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Abstract. In the last two decades, many computational problems aris-
ing in cryptography have been successfully reduced to various systems
of polynomial equations. In this paper, we revisit a class of polynomial
systems introduced by Faugère, Perret, Petit and Renault. Based on new
experimental results and heuristic evidence, we conjecture that their de-
grees of regularity are only slightly larger than the original degrees of
the equations, resulting in a very low complexity compared to generic
systems. We then revisit the application of these systems to the ellip-
tic curve discrete logarithm problem (ECDLP) for binary curves. Our
heuristic analysis suggests that an index calculus variant due to Diem

requires a subexponential number of bit operations O(2c n2/3 logn) over
the binary field F2n , where c is a constant smaller than 2. According
to our estimations, generic discrete logarithm methods are outperformed
for any n > N where N ≈ 2000, but elliptic curves of currently rec-
ommended key sizes (n ≈ 160) are not immediately threatened. The
analysis can be easily generalized to other extension fields.

1 Introduction

While linear systems of equations can be efficiently solved with Gaussian elim-
ination, polynomial systems are much harder to solve in general. After their
introduction by Buchberger [13], Gröbner bases have become the most popular
way to solve polynomial systems of equations, in particular since the develop-
ment of fast algorithms like F4 [26] and F5 [27]. Polynomial systems arising in
cryptography tend to have a special structure that simplifies their resolution.
In the last twenty years, many cryptographic challenges have been first reduced
to polynomial systems of equations and then solved with fast and sometimes
dedicated Gröbner basis algorithms [42,30,38,10,22,23,32,12,31].
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Our Contribution

In this paper, we revisit a particular class of polynomial systems introduced by
Faugère et al. [33,34]. These systems naturally arise by deploying a multivariate
polynomial equation over an extension field into a system of polynomial equa-
tions over the ground prime field (a technique commonly called Weil descent).

We first observe that polynomial systems arising from a Weil descent are a
natural generalization of a well-known family of polynomial systems appearing
in the cryptanalysis of HFE [48,42,18,30,38,24,10,22,23]. Starting from this ob-
servation, we extend various experimental and theoretical results on HFE to
the more general class of polynomial systems arising from a Weil descent. Our
results suggest that the degrees of regularity of these systems are only sligthly
larger than the degrees of their equations, essentially as small as they could be.

Following [34], we subsequently study an elliptic curve discrete logarithm al-
gorithm of Diem [21] in the case of binary fields. Based on our heuristic analysis
of polynomial systems arising from a Weil descent, we conjecture that the ellip-
tic curve discrete logarithm problem can be solved over the binary field F2n in

subexponential time O(2c n
2/3 logn), where c is a constant smaller than 2. For n

prime, this problem was previously thought to have complexity O(2n/2).
Our analysis of polynomial systems arising from a Weil descent can also be

applied to the factorization problem in SL(2,F2n), to HFE and to other discrete
logarithm problems. These applications will be discussed in an extended version
of this paper [49]. Although we focus on characteristic 2 in this paper, most of
our results can be easily extended to other characteristics.

Outline

The remaining of this paper is organized as follows. Section 2 contains most of
the notations and definitions used in the paper. Section 3 provides general back-
ground on algebraic cryptanalysis with Gröbner bases. Section 4 contains our
new analysis of polynomial systems arising from a Weil descent. The application
to Diem’s algorithm is detailed in Section 5 and Section 6 concludes the paper.

2 Definitions and Notations

We mostly follow the notations introduced in [33]. For any “small” prime p and
any n ∈ Z, we write Fpn for the finite field with pn elements. We see the field
Fpn as an n-dimensional vector space over Fp and we let {θ1, . . . , θn} be a basis
for Fpn/Fp. With some abuse of notations, we use bold letters for all elements,
variables and polynomials over Fpn and normal letters for all elements, variables
and polynomials over Fp. If x1, . . . , xN are variables defined over a field K, we
write R := K[x1, . . . , xN ] for the ring of polynomials in these variables. Given
a set of polynomials f1, . . . , f� ∈ R, the ideal I(f1, . . . , f�) ⊂ R is the set of

polynomials
∑�

i=1 gifi, where, g1, . . . , g� ∈ R. We write Resxi(f1, f2) for the
resultant of f1, f2 ∈ R with respect to the variable xi. A monomial of R is a
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power product
∏k

i=1 x
ei
i where ei ∈ N. A monomial ordering for R is an ordering

> such that m1 > m2 ⇒ m1m3 > m2m3 for any monomials m1,m2,m3 and
m > 1 for any monomialm. The leading monomial LM(f) of a polynomial f ∈ R
for a given ordering is equal to its largest monomial according to the ordering. Its
leading term is the corresponding term. For any polynomial f ∈ R, we denote the
set of monomials of f by Mon(f). We measure the memory and time complexities
of algorithms by respectively the number of bits and bit operations required.
Actual experimental results are given in megabytes and seconds. We write O for
the “big O” notation: given two functions f and g of n, we say that f = O(g)
if there exist N, c ∈ Z

