
A Meta-plugin

for Bespoke Data Management in WordPress

Stefania Leone, Alexandre de Spindler, and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{leone,despindler,norrie}@inf.ethz.ch

Abstract. WordPress is a powerful and extensible platform for web-
based information publishing and management. While the WordPress
core is targeted to the publication of chronologically ordered textual ar-
ticles typical of blogs, users have developed plugins as well as themes
to support the data management requirements of specific domains such
as e-commerce or e-learning. However, the creation of such plugins re-
quires development skills and effort. We present a meta-plugin that au-
tomatically generates bespoke plugins for data management based on
user-defined ER models. We illustrate the approach using an example of
creating a WordPress site for managing information about courses.

Keywords: Wordpress, Meta-Plugin, Data Management Platform

1 Introduction

WordPress is a powerful information management and publishing platform that
allows end-users to set up their web sites by selecting and adapting shared
themes. Through the administrator interface, users can customise their theme
of choice as well as authoring content, uploading media and integrating a wide
variety of plugins. The success of the approach is reflected by the large number
of over 50 million online web sites1 based on WordPress.

Although WordPress is commonly associated with blogging sites, nowadays
it is widely used as a general information management and publishing system.
Examples include museums2, corporate websites3 and more domain-specific ap-
plications, such as online stores4 and e-learning systems5. However, while Word-
Press provides a powerful infrastructure for web publishing, the core data model
is very limited since it is based on a simple pages and posts paradigm for the
publication of semi-structured text and embedded media.

The WordPress core model and functionality can be extended through plug-
ins. Thousands of plugins have been developed by the community with examples

1 http://en.wordpress.com/stats
2 http://wordpress.org/showcase/the-toledo-museum-of-art
3 http://wordpress.org/showcase/atlantic-southeast-airlines
4 http://kartellstorela.com
5 http://testdatei.schatzverlag.ch

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 580–593, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://en.wordpress.com/stats
http://wordpress.org/showcase/the-toledo-museum-of-art
http://wordpress.org/showcase/atlantic-southeast-airlines
http://kartellstorela.com
http://testdatei.schatzverlag.ch

A Meta-plugin for Bespoke Data Management in WordPress 581

including an e-commerece plugin6 and the Buddypress7 plugin for the design of
social networking sites. Plugins can easily be shared among the user commu-
nity, but users with very specific data management requirements may have to
develop their own plugins which requires knowledge of PHP as well as a detailed
understanding of the WordPress platform and its inner workings.

To simplify the task for end-users, we show how the concept of a meta-plugin
can be used to generate bespoke plugins for data management. The meta-plugin
allows end-users to specify an ER model in the WordPress administrator in-
terface and automatically generates a plugin based on this model. This enables
users to profit from the infrastructure provided by WordPress, while being able
to tailor the underlying model to their needs rather than having to work around
the limitations of a core model originally designed for blogging sites.

Section 2 discusses support for end-user development of data-intensive web
sites. The core model of WordPress is presented in Sect. 3 and an extension to
support ER models in Sect. 4. In Sect. 5, we detail the concept of meta-plugins
and demonstrate their use in Sect. 6. Concluding remarks are given in Sect. 7.

2 Background

Nowadays, many professional as well as private web sites are developed by sin-
gle users, either as end-users or developers with a small amount of technical
knowledge combined with some design skills. In line with research on end-user
development, it is therefore important to consider how to make web information
systems not only easy to use, but also easy to develop [1].

Within the web engineering research community, model-driven approaches to
web site development such as [2–4] have been advocated strongly. These method-
ologies offer systematic approaches based on models defining the structural, nav-
igational and presentation aspects of a web information system. In the case of
WebML [2], a developer designs an ER data model, followed by navigation and
presentation models. The associated tool Web Ratio 8 can then generate and
deploy the application. While model-driven approaches are powerful and can
generate complex web sites with little or no programming by the developer,
they are not targeted at end-user development since they still require detailed
knowledge of the models and how the web functions. Rather, they were aimed at
supporting teams of developers where there should be a clear separation of con-
cerns between database developers, web architects, programmers and designers.

End-users typically use a platform that offers document-based content pub-
lishing and allows users to design their web sites by configuring the content and
structure of the site in terms of general publishing units and presentation styles.
Popular platforms include WordPress and Drupal9.

