
Architecture-Driven Modeling of Adaptive

Collaboration Structures in Large-Scale Social
Web Applications

Christoph Dorn and Richard N. Taylor

Institute for Software Research, University of California, Irvine, CA 92697-3455
[cdorn|taylor]@uci.edu

Abstract. Internet-based, large-scale systems provide the technical
foundation for massive online collaboration forms such as social net-
works, crowdsourcing, content sharing, or source code generation. Such
systems are typically designed to adapt at the software level to achieve
availability and scalability. They, however, remain mostly unaware of
the changing requirements of the various ongoing collaborations. As a
consequence, cooperative efforts cannot grow and evolve as easily nor
efficiently as they need to. An adaptation mechanism needs to become
aware of a collaboration’s structure and flexibility to consider chang-
ing collaboration requirements during system reconfiguration. To this
end, this paper presents the human Architecture Description Language
(hADL) for describing the envisioned collaboration dynamics. Inspired
by software architecture concepts, hADL introduces human components
and collaboration connectors for describing the underlying human coor-
dination dependencies. We further outline a methodology for designing
collaboration patterns based on a set of fundamental principles that fa-
cilitate runtime adaptation. An exemplary model transformation demon-
strates hADL’s feasibility. It produces the group permission configuration
for MediaWiki in reaction to changing collaboration conditions.

Keywords: Design Tools and Techniques, Collaboration Patterns,
Adaptation Flexibility.

1 Introduction

The last two decades have witnessed the emergence of numerous web-based,
large-scale collaboration tools. Web sites appeared for diverse purposes such as
social networking (e.g., Facebook, LinkedIn), collaborative tagging (e.g., Digg),
content sharing (e.g., YouTube, Flickr), knowledge creation (e.g., Wikipedia),
crowdsourcing (e.g., Amazon Mechanical Turk), or source code production (e.g.,
GitHub, SourceForge).

Users of such social Web applications typically face one major problem: a rigid,
limited set of available collaboration mechanisms in a one-size-fits-all manner. In-
teraction means such as direct messaging, group chats, discussion boards, task as-
signments, or shared artifacts remain independent of the collaboration’s scale and

X.S. Wang et al. (Eds.): WISE 2012, LNCS 7651, pp. 143–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

144 C. Dorn and R.N. Taylor

complexity and thus form a constraint on how large a joint effort can grow, how
easily and how efficiently it may evolve. Amazon MTurk, for example, scales the
Master/Worker pattern to thousands of users and tasks. The MTurk platform im-
plements a rigid interaction pattern where communication amongst participants
is not foreseen. Hence, pattern adaptation for supporting more complex collabo-
rations that require coordination between individual workers is impossible.

We claim that an explicit model of collaboration structures is of uttermost
importance for describing a collaboration system’s flexibility and subsequently
supporting the evolution of collaborative efforts through pattern adaptation.

We take inspiration from software architectures to address this problem for
large-scale collaboration systems. A system’s software architecture as described
in terms of components and connectors has a profound effect on its adaptabil-
ity, especially scalability [19]. The same holds true for human collaboration (see
Sec. 4). Connectors in the form of humans (e.g., forum moderators, secretaries)
and software services (e.g., mailing lists, task lists) manage dependencies be-
tween collaborators (i.e., human components) when direct interaction amongst
all participants is no longer viable. The explicit modeling of humans as compo-
nents and connectors—a distinction which existing approaches have insufficiently
addressed so far (see Sec.3)—draws the focus to the collaboration structure’s
flexibility and thus facilitates adaptation.

Our contribution in this paper is three-fold. We (i) introduce the human Ar-
chitecture Description Language (hADL) in Sec. 5, (ii) provide a methodology
for defining adaptable collaboration patterns in Sec. 6, and (iii) demonstrate the
model’s feasibility based on an exemplary model-to-configuration transformation
in Sec. 7. We find that not only are components and connectors a very suitable
abstraction mechanism for describing collaboration patterns and their adapta-
tion flexibility. As integral part of a human architecture, they also successfully
support pattern evolution.