+ such that n > N ⇒ f(n) ≤ cg(n). Similarly, we write
o for the “small o” notation: given two functions f and g of n, we say that
f = o(g) if for any ε > 0, there exists N ∈ Z such that for any n > N , we have
|f(n)| ≤ ε|g(n)|. Finally, we write ω for the linear algebra constant. Depending
on the algorithm used for linear algebra, we have 2.376 ≤ ω ≤ 3.

3 Background on Polynomial System Resolution

Let R be a polynomial ring and let > be a fixed monomial ordering for this ring.
A Gröbner basis [13,19] of an ideal I(f1, . . . f�) ⊂ R is a basis {f ′

1, . . . , f
′
�′} of

this ideal such that for any f ∈ I(f1, . . . f�), there exists i ∈ {1, . . . , �′} such that
LT(f ′

i)|LT(f). The first Gröbner basis algorithm was provided by Buchberger in
his PhD thesis [13]. Lazard [44] later observed that computing a Gröbner basis
is essentially equivalent to performing linear algebra on Macaulay matrices at a
certain degree.

Definition 1 (Macaulay Matrix [45,46]). Let R be a polynomial ring over
a field K and let Bd := {m1 > m2 > · · · } be the sorted set of all monomials
of degree ≤ d for a fixed monomial ordering. Let F := {f1, . . . , f�} ⊂ R be
a set of polynomials of degrees ≤ d. For any fi ∈ F and tj ∈ Bd such that
deg(fi) + deg(tj) ≤ d, let gi,j := tjfi and let cki,j ∈ K be such that gi,j =
∑

mk∈B cki,jmk. The Macaulay matrix Md(F ) of degree d is a matrix containing

all the coefficients cki,j, such that each row corresponds to one polynomial gi,j
and each column to one monomial mk ∈ Bd.

The idea behind Lazard’s observation is linearization: new equations for the
ideal are constructed by algebraic combinations of the original equations, every
monomial term appearing in the new equations is treated as an independent new
variable, and the system is solved with linear algebra. Gröbner basis algorithms
like F4 [26] and F5 [27] successively construct Macaulay matrices of increasing
sizes and remove linear dependencies in the rows until a Gröbner basis is found.
Moreover, they optimize the computation by avoiding monomials tj that would
produce trivial linear combinations such as f1f2 − f2f1 = 0. The complexity of
this strategy is determined by the cost of linear algebra on the largest Macaulay
matrix occuring in the computation.

The degree of the largest Macaulay matrix appearing in a Gröbner basis
computation with the algorithm F5 is called the degree of regularity Dreg. For
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a “generic” sequence of polynomials f1, . . . , f� ∈ R (with � ≤ n), this degree

is equal to 1 +
∑�

i=1(deg(fi) − 1) [6]. The degree of regularity can be precisely
estimated in the case of regular and semi-regular sequences [6,8] and (assuming
a variant of Fröberg conjecture) in a few other cases [28,11]. However, precisely
estimating this value for other classes of systems (in particular for the various
structured systems appearing in cryptanalysis problems) may be a very difficult
task. In practice, the degree of regularity may often be approximated by the
first degree at which a non trivial degree fall occurs during a Gröbner basis
computation.

Definition 2. Let R be a polynomial ring over a field K and let F := {f1, . . . , f�}
⊂ R. The first fall degree of F is the smallest degree Dfirstfall such that there
exist polynomials gi ∈ R with maxi(deg(fi) + deg(gi)) = Dfirstfall, satisfying

deg(
∑�

i=1 gifi) < Dfirstfall but
∑�

i=1 gifi �= 0.

We haveDreg ≥ Dfirstfall. For many classes of polynomial systems, the two defi-
nitions lead to very close numbers. Although this is not true in general (counter-
examples can be easily produced), it seems to be true for “random systems”
and “most real-life systems of equations” [38, p. 350] including HFE and its
variants [30,38,24,22,23,11]. This can intuitively be explained by the observation
that an extremely large number of relations with a degree fall occur at the degree
Dfirstfall or the degreeDfirstfall+1 in these contexts, and these low degree rela-
tions can in turn be combined to produce lower degree relations [24, p. 561], until
a Gröbner basis is finally found. In fact, the first fall degree has even sometimes
been called degree of regularity in the cryptography community [24,22,23].

