosis, nowcasting applications as
well as for ingestion into mesoscale NWP models to capture the flow characteristics.
In this study, the weather radar data from Hong Kong and Shenzhen (Fig. 22.2).
They are both S-band radars and complete one volume scan in every 6 min.

Prior to the wind retrieval calculation, the weather radar data are pre-processed
by a couple of steps. In the first step, velocity de-aliasing is performed with the
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radial velocity data. A simple one-dimensional method is used, namely, for each
radial, the adjacent velocity data pair is compared starting from near range to far
range of the radar. If the adjacent data pair is found to have large difference in the
velocity value, the velocity data at the further range would be de-aliased based on
the corresponding data at the nearer range. This method appears to be simple, but
it turns out to be quite effective in de-aliasing the radial velocity in most of the
situations.

After de-aliasing, the velocity data are medium-filtered to remove speckles and
large variations to help improve the quality of the radial velocity data. In the present
study, the template for medium-filtering has a grid size of 3 by 3, and the filtering
is performed for 3 times. The template dimensions and the number of filtering are
determined based on several trials. The radar data are interpolated into a 3D grid
with a size of 90 (in east–west direction) �90 (north–south) and 21 (vertical levels).
The corresponding resolution is 1� 1� 0:5 km. The 3D wind field is then obtained
by variational method. Details of this method could be found in Shimizu et al. (2008)
and a summary is described in the next paragraph. Using upper level winds collected
from wind profilers over Hong Kong, it was found that the 3D radar retrieval winds
are quite consistent with these observations and the root-mean-square errors of the
wind speed and wind direction are about 2 m/s and 20ı respectively.

The wind retrieval method aims at minimizing a cost function J defined as:

J D JO C JB C JD C JS (22.2)

where:

1. JO considers the difference between the measured radial velocity and the
retrieved radial velocity, namely,

JO D 1

2

X
i;j;k

�m
�
PVrm � V rob

rm

�2
(22.3)

and,

PVrm D .x � xm/ u C .y � ym/ v C .z � zm/ .w C wT /q
.x � xm/

2 C .y � ym/
2 C .z � zm/

2

(22.4)

is the projection of the retrieved 3D wind on the radial direction, wT is the ter-
minal velocity of the rain drop that depends on the intensity of radar reflectivity,
V rob
rm is the observed radial velocity of the m-th radar (after interpolation) and
i; j; k are the indices of the 3D grid.

2. JB is the difference between the retrieved 3D wind field .u; v;w/ and the
background 3D wind field .ub; vb; wb/ with the following equation:

JB D 1

2

2
4X
i;j;k

�ub .u � ub/
2 C

X
i;j;k

�vb .v � vb/
2 C

X
i;j;k

�wb .w � wb/
2

3
5 (22.5)
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3. JD controls the retrieved wind field to follow weak anelastic mass constraint:

JD D 1

2
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i;j;k
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C @ N�v
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C @ N�w

@z

	2
(22.6)

where N� is the average atmospheric density; and
4. JS controls the smoothness of the retrieved wind field:

JS D 1

2
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5 (22.7)

where r2 is the Laplacian operator.

The weights of the various quantities are taken following the consideration of the
order-of-magnitude of the respective terms and experiments with the actual radar
data:

�1 D�2 D 1; �ub D�vb D�wb D 1� 10�4; �D D 1� 105; �us D�vs D�ws D 100

22.3.2 Illustration of Radar Wind Retrieval Data
in a Significant Convection Event on 28 July 2010

The case of intense convective weather occurred in the afternoon of 28 July 2010
over Hong Kong where more than 100 mm of rainfall were recorded over part of the
territory between 0600 UTC and 1000 UTC (1400–1800 HKT where HKT D UTCC
8 h). About 4,000 numbers of cloud-to-ground lightning strokes were registered
over Hong Kong, nearly half of them occurred in the region of the Hong Kong
International Airport (HKIA) and Lantau Island (Fig. 22.3). On the side of aviation
weather service, the Airport Thunderstorm Lightning Alerting System (ATLAS)
operated by the Observatory at HKIA issued red alert for two and a half hours, i.e.
cloud-to-ground lightning occurred or was expected to occur within 1 km from the
boundary of HKIA, so that the ground personnel had to operate their operation and
should look for shelters. This is the longest period for the issuance of red alert since
the operation of ATLAS in March 2008. During the period when red alert was in
force, there were 290 times of cloud-to-ground lightning strokes within 1 km of the
boundary of HKIA. The thunderstorms also brought about significant windshear and
microburst at the airport area, leading to significant disruption of air traffic at HKIA.

Synoptically, there was a trough of low pressure over the surface starting from
27 July 2010, bringing showers and thunderstorms to south China coast. Active
southwesterly jets on 850 and 700 hPa levels were observed over the southern
China that favoured transport of warm and moist airstream towards the Pearl River
Delta region. In the middle troposphere (500 hPa level), a trough was found over
southeastern coast of China. Upward motion could be analyzed over south China
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Fig. 22.3 Total accumulated rainfall (color in mm) from 0600 to 1000 UTC on 28 July 2010
(left). Distribution of cloud-to-ground lightning strokes during the same period (colored according
to different record time) (right)

coast. Further aloft on 200 hPa level, the coast of Guangdong was located between
a deep westerly trough to the north and an east–west oriented ridge axis to the south
where divergence could be analyzed over Hong Kong and adjacent regions. The
supply of moist air at low level, the upward motion in the middle level and the
divergence at the upper level were all favourable to the occurrence of heavy rain
over the coastal regions. Convective unstable environment was also revealed from
radiosonde ascent in Hong Kong at 0000 UTC on 28 July 2010 in which K-index of
40 K and CAPE of around 3,000 J/kg were found together with a saturated condition
between 900 and 500 hPa.

With the aforementioned dynamic and thermodynamic setup, two mesoscale
convective systems (MCS) developed over the east of Pearl River Estuary and
another over western Guangdong (satellite image omitted) during the late morning
on 28 July 2010. Moreover, isolated thunderstorms developed over the seas just
south of Hong Kong. Merging of thunderstorms could be readily observed in the
radar imageries (Fig. 22.4). At about 05 UTC on 28 July 2010, three areas of
thunderstorms could be analyzed in the vicinity of Hong Kong, namely, an east–west
oriented band to the east of Hong Kong (labelled “A”), a north–south oriented band
to the west of Hong Kong (labelled “B”) and isolated thunderstorms over the seas
to the southwest of Hong Kong (labelled “C”). The band “A” was basically quasi-
stationary, whereas thunderstorms in “B” and “C” were moving towards Hong Kong
in the next couple of hours. The dense network of anemometers on the surface of
Hong Kong shows that there are mesoscale shear lines over the territory in this heavy
rain event. Such shear lines appear to be associated with the convergence between
outflow from the thunderstorms and the background southwesterly winds. Around
0730 UTC, the thunderstorms merged and there was a “X” shape in the areas of
intense convection, namely, the intersection of a basically east–west oriented band
of heavy rain, and another band with north to south-southwest orientation. In the
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Fig. 22.4 Radar CAPPI reflectivity imagery at 0430, 0530, 0630, 0730 UTC on 28 July 2010
(1230, 1330, 1430 and 1530 HKT respectively). Area of HK is marked in red dashed box

following hour or so, the former band remained nearly stationary over Hong Kong,
and the latter area moved eastwards gradually. The intersection of the two areas
of thunderstorms resulted and the quasi-stationary nature of the east-oriented rain
band brought about heavy downpour of rain over Hong Kong. Between 09 and 10
UTC, the east–west oriented rainband and the surface convergence line moved south
gradually and rain over the territory weakened gradually.

Frequently occurring short waves could be analyzed in the westerly airflow in the
lower to middle troposphere as shown in the wind fields retrieved from the multiple
radars. The retrieved winds at a height of 2 km above mean sea level could be found
in Fig. 22.5. Between 07 and 09 UTC (15 and 17 HKT) of 28 July 2010 when the
rain was the heaviest over HKIA, the east–west oriented rain band was found to have
a number of short waves in the westerly at 2 km level. These waves were expected
to trigger and sustain the occurrence of intense convection over Hong Kong. To the
south of the westerly waves, there was active southwesterly flow bringing moisture
from the South China Sea towards the coast of Guangdong.

Similar wavy activity could also be observed from the radar-retrieved winds at a
height of 5 km above mean sea level. Therefore, the westerly waves in the middle
and lower troposphere were conductive to the intense convective developments.
During 09 UTC, the winds over Pearl River Estuary changed from southwesterly
to west-northwesterly. There was a deeper wave passing along the coastal areas of
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Fig. 22.5 Radar retrieved winds on 2 km (left column) and 5 km (right) levels overlaid on the radar
reflectivity at 0700 UTC (top), 0800 UTC (middle), and 0900 UTC (bottom) on 28 July 2010
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Guangdong. As a result, the areas of convective developments were “pushed” to the
south over the coastal waters of Guangdong, moving away from Hong Kong. As a
result, the rain over the territory weakened gradually.

22.3.3 Data Assimilation and Forecast Experiments Using
RAPIDS-NHM

Numerical experiments on the data assimilation and forecast using radar retrieval
winds in RAPIDS-NHM are conducted in 0300 UTC run. As the vertical velocity is
not a control variable in the 3DVAR system of RAPIDS-NHM, only the horizontal
components of radar retrieval winds are ingested. Data thinning is applied to the
retrieved radar wind data in horizontal direction using a grid separation of about
4 km. Quality control procedure is then used to remove those suspicious radar
retrieval wind data that are opposite in direction to the wind vectors in model first
guess of 3DVAR. To study the impact of retrieved wind data, control experiments
(CNTL) are used in which all available observations except radar retrieval winds are
ingested in 3DVAR.

Figure 22.6 shows the analyzed wind and relative humidity (WIND C RH) on
500 hPa and 700 hPa levels using the radar retrieval wind (upper panel) and CNTL
(lower). Radar retrieval winds and reflectivity at 5 and 3 km of altitude are shown
in same figure. It can be seen that the retrieval winds are effectively assimilated in
the 3DVAR, resulting in enhancement in southwesterly flow over the coastal waters
of Guangdong and generate a short-wave westerly disturbance on 500 hPa level.
In CNTL, only moist westerly flow is found in the analysis field. Convergence in
lower troposphere is also enhanced as the southwesterly winds are analyzed over the
coastal waters using the radar retrieval winds data, thus resi;tomg in improvements
in the forecast cyclonic shear on 850 hPa is shifted to the vicinity of HK and
Pearl River Estuary where it is located more to the north in CNTL (Fig. 22.7). The
main cyclonic shear is located over the northern part of HK corresponding to the
intense convection development areas labelled as A and B in Fig. 22.4. In CNTL,
the low-level cyclonic vorticity is forecast over the northeastern part of HK only, in
accordance with actual active development area (Label A in Fig. 22.4).

Figure 22.8 depicts the 5 h forecast equivalent reflectivity (derived from
RAPIDS-NHM forecasts of specific humidity of cloud hydrometeors) and the
actual radar imagery. The east–west oriented reflectivity band is better forecast
with the assimilation of radar wind retrieval data, whereas the intensity of simulated
reflectivity is appreciably weaker in CNTL. However, the model forecast reflectivity
field shows a time lag by about 1 h as compared to the actual radar image. Another
difference from the actual radar image is found for the convection over the coastal
sea areas, in which both experiments do not show any sign of the storm development
over the region. To investigate whether this discrepancy could be alleviated through
the use of hourly-update cycle of RAPIDS-NHM, the numerical experiment is
repeated for analysis and forecast at 0400 UTC. The first guesses of 3DVAR in
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Fig. 22.6 Radar retrieved winds and reflectivity on 5 km and 3 km at 0300 UTC on 28 July 2010
(top). RAPIDS-NHM analysed wind and relative humidity at 0300 UTC (1100 HKT) on 500 hPa
and 700 hPa using radar retrieval winds (middle) and the analysis in the control experiment (CNTL,
lower)
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Fig. 22.7 T C 2 h forecast relative vorticity on 850 hPa level (positive/cyclonic vorticity in red
and vice versa for blue) using radar retrieval winds (left) and CNTL

both experiments are based on 1 h forecast of corresponding 0300 UTC run. It
is found that radar retrieval winds and Doppler velocity data corresponding to
convection over the coastal waters (Area C in Fig. 22.3) are assimilated in RAPIDS-
NHM to generate disturbances in the southwesterly flow and enhanced the cyclonic
vorticity (Fig. 22.9). A north–south oriented reflectivity band is thus be forecast
through the use of radar retrieval data (Fig. 22.10), although the timing for the
arrival and merging of two echo bands over HK remain lagged behind by about 1 h.
Figure 22.11 shows 3-h accumulated rainfall forecasts ending at 0830 UTC (1630
HKT) from the two experiments. With radar retrieval winds in the initial condition,
rainfall generally over Hong Kong and Lantau Island is forecast to exceed 100 mm
in 3 h that is similar to the actual condition. In RAPIDS-NHM forecast, the merging
of rainband and hence the maximum rainfall areas are found over southeastern part
of territory, while in actual they are located mainly to the east of Hong Kong.

22.4 Application of LIDAR Data and Wind Retrieval Using
Variational Techniques

22.4.1 Doppler LIDAR for Windshear Alerting in Hong Kong
International Airport

For the alerting of low-level windshear and turbulence in clear air, non-rainy
weather conditions, two Doppler LIght Detection And Ranging (LIDAR) systems
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Fig. 22.8 T C 5 h forecast of equivalent reflectivity at 0800 UTC using radar retrieval winds and
CNTL. Radar CAPPI reflectivity at 0700 UTC is shown in lower panel

are operated by the Hong Kong Observatory (HKO) at the Hong Kong International
Airport. Locations of the LIDAR systems are shown in Fig. 22.12. They are coherent
LIDARs using a 2-�m laser beam with pulse energy of 2 mJ. The measureable range
reaches 10 km and the range resolution is about 100 m.

Since the majority of windshear at HKIA occurs in clear-air weather conditions
such as terrain-disrupted airflow (70 % of pilot reports of windshear encounter)
and sea breeze (20 % of the reports), LIDAR turns out to be well suited for
windshear detection. The remaining windshear events (10 % of the reports) are
mostly associated with convective weather like gust front and microburst. They
are monitored by the Terminal Doppler Weather Radar (TDWR) operated by HKO
(location in Fig. 22.12). A network of ground-based anemometers and weather
buoys has also been set up inside and around HKIA for windshear detection.
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For wind monitoring and windshear alerting, the LIDAR at HKIA has employed
a special scan strategy, comprising the following scans:

(a) Plan-position Indicator (PPI) scans (or conical scans) to provide the weather
forecasters with an overview of the wind condition in the vicinity of HKIA—
There are three PPI scans, namely, with the elevation angles of 1:4ı, 3ı and
6ı in the current implementation. The former two scans are mainly used for
monitoring the wind along the arrival glide paths (which have smaller elevation
angles, viz. 3ı from the ground), and the last one dedicated to the departure
glide paths (which have larger elevation angles, viz. = 6ı from the ground).
The PPI scans are blocked by the Air Traffic Control Tower to the north.

(b) Range-height Indicator (RHI) scans (or vertical-slice scans) to measure the
vertical structure of the windshear features, e.g. interaction between sea breeze
and the background flow, hydraulic jump in cross-mountain airflow, etc.

(c) Glide-path scans to focus on the wind conditions along the glide paths for
operational windshear alerting—The LIDAR measures the headwind profile to
be encountered by the aircraft and significant wind changes in the profile are
detected automatically (Shun and Chan 2008).

22.4.2 3DVAR Analysis of LIDAR’s Radial Velocity Data

To better visualize the complex airflow around HKIA in the assessment of low-level
windshear, the present seection studies the possibility of retrieving the 2D wind
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Fig. 22.10 T C 4 h forecast of equivalent reflectivity at 0800 UTC using radar retrieval winds and
CNTL. Radar CAPPI reflectivity at 0700 UTC is shown in lower panel

field based on the radial velocity data from the PPI scans of the LIDAR. To study the
possibility of real-time monitoring of the wind field based on LIDAR measurements,
the computationally more efficient approach of parameter identification (PI) method
is adopted here

The cost function in the variational method is defined as:

J.u; v/ D J1 C J2 C J3 C J4 C J5 C J6: (22.8)

The first term in (22.8) is the background term as given by:

J1 D
X
i;j

W1Œ.u � uB/
2 C .v � vB/

2�: (22.9)
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Fig. 22.11 Forecast 3-h accumulated rainfall ending at 0830 UTC using radar retrieval winds and
CNTL; Actual 3-h accumulated rainfall over Hong Kong based on analysis of raingauge data is
given in lower panel. The numbers in the color bar denote the amount of raingauge over Hong
Kong with 3-h rainfall exceeding the respective thresholds

The summation is made over the grid points .i; j /. .uB; vB/ is the background
velocity to be described later, and .u; v/ is the velocity to be retrieved. W ’s are
the weighting coefficients.

The second term in (22.8) is a measure of the difference between the observed
.vobsr / and the retrieved .vr / radial velocities as given by:

J2 D
X
i;j

W2.vr � vobsr /2: (22.10)

The third, fourth and fifth terms in (22.8) are the smoothing terms involving the
divergence, vorticity and Laplacian of the retrieved velocity field respectively. They
are given by:
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Fig. 22.12 The geographical setup in the vicinity of the Hong Kong International Airport (HKIA)
with height contours in 100 m. The locations of the meteorological equipment considered in the
present study are also shown

J3 C J4 C J5 D
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CW5.�x/
4.r2u C r2v/2�: (22.11)

Here �xD�yD 100m is the grid size in the retrieval domain.
The last term in (22.8) is the conservation constraint. In Qiu et al. (2006), the con-

servation of precipitation content based on Radar reflectivity is used. In the present
paper, conservation of the observed radial velocity is employed because the
LIDAR’s backscattered power data appear to have beam-to-beam variability arising
from the fluctuations of the output power. The conservation equation is given by:

J6 D
X
i;j

X
n

"
W6

�
@vobsr

@t
C u

@vobsr

@x
C v

@vobsr

@y

	2#
(22.12)

where n is the time index. It is involved in the time derivative of the observed radial
velocity. In the current scanning strategy of the LIDAR, the PPI scans are performed
every 2 min or so. Three consecutive scans are used in the 2D wind retrieval in this
paper. Equation (22.12) is the approximate form of the conservation of momentum
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for the radial velocity component. It is to ensure that the retrieved velocity field
.u; v/ could observe the conservation of momentum approximately.

The weighting coefficients are taken as: W1 D 0:1.1=m2 s�2/, W2 D 1.1=m2s�2/,
W3 DW4 DW5 D 0:1.1=m2s�2/ and W6 D 104 .1=m2s�4/. They are chosen empiri-
cally in this paper to ensure that the constraints have proper orders of magnitude.

Following Qiu et al. (2006), the background velocity field is determined by
expanding it in terms of second-order Legendre polynomials:

uB.x; y/ D
2X

nxD0

2X
nyD0

anx;nyPnx.x/Qny.y/;

vB.x; y/ D
2X

nxD0

2X
nyD0

bnx;nyPnx.x/Qny.y/: (22.13)

Pnx.x/ and Qny.y/ are the orthonormal functions (Legendre polynomials). The
background field is then fully determined by the expansion coefficients anx;ny and
bnx;ny, which are the retrieved variables in this step. The cost function for retrieval
is similar to (22.8), except that the first term vanishes (i.e. setting W1 D 0).

Before performing the retrieval, the radial velocity data are quality-controlled
to remove the outliers due to, for instance, reflection from clutters (Shun and
Chan 2008). The main source of clutter is the moving aircraft in the sky and
the clutter does not occur very frequently (in the order of a few per day). Such
outliers could be detected by mimicking visual inspection to compare each piece
of radial velocity with the data points around, and replaced by a median-filtered
value if the difference between them is larger than a pre-defined threshold. The
threshold is determined from the frequency distribution of velocity difference
between adjacent range/azimuthal gates of the LIDAR over a long period of time.
The quality-controlled radial velocity in the range-azimuth coordinate system is
then interpolated to a Cartesian grid with resolution of 100 m using Barnes scheme.
According to Chan and Shao (2007), the root-mean-square errors of the retrieved
wind components (u and v) were about 2 m/s when compared with the anemometer
measurements (Table 2 and Fig. 2 in Chan and Shao (2007)).

One application of the 3DVAR retrieved 2D wind field is the identification of
coherent structure in the airflow at HKIA, which may be related to the low-level
windshear and turbulence to be encountered by the aircraft. The monitoring of
airflow near HKIA using the LIDAR’s radial velocity data is a kind of Eulerian
descriptions of the flow field. It has recently been established that, such descriptions,
inefficient and somewhat arbitrary at best, could lead to serious flaws as instanta-
neous streamline sketches is not an objective representation of actual particle motion
in an unsteady flow. Lagrangian analyses, however, provide frame-independent
description when the flow field is not evolving too quickly, and certain trajectories
of an unsteady flow persist with coherent motion over some period of time. The
method analyzes the relative motion of fluid particles in the Lagrangian frame.
In this framework, the Lagrangian coherent structures (LCSs) are identified as
distinguished sets of fluid particle trajectories that attract or repel nearby trajectories
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Fig. 22.13 Wind vectors and streamlines based on the retrieved velocity at 14:29 UTC overlaid
on the LOS velocity (color shades) measured by the LIDAR. Positive values indicate LOS velocity
away from LIDAR. White contours show the mountainous topography near HKIA at 100 m
intervals

at locally the highest rate in the flow. Practically, they are identified using finite-
domain finite-time Lyapunov exponents (FDFTLE) method. Technical details of the
method can be found in Tang et al. (2011).

Figure 22.13 shows the 3DVAR retrieved wind overlaid on the line of sight (LOS)
velocity at 14:29 UTC 19 April 2008. In the airport region, sometimes a long
and distinct ridge of updraft is persistent as an organizing structure. We show the
evolution of this updraft between 14:36 UTC and 14:41 UTC, 19 April 2008, in
Fig. 22.13, at 150 second intervals. Discussion and illustrations on the results of
3DVAR retrieved wind can be referred to Tang et al. (2011). This ridge of updraft
originates downwind of Lin Fa Shan, a mountain on Lantau Island to the south of
HKIA. The ridge could correspond to the merging of gap flows on the two flanks of
the mountain peak, leading to convergence and updraft when they meet. Unlike other
coherent structures which either stay in the vicinity of mountain topography or move
with the background flow and quickly dissipate, this ridge is larger in scale and stay
longer in time. More importantly, this ridge is transversal to the runway corridor,
where many flights passed through. In Fig. 22.14a–c, the LOS velocity is shown
and its magnitude is represented by the color shades. Not much of the velocity
structures can be directly inferred from these plots, though locations of strong wind
convergence could be associated with gradient of LOS velocity. The FDFTLE plots
in Fig. 22.14e, f, g, however, reveal the the locations of LCS corresponding to the
updraft structure. In addition, we plot the Hovmoller diagram of the LOS velocity



546 W.K. Wong and P.W. Chan

Fig. 22.14 Ridge of updraft identified to the east of the airport, during the episode of spring
tropical cyclone. (a), (b), and (c) are the LOS velocity output from LIDAR. It is not apparent
that a ridge structure is present. (e), (f), and (g) are the backward-time FDFTLE. A long ridge of
FDFTLE maxima is seen persistent over time, trailing Lin Fa Shan. The different times, from left
to right for each pair of plots, are 14:36 UTC, 14:39 UTC and 14:41 UTC. (d) Hovmoller diagram
of the LOS velocity at 5 km range between 14:00–16:00 UTC. The coverage is shown as the arc
of black dots in (a). (h) Hovmoller diagram of the backward-time FDFTLE between 14:00–16:00
UTC. The FDFTLE maxima (on the persistent ridge) is connected by the black curve. This curve
is also plotted in (d). It is seen that the ridge correspond to a rather strong change in LOS velocity

(Fig. 22.14d) and the backward-time FDFTLE (Fig. 22.14h) at 5 km range between
45ı and 105ı azimuth and 14:00–16:00 UTC to study the relation between LCS and
LOS velocity for this specific updraft. Since the updraft structure is transversal to
the arc 5 km from LIDAR, we locate its time evolution in terms of the change in
azimuthal angles where the ridge appears. We plot the evolution of the azimuthal
angle in black in both Hovmoller diagrams. It is seen that this curve corresponds to
a sharp transition of LOS velocity at 5 km range from the LIDAR. Above the curve,
the flow is to the right of the ridge, and move faster towards the LIDAR. Below the
curve, the flow is to the left of the ridge and move slower. As such, the converging
flow gives rise to the persistent ridge in our analyses.

22.4.3 Retrieval of 3-Dimensional Winds from LIDAR
Using 4DVAR

The use of 4DVAR analysis in retrieving the three wind components and thermody-
namic fields from LIDAR radial velocity data has been investigated by researchers in
recent years. Fundamentals of the 4DVAR include a forward large-eddy-simulation
(LES) and a backward adjoint integration. The adjoint formulation is particularly
complicated due to the required estimation of the gradients of the cost function
with respect to all control variables. Two major approaches in constructing 4DVAR
have been developed by Chai et al. (2004) and Newsom and Banta (2004). The
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main difference between the two approaches lies in the number of control variables
employed. In Newsom and Banta (2004), the subgrid-scale fluxes of momentum
and heat are modeled through theoretical assumptions for turbulent eddy viscosity
and thermal diffusivity estimations, rather than treating directly the viscosity and
diffusivity as control variables. The advantage of using theoretical subgrid-scale
model is that the reduced number of control variable may improve the efficiency of
4DVAR calculation. However, the use of theoretical sub-grid scale model may not
be sufficient for resolving the turbulent eddy structures. This is due to the drawback
of the inability of using the subgrid-scale model to represent the turbulent field
correctly with a single universal constant, especially in strong shear, rotating flow,
near topography or transitional regimes (Germano et al. 1991). In order to create
a computationally efficient analysis for our purposes, we have followed similar
approach as developed by Newsom and Banta (2004). For ensuring the correctness
of the retrieved eddy structures, the subgrid-scale model coefficients need to be
properly preset before performing LES.

The fundamental idea of the 4DVAR is to fit the prognostic/forward model to the
observations. This would rely on the estimation of the cost function to tell whether
the “fitting” is good enough. In our case, the cost function is given as follows.

J D Jr C Jd C Js (22.14)

The first term in (22.14), Jr, is the difference between forward model predicted radial
velocity and the LIDAR observations within the specified time window (
 3 min in
our cases). Jd is the divergence penalty term used for suppressing the divergence in
the initial field. Js is the smoothing penalty term and it helps to smooth the output a
little for easily identifying any possible eddy structures in the retrieved wind field.

Jr and Jd have the forms as taken from Newsom and Banta (2004) whereas the
Js is given by

Js D 1

2

X
i;j;k

Œwu.r2u/Cwv.r2v/C ww.r2w/� (22.15)

The weighting factors wu and wv are normally set to 0.001 and ww is set to 0.5.
These are guess values for the time being. Further tests are required for determining
these weightings empirically. The governing equations and adjoint derivations are
summarized in the following subsections (the formulation is similar to Newsom and
Banta (2004)).

22.4.3.1 Governing Equations

The governing equations are the Boussineq equations for a shallow atmospheric
boundary layer:

@ui
@t

C @.uiuj /

@xj
D � @p

@xi
C ıi3g

.	 � h	i/
‚ref

� "ijkfj uk � @�ij

@xj
; (22.16)
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@	1

@t
C @.	1uj /

@xj
C w

@	0

@z
D � @�	

@xj
; (22.17)

@uj
@xj

D 0; (22.18)

Here xi ’s are the Cartesian components of the position vector x D Œx; y; z�, ui ’s the
Cartesian components of the velocity vector u D Œu; v;w�; ıij the Kronecker delta,
"ijk the permutation tensor, fj the Coriolis parameter, g the acceleration due to
gravity and angled brackets represent averaging on horizontal planes. The pressure
p is the non-hydrostatic component of the pressure normalized by the reference
density �ref . Virtual potential temperature 	 is decomposed as

	.x; y; z; t/ D 	0.z/C 	1.x; y; z; t/; (22.19)

where subscript 0 refers to the initial base state profile and subscript 1 the dynamic
perturbations about the base state. ‚ref is a reference virtual potential temperature
and is set to be equal to the virtual temperature at the reference level, namely,
the ground. �ij and �	 are the turbulent fluxes of momentum and temperature
respectively.

The anisotropic component of the turbulent momentum flux is modeled as

�ij � 1

3
ıij �kk D �2KmDij ; (22.20)

whereDij is the strain rate tensor,

Dij D 1

2

�
@ui
@xj

C @uj
@xi

	
� 1

3
ıij
@uk
@xk

: (22.21)

The eddy viscosityKm can be calculated using a number of different models. There
are models based on Troen and Mahrt (1986) and Smagorinsky (1963). The former
model is used in this paper. The isotropic component of the turbulent momentum
flux 1

3
ıij �kk is absorbed into the pressure term.

Similarly, the turbulent flux of virtual potential temperature is modeled as

�	 D �Kh

@	

@xj
: (22.22)

Here the eddy diffusivityKh is given by

Kh D Km

Prt
(22.23)

where the turbulent Prantle number Prt is typically set to 0.4.
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The requirement that the velocity field remains divergence free, as implied by
(22.17), is enforced either using a pressure correction method or a Poisson pressure
equation. In the pressure correction method, the momentum equations are integrated
first giving an estimate of the new velocity field u�

i . This velocity field will in general
not be divergence free. The divergence becomes the source term in the pressure
correction equation, which is written

@2p0

@x2i
D @

@xi

�
u�
i

�t

	
: (22.24)

This is an elliptic equation, which is solved using the BiCGstab matrix equation
solver (Nocedal 1980; Liu and Nocedal 1989). The resulting pressure correction
fields are then used to correct the pressure and velocity fields.

The pressure Poisson equation is written as

@2p

@x2i
D @

@xi

�
ui
�t

� @.uiuj /

@xj
C ıi3g

.	 � h	i/
‚ref

� "ijkfj uk � @�ij

@xj

	
(22.25)

This equation is solved before the momentum equations, to give a pressure field,
which, when used to calculate the pressure gradient in the momentum equations
ensures that the velocity field at the end of the next time step remains divergence
free. The pressure Poisson equation is used in the 4DVAR wind retrieval for the
following selected cases in this paper.

22.4.3.2 Adjoint Model Equations

The 4DVAR procedure uses an adjoint method to minimize the cost function J . The
adjoint equations are derived by requiring that the first variation of the Lagrangian
L with respect to all variables vanishes for t > 0. For conciseness, we present
the adjoint equations for the first-order Adam-Bashforth time integration scheme
(Shampine and Gordon 1975) as an example. For the first-order in time scheme, the
Lagrangian is defined as

L D J C
N�1X
nD0

X
r

ŒQunC1
i .unC1

i � uni ��tF n
i /C Q	nC1.	nC1 � 	n ��tGn/

C�t QpnC1P n� (22.26)

Here Qu; Q	 and Qp are the adjoint variables corresponding to u; 	 and p respectively,
and�t is the time step. The functions F n, Gn and Pn are essentially the right hand
sides of the forward model equations with all variables evaluated at the nth time
step. For details of the adjoint formulations, reference may be made to the appendix
in Newsom and Banta (2004). The current 4DVAR uses the adjoint equations for the



550 W.K. Wong and P.W. Chan

second-order Adam-Bashforth scheme that are derived analogously as for the first
order scheme.

As an example of the application of the 4DVAR method, the analysis of a
gustnado event is presented here. On 6 September 2004, a trough of low pressure
associated with Typhoon Songda affected the coast of southern China. Troughing
flow could be analyzed on the surface up to 850 hPa level (not shown). In the
upper troposphere (e.g. 200 hPa level), divergence could be analyzed in the region
in association with a broad anticyclone (not shown). The atmosphere was humid
and unstable as revealed in the radiosonde data on that day. The K index was
35 at 0000 UTC (0800 HKT) and rose to 41 at 1200 UTC (2000 HKT). Under
the unstable atmosphere, intense convective development was triggered over inland
areas of southern China due to solar heating during the day and the thunderstorms
so produced moved south towards the coast in the evening.

Starting from about 08 UTC (16 HKT) on that day, the radarscope of Hong Kong
showed that there were isolated thunderstorms along the south China coast. Among
them, one storm appeared to the west of HKIA at about 0930 UTC (1730 HKT) and
brought westerly winds to the western part of the airport. The westerly was basically
rain-free and appeared to be the gust front associated with the thunderstorm. It
spread eastwards and converged with the background east to southeasterly winds
over the eastern part of HKIA. The tornado developed over the convergence zone of
the two airstreams.

The LIDAR’s PPI scan image at the climax of the tornado (about 09:54 UTC,
6 September 2004) is shown in Fig. 22.15. The tornado under study is encircled
in red. It could be found in the southern side of HKIA at which the cargo apron is
located. 4DVAR analysis is carried out with a horizontal resolution comparable with
the radial resolution of the LIDAR, viz. 100 m.

Figures 22.16 and 22.17 show the 4DVAR-analyzed horizontal wind vectors (as
arrows) and perturbation horizontal velocities (u -<u> and v -<v>, in colour
contours) at a height of 200 m above sea level. The anticyclonic flow associated
with the tornado is captured successfully by the 4DVAR-retrieved wind field. The
perturbation horizontal velocities also show a couple of features:

(a) From the plot of u -<u>, the perturbed easterly wind at the southern part of
the tornado is generally stronger than the perturbed westerly wind at the
northern part of the system. The former reaches about 8 m/s. Similarly, from
the plot of v -< v>, the perturbed northerly wind at the eastern part of the
tornado is generally stronger than the perturbed southerly wind at the western
part of the system. The former reaches about 10 m/s;

(b) A series of small-scale cyclones and anticyclones (each with a size of several
hundred metres) is analyzed at the convergence zone between the westerly flow
associated with the gust front and the background east to southeasterly flow at
the eastern part of HKIA; and

(c) Even with the mean wind subtracted, the perturbed v-component still shows the
southerly jet emerging from a gap of Lantau Island at the lower right corner of
the analysis domain (Fig. 22.17).
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Fig. 22.15 The LIDAR’s PPI scan image at the climax of the tornado at about 09:54 UTC, 6
September 2004

Apart from the horizontal winds, the 4DVAR analysis gives the vertical velocity
and the pressure, which are not measured directly by the LIDAR. The perturbation
vertical velocity is shown in Fig. 22.18. In general, downward motion up to
about –3 m/s is analyzed for the westerly wind over the airport island. At the
same time, at the eastern and southern edges of the westerly flow, there are
areas of upward motion with a vertical velocity of C3 m/s. As such, there is
vertical circulation along the periphery of the gust front. The circulation may be
tilted to give rise to a tornado. This is one possibility for the occurrence of the
gustnado.

Moreover, as revealed from 4DVAR analysis (Fig. 22.18), the tornado itself has
rather complicated pattern of vertical velocity. There is upward motion at its core. At
the eastern and western sides of the core, the motion is generally downward. An area
of significant upward motion (with vertical velocity of C3 m/s) is also identified to
the northeast of the core. The origin of this upward motion is not certain, and it may
be a perturbation in the vertical circulation associated with the southern periphery
of the gust front.
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Fig. 22.16 4DVAR-analyzed horizontal wind vectors (as arrows) and perturbation horizontal
velocities (u -< u>, in colour contours) at a height of 200 m above sea level. Locations of small-
scale cyclones and anticyclones are enclosed in pink ellipses
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Fig. 22.17 4DVAR-analyzed horizontal wind vectors (as arrows) and perturbation horizontal
velocities (v -<v>, in colour contours) at a height of 200 m above sea level
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Fig. 22.18 4DVAR-analyzed perturbation vertical velocity with the horizontal wind vectors
overlaid

22.5 Concluding Remarks

In this chapter, variational data assimilation algorithms to retrieve the 3-dimensional
wind field from weather radars and LIDAR have been discussed. The retrieval winds
from weather radars show benefits in the analysis of dynamical condition conducive
to intense development of convective storms. The retrieved wind data are also found
to provide positive impacts in resolving the wind flow over low to mid-tropospheric
levels in the non-hydrostatic NWP model (RAPIDS-NHM). Improvements are made
in model simulation of the mesoscale features and dynamics of a severe convective
storm. Furthermore, the novel variational minimization algorithms (3DVAR and
4DVAR) applied to the LIDAR data are found to be very useful to retrieve the
3-dimensional wind flow over the complex terrain near HKIA, for example in study
of low-level windshear effects and even for a gustnado event.
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Chapter 23
Ensemble Adaptive Data Assimilation
Techniques Applied to Land-Falling
North American Cyclones

Brian C. Ancell and Lynn A. McMurdie

23.1 Introduction

Adaptive data assimilation is becoming an increasingly important aspect of numer-
ical weather prediction. Traditional data assimilation involves combining a set
of routine observations with a first-guess field provided by a numerical weather
prediction model to produce an analysis of the atmospheric state. These analyses
subsequently serve as the initial conditions for extended forecasts. There are three
primary modern data assimilation methods that assimilate routine observations at
operational centers around the world and within a number of research applications:
(1) three-dimensional variational (3DVAR) systems, (2) four-dimensional varia-
tional (4DVAR) systems, and (3) ensemble Kalman filter (EnKF) systems. Each of
these techniques are based on the assumption that the errors of both the first-guess,
or background, variables and the observations are distributed normally, and aim to
identify the most likely atmospheric state within the statistical framework of Bayes’
Theorem (overview provided in Kalnay 2002).

Adaptive data assimilation allows the consideration of observational impact in
some way beyond the aggregate effects of a set of routine observations. There
are two primary types of adaptive data assimilation: (1) observation impact, and
(2) observation targeting. Observation impact methods estimate the relative impact
of each assimilated observation, or any subset of assimilated observations, on
a chosen forecast metric. In turn, these techniques are able to identify which
observations are important, and which are redundant, with regard to a number
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of different forecast aspects. The benefit of observation impact schemes is that
they perform the assimilation of numerous observations only once to estimate
the impact of each observation, removing the need to perform a large number
of experiments (assimilating different observations each time) to achieve the
same goal. Observation targeting methods estimate the impact from hypothetical
observations that could be taken beyond an initial set of assimilated observations,
revealing the locations where additional observations should be taken to produce
the most benefit to a chosen forecast metric. In this way, targeting methods can be
used to indicate the optimal placement of additional observational platforms. One
attractive aspect of both observation impact and targeting approaches is that they
easily allow the consideration of a specific forecast metric that diagnoses different
sensible and high-impact weather events, such as localized wind speed or regional
precipitation amount. Thus, these methods will likely have important applications in
the future to answer a key question: what is the best way to observe the atmosphere
to improve forecasts of specific severe weather phenomena?

