
Autonomous Evolution of Access
to Information in Institutional Decision-
Support Systems Using Agent
and Semantic Web Technologies

Desanka Polajnar, Jernej Polajnar and Mohammad Zubayer

Abstract This chapter addresses the question of how an institutional decision-
support system built on legacy relational databases (RDB) can evolve from a
traditional database access model to a modern system that provides its decision-
making users with agent-assisted direct semantic query access. We introduce a
novel approach in which the system ontologies, developed autonomously within
the institution, gradually co-evolve with the related ontologies accessible on the
Web. This is achieved through cooperative developement of system ontologies by
human domain specialists and software agents. The agents assist with ontology-
building expertise, discovery of relevant knowledge on the Web, and ontology
mediation. The underlying RDB need not be modified, which allows seamless
transition and coexistence between access models. The approach is concretized as
Semantic Query Access System (SQAS), a distributed system architecture based
on agent-oriented middleware, in which database servers develop reference
ontologies, while the application-oriented clients import and overlay them with
user-specific custom ontologies.

1 Introduction

The impact of computer-based information systems on the progress of human
society is well acknowledged in all disciplines. Individuals and organizations
increasingly rely on them for problem solving, decision making, and forecasting. As

D. Polajnar (&) � J. Polajnar � M. Zubayer
University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
e-mail: desanka.polajnar@unbc.ca

J. Polajnar
e-mail: jernej.polajnar@unbc.ca

M. Zubayer
e-mail: zubayer@unbc.ca

F. Xhafa and N. Bessis (eds.), Inter-cooperative Collective Intelligence:
Techniques and Applications, Studies in Computational Intelligence 495,
DOI: 10.1007/978-3-642-35016-0_6, � Springer-Verlag Berlin Heidelberg 2014

141



a consequence of global integration, changing market dynamics, and deployment of
new technologies, institutional and corporate decision-support systems face
increasingly steep requirements in regard to flexible, fast, and intelligent access to
their underlying information repositories. The requests for information are
increasing in complexity and sophistication, while the time to produce the results is
tightening. These trends compel researchers to look beyond traditional access
techniques in order to meet modern requirements. A major constraint in their efforts
is the fact that vast amounts of relevant information, accumulated over time, reside
in legacy systems that do not adequately support modern access techniques.

In legacy information systems, the relational database model has been dominant
for more than three decades. In order to extract the necessary information from
relational databases (RDB) with traditional methods, non-technical users require
technical assistance of database programmers, report writers, and application
software developers, which involves delays, costs, and semantic gaps in human
communication. In order to speed up access and give users more control, decision-
support systems often rely on data warehousing techniques. Those techniques
require information to be selected and extracted from operational databases,
reorganized in terms of facts and dimensions, and stored in data warehouses [10].
Operational databases are designed to support typical day-to-day operations,
whereas data warehouses are designed for analytical processing of large volumes
of information accumulated over time. That approach still requires human medi-
ation, time to restructure large amounts of data, and accurate foresight as to what
information might be needed.

In this chapter, we explore an alternative approach, aimed at overcoming those
limitations. It combines two fast-developing technologies—the Semantic Web
(SW) [4] and multiagent systems (MAS) [16]—to provide the users of enterprise
decision-support systems with direct, flexible, and customized access to infor-
mation, through high-level semantic queries. Since it does not require modification
of underlying databases, our proposed form of access can coexist with the more
traditional ones. It allows continuous use of the legacy system. An important
aspect of the new approach is that the transition from the traditional to the new
access model can be effected gradually and autonomously within the host insti-
tution or company. This autonomy is significant because the resident domain
expertise has an essential role in the transition, as well as because some of the
relevant knowledge is often proprietary. A key premise underlying the approach is
that the knowledge of the generic ontology-building process may be easier to
standardize and formalize than the domain-specific knowledge particular to an
organization and accumulated through work experience of its personnel.
Accordingly, in the human-agent interactive and cooperative development of the
institutional systems ontologies, the human partner should adopt the role of
domain specialist and the agent the role of ontology-building specialist.

We present the approach in the form of an intelligent distributed system, called
the Semantic Query Access System (SQAS) [11], with servers containing dat-
abases and clients providing access to users. Its basic functionality is provided by

142 D. Polajnar et al.



agent-oriented middleware. Many of the issues arising in SQAS are closely related
to Semantic Web research. The SW project envisions a world-wide infrastructure
providing universal integrated semantic access to a multitude of distributed
knowledge sources. This requires a hierarchy of standard ontologies that corre-
spond to various knowledge domains at different levels of abstraction, as well as
languages, design techniques, software components, and tools. As SW technology
matures, many of the SQAS development needs should be satisfiable from its
repository. Differences stemming from the ‘‘closed world’’ [14] nature of enter-
prise systems (vs. ‘‘open world’’ SW) are also being studied (e.g., [12]). However,
ontologies representing the meaning of database structures in SQAS must be
specifically developed. In our approach that is done within the system itself.

An innovative feature of SQAS is the role of agents in ontology building. The
system ontologies are built gradually. In a server, the meaning of the database
structure is captured in the reference ontology. This includes automatic generation
of the basic structures from RDB schemas and their incremental enhancement to
full ontology through human-agent cooperative design. Reference ontologies are
exported to clients that need them. In a client, a layer of custom ontology is
constructed for each user, as an overlay that relies on the imported reference
ontologies, again through human-agent cooperative design. The approach relies on
agents endowed with the technical knowledge of ontology-building procedures
that assist human actors in the design process. A part of the agents’ role is to find,
identify, reference, import, display, and apply relevant knowledge available on the
Semantic Web. The development of ontologies in turn permits further delegation
of operational tasks to agents. The approach is expected to become increasingly
effective with the advancement of the SW infrastructure.

The rest of the chapter describes: the principles of our approach to agent-
oriented semantic access in institutional decision-support systems (Sect. 2); the
basic distributed architecture of SQAS (Sect. 3); the components constituting the
intelligent middleware, their roles and interactions on the server (Sect. 4) and
client (Sect. 5) subsystems, including agent-assisted development of reference and
custom ontologies; a few closing remarks (Sect. 6); and the conclusions (Sect. 7).