Many polynomial systems arising in cryptanalysis are very far from
generic ones. In fact, their special structures often induce lower degrees of reg-
ularity, hence much better time complexities. Gröbner basis techniques have suc-
cessfully attacked many cryptosystems, including HFE and its variants
[48,42,30,38,10,22,23], the Isomorphism of Polynomials [32,12] and someMcEliece
variants [31]. In many cases, the resolution of these systems could be accelerated
using dedicated Gröbner basis algorithms that exploited the particular struc-
tures. As was first pointed out in [33,34], this is also the case for polynomial
systems arising from a Weil descent.

4 Polynomial Systems Arising from a Weil Descent

Let n, n′,m be positive integers and let V be a vector subspace of F2n/F2 with
dimension n′. Let f ∈ F2n [x1, . . . ,xm] be a multivariate polynomial with de-
grees bounded by 2t − 1 with respect to all variables. In [33,34], Faugère et al.
considered the following problem:

Find xi ∈ V, i = 1, . . . ,m, such that f(x1, . . . ,xm) = 0. (1)

The constraints xi ∈ V, i = 1, . . . ,m are called linear constraints. From now
on, we assume that mn′ ≈ n such that Problem (1) has about one solution on
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average. We also assume n′ ≥ t. The multilinear case (t = 1) was first considered
in [33] and later extended in [34].

Following [33,34], Problem (1) can be reduced to a system of polynomial equa-
tions. Let {θ1, . . . , θn} be a basis of F2n over F2 and let {vi|i = 1, . . . , n′} be a ba-
sis of V over F2. We define m ·n′ variables xij over F2 such that xi =

∑n′

j=1 xijvj

and we group them into m blocks of variables Xi := {xij |j = 1, . . . , n′}. By
substituting each xi in f , decomposing in the basis {θ1, . . . , θn} and reduc-
ing by the field equations x2

ij − xij = 0, we obtain 0 = f(x1, . . . ,xm) =

f
(∑n′

j=1 x1jvj, . . . ,
∑n′

j=1 xmjvj

)
= [f ]

↓
1 θ1+ . . .+[f ]

↓
n θn for some [f ]

↓
1 , . . . , [f ]

↓
n ∈

F2[x11, . . . , xmn′ ] that depend on f and on the vector subspace V . Problem (1)
can therefore be reformulated as finding a solution to the (algebraic) system

[f ]
↓
1 = 0, . . . , [f ]

↓
n = 0. (2)

Due to the bounds on the degrees of f , this system has a block structure: the
degrees of all polynomials [f ]

↓
k are bounded by t with respect to all blocks of

variables. The resolution of System (2) can therefore be greatly accelerated using
block-structured Gröbner basis algorithms [29,33,34].

Link to HFE. In this paper, we observe that a particular instance of Prob-
lem (1) had previously been studied in the cryptography literature. Indeed, the
well-known problem of inverting HFE [48,30,38] leads to a particular instance
of System (2), where the polynomial f is univariate (m = 1) and the linear con-
straints are trivial (V = F2n).

1 Interestingly, although the polynomial f used in
HFE has a particular shape (it leads to quadratic equations over F2), we will see
that this shape has generically little influence on the complexity of Problem (1).

Ten years of research on HFE systems have shown that their degrees of regu-
larity are abnormally low compared to generic systems, resulting in very efficient
attacks. Although no definitive proof of these results has been published yet, the
experimental observations of [30] are now being supported by theoretical evi-
dence such as the isolation of a subsystem with less variables [38], the existence
of many low degree equations [17], first fall degree computations [22,24] and
complexity results on the MinRank problem [11]. In this paper, we generalize
some of these results to polynomial systems arising from a Weil descent.

Experimental Observations. We start our analysis of these systems with an
experimental study of their degree of regularity for various parameters n,m, n′, t.
For each set of parameters, we generate a random vector space V of dimension
n′ and a random multivariate polynomial f(x1, . . . ,xm) with degree bounded
by 2t − 1 with respect to each variable. We then perform a Weil descent on this

1 In HFE contexts, the attacker is not given f but only a “hidden” version of Sys-
tem (2). This can be ignored in the complexity analysis of Gröbner basis algorithms
since the hiding transformation only consists of a linear combinations of the equa-
tions and a linear change of variables [48,38].
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polynomial and we append the field equations to the system. Finally, we apply
the Magma function Groebner to the result and we collect the maximal degree D
reached during the computation, as given by the Verbose output of the Magma
function. We repeat each experiment 100 times.