This chapter reviews some of the leading observation impact and targeting
methods today, gives a discussion of their evolution from older techniques, and
applies one such targeting approach within an ensemble framework to a particular
high-impact weather event: land-falling mid-latitude cyclones on the west coast of
North America. Through this application, a variety of basic observation targeting
characteristics of a specific data assimilation/forecasting system can be learned with
regard to a specific, high-impact weather event, and include (1) the most important
observation type to target, (2) whether targeting regions occur in the same location
for different events or if they span a wide range of horizontal and vertical locations,
and (3) if the relative impacts of targeted observations depend on the specific nature
of the event (e.g. deepening or decaying cyclones) for which one is trying to improve
the forecast. The application portion of this chapter addresses each of these three
characteristics for Pacific land-falling North American cyclones.

23.2 The Evolution of Adaptive Data Assimilation
Techniques

Early objective adaptive data assimilation techniques focused mostly on observa-
tion targeting, and addressed primarily the dynamical growth of forecast errors.
Adjoint sensitivity (overview provided by Errico 1997) or singular vector methods
(summarized in Kalnay 2002) were both employed to understand where analysis
errors would grow rapidly, regardless of the data assimilation procedure used in
creating the analyses. Atmospheric adjoint sensitivity was first derived in LeDimet
and Talagrand (1986), and can be represented with the following equation:

@R=@xo D MT
t;to � @R=@xt (23.1)
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where MT
t;to is the transpose of the tangent-linear operator matrix obtained by

linearizing the forcing terms of the full nonlinear forecast model equations, and
@R=@xt is the differentiated response function R with respect to the atmospheric
state at forecast time. The response function R can be any differentiable function
of the forecast state variables, and is typically chosen to diagnose a specific aspect
of the atmospheric state, such as low-level wind speed or localized precipitation
amount. The term @R=@xo exists at every model grid point and represents the
adjoint sensitivity of R with respect to the initial-time atmospheric state. For large
sensitivity values, small perturbations to the initial-time atmospheric state will result
in large perturbations to the forecast response function R. On the other hand, very
large initial-time perturbations hardly influence R where sensitivity values are very
small. In turn, adjoint sensitivity reveals regions where analysis errors would grow
rapidly to cause large errors in the forecast response function R, revealing areas
where it would be undesirable to have initial condition error.

Singular vectors (SVs) are similar to adjoint sensitivity in that they also
utilize the tangent linear propagator matrix Mt; to. Gelaro et al. (1999) provide
an overview of how SVs can be obtained by calculating the eigenvectors of the
eigenvalue/eigenvector problem:

�
MT

t;to � Mt;to
� � ui D 
2i � ui (23.2)

where ui are the orthogonal initial-time SVs of Mt ;to (or eigenvectors of MT
t; to�Mt; to/

with growth rates 
i. The SVs with largest growth rates are the fastest growing

perturbations with respect to the Euclidean norm
�
uT

i � ui
�1=2

. Gelaro et al. (1999)
show how the fastest growing perturbations with respect to more sophisticated
norms, such as the dry total energy norm can be found, which adds additional
weighting terms to equation (23.2) and presents a new eigenvalue/eigenvector
problem that must be solved. In any case, the leading SVs reveal where errors
would grow most rapidly with regard to a specified norm, and like adjoint sensitivity
reveal areas where analysis error is undesirable with regard to the predictability
of a specified aspect of the forecast state. For both adjoint sensitivity and SV
applications, perturbation growth is measured about a previously run forecast. Both
methods possess errors associated with the assumption of linear perturbation growth
and the lack of a tangent-linear propagator containing the linearization of certain
complex physics that exist in the full nonlinear model.

Perhaps motivated by studies that supported the notion of key analysis errors
in regions of large adjoint sensitivity and leading SVs being most detrimental
to forecasts (Rabier et al. 1996; Klinker et al. 1998), early observation targeting
techniques were based on these locations. The basic idea was that by reducing
errors where they would grow rapidly is the most effective way to improve forecasts.
Buizza and Montani (1999), Gelaro et al. (1999), Langland et al. (1999), and Liu
and Zou (2001) all found that by ingesting targeted observations in areas of leading
SVs or large adjoint sensitivity, significant forecast error reductions (from 10 % to
50 %) were produced. These studies revealed the usefulness and value of SV and
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sensitivity-based targeting for improving forecasts, and similar methods are still
in use today with regard to high-impact weather events such as tropical cyclones
(Reynolds et al. 2009).

Early efforts were also made to account for analysis uncertainty in addition to
dynamical error growth through SV or adjoint sensitivity techniques. Taking into
account analysis uncertainty is important because if observations are taken and
assimilated in regions based on leading SVs, for example, they would have little
impact if the background uncertainty was very small because the data assimilation
system would essentially ignore the targeted observations. In turn, other locations
with less-amplifying SVs may produce larger forecast impacts if large uncertainty
and larger analysis increments were produced there, even if the dynamical error
growth rates of those perturbations were smaller. Barkmeijer et al. (1998) addressed
this issue with Hessian SVs, which are calculated with a norm based on analysis
uncertainty provided by a 3DVAR system at initial time. Bishop and Toth (1999)
developed the ensemble transform method, which accounts for uncertainty within
the framework of an ensemble.

A major step forward in observation targeting techniques came with the real-
ization that the characteristics of the data assimilation system used to assimilate
the targeted observations should be considered. Data assimilation systems not
only provide background uncertainty estimates at initial time, but also include
observation error estimates, and contain the exact procedure that would be used
to assimilate targeted observations. In turn, by considering both the assimilation
characteristics and a way to estimate error growth (such as through SVs or adjoint
sensitivity), more appropriate observation targeting techniques can be formulated
that estimate more accurately how hypothetical observations would impact forecasts
in a specific assimilation system. Both Berliner et al. (1999) and Langland (2005)
elaborate on the necessity to include error evolution dynamics, analysis uncertainty,
observation errors, and the specific assimilation system in formulating observation
targeting schemes. This holistic approach to targeted observing laid the groundwork
for modern adaptive data assimilation techniques using variational and ensemble
methods.

Modern adaptive data assimilation was marked by the extension of initial
condition sensitivity into observation sensitivity, and was first described in Baker
and Daley (2000) in the context of a 3DVAR system. Observation sensitivity
describes not how perturbations to initial conditions would change the forecast
(as adjoint sensitivity does), but how an assimilated observation would change the
forecast, and can be written as:

@R=@yo D @R=@xo � @xo=@yo (23.3)

where @R=@yo is the observation sensitivity, which is a function of the adjoint
sensitivity and the change to the analysis given observations (@xo=@yo/. For data
assimilation systems that assume Gaussian statistics to achieve a most-likely state,
the term @xo=@yo simply becomes the Kalman gain matrix. Equation (23.3) is a form
of observation targeting as described in Baker and Daley (2000) as it allows one to
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estimate the impact on a response function R due to innovations (�yo/ with the
calculation:

�R D @R=@yo ��yo (23.4)

The only drawback of this method is that innovations associated with hypothetical
observations are not known prior to obtaining the observations, although the
technique is still very useful for understanding relative forecast impacts from a fixed
innovation anywhere in the model domain.

Langland and Baker (2004) derived the observation impact methodology directly
from (23.3) and (23.4), noting that �R is composed of a sum of terms, each term
containing a coefficient representing a different innovation (and thus a different
observation). In this way, the contribution from each observation or any subset
of observations to �R can be easily calculated, and the impact of different,
assimilated observations or subsets of observations can easily be produced. Con-
ceptually, this is equivalent to the analysis increment produced from a specific set
of assimilated observations projected onto the adjoint sensitivity field, yielding an
estimate of�R. This technique is the foundation for a number of observation impact
studies (Langland and Baker 2004; Tremolet 2008; Gelaro and Zhu 2009; Gelaro
et al. 2010), although these studies expand the observation impact method to account
for nonlinear terms in the definition of the response function. Errico (2007) and
Gelaro et al. (2007) discuss the accuracy of the expanded higher-order methodology,
and also offer a more in depth interpretation of equation (23.4) noting that cross-
correlations appear in each observational term that sum to produce �R. The
important issue these studies address through the observation impact technique is to
understand which types of observations, such as those at different heights or those
associated with different observational platforms, contribute to reducing forecast
error and which do not. These results are crucial toward designing the most effective
routine observational networks for operational assimilation/forecasting systems.

Significant observation impact and targeting developments were also made
using ensemble data assimilation systems. Bishop et al. (2001) developed an
ensemble transform Kalman filter (ETKF) observation targeting method based on
the ensemble transform technique of Bishop and Toth (1999). The ETKF method is
able to estimate the reduction in forecast variance due to hypothetical observations.
A similar method was provided by Ancell and Hakim (2007a) within an EnKF
assimilation system that also estimates the reduction in forecast variance of a chosen
response function R due to hypothetical observations. This method is based on
ensemble sensitivity which can be calculated in the following way (Ancell and
Hakim 2007a):

@R=@yo D Cov.R; yo/ � D�1 (23.5)

where @R=@yo is a row vector representing the ensemble sensitivity of R with
respect to each analysis variable, Cov.R; yo/ is a row vector representing the
covariance between the response function R and each analysis variable, and D
is a diagonal matrix containing the variance of each analysis variable. Ancell
and Hakim (2007a) explain that ensemble sensitivity allows one to estimate the
perturbation to the response function R resulting from the temporal evolution of
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an initial-time perturbation spread spatially and into other variables through the
background error covariance relationships of the ensemble (similar to (23.4)). Since
observational information is spread in a similar manner within the EnKF analysis
procedure, and since the temporal evolution of perturbations can be represented
with adjoint sensitivity, Ancell and Hakim (2007a) exploit the relationship between
ensemble and adjoint sensitivity to derive an expression for the reduction in the
variance of R due to a single observation within an EnKF:

�VarianceR D .Di � @R=@yi/
2=.Di � Oi/ (23.6)

where Di represents the variance of a single anlaysis variable, @R=@yi is the
ensemble sensitivity with respect to the same analysis variable, and Oi represents the
observation error variance associated with a targeted observation. This calculation
can be quickly made with respect to each observable analysis variable to reveal
the estimated variance reduction from a single additional, hypothetical observation
anywhere on the model domain. An advantage of these ensemble-based methods is
that they rely not on actual observation values, but on observation error variance
which exists prior to hypothetical observations being taken. They also allow
the estimation of forecast variance reduction of additional targeted observations
conditioned on the simultaneous assimilation of the initial targeted data. Ancell
and Hakim (2007a) also derive an ensemble version of the observation impact
developed in Langland and Baker (2004) without the use of an adjoint model.
Liu and Kalnay (2008) discuss yet another ensemble-based observation impact
technique that requires no adjoint model.

In summary, adaptive data assimilation techniques have evolved from those that
consider only dynamical error growth to those that consider all aspects of the
data assimilation system used to assimilate routine and targeted observations. In
turn, modern adaptive data assimilation methods provide estimates of the impacts
from assimilated or additional hypothetical observations with regard to a specific
assimilation system such as 3DVAR or an EnKF. It should be noted that nearly all
observation impact/targeting techniques are based on the assumption that error evo-
lution is linear over the duration of the forecast, an assumption that doesn’t always
hold. Furthermore, both modern data assimilation systems and forecasting models
are not perfect, and present another source of error for observation impact and
targeting schemes. Langland (2005) provides an excellent review of the potential
impacts these issues cause, and discusses the performance of different adaptive data
assimilation methods during a variety of recent field programs. As computational
resources are constantly improving, investigating adaptive assimilation techniques
at very high resolution (grid spacing of a few kilometers) is now becoming possible.
In turn, a major research focus in the coming years will likely be on the application
of adaptive data assimilation systems at different scales.
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23.3 Application of EnKF Observation Targeting
to Land-Falling Mid-Latitude Cyclones

We now apply the EnKF observation targeting methodology of Ancell and
Hakim (2007a) to understand the nature of the impacts of hypothetical observations
beyond those of routine data for land-falling mid-latitude cyclones on the west coast
of North America. Land-falling cyclones routinely produce heavy precipitation
and high winds in coastal regions, and their predictability characteristics are thus
important to understand. Mass and Dotson (2010) describe some of the most intense
cyclones to strike the west coast of North America, and discuss the major societal
impacts they produced. McMurdie and Mass (2004) and Wedam et al. (2009)
describe how short-term forecast errors by deterministic operational numerical
models can be large for storms impacting the west coast. The purpose of this
study is to demonstrate how adaptive assimilation techniques can be applied
retrospectively to cases of land-falling cyclones as a research tool to investigate the
role of additional observations within a specific assimilation system and observing
network.

23.3.1 Details of the EnKF and the Forecast Model

The EnKF used in this study is an ensemble square-root filter that assimilates
observations serially (Whitaker and Hamill 2002) and was created at the University
of Washington (Torn and Hakim 2008). The 80-member EnKF runs on a 6-h update
cycle on the modeling domain shown in Fig. 23.1 at 36-km grid spacing with 37
vertical levels. The routine observations that are assimilated are cloud-track wind
(typically from 1,000 to 4,000 total), acars aircraft wind and temperature (typically
from 1,000 to 4,000 total), radiosonde wind, temperature, and relative humidity
(typically around 1,500 total), and surface wind, temperature, and altimeter data
(typically from 7,000 to 10,000 total). The EnKF uses both Gaspari-Cohn horizontal
localization (Gaspari and Cohn 1999) and posterior inflation to address sampling
error and to avoid filter divergence (Anderson and Anderson 1999). The inflation
and localization parameters used in this study are the same as those in Torn and
Hakim (2008) which were tuned over a similar domain to produce appropriate
spread and minimum ensemble mean errors. Boundary conditions were perturbed
around the Global Forecasting System (GFS) analyses and forecasts using the fixed
covariance perturbation method of Torn et al. (2006).

The EnKF was cycled for 6 months from 0000 UTC October 1, 2009 to 1800
UTC March 31, 2010, and extended ensemble forecasts were run to 24-h forecast
time to capture a number of wintertime land-falling cyclones. The forecast model
used here is the Advanced Research Weather Research and Forecasting (WRF-
ARW) model Version 3.0.1.1 (Skamarock et al. 2008). The WRF physics used are
the Mellor-Yamada-Janjic (MYJ) planetary boundary layer scheme (Janjic 1990,
1996, 2002), the Kain-Fritsch cumulus parameterization (Kain and Fritsch 1990,
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Fig. 23.1 The EnKF domain used in this study. The coastal zone used to identify land-falling
mid-latitude cyclones is outlined by the thick black lines and the North American coastline

1993), the Noah land surface model (Chen and Dudhia 2001), WRF Single-
Moment 3-class microphysics (Hong et al. 2004), the Rapid Radiative Transfer
Model (RRTM) longwave radiation scheme (Mlawer et al. 1997), and the Dudhia
shortwave radiation scheme (Dudhia 1989).

23.3.2 Description of the Response Function
and Case Selection

The response function used in these experiments to diagnose land-falling cyclones
is the average sea-level pressure in a 216 km by 216 km box surrounding the 24-h
forecast ensemble mean cyclone center. Only cyclones that could be identified as
a local minimum and tracked back for the 24-h forecast period were included.
Observation targeting calculations based on the methodology of Ancell and
Hakim (2007a) are performed for every 24-h forecast cyclone that was found in
the coastal zone (outlined in Fig. 23.1) over the 6-month duration of this study.
A total of 27 storms were found to impact the coastal zone over this time, which
is a typical frequency for wintertime land-falling cyclones. However, each storm
lasted for several days and its position at the 24-h forecast time would be within the
coastal zone over several consecutive forecast runs. Therefore, targeting calculations
were made several times for each storm, resulting in a total of roughly 200 cases.
Table 23.1 characterizes each forecast run of these storms with regard to their
deepening rate and direction of coastal approach, two aspects that are analyzed
later in this section. It should be noted that it was not possible to characterize each
of the 27 individual storms as deepening or decaying as a particular event may
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Table 23.1 The total number
of cyclones as well as those
counted as deepening or
decaying, or coming from the
north, northwest, west,
southwest, or south in this
study

Cyclone characteristic Number

Deepening 37
Decaying 87
From the north 4
From the northwest 19
From the west 37
From the southwest 48
From the south 16
All cyclones 198

have forecast runs early in its lifetime when it deepens and forecast runs later in
its lifetime when it decays. In the subsequent discussion, we will use ‘storms’ to
refer to unique cyclones (i.e. the 27 storms) and ‘cyclones’ to refer to the individual
forecast runs (i.e. one of the 200 samples).

The observation targeting calculations indicate the estimated variance reduction
to the response function due to the assimilation of hypothetical temperature, wind,
and pressure observations at analysis time beyond the assimilated routine data. In
turn, the largest variance reduction values reveal the locations where an initial-time
observation would reduce the uncertainty of the 24-h response function the most.

23.3.3 Characteristics of Observation Targeting
for a Single Cyclone

Figure 23.2 shows the 00-h, 12-h, 18-h, and 24-h ensemble mean forecast initialized
at 0600 UTC November 9, 2009 that depicts one particular cyclone that made
landfall on the west coast of North America. This cyclone decays from 986-hPa
central pressure in the analysis to 993-hPa central pressure when it makes landfall
on the Canadian coast at 24-h forecast time. The targeting regions for winds,
temperature, and pressure valid at analysis time are shown in Fig. 23.3, and are
plotted at the level where the maximum value of estimated variance reduction was
found. The targeting regions based on temperature and winds are localized and
mesoscale in nature, which is generally the case for most land-falling cyclones
during the 2009/2010 winter season (not shown). The targeting regions based on
pressure are more typically characterized by synoptic-scale features, which is the
case in Fig. 23.3. The largest targeting regions based on winds and pressure for this
specific cyclone are found in the lower troposphere (from roughly 880 to 750 hPa
for winds, 930 hPa for pressure), and near the tropopause (roughly 380 hPa) for
temperature. Targeting regions based on all four observation types reveal areas in
the immediate vicinity of the incipient system at analysis time, with wind and
temperature targets aloft flanking the central position of the 500-hPa geopotential
height minimum, and the primary pressure targets positioned just over the cyclone
center at the surface. Dynamically, the primary zonal and meridional wind targets
exist north and south (for zonal wind) and east and west (for meridional wind) of the
cyclone center aloft, suggesting the effects of observations there would beneficially
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Fig. 23.2 Ensemble mean forecast initialized at 0600 UTC November 9, 2009 of a decaying mid-
latitude cyclone making landfall on the North American coastline valid at (a) 00-h, (b) 12-h, (c)
18-h, and (d) 24-h. Black contours represent sea-level pressure (contour interval is 2 hPa), blue
contours represent 925-hPa temperature (contour interval is 2ıC), and wind barbs represent 10-m
winds

alter the cyclonic wind field flowing around the cyclone. Magnitudes of the variance
reduction field are largest for pressure (reaching just over 1:4 hPa2/, are slightly less
for the wind field (reaching about 1:2 hPa2/, and are smallest for the temperature
field (reaching about 0:9 hPa2/.

One interesting and unique feature of the targeting regions based on pressure in
Fig. 23.3 is that they are less localized and show some impact away from the center
of the system. Although values in these more distant regions are not as large as
those in the immediate vicinity of the cyclone, they clearly highlight features in the
flow at analysis time. Both the frontal trough near 40ıN, �130ıW and the large
oceanic region of high pressure in the western portion of the domain are shown to
be relatively important. In tune with the discussion of Ancell and Hakim (2007a),
these features are highlighted as targets because they reveal areas where analysis
increments would project substantially onto regions of large dynamical sensitivity
(a quantity estimated through adjoint sensitivity analysis). This in turn reveals a
defining characteristic of observation sensitivity over that of adjoint sensitivity—
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Fig. 23.3 Variance reduction (shaded, hPa2/ of the response function estimated from a single
observation at the level of the maximum variance reduction for (a) temperature (� 380 hPa), (b)
pressure (� 930 hPa), (c) zonal wind (� 750 hPa), and (d) meridional wind (� 880 hPa) valid at
0600 UTC November 9, 2009. Ensemble mean sea-level pressure (panel b, black contours, contour
interval is 2 hPa) and 500-hPa geopotential height (panels a, c, and d, black contours, contour
interval is 30 m) are also shown

observation targets can exist in relatively distant areas from the regions of large
adjoint sensitivity, sometimes indicating larger impacts than the regions of large
adjoint sensitivity itself. An important consequence of this characteristic are that
targeting regions based on observation sensitivity can differ strongly from those
based on adjoint sensitivity, indicating the importance of observation sensitivity
for adaptive data assimilation techniques as discussed in Sect. 23.2. As pointed
out, Fig. 23.3 shows the Pacific high surface pressure to be an important targeting
region, even though it is likely far upstream from the area of large adjoint sensitivity
(typical adjoint sensitivity fields associated with cyclones are shown by Ancell and
Mass 2006; Ancell and Hakim 2007a, b in similar experimental configurations).
Although perturbing this area of high pressure itself would do little to the 24-h
forecast of the land-falling cyclone, information spread during assimilation of
observations of the area of high pressure into regions of large dynamic sensitivity
downstream would act to significantly influence the forecast of the cyclone.
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Fig. 23.4 Level of maximum variance reduction of the response function for all cyclones for
observations of (a) temperature, (b) pressure, (c) zonal wind, and (d) meridional wind

The fact that targeting regions are clearly co-located with features in the flow is
likely a unique feature of ensemble targeting techniques. Following the discussion
above, the impacts from hypothetical observations within an EnKF highlight
specific flow features through their relationship to dynamically sensitive areas. In
turn, these relationships depend on how the specific features in each ensemble
member covary with the dynamically sensitive regions, and are thus strongly
linked to the flow dependence present in the atmospheric state at any given time.
Consequently, covariances that do not possess such flow dependence are unlikely
to capture these relationships, and targeting regions based on 3DVAR systems will
probably differ to some degree from those based on ensemble methods. This further
stresses the importance of directly accounting for the specific assimilation system
when calculating the impacts of targeted observations.

23.3.4 Characteristics of Observation Targeting
for all 2009/2010 Cyclones

Figure 23.4 represents the level where the maximum variance reduction exists for
each cyclone for pressure, temperature, and wind observations. For both temperature
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Fig. 23.5 Value of maximum variance reduction (hPa2/ of the response function for all cyclones
for observations of (a) temperature, (b) pressure, (c) zonal wind, and (d) meridional wind

and wind, the level of maximum values exists throughout the troposphere, whereas
for pressure the maximum levels are confined to the lower half of the troposphere
below 500 hPa. Furthermore, the level of maximum variance reduction is near the
surface for pressure observations for a large number of cyclones. This suggests a
substantial benefit might be gained by assimilating scatterometer sea-level pressure
retrievals, such as those that used to be provided by the QuickSCAT satellite, with
regard to forecasts of North American land-falling mid-latitude cyclones.

Figure 23.5 depicts the maximum values of variance reduction for each cyclone,
regardless of vertical level, for each observation type. As shown in Fig. 23.3, the
largest values are associated with pressure observations. For all observations,
significant variability exists with these maximum values as they range from near
zero to about 15 hPa2 for winds, to about 9 hPa2 for temperature, and to roughly
18 hPa2 for pressure. Interestingly, the maximum values for all observation types
follow the same general trend. When a cyclone exhibits large maximum variance
reduction for one type of observation (e.g. pressure), it also exhibits large maximum
variance reduction for the other types of observations (wind and temperature). This
property reveals that the largest impacts of targeted observations for the cyclones in
this study are independent of observation type.
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Fig. 23.6 Value of maximum variance reduction of the response function normalized by the
response function variance for all cyclones for observations of (a) temperature, (b) pressure,
(c) zonal wind, and (d) meridional wind

It is also useful to describe targeting impacts in terms of the estimated variance
reduction relative to the response function variance. This can be done by dividing
the maximum variance reduction values by the original response function variance
resulting in what is referred to here as normalized variance reduction. In this
way, it is possible to reveal cases where observations might reduce a substantial
fraction of the original response function variance even if the actual variance
reduction values themselves (as shown in Fig. 23.5) are quite small. Figure 23.6
shows the normalized maximum values of estimated variance reduction, and reveals
the percentage of response function variance that could be reduced through the
assimilation of observations. In general, pressure observations show an estimated
34 % variance reduction averaged over all cyclones, which is larger than both wind
(23 %) and temperature (12 %). As with the absolute values in Fig. 23.5, the trend
among all variables remains the same. Figure 23.7 depicts both the normalized and
absolute maximum values of variance reduction with regard to temperature for all
cyclones. The trend for both the normalized and absolute values is generally similar
for all cyclones, although there are localized differences in the plots. For example,
the peaks in the normalized and non-normalized values between cyclone number 30
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Maximum Variance Reduction for Temperature Observations
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Fig. 23.7 Both normalized (nondimensional) and non-normalized (hPa2/ values of maximum
variance reduction of the response function for all cyclones for observations of temperature.
Normalized values are multiplied by 10 for ease of comparison with non-normalized values

and 40 are offset. This indicates that whereas a larger absolute variance reduction is
estimated from temperature observations at the peak of the non-normalized values,
the response function variance must be somewhat larger for that cyclone such that
the estimated fraction of response function variance is smaller. This indicates that
for specific cases, the impacts of EnKF targeted observations can be viewed with
differing degrees of importance depending on whether these impacts are determined
by the total or the fraction of estimated response function variance reduction.

Another interesting result that can be found by analyzing targeted observations
for many cases is how the location of the most significant targeting locations
vary in time. For a specific high-impact weather event, if the targeting regions
remained constant over many cases, strong support would exist for taking routine
observations in those locations. If targeting regions were not constant, the degree
to which they vary would provide crucial information toward how to best design
an adaptive observing network. Figure 23.8 shows the mean estimated maximum
variance reduction calculated over all cyclones throughout the vertical. Interestingly,
pressure observations show roughly a constant impact throughout the troposphere.
This reveals that although the maximum estimated targeting values tend to occur
in the lower atmosphere for pressure observations (Fig. 23.4), values are nearly
constant within the entire troposphere. In turn, there are no preferred targeting
locations in the vertical with regard to pressure observations to improve land-falling
cyclone forecasts. Wind and temperature observation targeting regions, however,
show two distinct peaks in the vertical. Wind targeting regions show peaks near
400 hPa and the surface, whereas temperature targeting regions reveal the 250-hPa
and the 600-hPa levels to be most important. It seems reasonable that the important
temperature targeting locations near 250-hPa are due to large variance near the
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Fig. 23.8 Value of maximum variance reduction of the response function averaged over all vertical
model levels for all cyclones for all observation types

tropopause involved with the general temperature minimum at that level. It is not
obvious why the 600-hPa level is important, or why wind targeting locations are
important near the surface and at 400 hPa. Either large ensemble-based sensitivity
or analysis variance values would contribute to large estimated variance reduction
values, and it is thus likely one of these two quantities is consistently larger
at the levels where the peaks are evident in Fig. 23.8. In any case, these levels
indicated preferred locations where on average, supplemental temperature and wind
observations would be most beneficial.

Figure 23.9 shows the horizontal locations of the maximum estimated variance
reduction for temperature observations organized by cyclones that approach the
coastal zone from the northwest, west, southwest, and south. Cyclones along these
tracks have been binned over a 45ı swath centered on each direction listed. The
locations are shown relative to the 24-h forecast position of the ensemble mean
cyclone. It is clear that for all cyclone tracks there is significant variability in
the horizontal location of the maximum variance reduction values, varying up
to about 40ı both longitudinally and latitudinally. Interestingly, a number of the
maximum variance reduction locations occur at or downstream of the 24-h forecast
position of the cyclone, indicating the ability of the EnKF to spread observational
information upstream into regions where large dynamical sensitivity is likely to
exist. Nonetheless, it seems the highest priority targeting regions rarely exist in the
same location relative to the forecast position of the cyclone. Although there is some
clustering of maximum variance values to the southwest of cyclones that approach
from the southwest, there is still a large spread in the location of maximum variance
reduction such that the chance that a single location would provide consistently large
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Fig. 23.9 Horizontal location relative to the 24-h forecast cyclone position of the maximum
variance reduction of the response function for temperature observations for cyclones approaching
the coastal zone from the (a) northwest, (b) west, (c) southwest, and (d) south

positive forecast benefits is unlikely. This is especially true since these locations are
relative to the forecast position of the cyclone, and less clustering would be evident
when considering the actual positions of the maximum variance reduction values
within the modeling domain. Very similar results are found regarding the horizontal
location of targeting sites for pressure and wind observations (not shown).

Figure 23.10 depicts the average maximum variance reduction for all observation
types segregated by whether the cyclone was deepening or decaying over the 24-h
forecast period. The error bars represent the 95 % confidence interval. For each
observation type, deepening cyclones are associated with larger variance reduction
values on average, implying that observation targeting is more effective for deepen-
ing cyclones. This result is not reproduced when considering cyclone track, as the
average variance reduction values in Fig. 23.11 are essentially indistinguishable at
the 95 % confidence level among different cyclone tracks. These results demonstrate
how targeting impacts can relate to certain characteristics of the high impact event
in question (in this case the deepening rate of land-falling cyclones).
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Fig. 23.10 Average value of the maximum variance reduction of the response function for all
observation types for both deepening (light purple) and decaying (dark purple) cyclones

Fig. 23.11 Average value of the maximum variance reduction of the response function for all
observation types for cyclones approaching the North American coast from the northwest, west,
southwest, and south
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23.3.5 Summary and Concluding Remarks

Observation targets of pressure, winds, and temperature within an EnKF for
land-falling Pacific cyclones on the west coast of North America were examined
for a 6-month wintertime synoptic period in 2009/2010. These targets represented
estimates of where assimilated hypothetical observations beyond assimilated routine
observations would produce the largest reduction in the uncertainty of 24-h cyclone
forecasts around the time of landfall. It was found that temperature and wind
targets were mesoscale in nature, whereas pressure targets were more prominent
on the synoptic scale. Furthermore, pressure observations produced the largest
positive impacts on the uncertainty of cyclone forecasts of the four observation
types examined. The most important targeting regions in the vertical for winds and
temperature varied substantially throughout the troposphere when considering all
cyclones, but there was an indication of preferred regions in the mid- and upper-
troposphere for temperature and the upper-troposphere and near the surface for
winds. Although the largest benefits from pressure observations existed near the
surface, similar benefits existed throughout the troposphere with no clear preferred
level. In the horizontal, there was significant variability in the most important
targeting areas, showing no clear location where a routine observation would be
consistently beneficial to land-falling cyclone forecasts. Lastly, it was found that
targeted observations are more beneficial to forecasts of deepening cyclones than
to decaying systems as they approach the coast. This result was not found when
considering the directions along which the cyclones track as cyclones from all
directions showed similar benefits from targeted observations.

It is important to note that the best way to view the results presented here is
in a relative sense. Specifically, these experiments have provided an understanding
of how impacts vary within an EnKF among the different observation types of
pressure, winds, and temperature for land-falling mid-latitude cyclones. Whether
these results extend to other assimilation systems and different high-impact events
is unclear. Furthermore, the estimated variance reductions in this study are based
on ensemble sensitivity, and thus the particular variance reduction values would
need to be compared with experiments that actually assimilate targeted observations
to understand the relationship between estimated and actual forecast impacts.
The effects of nonlinearity, inflation, and localization may all play a role in any
discrepancy. Nonetheless, this study has provided a unique perspective on how
targeting techniques might be designed to best benefit forecasts of land-falling
Pacific cyclones. Lastly, as assimilation and forecasting systems at higher and higher
resolution become more feasible in the coming years, gaining an understanding
of the effects of targeted observations across multiple scales will be an intriguing
endeavor.
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Chapter 24
The Advances in Targeted Observations
for Tropical Cyclone Prediction Based
on Conditional Nonlinear Optimal Perturbation
(CNOP) Method

Feifan Zhou, Xiaohao Qin, Boyu Chen, and Mu Mu

Abstract In this chapter, we review the recent progresses in targeted observations
for tropical cyclone prediction based on Conditional Nonlinear Optimal Perturba-
tion (CNOP) method. The CNOP is a natural extension of the singular vector (SV)
into the nonlinear regime and it has been used to identify the sensitive areas for
tropical cyclone predictions.

The properties of the sensitive areas identified by CNOP have been first studied,
including the sensitivity to the horizontal resolution, the verification area design,
and the optimization period. It has been found that the CNOP sensitive areas
have similarities at different horizontal resolutions, and a small variation of the
verification area has minimal influence on the CNOP sensitive areas. The CNOP
sensitive areas identified for special forecast times when the initial time is fixed
resemble those identified for other forecast times in the linear case, while the
similarities among the sensitive areas identified for different forecast times are more
limited in the nonlinear case. When the forecast time is fixed, the CNOP sensitive
areas are much different when they are identified at different time period ahead.
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Then the influence of the initial conditions in the sensitive areas on the targeted
forecasts have been examined, and the observing system simulation experiments
(OSSEs) have been performed to assess whether or not the sensitive areas can be
considered as dropping sites in real time targeting. Also, the observation system
experiments (OSEs) have been carried out to demonstrate the utility of the CNOP
method. It is found that the impact of initial errors introduced into the CNOP
sensitive areas on the forecasts is greater than that of errors fixed in the SV
sensitive areas or other randomly selected areas. The OSSEs have shown that
assimilating the ideal observations in the CNOP sensitive areas results in the
improvements of 13–46 % in typhoon track forecasts, while the improvements of
14–25 % are obtained by assimilating the ideal observations in the SV sensitive
areas. Besides, the improvements have been achieved for longer forecast times.
The OSEs have shown that the DOTSTAR data in the CNOP sensitive areas has
a more positive impact on the typhoon track forecast than that in the SV sensitive
areas.

All the above results have demonstrated that the CNOP is a useful tool in the
adaptive observations to identify the sensitive areas.

24.1 Introduction

Based on predictability studies of tropical cyclones, it is realized that the forecasts
of tropical cyclone tracks and intensity could be improved when accurate initial
analyses are obtained (Riehl et al. 1956; Bender et al. 1993; Zhu and Thorpe 2006;
Froude et al. 2007). Consequently, it is important to supplement observations in
data-sparse areas to obtain an accurate initial analysis. However, placing additional
observation stations in the data-sparse areas is unnecessary; studies have shown
that extensive observations obtained in the general region around the cyclone do not
conclusively improve forecasts over observations obtained only in particular regions
(Franklin and DeMaria 1992; Aberson 2003). Adaptive observations (also called
targeted observations) are intended for this purpose: observational capabilities are
intensified in areas where additional observations are expected to improve a forecast
largely. These areas are considered “sensitive”, in the sense that changes to the initial
conditions in these areas are expected to have a larger impact on the forecast than
changes in other areas. It is “adaptive” in the sense that the sensitive areas may
change from day to day and case to case (Bergot 1999).

Currently, there are several strategies used for identifying the sensitive areas. One
strategy is based on the adjoint technique, such as singular vectors (SVs, Palmer
et al. 1998), adjoint sensitivities (Ancell and Mass 2006), and the adjoint-derived
sensitivity steering vector (ADSSV) (Wu et al. 2007). Another is ensemble-based,
for example, the ensemble transform (Bishop and Toth 1999), the ensemble Kalman
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filter (EnKF, Hamill and Snyder 2002) and the ensemble transform Kalman filter
(ETKF, Bishop et al. 2001). The strategies mentioned have been tested in field
experiments such as the Fronts and Atlantic Storm-Track Experiment (FASTEX;
Snyder 1996; Joly et al. 1997), the North Pacific Experiment (NORPEX; Langland
et al. 1999a), the Winter Storm Reconnaissance Programs (WSR; Szunyogh
et al. 2000, 2002), the Dropwindsonde Observations for Typhoon Surveillance near
the Taiwan region (DOTSTAR; Wu et al. 2005), the Atlantic THORPEX Regional
Campaign (ATReC; Rabier et al. 2008), etc. Forecasts are generally improved
by assimilation of targeted observations (Gelaro et al. 1999; Langland 2005; Wu
et al. 2005; Buizza et al. 2007; Rabier et al. 2008).

The strategies mentioned above are generally linear methods. They are
constrained by linear approximations. To study the effect of nonlinearity, Mu
et al. (2003) proposed a novel approach of conditional nonlinear optimal
perturbation (CNOP). The CNOP is an extension of the linear singular vector (SV)
method in to the nonlinear regime, and it has been applied to some research fields
such as El Ni
no-Southern Oscillation (ENSO) predictability (Mu et al. 2007;
Duan and Mu 2009; Duan and Luo 2010; Duan and Luo 2010; Peng et al. 2011),
the nonlinear behavior of baroclinic unstable flows (Riviere et al. 2008), ensemble
forecasting (Mu and Jiang 2008), and the transitions between multiple equilibria
states of the ecosystem (Sun and Mu 2009).

Recently, Mu et al. (2009) suggested that the CNOP can be used to identify
the sensitive areas for tropical cyclone predictions in targeted observations since
the forecasts benefit more from reductions of CNOP-type initial errors than from
reductions of SV-type initial errors. Then Zhou and Mu (2011, 2012a, b) used
the CNOP to identify the sensitive areas, and studied the properties of the CNOP
sensitive areas with respect to variations of the horizontal resolution, the verification
area design and the optimization time period. Furthermore, Chen and Mu (2012)
carried out sensitivity analysis by studying the impact of initial errors introduced
into the CNOP sensitive areas on the forecasts. Moreover, Qin (2010a, b) and
Qin and Mu (2011a, b) performed the observing system simulation experiments
(OSSEs) to assess whether the sensitive areas identified by CNOP can be considered
as dropping sites in realtime targeting. The observation system experiments (OSEs)
using the DOTSTAR Data have also been carried out by Chen (2011) to demonstrate
the utility of the CNOP method.

This chapter will summarize the above works about the approach of the CNOP to
targeted observations for tropical cyclone predictions. The SV sensitive areas have
also been studied correspondingly for comparison in some works. The structure
of this paper is as follows. Section 24.2 provides an introduction to CNOP and
SV, Sect. 24.3 introduces the properties of the CNOP sensitive areas. Section 24.4
describes the serviceability of the CNOP sensitive areas by OSSEs and OSEs.
A brief summary and discussion are given in the final section.
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24.2 Methodologies

24.2.1 CNOP

In this part, we briefly introduce the method of conditional nonlinear optimal
perturbation. Suppose we have the following model

�
@X
@t

C F.X/ D 0

XjtD0 D X0

(24.1)

where X is the state vector of the model with initial value X0. F is a nonlinear partial
differential operator. The solution of (24.1) can be expressed in discrete form:

Xt D M.X0/ (24.2)

where M is a nonlinear propagator, and Xt is the value of X at time t .
To measure the development of X0, appropriate norms must be chosen. In

discrete form, this is equivalent to choosing symmetric positive definite matrices
C1 and C2. An initial perturbation •X�

0 of vector X0 is called CNOP if and only if

J.•X�
0 / D max

•XT
0 C1ıX0
ˇ

J.ıX0/ (24.3)

Where

J.•X0/ D ŒPM.X0 C •X0/� PM.X0/�
TC2ŒPM.X0 C •X0/� PM.X0/� (24.4)

and ıXT
0 C1ıX0 � ˇ is a constraint condition of initial perturbations with the

presumed positive constant ˇ representing the magnitude of the initial uncertainty.
The first guess of the initial perturbation ıX0, which is usually taken as the
difference between the model outputs at two times, should be adjusted to satisfy the
constraint condition ıXT

0 C1ıX0 � ˇ. P is a local projection operator and takes value
1(0) within (without) the targeted region. The superscript “T” denotes the transpose
of vectors or matrices. Note that the norms used in the cost function and the initial
constraint condition may be the same, depending on the physical problem. It is clear
that the CNOPs depend on the nonlinear model M, the initial state vector X0, and
the parameters ˇ, P, C1, and C2.