2 Agent-Oriented Semantic Access

In this section we examine the basic requirements of user access to information
stored in an existing relational database (RDB) in the context of an institutional or
corporate decision support system. The user is a decision-making executive who
formulates requests for information and receives reports from the system. Our
model focuses on access and does not explicitly represent the various analytical
processing that may be involved in report generation. The user is aware that the
structure of the database and its contents may evolve over time. Our model
assumes that such changes are introduced by the database administrator and does
not represent the mechanisms by which they may be prompted or influenced by the

Autonomous Evolution of Access to Information 143



user. The user is familiar with the knowledge domain of the information in the
database, but may differ in specific expertise and interests from other users of the
same system. The user is not a database management specialist.

The requirements are developed in three steps. We first describe the require-
ments for a generic system that represents user access to information in an RDB in
a way that is common to its many possible implementations. We then focus on the
user-system interaction in legacy RDB systems. Finally, we examine user-system
interaction through high-level semantic queries as represented in SQAS, and
discuss its perceived practical advantages.

2.1 The generic system

The requirements for a generic system are shown in Fig. 1. They are described in
terms of high-level use cases and actors. A use case is a coherent unit of func-
tionality expressed as a transaction among actors and the system. An actor may be
a person, organization, or other external entity that interacts with the system [13].

The actors of primary interest for us are User and Database Administrator
(DBA). The use cases are largely self-explanatory. The top four use cases of Fig. 1
capture the generic system functions performed on behalf of the user, regardless of
how these functions are implemented. In particular, in the Process Request use
case, the system accepts a request formulated by User, queries the database, and
returns a report with the results formatted as requested. The Manage Ontology use
case is concerned with bridging the semantic gap between User’s domain-oriented
terminology, often shaped by personal expertise and preferences, and the vocab-
ulary of the database, whose meaning is specified in the database documentation,
possibly with clarification of finer points provided by DBA. The last two use cases
enable DBA and Data Entry Operator (DEO) to maintain the RDB structure and
content respectively. In order to highlight the differences between legacy systems
and SQAS, we next focus on two use cases, Process Request and Manage
Ontology.

2.2 The Legacy RDB System

In a legacy RDB system, some of the generic system functions shown in Fig. 1 are
performed on behalf of User by intermediary technical personnel, represented here
by a human role called Report Writer; the rest are performed by the computer
system. The actors and the basic high-level use cases of a legacy RDB system are
shown in Fig. 2. Let us elaborate the two key generic use cases.

In the Process Request use case, User explains to Report Writer what infor-
mation should be retrieved and how it should be presented; Report Writer then

144 D. Polajnar et al.



queries the RDB to retrieve the information and presents it to User in the requested
format. If the meaning of the request is not clear, Report Writer interacts with User
in natural language in order to clarify it.

The Manage Ontology use case is concerned with the correspondence
and translation between the database structures and their meaning, and the
domain-oriented concepts and associated custom terminology employed by User.
Apart from the basic relationships captured within the RDB schema, the meaning

Fig. 1 The actors and high-level use cases of the generic system

Autonomous Evolution of Access to Information 145



of database structures is typically captured informally in natural-language docu-
mentation (and sometimes human knowledge) maintained by DBA. User’s ter-
minology and conceptual framework may differ from the ones presented by DBA.
In order to learn both, Report Writer typically depends on informal documentation,
and on natural-language interactions with both User and DBA. This process of
consultation, negotiation, and delegation between User, Report Writer, and DBA is
often time consuming and sometimes ambiguous, resulting in delays, costs, and
occasional misunderstandings.

2.3 The Semantic Query Access System

In SQAS, the user directly interacts with the system that performs the function-
alities in the top four use cases of Fig. 1, eliminating the Report Writer role. We
briefly describe the key generic use cases.

The Process Request use case allows User to directly communicate requests to
the system, in a simplified natural language. In the request, User specifies what
information should be retrieved and how it should be presented. If User’s request is
not clear, the system asks User for clarification of the request. This clarification
process is an interactive one in which the system ensures that it understands User’s
request, similar to Report Writer in a legacy RDB system. It then retrieves the
information and presents it in the requested format.

Fig. 2 User access to information in a legacy RDB system

146 D. Polajnar et al.



In the Manage Ontology use case, the meaning of database structures is
formally captured in the reference ontology. The reference ontology represents the
combined knowledge originating from the underlying RDB structure, the human
actors in the system, and external ontologies available on the Semantic Web. DBA
interacts with the system in building and maintaining the reference ontology. Thus,
the DBA’s actor profile now includes the new role of managing the reference
ontology in addition to the traditional role of managing the RDB system. Simi-
larly, User’s conceptual framework and associated terminology are formally
captured in the custom ontology. The custom ontology is a layer on top of the
client’s imported reference ontology; it is custom-built for each specific user. It is
also built within the system itself, in interaction with User, with access to the
reference ontology and external ontologies available on the Semantic Web. The
User actor now has the additional role of managing the custom ontology.

2.4 Decomposition of SQAS Use Cases

The functions of each high-level use case can be further specified through
decomposition into more elementary use cases. In presenting the decompositions
of key generic use cases in SQAS, we also decompose the functionality into its
client part, related to User, and its server part, related to the RDB. The client and
server subsystems can reside on different machines and communicate through a
network. In general, a client can interact with multiple servers, and a server with
multiple clients; this is discussed in more detail in Sects. 3 and 6. For the moment,
we consider the case of one client and one server.

The decomposition of the generic Process Request use case is shown in Fig. 3.
In the client, the Process SNL Request use case allows User to formulate a request
for information in Simplified Natural Language (SNL). The request contains
domain-specific terms that describe the information to be retrieved, and keywords
that describe the format in which it should be presented. Once the request is
accepted, the Parse SNL Request use case produces an intermediate representation
of the request, and the Verify Request Semantics use case checks that each
statement as a whole in the request is semantically correct, including its use of
custom ontology terms. If the SNL request is valid, the Generate SPARQL Script
use case creates a SPARQL script from the intermediate representation of the
request. The ontologies in SQAS are represented as Resource Description
Framework (RDF) structures [6], and SPARQL [15] is the standard query lan-
guage for RDF. The client then sends the SPARQL script to the server, and
receives the SPARQL results from it. Finally, the SPARQL results are formatted
and presented by the Format and Display Report use case.