6 http://wordpress.org/extend/plugins/wp-e-commerce
7 http://buddypress.org
8 http://www.webratio.com
9 http://drupal.org

http://wordpress.org/extend/plugins/wp-e-commerce
http://buddypress.org
http://www.webratio.com
http://drupal.org

582 S. Leone, A. de Spindler, and M.C. Norrie

In the case of WordPress, the core model was targeted at blogging sites and
the content is organised in terms of the two basic textual publishing units posts
and pages that can be enriched with media. Further, WordPress users can employ
a design-by-example approach [5] by selecting one of many web site themes de-
veloped and shared by the user community. This combination of a simple model
and design-by-example enables users to set up a blogging site and start pro-
ducing content within minutes. A major benefit of such a platform is that both
the configuration and content of a web site can be updated dynamically. While
Drupal is less blogging-specific, so called distributions provide pre-configured
installations with similar support for setting up web sites.

WordPress features a plugin mechanism with which the original blogging
model can be extended in terms of additional entity types, management op-
erations and user interface widgets. A similar mechanism is present in Drupal,
allowing developers to bundle reusable application components into modules.
As a result, the development of web applications not only consists of extending
and configuring a basic initial site with existing plugins or modules, but also
optionally includes the development of such extensions.

Web information systems usually have a data management component and
some researchers have addressed the problem of end-user development of data-
intensive web sites. WYSIWYG application editors [6, 7] have been proposed to
allow end-users to specify custom data. For example, the editor presented in [6]
supports a top-down approach where a user specifies the presentation layer by
creating forms representing domain entities. Based on these forms, an ER graph
is extracted and the corresponding database schema is created automatically
along with the presentation views. Visual mashup editors such as MashMaker [8]
and Mash-o-matic [9] have been designed to create web information systems
by integrating existing data sources. However, they do not provide the basic
infrastructure to facilitate the design of new web information systems.

Drupal offers a module that supports the definition of custom data types, to-
gether with the generation of user interfaces to manage data. Similar support is
provided in WordPress through plugins10. However, in both cases, custom data
types are not explicitly represented in the database back-end. WordPress plugins
typically make use of a single key-value table per data type instance to attach at-
tributes to individual entities in a semi-structured manner. In Drupal, attribute
declarations and values are represented on a meta level using two tables, one
containing all declarations and another containing all values with references to
the entities containing these values. Note that the WordPress plugin referenced
does not support the association of entities. Drupal entities may reference each
other by means of dedicated attributes containing entity identifiers. This effec-
tively realises a single generic relationship construct rather than enabling custom
relationships with constraints over source and target entities. Furthermore, since
generic relationships are not explicitly represented in the database, referential
integrity must be maintained as part of the application code.

10 e.g. Ultimate Post Type Manager:
http://wordpress.org/extend/plugins/ultimate-post-type-manager

http://wordpress.org/extend/plugins/ultimate-post-type-manager

A Meta-plugin for Bespoke Data Management in WordPress 583

These approaches make it much more difficult to write application-specific
queries than in the usual representation of ER models and may lead to poor per-
formance. Moreover, it is difficult to reuse and extend custom types as the appli-
cation evolves and to integrate custom data with external systems. While plugins
and modules offer general extension mechanisms and developers could customise
how they represent application data, such extensions require programming skills
and a deep understanding of the platform-specific programming model. Conse-
quently, their development is not a suitable option for end-users.

We decided to investigate ways in which platforms such as WordPress and
Drupal could be extended to support the development of web information
systems with application-specific data management requirements. In web in-
formation system development, data requirements are typically modelled using
a structured data model such as ER. The general idea is similar to the work
in [10], where they introduce a domain-specific language to support the genera-
tion of corporate web sites on top of popular wiki software. The approach that
we adopted was to build on the powerful concept of plugins in WordPress and
produce a meta-plugin that can generate data management plugins based on
user-defined ER models.

3 WordPress Data Model

In this section, we will have a detailed look at the concepts supported by Word-
Press and its core data model. Note that, although the main concepts and ter-
minology are introduced in a document describing the WordPress Semantics11,
the details of the core data model can only be established by examining the
underlying database as well as extracting bits and pieces from various articles in
the WordPress documentation [11]. Figure 1 gives a conceptual overview of the
WordPress core concepts and how they relate to each other.