Table 1. Average maximal degree reached in Gröbner Basis experiments, average
computation time (in seconds) and maximal memory requirements (in MB) for random
polynomials

t n n′ m mt+ 1 Dav Time Mem.

1 6 3 2 3 3.1 0 10
1 6 2 3 4 3.8 0 10
1 8 4 2 3 3.0 0 11
1 12 6 2 3 3.6 0 11
1 12 4 3 4 4.2 0 11
1 12 3 4 5 5.3 0 14
1 12 2 6 7 7.4 1 23
1 15 5 3 4 4.1 5 20
1 15 3 5 6 6.3 7 114
1 16 8 2 3 3.0 14 25
1 16 4 4 5 5.3 16 98
1 16 2 8 9 9.6 69 3388
1 18 9 2 3 3.0 85 74
1 18 6 3 4 4.1 86 89
1 18 3 6 7 7.4 233 5398
1 20 10 2 3 3.0 487 291
1 20 5 4 5 6.2 515 733
1 20 4 5 6 6.2 669 3226

t n n′ m mt+ 1 Dav Time Mem.

2 6 3 2 5 5.1 0 10
2 6 2 3 7 6.7 0 10
2 8 4 2 5 5.1 0 11
2 9 3 3 7 7.2 0 12
2 12 4 3 7 7.1 1 38
2 12 3 4 9 9.3 2 95
2 15 5 3 7 7.0 12 263
2 16 8 2 5 5.1 13 36
3 6 3 2 7 6.6 0 10
3 12 6 2 7 7.0 1 31
3 12 4 3 10 10.1 9 70
3 12 3 4 13 12.6 70 113
3 15 5 3 10 10.0 118 2371
3 16 8 2 7 7.0 23 253
3 16 4 4 13 13.2 1891 20135
4 8 4 2 9 8.7 1 11
4 12 4 3 13 12.6 199 116
4 15 5 3 13 13.1 2904 6696

Table 1 reports the average value of D for these experiments, as well as the
average computation time and the maximal memory used (all experiments were
done on an Intel Xeon CPU X5500 processor running at 2.67 GHz, with 24 GB
RAM). As is often the case in Gröbner basis computations, our experiments were
limited more by the memory requirements than by the computation time.

For all parameter sets, the maximal degrees occuring during Gröbner basis
computations were much smaller than the degrees of regularity of regular or
semi-regular systems with the same degrees. In fact, our experiments suggest
that the degree of regularity of System (2) is not much higher than the value
mt+1. In other words since the original equations have degree mt, the degree of
regularity is essentially as small as it could be. The even lower values obtained
for all parameter sets such that t = n′ can be explained by a probable degeneracy
in the degrees of the equations. Taking m = 1, we recover known experimental
results on HFE [30].

Heuristic Upper Bound on Dreg. As a first step towards explaining these
experimental results, we follow Granboulan et al. [38] and we bound of the degree
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of regularity of System (2) from above by the degree of regularity of a smaller
system with a lower number of variables. We now suppose that {θ1, . . . , θn} is a

normal basis of F2n over F2, such that θi := θ2
i−1

for some θ ∈ F2n . Let vij ∈ F2

such that vi =
∑n

j=1 vijθj . We define nm auxiliary binary variables yij such

that xi =
∑n

j=1 yijθj . Proceeding to a Weil descent as above, we obtain a new

system2

[f ]
↓y

1 = 0, . . . , [f ]
↓y

n = 0 (3)

in the variables yij , to which we add m(n+ n′) field equations y2ij − yij = 0 and

x2
ij − xij = 0, as well as mn linear equations yij =

∑n
k=1 xikvkj modeling the

linear constraints. The resulting system of m(n + n′) variables and n +m(n +
n′) +mn equations is equivalent to System (2) (with the field equations), hence
they have the same degree of regularity.

Following Granboulan et al. [38], we perform additional modifications on this
system to obtain a new system with less variables and higher or equal degree of
regularity. First, we observe that linear equations do not contribute to the degree
of regularity and can therefore be removed without affecting it. The resulting
system is composed of n +mn equations containing only the variables yij and
mn′ field equations x2

ij − xij = 0. Without decreasing the degree of regularity,
we can focus on the first part containing Equations (3) and the field equations
y2ij − yij = 0.

In the next step, we observe that the degree of regularity of this system is
not affected if we see the variables yij over F2n rather than over F2. Thanks
to the field equations, the set of solutions is not affected by this change either.
We then apply an invertible linear transformation on Equations (3), defined by

Fi :=
∑n

j=1 θ
2i+j

[f ]
↓y

j for i = 1, · · · , n. This transformation implies Fi = F 2i−1

1 .