In the server, the Process SPARQL Request use case receives the SPARQL
script and has it translated to equivalent SQL queries by the Convert SPARQL
Script to SQL Queries use case. The Query RDB and Present Results use case then
executes the SQL queries on the RDB system and passes the SQL results to

Autonomous Evolution of Access to Information 147



Convert SQL Query Results to SPARQL Query Results for translation. Finally, the
Process SPARQL Request use case sends the results to the client. Note that the data
remain permanently stored only in the RDB, and that RDF representations are
created on demand as a request is processed. This approach does not require any
modification in the RDB structure, and allows SQAS to coexist with other methods
of accessing the legacy database.

The decomposition of the generic Manage Ontology use case is shown in
Fig. 4. The use cases that primarily interact with User are assigned to the client
subsystem, whereas the ones that primarily interact with DBA and RDB are
assigned to the server subsystem.

Fig. 3 The SQAS decomposition of the generic use case Process request

Fig. 4 Use case: Manage ontology

148 D. Polajnar et al.



The client invokes the Import Reference Ontology use case when it connects to
the server, relying on the functions of the Export Reference Ontology use case in
the server. The Initialize Custom Ontology use case allows the user to create a
conceptual framework specific to the user. The Update Custom Ontology use case
lets the user modify definitions of user-specific concepts in the custom ontology.
When the reference ontology is updated in the server, the Maintain Consistency of
Reference Ontology use case ensures that the updates are also applied to the
reference ontology in the client. Thus the reference ontology is pulled by the client
subsystem when it connects to the server initially, or reconnects following a period
of disconnected operation. When changes occur in reference ontology while the
client is connected, the updates are pushed to the client by the server. The refer-
ence ontology updates are displayed to the user by the Display Ontology Changes
use case.

In the server subsystem, the Export Reference Ontology use case sends a copy
of the reference ontology as requested by the newly attached client. The Maintain
RDB Schema use case allows DBA to modify the structure of the RDB. When
DBA changes the RDB schema, the Maintain Reference Ontology use case
incorporates the schema changes into the reference ontology with the help of the
Update Reference Ontology use case, which also pushes the updates to the
attached client.

3 The SQAS Architecture

3.1 The High-Level Architecture of SQAS

At the high level, SQAS consists of any number of clients of the type User
Subsystem (US) and any number of servers of the type Database Subsystem (DBS).
A single US can support multiple users. These subsystems can reside on different
machines and communicate through a wide area network using a standard trans-
port protocol. Figure 5 depicts a simple configuration, consisting of one single-
user client subsystem and one server subsystem, that is used in most of the current
presentation to explain the principles of system operation.

A US consists of an agent, called the User Interface Agent (UIA), attached to
each user, and a collection of interacting software components called the User
Interface Environment (UIE). Similarly, DBS consists of the Database Interface
Agent (DBIA), the Database Interface Environment (DBIE), and the RDB system.
The rest of this section outlines the agent roles of UIA and DBIA. Given the
diversity of roles, each of these agents should preferably be internally designed as
an agent team. Those internal designs and the associated issues of agent teamwork
are beyond the scope of the current presentation.

Autonomous Evolution of Access to Information 149



3.2 The Roles of User Interface Agent

Assistance in SNL dialogue. User addresses the system in Simplified Natural
Language (SNL). If the SNL processor generates a warning, UIA tries to auton-
omously resolve the issue in interaction with the subsystem components. If the
SNL processor reports an error, UIA engages with User to correct it.

Searching the Semantic Web. The agent can search the Semantic Web for
relevant external knowledge. For instance, it can look up synonyms and hyper-
nyms of terms in natural language knowledge sources such as WordNet [9]. It can
also look for relevant domain ontologies to standardize the usage of terms or
complement the locally developed custom ontology.

Development of custom ontology. UIA helps User create and maintain a custom
ontology, a user-specific conceptual framework that is translatable to reference
ontology. In order to maintain consistency, UIA ensures that any updates to the
reference ontology are reflected in the custom ontology. UIA has the technical
knowledge of the required ontology development and mediation mechanisms.

Customizing the behavior of User Interface Environment. While assisting User
with SNL dialogue, UIA may learn from observations of User’s preferential
choices and customize the behavior of the user interface and possibly other UIE
components, assuming that User elects to enable such options.

Coordination of reference ontologies. When US interacts with multiple DBSs,
UIA acts to resolve any conflicts between imported reference ontologies.

3.3 The Roles of Database Interface Agent

Assistance in SNL dialogue. Apart from the conventional RDB operations on
RDB, DBA addresses the system in SNL, with the agent’s assistance as in US.

Fig. 5 A simple SQAS configuration with one single-user US and one DBS

150 D. Polajnar et al.



Searching the Semantic Web. The agent’s actions are similar as in US, but with
primary emphasis on sources needed in the building of reference ontology.

Development of reference ontology. DBIA interacts with DBA in developing
and maintaining the reference ontology. A DBIE component called the Schema to
Base Ontology Mapper analyzes the RDB schema and generates a Mapping File,
which contains Resource Description Framework (RDF) models of the RDB
schema. The Mapping File then serves as the base ontology from which DBA
incrementally builds a full reference ontology with the assistance of the agent.
DBIA provides technical guidance in the ontology development process, and
accesses ontologies on the Semantic Web.

Customizing the behavior of Database Interface Environment. Primarily cus-
tomizes the behavior of the user interface component, as in US.

4 Agent-Oriented Middleware for Server Subsystems

The software of SQAS is distributed between its client and server subsystems. At
each end, it consists of an agent and its environment that contains a set of inter-
acting software components. The environment components can be designed and
implemented using the conventional object-oriented software engineering (OOSE)
methodology, with an emphasis on efficient performance. The agent can observe
every component and interact with it, and it also interacts with the primary human
actor. While these interactions are central to our present discussion, it is important
to note that the agents along with core environment components constitute a layer
of intelligent middleware that can offer support to other applications. An enterprise
system normally includes a variety of business intelligence applications per-
forming various types of analysis. In the context of SQAS, such applications
would be realized as agent-oriented software, running on top of core SQAS. In
general, agents in such applications would interact with SQAS agents, with the
users, and with the Semantic Web.