Post

Media

Page

authorsUser
1n

has

Tag Category

n

m

has

n

m
attached

n

m

1

parent

n

Image

Video

...

Publishing
Unit

Comments has

n

1

1

parent

n

Fig. 1. ER model of WordPress concepts

WordPress distinguishes between static and dynamic content using two types
of publishing unit—pages for static content and posts for dynamic content. When

11 http://codex.wordpress.org/WordPress_Semantics

http://codex.wordpress.org/WordPress_Semantics

584 S. Leone, A. de Spindler, and M.C. Norrie

designing a web site, pages are typically used for content that has a fixed location
within a web site and changes rarely. In the case of a blogging site, this could be
information about the author. A page has a title, content and date. Content may
be pure text, which is often enriched with HTML for structuring, or may also
embed media, such as images, videos and audio files. Pages are usually accessed
over a navigation menu and can exhibit nested structures.

In contrast, posts are used to publish new content. Although the content of
an individual post is usually static, the collection of posts is dynamic and often
presented in reverse chronological order with only the latest posts being visible
in prominent positions such as the home page. This means that the location of
a post within a web site changes over time and it becomes less and less visible
to the users. Similar to pages, a post has a title, content and date. Both pages
and posts may have comments, which can be configured by the developer.

To structure and organise posts, users can tag them or assign them to specific
categories. Both tags and categories are user-defined. While tags represent a
flat, user-defined taxonomy, categories typically have a hierarchical structure.
The categories may be used to provide further navigational structures within a
web site by creating corresponding menu items and showing only posts belonging
to that category on the associated web page. Details of the structure and layout
is controlled by the selected theme.

While Fig. 1 shows the view of the WordPress model presented to end-users,
the internal metamodel that would be used by the developers of plugins is some-
what different as indicated in Fig. 2. We have based this developer model on the
OMG Meta Object Facility (MOF) [12], where a model is represented by means
of metamodel concepts, model concepts and data.

The first thing to note is that while the end-user model distinguishes the
concepts of posts and pages, internally these are both instances of a general
PostType in the M-2 metamodel. For the sake of clarity, we have therefore la-
belled the corresponding classes for these publishing units as BlogPost and Page

in the developer model. A PostType defines a name and a list of attributes where
Attribute is defined by a name and a type.

The data model on level M-1 represents the WordPress core data model.
Here, we focus on the various post types since this is the extension point for
data management plugins. We have therefore shaded out the parts of the core
model dealing with other concepts such as taxonomies and users on the left of
the figure and will not deal with them in detail.

WordPress actually offers five default post types for publishing content, which
include attachments (any media file), revisions and navigation menus as well as
pages and blog posts [11]. Furthermore, developers are free to create customised
post types for publishing content that is structured differently. The design of
customised post types is done programmatically and WordPress offers a number
of methods in their API for the creation and registration of such custom types.
Technically, the design of custom types is encapsulated and realised as plugins,
which define the data types as well as the associated behaviour and presentation.
Plugins will be discussed in more detail in Sect. 5.

A Meta-plugin for Bespoke Data Management in WordPress 585

Custome PostTypes
Default

PostTypes

Date
Title
Content
Excerpt
Status
Comment_count
...

BlogPost

authors

Comment
comment

Label

Tag

Label
Parent

Category

L

TypeInstance

Date
Title
Content
Excerpt
Status
Comment_count
Parent
...

Page

Title
Description
Lecturer
Location
Time
...

Course

Taxonomy

InstanceOfInstanceOf

InstanceOf

Attachment

Image

Hierarchical
Taxonomy

Flat Taxonomy

Tag:
Web 2.0

InstanceOf

User:
Bill

InstanceOf

User

M-0
Data

M-1
Model

M-2
Metamodel

BlogPost:
Web 2.0 is an old

buzzword…...

Name
List<Attribute>

PostType

Name
Type

Attribute

InstanceOf

InstanceOf

Fig. 2. WordPress developer model

In the centre of Fig 2, we show three of the five default post types, namely
BlogPost, Page and Attachment. There are some interesting differences between
pages and blog posts that can also be seen in the model. Note that only blog
posts can be associated with tags and categories while only pages can be nested.

On the M-0 level, we indicate actual data instances such as a blog post about
Web 2.0 with an image of a tag cloud as an attachment. The article has been
written by a user named Bill and tagged with the term ‘Web 2.0’.

