
Towards Proactive

Cross-Layer Service Adaptation�

Chrysostomos Zeginis, Konstantina Konsolaki,
Kyriakos Kritikos, and Dimitris Plexousakis

Information Systems Laboratory, ICS-FORTH, Heraklion, Greece
{zegchris,konsolak,kritikos,dp}@ics.forth.gr

Abstract. Service-Based Applications (SBAs) enable the automation of
business processes. Therefore it is crucial to monitor their non-functional
properties and take adaptation actions when QoS violations occur, ac-
cross all functional layers. In this paper we propose a framework for
the proactive cross-layer adaptation of SBAs. We exploit a cross-layer
monitoring mechanism to detect a wide range of events, based on which
we can both reactively and proactively adapt the system. In particular,
the detection of event patterns help us to prevent future faults and fail-
ures from happening, by firing specific, dynamically derived rules, that
map event patterns to suitable adaptation strategies. Our framework is
validated using a traffic management scenario.

Keywords: monitoring, proactive adaptation, cross-layer, pattern,
rules.

1 Introduction

Web Services evolution provides testimony of a move towards combining existing
and new applications in order to provide more complex SBAs. An SBA is consti-
tuted by three main layers [4]: The Business Process and Management (BPM)
layer provides the business process along with the activities, the involved roles
and the Key Performance Indicators (KPIs), that define and measure progress
toward organizational goals. The Service Composition and Coordination (SCC)
layer refines this process by combining suitable Web services accompanied by the
corresponding SLAs and the Service Infrastructure (SI) layer provides the under-
lying infrastructure. While Web services evolve in a very dynamic and vulnerable
environment, they need to be monitored to detect violations of their functional
and non-functional properties. Moreover, whenever a violation is detected, it is
crucial to adapt the SBA accordingly. Web service monitoring and adaptation
should take place across all the SBA layer, since these layers are closely related
with many dependencies among them.

In this paper, we analyze our approach towards proactive cross-layer service
adaptation. Firstly, Section 2 summarizes the related work. Section 3 presents

� This work constitutes preparatory foreground work on the FP7 IP PaaSage (Model-
based Cloud Platform Upperware).

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 704–711, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Proactive Cross-Layer Service Adaptation 705

an updated version of ECMAF [10] which enables the efficient derivation and
management of rules that map event patterns to suitable adaptation strategies,
i.e. workflows of adaptation actions. Then, we exemplify the framework’s func-
tionality. The proposed monitoring engine captures monitored events from all
the SBA layers, while the adaptation mechanism exploits the monitored events
to derive new event patterns and the corresponding rules, in the way described in
Section 4. Section 5 validates the framework using a specific case study. Finally,
some concluding remarks and future work directions are presented in Section 6.

2 Related Work

During the past years some approaches towards cross-layer monitoring and adap-
tation have been proposed. CLAM [11] is a cross-layer adaptation manager,
which identifies the application capabilities affected by the adaptation actions
and an adaptation strategy that solves the adaptation problem. In [9] the authors
propose a methodology for the dynamic and flexible adaptation of multi-layer ap-
plications using adaptation templates and taxonomies of adaptation mismatches.
Guinea et al. [3] present an integrated approach for monitoring and adapting
multi-layered SBAs, based on a variant of MAPE control loops [5]. Gjørven et
al. [2] propose an approach towards cross-layer self-adaptation, which exploits
mechanisms across two layers, Service Interface and Application, related to SCC
and BPM layers respectively. In [8] the authors present an AOP-based approach
towards runtime adaptation of service compositions for preventing SLA viola-
tions. Finally, in [6], the authors present the design and implementation of an
experimental facility for cross-layer adaptation. The aforementioned approaches
are compared in Table 1 according to a set of criteria, that are explained in [10].

Table 1. Comparison of Cross-layer Monitoring and Adaptation approaches

Approaches Cross-layer Dynamicity Intrusiveness Timeliness Type of properties

Mon. Adapt. Mon. Adapt. Mon. Adapt. Kind Scope

Zengin et al. [11] � – � – ∼ ∼ R NF-F I-C

Popescu et al. [9] � – � – � Im R F I

Guinea et al. [3] � � � � ∼ Im R NF-F I-C

Gjørven et al. [2] � ∼ � ∼ – ∼ R F I

Leitner et al. [8] � � � � � Im R-P NF I

Jiang et al. [6] � – � – ∼ Im R NF I-C

ECMAF � � � – – Im R-P NF-F I-C

�: Satisfaction, –: Unsatisfaction, ∼: Uncertainty, Im: Immediate, R: Reactive, P:
Proactive, F: Functional, NF: Non-Functional, I: Instance, C: Class

From the comparison of the related cross-layer approaches we conclude that
none of them satisfies all the criteria. As far as dynamicity is concerned, most
of these approaches perform dynamic adaptation unlike dynamic monitoring. In
addition, most approaches are non-intrusive regarding monitoring and adapta-
tion, while all of them are reactive rather than proactive. Finally, as far as the

706 C. Zeginis et al.

type of properties is concerned, they mostly focus on non-functional properties,
while the scope of most of them is instance-based.