This section focuses on the internal structure of DBS, shown in Fig. 6. In
Sect. 4.1 we discuss the DBIE components that support the main subsystem
functions, in Sect. 4.2 a strategy for SQAS middleware implementation, and in
Sect. 4.3 an example of an ontology-building scenario executed within DBS.

4.1 The Database Interface Environment

This environment comprises all software components that communicate with
DBIA, DBA, DEO, and RDB. The solid lines represent direct communication
between components. The dashed line represents communication between DBA
and DBIA. A dashed envelope groups the components directly interacting with
RDB that we revisit in Sect. 4.2. DBIE includes the following main components:

Autonomous Evolution of Access to Information 151



The User Interface provides an access point at which DBA interacts with DBS.
Through it, DBA maintains the reference ontology with the assistance of DBIA
and manages the RDB system. Based on its observation of user behavior and its
learning abilities, the agent can intelligently adapt the interface to meet the user
preferences.

The SNL Processor enables DBA to interact with the system using Simplified
Natural Language (SNL), in addition to the more conventional user interface
options. Given a user statement in SNL, the SNL processor first performs the
lexical analysis and syntax analysis, using the SNL language definition, the
vocabulary information from the reference ontology, and lexical information from
the Natural Language Lexical Knowledge Representation component to generate
an intermediate representation of the statement. After that, it performs semantic
analysis, including ontology checking in interaction with the Ontology Manager,
to verify that each statement as a whole is meaningful. Once the intermediate
representation is generated and verified, the SNL Processor invokes the relevant
components that execute the DBA’s request. For instance, it can activate the
Ontology Manager to update the reference ontology, or the agent to initiate a Web
search.

The Ontology Manager is responsible for storage and maintenance of the
reference ontology. DBS exports a copy of the reference ontology to the attached
US. Thus the reference ontology is replicated in both subsystems. The Ontology
Manager ensures that any modifications to the reference ontology in DBS are
propagated to the instances of reference ontology in all participating USs. It also
provides the SNL Processor the ontology information needed for semantic
analysis.

The Natural Language Lexical Knowledge Representation component provides
the meaning and semantic relations between natural-language concepts, as well as
vocabulary knowledge, in both machine processable and human readable format. It

Fig. 6 The Database Subsystem

152 D. Polajnar et al.



provides a language ontology which can be enhanced by acess to external language
ontologies. The agent and the SNL Processor communicate with this component to
look up meanings and relationships between natural language terms.

The Query Translator generates SPARQL query results from RDB data in three
steps. First, it converts the SPARQL script to SQL queries; second, it executes the
SQL queries on the RDB system and retrieves the SQL query results; finally, it
converts the SQL query results to SPARQL query results. The Query Translator
then sends the SPARQL results to the US.

The Schema to Base Ontology Mapper automatically generates a base ontology
in the RDF format from the underlying RDB schema. The base ontology represents
an RDB table name as a class and the column names of the corresponding table as
properties of the class. It also captures the relationships between RDB tables. The
base ontology serves as a rudimentary ontology from which the reference ontology
is incrementally developed. The Mapper re-generates the base ontology whenever
it is alerted to a change in the RDB schema.

The Schema Monitor always listens for changes in the RDB schema made by
DBA. When it detects a schema change it notifies Schema to Base Ontology
Mapper to reflect the modifications in the base ontology, and then prompt the
adjustments in the reference ontology.

The Communication Service, Access Control, and Security component facili-
tates all communications between US and DBS. By enforcing security features it
ensures that no unauthorized access occurs.

The RDB System contains relational data which the user of SQAS is interested
in. The Data Entry Operator (DEO) may insert, delete, or modify data in the RDB
system. SQAS is not affected by such modifications. The structural changes to
RDB are introduced by DBA as modifications to the RDB schema, which are
intercepted by the Schema Monitor and further result in modifications to the
reference ontology.

4.2 A Note on Implementation Strategy

The intelligent midldleware of SQAS includes a variety of components, some of
which would require both research and implementation efforts. The most inno-
vative and research-oriented aspect of SQAS is the role of agents in ontology
building. Many of the other components could be adapted from existing or future
solutions in the development of Semantic Web, natural language processing, and
some other areas. A plausible implementation strategy would be to adapt the
architecture of SQAS as necessary in order to take full advantage of independently
developed solutions and software components. In this section we briefly illustrate
this approach with the three components of Database Interface Environment
presented in the dashed envelope in Fig. 6.

The three compnents, namely the Query Translator, Schema to Base Ontology
Mapper, and Schema Monitor, jointly provide the necessary conversions between
the RDB schema and the base level of the reference ontology in RDF format, as

Autonomous Evolution of Access to Information 153



well as the actual translation of queries and results between the two formats. The
functionalities of the first two components are provided by a number of existing
tools, and most closely matched by the D2RQ platform [5]. The D2RQ Engine is
the core of the platform which provides the conversion service. It analyzes the
structure of the RDB and generates a Mapping File, which corresponds to an RDF
representation of the RDB schema. In SQAS, the Mapping File represents the base
ontology. The D2RQ Engine thus performs the role of Schema to Base Ontology
Mapper. The Engine then uses the Mapping File to translate SPARQL queries to
SQL queries, invokes the RDB, and translates the SQL results back to SPARQL
results. The front end of the platform, the D2R Server, accepts SPARQL queries,
passes them to the Engine, and presents the returned SPARQL results (RDF tri-
ples). The D2R Server and the D2RQ Engine thus match the role of the Translator
component. The third component, the Schema Monitor, is a custom designed
extension introduced in [17]. It is an interceptor component placed between DBA
and RDB that recognizes the SQL commands which modify the RDB schema and
prompts the D2RQ Engine to re-generate the Mapping File, i.e., the base ontology.

D2RQ can work with the Jade [3] agent platform with the assistance of
Jena [8]. A Jade agent uses Jena’s SPARQL capabilities for executing a SPARQL
query on the D2RQ Platform.