Now consider the case where a developer might want to publish some struc-
tured data on a web site. For example, they might have the task of creating a
WordPress site to publish and manage information about courses offered by a
university. Rather than trying to manage the data about courses as text con-
tained within pages or posts, a developer could create a plugin defining a custom
post type Course as shown in Fig 2. This post type is specifically targeted at
publishing information about university courses, specifies attributes such as ti-
tle, description, time and location and is involved in a relationship associating
courses with their lecturers.

Our goal was to enable end-users to create such plugins in the administra-
tor interface without requiring detailed knowledge of the internal WordPress
model or programming effort. We did this by extending the metamodel and then

586 S. Leone, A. de Spindler, and M.C. Norrie

creating a meta-plugin that could generate plugins automatically based on an
ER model defined by the end-user through a form-style interface. We will first
detail the extension to the metamodel before describing the meta-plugin.

4 WordPress Core Extension for Supporting ER Models

Having introduced the WordPress core data model, we will now show how the
model can be extended based on user-defined ER models. We will present the
extensions using the example of the course management system. Assume the ER
model for the system is as shown in Figure 3.

Course

has

Teaching
Assistant

Lecture

1

n

Attachment

Slides

has

1

1

holds Lecturer1
n

Exercise
Session

teaches
1

n

has
1 1

Exercise
Sheet

has

n

1

assists
n

m

Exercise
Solution

has

n

1

Fig. 3. ER model of university course management

Each course has one or more lecturers and one or more teaching assistants. A
course has a number of lectures with associated slides. Each lecture may have
an exercise session and, for each exercise session, there are exercise sheets and
solutions. Also, an exercise session is taught by one or more teaching assistants.

Figure 3 also indicates how certain concepts of the ER model relate to concepts
in the WordPress core model. Slides, exercise sheets and solutions are sub-entities
of Attachment which is shaded to indicate that this is a concept of the core
WordPress model shown in Fig. 2.

Figure 4 shows the extended WordPress model using MOF. On the metamodel
level M-2, we have introduced a number of new concepts which complement the
core concepts post type and attribute with other concepts of the ER metamodel.
The PostType corresponds to an entity type and defines a number of attributes.
An EntitySet is used to manage entities of a specific PostType. Entity sets
can be related to other entity sets via n-ary relationships. A Relationship

defines a name and list of attributes as well as cardinalities. While we named
the cardinalities source and target, it is simply a naming convention since
relationships are not directed. These concepts are used to instantiate an ER
model on the M-1 level.

A Meta-plugin for Bespoke Data Management in WordPress 587

Custome PostTypes

Default PostTypes

Taxonomy
Author
List<Comment>

TypeInstance

Title
Course Number
...

Course

InstanceOf

Attachment

Image

Name
List<Attribute>

PostType

Course:
Inroduction to

Databases
M-0

Data

M-2
Metamodel

Name
List<Attribute>
List<Cardinality>

Relationship

Name
Members

EntitySet

Title
Date
...

Lecture

Title
...

Slides

EntitySets and
Relationships

Courses Lectures Slides

hasLecture hasSlides

Page

BlogPost

InstanceOf

MemberType MemberType MemberType

M-1
Model

Lecture:
Introduction

Slides:
Introduction

Slides

Name
Type

Attribute

minCardinality
maxCardinality

Cardinality

MemberOf MemberOf MemberOfInstanceOf

0..n 1 0..n 1..n

Fig. 4. WordPress model with course extension

The WordPress data model for our course management system is shown on
the M-1 level. For the sake of space, we only show the additional concepts corre-
sponding to the part of the ER model contained with the dashed line in Fig. 3,
i.e. courses, lectures and slides. We also omit other parts of the core model such
as the users and taxonomies.

Three new post types Course, Lecture and Slides have been integrated
into the WordPress model, with the type Slides as a subtype of Attachment.
Instances of these types are managed in the corresponding entity sets, namely
Courses, Lectures and Slides, as indicated by the MemberType association
between post types and entity sets. These entity sets are all instances of the
EntitySet on level M-0. The relationships defined in the ER model can be
represented using regular relationships between the entity sets. Note, however,
that ER relationships that define attributes may be represented as entities in
their own right that associate two entity sets.