The main strengths of our proposed framework are the ability to handle both
functional and non-functional properties, its proactive adaptation capabilities,
by exploiting detection of warning event patterns and the efficient rule manage-
ment, and its extensibility, as it can integrate new monitoring and adaptation
techniques with the existing ones, while preserving its functionality and integrity.

3 The ECMAF Framework

The proposed framework (ECMAF) (Fig. 1), presented in [10], has been slightly
changed and partially implemented with the purpose of providing an event-based
approach towards cross-layer service monitoring and adaptation. Its main archi-
tectural differences with the previous one are the detailed view of the Monitor
Manager, the addition of the Rule Manager and the integration of the reasoner
in the Event Pattern Detector. Moreover, we have extended the framework’s
functionality, so as to efficiently address both reactive and proactive adaptation.

We adopt three types of events in our approach. Successful events carry
information about successful invocations and normal state of the system com-
ponents. Warning events indicate that a component (device, service, software,
etc) of our system does not perform normally and a monitoring property has
exceeded the warning threshold, which has been defined by the service requester
as part of the SLA (e.g. service execution time surpasses warning threshold of
100ms). These events may lead to failing events, helping us to proactively adapt
our system. Failing events indicate that a failure appeared during the SBA

Fig. 1. Architecture of ECMAF

Towards Proactive Cross-Layer Service Adaptation 707

execution. These events are detected by the monitoring engine when a monitor-
ing property is violated. Moreover, failing events, as well as warning events, can
capture functional properties, as for example the service input type.

Concerning monitoring of the BPM and the SCC layers, we are using the
Astro monitoring tool [1]. As Astro exploits the ActiveBPEL engine, it provides
the ability to monitor service compositions implemented in BPEL. It supports
both instance and class monitors, as well as the monitoring of functional and
non-functional properties. The framework detects violations at the SCC and the
BPM layers by comparing the monitoring property values with the predefined
thresholds, and records them at a log file. The SI monitoring is performed by the
Nagios (http://www.nagios.org/) monitoring tool, which offers complete mon-
itoring and alerting for servers, switches, disks and other types of infrastructural
components. Both monitoring tools also provide success and warning events. For
the definition of the monitored properties we exploit the OWL-Q non-functional
service description language [7], which has been extended accordingly so as to
allow the definition of functional properties.

As far as adaptation is concerned, our approach relies on detecting pat-
terns of monitored events, in order to prevent future failing events. Initially,
the subscribed monitored events are collected by the Siena subscription mech-
anism (http://www.inf.usi.ch/carzaniga/siena/), which, in turn, passes
them to the Translator and are finally stored in a MySQL Event Database.
The Rule Manager regularly consults the database to derive new event pat-
terns and the corresponding mapping to suitable adaptation strategies, in the
form of new rules, which are then sent to the Event Pattern Detector (EPD).
This procedure is explained in Section 4. The Translator, a Java-based program,
transforms the monitored events to the respective format of the Event Pattern
Detector. For event processing and comprehensive pattern detection, we use Es-
per (http://esper.codehaus.org/), which can detect an event pattern while
new monitored events are delivered to the EPD. Then, EPD detects the event
pattern that corresponds to the body of a specific rule produced by the Rule
Manager and in this way selects the appropriate adaptation strategy that cor-
responds to the rule head and forward it to the Adaptation Manager. Each
adaptation strategy is mapped to a BPEL file which determines which adap-
tation actions is performed by which component as well as the ordering of the
adaptation actions.