24.2.2 SV

Suppose that the initial perturbation ıX0 is sufficiently small and the integration
time interval is of moderate length, then the development of ıX0 in discrete form
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can be approximated by
•Xt D L.•X0/ (24.5)

where L is the forward tangent propagator. •Xt is the linear development of ıX0

at time t . According to Barkmeijer et al. (2003), the first singular value 
1 of L
satisfies (with respect to the norms C1 and C2/:


21 D max
.•X0/TC1.•X0/¤0

ŒL.•X0/�
TC2ŒL.•X0/�

.•X0/TC1.•X0/
(24.6)

Additionally, if vi is the singular vector of L, then

.C1/
�1.LTC2L/vi D 
2i vi (24.7)

where superscript “�1” denotes the inverse of the matrix. 
i is the singular value
corresponding to vi . The first SV (FSV) maximizes the linear development of the
initial perturbations, the second SV maximizes the development under the constraint
of being orthogonal to the first SV, and the third SV maximizes the development
under the constraint of being orthogonal to the first two SVs, and so on (Peng
and Reynolds 2006). A local projection operator P (same meaning as in (24.4)) is
employed to localize the development of the perturbation in the verification region.

Actually, the FSV can be obtained by solving the following linear optimization
problem (Ehrendorfer and Errico 1995):

J.•X�
0 / D max

•XT
0 C1•X0
ˇ

J.•X0/ (24.8)

where
J.•X0/ D ŒPL.•X0/�

TC2ŒPL.•X0/� (24.9)

According to the linear characteristics of SV, the FSV defined by (24.8) and (24.9)
equals to the FSV defined by (24.7) when it has been normalized to a unit.

24.2.3 The Model and Optimization Algorithm

The CNOP and SVs are calculated with fifth generation Pennsylvania State
University–National Center for Atmospheric Research (PSU-NCAR) Mesoscale
Model (MM5; Dudhia 1993) and its corresponding adjoint system (Zou et al. 1997).
The following physical parameterizations are used: dry convective adjustment,
grid-resolved large-scale precipitation, the high-resolution PBL scheme, and the
Kuo cumulus parameterization scheme. The simulations initialized by the National
Centers for Environment Predictions (NCEP) FNL (Final) Operational Global
Analysis (1ı � 1ı) interpolated into the MM5 grids serves as the basic states for
most of the calculations of the CNOPs or the SVs. The Weather Research and
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Forecasting (WRF) model have been used to assimilate the operational Dropsonde
Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) in the
conduction of observation system experiments (OSEs). Except for clarification, the
model horizontal resolution is 60 km and there are 11 vertical levels in the following
studies.

In this chapter, when the FSV is considered, it will be obtained by solving the
(24.8) and (24.9). Thus both CNOP and FSV can be obtained by using the same
optimization algorithm to facilitate comparison, and the optimization algorithm
employed is the spectral projected gradient 2 (SPG2) (Birgin et al. 2001), which
calculates the least value of a function of several variables subject to box or
ball constraints. The cost function implemented for the calculation is J1.ıX0/ D
�J.ıX0/, with the same initial constraint condition ıXT

0C1ıX0 � ˇ. The gradient
of the cost function with respect to the initial perturbation is required for the SPG2
algorithm, and the adjoint model of MM5 is used to efficiently calculate the gradient.
When other SVs have been considered, the SVs would be obtained by using the
Lanczos algorithm (Ehrendorfer and Errico 1995).

For simplicity we choose C1 D C2 D C, and C represents the metric of total dry
energy, in a continuous expression:

.•X0/
TC.•X0/ D 1

D

Z
D

Z 1

0

"
u02 C v02 C cp

Tr
T02 CRaTr

�
ps

0

pr

	2#
dzdD (24.10)

where cp and Ra are the specific heat at constant pressure and the gas con-
stant of dry air respectively (with numerical values of 1005:7 J kg�1 K�1 and
287:04 J kg�1 K�1/. The reference parameters are the following: Tr D 270K,
pr D 1; 000 hPa. u0; v0;T0;ps

0, which are components of the state vector, are
the perturbed zonal and meridional wind components, temperature, and surface
pressure respectively. The integration extends over the full domain D and the vertical
direction z.

24.3 Properties of the CNOP Sensitive Areas

24.3.1 Definition of Sensitive Areas and Calculation
of Similarity

For CNOP and FSV, the sensitive area is defined as the horizontal grid points where
the function f .i; j / exceeds a specified threshold value c. The function f .i; j / is a
vertically-integrated total dry energy function

f .i; j / D
Z 1

0

Ed.i; j; z/dz (24.11)
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where Ed.i; j; z/ is the total dry energy (the sum of kinetic energy and available
potential energy) of the CNOP or FSV at the grid point .i; j; z/. The value c is
specified thus the sensitive areas have a proper size.

For the composite of the SVs (short for CSV or SVs), the sensitive areas
is defined as the horizontal grid points where the function f1.i; j / exceeds the
threshold value c. The function f1.i; j / is expressed as follows

f1.i; j / D
5X

nD1


2n


21

Z 1

0

Ed;n.i; j; z/dz (24.12)

where Ed;n.i; j; z/ is the total dry energy of the n th SV at the grid point .i; j; z/.

n is the singular value of the n th SV. In this study, the five leading SVs have been
composed.

The similarity between two vectors X D fx1; x2; � � �xmgT and Y D fy1; y2; � � �ymgT

is calculated according to the following formula:

Sxy D < X;Y >p
< X, X >

p
< Y, Y >

D

mP
iD1

xi yi

s
mP
iD1

x2i

s
mP
iD1

y2i

: (24.13)

24.3.2 Sensitivity of CNOP Sensitive Areas with Respect
to Horizontal Resolution

From Sect. 24.2.1, it is known that the CNOPs depend on the nonlinear model M, so
different models due to different resolution may result in different CNOP sensitive
areas. Zhou and Mu (2012a) studied this issue. In their study, a set of experiments
are designed in which all the parameters are held constant except for the horizontal
resolution.

Three tropical cyclones, TC Matsa (2005), TC Meari (2004), and TC
Mindulle (2004), are investigated. A set of 24-h control forecasts, which served as
the basic state, are integrated from 0000 UTC 5 Aug 2005 to 0000 UTC 6 Aug 2005
(TC Matsa), from 0000 UTC 26 Sep 2004 to 0000 UTC 27 Sep 2004 (TC Meari),
and from 0000 UTC 28 Jun 2004 to 0000 UTC 29 Jun 2004 (TC Mindulle). For
each case, the forecasts are run at 120, 60, and 30-km horizontal resolutions with 11
vertical levels. For TC Matsa, the model domain covers 28� 28; 55� 55; 109� 109
(y-direction by x-direction) grids, respectively, for 120, 60, and 30-km horizontal
resolutions. For TC Meari, there are 26� 28; 51� 55, and 101� 109 grids for each
horizontal resolution, and for TC Mindulle the domain sizes with respect to each
resolution are 21 � 26; 41 � 51, and 81 � 101. For each case with the chosen grids,
the real physical domain is the same at all resolutions, thus the verification area can
be chosen the same.
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Fig. 24.1 The vertically-integrated energies of CNOP: (a-c) TC Matsa; (d-f) TC Meari; (g-i) TC
Mindulle. (a, d, g) at a resolution of 30 km, (b, e, h) at a resolution of 60 km, and (c, f, i) at
a resolution of 120 km. The boxes indicate the verification areas. The “˚” symbol indicates the
initial position of the cyclone (From Zhou and Mu 2012a)

For each case, the sensitive areas identified using different resolutions are
different from each other (Fig. 24.1); however, common sensitive areas occur at
the three resolutions, and the sizes of the common areas are different from case
to case. In general, the sizes of common areas are bigger between sensitive areas
at the lower resolution. This can be deduced from the similarities of the energy
distributions between each resolution for the three cases (Table 24.1). Tor the three
cases, the similarities between the lower resolutions (60 and 120 km) are greater
than those between the finer resolutions (30 and 60 km); moreover, this illustrates
that more small-scale activity would be resolved at higher resolutions.

From the analysis of the similarities, it can be induced that the sensitive areas
identified at lower resolutions are also helpful for improving the forecast at finer
resolution. However, to get the largest improvement at a high resolution, it is better
to use the sensitive areas identified at the same resolution. A resolution at which the
nonlinearity could be explored has been suggested to be used in the identification
of the sensitive areas. Generally speaking, because usually the forecasts at higher
resolutions are better than those at lower resolutions, and the high resolutions are
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Table 24.1 The similarities among the energy distributions
obtained at 30, 60, and 120-km resolutions for TC Matsa (2005),
TC Meari (2004), and TC Mindulle (2004)

30 and 60 km 60 and 120 km

TC Matsa 0.70 0.78
TC Meari 0.55 0.75
TC Mindulle 0.49 0.72

Fig. 24.2 Verification areas for different designs. The solid rectangles in panel (a), (b), and (c)
are the verification areas for schemes A, D, and G respectively, while the dashed rectangles are
for schemes B, E, and H respectively, the dotted rectangles are for C, F, and I respectively. The
observation tracks of the cyclone are also shown in the center of the domain (From Zhou and
Mu 2011)

favorable for CNOP to display the nonlinear information, which play an important
role in the evolution of the initial perturbations, thus, as far as the computation
condition is permitted, using the CNOP method at a high resolution to identify the
sensitive areas may be more beneficial in targeted observations for tropical cyclone
predictions.

24.3.3 Sensitivity of CNOP Sensitive Areas with Respect
to the Verification Area Design

As indicated in Sect. 24.2.1, the CNOPs also depend on the verification area design
(namely, different parameter P/, and this has been studied in the paper of Zhou and
Mu (2011). The tropical cyclone Rananim, which occurred in the northwest Pacific
Ocean in 2004, is studied.

The design of the verification area is as follows. First, they defined a control
design in which the verification area includes the real cyclone tracks (the best storm
tracks) during the integral time period: scheme B (Fig. 24.2a, dashed rectangle).
Second, the size of the verification area is kept constant as it is moved to other
places (schemes A, C, D, E, and F). Small positional variations are denoted as
schemes A and C (Fig. 24.2a, solid and dotted rectangles, respectively). Large
position variations are denoted as schemes D, E, and F (Fig. 24.2b, solid, dashed,
and dotted rectangles, respectively). Then both the size and the position variations
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Fig. 24.3 The sensitive areas denoted by the vertically-integrated energies of CNOPs with
schemes (a) A, (b) B, (c) C, (d) D, (e) E, (f) F, (g) G, (h) H, and (i) I respectively. The rectangles
are the verification areas. The “˚” symbol indicates the initial best position of the cyclone (From
Zhou and Mu 2011)

of the verification area are considered; the designs are shown in Fig. 24.2c. Scheme
G is designed with small variations (Fig. 24.2c, solid rectangle). Schemes H and I
have even larger variations: Scheme H has a bigger domain, and scheme I has a
smaller domain (Fig. 24.2c, dashed rectangle and dotted rectangle, respectively).

Generally, different verification area designs may result in different sensitive
areas (Fig. 24.3). From the comparisons of schemes A, B, and C, it is seen that a
small position change of the verification area has minimal influence on the sensitive
areas. In addition, the inclusion of the best final position of the cyclone seems more
important because its exclusion would result in very different sensitive areas. From
the comparisons of schemes B, D, E, and F, it is found that the CNOP is sensitive to
the large position changes of the verification area, which results in large differences
among the identified sensitive areas. The comparisons of schemes G and B shows
that the small variations in both size and position also affect the CNOP sensitive
areas little, but a large variation in size or position would result in much different
CNOP sensitive areas (comparing the schemes B, H, and I). Besides, although
the verification area for scheme H includes almost all of the verification areas for
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schemes A, B, C, E, F, and G, the result of scheme H is more similar to that of
scheme E than to those of schemes A, B, C, F, and G. This indicates that the areas
north of the initial cyclone (scheme E) have a significant influence on the results.
Therefore, verifications area should not be too large, or the results are affected by
some irrelevant areas.

In general, the design of the verification area is important in tropical cyclone
targeted observations. To improve a tropical cyclone forecast with targeted observa-
tions, the verification area must include the tropical cyclone tracks during the rele-
vant time period. To do this, the ensemble forecast results must be consulted, which
can introduce uncertainty into the prediction. In addition, the background field, the
potential sensitive areas, as well as the economically relevant area can also provide
references for the design of the verification area. The verification area cannot be
too large or small, as the results would be affected for the former and the important
information would be missed for the latter, also it is hard to catch the best positions
of the cyclone for the latter. However, when the CNOP method is used to identify
the sensitive areas, once the general position of the verification area is determined,
a small variation in its size or position has minimal influence on the identification
of the sensitive areas. This is a favorable characteristic for targeted observations.

24.3.4 Sensitivity of CNOP Sensitive Areas with Respect
to the Optimization Period

The optimization period is a key issue in the choice of the cases. It is sure that
the similarities between sensitive areas are rare for cases that occur in completely
different situations; therefore, considerable attention has been paid to similarities
between sensitive areas during cases occurring under similar conditions or during
the temporal evolution of individual cases. The study of Zhou and Mu (2012b)
focused on the latter. They have studied the following two tropical cyclones: Matsa
(2005) and Meari (2004).

A set of experiments has been designed to study the time dependence of the
sensitive areas in the context of targeted observations. Except for the studied time
period, all parameters are held constant throughout the set of experiments. Two
approaches are used. In the first approach, the initial time is fixed and forecasts
are generated for 12, 24, and 36 h later. The initial times are set at 1200 UTC 4 Aug
2005 for the Matsa case (Fig. 24.4a) and 1200 UTC 25 Sep 2004 for the Meari case.
In the second approach, the forecast time is fixed and forecasts are generated from
initial times 12, 24, and 36 h prior to the forecast time. The forecast times are set at
0000 UTC 6 Aug 2005 for the Matsa case and 0000 UTC 27 Sep 2004 for the Meari
case. The three initial times are therefore 1200 UTC 5 Aug 2005, 0000 UTC 5 Aug
2005, and 1200 UTC 4 Aug 2005 for the Matsa case (Fig. 24.4b), and 1200 UTC 26
Sep 2004, 0000 UTC 26 Sep 2004, and 1200 UTC 25 Sep 2004 for the Meari case.
The optimisation time periods are the same as the forecast time periods in this study.

First, the nonlinearity of the typhoon cases is explored by comparing the linear
FSVs and nonlinear CNOPs. Results suggest that for both two approaches, the
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Fig. 24.4 The design of the optimization time periods for TC Matsa (2005). (a) for the first
approach and (b) for the second approach (From Zhou and Mu 2012b)

nonlinearity in Matsa case is strong, especially at longer forecast integrations, since
the CNOPs become progressively more different from the FSVs as the forecast time
extends further from the initial time (Fig. 24.5, for the first approach, figure for the
second approach not shown). While the Meari case is weak nonlinearity regardless
of the optimisation time period as the patterns of the CNOPs and FSVs are similar
(Fig. 24.6, for the first approach, figure for the second approach not shown). So the
Meari case will be interchangeably called the “linear case” and the Matsa case the
“nonlinear case” for the remainder of this part.

For the first approach, the comparison of the sensitive areas identified for the
Matsa and Meari cases reveals several interesting features. In the linear case,
the sensitive areas identified for a special forecast time are consistent with those
identified for other forecast times when the initial time is fixed (Fig. 24.7). This
result means that targeted observations deployed to improve a special time forecast
would also favourably affect the forecasts at other times. In the nonlinear case,
however, although there are some similarities in the sensitive areas identified for
different forecast times, these similarities are limited (Fig. 24.8). This indicates
that although the targeted observations deployed for a special time forecast are
also beneficial for other times’ forecasts, the forecast improvements for other
times are limited. So it is suggested that in the nonlinear case, the deployment
of targeted observations should be adaptive to obtain the largest improvement for
different targeted forecasts, and should be more widespread to achieve the greatest
improvement in multiple time forecasts. In addition, for both two cases, the closer
the forecast times, the higher the similarities of the sensitive areas.
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Fig. 24.5 TC Matsa (2005). The temperature (shaded, units: K) and wind (vector, units: m s�1/

components of (a), (b), (c) CNOP and (d), (e), (f) FSV at 
 D 0:7. The boxes indicate the
verification areas. The ˚ indicates the position of the cyclone at 1200 UTC 04 Aug 2005. The
forecasts are generated for (a), (d) 12 h, (b), (e) 24 h, and (c), (f) 36 h later (From Zhou and Mu
2012b)
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Fig. 24.6 TC Meari (2004). The temperature (shaded, units: K) and wind (vector, units: m s�1/

components of (a), (b), (c) CNOP and (d), (e), (f) FSV at 
 D 0:7. The boxes indicate the
verification areas. The ˚ indicates the position of the cyclone at 1200 UTC 25 Sep 2004. The
forecasts are generated for (a), (d) 12 h, (b), (e) 24 h, and (c), (f) 36 h later (From Zhou and Mu
2012b)
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Fig. 24.7 TC Meari (2004). The vertically integrated energies of CNOP (shaded, units: J/kg) for
the first approach. (a) for 12 h forecast, (b) for 24 h forecast, and (c) for 36 h forecast (From Zhou
and Mu 2012b)
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Fig. 24.8 Same as Fig. 24.7, but for TC Matsa (2005) (From Zhou and Mu 2012b)

For the second approach, the sensitive areas of the linear case move to the
verification areas as the initial time is shifted closer to the forecast time (i.e., as
the optimisation period is shortened; Fig. 24.9). This result is consistent with the
results of previous studies that applied linear methods to cases that permitted linear
approximation (Palmer et al. 1998; Kim et al. 2004; Wu et al. 2007). In such
case, the background field such as the subtropical high plays an important part
in the corresponding targeted forecasts. In the nonlinear case, the sensitive areas
fall in disrupted-ring patterns around the initial typhoon centres, and are mainly
located inside the typhoon circulation (Fig. 24.10). This indicates that the targeted
forecasts in this case are affected primarily by conditions within the typhoon,
while the background fields play a relatively smaller role. The results of these two
cases suggest that the deployment of targeted observations intended to improve the
forecast at a special time may depend strongly on the time of deployment. The time
at which the targeted observations are deployed is thus of crucial importance.

Generally, the results of this study have shown that the deployment of targeted
observations to improve a special forecast depends strongly on the time of deploy-
ment and it should be adaptive to achieve large improvements for different targeted
forecasts.
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Fig. 24.9 TC Meari (2004). The vertically integrated energies of CNOP (shaded, units: J/kg) and
the 500 hPa stream fields for the second approach. (a) forecast starts at 12 h ahead, (b) forecast
starts at 24 h ahead, and (c) forecast starts at 36 h ahead (From Zhou and Mu 2012b)
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Fig. 24.10 Same as Fig. 24.9, but for TC Matsa (2005) (From Zhou and Mu 2012b)

24.4 Examination of the CNOP Sensitive Areas

In Sect. 24.3, we have studied the properties of the CNOP sensitive areas. In this
section, we will examine the efficiency of the CNOP sensitive areas with a lot of
cases by carrying out the sensitivity tests, OSSEs, and OSEs.

24.4.1 Sensitivity Tests

In this part, random initial errors are introduced into the CNOP sensitive areas, and
their impacts on the TC forecasts are explored (Chen and Mu 2012). Two tropical
cyclones, Longwang (2005) and Sinlaku (2008) are studied. For comparison, the
roles of the random initial errors in the areas identified by FSV and CSV, and the
randomly selected areas are considered. Based on these four areas, experiments are
designed to determine which area have the greatest impact on TC forecasts.
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a b c

Fig. 24.11 TC Longwang (2005). VIE (shaded; 10 J kg�1) and wind (vector; m s�1) component
of (a) FSV, (b) CNOP, (c) CSV over a 24-h optimization time interval initialized at 0000 UTC
30 Sep 2005. The big boxes (dashed) indicate the verification areas; the box (solid) indicates the
sensitive area determined by the (a) FSV, (b) CNOP, (c) CSV; the symbol ˚ indicates the initial
cyclone center (From Chen and Mu 2012)

a b

Fig. 24.12 TC Sinlaku (2008). VIE (shaded, 10 J kg�1/ and wind (vector; m s�1) component of
(a) CNOP, (b) CSV over a 24-h optimization time interval initialized at 0000 UTC 10 Sep 2008.
The big boxes (dashed) indicate the verification areas; the box (solid) indicates the sensitive area
determined by the (a) CNOP, (b) CSV; the symbol ˚ indicates the initial cyclone center (From
Chen and Mu 2012)

For simplicity, the CNOP-, CSV-, FSV-, sensitive areas and randomly selected
areas are marked by CNOP Sen, CSV Sen, FSV Sen, and Ran Area, respectively.
The random initial errors (Ran Err) are added to the four areas. Notably, the random
initial errors have the same size measured by the dry energy norm. The four
experiments noted by RA-CN, RA-CS, RA-FS, and RA-RA, respectively represente
that the initial errors are introduced into the CNOP Sen, CSV Sen, FSV Sen, and
Ran Area.

First, the distributions of CNOP Sen, CSV Sen, and FSV Sen are checked. Here,
the maximum of the vertically integrated energy (VIE) of CNOP, CSV, and FSV
are defined as the centers of CNOP Sen, CSV Sen, and FSV Sen (indicated by
the smaller squares in Figs. 24.11 and 24.12, differing from the above studies).
It is seen that the considerable difference exists between the locations of FSV Sen
and CSV Sen (Fig. 24.11a, c). Although the VIE maxima of CNOP and CSV are
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both located in the core region of TC Longwang (2005) (Fig. 24.11b, c), but the
accurate locations of the two maxima are slightly different: the location of CNOP
VIE maximum is one grid spacing to the south of CSV VIE maximum. Thus, the
CNOP Sen and CSV Sen are slightly different.

The CNOP Sen for TC Sinlaku (2008) is defined as a minimized square area,
large enough to contain the two VIE maxima of CNOP, and FSV Sen and CSV Sen
are another square area with the same size, capable of containing the two VIE
maxima of CSV and located on the north side of the storm center (Fig. 24.12).
In addition, the extents of CNOP Sen, CSV Sen, and FSV Sen for TC Longwang
(2005) are defined as a square area with 4 � 4 grid points, and that for TC Sinlaku
(2008) is defined as a square area with 12 � 12 grid points.

In the four types of experiments (RA-CN, RA-CS, RA-FS, and RA-RA), 40
Ran Errs are generated by transforming forty 1 � 1; 104 error vectors, which are
normally distributed, into forty 4�4�23�3 error matrices for TC Longwang (2005)
and by transforming 40 1�9; 936 error vectors, which are normally distributed, into
forty 12�12�23�3 error matrices for TC Sinlaku (2008). Specifically, the u-wind,
v-wind, and temperature initial states are perturbed, and the random error vectors are
zero means. Their standard deviations are 0.95 for TC Longwang (2005) and 0.32
for TC Sinlaku (2008).

Figure 24.13 show the nonlinear developments of a Ran Err from the CNOP Sen,
CSV Sen, and Ran Area, respectively, for both TCs. The development of the
Ran Err from FSV Sen is similar to that from CSV Sen for TC Longwang (2005)
since CSV Sen and FSV Sen for TC Sinlaku (2008) are located in the same position.
Obviously, as shown in Fig. 24.13e, f, a rapid reduction in the magnitude of
wind and temperature of the evolved Ran Errs from Ran Area occur for both TC
Longwang (2005) and TC Sinlaku (2008), compared with the results of RA-CN
and RA-CS. For TC Longwang (2005), the verification dry energy norms of the
evolved Ran Errs from CNOP Sen, CSV Sen, and Ran Area are 63:28 J kg�1,
17:47 J kg�1 and 12 J kg�1, respectively, while for TC Sinlaku (2008) those values
are 21:13 J kg�1, 14:10 J kg�1, and 3:08 J kg�1. Therefore, the locations of initial
errors in CNOP Sen may have had great impacts on the final forecasts.

Next, the impacts of 40 Ran Errs added to CNOP Sen, CSV Sen, FSV Sen,
and Ran Area are assessed according to the statistical averages of verification
dry energy norms of the 40 evolved Ran Errs from the four types of areas,
respectively. Table 24.2 presents the results of these statistical averages for both
TC Longwang (2005) and TC Sinlaku (2008). Notably, the errors introduced into
the CNOP Sen have the largest influences on the final forecasts. For both cases, the
Ran Errs introduced into the CSV Sen have the next largest influences, while the
Ran Errs fixed in Ran Area lead to the smallest changes. Thus, the growth rates
of Ran Errs introduced into sensitive areas, such as CNOP Sen and CSV Sen, are
higher than those introduced into Ran Area.

Additionally, another 36 randomly selected areas are considered in the
RA-RA experiment for TC Sinlaku (2008) and TC Longwang (2005). Similarly,
the statistical averages of nonlinear developments of the 40 Ran Errs from
the 36 local areas are obtained following the same procedure performed in
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a b c

d e f

Fig. 24.13 The Longwang (2005) (a, c, e) and Sinlaku (2008) (b, d, f) cases. Temperature (shaded;
K) and wind (vector; m s�1) components of the evolved Ran Err from (a and b) CNOP Sen, (c and
d) CSV Sen, and (e and f) Ran Area on the level 0.7 at the final forecast time. The boxes (dashed)
indicate the verification areas; the boxes (solid) for (e) and (f) indicate the Ran Areas (From Chen
and Mu 2012)

Table 24.2 TC Longwang (2005) and TC Sinlaku (2008). The statistical averages of the final
verification dry energy norms of evolved Ran Errs from CNOP Sen, CSV Sen, FSV Sen and
Ran Area (J kg�1), respectively (From Chen and Mu, Table 2)

Dry Energy (Verification Area) CNOP Sen CSV Sen FSV Sen Ran Area

Mean (40) (TC Longwang) 22.24 14.03 0.33 0.24
Mean (40) (TC Sinlaku) 27.03 19.28 19.28 7.35

the previous experiments. The geographical distribution of the 40 local areas,
including CNOP Sen, CSV Sen, FSV Sen, and 37 Ran Areas, is shown in Fig.
24.14. Notably, the locations of these areas are defined around the initial storm
center to the far outside, and the distance between the centers of two adjacent areas
is defined as two-grid spacing for TC Sinlaku (2008) and as one-grid spacing for
TC Longwang (2005). Table 24.3 shows the results of the extended experiments
for both cases. Every unit of the tables (except units in the first row and column)
corresponds approximately to its location in the geographical distribution of the
40 areas as shown in Fig. 24.14. For TC Longwang (2005), the statistical value
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a b

Fig. 24.14 Geopotential height on 500-hPa level (contour; gpm) and geographical distribution of
the 40 local areas used in extended experiments (denoted by black boxes) for (a) TC Longwang
(2005) and (b) TC Sinlaku (2008) (From Chen and Mu 2012)

Table 24.3 Statistical averages of the verification dry energy norms of the 40 evolved Ran Errs
from the 40 local areas, respectively, for (a) TC Longwang (2005) and (b) TC Sinlaku (2008)
(J kg�1)

(a)

J
i 1 2 3 4 5

1 4.05 7.32 10.70 12.39 12.27
2 3.37 6.24 9.94 12.29 13.22a

3 2.83 8.44 14.64 15.10 12.95
4 4.27 27.07 57.20b 29.59 14.86
5 6.19 52.28 92.43c 51.00 15.95
6 4.33 27.51 67.18 42.77 14.31
7 2.38 8.24 13.51 11.52 8.46
8 1.48 3.17 5.28 6.01 6.53

(b)

J
i 1 2 3 4 5 6 7 8
1 12.19 20.65 27.80 43.48 28.64 34.45 64.10 43.55
2 21.89 36.50 49.13b 51.02 92.31 66.53 97.53 36.52
3 29.54 40.99 57.98 44.53 129.94 165.45 72.59 26.95
4 22.45 29.25 50.81 74.48 156.69 276.13c 50.16 18.80
5 28.92 33.34 40.31 81.45 116.04 100.57 27.83 9.44

i represents the latitudinal direction, j indicates longitudinal direction
aindicates FSV Sen
b indicates the CSV Sen
c indicates the CNOP Sen
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for CNOP Sen is the largest, followed by those for the five Ran Areas close to
CNOP Sen and CSV Sen on the western and southern sides of the storm center,
while the value for CSV Sen is the seventh largest. In addition, the values for the
areas on the outer ring are much lower than those for the areas near CNOP Sen and
CSV Sen. For TC Sinlaku (2008), the value for CNOP Sen is still the largest, and in
general, the values for the areas distributed on the eastern side of the storm center are
higher than those for the areas on the western side, including CSV Sen/FSV Sen.

These results suggested that, for a given initial error, basic state, and time interval,
the growth rate of initial error strongly depended on where it is fixed, and in the
CNOP sensitive areas the initial errors would grow rapidly.

24.4.2 Observing System Simulation Experiments (OSSEs)

To assess whether the sensitive regions calculated by CNOPs can be considered as
dropping sites in realtime targeting, Qin (2010a) and Qin and Mu (2011a) performed
observing system simulation experiments (OSSEs).

Generally, three basic components should be included in OSSEs (Hoffman
et al. 1990): a four dimensional reference atmosphere, often called the nature run,
the purpose of which is considered to be the ‘truth’; a procedure to obtain simulated
observations by sampling the nature run and adding errors; and a data assimilation
system, which comprises a forecast model and the analysis procedure.

Qin (2010a) studied three typhoons Nock-Ten (2004), Matsa (2005), and
Morakot (2009), and conducted nature experiments with the MM5 model but used a
higher horizontal resolution of 30 km. The simulated observation data are produced
by adding error to the nature run. There are two sets of data at the targeting time.
Take Nock-Ten for example, one is the routine observation data that comprised the
fixed stations on land and buoys in the ocean (Fig. 24.15a); the other is additional
observation data obtained by dropped sondes, distributed in the CNOP sensitive
areas (Fig. 24.15b) or randomly selected areas (Fig. 24.15c).

The effects (vertical mean of the variables) of utilizing additional data for
Nock-Ten prediction are shown in Table 24.4. It is shown that the TPE (vertical
integrated total perturbation energy) improvement produced by the CNOP is the
most significant (12.74 %), while the effects caused by dropping sondes randomly
have much less impact (some of them even have negative effects). This indicates
that additional observations in random selected areas are useless for the forecast. By
contrast, the sensitive regions identified by the CNOP prove to be better locations
for additional observations. The other two cases have similar results.

In addition, Qin and Mu (2011a) performed OSSEs to evaluate the influence of
additional dropsonde observation data in CNOP and SVs sensitive areas on typhoon
track forecasts. In that study, the ‘truth’ is considered to be forecasts from 0 up to
72 h using the ERA-Interim reanalysis from ECMWF. The forecast typhoon centres
at 6 h intervals are collated to represent the ‘true’ typhoon tracks. Forecasts during
the same period, using the reanalysis from NCEP, are considered as the control run.
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Fig. 24.15 TC Nock-Ten (2004). (a) the routine observations, (b) the CNOP sensitive areas and
(c) the random selected areas denoted by number 1, 2, 3, 4 respectively (From Qin 2010)

Table 24.4 The RMSE of both routine and additional observation relative to only routine
observation for Nock-Ten. The first column represents the kind of additional data that is utilized.
The variables from the second to the eighth column stands for the vertical mean zonal wind,
meridional wind, temperature, surface pressure, specific humidity, vertical wind, and vertical
integrated total perturbation energy, respectively. Negative values represent that the RMSEs
produced by the corresponding additional data were reduced

U(%) V(%) T(%) PP (%) QV (%) W(%) TPE (%)

CNOP –2.58 –9.86 –4.01 0.62 0.06 –3.60 –12.74
Random1 –2.16 –0.96 –1.63 –0.10 –2.41 –5.23 –0.90
Random2 –0.28 –1.57 0.87 –4.78 0.00 1.18 –1.56
Random3 1.60 3.93 –0.54 –5.27 0.56 –0.59 5.74
Random4 –1.03 1.85 2.62 –4.02 0.35 3.43 2.86

The difference between the typhoon centre positions of the control run and of the
nature run is defined as the error in the typhoon track forecast without dropsonde
data. After identifying the sensitive regions for the optimization period (24–48 h),
simulated dropsondes are deployed at 24 h over these regions to obtain observational
data, which represent the sum of the forecasts of the nature run at that time and
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Table 24.5 Track forecast errors (km) without dropsondes from 24–72 h for all seven cases. The
second row represents the initial time for each typhoon case (all in 2009, e.g., ‘082012’ represents
1200UTC 20 August). The last row indicates the moving direction during this period

Vamco Mujigae Koppu Choi-Wan Ketsana Mirinae Nida

Initial time
(h)

082012 091000 091306 091700 092618 102918 112806

24 251.3 110 211.6 88.7 168.3 11 125.4
30 305.0 132.9 171.1 85.9 155.6 59.2 213.6
36 323.5 128.8 222.7 125.4 155.6 188.3 287.9
42 365.7 188.3 204.6 192.1 189.9 267.9 282.4
48 487.2 157.5 233.9 275.7 194.9 216.7 412.3
54 364.2 39.7 266.1 268.5 184.4 153.2 493.0
60 261.5 59.2 297.2 260.8 165.4 226.8 376.3
66 354.7 144.7 537.7 49.2 125.1
72 199.2 101.4
Moving

direction
Northward Westward Northwest-

ward
Recurved Westward Westward Stagnant

randomly produced observation errors with the order of 10�1 of the analysis. The
simulated additional dropsonde data included horizontal wind speed, horizontal
wind direction, and temperature at 850, 500 and 200 hPa. The 3D-Var assimilation
system of MM5 is used to assimilate the additional dropsonde data to produce an
analysis at 24 h, which can be run to predict the locations of typhoon centres in
the following 48 h (from 24 to 72 h). The differences between these typhoon centre
positions and the nature run are defined as the typhoon track forecast errors with
dropsondes. Difference between these errors and those without dropsondes are used
to indicate the influence of CNOPs sensitive areas on typhoon track forecasts.

Seven typhoon events (with large track forecast errors, Table 24.5) originated in
the western North Pacific during the 2009 season have been selected for analysis. It
is found that CNOP sensitive areas forms (half) an annulus around the typhoon
centres at targeting time for most of the typhoon cases (five of seven); and SV
sensitive areas showed a maximum at the rear left quadrant with respect to the
storm motion, approximately 500 km from the centre of the storms, also in five
of seven cases (Fig. 24.16, typhoon Mirinae for example). Then dropping sites have
been selected: the distance between adjacent sites is appropriate (about 150 km),
and the total number of sites is the same in the CNOP and SV sensitive areas. See
Fig. 24.16 for example. The track errors that with and without dropsondes have
been compared. It is found that a varying degree of improvement in typhoon track
forecasts for six of the seven cases, after assimilating simulated dropsonde data
obtained for the sensitive regions (Fig. 24.17). Moreover, the improvements are not
only obtained for the optimization period, for calculating CNOPs and SVs, but also
for the subsequent 24 h. During the period 24–72 h, the deployment of dropsondes
according to CNOPs sensitivity could reduce track forecast errors by 13–46 %, and
by 14–25 % for SVs sensitivity.
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Fig. 24.16 Simulated dropping sites in sensitive regions calculated by (a) CNOPs and (b) SVs for
TC Mirinae (2009). Shaded regions are the same as those in Fig. 24.15, squares represent the sites
for dropping sondes (From Qin and Mu 2011a)

That is, the deployment of dropsondes in CNOP sensitive areas have an overall
positive influence on typhoon track forecasts, suggesting in turn that CNOP can
be utilized as an adaptive method in determining sensitive regions in adaptive
observations.

24.4.3 Observation System Experiments (OSEs)

In the above section, we have demonstrated the utility of the CNOP sensitive areas
in the OSSEs by using the ideal observations. In this section, we would use the real
observations to show the utility of the CNOP sensitive areas (Chen 2011).

The dropsonde observations were collected under the operational Dropsonde
Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR)
program. Typhoon Nida occurred in 2004 has been studied. Fifteen dropwindsondes
were released around Nida between 1000 and 1400 UTC 17 May 2004. The squares
in Fig. 24.18 show the location of the released dropsondes. Most dropsondes were
deployed every 150–200 km in a circular pattern with its center at Nida’s central
position. The observations include data on wind speed, wind direction, height,
temperature, dewpoint temperature, and relative humidity below 196 hPa.

First, the CNOP sensitive areas and FSV sensitive areas (see Fig. 24.19) have
been defined by using MM5 model. Then the 2nd, 3rd, 4th, and 5th dropsondes
located near the maximal VIE area of CNOP have been chosen as the CNOP targeted
observations. Similarly, the 10th 
 13th dropsondeslocated near the maximal VIE
area of FSV have been chosen as the FSV targeted observations. Additionally, the
8th 
 11th dropsondes at the south side of the initial storm center are used as
randomly targeted observations.
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Fig. 24.17 Scatter diagrams of all track forecast errors for seven typhoon cases (left). The Y-axis
represents the track forecast errors with dropsondes, and the x-axis represents those without
dropsondes. Filled and empty diamonds denote the results of CNOPs and SVs, respectively. The
colour of each diamond indicates the forecast time. Histograms on the right are relative differences
corresponding to each case (From Qin and Mu 2011a)

Five kinds of experiments are designed and conducted: (1) no observations
are assimilated; (2) all observations are assimilated; (3) only the CNOP targeted
observations (observations in the CNOP sensitive area) are assimilated; (4) only the
FSV targeted observations (observations in the FSV sensitive area) are assimilated;
and (5) randomly targeted observations (observations within a randomly selected
area) are assimilated. The results of the OSEs showed that the DOTSTAR data have
a positive impact on the forecast of Nida’s track (Table 24.6); Assimilation of the
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Fig. 24.18 DOTSTAR observations at 1200 UTC 17 May 2004 (square points) and best track of
Nida from 1200 UTC 17 to 0000 UTC 20 May 2004 (solid line). The numbers from 1 to 15 indicate
the sequence of dropsonde observations (From Chen 2011)

a b

Fig. 24.19 VIE (shaded; J kg�1) and wind (vector; m s�1) component at the level 0.7 of (a) CNOP
and (b) FSV. The box defined by dashed lines indicates the verification area. Pentangle points
indicate the dropsonde observations used in (a) CNOPDROP and (b) FSVDROP. The symbol ‘˚’
indicates the position of Nida’s center at 1200 UTC 17 May 2004 (From Chen 2011)

dropsondes in the CNOP sensitive area improved the track forecasts significantly,
the dropsondes in the FSV sensitive areas also increased the accuracies of the
24-h and 36-h track forecasts, but the impact is comparatively small. However,
the dropsondes in the randomly selected region have negative effects on the track
forecasts, especially on the 24-h track forecast.