2 Motivating Scenario

Suppose a research project integrates knowledge from the wider research com-
munity in the form of Wiki-style articles. After the infrastructure for collecting
and managing user contribution goes online, participation remains low but sta-
ble. One regular project staff member quality checks changes to existing articles
and browses through the content list to check new article entries.

Soon, a report in the media about the research project sparks wide-spread
interest with subsequent participation levels soaring. This has significant impli-
cations on the quality assurance procedure which has to deal with vandalized or
spammed articles. Conflicting opinions amongst contributors of the same article
lead to editing wars. A single quality manager is no longer up to the task. Simple
replication of her role is one option, but changing the collaboration pattern is po-
tentially more effective. Multiple options exist to handle articles exhibiting high
revision rates: (i) updates are checked by an expert — possibly crowdsourced —
to decide upon article rollbacks, (ii) contributors vote on changes, or (iii) experts

Architecture-Driven Modeling of Adaptive Collaboration Structures 145

discuss and negotiate changes. Alternatively, articles subject to update wars are
temporarily protected or receive a limited write quota. New articles still need no
approval to keep participation barriers low but observers now receive notifica-
tions about new entries. Depending on the rate of new articles, such monitoring
itself may require topic-based subscriptions to ensure that observers receive only
notifications relevant to their interests. Planning and subsequently implement-
ing such restructuring requires an explicit model of the underlying collaboration
structure and its adaptation flexibility.

3 Related Work

Research efforts that specifically focus on social or collaborative aspects in
large-scale systems are still rare. Existing research addresses mainly the gen-
eral idiosyncracies of Web 2.0 but remains unaware of specific interaction struc-
tures at runtime [21]. Model-driven Web engineering approaches so far focus
primarily on software aspects [16] and don’t go beyond (user) context-centric
adaptations [1]. Requirements elicitation and specification approaches consider
collaboration (e.g., CSRML [20]) or adaptation (e.g., [17]) but omit the effects
of patterns on adaptation flexibility.

Activity-centric frameworks (e.g., [6,12]) define tasks and their relations for in-
tegrating humans and software components [2]. Human-centric workflow systems
define business artifacts, their transformations, and interdependencies [8]. The
Business Entity Definition Language [13], for example, aggregates access rights,
data structure, object state transitions, and events. The human collaboration
structure, however, remains implicit. Similar, the Business Process Modeling
Language (BPMN [22]) describes human tasks and their dependencies. Recent
research efforts on large-scale workflow deployment such as Human-provided
Services (HpS) [15], Turkit [9], or CrowdLang [11] differ in their degree of for-
malizing complex workflows that go beyond simple task assignment in Amazon
Mechanical Turk.

Most of these models, tools, and frameworks contain (model) elements similar
to hADL (e.g., when specifying human roles and their associated capabilities) but
differ in two crucial aspects. First, all these approaches lack an explicit distinction
between human components and collaboration connectors. Consequenlty any
adaptation knowhow tailored either to coordination or to work execution remains
implicit and hidden within each platform. Second, most collaboration platforms
focus on a particular collaboration pattern and the associated limited set of
adaptation capabilities. Process-centric models, for example, focus only on task
execution, no matter whether ad-hoc or rigidly specified. They cannot be applied
for describing other patterns such as co-authoringWiki articles or spreading news
on twitter and vice versa.

Extensible software architecture description languages (ADLs e.g., [7,3])
emerged from the need to rigorously define the language’s semantics while re-
maining flexible enough to address the specific needs of a particular domain.
Augmenting an existing ADL to describe all details of the human collaboration

146 C. Dorn and R.N. Taylor

patterns, however, would be cumbersome as software structure and human in-
teractions reside on different conceptual levels. Nevertheless, ADLs provide fun-
damental principles that inspire and guide our human architecture description
language hADL.

4 The Case for a Human Architecture

The observation that software systems and human collaborations share the same
challenges in managing dependencies inspired our concept of a human architec-
ture. Both domains require coordination of (i) shared resources, (ii) produc-
er/consumer relationships, (iii) simultaneity constraints, and (iv) task/subtask
relations [10]. An architecture describes how a system addresses these challenges.
In the domain of software engineering, following definition of a software architec-
ture fits equally well to collaborative efforts: ”A software system’s architecture
is the set of principal design decisions made about the system.“ [18], p.58.