On the M-0 level, data objects are shown. On the left, there is a course instance
with the title ‘Introduction to Databases’. The course has an associated lecture
object which represents the introductory lecture of the course and is associated
to the introduction slides on the right. These objects are instances of the newly
defined post types and members of the corresponding entity sets, as indicated
by the InstanceOf and MemberOf associations.

588 S. Leone, A. de Spindler, and M.C. Norrie

5 Meta-plugin

We now introduce in detail the notion of a WordPress meta-plugin, which is a
plugin that generates new plugins. The idea is similar to that of template-based
programming, for example in C++ [13] or XSLT [14].

The meta-plugin introduces a new data design process into the WordPress
core. Instead of only being able to create pages and posts, a user can use the
meta-plugin to define an ER model specifying application data entities and as-
sociations. From the specified ER model, the meta-plugin generates a bespoke
plugin that the user simply has to install to create a data-backend for their
web site. The generated plugin will allow application data to be created and
manipulated based on the defined structure. Of course, the plugin can be used
in combination with the powerful plug-n-play infrastructure provided by Word-
Press. This means that the structure provided by the generated plugin can be
extended with additional pages and posts to refine the design, either using stan-
dard WordPress functionality or by installing additional plugins. Since all data
entities are realised as post type instances, they can also be classified by means of
categories and tags without additional development effort. For the look-and-feel,
we rely on WordPress themes, which can be used and adapted by the user.

Bespoke Plugin

M-0
Data

M-2
Metamodel

M-1
Model

Meta-Plugin

generates

manages

Wordpress
Database

Wordpress
Core

Plugin
Application Logic

Plugin Data

Fig. 5. Meta-plugin, plugin and data

Figure 5 gives an overview of our extension. The WordPress metamodel ex-
tension on level M-2 of Fig. 4 has been realised as a meta-plugin that extends
the WordPress core with ER modelling capabilities and allows users to define
ER models through a graphical user interface. Based on these user-defined ER
models, the meta-plugin automatically generates bespoke plugins that realise the
user-defined ER models on the M-1 level. Again, the generated plugin extends
the WordPress core model, in this case, however, with a bespoke data model. In
our example, that would be support for course management. The bespoke plugin
consists of application logic and also an extension to the WordPress database to
manage the data of the generated plugin. In our example, this would be data
about courses, exercises, lecturers, assistants etc. The generated application logic
offers functionality to create, manipulate and also view this data.

A Meta-plugin for Bespoke Data Management in WordPress 589

The meta-plugin as well as the generated plugins are realised as regular Word-
Press plugins that can be installed through the WordPress administrator inter-
face, i.e. the dashboard. Once installed, the meta-plugin extends the WordPress
dashboard with functionality for ER modelling. More concretely, it creates a
menu item ‘ER Modelling’, with sub-menus to view and create entity types, en-
tity sets and relationships between them, as shown in the menu bars on the left
of Figs. 6 (a) and (b). Using these menus, the user can create their ER model:
Fig. 6 (a) shows the interface for creating a new entity type and Fig. 6 (b) for
creating a relationship. In the current example, a number of entity sets have
already been created and the user can select the source and target entity sets
of the relationship from the drop-down menus. Once the user has defined an
ER model, they can trigger the generation process of the bespoke plugin us-
ing the ‘Generate Plugin’ menu. The user has to provide a plugin name and a
description. The generation of a bespoke plugin is then triggered.

(a) (b)

Fig. 6. Meta-plugin screenshots

6 Bespoke Plugin Generation

As part of its plugin mechanism, WordPress offers a number of hooks, which al-
low users to inject additional functionality, data structures and presentation into
execution environment of the WordPress core. Hooks are plugin lifecycle events
such as their installation or uninstallation, as well as administrative or end-user
activities including the creation, manipulation, retrieval, selection, display and
deletion of posts, pages or plugin-specific data. Typically, plugin code includes
functions for creating and deleting database tables, for inserting and selecting
table data and the assignment of these functions to particular hooks.

To install a plugin, the files containing the plugin code need to be uploaded
into the target WordPress platform through the dashboard. The availability

590 S. Leone, A. de Spindler, and M.C. Norrie

of the plugin is then displayed to the user and can be activated. As a result
of the activation, the additional functionality, data structures and presentation
facilities become part of WordPress and are available for immediate use.