4.3 A Scenario for Agent-Assisted Ontology Development

We will now have a closer look at the behavior of agents as ontology builders. In
SQAS, the agents interact with human actors throughout the entire ontology
development process. The agents perform some of the technical tasks and make
suggestions, while the human actors make decisions. This human actor role in
ontology development adds a new dimension to the traditional User and DBA
profiles. However, this does not require them to become technical experts fully
specialized in the ontology development process because the agents are respon-
sible for executing some of the technical tasks.

The SQAS agents must have the requisite knowledge of how to build an
ontology in order to fulfill their roles. This includes the ability to understand the
semantics of general ontological notions, such as class, subclass, property, and
relationship. Such conceptual knowledge itself represents an ontology, to which
we refer as meta-ontology (noting that this use of the term differs from its
established meaning in philosophy). The agents must also have the procedural
expertise in the development of knowledge representations. They provide tech-
nical guidance and assist their human partners in the construction of concrete
ontologies for the knowledge domains specific to the given databases.

We illustrate the process with a few examples from a scenario in which a
human designer (DBA) interacts with an agent (DBIA) to construct a reference
ontology from a university relational database. The elements of the reference

154 D. Polajnar et al.



ontology in these examples are constructed in Web Ontology Language (OWL).
As a well-known ontology language, OWL is a convenient choice for presentation
purposes. The choice is not intended to suggest that OWL representations are well
suited for reasoning in SQAS, whose agents must deal both with the open world of
the Semantic Web and with the closed world of the institutional information
system. The questions related to the optimal choice of ontology language for
SQAS are beyond the scope of this chapter.

As a first step in the development of reference ontology, its domain name is
chosen, and a new name space is established, with a suitable prefix that allows one
to differentiate between the names coming from different ontologies. Several types
of names, each identified with a distinct standard prefix, may appear in the ref-
erence ontology. A concept may have several names, but those synonyms have
different roles that are indicated by their standard prefixes.

A base name is introduced by the mapping of the RDB schema into base
ontology. It is automatically derived from a term used in the RDB schema. For
instance, from the RDB table name Department the mapper produces a base
ontology entry map:Department a d2rq:ClassMap, which results in the
base ontology class name entry \owl:Class rdf:ID=‘‘bn.Depart-
ment’’/[, where the bn prefix identifies a base name. Base names of properties
are constructed similarly. For instance, from the column name FirstName in
Student table in the RDB, the mapper constructs map:Student_First-
Name a d2rq:PropertyBridge; which results in the property base name
FirstName of the base class Student in the reference ontology. The base
names cannot be changed independently, because their role is to maintain the
correspondence between the reference ontology and the underlying RDB schema.

When the mapping is completed, the agent presents each base name to the
designer for the decision on the primary name of the same concept. The primary
name of a concept is its unique official identifier within the reference ontology, as
distinguished from other synonyms. The agents use the primary names (with prefix
pn) in reasoning and interactions with environment components; the system
allows user-specific synonyms (prefix un) in communication with human actors.
The designer may adopt the base name as the primary name, or consider other
choices. In the latter case, the agent may assist by offering natural language
synonyms of the base name from a lexical knowledge source such as WordNet [9].

Once the base classes are defined, the designer and agent can define the more
general classes. The superclasses can be defined in several ways. The designer may
identify several existing classes that can be generalized into a new superclass,
provide the primary name for the superclass, and let the agent create it. The agent
may offer natural language synonyms before the name choice is finalized, or may
look for natural language hypernyms that are common to the primary class names
of all sunbclasses of the new class and offer them as candidate names for the new
class. For example, the base classes Student and FacultyMember could be
used to abstract a new superclass Person, for which there is no corresponding
table in the RDB.

Autonomous Evolution of Access to Information 155



It should be noted that, since the entire reference ontology is ultimately derived
from the RDB schema, the only concrete classes are the base classes; they are
instantiated in the RDB, where all data reside. All other classes are abstract. This
distinction influences the handling of property names in superclasses. If a superclass
property is designated by identical primary names in all of its subclasses, and all the
subclasses are abstract, the entries for that property can be removed from the sub-
class descriptions, as the property will be inherited from the superclass once it has
been defined. However, base classes retain their properties with their associated
base names in order to maintain the translatability to the RDB schema. Another
observation is that when introducing new superclasses in the case where the primary
names of the corresponding properties in subclasses do not match, the designer may
be tempted to revisit the subclass definitions and rename the properties in order to
remove the name conflicts. This may be simple in a very early design stage when the
reference ontology has not been exported to client systems and the dependencies in
the existing local software are few and easily traceable; later on, a change of primary
property name in an existing class may require a lot of maintainance in derived
ontologies and applications, and reliance on synonym management may be pref-
erable to a primary name change. Again, agent’s assistance and ability to track the
implications of a potential change may be highly valuable to the designer.

The Schema to Base Ontology Mapper can recognize relations between RDB
tables that result in class relations within the reference ontology. For instance, the
following map entry identifes the ontology relation in which a university depart-
ment offers a course:

When the building of reference ontology is completed, the agent dispays it as an
editable graph to the designer for modification and approval (Fig. 7).

5 Agent-Oriented Middleware for Client Subsystems

The architectural structure of the US is shown in Fig. 8. The User Interface
Environment (UIE) comprises the components that provide the main subsystem
functions. The primary purpose of the UIE is to execute the routine user requests
efficiently, without the need to engage in reasoning in the sense of artificial
intelligence techniques. The User Interface Agent (UIA) can observe the events in
the environment, including the behavior of individual components, and act on the
environment to influence the behavior of its components. The agent provides the

156 D. Polajnar et al.



practical reasoning (i. e., deliberation and planning) capabilities to the subsystem,
enabling it to autonomously resolve arising problems without intervention of
human experts. Its presence introduces the qualities of flexibility, adaptability,
tolerance to variations in user preferences and practices, and evolution of the
subsystem behavior according to changing user requirements. Those qualities are
necessary in order for the system to meet its objectives without additional human
assistance.

5.1 The User Interface Environment

All the components that communicate with the user and the UIA are grouped into
the UIE. The solid lines represent direct communication between the user, the
components, and the UIA. The dashed line represents communication between the
user and the UIA. The UIE consists of the following main components:

Fig. 7 The reference ontology graph for a small university RDB

Autonomous Evolution of Access to Information 157



The User Interface (UI) enables all communications between the user and the
system. It provides the system access functionality as formulated in Sect. 2.3.