Components and connectors are the primary building blocks of a software
architecture. Components are the loci of computation and data management
whereas connectors facilitate and control the interactions between components.
Roles such as managers, team leaders, secretaries are rarely described as con-
nectors but they perform a similar task: the coordination of other human (i.e.,
human components). Highlighting further similarities: in software architecture,
architectural styles consist of a set of development context dependent design
decisions, constraints, and resulting properties. Collaboration patterns corre-
spondingly describe what combination of human components and coordinators
are suitable for a particular joint effort [5,4].

In software architectures, connectors are the key element to system adaptabil-
ity. For example, connectors allow the dynamic replacement of behavior compo-
nents in robotic systems without affecting other components. Web proxies are
connectors on the Internet that decide which server (component) should pro-
cess a particular client (component) request. Overloaded or unavailable servers
thus become transparent to the client. In the scenario, the article contributors
and readers constitute the human components. (Human) quality managers and
(software) change monitors implement connector functionality for managing the
read and write dependencies amongst the human components. The importance
of collaboration connectors grows with the scale and complexity of joint efforts
especially in distributed settings where individual collaborators have little op-
portunity for informal communication.

5 The Human Architecture Description Language

The core human Architecture Description Language (hADL) defines collabora-
tors, their means of interaction through messages, streams, and shared artifacts,
and dependencies amongst collaboration objects (Fig. 1). We explain the indi-
vidual elements based on a hADL model instance (Fig. 2) for the motivating
scenario.

Architecture-Driven Modeling of Adaptive Collaboration Structures 147

Human
Component

Collaboration
Connector

HumanAction
[CRUD]

Collaboration
Object

Link

ObjectAction
[CRUD]

Pattern

ProxyAction
[CRUD]

:ContainmentLegend :Reference :Refinement

Message

Stream

Artifact
ObjectConn

Object
Inheritance

Object
Reference

Object
Containment

Fig. 1. hADL model (symbols in ObjectConn subtypes and Actions represent the
respective visualization in model instances.)

A human architecture describes the configuration of HumanComponents and
CollaborationConnectors to fulfill a particular purpose, for example: carrying
out a task, creating a shared artifact, or negotiating a leader. The architecture’s
purpose determines a suitable collaboration Pattern. Typical patterns include
Master/Worker, Publish/Subscribe, Shared Artifact, and Peer-to-Peer (e.g., [4]).
A HumanComponent has a particular collaboration role that is essential to the
completion of the collaborative effort (e.g., Contributor, Reader, Observer in
Fig. 2 left and right). A CollaborationConnector provides coordination capabil-
ities to HumanComponents within the pattern’s scope (e.g., QualityManager,
VandalismDetector, ArticleMonitor in Fig. 2 center). A CollaborationConnector
covers the full spectrum from purely human, to software-assisted, to purely soft-
ware implemented. In the scenario, a quality manager manually approving all
edits illustrates a human collaboration connector. In contrast an article monitor
notifying users via email about updates exemplifies a software-based collabora-
tion connector.

HumanComponents and CollaborationConnectors are the active collabora-
tion elements in hADL, but they don’t specify the means of collaboration. When
physically distributed, humans usually communicate throughMessages, Streams,
or shared Artifacts. The hADL model considers these three types as Collabora-
tionObject variants. A Message is a onetime, immutable object exchanged be-
tween a set of collaborators (components and connectors), a typical example is
an email. A Stream is a series of messages where sender and receiver maintain
a temporary relationship. Two broad types exist: (a) subscriptions character-
ize a set of independent messages (such as news items in RSS feeds or updates
on a user’s facebook wall). Alternatively, (b) multimedia streams consist of de-
pendent messages (i.e., frames) that constantly refresh the receiving end (e.g.,
video chat). A (shared) Artifact is a long-living object that is subject to (si-

148 C. Dorn and R.N. Taylor

Fig. 2. Scenario hADL model instance: components as light-green shaded boxes, con-
nectors as dark-green shaded boxes, collaboration objects with rounded corners, and
substructure patterns with shadow (colors online). Icons represent human, respectively
object actions.