These results indicate that the CNOP method would be useful in decision making
about dropsonde deployments.
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Table 24.6 Verification dry energy norms (J kg1) and 24 and 36-h forecast track errors (km) of
NONDROP, ALLDROP, CNOPDROP, FSVDROP, and RANDROP as well as corresponding error
reductions of ALLDROP, CNOPDROP, FSVDROP, and RANDROP

NODROP ALLDROP CNOPDROP FSVDROP RANDROP

Dry energy
(Verification
area)

2288.75 2165.09 1918.48 2470.28 2622.37

Reduction (24 h
forecast
error)

— 5.4 % 16.2 % –7.9 % –14.6 %

Track error (24 h
forecast)

79.83 48.34 29.02 73.36 98.81

Reduction (24 h
track error)

— 39.4 % 63.6 % 8.1 % –23.8 %

Track error (36 h
forecast)

176.57 126.33 114.73 163.32 181.85

Reduction (36 h
track error)

— 28.5 % 35.0 % 7.5 % –3.0 %

24.5 Summary and Discussions

In this chapter, the recent progresses in targeted observations for tropical cyclone
prediction based on Conditional Nonlinear Optimal Perturbation (CNOP) method
have been reviewed. The CNOP have been used to identify the sensitive areas
for tropical cyclone predictions. The first singular vector (FSV), as well as the
composite singular vectors (CSV or SVs) have also been used to identify the
sensitive areas for comparison.

First, the properties of the sensitive areas identified by CNOP (shorted for CNOP
sensitive areas) have been studied, including the variations of the CNOP sensitive
areas with respect to the changes of the horizontal resolution, the verification area
design and the optimization time period. It is found that when the general position of
the verification area is designed, small variations have minimal influence on targeted
observations when using the CNOP method.

The CNOP sensitive areas have similarities at different horizontal resolutions,
that is, the sensitive areas identified at lower resolutions could be helpful for
improving the forecast at finer resolution. However, to get the largest improvement
at a high resolution, it is better to use the sensitive areas identified at the same
resolution. A resolution at which the nonlinearity could be explored has been
suggested to be used in the identification of the sensitive areas.

The CNOP sensitive areas identified for special forecast times when the initial
time is fixed resemble those identified for other forecast times in the linear case,
while the similarities among the sensitive areas identified for different forecast
times are more limited in the nonlinear case. This means the targeted observations
deployed to improve a special time forecast would also favourably affect the
forecasts at other times in the linear case, while in the nonlinear case, the targeted
observations deployed for a special time forecast are limited to improve forecasts
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at other times. So it is suggested that in the nonlinear case, the deployment of
targeted observations should be adaptive to obtain the largest improvement for
different targeted forecasts, and should be more widespread to achieve the greatest
improvement in multiple time forecasts. When the forecast time is fixed, the CNOP
sensitive areas are much different when they are identified at different time period
ahead. So the deployment of targeted observations to improve a special forecast
depends strongly on the time of deployment.

Then the efficiency of the CNOP sensitive areas has been examined with a lot of
events. The influence of the initial errors in various areas on the targeted forecast
has been investigated based on two typhoons. Forty random initial errors have been
added to the initial conditions in 40 same-size areas, and it is found that generally
the initial errors in the CNOP sensitive areas would have the largest impact on the
forecast.

Next, the observing system simulation experiments (OSSEs) have been per-
formed to assess whether the CNOP sensitive areas can be considered as dropping
sites in real time targeting. It is demonstrated that the energy of prediction error
could be reduced by assimilating the ideal observation data in the CNOP sensitive
areas for three typhoon cases. Another study of seven typhoon events originated
in the western North Pacific during the 2009 season have showed that assimilating
the ideal observations in the CNOP sensitive areas resulted in the improvements
of 13–46 % in typhoon track forecasts, while the improvements of 14–25 % are
obtained by assimilating the ideal observations in the SV sensitive areas. Besides,
the improvements can be achieved for longer forecast times.

Finally, the observation system experiments (OSEs) using the DOTSTAR Data
have been carried out to further examine the efficiency of the CNOP sensitive areas.
Results show that the DOTSTAR data in the CNOP sensitive areas have a more
positive impact on the typhoon track forecast than that in the FSV sensitive areas.

All the above results demonstrate that the CNOP is a useful tool in the adaptive
observations to identify the sensitive areas.

Nevertheless, there are spaces remained to be further studied. For example,
there are cases that the CNOP sensitive areas have negative impact on the typhoon
forecast, analyze the reason, study more cases, and summarize the conditions when
the CNOP sensitive areas would be much effective is needed. Except for the studies
with horizontal resolution, the other studies have used a lower resolution of 60 km,
it is necessary to use higher resolutions to study once the computational resources
have been improved. The calculation of CNOP in current studies have been based
on MM5 model, and it is known that the MM5 is not to be developed, so using
new advanced models to calculate CNOP is urgent. Recently, Wang et al. (2011)
have used the advanced model WRF to calculate CNOP, so using the CNOP based
on WRF to identify sensitive areas will be an important new study. Furthermore,
since in current formulation the cost function have been designed as the total dry
energy in the verification area, it is expected that new cost function would be better
designed thus it could directly relate to our intensions such as the track or intensity
forecasts of the typhoons and could guarantee the improvement of the typhoon
forecasts, and so on.



24 The Advances in Targeted Observations for Tropical Cyclone Prediction . . . 605

References

Aberson SD (2003) Targeted observations to improve operational tropical cyclone track forecast
guidance. Mon Wea Rev 131:1613–1628

Ancell BC, Mass CF (2006) Structure, growth rates, and tangent linear accuracy of adjoint
s‘ensitivities with respect to horizontal and vertical resolution. Mon Wea Rev 134:2971–2988

Barkmeijer J, Iversen T, Palmer TN (2003) Forcing singular vectors and other sensitive model
structures. Quart J Roy Meteor Soc 129(592):2401–2423

Bender MA, Ross RJ, Tuleya RE, Kurihara Y (1993) Improvements in tropical cyclone track and
intensity forecasts using the GFDL initialization system. Mon Wea Rev 121:2046–2061

Bergot T (1999) Adaptive observations during FASTEX: a systematic survey of upstream flights.
Quart J Roy Meteor Soc 125:3271–3298

Birgin EG, Martinez JE, Marcos R (2001) Algorithm 813: SPG—software for convex-constrained
optimization. ACM Trans Math Softw 27:340–349

Bishop CH, Toth Z (1999) Ensemble transformation and adaptive observations. J Atmos Sci
56:1748–1765

Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform
Kalman filter. Part I: Theoretical aspects. Mon Wea Rev 129:420–436

Buizza R, Cardinali C, Kelly G, Thépaut J (2007) The value of targeted observations part II: The
value of observations taken in singular vectors-based target areas. Quart J Roy Meteor Soc
133:1817–1832

Chen B-Y (2011) Observation system experiments for typhoon Nida (2004) using the CNOP
method and DOTSTAR data. Atmos Ocean Sci Lett 4:118–123.

Chen B, Mu M (2012) The roles of spatial locations and patterns of initial errors in the uncertainties
of tropical cyclone forecasts. Adv Atmos Sci 29:63–78

Duan WS, Luo H (2010) A new strategy for solving a class of nonlinear optimization problems
related to weather and climate predictability. Adv Atmos Sci 27:741–749

Duan WS, Mu Mu (2009) Conditional nonlinear optimal perturbation: applications to stability,
sensitivity, and predictability. Sci China (D) 884–906

Duan WS, Zhang R (2010) Is model parameter error related to a significant spring predictability
barrier for El Ni�no events? Results from a theoretical model. Adv Atmos Sci 27(5):1003–
1013. doi:10.1007/s00376-009-9166-4

Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation
tests and simulation of an Atlantic cyclone and cold front. Mon Wea Rev 121:1493–1513

Ehrendorfer M, Errico RM (1995) Mesoscale predictability and the spectrum of optimal perturba-
tions. J Atmos Sci 52:3475–3500

Franklin JL, DeMaria M (1992) The impact of Omega dropwindsonde observations on barotropic
hurricane track forecasts. Mon Wea Rev 120:381–391

Froude LSR, Bengtsson L, Hodges KI (2007) The predictability of extratropical storm tracks and
the sensitivity of their prediction to the observing system. Mon Wea Rev 135:315–333

Gelaro R, Langland RH, Rohaly GD, Rosmond TE (1999) An assessment of the singular-
vector approach to targeted observations using the FASTEX dataset. Quart J Roy Meteor Soc
125:3299–3327

Hamill TM, Snyder C (2002) Using improved background-error covariance from an ensemble
kalman filter for adaptive observations. Mon Wea Rev 130:1552–1572

Hoffman RN, Grassotti C, Isaacs RG, Louis JF, Nehrkorn T (1990) Assessment of the impact of
simulated satellite lidar wind and retrieved 183 GHz water vapor observations on a global data
assimilation system. Mon Wea Rev 118:2513–2542

Joly A, Jorgensen D, Shapiro MA, Thorpe A, Bessemoulin P, Browning KA, Cammas JP, Chalon
JP, Clough SA, Emanuel KA, Eymard L, Gall R, Hildebrand PH, Langland RH, Lemaitre Y,
Lynch P, Moore JA, Persson POG, Snyder C, Wakimoto RM (1997) The Fronts and Atlantic
Storm-Track Experiments(FASTEX): scientific objectives and experimental design. Bull Am
Meteor Soc 78:1917–1940



606 F. Zhou et al.

Kim HM, Morgan MC, Morss RE (2004) Evolution of analysis error and adjoint-based sensitivi-
ties: implications for adaptive observations. J Atmos Sci 61:795–812

Langland RH (2005) Issues in targeted observing. Quart J Roy Meteor Soc 131:3409–3425
Langland RH, Toth Z, Gelaro R, Szunyogh I, Shapiro MA, Majumdar SJ, Morss RE, Rohaly GD,

Velden C, Bond N, Bishop CH (1999a) The North Pacific Experiment (NORPEX-98): targeted
observations for improved North American weather forecasts. Bull Am Meteor Soc 80:1363–
1384

Mu M, Jiang ZN (2008) A new method to generate the initial perturbations in ensemble forecast:
conditional nonlinear optimal perturbations. Chin Sci Bull 53:2062S–2068S

Mu M, Duan WS, Wang B (2003) Conditional nonlinear optimal perturbation and its applications.
Nonlin Processes Geophys 10:493–501

Mu M, Duan WS, Wang B (2007) Season-dependent dynamics of nonlinear optimal error growth
and ENSO predictability in a theoretical model. J Geophys Res 112:D10113

Mu M, Zhou FF, Wang HL (2009) A method to identify the sensitive areas in targeting for tropical
cyclone prediction: conditional nonlinear optimal perturbation. Mon Wea Rev 137:1623–1639

Palmer TN, Gelaro R, Barkmeijer J, Buizza R (1998) Singular vectors, metrics, and adaptive
observations. J Atmos Sci 55:633–653

Peng MS, Reynolds CA (2006) Sensitivity of tropical cyclone forecasts as revealed by singular
vectors. J Atmos Sci 63:2508–2528

Peng YH, Duan WS, Xiang J (2011) Effect of stochastic MJO forcing on ENSO predictability.
Adv Atmos Sci 28(6):1279–1290. doi:10.1007/s00376-011-0126-4

Qin X-H (2010a) The sensitive regions identified by the CNOPs of three typhoon events. Atmos
Ocean Sci Lett 3:170-175

Qin X-H (2010b) A comparison study of the contributions of additional observations in the
sensitive regions identified by CNOP and FSV to reducing forecast error variance for the
Typhoon Morakot. Atmos Ocean Sci Lett 3:258–262

Qin X, Mu M (2011a) Influence of conditional nonlinear optimal perturbations sensitivity on
typhoon track forecasts. Quart J Roy Meteor Soc. doi:10.1002/qj.902

Qin X Mu M (2011b) A study on the reduction of forecast error variance by three adaptive
observation approaches for tropical cyclone prediction. Mon Wea Rev 139:2218–2232

Rabier F, Gauthier P, Cardinali C, Langland R, Tsyrulnikov M, Lorenc A, Steinle P, Gelaro R,
Koizumi K (2008) An update on THORPEX-related research in data assimilation and observing
strategies. Nonlin Processes Geophys 15:81–94

Riehl H, Haggard WH, Sanborn RW (1956) On the prediction of 24-hour hurricane motion.
J Meteor 13:415–420

Riviere O, Lapeyre G, Talagrand O (2008) Nonlinear generalization of singular vectors: behavior
in a baroclinic unstable flow. J Atmos Sci 65:1896–1911

Sun GD, Mu M, (2009) Nonlinear feature of the abrupt transitions between multiple equilibria
states of an ecosystem model. Adv Atmos Sci 26(2):293–304. doi:10.1007/s00376-009-0293-8

Szunyogh I, Toth Z, Majumdar S, Morss R, Etherton B, Bishop C (2000) The effect of targeted
observations during the 1999 Winter Storm Reconnaissance program. Mon Wea Rev 128:3520–
3537

Szunyogh I, Toth Z, Zimin AV, Majumdar SJ, Persson A (2002) Propagation of the effect
of targeted observations: the 2000 Winter Storm Reconnaissance program. Mon Wea Rev
130:1144–1165

Snyder C (1996) Summary of an informal workshop on adaptive observations and FASTEX. Bull
Amer Meteor Soc 77:953–961

Wang HL, Mu M, Huang XY (2011) Application of conditional non-linear optimal perturbations
to tropical cyclone adaptive observation using the Weather Research Forecasting (WRF) model.
Tellus 63A:939–957

Wu CC, Lin PH, Aberson S, Yeh TC, Huang WP, Chou KH, Hong JS, Lu GC, Fong CT, Hsu KC,
Lin II, Lin PL, Liu CH (2005) Dropwindsonde Observations for Typhoon Surveillance near the
Taiwan Region (DOSTAR): an overview. Bull Am Meteor Soc 86:787–790

Wu CC, Chen JH, Lin PH, Chou KH (2007) Targeted observations of tropical cyclone movement
based on the adjoint-derived sensitivity steering vector. J Atmos Sci 64: 2611–2626



24 The Advances in Targeted Observations for Tropical Cyclone Prediction . . . 607

Zhang FQ et al (2002) Mesoscale predictability of the “surprise” snowstorm of 24–25 January
2000. Mon Wea Rev 130:1617–1632

Zhou FF, Mu M (2011) The impact of verification area design on tropical cyclone targeted obser-
vations based on the CNOP method. Adv Atmos Sci 28(5):997–1010. doi:10.1007/s00376-011-
0120-x

Zhou FF, Mu M (2012a) The impact of horizontal resolution on the CNOP and on its identified
sensitive areas for tropical cyclone predictions. Adv Atmos Sci 29:36–46. doi:10.1007/s00376-
011-1003-x

Zhou FF, Mu M (2012b) The time and regime dependences of sensitive areas for tropical cyclone
prediction using the CNOP method. Adv Atmos Sci 29:705–716. doi:10.1007/s00376-012-
1174-0

Zhu H, Thorpe A (2006) Predictability of extratropical cyclones: The influence of initial condition
and model uncertainties. J Atmos Sci 63:1483–1497

Zou X, Vandenberghe F, Pondeca M, Kuo Y-H (1997) Introduction to adjoint techniques and the
MM5 adjoint modeling system. NCAR technical note NCAR/TN-435 STR



Chapter 25
GSI/WRF Regional Data Assimilation System
and Its Application in the Weather Forecasts
over Southwest Asia

Jianjun Xu and Alfred M. Powell, Jr.

Abstract In this study, the impact of directly assimilating Advanced TIROS
Operational Vertical Sounder (ATOVS) radiances using the Community Radiative
Transfer Model (CRTM) was evaluated to determine the impact on forecasts over
Southwest Asia. The CRTM was developed by the Center for Satellite Applications
and Research (STAR) and its application was promoted by the Joint Center for
Satellite Data Assimilation (JCSDA). The ATOVS radiance data from the National
Environmental Satellite Data and Information Service (NESDIS), the Gridpoint Sta-
tistical Interpolation (GSI) three-dimensional variational analysis (3DVAR) system
from the National Centers for Environmental Prediction (NCEP), and the Advanced
Research WRF (WRF-ARW) model from the National Center for Atmospheric
Research (NCAR) were employed in this study.

First, this paper will describe the forecasting errors encountered from running
the WRF-ARW model in the complex terrain of Southwest Asia from 1–31 May
2006. The subsequent statistical evaluation is designed to assess the model’s surface
and upper-air forecast accuracy. The results show that the model biases caused by
inadequate parameterizations of physical processes are relatively small, except for
the 2-m temperature, as compared to the nonsystematic errors resulting in part
from the uncertainty in initial conditions. The total model forecast errors at the
surface show a substantial spatial heterogeneity and the errors are relatively larger
in higher elevation mountain areas. The performance of 2-m temperature forecasts
is different from the other surface variables’ forecasts; the model forecast errors
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in 2-m temperature forecasts are closely related to the terrain configuration. The
simulated diurnal variation of near-surface temperature is much smaller than the
observed diurnal variation.

Second, to understand the impact of initial conditions on the accuracy of the
model forecasts, the satellite radiances are assimilated into the numerical model
through GSI data assimilation system. The results indicate that on average over
a 30-day experiment for the 24- and 48-h (second 24-h) forecasts, the satellite
data provides beneficial information for improving the initial conditions and the
model errors are reduced to some degree over some of the study locations. The
diurnal cycle of some forecast variables can be improved by using adequate initial
conditions with satellite radiance data assimilation.

25.1 Introduction

The assimilation of satellite radiance observations into a numerical weather pre-
diction (NWP) system is an important pathway for improving weather forecasts
by providing initial conditions representative of the true state of the atmosphere.
Preliminary impact studies of satellite data using satellite retrieved winds, and
humidity were focused on the global system. The results show a positive impact of
satellite data on numerical weather prediction forecasts, especially in the Southern
Hemisphere (e.g., Tracton et al. 1980; Halem et al. 1982; Andersson et al. 1991;
Mo et al. 1995; Derber and Wu 1998). The satellite data are a useful data source not
only in global models but also in regional-scale models. Bouttier and Kelly (2001)
demonstrated that the impact of rawinsonde data on the forecast was extremely large
over regional areas, but the aircraft and satellite data seemed to have little effect.

There are two basic approaches to assimilate satellite information into a data
assimilation system (DAS). The first approach is to assimilate retrieved data from
radiances measured by satellite instruments. The satellite retrievals, such as humid-
ity and wind fields, usually were provided by the satellite data provider independent
of the data assimilation system. The second approach is to assimilate radiance
measurements directly into a DAS. Direct radiance assimilation is theoretically
superior to retrieval assimilation because the observational error statistics are
more justified in direct radiance assimilation than in retrieval assimilation (Eyre
et al. 1993; Derber and Wu 1998; McNally et al. 2000). This approach differs
from the traditional practice of transforming the observations into analysis variables
and requires an observation operator be built into the DAS to transform model
variables into radiances. The linkage between forecast model state variables, such
as temperature and humidity, and observed radiances is expressed mathematically
by a forward radiative transfer model (RTM), which calculates radiance from model
state vertical profiles.

To maximize the benefit of assimilating satellite data, it must be assimilated
in the regional models in addition to the global models. Regional models have
lagged global models to some extent, due to the complications from local and
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diabatic effects, complex nonlinear balance relationships, and the presence of lateral
boundaries (Stauffer et al. 1991). The complex relationships between the different
atmospheric fields and various scales of motion require a dynamical approach
to data analysis and assimilation (Lorenc 1986). Regional models often contain
information on structures linked to the local terrain. As a result, to obtain high-
quality output from the regional models, high resolution topography is necessary.

Due to the linkage with terrain, the satellite data assimilation for regional model
initialization has received the greatest attention. Therefore, the role of satellite
observations for regional modeling through a month’s experiments over Southwest
Asia will be analyzed. Weather forecasts in Southwest Asia (SWA) are often very
complex because of mesoscale variations induced by the complex terrain and diverse
land use. This is a predominately a semi-arid to arid region surrounded by the Black
and Caspian Seas in the north, the Mediterranean in the west, the Arabian Sea and
Persian Gulf in the south, Himalayas in the east, and crossed by the impressive
Tauros, Zagros, and Hindu Kush mountains. A few previous model studies (Evans
and Smith 2001, 2006; Evans et al. 2004; Zaitchik et al. 2007a,b; Marcella and
Eltahir 2008) provided some interesting results for the basic weather simulation in
SWA using a regional climate model (RegCM2) or the MM5 model. They pointed
out that the regional model had difficulty in producing an accurate simulation of
precipitation in certain sub-regions, which is related to an accurate description of
storm tracks, topographic interactions, and atmospheric stability.

This evaluation primarily concentrates on the forecasts of wind, temperature
and precipitation since SWA is dominated by hot, dusty, windy weather (Agrawala
et al., 2001). During the transitional season from winter to summer, the temperature
and wind increase substantially; contrastingly, the precipitation decreases signif-
icantly. During this seasonal transition, the occurrence of blowing sand/dust and
unstable local-scale weather events increases as well, and the prediction accuracy of
these events is highly dependent upon the accuracy of the temperature, precipitation
and wind forecasts from the model.

Some recent studies have evaluated the WRF-ARW model based on objective
error statistics for precipitation forecasts. Cheng and Steenburgh (2005) produced
surface sensible weather forecasts with WRF-ARW and Eta models over the western
United States. Their results suggest that improvements in initialization are more
important than improvements in the physics for land surface processes. Gallus and
Bresch (2006) compared the impacts of the WRF dynamics core physics package,
and initial conditions on warm season rainfall forecasts over central United States.
They found that the sensitivity of rainfall forecasts to the physics, dynamics,
and initial conditions are dependent on the rainfall events. For heavier rainfall,
sensitivity to initial conditions is generally less substantial than the sensitivity to
changes in the dynamic core or physics. For light rainfall, the WRF model using
NCAR physics is much more sensitive to a change in the dynamic core than the
WRF model using NCEP physics. Wan and Xu (2011) pointed out, in a case study
of the flash-flood that occurred in the central Guangdong Province of Southeast
China during June 20–21 2005, that the model simulation largely depends on
three factors: model resolution, physical process schemes and the initial conditions.
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The studyshowed that the initial conditions are improved by using the satellite
data assimilation and result in a reduced forecast error for heavy rainfall location.
Therefore, it is not surprising that considerable effort has focused on improving the
estimates of the model initial states through data assimilation.

This paper is organized as follows. Section 25.2 describes the real-time configu-
ration of WRF-ARW and data assimilation system. The observational datasets used
in the verification are given in Sect. 25.3. Section 25.4 explains the methodology
used in the evaluation. The results of the forecast error for the May 2006 case are
presented in Sect. 25.5. Section 25.6 investigates the impact of data assimilation on
the forecasts. Finally, a summary and discussion are given in Sect. 25.7.

25.2 Model and Data Assimilation System

25.2.1 ARW WRF Regional Model

The numerical weather prediction model used in this study is the WRF model
(Michalakes et al. 2001; Skamarock et al. 2005), which is a nonhydrostatic, fully
compressible, primitive equation model. Lead institutions involved in the effort to
develop this model include the National Center for Atmospheric Research (NCAR),
Air Force Weather Agency (AFWA), National Centers for Environmental Prediction
(NCEP), National Oceanic and Atmospheric Administration (NOAA), and other
government agencies and universities. WRF is built around a software architectural
framework in which different dynamical cores and model physics packages are
presented within the same code. With the WRF model, it is possible to mix and
match the dynamical cores and physics packages of different models to optimize
performance since each model has strengths and weaknesses in different areas and
weather events. It uses a terrain-following hydrostatic pressure coordinate and the
Arakawa C grid staggering.

25.2.2 GSI 3DVAR Data Assimilation System for ARW WRF
Regional Model

The Gridpoint Statistical Interpolation (GSI) analysis system (Kleist et al. 2009a,b)
is developed based on NCEP’s current three-dimensional variational analysis
(3DVAR) system known as the Spectral Statistical Interpolation (SSI) (Parrish and
Derber 1992; Derber et al. 1991). The SSI has the advantage that the statistics of
the background error, both structure and amplitude, can be easily obtained and
applied in the analysis procedure. It is simpler to apply a diagonal background
error covariance in spectral space than to convolve the corresponding smoothing
kernel with the innovations in physical space. However, with only a diagonal
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covariance in spectral space, the structure function is limited to being geographically
homogeneous and isotropic about its center (Parrish and Derber 1992; Courtier
et al. 1998). One has little control over the spatial variation of the error statistics
when a simplified diagonal background error covariance in spectral space is used.
With some computational cost associated with the extra transforms in and out of the
physical space in each iteration of the optimization solver, spatially inhomogeneous,
for example, latitude-dependent, variances can be applied, but it is not as easy to
construct inhomogeneous and/or anisotropic shapes for the covariance profiles in
spectral space. The GSI helped overcome this shortcoming.

The current GSI regional analysis system employs NCEP’s Nonhydrostatic
Mesocale Model (NMM) WRF and NCAR’s ARW WRF mass core (Liu and
Weng 2006; Xu et al. 2009; Xu and Powell 2011; Wan and Xu 2011), and the input
data can be either binary or netcdf format datasets. DAS/forecast model interface has
been adapted separately for the WRF NMM core and the WRF mass core. For the
ARW WRF mass core, the inputs/outputs are made on a C-grid, no interpolation is
needed for the mass variables (T,Q), but the wind variables (u & v) are interpolated
in x and y to mass points respectively

All interpolations are linear in each direction; the projection information is not
required. The code automatically determines the local scale information needed
for transforming from global coordinates to local coordinates, properly rotating
winds to the model frame, and dx, dy are needed for local derivatives. All of these
procedures can be determined from the two dimension fields available in both NMM
and ARW mass core files given the earth latitude and longitude and dx, dy for every
grid point.

Eventually, GSI can be connected to other models in a systematic way. Part of this
has already been accomplished by eliminating the need to specify map projections
for the horizontal domain definition.

The Assimilation system produces an analysis through the minimization of an
objective function given by

J D xTB�1x C .Hx � y/TR�1.Hx � y/

J D 1=2.xTB�1x/C .Hx � y/TR�1.Hx � y/

where x is a vector of analysis increment, B is the background error covariance
matrix, y is innovation vector, y D yobs � Hxguess, R is the observational and
representativeness error covariance matrix, and H is the transformation operator
from the analysis variable to the form of the observations.

For the SSI which is tied to isotropic and homogeneous background error covari-
ance matrix (B), the spectral model can conveniently and easily handle the pole.
In contrast, the GSI allows for non-homogeneous and anisotropic B formulation
(Wu et al. 2002), distinguishes between land and sea, the tropics, and midlatitudes,
and is easy to use in both global and regional applications. Currently background
error cannot change in outer iteration (due to preconditioning in the inner iteration).
In regard to this problem, Derber suggests that the two outer iterations appear to
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work reasonably well except for precipitation (personal communication). Often, we
run three outer iterations so we can see the fit to the observations at the end of the
second outer iteration. The background error variances, which vary by wavenumber
and vertical mode, are fixed in time and estimated from scaled differences between
24- and 48-h forecasts valid at the same time (see Parrish and Derber 1992). For the
regional system, the background error statistics use the same vertical grid structure
as the first guess. The background error covariance matrix is extracted through the
interpolation of NCEP’s Global Forecast System (GFS) counterpart.

The observation error covariance matrix (R) should not only contain information
on the observational error but also errors in representativeness (Lorenc 1986).
Thus, this matrix should include the error in the radiative transfer modeling, but
the specification of this matrix is difficult. It is clear that the errors are probably
correlated spatially because of the errors in the radiative transfer, instrument
errors and errors arising from imperfect cloud clearing, emissivity correction, and
other components. However, these correlations are probably quite different from
the spatial correlations found in the temperature and moisture retrievals and are
currently not well known. For this reason, the GSI system has chosen these errors
to be spatially uncorrelated. In addition, because the microwave inter-channel error
correlations are not known, they have been set equal to zero.

For the radiance data, the transformation is more complicated. The temperature,
moisture and pressure on the Gaussian grid are bilinearly interpolated in the
horizontal to the observation region to create a temperature and moisture profile.

25.3 Observed and Analyzed Datasets

Observed precipitation. The observed precipitation data are taken from the Climate
Prediction Center (CPC) Famine Early Warning System (FEWS) program, which
is derived from geostationary satellite retrieved precipitation merged with rain
gauge and model analysis. The merging technique has been shown to significantly
reduce bias and random error compared to individual precipitation data sources, thus
increasing the accuracy of rainfall estimates (Xie and Arkin 1996). Geostationary
satellite data is utilized for the determination of cloud top temperature. METEOSAT
5 thermal Infrared (IR) digital data at 5 km pixel resolution is accessed every 30 min
and then reformatted and converted to a geographic grid with a 0:1ı resolution. The
grid is 751 � 501 points, which begins with point (1, 1) at 20 ıE, 10 ıN and ends
at point (751, 501) at 95 ıE, 60 ıN. A horizontal resolution of 0:1ı was chosen for
the estimated computations to correspond with the absolute positioning error for the
satellites of approximately 10 km. Arrays are used to accumulate the occurrences of
cloud top temperatures below 235 ıK and 275 ıK. Rain gauge reports transmitted
via the Global Telecommunications System (GTS) are received every 6 h and are
utilized in the CPC Climate Assessment Data Base (CADB) for monitoring of
climate anomalies. Automated quality control of these GTS observations within the
CADB is done prior to the processing of precipitation estimates.
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Fig. 25.1 Domain of model and subregion definition. Shaded indicates the elevation of terrain
(unit: m). The sub-regions are defined as north Iraq (A; 34ı–36 ıN; 41ı–43 ıE); northwest Iran
(B; 34ı–36 ıN; 46ı–48 ıE); north central Iran (C ; 34ı–36 ıN; 54ı–56 ıE); central Afghanistan
(D; 34ı–36 ıN; 66ı–68 ıE); west Himalaya Mountain (E; 34ı–36 ıN; 74ı–76 ıE); west Saudi
Arabia (F ; 22ı–24 ıN; 41ı–43 ıE); east Saudi Arabia (G; 22ı–24 ıN; 51ı–53 ıE); Arabian Sea
(H ; 22ı–24 ıN; 63ı–65 ıE) and Northwest India (I ; 22ı–24 ıN; 70ı–72 ıE)

Observed temperature. The maximum and minimum temperature at the 2-m level
with 0:5ı � 0:5ı gridded datasets are created by the NOAA’s CPC, which is taken
from observational stations of the WMO GTS datasets. The interpolation method is
based on the previous rainfall estimation algorithm (Xie et al. 1996).

Analyzed temperature and wind field. The temperature and wind fields are taken
from the NCEP Global Forecasting System (GFS) analysis data (GFS ANL), which
is gridded to a horizontal resolution of 1ı � 1ı.

25.4 Topography and Evaluation Method

To investigate the spatial heterogeneity of complex terrain in SWA region, nine
representative sub-regions are depicted in Fig. 25.1. They are defined as north
Iraq (A; 34ı–36 ıN, 41ı–43 ıE); northwest Iran (B; 34ı–36 ıN, 46ı–48 ıE); north
central Iran (C; 34ı–36 ıN, 54ı–56 ıE); central Afghanistan (D; 34ı–36 ıN,
66ı–68 ıE); west Himalaya mountains (E; 34ı–36 ıN, 74ı–76 ıE); west Saudi
Arabia (F; 22ı–24 ıN, 41ı–43 ıE); east Saudi Arabia (G; 22ı–24 ıN, 51ı–53 ıE);
Arabian Sea (H; 22ı–24 ıN, 63ı–65 ıE); and west India (I; 22ı–24 ıN, 70ı–72 ıE).
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Table 25.1 The averaged height of topography (Hgt: meter), vegetation type (Veg) and soil type
(Soil) in the nine sub-regions (defined as Fig. 25.1) over SWA

A B C D E F G H I

Hgt 328 2,557 737 3,833 4,839 958 67 0 75
Veg Barren Grass Barren Shrub

land
Wooded

tundra
Barren Barren Water Mixed

Dryland/
Cropland

Soil Loam Loam Clay loam Loam Loam Sandy
loam

Loam Water Loam

The nine sub-regions effectively represent the heterogeneity of complex terrain
in SWA region. Table 25.1 displays the average elevation of the topography (Hgt),
vegetation type (Veg) and soil type (Soil) over these nine regions. Except for the
water type in the Arabian Sea (marked H), the soil types in all other eight regions
are loam; and the vegetation types include barren, grass, shrub land, wooded land,
mixed dry/crop land and water. Three regions (B, D, E) with terrain above 2,500 m
are covered by short plants with grass (B), shrubland (D) and wooded tundra (E).
Three regions with terrain under 1,000 m (A, C and F) and the two plains regions
(G and I) are practically free of any plants.

This evaluation is designed to present the model errors of surface temperatures,
precipitation, wind speeds and upper atmospheric variables for both 24-h (hour)
and 48-h (hour) (e.g. the second 24-h) forecasts. The statistical measures used
to quantify model forecast performance are bias (forecast – observation), mean-
square error (MSE), and standard deviation (SD) error. The MSE represents
the total model forecast error including contributions from both systematic and
nonsystematic/random errors. Systematic error may be caused by a consistent
misrepresentation of physical parameters such as radiation or model convection.
Nonsystematic errors are caused by uncertainties in the model initial conditions or
unresolvable differences in scales between the forecasts and observations (Nutter
and Manobianco 1999).

If X represents any of the parameters under consideration for a given time and
vertical level, then the forecast error is defined as X 0 D Xf � Xa, where the
subscripts f and a denote forecast and analyzed/observed quantities, forecasts and
analyses, the bias is computed as

Bias D X 0 D 1

N

NX
iD1

X 0
i (25.1)

the mean-square error is computed as

MSE D 1

N

NX
iD1

�
X 0
i

�2
(25.2)
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the SD error is computed as

SD D
"
1

N

NX
iD1

�
X 0
i �X 0�2

#1=2
(25.3)

In (25.1, 25.2, and 25.3), N is used rather than N-1 so that a decomposition following
Murphy (1988, eq. (9)) could be applied to the MSE:

MSE D .X 0/2 C .SD/2 (25.4)

Therefore, the total model forecast error (e.g. MSE) consists of contributions from
model squared biases .X 0/2 (i.e., systematic error) and squared standard deviation
.SD/2 error (i.e., nonsystematic error) in the forecast and observed data. A fraction
is defined to indicate the ratio of systematic error in the total model forecast error as
follows:

Er D �
.X 0/2=MSE

� � 100% (25.5)

In (25.5), note that if the model bias is less than 50 %, most of the MSE is due to
random, nonsystematic type variability in the errors.

25.5 Forecast Error

Similar to Air Force Weather Agency’s (AFWA) operational setup, a 15-km grid
spacing centered over the Southwest Asia (SWA) region (Fig. 25.1) is used to
encompass the regions complex topography and associated spatial variability in
surface characteristics. To assess model predictive skill, 48-h (hour) forecasts are
made for each day starting at 00Z for the period of May 1 through May 31, 2006.
Forecasts without data assimilation are labeled CTRL in order to distinguish them
from the forecasts with data assimilation found in Sect. 25.6. The initial atmospheric
and lateral boundary conditions, including soil moisture and temperature, are
taken from the NCEP Global Forecast System (GFS) real time forecasts with 3-h
intervals, which is gridded to a horizontal resolution of 1ı � 1ı. Through the WRF
Preprocessing System (WPS), the global soil categories, land use categories, terrain
height, annual mean deep soil temperature, monthly vegetation fraction, monthly
albedo, maximum snow albedo, and slope category are interpolated into the model
grids of the study domain. The physics packages used in the CTRL forecasts are
the WRF Single Moment 5-class (WSM5) microphysics scheme, Yonsei University
planetary boundary layer (YSUPBL) scheme, Noah land surface scheme, Grell-
Devenyi ensemble cumulus scheme, Rapid Radiative Transfer Model (RRTM)
longwave radiation, and the Dudhia shortwave radiation scheme.
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Fig. 25.2 Squared bias, mean square error (MSE), squared standard deviation (SD) error and
fraction of Squared bias to MSE (Er) for 2-m temperature (ıC) forecasts from 1 to 31 May 2006.
Results are plotted for averaged 24- and 48-h forecasts with respect to the regions (A, B , C , D,
E , F , G, H , I / defined in Fig. 25.1. Unit: square of temperature (ıC) in (a), (b) and (c) (Adapted
from Xu et al. (2009))

In the following section, WRF-ARW model forecast error characteristics for
24- and 48-h (e.g. second 24-h) forecasts and diurnal variation are described.
Forcasts results are produced during the 30-day period starting from May 1 through
May 30, 2006.

25.5.1 24-h and 48-h Forecasts

25.5.1.1 2-Meter Temperature .T2-M /

Squared biases (WRF forecasts – GFS analysis) in 2-m temperature forecasts vary
with terrain elevation (Fig. 25.2a). Biases are larger over high terrain areas (E, B, D)
for the 24- and 48-h forecasts. While, the biases are significantly smaller in low
terrain regions (A, C, F, G, I) or water areas (H).
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Even though the magnitude of the squared SD error (Fig. 25.2c) in the highest ter-
rain region (E: west Himalayas mountains) is near equivalent to that of the forecast
bias, it is very small in the other areas. However, the biases and corresponding MSEs
are comparable in magnitude over most of the other mountain areas (Fig. 25.2b).
The fraction of squared biases to the MSEs (Fig. 25.2d) is greater than 50 % in
most of the areas, which showed clearly that a large contribution to the total model
forecast errors in these regions are derived from a systematic model error. The result
indicates an apparent model deficiency in the description of surface temperature in
high terrain areas.

To illustrate the above point, squared biases, MSEs, and squared SD error in the
whole SWA region are depicted in Fig. 25.3. For the 24-h forecasts, the total model
forecast errors are dominated by the model systematic errors (Fig. 25.3a–c). The
fraction of squared biases to the MSEs (Fig. 25.3d) exceeds 50 %; the distribution
of total model forecast errors is also dependent on the topography of the model
domain (Fig. 25.3a, b vs. Fig. 25.1). The 48-h forecast errors are a little higher than
the 24-h forecast errors (Fig. 25.3e–h).