Finally, the Adaptation Manager is responsible to provide the appropriate
BPEL file, which realizes the adaptation strategy, by defining the responsible
component for each adaptation action and the ordering of these actions. Com-
plex adaptation strategies are produced from simpler ones in a bottom-up man-
ner by merging the corresponding BPEL files accordingly. The Infrastructure
Manager is able to treat malfunctions regarding the SI layer, such as memory
reallocation, server switching and other. This tool is planned to be a separate
one with infrastructure adaptation capabilities. The Execution Engine, which is
planned to be an extension of the existing Astro BPEL engine with adaptation
capabilities, is called to apply the adaptation strategies.

http://www.nagios.org/
http://www.inf.usi.ch/carzaniga/siena/
http://esper.codehaus.org/

708 C. Zeginis et al.

4 Rule Derivation

In order to define the patterns of monitored events for the executed SBA, the
Rule Manager is regularly querying the Event Database to discover the event
patterns that lead to failing events. A number of SBA instance invocations have
to be considered, so as to find these event sequences that are repeated for many
times and have always the same SBA failing result. Then, the Rule Manager
marks this sequence as an event pattern for this SBA. Unique identifiers, such
as business process IDs, service IDs and infrastructure IDs, are exploited for
event correlation during pattern derivation.

After defining an application-specific event pattern, that may contain events
from all three layers, the Rule Manager maps this pattern to an adaptation
strategy in the following way. Some predefined simple rules, mapping events to
specific adaptation strategies, are produced manually by the application man-
ager and are passed to the Rule Manager. Each monitored event can be mapped
to more than one adaptation strategy, but we keep a priority of these strate-
gies, defined by the application manager, to express their suitability. The Rule
Manager extracts only the rule with the highest priority for each monitored
event. Simple events are mapped to one or more adaptation strategies, while the
strategies of more complicated event patterns (containing more that one event)
are produced from the individual strategies of the events that participate in the
pattern. We assume that each unique adaptation action has a unique name, in
order to facilitate the strategy matching. Finally, the Rule Manager extracts
a rule that is passed to the Event Pattern Detector. The following techniques,
exploiting the strategy sets that have been mapped to each individual event of
the pattern, are used to examine which is the best strategy combination.(S(e)
symbolizes the set of strategies assigned to the monitored event e):
Case 1: The optimum solution derives from the intersection of the adaptation
strategies. If the intersection is non-empty, then the event pattern is associated
to all the strategies of the intersection but only one of them is selected to be the
most suitable one, according to strategies priority. In particular, the rationale is
to multiply the priorities and take the intersection with the highest combined
priority. Big products mean high priority. Case 2: The worst case is the situ-
ation, where there is no intersection among the strategy sets. In this case we
choose the sets union, i.e. the adaptation strategy with the highest priority for
each one of the monitored events. Moreover, the other strategy combinations
are stored and assigned a priority. Case 3: In any other case, the overlapping
between the sets is considered to decide the adaptation strategies. For instance,
if S(e1) is overlapped with S(e2) and S(e2) is overlapped with S(e3), then the
adaptation strategy will comprise two adaptation strategies with the highest
priorities from the following set (S(e1) ∩ S(e2)) ∪ (S(e2) ∩ S(e3)).

5 Case Study

Our work aims at locating the warning event and taking adaptation actions in
order to prevent future failing events, as well as to reactively adapt the SBA

Towards Proactive Cross-Layer Service Adaptation 709

when proactive adaptation fails to detect the failure. The application domain
considered in this paper concerns a traffic management system, which is analyzed
in detail in [10] (Fig. 2). At the SCC layer, the oval shapes represent the third-
party composite services, the rectangles the internal composite services, while the
dashed ones the manual activities. We suppose that the domain expert specifies
in a separate document his goals for the quality of the system using a set of KPIs
using OWL-Q. In addition, she defines adaptation strategies that can be taken in
order to adapt the business process as well as the initial rules. The corresponding
SLAs of the web services are stored in the model repository. We assume that the
following manual rules have been imported in the Rule Manager:

– available memory <100MB ⇒memory realloc. (R. 5.1, Pr. 1)
– elapsed time of assessment service >500ms ⇒memory realloc. (R. 5.2, Pr. 1)
– execution time of assessment service >1sec ⇒DCS migration (R. 5.3, Pr. 1)
– process duration >10min ⇒recomposition (R. 5.4, Pr. 1)
– available memory < 100MB + elapsed time of assessment service >500ms

⇒ memory realloc. (derived from Rules 5.1, 5.2) (R. 5.5, Pr. 1)