(a) (b)

Fig. 3. hADL models for (a) Vote Request Reply substructure and (b) Topic-based
Article Monitoring substructure.

multaneous) manipulation by multiple collaborators. In the scenario, respective
examples are (i) emails sent to Experts to vote on article updates (Fig. 3a),
(ii) notifications about new articles (Fig. 3b), and (iii) the articles themselves
(Fig. 2). ObjectConns describe dependencies amongst CollaborationObjects such
as refinement (ObjectInheritance), relation (ObjectReference), and substructure
(ObjectContainment). Note that ObjectConns merely highlight such dependen-
cies to improve pattern comprehension but they don’t replace data modeling.

The choice of communication means has a profound impact on the
collaboration and thus needs to be made explicit. Hence, hADL requires a Col-
laborationObject between any two or more HumanComponents and/or Collab-
orationConnectors. This is in contrast to traditional ADLs (e.g., xADL [3] or
ACME [7]) where component interfaces link directly to connector interfaces. A
rough software architecture interface equivalent in hADL is the Action. Human-
Components and CollaborationConnectors exhibit HumanActions that specify
what access rights a collaborator requires to fulfill its role, whereas a Collabo-
rationObject has ObjectActions for defining what rights it grants to particular
collaborator. An Action distinguishes between Create, Read, Update, and Delete
(CRUD) privileges. The article Contributor in Fig. 2, for example, exhibits an
Edit action with Create, Update, and Read rights. Ultimately, CRUD rights

Architecture-Driven Modeling of Adaptive Collaboration Structures 149

need to match when a Link connects a HumanAction with an ObjectAction.
Multiple Collaborators may connect to the same ObjectAction when they share
the same manipulation rights (e.g., several CollaborationConnectors in Fig. 2
connect to the same Article Read action).

In some cases, we wish to introduce substructures to hide low-level collabo-
ration details that are irrelevant at the higher-level collaboration scope. In the
scenario, a CollaborationConnector monitors new Articles. Whether this con-
nector merely sends an email to all interested Observers or whether observers
subscribe to certain article topics is described at a lower level. In the latter case,
the substructure defines the appropriate subscription mechanism (Fig. 3b). Pat-
tern substructures are equally well suited to hide complex CollaborationObjects
(e.g., tightly coupled request and response messages for voting on article changes,
Fig. 3a). In hADL, such substructures are implemented as recursive embedding
of Patterns with the use of ProxyActions.

6 Designing for Adaptation

Research in software architectures supplies several concepts and tools for de-
signing and analyzing collaboration structures. In our previous work ([5,4]), we
applied the BASE framework [19] for studying the adaptation flexibility of vari-
ous collaboration patterns. Based upon the insights gained in our recent analysis
and our experience in architecture-based software adaptation we propose a set of
principles that facilitate collaboration adaptation. Specifically, these principles
build in part upon an earlier discussion of dynamic software adaptability in the
scope of architectural styles [14] and provide best practices when using hADL.

Identifying Adaptable Elements: Collaborative behavior can be modeled
at multiple levels of abstraction: from an organization, a department, a team,
an individual human, down to a single user’s behavior strategies. The finest ab-
straction level determines the lowest possible level of adaptation. In the presence
of modeled, identifiable user behavior, we are able to execute adaptations in the
form of recommendations. For example we may suggest switching from “locking
an artifact for editing it” to “issuing small but frequent article updates without
locking”. In contrast, we cannot reconfigure a non-performing team internally
but we have to replace it as a whole when the most detailed level merely de-
scribes teams. In hADL, pattern substructures allow the simultaneous modeling
of multiple abstractions level.

Encapsulating Elements:Collaboration adaptability greatly increases when
elements (components, connectors, objects) are easy to replace. Encapsulation
describes how tightly an element is woven into its surrounding environment. A
worker in the Master/Worker pattern only knows about his personal task copy
and about the assignment connector he obtained the task from. This makes him
easily replaceable as the assignment connector merely needs to provide a task
copy to another worker. In contrast, a group of authors that exchange article
drafts directly via email exhibits tight coupling. Removing one author requires
considerable effort: notification of all other authors, synchronizing of progress,
and ensuring orderly handover of unfinished tasks to the remaining co-authors.