25.5.1.2 Precipitation

In contrast, the precipitation MSEs in the 24-h forecasts are dominated by squared
SD error (Fig. 25.4) over all nine selected sub-regions. The biases are not correlated
to the height of terrain. The maximum of the squared bias (Fig. 25.4a) over the
highest terrain region is much smaller than the squared SD error. The fraction of
squared biases to the MSE (Fig. 25.4d) is far less than 50 % in all selected sub-
regions, which showed clearly that a larger contribution to the total model forecast
error is from a nonsystematic model error. These results indicate an apparent model
problem in the description of the initial conditions or the model resolution. The 48-h
forecast errors are much higher than the 24-h forecast errors in most of areas.

For the whole study domain, the MSEs in the 24-h forecasts are obviously
dominated by the model nonsystematic errors (Fig. 25.5a–c). The fraction of
squared biases to the MSEs (Fig. 25.5d) is under 50 % except for some Himalaya
mountain areas. The distribution of total model forecast errors has nothing to do
with the structure of higher terrain. The areas of 48-h forecast errors greater than
20mm2 clearly extend over wider areas in the model domain (Fig. 25.5e–h).

25.5.1.3 Wind Speed at 10-M

Similar to precipitation, the MSEs in 10-m wind speed are largely associated with
the nonsystematic errors in most of the sub-regions (Fig. 25.6a–c). The largest
model bias occurs over northwestern Iran (B) (Fig. 25.6a). The biases over the west
Himalaya mountain region (E), east Saudi Arabia (G) and west India (I) are almost
zero. The fractions of squared biases to the MSEs (Fig. 25.6d) are under 50 % over
all selected areas.
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Fig. 25.3 Squared Bias, mean square error (MSE), Squared standard deviation (SD) error and
fraction of squared bias to MSE (Er) of 2-m temperature for 24-h (a–d) and 48-h (e–h) forecasts
for 30-day average from 1 to 31 May 2006. Unit: square of temperature (ıC) in (a), (b), (c) and
(e), (f), (g) (Adapted from Xu et al. (2009))
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Fig. 25.4 Same as Fig. 25.2 but for precipitation (mm/day) forecasts. Unit: square of precipitation
amounts (mm/day) in (a), (b), (c) (Adapted from Xu et al. (2009))

Over SWA domain, the MSEs of 10-m wind speed in 24-h forecasts correspond
fairly well to the low SD errors (Fig. 25.7b, c). The forecast errors from systematic
error in the western mountains of Iran are relatively large values (Fig. 25.7a). The
10-m wind speed statistical fields are quite different from the 2-m temperature fields,
and the nonsystematic model errors compose a much larger portion of the total
forecast errors for 2-m temperature forecasts (Fig. 25.7d). The 48-h forecast errors
are similar to the 24-h forecast errors in most of the areas (not shown).

The above results suggest that the MSEs near the surface contain a substantial
spatial heterogeneity, as seen by the relatively larger errors in higher mountainous
areas. However, the source of the errors indicates a significant difference among
temperature, precipitation, and wind speed. The inaccuracies in 2-m temperature
forecasts are mainly from systematic errors, which are controlled largely by the
physical representation in the model. In contrast, the inaccuracies in precipitation
and 10-m wind speed forecasts are dominated more by nonsystematic errors,
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Fig. 25.5 Same as Fig. 25.3 but for precipitation (mm/day) forecasts. Unit: square of precipitation
amounts (mm/day) in (a), (b), (c) and (e), (f), (g) (Updated from Xu et al. (2009))
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Fig. 25.6 Same as Fig. 25.2 but for 10-m wind speed (ms�1) and 24-h forecasts only. Unit: square
of wind speed (ms�1) in (a), (b), (c) (Updated from Xu et al. (2009))

which we postulated to be errors derived from the random inadequacies of initial
conditions.

25.5.1.4 Temperature at 500 hPa

The squared bias is very small except that the Himalaya mountain region (E)
increases up to 17 ıC for 24-h forecast (Fig. 25.8a) and there is a larger value for
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Fig. 25.7 Same as Fig. 25.3,
but for 10-m wind speed and
24-h forecasts only. Unit:
square of wind speed (ms�1)
in (a), (b), (c) (Updated from
Xu et al. (2009))
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Fig. 25.8 Same as Fig. 25.3
but for 500 hPa temperature
and 24-h forecasts only. Unit:
square of temperature (ıC) in
(a), (b), (c) (Updated from
Xu et al. (2009))
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48-h forecasts (not shown). The larger magnitude of MSEs is randomly distributed
over the central Saudi Arabia, southeast Iraq, northwest Iran and west Himalaya
mountain region (Fig. 25.8b). The corresponding SD error (Fig. 25.8c) reveals that
nonsystematic errors compose a substantial portion of the total error. The fraction
of squared biases to the MSE (Fig. 25.8d) is far less than 50 % except for west
Himalaya mountain region (E), which showed clearly that a larger contribution to
the MSEs is from a nonsystematic total model forecast error. Compared to 24-h
forecasts, the 48-h forecasts’ bias is higher over most of study areas (not shown).

25.5.1.5 Winds at 200 hPa

Similar to the upper level temperature forecasts, the wind forecasts (the first 24-h
forecasts shown only) at 200 hPa (Fig. 25.9) indicate that the MSEs are dominated
by nonsystematic errors in either the zonal or meridional wind component or
both. For the zonal wind forecasts, the large MSE over Himalaya mountain region
is consistent with nonsystematic error, as well as, the Arabian Sea also has a
strong nonsystematic error signature. For the meridional wind component, the larger
forecast errors occur over a different place relative to the zonal wind forecasts. The
larger MSEs for the zonal wind forecasts in the Himalaya mountain region disappear
in the meridional wind field.

In summary, the 2-m temperature forecast error is typically caused by systematic
error and is most associated with the elevated terrain; by contrast, precipitation,
10-m wind speed, and upper level forecast errors are dominated by the nonsystem-
atic errors, which do not appear correlated with terrain.

25.5.2 Diurnal Variation

Based on model forecasts, the Southwest Asian domain-wide mean of the 2-m
temperature exhibits a minimum near 0000 UTC followed by a sharp increase to a
maximum near 1200 UTC (not shown). The difference of variables (temperature and
wind speed) at maximum (1200 UTC) and minimum (0000 UTC) time is defined as
the diurnal cycle variation in this study.

The Southwest Asia region’s mean diurnal cycle of 2-m temperature during the
30-day study period (Fig. 25.10a) shows that the amplitude of temperature diurnal
cycle for model forecasts is considerably lower than the value in the WMO GTS
observations. Note a slight deepening in the diurnal temperature cycle on May 2, 7
and 17 in GTS observations that is not reproduced in the model forecasts. These two
points indicate the near surface diurnal temperature cycle in model forecasts has a
serious problem.

The 10-m model forecast wind speeds exhibit a different behavior from that of
temperature. Similar to the NCEP GFS analysis data (GFS ANL), the amplitude
of the wind speed diurnal cycle in the model (Fig. 25.10b) shows a strong diurnal
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Fig. 25.9 Same as Fig. 25.3 but for 200 hPa zonal wind (a–d), meridional wind (e–h) and 24-h
forecasts only (Updated from Xu et al. (2009))
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Fig. 25.10 Diurnal cycle variation, (a) 2-m temperature (ıC), (b) 10-m wind speed (ms�1).
Twenty-four-hours forecasts only (Updated from Xu et al. (2009))

variation. The magnitude of model forecasts values are fairly consistent with the
analysis values, except for the large difference on May 3. There is no evidence of a
sharp gap between the model forecasts and the analysis data.

However, the spatial domain of the SWA areas appears to cover about four
time zones. The whole domain average did not reflect significantly the diurnal
cycle of the different regions. The 30-day period mean of diurnal cycle (Fig. 25.11)
displayed the variation by region. The results show that over regions in the
western and northeastern part of Southwest Asia, including the Saudi Arabian
desert and northern border of Afghanistan, the model forecasts of 2-m temperature
(Fig. 25.11b) are in much better agreement with the GTS observations (Fig. 25.11a)
than in the Zagros mountains of western Iran, and Indian northwest deserts. Note
the amplitude of the diurnal cycle in the model is much smaller than the GTS
observations.

For the diurnal cycle variation in 10-m wind speed, the model forecasts
(Fig. 25.11d) over Southwest Asia has a similar amplitude and distribution to the
NCEP GFS analysis data (Fig. 25.11c) except for the clear mesoscale features in the
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a b

c d

Fig. 25.11 Diurnal cycle variation of 2-m temperature (ıC) in (a) GTS observation, (b) CTRL
model forecasts, and 10-m wind speed (ms�1) in (c) NCAR GFS analysis, (d) CTRL model
forecasts. Twenty-four-hours forecasts only (Updated from Xu et al. (2009))

model forecasts. Note that the analysis data suggests a strong diurnal cycle variation
over northwest Iran and north Afghanistan. Overall, however, the model forecasts
of the diurnal cycle are consistent with the analysis.

25.6 Impact of Satellite Data Assimilation

Results from the previous section suggest that, aside from the 2-m temperature,
errors in forecast variables are dominated by nonsystematic errors, which are caused
by uncertainties in the model initial conditions or unresolvable differences in scales
between the forecasts and observations (Nutter and Manobianco 1999). The model
initial conditions are very important factors affecting model forecasts. For the
purpose of understanding the role of initial conditions in the accuracy of forecasts,
we will now consider satellite observation data assimilation in this section.
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25.6.1 Experiment Design

In this study, the GSI analysis system is integrated with the WRF-ARW mesoscale
system, and the Advanced TIROS-N (Television and Infrared Observation Satellite)
Operational Vertical Sounder (ATOVS) radiance observations are employed. The
ATOVS datasets supplied by National Environmental Satellite, Data, and Informa-
tion Service (NESDIS) are composed of radiances from the Advanced Microwave
Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS)/3. Two
separate radiometers (AMSU-A and AMSU-B) compose the AMSU platform.
The AMSU-A is a cross-track, stepped-line scanning total power radiometer. The
instrument has an instantaneous field-of-view of 3:3ı at the half-power points
providing a nominal spatial resolution at nadir of 48 km. The AMSU-B is a cross-
track, continuous line scanning, total power radiometer and has an instantaneous
field-of-view of 1:1ı (at the half-power points). Spatial resolution at nadir is
nominally 16 km. The antenna provides a cross-track scan, scanning ˙48:95ı from
nadir with a total of 90 earth fields-of-view per scan line.

The AMSU-A and AMSU-B radiance data used here have undergone substantial
preprocessing by NESDIS to remove various biases before being made available.
The data have been statistically limb corrected (adjusted to nadir) and surface
emissivity corrected in the microwave channels. Figure 25.12 shows an example
of the scan position of the two microwave sensors of NOAA-15 and -16 during
the study period. It is clear that NOAA-16 data covers most Southwest Asia and
AMSU-B has a higher density of observations than AMSU-A.

Derber and Wu (1998) pointed out that the presence of a single data point
containing large errors can result in substantial degradation of the analysis and
subsequent forecast. For this reason, a simple quality control has been developed. To
achieve similar radiances between instruments, the observed brightness temperature
data have been modified empirically with different adjustment procedures for each
instrument. In the GSI analysis system, this check includes two steps. First, a
location check (including removal of observations outside the domain) and thinning
procedure (excluding location/time duplicates and incomplete observations) is
performed to ensure vertical consistency of upper-air profiles. Secondly, numerous
quality control (QC) checks are redone based on various quality parameters after
the model brightness temperatures are obtained from the radiative transfer model.
The quality parameters are formulated in terms of the expected observational error
variance as a function of the channels and have been adjusted for their position
across the track of the scan, whether it is over land, sea, snow, sea ice, or a transition
region, for elevation, the difference between the model and the real topography, and
the latitude. In Fig. 25.13, the statistics show that the number of observations used
in the GSI regional data assimilation system is quite different. AMSU-B has many
more observations than the two AMSU-A platforms. For NOAA-15 (Fig. 25.13),
the maximum number of AMSU-B observations for all 30 days range from 50,000
to 150,000 pixels, and for AMSU-A, the number is only around 40,000 pixels. For
NOAA-16, the number of AMSU-B observations exceeded 150,000 pixels, while
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Fig. 25.12 Scan coverage of ATOVS (AMSU-A, AMSU-B) radiance being used in current data
assimilation system at 00Z during May 2006 (Updated from Xu et al. (2009))

the AMSU-A was under 60,000 pixels. On average for the 30 days, the evidence
shows through this two-step checking procedure, the amount of radiance data going
into the model is reduced substantially. The percent usage of AMSU-A radiance
data was over 40 %, but for AMSU-B it was only 16 %.

It is obvious that bias correction and quality control toss out non-useful data. This
is less taxing on the minimization procedure within variational data assimilation
systems However, because of the imperfections inherent in bias correction and
quality control schemes, a lot of valuable observations are tossed out. Future studies
should continue to refine good bias correction and quality control schemes.

For the control experiments described in Sect 25.2 (referred to as CTRL),
the initial conditions generated for the GFS forecasts were assimilated using
several different satellites, such as AMSU-A/B, High Resolution Infrared Radiation
Sounder (HIRS), Microwave Sounding Unit (MSU) and so on. For the purpose
of eliminating the effect of the radiance assimilation in the first guess field from
GFS global analysis data, we first generated a spin-up run for 6 h from 18Z on
previous day to 00Z on the forecast day in the data assimilation (referred to as
DA) experiments; then the AMSU-A, AMSU-B radiance data are assimilated in the
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Fig. 25.13 Total number of radiance and used percentage in the forecast experiments as a function
of date for AMSU-A and AMSU-B in NOAA 15 and NOAA 16, respectively (Updated from Xu
et al. (2009))

ARW WRF forecast model to modify the initial condition at 00Z on each day, and
then integrated using the same forecast lengths as in the CTRL experiment.

25.6.2 Results

To understand clearly the effect of ATOVS radiance data assimilation on the
forecasts over Southwest Asia, three statistical parameters – bias, correlation, and
mean square error skill scores – are calculated against the observation data.
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25.6.2.1 Bias

The absolute bias difference between the DA and the CTRL experiment is defined
as jBiasjDA � jBiasjCTRL. The 30-day’s mean will be investigated first. For the 24-h
forecasts, the absolute bias difference in 2-m temperature forecast (Fig. 25.14a)
shows that the bias is reduced in DA over most of the Southwest Asia region. The
bias in Iran, Afghanistan and Pakistan is on average 0:3–1:8 ıC less than the CTRL
forecasts, with the largest impact occurring on the south or southwest slope of the
Afghanistan Hindu Kush mountain areas (see Fig. 25.1).

The absolute bias difference in 10-m wind speed for 24-h forecasts (Fig. 25.14b)
reveals that the largest impacts to DA are over the Arabian Sea, Persian Gulf and
the border between Pakistan and Afghanistan, where there are minimal high terrain
effects. Whereas the impact of the satellite data assimilation on 2-m temperature
is observed near the mountain areas, while the impact on the 10-m wind speed is
apparentin places far away from these mountain regions, and especially over water
areas. However, the evidence shows that the bias increased in many areas including
southeast Iran, northwest India and the other areas.

Compared to the 24-h forecasts in the CTRL experiment, the precipitation
forecast bias with DA (Fig. 25.14c) decreased slightly over the Mediterranean Sea,
Black Sea coast, Saudi Arabian desert, and the Iranian Zagros mountain areas.
However, the absolute bias of the precipitation forecast for the DA experiment
increased over the Himalaya mountain areas.

For the upper levels, the absolute bias difference in 500 hPa temperature, geopo-
tential height and wind field forecasts are presented in Fig. 25.15. The radiance data
assimilation reduces the forecast bias of the geopotential height (Fig. 25.15b) and
wind field (Fig. 25.15c, d) over most of Southwest Asia areas. These results show
the impact of satellite radiance data assimilation on the upper level geopotential
height and wind field forecasts are not associated with the configuration of terrain.
Meanwhile, the 500 hPa temperature forecasts are modulated by the radiance
assimilation differently (Fig. 25.15a). Here, the satellite data assimilation does not
improve the temperature forecasts over the central Southwest Asia areas including
Saudi Arabia, Iranian Zagros mountains and Afghanistan Hindu Kush mountains.

25.6.2.2 Mean-Square-Error Skill Scores

Murphy (1988) found forecasting skill scores are generally defined as measures of
the relative accuracy of two forecasts, where one of the two forecasts is defined
as a “reference system”. For the following experiments, the CTRL forecasts are
considered as the reference system. Based on the mean-square-error, the skill score
(SS) can be expressed as follows:

SS.d; r; a/ D 1 � ŒMSE .d; a/=MSE .r; a/� (25.6)
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a

b

c

Fig. 25.14 Bias (model – observation) of 2-m temperature (a: ıC), 10-m wind speed (b: ms�1)
and precipitation (c: mm/day) for 24-h forecasts averaged over the 1-month period of May, 2006
(Updated from Xu et al. (2009))
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a b

c d

Fig. 25.15 Bias (model – observation) of temperature (a: ıC), geopotential height (b: gpm), zonal
wind (c: ms�1) and meridional wind (d: ms�1) at 500 hPa for 24-h forecasts averaged over the
1-month period of May, 2006 (Updated from Xu et al. (2009))

Note that SS in (25.6) is a function of the DA forecasts (d ), the CTRL reference
forecasts (r), and the analyzed quantity (a). The MSE (d, a) and MSE (r, a) are
as defined in (25.2) indicating the mean-square-error of DA and CTRL forecasts
relative to the analysis, respectively. Therefore, the greater positive SS values reflect
increasing positive skill over the performance of the reference forecasts.

Figure 25.16 depicted the results for the 2-m temperature, 10-m wind speed and
precipitation forecasts over the nine locations defined in Fig. 25.1. With regards to
the 2-m temperature forecasts, the statistical analysis (Fig. 25.16a) indicates that
all SS in the different locations are positive for the 24- and 48-h forecasts, but the
SS for 48-h forecasts in most regions is greatly diminished in relation to that of
the 24-h forecasts. The SS in the north Iranian Zagros Mountains (B) and west
Himalaya Mountains (E) is about 10–20 % less than that in the lower mountains or
plain areas. Compared with the results shown in Fig. 25.2, we find that the forecast
errors in the high mountain areas are mainly from the model systematic errors and
the nonsystematic errors make a relatively smaller contribution to the total forecast
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Fig. 25.16 Mean square error skill scores (SS) for 2-m temperature (a), 10-m wind speed (b) and
24 h accumulated precipitation (c). Results are plotted for averaged 24- and 48-h forecasts as a
function of defined locations (Updated from Xu et al. (2009))

error. Satellite data assimilation, at least for the AMSU-A and AMSU-B radiances,
seems not to make a significant contribution to the accuracy of surface temperature
forecasts in the higher mountain areas.

In contrast, the 10-m wind speed in Fig. 25.16b shows a reverse SS value from
the surface temperature. Six of nine locations including all high mountain areas
(B, D, E) show a negative skill score, which means the satellite data assimilation
produced a negative impact, but the SS in the Arabian Sea increases by 25 % and
20 % for 24- and 48-h forecasts, respectively. For the precipitation forecasts, the
results suggest (Fig. 25.16c) that the satellite data assimilation only has a positive
impacts on improvement of forecast biases over Iraq (A), North of Iran (B) and
Saudi Arabia desert (F, G). The other five sub-regions become worse.
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Fig. 25.17 Pattern correlation of model forecasts and observation of 2-m temperature, 10-m wind
speed and rainfall for 24-h (a–c) and 48-h (d–f) forecasts (Updated from Xu et al. (2009))

25.6.2.3 Pattern Correlation

In order to evaluate the spatial agreement between the model and the observations
quantitatively, pattern correlations (Walsh and McGregor 1997) were calculated
between the model simulated and observed fields. The pattern correlation �p of two
spatial fields is simply the correlation of a series of points (i ) from one field with
corresponding values from the other field:

�p D
P
.Xoi � NXo/.Xfi � NXf /qP�
Xoi � NXo

�2qP�
Xfi � NXf

�2 (25.7)

where NXo and NXf are the means of the observational field .Xo/ and model simulated
field .Xf / fields respectively.

Figure 25.17 shows the pattern correlation of observational and model forecasted
values for 2-m temperature, 10-m wind speed and precipitation over the whole
prediction domain. The pattern correlation coefficient between observations and
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Fig. 25.18 Diurnal variation over the sub-regions of Southwest Asia shown in Fig. 25.1 for
(a) 2-m temperature (ıC) and (b) 10-m wind speed (ms�1) (Updated from Xu et al. (2009))

model forecasts of these three surface variables increases slightly after the satellite
data assimilation for 24- and 48-h forecast. For a 30-day average in 24-h forecasts
(Fig. 25.17a–c), the correlation coefficient in the CTRL gets to 0.973, 0.268 and
0.575 for 2-m temperature, 10-m wind speed and precipitation, respectively. The
corresponding values for the DA experiment are 0.975, 0.280 and 0.581. The 48-h
forecasts have show results (Fig. 25.17d–f). The results indicate that the forecast
pattern improvement is very limited although the correlation coefficient increases in
the DA experiment.

25.6.2.4 Diurnal Variation of Near Surface Temperature and Wind Field

The analysis of near surface temperature and wind field variability is based on the
eight selected sub-regions (the Arabian Sea (H) was omitted due to the lack of GTS
temperature data there). The diurnal variation of the 30-day mean 2-m temperature
is presented in Fig. 25.18. It is apparent that the amplitude of the diurnal cycle
in model forecasts of temperature in the CTRL and DA are relatively lower than
in the GTS observations over seven of eight selected sub-regions (Fig. 25.18a).
Note that the amplitude of the diurnal cycle in the DA experiment is closer to the
GTS observations than in the CTRL experiment. These results demonstrate that the
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diurnal cycle of surface air temperature can be improved slightly by the assimilation
of satellite radiance data.

For the analysis of the 10-m wind fields, the reference data used is still the NCEP
GFS analysis data. In contrast to surface temperature, it is not readily apparent that
the amplitude of the diurnal cycle has been improved in DA (Fig. 25.18b). The
performance is quite different in these selected sub-regions. The diurnal cycle of
the wind speed (Fig. 25.18b) in the analysis data is considerably larger than in the
model forecasts over the five sub-regions B, D, E, H, and I, where B, D and E are
three high mountain sub-regions. But it is clear that the amplitude of the diurnal
cycle in the DA experiment has been modified closer to the analysis data.

25.7 Summary and Discussion

25.7.1 Summary

This paper presented an objective verification and impact of radiance data assimila-
tion on weather forecasts over the complex terrain areas of Southwest Asia using the
National Center for Atmospheric Research (NCAR) mesoscale model (WRF-ARW)
and Joint Center for Satellite Data Assimilation (JCSDA) GSI analysis system. The
numerical experiments are conducted for a one month period May 2006. The results
are summarized as follows:

The model biases caused by inadequate parameterization of physical processes,
except for the 2-m temperature, are relatively small compared to the nonsystematic
errors resulting, in part, from the uncertainty in the initial conditions. The total
forecast errors at the surface show a substantial spatial heterogeneity; there is a
relatively larger error in the higher mountain areas. However, the sources of the error
indicate a unique difference between temperature, precipitation and wind speed.
While the error in 2-m temperature is mainly from systematic error, which is largely
controlled by the physical representation of terrain (i.e., the errors are positively
correlated with terrain elevation); the errors in 10-m wind speed and precipitation
have a greater contribution from nonsystematic error, which is more likely related
to uncertainty in the initial conditions.

The amplitude of the diurnal cycle of the model 2-m temperature is much smaller
than the GTS observations. However, the model forecasts of the diurnal cycle are
consistent with the NCEP GFS analysis data. There is no evidence of a sharp gap
between the model forecasts and the analysis data.

The ATOVS satellite data provides useful information for improving the initial
conditions, and the model error was reduced to some degree. The bias and mean
square error skill score (SS) shows that satellite data assimilation produces a better
forecast over some areas; however, it seems not to make a significant contribution to
the accuracy of forecasts in the higher mountain areas. Although the improvement
in correlation coefficient growth is very small, the forecast patterns are improved in
the DA experiment,.
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25.7.2 Discussion

In this study, the weather forecasts using the WRF-ARW system were evaluated over
the mountain areas of Southwest Asia. Due to the complexity of the high terrain and
lack of knowledge in the estimation of physical processes in this area, forecasters
should have greater awareness of these limitations of the model forecasts in this
region.

First of all, the parameterization of physical processes plays a significant role
in the forecasting of surface temperature. For the 2-m temperature forecasts, the
systematic error component is larger than the random errors, and it is related to
the elevation of terrain. It should be noted that the areas of high bias shown in
Fig. 25.3a correspond with the areas of rapid elevation change. These are the areas
where a difference in terrain height between the datasets would have the largest
effect. They are also the areas where the difference between the observational
station elevation and mean grid point elevation has the largest value. The lapse rate
effects due to these terrain height differences is probably another reason for the
2 m temperature bias. In contrast with the temperature fields, random errors play
a much bigger role in the forecasting of the upper level precipitation and 10-m
wind fields. The random errors constrain forecasters from presenting high quality
forecast guidance and are caused by a combination of uncertainty in the initial
conditions and unreasonable model scales. The detailed statistical results presented
in Sect. 25.4 are specific to the surface and the upper levels at nine locations. The
basic error characteristics for one forecasting variable change by the selected region,
and may not be representative of errors of other forecast variables. For example, in
the preliminary investigation of temperature errors, the results demonstrated that the
maximum 2-m temperature biases occurred over the high mountain areas while the
temperature biases at 500 hPa were found over most of Southwest Asia and it was
not related to the terrain configuration.

Note that the results presented here are for only one month of experimental
model runs; the accuracy of the forecast performance needs to be further verified
and investigated with more real-time forecasts. As expressed by Manning and
Davis (1997), “These statistics would provide additional information to model users
and alert model developers to those research areas that need more attention.” The
additional and complementary need for verification strategies in the WRF-ARW
model is elucidated in reference papers (Skamarock et al. 2005).

Second, random errors are very complicated. It is only partially attributed to
the uncertainty in initial conditions. An accurate representation of initial conditions
would help users to compare the latest forecast guidance with current observations
and make appropriate adjustments in real time. The assimilation of satellite radiance
observations into a numerical weather prediction (NWP) model provides initial
conditions more closely representative of the true state of the atmosphere. The
results shown here demonstrate the positive impact of satellite data on weather
prediction in most of the Southwest Asia areas, but the impacts are not as obvious in
the high terrain areas, such as the Himalaya Mountain and Iranian Mountain regions.
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This feature implies that the random errors arise not only from the uncertainty in
initial conditions, but also from another parameter like the resolution of the model
horizontal scale. This issue will be investigated in future work.
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Chapter 26
Studies on the Impacts of 3D-VAR Assimilation
of Satellite Observations on the Simulation
of Monsoon Depressions over India

A. Chandrasekar and M. Govindan Kutty

Abstract Variational data assimilation provides a convenient means of optimally
combining the “first-guess” or “background” meteorological fields with the obser-
vations. The background fields are typically obtained from the numerical weather
prediction output of a model while the observations can be either the meteorological
model variables or even non-model variables. In the three-dimensional variational
(3D-VAR) method the analysis state is obtained by optimally combining the “first-
guess” and the “observations” at the same analysis time.

The present article begins with a brief overview of the characteristics of the
monsoon disturbances that form over the Indian region during the summer monsoon
season. Subsequently, the 3D-VAR method is briefly introduced together with
details of the mesoscale model employed in this study. The next section outlines
the results of the impact of the 3D-VAR assimilation of satellite observations
in the simulation of a few monsoon disturbances over India using the Weather
Research and Forecast (WRF) model. The satellite observations utilized in the
3D-VAR assimilation study presented in this article include (1) temperature and
humidity profiles from Moderate Resolution Imaging Spectroradiometer (MODIS),
(2) temperature and humidity profiles from Advanced TIROS Vertical Sounder
(ATOVS), and (3) total precipitable water from Special Sensor microwave imager
(SSMI), respectively. In order to discern the impact of 3D-VAR assimilation of
satellite observations a (base or control) numerical experiment called “control run”
is performed, which is identical to the assimilated run (called “3D-VAR run”) except
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that no observations are assimilated in the control run. The results of the simulation
between the assimilated run and the control run are compared with one another as
well as with global analysis and Tropical Rainfall Measurement Mission (TRMM)
and Quick Scatterometer (QuikSCAT) observations.

The results of the study indicate that the assimilation of satellite observations,
in general, does improve the simulation of the various monsoon disturbances
over India, although the improvements are not uniformly very marked for all the
monsoon disturbances and for all the satellite observations. Assimilating MODIS
temperature and humidity profiles have yielded better results for two of the
depressions as compared to the ATOVS and SSM/I assimilations. Also the results
of the study indicate that assimilating total precipitable water from SSM/I has lower
impact as compared to assimilating temperature and humidity profiles from ATOVS
and MODIS.

26.1 Introduction

26.1.1 Southwest Indian Monsoon

The planetary monsoon circulation is one of the most important components of
the large-scale circulation over the tropical regions (B. Wang 2006). The Indian
summer monsoon circulation is one of the most spectacular manifestations of the
global planetary monsoon circulations. In addition to the planetary scale nature
of the Indian summer monsoon, there are several weather systems (also called
‘monsoon disturbances’), such as monsoon depressions and low-pressure systems
which are embedded within the overall planetary scale monsoon circulation. The
monsoon disturbances that form over India during the June to September summer
monsoon season, includes systems such as monsoon depression, and low-pressure
systems such as the onset vortex, the mid-tropospheric cyclone and offshore
trough/vortex respectively. The above-mentioned monsoon disturbances not only
provide for copious rainfall over several regions over India, but also contribute
significantly to the seasonal Indian monsoon rainfall. The monsoon disturbances
are usually associated with the strengthening of the monsoon trough over India and
in most situations, herald the “active phase” of the Indian summer monsoon rainfall
(Krishnamurti et al. 1977; Krishnamurti and Ardanuy 1980; Saha et al. 1981). The
monsoon trough is a trough in the surface pressure chart over India oriented along
the northwest-southeast direction from the heat low over Pakistan to the north Bay
of Bengal and is seen during the summer monsoon season. When the axis of the
monsoon trough is south of its normal position with its eastern end dipping into the
Bay of Bengal, active summer monsoon conditions prevail over India. This active
phase causes heavy rainfall over the plains of north India, central parts of India
as well as along the Indian west coast. Furthermore, during such active phases,
monsoon depressions are known to form over the north Bay of Bengal.
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26.1.2 Monsoon Depression

The monsoon depressions (Sikka 1977) are systems that are intermediate in terms
of intensity between the relatively weak low-pressure systems that have wind
speeds less than 8:5m s�1 and the tropical cyclones that have associated wind
speeds exceeding 17m s�1. The preferred region of formation of these monsoon
depressions over India is between 20ı and 30ıN and 80ı and 90ıE. Typically
the average number of monsoon depressions that can form over India during the
summer monsoon months of June to September is about 6 with the month of
August accounting for about two monsoon depressions. The maximum number
of monsoon depressions, that forms over India is however higher. While some
of the monsoon depressions owe their origin to weak easterly waves traveling
from the east, the other depressions can develop in situ over the North Bay of
Bengal. The monsoon depressions that form over North Bay of Bengal have a
horizontal radial extent of 1,000 km. Monsoon depressions are systems known to
be typically cold core below 700 hPa and warm core aloft. Because of the above
fact, the strongest winds associated with the monsoon depressions are observed
near 700 hPa. At higher levels, the cyclonic circulation associated with the monsoon
depression weakens and is absent at and above 300 hPa. The location of the center of
the monsoon depression slopes south-westward with height. The winds associated
with the monsoon depressions are asymmetric with stronger winds south of the
depression center at low levels. The maximum horizontal convergence of moist
air together with the associated maximum spatial precipitation pattern is found in
the south-west sector of the monsoon depression. The principal zone of heaviest
precipitation associated with a monsoon depression occurs at about 200–400 km
away from the center while a secondary zone of relatively lower rainfall is seen at
about 800 km to the west of the depression center.

Typically the monsoon depression moves in the west-to-west to north-west
direction (Mooley and Shukla 1989). During the months of June and September,
the movements of the monsoon depression can follow either the northerly direction
or they can recurve over the Bay of Bengal. However, during the other 2 months of
July and August, most of the monsoon depressions move in the west-north-westerly
direction over India. During the month of July, the average speed of a monsoon
depression is between 1.2 and 2:4ms�1 to the east of 85ıE while the average speed
of the depression is between 4.8 and 9:6ms�1, to the west of 85ıE. The average life
period of a monsoon depression is about 5 days for a depression which has formed
over the Bay of Bengal while the same is about 3 days for a depression that has
formed over the Arabian Sea and over land.

The monsoon depressions (Shukla 1978) which form during the Indian summer
monsoon season do not generally intensify into a tropical cyclone. The existence
of low level westerly winds together with strong upper level easterlies during the
Indian summer monsoon season is responsible for the existence of strong wind shear
in the vertical. Such strong vertical wind shears do not aid in the manifestation
of penetrative convection, the latter essential for the formation of large scale
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organization of cumulus convection associated with a tropical cyclone. Monsoon
depressions generally weaken in intensity after reaching the central parts of India.
These then weaken to low pressure systems and move in a west-northwest direction
and merge with the seasonal low over northwest India (Sikka 1980).

26.2 Data Assimilation

Geophysical (atmospheric/oceanic) information is essentially utilized to test hypoth-
esis (i.e. testing our understanding of the system), attribute cause and effect (i.e. to
understand the cause of geophysical events) and to make forecasts, i.e. to predict
future geophysical events (Lahoz et al. 2010). Broadly, the geophysical information
is available through two broad sources, namely, (1) “observation” which are nothing
but measurements of the geophysical system, and (2) “models”, which have been
built based on the earlier “measurements” gathered of the system as well as our
understanding of the evolution of the geophysical system. It is true that both
observations and models have errors. The model errors arise due to the fact that the
models are imperfect in the sense that our understanding of the physical processes
associated with the geophysical system is somewhat “incomplete”. Furthermore,
model errors also appear due to the need to limit resolution of the digitization of
the continuous governing equations due to computational costs. The observational
errors are characterized as random, systematic and also due to representativeness
(Lahoz et al. 2010). Furthermore, the “observations” have gaps since the measure-
ments of the system are in general discrete in space and time. It is logical to fill
the gaps in the “observation” by using the information based on the behaviour
of the system, namely the “models”. A methodology of objectively combining
“observations” and “model” information to yield an “optimum” or “best estimate”
of the geophysical system is called “data assimilation”.

The basic premise in the data assimilation methodology is that combining
“observations” and “model” information together with knowledge of their respective
errors will yield combined information that is more valuable than the individual
information, provided the process of combining both the information is robust.
In data assimilation, the model takes the information from the observation and
propagates this information to unobserved regions successfully filling in the so
called “gaps” in the observation. Data assimilation can also provide estimation
of unobserved quantities. While Panofsky (1949) utilized polynomial functions
to fit to the observation values, in the early development of objective analysis of
meteorological data, Gilchrist and Cressman (1954) improved the above method by
introducing the concept of “region of influence” for each observation. Gilchrist and
Cressman also proposed the use of a background field from a previous forecast.
Bergthorsson and Doos (1955) optimized the weights given to each observation
based on the accuracy of the various types of observations while Cressman (1959)
proposed variation of above method involving multiple iterations of the analysis.
This was followed by data assimilation method based on “optimal interpolation”



26 Studies on the Impacts of 3D-VAR Assimilation of Satellite Observations . . . 647

(OI) in which the weights given to observations were related to observation errors
(Gandin 1963).

Furthermore, the OI method considered and utilized the importance of the back-
ground field information and its error characteristics as useful source of information.
The OI method, when first implemented in operational centers worldwide in late
1970s and early 1980s, had to invoke major approximations in order to meet the
calculations feasible. The advent of variational methods for data assimilation in the
mid 1980s saw the emergence of an important breakthrough in data assimilation
research.

26.2.1 Variational Data Assimilation

The underlying physical principle of variational data assimilation schemes is that
the analysis xa is the optimum state vector that minimizes a global “cost function”
J, the latter providing a measure of the mismatch between a model state vector x
and the background state xb and observation y. This cost function as utilized in
three-dimensional variational (3D-VAR) method is given as

J D 0:5 Œx � xb�TB�1Œx � xb�C 0:5 Œy � H.x/�T R�1 Œy � H.x/� (26.1)

where B is error covariance of background state, R is error covariance of observation
(including the representativeness errors) and T indicates transpose. The 3D-VAR
method was implemented operationally in mid 1990s at the National Centre for
Environmental Prediction (NCEP) first and later at European Centre for Medium
Range Weather Forecast (ECMWF). The minimization of cost function J in 3D-VAR
is usually performed in “control space”. The error covariance of the background
state B is usually estimated from the difference between pairs of forecasts that verify
at the same time (Parrish and Derber 1992), the so called “NMC” method. The
observations are assumed to have no bias and no serious errors associated with the
malfunctioning of instruments. The observation errors are assumed to be Gaussian.
The 3D-VAR method assumes that all observations are valid at the same time and
further assumes that the background errors and observation errors are not correlated.
An important advantage of the variational method is that one can utilize observation
variables which are different from the model state variables.

An important extension of the 3D-VAR method is called the “four-dimensional
variational method” (4D-VAR) in which the cost function minimization is per-
formed over a time window, the latter accounting for observations spread over time
and lasting typically 6 h or 12 h for operational weather forecasts. The cost function
in the 4D-VAR method is as follows

J D 0:5 Œxo � xb
o�

TB�1
o Œxo � xb

o�C 0:5

NX
iD1

Œyi � H.xi/�
T R�1 Œyi � H.xi/� (26.2)
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In the 4D-VAR method it is necessary to estimate the time evolution of the
perturbation using a linear model and to calculate the adjoint of the above linear
model. Furthermore the 4D-VAR method is considered to be computationally
intensive since this involves forward integration of the model and backward
integration of the adjoint model, over many iterations to obtain the minimization
of cost function. In this chapter, results of our studies on the impacts of 3D-VAR
assimilation of satellite observations on the simulation of monsoon depressions over
India are provided. Although 4D-VAR is superior, our study has been restricted
to 3D-VAR for the following reasons, (1) we felt that it is more appropriate and
prudent to take up 3D-VAR studies first rather than go for 4D-VAR, and (2) the
computational costs associated with the study of 4D-VAR.

26.2.2 Assimilation of Satellite Observation

The basic problem in numerical weather prediction (NWP) is that the observa-
tions are at least two orders smaller than the number of degrees of freedom
of the model. Most meteorological systems form over the sea which is a data
sparse region. Satellites provide an excellent platform to obtain observations
of the atmosphere over the sea. Unlike the conventional observations such as
radiosondes/rawinsondes, the quantities measured by satellites do not directly relate
to the atmospheric quantities such as temperature, humidity, wind direction, wind
speed, etc. What essentially satellite measures are the radiation that reaches the top
of the atmosphere at given frequencies in the case of passive radiometers and the
back scattered radiation emitted by a surface (say a sea surface) in the case of active
scatterometer.