The meta-plugin presented previously is a plugin capable of generating files
which constitute bespoke plugins. The code contained in these files is created
using parametrised code templates instantiated with information from the ER
models. The generated plugin encapsulates functions for the creation of custom
types and database relations corresponding to the ER model, the extension of
the dashboard with functionality to create data according to the model and
functionality to present this data. We will now describe how these functions are
bound to the WordPress hooks.

On plugin installation, custom types and database relations need to be cre-
ated, and the dashboard extended with data creation and management func-
tionality. First, a function is generated, which uses the custom type registration
facility in order to register each entity type. As a result of such a registration
process, the dashboard is automatically extended with the functionality to man-
age entity type instances. Then, for each entity type, entity set and relationship,
functions containing CREATE TABLE and DROP TABLE statements are generated.

...

$plugin.=

"<?php

$postTypeRegistration;

register_activation_hook(_FILE_,

‘".$n."_activate’);

...

function ".$n."_activate(){

global \$wpdb;

\$wpdb->query(

‘CREATE TABLE ".$tablename."(

ID INT(6) PRIMARY KEY

NOT NULL AUTO_INCREMENT,

post_id BIGINT(20),

".$attributes.");’

);

...

}?>"

...

Fig. 7. Parameterised PHP Template

<?php

register_post_type(‘Course’,$args);

...

register_activation_hook(_FILE_,

‘coursemgt_activate’);

...

function coursemgt_activate(){

global $wpdb;

$wpdb->query(

‘CREATE TABLE course(

ID INT(6) PRIMARY KEY

NOT NULL AUTO_INCREMENT

post_id BIGINT(20),

title VARCHAR(45) not null,

description VARCHAR(256),

location VARCHAR(45);’);

}

...

?>

Fig. 8. Generated PHP File

Figure 7 shows an excerpt of the PHP template used to generate these func-
tions. Upon template instantiation, variable $postTypeRegistration is replaced
by a code snippet that registers all the entity types defined in the ER model as
custom types. Then, a parametrised function invocation of the activation func-
tion registration is executed, where the activation function name is passed as a
string, followed by a parametrised CREATE TABLE statement.

A Meta-plugin for Bespoke Data Management in WordPress 591

In Fig. 8, we show an excerpt of the resulting code for our course management
plugin example. First, the course custom type is registered, followed by the reg-
istration of the activate function with the activation hook. On plugin activation,
the function coursemgt activate() is invoked and, as a first step, a database
table for the course entity is created.

Below, there is an excerpt of the relational model in the underlying WordPress
database after the activation. The first relation WP posttype is the WordPress
relation used to store all post type instances, be it pages, posts or custom post
type instances. The following relations Course, Session and HasSession have
been created upon plugin activation. Whenever a new entity, e.g. a course, is
created, WordPress automatically generates a new tuple for the WP posttype

relation. In addition, our plugin creates a tuple in the Course relation contain-
ing all the course data values, with a foreign key to the WP posttype tuple.

WP posttype (postID, title, content, date, postType id, ...)

...

Course (courseID, postID, description,...)

Lecture (sessionID, postID, title, date, ...)

HasLecture (id, courseID, sessionID)

...

The relation Lecture is used to manage lecture tuples and, analogously to the
Course relation, it defines the postID as a foreign key. The HasLecture rela-
tion represents the relationship between courses and lectures. Note that, in the
current implementation, cardinality constraints are handled in the application
logic and, therefore, every ER relationship is realised as an M:N relationship.
Moreover, entity sets are currently represented by all the tuples of a relation
and, hence, a course entity is automatically a member of the Courses entity set.

The coursemgt activate function also contains code that extends the dash-
board with a new menu item and sub-menus that offer support for the creation
and manipulation of entities, as well as the functionality to associate entities
from one entity set to entities from another entity set as defined in the ER
model. In the screenshot in Fig. 9, the administrator interface of the generated
course management plugin is shown.

The screenshot shows the interface to create a new course, by specifying course
title, course description and location. In addition, the interface offers the possi-
bility to relate the current entity to other entities according to the data model.
In the current example, the generated interface offers the possibility to associate
courses to lecturers and assistants directly. Each time a new entity is created,
functions that are registered to the save post hook are invoked. In our case,
a function save entity info is registered, which checks for the instance’s post
type, and creates an entry in the corresponding database table.