150 C. Dorn and R.N. Taylor

A suitable collaboration pattern in this situation may encourage encapsula-
tion through various mechanisms. For example, replacing direct messages with a
shared artifact relieves an individual author from keeping track of involved con-
tributors. Introducing a collaboration connector for continuous integration of
individual article sections further limits the coordination dependencies amongst
authors. Clearly identified and assigned roles (lead author, data collection, proof
reading, figure design, etc) within the group additionally promotes encapsula-
tion. hADL avoids enforcing a particular collaboration pattern. Instead, hADL
enables the system designer to flexibly assemble a suitable composition of com-
ponents, connectors, and collaboration objects.

Just as software architectures suffer from implementations that don’t follow
the prescribed architectural style at code level, so are informal communication
channels jeopardizing the adaptation characteristics of a collaboration pattern.
The most adaptive pattern will exhibit potentially catastrophic adaptation con-
sequences when the involved users circumvent the foreseen communication and
coordination means and fall back onto multipurpose, pattern external communi-
cation channels such as email. The underlying collaboration infrastructure needs
discouraging the use of external channels. Strategies are pattern specific, for ex-
ample, hiding other collaborators, anonymizing collaborators, or providing in-
centives to communicate within the system.

Controlling Interaction: Fostering encapsulation is one principle that sim-
plifies element replacement. Controlling an element’s interactions with its envi-
ronment is equally important. Coordination dependencies become clear and thus
manageable when collaborators utilize explicit interactions. Take as an example
a worker producing the input for another worker: transferring the output via
precisely specified messages clearly identifies the involved actor roles. Collabora-
tion interdependencies, however, remain largely hidden when such interactions
occur via a shared artifact. Connectors are able to provide dedicated support
for each interaction type only in the former case. hADL promotes the use of
connectors where sensible but does not require them when deemed unnecessary.

Managing State: When replacing a human, we need to address what needs
to happen with that user’s internal collaboration state. An assignment connector
might be waiting for task responses or has unassigned task requests still in his
inbox. An article author might be currently working on an unfinished section.
Three basic strategies address this challenge: (i) ignore existing state (i.e., work
progress) and provide some form of compensation, (ii) provide mechanisms that
facilitate the externalization of collaboration state such as shared artifacts or
dedicated work progress messages, and (iii) split activities into such fine-grained
parts that adaptation may be postponed until completion. hADL encourages the
use of collaboration objects to render state explicit but currently lacks support
for modeling component or connector internal state.

Making Bindings Malleable: Late binding in collaboration patterns delays
addressing of messages until their destination absolutely needs to be determined.
In a workflow, for example, the worker carrying out a particular task remains
undetermined until shortly before task assignment. In the scenario, experts be-

Architecture-Driven Modeling of Adaptive Collaboration Structures 151

come part of a voting group just shortly before they are actually needed for
deciding on an article update. Shared artifacts yield similar decoupling as con-
tributors need not be known in advance. Patterns with such built-in flexibility
allow for adaptation decision just in time. Collaboration objects in hADL con-
stitute specification points for implementation specific addressing mechanisms,
thus facilitating just-in-time bindings.

7 Evaluation

In this section, we show that hADL is suitable for capturing flexible collaboration
patterns by modeling the MediaWiki platform1. Subsequently, we demonstrate
runtime dynamic reconfiguration of MediaWiki’s underlying collaboration pat-
tern. To this end, we briefly present modeling tool support and then provide the
MediaWiki hADL model including its mapping onto explicit and implicit group
permissions. The hADL model, introduced model instances, and transformations
are available for download at http://wp.me/P1xPeS-2h.

We adopted the Generic Modeling Environment2 (GME) for designing, visual-
izing, and manipulating the hADL model and model instances. GME provides an
automatic model update mechanism that allows for rapid, iterative refinement
of the hADL model and model instances. The hADL model, therefore, provides
only core elements for describing human collaboration architectures. We outline
below how extensions cover domain-specific requirements that are otherwise in-
sufficiently addressed. For most changes of the hADL model, the GME model
update mechanism is able to successfully upgrade existing model instances to
take advantage of problem-specific extensions.