The most common of satellite observations to be assimilated in a “data assim-
ilation” methodology is the satellite derived vertical air temperature and humidity
profiles. Other important meteorological observations obtained from satellite are
the sea surface temperature (SST), surface wind speed and wind direction over
the sea, rainfall rate, total precipitable water, cloud motion wind vector (CMV)
at different levels of the atmosphere. While the satellite derived temperature and
humidity profiles can be directly assimilated in a NWP model, the variational
method allows for the direct assimilation of satellite radiance observation. For direct
satellite radiance assimilation, the observational operator H incorporates a radiative
transfer model that maps the atmospheric profile to radiance space. The above
procedure of directly assimilating satellite radiance is better since radiance errors
are more easily characterized than the retrieval errors. The following subsections
provide brief information of the various satellite sensors (QuikSCAT, SSMI,
ATOVS and MODIS) which are normally utilized in 3D-VAR assimilation impact
studies.
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26.2.3 Various Satellite Observations

26.2.3.1 QuikSCAT

The National Aeronautical and Space Administration (NASA) launched the Quick
Scatterometer (QuikSCAT) in June 1999 at an altitude of 800 km with a swath
width of 1,800 km and having an orbital period of 101 min in a polar orbiting
configuration. The sensor (Seawinds) aboard the QuikSCAT is a 13.4 GHz Ku-band
conical-scanning microwave radiometer which measures the ocean surface wind
vector from the relationship between the sea surface roughness and the back scat-
tered radar signal. The accuracy of the retrieved ocean surface wind from QuikSCAT
is about 2m s�1 in wind speed and 20ı in wind direction for winds of magnitude
3–20m s�1 (Shirtliffe 1999). It is known that rainfall can affect the accuracy of
the scatterometer sea surface wind measurements (Weissman et al. 2002; Hoffman
and Leidner 2005). While in the scatterometer, light winds can get overestimated
by excess back scatter from the rain, strong winds can be underestimated due to
rainfall attenuation. The QuikSCAT Operational Standard Data Products (L2B) are
being processed and distributed by NASA Jet Propulsion Laboratory (JPL) Physical
Oceanography Distributed Active Archive Center (PO DAAC). The sea surface
wind vectors retrieved from QuikSCAT have been validated with wind data from
ocean buoys and were found to be in good agreement with the buoy data (Ebuchi
et al. 2002) with the root mean square (rms) differences of about 1:01m s�1 and 23ı
for the wind speed and wind direction, respectively. The horizontal spatial resolution
of the QuikSCAT data wind vector data is 25 km while the reference height of the
surface wind vector from QuikSCAT is 10 m.

26.2.3.2 Spectral Sensor Microwave Imager (SSM/I)

The SSM/I sensor was first launched aboard the polar orbiting Defense Mete-
orological Satellite Program (DMSP) of the Unites States Navy in June 1987.
The SSM/I sensor is a conical scanning, linearly polarized, four-frequency and
seven channel passive microwave radiometer. The SSM/I sensor aboard the DMSP
satellite has an orbital period of 102 min. The SSM/I sensor also has an incidence
angle of 53ı, a swath width of 1,400 km, a mean altitude of 830 km and a horizontal
spatial resolution of 25 km. Detailed information about the SSM/I sensor is given
in Hollinger (1989). The retrieved total precipitable water (TPW) observation from
the SSM/I satellite is used as observations in our recent study whose results will be
presented in the following section. Also, version–5 multistage regression algorithm
is used for the retrieval of SSM/I data products.

26.2.3.3 Advanced TIROS Operational Vertical Sounder (ATOVS)

The Advanced (Television and Infrared Observational Satellite) TIROS Operational
Vertical Sounder (ATOVS) is a sounding instrument package, first flown on the
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National Oceanic and Atmospheric Administration (NOAA)-KLM satellite series.
The ATOVS sensor comprises of the Advanced Microwave Sounding Units A and
B (AMSU-A, AMSU-B), and the High Resolution Infrared Radiation Sounder
(HIRS/3). The NOAA-TOVS has three infrared channels at 8.3, 7.3, and 6:7 �m
and can provide moisture information for the following three layers: 1,000–700 hPa,
700–500 hPa, and 500–300 hPa. The variable scale-height algorithm is used to
derive the vertical humidity profile at standard levels 1,000, 850, 700, 500, 400
and 300 hPa from the precipitable water vapor in the three layers. The method and
its validation are outlined in Rajan et al. (2002). Rajan et al. (2002) found that the
associated root mean square error (RMSE) when validated against near radiosonde
observations was less than 10 %. The temperature sounding data used in this study
are from the HIRS/2 instrument onboard TOVS. TOVS satellite makes a morning
and an evening pass (around 7:30 A.M. and 7:30 P.M. Indian Standard Time) over
the Indian subcontinent. Hence, the TOVS temperature and humidity profiles are
ingested at the nearest analysis time, i.e., at 00 and 12 UTC.

ATOVS data archived in the NOAA Comprehensive Large Array Stewardship
system (CLASS) is available in the raw Level 1b format. The ATOVS data has
been quality controlled, and assembled into discrete data sets, and to which the
calibration information as well as the information of location on Earth are appended.
This Sounding and Imager Data from the High Resolution Picture Transmission
(HRPT) direct read out stream of NOAA-ATOVS satellite is processed end-to-
end using the ATOVS and AVHRR (Advanced Very High Resolution Radiometer)
Processing Package (AAPP). The output of AAPP is called the Level 1d data,
in which factors such as instrument reflectance and/or brightness temperatures
are mapped on a common instrument grid (HIRS in this study) with navigation,
calibration and contamination information appended. This Level 1d data is then fed
to the International ATOVS Processing Package (IAPP); to retrieve bias corrected
parameters for assimilation. The data has a horizontal resolution of about 42 km
and gives temperature and humidity sounding in 42 vertical levels, up to 10 hPa
level. Satellite data observed and pre-processed in the time window of ˙1:5 to ˙2 h
from the assimilation time are ingested. English et al. (2000) investigated the impact
of assimilating ATOVS data in a numerical weather prediction (NWP) model, and
concluded that the information provided by the radiance observations reduced the
forecast errors by about 20 % in the southern hemisphere and by about 5 % in the
northern hemisphere.

26.2.3.4 Moderate Resolution Imaging Spectroradiometer (MODIS)

The “Moderate Resolution Imaging Spectroradiometer” (MODIS) is a key instru-
ment onboard the Terra and Aqua satellites launched in 1999 and 2002, respectively.
Both Terra MODIS and Aqua MODIS are viewing the entire Earth’s surface every
1–2 days, acquiring data over several wavelengths in two important regions of the
electromagnetic spectrum, namely the near-infrared (NIR) and the infrared (IR)
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to monitor atmospheric temperature and moisture, respectively. The MODIS data
is extremely valuable as it can be utilized to improve our understanding of the
processes in the Earth system encompassing the land, oceans, and in the lower
atmosphere of the Planet Earth. The MODIS observations are indeed performing
a vital role in the development of globally, interactive Earth system models which
are utilized to predict the global changes accurately. The predicted global changes
can assist policy framers in arriving at sound and pragmatic decisions concerning
the protection of the Earth’s environment. A brief technical description of the
MODIS instrument is as follows. The MODIS instrument provides high radiometric
sensitivity in 36 spectral bands ranging in wavelength from 0.4 to 14:4 �m. Two
bands are imaged at a nominal resolution of 250 m at nadir, with five bands at
500 m, and the remaining 29 bands are at 1 km resolution. The MODIS temperature
and water vapour profiles consists of 30 gridded variables related to atmospheric
stability, atmospheric temperature, moisture profiles, total atmospheric water vapour
and total ozone. All the above-mentioned variables are available during both day
time and night time conditions at 5 km pixel resolution whenever nine field of
view (FOV) pixels or more are cloud free. The atmospheric temperature and
humidity profiles available at high spatial resolution from MODIS provides an
extensive source of information on the atmospheric structure in clear skies and
hence can be utilized most fruitfully to improve the initial state of the atmosphere.
A validation of temperature and humidity profiles with concurrent Arabian Sea
Monsoon experiment (ARMEX) Global Positioning System (GPS) radiosonde
data was performed during July 2002. The root mean square error (RMSE) of
temperature below 500 hPa was 1–2:5ı K while the RMSE for the specific humidity
profile was less than 2 gkg�1 (Simon and Rahman 2003). The temperature and
humidity profiles available on 14 vertical levels were utilized in this study.

26.2.3.5 Tropical Rainfall Measuring Mission (TRMM)

The Tropical Rainfall Measuring Mission (TRMM) sensor provides for a broad
sampling footprint between 35ıN and 35ıS, and is responsible for the detailed and
comprehensive dataset on the space and time distribution of rainfall and latent heat-
ing over the oceanic and tropical continental regions. The TRMM algorithm 3B42
provides adjusted 24 h cumulative estimates of the rain using merged microwave
and infrared precipitation information (Adler et al. 2000). The TRMM adjusted
Geostationary Observational Environmental satellite precipitation index (AGPI)
is produced by using cases of coincident TRMM combined instruments with
TRMM Microwave Imager (TMI) and Precipitation Radar (PR) algorithm (Haddad
et al. 1997). The 3B42 algorithm provides for a three hourly rain rate at 0:25ı�0:25ı
horizontal resolution. In this study the TRMM data obtained by using the 3B42V6
algorithm was utilized for the validation of model predicted rainfall.
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26.3 Literature Study of Earlier Assimilation Studies

Numerical Weather Prediction, especially in the short-range requires accurate
initial conditions. A large number of studies have shown that assimilating various
observations such as satellite data, Doppler Weather Data have improved the initial
conditions and have resulted in better model performance (Gal-Chen et al. 1986;
Lipton and Vonder Haar 1990; Lipton et al. 1995; Ruggiero et al. 1999; Zou and
Xiao 2000; Pu et al. 2002; Fan and Tilley 2005; Chou et al. 2006; Chen 2007; Zhang
et al. 2007; Zapotocny et al. 2007; Govindankutty et al. 2008; Kelly et al. 2008;
Singh et al. 2008a; Singh et al. 2008b; Brennan et al. 2009; Rakesh et al. 2009a;
Sinha and Chandrasekar 2010; Singh et al. 2010; Govindankutty et al. 2010; Singh
et al. 2011a,b; Kumar et al. 2011; Singh et al. 2011c). Chen (2007) investigated and
compared the impact of assimilating SSM/I, and the QuikSCAT satellite surface
winds, on the simulations of Hurricane Isidore. The results of the above study
indicated that the increment of the QuikSCAT wind analysis was higher than that
from the SSM/I analysis. Furthermore, the results also showed that the increase
in low-level wind speeds enhanced the air-sea interaction processes and improved
the simulated intensity for the hurricane in the assimilated QuikSCAT run. Also,
the non-availability of the surface wind direction information from the SSM/I data
resulted in less improved simulation as compared to the QuikSCAT assimilated run.
The above study showed that the position of the center of hurricane over the ocean
which is usually misrepresented at the model initial time can be improved due to
assimilation of high-resolution surface wind information.

Rakesh et al. (2009b) investigated the impact of assimilating QuikSCAT surface
wind vectors, SSM/I wind speed and the Total Precipitable Water (TPW) for
forecasts of wind, temperature, and humidity from 1 month long assimilation
experiments during July 2006. In the above study, the control (without assimilation
of satellite data) as well as 3D-Var sensitivity experiments (with assimilation of
satellite data) using MM5/WRF were made for 48 h starting daily at 0000 UTC
July 2006. Rakesh et al. (2009b) utilized the control run results as a baseline for
assessing the impact of MM5/WRF 3D-Var satellite data sensitivity experiments.
Rakesh et al. (2009b) found from their results that the forecast errors in predicted
wind, temperature and humidity at different levels are lower in WRF model as
compared to the MM5 model, except for the temperature prediction at lower
level. Also, their results indicated that the rainfall pattern and prediction skill
from day one and day two forecasts by WRF model is superior to the MM5
model. Furthermore, Rakesh et al. (2009b) found that the spatial distribution of
forecast impact for wind, temperature, and humidity fields showed that on an
average, for 24 and 48-h forecasts, the assimilation of satellite data did improve
the MM5/WRF initial conditions and resulted in reduced errors of the predicted
meteorological fields. Among the assimilation experiments, MM5/WRF wind speed
prediction was found most beneficial due to ingestion of QuikSCAT surface wind
and SSM/I TPW data while for the temperature and humidity prediction the
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improvement in assimilation is mostly due to ingestion of SSM/I TPW data (Rakesh
et al. 2009b). The results of the study also indicated that the largest improvement in
the MM5/WRF rainfall prediction was associated with the SSM/I TPW assimilation.
The assimilation of only the SSM/I wind speed in MM5/WRF model, however
resulted in some degradation in the simulation of the humidity and rainfall fields
(Rakesh et al. 2009b).

Singh et al. (2011a) have recently investigated the impact of ATOVS radiance
on the analysis and forecasts of WRF model over the Indian region during the
2008 summer monsoon and found a positive impact of the assimilated ATOVS
radiance on both the analysis as well as the short-range forecasts. The above study,
in addition to the control (no assimilation) run, also utilized satellite radiances from
AMSU-A, AMSU-B and HIRS sensors. Singh et al. (2011b) have also compared
the performances of Kalpana and HIRS water vapor radiances in the WRF 3D-Var
assimilation system for the period 10–20 July 2008 over the Indian region and found
that the assimilation of Kalpana radiances provided significant improvements to the
results as compared to the assimilation of HIRS radiances. Singh et al. (2011c)
investigated the impact of assimilating Oceansat2 surface wind vectors for the
month of July 2010 over the Indian region. The results of the above study indicated
that the assimilation of Oceansat2 surface wind vectors led to small, but positive,
impact on the forecast (particularly later hours of forecast) of mid-tropospheric
moisture, temperature, and upper tropospheric winds. Also, the assimilation of
Oceansat2 surface wind vectors improved the precipitation forecast (as compared
to the control run) for moderate to heavy rainfall thresholds when validated against
TRMM rainfall.

26.4 Case Studies of the Impact of Satellite Data
Assimilation Using WRF-3D-VAR System on Three
Monsoon Depressions That Formed Over India

This section investigates the impact of assimilation of the vertical profiles of air
temperature, and humidity from the MODIS and the ATOVS, and total precipitable
water (TPW) from the SSM/I sensors using the WRF model. Three cases of
monsoon depressions have been considered for the above investigation in the present
study: (1) a monsoon depression that formed over the Bay of Bengal, between
September 19–22, 2006, (2) a monsoon depression that formed over the Bay of
Bengal, between September 02–05, 2006, and (3) a monsoon depression that formed
over the Bay of Bengal, between June 18–22, 2007. The following sections represent
descriptions and features of the monsoon depressions investigated, the experimental
design, together with the results and discussions as well as conclusions of the
study.
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26.4.1 Monsoon Depression That Formed During 19 to 22
September 2006

A low pressure area formed over the north-east Bay off Arakan coast and the
adjoining east-central Bay in the evening of 18 September 2006. The system was
over the north-east Bay on 19 September 2006 and became well marked in the same
evening. The low pressure area moved over Gangetic West Bengal and adjoining
Bay on 20 September 2006 and subsequently intensified into a depression on 21
September 2006 03 UTC, close to Jamshedpur, India. The depression remained
stationary over Jamshedpur till 21 September 2006 12 UTC and then moved slightly
north-westwards and was centered in Jharkhand, about 50 km east of Ranchi, at
03 UTC and 12 UTC of 22 September 2006. The depression moved in the north-
eastward direction and lay centered close to Dhanbad on 23 September 2006 03 and
12 UTC. The land depression caused heavy rainfall over the north-eastern and the
central parts of India during 21–24 September 2006.

26.4.1.1 Numerical Experiment

The WRF model is configured with 24 vertical levels and with two domains of 36
and 12 km grid spacing, using a two way nesting option. The number of grid cells in
the east–west (EW)-north–south (NS) direction being, 118� 130 and 271� 271 for
the coarser and finer resolutions, respectively. The physics options employed in the
WRF model utilized in this study include the WRF Single Moment (WSM) class-
3 simple ice scheme for micro physics, Rapid Radiative Transfer Model (RRTM)
scheme for long wave radiation, NOAH land surface model for land surface, Kain-
Fritsch scheme for cumulus parameterization and the Yonsei University (YSU)
scheme for the Planetary boundary layer parameterization scheme. The NCEP-GFS
forecast data available at a horizontal resolution of 1ı � 1ı and a time resolution
of 6 h have been used to develop the initial and lateral boundary conditions. Four
numerical experiments are performed to study the impact of temperature, humidity
and total precipitable water separately in the simulated structure of monsoon
depression. All the simulations are started with the same initial conditions on 18
September 2006 18 UTC, but the observations are assimilated at different times
depending on the availability of the satellite data over the domain. For a given
analysis/forecast time the satellite observations that fall in ˙90min window is
assimilated. The first experiment, called the control (CTRL) run, has utilized the
NCEP-GFS data for creating initial and lateral boundary conditions. The model
integrations are performed from 18 September 2006 18 UTC to 22 September 2006
12 UTC without any assimilation of satellite observations. The second experiment,
called the “ATOVS run” which started at 18 UTC on 18 September 2006 and has
assimilated the ATOVS temperature and humidity profiles into the model using
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Fig. 26.1 The 36 km (outer domain) and 12 km (inner domain) utilized in this study

3D-VAR after 6 h of forecast; i.e., from 19 September 2006 00 UTC and has ingested
the ATOVS observations in a 12 h interval up to 00 UTC 20 September 2006.
The model is subsequently integrated for the next 60 h in a free forecast mode
without any further assimilation of the satellite data. The third experiment is named
as the “MODIS run” in which the vertical profiles of temperature and humidity
observations from the MODIS satellite have been assimilated in 12 h interval from
18 September 2006 18 UTC to 19 September 2006 18 UTC and the model was
subsequently run in a free forecast mode up to 22 September 2006 12 UTC. The
high resolution MODIS data is subjected to “thinning” before ingesting the data to
the observational pre-processor. The fourth experiment, named as the “SSM/I run” is
similar to the ATOVS experiment except that it incorporates SSM/I total precipitable
water (TPW) instead of ATOVS temperature and humidity observations. All the
model runs are subjected to a 6 h interval data cycling to maintain the dynamical
consistency of the model simulation The CTRL run is subjected to data cycling
without any assimilation of observations (Chen et al. 2008). Figure 26.1 shows the
model domains with the outer domain depicting horizontal grid resolution of 36 km
while the inner domain shows the 12 km horizontal resolution. All the results shown
in this article are from the finer 12 km resolution only.
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Fig. 26.2 Analysis increment at 850 hPa in the wind speed of (a) MODIS, (b) ATOVS and
(c) SSM/I for 19–22 September 2006 depression

26.4.1.2 Results and Discussion

Initial Conditions

The impact of assimilation of satellite observations on the initial conditions can be
obtained by calculating the analysis increment. Analysis increment can be defined
as the difference in the model variables before and after the assimilation of the
observations. It does not give a qualitative or quantitative verification whether the
initial condition from satellite data assimilation is better or worse, but provides a
measure of how much the observation impacted the initial analysis. Figure 26.2
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depicts the analysis increments due to assimilation of the satellite observations
such as MODIS, ATOVS and SSM/I on the 850 hPa wind speed; the figure shows
clear differences in the wind speed at 850 hPa. In contrast to the increment due
to the assimilation of SSM/I TPW, which are negligibly small, the assimilation
of MODIS and ATOVS temperature and humidity profiles have shown significant
and marked analysis increment values over the domain of study. Among the three
3D-VAR experiments, the ATOVS 3D-VAR assimilation has resulted in the largest
spatial extent of positive value of increments up to 2:5ms�1 and the largest negative
values of increments up to �2ms�1 when compared to the MODIS and the SSM/I
3D-VAR experiments.

Mean Sea Level Pressure (MSLP) fields

Figure 26.3 shows the MSLP (a–d) and the lower tropospheric wind at 850 hPa
(e–h) from NCEP-FNL (Final Analysis), and 24 h accumulated precipitation from
TRMM satellite (i and j) for the 19–22 September 2006 depression. The depression
is initially shown as a low pressure area with a minimum central MSLP of 1,000 hPa,
which later intensified into a depression with a central minimum pressure of 996 hPa
as evident from Fig. 26.3a–d. The maximum accumulated precipitation of TRMM
satellite observations are seen over the west coast of the Bay of Bengal during 20–22
September 2006.

Figure 26.4a–p depicts the simulated MSLP patterns on 20 September 2006
00 UTC and subsequent predicted values at 24, 48 and 60 h of forecast for the
CTRL experiment (Fig. 26.4a–d), the ATOVS experiment (Fig. 26.4e–h), the SSM/I
(Fig. 26.4i–l) experiment and the MODIS (Fig. 26.4m–p) experiment, respectively.
The simulated MSLP fields are then compared with the NCEP FNL analysis. The
CTRL run simulates an intense depression with a minimum central pressure of
990 hPa. The system as simulated in the CTRL run intensifies in the 24, 48 and 60 h
of forecast. The ATOVS experiment simulates the weakest depression of all the four
numerical experiments, with a lowest central minimum pressure of 998 hPa. The
simulated MSLP pattern of the SSM/I experiment is similar to that of the CTRL
experiment, clearly indicating that the ingestion of the SSM/I total precipitable
water has not produced significant impact in the numerical simulation. The MODIS
experiment however simulates a well organised monsoon depression with the well
known west-north-westward movement of the depression (Godbole 1977). Also,
the results of the MODIS experiment simulate the depression well in terms of the
location of the depression center and not with respect to the intensity. Among the
four experiments, the MODIS run shows the maximum inland penetration, though
there are some inadequacies in accurately simulating the location of the depression
centre vis-a-vis the NCEP-FNL analysis. In terms of intensity of MSLP, the ATOVS
experiment results are quite close to the NCEP-FNL values than the other three
experiments.
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a b c d

e f g h

i j

Fig. 26.3 NCEP-FNL analysis sea level pressure fields at 00 UTC on 20–22 September 2006
(a–d), NCEP-FNL lower tropospheric wind speed (850 hPa) (e–h) and 24 h accumulated TRMM
rainfall (i–j) for 19–22 September 2006 depression

Wind Speed

The lower tropospheric wind vectors simulated by all the four experiments at
850 hPa are shown in Fig. 26.5 which includes the CTRL run (Fig. 26.5a–d), ATOVS
experiment (Fig. 26.5e–h), SSM/I experiment (Fig. 26.5i–l) and MODIS experiment
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Fig. 26.4 Sea level pressure simulated by CTRL (a–d), ATOVS (e–h), SSM/I (i–l) and MODIS
(m–p) runs on 20 September 2006 00 UTC and at 24, 48 and 60 h of forecast for 19–22 September
2006 depression
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Fig. 26.5 Wind vector simulated by CTRL (a–d), SSM/I (e–h), ATOVS (i–l) and MODIS (m–p)
runs on 20 September 2006 00 UTC and at 24, 48 and 60 h of forecast for 19–22 September 2006
depression
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(Fig. 26.5m–p) for the 19–22 September 2006 depression. All the three experiments
other than the ATOVS run have simulated higher wind speed values when compared
to the NCEP-FNL analysis. The ATOVS run has simulated the weakest wind
patterns among all the four experiments. The spatial distribution of the 850 hPa
wind vectors depict an intense cyclonic circulation for the CTRL and the SSM/I
experiments as compared to the ATOVS and the MODIS runs. From Fig. 26.5p,
it is evident that the cyclonic circulation of the lower tropospheric wind started
weakening during the 60 h of forecast of the MODIS experiment. On 20 September
2006 at 00 UTC, the simulated model results indicate that the monsoon current
has strengthened over peninsular India and the central Bay of Bengal region, a
feature associated with fresh surge of cross-equatorial air that usually precedes the
formation of a monsoon depression (Sikka 1977).

Forecast Impact Parameter

In order to investigate further on the impact of assimilation on the simulated
wind speed, “forecast impact” parameter (FI) of each assimilation experiment
has been calculated with reference to the QuikSCAT wind observations for the
19–22 September 2006 depression. Following Wilks (2006), the forecast impact (FI)
parameter for any variable based on the ratio of root mean square error (rmse) in the
model forecasts for the control and the assimilation experiments can be defined as,

FI D
�
1 � rmseE

rmseC

�
� 100% (26.3)

where rmseE and rmseC are the rmse of the assimilation and control experiments
with both the rmses being calculated with respect to the observations. The spatial
distribution of the FI parameter for all the three assimilation experiments is shown in
Fig. 26.6. A positive value of the FI implies the improvement in the predicted wind
speed due to the assimilation of observations. All the three assimilation experiments
exhibit positive “FI” parameter over most of the Bay of Bengal region. Among the
three assimilation experiments, the ATOVS run shows the highest spatial extent of
maximum positive value of the “FI” parameter, which is above 50 %. Though the
SSM/I experiment also exhibits positive “FI” parameter values over the domain,
its magnitude of the “FI” parameter is lower as compared to the MODIS and the
ATOVS experimental “FI” values.

Root Mean Square Error of Wind Speed Profiles

The domain averaged rmse for the wind speed profiles at different levels and times
are presented in Table 26.1 for the 19–22 September 2006 depression. RMSE values
are calculated with reference to the IMD rawinsonde observations. The model
values corresponding to each observation are taken from the nearest model grid
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a b c

Fig. 26.6 Spatial distribution of forecast impact (FI) for (a) MODIS, (b) ATOVS, (c) SSM/I
calculated against quikscat observations. for 19–22 September 2006 depression

corresponding to the observation location. The improvements if any, in the results
of the assimilation experiments are established by comparing its RMSE values
with that of the CTRL run. At 950 hPa level, the RMSE value of the wind speed
is found to be higher for all the assimilation experiment when compared to the
CTRL run for the forecast valid on 20 September 2006 12 UTC. The ATOVS
experiment gives lower RMSE values for wind speed at 920, 850, 780, 700, 500
and 300 hPa levels while the MODIS experiment gives lower RMSE at 850, 780,
700, 620 and 300 hPa levels when compared to CTRL run. The RMSE values of the
SSM/I experiment is found to be higher than that of the CTRL run and the other
two experiments in almost all the levels for 20 September 2006 12 UTC. On 21
September 2006 12 UTC, it can be seen that the RMSE of the wind speed of the
assimilated experiments have reduced in almost all the levels when compared to
the CTRL run. On the third day of the forecast (22 September 2006 12 UTC), the
wind speed simulated by the MODIS experiment has exhibited lower RMSE values
up to 700 hPa level from the surface. However, above 700 hPa level, the RMSE of
the wind speed rapidly increases and persists till the upper levels of the troposphere
when compared to the CTRL experiment. The rms error values of the wind speed
are lower for the ATOVS experiment when compared to the CTRL run in the lower
and upper levels of the troposphere for all the three mentioned times of the forecast.
For all the three times the SSM/I experiment shows higher RMSE values of wind
speed as compared to the CTRL run at almost all the levels. Though the results of
the MODIS and ATOVS runs did not yield lower RMSE values for all the times and
at all the levels, they do show a consistent reduction in rmse of the wind speed for
most of the times, thus showing some positive impact due to assimilation.

Rainfall

Due to its convective nature and complex interactions with the terrain features
and vegetations it is difficult to forecast the precipitation fields very precisely.
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Fig. 26.7 Spatial distribution of 24-h accumulated precipitation for CTRL (a, b), ATOVS (c, d),
SSM/I (e, f) and MODIS (g, h) for 19–22 September 2006 depression

Hence it is important to investigate carefully the skill of the model in simulating
the intensity and spatial distribution of the rainfall associated with the monsoon
depression. Figure 26.7 shows the spatial distribution of 24-h accumulated precipi-
tation simulated by the four numerical experiments on day-one and day-two of the
forecast for the 19–22 September 2006 depression. These are then compared with
the TRMM satellite observations for validation which are depicted in Fig. 26.3i, j
respectively. It can be readily seen that the simulated precipitation by the CTRL, the
SSM/I and the MODIS experiments are over predicting the intensity of the rainfall
when compared to the TRMM observations. The ATOVS experiment simulates less
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rainfall than that of the TRMM observations and the other three experiments, for
both days of the forecast. Furthermore, there are also positional errors in the location
of maximum precipitation as simulated by all the models. Even though the MODIS
run overestimates the precipitation over land, the results of the above run are in
better agreement with observations over the sea. Therefore, the MODIS run is in
better agreement with TRMM for the day-two of the forecast, since it simulates
much less rain over the sea as compared to the CTRL, the SSM/I and the ATOVS
runs.

Equitable Threat Score and Bias Score

Further quantitative analysis of the simulated rainfall is performed by calculating
the statistical skill scores namely “equitable threat score” (ETS) and “bias score”
(BS) using the contingency table (Wilks 2006; Colle et al. 1999). The Bias Score
(BS) is a measure of the ratio of the frequency of forecast events to the frequency of
observed events. The bias score indicates whether the forecast system has a tendency
to underpredict (Bias < 1) or overpredict (Bias > 1) events. The bias score does
not however, measure how well the forecast corresponds to the observations. The
Equitable Threat Score (ETS) measures the fraction of observed and/or forecast
events that are correctly predicted, with a provision for hits associated purely with
“random chance”. The ETS is often used in the verification of rainfall in NWP
models since its “equitability” allows scores to be compared more fairly across
different rainfall thresholds. The ETS penalizes both misses and false alarms in the
same manner and also it does not concern itself with the source of forecast error.
While higher values of the threat score represent enhanced skill of precipitation
forecast, the maximum value of ETS is one. The ETS and BS are calculated for
all the four numerical experiments based on the 48 h accumulated precipitation for
various threshold values. The threshold values used are 40, 50 60, 70, 80, 90 and
100 mm. The results are presented in Figs. 26.8 and 26.9. From the Fig. 26.8, it is
seen that the MODIS experiment exhibits highest skill of precipitation forecast for
all the various threshold values when compared to the CTRL run, while the ATOVS
and the SSM/I experiments, do show some precipitation predictability skill of the
model although lower than the MODIS run. The ATOVS experiment shows higher
skill scores at the lower threshold values which declines with increase of threshold
values. Among the four numerical experiments, the SSM/I experiment shows the
least skill score. However, all the experiments show a decrease in ETS values with
increase in the threshold, indicating the difficulty in the prediction of high intense
rainfall events. More quantitative verification of precipitation forecast is carried out
using the “BS”. Bias score of value of 1.0 implies that the model precipitation
forecast has the same frequency (areal coverage) as that of the observations. The
BS value greater than one for any model run indicates that the above run is over
estimating the precipitation while a BS value less than one signifies the under
estimation of precipitation when compared to the observation. Figure 26.9 gives
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Fig. 26.8 Equitable threat score for 48-h accumulated precipitation for CTRL, ATOVS, SSM/I
and MODIS for 19–22 September 2006 depression

Fig. 26.9 Bias score for 48-h accumulated precipitation for CTRL, ATOVS, SSM/I and MODIS
for 19–22 September 2006 depression
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the BS values exhibited by all the four experiments for various threshold values
with respect to the TRMM observations. All the four experiments reveal a BS value
greater than one for all the thresholds, indicating that all the four model experiments
are over estimating the precipitation features at all the thresholds. As expected, the
MODIS experiment has the lowest BS values above one (i.e., lowest overestimation)
at all the thresholds which indicates that the results of the MODIS experiment is
relatively closer to the observations. The CTRL and the SSM/I run show higher BS
values which indicate that both the above experiments have the highest degree of
overestimation of the intensity of the rainfall.

Improvement Parameter ( K̃ )

“Improvement parameter” for the 24 h accumulated precipitation valid at 12 UTC of
21 September 2006 and 22 September 2006 are calculated. Improvement parameter
for any variable can be defined as,

K̃ D j.observation � control/j � j.observation � experiment/j (26.4)

A positive value of “improvement parameter” is a clear indication of the positive
impact of assimilation of observation and vice versa. The results of the MODIS
experiment shows both positive and negative values of “improvement parameter”
over the domain of study (Fig. 26.10). The maximum positive of ˜ can be seen
on the day-one of the forecast having values up to about 150. Negative impact of
assimilation can be seen over the north of the domain. For the second day of forecast,
the positive impact is more prominent over the Bay of Bengal region than over
the land for the MODIS experiment. The ATOVS experiment also shows the same
patterns of spatial distribution of “improvement parameter” as that of the MODIS
experiment with highest positive values over the land. However, the negative impact
is less over the land for the ATOVS experiment when compared to the MODIS
experiment on day one of the forecast. In contrast to the first day, the second
day exhibits more negative K̃ over the land with values reaching up to –20. Also
the positive impact over the Bay of Bengal region is not as prominent as that of
the MODIS run. Hence, it can be concluded that despite the improvements in the
ATOVS experiment improvement parameter on the first day of the forecast, the same
decreased on the second day of the forecast. Undesirably large analysis increment
values generated due to the assimilation of the ATOVS temperature and humidity
profiles may be one of the reasons for the disappointing results. For the SSM/I
run, the day one forecast shows smaller extent of positive values of “improvement
parameter” over the domain. Furthermore, even though the second day forecast of
the SSM/I run has produced positive K̃ values over the oceans, the positive impact
is found to be lower over the land regions.
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a

c

e

b

d

f

Fig. 26.10 Improvement parameter for 24-h accumulated precipitation for MODIS (a, b), ATOVS
(c, d) and SSM/I (e, f) for 19–22 September 2006 depression

RMSE of Temperature Profiles

The model predicted temperature and humidity profiles are verified with India
Meteorological Department (IMD) radiosonde observations for the 19–22 Septem-
ber 2006 depression. The RMSE values for the temperature and the dew-point
temperature are calculated for 10 vertical levels at three different times of forecast.
As mentioned before, the model values corresponding to each observation are taken
from the nearest model grid corresponding to the observation location. The domain
averaged RMSE for temperature profiles are presented in Table 26.2. As part of
the verification, the RMSE of the temperature of the assimilation experiments are
compared with the RMSE of the temperature of the CTRL run. At 950 hPa level on
20 September 2006 12 UTC, the RMSE of temperature is found to be higher for the
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assimilation experiments except for the MODIS run. The ATOVS run shows higher
error values of temperature up to 850 hPa level. From 780 to 200 hPa levels the
RMSE values of temperature for the ATOVS run are found to be lower indicating
an improved forecast for temperature in the mid-troposphere and upper troposphere
for the ATOVS experiment on 20 September 2006 12 UTC. The RMSE values of
temperature decreases with height for the SSM/I run on 20 September 2006 12 UTC;
indicating a positive impact of assimilation of SSM/I total precipitable water at this
time. The ATOVS experiment shows a decrease in the RMSE values of temperature
with height for the forecast valid on 21 September 2006 12 UTC. Furthermore,
significant decrease in the error is seen above the mid-troposphere (500 hPa) level.
In contrast with the results of the ATOVS experiment, the MODIS run shows lower
RMSE values of temperature at the lower levels on the second day which then
increases with height up to 300 hPa levels, while the SSM/I run depicts higher
RMSE of temperature at all the levels, on the second day, indicating the positive
impact of assimilation of total precipitable water has somewhat decreased on the
second day of the forecast. On 22 September 2006 12 UTC, the ATOVS and the
SSM/I experiments have performed well with lower RMSE value at almost all the
levels, while the MODIS experiment shows higher RMSE values for temperature at
the lower and mid-troposphere.

RMSE of Dew-Point Temperature Profiles

Table 26.3 gives the domain averaged RMSE of dew-point temperature with respect
to the IMD radiosonde observation. Previous studies (Cox et al. 1998; Sandeep
et al. 2006) have noted that the mesoscale models have difficulty in accurately
simulating the upper level moisture content. The lack of upper level moisture
observations for assimilation can be regarded as one of the reasons for the above
difficulty. Hence it is important to validate the simulated humidity profiles of all
the experiments using the available observations. As expected, the assimilation of
temperature and humidity profiles from the ATOVS and the MODIS have reduced
the RMSE values of the moisture content at the lower levels of troposphere for the
forecast valid on 20 September 2006 12 UTC when compared to the CTRL run.
However, the RMSE of dew point temperature increases with height in the middle
and upper troposphere, indicating the inability in accurately simulating the humidity
profiles even after the assimilation of observation. In contrast with the other two
assimilation experiments, the SSM/I experiment has shown significant improvement
in the simulation of humidity profiles by having lower RMSE values of the dew
point temperature for all the levels, on the day one of the forecast. The second
day of the forecast shows higher values of RMSE of the dew point temperature
at all the levels for the MODIS experiment while the ATOVS run depicts lower
RMSE values of the dew point temperature at the lower levels of troposphere. On 22
September 2006 12 UTC, both the MODIS and the ATOVS provide results having
higher RMSE values of dew-point temperature at almost all the levels while the
SSM/I run has significantly reduced the error values. Hence, it can be concluded



26 Studies on the Impacts of 3D-VAR Assimilation of Satellite Observations . . . 671

T
ab

le
26

.3
R

oo
tm

ea
n

sq
ua

re
er

ro
r

of
de

w
po

in
tt

em
pe

ra
tu

re
pr

ofi
le

s
av

er
ag

ed
ov

er
th

e
do

m
ai

n
fo

r
19

–2
2

Se
pt

em
be

r
20

06
de

pr
es

si
on

20
Se

pt
em

be
r

20
06

12
U

T
C

21
Se

pt
em

be
r

20
06

12
U

T
C

22
Se

pt
em

be
r

20
06

12
U

T
C

Pr
es

su
re

le
ve

ls
(h

Pa
)

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

95
0

2
:5
3

2
:3
2

2
:3
3

2
:3
0

2.
96

2
:3
8

3.
40

2.
92

1
:8
1

2
:4
1

2
:0
0

2
:4
4

92
0

3
:9
8

3
:5
5

4
:0
1

3
:5
7

2.
54

2
:1
3

2.
82

2.
62

2
:2
5

3
:5
5

2
:2
9

2
:8
1

85
0

3
:3
0

2
:9
4

3
:2
4

2
:8
4

2.
58

2
:7
8

2.
91

2.
88

4
:5
0

5
:1
4

4
:6
5

4
:4
4

78
0

5
:6
7

5
:1
0

5
:6
0

5
:1
2

2.
88

2
:9
8

3.
26

3.
34

4
:9
8

5
:1
9

5
:0
1

4
:8
7

70
0

1
3
:5
9

1
1
:6
7

1
2
:7
0

1
1
:8
5

4.
05

3
:5
9

4.
13

3.
94

5
:9
9

6
:8
9

5
:2
8

5
:7
8

62
0

1
0
:8
4

9
:6
7

1
1
:2
0

1
0
:4
4

7.
30

8
:0
7

7.
64

6.
98

7
:8
0

8
:3
7

7
:9
9

7
:7
0

50
0

9
:0
3

9
:2
8

1
1
:6
5

7
:2
2

7.
40

8
:7
9

8.
00

6.
90

8
:2
9

7
:4
7

7
:8
7

8
:5
1

40
0

9
:8
7

1
1
:2
0

1
2
:7
6

9
:9
1

7.
88

7
:7
7

6.
92

8.
74

1
1
:5
8

1
0
:4
7

1
1
:3
7

1
1
:4
9

30
0

8
:6
2

1
0
:5
8

9
:8
7

7
:8
0

5.
31

7
:6
7

3.
98

7.
36

8
:8
1

7
:2
9

6
:8
2

1
1
:3
1

20
0

1
1
:1
1

1
2
:5
6

1
7
:7
0

1
0
:9
5

6.
57

1
1
:0
9

5.
68

8.
98

1
1
:5
5

7
:9
4

7
:9
2

3
:9
8



672 A. Chandrasekar and M.G. Kutty

that the assimilation of SSM/I total precipitable water has resulted in significant
positive impact on the simulation of the humidity profiles in a numerical mesoscale
model. The results obtained in this study indicate that the mesoscale model predicts
the moisture fields in the lower levels better than that of the upper levels. The above
result is due to the availability of more moisture information at the lower levels (Cox
et al. 1998).