For each post type, code is generated that specifies how the post type is dis-
played. In order to display data, the plugin registers a function to the the post

hook, which is invoked when data is loaded. The registered function checks for
the post type of the instance that is to be displayed. Based on that, the ap-
propriate data is retrieved from the corresponding database table and displayed

592 S. Leone, A. de Spindler, and M.C. Norrie

Fig. 9. Course management admin Fig. 10. Course management example

according to the presentation defined for that specific custom post type. Entity
sets are currently represented as pages containing a list of entities. Users can
click on any entity to see a detailed view of the entity with all the attribute
values. Also, for relationships defined between entities, we provide links in the
entity detail view to navigate from one entity to an associated one. For the layout
of the application, the user can use the regular WordPress themes to define the
look and feel of their application. Given the use of the the post hook, templates
are kept completely independent of the post types.

The screenshot in Fig. 10 shows the generated course management web site,
in this case for the courses of our research group. Links have been created from
the selected course to the lecturer and assistant.

Table 1 provides a complete overview of all WordPress hooks and meta- as
well as bespoke plugin functions assigned to them.

Table 1. WordPress hooks and high-level plugin functionality descriptions

Hook Functionality

Meta-Plugin

Display administration interface Add support for the definition of entity types
(admin menu) and relationships

Bespoke Plugin

Installation Create database relations realising the ER model
(register activation hook)

Display administration interface Add support for the management of entities
(admin menu) and relationships

Create post (save post) Insert attribute values and relationship tuples
into corresponding database relations

Display post (the post) Retrieve and display data from
corresponding database relations

Uninstallation Drop relations created during installation
(register deactivation hook)

A Meta-plugin for Bespoke Data Management in WordPress 593

7 Conclusion

We have presented an approach that complements the rich web information
publishing infrastructure provided by WordPress with support for application-
specific data management requirements. We plan to further investigate how the
design process can be facilitated and enriched, for example by introducing the
notion of component themes customised to a specific post type that can be
generated and composed to an overall theme. Having tightened the notion of
relationships within WordPress, we are also beginning to distinguish kinds of
relationships such as generalisation and inclusion relationships. Furthermore, we
plan to exploit the fact that entity types, entity sets and relationships could be
tagged and categorised in WordPress. In this way, it would not only be possible
to enhance WordPress with ER modelling capabilities, but also to enhance the
ER model with WordPress concepts.

References

1. Lieberman, H., Paterno, F., Wulf, V. (eds.): End User Development (Human-
Computer Interaction Series). Springer (2006)

2. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks 33(1-6) (2000)

3. Hennicker, R., Koch, N.: A UML-Based Methodology for Hypermedia Design. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424.
Springer, Heidelberg (2000)

4. Vdovják, R., Frăsincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 1(1-2) (2003)

5. Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S.R.: Designing with
Interactive Example Galleries. In: Proc. ACM Intl. Conf. on Human-Computer
Interaction, CHI 2010 (2010)

6. Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G., Shanmugasun-
daram, J.: WYSIWYG Development of Data Driven Web Applications. Proc.
VLDB Endow. 1(1) (2008)

7. Karger, D.R., Ostler, S., Lee, R.: The Web Page as a WYSIWYG End-User Cus-
tomizable Database-backed Information Management Application. In: Proc. ACM
Symposium on User Interface Software and Technology, UIST 2009 (2009)

8. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
join the web. SIGMOD 36(4) (2007)

9. Murthy, S., Maier, D., Delcambre, L.: Mash-o-Matic. In: Proc. DocEng. (2006)
10. Dı́az, O., Puente, G.: A DSL for Corporate Wiki Initialization. In: Mouratidis, H.,

Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 237–251. Springer, Heidelberg
(2011)

11. Wordpress.org: Wordpress Documentation (2012), http://codex.wordpress.org
12. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006),

http://www.omg.org/cgi-bin/doc?formal/2006-01-01

13. Prata, S.: C++ Primer Plus, 5th edn. SAMS (2005)
14. Grossniklaus, M., Norrie, M.C., Büchler, P.: Metatemplate Driven Multi-Channel

Presentation. In: Proc. Workshop on Multi-channel and Mobile Information Sys-
tems, WISEW 2003 (2003)

http://codex.wordpress.org
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

	A Meta-plugin for Bespoke Data Management in WordPress
	Introduction
	Background
	WordPress Data Model
	WordPress Core Extension for Supporting ER Models
	Meta-plugin
	Bespoke Plugin Generation
	Conclusion
	References