7.1 Modeling MediaWiki

MediaWiki is the underlying technology platform for Wikipedia (and many other
Wikis). Figure 4 visualizes how the project wiki from the scenario might initially
be set up. The collaboration objects (Page, TalkPage, WikiPage, ImageOrFile,
and Revision) remain the same for all MediaWiki installations as they represent
the core MediaWiki collaboration capabilities. The MediaWiki group permis-
sions3 are a good starting point to define the various actions the collaboration
objects make available to human components and collaboration connectors. The
permissions, however, are insufficient to grasp the complete collaboration pat-
tern as they include only explicitly defined user rights. Any logged-in user, for
example, has access to her WatchList but no corresponding permission exists.
We, therefore, add actions (i.e., implicit permissions) that model the streaming
of article changes to ArticleObservers via the watch list (WatchListStream) or
notification emails (NfyEmailStream). Applying the design methodology from
Section 6, we analyze the adaptation flexibility of MediaWiki in general and of
this specific instance in particular.

1 http://www.mediawiki.org/wiki/MediaWiki
2 http://w3.isis.vanderbilt.edu/Projects/gme/
3 http://www.mediawiki.org/wiki/Manual:User_rights_management

http://wp.me/P1xPeS-2h
http://www.mediawiki.org/wiki/MediaWiki
http://w3.isis.vanderbilt.edu/Projects/gme/
http://www.mediawiki.org/wiki/Manual:User_rights_management

152 C. Dorn and R.N. Taylor

Fig. 4. MediaWiki hADL model for the initial scenario structure

Identifying Adaptable Elements. The smallest, adaptable elements in a
MediaWiki installation are individual user and pages (i.e., articles). Structural
adaptation actions consist of restructuring user types and (re)assigning users
to particular types (i.e., groups). We won’t discuss more fine-grained, build-in
actions such as blocking a user or protecting a page.

Encapsulating Elements. The individual Wiki authors (component user)
and readers (component ‘�’) exhibit strong encapsulation as all interactions hap-
pen via Wiki pages. Discussions on content, structure, etc. are equally restricted
to editing of a shared artifact: the respective article TalkPage. ArticleObservers
receive change notifications without having to rely on authors signaling updates.

Controlling Interaction. For the purpose of writing articles, MediaWiki
provides sufficiently precise (inter)actions. Our scenario configuration clearly
separates the various components and connectors: authors have edit, move, and
upload permissions while quality managers have patrol, rollback, revert, delete
and protection permissions. There is little to no permission overlap.

Managing State Collaboration state becomes externalized in the form of the
Wiki page. A Wiki encourages publishing of frequent and small updates which
enables rapid changes in author involvement.

Making Bindings Malleable. Quality managers check (i.e., patrol) article
changes by inexperienced and new authors. Which particular quality manager
will approve or revert a change, however, is a-priori unknown.

These characteristics and the distinction of human components from collabora-
tion connectors facilitates reconfiguration actions to have minimal effect on active
human components. As we will demonstrate next: readers, observers, and authors
maintain (largely) the same rights despite considerable pattern evolution.

Architecture-Driven Modeling of Adaptive Collaboration Structures 153

7.2 Dynamic Structural Adaptation

The scenario highlighted how adding, removing, or replacing users becomes in-
sufficient to address fundamental environmental changes. Figure 5 depicts the
evolved MediaWiki structure addressing the needs of the later scenario phase.
The adapted structure exhibits new human components and new, reconfigured,
or replaced collaboration connectors. Specifically, previous users become experts,
new users obtain only a limited permission set. The quality managers trans-
fer user blocking privileges to moderators and a software-based editvotecollector
(collaboration connector) contacts article guardians for voting on user edits.
Instead of receiving emails for all new articles, observers are able to configure
topics of interest: the TopicEmailAnnouncer replaces the EmailAnnouncer.

Planning for reconfigurations is one benefit of modeling MediaWiki with
hADL. Another potential use is describing where and how bots as well as ex-
tensions provide new functionality. Such additional components and connectors
(e.g., TopicEmailAnnouncer) may build upon different collaboration patterns.
Here, hADL facilitates the analysis of adaptation implications.