Apparent Heat Source and Moisture Sink

The main driving energy associated with the tropical disturbances is the latent heat
release due to cumulus convection. Many studies have investigated the formation
and evolution of the tropical cloud clusters, which manifest due to intense con-
vection (Manabe et al. 1970; Wallace 1971; Nitta 1970). The study of monsoon
depression, one of the prominent tropical monsoonal disturbances, associated with
deep cumulus convection and large cloud clusters, provides an excellent case for a
detailed diagnostic study with a special emphasis on convective processes. The main
purpose of this section is to diagnose the role of the vertical distribution of heating
and cooling associated with convection in the monsoonal environment. Following
Yanai et al. (1973), heat and moisture budget analysis has been performed for the
model experiments in this section. To be consistent with the model simulated heat
and moisture fields, the computations for the heat and moisture budget analysis are
performed in ¢ coordinates. The budget analysis for heat and moisture has also
been performed for NCEP-FNL analysis in ¢ coordinates for comparing the model
diagnostics with the analysis. Apart from the heat and moisture budget analysis,
the time averaged and area averaged temperature anomaly and relative vorticity of
the simulated depression in the vertical have also been validated with the respective
fields of NCEP-FNL analysis. All the three cases of monsoon depressions, which
are part of our investigation, are utilized for this analysis.

Figure 26.11a, b depict the 60 h time averaged profiles of the area averaged
apparent heat source (Q1) and apparent moisture sink .Q2/ respectively for the
19–22 September 2006 monsoon depression that formed over the Bay of Bengal.
The area averages were computed for 3ı � 3ı region around the centre of the
depression. As can be seen from Fig. 26.11a, the CTRL experiment is showing
the maximum heating rate at the model height of ¢ D 0:55. The MODIS run also
simulates a similar heating profile as that of the CTRL run, but with a lower
magnitude. Considering the NCEP-FNL analysis as the true estimate of heating,
it is clear that both the CTRL and the MODIS experiments overestimate the
rate of heating in the vertical. The magnitude of heating rate in the ATOVS and
the SSMI experiments are lower when compared to the other two experiments and
the NCEP-FNL analysis. The maximum heating rates due to moisture effects is seen
in the CTRL run among all the four model experiments, reaching a maximum of
about 16K day�1 over the mid-troposphere. The vertical heating rate simulated by
the MODIS experiment closely follows the NCEP-FNL analysis which implies that
the MODIS experiment better simulates the apparent moisture sink in the vertical.
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a b

Fig. 26.11 Vertical profiles of the 60 h time averaged and area averaged over a 3ı � 3ı region
around the centre of the depression for the (a) apparent heat source .Q1/ (b) apparent moisture
sink .Q2/ for the 19–22 September 2006 depression

Earlier studies (Schlesinger 1994) showed that the heating due to apparent moisture
sink has a minimum at about 9 km .¢ D 0:225/ with the maximum peak observed
at about 3 km .¢ D 0:725/. The relative absence of a pronounced maximum peak
associated with the apparent moisture sink is well captured in all the four model
experiments.

26.4.2 Monsoon Depression That Formed During 02 to 05
September 2006

The depression which formed over the north Bay of Bengal during the first week
of September 2006 was first seen as a low pressure area over the same region in
the morning. The system became well marked in the forenoon and subsequently
intensified into a depression and lay centered about 180 km southeast of Balasore,
Orissa at 12 UTC on 03 September 2006. Moving in a north-westerly direction, the
depression crossed the Orissa coast close to Chandbali at 12 UTC on 04 September
2006. Furthermore, the system moved north-westwards and weakened into a well
marked low pressure area over north Chhattisgarh and adjoining east Madhya
Pradesh on 5 September 2006.
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26.4.2.1 Numerical Experiment

The model settings and the domain used are the same as in Sect. 26.4.1. The
NCEP-GFS forecast data available at a horizontal resolution of 1ı � 1ı and a
time resolution of 6 h have been used to develop the initial and lateral boundary
conditions. Four numerical experiments are performed as in Sect. 26.4.1 to study
the impact of temperature, humidity and total precipitable water in the simulated
structure of monsoon depression. All the simulations are started with the same
initial conditions on 01 September 2006 18 UTC; however, the observations are
assimilated at different times depending on the availability of the satellite data
over the domain. For the CTRL experiment, the model integrations are performed
till 05 September 2006 12 UTC. In the ATOVS run, the ATOVS temperature and
humidity profiles are ingested into the model using 3D-VAR, initially, after 6 h
of forecast, i.e., on 02 September 2006 00 UTC and subsequently ingested up to
03 September 2006, 00 UTC in a 12 hourly interval. The WRF model is then
subsequently integrated for the next 60 h in free forecast mode without any further
assimilation of the satellite data. In the “MODIS run”, the MODIS temperature and
humidity observations have been assimilated in 12 h intervals from 01 September
2006 18 UTC to 02 September 2006 18 UTC. Subsequently, the model is run in
a free forecast mode up to 05 September 2006 12 UTC. As in Sect. 26.4.1, the
MODIS data is subjected to “thinning”. The “SSM/I run” is similar to the ATOVS
experiment except that it incorporates SSM/I total precipitable water instead of
ATOVS temperature and humidity observations. The CTRL run is subjected to data
cycling without any assimilation of observations. The domain of the study is same
as that of Sect. 26.4.1. The results presented are from 12 km resolution domain only.
All the satellite observations have shown impact on the initial condition, with the
ATOVS observation having maximum significance while the SSM/I observations
have the lowest significance.

26.4.2.2 Results and Discussion

Initial Conditions

The analysis increment of wind speed at 850 hPa level for the MODIS, ATOVS
and SSM/I experiments are presented in Fig. 26.12 for the 2–5 September 2006
depression. It can be seen that the assimilation of the satellite observations has
introduced clear increments in the 850 hPa wind speed. The assimilation of MODIS
temperature and humidity observations has introduced negative increments over
the Arabian Sea together with a small pocket of positive increments to the south
of the peninsular India. However, the increment values of 850 hPa wind speed in
the MODIS run is almost zero over the Bay of Bengal region. The assimilation
of ATOVS temperature and humidity observations has introduced larger spatial
distribution of positive values over the Arabian Sea, the land surface and the Bay
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Fig. 26.12 Analysis increment at 850 hPa in the wind speed of (a) MODIS, (b) ATOVS and
(c) SSM/I for 2–5 September 2006 depression

of Bengal region. Even though the negative increments of 850 hPa wind speed
are seen over the domain for the ATOVS run, its spatial extent is found to be
less. Though the ingestion of total precipitable water using SSM/I has introduced
little increment values of 850 hPa wind speed as compared to the ATOVS and the
MODIS experiments, the SSM/I experiment has shown positive values of increment
of 850 hPa wind speed with a maximum spatial distribution over the Bay of Bengal
region.
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a b c d

e f g h

i j

Fig. 26.13 NCEP-FNL analysis sea level pressure fields at 03–05 September 2006 00 UTC (a–d),
NCEP-FNL lower tropospheric wind speed (850 hPa) (e–h) and 24 h accumulated TRMM rainfall
(i–j)

MSLP

The spatial distribution of MSLP patterns of NCEP-FNL are depicted in
Fig. 26.13a–d. From the figure it can be seen that the depression started as a
low pressure area over the Head Bay region. The low pressure area subsequently
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intensified into a depression with a minimum central pressure of 998 hPa. The
system experienced landfall before 5 September 2006 and started weakening
subsequently after landfall. The MSLP plots of the NCEP-FNL therefore are
consistent with that of the observations. Figure 26.14a–p depicts the MSLP
patterns on 03 September 2006 00 UTC and subsequent predicted values at 24,
48 and 60 h of forecast for the CTRL experiment (Fig. 26.14a–d), the ATOVS
experiment (Fig. 26.14e–h), the SSM/I (Fig. 26.14i–l) experiment and the MODIS
(Fig. 26.14m–p) experiment for the 2–5 September 2006 depression. From the
spatial distribution of MSLP patterns it can be seen that the CTRL and the ATOVS
experiments have failed to simulate accurately the evolution of the depression over
the Bay of Bengal. After 48 h of forecast the CTRL run simulates a low pressure
region over the south east of the Bay of Bengal, a feature absent in the observation
records. A pattern similar to the CTRL run with a lower intensity of MSLP is seen
in the results of the ATOVS experiment too. The above-mentioned erroneous low
pressure region is not seen in the SSM/I and the MODIS experiments. However, the
SSM/I run, simulates the location of the depression centre at the 60 h of forecast
near Hyderabad which is much south of the observed position of the monsoon
depression at that time. The experiment which assimilated MODIS observation
has, however, stimulated the exact location of the depression with slightly higher
intensity of MSLP than that of the observed.

Wind Speed

The lower tropospheric wind vector simulated by all the four experiments at 850 hPa
are shown in Fig. 26.15 for the 2–5 September 2006 depression, which includes the
CTRL run (Fig. 26.15a–d), ATOVS experiment (Fig. 26.15e–h), SSM/I experiment
(Fig. 26.15i–l) and MODIS experiment (Fig. 26.15m–p).

The CTRL, ATOVS and the SSM/I experiments simulate almost the same
patterns of wind vector field with a strong south-westerly flow over the extreme
south of the Indian peninsula. The south-westerly flow is found to be slightly intense
for the SSM/I run. However, the 850 hPa cyclonic circulation usually associated with
the monsoon depression, is found to be absent in the case of the CTRL, ATOVS and
SSM/I runs. The MODIS experiment simulates a weak cyclonic vortex over the
Head Bay region and over the inland regions at 24, 48 and 60 h of forecast. The
notable feature about the MODIS experiment is the absence of the south-westerly
flow as seen in the other experiments. Hence it can be concluded that the CTRL
ATOVS, SSM/I experiments failed to simulate adequately the cyclonic circulation
associated with the monsoon depression over the Head Bay region. The reason for
the above failure may be partly due to the erroneous simulation of a low pressure
system over south-east of Bay of Bengal and the presence of a stronger south-
westerly flow over the extreme south of the Indian peninsula.
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a b c d

e f h

i j k l

m n o p

g

Fig. 26.14 Sea level pressure simulated by CTRL (a–d), SSM/I (e–h), ATOVS (i–l) and MODIS
(m–p) runs on 03 September 2006 00 UTC and at 24, 48 and 60 h of forecast

Forecast Impact Parameter

The “Forecast Impact” parameter has been calculated to validate the impact of
assimilation of the satellite observations on the wind speed for the 2–5 September
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a b c d

e f g h

i j k l

m n o p

Fig. 26.15 Wind vector simulated by CTRL (a–d), SSM/I (e–h), ATOVS (i–l) and MODIS (m–p)
runs on 03 September 2006 00 UTC and at 24, 48 and 60 h of forecast
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a b c

Fig. 26.16 Spatial distribution of forecast impact (FI) for (a) MODIS, (b) ATOVS, (c) SSM/I
calculated against QuikSCAT observations for 2–5 September 2006 depression

2006 depression. The verification of the model results are made with respect
to QuikSCAT wind observations. The spatial distribution of FI is presented in
Fig. 26.16. For the MODIS experiment the spatial distribution of FI parameter
reveals a blend of positive and negative values over the Bay of Bengal region. The
assimilation of MODIS observations has produced negative impact on the 10 m wind
speed over the north Bay of Bengal and over the south-east regions of the domain,
while the central part depicts higher positive of FI for the wind speed. The ATOVS
run exhibits a more positive impact on the wind speed with the larger spatial extent
of positive values over the domain while for the SSM/I run the spatial extent of
negative values are more prominent. The magnitude of positive values for FI is less
for the SSM/I run as compared to the other two experiments.

RMSE of Wind Speed Profiles

The domain averaged values of RMSE for wind speed is depicted in Table 26.4.
The MODIS and the ATOVS experiment have reduced the RMSE values of wind
speed for 2–5 September 2006 depression at almost all the levels except 620, 500
and 200 hPa levels when compared to the CTRL run during the forecast time valid
on 03 September 2006 12 UTC. The assimilation of SSM/I total precipitable water
did reduce the RMSE value of wind speed for all the levels as compared to CTRL
run: for the ATOVS run on 3rd September 2006, the error increased up to 400 hPa
level and then the error started decreasing at higher levels. The MODIS experiment
has however given better results with low RMSE of wind speed on the second day
of the forecast. The SSM/I run has shown higher RMSE of wind speed on the lower
and mid-troposphere together with lower RMSE of wind speed at the upper levels
during 04 September 2006 12 UTC. The MODIS experiment shows lower RMSE
values of wind speed on the third day of forecast while the RMSE of wind speed is
higher for the ATOVS run and is lower for the SSM/I experiment at the upper levels
of the troposphere.



26 Studies on the Impacts of 3D-VAR Assimilation of Satellite Observations . . . 681

T
ab

le
26

.4
R

oo
tm

ea
n

sq
ua

re
er

ro
r

of
w

in
d

sp
ee

d
pr

ofi
le

s
av

er
ag

ed
ov

er
th

e
do

m
ai

n
fo

r
2–

5
Se

pt
em

be
r

20
06

de
pr

es
si

on

03
Se

pt
em

be
r

20
06

12
U

T
C

04
Se

pt
em

be
r

20
06

12
U

T
C

05
Se

pt
em

be
r

20
06

12
U

T
C

Pr
es

su
re

le
ve

ls
(h

Pa
)

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

C
T

R
L

A
T

O
V

S
M

O
D

IS
SS

M
/I

95
0

3.
72

2.
75

2.
13

2.
81

3.
00

2.
51

2.
75

3.
68

4.
05

3.
03

3.
30

4.
77

92
0

4.
58

3.
67

3.
19

3.
73

4.
28

3.
90

3.
70

4.
81

3.
77

2.
82

2.
61

4.
32

85
0

3.
49

2.
97

2.
37

2.
95

3.
87

4.
17

2.
35

4.
41

4.
17

3.
56

3.
44

2.
25

78
0

4.
09

3.
51

3.
11

3.
29

3.
47

4.
57

2.
73

4.
62

8.
23

7.
75

7.
24

5.
48

70
0

4.
51

3.
95

3.
92

3.
93

4.
48

4.
87

3.
37

5.
02

4.
41

4.
87

3.
61

3.
53

62
0

5.
31

5.
78

5.
46

5.
47

3.
53

4.
06

2.
66

3.
35

2.
70

3.
00

2.
63

3.
17

50
0

5.
06

5.
25

4.
66

4.
38

3.
16

3.
48

2.
07

2.
02

4.
76

3.
95

4.
51

4.
10

40
0

7.
29

6.
33

5.
03

4.
67

2.
38

2.
75

2.
42

2.
44

4.
19

4.
43

4.
51

3.
78

30
0

4.
77

3.
13

4.
86

3.
92

2.
72

2.
34

3.
76

3.
00

3.
66

4.
07

6.
01

4.
57

20
0

4.
62

5.
31

5.
07

4.
43

8.
88

8.
84

8.
77

7.
39

4.
38

4.
14

6.
73

4.
07



682 A. Chandrasekar and M.G. Kutty

Rainfall

Figure 26.13i, j show the spatial distribution of 24 h accumulated precipitation valid
on 4 September 2006 12 UTC and 5 September 2006 12 UTC respectively for the
2–5 September 2006 depression.

The TRMM observation shows that the maximum precipitation is over the east
coast of India, and also over the Bay of Bengal. On the second day, the rainfall
intensity has decreased considerably indicating the weakening of the monsoon
depression. The rainfall patterns simulated by the CTRL (Fig. 26.17a, b), ATOVS
(Fig. 26.17c, d) and SSM/I (Fig. 26.17e, f) runs show an unrealistically intense and
extreme precipitation over the south of the Bay of Bengal. Also, in the above
three runs, the simulated precipitation intensity is weak over the Head Bay and
over the coastal regions of Orissa at variance with the TRMM observations. The
amount of precipitation simulated by these three experiments over the Orissa coast
and the adjacent land area are less than 40 mm. However, the MODIS experiment
(Fig. 26.17g, h) provides the best results out of all the model runs, accurately
simulating the location and intensity on the first day of the forecast. The MODIS
run, however, is at variance with TRMM observations simulating less rain over the
sea on the second day of the forecast. Moreover, the unrealistic heavy rainfall pattern
over the south Bay of Bengal seen in the other three model runs is absent in the
MODIS experiment.

Improvement Parameter ( K̃ )

The spatial distribution of the “improvement parameter” for precipitation is shown
in Fig. 26.18 for the 2–5 September 2006 depression. Positive improvement in the
precipitation features can be seen over the south of the Bay of Bengal for all the
experiments. For the MODIS experiment most of the negative values are seen
over the sea near the Head Bay region while the same is over the land for the
ATOVS experiment on 4 September 2006 12 UTC. On the second day of forecast,
the precipitation feature shows more positive improvement over the land for both
the MODIS and the ATOVS experiment. The distribution of negative K̃ values
are prominent over the south east of the Bay of the Bengal on the first day of
forecast, while the second day witnessed a better precipitation forecast with larger
distribution of positive K̃ values over the land for the SSM/I run.

RMSE of Temperature Profiles

The assimilation of temperature and humidity profiles from the ATOVS and the
MODIS sensors have reduced the RMSE values of temperature at 950, 920, 700,
500, 400 and 200 hPa levels when compared to the CTRL run for the forecast time
valid on 03 September 2006 12 UTC which is shown in Table 26.5 for the 2–5
September 2006 depression. The SSM/I run depicts lower RMSE at the upper levels



26 Studies on the Impacts of 3D-VAR Assimilation of Satellite Observations . . . 683

a b

c d

e f

g h

Fig. 26.17 Spatial distribution of 24-h accumulated precipitation for CTRL (a, b), ATOVS (c, d),
SSM/I (e, f) and MODIS (g, h) for 2–5 September 2006 depression

of the troposphere on the day one of the forecast period. The MODIS experiment
gives lower RMSE values on the second day of forecast except for the 500 and
300 hPa levels while the ATOVS run shows lower RMSE values at 780, 700, 620,
400 and 200 hPa levels. The SSM/I run however exhibits an inconclusive error
pattern for temperature on 4 September 2006 12 UTC. On the third day of the
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a b

c d

e f

Fig. 26.18 Improvement parameter for 24-h accumulated precipitation for MODIS (a, b), ATOVS
(c, d) and SSM/I (e, f) for 2–5 September 2006 depression

forecast the SSM/I run however shows higher RMSE of temperature at almost all
the levels when compared to the CTRL run.

RMSE of Dew-Point Temperature Profiles

The RMSE of dew-point temperature in presented in Table 26.6 for the 2–5
September 2006 depression. As can be seen from the table, the ATOVS exper-
iment shows lower RMSE values of dew point temperature than that of the
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CTRL experiment for all the levels except 200 hPa. The MODIS run also shows
improvements in the humidity profiles with lower RMSE of dew point temperature
at almost all the levels except 950 and 850 hPa due to assimilation. The SSM/I run
shows lower error values of dew point temperature at 950, 920, 850, 780, 700, 400
and 300 hPa levels against the CTRL run on 03 September 2006 12 UTC. On the
second day of forecast, the ATOVS run has produced significant improvements
in the dew-point temperature profile by reducing the RMSE of the dew point
temperature at all the levels except 950 and 300 hPa. The MODIS and the SSM/I
run have shown higher RMSE of dew-point temperature at almost all the levels.
However, on the second day of the forecast, the assimilation experiments have
failed to show marked improvements in the humidity profiles on 5 September 2006
12 UTC as compared to the CTRL experiment.

26.4.3 Depression That Formed During 18 to 22 June 2007

The depression that formed over the Bay of Bengal during the third week of
June 2007 was initially seen as a low pressure area over the east central Bay and
neighbourhood on 20 June 2007. The low pressure area intensified to a depression
and lay centred at 15:5ıN; 86:0ıE on 21 June 2007 03 UTC. The depression further
intensified into a deep depression and lay centred over 16ıN, 84:0ıE at 12 UTC
on the same day. At 03 UTC of 22 June 2007, the system was over coastal Andhra
Pradesh. The system subsequently moved westwards.

26.4.3.1 Numerical Experiments

The model settings and the domain used are the same as that for the two previous
cases. The NCEP-GFS forecast data available at a horizontal resolution of 1ı � 1ı
and a time resolution of 6 h are used to develop the initial and lateral boundary
conditions. Four numerical experiments are performed to study the impact of
temperature, humidity and total precipitable water in the simulated structure of
monsoon depression. All the simulations are started with the same initial conditions
on 18 June 2007 18 UTC, but the observations are assimilated at different times
depending on the availability of the satellite data over the domain. The CTRL
experiment, has utilized the NCEP-GFS data for creating initial and lateral boundary
conditions. The model integrations are performed from 18 June 2007 18 UTC to 22
June 2007 06 UTC without any assimilation of satellite observations. The second
experiment, called the ATOVS run is started from 18 June 2007 18 UTC. For the
ATOVS run, the ATOVS temperature and humidity profiles have been ingested
initially into the model using 3D-VAR after 6 h of forecast, i.e., on 19 June 2007
00 UTC and again up to 20 June 2007, 00 UTC in a 12 hourly interval. The WRF
model is then subsequently integrated for the next 54 h in a free forecast mode
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without any further assimilation of the satellite data. The third experiment, named
the MODIS run, ingests the temperature and humidity observations from MODIS
in a 12 hourly interval from 18 June 2007 18 UTC to 19 June 2007 18 UTC and
the model is subsequently run in a free forecast mode up to 22 June 2007 06 UTC.
The high resolution MODIS data is subjected to thinning before ingesting the data
to the observational pre-processor. The fourth experiment (SSM/I) is similar to the
ATOVS experiment except that it incorporates SSM/I total precipitable water instead
of ATOVS temperature and humidity observations. All the model runs include 6 h
interval data cycling to maintain the dynamical consistency of the model simulation.
The CTRL run is subjected to data cycling without any assimilation of observations.
The results presented are from 12 km resolution domain only.

26.4.3.2 Results and Discussion

Initial Conditions

As in previous cases, the ATOVS experiment depicts larger spatial distribution of
positive analysis increment values of 850 hPa wind speed with negative increment
seen towards the south of the domain. For the MODIS run, most of the positive
increment values of 850 hPa wind speed are seen towards north of the domain with
negative values concentrated towards the southern tip of the Indian peninsula and
the adjacent Bay of Bengal. As seen in the previous cases, the assimilation of SSM/I
total precipitable water shows very small increment values of 850 hPa wind speed
over the domain. The differences in the initial conditions are presented in Fig. 26.19
for the 18–22 June 2007 depression.

MSLP

Figure 26.20a–d show the spatial distribution of MSLP patterns of the depression
from the NCEP-FNL analysis. An intense monsoon depression with a minimum
central pressure of 990 hPa is shown in the figure. As per the NCEP analysis, the
system made the landfall after 22 June 2007 00 UTC which is consistent with the
observation records. The results of all the numerical experiments from Fig. 26.21
show that the intensity of the depression is over estimated in all the experiments
except the ATOVS run. The ATOVS experiment did predict the intensity of the
depression with almost the same magnitude as that of the NCEP-FNL analysis.
None of the four experiments can accurately predict the landfall of the depression.
Moreover, a slow movement of depression is seen prominently in the MODIS run.

Wind Speed

The spatial pattern of the 850 hPa wind vector simulated by the numerical
experiments is shown in Fig. 26.22 for the 18–22 June 2007 depression. The NCEP-
FNL wind pattern showed landfall of the cyclonic system on 22 June 2007 00 UTC
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Fig. 26.19 Analysis increment at 850 hPa in the wind speed of (a) MODIS, (b) ATOVS and
(c) SSM/I for 18–22 June 2007 depression

which is evident from the Fig. 26.20e–h. It is seen from Fig. 26.22 that the low
level south-westerly monsoon flow is prominent in all the four experiments. The
maximum wind speed in the CTRL, the SSM/I and the MODIS runs exceed 28m s�1
for most of the times. The cyclonic circulation associated with the depression
moves in north-westward direction in all the experiments. However, the initial
cyclonic circulation feature simulated by the MODIS experiment is much east of
the observed location.



690 A. Chandrasekar and M.G. Kutty

a b c d

e f g h

i j

Fig. 26.20 NCEP-FNL analysis sea level pressure fields at 20 June 2007 00 UTC – 22 June 2007
06 UTC (a–d), NCEP-FNL lower tropospheric wind speed (850 hPa) (e–h) and 24 h accumulated
TRMM rainfall (i–j)

Forecast Impact Parameter

As in the previous case, the FI parameter has been calculated against QuikSCAT
observations to study the impact of assimilation of the satellite observations on the
surface wind speed over the sea. From Fig. 26.23, the MODIS run shows negative FI
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Fig. 26.21 Sea level pressure simulated by CTRL (a–d), SSM/I (e–h), ATOVS (i–l) and MODIS
(m–p) runs on 20 June 2007 00 UTC and at 24, 48 and 54 h of forecast
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i j k l

a b c d

e f g h

m n o p

Fig. 26.22 Wind vector simulated by CTRL (a–d), SSM/I (e–h), ATOVS (i–l) and MODIS (m–p)
runs on 20 June 2007 00 UTC and at 24, 48 and 54 h of forecast

values over most of the sea. However, the assimilation of temperature and humidity
profiles from ATOVS and total precipitable water from SSM/I have resulted in
significant positive impact.
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a b c

Fig. 26.23 Spatial distribution of forecast impact (FI) for (a) MODIS, (b) ATOVS, (c) SSM/I
calculated against QuikSCAT observations for 18–22 June 2007 depression

RMSE of Wind Speed Profiles

The RMSE of wind speed profiles are shown in Table 26.7 for the 18–22 June 2007
depression. The RMSE of wind speed simulated by the ATOVS experiment shows
higher error values at most of the levels except 780, 500 and 300 hPa when compared
to the CTRL run on 20 June 2007 12 UTC. The MODIS experiment however, shows
lower RMSE of wind speed at the first two levels from the surface, after which
the errors increase while the SSM/I experiment shows higher error values of wind
speed at all the levels in the vertical as compared to the CTRL run. On 21 June 2007
12 UTC, the ATOVS run shows lower RMSE of wind speed at 950, 920 700, 620,
400, 300 and 200 hPa levels while the MODIS run gives lower RMSE of wind speed
at the four following levels, viz., 700, 400, 300 and 200 hPa only. The SSM/I run
shows better results by simulating lower error values of wind speed at this forecast
time at 920, 850, 700, 400, 300 and 200 hPa levels. On 22 June 2007 00 UTC, the
ATOVS run shows higher RMSE of wind speed for most of the levels except the
first two levels from the surface. The MODIS run, at this time, however, does not
provide a conclusive error pattern of wind speed while the SSM/I run shows higher
values of the forecast error of wind speed at all the levels in vertical.

Rainfall

TRMM observations of 24 h accumulated precipitation are shown in Fig. 26.20i, j
valid for 21 and 22 June 2007 06 UTC. The above figure shows intense rainfall
over the Bay of Bengal. Moreover, the location of maximum precipitation is
observed over the land (landfall) on 22 June 2007 06 UTC. The rainfall features
simulated by all the numerical experiments are shown in Fig. 26.24 for the 18–22
June 2007 depression. Though all the experiments simulate the rainfall features
over the Bay of Bengal, none among them are able reproduce the landfall as
seen in the TRMM. Also, the precipitation features are overestimated in all the
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Fig. 26.24 Spatial distribution of 24-h accumulated precipitation for CTRL (a, b), ATOVS (c, d),
SSM/I (e, f) and MODIS (g, h) for 18–22 June 2007 depression

four experiments. However, the SSM/I experiment has simulated the maximum
precipitation band closer to that of the observation when compared to the other
numerical experiments on the second day of the forecast. It is indeed surprising that
the SSM/I experiment contributed to improved forecast of rainfall pattern despite the
absence of profiles of vertical temperature and vertical humidity observations. It is to
be noted that the observations of “total precipitable water” (TPW) were assimilated
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Fig. 26.25 Equitable threat score for 48-h accumulated precipitation for CTRL, ATOVS, SSM/I
and MODIS for 18–22 June 2007 depression

in the SSM/I experiment. The retrieved TPW observations contain valuable moisture
information and one would expect that the analyzed and forecasted vertical structure
of moisture would get improved by assimilating SSM/I TPW. Such assimilation of
TPW observations are also known to improve the initial temperature field and the
initial geopotential height field (Lu et al. 2011).

ETS and BS

The ETS and BS values with respect to the observed 48 h accumulated precipitation
from TRMM are shown in Figs. 26.25 and 26.26 respectively for the 18–22 June
2007 depression. The threshold values are set above 80 mm since the maximum
precipitation values exceed 250 mm over the Bay of Bengal. All the experiments
show higher skill score at the lower threshold values; however the skill score
decreases with the increase in the threshold values. The MODIS run shows the
highest skill score of all the four experiment at 80 and 90 mm threshold values.
The SSM/I run shows somewhat improved forecast skill at higher threshold values
while all the other experiments have failed to do so. The SSM/I and the ATOVS
experiments are clearly over-predicting precipitation which is evident from the
bias score values. The MODIS run shows almost the same areal frequency of
precipitation with respect to the TRMM observations at lower threshold values (refer
Fig. 26.26); however the BS value, starts increasing at higher threshold values.
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Fig. 26.26 Bias score for 48-h accumulated precipitation for CTRL, ATOVS, SSM/I and MODIS
for 18–22 June 2007 depression

Improvement Parameter ( K̃ )

The spatial distribution of ˜ shows almost identical features in all the three
assimilation experiment which is evident from Fig. 26.27. The first day of forecast
witnessed negligible improvement in the rainfall features simulated by all the
assimilation experiments. The second day did show some positive improvement over
the peninsular region of the Indian subcontinent.

RMSE of Temperature Profiles

The RMSE values of temperature in vertical are shown in Table 26.8 for the 18–22
June 2007 depression. Lower RMSE values of temperature are seen in 950, 920,
700, 300 and 200 hPa levels for the ATOVS experiment when compared to the
CTRL run, while the MODIS run shows lower RMSE of temperature at 780, 620
and 300 hPa levels. The SSM/I run shows improvement in the temperature forecast
at 950, 920, 850, 500, 400, 300 and 200 hPa levels on 20 June 2007 12 UTC when
compared to the CTRL run. On 21 June 2007 12 UTC, the ATOVS and the MODIS
experiments show improved temperature forecast for 6 levels in the vertical, while
the SSM/I run shows lower RMSE of temperature for 3 levels only. On 22 June 2007
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a b

c d

e f

Fig. 26.27 Improvement parameter for 24-h accumulated precipitation for MODIS (a, b), ATOVS
(c, d) and SSM/I (e, f) for 18–22 June 2007 depression

00 UTC, the RMSE of temperature are found to be lower in 6 levels for the ATOVS
run, lower in 4 levels for MODIS run and lower in 5 levels for the SSM/I run, when
compared to the CTRL experiment.
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RMSE of Dew-Point Temperature Profiles

Root mean square error values for dew-point temperature are presented in Table 26.9
for the 18–22 June 2007 depression. Though the ATOVS run shows higher RMSE
of dew point temperature at the lower levels, interestingly, the upper levels show an
improved forecast of dew-point temperature especially at 200 and 300 hPa levels on
the day one of the forecast. The MODIS run shows large RMSE values of dew point
temperature for almost all the levels. The assimilation of total precipitable water
from SSM/I however does reduce the error values of dew point temperature at 950,
920, 780, 400, 300 and 200 hPa levels on 20 June 2007 12 UTC. On the second day
of the forecast, the ATOVS, MODIS and the SSM/I runs do not show significant
improvement in the forecast of the dew-point temperature while on 22 June 2007
00 UTC, the SSM/I experiment did show improved better result with lower RMSE
of dew point temperature than the other experiments.

26.4.4 Conclusions

The impact of assimilating satellite observations of temperature, humidity and total
precipitable water on the prediction of three monsoon depressions which formed
over the Bay of Bengal are investigated. Out of the three depression cases, the
first one is a land depression, the second one is a weak depression and third one
is a strong monsoon depression event over the Bay of Bengal. Four simulations are
undertaken for each of the three monsoon depression cases. The simulation without
assimilation of any observations is called the ‘CTRL run’, while simulation that
assimilated ATOVS, MODIS, SSM/I observations are called ATOVS run, MODIS
run, SSM/I run respectively. The results of the model simulations are compared with
one another and also with the TRMM and QuikSCAT observations as well as with
NCEP-FNL analysis. The general conclusions based on the above investigation are
as follows.

The results of the study provide direct and good evidence of the impact of
assimilation of temperature and humidity profiles and the total precipitable water
to a certain extent. From the analysis increment, it can be seen that the assimilation
of the ATOVS temperature and humidity profiles results in larger analysis increment
of 850 hPa wind speed as compared to the other assimilation experiments. The
simulated sea level pressure field of MODIS experiment is found to be relatively
in better agreement with that of the NCEP-FNL analysis in the first two cases.
Also the assimilation of the MODIS temperature and humidity profiles does produce
significant improvement in the precipitation patterns when compared to the TRMM
observation. Equitable threat score and bias score calculated to quantitatively
validate the precipitation forecast shows that the MODIS experiment yields better
results for the land depression and the weak depression events. The high-resolution
dense observations associated with MODIS data can possibly be the reason for the
better forecast produced by the MODIS experiment. The SSM/I run, however, shows
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improved forecast of rainfall patterns in the third case study. The ATOVS experiment
shows significant forecast impact on the surface wind speed which is validated
against the QuikSCAT observations. There is some discernable reduction in the
RMSE of wind speed, temperature and dew-point temperature in some levels for all
the assimilation experiments. The assimilation experiments do show some difficulty
in accurately simulating the upper level features of the troposphere especially
for the dew-point temperature, which is evident from the higher RMSE of dew
point temperature at these heights. However, the assimilation of total precipitable
water from SSM/I does provide for some positive improvements in the dew-point
temperature simulation. The absence of vertical temperature and humidity profiles
from the SSM/I sensor has contributed to the lower impact of assimilation for the
SSM/I experiment. Despite the positive impact on the simulation and forecast of the
monsoon depressions with 3D-VAR assimilation technique, the results of the study
also reveals marked positioning error of the depression centre in the forecast in most
of the numerical experiments. The above marked positioning errors at large forecast
lead time clearly indicate that issues other than data assimilation are also important
and hence a solution of overcoming the marked positioning error problem requires
further detailed investigations, addressing issues, which are beyond the scope of this
study.
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Chapter 27
Parameter Estimation Using an Evolutionary
Algorithm for QPF in a Tropical Cyclone

Xing Yu, Seon Ki Park, and Yong Hee Lee

Abstract In this study the quantitative precipitation forecast (QPF) related to
a tropical cyclone is performed using a high-resolution mesoscale model and
an evolutionary algorithm. For this purpose two parameters of the Kain-Fritsch
convective parameterization scheme, in the Weather Research and Forecasting
(WRF) model, are optimized using the micro-genetic algorithm (GA). The auto-
conversion rate (c) and the convective time scale (Tc) are target parameters. The
fitness function is based on a QPF skill score. Typhoon Rusa (2002) is simulated
in a grid spacing of 25 km. The default value of c is 0:03 s�1 while that of Tc is
limited to a range between 1800 s and 3600 s as a function of grid resolution. To
produce the best QPF skill, at least for this tropical cyclone case, c is optimized to
0:0004 s�1 and Tc to 1922s. Our results indicate that parameters of subgrid-scale
physical processes need to be adjusted to produce better QPF in a tropical cyclone,
sometimes to values far different from the default values in a numerical model. Such
adjustment may be dependent on the characteristics of weather systems as well as
geographical locations.
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27.1 Introduction

Numerical weather prediction (NWP) models have uncertainties involved in
the subgrid-scale physical processes, most of which have to be parameterized
(Navon 2009). In the formation of cloud and precipitation, the convection and
microphysical processes are important, and interactions among hydrologic, bound-
ary layer and land surface processes are conducted mostly by cumulus convection
(Arakawa 2004). Parameterizations, including convective parameterization (CP),
contain numerous parameters whose values are not known precisely. Parameters
in CP scheme can affect the model performance and hence the forecast accuracy.
Therefore optimization of parameters can potentially improve the accuracy of
numerical forecasts.

Genetic algorithms (GAs) have been used for global search by combining the use
of random number generation and information from precious iterations to evaluate
and improve a population of points at a time (Goldberg 1989). They are based on
natural genetic and selection mechanism, and ideas of constructing an optimization
procedure are borrowed from Genetics (Holland 1975, 1992). With capability of
achieving global optimal solution, GAs have been applied to various atmospheric
problems (Fang et al. 2009; Jackson et al. 2004; Kishtawal et al. 2003; Singh
et al. 2005a, b).

A standard GA had been applied to a heavy rainfall case in Korea by Lee
et al. (2006) to improve the quantitative precipitation forecasting (QPF) through
optimization of both a physical and a computational parameter. This study focuses
on optimal parameter estimation in a CP scheme to improve the QPF in the Weather
Research and Forecasting (WRF) model using a micro-GA. Section 27.2 describes
the parameters to be optimized, the typhoon case and the experiments design, and
Sect. 27.3 describes the computational procedures of the micro-GA. Results are
presented in Sect. 27.4, and conclusions are provided in Sect. 27.5

27.2 Methods

27.2.1 Description on Parameters

Deep convection is generally parameterized when horizontal grid spacing is greater
than about 10 km but CP is typically avoided at higher resolution (Kain et al. 2008).
In this study, we will investigate the resolution dependency of performance of the
Kain-Fritsch (KF) CP scheme (Kain 2004; Kain and Fritsch 1993), in the process
of GA optimization, by comparing three simulation runs – one with no CP scheme,
another with the default KF scheme, and the other with the improved KF scheme.
Here, two parameters are optimized by GA.