At run time, we continually collect monitored events from the Astro and the
Nagios monitoring tools. Successful events indicate that the system is running
normally and the adaptation manager does not have to take any actions. After a
certain period of time, the monitoring engine detects that the assessment service
has currently low available memory (below warning threshold of 100MB). At the
same time we notice that this service is not running optimally and the Astro
monitoring tool detects a warning event indicating that its elapsed time since its
invocation has exceeded the warning threshold of 500ms. These events are passed
directly to the Monitor Manager and delivers them to the Adaptation Engine.
This event sequence appeared many times in the past SBA execution history
leading to the occurrence of the failing event, so the Rule Manager has derived
a corresponding event pattern and mapped this pattern to the most suitable
adaptation strategy according to the predefined manual rules. Specifically, the
exported rule 5.5 stems from the intersection of the adaptation strategies of the

B
P

M
 L

a
y
e

r
S
C

C
 L

a
y
e

r
S
I
L
a
y
e

r

Citizens
inform traffic

manager

Assessment
Service Manually

Device
configuration –

GPS/SMS Service

Device
Configuration

Service

Mobile
Phone

Database Server --

Software
Network Devices

Wireless/GPS
Mobile Phone

Software
Network
Devices
Wireless

Check for
high hours
and days

Assess
incident

Go to
accident's
location

Devices
reconfiguration

–
Inform citizens

Take
adaptation
actions to

control
situation

Inform traffic
manager
situation
handled

Rescue
Forces
Actions

Traffic
Manager
Actions

Complete
emergency
Handling –

Everything Back
to normal

Information
Service

Database
Server

Calendar
Service

Call- SMS

Service

Fig. 2. Critical traffic conditions - Traffic management scenario

710 C. Zeginis et al.

two warning events. The strategy’s suitability lies on the fact that by executing
this service with better memory allocation, the probability that the SLA guar-
antee corresponding to the service execution time is not violated becomes very
high. However, the service execution time is finally violated. Consequently, the
respective event is detected and Rule 5.3 is fired, aiming at addressing a future
KPI violation, i.e. that the process duration surpasses the 10 minutes threshold,
by migrating the Device Configuration Service (DCS) to another more powerful
machine to compensate for the additional time spent by the assessment service.
This strategy is performed in parallel with the manual activities, which consume
most of the process time, so it does not introduce any additional delay.

6 Conclusions and Future Work

To sum up, in this paper we have presented an extended framework, that can
efficiently deal with both reactive and proactive cross-layer of adaptation of
SBAs. Its main contribution is the pattern-based handling of monitored events in
order to perform adaptation. On the one hand, it is both the detection of warning
event patterns and the efficient rule management that enables the proactive SBA
adaptation, and on the other hand, the efficient rules management reinforces its
reactive adaptation capabilities. Furthermore, initial validation of our approach
has been presented, based on a traffic management scenario. As future work, we
will finalize the framework by implementing adaptation enactment mechanisms,
that will experimentally evaluated. In addition, the framework will be enriched
with new capabilities to capture the state of the different applications.

References

1. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time Monitoring of In-
stances and Classes of Web Service Compositions. In: ICWS, pp. 63–71. IEEE
(2006)

2. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer self-adaptation of service-oriented
architectures. In: MW4SOC, pp. 37–42. ACM (2008)

3. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered Monitoring
and Adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

4. Hielscher, J., Metzger, A., Kazhamiakin, R.: Taxonomy of adaptation principles
and mechanisms. S-Cube Project Deliverable (2009)

5. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. Tech. rep. (2001)

6. Jiang, S., Hallsteinsen, S., Lie, A.: An experimental facility for cross-layer adapta-
tion of service oriented distributed systems. In: NIK, pp. 97–108 (2011)

7. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: ECOWS. IEEE,
Zurich (2006)

Towards Proactive Cross-Layer Service Adaptation 711

8. Leitner, P., Wetzstein, B., Karastoyanova, D., Hummer, W., Dustdar, S., Leymann,
F.: Preventing SLA Violations in Service Compositions Using Aspect-Based Frag-
ment Substitution. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 365–380. Springer, Heidelberg (2010)

9. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven
Adaptation of Multi-Layer Applications using Templates. In: SASO (October 2010)

10. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: ECMAF: An Event-Based
Cross-Layer Service Monitoring and Adaptation Framework. In: NFPSLA-SOC.
Springer (2011)

11. Zengin, A., Marconi, A., Pistore, M.: CLAM: Cross-layer Adaptation Manager for
Service-Based Applications. In: QASBA 2011, pp. 21–27. ACM (2011)

	Towards Proactive Cross-Layer Service Adaptation
	Introduction
	Related Work
	The ECMAF Framework
	Rule Derivation
	Case Study
	Conclusions and Future Work
	References