In the case of MediaWiki, hADL goes beyond merely describing the collabora-
tion structure. We developed a model transformation for demonstration purposes
that takes the hADL model and generates the group permissions configuration
for MediaWiki. Specifically, we export the hADL model as an XML file and

Fig. 5. MediaWiki hADL model for the evolved scenario structure

154 C. Dorn and R.N. Taylor

then process it with the Java Emitter Templates (JET) framework4. The trans-
formation interprets every component and connector as a permission group. Each
HumanAction becomes an allowed permission when connected to the correspond-
ing ObjectAction, otherwise the permission is denied. Listing 1.1 provides the
group permissions for the anonymous user group (‘�’) in Figure 5. The resulting
configuration should not include implicit rights and neither components or con-
nectors that require no groupPermission representation (e.g., ArticleObservers,
Change2WatchList). To this end, we extend the hADL model with additional
properties. The transformation mechanism will thus ignore actions with isIm-
plicitRight=true and components and connectors with isWikiGroup=false. We
also introduce a Requires connection in the hADL model (dashed, red lines in
Fig. 4 and Fig. 5) for highlighting dependencies between user permissions (e.g.,
by linking the move action to the edit action.)

1 $wgGroupPermissions[’*’][’createaccount’] = false;
2 $wgGroupPermissions[’*’][’read’] = true;
3 $wgGroupPermissions[’*’][’edit’] = false;
4 $wgGroupPermissions[’*’][’createpage’] = false;
5 $wgGroupPermissions[’*’][’createtalk’] = false;
6 $wgGroupPermissions[’*’][’writeapi ’] = false; ...

Listing 1.1. GroupPermissions for anonymous MediaWiki users, i.e., ‘�’

7.3 Discussion

Currently hADL has two main limitations. First, it lacks platform specific mod-
els. The evaluation above demonstrates hADL’s feasibility but we cannot claim
a general purpose tools set for various web platforms. Second, hADL features
no integration with existing web modeling methodologies yet. This shortcoming,
however, highlights hADL’s biggest potential: a recent survey of web modeling
approaches emphasizes insufficient support for sophisticated behavioral mod-
eling [16]. Here, hADL would fit in alongside use cases, activity diagrams, or
sequence diagrams to enhance current approaches such as WebML, Hera, UWE,
or OOWS [16].

Even without such integration, hADL offers considerable benefits at the cur-
rent stage. An explicit human architecture introduces a collaboration perspec-
tive and thus gives stake-holders another means for communicating requirements
during the design process. This also enforces a structured approach to explicitly
defining adaptation capabilities at the collaboration level. Being implementation
independent, hADL provides an opportunity for establishing collaboration pat-
terns tuned to team performance and quality metrics. Thus currently implicit
best practises can be made explicit and subsequently shared. When customized
to a particular platform such as MediaWiki, hADL provides a high-level view of
the collaboration infrastructure. It thereby facilitates planning and documenting
the platform’s configuration and extensions.

4 http://www.eclipse.org/modeling/m2t/?project=jet#jet

http://www.eclipse.org/modeling/m2t/?project=jet#jet

Architecture-Driven Modeling of Adaptive Collaboration Structures 155

8 Conclusions

We made the case for a human Architecture Description Language for modeling
adaptive collaboration structures. Taking inspiration from software architecture,
we proposed hADL to specify collaboration patterns in terms of human com-
ponents, collaboration connectors, and collaboration objects. A set of principles
guides the design process to achieve collaboration patterns that facilitate runtime
adaptation. Our evaluation successfully demonstrated that hADL supports the
dynamic reconfiguration of human components and collaboration connectors at
runtime. Nevertheless, even MediaWiki’s adaptations capabilities are currently
limited to the configuration of group permissions.

Our future work, therefore, will focus on the mapping between the underlying
IT infrastructure and collaboration patterns. Ultimately, we aim for techniques
that exploit the interdependencies between software elements and collaboration
elements for achieving holistic co-adaptation of socio-technical systems. Such
work will then also model and exploit diverse relationships between humans
such as friendship, rivalry, dis/trust, and organizational hierarchy.