Finally, we perform a linear change of variables defined by zij :=
∑n

k=1 θ
2j+k−1

yik
for i = 1, . . . ,m, and j = 1, · · · , n. Since this corresponds to setting zi1 = xi,
zi2 = xi

2, . . . , zi,n = xi
2n−1

, each Fk only depends (linearly) on zij , k ≤ j ≤
t+k−1. A last linear transformation changes the field equations into z2ij = zi,j+1

and z2i,n = zi,1.
Since F2 = F1 · F1 modulo the field equations, the polynomial F2 can be

expressed at the degree 2mt as an algebraic combination of F1 and the field
equations. Similarly, all polynomials Fi, i ≥ 2 can be recovered at degree 2mt
from algebraic combination of F1 and the field equations. Therefore, the degree
of regularity of the original system is smaller than the maximum of 2mt and
the degree of regularity of the system {F1 = 0; z2ij = zi,j+1, i = 1, . . . ,m, j =

1, . . . , n − 1; z2i,n = zi,1, i = 1, . . . ,m}. Finally like [38], we bound this last de-

gree by the degree of regularity of the subsystem {F1 = 0; z2ij = zi,j+1, i =
1, . . . ,m, j = 1, . . . , t − 1}. Assuming that this system behaves like a generic
system with the same degrees and the same number of variables3, its degree of

2 We add a subscript y to the arrows in System (3) to stress that the Weil descent is
done on the yij variables and to distinguish this system from System (2).

3 A similar assumption of semi-regularity is needed in [38] to apply Bardet’s theorem.
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regularity can be bounded by m(2t − 1) using Macaulay’s bound. Under this
heuristic assumption, we conclude that the degree of regularity of System (3) is
bounded by 2mt.

We point out that the value 2mt is already much below the degree of regularity
of a generic system of equations (or even a generic binary system of equations)
with the same degrees [6,7]. Still, our experiments suggest that this bound is
not even tight. A tighter bound can be obtained with a seemingly stronger (yet
“classical”) heuristic assumption.

First Fall Degree. An important characteristic of HFE systems is the existence
of many algebraic combinations of the equations that have a degree lower than
it would be expected for a generic system. Similar low degree equations were
identified for System (2). More precisely, Faugère et al. [33,34] showed that for
any monomial m ∈ F2n [x1, . . . ,xn′ ], the equations obtained by applying a Weil
descent on the polynomial mf are algebraic combinations of the equations of
System (2) that produce a degree fall. By the way they are constructed, the
existence of these equations is very specific to polynomial systems arising from
a Weil descent. For m := x1, we immediately deduce:

Proposition 1. The first fall degree of System (2) is at most mt+ 1.

This proposition provides a heuristic explanation for the degrees of regularity
observed above since the first fall degree is often a good approximation of the
degree of regularity. As recalled in Section 3, this heuristic assumption is “classi-
cal” in algebraic cryptanalysis, and it has in particular been verified for various
HFE-like systems [38,24,22].

Assumption 1. Let n,m, t, n′ ∈ Z. Let f be generated as in our experiments.
For all but a negligible fraction of the resulting systems, we have Dreg =
Dfirstfall + o(Dfirstfall).

The assumption intuitively makes sense for System (2) since not only one but
many degree falls are occuring at degree Dfirstfall and the next ones (each
monomial m leads to new degree falls).

Heuristic Complexity Bounds for Problem (1). Given the degree of regu-
larity, the complexity of Problem 1 simply follows from the cost of linear algebra.

Proposition 2. If Assumption 1 holds, Problem 1 can be solved with standard
Gröbner basis algorithms (like F4 or F5) in time O(nωD) and memory O(n2D),
where ω is the linear algebra constant and D ≈ mt.

In the univariate case, this estimation reduces to D ≈ t which perfectly matches
known cryptanalysis results on HFE algebraic systems [30,38]. Interestingly, the
special shape of HFE polynomials (they deploy to quadratic equations over F2)
seems to have no impact on the degree of regularity (although further restrictions
on the shape may have an impact as pointed out in [22]). In the multilinear case,
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the estimation provided by Proposition 2 becomes D ≈ m which matches the
experimental data of [33].

As observed in [33,34], the block structure of System (2) can be exploited to
accelerate its resolution.

Proposition 3. If Assumption 1 holds, Problem 1 can be solved with block
Gröbner basis algorithms in time O((n′)ωD) and memory O((n′)2D), where ω is
the linear algebra constant and D ≈ mt.