One parameter to be optimized is a convective time scale (Tc). As illustrated by
Fritsch and Chappell (1980), the CP problem is mainly to determine Tc and the grid
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element temperature (water vapor) after convection. The KF scheme assumes that
at least 90 % of the environmental convective available potential energy (CAPE)
is consumed over Tc , which is limited between 1800 s and 3600 s (Kain 2004;
Kain and Fritsch 1993). Tc is proportional to the model grid spacing and inversely
proportional to averaged winds between 500 hPa and the lifting condensation level.

The KF scheme is originally designed for a mesoscale model with grid spacing of
20–50 km, thus Tc matches well with the lifetime of a convective cell. This scheme
is dictated by the time it takes the cloud to grow to the point that precipitation forms
and the time it then takes the precipitation to fall to low levels (Emanuel 1994).
However, given typical mean horizontal wind speeds of 10m s�1, Tc will be fixed
to 1800 s if grid spacing is less than 18 km. Narita and Ohmori (2007) and Saito
et al. (2007) suggested that a shorter Tc of 900 s can improve the QPF with a 10 km
grid spacing in the Japan Meteorological Agency’s operational mesoscale model.

The other parameter to be optimized, c, controls microphysical feedback from
the parameterized convection to its environment (Correia et al. 2008), and its math-
ematical formulation follows Ogura and Cho (1973) as function of the amount of
condensate at the layer bottom, the amount of condensate lost by the parameterized
updraft, the layer depth and updraft velocity.

The value of constant c is 0:01 s�1 in the old KF scheme (Kain and Fritsch
1990, 1993), and is set to 0:03 s�1 in the new KF scheme of the WRF model.
2004). Correia et al. (2008) found a smaller value of 0:005 s�1 directly increases
the hydrometeor feedback at the expense of the convective precipitation. Many
studies have shown the auto-conversion processes are responsible for determining
the organization and structure of convective systems (Correia et al. 2008; Tao
et al. 1995; Zhu and Zhang 2004).

27.2.2 Case Description and Experiments Design

Typhoon Rusa (2002) landed over the southwestern part of the Korean Peninsula
(KP) at 0600 UTC 31 August, 2002. Its central sea-level pressure stayed between
950 and 960 hPa. It moved across the Korea Peninsula and produced a 100-year
record-breaking heavy precipitation amount of 870mm d�1 at Kangnung, located at
the central-eastern coast of the KP (Gu et al. 2005; Lee and Choi 2010; Park and
Lee 2007).

In this study, the numerical model WRF Version 3.2 is used. The computational
domain has a size of 1; 800 km � 2; 100 km centered at (127ıE; 34ıN), with a grid
spacing of 25 km. The initial and boundary conditions are supplied by the NCEP
Final Analysis (FNL) data on 1ı � 1ı with 6 h interval and the 3DVAR is used
to assimilate conventional surface and sounding observations. The simulations are
initiated at 00 UTC 30 August 2002, and ended at 12 UTC 31 August 2002. Schemes
for physical processes include: the YSU PBL, the WSM3 simple ice microphysics,
the Dudhia radiation and RRTM, and the Noah land surface model. For the CP
scheme, three groups of experiments are set up: (1) the KF scheme with default
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parameters values (KFEXs), (2) the KF scheme with the parameter values optimized
by GA (OPTMs) and (3) no CP scheme (NOCPs).

27.3 Micro-Genetic Algorithm (Micro-GA)

27.3.1 The Optimization Process

The micro-GA, suggested by Goldberg (1989) and Krishnakumar (1989) is a
small-population genetic algorithm with reinitialization while standard GAs mostly
use large populations to achieve diversity upon “convergence”. It requires less
computational time than standard GAs (Krishnakumar, 1989; Lee et al. 2005; Wang
et al. 2010). The procedural details of micro-GA were described by Carroll (1996),
Liong et al. (2005), and Wang et al. (2010). With a small population there will be
rapid convergence to a possible suboptimal solution, by generating new population
members as soon as a convergence has been achieved in a GA cycle.

The micro-GA has been demonstrated to yield marked improvement over
conventional large-population GAs. Although the range of application of micro-
GA is becoming extensive, its applicability has yet to be explored fully, and is
certainly needed for atmospheric design problems where computational requirement
is enormous.

For experiments in this study, the micro-GA is initialized with a random
sample of individual solutions, with the population size set to five following Lee
et al. (2005) and Wang et al. (2010). The chromosomes are generated based on a
tournament selection method in order to select parent genes on which the uniform
crossover operation is applied. The micro-GA does not have mutation operations,
and the algorithm stops when the prescribed number of generations (100 in this
study) is reached. The ranges of Tc and c to search are set to 600 s � Tc � 3600 s
and 0:0001 s�1 � c � 0:1 s�1, respectively. The chromosome length is set to 10;
thus, the precision for Tc and c is about 3 s (i.e., 3000=210/ and 0:0001 s�1 (i.e.,
0:0999=210), respectively.

27.3.2 Fitness Function

The fitness function to be optimized is defined by using a QPF skill score –
the equitable threat score (ETS) (see Hamill 1999; Lee et al. 2006; Yang and
Tung 2003). The forecast amounts are computed from the 24-h accumulated
total (grid resolved + parameterized) precipitation at a forecast period of 12–36 h
(from 1200 UTC 30 to 1200 UTC 31 August 2002). The 24-h observations of
total precipitation are based on the hourly precipitation data from 615 Automatic
Weather Stations (AWSs) of the Korean Meteorological Administration (KMA).
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However, some AWSs were destroyed during the 24 h period due to intensive
rainfall. Therefore, we interpolated the irregular (also with different amount of
stations) hourly precipitation to the corresponding model grid spacing (i.e., 25 km),
and then added the above gridded precipitation in 24 h to a total precipitation
observation. We only consider the model grids falling into the territory of South
Korea, thus the total number of points N to be verified is 129 for a 25 km grid
spacing.

27.4 Results

The micro-GA is performed for optimal estimation of two parameters in the KF
scheme – the convective time scale (Tc) and the auto-conversion rate (c), for the
case of Typhoon Rusa (2002) using the WRF. The optimized values are obtained in
100 generations (with population size of 5) using the micro-GA. For the parameter
Tc , the optimized value is about 1922 s which locates in the default range. However,
for the parameter c, the optimized value is 0:0004 s�1 that is two orders smaller
than the default value .c D 0:03 s�1/. A smaller c in the KF scheme implies that the
condensed cloud water is more detrained to the grid-resolved environment rather
than converted to convective precipitation falling down (Correia et al. 2008).

Figure 27.1 compares the ETSs of three groups of experiments (NOCP, KFEX
and OPTM). It turns out that the ETSs with OPTM are much higher than those
with NOCP and KFEX in all thresholds, indicating a significant improvement in
quantitative precipitation forecasts. The sum of ETS with OPTM, KFEX and NOCP
is 7.84, 2.78 and 2.33, respectively. Here, both KFEX and NOCP have almost
no forecast skill for light precipitations (< 60mm d�1), while NOCP generally
performs better than KFEX at light to moderate precipitation rate (< 200mm d�1).
For heavy precipitate rate (> 200mm d�1), NOCP loses forecast skill abruptly but
KFEX has considerable forecast skill – higher than that for moderate precipitation
rate and even closer to OPTM. This indicates that the KF scheme is useful for
forecasting high precipitation rate at the grid resolution of 25 km, relevant to the
forecast with optimized parameters.

Figure 27.2a depicts horizontal distribution of the observed 24-h precipitation
amount from 1200 UTC 30 to 1200 UTC 31 August 2002. Heavy precipitations
(> 100mm d�1) are observed at the northeastern to southwestern parts of South
Korea with three regions of local maximum (> 400mm d�1) located at mountainous
areas – one at the north-eastern coast of South Korea near the eastern side of the
Taebaek Mountain Range and two at the southern side of the Sobaek Mountain
Range. Correspondingly, light to moderate precipitation (5–100mm d�1) occurs at
the northwestern part of South Korea. More details of the precipitation processes in
this typhoon have been analyzed by Park and Lee (2007) and Lee and Choi (2010).

Figure 27.2b represents the 24-h accumulated precipitation from 12 UTC
30 August to 12 UTC 31 August 2002 from three experiments (NOCP, KFEX and
OPTM) with a 25 km horizontal resolution. OPTM shows the best agreement with
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Fig. 27.1 The ETSs of
precipitation forecast in terms
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(dash-dotted) for a horizontal
resolution of 25 km. Numbers
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1200 UTC 31 August 2002

observation in terms of both location and amount of precipitation (Fig. 27.2d). Both
NOCP (Fig. 27.2b) and KFEX (Fig. 27.2c) have spurious local precipitation maxima
(> 200mm d�1) at central-western coast of South Korea, where the observation
records only 50–100mm d�1 (see Fig. 27.2a). The spurious maximum of KFEX is
larger than that of NOCP, resulting in lower forecast skills of KFEX at thresholds
less than 210 mm (see Fig. 27.1). Meanwhile, those false local maxima did not
appear in experiments with the optimized parameters.

27.5 Conclusions

In this study, optimal estimation of two parameters in the Kain-Fritsch convective
parameterization scheme is performed to improve the quantitative precipitation
forecast (QPF) for Typhoon Rusa (2002), which brought heavy rainfall in the Korean
Peninsula. The micro-GA is applied to find the best parameter values with a QPF
skill score as a fitness function, using the WRF model at a grid spacing of 25 km.
Among the two parameters, the auto-conversion rate c has a default value of 0:03 s�1
while the convective time scale Tc has a default range between 1800 s and 3600 s.

It turns out that, in order to produce the highest QPF skill at least for this
tropical cyclone case, c should be optimized to 0:0004 s�1; thus the auto-conversion
is considered to be effectively turned off. The optimized Tc value is 1922 s. By
applying a set of two optimized parameters, the performance of WRF with a 25 km
resolution has been maximized in terms of the QPF skill for Typhoon Rusa (2002).

In this study, we have applied the micro-GA only to improve the QPF skill
of a tropical cyclone. However, other forecast aspects of tropical cyclones, such
as track and intensity, can be also improved via optimal parameter estimation by
defining different fitness function (e.g., squared error of track distance, mean sea
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a b

c d

Fig. 27.2 Horizontal distribution of accumulated total precipitation from 1200 UTC 30 to
1200 UTC 31 August 2002 (in mm). (a) observation, (b) NOCP (c) KFEX and (d) OPTM with
a horizontal resolution of 25 km

level pressure, or maximum surface wind speed between the observations and model
solutions).

Our results indicate that such phenomena can be forecasted more accurately, at
least for heavy rainfall, via optimal parameter estimation of operational numerical
weather prediction models.
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484, 529, 531, 541, 544, 546, 547,
549, 580, 582, 604, 647, 648, 712

Coupled atmosphere-ocean model for the Earth
Simulator (CFES) 510, 524

Coupled Ocean Atmosphere Mesoscale
Prediction System (COAMPS)
165, 305, 326, 352, 393

Covariance localization 199, 469, 472, 474,
513, 516

Covariance matrix 12, 13, 28, 35, 37, 40, 66,
67, 94, 95, 100, 105–107, 112, 127,
152, 153, 163, 165, 169–171, 254,
289, 293, 298, 305, 316, 325–327,
348, 350, 351, 354, 377, 392–394,
396, 397, 399, 467, 472, 475, 514,
613, 614

Covariance modeling 179, 290
Covariance models 206, 213, 217, 300, 351
Covariance profile 613
CPC. See Climate Prediction Center (CPC)
Cross-sensitivity 92
Cross-variable correlation 471, 472, 478
CRTM. See Community Radiative Transfer

Model (CRTM)
CSV. See Composite singular vector (CSV)
Cumulus convection 131, 267, 646, 672, 708

D
DA. See Data assimilation (DA)
DART. See Data Assimilation Research

Testbed (DART)
Data assimilation (DA) 2, 6, 14, 22, 28–30,

43, 54
Data Assimilation Research Testbed (DART)

165
Data assimilation system 78, 89–109, 125,

130, 169, 200, 206, 212, 213, 215,
217–219, 275, 295, 296, 299, 300,
304, 305, 318, 323–326, 345–363,
490, 492, 505, 510, 512, 522–524,
527, 558–560, 609–641

Data-space variational methods 234
Decorrelation length 474
Defense Meteorological Satellite Program

(DMSP) 321, 649
Degree of freedom for noise 92
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Degree of freedom for signal (DFS) 102–104
Degrees of freedom 91, 92, 107, 248, 293,

295, 648
DEM. See Digital Elevation Model (DEM)
Descent algorithm 307, 350, 351
Deterministic least squares 2
Deterministic model 29
DFS. See Degree of Freedom for Signal (DFS)
Diffusion operator 177–201
Diffusion operator approach 354
Diffusion tensor 178, 189, 192, 194, 196,

198, 199
Digital Elevation Model (DEM) 419
Direct radiance assimilation 610
Discontinuities 133, 249, 255, 256, 258, 272,

275, 283, 517
Distributional uniformity 112
DMSP. See Defense Meteorological Satellite

Program (DMSP)
DOTSTAR. See Dropwindsonde Observations

for Typhoon Surveillance near the
Taiwan region (DOTSTAR)

Downward approach 258
DPE. See Dynamic pipe effect (DPE)
DRIBU 99–101, 104, 105
Dropwindsonde Observations for Typhoon

Surveillance near the Taiwan region
(DOTSTAR) 578, 579, 582, 601,
602, 604

Dual formulation 290, 347–350, 357, 358
Dual space 287
3DVAR. See Three dimensional variational

data assimilation (3DVAR)
4DVAR. See Four dimensional variational data

assimilation (4DVAR)
4D-Var assimilation window 253, 279
4D-Var cost function 234, 253, 254
Dynamical error growth 558, 560
Dynamical model 288, 328, 430
Dynamic data assimilation 28, 30, 54
Dynamic optimization 6
Dynamic pipe effect (DPE) 432

E
Earth Simulator 510, 511, 516, 522–524
Eastern boundary current 352
ECHAM5 424–426
ECMWF. See European Centre for Medium-

Range Weather Forecasts (ECMWF)
Ecosystem productivity 392
Eigenvalue 5–7, 9, 18, 43, 46, 92, 112,

121–123, 178, 179, 181, 189, 326,
394, 395, 476, 483, 557

Eigenvalue decomposition 476, 483
Eigenvector 5, 21, 107, 112, 122, 132, 178,

189, 291, 325, 326, 394, 396, 398,
400, 476, 557

Eigenvector decomposition 325, 396, 398
Electronic Numerical Integrator And Computer

(ENIAC) 29
Emanuel scheme 513, 518
ENIAC. See Electronic Numerical Integrator

And Computer (ENIAC)
EnKF. See Ensemble Kalman filter (EnKF)
Ensemble adaptive data assimilation

555–573
Ensemble DA 148, 165, 468
Ensemble error covariance 473
Ensemble forecast error covariance 472
Ensemble generation 153, 163, 165, 168,

169, 325, 326, 393, 394, 399–401,
407

Ensemble iterative Kalman filter 477
Ensemble Kalman filter (EnKF) 2, 62, 477,

490, 555
Ensemble Kalman smoother 499
Ensemble mean errors 561
Ensemble prediction systems (EPS) 251
Ensemble spread 402–405, 408, 495, 503,

511, 512, 514, 517–519, 521–523
Ensemble square-root filter 561
Ensemble transform (ET) 325–326, 558, 578
Ensemble transform Kalman filter (ETKF)

83, 490, 510, 559, 579
Ensemble update 163–165
Entropic balance theory 429–462
Entropic right-hand rule 432–434, 439,

441–443, 449, 460, 461
Entropic sink 431, 439, 441–442, 449
Entropic source 431, 439, 441, 449
Entropy anomaly 431, 432, 447, 451–455,

458, 460
Entropy gradient 433, 434, 439, 441, 444,

447, 452, 460
Entropy level 433, 451
Entropy variation 461–462
EPS. See Ensemble prediction systems (EPS)
Equitable threat score 665–667, 696, 700,

710
Error variances 90, 92, 97, 99, 105, 106,

150, 152, 154, 158, 160, 162–169,
209, 210, 213, 216, 219, 225–228,
295–299, 309, 314–317, 324, 341,
354, 375, 392, 393, 395–398, 402,
404–406, 408, 560, 614

Error vector 40, 108, 118, 119, 593
Estimated spectrum 293, 294
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Estimation error 5–7, 11, 12, 15, 193, 325
Estimation error covariance matrix 12
Estimation of sensitivity 258
Estimation technique 147, 148, 150, 288
Estimation theory 2, 22, 62
ET. See Ensemble transform (ET)
ETKF. See Ensemble Transform Kalman Filter

(ETKF)
Euclidean norm 34, 219, 557
Euler-Lagrange equation 375, 431, 459
Euler-Newton observer 11
European Centre for Medium-Range Weather

Forecasts (ECMWF) 90, 236
Evolutionary algorithm 707–713
Expected error covariance matrix 152, 153
Extrapolated spectrum 293, 294

F
Famine Early Warning System (FEWS) 614
FASTEX. See Fronts and Atlantic Storm-Track

Experiment (FASTEX)
FDFTLE. See Finite domain finite-time

Lyapunov exponents (FDFTLE)
Feature track winds 139
Feedback control 2, 29, 30
FEWS. See Famine Early Warning System

(FEWS)
FGAT. See First guess at appropriate time

(FGAT)
FGGE. See First GARP Global Experiment

(FGGE)
Field of view (FOV) 630
Filter divergence 561
Filtered model 29
Finite domain finite-time Lyapunov exponents

(FDFTLE) 545
First GARP Global Experiment (FGGE) 31
First guess at appropriate time (FGAT) 306
First-order variational formulation 34
First singular vector (FSV) 603
Fitness function 710–712
Fixed-point algorithm 297
Fleet Numerical Meteorology and

Oceanography Center (FNMOC)
131, 304

Flow-dependent tensor 310
FNMOC. See Fleet Numerical Meteorology

and Oceanography Center
(FNMOC)

Forecast error
covariance 396–398, 468–474, 478,

482–484
covariance matrix 396, 397, 472

reduction 130, 134, 139, 208, 222, 223,
391, 404, 406

Forecast impact 108, 206, 211, 228, 652,
661, 662, 678, 680, 690, 693, 702

Forecast impact parameter 661, 678,
690–693

Forecast trajectories 128, 129
Forward-backward nudging 51–54
Forward nudging 50
Forward operator 47, 126, 127, 305, 306
Forward Sensitivity Method (FSM) 117–119,

123
Four-dimensional data assimilation 112
Four dimensional variational data assimilation

(4DVAR) 90, 132, 288
Fourier transform 180, 399
FOV. See Field of view (FOV)
Frobenius matrix norm 230
Fronts and Atlantic Storm-Track Experiment

(FASTEX) 579
FSM. See Forward Sensitivity Method (FSM)
FSV. See First singular vector (FSV)

G
GA. See Genetic algorithm (GA)
Gaspari-Cohn horizontal localization 561
Gaussian probability distribution 467
Gaussian statistics 558
Gaussian white noise 12, 28, 35, 38, 41
Gauss-Newton method 350
GCR. See Generalized conjugate residual

(GCR)
Generalized conjugate residual (GCR) 291,

300
Generalized inverse theory 62
Generalized Least Square (GLS) 90, 94
Genetic algorithm (GA) 420, 422, 708,

710
Geostrophic velocity 324, 339, 340
GFS. See Global Forecasting System (GFS)
GHRSST. See Group for High Resolution SST

(GHRSST)
Gibbs sampler 60
Glider observations 382, 383, 393, 403–407
Global Forecasting System (GFS) 165, 280,

561, 614, 615, 617, 618, 626–629,
631, 639

Global Ocean Data Assimilation Experiment
(GODAE) 345–346

Global Ocean Forecast System (GOFS) 328,
335

Global optimization criterion 420
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Global Positioning System (GPS) 392, 404,
490, 491, 494, 496, 501–505, 527,
529, 651

Global precipitation climatology project
(GPCP) 517, 519–521

Global Telecommunications System (GTS)
521, 614, 615, 626, 628, 629, 638,
639

GLS. See Generalized Least Square (GLS)
GODAE. See Global Ocean Data Assimilation

Experiment (GODAE)
GOFS. See Global Ocean Forecast System

(GOFS)
Goldilocks principle 65
GPCP. See Global precipitation climatology

project (GPCP)
GPS. See Global Positioning System (GPS)
GPS dropwindsondes 392, 404
GPS-RO 100, 101, 107
Gravity-inertial waves 29
Grid point Statistical Interpolation (GSI)

612–614, 630, 639
Grid point value (GPV) 347, 510
Group for High Resolution SST (GHRSST)

310, 320
GSI. See Grid point Statistical Interpolation

(GSI)
GTS. See Global Telecommunications System

(GTS)
GUFMEX 114
Gulf Stream 315, 328, 337–339, 439,

448
Gustnado 550, 551, 553

H
Hamilton-Jacobi 15
Hat matrix 90, 91
Helicity 431, 432, 434–440, 443, 446
Hessian matrix 112, 121, 477
Hessian preconditioning 477–479, 482, 484
High correlated background error 89
High gain observer 8, 10, 11, 22
High-impact weather 466, 558, 566, 569
High-influence data 89
High-Resolution Infrared Sounder (HIRS)

100–102, 630, 631, 650, 653
High Resolution SST 310
Hindcast 323, 329, 330
HIRS. See High-Resolution Infrared Sounder

(HIRS)
Hook echo 431, 438, 439, 449, 455, 457, 459
Hurwitz matrix 43, 44, 46, 48

HYbrid Coordinate Ocean Model (HYCOM)
304–308, 313, 315, 318–320, 322,
328–335, 337, 339–341

Hybrid data assimilation 340, 341
Hybrid variational-ensemble method 468,

479, 482
HYCOM. See HYbrid Coordinate Ocean

Model (HYCOM)
Hypothetical observations 473, 558–561,

566, 573

I
IAPP. See International ATOVS Processing

Package (IAPP)
IASI. See Infrared Atmospheric Sounding

Interferometer (IASI)
Ice crystal 75, 76, 448, 494
Identical twin experiments 368
Ill-conditioning 112, 113
Image restoration 60
Importance sampling 60
Improvement parameter 667, 668, 682, 684,

697, 698
Incorrect control 116, 117, 119
Incremental approach 255, 335, 348
Independent observations 355, 382–383
Inertial manifold 20, 21
Influence matrix 91–94, 96, 97, 99, 104,

106–108
Influence matrix diagnostics 90, 91
Information content 73, 83, 84, 91, 101, 107,

215, 475, 484
Infrared Atmospheric Sounding Interferometer

(IASI) 100–102, 107, 225, 227,
298

Initial condition 15, 28, 36, 38, 44, 46,
48–52, 120–122, 172, 192, 315, 325,
351, 354, 358, 362, 374, 376, 378,
381, 384, 402, 436, 515, 538, 557,
632, 656, 674

Initial value problem 580
Inner LETKF 493–506
Inner-loops 236, 237, 242, 248, 260, 350,

357
Innovation 39, 40, 129, 133, 150, 151, 154,

155, 160, 162, 163, 165, 168, 169,
228, 235, 245, 295, 306, 315, 327,
329–331, 336, 349, 350, 359, 377,
379, 559, 613

Innovation vector 40, 129, 133, 151, 295,
306, 327, 329, 349, 352, 359, 377,
613

Insensitivity 120
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Instabilities 255, 269, 271, 315, 328, 332,
512

Internal waves 317
International ATOVS Processing Package

(IAPP) 650
Interpolated distribution 501
Inter-tropical convergence zone (ITCZ) 315
Inter-variable correlation 472
Inverse binomial model 178
Inverse polynomial model 184–188
IOM data assimilation 295
Isopycnal space 312
ITCZ. See Inter-tropical convergence zone

(ITCZ)
Iterated Lie derivatives 3
Iterative solver 289–291

J
Jacobian matrix 127, 207, 253, 254
Jacobians 336, 337, 398, 483
JAMSTEC. See Japan Agency for Marine-

Earth Science and Technology
(JAMSTEC)

Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) 509–524

Japan Meteorological Agency Non-hydrostatic
Model (JMANHM) 490

JCSDA. See Joint Center for Satellite Data
Assimilation (JCSDA)

JMANHM. See Japan Meteorological Agency
Non-hydrostatic Model (JMANHM)

Joint Center for Satellite Data Assimilation
(JCSDA) 639

K
Kain-Fritch parameterization scheme 494
Kain-Fritsch convective parameterization

scheme
Kalman filter 2, 7, 12–14, 16, 22, 29, 33,

39–41, 62, 83, 147, 154, 159, 168,
173, 219, 239, 368, 392, 467, 468,
477, 483, 490, 510, 512, 514, 555,
559, 579

Kalman filter equation 392
Kalman gain 127, 236, 247, 295, 296, 325,

349, 558
Kalman-like nudging scheme 39–40
K-profile approach 264
Kroneker product 34
Krylov method 291
Krylov subspace 291
Kuroshio 196, 313, 315, 328, 332, 334,

337–339

L
Lagged autocorrelation 69
Lagrange multiplier 433, 436
Lagrangian 34, 113, 115, 430, 433, 436, 451,

458, 544, 549
Lagrangian air/sea interaction model 113
Lagrangian density 433, 436
Lagrangian formulation 34
Lanczos formulation 351
Lanczos vectors 351
Land-falling 555–573
Large-scale condensation/precipitation

270–271, 275
Lateral boundary condition 131, 134, 136,

144, 617, 654
Latin-Hypercube 419
Least-squares 2, 234, 235
Least-squares regressions 90, 91, 93, 95, 108,

109
LETKF. See Local Ensemble transform

Kalman filter (LETKF)
LIght Detection And Ranging (LIDAR)

527–553
Linear filter 153, 154, 468
Linearity constraint 254–256, 284
Linearized physical parametrizations 253,

256, 278–280, 282
Linearized physics package 261–272
Linear regression 91, 93, 106, 152–154, 160
Line-by-line TL and AD 258
Lipschitz 20, 21, 46–48
Local ensemble transform Kalman filter

(LETKF) 489–506
Local linearization technique 10
Locally homogeneous approximations

189–191
Longwave radiation scheme 262, 562
Lorenz63 239, 242, 244, 245, 247
LS regression 90, 93, 95, 109
Luenberger observers 7–8, 10, 18
Lyapunov function 10–12

M
Marginal posterior variance 72
Markov chain 59–84
Markov chain Monte Carlo (MCMC)

algorithms 59–61, 63, 64, 67, 75, 76, 79,
80, 82

assimilations 78, 80, 82, 83
framework 80

Matrix calculus 207
Matrix-vector operations 324
Maximum likelihood ensemble filter (MLEF)

473
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Maximum likelihood estimate 73, 467
MCMC. See Markov chain Monte Carlo

(MCMC)
MDCRS 139
Mean dynamic topography (MDT) 323, 337,

356
Mean square error (MSE) 616–621, 623,

626, 632–637
Measurement errors 8, 293, 316, 354, 356
Mesocyclone 431, 434, 438, 439, 444, 449,

450, 454, 455, 457, 459, 460, 462
METEOSAT 5 614
Metropolis algorithm 60, 84
Metropolis-Hastings algorithm 64
Micro-genetic algorithm (Micro-GA) 708,

710–712
Microwave Sounding Unit (MSU) 631
Mid-latitude cyclones 536, 561–573
MILA. See Mixed Layer data set of Argo

(MILA)
Minimization algorithms 34, 468, 477, 480,

553
Mirai Indian Ocean Cruise for the study of

MJO onset (MISMO) project 511,
524

Mixed Layer data set of Argo (MILA) 510,
524

Mixing ratio 79, 82, 132–134, 256, 257, 479
MLEF. See Maximum Likelihood Ensemble

Filter (MLEF)
MOAA. See Monthly Objective Analysis using

the Argo data (MOAA)
MODAS. See Modular Ocean Data

Assimilation System (MODAS)
Model checking (F test) 92
Model errors 28, 38, 40, 156, 159, 160, 162,

192, 235, 290, 323, 341, 348–351,
375, 376, 378, 380, 384, 610, 616,
619, 621, 639, 646

Model forecast 28, 30, 90, 94, 105, 107,
125–144, 147, 207, 208, 252–256,
260–262, 283, 298, 304–307, 310,
313, 315, 321–326, 331, 336, 381,
399, 468, 470, 510, 512, 513, 515,
517, 528, 536, 557, 561–562, 596,
610, 613, 616–619, 626, 628, 629,
637–640, 661

Model-observation departures 253
Model parameter estimation 60, 78–83
Model propagator 288
Model state 30, 48, 73, 126, 198, 200, 235,

252–254, 259, 272, 279, 288, 303,
304, 306, 369, 374, 375, 392, 395,
467, 529, 610, 647

Model trajectory 239, 252, 258, 278, 371
Model uncertainty characterization 74, 83
Moderate Resolution Imaging

Spectroradiometer (MODIS)
75, 100, 280, 298, 357, 643, 644,
648, 650–651, 653, 655–672, 674,
675, 677–701

Modular Ocean Data Assimilation System
(MODAS) 323, 324, 330, 332,
368, 377–380, 383–385

Moist convection 261, 267–269
Monin-Obukhov (M-O) formulation 264
Monotonic convergence 291
Monsoon circulation 644
Monsoon depression 643–702
Monsoon disturbance 643, 644, 672
Monsoon trough 644
Monte-Carlo methods 59–84, 147, 189, 419
Monthly Objective Analysis using the Argo

data (MOAA) 510, 524
MSE. See Mean square error (MSE)
MSU. See Microwave Sounding Unit (MSU)
Multi-chain MCMC simulation 71
Multiple-regression analyses 90
Multivariate correlations 313–314, 340
Multivariate optimum interpolation (MVOI)

system 304, 309, 328, 329

N
NASA. See National Aeronautical and Space

Administration (NASA)
Nash-Sutcliffe Index (NE) 422, 423
National Aeronautical and Space

Administration (NASA) 357, 649
National Center for Atmospheric Research

(NCAR) 165, 424, 425, 581,
611–613, 629, 639

National Center for Environmental Predication
(NCEP) 113, 280, 424, 425, 468,
516, 524, 581, 596, 611–614, 647,
688

National Environmental Satellite Data and
Infromation Services (NESDIS)
630

National Oceanic and Atmospheric
Administration (NOAA)-15 516,
524, 612, 630, 632

National Oceanic and Atmospheric
Administration (NOAA)-16 630,
632

Naval Oceanographic Office (NAVOCEANO)
304, 328, 332, 334
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Naval Research Laboratory Atmospheric
Variational Data Assimilation
System (NAVDAS-AR) 206, 208,
222, 223, 228, 295, 298–300

NAVDAS. See NRL Variational Data
Assimilation System (NAVDAS)

NAVDAS-AR. See Naval Research
Laboratory Atmospheric Variational
Data Assimilation System
(NAVDAS-AR)

Navier-Stokes equations 20
NAVOCEANO. See Naval Oceanographic

Office (NAVOCEANO)
Navy Coupled Ocean Data Assimilation

(NCODA) 304–307, 309, 318,
321, 324–330, 333–335, 341, 393,
402

Navy Operational Global Atmospheric
Prediction System (NOGAPS)
130, 131, 206, 222–229, 298, 328,
329, 378

NCAR. See National Center for Atmospheric
Research (NCAR)

NCEP. See National Center for Environmental
Predication (NCEP)

NCODA. See Navy Coupled Ocean Data
Assimilation (NCODA)

NE. See Nash-Sutcliffe Index (NE)
NESDIS. See National Environmental Satellite

Data and Infromation Services
(NESDIS)

Nested LETKF system 491–501, 504–506
Newtonian relaxation 30
NHM. See Non-Hydrostatic Model (NHM)
No-cost smoother 489, 498–501
NOGAPS. See Navy Operational Global

Atmospheric Prediction System
(NOGAPS)

Noise vector 35
Nominal trajectory 5
Non-differentiability 465, 469, 477–480, 482
Non-Gaussian 66, 83, 148, 149, 156, 157,

171–173, 518
Non-Gaussian error 465, 469, 480–482
Non-Hydrostatic Model (NHM) 528
Non-hyrdostatic 131
Nonlinear coordinate transformations 10
Nonlinear dynamical systems 46
Nonlinear dynamics 46–48, 112, 148, 431,

434, 444, 449
Nonlinear error 136
Nonlinear filtering methods 2
Nonlinearity 78, 148, 160, 162, 239, 240,

242, 245, 289, 465, 469, 477–480,

482, 523, 573, 579, 584, 587, 588,
603

Nonlinear regression 149–155, 160, 162,
166, 168, 169

Non-normal distributions 148
Non-orographic gravity wave 261, 273, 274,

277
Non-symmetric systems 291
North American cyclones 555–573
North Pacific Experiment (NORPEX) 579
Nowcast 303
NRL Variational Data Assimilation System

(NAVDAS) 130–143, 305
Nudging 27–55
Nudging coefficient 30, 31, 33–40, 54
Nudging matrix 33, 47
Number of degrees of freedom 648
Numerical weather prediction (NWP) 29,

93, 106, 111–113, 123, 125–130,
134, 206, 209, 211, 217, 229, 251,
252, 258, 298, 305, 335, 336, 345,
347, 350, 352, 363, 466, 510, 516,
527–530, 610, 612, 640, 648, 650,
652, 665, 708

Nutrient fertilization 392
NWP. See Numerical weather prediction

(NWP)

O
Objective function 93, 260, 288–292,

294–297, 299, 420, 422, 613
Observability

Gramian 4–6
matrix 3, 4, 42

Observation error
correlation 90, 98, 213, 216–217, 227,

475
covariance 90, 107, 163, 171, 207, 212,

213, 218, 224, 254, 288, 295, 298,
305, 309, 316, 324, 326, 327, 354,
395, 467, 475, 476, 483, 514, 529,
614

covariance matrix 254, 305, 316, 354,
514, 614

Observation impact 80, 107, 125–144, 206,
208–210, 222, 228, 229, 275, 325,
474, 476, 555, 556, 559, 560, 656

Observation impact assessment 125–144
Observation increment 472, 475
Observation influence 89–109
Observation Influence (OI) method 89–109,

112, 647
Observation nudging 30
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Observation operator 148, 150, 170, 207,
211, 254, 288, 304, 335, 336, 348,
349, 375, 377, 467, 468, 479, 480,
483, 514, 529, 610

Observation space 30, 61, 62, 89, 94, 129,
133–136, 150, 162, 207, 208, 213,
216, 229, 253, 306–308, 325–327,
331, 333, 349, 350, 514

Observation-space estimation 208
Observation system experiments (OSEs) 511,

512, 515–517, 522, 578, 579, 582,
591, 599–603

Observation system simulation experiments
(OSSE’s) 31

Observation targeting 206, 555–559,
561–573

Observation thinning 476
Observation time 82, 94, 207, 241, 254, 330,

348, 392, 395, 396, 398, 406
Observation vector 62, 90, 94, 218, 305, 306,

326, 467, 514
Observer-based nudging 41–48
Observer construction 17–22
Observer design 3, 6, 8, 10, 20–22, 46, 47, 54
Observers and estimation 1–22
Observer state 44
Observer theory 30
Observing array 293
Observing network 74, 108, 130, 317, 569
Observing System Research and

Ensemble Data Assimilation
Development Research Team
(OREDA) 512, 524

Ocean adaptive sampling 392–398, 403, 407,
408

Ocean data assimilation system 324, 346
Ocean ensemble forecasting 391–408
Ocean general circulation model for the Earth

Simulator (OFES) 510, 523
Ocean model 191, 292, 304, 306, 307, 315,

328, 336, 347, 363, 367–388, 393,
400, 510, 523, 524

OFES. See Ocean general circulation model
for the Earth Simulator (OFES)

OISST. See Optimal interpolation sea-surface
temperature (OISST)

On-off switch 479, 480
Onset vortex 644
Operational data assimilation 106, 216, 296
Optimal control vector 112, 349, 351
Optimal control vector increment 349, 351
Optimal estimate 15, 33, 34, 38, 222, 467
Optimal filter for stationary processes 2
Optimal flight tracks 392

Optimal forecast problem 29
Optimal initial conditions 251
Optimal interpolation 248, 510, 516, 524,

646
Optimal interpolation sea-surface temperature

(OISST) 516, 524
Optimal nudging coefficient 31, 33–40
Optimization solver 613
Optimization theory 29
Ordinary linear regression 91, 93
OREDA. See Observing System Research

and Ensemble Data Assimilation
Development Research Team
(OREDA)

Orographic gravity wave drag 261
Orthogonal decomposition 292, 293
OSEs. See Observation system experiments

(OSEs)
OSSEs. See Observing system simulation

experiments (OSSEs)
Outer Local Ensemble Transform Kalman

Filter 489–506, 510, 512–515, 524
Outer-loops 234, 237, 238, 241, 248, 350

P
Pacific area long-term atmospheric observation

for understanding of climate Change
(PALAU) 511, 517, 523, 524

PALAU. See Pacific area long-term
atmospheric observation for
understanding of climate Change
(PALAU)

Parameter estimation 78–83, 148, 707–713
Parametric Fortran compiler 368, 372–374
Parametrized discontinuities 133
Partial observability 5, 6, 18
Particle filter 160, 162–164, 166–168, 477,

481
PDF. See Probability density function (PDF)
Penalty parameter 34
Perfect model 6
Performance assessment 257
Perturbation growth 557
Phase change 433, 451, 452, 454, 458, 461
Phase errors 148, 153, 155–168
Phase uncertainty 149, 156, 157, 168,

171–173
Physical parameter 79, 616
Physical space 180, 236, 291, 347, 478, 612,

613
Physical-space Statistical Analysis System

(PSAS) 236, 291, 347, 357
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Pilot 66, 99, 100, 539
Polar Ocean Profling System (POPS) 510,

524
Polynomial regression 152
POPS. See Polar Ocean Profling System

(POPS)
Position errors 147–173, 502
Positive definite matrix 41, 96
Posterior analysis 224, 248, 298, 395
Posterior density 60
Posterior errors 244, 248
Posterior mean 69, 147, 150, 151, 153, 155,

160–163, 166–169
Posterior probability 60
Posterior probability densities 60
Posterior probability simulation 60
Posterior statistics 244–248
Post-multiplication 132, 208, 214, 306–309,

320, 326, 333
PR. See Precipitation Radar (PR)
Precipitable water vapor 489, 650
Precipitation Radar (PR) 280, 651
Preconditioned conjugate gradient 132, 349
Preconditioning 116, 238, 350–351,

477–479, 482, 484, 613
Prediction error 39, 392, 604
Primal formulation 347, 349
Principal axes 112, 194
Prior errors 354
Prior estimate 34, 62, 148, 150, 159, 209,

234, 335, 348, 355, 357
Probability density function (PDF) 62,

65–67, 69, 70, 73, 74, 76–78, 80–83,
148, 149, 152, 467, 481, 485

Probability of observations 61
Profilers 31, 99, 100, 516, 527, 529, 531
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