Acknowledgment. This work is supported in part by the National Science
Foundation (CCF-0917129, CCF-0820222, and CCF-0808783) and the Austrian
Science Fund (FWF) J3068-N23.

References

1. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven development of context-
aware web applications. ACM Trans. Internet Technol. 7 (February 2007)

2. Chopra, A.K., Paja, E., Giorgini, P.: Sociotechnical Trust: An Architectural Ap-
proach. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS,
vol. 6998, pp. 104–117. Springer, Heidelberg (2011)

3. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: A comprehensive approach for the
development of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. 14, 199–245 (2005)

4. Dorn, C., Taylor, R.N.: Analyzing runtime adaptability of collaboration patterns.
In: International Conference on Collaboration Technologies and Systems (CTS).
IEEE Computer Society, Los Alamitos (2012)

5. Dorn, C., Taylor, R.N., Dustdar, S.: Flexible social workflows: Collaborations as
human architecture. IEEE Internet Computing 16, 72–77 (2012)

6. Dustdar, S.: Caramba- Process-Aware Collaboration System Supporting Ad
hoc and Collaborative Processes in Virtual Teams. Distributed Parallel
Databases 15(1), 45–66 (2004)

7. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange
language. In: Proceedings of the 1997 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, CASCON 1997, pp. 169–183. IBM Press (1997)

8. Hull, R.: Artifact-centric business process models: Brief survey of research re-
sults and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)

9. Little, G., Chilton, L.B., Miller, R., Goldman, M.: Turkit: Tools for iterative tasks
on mechanical turk. In: Human Computation Workshop, HComp 2009 (2009)

156 C. Dorn and R.N. Taylor

10. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. 26, 87–119 (1994)

11. Minder, P., Bernstein, A.: Crowdlang - first steps towards programmable human
computers for general computation. In: Proceedings of the 3rd Human Computa-
tion Workshop (HCOMP 2011). AAAI Press (January 2011)

12. Moody, P., Gruen, D., Muller, M.J., Tang, J., Moran, T.P.: Business Activity
Patterns: A New Model for Collaborative Business Applications (2006)

13. Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S.,
Kloppman, M., Vergo, J.: Data4BPM, part 1: Introducing business en-
tities and the business entity definition language (BEDL) (April 2010),
http://public.dhe.ibm.com/software/dw/wes/1004_nandi/1004_nandi.pdf

14. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th Intl. Conf. on Software Engi-
neering, ICSE Companion 2008, pp. 899–910. ACM, New York (2008)

15. Schall, D.: A human-centric runtime framework for mixed service-oriented systems.
Distributed and Parallel Databases 29, 333–360 (2011)

16. Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M.,
Pröll, B., Castro, C.C., Casteleyn, S., Troyer, O.D., Fraternali, P., et al.: A survey
on web modeling approaches for ubiquitous web applications. International Journal
of Web Information Systems 4(3), 234–305 (2008)

17. Silva Souza, V.E., Lapouchnian, A., Mylopoulos, J.: System Identification for
Adaptive Software Systems: A Requirements Engineering Perspective. In: Jeusfeld,
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 346–361.
Springer, Heidelberg (2011)

18. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley (2009)

19. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA/ECSA, pp. 171–180 (2009)

20. Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., González, P.: CSRML:
A Goal-Oriented Approach to Model Requirements for Collaborative Systems. In:
Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp.
33–46. Springer, Heidelberg (2011)

21. Wilde, E., Gaedke, M.: Web engineering revisited. In: BCS Int. Acad. Conf. pp.
41–50 (2008)

22. Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N.: On the
Suitability of BPMN for Business Process Modelling. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer, Heidelberg
(2006)

http://public.dhe.ibm.com/software/dw/wes/1004_nandi/1004_nandi.pdf

	Architecture-Driven Modeling of Adaptive Collaboration Structures in Large-Scale Social Web Applications
	Introduction
	Motivating Scenario
	Related Work
	The Case for a Human Architecture
	The Human Architecture Description Language
	Designing for Adaptation
	Evaluation
	Modeling MediaWiki
	Dynamic Structural Adaptation
	Discussion

	Conclusions
	References