Additional heuristic methods like hybrid approaches (consisting in mixing ex-
haustive search and polynomial system resolution [52,9]) may lead to substantial
complexity improvements in practice, as was described in [33] for the multilinear
case.

5 Index Calculus for Elliptic Curves

We now turn to the main application (so far) of Problem (1). As pointed out
in [34], an instance of Problem (1) appears in the relation search step of an in-
dex calculus algorithm for elliptic curves proposed by Diem [21]. Given a cyclic
(additive) group G, a generator P of this group and another element Q of G, the
discrete logarithm problem asks for computing an integer k such that Q = kP .
Groups typically used in cryptography include the multiplicative groups of finite
fields, groups of points on elliptic curves and hyperelliptic curves and Jaco-
bians of higher genus curves. Index calculus algorithms [43,25] with subexponen-
tial complexities have long been obtained for the multiplicative groups of finite
fields [1,16,2,5,39] and more recently for the Jacobian groups of hyperelliptic
curves [3,36,35].

In 2004, Semaev introduced his summation polynomials and identified their
potential application to build index calculus algorithms on elliptic curves [51]
over prime fields Fp. These ideas were independently extended by Gaudry [37]
and Diem [20] to elliptic curves over composite fields Fpn . Following this ap-
proach, Gaudry [37] and later Joux and Vitse [40,41] obtained index calculus
algorithms running faster than generic algorithms for any p and any n ≥ 3. On
the other hand, Diem [20,21] identified some families of curves with a subexpo-
nential time index calculus algorithm by letting p and n grow simultaneously
in an appropriate way. As far as was known at the moment, the two families of
elliptic curves recommended by standards [47] (elliptic curves over prime fields
Fp or over binary fields F2n with n prime) remained immune to these attacks.
In 2012, Faugère et al. [34] observed that the computation of the relations in an
algorithm of Diem for binary fields [21] could be reduced to special instances of
Problem (1).

Diem’s Variant of Index Calculus. Let K be a finite field and let E be an
elliptic curve over K defined by the equation E : y2 + xy = x3 + a2x

2 + a6
for some a2, a6 ∈ F2n . Semaev’s summation polynomials Sr are multivariate
polynomials satisfying Sr(x1, . . . ,xr) = 0 for some x1, . . . ,xr ∈ K̄ if and only
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if there exist y1, . . . ,yr ∈ K̄ such that (xi,yi) ∈ E(K̄) and (x1,y1) + · · · +
(xr,yr) = P∞ [51]. The summation polynomials can be recursively computed
as S2(x1,x2) := x2 + x1, S3(x1,x2,x3) := x1

2x2
2 + x1

2x3
2 + x1x2x3 +

x2
2x3

2 + a6 and for any r ≥ 4, any k, 1 ≤ k ≤ r − 3, Sr(x1, . . . ,xr) :=
ResX (Sr−k(x1, . . . ,xm−k−1,X),Sk+2(xr−k, . . . ,xr,X)) . For r ≥ 2, the poly-
nomial Sr is symmetric and has degree 2r−2 in every variable xi [51].

Summation polynomials were used by Gaudry [37], Joux and Vitse [40] and
Diem [20,21] to compute relations in index calculus algorithms for elliptic curves
over composite fields. The following variant is an adaptation of Diem [21].

1. Factor Basis definition. Fix two integers m,n′ < n with mn′ ≈ n and a
vector space V ⊂ F2n/F2 of dimension n′. Let FV := {(x,y) ∈ E(K)|x ∈ V }
be the factor basis.

2. Relation search. Find about 2n
′
relations aiP + biQ =

∑m
j=1 Pij with

Pij ∈ FV . For each relation,
(a) Compute Ri := aiP + biQ for random integers ai, bi.
(b) Solve Semaev’s polynomial Sm+1(x1, . . . ,xm, (Ri)x) with the constraints

xi ∈ V .
(c) If there is no solution, go back to (a).

3. Linear Algebra. Perform linear algebra on the relations to recover the
discrete logarithm value.

In previous works [37,20,21,40], a Weil descent was applied to Semaev’s poly-
nomials and the resulting systems were solved with resultants or Gröbner basis
algorithms. In these works, the complexity of the relation search step was de-
rived from the complexity of solving generic systems. However as pointed out
in [33,34] and further demonstrated in Section 4 of the present paper, polynomial
systems arising from a Weil descent are very far from generic ones.