The SNL Processor component enables the user to interact with the system
using SNL. The analysis of input statements is similar as in DBS, except that the
semantic verification consults the custom ontology, and through it the reference
ontology. Once the intermediate representation is successfully generated and
verified, the SNL Processor invokes the relevant components and passes to them
the relevant parts of the intermediate representation. If the statement is a request
for information, the SNL Processor invokes the SPARQL Generator with the
query-related information, and the Report Manager with the formatting instruc-
tions. Otherwise, it forwards the statements to the Ontology Manager.

The SPARQL Generator constructs a SPARQL script from the intermediate
representation of user requests for information received from the SNL Processor.
While constructing a script, it refers to the Ontology Manager for the RDB-specific
names of terms used in the requests. Once a SPARQL script is generated, the UIA
sends it to the DBS for further processing.

The Report Manager presents requested information in the form of reports. It
receives SPARQL query results from the DBS and formats the results according to
the user’s formatting preferences. It communicates with the Ontology Manager to
replace any database-specific name in the report with its primary name. The Report
Manager allows the user to view, reformat, save, and delete reports.

The Ontology Manager is responsible for maintaining the custom ontology and
providing ontological services to the SNL Processor and SPARQL Generator. The
custom ontology defines user-specific concepts and their relationships using con-
structs from the reference ontology. Updates to the reference ontology may require
updates to the custom ontology in order to maintain consistency. The updating
process may require the involvement of UIA, and possibly User.

Fig. 8 The User Subsystem

158 D. Polajnar et al.



The Natural Language Lexical Knowledge Representation component has an
identical role as in DBS. The UIA and the SNL Processor communicate with this
component to look up meanings and relationships between natural language terms.

The Communication Service, Access Control and Security component facili-
tates communication between the US and the DBS. It provides user authentication,
privileges, security, and the interactions with lower-layer communication services.

5.2 A Scenario for Agent-Assisted Semantic Access

We can now illustrate how a user accesses information in SQAS with a simple
scenario in which a request is entered and a report is generated. This scenario
assumes that the user requests information stored in the RDB through the User
Subsystem (US), which has a copy of the reference ontology consistent with the
original in the DBS. The US also has a custom ontology for the current user, which
defines user-specific concepts using constructs in the reference ontology.

The user formulates a request for report in the Simplified Natural Language
(SNL) and submits it through the User Interface (UI):

Some of the words in an SNL request express the control structure and other
relationships in simple English (e.g., that, with, using); others directly relate to
system actions (generate, format); and some have a defined meaning in the custom
or reference ontologies (student, last name). In all three categories the user has the
flexibility of defining custom terms. In this scenario, we only consider the trans-
lation of custom ontology terms.

The current request has three related statements. The first statement tells what
information is to be retrieved; the second statement gives additional details as to
what specific information is to be included in the report; and the third statement
describes how the information is to be formatted. The first two statements con-
stitute a query, and the last specifies the report generation.

The SNL Processor analyzes the request online, allowing the agent and the user
to deal with any arising problems. The Processor first performs lexical analysis in
which it breaks the SNL text into a sequence of tokens, such as words and sym-
bols. This is followed by syntax analysis that checks whether the text is gram-
matically correct and generates an initial intermediate representation. Next, the
Processor performs semantic analysis to determine if the statements in the request

Autonomous Evolution of Access to Information 159



are meaningful. In this step it may consult the language definition, as well as the
custom and reference ontologies. In particular, this implies that each ontological
term is ultimately translatable to the base ontology level (which implies that it
meaningfully relates to the RDB schema). During this step, the Processor recog-
nizes the actions that need to be performed and verifies whether all parameters that
are needed for these actions are present. The fully verified intermediate repre-
sentation is further transformed so that it can be executed by invoking the
appropriate components in the environment.

In each of the described steps, the SNL processor may produce a warning or an
error. For example, during the semantic analysis, the SNL processor searches both
the natural language vocabulary in the lexical knowledge component and the
custom and reference ontologies, to determine whether the word or phrase has a
purely natural language meaning or a technical meaning. If both searches are
successful, there may be an ambiguity to resolve. For example, the words First and
Name both have general meaning in English, but the expression First Name is
found as a property of the class Student in the reference ontology and hence has a
technical meaning. The warning raised by the SNL Processor in situations of this
type would be intercepted by the agent that would usually resolve it in favor of the
technical interpretation autonomously, without invoking the option of consulting
the user.

Another situation that prompts agent’s intervention arises when a term, such as
registered in our current example, appears from the context to have a tech-
nical meaning, but cannot be found in that exact form. The agent may look for
lexically similar terms and find that there is a class called registration. The
user may be consulted for clarification and also prompted to add the definition of
the term registered to the custom ontology.

An important aspect of SNL processing is that all custom ontology terms in the
query must be eliminated and replaced by reference ontology terms. The inter-
mediate representation of the query contained in the request will be passed to
SPARQL Generator, and the SPARQL script that it produces will proceed for
further processing to DBS, where the custom ontology is not known. Since custom
ontology terms are more likely to be involved in ambiguity resolution that requires
linguistic analysis and occasional interventions by the agent and user, the SNL
Processor is the most suitable component to effect the custom term elimination
with the assistance of Ontology Manager. The immediate representation links the
reference terms to their ontology definitions. It is left to SPARQL Generator, as its
preprocessing step, to translate the reference ontology terms into base ontology
terms, which are then used to generate the SPARQL script. In our current example,
the primary name date of birth is replaced by the base name DOB. As a part
of the preprocessing, SPARQL Generator removes the leading tag (bn.) from each
base term.

The SNL Processor executes the commmands, such as Generate, Include, and
Format, by structuring the intermediate representation and passing its relevant
parts to specific components in the environment. When executing the request in
our current example, the SNL Processor forwards the intermediate representation

160 D. Polajnar et al.



of the query derived from the first two statements to SPARQL Generator, and the
formatting information derived from all three statements to Report Manager. The
SPARQL Generator then translates the query information to SPARQL script and
sends it on to DBS, while Report Manager uses the information to produce the
formatted report when SPARQL query results come back from DBS. Note that it is
not necessary to purge the custom terms from the information passed by the SNL
Processor to Report Manager, as the report may indeed employ some user-specific
terminology involved in the formulation of the request.