A New Complexity Analysis. We now revisit Diem’s algorithm [21] and
its analysis by [34] in accordance with our new analysis of Problem (1). Let
n,m, n′ be integer numbers. Before starting Diem’s algorithm, the (m+1)th sum-
mation polynomial must be computed. Using Collins’ evaluation/interpolation
method [15] for the resultant, this can be done in time approximately 2t1 where4

t1 ≈ m(m+1). We then compute about 2n
′
relations. To obtain these relations,

we solve special instances of Problem (1) where f(x1, . . . ,xm) := Sm+1(x1, . . . ,
xm, (aiP+biQ)x) has degree 2

m−1 with respect to every variable. Since Semaev’s
polynomials are clearly not random ones, we perform additional experiments.

In our experiments, we apply Diem’s algorithm to a randomly chosen binary
curve E : y2+xy = x3+a2x

2+a6 defined over F2n , where n ∈ {11, 17}. We first
fix m ∈ {2, 3} and n′ := 	n/m
. We then generate a random vector space V of
dimension n′ and a random point R on the curve such that f has solutions. As
in Section 4, we finally use the Groebner function of Magma to solve Semaev’s

4 To compute Sm+1, we apply Collins’ algorithm on Sk where k = �m+3
2

�. This

polynomial has degree 2�(m−1)/2� in each variable. Following Collins, Theorem 9,
we have t1 ≤ 2(m+ 1)m/2 = m(m+ 1).
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Table 2. Average maximal degree reached in Gröbner Basis experiments, average
computation time (in seconds) and maximal memory requirements (in MB) for Semaev
polynomials. (R): Random curves. (K): Koblitz curves.

E n n′ m t mt+ 1 Dav Time Mem.

K 11 6 2 2 5 3.0 0 11
K 11 4 3 3 10 7.1 1 15
K 17 9 2 2 5 4.0 0 15
K 17 6 3 3 10 7.2 132 2133

E n n′ m t mt+ 1 Dav Time Mem.

R 11 6 2 2 5 3.0 0 11
R 11 4 3 3 10 7.1 1 15
R 17 9 2 2 5 4.0 0 16
R 17 6 3 3 10 7.1 130 2136

equation Sm+1(x1, . . . ,xm, Rx) = 0 with the linear constraints. We repeat this
experiment 100 times for each parameter set, then we repeat all our experiments
with the Koblitz curve E : y2+xy = x3+x2+1. The average value of the maximal
degrees reached during the computation, the average computation time and the
maximal memory requirements are reported in Table 2.

In all cases, the maximal degrees reached in the computations were even
below the first fall degree bound given by Proposition (1). This phenomenon is
probably due to the sparsity of Semaev’s polynomials and will be exploited in
future work (in particular, the degree of Sm+1 with respect to every variable
is 2m−1 but bounded by 2m − 1 in the analysis of Section 4). From now on in
the analysis, we ignore this difference and analyze Semaev’s polynomials as the
random polynomials of Section 4.

Assumption 2. Assumption 1 still holds if f is generated from Semaev’s poly-
nomials as in the experiments of this section.

Under Assumption (2), Step 2(b) of Diem’s algorithm can be solved using a
dedicated Gröbner basis algorithm taking advantage of the block structure, in a
time (n′)ωD, where D ≈ (m2+1) and ω is the linear algebra constant. Once the
x components of a relation have been computed, the y components can be found
by solving m quadratic equations and testing each possible combination of the
solutions. This requires a time roughly 2m, that can be neglected. On average,
the probability that a point Ri := aiP + biQ can be written as a sum of m

points from the factor basis can be heuristically approximated by 2mn′−n

m! [21].
Assuming mn′ ≈ n, the total cost of the relation search step can therefore be
approximated by 2t2 , where t2 ≈ m logm+ n′ + ω(m2 + 1) logn′.

The last step of Diem’s algorithm consists in (sparse) linear algebra on a
matrix of rank about 2n

′
with about m elements of size about n bits per row.

This step takes a time approximately equal tomn2ω
′n′

= 2t3 , where t3 ≈ logm+
logn+ω′n′ and ω′ is the sparse linear algebra constant. If Assumption (2) holds
and if mn′ ≈ n, the total time taken by Diem’s algorithm can be estimated by
T := 2t1 + 2t2 + 2t3 , where t1, t2, t3 are defined as above.