The SPARQL Generator constructs a SPARQL script from the commands and
parameters received from the SNL Processor. In general, the script may contain
multiple SPARQL queries; in the current example there is only one. The SPARQL
Generator divides the technical terms in the first statement into two categories: the
‘basic terms’ set, consisting of terms appearing before the keyword that, and
‘conditional terms’ set consisting of the terms that follow. This distinction later
helps the generator in constructing the script. A SPARQL query is made up of
three components: the PREFIX declaration, the SELECT clause, and the WHERE
clause. The generator gets the base URI base=‘‘http://local-
host:2020/vocab/resource/’’ from the reference ontology header and
includes it in the query as a PREFIX. In the prefix declaration, it replaces the
equals symbol (=) with a colon (:), and the quotes with opening (\ ) and closing
([) tags. It then constructs the body of the query consisting of a SELECT clause
and a WHERE clause. The SELECT clause identifies the variables to appear in the
query results. Those variables are taken from the technical terms appearing in the
second statement of the SNL request. The generator appends a leading ‘‘? ’’
symbol to each base name to make it a variable. In our current example, the
variables are ?StudentID, ?FirstName, ?LastName, ?DOB, and ?CGPA.

In the WHERE clause, a number of triples are constructed. A triple consists of a
subject, a predicate, and an object. The subject is a variable created by appending
the ‘‘? ’’ symbol to the class name from the ‘basic terms’ set (student). The
predicate is a technical word in the URI format (PREFIX:Class_Property),
constructed in two steps. First, SPARQL Generator concatenates a class name
from the ‘basic terms’ set and a property name from the SELECT clause with an
underscore symbol (_). Second, it concatenates the prefix (base) and the previ-
ously created segment (Class_Property) with a colon symbol (:). The object
variable is constructed using the property name. Following this method the gen-
erator constructs a triple for each variable appearing in the SELECT clause.
Finally, the generator constructs a triple for each property name from the ‘con-
ditional terms’ set (Semester, Year), using the class name variable from the
‘conditional terms’ set (?registration) as subject, and the specified property
value as object. These two groups of triples are then linked with a third triple
whose predicate has the property StudentID, which is a common property
between the class in the ‘basic terms’ set and the class in the ‘conditional terms’
set.

The complete SPARQL script for our current example is:

Autonomous Evolution of Access to Information 161



Once the SPARQL script is constructed, the Communication Service, Access
Control and Security component sends it to the destination DBS. The corrre-
sponding component in DBS receives the SPARQL script. By verifying credentials
of the sender, it ensures that no unauthorized access occurs to the RDB system. It
then passes the SPARQL script to the Translator component, which decomposes
the script into one or more SPARQL queries. The D2RQ Engine within Translator
generates the equivalent SQL queries. The SQL query generated in our example is:

The D2RQ Engine executes the SQL queries on the RDB system and retrieves
SQL results. Query Translator then converts them from SQL format to SPARQL
format and Communication sends them to the US. A subset of the generated
SPARQL results is shown in Fig. 9.

The Report Manager component in US receives the SPARQL results from DBS.
It then formats the results according to the instructions provided in the request by
the user. A user selected template (format-k) is used for displaying the report. It
also sorts the SPARQL results alphabetically by LastName. Report Manager
refers to Ontology Manager to replace any base name with its primary name or
user-specific name. It then displays the formatted report to the user. The report
generated from the SPARQL results is shown in Fig. 10.

162 D. Polajnar et al.



6 Closing Remarks

A few points remain to be made on issues that become apparent when envisioning
a full-scale architecture of a system such as SQAS. These issues have been
indicated but not elaborated while we presented the main principles in a simplified
setting.

In a large and complex information system, a client subsystem would typically
not import the complete reference ontology that a server has developed, but only
its part, or view, that is relevant to the users of the particular client subsystem. This
requires methods for specifying views and for their coordinated maintenance by
the Ontology Manager components of the client and server.

A client subsystem would in general connect to multiple servers and form its
reference ontology by composing the views imported from them. Therefore each
entry in the client subsystem’s reference ontology must carry a tag indicating its
source, which enables SPARQL Generator to produce separate scripts for queries
directed to different servers, and Report Generator to correctly integrate the
retrieved information. While the basic mechanisms require little adjustment, the
objective of smooth and user-friendly integration of views increases the com-
plexity of ontology management and involves various research questions.

When a group of users naturally share a common composite view of reference
ontology, the designer may choose to give each user a separate replica or let them
share access to the same copy. In the latter case, individual users may still need
distinct custom ontologies, which increases the complexity of ontology
management.

Even a brief enumeration of developmental issues indicates the centrality of
ontology management tasks to the semantic access framework formulated above.
Many of the arising questions appear to belong to mainstream research topics
motivated by a wide variety of potential applications. There are strong indications
that the resulting ontology management techniques will require careful balancing
of conflicting objectives, reasoning, autonomous judgment, learning from expe-
rience, and intelligent interaction with other entities. The development of such
techniques along the lines proposed in this chapter could find immediate

StudentID FirstName LastName DOB CGPA

98988 Shen Ming 1988-12-22 3.25

44553 Phill Cody 1990-05-10 3.7

98765 Emily Brandt 1978-10-29 2.85

70665 Jie Zhang 1990-08-26 3.4

76543 Lisa Brown 1992-06-01 3.7

19991 Shankar Patel 1986-02-17 3.65

70557 Amanda Snow 1989-01-17 3.1

76653 Tom Anderson 1984-03-20 3.5
. . .

Fig. 9 The SPARQL results

Autonomous Evolution of Access to Information 163



application in the processing layer of context aware systems [2], in acquisitional
query processing systems [7], and in a number of other rapidly advancing areas.
This reinforces our view that agents will play a significant role in ontology
building and management in complex intelligent systems of the future.