On the Hardness of ECDLP in Characteristic 2. We now evaluate the
hardness of the elliptic curve discrete logarithm problem over the field F2n for
“small” values of n. In our estimations, we use ω = log(7)/ log(2) and ω′ = 2.
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Table 3. Complexity estimates for Diem’s algorithm in characteristic 2

n m n′ t1 t2 t3 tmax

50 2 25 6 92 57 92
100 2 50 6 131 108 131
160 2 80 6 171 168 171
200 2 100 6 195 209 209
500 3 167 12 379 344 379
1000 4 250 20 638 512 638

n m n′ t1 t2 t3 tmax

2000 4 500 20 936 1013 1013
2500 5 500 30 1166 1014 1166
5000 6 833 42 1857 1682 1857
10000 7 1429 56 2919 2873 2919
20000 9 2222 90 4810 4462 4810
50000 12 4167 156 9105 8353 9105

We consider n ∈ {50, 100, 160, 200, 500, 1000, 2000, 2500, 5000, 104, 2 · 104, 5 ·
104, 105, 2 · 105, 5 · 105, 106} and m ∈ {2, . . . , n/2}. For every pair of values, we
compute values t1, t2 and t3 as above. Finally, we approximate the total running
time of Diem’s algorithm by 2tmax where tmax := max(t1, t2, t3). For every value
of n, Table 3 presents the data corresponding to the value m for which tmax

is minimal. We point out that the numbers obtained here have to be taken
cautiously since they all rely on Assumption 2 and involve some approximations.

According to our estimations, Diem’s version of index calculus (together with
a sparse Gröbner basis algorithm) beats generic algorithms for any n ≥ N ,
where N is an integer close to 2000. An actual attack for current cryptograph-
ically recommended parameters (n ≈ 160) seems to be out of reach today, but
the numbers in [34] suggest that medium-size parameters could be reachable
with additional Gröbner basis heuristics like the hybrid method [9]. Large prime
variations [35] of Diem’s algorithm may also lead to substantial improvements
in practice. This will be investigated in further work.

Letting n grow and fixing n′ := nα and m := n1−α for a positive constant
α < 1, we obtain

t1 ≈ n2(1−α),

t2 ≈ (1− α)n1−α logn+ nα + αωn2(1−α) logn,

t3 ≈ (2− α) logn+ ω′nα

Taking α := 2/3, the relation search dominates the complexity of the index
calculus algorithm and we deduce the following result.5

Proposition 4. Under Assumption 2, the discrete logarithm problem over F2n

can asymptotically be solved in time O(2cn
2/3 log n), where c := 2ω/3 and ω is the

linear algebra constant.

In particular if the Gaussian elimination algorithm is used for linear algebra, we
have ω = 3 and c = 2. We stress that Proposition 4 holds even when n is prime.
Until now, the best complexity estimates obtained in that case corresponded to
generic algorithms that run in time 2n/2.

5 Note that the weaker bound Dreg ≤ 2mt derived in Section 4 with Macaulay’s bound
also leads to a subexponential complexity but with a constant c = 4ω/3.



On Polynomial Systems Arising from a Weil Descent 463

6 Conclusion and Perspectives

In this paper, we revisited the complexity of solving polynomial systems arising
from a Weil descent, a class of polynomial systems previously introduced by
Faugère et al. [33,34]. We observed that these systems can be seen as natural
extensions of HFE systems and we generalized various results on HFE. Based on
experimental results and heuristic arguments, we conjectured that the degree of
regularity of these systems are only slightly larger than their original degrees, and
we deduced new heuristic bounds on their resolution. Interestingly, our bounds
nicely generalize previous bounds on HFE.

The most proeminent consequence of our analysis so far concerns the ellip-
tic curve discrete logarithm problem (ECDLP) over binary fields. Indeed, our
heuristic analysis suggests that ECDLP can be solved in subexponential time

O(2c n
2/3 logn) over the binary field F2n , where c is a constant smaller than 2.

This complexity is obtained with an index calculus algorithm due to Diem [20]
and a block-structured Gröbner basis algorithm. In practice, our estimations
predict that the resulting algorithm is faster than generic algorithms (previ-
ously thought to be the best algorithms for this problem) for any n larger than
N , where N is an integer approximately equal to 2000. In particular, binary
elliptic curves of currently recommended sizes (n ≈ 160) are not immediately
threatened.

Our complexity estimates are based on heuristic assumptions that differ from
other index calculus algorithms, but are common in algebraic cryptanalysis. The
polynomial systems appearing in the cryptanalysis of HFE have been intensively
studied in the last 15 years, yet we have no definitive proof for their commonly
admitted complexity. Our paper broadens the interest of these researches to all
polynomial systems arising from a Weil descent and to their various applications.
We leave further experimental and theoretical investigation of our heuristic as-
sumptions to further work.

To conclude this paper, we point out that most of our results generalize quite
easily to other fields, resulting in comparable asymptotic complexities.

Acknowledgements. We are indebted to Sylvie Baudine and the anonymous
reviewers for their help in improving this paper. We also thank Jean-Charles
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