7 Conclusions

This chapter makes the case for the use of intelligent agents in ontology-building
tasks as a means for autonomous evolution of conventional decision-support
systems in institutional or corporate environments towards modern systems that
provide flexible and direct access to information through high-level semantic
queries. This novel approach outlines an incremental evolutionary path that per-
mits continuous operation of the system, requires no modification of the legacy
databases and allows conventional access to them, preserves organizational
autonomy, and supports direct semantic-query interactions between the decision-
making user and the software system, without intervening personnel.

The approach is based on an innovative combination of multiagent systems and
Semantic Web technologies, in which agents assist human partners in the devel-
opment and maintenance of system ontologies, which in turn permits further
delegation of operational tasks to agents. The envisioned system has a distributed
architecture with any number of client and server subsystems connected by a wide
area network and functionally integrated through a layer of agent-oriented mid-
dleware. A server contans a legacy relational database along with a reference
ontology, autonomously developed within the system through human-agent

Fig. 10 The formatted report

164 D. Polajnar et al.



cooperation, that represents the semantics of the database schema. This allows
online translation of SPARQL queries into SQL queries and conversion of
retrieved SQL results back into SPARQL format. A client subsystem allows its
users to formulate semantic queries in a simplified natural language, using high-
level terms from the composite reference ontology whose component views are
imported from servers, as well as user-specific terms from a custom ontology that
is co-developed by the user and an agent as a layer on top of the reference
ontology. A semantic query is translated into SPARQL scripts for distributed
execution on appropriate severs. The client integrates and delivers the retrieved
results. The co-development of reference ontology and the execution of a semantic
query are ilustrated by typical scenarios.

The approach suggests that significant practical benefits could result from
endowing agents and agent teams with ontology management capabilities. Many
of the necessary preconditions for this, both in terms of formal understanding and
modeling of ontology management processes and also in terms of available soft-
ware tools for development, mediation, and maintenance of ontologies, are either
already appearing or likely to to be brought about by research in Semantic Web
technologies and applications. The motivation, feasibility, and potential benefits of
agent-oriented ontology management applications are likely to be enhanced by
increased availability of public knowledge resources that agents could access.
These considerations motivate further studies in meta-ontologies and techniques
for agent-oriented ontology management. Possible directions of research into
further applications of the current approach include context-aware systems,
acquisitional query processing systems, and other rapidly advancing areas.

References

1. G. Antoniou, F. Harmelen, Web ontology language: Owl, in: Handbook on Ontologies,
International Handbooks on Information Systems, edited by S. Staab, R. Studer (Springer,
Berlin Heidelberg 2009), pp. 91–110

2. M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems. Int. J. Ad Hoc
Ubiquitous Comput. 2(4), 263–277 (2007)

3. F. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with JADE (Wiley,
Wiltshire, 2007)

4. T. Berners-Lee, Semantic Web Road Map. W3C Design Issues Architectural and
Philosophical Points (1998). Retrieved May 03, 2010 from http://www.w3.org/
DesignIssues/Semantic.html

5. Bizer, C., Seaborne, A.: D2RQ-Treating non-RDF Databases as Virtual RDF Graphs. In:
Proceedings of the 3rd International Semantic Web Conference (ISWC2004). Hiroshima
(2004).

6. D. Brickley, R. Guha, RDF Vocabulary Description Language 1.0: RDF Schema. Tech. rep.,
W3C (2004). Retrieved October 06, 2010 from http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/

7. S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TinyDB: An acquisitional query
processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)

Autonomous Evolution of Access to Information 165

http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/


8. B. McBride, D. Boothby, C. Dollin, An Introduction to RDF and the Jena RDF API (2010),
Retrieved June 20, 2011 from http://openjena.org/tutorial/RDF_API/index.html

9. G. Miller, WordNet: a lexical database for English. Comm. ACM 38, 39–41 (1995)
10. C. Olszak, E. Ziemba, Approach to building and implementing business intelligence systems.

Interdisc. J. Inf., Knowl., Manage. 2,134–148 (2007)
11. D. Polajnar, M. Zubayer, J. Polajnar, A multiagent architecture for semantic access to legacy

relational databases. In: 2012 IEEE International Systems Conference (SysCon), pp. 1–8
(2012). doi 10.1109/SysCon.2012.6189521.

12. F. Ricca, L. Gallucci, R. Schindlauer, T. Dell’Armi, G. Grasso, N. Leone, OntoDLV: an
ASP-based system for enterprise ontologies. J. Logic Comput. 19, 643–670 (2009)

13. J. Rumbaugh, I. Jacobson, G. Booch, Unified Modeling Language Reference Manual, 2nd
edn. (Pearson, Higher Education, 2004)

14. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd edn. (Prentice Hall,
New Jersey, 2003)

15. W3C: SPARQL Query Language for RDF (2008). Retrieved January 18, 2013 from http://
www.w3.org/TR/rdf-sparql-query/

16. M. Wooldridge, An Introduction to Multiagent Systems, 2nd edn. (Wiley, Glasgow, 2009)
17. M. Zubayer, A Multiagent Architecture for Semantic Query Access to Legacy Relational

Databases (University of Northern British Columbia, Canada, 2011). Master’s thesis

166 D. Polajnar et al.

http://openjena.org/tutorial/RDF_API/index.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	6 Autonomous Evolution of Access to Information in Institutional Decision-Support Systems Using Agent and Semantic Web Technologies
	Abstract
	1…Introduction
	2…Agent-Oriented Semantic Access
	2.1 The generic system
	2.2 The Legacy RDB System
	2.3 The Semantic Query Access System
	2.4 Decomposition of SQAS Use Cases

	3…The SQAS Architecture
	3.1 The High-Level Architecture of SQAS
	3.2 The Roles of User Interface Agent
	3.3 The Roles of Database Interface Agent

	4…Agent-Oriented Middleware for Server Subsystems
	4.1 The Database Interface Environment
	4.2 A Note on Implementation Strategy
	4.3 A Scenario for Agent-Assisted Ontology Development

	5…Agent-Oriented Middleware for Client Subsystems
	5.1 The User Interface Environment
	5.2 A Scenario for Agent-Assisted Semantic Access

	6…Closing Remarks
	7…Conclusions
	References


